




FUNDAMENTAL PHYSICAL CONSTANTS

Speed of light in vacuum C 2.997 924 58 � 108 [m/s]

Avagadro’s number NA 6.022 141 99 � 1023 [molecule/mol]

Gas constant R 8.314 472 [J/(mol K)]

Boltzmann’s constant (R/NA) k 1.380 650 3 � 10�23 (J/(molecule K)]

Faraday’s constant F 9.648 534 15 � 104 [C/(mole)]

Elementary charge Q 1.602 176 46 � 10�19 [C]

  4.803 204 19 � 10�10 [esu]

Mass of a proton m 1.672 621 58 � 10�27 [kg]

Atomic mass unit AMU 1.660 538 73 � 10�27 [kg]

Atmospheric pressure (sea level) P 1.013 25 � l05 [Pa]

Gravitational acceleration (sea level) g 9.806 55 [m/s2]

Pi p 3.141 592 65

CONVERSION FACTORS

1 [m] � 102 [cm] � 1010 [A° ] � 39.370 [in] � 3.2808 [ft]

1 [kg] � 103 [g] � 2.2046 [1bm] � 0.068522 [slug]

[K] � [°C] � 273.15 � (5/9) [°R]; [°R] � [°F] � 459.67

1 [m3] � 103 [L] � 106 [cm3] � 35.315 [ft3] � 264.17 [gal] (U.S.)

1 [N] � 105 [dyne] � 0.22481 [lbf]

1 [atm] � 1.01325 [bar] � 1.01325 � 105 [Pa] � 14.696[psi] � 760 [torr]

1 [J] � 107 [crg] � 0.2.3885[cal] � 9.4781 � 10-4[BTU] � 6.242 � 1018 [eV]

For electric and magnetic properties see Appendix D: Table D.2.

COMMON VALUES FOR THE GAS CONSTANT, R

8.314 [J/(mol K)]

0.08314 [(L bar )/(mol K)]

1.987 [cal/(mol K)]

1.987 [BTU/(lbmol °R)]

0.08206 [(L atm)/(mol K)]
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SPECIAL NOTATION

Properties

Uppercase Extensive K : V, G, U, H, S, c

Lowercase Intensive (molar) k 5
k
n

5 ν, g, u, h, s, c

Circumfl ex, lowercase Intensive (mass) k̂ 5
k
m

5 ν̂ , ĝ , û , ĥ , ŝ, c

Mixtures

Subscript i Pure species property Ki : Vi, Gi, Ui, Hi, Si, c

  ki : νi, gi, ui, hi, si, c

Bar, subscript i Partial molar property Ki : Vi, Gi, Ui, Hi, Si, c

As is Total solution property K : V, G, U, H, S, c

  k : ν, g, u, h, s, c

Delta, subscript mix Property change of mixing: DKmix : DVmix, DHmix, DSmix, c

  Dkmix : Dνmix, Dhmix, Dsmix, c

Other
Dot Rate of change Q

#
, W
#

, n# , V
#
, c

Overbar Average 
 V
S

2 , cp, c

A complete set of notation used in this text can be found on page (vii)

IFC.indd   2IFC.indd   2 05/11/12   9:17 AM05/11/12   9:17 AM



Engineering and Chemical 
Thermodynamics

2nd Edition

Milo D. Koretsky
School of Chemical, Biological, and Environmental Engineering
Oregon State University

FM.indd   iFM.indd   i 03/11/12   3:14 PM03/11/12   3:14 PM



VP & Publisher   Don Fowley
Associate Publisher  Dan Sayre
Marketing Manager  Christopher Ruel
Associate Production Manager Joyce Poh
Designer    Kenji Ngieng
Production Management Services Laserwords

The drawing on the cover illustrates a central theme of the book: using molecular concepts 
to reinforce the development of thermodynamic principles.  The cover illustration depicts 
a turbine, a common process that can be analyzed using thermodynamics. A cutaway of the 
physical apparatus reveals a hypothetical thermodynamic pathway marked by dashed arrows. 
Using this text, students will learn how to construct such pathways to solve a variety of problems. 
The fi gure also contains a “molecular dipole,” which is drawn in the PT plane associated with 
the real fl uid. By showing how principles of thermodynamics relate to concepts learned in prior 
courses, this text helps students construct new knowledge on a solid conceptual foundation.

This book was set by Laserwords. Cover and text printed and bound by Courier Kendallville. 

This book is printed on acid free paper. 

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and 
understanding for more than 200 years, helping people around the world meet their needs 
and fulfi ll their aspirations. Our company is built on a foundation of principles that include 
responsibility to the communities we serve and where we live and work. In 2008, we launched a 
Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, 
and ethical challenges we face in our business. Among the issues we are addressing are carbon 
impact, paper specifi cations and procurement, ethical conduct within our business and among 
our vendors, and community and charitable support. For more information, please visit our 
website: www.wiley.com/go/citizenship. 

Copyright © 2013, 2004 John Wiley & Sons, Inc. All rights reserved. No part of this publication 
may be reproduced, stored in a retrieval system or transmitted in any form or by any means, 
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted 
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior 
written permission of the Publisher, or authorization through payment of the appropriate per-
copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923, 
website www.copyright.com. Requests to the Publisher for permission should be addressed to 
the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-
5774, (201)748-6011, fax (201)748-6008, website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualifi ed academics and professionals for review purposes 
only, for use in their courses during the next academic year.  These copies are licensed and may 
not be sold or transferred to a third party. Upon completion of the review period, please return the 
evaluation copy to Wiley.  Return instructions and a free of charge return mailing label are available 
at HYPERLINK "http://www.wiley.com/go/returnlabel" www.wiley.com/go/returnlabel.  If you have 
chosen to adopt this textbook for use in your course, please accept this book as your complimentary 
desk copy. Outside of the United States, please contact your local sales representative. 

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

FM.indd   iiFM.indd   ii 03/11/12   3:14 PM03/11/12   3:14 PM

http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/returnlabel
http://www.wiley.com/go/returnlabel


For Eileen Otis, mayn basherte

FM.indd   iiiFM.indd   iii 03/11/12   3:14 PM03/11/12   3:14 PM



FM.indd   ivFM.indd   iv 03/11/12   3:14 PM03/11/12   3:14 PM



CHAPTER►
You see, I have made contributions to biochemistry. There were no courses in molecular biology. 
I had no courses in biology at all, but I am one of the founders of molecular biology. I had no 
courses in nutrition or vitaminology. Why? Why am I able to do these things? You see, I got such a 
good basic education in the fields where it is difficult for most people to learn by themselves.

Linus Pauling
On his ChE education

 ►AUDIENCE
Engineering and Chemical Thermodynamics is intended for use in the undergraduate thermody-
namics course(s) taught in the sophomore or junior year in most Chemical Engineering (ChE) and 
Biological Engineering (BioE) Departments. For the majority of ChE and BioE undergraduate stu-
dents, chemical engineering thermodynamics, concentrating on the subjects of phase equilibria and 
chemical reaction equilibria, is one of the most abstract and diffi cult core courses in the curriculum. 
In fact, it has been noted by more than one thermodynamics guru (e.g., Denbigh, Sommerfeld) that 
this subject cannot be mastered in a single encounter. Understanding comes at greater and greater 
depths with every skirmish with this subject. Why another textbook in this area? This textbook is 
targeted specifi cally at the sophomore or junior undergraduate who must, for the fi rst time, grap-
ple with the treatment of equilibrium thermodynamics in suffi cient detail to solve the wide variety 
of problems that chemical engineers must tackle. It is a conceptually based text, meant to provide 
students with a solid foundation in this subject in a single iteration. Its intent is to be both accessible 
and rigorous. Its accessibility allows students to retain as much as possible through their fi rst pass 
while its rigor provides them the foundation to understand more advanced treatises and forms the 
basis of  commercial computer simulations such as ASPEN®, HYSIS®, and CHEMCAD®.

 Preface

 ►GOALS AND METHODOLOGY
The text was developed from course notes that have been used in the undergraduate chemical 
engineering classes at Oregon State University since 1994. It uses a logically consistent develop-
ment whereby each new concept is introduced in the context of a framework laid down previously. 
This textbook has been specifi cally designed to accommodate students with different learning 
styles. Its conceptual development, worked-out examples, and numerous end-of-chapter problems 
are intended to promote deep learning and provide students the ability to apply thermodynamics 
to real-world engineering problems. Two major threads weave throughout the text: (1) a com-
mon methodology for approaching topics, be it enthalpy or fugacity, and (2) the reinforcement of 
classical thermodynamics with molecular principles. Whenever possible, intuitive and qualitative 
arguments complement mathematical derivations.

The basic premise on which the text is organized is that student learning is enhanced by con-
necting new information to prior knowledge and experiences. The approach is to introduce new 
concepts in the context of material that students already know. For example, the second law of 
thermodynamics is formulated analogously to the fi rst law, as a generality to many observations of 
nature (as opposed to the more common approach of using specifi c statements about obtaining 
work from heat through thermodynamic cycles). Thus, the experience students have had in learn-
ing about the thermodynamic property energy, which they have already encountered in several 
classes, is applied to introduce a new thermodynamic property, entropy. Moreover, the underpin-
nings of the second law—reversibility, irreversibility, and the Carnot cycle—are introduced with 
the fi rst law, a context with which students have more experience; thus they are not new when the 
second law is introduced.
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vi ► Preface

 ►LEARNING STYLES
There has been recent attention in engineering education to crafting instruction that targets the 
many ways in which students learn. For example, in their landmark paper “Learnings and Teaching 
Styles in Engineering Education,”1 Richard Felder and Linda Silverman defi ne specifi c dimen-
sions of learning styles and corresponding teaching styles. In refi ning these ideas, the authors have 
focused on four specifi c dimensions of learning: sequential vs. global learners; active vs. refl ective 
learners; visual vs. verbal learners; and sensing vs. intuitive learners. This textbook has been spe-
cifi cally designed to accommodate students with different learning styles by providing avenues for 
students with each style and, thereby, reducing the mismatches between its presentation of content 
and a student’s learning style. The objective is to create an effective text that enables students to 
access new concepts. For example, each chapter contains learning objectives at the beginning and 
a summary at the end. These sections do not parrot the order of coverage in the text, but rather are 
presented in a hierarchical order from the most signifi cant concepts down. Such a presentation cre-
ates an effective environment for global learners (who should read the summary before embarking 
on the details in a chapter). On the other hand, to aid the sequential learner, the chapter is devel-
oped in a logical manner, with concepts constructed step by step based on previous material. Identi-
fi ed key concepts are presented schematically to aid visual learners. Questions about key points that 
have been discussed previously are inserted periodically in the text to aid both active and refl ective 
learners. Examples are balanced between those that emphasize concrete, numerical problem solv-
ing for sensing learners and those that extend conceptual understanding for intuitive learners.

In the cognitive dimension, we can form a taxonomy of the hierarchy of knowledge that a 
student may be asked to master. For example, a modifi ed Bloom’s taxonomy includes: remember, 
understand, apply, analyze, evaluate, and create. The tasks are listed from lowest to highest level. To 
accomplish the lower-level tasks, surface learning is suffi cient, but the ability to perform at the higher 
levels requires deep learning. In deep learning, students look for patterns and underlying principles, 
check evidence and relate it to conclusions, examine logic and argument cautiously and critically, and 
through this process become actively interested in course content. In contrast, students practicing 
surface learning tend to memorize facts, carry out procedures algorithmically, fi nd it diffi cult to make 
sense of new ideas, and end up seeing little value in a thermodynamics course. While it is reinforced 
throughout the text, promotion of deep learning is most signifi cantly infl uenced by what a student 
is expected to do. End-of-chapter problems have been constructed to cultivate a deep understand-
ing of the material. Instead of merely fi nding the right equation to “plug and chug,” the student is 
asked to search for connections and patterns in the material, understand the physical meaning of the 
equations, and creatively apply the fundamental principles that have been covered to entirely new 
problems. The belief is that only through this deep learning is a student able to synthesize informa-
tion from the university classroom and creatively apply it to new problems in the fi eld.

1Felder, Richard M., and Linda K. Silverman, Engr. Education, 78, 674 (1988).

 ►SOLUTION MANUAL
The Solutions Manual is available for instructors who have adopted this book for their course. 
Please visit the Instructor Companion site located at www.wiley.com/college/koretsky to register 
for a password.

 ►MOLECULAR CONCEPTS
While outside the realm of classical thermodynamics, the incorporation of molecular concepts 
is useful on many levels. In general, by the time undergraduate thermodynamics is taught, the 
chemical engineering student has had many chemistry courses, so why not take advantage of 
this experience! Thermodynamics is inherently abstract. Molecular concepts reinforce the text’s 
explanatory approach providing more access to the typical undergraduate student than could a 
mathematical derivation, by itself.
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Preface ◄ vii

A molecular approach is also becoming important on a technological level, with the increased 
development of molecular based simulation and engineering at the molecular level with nanotech-
nology. Moreover, molecular understanding allows the undergraduate to form a link between the 
understanding of equilibrium thermodynamics and other fundamental engineering sciences such 
as transport phenomena.

Finally, the research literature in cognitive science has shown that students can form per-
sistent misconceptions in core engineering science topics, and a molecular approach is useful 
in mitigating these misconceptions. For example, in emergent processes, observed phenomena 
are not directly caused by macroscopic processes, but rather “emerge” indirectly from collective 
behavior of molecules. Concepts that are most diffi cult for students to learn often contain emer-
gent processes which they mistake for direct causation. By including explanation at a molecular 
level, differences between emergent and direct phenomena can be explicitly addressed and the 
underlying causation is explained. 

 ►THERMOSOLVER SOFTWARE
The accompanying ThermoSolver software has been specifi cally designed to complement the text. 
This integrated, menu-driven program is easy to use and learning-based. ThermoSolver readily 
allows students to perform more complex calculations, giving them opportunity to explore a wide 
range of problem solving in thermodynamics. Equations used to perform the calculations can be 
viewed within the program and use nomenclature consistent with the text. Since the equations 
from the text are integrated into the software, students are better able to connect the concepts to 
the software output, reinforcing learning. The ThermoSolver software may be downloaded for free 
from the student companion site located at www.wiley.com/college/koretsky.

 ►ACKNOWLEDGMENTS
First, I would like to acknowledge and offer thanks to those individuals who have provided 
thoughtful input: Stuart Adler, Connelly Barnes, Kenneth Benjamin, Bill Brooks, Hugo Caran, 
Chih-hung (Alex) Chang, Mladen Eic, John Falconer, Frank Foulkes, Jerome Garcia, Debbi Gil-
buena, Enrique Gomez, Dennis Hess, Ken Jolls, P. K. Lim, Uzi Mann, Ron Miller, Erik Muehlen-
kamp, Jeff Reimer, Skip Rochefort, Wyatt Tenhaeff, Darrah Thomas, and David Wetzel. Second, I 
appreciate the effort and patience of the team at John Wiley & Sons, especially: Wayne Anderson, 
Dan Sayre, Alex Spicehandler, and Jenny Welter. Last, but not least, I am tremendously grateful to 
the students with whom, over the years, I have shared the thermodynamics classroom.

 ►NOTATION
The study of thermodynamics inherently contains detailed notation. Below is a summary of the 
notation used in this text. The list includes: special notation, symbols, Greek symbols, subscripts, 
superscripts, operators and empirical parameters. Due to the large number of symbols as well as 
overlapping by convention, the same symbol sometimes represents different quantities. In these 
cases, you will need to deduce the proper designation based on the context in which a particular 
symbol is used.

Special Notation

Properties

Uppercase Extensive K : V, G, U, H, S, . . .

Lowercase Intensive (molar)
k 5

K
n

5 v, g, u, h, s, c

Circumfl ex, lowercase Intensive (specifi c)
k̂ 5

K
m

5 v̂, ĝ, û, ĥ, ŝ, c
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viii ► Preface

Mixtures

Subscript i Pure species property Ki : Vi, Gi, Ui, Hi, Si, c

ki : vi, gi, ui, hi, si, c
Bar, subscript i Partial molar property Ki : Vi, Gi, Ui, Hi, Si, c
As is Total solution property K : V, G, U, H, S, . . . 

k : v, g, u, h, s, . . .

Delta, subscript mix Property change of mixing: DKmix : DVmix, DHmix, DSmix, c

Dkmix : Dvmix, Dhmix, Dsmix, c
Other

Dot Rate of change Q
#
, W
#

, n# , V
#
, c

Overbar Average
V
S

2, cP, c

Symbols

a, b . . ., i, . . .  Generic species in a mixture
a, A  Helmholtz energy
A, B   Labels for processes to be 

compared
A  Area
ai Activity of species i
Ai  Species i in a chemical 

reaction
b, B Exergy
bf , Bf  Exalpy
bj  Element vector
cP  Heat capacity at constant 

pressure
cv   Heat capacity at constant 

volume
ci  Molal concentration of 

species i
Ci   Mass concentration of 

species i
[i]  Molar concentration of 

species i
COP   Coeffi cient of performance
Di2 j  Bond i – j dissociation energy
e, E  Energy
ek, EK  Kinetic energy
ep, EP  Potential energy

E 
S

 Electric fi eld
F Force
F Flow rate of feed
F Faraday’s constant
� Degrees of freedom
fi   Fugacity of pure species i

f̂ i  Fugacity of species i in a 
mixture

f Total solution fugacity
g, G  Gibbs energy

g  Gravitational acceleration
h, H  Enthalpy

Dh|s Enthalpy of solution
Hi  Henry’s law constant of 

solute i
i Interstitial
I  Ionization energy
I  Ionic strength
k, K  Generic representation of 

any thermodynamic property 
except P or T

k  Boltzmann’s constant
k   Heat capacity ratio 1cP/cv 2
k  Spring constant
K Equilibrium constant
kij   Binary interaction  parameter 

between  species i and j
Ki K-value
L  Flow rate of liquid
m   Number of chemical species
m  Mass
MW  Molecular weight
n  Number of moles
n   Concentration of  electrons in 

a semiconductor
ni   Intrinsic carrier 

concentration
N   Number of molecules in the 

system or in a given state
NA  Avagadro’s number
OF  Objective function
p   Concentration of holes in a 

semiconductor
P Pressure
pi   Partial pressure of species i 

in an ideal gas mixture
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Preface ◄ ix

Pi
sat  Saturation pressure of 

 species i
q, Q  Heat
Q  Electric charge
r   Distance between two 

molecules
R  Gas constant
R   Number of independent 

chemical reactions
s  Stoichiometric constraints
s, S  Entropy
t  Time
T  Temperature
Tb   Temperature at the  boiling 

point
Tm   Temperature at the  melting 

point
Tu   Upper consulate 

temperature
u, U Internal energy
v, V  Volume
V  Flow rate of vapor

V Vacancy

V
S

 Velocity
w, W  Work
wflow, Wflow Flow work
ws, WS Shaft work
w∗, W∗ Non-Pv work
wi   Weight fraction of species i
x Quality (fraction vapor)
x Position along x-axis
xi  Mole fraction of liquid 

species i
Xi   Mole fraction of solid 

species i 
yi   Mole fraction of vapor 

species i 
z Compressibility factor
z  Position along z-axis
z   Valence of an ion in 

solution
1, 2 . . .  Labels of specifi c states of a 

system
1, 2 . . .  Generic species in a mixture

Greek Symbols

ai Polarizability of species i
b Thermal expansion coeffi cient
bij Formula coeffi cient matrix
E  Electrochemical potential
wi  Fugacity coeffi cient of pure 

species i
ŵi  Fugacity coeffi cient of species i 

in a mixture
w  Total solution fugacity 

coeffi cient
gi Activity coeffi cient of species i
gi

Henry’s  Activity coeffi cient using a 
Henry’s law reference state

gi
m  Molality based activity 

coeffi cient
g6  Mean activity coeffi cient of 

anions and cations in 
solution

h Effi ciency factor
li Lagrangian multiplier
G Molecular potential energy
Gi  Activity coeffi cient of solid 

species i
Gij  Molecular potential energy 

between species i and j
k Isothermal compressibility
mi  Dipole moment of species i
mi  Chemical potential of 

species i
mJT Joule-Thomson coeffi cient
p Phases
P Osmotic pressure
r Density
ni Stiochiometric coeffi cient
v Pitzer acentric factor
j Extent of reaction

Subscripts

a, b, . . ., i, . . .  Generic species in a mixture
atm Atmosphere
c Critical point
C  Cold thermal reservoir 
calc Calculated
cycle  Property change over a 

thermodynamic cycle
exp Experimental
f   Property value of  formation 

(with D)

fus Fusion
E External
H  Hot thermal reservoir 
high   High value (e.g. in 

interpolation)
ideal gas Ideal gas
in   Flow stream into the system
inerts   Inerts in a chemical 

reaction 
irrev  Irreversible process
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x ► Preface

l Liquid
low  Low value (e.g. in 

interpolation)
mix  Equation of state 

parameter of a mixture
net   Net heat or work 

transferred
out   Flow stream out of the 

system
products   Products of a chemical 

reaction
pc  Pseudocritical
r  Reduced property 
reactants  Reactants in a chemical 

reaction

real gas Real gas
rev  Reversible process 
rxn Reaction
sub  Sublimation 
surr Surroundings
sys System
univ Universe
v  Vapor
vap Vaporization
z  In the z direction
0 Environment
1, 2 . . .  Labels of specifi c states of a 

system
1, 2 . . .  Generic species in 

a mixture

Empirical parameters

a, b  van der Waals or Redlich-Kwong attraction and size parameter, respectively
a, b, a, k c Empirical parameters in various cubic equations of state
A  Two-suffi x Margules activity coeffi cient model parameter
Aij Three-suffi x Margules activity coeffi cient model parameters (one form) 
A,B  Three-suffi x Margules or van Laar activity coeffi cient model parameters 
A, B  Debye-Huckel parameters
A, B, C  Empirical constants for the Antoine equation
A, B, C, D, E  Empirical constants for the heat capacity equation
B, C, D  Second, third and fourth virial coeffi cients
B r, C r, D r Second, third and fourth virial coeffi cient in the pressure expansion
C6  Constant of van der Waals or Lennard-Jones attraction
Cn  Constant of intermolecular repulsion potential of power r2n

e Lennard-Jones energy parameter
Lij Wilson activity coeffi cient model parameters
s Distance parameter in hard sphere, Lennard-Jones and other potential functions

Superscripts

dep  Departure function (with D)
E  Excess property
ideal  Ideal solution 
ideal gas Ideal gas 
molecular  Molecular
l Liquid
o Value at the reference state 
real  Real fl uid with 

intermolecular 
interactions 

s Solid
sat  At saturation
v  Vapor
a, b  Generic phases (in 

equilibrium)
g  Volume exponential of a 

polytropic process
`  At infi nite dilution
(0) Simple fl uid term
(1) Correction term

Operators

d Total differential
' Partial differential
D   Difference between the fi nal 

and initial value of a state 
property

= Gradient operator

e  Integral

d  Inexact (path dependent) 
differential

ln  Natural (base e) logarithm 
log Base 10 logarithm
P  Cumulative product 

operator

a  Cumulative sum operator
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1

►CHAPTER 1

Measured Thermodynamic 
Properties and 
Other Basic Concepts

The Buddha, the Godhead, resides quite as comfortably in the circuits of a digital 
 computer or the gears of a cycle transmission as he does on the top of a mountain or 
the petal of a flower. To think otherwise would be to demean the Buddha—which is to 
demean oneself. This is what I want to talk about in this Chautauqua.

–Zen and the Art of Motorcycle Maintenance, by Robert M. Pirsig

Learning Objectives

To demonstrate mastery of the material in Chapter 1, you should be able to:

 ► Defi ne the following terms in your own words:

 • Universe, system, surroundings, and boundary

 • Open system, closed system, and isolated system

 • Thermodynamic property, extensive and intensive properties

 • Thermodynamic state, state and path functions

 •  Thermodynamic process; adiabatic, isothermal, isobaric, and isochoric 

processes

 • Phase and phase equilibrium

 • Macroscopic, microscopic, and molecular-length scales

 • Equilibrium and steady-state

  Ultimately, you need to be able to apply these concepts to formulate and 

solve engineering problems.

 ► Relate the measured thermodynamic properties of temperature and pressure 

to molecular behavior. Describe phase and chemical reaction equilibrium in 

terms of dynamic molecular processes.

 ► Apply the state postulate and the phase rule to determine the appropriate 

independent properties to constrain the state of a system that contains a 

pure species.

 ► Given two properties, identify the phases present on a PT or a Pv phase 

diagram, including solid, subcooled liquid, saturated liquid, saturated vapor, 

and superheated vapor and two-phase regions. Identify the critical point and 
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2 ► Chapter 1. Measured Thermodynamic Properties and Other Basic Concepts 

triple point. Describe the difference between saturation pressure and vapor 

pressure.

 ► Use the steam tables to identify the phase of a substance and fi nd the value 

of desired thermodynamic properties with two independent properties 

specifi ed, using linear interpolation if necessary.

 ► Use the ideal gas model to solve for an unknown measured property given 

measured property values.

Science changes our perception of the world and contributes to an understanding of our 
place in it. Engineering can be thought of as a profession that creatively applies science 
to the development of processes and products to benefi t humankind. Thermodynamics, 
perhaps more than any other subject, interweaves both these elements, and thus its pur-
suit is rich with practical as well as aesthetic rewards. It embodies engineering science in 
its purest form. As its name suggests, thermodynamics originally treated the conversion of 
heat to motion. It was fi rst developed in the nineteenth century to increase the effi ciency 
of engines—specifi cally, where the heat generated from the combustion of coal was con-
verted to useful work. Toward this end, the two primary laws of  thermodynamics were 
postulated. However, in extending these laws through logic and mathematics, thermo-
dynamics has evolved into an engineering science that comprises much greater breadth. 
In addition to the calculation of heat effects and power requirements, thermodynamics 
can be used in many other ways. For example, we will learn that thermodynamics forms 
the framework whereby a relatively limited set of collected data can be effi ciently used 
in a wide range of calculations. We will learn that you can determine certain useful 
properties of matter from measuring other properties and that you can predict the physi-
cal (phase) changes and chemical reactions that species undergo. A tribute to the wide 
applicability of this subject lies in the many fi elds that consider  thermodynamics part of 
their core knowledge base. Such disciplines include biology, chemistry, physics, geology, 
oceanography, materials science, and, of course, engineering.

Thermodynamics is a self-contained, logically consistent theory, resting on a few 
fundamental postulates that we call laws. A law, in essence, compresses an enormous 
amount of experience and knowledge into one general statement. We test our knowl-
edge through experiment and use laws to extend our knowledge and make predictions. 
The laws of thermodynamics are based on observations of nature and taken to be true on 
the basis of our everyday experience. From these laws, we can derive the whole of ther-
modynamics using the rigor of mathematics. Thermodynamics is self-contained in the 
sense that we do not need to venture outside the subject itself to develop its fundamental 
structure. On one hand, by virtue of their generality, the principles of thermodynamics 
constitute a powerful framework for solving a myriad of real-life engineering problems. 
However, it is also important to realize the limitations of this subject. Equilibrium ther-
modynamics tells us nothing about the mechanisms or rates of physical or chemical pro-
cesses. Thus, while the fi nal design of a chemical or biological process requires the study 
of the kinetics of chemical reactions and rates of transport, thermodynamics defi nes the 
driving force for the process and provides us with a key tool in engineering analysis and 
design.

We will pursue the study of thermodynamics from both conceptual and applied 
viewpoints. The conceptual perspective enables us to construct a broad intuitive founda-
tion that provides us the ability to address the plethora of topics that thermodynamics 

 ► 1.1  THERMODYNAMICS
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1.2 Preliminary Concepts—The Language of Thermo ◄ 3

spans. The applied approach shows us how to actually use these concepts to solve prob-
lems of practical interest and, thereby, also enhances our conceptual understanding. 
Synergistically, these two tacks are intended to impart a deep understanding of ther-
modynamics.1 In demonstrating a deep understanding, you will need to do more than 
regurgitate isolated facts and fi nd the right equation to “plug and chug.” Instead, you 
will need to search for connections and patterns in the material, understand the physical 
meaning of the equations you use, and creatively apply the fundamental principles that 
have been covered to entirely new problems. In fact, it is through this depth of learn-
ing that you will be able to transfer the synthesized information you are learning in the 
classroom and usefully and creatively apply it to new problems in the fi eld or in the lab 
as a professional chemical engineer.

 ► 1.2 PRELIMINARY CONCEPTS—THE LANGUAGE OF THERMO
In engineering and science, we try to be precise with the language that we use. This 
exactness allows us to translate the concepts we develop into quantitative, mathematical 
form.2 We are then able to use the rules of mathematics to further develop relationships 
and solve problems. This section introduces some fundamental concepts and defi nitions 
that we will use as a foundation for constructing the laws of thermodynamics and quan-
tifying them with mathematics.

In thermodynamics, the universe represents all measured space. It is not very conveni-
ent, however, to consider the entire universe every time we need to do a calculation. 
Therefore, we break down the universe into the region in which we are interested, the 
system, and the rest of the universe, the surroundings. The system is usually chosen so 
that it contains the substance of interest, but not the physical apparatus itself. It may be 
of fi xed volume, or its volume may change with time. Similarly, it may be of fi xed compo-
sition, or the composition may change due to mass fl ow or chemical reaction. The system 
is separated from the surroundings by its boundary. The boundary may be real and 
physical, or it may be an imaginary construct. There are times when a judicious choice of 
the system and its boundary saves a great deal of computational effort.

In an open system both mass and energy can fl ow across the boundary. In a closed 
system no mass fl ows across the boundary. We call the system isolated if neither mass 
nor energy crosses its boundaries. You will fi nd that some refer to an open system as a 
control volume and its boundary as a control surface.

For example, say we wish to study the piston–cylinder assembly in Figure 1.1. 
The usual choice of system, surroundings, and boundary are labeled. The boundary is 
depicted by the dashed line just inside the walls of the cylinder and below the piston. 
The system contains the gas within the piston–cylinder assembly but not the physical 
housing. The surroundings are on the other side of the boundary and comprise the rest 
of the universe. Likewise the system, surroundings, and boundary of an open system 
are labeled in Figure 1.2. In this case, the inlet and outlet fl ow streams, labeled “in” 
and “out,” respectively, allow mass to fl ow into and out of the system, across the system 
boundary.

Thermodynamic Systems

1 For more discussion on deep learning vs. shallow learning in engineering education, see Philip C. Wancat, 
“Engineering Education: Not Enough Education and Not Enough Engineering,” 2nd International Conference 
on Teaching Science for Technology at the Tertiary Level, Stockholm, Sweden, June 14, 1997.
2 It can be argued that the ultimate language of science and engineering is mathematics.
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4 ► Chapter 1. Measured Thermodynamic Properties and Other Basic Concepts 

The substance contained within a system can be characterized by its properties. These 
include measured properties of volume, pressure, and temperature. The properties of 
the gas in Figure 1.1 are labeled as T1, the temperature at which it exists; P1, its pressure; 
and v1, its molar volume. The properties of the open system depicted in Figure 1.2 are 
also labeled, Tsys and Psys. In this case, we can characterize the properties of the fl uid in 
the inlet and outlet streams as well, as shown in the fi gure. Here ṅ represents the molar 
fl ow rate into and out of the system. As we develop and apply the laws of thermodynam-
ics, we will learn about other properties; for example, internal energy, enthalpy, entropy, 
and Gibbs energy are all useful thermodynamic properties.

Thermodynamic properties can be either extensive or intensive. Extensive proper-
ties depend on the size of the system while intensive properties do not. In other words, 
extensive properties are additive; intensive properties are not additive. An easy way to test 
whether a property is intensive or extensive is to ask yourself, “Would the value for this 
property change if I divided the system in half?” If the answer is “no,” the property is inten-
sive. If the answer is “yes,” the property is extensive. For example, if we divide the system 
depicted in Figure 1.1 in half, the temperature on either side remains the same. Thus, 
the value of temperature does not change, and we conclude that temperature is intensive.

Many properties can be expressed in both extensive and intensive forms. We must 
be careful with our nomenclature to distinguish between the different forms of these 
properties. We will use a capital letter for the extensive form of such a thermodynamic 
property. For example, extensive volume would be V of 3m3 4. The intensive form will be 
lowercase. We denote molar volume with a lowercase v 3m3/mol 4 and specifi c volume 
by v̂ 3m3/kg 4. On the other hand, pressure and temperature are always intensive and are 
written P and T, by convention.

Properties

Figure 1.1 Schematic of a piston–cylinder  assembly. 
The system, surroundings, and boundary are 
delineated.State 1 

=

System
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Figure 1.2 Schematic of an open system into and out of which mass flows. The system, 
 surroundings, and boundary are delineated.
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1.2 Preliminary Concepts—The Language of Thermo ◄ 5

The thermodynamic state of a system is the condition in which we fi nd the system at 
any given time. The state fi xes the values of a substance’s intensive properties. Thus, 
two systems comprised of the same substance whose intensive properties have iden-
tical values are in the same state. The system in Figure 1.1 is in state 1. Hence, we 
label the properties with a subscript “1.” A system is said to undergo a process when 
it goes from one thermodynamic state to another. Figure 1.3 illustrates a process 
instigated by removing a block of mass m from the piston of Figure 1.1. The result-
ing force imbalance will cause the gas to expand and the piston to rise. As the gas 
expands, its pressure will drop. The expansion process will continue until the forces 
once again balance. Once the piston comes to rest, the system is in a new state, state 
2. State 2 is defi ned by the properties T2, P2 and v2. The expansion process takes the 
system from state 1 to state 2. As the dashed line in Figure 1.3 illustrates, we have 
chosen our system boundary so that it expands with the piston during the process. 
Thus, no mass fl ows across the boundary and we have a closed system. Alternatively, 
we could have chosen a boundary that makes the volume of the system constant. In 
that case, mass would fl ow across the system boundary as the piston expands, mak-
ing it an open system. In general, the former choice is more convenient for solving 
problems.

Similarly, a process is depicted for the open system in Figure 1.2. However, we 
view this process slightly differently. In this case, the fl uid enters the system in the inlet 
stream at a given state “in,” with properties Tin, Pin, and vin. It undergoes the process in 
the system and changes state. Thus, it exits in a different state, with properties Tout, Pout, 
and vout. 

During a process, at least some of the properties of the substances contained in 
the system change. In an adiabatic process, no heat transfer occurs across the system 
boundary. In an isothermal process, the temperature of the system remains constant. 
Similarly, isobaric and isochoric processes occur at constant pressure and volume, 
respectively.

Processes

Figure 1.3 Schematic of a piston–cylinder assembly undergoing an expansion process from 
state 1 to state 2. This process is initiated by removal of a block of mass m.
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A given phase of matter is characterized by both uniform physical structure and uniform 
chemical composition. It can be solid, liquid, or gas. The bonds between the atoms in a 
solid hold them in a specifi c position relative to other atoms in the solid. However, they 
are free to vibrate about this fi xed position. A solid is called crystalline if it has a long-
range, periodic order. The spatial arrangement in which the atoms are bonded is termed 
the lattice structure. A given substance can exist in several different crystalline lattice 
structures. Each different crystal structure represents a different phase, since the physi-
cal structure is different. For example, solid carbon can exist in the diamond phase or the 
graphite phase. A solid with no long-range order is called amorphous. Like a solid, mol-
ecules within the liquid phase are in close proximity to one another due to intermolecular 
attractive forces. However, the molecules in a liquid are not fi xed in place by directional 
bonds; rather, they are in motion, free to move relative to one another. Multicomponent 
liquid mixtures can form different phases if the composition of the species differs in dif-
ferent regions. For example, while oil and water can coexist as liquids, they are consid-
ered separate liquid phases, since their compositions differ. Similarly, solids of different 
composition can coexist in different phases. Gas molecules show relatively weak intermo-
lecular interactions. They move about to fi ll the entire volume of the container in which 
they are housed. This movement occurs in a random manner as the molecules continually 
change direction as they collide with one another and bounce off the container surfaces.

More than one phase can coexist within the system at equilibrium. When this phe-
nomenon occurs, a phase boundary separates the phases from each other. One of the 
major topics in chemical thermodynamics, phase equilibrium, is used to determine the 
chemical compositions of the different phases that coexist in a given mixture at a speci-
fi ed temperature and pressure.

Phases of Matter

Length Scales

In this text, we will refer to three length scales: the macroscopic, microscopic, and molecu-
lar. The macroscopic scale is the largest; it represents the bulk systems we observe in 
everyday life. We will often consider the entire macroscopic system to be in a uniform 
thermodynamic state. In this case, its properties (e.g., T, P, v) are uniform throughout the 

Hypothetical Paths

The values of thermodynamic properties do not depend on the process (i.e., path) 
through which the system arrived at its state; they depend only on the state itself. Thus, 
the change in a given property between states 1 and 2 will be the same for any process 
that starts at state 1 and ends at state 2. This aspect of thermodynamic properties is 
very useful in solving problems; we will exploit it often. We will devise hypothetical 
paths between thermodynamic states so that we can use data that are readily available 
to more easily perform computation. Thus, we may choose the following hypothetical 
path to calculate the change in any property for the process illustrated in Figure 1.3: We 
fi rst consider an isothermal expansion from P1, T1 to P2, T1. We then execute an isobaric 
cooling from P2, T1 to P2, T2. The hypothetical path takes us to the same state as the real 
process—so all the properties must be identical. Since properties depend only on the 
state itself, they are often termed state functions. On the other hand, there are quanti-
ties that we will be interested in, such as heat and work, that depend on path. These are 
referred to as path functions. When calculating values for these quantities, we must use 
the real path the system takes during the process.
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1.3 Measured Thermodynamic Properties ◄ 7

system. By microscopic, we refer to differential volume elements that are too small to 
see with the naked eye; however, each volume element contains enough molecules to be 
considered as having a continuous distribution of matter, which we call a continuum. Thus, 
a microscopic volume element must be large enough for temperature, pressure, and molar 
volumes to have meaningful values. Microscopic balances are performed over differential 
elements, which can then be integrated to describe behavior in the macroscopic world. We 
often use microscopic balances when the properties change over the volume of the system 
or with time. The molecular 3 scale is that of individual atoms and molecules. At this level 
the continuum breaks down and matter can be viewed as discrete elements. We cannot 
describe individual molecules in terms of temperature, pressure, or molar volumes. Strictly 
speaking, the word molecule is outside the realm of classical thermodynamics. In fact, all 
of the concepts developed in this text can be developed based entirely on observations 
of macroscopic phenomena. This development does not require any knowledge of the 
molecular nature of the world in which we live. However, we are chemical engineers and 
can take advantage of our chemical intuition. Molecular concepts do account qualitatively 
for trends in data as well as magnitudes. Thus, they provide a means of understanding 
many of the phenomena encountered in classical thermodynamics. Consequently, we will 
often refer to molecular chemistry to explain thermodynamic phenomena.4 The objective 
is to provide an intuitive framework for the concepts about which we are learning.

3 Some fi elds of science such as statistical mechanics use the term microscopic for what we call molecular.
4 While this objective can often be achieved formally and quantitatively through statistical mechanics and 
quantum mechanics, we will opt for a more qualitative and descriptive approach reminiscent of the chemistry 
classes you have taken.

Units

By this time, you are probably experienced in working with units. Most science and engi-
neering texts have a section in the fi rst chapter on this topic. In this text, we will mainly 
use the Système International, or SI units. The SI unit system uses the primary dimen-
sions m, s, kg, mol, and K. Details of different unit systems can be found in Appendix 
D. One of the easiest ways to tell that an equation is wrong is that the units on one side 
do not match the units on the other side. Probably the most common errors in solving 
problems result from dimensional inconsistencies. The upshot is: Pay close attention to 
units! Try not to write a number down without the associated units. You should be able 
to convert between unit systems. It is often easiest to put all variables into the same unit 
system before solving a problem.

How many different units can you think of for length? For pressure? For energy?

 ►1.3 MEASURED THERMODYNAMIC PROPERTIES
We have seen that if we specify the property values of the substance(s) in a system, we 
defi ne its thermodynamic state. It is typically the measured thermodynamic proper-
ties that form our gateway into characterizing the particular state of a system. Measured 
thermodynamic properties are those that we obtain through direct measurement in the 
lab. These include volume, temperature, and pressure.

Volume (Extensive or Intensive)

Volume is related to the size of the system. For a rectangular geometry, volume can be 
obtained by multiplying the measured length, width, and height. This procedure gives us 
the extensive form of volume, V, in units of 3m3 4 or [gal]. We purchase milk and gasoline 
in volume with this form of units.
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8 ► Chapter 1. Measured Thermodynamic Properties and Other Basic Concepts 

Volume can also be described as an intensive property, either as molar volume, 
v 3m3/mol 4, or specifi c volume, v̂ 3m3/kg 4. The specifi c volume is the reciprocal of den-
sity, r 3kg/m3 4. If a substance is distributed continuously and uniformly throughout the 
system, the intensive forms of volume can be determined by dividing the extensive vol-
ume by the total number of moles or the total mass, respectively. Thus,

 v 5
V
n

 (1.1)
and,

 v̂ 5
V
m

5
1
r

  (1.2)

If the amount of substance varies throughout the system, we can still refer to the 
molar or specifi c volume of a microscopic control volume. However, its value will change 
with position. In this case, the molar volume of any microscopic element can be defi ned:

 v 5 lim
S   
¢V

n
≤  (1.3)

where V r is the smallest volume over which the continuum approach is still valid and n 
is the number of moles.

5 In Chapter 2, we will more carefully defi ne heat.
6 This relation for temperature is often referred to as the “zeroth law of thermodynamics.” However, in the 
spirit of Rudolph Clausius, we will view thermodynamics in terms of two fundamental laws of nature that are 
represented by the fi rst and second laws of thermodynamics.
7 Except in the ideal case of a perfect solid at a temperature of absolute zero.

Temperature (Intensive)

Temperature, T, is loosely classifi ed as the degree of hotness of a particular system. No doubt, 
you have a good intuitive feel for what temperature is. When the temperature is 90°F in the 
summer, it is hotter than when it is 40°F in the winter. Likewise, if you bake potatoes in an 
oven at 400°F, they will cook faster than at 300°F, apparently since the oven is hotter. 

In general, to say that object A is hotter than object B is to say TA . TB. In this 
case, A will spontaneously transfer energy via heat5 to B. Likewise if B is hotter than A, 
TA , TB, and energy will transfer spontaneously from B to A. When there is no tendency 
to transfer energy via heat in either direction, A and B must have equal hotness and 
TA 5 TB.6 A logical extension of this concept says that if two bodies are at equal hot-
ness to a third body, they must be at the same temperature themselves. This principle 
forms the basis for thermometry, where a judicious choice of the third body allows us 
to measure temperature. Any substance with a measurable property that changes as its 
temperature changes can then serve as a thermometer. For example, in the commonly 
used mercury in glass thermometer, the change in the volume of mercury is correlated 
to temperature. For more accurate measurements, the pressure exerted by a gas or the 
electric potential of junction between two different metals can be used.

Molecular View of Temperature
On the molecular level, temperature is proportional to the average kinetic energy of 
the individual atoms (or molecules) in the system. All matter contains atoms that are in 
motion.7 Species in the gas phase, for example, move chaotically through space with fi nite 

V     V r
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1.3 Measured Thermodynamic Properties ◄ 9

velocities. (What would happen to the air in a room if its molecules weren’t moving?) 
They can also vibrate and rotate. Figure 1.4 illustrates individual molecular velocities. 
The piston–cylinder assembly depicted to the left schematically displays the velocities of 
a set of individual molecules. Each arrow represents the velocity vector with the size of 
the arrow proportional to a given molecule’s speed. The velocities vary widely in magni-
tude and direction. Furthermore, the molecules constantly redistribute their velocities 
among themselves when they elastically collide with one another. In an elastic collision, 
the total kinetic energy of the colliding atoms is conserved. On the other hand, a particu-
lar molecule will change its velocity; as one molecule speeds up via collision, however, its 
collision partner slows down.

Since the molecules in a gas move at great speeds, they collide with one another 
billions of times per second at room temperature and pressure. An individual molecule 
frequently speeds up and slows down as it undergoes these elastic collisions. However, 
within a short period of time the distribution of speeds of all the molecules in a given 
system becomes constant and well defi ned. It is termed the Maxwell–Boltzmann distri-
bution and can be derived using the kinetic theory of gases. 

The right-hand side of Figure 1.4 shows the Maxwell–Boltzmann distributions for 
O2 at 300 K and 1000 K. The y-axis plots the fraction of O2 molecules at the speed given 
on the x-axis. At a given temperature, the fraction of molecules at any given speed does 
not change.8 In fact, the temperature of a gas is only strictly defi ned for an aggregate of 
gas molecules that have obtained this characteristic distribution. Similarly, for a micro-
scopic volume element to be considered a continuum, it must have enough molecules 
for the gas to approximate this distribution. The distribution at the higher temperature 
has shifted to higher speeds and fl attened out. 

Figure 1.4 A schematic representation of the different speeds molecules have in the gas 
phase. The left-hand side shows molecules flying around in the system. The right-hand side 
illustrates the Maxwell–Boltzmann distributions of O2 molecules at 300 K and 1000 K.

Pure

gas

5000 1000 1500

Speed (m/s)

F
ra

c
ti
o
n
 o

f 
g
a
s

T = 300 K

T = 1000 K

2000 2500

m

m

8 The macroscopic and the molecular scales present an interesting juxtaposition. At a well-defi ned temperature, 
there is one distinct distribution of molecular speeds. Thus, we say we have only one macrostate possible. 
However, if we keep track of all the individual molecules, we see there are many ways to arrange them within 
this one macrostate; that is, any given molecule can have many possible speeds. In Chapter 3, we will see that 
entropy is a measure of how many different molecular confi gurations a given macrostate can have.
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Kinetic theory shows the temperature is proportional to the average translational 
molecular kinetic energy, emolecular

K , which is related to the mean-square molecular velocity:

 T <
1
2

 mV
S

2 5 emolecular
K  (1.4)

where m is the mass of an individual molecule and V
S

2 is the mean-square velocity. 
emolecular

K  represents the average kinetic energy of the “center-of-mass” motion of the mol-
ecules. Diatomic and polyatomic molecules can have vibrational and rotational energy as 
well. The higher the temperature, the faster the atoms move and the higher the average 
kinetic energy. Temperature is independent of the nature of the particular substance in 
the system. Thus, when we have two different gases at the same temperature, the aver-
age kinetic energies of the molecules in each gas are the same.

This principle can be extended and applied to the liquid and solid phases as well. 
The temperature in the condensed phases is also a measure of the average kinetic energy 
of the molecules. For molecules to remain in the liquid or solid phase, however, the 
potential energy of attraction between the molecules must be greater than their kinetic 
energy. Thus, species condense and freeze at lower temperature when the kinetic energy 
of the molecules is lower and the potential energy of attraction dominates.

As you know, if we allow two solid objects with different initial temperatures to contact 
each other, and we wait long enough, their temperatures will become equal. How can we 
understand this phenomenon in the context of average atomic kinetic energy? In the case 
of solids, the main mode of molecular kinetic energy is in the form of vibrations of the 
individual atoms. The atoms of the hot object are vibrating with more kinetic energy and, 
therefore, moving faster than the atoms of the cold object. At the interface, the faster atoms 
vibrating in the hot object transfer more energy to the cold object than the slower-moving 
atoms in the cold object transfer to the hot object. Thus, with time, the cold object gains 
atomic kinetic energy (vibrates more vigorously) and the hot object loses atomic kinetic 
energy. This transfer of energy occurs until their average atomic kinetic energies become 
equal. At this point, their temperatures are equal and they transfer equal amounts of energy 
to each other, so their temperature does not change any further. This case illustrates that 
temperature and molecular kinetic energy are intimately linked. We will learn more about 
these molecular forms of energy when we discuss the conservation of energy in Chapter 2.

Temperature Scales
To assign quantitative values to temperature, we need an agreed upon temperature 
scale. Each unit of the scale is then called a degree(°). Since the temperature is linearly 
proportional to the average kinetic energy of the atoms and molecules in the system, 
we just need to specify the constant of proportionality to defi ne a temperature scale. By 
convention, we choose (3/2) k where k is Boltzmann’s constant. Thus we can defi ne T in 
a particular unit system by writing:9

 emolecular
K ; 13/2 2kT (1.5)

Since temperature is defi ned as the average kinetic energy per molecule, it does not 
depend on the size of the system. Hence temperature is always intensive.

9 In fact, in the limit of very low temperature, quantum effects can become measurable for some gases, and 
Equation (1.5) breaks down. However, these effects can be reasonably neglected for our purposes.
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1.3 Measured Thermodynamic Properties ◄ 11

The scale resulting from Equation (1.5) defi nes the absolute temperature scale 
in which the temperature is zero when there is no molecular kinetic energy. In SI units, 
degrees Kelvin [K] is used as the temperature scale and k 5 1.38 3 10223 [J/(molecule 
K)]. The temperature scale in English units is degrees Rankine [°R]. 

Conversion between the SI and English systems can be achieved by realizing that 
the scale in English units is 9/5 times greater than that in SI. Hence,

T 3°R 4 5 19/5 2T 3K 4

No substance can have a temperature below zero on an absolute temperature scale, 
since that is the point where there is no molecular motion. 

However, absolute zero, as it is called, corresponds to a temperature that is very, very 
cold. It is often more convenient to defi ne a temperature scale around those tempera-
tures more commonly found in the natural world. The Celsius temperature scale [°C] 
uses the same scale per degree as the Kelvin scale; however, the freezing point of pure 
water is 0°C and the boiling point of pure water as 100°C. It shifts the Kelvin scale by 
273.15, that is,

T 3K 4 5 T 3°C 4 1 273.15

In this case, the temperature of no molecular motion (absolute zero) occurs at 
2273.15°C. 

Similarly, the Fahrenheit scale [°F] uses the same scale per degree as the Rankine 
scale, but the freezing point of pure water is 32°F and the boiling point of pure water is 
212°F. Thus,

T 3°R 4 5 T 3°F 4 1 459.67

Absolute zero then occurs at 2459. 67°F. It is straightforward to show that conversion 
between Celsius and Fahrenheit scales can be accomplished by:

T 3°F 4 5 19/5 2T 3°C 4 1 32

Finally, we note the measurement of temperature is actually indirect, but we have 
such a good feel for T, that we classify it as a measured parameter.

Pressure (Intensive)

Pressure is the normal force per unit area exerted by a substance on its boundary. The 
boundary can be the physical boundary that defi nes the system. If the pressure varies 
spatially, we can also consider a hypothetical boundary that is placed within the system. 

Molecular View of Pressure
Let us consider again the piston–cylinder assembly. As illustrated in Figure 1.5, the 
pressure of the gas on the piston within the piston–cylinder assembly can be conceptu-
alized in terms of the force exerted by the molecules as they bounce off the piston. We 
consider the molecular collisions with the piston to be elastic. According to Newton’s 
second law, the time rate of change of momentum equals the force. Each molecule’s 
velocity in the z direction, V

S

z changes sign as a result of collision with the piston, as 
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12 ► Chapter 1. Measured Thermodynamic Properties and Other Basic Concepts 

illustrated in Figure 1.5. Thus, the change in momentum for a molecule of mass m that 
hits the piston is given by:

 b change in momentum

molecule that hits the piston
r 5 mV

S

z 2 12mV
S

z 2 5 2mV
S

z  (1.6)

This momentum must then be absorbed by the piston. The total pressure the gas 
exerts on the face of the piston results from summing the change in z momentum of all 
N of the individual atoms (or molecules) impinging on the piston and dividing by the 
area, A:

 P 5
1
Aa

N

i51

Bd 1mV
S

z 2

d t
R

i
 (1.7)

In other words, the pressure is equal to momentum change per second per area 
that the impinging molecules deliver to the piston. The large number of molecules in a 
macroscopic system effectively makes this exerted force constant across the piston. We 
can examine how certain processes affect the pressure of a gas through examination of 
 Equation (1.7). If we increase the number of molecules, N, in the system, more molecules 
will impinge on the piston surface per time and the pressure will increase. Likewise, 
if we increase the velocity of the molecules, V

S

z, through an increase in temperature, the 
 pressure will go up. 

If the piston is stationary, a force balance shows that the pressure of the gas must 
be identical to the force per area exerted on the other side by the surroundings; that is, 
P 5 Psurr where the subscript “surr” refers to the surroundings. On the other hand, if the 
pressure of the surroundings is greater than that of the system, the forces will not balance 
and the piston will move down in a compression process. The pressure in the piston will 
increase until the forces again balance and compression stops. There is another effect 
we must also consider during compression. The atoms will pick up additional speed from 
momentum transfer with the moving piston. In a sense, the piston will “hit” the mol-
ecules much like a bat hits a baseball. The additional momentum transferred to the 
molecules will cause the z component of velocity leaving the piston to be greater than 
the incoming velocity. Therefore, the compression process causes the average molecular 
kinetic energy in the system to rise, and, consequently, T will increase. A similar argu-
ment can be made for why temperature decreases during expansion. We will discuss 
these effects in compression and expansion processes in more detail when we look at 
work in Chapter 2.

Figure 1.5 Schematic of how the gas molecules in a station-
ary piston–cylinder assembly exert pressure on the piston 
through transfer of z momentum.

Pure
gas

→
(−mVz)

→
mVz

FZ

A
P =

m

mPsurr

z

c01.indd   12c01.indd   12 05/11/12   9:01 AM05/11/12   9:01 AM



1.3 Measured Thermodynamic Properties ◄ 13

Units of Pressure
We can think of force as the extensive version of pressure. If we double the area of the 
piston in Figure 1.5, we double the force. On the other hand, the pressure is intensive 
and stays the same. In this text, we will usually refer to pressure and seldom to force, 
since pressure can be extended to the context within a system and to microscopic volume 
elements. The SI unit of pressure is the Pa. It has the following equivalent dimensional 
forms:

1 3Pa 4 5 1 3kg/ms2 4 5 1 3N/m2 4 5 1 3J/m3 4

Since pressure represents the force per area, the unit of 3N/m2 4 is most straightforward; 
however, in the context of the energy balances we will be addressing in this text, the unit 
of 3J/m3 4 is often more useful.

The Ideal Gas

An equation that relates the measured properties T, P, and v is called an equation of 
state. The simplest equation of state is given by the ideal gas model:

 P 5
RT
v

 (1.8)

Applying Equation (1.1), the ideal gas model can be written in terms of extensive vol-
ume, V, and number of moles, n, as follows:

 P 5
nRT

V
 (1.9)

Values for the gas constant, R, in different units are given in Table 1.1. The ideal gas 
model was empirically developed largely through the work of the chemists Boyle, Gay-
Lussac, and Charles. It is valid for gases in the limits of low pressure and high tempera-
ture. In practice, the behavior of most gases at atmospheric pressure is well approximated 
by the ideal gas model. 

From a molecular viewpoint, we can develop the ideal gas relation based on the 
assumption that the gas consists of molecules that are infi nitesimally small, hard, round 
spheres that occupy negligible volume and exert forces on each other only through col-
lisions. Thus, there are no potential energy interactions between the molecules. When 
a gas takes up a signifi cant part of the system’s volume or exerts other intermolecular 
forces, alternative equation of state should be used. Such Equations will be addressed 
in Chapter 4. 

TABLE 1.1 Some Common Values for the Gas Constant, R

Value of R Units

8.314 J/(mol K)

0.08314 (L bar)/(mol K)

1.987 cal/(mol K)

1.987 BTU/(lb-mol°R)

0.08206 (L atm)/(mol K)
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 Show that the ideal gas model can be derived from the molecular defi nition of pressure, Equa-
tion (1.7). The molecular relationship between temperature and kinetic energy, Equation (1.5), 
is also useful.

SOLUTION The defi nition of pressure is given by Equation (1.7):

 P 5
1
Aa

N

i51
Bd 1mV

S

z 2

dt
R

i
 (1.7)

The rate of change in z momentum of any particular molecule can be separated into two parts, 
as follows:

  
d 1mV

S

z 2

dt
5 b change in momentum

collision of molecule with the piston
r  b collisions

time
r  (E1.1A)

The fi rst term on the right-hand side of Equation (E1.1A) is given by Equation (1.6):

 b change in momentum

collision of molecule with the piston
r 5 mV

S

z 2 12mV
S

z 2 5 2mV
S

z (1.6)

The second term can be obtained if we realize a molecule must travel a length, l, to collide with 
the piston. Hence the rate of collisions can be approximated by:

 b collisions
time

r 5
V
S

z

l
5

AV
S

z

V
 (E1.1B)

Substituting Equations (E1.1B) and (1.6) into Equation (E1.1A), and then using Equation 
(E1.1A) in Equation (1.7) gives:

 P 5
1
Aai

Bd 1mV
S

z 2

dt
R

i
5

1
Aa

N/2

i51

B2mAV
S

z
2

V
R

i
 (E1.1C)

where we have divided the total number of molecules in the system by 2 since the molecules 

heading away from the piston with a velocity 12V
S

z 2  will not hit it. Thus, we do not count them 
in the calculation of the pressure.

We can rewrite Equation (E1.1C) by using the average mean speed instead of summing 
over all the individual velocities. The average mean speed is given by the following relation:

a
N/2

i51
1V
S

z
2 2 i 5

N
2

 aV
S

z
2b

Inserting this expression into Equation (E1.1C), we get:

 P 5
mN
V

 aV
S

z
2b  (E1.1D)

Since the molecules are equally likely to move in any of three directions, we can replace the 
speed in the z direction with the total speed V

S

, as follows:

 V
S

z
2 5 11/3 2 V

S
2 (E1.1E)

EXAMPLE 1.1

Determination of 
Ideal  Gas Law from 
the Defi nition of 
P and T

c01.indd   14c01.indd   14 05/11/12   9:01 AM05/11/12   9:01 AM



 1.4  Equilibrium ◄ 15

A large part of thermodynamics deals with predicting the state that systems will reach at 
equilibrium. Equilibrium refers to a condition in which the state neither changes with 
time nor has a tendency to spontaneously change. At equilibrium, there is no net driving 
force for change. In other words, all opposing driving forces are counterbalanced. We 
use driving force as a generic term that represents some type of infl uence for a system 
to change. If the equilibrium state is stable, the system will return to that state when a 
small disturbance is imposed upon it. A system that has mass being supplied or removed 
cannot be at equilibrium, since a net driving force must exist to move the species about. 
Hence, equilibrium can only occur in a closed system. In general, any system subject to 
net fl uxes cannot be in equilibrium.

We can distinguish between a system in an equilibrium state and a process at steady-
state. If the state of an open system does not change with time as it undergoes a process, 
it is said to be at steady-state; however, it is not at equilibrium since there must be a net 
driving force to get the mass into and out of the system. For example, consider the open 
system shown in Figure 1.2. At steady-state, the thermodynamic state of the system itself 
remains constant—that is, — Tsys, Psys and its other properties do not change with time. 
However, the system’s properties may vary spatially. On the other hand, the fl uid enter-
ing the system undergoes a transformation and exits in a different state; thus, when the 
fl uid enters the system, its properties (Tin, Pin, vin, etc.) have different values than when it 
leaves 1Tout, Pout, vout 2 . Since the state of the fl uid that fl ows through the system changes, 
we cannot say the system is at equilibrium.

The factor of 3 arises since there are three possible directions of motion. Plugging in Equation 
(E1.1E) into (E1.1D) gives:

P 5
2N
3V

 ¢1
2

 mV
S

2≤ 5
2N
3V

 1eK
molecular 2

where Equation (1.4) was used. 
Finally substituting Equation (1.5) gives the ideal gas relation:

P 5
NkT

V
5

nRT
V

where R 5 kNA and NA is Avogadro’s number.

 ► 1.4  EQUILIBRIUM

Types of Equilibrium

If a system is in equilibrium with its surroundings, its properties will remain constant 
with time. On the other hand, a system that is not at equilibrium will change spontane-
ously to progress toward its equilibrium state. If a pressure difference exists between the 
system and surroundings, the system will tend to expand or contract until the pressures 
balance. A system is said to be in mechanical equilibrium when there is no pressure 
difference and thus this tendency for change is eliminated. Therefore, to be in mechani-
cal equilibrium,

 Psys 5 Psurr (1.10)
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where the subscript “sys” refers to the system and is often omitted. 
Similarly, if the system is hotter (or colder) than the surroundings, there is a ther-

mal driving force for change. Energy will transfer via heat until the temperatures bal-
ance. The system is in thermal equilibrium when there is no temperature difference 
between it and the surroundings:

 Tsys 5 Tsurr (1.11) 

A system is in chemical equilibrium when there is no tendency for a species to 
change phases or chemically react. In Chapter 6, we will develop the analogous criterion 
to Equations (1.10) and (1.11) for chemical equilibrium. To be in thermodynamic equi-
librium, a system must be in mechanical, thermal, and chemical equilibrium simultane-
ously, so that there is no net driving force for any type of change.10

We can refer to equilibrium between different phases or chemical species within 
the system as well. A system is said to be in phase equilibrium if it has more than one 
phase present with no tendency to change. For example, a two-phase liquid–vapor sys-
tem is in phase equilibrium when there is no tendency for the liquid to boil or the vapor 
to condense. To be complete, we must also have mechanical and thermal equilibrium 
between the liquid (l) and vapor (v) phases, that is,

Pl 5 Pv

and,

Tl 5 Tv

Likewise, when liquid and solid phases or vapor and solid phases are in equilibrium, they 
will have equal temperature and equal pressure. 

Remarkably, P and T are unique among the thermodynamic properties in that 
they both exist only in the intensive form and that they are equal across the different 
phases that coexist at equilibrium. Other thermodynamic properties (such as volume) 
can be written in both extensive and intensive forms, and most of these properties differ 
between two phases that coexist at equilibrium.

A system undergoing chemical reactions is in chemical reaction equilibrium 
only when the reactions have no more tendency to react. The second half of this text 
(Chapters 6–9) exclusively treats phase and chemical reaction equilibrium.

10 If effects such as surface tension or gravitational, electric, or magnetic fi elds are important, the system is 
confronted with other driving forces that the criteria for equilibrium must also include.

Molecular View of Equilibrium

Phase equilibrium can be viewed as a dynamic process on the molecular level. We will 
discuss this perspective by considering a system containing a pure species in vapor– 
liquid equilibrium, but the principles can be applied to liquid–solid, vapor–solid, and 
even solid–solid phase equilibria.

At a given temperature, a species exists in the liquid phase if the potential energy 
of attraction between the molecules is greater than their kinetic energy. Temperature 
is representative of the average molecular kinetic energy of the species in the system; 
however, the species have a distribution of energies. A certain fraction of species will 
have enough kinetic energy to overcome the attractive forces keeping them in the liquid 
phase. Thus, they will escape into the vapor phase. If housed in a closed container, the 
vapor that leaves will exert a pressure on the container’s walls. 

Vapor–liquid equilibrium depends on two counteracting processes occurring at the 
phase boundary marked by the liquid surface. The liquid-phase molecules with enough 
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kinetic energy break free and go into the vapor phase. Conversely, molecules from the 
vapor phase can strike the surface and be contained by attraction to the other mol-
ecules in the liquid. This process causes them to condense. As the pressure of the vapor 
increases, more molecules strike the surface and condense. When the rates of vaporiza-
tion and condensation match, both phases can coexist. On a molecular level, we have a 
dynamic process where the number of molecules leaving the surface is exactly balanced 
by the number arriving. If we followed a single molecule, however, it could go back and 
forth between liquid and vapor. 

When the temperature is too high or the pressure too low, all molecules will eventu-
ally escape to the vapor and only that phase will exist at equilibrium. On the other hand, 
if the temperature is too low or the pressure too high, only liquid will exist. For a pure 
species, the dynamic process at which the rate of molecules that vaporize equals the rate 
at which they condense occurs at a unique pressure for a given temperature and is called 
the saturation pressure, Psat. As the temperature increases, more molecules enter the 
vapor phase, and the saturation pressure increases. Since the fraction of species at a 
given kinetic energy depends exponentially on temperature,11 the saturation pressure 
increases exponentially with temperature. 

We can consider the energetics of the evaporation and condensation processes as 
well. A molecule leaves the liquid only when it has greater kinetic energy than the poten-
tial energy of attraction keeping it in the liquid; this energy is much larger than the aver-
age kinetic energy of all the molecules in the liquid. Thus, the higher-energy molecules 
preferentially depart from the liquid into the vapor phase. Consequently, the average 
kinetic energy of the molecules that remain will be lower, and the liquid will cool off dur-
ing evaporation. Conversely, during condensation, the condensed molecule is stabilized 
by the attractive force between it and the other molecules in the liquid, which causes the 
liquid to heat up.

Similarly, chemical reaction equilibrium represents a dynamic process on the molec-
ular scale. Macroscopically, a reaction can proceed in the forward direction from reac-
tants to products or in the reverse direction from products to reactants. A given reaction 
is said to be at “chemical reaction equilibrium” when there is no net reaction in either 
direction. However, again there is a dynamic process on a molecular scale. Reactant mol-
ecules will react to form products at the same rate that the product molecules form reac-
tants. If we followed an individual molecule, it might indeed react. However, for each 
molecule that reacts in the forward direction, another molecule will be reacting in the 
reverse direction. On the other hand, if an excess of reactants is present, there will be a 
net macroscopic reaction in the forward direction, since more individual molecules will 
react in this direction than in the reverse direction. Reaction will occur until equilibrium 
is reached and there is no more tendency to react on a macroscopic scale. Conversely, if 
an excess of products is present, macroscopic reaction will occur in the reverse direction 
until the same equilibrium state is reached.

11 Through a Boltzmann distribution.

 ►1.5  INDEPENDENT AND DEPENDENT THERMODYNAMIC PROPERTIES

The State Postulate

Thermodynamic properties provide a powerful tool for learning about systems and mak-
ing engineering calculations. Since they are independent of the calculation pathway, 
the clever engineer can often use data that are available in the literature to characterize 
processes or equilibrium states of interest. It turns out that once we know the value of 
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a certain number of properties of the substance in the system, all the other properties 
become constrained. This principle is known as the state postulate. We consider here a 
pure substance (or a system of constant composition); we will extend our discussion to 
mixtures in Chapter 6.

The state postulate says:

If we have a system containing a pure substance, its thermodynamic state and, therefore, all 
its intensive thermodynamic properties can be determined from two independent intensive 
properties.

We call the two intensive properties we select to constrain the state the independ-
ent variables. All other intensive properties are then dependent variables. We are free 
to decide what intensive properties we choose as the independent variables, as long as 
they are indeed independent of each other. For example, the molar volume, in 3m3/mol 4, 
of a pure species in the gas phase is completely specifi ed once we know its temperature 
and pressure, that is,

v 5 v 1T, P 2

We write v(T, P) to indicate some general mathematical function that depends on the 
values of the independent variables T and P. 

On the other hand, if we wish to know the value of an extensive property of the sys-
tem, we must additionally specify the size of the system. Thus, to constrain the value of 
an extensive property of a pure substance, we need to specify three quantities—the two 
intensive properties that constrain the state and a third property to indicate the size of 
the system. For example, if we wish to know the extensive volume of the gas, in 3m3 4, we 
would need to additionally specify, for example, the total number of moles in the system:

V 5 V 1T, P, n 2

Gibbs Phase Rule

The state postulate refers to the entire system. A related concept is used to determine 
the number of independent, intensive properties needed to constrain the properties in 
a given phase, which is referred to as the degrees of freedom, �. As we will later verify 
(see Example 6.17), the Gibbs phase rule says that � is given by:

 � 5 m 2 p 1 2 (1.12)

where m is the number of chemical species (components) in the system and p is the 
number of phases. 

For a system that contains a pure substance—that is, one  component—Equation 
(1.12) reduces to:

 � 5 3 2 p (1.13)

The number of phases infl uences which properties are independent. The determina-
tion of which two properties we can choose to constrain the system according to the state 
postulate depends on the number of phases that are present. First, consider a system with 
only one phase present 1p 5 1 2 . In this case the state postulate and the Gibbs phase rule 
are equivalent. Equation (1.13) tells us we need two independent properties to constrain 
the phase and, thus, the system. Specifi cation of any two intensive properties—such as 
pressure, P, and temperature, T—constrains all the other properties in the system. The 
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1.5  Independent and Dependent Thermodynamic Properties ◄ 19

values of v, u, h, . . . are, therefore, fi xed, and we can, in principle, fi nd them. Any two 
intensive properties can be chosen as the independent variables to constrain the system 
when there is only one phase present. For example, if we know P and the internal energy 
u, the system is constrained. We should then be able to fi nd T and all the other thermo-
dynamic properties.

We next wish to examine how to constrain the state of systems with more than one 
phase present. If we have a pure substance with two phases present, the phase rule says 
we need just one property in each phase to constrain the values of all the other proper-
ties for that phase. However, the properties temperature and pressure present a special 
case, since they are equal in both phases. Most other properties are different between 
phases.12 Thus, if we know either T or P of the system, we constrain the properties in 
each of the phases.

To illustrate this concept, consider a pure system of boiling water where we have 
both a liquid and a vapor phase. In this text, we use water to indicate the chemical spe-
cies H2O in any phase: solid, liquid, or gas.13 The phase rule tells us that for the liquid 
phase of water, we need only one property to constrain the state of the phase. If we 
know the system pressure, P, all the other properties 1T, vl , ul, c 2  of the liquid are 
constrained. The subscript “l” refers to the liquid phase. It is omitted on T since the 
temperatures of both the liquid and vapor phases are equal. For example, for a pressure 
of 1 atm, the temperature is 100 [°C]. We can also determine that the volume of the 
 liquid is 1.04 3 1023 3m3/kg 4, the internal energy is 418.94 [kJ/kg], and so on. The sys-
tem pressure of 1 atm also constrains the properties of the vapor phase. The temperature 
remains the same as for the liquid, 100 [°C]; however, the values for the volume of the 
vapor 11.63 3m3/kg 4 2 , the internal energy (2,506.5 [kJ/kg]), and so on are different from 
those of the liquid.

The pressure (and temperature) in each phase of a two-phase system is equal; hence, 
if we know P (or T), we know the values of all the intensive properties in both phases. 
However, we have not yet constrained the state of the system. To do so, we need to know 
the proportion of matter in each phase. Thus, a second independent intensive property 
that is related to the mass fraction in each phase is required. Specifying that a system 
of boiling water is at 1 atm does not tell us how much liquid and how much vapor are 
present. We could have all liquid with just one bubble of vapor, all vapor with just one 
drop of liquid, or anything in between. 

To constrain the state of the system, we can specify, for example, the fraction of 
water that is vapor. This quantity is termed the quality, x:

 x 5
nv

nl 1 nv
 (1.14)

where nv and nl are the number of moles in the liquid and vapor phases, respectively. 
Any intensive property can then be found by proportioning its value in each phase 

by the fraction of the system that the phase occupies. For example, if we know x, the 
molar volume of a liquid–vapor system can be calculated as follows:

 v 5 11 2 x 2vl 1 xvv (1.15)

Note that the molar volume we calculate from Equation (1.15) is not representative of 
that from either phase but rather is a weighted average that we report as the value of 

12 We will learn in Chapter 6 that Gibbs energy, g, is another property that takes the same value for different 
phases in a system that contains a pure substance.
13 There are different usages of the word water; some texts reserve water only for the liquid phase.
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the system. Other intensive properties (e.g., u, s, h . . . ) can similarly be found once the 
quality is known. 

Conversely, if we specify the molar volume, v, of a two-phase mixture in addition 
to the pressure, we have two independent properties and have completely constrained 
the system. The molar volume, at a given pressure, is characteristic of the mole propor-
tion in each phase. In fact, knowing the volume allows us to back-calculate the quality 
through Equation (1.15), since the volumes in each phase, vv and vl, are constrained by 
the pressure. However, we cannot choose both T and P as the two properties to constrain 
a two-phase system, since these properties are not independent. Once we know T, P is 
constrained; it is the saturation pressure. Since they have equal values in each phase, 
neither property tells us the proportion of matter belonging to each phase.

A pure substance can also have three phases present. According to the Gibbs phase 
rule, each phase in such a system has zero degrees of freedom. They do not have any 
independent properties; therefore, all intensive properties in each of the three phases 
are specifi ed. Consider a system in which a pure substance exists in the solid, liquid, and 
vapor phases. The properties of each phase can have only one value. Since the tempera-
ture and pressure are equal in all the phases, they are fi xed for the entire system. For 
example, the values for P and T for water in a system with solid, liquid, and vapor are 
fi xed at 611.3 [Pa] and 0.01[°C], respectively. This state is known as the triple point.14 In 
this case, we can specify neither T nor P, since neither property is independent. In other 
words, both properties we specify to constrain the state must be related to the fraction 
of matter in each of the three phases present. A pure substance cannot have more than 
three phases, as such a state would violate the Gibbs phase rule.

 ►1.6  THE PvT SURFACE AND ITS PROJECTIONS FOR PURE SUBSTANCES
In this section, we explore graphical depictions of the relation between the measured 
variables P, v, and T. Figure 1.6 shows a PvT surface for a typical pure substance. This 
three-dimensional graph is constructed by plotting molar volume on the x-axis, tempera-
ture on the y-axis, and pressure on the z-axis. The state postulate tells us that these three 
intensive properties are not all independent. The “surface” that is plotted identifi es the 
values that all three measured properties of a given pure substance can simultaneously 
have. While each species has its own characteristic PvT surface, the general qualitative 
features shown in Figure 1.6 are common to all species.15

Below the PvT surface in Figure 1.6, two-dimensional projections in the Pv plane 
and PT plane are shown. These projections are often referred to as Pv diagrams and PT 
diagrams, respectively. We also project the PvT surface onto the Tv plane; however, it is 
not shown. It is often more convenient to describe thermodynamic states and processes 
using two-dimensional projections. It should be noted that the PvT surface and its pro-
jections are not drawn to scale in Figure 1.6, but rather exaggerated to illustrate the 
salient features.

Each of the depictions in Figure 1.6 shows three single-phase regions labeled “vapor,” 
“liquid,” and “solid.”16 In these regions, P and T are independent, so we can specify each 
of these properties independently to constrain the state of the system. Once P and T 

14 It is actually the triple point value of 0.01°C that, together with the same scale per degree as the Kelvin 
temperature scale, has been chosen to specify the Celsius temperature scale.
15 Figure 1.6 shows the behavior for a species that contracts upon freezing. A few substances such as water, 
silicon, and some metals expand upon freezing and will have a freezing line with a negative slope on the PT 
projection.
16 In fact, many species have several different solid phases.
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are identifi ed, the state is fi xed and, consequently, the other properties are constrained. 
Thus, the molar volume can have only one value.

Joining the single phases are two-phase regions where two phases can coexist at 
equilibrium. Liquid–vapor, solid–vapor, and solid–liquid two-phase regions are identi-
fi ed. Knowing P and T allows us to identify the phase(s) the substance is in; thus, we 
often call these projections phase diagrams. As we discussed in association with the 
Gibbs phase rule, in the two-phase regions the properties T and P are no longer inde-
pendent, since pressure and temperature have equal values in the different phases and 
picking either one of these properties constrains the other. Therefore, these regions 
are represented by lines on the PT diagram. On the other hand, we can constrain the 
system by specifying P and v, since v is characteristic of the fraction of matter present in 
each phase. Thus, a given value of v in the shaded regions in the Pv diagram represents 
the differing proportions of each phase present. The line in the Pv diagram that sepa-
rates the two-phase region from the single-phase liquid on one side and the single-phase 
vapor on the other is known as the liquid–vapor dome.

The triple point is labeled on the PT diagram in Figure 1.6. In this state, a pure 
substance can have vapor, liquid, and solid phases all coexisting together. The phase rule 
tells us that each phase has zero degrees of freedom. Consequently, both the system 
temperature and pressure are fi xed as a point on the PT diagram. The Pv projection 
shows the three-phase region as a line, the triple line, since the molar volume changes 
as the proportion of each phase changes.

Figure 1.6 The PvT surface of a pure substance and two-dimensional projections in the Pv 
and PT plane.
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The projections of PvT surfaces are useful for identifying the thermodynamic state of a 
system. To illustrate this point, we show fi ve different states, all at identical pressures, in 
Figure 1.7. On the left of the fi gure, each state is identifi ed in the context of a piston– 
cylinder assembly. If the system represented by state 1 undergoes a set of isobaric pro-
cesses whereby energy is input to the system, it will go from state 1 to 2 to 3 to 4 to 5. 
These states are also identifi ed by number on the Pv diagram and the PT diagram on 
the right of the fi gure. Note that the lower half of the Pv diagram is omitted for clarity. 

State 1 represents subcooled liquid, where pressure and temperature are inde-
pendent properties. As energy is put into the system, the temperature will rise until the 
liquid becomes saturated, as illustrated on the PT diagram. The volume also increases; 
however, the magnitude of the change is small, since the volume of a liquid is relatively 
insensitive to temperature. 

The substance is known to be in a saturated condition when it is in the two-phase 
region at vapor–liquid equilibrium. A saturated liquid is “ready” to boil; that is, any more 
energy input will lead to a bubble of vapor. It is labeled as state 2 on the left of the liquid–
vapor dome in the Pv diagram. Since we are now in a two-phase region, the tempera-
ture is no longer independent. At a given pressure, the temperature at which a pure 
substance boils is known as the saturation temperature. The saturation temperature 
at any pressure is given by the line in the PT diagram on which state 2 is labeled. The 
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Figure 1.7 Five states of a pure substance and their corresponding locations on Pv and PT 
projections. All states are at the same pressure. State 1 is a subcooled liquid; state 2, a satu-
rated liquid; state 3, a saturated liquid–vapor mixture; state 4, a saturated vapor; and state 5, a 
superheated vapor. The volume of liquid is exaggerated for clarity.
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temperature at which a species boils at 1 atm is termed the normal boiling point. State 
3 represents the state where half the mass in the system has vaporized. Therefore, it is 
identifi ed as halfway across the liquid–vapor dome in the Pv projection. The molar volume 
represented by state 3 is not realized by either phase of the system; rather, it is an aver-
age of the liquid and vapor that we use to characterize the molar volume of the system. In 
fact, the fraction of mass in the liquid phase in state 3 has the same molar volume as that in 
state 2. Similarly, state 4 is saturated vapor, the point at which any energy that is removed 
would cause a drop of liquid to condense. Note that states 2, 3, and 4 are represented by 
an identical point on the PT diagram, since P and T are not independent in the two-phase 
region—illustrating the fact that we cannot use P and T to constrain the state of the system. 

Finally, state 5 is superheated vapor, which exists at a higher temperature than 
the saturated vapor. The increase in volume with temperature in the vapor phase is 
much more pronounced than it was for the liquid. How would you draw this process 
on a Tv diagram?

Saturation Pressure vs. Vapor Pressure

The saturation pressure is the pressure at which a pure substance boils at a given tem-
perature. A related quantity, the vapor pressure of a substance, is its contribution to 
the total pressure in a mixture at a given temperature. This contribution is equal to the 
partial pressure of the substance in an ideal gas mixture. 

Figure 1.8 provides a schematic representation of each of these quantities. The two 
piston–cylinder assemblies depicted on the left represent cases for which the saturation 
pressure is defi ned. In these systems, pure species a is in vapor–liquid equilibrium at 
temperatures T1 and T2, respectively, where T2 is greater than T1. In each case, there is 
a unique pressure at which the two phases can be in equilibrium—defi ned as the satura-
tion pressure, Psat

a . For example, pure water at 293 K (20°C) has a saturation pressure of 
2.34 kPa. Said another way, for pure water to boil at 293 K, the pressure of the system 
must be 2.34 kPa. If the pressure is higher, water will exist only as a liquid. Conversely, 

Figure 1.8 Graphical representation of the saturation pressure of pure a and the vapor pres-
sure of a in a mixture of a and b. Two temperatures, T1 and T2 are shown.
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if the pressure is lower, it will be a single-phase vapor. At a higher temperature, the 
saturation pressure will be higher, as depicted for T2 in Figure 1.8. For example, at 303 
K (30°C), water has a saturation pressure of 4.25 kPa. This incremental increase in tem-
perature nearly doubles the saturation pressure.

A schematic illustrating when we use vapor pressure is shown for the two systems 
depicted on the right in Figure 1.8, where the vapor phase contains a mixture of species 
a and b. The vapor pressure of species a represents its contribution to the total pressure 
of the mixture. The two temperatures shown, T1 and T2, are identical to those for pure 
species a on the left of the fi gure. For convenience, we assume species b is does not 
noticeably condense in the liquid and that the vapor behaves as an ideal gas.17 Then the 
vapor pressure of species a is identical to the corresponding saturation pressure at the 
same temperature. 

For example, now consider an open container of water sitting in a room at 293 K 
and 1 bar. Some of the water will evaporate and go into the air. The partial pressure of 
water at equilibrium with the air will be equal to the saturation pressure of pure a, 2.34 
kPa. Since water is but one of many components in the mixture, we say water has a vapor 
pressure of 2.34 kPa. In contrast, the total pressure of the system is around 1 atm. The 
vapor pressure presented in Figure 1.8 depends only on the temperature of the water, 
not on the total pressure of the system. In other words, the vapor pressure of a is inde-
pendent of how much b is present. While we can use saturation pressures to determine 
the vapor pressure in a given mixture, the term saturation pressure refers to the pure 
species. You should learn the difference between saturation pressure and vapor pressure 
because they are often confused.

A magnifi ed view of the upper part of the Pv phase diagram is shown in Figure 1.9. 
Four isotherms are shown. Along all four isotherms, the volume increases as the pres-
sure decreases. At the lowest two temperatures, the isotherms start in the liquid phase. 
In the liquid phase, the volume change is relatively small as the pressure drops. Along 
a given isotherm, the pressure decreases until it reaches the saturation pressure. This 
point is marked by the intersection with the left side of the liquid–vapor dome. At this 
point, any increase in volume leads to a two-phase liquid–vapor mixture, where the 
value of liquid volume is given by the intersection of the isotherm with the left side of 
the dome and the vapor volume is given by the intersection of the isotherm with the 
right side of the dome. The pressure remains constant in the two-phase region, since 
P and T are no longer independent. After complete vaporization, the pressure again 
decreases. The corresponding increase in volume of the vapor is noticeably larger than 
that of the liquid. 

As the temperatures of the isotherms increase, the saturated liquid volumes get 
larger and the saturated vapor volumes get smaller. Finally, at the critical point, located 
at the top of the liquid–vapor dome, the values of vl and vv become identical. The critical 
point represents a unique state and is identifi ed with the subscript “c.” Thus, it is con-
strained by the critical temperature, Tc and the critical pressure, Pc. Values for these criti-
cal properties of many pure substances are reported in Appendix A. The critical point 
represents the point at which liquid and vapor regions are no longer distinguishable. The 
critical point is also labeled in the depictions in Figure 1.6. 

The Critical Point

17 We will learn how to treat the more general case in Chapters 7 and 8.
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The critical isotherm goes through an infl ection point at the critical point. Math-
ematically, this condition can be written as:

 ¢ 'P
'v
≤

Tc

5 0 (1.16)

and, ¢ '2P
'v2
≤

Tc

5 0 (1.17)

The partial derivatives in Equations (1.16) and (1.17) specify that we need to keep the 
temperature constant at its value at the critical point.

The isotherm above the critical point is representative of a supercritical fl uid. This 
isotherm continuously decreases in pressure as the volume increases. A supercritical 
fl uid has partly liquidlike characteristics (e.g., high density) and partly vaporlike charac-
teristics (compressibility, high-diffusivity). Not surprisingly, there are many interesting 
engineering applications for substances in this state. There can be confusion between 
the terms gas and vapor. We refer to a gas as any form of matter that fi lls the container; 
it can be either subcritical or supercritical. When we speak of vapor, it is gas that if iso-
thermally compressed will condense into a liquid and is, therefore, always subcritical.

Figure 1.9 Magnified view of the Pv diagram. Four isotherms are shown—two below the 
critical temperature (subcritical), one at the critical temperature, and one above the critical 
temperature (supercritical).
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Consider a two-phase system at a specifi ed T that contains 20% vapor, by mass, and 80% liquid. 
Identify the state on a Tv phase diagram. Explain why graphical determination of the state is 
termed the lever rule.

SOLUTION The quality of the system, defi ned as the fraction of matter in the vapor, is 0.2. The 
molar volume can be written in terms of the quality according to Equation (1.15):

 v 5 vl 1 x 1vv 2 vl 2 5 vl 1 0.2 1vv 2 vl 2  (E1.2A)

EXAMPLE 1.2

Determination of 
Location of a Two-
Phase System on a 
Phase Diagram

(Continued)
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The fraction of vapor is found by solving Equation (E1.2A):

 0.2 5
v 2 vl

vv 2 vl
 (E1.2B)

Equation (E1.2B) can be interpreted as follows: The fraction of vapor is the ratio of the 
difference between the system volume and the volume of the other phase to the difference 
between vapor and liquid volumes. Similarly, the fraction of liquid is given by:

0.8 5
vv 2 v
vv 2 vl

The fraction of liquid is the ratio of the difference between the volume of the other phase and 
the system volume to the difference between vapor and liquid volumes. 

This result is graphically presented in Figure E1.2. The overall composition of the system 
in the two-phase region is shown on top of the fulcrum. The intersection of the horizontal 
line with the liquid vapor dome gives the molar volumes of the liquid and vapor phases. The 
horizontal line is referred to as the tie line. The fraction of each phase present is obtained by 
taking the length of the line segment to the other phase and dividing by the total length of the 
line between one phase and the other. The line segment representing the liquid is four times 
greater than that representing the vapor.

Figure E1.2 The state of the system of Example 1.2 on a Pv phase diagram. The lever rule is 
indicated.

 ►1.7  THERMODYNAMIC PROPERTY TABLES
As we have seen, if we specify two independent intensive properties of a pure sub-
stance, the state of the system is constrained. Thus, any other thermodynamic property 
is restricted to only one possible value. Not surprisingly, for commonly used substances, 
such as water, tables of thermodynamic properties have been constructed that tabulate 
a set of useful properties. Appendix B reproduces a portion of the “steam tables,” where 
six intensive properties of water are tabulated.18 Recall that we use the term water to 
indicate the chemical species H2O in any phase: solid, liquid, or gas. 

18 J.H. Keenan, F. G. Keys, P. G. Hill, J. G. Moore, Steam Tables (New York: Wiley, 1969).
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The tabulated thermodynamic properties include the measured properties T, P, and 
v̂, as well as three other properties we will learn about in Chapters 2 and 3—the spe-
cifi c internal energy, û, the specifi c enthalpy, ĥ, and the specifi c entropy, ŝ. The values 
reported for the latter three properties are not reported as absolute values but rather as 
the change in that property relative to a well-defi ned reference state. The reference state 
used for the steam tables is as a liquid at the triple point of water. At this state, both internal 
energy and entropy are defi ned as zero.19 Similar property tables are available in the lit-
erature or the National Institute of Standards and Technology (NIST) website20 for many 
other common species as well, including Ar, N2 , O2, CH4, C2H4, C2H6, C3H8, C4H10, 
and several refrigerants (NH3, R-12, R-13, R-14, R-21, R-22, R-23, R-113, R-114, R-123, 
R-134a . . .). The reference state must be consistent when doing a thermodynamic cal-
culation. Care should be used when taking values for a substance from different sources, 
since they sometimes use different reference states.

The steam tables are organized according to the phase in which water exists in 
the state of interest. Figure 1.10 shows a PT diagram for water with the corresponding 
appendices where the thermodynamic property data are located. Appendices B.1 and 
B.2 report data for the saturated vapor–liquid region. Since the pressure and tempera-
ture are no longer independent in this two-phase region, if we specify either property, 
we fi x the other. Appendix B.1 presents data for saturated vapor and liquid water at even 
intervals of temperature. We use this appendix when the value of temperature is known. 
Appendix B.2 also presents data for saturated water, but in terms of round numbers of 
pressure. For each of the other properties in the tables (v̂, û , ĥ, and ŝ), values are pre-
sented for the liquid, l; the vapor, v; and the difference between the vapor and the liquid; 
D 5 v 2 l. By analogy to Equation (1.15), any property value of the system is scaled by 
the quality. For example the specifi c internal energy can be found according to:

 û 5 11 2 x 2 ûl 1 xûv 5 ûl 1 xûD (1.18)

Figure 1.10 Illustration of the steam tables available for different phases of H2O.
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19 In fact, the “third law” of thermodynamics specifi es that the entropy of a perfect crystal is zero at a temperature 
of absolute zero. This principle allows absolute entropies to be defi ned and calculated. However, the entropies 
presented in the steam tables do not make use of the third law; thus, the values presented are relative.
20 P. J. Linstrom and W. G. Mallard, Eds., NIST Chemistry WebBook, NIST Standard Reference 
Database Number 69, March 2003, National Institute of Standards and Technology, Gaithersburg MD, 
20899 (http://webbook.nist.gov/chemistry/fl uid).
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Property values for superheated water vapor and subcooled liquid water are pre-
sented in Appendices B.4 and B.5, respectively. In these regions, T and P are independ-
ent, so if we specify both, we constrain the state of the system. The tables are organized 
fi rst according to pressure, then by temperature at each specifi ed pressure. With T and 
P specifi ed, values of the other properties (v̂, û, ĥ, and ŝ) are reported. The data in the 
superheated steam tables begin with the saturated state, whereas the data in the sub-
cooled water tables end at saturation. The usefulness of the steam tables is that in know-
ing any two independent properties of water, we may look up the values of any of the 
other properties to solve engineering prohlems.

Often the states of a system do not fall exactly at a value reported in the steam 
tables. In this case, it is necessary to interpolate between two adjacent entries on a 
given table. If a linear relation is assumed, the unknown variable, y, is related to the 
known variable, x, by:

 
y 2 ylow

yhigh 2 ylow
5

x 2 xlow

xhigh 2 xlow
 (1.19)

where the values for “high” and “low” are read off the table. Solving for y gives:

 y 5 ylow 1 1yhigh 2 ylow 2 ¢ x 2 xlow

xhigh 2 xlow
≤  (1.20)

If neither of the two independent properties used to specify the system falls on a 
value reported in the steam tables, we must fi rst interpolate with respect to one property. 
Then we use those interpolated values to interpolate for the other property. This process 
is termed double interpolation. Determination of volume using double interpolation 
is illustrated in Example 1.3.

Use linear interpolation to estimate the specifi c volume of water at P 5 1.4 MPa and 
T 5 333°C with data from the steam tables.

SOLUTION Table E1.3 reports the appropriate entries for specifi c volume from the steam 
tables which bracket 1.4 MPa and 333°C.

The specifi c volume at 333°C, v̂T5333, is found by applying Equation (1.20) as follows:

 v̂T5333 5 v̂T5320 1 1 v̂T5360 2 v̂T5320 2 a
333 2 320
360 2 320

b  (E1.3)

Applying Equation (E1.3), we get:

v̂T5333 5 0.27414 3m3/kg 4

At 1.5 MPa, we get:

v̂T5333 5 0.18086 3m3/kg 4

To fi nd the specifi c volume at 1.4 MPa, we must now interpolate between these two values:

v̂P51.4 5 v̂P51 1 1 v̂P51.5 2 v̂P51 2 a
1.4 2 1
1.5 2 1

b 5 0.19951 3m3/kg 4

EXAMPLE 1.3

Double Interpolation 
of Steam Tables
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1.7  Thermodynamic Property Tables ◄ 29

TABLE E1.3 Values of v̂  from the Steam Tables

P 5 1 MPa P 5 1.5 MPa

T 5 320°C 0.2678 m3/kg 0.1765 m3/kg
T 5 360°C 0.2873 m3/kg 0.1899 m3/kg

Based on the ideal gas law, reestimate the specifi c volume of water at P 5 1. 4 MPa and 
T 5 333°C using data from the steam tables.

SOLUTION If we apply the ideal gas model, we have:

v 5
RT
P

The molar volume, v, is proportional to T. The fi rst linear interpolation of Example 1.3 is 
consistent with this result, so again we have v̂T5333 5 0.18086 3m3/kg 4. However, the ideal gas 
law shows molar volume is inversely proportional to pressure, so it is better to interpolate in 
(1/P). Thus, the second interpolation becomes:

v̂P51.4 5 v̂P51 1 1 v̂P51.5 2 v̂P21 2§
1
P

2
1

Plow

1
Phigh

2
1

Plow

¥ 5 0.19418 3m3/kg 4

The difference in the value found in Example 1.2 and Example 1.4 is:

%diff 5
0.19951 2 0.19418

0.19418
3 100 5 2.7%

This example illustrates the effectiveness of letting physical principles guide our mathematical 
procedures so that we can make better engineering estimates.

EXAMPLE 1.4

Improvement in 
Interpolation of 
Example 1.3

A rigid tank of volume 1.0 L contains 2.5 g of pure water at 70°C and is closed to the surround-
ings. The water is then heated and the temperature rises.
(a) Determine the initial state of the system.
(b) Determine the temperature at which the water in the tank is all vaporized. 

SOLUTION (a) We label the initial state, state 1, and the fi nal state, state 2. We need two inde-
pendent intensive properties to constrain the state of the system. In addition to temperature, 
we can fi nd the specifi c volume of water in the tank:

v̂1 5
V1

m1
5

1 L
2.5 g

3
1000 g

kg
3

0.001 m3

L
5 0.4 

m3

kg

where we have put the specifi c volume in units consistent with data in the steam tables. From 
the steam tables (Appendix B, Table B.1), we see that at a temperature of 70oC, the saturated 

EXAMPLE 1.5

Determination of 
the State of 
a System using the 
Steam Tables

(Continued)
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The material in Chapter 1 forms the conceptual foundation on which we will construct our under-
standing of thermodynamics. We will formulate thermodynamics by identifying the state that a 
system is in and by looking at processes by which a system goes from one state to another. We 
are interested in both closed systems, which can attain thermodynamic equilibrium, and open 
systems. The state postulate and the phase rule allow us to identify which independent, inten-
sive thermodynamic properties we can choose to constrain the state of the system. If we also 
know the amount of matter present, we can determine the extensive properties in the system. 
Thermodynamic properties are also called state functions. Since they do not depend on path, 
we may devise a convenient hypothetical path to calculate the change in their values between two 
states. Conversely, other quantities, such as heat or work, are path functions.

The measured properties T, P, and v are especially useful in determining the thermodynamic 
state since we can measure them in the lab. Projections of the PvT surface, in the form of PT, Pv, 
and Tv phase diagrams, allow us to identify whether the system is in a single phase or is in phase 
equilibrium between two or three different phases. The pressures and temperatures of each of 
the phases in equilibrium are identical. Moreover, when a pure species contains two phases, T and 
P are not independent; therefore, the saturation pressure takes a unique value for any given 
temperature. The saturation pressure of a pure species can be related to its vapor pressure in 
a mixture. The ideal gas model allows us to relate P, v, and T for gases at low pressure or high 
temperature.

On a molecular level, temperature is proportional to the average kinetic energy of the indi-
vidual atoms (or molecules) in the system. Pressure can be viewed as the normal force per unit 
area exerted by the molecules as they elastically collide with a system boundary. Phase equilibrium 

vapor volume is v̂v 5 5.042 Bm3

kg
R , and the saturate liquid volume is v̂l 5 0.001023 Bm3

kg
R .

Because the volume of the system is in between these two values, we have a mixture of saturated 
liquid and saturated vapor at 70°C. To constrain the system, we need to determine the quality 
(i.e., the proportion in the vapor):

From Equation (1.15)

x1 5
v̂1 2 v̂l

v̂v 2 v̂l
5 0.079

Approximately 8% of the mass of water is in the vapor.

(b) Because this process occurs in a closed system and the tank is rigid, the specifi c volume 
remains constant (i.e., v̂2 5 v̂1). We therefore wish to fi nd the state at which the specifi c volume 
of saturated vapor is 0.4 m3/kg.

From Table B.1, the temperature table for saturated water from the steam tables, we see 
that this value of specifi c volume is between temperatures of 145°C and 150°C:

T [°C]
v̂v Bm3

kg
R

145 0.44632

150 0.39278 

By linear interpolation, we get:

T2 5 Tv̂ 50.4 5 Tv̂ 50.44632 1 1Tv̂ 50.39278 2 Tv̂ 50.44632 2 ¢ 0.4 2 0.44632
0.39278 2 0.44632

≤ 5 145.8 3°C 4

 ►1.8  SUMMARY
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can be described as a dynamic process on the molecular level, where the number of molecules 
leaving the surface of one phase is exactly balanced by the number arriving. Likewise, chemical 
reaction equilibrium can be described as the dynamic balance of forward and reverse reactions.

 ►1.9 PROBLEMS
Conceptual Problems

Water

1 teaspoon

1 teaspoon

Wine

1 2

1.1 You have a glass of water and a glass of wine, as shown in the fi gure. You perform the fol-
lowing processes. (1) transfer 1 teaspoon of water to the glass of wine and mix thoroughly; then 
(2) transfer 1 teaspoon of this contaminated wine to the water. Now both the water and the wine 
are contaminated. Which of the following is true? Explain. Hint: it may be useful to consider this 
problem in terms of an extensive property.
(a) The volume of water contaminating the wine is greater than the volume of wine  contaminating 
the water. 
(b) The volume of water contaminating the wine is equal to the volume of wine  contaminating 
the water. 
(c) The volume of wine contaminating the water is greater than the volume of water contaminating 
the wine.

1.2 You have a jar of 90 nickels and a jar of 90 pennies. You perform the following processes.
(1) Transfer 10 nickels to the jar of pennies and mix thoroughly; then (2) transfer 10 coins from the 
contaminated pennies back to the jar with nickels. Which of the following is true? Explain.
(a) The amount of pennies in the jar of mostly nickels is greater than the amount of nickels in the 
jar of mostly pennies.
(b) The amount of pennies in the jar of mostly nickels is the equal to the amount of nickels in the 
jar of mostly pennies.
(c) The amount of nickels in the jar of mostly pennies is greater than the amount of pennies in the 
jar of mostly nickels.
1.3 Shown in the following fi gure is a process from which Species A is isothermally compressed 
from 0.5 bar and 300 K to 1 bar. The insets of each state, which are of equal volume, contain a 
“molecular view” of species A.

A

A
A

A

A
A A

A

A

Molecular view
Molecular view

Ideal gas A

T1  =  300 K

P1  =  0.5 bar

State 1 State  2

Process

T1  =  300 K

P2  =  1 bar
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M
ol

ec
ul

ar
 v

ie
w

M
ol
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ul

ar
 v

ie
w

T1 =  300 K

P2 =  1 barP1 =  5 bar

valve

1.4 Go to the teaching or research labs at your university and determine three ways temperature 
is measured and three ways pressure is measured.
1.5 Consider a binary mixture of a light gas a with mass ma and a heavy gas b with mass mb at 
temperature T. How does the mean-square velocity of the two species compare? Which species, 
on average, moves faster?
1.6 Consider the system sketched below:

Next consider the open system shown in the following fi gure. Species A fl ows steadily through the 
system and expands through the valve from an inlet state at 5 bar and 300 K to an exit state at 1 bar. 
You may assume Species A acts as an ideal gas. In analogy to the closed system depicted earlier, 
the equal volume insets are shown in this fi gure. Fill in the corresponding “molecular views” of 
Species A. Explain your answer.

Large reservoir

of boiling water
(100° C)

Cu Block

Large reservoir

of ice water

(0° C)

(a) After a short time, is this system in equilibrium?
(b) After a long time?
(c) After a very long time?
1.7 Consider a tightly capped water bottle containing two phases with a small amount of liquid 
water and saturated air. If the bottle is left in the sun on a hot day and the temperature increases, 
what happens to the amount of water in the liquid? Explain.
1.8 A rigid, sealed container initially contains pure water at 100°C. Some of the water is in the 
liquid phase, and some is in the vapor phase (i.e., as steam). Air is then injected into the system in 
an isothermal process at constant volume. What happens? 
1.9 Using language a high school student could understand, explain the difference between satu-
ration pressure and vapor pressure.
1.10 This question addresses the two piston-cylinder assemblies depicted on the left of Figure 1.8 
that illustrate the concept of saturation pressure. The piston on the right is at twice the pressure of 
the system on the left; however, if you count molecules of species a, there are less than twice the 
number on the right (i.e., the number does not increase directly proportional to temperature). Is 
this a mistake? Explain.
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1.11 Sometimes a lid to a pot used for cooking fi ts “too well” and can be diffi cult to remove after 
the pot cools down. Why do you think this is happening?
1.12 I thoroughly infl ated a bag of soccer balls last summer. However, when I brought them out 
to play this winter, they all were underinfl ated. Discuss the possible reasons.
1.13 Relative humidity is defi ned as the ratio of the mass of water in air divided by the mass of 
water at saturation. Compare the water content in the air on a day on which the temperature is 
10°C with 90% relative humidity to a day at 30°C and 50% relative humidity. Which day has higher 
water content?
1.14 When a system contains regions that differ in physical structure or chemical composition, 
an overall value can be assigned to its properties. Consider the system, system 1, shown below. It 
contains na molecules in state a and nb molecules in state b.
(a) Develop an expression for the extensive volume V1 in terms of na, nb, and the volumes 
of each homogeneous region Va and Vb.
(b) Develop an expression for the intensive molar volume v1 in terms of na, nb and the molar 
volumes of each homogeneous region va and vb.
(c) Generalize the result of part (a) to come up with an expression for any extensive prop-
erty K1 in terms of na, nb, and the extensive properties Ka and Kb.
(d) Generalize the result of part (b) to come up with an expression for the intensive form 
of the property in part (c), k1, in terms of na, nb, and the intensive properties ka and kb.

State b
System 1

State a

+ =
Va

Vb

na na

nb nb

1.15 Consider two systems of ideal gases. System I consists of pure gas A at a given pressure and 
temperature. System II contains a mixture of gases A and B at the same temperature and pressure. 
If the molecular weight of gas B is larger than gas A, how does the molar density 1mol/cm3 2  of 
system I compare to system II?
1.16 Consider two systems of ideal gases. System I consists of pure gas A at a given pressure and 
temperature. System II contains a mixture of gases A and B at the same temperature and pressure. 
If the molecular weight of gas B is larger than gas A, how does the mass density 1g/cm3 2  of system 
I compare to system II?
1.17 You can breathe in approximately 2 L of air into your lungs. What volume of helium do you 
think you can breathe in? Explain.
1.18 A “pressure cooker” is a device that allows food to be cooked at pressures that are higher 
than atmospheric pressure. Explain why this device changes how your food is cooked.
1.19 The ideal gas model is one example of an equation of state. Why do you think it is termed 
an equation of state?
1.20 Consider a system containing water in the following states. What phases are present?
(a) P 5 10 3bar 4; T 5 170 3°C 4
(b) v̂ 5 3 3m3/kg 4; T 5 70 3°C 4
(c) P 5 60 3bar 4; v̂ 5 0.05 3m3/kg 4
(d) P 5 5 3bar 4; s 5 7.0592 3kJ/ 1kg K 2 4
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Numerical Problems

1.21 Estimate the speed at which the average oxygen molecule is moving in the room that you 
are in.
1.22 The Reamur temperature scale uses the normal freezing and boiling points of water to defi ne 
0°and 80°, respectively. What is the value of room temperature (22°C) on the Reamur scale?
1.23 At what temperature does water boil on the top of Mount Everest, elevation z 5 8848 m? 
Recall that the dependence of pressure with altitude is given by:

P 5 Patm exp ¢2 
MWgz

RT
≤

where, Patm is atmospheric pressure, g is the gravitational acceleration, and MW is the molecular 
weight of the gas.
1.24 Water is cooled in a rigid closed container from the critical point to 10 bar. Determine the 
quality of the fi nal state.
1.25 Using linear interpolation, estimate the specifi c volume of water under the following condi-
tions using data from the steam tables:
(a) P 5 1.9 3MPa 4; T 5 250 3°C 4
(b) P 5 1.9 3MPa 4; T 5 300 3°C 4
(c) P 5 1.9 3MPa 4; T 5 270 3°C 4

Look up the specifi c volumes of water that correspond to cases (a), (b), and (c) on the website 
http://webbook.nist.gov/chemistry/fl uid/ and report their values. Comment on the agreement 
between the two sources.
1.26 Determine the mass of 1 L of saturated liquid water at 25°C. How do you think this value 
compares to the mass of 1L of subcooled liquid water at 25°C and atmospheric pressure?
1.27 Determine the temperature, quality, and internal energy of 5 kg of water in a rigid container 
of volume 1 m3 at a pressure of 2 bar.
1.28 A rigid container of volume 1 m3 contains saturated water at 1 MPa. If the quality is 0.10, 
what is the volume occupied by the vapor?
1.29 Use the data in the steam tables to plot the vapor–liquid dome on a Pv diagram. It is useful 
to plot v on a log scale.
1.30 Calculate the volume of water using the ideal gas model under the following conditions. 
Then report the percent error when compared to the values reported in the steam tables.
(a) P 5 1.01 3bar 4; T 5 100 3°C 4
(b) P 5 1 3bar 4; T 5 500 3°C 4
(c) P 5 100 3bar 4; T 5 500 3°C 4
(d) P 5 100 3bar 4; T 5 1000 3°C 4

1.31 How many moles of air are in the room in which you are sitting? What is its mass?
1.32 Consider a gas at 20°C and 1 bar. The molecules may be considered to be hard spheres with 
a diameter of 3 Å. Estimate the percentage of the available volume they occupy.
1.33 You want to keep your house dry enough so that water does not condense on your walls at 
night. If the temperature gets down to 40°F at night, what is the maximum allowable density of 
water in the room during the day when the room is at 70°F?
1.34 Consider a rigid, thick-walled tube that is fi lled with H2O liquid and vapor at 0.1 MPa. After 
it is sealed, it is heated so that it passes through its critical point. What fraction of the mass in the 
tube is liquid?
1.35 As best as you can, estimate the specifi c volume of water at each of the following conditions. 
Justify your answer.
(a) 2 bar and 200°C
(b) 2 bar and 100°C
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1.36 A rigid container contains 1 kg of water at 90°C. If 200 g of the water are in the liquid phase 
and the rest is vapor, determine the pressure in the tank and the volume of the tank.
1.37 40 g of water are sealed in a 10 L container at 300°C. As accurately as you can, determine 
the pressure of the container.
1.38 A rigid container of 100 L contains saturated water at 100°C. The water is heated, and it 
reaches the critical point. Determine the initial mass of water in the tank and its quality.
1.39 A piston-cylinder assembly contains 0.5 kg of water at 50°C and 500 kPa. It is then isobari-
cally heated until all the water is vaporized. What is the fi nal temperature and volume?
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CHAPTER

36

►2

The First Law of 
Thermodynamics

Learning Objectives

To demonstrate mastery of the material in Chapter 2, you should be able to:

 ► State and illustrate by example the fi rst law of thermodynamics—that is, 

the conservation of mass and energy—and its basic concepts, including 

conversion of energy from one form to another and the transfer of energy 

from the surroundings to the system by heat, work, and fl ow of mass.

 ► Write the integral and differential forms of the fi rst law for (1) closed systems 

and (2) open systems under steady-state and transient (uniform-state) 

conditions. Convert these equations between intensive and extensive forms 

and between mass-based and molar forms. Given a physical problem, 

evaluate which terms in the equation are important and which terms are 

negligible or zero and determine whether the ideal gas model or property 

tables should be used to solve the problem.

 ► Apply the fi rst law of thermodynamics to identify, formulate, and solve 

engineering problems for adiabatic and isothermal processes in the 

following types of systems: rigid tank, expansion/compression in a piston–

cylinder assembly, nozzle, diffuser, turbine, pump, heat exchanger, throttling 

device, fi lling or emptying of a tank, and Carnot power and refrigeration 

cycles.

 ► Create an appropriate hypothetical path to solve these problems with 

available data.

 ► Describe the molecular basis for internal energy, heat transfer, work, and 

heat capacity.

 ► Describe the difference between a reversible process and an irreversible 

process, and, given a process, evaluate whether it is reversible or 

irreversible.

 ► Explain why it is convenient to use the thermodynamic property enthalpy 

for (1) streams fl owing into and out of open systems and (2) closed systems 

at constant pressure. Describe the role of fl ow work and shaft work in open-

system energy balances.

 ► Describe the energy changes associated with sensible heat, latent heat, and 

chemical reaction on both a macroscopic and a molecular level. Calculate 

their enthalpy changes using available data such as heat capacity, enthalpies 

of vaporization, fusion and sublimation, and enthalpies of formation.

CHAPTER
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The fi rst law of thermodynamics states that while energy can be changed from one form 
to another, the total quantity of energy, E, in the universe is constant.1 This statement can 
be quantitatively expressed as follows:

 DEuniv 5 0 (2.1) 

However, it is very inconvenient to consider the entire universe every time we need to do 
a calculation. As we have seen, we can break down the universe into the region in which 
we are interested (the system) and the rest of the universe (the surroundings). The system 
is separated from the surroundings by its boundary. We can now restate the fi rst law by 
saying that the energy change of the system must be equal to the energy transferred across 
its boundaries from the surroundings. Energy can be transferred by heat, Q, by work, W, 
and, in the case of open systems, by the energy associated with the mass that fl ows into 
and out of the system. In essence, the fi rst law then lets us be accountants of the energy 
in the system, by tracking the “deposits” to and “withdrawals” from the surroundings in 
much the same way as you would account for the balance of money in your bank account. 
We will consider explicit forms of the fi rst law for closed and open systems shortly.

 ► 2.1  THE FIRST LAW OF THERMODYNAMICS

Forms of Energy

The energy within a system can be transformed from one form to another.

 ►EXERCISE Name the three common forms that energy is divided into. See if you can defi ne each 
form:

Energy is classifi ed according to three specifi c forms: (1) The macroscopic kinetic 
energy, EK is the energy associated with the bulk (macroscopic) motion of the system 
as a whole. For example, an object of mass m moving at velocity V

S
 has a kinetic energy 

given by:

 EK 5
1
2

 mV
S

2 (2.2)

(2) The macroscopic potential energy, EP, is the energy associated with the bulk (macro-
scopic) position of the system in a potential fi eld. For example, an object in the Earth’s 
gravitational fi eld has a potential energy given by:

 EP 5 mgz (2.3)

where z is the height above the surface of the Earth and g is the gravitational con-
stant.2 (3) The internal energy, U, is the energy associated with the motion, position, 
and chemical-bonding confi guration of the individual molecules of the substances within 
the system.

Energy is not an absolute quantity but rather is only defi ned relative to a reference 
state, so we must be careful to identify the particular reference state that we are using. 
As you read this text, what is your kinetic energy (assuming you are not riding the bus)?

1 Nuclear reaction presents an interesting case where energy and mass are coupled. However, we will not 
address this case in this text.
2 Potentials due to surface tension or electric or magnetic fi elds can also be included.
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If you answer zero, you are correct in the context of a well-defi ned reference state, the 
Earth. However, if instead we had considered the sun to be the reference state, the 
answer would be quite different. The Earth is in motion with a velocity of 30,000 m/s 
around the sun, and your kinetic energy is on the order of 106 J! In the case of kinetic and 
potential energy, we usually defi ne EK (i.e., V

S
 ) as zero when there is no motion relative 

to the Earth and EP (i.e., z) as zero at the surface of the Earth. In fact, these reference 
states are so obvious they are sometimes implicitly assumed. In this text, we will be care-
ful to identify references states explicitly. This effort will become useful in the case of 
U, where there is more than one convenient reference state. What is the reference state 
used for U in the steam tables?

In your introductory physics course, you focused primarily on changes associated 
with the fi rst two forms of energy. Since solving fi rst-law problems involves profi ciency 
in relating different forms of energy, it is instructive to review a typical example from 
mechanics that you may have seen in introductory physics. It is presented in the context 
in which we will approach problems in this text. You should realize that, as chemical 
engineers, the form of energy that we will primarily focus on is internal energy, which is 
not covered in the following example.

If a large stone is dropped from a cliff 10 m high, how fast will it be going when it hits the 
ground?

SOLUTION  From Equation (2.1), we have:

 DE 5 DEK 1 DEP 5 0 (E2.1A)

We can defi ne the process as throwing the stone off the cliff. Typically, we set up our problem 
by labeling the thermodynamic states between which our process is going. We can defi ne 
state 1 as the initial state when the stone is at the top of the cliff and state 2 as when the stone 
hits the ground. Using Equations (2.2) and (2.3), Equation (E2.1A) becomes:

a
1
2

 mV
S

2
2 2

1
2

 mV
S

1
2b 1 1mgz2 2 mgz1 2 5 0

By convention, we defi ne the change in a property, D, as “fi nal − initial.” Now, using the 
reference states described above, we get:

a
1
2

 mV
S

2
2

2
1
2

 mV
S

1
2
b 1 1mgz2 2 mgz1 2 5 0 

or,

1
2

 mV
S

2
2 2 mgz1 5 0

Finally, solving for the fi nal velocity yields:

V
S

2 5 "2gz1 5 "2 19.8 3m/s2 4 2 110 3m 4 2 5 14 3m/s 4

This value is equivalent to 31 miles/hr. Ouch! Note that our reference state of energy is arbitrary 
and if we had chosen different reference states, we would still get the same answer.

EXAMPLE 2.1

Typical Energy 
Problem in 
Mechanics

0 0
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As we mentioned, internal energy, U, is an important form of energy for chemical engi-
neering applications. Originally internal energy was viewed simply as all forms of energy 
that are not associated with bulk motion or bulk position. However, it is instructive to 
take advantage of our knowledge of chemistry and consider a molecular perspective on 
internal energy. Internal energy encompasses all forms of molecular energy, includ-
ing the kinetic and potential energies of the molecules themselves. A change in inter-
nal energy can present itself in several macroscopic manifestations; that is, molecular 
energy is noticed in the real world in different ways. Changes in internal energy can 
result in the following:

1. changes in temperature, for example, Tlow h Thigh

2. changes in phase, for example, solid h gas

3. changes in chemical structure, that is, chemical reaction 1N2 1 3H2 h 2NH3 2

A change in internal energy that leads to a change in temperature is often termed sen-
sible heat. Likewise, we often refer to a change in internal energy that results in phase 
transformations as latent heat.

Let’s now examine how we can relate changes in molecular, chemical energy to the 
three macroscopic features described above. There are two general components of inter-
nal energy—molecular potential energy and molecular kinetic energy. Molecular poten-
tial energy can be either intermolecular (between different molecules) and intramolecular 
(within the same molecule) in character. Remember that we use the term molecular when 
we are describing what the species are doing on the atomic scale while we use the term 
macroscopic to describe behavior in the bulk (or molar) scale of the world in which we live. 
Like macroscopic kinetic energy, by molecular kinetic energy we mean motion; in this case, 
the motion of the individual molecules in a system. The type of motion depends on the 
phase the species are in. In the gas phase, for example, the molecules are fl ying around at 
signifi cant speeds. This motion is referred to as translational motion because the individ-
ual molecules are going somewhere—that is, translating—even though the bulk of the gas 
may not be. Not all molecules have the same speed, but, at equilibrium, their speeds vary 
according to a Maxwell–Boltzmann distribution. Do you know how fast the average oxy-
gen molecule that you are now breathing is moving? [ANSWER: Oxygen molecules at room 
temperature are moving, on average, as fast as a jet plane, that is approximately 450 m/s.]

Additionally, diatomic and polyatomic molecules (as opposed to atoms) can vibrate 
and rotate, which provide additional modes of molecular kinetic energy—vibrational 
and rotational motion. As we saw in Chapter 1, the measured macroscopic property 

One philosophical comment: Energy is inherently a very abstract quantity; it is very hard 
to say exactly what energy is. However, you (hopefully!) are comfortable using it in the context 
of the problem above. The ability to apply the abstract property energy to solve engineering 
problems lies in your experience with it. This experience typically translates into relative 
comfort in including internal energy in the energy balance to solve fi rst-law problems. Keep 
in mind that soon we will introduce thermodynamic properties with which you have less 
experience, such as entropy, S, and Gibbs energy, G. These properties are fundamentally no 
more challenging than energy to learn to work with; however, you may have an initial period of 
discomfort as you gain experience. The trick is that when you work with any thermodynamic 
property enough, you get used to it and become profi cient at solving the type of problems for 
which it is useful.

Ways We Observe Changes in U
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40 ► Chapter 2. The First Law of Thermodynamics

temperature is representative of how fast the gas molecules are moving in the system 
(formally temperature is proportional to the mean-square velocity). However, the mol-
ecules’ speed is directly related to the molecular kinetic energy, which, in turn, is one 
part of the internal energy. Hence, as a gas increases in temperature, the average velocity 
of its molecules increases (the molecules move faster), so it has greater internal energy 
(see point 1 above). In contrast, solids do not have translational motion; their main mode 
of molecular kinetic energy is in the form of vibrations. The vibrations of the atoms in a 
solid are called phonons. Again, on the one hand, phonons represent part of the internal 
(or molecular) energy, and, on the other hand, they are directly related to the tempera-
ture of the solid. So the faster the solid is vibrating, the greater the temperature and the 
greater the internal energy.

Consider next a phase change, such as the sublimation of a solid into a vapor. An 
example with which you may have experience is the case with CO2 (dry ice) at atmospheric 
temperature and pressure. The solid is held together by bonds between the molecules. 
Often the bonding in a solid results from electrostatic attraction of the molecules, that is, 
molecular potential energy. The attraction between molecules adds stability and decreases 
the molecular energy of the system. On the other hand, the molecules in the vapor are 
much farther away from one another and have little or no attraction. Thus, the vapor phase 
is representative of higher internal energy relative to the solid at the same temperature. 
To sublimate, the molecular energy of the attraction of the bonds must be overcome; that 
is, energy must be added to the system, resulting in higher internal energy. Similar argu-
ments hold for the melting of solids and evaporation of liquids (see point 2 above).

Finally, consider chemical reaction. In this case, the chemical bonds between the 
atoms in the molecules of the reactants are broken and replaced by the bonds of the 
products. For example, ammonia is produced by the reaction:

N2 1 3H2 h 2NH3

A triple bond between N atoms and three single bonds between H atoms are replaced 
by six NiH bonds (three each for two molecules produced). The strength of a chemi-
cal bond is determined by the overlap of the valence electrons of the constituent atoms. 
Thus the energetics change as the atoms are rearranged, resulting in a change in the 
thermodynamic property, U. In this case, the product is lower in energy (a lot more sta-
ble), so U is reduced (see point 3 above).3

Internal Energy of an Ideal Gas

We next explore the property dependence for the internal energy for an ideal gas. As 
we learned with the discussion of point 1 earlier, internal energy consists of two com-
ponents, molecular kinetic energy and molecular potential energy, and temperature is 
directly related to one of them, the molecular kinetic energy. Because an ideal gas exhib-
its no intermolecular forces (see Section 1.3), its molecular potential energy is constant 
(assuming no chemical reactions). Therefore, barring chemical reaction, the internal 
energy, u, depends only on motion of the molecules, or the temperature. Hence,

 uideal gas 5 f 1T only 2  (2.4) 

Said another way, the internal energy for an ideal gas is independent of the position of 
the molecules. In Chapter 4, we will consider the thermodynamic properties of real 

3 In Chapter 3, we will learn that thermodynamic entropy also plays a role in determining how far a reaction 
will proceed.
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gases, where the molecules are close enough to experience the effect of intermolecular 
forces. In this case, two independent intensive properties are needed to specify the state 
of a system with constant composition, such as:

ureal gas 5 u 1T, v 2

or,

ureal gas 5 u 1T, P 2

EXAMPLE 2.2

Equivalent Energy
Stored in u

In Example 2.1, we considered the potential energy of a stone at the top of a 10-m cliff. When 
it fell, it gained kinetic energy, resulting in a velocity around 31 miles/hr. Consider now an 
equivalent mass of water initially at 25ºC. How hot would the water end up if its internal energy 
increased by the same amount?

SOLUTION If we write Equation (2.2) on a per-mass basis, we have:

DêK 5
1
2

 V
S

2
2 5 98 3J/kg 4 5 0.098 3kJ/kg 4

We have used specifi c energy and converted the units to be consistent with the steam tables. 
Again we will use state 1 to denote the initial state and state 2 to denote the fi nal state. Liquid 
water is subcooled at 25ºC and 1 atm; however, we do not expect the properties of a liquid to be 
signifi cantly affected by pressure. Therefore, we can use the temperature tables for saturated 
liquid water at 25ºC (which is technically at a pressure of 0.03 atm).4 From Appendix B.1:

ûl,1 5 104.86 3kJ/kg 4

The problem statement says the internal energy of the water increases by the same amount as 
the energy of the stone, that is,

Dû 5 ûl,2 2 ûl,1 5 Dêk 5 0.098 3kJ/kg 4

So for the fi nal state of water, we have:

ûl,2 5 Dû 1 ûl,1 5 104.96 3J/kg 4

We can now go to the steam tables and determine at which temperature saturated water has this 
energy. Again we neglect the effect of the pressure difference between the subcooled state and the 
saturated state. Interpolating, we get:

ûl,2 1at T2 2 2 û1 1at 25 3°C 4 2

ûl 1at 30 3°C 4 2 2 ûl 1at 25 3°C 4 2
5

104.96 2 104.86
125.77 2 104.86

5 0.005

Finally, solving for the fi nal temperature yields:

T2 5 25 1 10.005 25 5 25.02°C

The temperature of the water barely changes! Thus the energy stored in a stone 10 m up a 
cliff corresponds to a negligible amount of internal energy. This example illustrates that a large 
amount of energy is stored in u relative to the other forms of energy, and, consequently, why we 
are so interested in internal energy. As engineers, it provides us a large resource to be harvested.
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4 We often use this trick to fi nd the properties of subcooled water (or other substances) when the pressure is not 
appreciably different from the saturation pressure. It will serve you well to catalog your experiences of such tricks for 
reference for solving problems in the future.
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42 ► Chapter 2. The First Law of Thermodynamics

Work and Heat: Transfer of Energy Between the System and the Surroundings

In the sciences we need to be very careful about how we use language and defi ne terms 
such as work and heat. Both terms refer to the transfer of energy between the sur-
roundings and system. In a closed system, the transfer of energy between the surround-
ings and the system can only be accomplished by heat or by work. Heat is the transfer of 
energy by a temperature gradient, whereas all other forms of energy transfer in a closed 
system occur via work. We generally associate work with something useful being done by 
(or to) the system. We will examine these terms in more detail below.

Work
There are many forms of work, for example, mechanical (expansion/compression, rotat-
ing shaft), electrical, and magnetic. The most common case of work in engineering ther-
modynamics is when a force causes a displacement in the boundary of a system. In the 
case of expansion, for example, the system needs to push the surroundings out of the 
way to increase the boundary; in this process, the system expends energy. Thus, the sys-
tem exchanges energy with the surroundings in the form of work. The work, W, can be 
described mathematically by the line integral of the external force, FE, with respect to 
the direction of displacement, dx:

 W 5 3FE
# dx (2.5)

In contrast to thermodynamic properties, the work on a system depends not only on the 
initial state, 1, and the fi nal state, 2, of the system, but also on the specifi c path that it takes. 
Whenever we calculate the work, we must account for the real path that the system takes.

Since work refers to the transfer of energy between the system and the surround-
ings, it has the same units as energy, such as joules, ergs, BTU, and so on. To complete 
the defi nition, we need to choose a sign convention for work. In this text, we will say 
work is positive when energy is transferred from the surroundings to the system and 
work is negative when energy is transferred from the system to the surroundings. The 
defi nition given by Equation (2.5) is consistent with this sign convention. You should be 
aware that this sign convention is arbitrary. We choose this convention to be consistent 
with today’s convention. However, when the fi rst and second laws of thermodynamics 
were originally formulated, in the context of powering the steam engine, the opposite 
sign convention was used: Work from the system to the surroundings was defi ned as 
positive (since the engineering objective was to get work out of the system to power a 
train!). When you go to other sources, be careful to note which sign convention is chosen 
for work or you may get tripped up.

A plot of FE vs. x for a general process is shown in Figure 2.1a. The work associated 
with the process in Figure 2.1a can be obtained from the area under the curve [which is 
equivalent to graphically integrating the expression in Equation (2.5)]. If the boundary 
of the system does not move, no work has been done, no matter how large the force is. 
If the external force is acting on a surface of cross-sectional area A, we can divide and 
multiply the terms on the right hand side of  Equation (2.5) by A as follows:

 W 5 3
FE

A
# d 1Ax 2 5 3PE

# dV 5 3PEdV cos u 5 23PEdV (2.6)

where PE is the external pressure to the surface. The negative sign in Equation (2.6) 
results, since the external force and displacement vectors are in opposite directions. 
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Again, the work can be obtained from the area under the appropriate curve, as shown in 
Figure 2.1b. If Equation (2.6) is written on a molar basis (J/mol), we get:

 w 5 23PEdν (2.7)

Equation (2.7) is often encountered in thermodynamics; the work described by this 
equation will be referred to as “Pv work.” On a molecular scale, the energy transfer 
by Pv work can be understood in terms of momentum transfer of the molecules in the 
system when they bounce off the moving boundary, as discussed in Section 1.3. A piston– 
cylinder assembly is a common system that is used to obtain work (e.g., in your automo-
bile). Example 2.3 illustrates how work is calculated for such a system.

Figure 2.1 Graphical determination of the value of work for a system that undergoes a process 
between states 1 and 2 by integrating: (a) FE vs. x; (b) PE vs. V.

Vx

PEFE

(a) (b)

Work

Work

2
1

2
1

Consider the constant pressure expansion that is illustrated in Figure E2.3. Initially the system 
contains 1 mole of gas A at 2 bar within a volume of 10 L. The expansion process is initiated by 
releasing the latch. The gas in the cylinder expands until the pressure of the gas matches the 
pressure of the surroundings. The fi nal volume is 15.2 L. Calculate work done by the system 
during this process.

SOLUTION The amount of work done can be calculated by applying Equation (2.6):

 W 5 2 3

V2

V1

PEdV (2.6)

Since the external pressure is constant, it can be pulled out of the integral:

W 5 2PE 3

V2

V1

dV 5 2PE 1V2 2 V1 2 5 21 bar B105 Pa
bar

R 115.2 2 10 2LB1023 m3

L
R 5 2520 J

In this case, the value for work is negative since the system loses energy to the surroundings 
as a result of this process. The units of pressure and volume have been converted to their SI 
equivalents in this calculation 31 Pa m3 5 1 J 4.

EXAMPLE 2.3

Calculation of Pv 
Work in a Piston–
Cylinder Assembly

 2.1  The First Law of Thermodynamics ◄ 43

(Continued)
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44 ► Chapter 2. The First Law of Thermodynamics

Shaft work, Ws, is another important type of work encountered in engineering 
practice. Often a rotating shaft is used to deliver energy between the system and the 
surroundings. For example, consider the turbine shown in Figure 2.2. It is designed to 
convert the internal energy of the working fl uid into useful work by means of a shaft. 
In this case, as the fl uid passes through the turbine, it expands and cools, leading to the 
rotation of the shaft at the end of the turbine. A magnet placed on the end of the turbine 
also rotates. The changing magnetic fi eld induces an electrical potential, which is used 
to generate a current that can charge a battery and store energy. Note that depending on 
how we draw the boundary to our system, the transfer of energy from the system to the 
surroundings (the shaft work) can be mechanical, magnetic, or electric. However, in all 
cases we are converting the internal energy of the fl uid into useful work. In fact, when 
we generically use the term shaft work, it may indeed be any of these forms of work.

Heat
Heat, Q, refers to the transfer of energy between the surroundings and the system where 
the driving force is provided by a temperature gradient. Energy will transfer spontane-
ously from the high-temperature region to the low-temperature region. Sometimes this 
form of energy transfer is part of an engineering design (such as “heating” up your house 
on a cold day). Often, however, heat provides a path for the unwanted dissipation of 
energy (such as when your coffee gets cold or your soda gets warm). In the latter case, it 
is useful to try to insulate the system as well as possible to eliminate unwanted transfer 
of energy. In the ideal case, the transfer of energy by heat would be reduced to zero. We 
term such a process adiabatic 1Q 5 0 2 . Unlike for work, the sign convention for heat has 
been historically invariant. A positive value indicates that energy is transferred from the 
surroundings to the system or, colloquially, the system is “heating up.” Alternatively, you 
may think of a positive value for Q to correspond with an increase in internal energy 1DU 2  
of the system (ignoring work). In Section 2.1 we referred to the effects of changes in U on 
the system. Those changes that manifested as changes in temperature were termed sensi-
ble heat while changes in phase were termed latent heat. This nomenclature is somewhat 
misleading, since we are referring to changes in the internal energy of the system and not 

Figure E2.3 Example of a process in which energy is transferred from the system to the sur-
roundings by Pv work: expansion of a gas in a piston–cylinder assembly. The surroundings 
are maintained at 1 bar.

Initial state (1) Final state (2)

P2 =  1 bar

1 mol gas A 

Process

V2 =  15.2 LP1 =  2 bar

PE =  1 bar PE =  1 bar

1 mol gas A 
V1 =  10 L
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“heat,” which more precisely refers to transfer of energy across the system boundary in a 
specifi ed way. However, this nomenclature is deeply rooted in the literature.

There are three modes through which energy can be transferred by a tempera-
ture gradient: conduction, convection, and radiation. You will learn how to quantify the 
rates of these processes in your heat-transfer (or transport processes) class; however, the 
underlying mechanisms of each process will be described briefl y here.

It is easiest to think of conduction in terms of a solid body. If you expose the front 
side of a chunk of quartz glass, for example, to temperature Thigh and the back side to a 
temperature Tlow, energy will transfer through the glass. On a molecular scale, the pho-
nons on the hot side (remember, phonons refer to the vibrations of the atoms in a solid) 
will be vibrating at a higher velocity, that is, with greater energy. However, these atoms 
are connected to those next to them on the crystal lattice and the region of high-energy 
lattice vibration will “spread out.” With time, the phonons on the front side will vibrate 
less vigorously (thus reducing their temperature) while the phonons on the back side 
increase in energy. The end result is a transfer of energy from Thigh to Tlow.

The rate at which the energy transfers via conduction—that is, the rate at which 
the lattice vibration spreads out—is proportional to a property of the material called 
the thermal conductivity, k. Glass is not very conductive; it has a thermal conductiv-
ity of around 42 W m21 ºC21. On the other hand, metals tend to conduct well. In the 
case of metals, there is an additional mechanism for conduction of energy—drift of free 
electrons in the valence band. A thermally conducting material like copper may con-
duct energy an order of magnitude faster than glass, having a thermal conductivity of 
385 W m21 ºC21. Wood, on the other hand, is an effective thermal insulator, having a 
thermal conductivity around 0.1 W m21 ºC21. Liquids and gases may also transfer energy 
through conduction. The thermal conductivity of liquids tends to be lower than that 
of solids, and gases have even lower thermal conductivities than liquids. Typical values 
range from 0.06–0.6 W m21 ºC21 for most liquids and 0.01–0.07 W m21 ºC21 for most 
gases. Can you provide a molecular explanation as to why gases have much lower thermal 
conductivity than solids?

Convection is another mechanism by which energy can be transferred between the 
system and the surroundings via heat. Convection refers to the case of enhanced heat 
transfer through coupling with fl uid fl ow. For example, consider the example of want-
ing to cool a bowl of hot soup. One way to enhance the transfer of energy (so that you 
can eat quickly and your tongue does not get burned) is by blowing on the soup in your 
spoon. This is an example of convection. When you blow on the soup, the fl ow of gas 
carries away hot molecules (moving with high velocity) and replaces them with colder 

Figure 2.2 Schematic of a turbine converting the energy from a fl owing fl uid into shaft work. The 
rotating shaft is coupled to a battery by means of a magnet affi xed to its end.
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46 ► Chapter 2. The First Law of Thermodynamics

fl uid. Thus, the temperature difference between the soup and the neighboring gas—that 
is, the driving force for energy transfer—is greater, and cooling occurs more quickly than 
by conduction alone. Clearly describing convection mathematically is more diffi cult than 
describing conduction. Convection depends not only on the conductive properties of the 
soup and the air but also on the type of fl ow patterns that are set up.

Radiation refers to the transfer of energy by light. By light, we are referring to all 
wavelengths of electromagnetic radiation, not just the visible portion. All objects above 
absolute zero radiate light. On a molecular scale, radiation is associated with accelera-
tion of charged particles (electrons and nuclei) near the surface of the object, due to 
vibration. Have you ever seen a piece of metal that is “red hot”? By being red hot, it is 
actually cooling by emitting photons in the red portion of the electromagnetic spectrum. 
Each photon that leaves carries some energy with it. The rate of heat transfer by radia-
tion is a much stronger function of temperature than either conduction or convection. In 
conduction and convection, the rate of heat transfer, Q

#
, is proportional to temperature:

Q
#

~ T        1conduction and convection 2

but for radiation:

Q
#

~ T4      1radiation 2

Thus, at high temperature, radiation becomes the dominant mode of heat transfer.
In this text, we will often lump all three modes of heat transfer together and just 

defi ne the heat transfer for the system. We use both amounts of energy transferred, 
Q [J], and rates of energy transferred Q

#
3J/s or W 4. You should be aware, however, what 

important modes may be present.

 ► 2.2  CONSTRUCTION OF HYPOTHETICAL PATHS
Internal energy and volume are examples of thermodynamic properties. Because prop-
erties depend only on the initial and fi nal states of the system, they are also called state 
functions. They are independent of the process; that is, they do not depend on path the 
system takes. (Conversely, heat and work are path dependent, and for these quantities 
we must follow the actual path the system takes.) To a large degree, thermodynamics 
is built on the path independence of properties. We can take advantage of this feature 
by constructing our own paths. We are free to choose any convenient path to calculate 
the change in a given property. If the path we use for calculation is different from the 
path the system actually undergoes, we call it a hypothetical path. The change in any 
property (e.g.Du) for a hypothetical path is the same as for the actual process as long 
as the system starts and ends in the same states as the actual pro cess. The utility of this 
construct is enormous, and it is unique to thermodynamics. It allows us to use data like 
those available in the appendices of this textbook to solve many different problems.

Hypothetical paths are constructed to make the calculation easier (or, in some cases, 
possible at all!). In fact, the ability to con struct hypothetical paths between states allows 
for effi cient collection and organization of experimental data. Often a path is constructed 
so that we can use available physi cal data. Much of the methodology of this textbook 
is based on using judicious choices of hypothetical paths to develop theory or obtain 

 ►EXERCISE Consider a pot of boiling water. Sketch the system, surroundings, and boundary. Identify 
all the heat-transfer mechanisms associated with this system.
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solutions to engineering problems of interest. We will not go through every possible path 
that may ever be useful. The goal is to get you to recognize when you can appropriately 
construct a hypothetical path and have you be able to develop the path and execute such 
a calculation on your own. Consequently, we will use hypothetical paths as we develop 
theory and illus trate their use with examples. However, undoubtedly the most useful way 
to learn about constructing hypothetical paths will be when you need to develop your 
own hypothetical paths in homework to solve the end-of-chapter problems.

As an example of how we might construct such a path, consider a problem where 
we need to calculate the change in internal energy of a gas going from state 1 to state 2. 
Figure 2.3 shows the initial and fi nal states on a temperature–volume plot. Drawing a 
diagram like that shown in Figure 2.3 can enable you to identify useful hypothetical 
paths. The process the system actually undergoes is depicted by the solid line. However, 
to solve this problem, we may use any path we want as long as the path starts at the initial 
state and ends at the fi nal state. For example, we consider the calculation of Du for two 
hypothetical paths shown by the dashed lines in the fi gure. First, we consider a two-step 
hypothetical path, which we call path a. This path consists of fi rst heating the gas at con-
stant volume from T1 to T2 (labeled Step 1a) and then isothermally compressing the gas 
from v1 to v2 (labeled Step 2a). The calculations are simplifi ed because only one property 
changes at a time. 

However, this path may not be good enough to allow us to calculate Du. Often the 
data that is available for the isothermal heating is for ideal gases (such as the ideal gas 
heat capacity that we will cover in Section 2.6). In that case, we may need to add another 
step to the hypothetical path, as shown in path b. In this case, we fi rst expand the system 
to a very large molar volume, vlarge,where the gas behaves as an ideal gas (labeled Step 
1b). The next two steps are similar to path a, where we heat at constant volume (Step 2b) 
and then compress isothermally (Step 3b). In such a case, we may need to have redrawn 
our hypothetical path from the choice that we fi rst conceived. Coming up with clever 
hypothetical paths can turn into quite a creative endeavor and is a key to problem solving 
and to understanding thermodynamics.

Figure 2.3 Plot of a 
process that takes a sys-
tem from state 1 to state 
2 in Tv space. Three 
alternative paths are 
shown: the real path as 
well as two convenient 
hypothetical paths. 
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48 ► Chapter 2. The First Law of Thermodynamics

The concept of a reversible process is crucial in understanding thermodynamics. A defi -
nition for reversible processes is as follows:

A process is reversible if, after the process occurs, the system can be returned to its original 
state without any net effect on the surroundings. This result occurs only when the driving 
force is infinitesimally small.

We will see that to accomplish a reversible process we must be able to reverse the direc-
tion of the process at any point and go the other way by changing the driving force by 
an infi nitesimal amount. For a process to be reversible, there can be no friction. We use 
driving force as a generic term that represents some type of infl uence on a system to 
change. If a gas undergoes an expansion process, we must be able to turn the process 
around at any point and compress it merely by changing the force on the piston by an 
infi nitesimal amount. For example, if we examine the process depicted in Figure E2.3, 
we realize that this condition cannot be accomplished. If the piston is halfway up, it 
would take more than an infi nitesimal force to turn it around and begin compressing the 
gas inside; hence, we label the process depicted in Figure E2.3 irreversible. In this case 
we consider force because it is the driving force for mechanical work, that is, momentum 
transfer. Likewise, if we are heating a gas, we must be able to turn the process around 
at any point and cool it merely by changing the temperature by an infi nitesimal amount. 
Temperature difference is the driving force for energy transfer.

Reversible processes are never completely realized in real life since they can 
be accomplished only by changing the driving force to a process by an infi nitesimal 
amount. (Perhaps a pendulum comes close.) These processes represent an idealization. 
They represent a limiting case, that is, a process that is perfectly executed. However, 
in engineering these types of idealizations are often useful. For example, it is useful 
to know how much work we could get out of a system if a process could be executed 
reversibly. This value tells us the best that we could possibly do. We can then compare 
how well we really do, and see if it is worth focusing our efforts on improving the pro-
cess. Good engineering is as much determining where to focus your resources as it is 
actual problem solving.

 ►2.3  REVERSIBLE AND IRREVERSIBLE PROCESSES

Reversible Processes

Irreversible Processes

Real processes are not reversible. They have friction and are carried out with fi nite 
driving forces. Such processes are irreversible processes. In an irreversible process, if 
the system is returned to its original state, the surroundings must be altered. The work 
obtained in an irreversible process is always less than that obtained in the idealization of 
a reversible process. Why?

To help solidify these abstract ideas, a concrete example is illustrative. We will 
 compare the value of work for six processes. We will label these cases process A through 
process F. Three processes (A, C, and E) entail isothermal expansion of a piston– cylinder 
assembly between the same states: state 1 and state 2. The other three (B, D, and F) 
consist of the opposite process, isothermal compression between state 2 and state 1. An 
isothermal process results in the limit of fast heat transfer with the surroundings. We 
could perform a similar analysis on adiabatic processes where there is no energy transfer 
via heat between the system and the surroundings.
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2.3  Reversible and Irreversible Processes ◄ 49

Process A is illustrated in Figure 2.4. The system contains 1 mole of pure ideal gas. 
A 1020-kg mass sits on the piston. The surroundings are at atmospheric pressure. The 
molar volume in state 1 can be found from the area 10.1 m2 2  and the height (0,4 m):

v1 5 ¢Az
n
≤

1
5 0.04 B m3

mol
R

Since the piston is originally at rest, the pressure inside the piston can then be found by 
a force balance:

P1 5
mg

A
1 Patm 5 2 3bar 4

where Patm is taken to be 1 bar. These two properties completely constrain the initial 
state. State 1 is labeled on the Pv diagram in Figure 2.4.

Process A is initiated by removing the 1020-kg mass. The pressure of the piston is 
now greater than that exerted by the surroundings, and the gas within the piston expands. 
The expansion process continues until once again the pressures equilibrate. The piston 
then comes to rest in state 2 where the pressure is given by:

P2 5 Patm 5 1 3bar 4

The ideal gas law can be applied to this isothermal process to give:

Pv 5 RT 5 const

The volume of state 2 is then given by:

v2 5
P1v1

P2
5 0.08 B m3

mol
R

State 2 is now constrained by two independent, intensive properties and is also labeled 
in Figure 2.4. 

To calculate the work, we must consider the “external” pressure upon which the gas 
must expand [see Equation (2.7) and discussion]. The piston only starts to move once the 
1020-kg block is removed. Hence, at any volume larger than 0.04 m3, the external pres-
sure is only that from the atmosphere. The path of external pressure vs. volume is illus-
trated in Figure 2.4. Note, we are not saying anything about the pressure in the system 
but rather we are graphically illustrating what external pressure the gas expands against.

To fi nd the work, we apply Equation (2.7):

 w 5 23

v2

v1

PEdv 5 2Patm3

v2

v1

dv 5 24000 3J/mol 4 (2.8)

The same result can be found by graphically counting the area under the curve in the Pv 
diagram in Figure 2.4. The negative sign indicates we get 4 kJ of work out of the system 
from this expansion process.

In our analysis, we have idealized the process to stop precisely where the forces 
balance. In reality, the piston may undergo damped oscillations in its path toward its 
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50 ► Chapter 2. The First Law of Thermodynamics

fi nal resting position in state 2. In that case, the kinetic energy of the piston causes 
it to overshoot its fi nal equilibrium position, leading to a molar volume greater than 
0.08 3m3/mol 4. Once past this volume, the pressure in the system will be less than the 
pressure of the surroundings. At some point, the motion stops and the piston reverses 
direction, back toward the equilibrium position. It may again overshoot the equilibrium 
position, leading to a molar volume less than 0.08 3m3/mol 4, where it is then again turned 
around and expands, and so on and so on. This process will inevitably contain a fric-
tional dissipative mechanism that causes the piston to come to rest at state 2. Since the 
external pressure is the same during these oscillations, the contribution of the oscillating 
expansions and contractions to the work will exactly cancel, leading to the same value 
as calculated by Equation (2.8).5,6 In this text, we will ignore the oscillatory behavior of 
these types of processes and approximate them in the simpler context where the system 
does not overshoot its fi nal equilibrium state. While it is only an approximation of the 
real behavior, this simplifi cation proves useful in allowing us to compare irreversible 
processes with reversible processes.

Figure 2.4 Schematic of an isothermal expansion process (process A). The corresponding plot of 
the process on a PEv diagram is shown at the bottom.

State 1 

Weightless, frictionless piston

A = 0.1 m2

A = 0.1 m2

1 mol of pure,
ideal gas

1 mol of pure,
ideal gas

m = 1020
kg

State 2

Process A:
Isothermal expansion

0.4 m 

2

1

.04

1

2

Molar volume (m3/mol)

.08

Work is given

by the area

under the curve
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Process A 

Patm
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te
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l/
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5 We assume all the energy dissipation occurs within the system.
6 On the other hand, if there were no dissipative mechanism, the piston would oscillate forever. Its kinetic 
energy could be accounted for by the difference in force between the system pressure and the external 
pressure.
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2.3  Reversible and Irreversible Processes ◄ 51

We next want to calculate the work needed to compress the gas from state 2 back to 
state 1. This process is illustrated in Figure 2.5 and is labeled process B. In process B, 
we drop the 1020-kg mass back on the piston, originally in state 2. The external pressure 
now exceeds the pressure of the gas initiating the compression process. The piston goes 
down until the pressures equilibrate, at state 1. The external pressure vs. molar volume 
is plotted in Figure 2.5. In this case, the external pressure consists of contributions from 
both the block and the atmosphere. Again, we are not representing the system pressure 
in this graph, but rather the force per area that acts on the piston. The work is found by 
Equation (2.7):

w 5 2 3

v1

v2

PEdv 5 2aPatm 1
mg

A
b 3

v1

v2

dv 5 8000 c
J

mol
d

This value can also be found from the area under the curve. Comparing process A and 
process B, we see it costs us more work to compress the piston back to state 1 than we 
got from expanding it to state 2. The net difference in work 18000−4000 5 4000 3J 4 2  in 
going from state 1 to state 2 and back to state 1 results in a “net effect on the surrounding.” 

Figure 2.5  Schematic of an isothermal compression process (process B). The corresponding plot 
of the process on a PEv diagram is shown at the bottom.
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52 ► Chapter 2. The First Law of Thermodynamics

Examining our defi nition of a reversible process, we see that processes A and B are 
irreversible.

Next we again consider expansion from state 1 to 2 (process C) and compression 
from state 2 to 1 (process D), but now we use two 510-kg masses instead of one larger 
1020-kg mass. The expansion is carried out as follows: The system is originally in state 1 
when the fi rst 510-kg mass is removed. This causes the gas to expand to an intermediate 
state at a pressure of 1.5 bar and a molar volume of 0.053 m3/mol. The second 510-kg 
mass is then removed, completing the expansion to state 2. These three states are shown 
in the Pv diagram in Figure 2.6. The expansion process is labeled process C and follows 
arrows from state 1 to the intermediate state to state 2. The work the system delivers to 
the surroundings is given by:

w 5 2 3

v2

v1

PEdv 5 2B aPatm 1

m
2  g

A
b 3

vint

v1

dv 1 Patm 3

v2

vint

dvR 5 24667 B J

mol
R  

Again, the work can be found graphically from the area under the curve. Process C is 
“better” than process A in that it allows us to extract more work from the system. Of 
course, we want to get the most work out of a system as possible.

The compression process is the opposite of the expansion. With the system in state 
2, a 510-kg block is placed on the piston until it compresses to the intermediate state, 
followed by placement of the second block. The work is found by:

w 5 2 3

v1

v2

PEdv 5 2B aPatm 1

m
2  g

A
b 3

vint

v2

dv 1 aPatm 1
mg

A
b 3

v1

vint

dvR 5 6667 B J

mol
R

In analogy to the expansion process, process D is “better” than process B in that it costs 
us less work to compress the system back to state 1. When we have to put work into 
a system, we want it to be as small as possible. However, it still costs us more work to 
compress from state 2 to state 1 than we get out of the expansion, so these processes are 
still irreversible.

We did “better” in both expansion and compression processes when we divided the 
1020-kg mass into two parts. Presumably we would do better by dividing it into four 
parts, and even better by dividing it into eight parts, and so on. If we want to do the best 
possible, we can divide the 1020-kg mass into many “differential” units and take them off 
one at a time for expansion or place them on one at a time for compression. These pro-
cesses are labeled process E and process F, respectively, and are illustrated in Figure 2.7. 
At each differential step, the system pressure is no more than 'mg/A different than the 
external pressure. Thus, to a close approximation:

P 5 PE

The process paths are illustrated in the Pv diagram in Figure 2.7. To fi nd the work, we 
integrate over the external pressure. However, since the external pressure is equal to the 
system pressure, we get:

  w 5 2 3

v2

v1

PEdv 5 2 3

v2

v1

Pdv 5 2 3

v2

v1

P1v1

v
 dv 5 2P1v1 ln ¢ v2

v1
≤ 5 25545 c

J

mol
d  (2.9)
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Similarly the work of compression is:

w 5 2 3

v1

v2

PEdv 5 2 3

v1

v2

Pdv 5 2 3

v1

v2

P1v1

v
 dv 5 2 P1v1 ln ¢ v1

v2
≤ 5 5545 c

J

mol
d

In processes E and F, we can return to state 1 by supplying the same amount of work that 
we got from the system in the expansion process. Hence, we can go from state 1 to 2 and 
back to state 1 without a net effect on the surroundings. From our defi nition, we see that 
these processes are reversible. In a reversible process, we are never more than slightly 
out of equilibrium. At any point during the expansion, we could turn the process around 
the other way and compress the piston by adding differential masses instead of removing 
them. Moreover, we get more work out of the reversible expansion than the irreversible 
expansions. Similarly, the reversible compression costs us less work than the irreversible 
processes. The reversible case represents the limit of what is possible in the real world—it 

Figure 2.6 Schematic of two-step isothermal expansion (process C) and compression (process D) 
processes. The corresponding plots of the process on a PEv diagram is shown at the bottom.
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54 ► Chapter 2. The First Law of Thermodynamics

gives us the most work we can get out or the least work we have to put in! Moreover, only 
in a reversible process can we substitute the system pressure for the external pressure.

Why do we get less work out of the irreversible expansion (process A) than the 
reversible expansion (process E)? Work is the transfer of energy between the system and 
the surroundings. In this case, as the gas molecules bounce off the piston, their change 
in net z momentum between before and after a collision is determined by the movement 
of the piston. This change of momentum with time represents the net energy transferred 
between the system and surroundings; that is, it is the work. The irreversible expansion, 
process A, never has a mass on the piston; thus the molecules of the gas are running into 
something “smaller” and will not transfer as much energy. On the other hand, in the 
irreversible compression process, the mass on the piston is larger than the corresponding 
reversible process. It therefore imparts more energy to those molecules and costs more 
work. Those of you who are baseball fans may consider an analogy to the size of a hitter’s 
bat. The heavier the bat, the more energy can be transferred to the baseball. The greater 
the force the piston exerts on a given molecule as it rebounds off the piston, the more 
the molecule’s speed will increase and the higher its kinetic energy. If we sum up all the 
molecules, we see that the net energy transfer (work) is greater.

Figure 2.7 Schematic of infinitesimal-step, reversible isothermal expansion (process E) and com-
pression (process F) processes. The corresponding plots of the processes on a PEv diagram is 
shown at the bottom.
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Efficiency

We can compare the amount of work required in an irreversible process to that of a 
reversible process by defi ning the effi ciency factor, h. For an expansion process, we 
compare how much work we actually get out to the idealized, reversible process. Thus, 
the effi ciency of expansion, hexp, is:

 hexp 5
wirrev

wrev
 (2.10)

For example, the effi ciency of Process A would be:

hexp 5
wA

wE
5

24000
25545

5 0.72

where wi represents the work of process i. Thus, we say process A is 72% effi cient; in 
comparison, the two-block process C is 84% effi cient. We have done better.

On the other hand, to determine the effi ciency of a compression process, hcomp we 
compare the reversible work to the work we must actually put in:

 hcomp 5
wrev

wirrev
  (2.11)

For example, the effi ciency of process B would be:

hcomp 5
wF

wB
5

5545
8000

5 0.69

or 69% effi cient. In both cases, effi ciencies are defi ned so that if we can operate a process 
reversibly, we would have 100% effi ciency, while the real processes are less effi cient. 
One strategy for actual, irreversible processes is to solve the problem for the idealized, 
reversible process and then correct for the irreversibilities using an assigned effi ciency 
factor.

 ► 2.4  THE FIRST LAW OF THERMODYNAMICS FOR CLOSED SYSTEMS

Integral Balances

In this section, we consider energy balances for closed systems. In the next section, open 
systems will be treated. Figure 2.8 shows a schematic of a closed system that undergoes 
a process from initial state 1 to fi nal state 2. In this fi gure, the system, surroundings, and 
boundary are delineated. In a closed system, mass cannot transfer across the system 
boundary. There are two ways in which to catalog the amount of material in the system— 
by mass or by moles. Each way can be convenient. For a pure species or a mixture of 
constant composition, the two forms are equivalent and can be interconverted using the 
molecular weight. When we address systems undergoing chemical reaction, care must 
be taken. While the total mass must be conserved, the number of moles or the mass of a 
particular component may change. In the absence of chemical reaction, the number of 
moles remains constant:

n1 5 n2 

Since mass cannot enter or leave a closed system, the changes in the energy 
within the system 1D 5 final 2 initial 2  are equal to the energy transferred from the 

 2.4 The First Law of Thermodynamics for Closed Systems ◄ 55
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56 ► Chapter 2. The First Law of Thermodynamics

surroundings by either heat or work. Figure 2.8 also illustrates the sign convention that 
we have defi ned for heat and work, namely, positive for energy transfer from the sur-
roundings to the system. Writing down the fi rst law in quantitative terms, we get:7

c
change in
energy in
system

s 5 c
energy transferred
from surroundings
to system

s

 

DU 1 DEK 1 DEP 5 Q 1 W
('''')''''* (')'*

property: depends on
depends only path

on state 1 and 2

 (2.12a)

The properties on the left-hand side of Equation (2.12a) depend only on the initial and 
fi nal states. They can be calculated using the real path or any hypothetical path we cre-
ate. The terms on the right-hand side are process dependent and the real path of the 
system must be used.

Since the composition of a closed system remains constant (barring chemical reac-
tion), we can rewrite Equation (2.12a) using intensive properties by dividing through by 
the total number of moles:8

 Du 1 DeK 1 DeP 5 q 1 w (2.12b)

We often neglect macroscopic kinetic and potential energy. For this case, the extensive 
and intensive forms of the closed system energy balances become:

 DU 5 Q 1 W  (2.13a)

and,  Du 5 q 1 w  (2.13b)

respectively.

Figure 2.8 Illustration of closed  system 
and sign conventions for heat and 
work. All three forms of energy are 
considered.

Surroundings

+W+ Q

Boundary

System

property

ΔEK = EK,2 − EK,1

ΔU = U2 − U1

ΔEP = EP,2 − EP,1

7 Heat and work already refer to the amount of energy transferred; hence, it would be would be wrong to write 
them DQ or DW. We reserve the D for state function that depends just on the initial and fi nal state of the system.
8 We will sometimes write balance equations on a molar basis, utilizing the appropriate intensive thermodynamic 
properties. For example, internal energy will be u [J/mol]. You should be able to convert any equation to a mass 
basis that uses the corresponding specifi c property, for example, û 3J/kg 4.
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Differential Balances

The fi rst law can also be written in differential form for each differential step in time 
during the process. Numerical solutions are obtained by integration of the resulting dif-
ferential energy balance. Common forms of energy balance over a differential element 
can be written by analogy to the equations just presented.

 dU 1 dEK 1 dEP 5 dQ 1 dW      extensive 3J 4

   du 1 deK 1 deP 5 dq 1 dw          intensive 3J/mol 4

or, neglecting kinetic and potential energy,

     dU 5 dQ 1 dW                   extensive 3J 4 (2.14)

     du 5 dq 1 dw                       intensive 3J/mol 4

We use the exact differential d with the energy terms to indicate that they depend only 
on the fi nal and initial states; in contrast, we use the inexact differential d with heat and 
work to remind us that we must keep track of the path when we integrate to get these 
quantities.

The energy balances above are often differentiated with respect to time, yielding:

 
dU
dt

1
dEK

dt
1

dEP

dt
5 Q

#
1 W

#
    extensive 3W 4

   
du
dt

1
deK

dt
1

deP

dt
5 q# 1 w#         intensive 3W/mol 4

where the rate of heat transfer and the rate of work [J/s or W] are denoted with a dot 
over the corresponding variable. Again, we often neglect kinetic and potential energy to 
give:

  
dU
dt

5 Q
#

1 W
#

         extensive 3W 4 (2.15)

   
du
dt

5 q# 1 w#           intensive 3W/mol 4

 ►EXERCISE Consider the six processes depicted in Figures 2.4 through 2.7. What is the heat transferred in 
each case. Can you explain the difference in relation to the effi ciency factor?

Consider a piston–cylinder assembly containing 10.0 kg of water. Initially, the gas has a pres-
sure of 20.0 bar and occupies a volume of 1.0 m3. The system undergoes a reversible process 
in which it is compressed to 100 bar. The pressure volume relationship during this process is 
given by:

Pv1.5 5 const

Example 2.4

Closed System 
Energy Balance

(Continued)
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58 ► Chapter 2. The First Law of Thermodynamics

(a) What is the initial temperature?
(b) Calculate the work done during this process.
(c) Calculate the heat transferred during this process.
(d) What is the fi nal temperature?

SOLUTION (a) We need two independent intensive properties to constrain the state of the 
system. Once values for these properties are determined, we can use the steam tables to fi nd 
other properties. The specifi c volume of the initial state can be determined as follows:

v̂ 5
V
m

5
1.0
10.0

5 0.10 Bm3

kg
R

The values in the steam tables are in units of Pa, so we convert 20 bar to 2 MPa. If we look 
at Table B.4 (Appendix B), we see that at P 5 2 MPa to three signifi cant fi gures the volume 

at the saturation temperature is 0.100 Bm3

kg
R . Therefore, looking at Table B.2, we see the 

temperature is 212.4°C (or slightly above).

(b) To calculate the work it is useful to draw a schematic of the process. We defi ne the initial 
state as state 1 and the fi nal state as state 2, as shown in Figure E2.4.

State 1 State 2

v1 = 0.1 [m3/ kg]

P1 = 20 [bar]

P2 = 100 [bar]T1 = 212.4 [° C]

H2O

Process

Figure E2.4 Initial and final states of the expansion process.

Because this is a reversible process, we can write:

ŵ 5 23PEdv̂ 5 23Pdv̂

To fi nd the upper limit on the integrand, we need to know the specifi c volume of the fi nal state,
v̂2. We can calculate v̂2 from the equation in the problem statement:

Pv̂1.5 5 const 5 P1v̂1.5
1 5 P2v̂1.5

2
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Solving for v̂2 gives:

v̂2 5 ¢P1v̂
1.5
1

P2
≤ 1/1.5

5 10.2 3 0.11.5 2 1/1.5 5 0.0342 Bm3

kg
R

Now we can solve for work:

ŵ 5 23

0.0342

0.1
Pdv̂ 5 23

0.0342

0.1

P1v̂
1.5
1

v̂1.5
 dv̂ 5 2P1v̂

1.5
1 B 1

v̂0.5
2

2
1

v̂0.5
1
R

0.0342

0.1

5 284 B kJ

kg
R

The sign of work is positive because we are adding energy to the system during the compression. 
(c) To fi nd heat, we can apply the fi rst law:

q 5 Du 2 w

Because we solved for work in part (b), we need only to determine the internal energy in states 
2 and 1 from the steam tables. In part (a), we found that state 1 is approximately saturated 
vapor at 20 bar. Looking at Table B.2, we fi nd:

u1 5 2600.3 B kJ

kg
R

For u2, we look at Table B.4 at a pressure of 10 MPa (100 bar). In this case, we need to 
interpolate:

u2 2 u 1T 5 500ºC 2

u 1T 5 550ºC 2 2 u 1T 5 500ºC 2
5

v2 2 v 1T 5 500ºC 2

v 1T 5 550ºC 2 2 v 1T 5 500ºC 2

Solving for u2,

   u2 5 u 1T 5 500ºC 2 1 3u 1T 5 550ºC 2 2 u 1T 5 500ºC 2 4

B v2 2 v 1T 5 500ºC 2

v 1T 5 550ºC 2 2 v 1T 5 500ºC 2
R

 5 3045.8 1 33144.5 2 3045.8 4B 0.0342 2 0.03279
0.03564 2 0.03279

R

 5 3094.6 B kJ

kg
R

Thus,

q 5 Du 2 w 5 u2 2 u1 2 w 5 210 B kJ

kg
R

Since the value of q is positive, heat transfers from the system to the surroundings.
(d) To fi nd T2, we must also interpolate. From Table B.4,we get:

 T2 5 500ºC 1 3550ºC 2 500ºC 4B v2 2 v 1T 5 500ºC 2

v 1T 5 550ºC 2 2 v 1T 5 500ºC 2
R

 5 500ºC 1 350ºC 4B 0.0342 2 0.03279
0.03564 2 0.03279

R
 5 525ºC
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60 ► Chapter 2. The First Law of Thermodynamics

 ►2.5  THE FIRST LAW OF THERMODYNAMICS FOR OPEN SYSTEMS

Material Balance

In open systems, mass can fl ow into and out of the system. A generic open system with 
two streams in and two streams out is shown in Figure 2.9. In setting up the balance 
equations, it is convenient to discuss rates: mass fl ow rates [kg/s] and rates of energy 
transfer [J/s or W]. We must keep track of the mass in the system since it can change with 
time. In the general case of many streams in and many streams out, we must sum over all 
the in and out streams. We fi rst consider conservation of mass, for a nonreacting system. 
The accumulation of mass in the system is equal to the difference of the total rate of mass 
in minus the total rate of mass out. Thus the mass balance can be written:

 a
dm
dt
b

sys
5 a

in
m# in 2 a

out
m# out (2.16)

where m#  is the mass fl ow rate in [kg/s]. For a stream fl owing through a cross-sectional 
area A, at velocity V

S

, the mass fl ow rate can be written as:

 m# 5
AV

S

v̂
 (2.17)

In many situations, it is convenient to express the amount of chemical species in terms 
of moles (molar basis) rather than mass. Mass can be converted to moles using the 
molecular weight.

The energy balance for an open system contains all the terms associated with an energy 
balance for a closed system, but we must also account for the energy change in the 
system associated with the streams fl owing into and out of the system. To accomplish 
this task, we consider the case of the generic open system illustrated in Figure 2.9. This 
open system happens to have two streams in and two streams out; however, the balances 
developed here will be true for any number of inlet or outlet streams.

Let’s look at the contribution to the energy balance from the inlet stream labeled 
stream 1. Compared to the closed-system analysis we performed in Section 2.4, there are 

Flow Work

Figure 2.9 Schematic of an open system with two streams in and two streams out. The piston 
shown in the plot is hypothetical; it illustrates the point that flow work is always associated with 
fluid flowing into or out of the system.

In

in

out
System

in

Stream 2

Stream 1

out

Imaginary
piston

δ(Eflow)in =  −   PinAinδx

PE =  Pin

min mout

Qsys

Ws

ûin

(êK)in
(êP)in

ŵflow =  (PV)inˆ ˆ

ûout

(êK)out
(êP)out

ŵflow =  (PV)out
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2.5 The First Law of Thermodynamics for Open Systems ◄ 61

two additional ways in which energy can be transferred from the surroundings. First, the 
molecules fl owing into the system carry their own energy; typically the most important 
form of energy is the specifi c internal energy, ûin, but the fl owing streams can also have 
(macroscopic) kinetic energy, 1 êk 2 in, and potential energy, 1 êP 2 in, associated with them. 
Inspection of Equations (2.2) and (2.3) shows these last two terms can be written as 12 V

S
2  

and gz respectively. Second, the inlet stream adds energy into the system by supplying 
work, the so-called flow work. Flow work is the work the inlet fl uid must do on the sys-
tem to displace fl uid within the system so that it can enter. It may be visualized by placing 
an imaginary piston in front of the material that is about to enter the system, as depicted 
in Figure 2.9. The imaginary piston acts like the real piston shown in Figure 2.5. The rate 
of work exerted by the fl uid to enter the system is, therefore, given by:

1W
#

flow 2 in 5 2PE Ain
dx
dt

5 Pin AinV
S

in 5 Pin m
#

in v̂in

where Equation (2.17) was used. We have set PE 5 Pin and eliminated the negative sign, 
since the direction of velocity is the negative of the normal vector from the piston. If we 
divide by mass fl ow rate, we can write the fl ow work in intensive form:

1ŵflow 2 in 5
1W
#

flow 2 in

m# in
5 Pinv̂in

We conclude that the fl ow work of any inlet stream is given by the term 1Pv̂ 2 in.
By a similar argument, we can show the fl ow work of any outlet stream is given by:

 1W
#

flow 2 out 5 2m# outPoutv̂out 

We can write the total energy transfer due to work in the system in terms of shaft work, 
Ws, and fl ow work, as follows:

W
#

5 W
#

shaft 1 W
#

flow 5 BW
#

s 1 a
in

m# in 1Pv̂ 2 in 1 a
out

m# out 12Pv̂ 2 outR
The shaft work is representative of the useful work that is obtained from the system. 
While shafts are commonly used to get work out of an open system, as discussed earlier, 
W
#

s generically represents any possible way to achieve useful work; therefore, it does not 
include fl ow work! The fl ow work does not provide a source of power; it is merely the 
“cost” of pushing fl uid into or out of the open system.

We can now include the new ways in which energy can exchange between the sys-
tem and surroundings in our energy balance for open systems. In the general case of 
many streams in and many streams out, we must sum over all the in and out streams. 
First, we consider a system at steady-state; that is, there is no accumulation of energy or 
mass in the system with time. The energy balance is written as [on a rate basis, by analogy 
to Equation (2.15)]:

0 5 a
in

m# in(û 1
1
2

V2
S

1 gz)in 2 a
out

mout
# ( û 1

1
2

V2
S

1 gz)out

energy fl owing
into the system
with the inlet
steams

steady state

energy fl owing
out of the system
with the outlet
steams
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62 ► Chapter 2. The First Law of Thermodynamics

 
1Q

#
1 BW

#
s 1 a

in
m# in 1Pv̂ 2 in 1 a

out
m# out 12Pv̂ 2 outR

Rearranging, we get:

0 5 a
in

m# inC 1 û 1 Pv̂ 2 1
1
2

V
S

2 1 gzDin 2 a
out

m# outC 1 û 1 Pv̂ 2 1
1
2

V
S

 2 1 gzDout 1 Q
#

1 W
#

s

Enthalpy

The inlet streams that fl ow into open systems always have terms associated with both 
internal energy and fl ow work; therefore, it is convenient to group these terms together 
(so that we don’t forget one). We give it the name enthalpy, h [J/mol]:

 h ; u 1 Pv (2.18)

Since u, P, and v are all properties, this new group, enthalpy, is also a property. Thus, 

the additional energy associated with the fl owing inlet stream is given by ĥin [as well as
1
2

V2
S

 and gz]. The term ĥin includes both the internal energy of the stream and the fl ow 

work it adds to enter the system. Similarly, the combined internal energy and fl ow work 
leaving the system as a result of the exiting streams are given by ĥout.

Enthalpy provides us a property that is a convenient way to account for these two 
contributions of fl owing streams to the energy in open systems. As we will learn in the 
next section, enthalpy also is convenient to use with closed systems at constant pressure.

We next develop the relationship between temperature and enthalpy for an ideal 
gas. Recall the internal energy of an ideal gas depends only on T. Application of the defi -
nition of enthalpy and the defi nition of an ideal gas gives:

hideal gas 5 u 1 Pv 5 u 1 RT 5 f 1T only 2

since Pv 5 RT for an ideal gas. Thus, like the internal energy, the enthalpy of an ideal 
gas depends only on T.

Steady-State Energy Balances

In summary, the steady-state energy balances can be written:

0 5 a
in

m# in (ĥ 1
1
2

V
S

2 1 gz)in 2 a
out

m# out (ĥ 1
1
2

V
S

2 1 gz)out

1 Q
#

1 W
#

s (2.19)

Take a look at Equation (2.19). See if you can identify the physical meaning of each term. 
In cases where we can neglect (macroscopic) kinetic and potential energy, the 

steady-state, integral energy balance becomes:

 0 5 a
in

m# inĥin 2 a
out

m# outĥout 1 Q
#

1 W
#

s (2.20)

fl ow work
from the inlet
streams

fl ow work
from the outlet
streams
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Another useful form of the energy balance for open systems is for unsteady-state con-
ditions. Unsteady-state is important, for example, in start-up as the equipment “warms 
up.” In the case when the inlet and outlet streams stay constant with time, the unsteady-
state energy balance becomes:

 ¢dU
dt

1
dEK

dt
1

dEP

dt
≤

sys
5 a

in
m# inaĥ 1

1
2

V2
S

1 gzb
in

2 a
out

m# outaĥ 1
1
2

V2
S

1 gzb
out

1 Q
#

1 W
#

s (2.21)

In cases where we can neglect (macroscopic) kinetic and potential energy, the 
unsteady-state, integral energy balance becomes:

  a
dU
dt
b

sys
5 a

in
m# inĥin 2 a

out
m# outĥout 1 Q

#
1 W

#
s (2.22)

In Equations (2.21) and (2.22), the left-hand side represents accumulation of energy 
within the system. There is no fl ow work associated with this term; hence, the appropri-
ate property is U. On the other hand, the fi rst two terms on the right-hand side account 
for energy fl owing in and out of the system, respectively. These terms must account for 
both the internal energy and fl ow work of the fl owing streams. In this case, ĥ is appropri-
ate. It is worthwhile for you to take a moment and reconcile the use of U and ĥ above. It 
will save you many mistakes down the road!

 ►EXERCISE
(a) Simplify Equations (2.19) and (2.21) for the case of one stream in and one stream out. 

(b) What are ways to fi nd h of a system?

(c)  For the energy balance depicted in Equation (2.21), which terms correspond to accumula-
tion? To energy in? To energy out?

2.5 The First Law of Thermodynamics for Open Systems ◄ 63

Steam enters a turbine with a mass fl ow rate of 10 kg/s. The inlet pressure is 100 bar and the 
inlet temperature is 500ºC. The outlet contains saturated steam at 1 bar. At steady-state, calcu-
late the power (in kW) generated by the turbine.

SOLUTION The steady-state energy balance is given by Equation (2.20):

 0 5 a
in

m# inĥin 2 a
out

m# outĥout 1 Q
#

1 W
#

s (E2.5A)

For a turbine, there is one stream in and one stream out. Moreover, heat dissipation is negligible, 
since Q

#
,, W

#
s. If we label the inlet stream “1” and the outlet stream “2,” Equation (E2.5A)

becomes:

 0 5 m# 1ĥ1 2 m# 2ĥ2 1 W
#

s (E2.5B)

EXAMPLE 2.5

Calculation of Work 
from the First Law

(Continued)

Transient Energy Balance
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64 ► Chapter 2. The First Law of Thermodynamics

At steady-state, the mass balance can be written as:

 m# 1 5 m# 2 5 m#   (E2.5C)

Plugging in Equation (E2.5C) into (E2.5B) gives:

 W
#

s 5 m# 1 ĥ2 2 ĥ1 2  (E2.5D)

We can look up values for specifi c enthalpy from the steam tables. For state 2, we use saturated 
steam at 1 bar 15 100 kPa 2 :

ĥ2 5 2675.5 3kJ/kg 4

while state 1 is superheated steam at 500ºC and 100 bar 15 10 Mpa 2 :

ĥ1 5 3373.6 3kJ/kg 4

Plugging these numerical values into Equation (E2.5D) gives:

W
#

s 5 10 3kg/s 4 12675.5 2 3373.6 2 3kJ/kg 4 5 26981 3kW 4

Thus, this turbine generates approximately 7 MW of power. Note the negative sign, which 
indicates that we are getting useful work from the system. This is the equivalent power to that 
delivered by approximately 70 automobiles running simultaneously.

Steam at 10 MPa, 450ºC is fl owing in a pipe, as shown in Figure E2.6A. Connected to this pipe 
through a valve is an evacuated tank. The valve is opened and the tank fi lls with steam until the 
pressure is 10 MPa, and then the valve is closed. The process takes place adiabatically.
(a) Determine the fi nal temperature of the steam in the tank.
(b)  Explain why the fi nal temperature in the tank is not the same as that of the steam fl owing 

in the pipe.

SOLUTION (a) This problem can be solved several ways. We fi rst solve it with the fi xed bound-
ary illustrated in Figure (E2.6A). An alternative solution with a moving system boundary is 
then presented.

Unsteady-State Analysis
For the choice of system shown in Figure E2.6A, we must use an unsteady-state energy balance 
since the mass and energy inside the tank (system) increase with time. Let us defi ne the initial 
state of the tank (empty), state 1, and the fi nal state (fi lled to 10 MPa), state 2. The inlet fl ow 
stream will be designated by “in.”

The conservation of mass is given by Equation (2.16). Since we have one stream in and 
no streams out, we get:

a
dm
dt
b

sys
5 m# in

Separating variables and integrating gives:

3

m2

m1 5 0

dm 5 3

t

0

m# indt

EXAMPLE 2.6

Calculation of Final 
Temperature for a 
Transient Process
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2.5 The First Law of Thermodynamics for Open Systems ◄ 65

Since state 1 identically has a value for m of 0, we get:

 m2 5 3

t

0

m# indt (E2.6A)

The unsteady energy balance, in mass (specifi c) units, is given by Equation (2.22):

a
dU
dt
b

sys
5 m

#
inĥin 2 m

#
outĥout 1 Q

#
1 W

#
s

where the terms associated with fl ow out, heat, and work are zero. Separating variables and 
integrating both sides with respect to time from the initial empty state to the fi nal state when 
the tank is at a pressure of 10 MPa gives:

 3

U2

U1 5 0

dU 5 3

t

0

m
#

inĥindt 5 ĥin 3

t

0

m
#

indt (E2.6B)

Empty
tank to be

filled

System

boundary

Steam 10 MPa. 450° C

We have moved the specifi c enthalpy out of the integral, since the properties of the inlet stream 
remain constant throughout the process. Applying Equation (E2.6A) and integrating, Equation 
(E2.6B) becomes:

 m2û2 5 m2ĥin (E2.6C)

since state 1 identically has a value for U of 0. Equation (E2.6C) simplifi es to:

 û2 5 ĥin (E2.6D)

From the steam tables, steam at P 5 10 MPa and T 5 450°C has a specifi c enthalpy:

ĥin 5 3241 3kJ/kg 4

According to Equation (E2.6D), the inlet specifi c enthalpy must be equal to the fi nal specifi c 
internal energy of the system. Hence, the fi nal state has two independent intensive properties 

0 0 0

Figure E2.6A Flow of super-
heated steam from a supply 
line to fill an empty tank. The 
system boundary is indicated 
with dashed lines.

(Continued)
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66 ► Chapter 2. The First Law of Thermodynamics

specifi ed: P 5 10 MPa and û 5 3241 3kJ/kg 4. From the steam tables, for steam at P 5 10 MPa 
and û 5 3241 3kJ/kg 4, the fi nal temperature of the system is:

T2 5 600°C

Closed-System Analysis
Alternatively, we can use a different choice of system to solve this problem. We consider the 
mass that starts in the pipe and eventually ends up in the tank as part of the system. The system 
boundary in this case is illustrated on the left side of Figure E2.6B. As mass fl ows into the tank, 
the boundary contracts. With this choice of system, no mass fl ow crosses the boundary; thus, 
we have a closed system. An equivalent closed system, in terms of our familiar piston–cylinder 
assembly, is shown on the right of Figure E2.6B. The adiabatic chamber is separated by a 
diaphragm that plays the same role as the valve in the original system. Above the diaphragm, 
the cylinder contains steam at 10 MPa and 450ºC, identical to the inlet steam. Below the 
diaphragm is a vacuum. The process is initiated by removing the diaphragm, and the system 
is taken from state “in” to state 2. An external pressure of 10 MPa, representative of the steam 
in the pipe outside the system boundary, acts against the piston until the pressures equilibrate. 
During the compression process, the surroundings transfer energy to the system via work. Can 
you see that the two processes depicted in Figure E2.6B are equivalent?

A mass balance on either closed system depicted in Figure (E2.6B) gives:

 min 5 m2  (E2.6E)

Empty

tank to be

filled

System

boundary

Steam 10 MPa

450°C

Vacuum

Equivalent Diaphragm

Q =  0

Pin =  10 MPa

PE  =  10 MPa

Tin =  450°C

Figure E2.6B A closed system approach to solving the problem in Example 2.6.

Likewise, the energy balance is:

 DU 5 m2û2 2 minûin 5 Q 1 W (E2.6F)

Since the process is adiabatic, Q 5 0. Work is given by:

 W 5 2 3

V

V1min v̂in

PEdv 5 minPinv̂in (E2.6G)

Substituting Equations (E2.6E) and (E2.6G) into (E2.6F) and rearranging gives:

m2û2 5 min 1 ûin 1 Pinv̂in 2 5 minĥin 5 m2ĥin

which is identical to the result we obtained for the unsteady-state open system of Figure 
E2.6A., given by Equation (E2.6D).
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(b) The fl uid in the system receives flow work from the fl uid behind it to get into the system. 
This work component adds energy from the incoming stream to the system, increasing T 
from 450ºC to 600ºC. The fl ow work of steam fl owing into the system shown on the left of 
Figure E2.6B is equivalent to work done by an equivalent constant external pressure acting on 
the piston shown on the right. Thus, the closed-system analysis helps us see the importance of 
accounting for fl ow work in energy balances on open systems.

 ►2.6 THERMOCHEMICAL DATA FOR U AND H

Heat Capacity: cv and cP

In order to perform energy balances on both closed and open systems, it is necessary to 
be able to determine how the energy (or enthalpy) of the species in the system changes 
during a process. As we learned in Section 1.3, the internal energy, u, and the enthalpy, 
h, for a pure species are constrained by specifying two independent intensive properties. 
Moreover, since u is a thermodynamic property, we can specify a hypothetical path to 
calculate the change in internal energy, Du. It does not have to be the path of the actual 
process. Likewise for Dh. While any thermodynamic properties can be used, it is often 
convenient to choose measured properties (T, P, or v) as the independent properties. 
Temperature is almost always chosen as one of the independent properties, since it can 
be measured in the lab (or fi eld), and there is a direct relationship between T and u; that 
is, temperature is a measure of the molecular kinetic energy, which is one component of 
u (see Section 2.1). In fact, for an ideal gas, it is only this component that contributes to 
u. The other independent property is typically also a measurable property, either P or v 
can be chosen according to convenience.

Figure 2.3 illustrates a common hypothetical path used to calculate Du. In this case, 
T and v are chosen as independent properties. In step 1, we must know the tempera-
ture dependence of u to calculate Du, as we go from T1 to T2 at constant volume. This 
information is often obtained in the form of heat capacity (or specifi c heat). Similarly, 
the temperature dependence of h used to fi nd Dh can be found through reported heat 
capacity values. Therefore, heat capacity data are crucial in this problem-solving meth-
odology. In the next section, we will explore how heat capacities are experimentally 
determined and how they are reported.

Heat Capacity at Constant Volume, cv

To measure the heat capacity at constant volume, cv, an experimental setup as conceptu-
ally shown in Figure 2.10a can be used. This closed system consists of pure species A 
within a rigid container. The container is connected to a heat source (in this case, a resist-
ance heater) and is otherwise well insulated. The experiment is conducted as follows: 
As a known amount of heat, q, is provided through the resistive heater, the tempera-
ture, T, of the system is measured. As heat is supplied, the molecules of A move faster, 
and the temperature increases. A typical data set for pure species A is also shown in 
Figure 2.10a. Since we can “sense” the result of the heat input with the thermocouple, 
this type of energy change is labeled sensible heat. This setup is known as a constant-
volume calorimeter. Since there is no work done in this process, we can apply the fi rst 
law [Equation (2.13b)] to this system and get:

 Du 5 q         closed system, const V (2.23)

2.6 Thermochemical Data for U and H ◄ 67
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68 ► Chapter 2. The First Law of Thermodynamics

Note that in Figure 2.10a, the amount of heat supplied is plotted on the y-axis and the 
temperature measured is on the x-axis. However, Equation (2.23) shows heat input is 
identical to Du. 

We defi ne the heat capacity at constant volume, cv, as:

 cv ; a
'u
'T
b

v
 (2.24)

Hence, the slope of the curve gives us the heat capacity at any temperature. In these 
data, the heat capacity at T1 is less than that at T2. Typically, heat capacity changes with T.

By taking the slope of this curve as a function of temperature, we can get:

cv 5 cv 1T 2  

We can then fi t the data to a polynomial expression of the form:

 cv 5 a 1 BT 1 CT2 1 DT22 1 ET3  (2.25)

Figure 2.10 Schematics of the experimental determination of heat capacity. (a) constant-volume 
calorimeter to obtain cv; (b) constant-pressure calorimeter to determine cP.
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Parameters a, B, C, D, and E are then tabulated and can be used any time we want to 
know how the internal energy of species A changes with temperature at constant vol-
ume. We can then fi nd Du by integration:

 Du 5 3

T2

T1

cv dT 5 3

T2

T1

3a 1 BT 1 CT2 1 DT22 4dT (2.26)

Heat capacity should only be used for temperature changes between the same phase. 
When a phase change occurs, the latent heat must also be considered, as discussed 
shortly.

Consider an ideal gas. Equation (2.24) shows us that if we increase T, we increase 
u. The amount the internal energy increases with temperature is quantifi ed by the heat 
capacity according to Equation (2.26). The more energy it gains, the larger cv. On a 
molecular level, we may want to know how this increase in energy manifests itself. We can 
associate the increase in molecular kinetic energy and, therefore, in u with temperature 
to three possible modes in which the molecules can obtain kinetic energy. The fi rst mode 
is related to the center-of-mass motion of the molecules through space. In Chapter 1, 
we saw that the Maxwell–Boltzmann distribution characterizes the velocities of the mol-
ecules at a given temperature. This translational energy contributes kT/2 per molecule 
(or RT/2 per mole) to the kinetic energy in each direction that the molecule moves. 
Since molecules translate through space in three directions, the translational motion 
contributes 3RT/2 per mole to the internal energy of the molecules. The contribution of 
translational motion to cv, given by the derivative of the internal energy with respect to 
temperature, is 3R/2. In fact, monatomic gases have heat capacities given by this value.9

Diatomic and polyatomic molecules can manifest kinetic energy in rotational and 
vibrational modes as well. Except at extremely low temperature, the additional kinetic 
energy due to rotational motion for linear and nonlinear molecules is RT and 3RT/2 per 
mole, respectively. The kinetic energy due to vibration is much more interesting. It is 
related to the specifi c quantized energy levels of the molecule. The distribution of these 
levels depends on temperature. To account for the vibrational modes of kinetic energy, 
we would need to resort to quantum mechanics. We will not formally address that prob-
lem here; however, it is useful to realize that the temperature dependence of the heat 
capacity indicated by Equation (2.25) manifests itself in the vibrational mode. At low 
temperature, the vibrational contribution goes to zero and the heat capacity is given by 
the translational and rotational modes only. At high temperature, where the vibrational 
motion is fully active, the contribution is R per mole. In summary, cv can be attributed 
to molecular structure and the ways in which each species exhibits translational, rota-
tional, and vibrational kinetic energy. Heat capacities for gases, liquids, and solids can be 
intepreted in a similar way.

Heat Capacity at Constand Pressure, cp

The heat capacity at constant pressure, cP, is measured in a similar manner, only gas A 
is no longer held within a rigid container, but in a system that can expand as it is heated 
so as to keep the pressure constant. A conceptual representation of the experimental 
setup to measure cP is shown in Figure 2.10b. While the actual apparatus may look dif-
ferent, this depiction is in terms of the piston–cylinder assembly that we have previously 
examined.

9 Except at very high temperature when electrons occupy excited states.

2.6 Thermochemical Data for U and H ◄ 69
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70 ► Chapter 2. The First Law of Thermodynamics

Since the system is now doing Pv work as it expands, the energy balance contains a 
term for work:

 Du 5 q 1 w 5 q 2 PDv (2.27)

So Equation (2.27) can be rewritten as:

Du 1 D 1Pv 2 5 q 

since at constant pressure, DP 5 0, and:

D 1Pv 2 5 PDv 1 vDP 5 PDv

Applying the defi nition for enthalpy [Equation (2.18)], we get:

 Dh 5 q      closed system, const P (2.28)

Hence, in this case, an energy balance tells us the heat supplied at constant pressure is 
just equal to the change in the thermodynamic property, enthalpy. Therefore, we defi ne 
the heat capacity at constant pressure as:

 cP ; a
'h
'T
b

P
  (2.29)

Again, typical data for species A are presented in Figure 2.10b and can be fi t to the 
polynomial form:

 cP 5 A 1 BT 1 CT2 1 DT22 1 ET3  (2.30)

The parameters A, B, C, D, and E are reported for some ideal gases in Appendix A.2. 
Heat capacity parameters at constant pressure of some liquids and solids are reported 
in this appendix.

Enthalpy—A Second Common Use
Recall that we “constructed” the property enthalpy to account for both the internal 
energy and fl ow work for streams fl owing into and out of open systems. However, inspec-
tion of Equation (2.28) suggests a second common use of enthalpy. This equation holds, 
in general, for closed systems at constant P. In this case, it accounts for both the change 
in internal energy and the Pv work as the system boundary changes in order to keep pres-
sure constant. In both cases, the property h couples internal energy and work. Therefore, 
experiments that are conveniently done in closed systems at constant P are reported using 
the thermodynamic property enthalpy. For example, the energetics of a chemical reac-
tion, the so-called enthalpy of reaction, is reported in terms of the property Dhrxn. In 
this way, the experimentally measured heat can be related directly to a thermodynamic 
property.

Relations between cP and cV

By comparing Figure 2.10a to Figure 2.10b, we can estimate the difference in cv and 
cP for the different phases of matter. If species A is in the liquid or solid phase, its vol-
ume expansion upon heating should be relatively small; that is, the molar volumes of 
liquids and solids do not change much with temperature. Hence, the piston depicted 

c02.indd   70c02.indd   70 05/11/12   1:35 PM05/11/12   1:35 PM



in Figure 2.10b will not move signifi cantly and the value of work in Equation (2.27) will 
be small compared to q. Thus Equation (2.29) and Equation (2.24) are approximately 
equivalent and, consequently:10

cP < cv      liquids and solids

On the other hand, the volume expansion of a gas will be signifi cant. For the case of 
an ideal gas, we can fi gure out the relationship between cP and cv by applying the ideal 
gas law to the defi nition for cP as follows:

 cP ; a
'h
'T
b

P
5 c

' 1u 1 Pv 2

'T
d

P
5 a

'u
'T
b

P
1 a

'RT
'T

b
P

5 a
'u
'T
b

P
1 R (2.31)

since Pv 5 RT for an ideal gas. However, for an ideal gas, the internal energy depends 
on temperature only; that is, the only change in molecular energy is in molecular kinetic 
energy. Therefore,

 a
'u
'T
b

P
5

du
dT

5 a
'u
'T
b

v
  (2.32)

Plugging Equation (2.32) into (2.31) gives:

cP 5 cv 1 R        for ideal gases

Values of heat capacity for gases are almost always reported for the ideal gas state. Thus, 
when doing calculations using these data, you must choose a hypothetical path where the 
change in temperature occurs when the gas behaves ideally.

Mean Heat Capacity
For many gases, heat capacity data are often reported in terms of the mean heat capacity, 
cP. Use of cP eliminates the need for integration and can make the mechanics of problem 
solving easier. As its name suggests, the mean heat capacity is the average of cP between 
two temperatures. It is usually reported between 298 K and a given temperature, T. 
Hence, the enthalpy change becomes:

Dh 5 cP 1T 2 298 2

Solving for cP gives:

 cP 5

e
T

298

cPdT

T 2 298
 (2.33)

Note that Equation (2.33) is also, by defi nition, the mathematical average of the continu-
ous function cP over temperature between 298 K and T.

10 We will revisit the relation between cP and cv of liquids in Chapter 5, Problems 5.20 and 5.21.
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72 ► Chapter 2. The First Law of Thermodynamics

Consider heating 2 moles of steam from 200ºC and 1 MPa to 500ºC and 1 MPa. Calculate the 
heat input required using the following sources for data:
(a) Heat capacity
(b) Steam tables

SOLUTION (a) Since this process occurs at constant pressure, the system will expand as T 
increases. In accordance with the discussion above, enthalpy is the appropriate property to 
calculate the heat input. The extensive version of Equation (2.28) can be written as:

Q 5 nDh

If we assume water is an ideal gas, we use the values of heat capacity given in Appendix A.2 to 
calculate Dh:

cP
ideal gas

R
5 A 1 BT 1 DT22 5 3.470 1 1.450 3 1023T 1

0.121 3 105

T2

Using the defi nition of heat capacity, we get the following integral expression:

Dh 5 3

T2

T1

cPdT 5 R 3

773

473

3A 1 BT 1 DT22 4 dT

Integrating,

Dh 5 R cAT 1
B
2

 T2 2
D
T
d

473

773

Substituting in values:

 Dh 5 8.314 33.470 1300 2 1 0.725 3 1023 17732 2 4732 2

 20.121 3 105a
1

773
2

1
473

b R 5 10,991 c
J

mol
d

and,                                                 Q 5 nDh 5 21,981 3J 4

(b) From the steam tables, Appendix B.2:

 ĥ1 1at 1 MPa, 200°C 2 5 2827.9 3kJ/kg 4

 ĥ2 1at 1 MPa, 500°C 2 5 3478.4 3kJ/kg 4

So, Dĥ 5 ĥ2 2 ĥ1 5 650.5 3kJ/kg 4

Since the steam tables give us the specifi c enthalpy, we must multiply by mass. Thus, we must 
use the molecular weight for water, MWH2O 5 0.018 3kg/mol 4:

Q 5 mDĥ 5 12 3mol 4 2 10.018 3kg/mol 4 2 1650.5 3kJ/kg 4 2 1103 3J/kJ 4 2 5 23,418 3J 4

The answer for part (b) is approximately 6% higher than for part (a). At 1 MPa, water is not 
an ideal gas but rather has attractive intermolecular interactions. The extra energy needed in 
part (b) results from that needed to pull the water molecules apart. We will learn more of these 
things in Chapter 4.

EXAMPLE 2.7

Heat Input 
Calculations Using 
Different Data 
Sources
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Use the data available in Appendix A.2 to calculate the mean heat capacity, cP, for air between 
T1 5 298 K and T2 5 300 to 1000 K, in intervals of 100 K.

SOLUTION Using the defi nition of cP from Equation (2.33):

 cP 5
Dh

1T 2 298 2
5

3

T

298

cPdT

T 2 298
 (E2.8A)

The heat capacity can be integrated with respect to temperature using the parameters in 
Appendix A.2:

 3

T2

T1

cPdT 5 R 3

T

298

3A 1 BT 1 DT22 4dT 5 RBAT 1
B
2

 T2 2
D
T
R

298

T

  (E2.8B)

where for air:

 A 5 3.355,         B 5 0.575 3 1023,         and D 5 20.016 3 105 (E2.8C)

The solution to Equation (E2.8A), using (E2.8B) and (E2.8C), is presented at intervals of 
100 K in Table E2.8.

TABLE E2.8 Calculated Values for Mean Heat Capacity of 
Air at Different Temperatures.

T
[K]

Dh
3J/mol 4 T 2 298

cP
3J/mol K 4

 300 58.35   2 29.17

 400 3003.93 102 29.45

 500 6001.75 202 29.71

 600 9049.59 302 29.97

 700 12146.51 402 30.22

 800 15292.02 502 30.46

 900 18485.87 602 30.71

1000 21727.89 702 30.95

EXAMPLE 2.8

Determination of 
Mean Heat Capacity 
for Air

2.6 Thermochemical Data for U and H ◄ 73

You need to preheat a stream of air fl owing steadily at 10 mol/min from 600 K to 900 K. 
Determine the heat rate required using the mean heat capacity data from Example 2.8.

SOLUTION This process occurs at steady-state with one stream in and one stream out; hence 
Equation (2.19) can be written as follows:

0 5 n
#
1ah 1 MW 

V2

2
 

S

1 MWgzb
1

2 n
#
2ah 1 MW 

V2

2
 

S

1 MWgzb
2

1 Q
#

1 W
#

s

EXAMPLE 2.9

Heat Calculation 
Using Mean Heat 
Capacity for Air

0 0 0 0 0

(Continued)
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74 ► Chapter 2. The First Law of Thermodynamics

where we have set the bulk kinetic and potential energies and shaft work to zero. A mole 
balance yields:

n# 1 5 n# 2 5 n# air

so the fi rst law balance simplifi es to:

 Q
#

5 n# air 1h900 2 h600 2 5 n# air 3 1h900 2 h298 2 2 1h600 2 h298 2 4     (E2.9A)

where h900 is the enthalpy of air at 900 K, h600 is the enthalpy at 600 K, and h298 is the enthalpy 
at 298 K. Equation (E2.9A) was rewritten to use the defi nition for mean heat capacity given 
by Equation (2.33):
 1h900 2 h298 2 5 cP,900 1900 2 298 2   (E2.9B)

 1h600 2 h298 2 5 cP,600 1600 2 298 2  (E2.9C)

Substituting Equations (E2.9B) and (E2.9C) into (E2.9A) and using the values from Table 
E2.8, we get:

Q
#

5 n# Dh 5 10 330.71 1900 2 298 2 2 29.97 1600 2 298 2 4 5 94.363 3J/min 4

Air is contained within a piston–cylinder assembly, as shown in Figure E2.10A. The cross-
sectional area of the piston is 0.01 m2. Initially the piston is at 1 bar and 25ºC, 10 cm above 
the base of the cylinder. In this state, the spring exerts no force on the piston. The system is 
then reversibly heated to 100ºC. As the spring is compressed, it exerts a force on the piston 
according to:

F 5 2kx

where k 5 50,000 3N/m 4 and x is the displacement length from its uncompressed 
position.
(a) Determine the work done.
(b) Determine the heat transferred.

SOLUTION (a) Since the process is reversible, the system pressure is always balanced by the 
external pressure and the work done is given by:

 W 5 2 3

v2

v1

PdV (E2.10A)

We can draw a free-body diagram to determine how all the forces acting on the piston balance, 
as shown in Figure E2.10A.

The displacement of the spring, x, can be written in terms of the change in volume:

x 5
V 2 V1

A
5

DV
A

EXAMPLE 2.10

Spring-Assembled 
Piston–Cylinder
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Air
10 cm

Pext  = 1 bar

F  = −kx

P1 = 1 bar

A  = 0.01 m2

T1 = 25°C

Piston

FAir =  PAirA

Fext =  PextA|Fspring| =  kx

where DV 5 V 2 V1. We can then equate the force per area acting on each side of the piston 
to get:

 P 5 Pext 1
kx
A

5 Pext 1
kDV
A2

 (E2.10B)

Plugging Equation (E2.10B) into (E2.10A) and integrating gives:

 W 5 2 3

V2

V1

PextdV 2 3

DV5 1V22V12

0

kDV
A2

 d 1DV 2 5 2Pext 1V2 2 V1 2 2
k 1V2 2 V1 2 2

2A2
 (E2.10.C)

To solve Equation (E2.10C), we must fi nd V2. Applying the ideal gas law gives:

P1V1

T1
5

P2V2

T2
5

V2

T2
 ¢Pext 1

k 1V2 2 V1 2

A2
≤

Solving this quadratic equation for V2 gives:

V2 5 0.00116 3m3 4

which can be plugged back into Equation (E2.10 C) to get:

W 5 2166 3J 4 

(b) To fi nd the heat transferred during this process, we can apply the fi rst law to this closed 
system:
 DU 5 Q 1 W (E2.10D)

Figure E2.10A Piston–cylinder assembly with a 
spring attached to the piston. The initial state of 
the system for Example 2.10 is shown.

Figure E2.10B Schematic of the forces 
acting on the piston in Figure E2.10A as 
the gas expands.
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(Continued)
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76 ► Chapter 2. The First Law of Thermodynamics

The change in internal energy is given by:

 Du 5 3

T2

T1

cvdT 5 3

T2

T1

1cP 2 R 2dT 5 R 3

T2

T1

3 1A 2 1 2 1 BT 1 DT22 4dT

 5 RB 1A 2 1 2T 1
B
2

 T2 2
D
T
R

T1

T2

The heat capacity parameters for air can be found in Appendix A.2:

A 5 3.355,          B 5 0.575 3 1023,          and D 5 20.016 3 105

Thus,

Du 5 1,580 3J/mol 4 

and, DU 5 nDu 5 ¢P1V1

RT1
≤Du 5 638 3J 4

We can now solve for the heat transfer from Equation (E2.10D):

Q 5 DU 2 W 5 803 3J 4

Latent Heats

When a substance undergoes a phase change, there is a substantial change in internal energy 
associated with it (see Section 2.1). We need to be able to determine a value for this energy change 
if we want to apply the fi rst law to a process involving a phase change. Like heat capacities, the 
energetics characteristic of a given phase change are reported based on accessible measured data.

For example, consider the vaporization of a liquid. Liquids are held together by attractive 
forces between the molecules. To vaporize a liquid, we must supply enough energy to overcome 
the forces of attraction. A typical experimental setup is schematically shown in Figure 2.11. A given 
amount of liquid substance A is placed in a well-insulated closed system at constant pressure. A 
measured amount of heat is supplied until A becomes all vapor. We chose a system at constant 
pressure, as depicted in Figure 2.11, so that the temperature will stay constant during the phase 
change. A schematic for the data acquired in this experiment is presented on the right of Figure 
2.11. The temperature of the subcooled liquid and the superheated vapor increases as energy is 
supplied via heat. It is only the heat input at constant temperature during the phase transition that 
is reported as the enthalpy of vaporization.

Examination of Equation (2.28) shows that if we measure the heat absorbed as A changes 
phase; it is equal to the enthalpy of the vapor minus the enthalpy of the liquid. We term this dif-
ference the enthalpy of vaporization:

Dhvap 5 hv 2 hl

If we need to calculate the energetics of a vapor condensing to a liquid, we simply use the negative 
of Dhvap. Similarly, the change in enthalpy from the liquid phase to the solid phase is reported as 
the enthalpy of fusion, Dhfus:

Dhfus 5 hs 2 hl
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And the change from the solid phase to the vapor phase is the enthalpy of sublimation, Dhsub:

Dhsub 5 hv 2 hs

How would you fi nd the internal energy of vaporization, Duvap, given Dhvap?
The term to describe the change of enthalpy during a phase transition at constant pressure 

is latent heat. Latent means “hidden,” and it is called “latent” because we cannot “sense” the 
heat input by detecting the temperature change, as is the case with “sensible” heat, described 
previously. 

The latent heat changes with temperature. However, we usually only know its value at one 
state. For example, the enthalpy of vaporization is typically reported at 1 bar, the so-called normal 
boiling point, Tb. To fi nd Dhvap at another pressure (and therefore another temperature), we need 
to construct an appropriate hypothetical path (see Section 2.2). Figure 2.12 illustrates a path for 
the calculation of Dhvap,T at any T based on the measured value to which we have access at Tb. It 
consists of three steps. In step 1, we calculate the change in enthalpy of the liquid from T to Tb, 
using heat capacity data. In step 2, we vaporize the liquid at the normal boiling point, since this is 
the value we have for Dhvap. In step 3, we calculate the change in enthalpy of the vapor from the 
normal boiling point to T. Adding together the three steps, we get:

Dhvap, T 5 3

Tb

T

cP
l dT 1 Dhvap, Tb 1 3

T

Tb

cP
v dT 5 Dhvap, Tb 1 3

T

Tb

DcP
vldT

Figure 2.11 Schematic of the experimental determination of enthalpy of vaporization.
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 ∫ TT
b c

vp dT

Tb

T

Figure 2.12 Hypothetical path to 
 calculate Dhvap at temperature T from 
data available at Tb and heat capacity 
data.
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78 ► Chapter 2. The First Law of Thermodynamics

where we used the following defi nition:

DcP
vl 5 cP

v 2 c P
l

This procedure can likewise be applied to determine the values of Dhfus and Dhsub at different 
temperatures than that at which they are reported.

10 mol/sec of liquid hexane fl ows into a steady-state boiler at 25ºC. It exits as a vapor at 100ºC. 
What is the required heat input to the heater? Take the enthalpy of vaporization at 68.8ºC to be:

Dhvap, 68.8°C 5 28.88 3kJ/mol 4

SOLUTION This process occurs in an open system with one stream in and one stream out. Can 
you draw a schematic? We label the inlet state as “state 1” and the outlet as “state 2.” In this 
case, Equation (2.20) can be written on a molar basis as:

 0 5 n# 1h1 2 n# 2h2 1 Q
#

1 W
#

s   (E2.11A)

where we have set the macroscopic kinetic and potential energy and the shaft work equal to 
zero. A mole balance gives:

 n# 1 5 n# 2 5 n#   (E2.11B)

Plugging (E2.11B) into (E2.11A) and solving for the heat-transfer rate, we get:

 Q
#

5 n# 1h2 2 h1 2  (E2.11C) 

The enthalpy change can be divided into three parts: (1) the sensible heat required to 
raise liquid hexane to its boiling point; (2) the enthalpy of vaporization, that is, latent 
heat; and (3) the sensible heat required to raise hexane in the vapor state to 100ºC. 
Thus, the enthalpy difference becomes:

 h2 2 h1 5 Dh
l,25°CS68.8°C

1 Dhvap, 68.8°C 1 Dh
v,68.8°CS100°C

 (E2.11D)

Values for the fi rst and third terms can be found from the appropriate heat capacity 
data:

Dh
l.25°CS68.8°C

5 3

342

298.2

216.3dT 5 9485 3J/mol 4 5 9.49 3kJ/mol 4

and,  Dh
v,68.8°CS100°C

5 3

373.2

342

R 1A 1 BT 1 CT2 2dT

 5 8.314B3.025 1373.2 2 342 2 1
53.722 3 1023

2
 1373.22 2 3422 2

EXAMPLE 2.11

Determination of 
Heat Required to 
Evaporate Hexane

0
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 2
16.791 3 1026

3
1373.23 2 3423 2 R

 5 5.20 3kJ/mol 4

Summing together values for enthalpy in Equation (E2.11D) and plugging the result into 
Equation (E2.11C) gives the rate at which heat must be supplied:

Q
#

5 a10 3mol/s 4b a 19.49 1 28.85 1 5.20 2 3kJ/mol 4b 5 435 3kJ/s 4

A rigid vessel contains 50.0 kg of saturated liquid water and 4.3 kg of saturated vapor. The 
system pressure is at 10 kPa. What is the minimum amount of heat needed to evaporate all 
the liquid?

SOLUTION A schematic of the process is shown in Figure E2.12. We label the initial state as 
“state 1” and the fi nal state as “state 2.” The left-hand side of the fi gure shows the physical 
process while the right-hand side represents it on a Pv diagram.

This heating process occurs in a closed system at constant volume. As water boils, the 
pressure in the vapor phase will increase. The increase in pressure will require an increase in 
the temperature of the system for boiling to proceed. (Remember, a given pressure constrains 
the temperature of the two-phase region.) Thus, energy is required for both the evaporation 
of water (latent heat) and the increase in temperature (sensible heat). Since bulk kinetic and 
potential energy are negligible, we can write the fi rst law according to Equation (2.13a):

 DU 5 Q 1 W (E2.12A)

Since our system is at constant volume, there is no work done and the heat needed equals the 
change in internal energy. This result contrasts with Figure 2.11, where enthalpy is 
used, since, in that case, there is Pv work. A mass balance gives:

m2
v 5 m1

l 1 m1
v

The internal energy in state 1 must account for that of both the saturated liquid and the 
saturated vapor. Hence, we can write Equation (E2.12A) as:

EXAMPLE 2.12

Determination of 
Heat Required 
to Evaporate H2O

Q
State 1 State 2 

process

l

Liquid

Liquid-vapor

Vapor

2

1

P

10 kPa

P1 =  10 kPa
P2

v1 =  v2 v

v v

P2 =  ?

Figure E2.12 Schematic of evaporation of saturated liquid H2O in a rigid, closed system.
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80 ► Chapter 2. The First Law of Thermodynamics

A large amount of energy is “stored” in the chemical bonds within molecules. When 
the atoms in molecules rearrange by undergoing a chemical reaction, the energy stored 
within the bonds of the products is typically different from that of the reactants. Thus, 
signifi cant amounts of energy can be absorbed or liberated during chemical reactions. 
The energy change upon reaction is an important component in applying the fi rst law to 
reacting systems. It can be characterized by a change in internal energy, Durxn; however, 
it is more common to report the change in enthalpy of reaction, Dhrxn, since experiments 
are more conveniently executed at constant pressure.

 U2 2 U1 5 1m2
vû2

v 2 2 1m1
l û1

l 1 m1
vû1

v 2 5 Q (E2.12B)

State 1 is completely constrained. Looking up values for internal energy in the steam 
tables for saturated water: pressure (Appendix B.2) gives:

 û1
l 5 191.8 3kJ/kg 4

 û1
v 5 2437.9 3kJ/kg 4

We now need to constrain state 2. We know we have saturated vapor, but we need to fi nd a 
value for a thermodynamic property. Since the container is rigid, this process occurs at constant 
volume, as illustrated on the Pv diagram in Figure E2.12. We can fi nd the volume of the vessel 
as follows:

V1 5 V2 5 m1
l v̂1

l 1 m1
vv̂1

v 5 150 2 10.001 2 1 14.3 2 114.67 2 5 63.1 m3

We can now solve for the specifi c volume of state 2:

v̂2
v 5

V2

m2
v 5

63.1 m3

54.3 kg
5 1.16 Bm3

kg
R

Looking up the value, we fi nd the specifi c volume of saturated vapor matches at:

P2 5 0.15 MPa

If this value did not match a table entry, we would have to interpolate. Looking up the internal 
energy of state 2 gives:

û2
v 5 2519.6 3kJ/kg 4

Solving Equation (E2.12B) for heat gives:

 Q 5 1m2
vû2

v 2 2 1m1
l û1

l 1 m1
vû1

v 2 5 154.3 2 12519.6 2 2 3 150 2 1191.8 2 2 14.3 2 12437.9 2 4

 5 117 3 106 J

Enthalpy of Reactions
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For example, consider the reaction of two molecules of hydrogen gas with one mol-
ecule of oxygen to form gaseous water at 298 K and 1 bar. The reaction stoichiometry 
can be expressed as follows:

 2H2 1g 2 1 O2 1g 2 h 2H2O 1g 2   (2.34)

The reactants contain three bonds per molecule of oxygen reacting: single bonds between 
hydrogen atoms in each of the two H2 molecules and a double bond between the oxygen 
atoms in O2. The two product H2O molecules have four oxygen–hydrogen single bonds. 
These bonds are covalent in nature and vary in energy based on how the interacting 
valence electrons overlap. Bond energies for the three different types of bonds in this 
system are reported in Table 2.1.

Let’s consider the energetics of this reaction by the following path: One way to do 
this calculation is to fi rst pull apart the reactant molecules into their constituent atoms 
and then have the atoms recombine to form the product molecules. This path, in essence, 
defi nes a reference state as the atomic form of each element in the system. A schematic 
of the energetics in this reaction path is shown in Figure 2.13. The energy differences 
between states depicted by the arrows are based on the bond energies. It takes 14.1 eV 
of energy 11 eV 5 1.6 3 10219 J 2  to dissociate two molecules of H2 and one molecule 
of O2 into four H atoms and two O atoms, respectively. However, when these atoms re-
form into two water molecules, they release 17.1 eV of energy. The net energy change 
represents the internal energy of reaction and is found to be 23.5 eV for every two mol-
ecules of water produced by this reaction. The negative sign indicates that the products 
are more stable than the reactants, and, consequently, energy is released. Reactions that 
release energy are said to be exothermic, while reactions that absorb energy are termed 
endothermic.

To generalize to any reaction, we introduce the stoichiometric coeffi cient, νi. The 
stoichiometric coeffi cient equals the proportion of a given species consumed or pro-
duced in a reaction relative to the other species. It can be found as the number before 
the corresponding species in a balanced chemical reaction. By convention, it is unitless 
and positive for products, νproducts . 0, negative for reactants, νreactants , 0, and zero for 
inerts, νinerts 5 0. For example, in Reaction (2.34):

νH2 5 22,      νO2 5 21,     and νH2O 5 2

In the previous discussion, we used atoms for our reference state, since this choice 
made it straightforward to see how the energy of molecules changes with atomic 

TABLE 2.1 Bond Dissociation Energies of H,O Bonds

Bond Energy [eV/molecule]

HiH 4.50

OwO 5.13

OiH 4.41
Source: Derived from average bond enthalpies reported in G. C. Pimentel and R. D. Spratley, 
Understanding Chemical Thermodynamics (San Francisco: Holden-Day, 1969).

2.6 Thermochemical Data for U and H ◄ 81
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82 ► Chapter 2. The First Law of Thermodynamics

rearrangement. However, this reference state is inconvenient in practice, since, in 
nature, species seldom exist as atoms at 298 K and 1 bar. We are free to pick any refer-
ence state that we desire as long as we stick to it. A more convenient reference state can 
be defi nd as the pure elements in their most stable form at 298 K for the temperature 
of interest and 1 bar. For example, at 298 K and 1 bar, the most stable form of oxygen is 
O2 gas while the most stable form of carbon is solid graphite. The enthalpy difference 
between a given molecule and this reference state is defi ned as the enthalpy of forma-
tion, Dhf. The enthalpy of formation can be represented as:

elements S
Dhf

species i

The enthalpy of formation of a species containing only one element, as it is found in 
nature, is identically zero. 

Enthalpies in the form of Dhf are the most common thermochemical data available 
to calculate the enthalpy of reaction; Appendix A.3 shows some representative values for 
25ºC and 1 atm. For example, the enthalpy of formation of liquid water is defi ned by the 
reaction:

H2 1g 2 1
1
2

 O2 1g 2 S H2O 1 l 2

since the elements found in water, hydrogen and oxygen are found as diatomic gases 
at 25ºC and 1 atm. The value for the enthalpy of formation for this reaction is found in 
Appendix A.3 to be Dhf,298

° 5 2285.83 3kJ/mol 4. Appendix A.3 also reports the enthalpy 
of reaction for gaseous water at 298 K and 1 atm. Although water cannot physically exist 
in this state, the enthalpy of formation is representative of a hypothetical (but impor-
tant!) change of state that is often useful. For example, we may be interested in a system 
in which water is reacting at higher temperatures, where it is a vapor. The fi rst step in 
obtaining the enthalpy of reaction at the system T would be fi nding it at 298 K. Example 
2.14 illustrates such a calculation.

With the enthalpies of formation available, it is straightforward to calculate the 
enthalpy of reaction. Such a calculation path for the enthalpy of reaction at 298 K is 
illustrated in Figure 2.14. In the dashed (calculation) path, the reactants are fi rst decom-
posed into their constituent elements, as found in nature. This part of the path is labeled 
Dh1. The constituent elements are then allowed to react to form products, as given by 
Dh2. Note that the stoichiometric coeffi cients of the reactants are negative, making the 

17.6 eV

E
n
e
rg

y

ΔUrxn =  −3.5 eV

.14.1 eV
17.6 eV

H2O,H2O

H2,H2,O2

H,H,H,H
O,O

Figure 2.13 Schematic 
representation of the 
energy needed to dis-
sociate the reactants and 
products of Reaction 
(2.34) into their atoms. 
The resulting energy dif-
ference characterizes the 
internal energy change 
of reaction, DUrxn.
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signs for Dh1 consistent with the defi nition of enthalpy of formation above. Equating the 
two paths yields:

 Dhrxn,298
° 5 Dh1 1 Dh2 5 a

reactants
νiaDhf,298

° b
i
1 a

products
νiaDhf,298

° b
i

 5 a νiaDhf,298
° b

i

Thus, if enthalpies of formation are available for all the species in the chemical reaction 
of interest, the enthalpy of reaction can be determined by scaling each species’Dhf by its 
stoichiometric coeffi cient. In summary,

 Dhrxn
° 5 a νihi

° 5 a νiaDhf
°b

i
 (2.35)

Often a reaction does not go to completion; that is, there remain some reactants in the out-
let stream. For incomplete reactions, we must account only for the enthalpy of reaction for the 
species that did react in our energy balance. Example 2.16 illustrates such a case. In Chapter 9 
we will learn how to quantify the extent to which a chemical reaction proceeds at equilibrium.

Elemental form found in nature       298.15 K, 1 bar

Reactants
298.15 K 1 bar

Products
298.15 K 1 bar

E
n
th

a
lp

y

p
ro

d
u
c
ts

re
a
c
ta

n
ts

Δ
h

2
 =

 Σν
i  (Δ

h
°f,2

9
8 )i

Δh°rxn,298

Δh
1

 =
 Σ

ν i
 (Δ

h
° f,2

9
8
) i

Figure 2.14 Calculation path of Dhrxn
°  from the standard enthalpies of formation, 1Dhf

° 2 i.

Calculate the enthalpy of reaction at 298 K for the following reaction: 

H2O 1g 2 1 CH3OH 1g 2 S CO2 1g 2 1 3H2 1g 2

SOLUTION The enthalpy of reaction can be found from the enthalpy of formation data 
presented in Appendix A.3. In this case, Equation (2.35) can be written as follows:

Dhrxn
° 5 a νi 1Dhf, 298

° 2 i 5 1Dhf, 298
° 2CO2 1 3 1Dhf, 298

° 2H2 2 1Dhf, 298
° 2H2O 2 1Dhf, 298

° 2CH3OH

The enthalpy of formation of H2 is zero by defi nition, since that is the form hydrogen takes at 
298 K and 1 bar. Taking values for the others from Appendix A.3:

Dh298
° 5 12393.51 2 1 3 10 2 2 12241.82 2 2 12200.66 2 5 49.0 3kJ/mol 4

The sign of the enthalpy of reaction is positive, indicating that this reaction is 
endothermic.

EXAMPLE 2.13

Determination of 
Enthalpy of Reaction

2.6 Thermochemical Data for U and H ◄ 83

c02.indd   83c02.indd   83 05/11/12   1:35 PM05/11/12   1:35 PM



84 ► Chapter 2. The First Law of Thermodynamics

Alternative energy sources that are renewable and that can reduce greenhouse gas emissions 
are actively being developed. In this example, you wish to explore the feasibility of two 
alternative energy sources to petroleum. The U.S. petroleum consumption is approximately 
3 million m3 per day. You may assume that the fuel value of petroleum can be represented by 
octane. The density of octane is 0.70 g/cm3. Take the average power density for solar radiation 
over a 24-hour period to be 200 W/m2.
(a)  Assuming a solar cell efficiency of 10%, how much area would be needed to provide the 

equivalent energy to that used by petroleum in the United States? 
(b)  Bioethanol provides another possible alternative energy source. It is a biofuel that 

can be generated biologically through fermentation of corn. The energy efficiency of 
photosynthesis, defined as the energy content of the biomass that can be harvested divided 
by the average energy of solar radiation impinging on the same area, is typically between 
0.1 and 1% for crop plants (it goes up to around 3% for microalgae grown in bioreactors). 
How does the crop area needed for corn compare to the area calculated in part (a)?

SOLUTION (a) First we need to calculate the amount of energy produced by the consumption 
of 3 million m3 of petroleum, as approximated by octane. This value can be found with the 
enthalpy of reaction. As you will recall, enthalpy is a “constructed” property that is useful to 
characterize the energy for processes in closed systems at constant pressure because it accounts 
for both the change in internal energy and the Pv work needed to move the system boundary.

Assuming complete combustion, we can write the balanced equation as:

C8H18 1 l 2 1
25
2

 O2 1g 2 S 8CO2 1g 2 1 9H2O 1g 2  

Using Equation (2.35) and finding the appropriate values in Appendix A.3 gives:

Dh°
rxn 5 ayi 1Dh°

f,298 2 i 5 8 1Dh°
f,298 2CO2 1 9 1Dh°

f,298 2H2O 2 1Dh°
f,298 2C8H18 5 25,073 B kJ

mol
R

Why is the sign negative? To fi nd the extensive value for energy, we need to deter-
mine the number of moles of octane consumed in a day:

 n 5
Vr

MW
5

3 3 106 3m3 4 3 0.7B g

cm3
R 3 106B cm3

m3
R

114.2B g

mol
R

5 1.8 3 1010 3mol 4

Thus,

H 5 nh 5 29.3 3 1013 3kJ 4 5 29.3 3 1016 3J 4

The energy density of the sun can be found from information given in the problem 
statement:

Er 5 200B J

m2s
R 3 0.10 3 24B h

day
R 3 3,600B s

h
R 5 1.7 3 106B J

m2
R

We can now fi nd the area: 

A 5
H
Er

5
9.3 3 1016 3J 4

1.7 3 106B J

m2
R

5 5.4 3 1010 3m2 4

Example 2.14 

Land Areas for 
Alternative Energy 
Sources 
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This represents solar cells fi lling a square parcel of around 150 miles on a side—approximately 
one-fi fth the size of the state of Arizona.
(b) The range of area for the biofuel can be found from the ratio of the effi ciency to the solar 
cells. For 1% effi ciency, this calculation gives A 5 5.4 3 1011 3m2 4 and for 0.1% effi ciency,
A 5 5.4 3 1012 3m2 4. These represent square parcels with sides approximately 500 and 1,500 
miles, respectively. The latter size is over half the land area of the United States.

Comment: the preceding analysis examined the area requirements for two alternative 
energy sources. However, comparison of the two alternatives is more complex; we must assess 
the total cost of the systems, including water, capital, operations, and maintenance costs. We 
should also consider the risks from manufacturing and possible interactions with the food 
supply and climate change.

Propane is placed in an adiabatic, constant pressure combustion chamber at 25°C and allowed 
to react as follows. What is the fi nal temperature in each case? Assume complete combustion.
(a) It is mixed with a stoichiometric amount of oxygen and reacts to form H2O and CO2.
(b) It is mixed with a stoichiometric amount of air and reacts to form H2O and CO2.
(c)  It is mixed with a stoichiometric amount of air, and the carbon distribution in the product 

stream contains 90% CO2 and 10% CO.

SOLUTION (a) For part (a), a balanced equation of the chemical reaction is written as 
follows: 

 C3H8 1 5O2 S 3CO2 1 4H2O (E15.1)

A schematic of this process, assuming Reaction E15.1 goes to completion, is shown in Figure E2.15A. 
An energy balance on the closed system at constant pressure gives [see Equation (2.28)]:

 DH 5 a 1nihi 2 2 2 a 1nihi 2 1 5 Q 5 0 (E15.2) 

We now need a path to calculate DH. A convenient choice is illustrated by the solid lines 
in Figure E2.15B. That fi gure also shows the overall energy balance constraint of Equation 
(E15.2) as a dashed line. Because enthalpy of reaction data are available at 298 K (Appendix 
A.3), we choose a hypothetical path where we fi rst completely combust propane at 298 K, then 

Example 2.15 

Adiabatic Flame 
Temperature 
Calculations

P =  const.

Initial state (1) Final state (2)

Combustion
process

Well
insulated

C3H8, O2

T  =  298 [K]

CO2

H2O
T =  ?

Figure E2.15A  Schematic of complete combustion of propane in a stoichiometric mixture of 
oxygen at constant pressure. The closed system is adiabatic.
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86 ► Chapter 2. The First Law of Thermodynamics

heat the products to a temperature T2, which makes the enthalpy change between states 1 and 
2 zero. Using this hypothetical path, Equation (E15.2) becomes:

DHrxn,298 1 3

T2

298

a 1ni 2 2 1cp 2 idT 5 0

The enthalpy of reaction can be found based on the reaction stoichiometry given by 
Reaction E15.1:

Dhrxn,298 5 a νi 1Dho
f 2 i 5 νCO2

1Dho
f 2CO2 1 νH2O 1Dho

f 2H2O 1 νC3Hs
1Dho

f 2C3Hs 1 νO2
1Dho

f 2O2

Using values from Appendix A.3, we get:

Dhrxn,298 5 3 12393.51 2 1 4 12241.82 2 2 1 12103.85 2 2 0 5 22.044 3 106 B J

mol
R

and using a basis of 1 mol C3H8, the extensive enthalpy of reaction is:

DHrxn,298 5 nC3H8Dhrxn,298 5 22.044 3 106 3J 4

The enthalpy of reaction must be counteracted by an equal but opposite increase in the 
sensible heat. This effect will allow us to calculate T2. The sensible heat can be found through 
a summation of heat capacities, as follows:

     3

T2

298

a 1ni 2 2 1cp 2 idT 5 3

T2

298

nCO2
1cp 2CO2 dT 1 3

T2

298

nH2O 1cp 2H2O dT (E15.3)

Values for heat capacity parameters can be found in Appendix A.3. They are summarized in 
Table E15.1:

Table E2.15 Heat Capacity Parameters for Species in State 2

Species A B D

CO2 5.457 1.045 3 103 21.157 3 105

H2O 3.470     1.45 3 1023      1.21 3 104

N2 3.280     5.93 3 1024      4.00 3 103

CO 3.376     5.57 3 1024   23.10 3 103

∫

1

2

C3H8,
O2

CO2,
H2O

298

T

ΔHrxn,298

ΔH  =  0

T2

Σ i
  

 n
i  

 c
P

,i 
d
T

  2
2
9
8

T

Figure E2.15B Hypothetical path for 
calculation of enthalpy in complete 
combustion of propane.
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Integrating each term on the right of Equation E15.3 gives:

3

T2

298

nCO2
1cp 2CO2 dT 5 13 2RBACO2

1T2 2 298 2 1
BCO2

2
 1T2

2 2 1298 2 2 2

2 DCO2¢ 1
T2

2
1

298
≤ R  (E15.4A)

3

T2

298

nH2O 1cp 2H2O dT 5 14 2RBAH2O 1T2 2 298 2 1
BH2O

2
 1T

2

2 2 1298 2 2 2

  2 DH2O¢ 1
T2

2
1

298
≤ R  (E15.4B)

The only unknown, T2, can be solved for implicitly by the value at which the sum of the 
two preceding equations equal2DHrxn,298, 2.044 3 106 3J 4. T2 is found to be:

T2 5 4,910 3K 4

This value is known as the adiabatic fl ame temperature, and in this case is quite large. The 
adiabatic fl ame temperature indicates the maximum temperature a reactor can reach for a 
given fuel. If there is heat transfer out of the system, the temperature will be lower. 

If you used stoichiometric amount of air, do you think the adiabatic fl ame temperature 
would be higher, lower, or the same? How about excess air? How about if some CO formed as 
well? We will see the results in the cases that follow.

(b) If we use air instead of pure oxygen, the reaction described in part (a) remains the same; 
thus, the enthalpy of reaction remains 22.044 3 106 3J 4. However, we must now account 
for the inert N2 which does not participate in the reaction, in the sensible heat term. This 
species will provide more “thermal mass,” and consequently, we expect the adiabatic fl ame 
temperature to be lower. We have 5 moles of oxygen, so we calculate:

nN2 5 ¢0.79
0.21

≤5 5 18.8 3mol 4

The value of nN2 is large compared to the two reaction products so we expect T2 will reduce 
signifi cantly. To calculate the sensible heat, we must add a term for N2 as follows:

3

T2

298

a 1ni 2 2 1cp 2 i dT 5 3

T2

298

nCO2
1cp 2CO2 dT 1 3

T2

298

nH2O 1cp 2H2O dT 1 3

T2

298

nN2
1cp 2N2 dT

Using the following equation in addition to Equations (E15.4A ) and (E15.4B):

3

T2

298

nN2
1cp 2N2 dT 5 118.8 2RBAN2

1T2 2 298 2 1
BN2

2
 1T

2

2 2 1298 2 2 2

2 DN2¢ 1
T2

2
1

298
≤ R  (E15.4C)
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88 ► Chapter 2. The First Law of Thermodynamics

Again, values for heat capacity parameters for N2 can be found in Appendix A.3 and are 
reported in Table E15.1. The only unknown, T2, can similiarly be solved for implicitly by the 
value at which the sum of the three preceding equations equal2DHrxn,298, 2.044 3 106 3J 4. T2 
is found to be:

T2 5 2,370 3K 4

Note T2 has dropped signifi cantly from the value of 4,910 [K] found in part (a).

(c) We must now account for CO production as well. In addition to Reaction E15.1, we need 
to consider the following reaction:

 C3H8 1
7
2

 O2 S 3CO 1 4H2O (E15.5) 

with,

DhII
rxn,298 5 νCO 1Dho

f 2CO 1 νH2O 1Dho
f 2H2O 2 νC3H8

1Dho
f 2C3H8 2 νO2

1Dho
f
2O2

5 21.195 3 106 B J

mol
R

Because the carbon distribution in the product stream contains 90% CO2 and 10% CO, for 
a 1 mol basis of C3H8, we multiple the fi rst reaction (E15.1) by nI

C3H8 5 0.9 and the second 
reaction (E15.5) by nII

C3H8 5 0.1. Thus, the total enthalpy of reaction is:

DHrxn,298 5 nI
C3H8DhI

rxn,298 1 nII
C3H8DhII

rxn,298 5 21.96 3 106 3J 4

and the following species concentrations are obtained: nCO2 5 2.7 3mol 4, nCO 5 0.3 3mol 4, 

nH2O 5 4 3mol 4, and nN2 5 ¢0.79
0.21

≤ ¢0.9 3 5 1 0.1 3
7
2
≤ 5 18.2 3mol 4. To calculate the 

sensible heat, we must add a term for CO to the expression we used in part (b):

3

T2

298

a 1ni 2 2 1cp 2 idT 5 3

T2

298

nCO2
1cp 2CO2dT 1 3

T2

298

nCO 1cp 2COdT 1 3

T2

298

nH2O 1cp 2H2OdT 1 3

T2

298

nN2
1cp 2N2dT

T2 is found to be:

T2 5 2,350 3K 4

Note T2 is similar to the value of 2,370 [K] found in part (b).
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Consider an isobaric chemical reactor where the following two simultaneous chemical reac-
tions occur:

 CO 1
1
2

 O2 S CO2  (1)

 C 1
1
2

 O2 S CO  (2)

Initially, the reactor contains 4 mol of CO, 4 mol of O2, and 2 mol of C. At the end of the 
reaction process, the reactor contains 2 mol of CO and 2 mol of O2. If the initial temperature 
is 25°C and the fi nal temperature is 225°C, determine the amount of heat transferred during 
the process.

SOLUTION An energy balance gives:

Q 5 DH 5 DHrxn 1 3

498

298

a 1ni 2 2 1cp 2 i dT

where the extensive enthalpy change of the system has been decomposed into a component 
for the reaction and a component for the sensible heat in a way similar to that shown in 
Figure E2.15B.

To determine the enthalpy of reaction, we need thermochemical data for each of the two 
reactions listed above. For Reaction 1 we have:

Dh1
rxn,298 5 a νi 1Dho

f 2 i 5 1Dho
f 2CO2 2 1Dho

f 2CO 2
1
2

 1Dho
f 2O2

 Dh1
rxn,298 5 12393.51 2 2 1 12110.53 2 2 0 5 22.83 3 105 B J

mol
R   (E2.16A)

Similarly, for Reaction 2:

Dh2
rxn,298 5 a νi 1Dho

f 2 i 5 1Dho
f 2CO 2 1Dho

f 2C 2
1
2

 1Dho
f 2O2

 Dh1
rxn,298 5 1 12110.53 2 2 0 2 0 5 21.11 3 105 B J

mol
R  (E2.16B)

The number of moles in the denominator of Equations (E2.16A) and (E2.16B) refer to 
the moles of CO or C, respectively, which have reacted. We can defi ne this amount as the 
extent of reaction, j. We will learn more about the extent of reaction when we cover Chemical 
Reaction Equilibrium in Chapter 9. 

Thus, the number of moles of any species i can be related to the extent of k reactions 
through the stoichiometry of the reactions and their extent:

 ni 5 n0
i 1 a

k
νijk (E2.16C)

Example 2.16

Energy Balance for 
Multiple Incomplete 
Reactions

2.6 Thermochemical Data for U and H ◄ 89
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90 ► Chapter 2. The First Law of Thermodynamics

where n0
i  is the initial number of moles of i and ni is the fi nal number of moles after reaction. 

Using Equation (E2.16C), the number of moles of CO can be written:

nCO 5 n°CO 2 j1 1 j2

Substituting in values we get:

2 mol 5 4 mol 2 j1 1 j2

Similarly for O2, we have:

nO2 5 n0
O2

2 1
2 j1 2 1

2 j2

and,

2 mol 5 4 mol 2 1
2 j1 2 1

2 j2

Solving the simultaneous equations gives:

j1 5 3 mol

j2 5 1 mol

To calculate the extensive enthalpy of reaction we can multiply the molar enthalpy of reaction 
for each reaction by its extent:

 DHrxn 5 j1Dhrxn,1 1 j2Dhrxn,2 5 29.59 3 105 3J 4  (E2.16D)

Finally, to calculate the sensible heat, we need to determine the fi nal species concentrations. 
Using Equation (E2.16C), we have:

nCO,2 5 4 2 j1 1 j2 5 2 mol

nO2,2 5 4 2 1
2 j1 2 1

2 j2 5 2 mol

nCO2,2 5 0 1 j1 5 3 mol

nC,2 5 2 2 j2 5  1 mol

so,

 3

498

298

a 1ni 2 2 1cp 2 i dT 5 52,000 3J 4 (E2.16E)

where the data from Appendix A.3 were used, similarly to Example 2.15. Calculating the 
amount of energy transferred by heat:

Q 5 DH 5 DHrxn 1 3

498

298

a 1ni 2 2 1cp 2 i dT 5 29.1 3 105 3J 4

where the values given by Equations (E2.16D) and (E.2.16E) were used. The negative sign 
indicates that heat must be removed from the reactor to the surroundings.
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How would you calculate the enthalpy of reaction, Dhrxn, at any temperature T, given data for 
enthalpy of formation at 298 K and heat capacity parameters, available in Appendix A?

SOLUTION  Since enthalpy is a thermodynamic property, we can construct a hypothetical path 
that utilizes the available data. The enthalpy of reaction at any temperature T can then be 
found from the path illustrated in Figure E2.17. The reactants are fi rst brought to 298 K. They 
are then allowed to react under standard conditions to make the desired products. The prod-
ucts are then brought back up to the system temperature, T. Adding these three steps gives 
the following integral:

Dhrxn,T 5 Dhrxn,298 1 3

T

298

¢a
i

nicP,i≤  dT

Substituting in Equations (2.35) and (2.30) gives:

  Dhrxn,T 5 a νi 1Dh
o
f , 298 2 i 1 3

T

298

¢Ra
i

νi¢Ai 1 BiT 1 CiT
2 1

Di

T 2 1 EiT
3≤ ≤dT  (E2.17)

When standard enthalpies of formation and heat capacity parameters are available, 
Equation (E2.17) can be solved explicitly for Dhrxn, T at any given T. Note the similarity 
between the paths in Figure 2.12 and Figure E2.17. In thermodynamics we can often apply 
concepts developed to solve one type of problem to many other cases.

Figure E2.17 Calculation path of DhT
o at temperature T from heat capacity data and 

the enthalpy of reaction at 298 K.

EXAMPLE 2.17

Enthalpy of Reaction 
at Different T

2.6 Thermochemical Data for U and H ◄ 91

∫ 
298

298 products

Δhrxn,T  = Δh1 +  Δh°
rxn.298 + Δh3

Δh1 = −   R Σνi (Ai + BiT + CiT 2 + DiT −2 + EiT 3)dT
T  reactants

∫ 
T

Δh3 = −   R Σνi (Ai + BiT + CiT 2 + DiT −2 + EiT 3)dT

Reactants

Reactants

Products

Products

T

Δh1

298.15 K

Δh3

Δh°
rxn,298

Δhrxn,T
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92 ► Chapter 2. The First Law of Thermodynamics

 ►2.7 REVERSIBLE PROCESSES IN CLOSED SYSTEMS
One useful application of thermodynamics is in the calculation of work and heat effects 
for many different processes by applying the fi rst law. This information allows engineers 
to use energy more effi ciently, saving costs and resources. Since heat and work are path 
dependent, the specifi c process must be defi ned in order to perform the necessary cal-
culations. In this section, we go through two such examples of these types of calculations 
using an ideal gas undergoing reversible processes. We will look at nonideal gases in 
Chapter 5. The intent is to gain some experience with applying the fi rst law to get values 
for work and heat as well as to develop expressions that are useful in understanding the 
Carnot cycle (Section 2.9).

Reversible, Isothermal Expansion (Compression)

Consider a reversible, isothermal expansion of an ideal gas. A schematic of a piston– 
cylinder assembly undergoing such a process is shown in Figure 2.15. The gas is kept 
at constant temperature by keeping it in contact with a thermal reservoir. A thermal 
reservoir contains enough mass so that its temperature does not noticeably change dur-
ing the process. Can you predict the signs of DU, Q, and W ?

Since the internal energy of an ideal gas is only a function of temperature,

DU 5 0

For a reversible process, we can integrate over the system pressure (see Section 2.3):

 W 5 23PdV (2.36)

Applying the ideal gas relationship:

V 5
nRT

P

Figure 2.15 An ideal gas in a piston–cylinder assembly undergoing a reversible, isothermal expan-
sion. See if you can predict the signs of DU, Q, and W for this process in the table.

Ideal gas

W
Q

ΔU

Ideal gas

Initial state (1)

Constant T
reservoir

Constant T
reservoir

Final state (2)

Process

Positive (+) Negative (−) Zero (0)
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2.7 Reversible Processes in Closed Systems ◄ 93

the differential in volume can be transformed into a differential in pressure (remember-
ing, for this case, that T is constant):

 dV 5 2
nRT
P2

 dP (2.37)

Substituting Equation (2.37) into Equation (2.36) and integrating gives:

 W 5 3

2

1

nRT
P

 dP 5 nRT ln 
P2

P1
 (2.38)

Now applying the fi rst law, we get:

 Q 5 DU 2 W 5 2nRT ln 
P2

P1
 (2.39)

Since P2 , P1, the sign for W is negative and for Q is positive. Did you get the sign right 
in the table in Figure 2.15? How do Equations (2.38) and (2.39) change if the gas under-
goes a compression process instead of an expansion?

Adiabatic Expansion (Compression) with Constant Heat Capacity

Consider when the same ideal gas undergoes an adiabatic, reversible expansion (as 
opposed to isothermal). We will assume that the heat capacity of this gas does not change 
with temperature, that is, constant heat capacity. This process is illustrated in Figure 2.16. 
Again, can you predict the signs of DU, Q, and W ?

Neglecting macroscopic kinetic and potential energy, the fi rst law for a closed sys-
tem in differential form is obtained from Equation (2.14):

 dU 5 dQ 1 dW (2.40)

where the heat transfer was set to zero, since this process is adiabatic. From Equation 
(2.24) we get:

 dU 5 ncvdT (2.41)

and for a reversible process:

 dW 5 2PdV (2.42)

Substituting Equations (2.41) and (2.42) into Equation (2.40) yields:

 ncvdT 5 2PdV (2.43) 

We can use the ideal gas law to relate the measured properties T, V, and P:

 d 1nRT 2 5 d 1PV 2 5 PdV 1 VdP (2.44)

where we applied the product rule. Solving Equation (2.44) for dT and then plugging 
back into Equation (2.43) and rearranging gives:

 cvVdP 5 2 1cv 1 R 2PdV 5 2cPPdV (2.45)

0
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94 ► Chapter 2. The First Law of Thermodynamics

Separating variables in Equation (2.45):

 2
cP

cv
 
dV
V

5
dP
P

 (2.46)

Now we integrate Equation (2.46) from the initial state 1 to the fi nal state 2,

 2k ln¢V2

V1
≤ 5 ln¢P2

P1
≤  (2.47)

where k 5 cP/cv. Applying mathematical relationships of the natural logarithm, we can 
rewrite the left-hand side of Equation (2.47) as:

2k ln¢V2

V1
≤ 5 ln¢V2

V1
≤2k

5 ln¢V1

V2
≤ k

 

so,

ln 1P1V1
k2 5 ln 1P2V2

k2  

or,

 PVk 5 const (2.48)

Now integrating for work:

 W 5 23PdV 5 23const V2kdV 5
const
k 2 1

 B 1
V2

k21 2 
1

V1
k21 R

 5
1

k 2 1
 3P2V2 2 P1V1 4 5

nR
k 2 1

 3T2 2 T1 4

From the fi rst law:

DU 5 W 5
1

k 2 1
 3P2V2 2 P1V1 4 5

nR
k 2 1

 3T2 2 T1 4

Ideal gas

Cv ≠ Cv (T ) 

Well-
insulated

Well-
insulated

Ideal gas

W
Q

ΔU

Initial state (1) Final state (2)

Process

Positive (+) Negative (−) Zero (0)

Figure 2.16 An ideal gas in a piston–cylinder assembly undergoing a reversible, adiabatic expan-
sion. In this example, cv is constant. See if you can predict the signs of DU, Q, and W for this 
process in the table.
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 ►Summary
A summary of the two cases presented in this section is shown in Table 2.2. In both cases, 
expansion of a piston provides useful energy to the surroundings in the form of work. 
However, each case represents a limit. In the isothermal process, all the energy delivered 
as work is provided by the surroundings in the form of heat. On the other hand, for the 
adiabatic case, the energy for work is provided by the internal energy of the gas in the 
system. An intermediate case exists where there is some heat adsorbed from the sur-
roundings as well as some “cooling” of the gas in the system.

A process is defi ned as polytropic if it follows the relation:

 PVg 5 const  (2.49) 

Both the processes in this section can be considered polytropic. The isothermal expan-
sion of an ideal gas follows Equation (2.49) with g 5 1 while the reversible, adiabatic 
expansion of an ideal gas with constant heat capacity has g 5 k 5 cP/cv. Can you think of 
another example of a polytropic process?

TABLE 2.2 Summary of Expressions for Change in Internal Energy, Heat, 

and Work for an Ideal Gas Undergoing a Reversible Process

Isothermal Adiabatic, cv 2 cv 1T 2

DU 0 nR
k 2 1

 3T2 2 T1 4

Q
2nRT ln 

P2

P1

 
0

W
nRT ln 

P2

P1
 

nR
k 2 1

 3T2 2 T1 4

 ► 2.8  OPEN-SYSTEM ENERGY BALANCES ON PROCESS EQUIPMENT
In this section, we will examine examples of how to apply the fi rst law to common types 
of process equipment. These systems will be analyzed at steady-state, when the proper-
ties at any place in the system do not change with time. Most cases will consist of one 
stream in and one stream out, which will be labeled streams 1 and 2, respectively. For 
these cases the mass balance becomes:

m# 1 5 m# 2

And the energy balance, Equation (2.19) becomes:

 0 5 m# 1 1 ĥ 1 1
2V

S
2 1 gz 2 1 1 m# 2 1 ĥ 1 1

2 V
S

2 1 gz 2 2 (2.50)

Equation (2.50) can be rewritten in molar terms as:

 0 5 n# 1¢h 1 MW 

V
S

2

2
1 MWgz≤

1
1 n# 2¢h 1 MW 

V
S

2

2
1 MWgz≤

2
 (2.50 molar)

where the molecular weight is used in the macroscopic kinetic and potential energy 
terms to convert from a mass basis to a molar basis.
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96 ► Chapter 2. The First Law of Thermodynamics

It is important to remember that the examples in this section are restricted to cases 
when steady-state can be applied. If we are interested in start-up or shutdown of these 
processes, or the case where there are fl uctuations in feed or operating conditions, we 
must use the unsteady form of the energy balance.

EXAMPLE 2.18

Diffuser Final 
Temperature 
Calculation

The intake to the engine of a jet airliner consists of a diffuser that must reduce the air velocity 
to zero so that it can enter the compressor. Consider a jet fl ying at a cruising speed of 350 m/s 
at an altitude of 10,000 m where the temperature is 10ºC. What is the temperature of the air 
upon exiting the diffuser and entering the compressor?

SOLUTION  A schematic diagram of the system, including the information that we know, is 
shown in Figure E2.15.

Figure E2.18  
Schematic of the dif-
fuser in Example 2.18.

→

Diffuser

T1 =  10° C
V1 =  350 m/s

→
V2 ≈ 0 m/s

T2 =  ?

This steady-state process occurs in an open system with one stream in and one stream out. 
In this case, we can write the fi rst law using Equation (2.50):

 0 5 n# 1 (h 1 MW 

V
S

2

2
1 MWgz)1 2 n# 2(h 1 MW 

V
S

2

2
1 MWgz)2 1 Q

#
1 W

#
s (E2.18A)

where the negligible terms have been set to zero. Note that the reference state for potential 
energy is set at 10,000 m. A mole balance gives:

n# 1 5 n# 2

so that Equation (E2.18A) can be simplifi ed to:

 eK 5
1
2

 1MW 2V
S

1
2

5 1h2 2 h1 2 5 3

T2

T1

cP,air dT (E2.18B)

Looking up the value for heat capacity for air in Appendix A.3, we get:

A 5 3.355,      B 5 0.575 3 1023,      and  D 5 20.016 3 105

EXAMPLE 2.18

Diffuser Final 
Temperature 
Calcualtion

0 0 0 0 0

Nozzles and Diffusers

These process devices convert between internal energy and kinetic energy by changing 
the cross-sectional area through which a fl uid fl ows. In a nozzle the fl ow is constricted, 
increasing eK. A diffuser increases the cross-sectional area to decrease the bulk fl ow 
velocity. An example of a process calculation through a diffuser follows.
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Using the defi nition of heat capacity, we get the following integral expression:

3

T2

T1

cPdT 5 R 3

T2

283

3A 1 BT 1 DT22 4dT 5 R cAT 1
B
2

 T2 2
D
T
d

283

T2

 (E2.18C)

Using Equation (E2.18C), Equation (E2.18B) becomes:

1
2

 1MW 2V
S

1
2 5 RBA 1T2 2 283 2 1

B
2

 1T2
2 2 2832 2 2 D¢ 1

T2
2

1
283

≤ R
We now have one equation with one unknown, T2, which can be solved implicitly to give:

T2 5 344 3K 4

The temperature of the air increases because the kinetic energy of the inlet stream is being 
converted to internal energy.

You wish to pump 0.001  m3/s of water from a well to your house on a mountain, 250 m above. 
Calculate the minimum power needed by the pump, neglecting the friction between the fl ow-
ing water and the pipe.

SOLUTION  Can you draw a schematic of this process? We need to write the energy balance. 
This system is at steady-state, with one stream in and one stream out. When working with 
macroscopic potential energy, it is often convenient to write the balance on a mass (rather than 
mole) basis. We will neglect the bulk kinetic energy of the water at the inlet and outlet and the 
heat loss through the pipe. Since there are no frictional losses, the exit temperature is the same 
as the inlet; therefore, their enthalpy is equal. Thus, the fi rst law simplifi es to:

0 5 m1 (h 1
1
2

 V 2
S

1 gz)1 2 m2 (h 1
1
2

 V 2S

1 gz)2 1 Q
#

1 W
#

s

or, rearranging,

W
#

s 5 m# 2 1gz 2 2 5
V
#

2

v̂2
 gz2

EXAMPLE 2.19

Pump Power 
Calculation

0 0 0 0 0 0
. .

(Continued)

Turbines and Pumps (or Compressors)

These processes involve the transfer of energy via shaft work. A turbine serves to generate power 
as a result of a fl uid passing through a set of rotating blades. They are commonly found in power 
plants and used to produce energy locally as part of chemical plants. This process was described 
in Section 2.1 and illustrated in Example 2.4. Pumps and compressors use shaft work to achieve 
a desired outcome. The term compressor is reserved for gases, since they are compressible. 
Typically they are used to raise the pressure of a fl uid. However, they can also be used to increase 
its potential energy, as illustrated in Example 2.19.
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98 ► Chapter 2. The First Law of Thermodynamics

where V
#
 is the volumetric fl ow rate. Solving for shaft work gives:

W
#

s 5 B 10.001 3m3/s 4 2
10.001 3m3/kg 4 2

R 19.8 3m/s2 4 2 1250 3m 4 2 5 2.5 3kW 4

Note that the sign for work is positive. Why? The actual work needed would be 
greater due to frictional losses.

Heat Exchangers

You plan to use a heat exchanger to bring a stream of saturated liquid CO2 at 0ºC to a 
superheated vapor state at 10ºC. The fl ow rate of CO2 is 10 mol/min. The hot stream available 
to the heat exchanger is air at 50ºC. The air must leave no cooler than 20ºC. The enthalpy of 
vaporization for CO2 at 0ºC is given by:

Dĥvap, CO2 5 236 3kJ/kg 4 at 0°C

What is the required fl ow rate of air?

SOLUTION  First, let’s draw a diagram of the system including the information that we know, 
shown in Figure E2.20A.

Air Air

Heat exchanger

Vapor
CO2

Sat. liq.
CO2

nCO2 
= 10

mol Boundary 1

min

T1 = 0°C

T4 = 20°C T3 = 50°C

T2 = 10°C

Q

Figure E2.20A Schematic of heat exchanger with boundary 1 depicted.

There are several possible choices for our system boundary. We will choose a boundary 
around the CO2 stream, labeled “boundary 1” in Figure E2.20A. In this case, the heat transferred 
from the air stream to evaporate and warm the CO2 stream is labeled Q

#
. We next need to 

EXAMPLE 2.20

Heat Exchanger 
Flow Rate 
Calculation

These processes are designed to “heat up” or “cool down” fl uids through thermal con-
tact with another fl uid at a different temperature. The radiator in your automobile is 
an example of a heat exchanger. In this application, energy is removed from the engine 
block to keep it from overheating during combustion. The most common design is when 
the two streams are separated from each other by a wall through which energy, but not 
mass, can pass. A calculation on a system employing this design is given in Example 2.20. 
An alternative design allows the fl uids to be mixed directly. An example of such an open 
feedwater heater is given in Example 2.21.
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perform a fi rst-law balance around boundary 1. The appropriate energy balance is for an open 
system at steady-state with one stream in and one stream out is:

0 5 n# 1 (h 1 MW 

V
S

2

2
1 MWgz)1 2 n# 2(h 1 MW 

V
S

2

2
1 MWgz)2 1 Q

#
1 W

#
s

where we have set the bulk kinetic and potential energies and shaft work to zero. A mole 
balance yields:

n# 1 5 n# 2 5 n# CO2

so the fi rst-law balance on boundary 1 simplifi es to:

Q
#

5 n# CO2
1h2 2 h1 2

To determine the change in enthalpy, we must account for the latent heat (vaporization) and 
the sensible heat of the CO2 stream, that is:

1h2 2 h1 2 5 Dhvap,CO2 1 3

T2

T1

cP, CO2dT

These can be found, in [J/mol], as follows. The latent heat is given by:

Dhvap,CO2 5 ¢236 c
kJ

kg
d ≤ ¢44 c

kg

kmol
d ≤ 5 10,400 c

J

mol
d

and the sensible heat is given by:

3

T2

T1

cP,CO2dT 5 R cA 1T2 2 T1 2 1
B
2

 1T2
2 2 T1

22 2 D¢ 1
T2

2
1
T1
b R 5 353 c

J

mol
d

where the numerical values for the heat capacity parameters, A, B, and D, are given in Appendix
A.3. Thus, the energy transferred via heat to boundary 1 is:

Q
#

5 100,753 3J/min 4

Now that we know the rate at which energy must be supplied to the CO2 stream, we can fi nd 
the fl ow required for the air. We do this by choosing a different system boundary in the heat 
exchanger, which is labeled boundary 2 in Figure E2.20B.

Air Air

Heat exchanger

Vapor
CO2

Sat. liq.
CO2

nCO2 
= 10

mol

Boundary 2

min

T1 = 0°C

T4 = 20°C T3  = 50°C

T2  = 10°C

Q

Figure E2.20B  Schematic of heat exchanger with boundary 2 depicted.

0 0 0 0 0

(Continued)
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100 ► Chapter 2. The First Law of Thermodynamics

A balance similar to that above yields:

 2Q
#

5 n# air 1h4 2 h3 2  (E2.20A) 

Note that we must be careful about signs! We have included a negative sign on Q
#
 since the heat 

that enters boundary 1 must leave boundary 2. Rearranging Equation (E2.20A) gives:

n# air 5 2
Q
#

1h4 2 h3 2
5 2

Q
#

3

T4

T3

cP,air dT

5
Q
#

RBA 1T4 2 T3 2 1
B
2

 1T4
2 2 T3

22 2 D¢ 1
T4

2
1
T3
≤ R

Looking up values for the heat capacity parameters in Appendix A.3, we get:

n# air 5
1100,753 3J/min 4 2

877 3J/mol 4
5 123 3mol/min 4

Alternatively, this problem could have been solved with a system boundary 
around the entire heat exchanger. In that case, a fi rst-law balance would give:

0 5 n# CO2
1h2 2 h1 2 1 n# air 1h4 2 h3 2

which could then be solved for n# air.

Superheated water vapor at a pressure of 200 bar, a temperature of 500ºC, and a fl ow rate 
of 10 kg/s is to be brought to a saturated vapor state at 100 bar in an open feedwater heater. 
This process is accomplished by mixing this stream with a stream of liquid water at 20ºC and 
100 bar. What fl ow rate is needed for the liquid stream?

SOLUTION  The fi rst step is to draw a diagram of the system with the known information, as 
shown in Figure E2.21.

This example has two inlet streams in, so Equation (2.50) does not apply. If we assume 
that the rate of heat transfer and the bulk kinetic energy of the streams are negligible and the 
bulk potential energy and shaft work are set to zero, an energy balance reduces to:

 0 5 m
#

1ĥ1 1 m
#

2ĥ2 2 m
#

3ĥ3 (E2.21A) 

Similarly, a mass balance at steady-state gives:

 0 5 m# 1 1 m# 2 2 m# 3  (E2.21B)

Rearranging Equation (E2.21B) and substituting into (E2.21A) gives:

 0 5 m# 1ĥ1 1 m# 2ĥ2 2 1m# 1 1 m# 2 2 ĥ3 (E2.21C) 

We can look up values for the enthalpies from the steam tables (Appendix B). For state 1, the 
superheated steam is at 500ºC and 200 bar 15 20 MPa 2 , so:

ĥ1 5 3238.2 3kJ/kg 4

EXAMPLE 2.21

Open Feedwater 
Heater Calculation
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For state 2, we use subcooled liquid at 20ºC and 100 bar:

ĥ2 5 93.3 3kJ/kg 4

and the saturated vapor at 100 bar (10 MPa) for state 3 is:

ĥ3 5 2724.7 3kJ/kg 4

Finally, rearranging Equation (E2.21C) and plugging in values gives:

m# 2 5
m# 1 1 ĥ1 2 ĥ3 2

1 ĥ3 2 ĥ2 2
5 1.95 c

kg

s
d

Open
feedwater

heater

Superheated
vapor

Saturated vapor

Subcooled
liquid

kg

s

T2  = 20°C
P2  = 100 bar

T1  = 500°C
P1  =  200 bar

P3  = 100 bar

m1  = 10

Figure E2.21 Schematic of the open feedwater heater in Example 2.21.
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Water at 350ºC fl ows into a porous plug from a 10-MPa line. It exits at 1 bar. What is the exit 
temperature?

SOLUTION First, let’s draw a diagram of the system, as shown in see Figure E2.22.
A steady-state energy balance with one stream in and one stream out is appropriate for 

this system. We will assume that the bulk kinetic energy of the stream is negligible and that 
the porous plug is suffi ciently small as not to allow a signifi cant rate of heat transfer. Rewriting 
Equation (2.50) on a mass basis, we get:

0 5 m# 1 1 ĥ 1
V
S

2

2
1 gz 2 1 2 m# 2 1 ĥ 1

V
S

2

2
1 gz 2 2  

EXAMPLE 2.22

Throttling Device 
Calculation

1 Q
#

1 W
#

s

0 0 00 0 0

(Continued)

Throttling Devices

These components are used to reduce the pressure of fl owing streams. The pressure 
reduction can be accomplished by simply placing a restriction in the fl ow line, such as 
a partially opened valve or a porous plug. Since these devices occupy a relatively small 
volume, the residence time of the passing fl uid is small. Hence, there is little energy loss 
by the transfer of heat. Consequently, we can neglect heat transfer. Since there is also no 
shaft work, the energy balance reduces to a very simple equation, as the next example 
illustrates.
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102 ► Chapter 2. The First Law of Thermodynamics

Porous plug

T1  = 350°C
P1  = 10 MPa P2  = 1 bar

Figure E2.22 Schematic of the throttling device in Example 2.22.

Hence, the energy balance reduces this system to an isenthalpic process:11

ĥ1 5 ĥ2

Looking up the value for the inlet stream from Appendix B.4, we fi nd:

ĥ1 5 2923.4 3kJ/kg 4

Since the enthalpy of stream 2 equals that of stream 1, we have two intensive properties to 
constrain the exit state: ĥ2 and P2. To fi nd the temperature of stream 2, we must use linear 
interpolation. Inspection of the steam tables shows that T2 is somewhere between 200 and 
250ºC. The following are taken from the superheated steam table at 100 kPa.

P 5 100 kPa

T[ºC] ĥ 3kJ/kg 4

200 2875.3

250 2974.3

Interpolation gives:

T2 5 200 1 3DT 4 B ĥ2 2 ĥat 200

ĥat 250 2 ĥat 200

R 5 200 1 350 4 c
2923.4 2 2875.3
2974.3 2 2875.3

d 5 224 3°C 4

 ► 2.9 THERMODYNAMIC CYCLES AND THE CARNOT CYCLE
A thermodynamic cycle describes a set of processes through which a system returns 
to the same state that it was in initially. Typically cycles are used to produce power or 
provide refrigeration. Since the system returns to its initial state after the cycle has been 
completed, all the properties have the same values they had originally. The advantage 
of executing a thermodynamic cycle is that by having the system return to its initial 
state, we can repeat the cycle continuously. There are many different examples of ther-
modynamic cycles; in this section, we examine one such cycle—the Carnot cycle.12 In 
Chapter 3, we will learn that a Carnot cycle represents the most effi cient type of cycle 
we can possibly have.

11 In general, the energy balance of throttling processes reduces to this simple form.

12 This cycle was conceived in 1824 by Sadi Carnot, a French engineer, to explore the maximum possible 
effi ciency that could be obtained by the steam engines of his time.
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Figure 2.17 shows an ideal gas in a piston–cylinder assembly undergoing a Carnot cycle. 
In this cycle, the gas goes through four reversible processes through which it returns to 
its initial state. Two processes occur isothermally, alternating with two adiabatic processes. 
These processes were analyzed, individually, in Section 2.7. Consider a gas that is initially 
in state 1 at a pressure P1 and a temperature T1 as shown at the top of Figure 2.17. The fi rst 
step of a Carnot cycle is a reversible isothermal expansion, in which the gas is exposed to a 
hot reservoir at temperature, TH; it gains energy via heat, QH, as indicated on the diagram. 
During this process, which takes the system from state 1 to state 2 (at P2 and T2 ), the pres-
sure decreases while the temperature stays the same. The piston–cylinder assembly is then 
transferred into an adiabatic (well-insulated) environment and expanded further to state 3. 
In this step, both T and P decrease. In both expansion processes, work is done by the system 
on the surroundings; that is, we get useful work out. The system then undergoes two revers-
ible compression processes. First, it is isothermally compressed by being placed in contact 
with a cold thermal reservoir at temperature TC. The gas loses an amount of energy via 
heat, QC to the cold reservoir. This process takes the system to state 4 1P4, T4 2 . The system 
returns to its initial state (state 1) through an adiabatic compression.

The net work obtained in a Carnot cycle is given by the sum of the work obtained 
in all four processes:

 2Wnet 5 0W12 0 1 0W23 0 2 0W34 0 2 0W41 0  (2.51) 

Since the overall effect of the power cycle is to deliver work from the system to the 
surroundings, the sign of Wnet is negative. The subscript “ij” on the terms for work in 

Figure 2.17 An ideal gas undergoing a Carnot cycle. The Carnot cycle consists of four reversible 
processes by which the gas is returned to its original state.

Constant TH 

Constant TC 

State 1 State 2 

State 2 State 3State 1 State 4 

State 4 State 3

Isothermal
compression

Adiabatic
compression

Adiabatic
expansion

Isothermal
expansion

Well insulated

QH

T1
P1

P4 P3

P2

T2  = T1

T1
P1 P4

T4 T2
P2 P3

T3

T4  = T3 T3

QC
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104 ► Chapter 2. The First Law of Thermodynamics

Equation (2.51) refers to the work obtained in going from state i to state j. Absolute val-
ues are used to explicitly distinguish the steps where we get work out from those where 
we must put work in.

The net work obtained from a Carnot cycle can also be calculated by applying the 
fi rst law to the entire cycle. Since the cycle returns the system to its original state, its 
internal energy must have the same value as at the start of the cycle. Thus,

 DUcycle 5 0 5 Wnet 1 Qnet  (2.52) 

Comparing Equations (2.51) and (2.52), we see that:

2Wnet 5 Qnet 5 Q12 1 Q23 1 Q34 1 Q41 5 0QH 0 2 0QC 0

We see that the net work obtained is the difference in heat absorbed from the hot 
reservoir, QH, and expelled to the cold reservoir, QC. An alternative way of schematically 
representing a Carnot cycle is shown in Figure 2.18a. This schematic gives an overview 
of the energy transferred between the Carnot engine and the surroundings. Inside the 
circle labeled “Carnot engine” are the four processes depicted in Figure 2.17. 

0 0

Figure 2.18 Alternative representation for the Carnot cycle. (a) Carnot “engine”; (b) Carnot 
refrigerator.

Cold reservoir, TC

Hot reservoir, TH Hot reservoir, TH

Carnot
engine

Carnot
refrigeration

QH

QC QC

QH

Wnet

Cold reservoir, TC

Wnet

(a ) (b )

QH QC

Efficiency

The effi ciency, h, of the cycle is defi ned as the net work obtained divided by the heat 
absorbed from the hot reservoir:

 h ;
net work

heat absorbed from the hot reservoir
5

Wnet

QH
 (2.53)
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For a given amount of energy available from the hot reservoir via QH, the greater the effi -
ciency, the more work we obtain. For example, say the high temperature in the hot reser-
voir is obtained from the combustion of coal. A high effi ciency means we can reduce the 
amount of coal we need to combust to produce a given amount of work.13

A refrigeration cycle allows us to cool a system so that we can store some ice 
cream and so on. In this case we want to expel heat from a cold reservoir. It takes work 
from the surroundings to accomplish this task. For example, your freezer at home needs 
electricity to keep the ice cream cold. Figure 2.18b shows a schematic way of represent-
ing the energy transferred in a refrigeration cycle. We supply work to the cycle in order 
to absorb energy via heat QC from the cold reservoir. We then expel the energy via heat 
QH to the hot reservoir. Thus, the direction of heat transfer is opposite that of the power 
cycle depicted in Figure 2.18a. The effectiveness of a refrigeration cycle is measured by 
its coeffi cient of performance, COP, which is defi ned as follows:

 COP 5
QC

Wnet
 (2.54)

We can see from Equation (2.54) that the higher the COP, the less work it takes to 
produce a desired level of cooling.

Can you draw the analogous cycle to Figure 2.17 that goes in the circle labeled 
“Carnot refrigerator”?

13 The steam engine was patented by James Watt in 1765. These fi rst steam engines had effi ciencies of only 
about 1%. Indeed, we can see there was much engineering that remained to be done!

Consider 1 mole of an ideal gas in a piston–cylinder assembly. This gas undergoes a Carnot 
cycle, which is described below. The heat capacity is constant, cv 5 13/2 2R.

(i) A reversible, isothermal expansion from 10 bar to 0.1 bar.
(ii) A reversible, adiabatic expansion from 0.1 bar and 1000 K to 300 K.
(iii) A reversible, isothermal compression at 300 K.
(iv) A reversible, adiabatic compression from 300 K to 1000 K and 10 bar. 

Perform the following analysis:

(a) Calculate Q, W, and DU for each of the steps in the Carnot cycle.
(b) Draw the cycle on a Pv diagram.
(e) Calculate the effi ciency of the cycle.
(d) Compare h to 1 2 1Tc/TH 2 .
(e) If what is found in part (d) is true, in general, suggest two ways to make the above process 
more effi cient.

SOLUTION (a) We will analyze each of the steps separately, with a little help from the results 
of Section 2.7. We label each state in a manner consistent with Figure 2.17.
(i) The fi rst process is a reversible, isothermal expansion at 1000 K from state 1 at 10 bar to state 
2 at 0.1 bar. By defi nition, the internal energy change for an ideal gas at constant temperature is:

DU 5 0

We can calculate the work using a result from Section 2.7:

W 5 3
nRT

P
 dP 5 nRT ln 

P2

P1
5 238,287 3J 4

EXAMPLE 2.23

Carnot Cycle 
Effi ciency

(Continued)
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106 ► Chapter 2. The First Law of Thermodynamics

The negative sign indicates that the system is performing work on the surroundings (we are 
getting useful work out). To fi nd the heat, we apply the fi rst law:

QH 5 DU 2 W 5 38,287 3J 4

(ii) The second process is a reversible, adiabatic expansion from 0.1 bar and 1000 K to state 3 at
300 K. The pressure decreases during this process. By the defi nition of an adiabatic process:

Q 5 0

At constant heat capacity, the change in internal energy becomes:

DU 5 ncv 1T3 2 T2 2 5 28730 3J 4

Applying the fi rst law gives:

W 5 DU 5 28730 3J 4

(iii) The third process is a reversible, isothermal compression at 300 K. Again:

DU 5 0

and,

 W 5 23PdV 5 3
nRT

P
 dP 5 nRT ln 

P4

P3
 (E2.23A)

However, we now need to fi nd P3 and P4. From Section 2,7, we know PVk 5 const for the 
polytropic, adiabatic processes (ii) and (iv). We fi rst fi nd k:

k 5
cP

cv
5

cv 1 R
cv

5 1.67

Setting PVk equal for states 2 and 3 gives:

PVk 5 P2V2
1.67 5

1nRT2 2 1.67

P2
0.67 5 7347 5

1nRT3 2 1.67

P3
0.67

Solving for P3, we get:

P3 5 B 1nRT3 2 1.67

7347
R

1.5

5 0.0049 bar

Similarly for P4:

PVk 5 P1V1
1.67 5

1nRT1 2 1.67

P1
0.67 5 341 5

1nRT4 2 1.67

P4
0.67

and,

P4 5 B 1nRT4 2 1.67

341
R 1.5

5 0.49 bar

Thus, the work given by Equation (E2.23A) is:

W 5 nRT ln 
0.49 bar

0.0049 bar
5 11,486 3J 4
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 2.9 Thermodynamic Cycles and the Carnot Cycle ◄ 107

The work is positive for this compression process. From the fi rst law,

QC 5 DU 2 W 5 211,486 3J 4

(iv) The fourth process is a reversible, adiabatic compression from state 4 at 300 K and 0.52 bar 
back to state 1 at 1000 K and 10 bar (process 4 S 1). After this process, the gas can repeat steps 
(i), (ii) . . . Again, for this adiabatic compression:

Q 5 0

At constant heat capacity, the change in internal energy becomes:

DU 5 ncv 1T1 2 T4 2 5 8730 3J 4

Applying the fi rst law gives:

W 5 DU 5 8730 3J 4

TABLE E2.23A Results of Calculations for Carnot Cycle in Example 2.23

Process DU 3J 4 W [J] Q [J]

(i) State 1 to 2 0 238,287 38,287

(ii) State 2 to 3 28,730 28,730 0

(iii) State 3 to 4 0 11,486 211,486

(iv) State 4 to 1 8,730 8,730 0

Total 0 226,800 26,800

TABLE E2.23B T, P, and v for Carnot Cycle in Example 2.23

State T [K] P [bar] v 3m3/mol 4

1 1000 10 0.0083

2 1000 0.1 0.8314

3 300 0.0049 5.10

4 300 0.49 0.051

A summary of DU, W , and Q for the four processes and the totals for the cycle are presented 
in Table E2.23A. We get a net work of 26.8 kJ after one cycle.
(b) To sketch this process on a Pv diagram, we fi rst calculate the molar volume at each state 
using the ideal gas law. The results are presented in Table E2.23B. A sketch (not to scale) of the 
Pv diagram is presented in Figure E2.23. The work for a reversible process is given by the area 
under the Pv curve; hence, the net work is given by the shaded area in the box in Figure E2.23. 
Isotherms, TH and TC, for processes (i) and (iii) are also labeled.
(c) The effi ciency is given by Equation (2.53)

     h ;
net work

heat absorbed from the hot reservoir
5

26,800
38,287

5 0.70   (E2.23B)

In practice, electrical power plants have effi ciencies around 40%.

(Continued)
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108 ► Chapter 2. The First Law of Thermodynamics

(d) Applying the relation in the problem statement, we get:

 1 2
TC

TH
5 1 2  

300
1000

5 0.7 (E2.23C)

Comparing the values of Equations (E2.23B) and (E2.23C), we get:

 h 5 1 2
TC

TH
 (E2.23D)

(e) If Equation (E2.23D) holds, the process can be made more effi cient by raising TH or 
lowering TC. Note that these options will push the isotherms depicted in Figure E2.23 up and 
down, respectively. Thus either raising TH or lowering TC will serve to make the shaded box, 
which represents net work, larger. We will learn in Chapter 3 that, indeed, Equation (E2.23D) 
is true in general. However, we can also reach this conclusion by realizing that the isotherms in 
Figure E2.23 are fi xed on the Pv plane.

Figure E2.23 Pv diagram of 
a Carnot cycle. The shaded 
area represents the net work 
obtained from one cycle.

3

2

P

TH

Isotherm

wnet

TC

Isotherm

Q
 =

 0

Q
 =

 0

−Q
C = W

Q
H = −W

v

4

1

 ►2.10  SUMMARY
The fi rst law of thermodynamics states that the total energy in the universe is a constant. 
Energy balances have been developed for closed systems and for open systems. For exam-
ple, the integral equation of the fi rst law for a closed system, written in extensive form, is:

 DU 1 DEK 1 DEP 5 Q 1 W (2.12a) 

For open systems, it is convenient to write the fi rst law on a rate bases. The integral 
equation, in extensive form, is:

a
dU
dt

1
dEK

dt
1

dEP

dt
b

sys
5a

in
m# inaĥ1

1
2

 V
S 21gzb

in
2a

out
mout
#
aĥ1

1
2

 V
S 21gzb

out
1Q

#
1 W

#
s

(2.21)
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2.10  Summary ◄ 109

We have also developed these equations in intensive forms, on a mass and a molar basis, 
and for differential increments. Given a physical problem, we must determine which 
form to use and which terms in these equations are important and which terms are neg-
ligible or zero. We must also identify whether the ideal gas model or property tables are 
needed to solve the problem. For some processes, it is convenient to defi ne a hypotheti-
cal path so that we can use available data to solve the problem.

We applied the fi rst law to many engineering systems. Examples of closed systems 
included rigid tanks and adiabatic or isothermal expansion/compression in a piston–cylinder 
assembly. Steady-state open systems were illustrated by nozzles, diffusers, turbines, pumps, 
heat exchangers, and throttling devices. Transient open-system problems included fi lling or 
emptying of a tank, while the Carnot power and refrigeration cycles provided examples of 
thermodynamic cycles. However, you should understand the concepts well enough so that 
you are not restricted to the systems discussed above but rather are able to apply the fi rst 
law to any system of interest.

A process is reversible if, after the process occurs, the system can be returned 
to its original state without any net effect on the surroundings. This result occurs 
only when the driving force is infi nitesimally small. The reversible case represents 
the limit of what is possible in the real world—it gives us the most work we can get 
out or the least work we have to put in. Moreover, only in a reversible process can 
we substitute the system pressure for the external pressure in calculating Pv work. 
Real processes are irreversible. They have friction and are carried out with fi nite 
driving forces. In an irreversible process, if the system is returned to its original state, 
the surroundings must be altered. We can compare the amount of work required in 
an irreversible process to that of a reversible process by defi ning the efficiency fac-
tor, h. Our strategy for actual, irreversible processes is often solving a problem for 
the idealized, reversible process and then correcting for the irreversibilities using an 
assigned effi ciency factor.

The thermodynamic property enthalpy, h, is defi ned as:

 h ; u 1 Pv (2.18)

We fi rst recognized the usefulness of h in describing streams fl owing into and out of open 
systems. In such cases, we must account for both the internal energy of the stream and 
the flow work associated with it entering or leaving the system. Enthalpy accounts for 
both these effects. Enthalpy also describes the combined effects of internal energy and 
Pv work for closed systems at constant P. Therefore, experiments conveniently done in 
closed systems at constant pressure are reported using enthalpy. For example, experi-
mental data for the energetics associated with phase changes and chemical  reaction are 
typically reported using enthalpy.

On a molecular level, internal energy encompasses the kinetic and potential ener-
gies of the molecules. Changes in internal energy present themselves in several macro-
scopic manifestations, including changes in temperature, changes in phase, and changes 
in chemical structure, that is, chemical reaction. A change in internal energy that is 
manifested as a change in temperature is often termed sensible heat. We can associate 
the increase in molecular kinetic energy and, therefore, in u with temperature to three 
possible modes in which the molecules can obtain kinetic energy: translational, vibra-
tional, and rotational. Data for the change in energy due to sensible heat can be obtained 
using heat capacity or using property tables. The heat capacity for a species is often fi t 
to a polynomial in temperature of the form:

 cP 5 A 1 BT 1 CT2 1 DT22 1 ET3  (2.30) 
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110 ► Chapter 2. The First Law of Thermodynamics

The parameters A, B, C, D, and E are reported for some ideal gases in Appendix A.2. Heat 
capacity parameters at constant pressure of some liquids and solids are also reported in 
this appendix. An ideal gas presents a special case: All its internal energy is realized as 
molecular kinetic energy—it is a function of T only. 

We refer to a change in energy that results in phase transformations as latent heat. 
This energy is associated with the different degrees of attraction between the molecules 
in the different phases. Data for latent heats are reported as enthalpies of vaporization, 
fusion, and sublimation. These values are typically reported at 1 bar; however, using 
these values, we can construct hypothetical paths to fi nd the latent heats at any pressure. 
The internal energy changes associated with chemical reactions can be attributed to the 
energetic differences between the chemical bonds of the reactants and the products. 
The enthalpy of a given chemical reaction can be determined from reported enthalpies 
of formation.

 ►2.11  PROBLEMS
Conceptual Problems

2.1 In the two processes shown in the following fi gure, the same amount of heat, q, is supplied 
to equal amounts (in moles) of different gases, gas A and gas B. Both gases are initially at room 
temperature. The heat capacity of gas A is greater than the heat capacity of gas B. These processes 
take place at constant volume. Which gas has the greater fi nal temperature? Explain.

q

A
A

A
A

AA
A

AA

A

A

Process 1

q

B
B

B
A

BB
B

BB

B

B

Process 2

T1

V =  const V =  const

T2

2.2 In the two processes shown in the following fi gure, the same amount of heat, q, is supplied 
to the same gas, gas A. In both processes, the initial temperature and initial number of moles are 
equal. Process 1 occurs at constant volume; process 2 occurs at constant pressure. 
(a) Which gas has the greater fi nal temperature? Explain.
(b) For which process, if any, is it convenient to use the property enthalpy? Explain.

T1

q

A
A

A
A

AA
A

AA

A

A

q

V =  const
P =  const

Process 1 Process 2

T2

A
A

A
A

AA
A

AA

A

A

c02.indd   110c02.indd   110 05/11/12   1:36 PM05/11/12   1:36 PM



2.11  Problems ◄ 111

2.3 In the steady-state process shown in the following fi gure, steam fl ows through a porous plug, 
and its pressure drops from 10 MPa to 1 bar. Does the temperature increase, stay the same, or 
decrease? Explain.

T2T1

P1 = 10 MPa P2 = 1 bar

Water

Porous plug

2.4 In the steady-state process shown in the following fi gure, an ideal gas fl ows through a porous 
plug, and its pressure drops from 10 MPa to 1 bar. Does the temperature increase, stay the same, 
or decrease? Explain.

T2T1

P1 = 10 MPa P2 = 1 bar

Ideal Gas

Porous plug

2.5 In the steady-state process shown in the following fi gure, air fl ows through a turbine. Does the 
temperature increase, stay the same, or decrease? Explain.

P1

T1

P2

T2

Turbine

Air in

Air out

2.6 An ideal gas fl ows into a well-insulated tank that is initially at vacuum, as shown in the follow-
ing fi gure. How does T2 compare to Tin (higher, the same, or lower)? Explain.

Tin

Ideal Gas

State 2State 1

Tin

PinPin

Ideal Gas

Initially

Vacuum
P2 = Pin

Ideal Gas

T2
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112 ► Chapter 2. The First Law of Thermodynamics

2.7 Four processes are shown in the following fi gure. Each process occurs in a well-insulated pis-
ton cylinder assembly and starts from the same initial state, state 1. Put the fi nal temperatures 
in order from highest to lowest. Explain. In Process A, a large block of mass, M, is removed from 
the piston. In Process B, an equivalent mass, M, is removed in incremental amounts. In Process 
C, a large block of mass, M, is placed on the piston. In Process D, an equivalent mass, M, is added 
in incremental amounts.

Weightless,
frictionless piston

Weightless,
frictionless piston

Weightless,
frictionless piston

Weightless,
frictionless piston

Well
Insulated

Well
Insulated

Process A

Process B

M M

M

Patm Patm

M

M
Patm

Patm

T 1

m T = M
m T  = M

∂m ∂m

TA

TB

TC

TD

P 1

T 1

P 1

T 1

P 1

T 1

P 1

Patm

State 1

State 1

State A

Patm

State B

State 1

M
Patm

State 1

State C

M
Patm

State D

Process C

Process D

Well
Insulated

Well
Insulated

2.8 State the conditions under which the following equations apply (try to be as specifi c as you 
can with the limitations).
(a) 0 5 m# 1h1 1 m# 2h2 2 m# 3h3 1 Q

#
2 W

#
s

(b) h2 2 h1 5 cP 1T2 2 T1 2

(c) u2 2 u1 5 cP 1T2 2 T1 2

(d) cP 5 cv 1 R
(e) h 5 u 1 Pv

(f)  w 5 23Pdv
(g) Du 5 q 1 w
(h) q 5 0
2.9 In Example 2.4, we solved a problem where 10.0 kg of water was reversibly compressed in a 
piston–cylinder assembly from a pressure of 20 bar and a volume of 1.0 m3 to a pressure of 100 bar. 

In this example, the work was calculated to be w 5 285 B kJ

kg
R , the heat was q 5 210 B kJ

kg
R , and 

the fi nal temperature was T2 5 525°C. 
Qualitatively answer the following questions. You do not have to do any calculations, but you must 
choose the right answer and explain your reasoning. 
(a) Consider an adiabatic process that occurs from the same initial state (State 1) to the same fi nal 
state (State 2). Will the magnitude of work required for the compression be (greater than, less 
than, or equal to) the value calculated in Example 2.4? Explain.
(b) Consider an isothermal process that occurs from the same initial state (State 1) to the same 
fi nal pressure 1P2 2 . Will the heat transfer be greater than, less than, or equal to, the value calcu-
lated in Example 2.4? Explain.
(c) Consider an irreversible process that occurs from the same initial state (State 1) to the same 
fi nal state (State 2). Will the magnitude of work required for the compression be greater than, less 
than, or equal to, the value calculated in Example 2.4? Explain.
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(d) Consider an irreversible process that occurs from the same initial state (State 1) to the same 
fi nal state (State 2). Will the heat transfer be greater than, less than, or equal to, the value calcu-
lated in Example 2.4? Explain.
2.10 Consider a cup of cold water. Come up with and sketch as many ways as you can think of to 
raise the temperature of the water.
2.11 Consider the compression of a spring by placing a large mass on it. The degree to which the 
spring compresses is related to its spring constant, k. The force exerted by the spring on the mass 
is given by:

F 5 2kx

where x represents the distance the spring compresses from its relaxed position. Does the com-
pression of a spring represent potential or internal energy?
2.12 Take a thick rubber band and expand it by stretching it. If you hold it to your lips, you will 
sense that it is hotter. However, we have seen that the temperature of a gas in a piston–cylinder 
assembly cools upon expansion. Explain these opposite results in the context of an energy balance.
2.13 If you sprinkle water on a very hot skillet, it will evaporate. However, you get the paradox- 
ical result that at higher temperatures the water drops take longer to evaporate than at lower 
temperatures. Explain this result.
2.14 On a hot summer day, your roommate suggests that you open the refrigerator to cool off your 
apartment. Choosing the entire apartment as the system, perform a fi rst-law analysis to decide 
whether this idea has merit.
2.15 You are making plans to stay warm in the winter. Due to your busy schedule, you are typically 
away from your house all day. You know it costs a lot to operate the electric heaters to keep your 
house warm. However, you have been told that it is more effi cient to leave your house warm all day 
rather than turn off the heat during the day and reheat the house when you get home at night. You 
think that thermodynamics may be able to resolve this issue. Draw a schematic of the system, the 
surroundings, and the boundary. Illustrate the alternative processes. What is your choice to save 
power? Justify your answer.
2.16 Explain why ice often forms on the valve of a tank of compressed gas (high pressure) when it 
is opened to the atmosphere and the gas escapes. Where does the H2O come from?
2.17 (a) What requires more heat input: to raise the temperature of a gas in a constant-pressure 
 cylinder or in a constant-volume bomb? Explain.
(b) Explain why you feel less comfortable on a hot summer day when the (relative) humidity is 
higher even though the temperature is the same.
2.18 Consider that towel you used to dry yourself with after your last shower. After being washed 
it must be dried so it can be used again. Estimate how much energy it takes to dry the towel after 
it has been washed. State all assumptions that you make. Now consider the dryer in your dwelling 
(or at the laundromat). If the towel is the only item placed in the dryer, estimate how much energy 
is used to actually dry the towel. What is the effi ciency of the process? Can you suggest any ways 
to make it more effi cient?

Numerical Problems

2.19 A rigid container contains saturated water at a pressure of 2 bar and a quality of 0.42. The 
water undergoes a process in which it is heated to a fi nal temperature of 540°C. Determine 
the fi nal pressure of the container, and the energy transferred by work and by heat during this 
process.
2.20 The normal human body temperature is approximately 37°C. For normal metabolic pro-
cesses, it is important to maintain the body at this temperature. Hypothermia is a condition when 
the core body temperature drops below 35°C. You may assume the body contains 60% water.
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114 ► Chapter 2. The First Law of Thermodynamics

(a) Consider a 70 kg person, and estimate the amount of energy lost by heat for the onset of hypo-
thermia. State any assumptions that you make.
(b) What mechanisms does your body have to allow more heat to be lost than that estimated in 
part a before the onset of hypothermia? 
2.21 Consider the piston–cylinder assembly containing 0.20 kg of pure water, as shown in the 
following fi gure. The cross-sectional area of the piston is 0.50 m2, and its initial height is 0.7172 m 
above the base of the cylinder. The initial pressure is 1.0 bar. A spring with a linear spring constant,

 k 5 1.62 3 105 BN
m
R , is attached to the piston. Initially the spring exerts no force on the very thin 

piston. A block of mass m 5 20,408 kg, is then placed on the piston, causing the gas to compress, 
until the forces again balance. During the compression process, 6.17 3 105 3J/kg 4 of work is done 
on the system.

m =  20,408

kg

State 1

m1 =  0.2 kg

h1 =  0.7172 m

A =  0.5 m2
H2O

Patm  =  1 bar

F  =  −kx

(a) Precisely draw the process on a Pext-v diagram. Draw the area that represents the work.
(b) How much heat, in J/kg, is transferred during the process?
2.22 Consider boiling water to make a pot of tea. Say it takes roughly 10 min to bring 1 L of H2O 
taken from the tap at 25ºC to boil. What is the total heat input, Q? What is the rate of heat input, Q

#
?

2.23 Consider a process that takes steam from an initial state where P 5 1 bar and T 5 400°C to 
a state where P 5 0.5 bar and T 5 200°C. Calculate the change in internal energy for this process 
using the following sources for data: (a) the steam tables; (b) ideal gas heat capacity.
2.24 Consider a piston–cylinder assembly that contains 2.5 L of an ideal gas at 30ºC and 8 bar. 
The gas reversibly expands to 5 bar.
(a) Write an energy balance for this process (you may neglect changes in potential and kinetic 
energy).
(b) Suppose that the process is done isothermally. What is the change in internal energy, DU, for 
the process? What is the work done, W, during the process? What is the heat transferred, Q?
(c) If the process is done adiabatically (instead of isothermally), will the fi nal temperature be 
greater than, equal to, or less than 30ºC? Explain.
2.25 Five moles of nitrogen are expanded from an initial state of 3 bar and 88ºC to a fi nal state of 
1 bar and 88ºC. You may consider N2 to behave as an ideal gas. Answer the following questions for 
each of the following reversible processes:
(a) The fi rst process is isothermal expansion. (i) Draw the path on a Pv diagram and label it path 
A. (ii) Calculate the following: w, q, Du, Dh.
(b)  The second process is heating at constant pressure followed by cooling at constant volume. 
(i) Draw the path on the same Pv diagram, label it path B. (ii) Calculate the following: w, q, Du, Dh.
2.26 A 5-kg aluminum block sits in your lab, which is at 21ºC. You wish to increase the tempera-
ture of the block to 50ºC. How much heat in [J] must be supplied?
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2.27 A piston–cylinder assembly contains 3 kg of steam at a pressure of 100 bar and a temperature 
of 400ºC. It undergoes a process whereby it expands against a constant pressure of 20 bar, until 
the forces balance. During the process, the piston generates 748,740 [J] of work. Water is not an 
ideal gas under these conditions. Determine the fi nal temperature in K and the heat transferred 
(in [J]) during the process.
2.28 Consider a piston–cylinder assembly that contains 1 mole of ideal gas, A. The system is well 
insulated. Its initial volume is 10 L and initial pressure, 2 bar. The gas is allowed to expand against a 
constant external pressure of 1 bar until it reaches mechanical equilibrium. Is this a reversible process? 
What is the fi nal temperature of the system? How much work was obtained? For gas A: cV 5 15/2 2  R.
2.29 For the well-insulated piston–cylinder assembly containing 1 mole of ideal gas described in 
Problem 2.28, describe the process by which you can obtain the maximum work from the system. 
Calculate the value for the work. What is the fi nal temperature? Why is T lower than that calcu-
lated in Problem 2.28?
2.30 The insulated vessel shown below has two compartments separated by a membrane. On one 
side is 1 kg of steam at 400ºC and 200 bar. The other side is evacuated. The membrane ruptures, 
fi lling the entire volume. The fi nal pressure is 100 bar. Determine the fi nal temperature of the 
steam and the volume of the vessel.

Vacuum

Insulation

H2O

T1  = 400°C
P1  = 200 bar

2.31 A membrane divides a rigid, well-insulated 2 - m3 tank into two equal parts. The left side con-
tains an ideal gas 3cP 5 30 J/ 1mol K 2 4 at 10 bar and 300 K. The right side contains nothing; it is a 
vacuum. A small hole forms in the membrane, gas slowly leaks out from the left side, and eventually 
the temperature in the tank equalizes. What is the fi nal temperature? What is the fi nal pressure?
2.32 A well-insulated rigid container contains two 10 L compartments initially at 300 K. Each 
compartment contains argon gas. The compartments are separated by a well-insulated piston that 
is held in place by a restraining pin. One compartment is initially at a pressure of 1 bar and the 
other is at 5 bar. After the pin is removed, the piston moves, but no heat is transferred through the 
piston. Determine the fi nal temperature, pressure and volumes of each compartment. (Thanks to 
Prof. Frank Foulkes for providing the idea for this problem.)
2.33 You have 0.4 mol of gas A within a piston–cylinder assembly. The initial pressure is 20 bar, 
and the initial temperature is 675 K. The system then undergoes an adiabatic process where the 
piston expands against constant external pressure of 1 bar until the forces balance. 
(a) What is the fi nal temperature of the system?
(b) How much work is done during the process? 
You may assume gas A behaves as an ideal gas during this process. In checking the lab notes for 
data for gas A, you come across the following experiment that was performed on a closed system 
containing pure gas A within a rigid container. The container was connected to a heat source (in 
this case a resistance heater) and was otherwise well insulated. As a known amount of heat, Q, was 
provided through the resistive heater, the temperature, T, of the system was measured. The fol-
lowing data were collected for one mole of species A:

T [K] Q [J]

293 0

300 30.3

350 735.8
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400 1240.4

450 1933.9

500 2505.5

550 3248.0

600 3915.6

650 4498.1

700 5155.7

2.34 One kg of liquid n-octane 1C8H18 2  is placed in a closed rigid container with 50% excess air 
at 100°C and 1 bar. It undergoes an isothermal process in which it reacts and completely combusts 
to form CO2 (g) and H2O (g). State any assumptions that you make in solving this problem. Take 
the heat capacity of liquid n-octane to be:

cP 5 250 B J

mol K
R

(a) What is the fi nal system pressure?
(b) How much heat must be removed to keep the chamber at 100°C?
(c) Consider the same amount of C8H18 reacts with a stoichiometric amount of O2 and forms the 
same products, how do you think the value you calculated in part B will change? (More Q, Less Q, 
No change in Q). Conceptually explain your answer. No calculations! 
2.35 Repeat Problem 2.34, except consider now the combustion products contain CO (g) as well 
as CO2 (g) and H2O (g) with the ratio of CO2/CO produced being 4/1. All other conditions remain 
the same as in Problem 2.34.
2.36 Approximately half the dry mass of the human body consists of proteins. The backbone of a 
protein is a long polypeptide chain. In its natural or “native” state, the protein folds back on itself 
and is held together by a large number of intramolecular interactions, which include van der Waals 
interactions and hydrogen bonding (which we will discuss further in Chapter 4). The resulting 
structure formed by the protein is important for its function. Under conditions in which the inter-
actions are overcome, the protein unfolds and becomes “denatured.”

The heat capacity of a protein in solution can be measured using a system similar to the one 
schematically shown in Figure 2.10b. A plot of heat capacity versus temperature for a protein is 
shown in the following fi gure.
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Answer the following questions:
(a) Physically explain, where is the protein in its native state where is it denatured; what is the 
cause of the “hump”?
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(b) Estimate the enthalpy change associated with the denaturation process, Dhd. Explain what 
physical process this number represents. 
(c) What would cP versus T look like if denaturation occurred in a two-step process? 
2.37 Fuel cells are a promising alternative energy technology. They are based on producing 
energy by the following reaction:

H2 1g 2 1
1
2

 O2 1g 2 S H2O 1g 2

One type of fuel cell, the solid oxide fuel cell, operates at high temperatures. A solid oxide fuel cell 
is fed 0.32 mol/s H2 and 0.16 mol/s O2, and the reaction goes to completion. The heat loss rate 
(in W) is given by:

Q
#

5 27.1 1T 2 T0 2 2 4.2 3 1028 1T4 2 T4
0 2

where T is in K and T0 is the ambient temperature, which can be taken to be 293 K. (Thanks to 
Prof. Jason Keith for providing the information for this problem.)
(a) Explain physically what the fi rst and second terms on the right-hand side of the preceding heat 
rate equation represent.
(b) Calculate the temperature at which the rate of heat loss is equal to the rate of heat generation. 
2.38 Consider a piston–cylinder assembly containing 10 kg of water. Initially the gas has a pressure of 
20 bar and occupies a volume of 1.0 m3. Under these conditions, water does not behave as an ideal gas.
(a) The system now undergoes a reversible process in which it is compressed to 100 bar. The 
pressure–volume relationship is given by:

Pv1.5 5 constant

What is the fi nal temperature and internal energy of the system? Sketch this process on a Pv dia-
gram. Draw the area that represents the work for this process. Calculate the work done during this 
process. How much heat was exchanged?
(b) Consider a different process by which the system gets to the same final state as in part (a). In 
this case, a large block is placed on the piston, forcing it to compress. Sketch this process on a Pv 
diagram. Draw the area that represents the work for this process. Calculate the work done during 
this process. How much heat was exchanged?
(c) Can you think of a process by which the system could go from the initial state to the fi nal state 
with no net heat exchange with the surroundings? Describe such a process, putting in numerical 
values wherever possible, and sketch it on a Pv diagram.
2.39 Consider the piston–cylinder assembly containing a pure gas shown below. The initial vol-
ume of the gas is 0.05 m3, the initial pressure is 1 bar, and the cross-sectional area of the piston is 
0.1 m2. Initially the spring exerts no force on the very thin piston.

Process A Process B

A = 0.1 m2 A = 0.1 m2

m = 2040

kg PatmPatm

F =  − kx
F =  − kx

m = 1020
kg

m = 1020

kg
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(a) A block of mass m 5 2040 kg is then placed on the piston. The fi nal volume is 0.03 m3, and 
the fi nal pressure is 2 3 105 Pa. You may assume that the force exerted by the spring on the piston 
varies linearly with x and that the spring is very “tight,” so that the volume of the gas is never less 
than the fi nal volume. Precisely draw the process on a PV diagram, labeling it “process A.” Draw 
the area that represents the work for this process. What is the value of the work? [Hint: First fi nd 
the value for the spring constant, k.]
(b) Consider instead a process in which a block of mass 1020 kg is placed on the piston in the 
original initial state, and after the gas inside has been compressed another block of mass 1020 kg 
is placed on the piston. Draw the process on the same PV diagram, labeling it “process B.” Draw 
the area that represents the work for this process. What is the value of the work?
(c) Describe the process in which it will take the least amount of work to compress the piston. 
Draw the process on the same PV diagram, labeling it “process C.” Draw the area that represents 
the work for this process. What is the value of the work?
2.40 A rigid tank of volume 0.5 m3 is connected to a piston–cylinder assembly by a valve, as shown 
below. Both vessels contain pure water. They are immersed in a constant-temperature bath at 200ºC 
and 600 kPa. Consider the tank and the piston–cylinder assembly as the system and the constant-
temperature bath as the surroundings. Initially the valve is closed and both units are in equilibrium 
with the surroundings (the bath). The rigid tank contains saturated water with a quality of 95% (i.e., 
95% of the mass of water is vapor). The piston–cylinder assembly initially has a volume of 0.1 m3.

Temperature bath 

V = 0.5 m3 

Quality = 95%

Surroundings

Pure
H2O

H2O

P = 600 kPa
TB = 200°C

Vinitial = 0.1 m3

The valve is then opened. The water fl ows into the piston–cylinder until equilibrium is obtained. 
For this process, determine the work done, W, by the piston; the change in internal energy, DU, 
of the system; and the heat transferred, Q.
2.41 Consider the well-insulated, rigid container shown below. Two compartments, A and B, contain 
H2O and are separated by a thin metallic piston. Side A is 10 cm long. Side B is 50 cm long. The 
cross-sectional area is 0.1 m2. The left compartment is initially at 20 bar and 250ºC; the right com-
partment is initially at 10 bar and 700ºC. The piston is initially held in place by a latch. The latch is 
removed, and the piston moves until the pressure and temperature in the two compartments become 
equal. Determine the fi nal temperature, the fi nal pressure, and the distance that the piston moved.

Latch Thin metallic piston

50 cm10 cm

Well-insulated

wall
A

H2O
T1,A = 250°C
P1,A = 20 bar

B

H2O
T1,B = 700°C
P1,B = 10 bar
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2.42 When you open a can of soda (or beer), compressed CO2 expands irreversibly against the 
atmosphere as it bubbles up through the drink. Assume that the process is adiabatic and that the 
CO2 has an initial pressure of 3 bar. Take CO2 to be an ideal gas, with a constant heat capacity of 
cP 5 37 3J/ 1mol K 2 4. What is the fi nal temperature of the CO2 after it has reached atmospheric 
pressure?
2.43 Find the Pv work required to blow up a balloon to a diameter of 1 ft. Does the value you 
calculate account for all the work that is required? Explain.
2.44 You have a rigid container of volume 0.01 m3 that you wish to contain water at its critical 
point. To accomplish this task, you start with pure saturated water at 1 bar and heat it.
(a) How much water do you need?
(b) What is the quality of water that you need to begin this process?
(c) How much heat in [J] will it take?
2.45 In an attempt to save money to compensate for a budget shortfall, it has been determined 
that the steam in ChE Hall will be shut down at 6:00 P.M. and turned back on at 6:00 A.M., much 
to the chagrin of a busy class of chemical engineers who have an outrageously long computer pro-
ject due the following day. The circulation fans will stay on, however, leaving the entire building at 
approximately the same temperature. Well, things aren’t going as quickly as you might have hoped 
and it is getting cold in the computer lab. You look at your watch; it is already 10:00 P.M. and the 
temperature has already fallen halfway from the comfortable 22ºC it was maintained at during 
the day to the 2ºC of the outside temperature (i.e., the temperature is 12ºC at 10:00 P.M.). Seeing 
as you will probably be there all night and you need a diversion, you decide to estimate what the 
temperature will be at 6:00 A.M. You may assume the outside temperature stays constant at 2ºC 
from 6:00 P.M. to 6:00 A.M. You may take the heat transfer to be given by the following expression:

q 5 h 1T 2 Tsurr 2

where h is a constant.
(a) Plot what you think the temperature will be as a function of time. Explain.
(b) Calculate the temperature at 6:00 A.M.
2.46 Steam at 6 MPa, 400ºC is fl owing in a pipe. Connected to this pipe through a valve is a tank 
of volume 0.4 m3. This tank initially contains saturated water vapor at 1 MPa. The valve is opened 
and the tank fi lls with steam until the pressure is 6 MPa, and then the valve is closed. The process 
takes place adiabatically. Determine the temperature in the tank right as the valve is closed.
2.47 Consider fi lling a cylinder of compressed argon from a high-pressure supply line as shown 
below. Before fi lling, the cylinder contains 10 bar of argon at room temperature. The valve is then 
opened, exposing the tank to a 50 bar line at room temperature until the pressure of the cylinder

Argon 50 bar

Pinitial = 10 bar
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120 ► Chapter 2. The First Law of Thermodynamics

reaches 50 bar. The valve is then closed. For argon take cP 5 15/2 2R and the molecular weight to 
be 40 kg/kmol. You may use the ideal gas model.
(a) What is the temperature right after the valve is closed?
(b) If the cylinder sits in storage for a long time, how much heat is transferred (in kJ/kg)?
(c) What is the pressure of the cylinder when it is shipped (after it was stored for a long time)?
2.48 A well-insulated piston–cylinder assembly is connected to a CO2 supply line by a valve, as 
shown below. Initially there is no CO2 in the piston–cylinder assembly. The valve is then opened, 
and CO2 fl ows in. What is the temperature of the CO2 when the volume inside the piston– cylinder 
assembly reaches 0.1 m3? How much CO2 has entered the tank? Take CO2 to be an ideal gas, with 
a constant heat capacity of cP 5 37 3J/ 1mol K 2 4.

Valve

CO2 P = 3 bar, T = 283 K

PE = 1 bar

2.49 A rigid tank has a volume of 0.01 m3. It initially contains saturated water at a temperature of 
200ºC and a quality of 0.4. The top of the tank contains a pressure-regulating valve that maintains 
the vapor at constant pressure. This system undergoes a process whereby it is heated until all the 
liquid vaporizes. How much heat (in [kJ]) is required? You may assume that there is no pressure 
drop in the exit line.

Value maintains

pressure in system

constant

l

T1 =  200°C
x1 =  0.4

V =  0.01 m3

v

I

2.50 You wish to measure the temperature and pressure of steam fl owing in a pipe. To do this task, 
you connect a well-insulated tank of volume 0.4 m3 to this pipe through a valve. This tank initially 
is at vacuum. The valve is opened, and the tank fi lls with steam until the pressure is 9 MPa. At this 
point the pressure of the pipe and tank are equal, and no more steam fl ows through the valve. 
The valve is then closed. The temperature right after the valve is closed is measured to be 800ºC. 
The process takes place adiabatically. Determine the temperature (in [K]) of the steam fl owing 
in the pipe. You may assume the steam in the pipe stays at the same temperature and pressure 
throughout this process.
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Steam

State 2State 1

Initially
vacuum

P  =  9 MPa

H2O
P2 =  9 MPa
T2 =  800°C

T  =  ?
Steam

P  =  9 MPa
T  =  ?

2.51 An ideal gas undergoes an adiabatic, reversible expansion process in a closed system:
(a) If cp is constant, show that:

T2

T1
5 ¢P2

P1
≤

k/k21

(b) Determine the relationship between temperatures and pressures for an ideal gas if the heat 
capacity is given by:

cP 5 A 1 BT 1 CT2

2.52 Methane vapor enters a valve at 3 bar and 25°C and leaves at 1 bar. If the methane under-
goes a throttling process, what is the exit temperature, in °C? Under these conditions, you may 
assume methane is an ideal gas.
2.53 You wish to heat a stream of CO2 at pressure 1 bar, fl owing at 10 mol/s, from 150°C to 300°C 
in a countercurrent heat exchanger. To do this task, you have been asked to use a stream of high-
pressure steam available at 40 bar and 400°C, as shown in the following fi gure. You may assume 
the pressure of each stream stays constant as it fl ows through the heat exchanger (i.e., neglect the 
pressure drop of the fl owing streams). The entire system is well insulated, as shown. It is undesir-
able for the steam to condense in the heat exchanger tubes. What is the minimum volumetric fl ow 
rate, in m3/s, required of the inlet steam to keep it from condensing at the exit? 

Heat Exchanger

Insulation

Steam Steam

CO2CO2

Tin = 150 [°C]
Tout = 300 [°C]

Pin = 1 [bar]

nco2 = 10
mol

s

Tin = 400 [°C]

Pin = 40 [bar]

2.54 At steady-state, an ideal gas enters a compressor with a mass fl ow rate of 10.0 [mol/s]. The 
inlet pressure is 1.00 bar and the inlet temperature is 25.0°C. The gas exits at 25.0 bar and 65.0°C. 
The ideal gas heat capacity is given by:

cP

R
5 3.60 1 0.500 3 1023

 T

where T is in [K]. 
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(a) Assuming the compressor is adiabatic, calculate the power (in kW) required. 
(b) In the real process, there is a fi nite amount of heat transfer. If the compressor operates 
between the same initial state and fi nal state as in Part A, will the actual power required be greater 
than, equal to, or less than that calculated in Part A? Explain.
2.55 Answer the following questions:
(a) Argon gas enters a heat exchanger at a volumetric flow rate of 4.0 3m3/min 4, a temperature of 
100°C and a pressure of 2 bar. It leaves at 200°C and 1 bar. Compute the heat supplied, in W. You 
may assume ideal gas behavior.
(b) Isobutane gas enters a heat exchanger at a fl ow rate of 3.0 3m3/min 4, a temperature of 100°C 
and a pressure of 1.5 bar. It leaves at 200°C and 1 bar. Compute the heat supplied, in W. You may 
assume ideal gas behavior.
(c) A stream of argon gas fl owing at 4.0 3m3/min 4, 100°C and 2 bar is mixed at steady-state with 
a second stream containing isobutane gas fl owing at 3.0 3m3/min 4, 100°C and 1.5 bar. The gas 
mixture exits at 200°C and 1 bar. Compute the heat supplied, in W. You may assume ideal gas 
behavior.
2.56 A stream of pure liquid benzene fl owing at a rate of 10 mol/s at 40°C and 10 bar enters a 
vessel where it is fl ashed. At steady-state, 6 mol/s of the benzene leaves as vapor, and the rest 
leaves as liquid. The fl ash vessel operates at a pressure of 5 bar; determine the rate of heat 
input required (in W). At 1 atm, benzene boils at 80.1°C and has an enthalpy of vaporization of 
30,765 J/mol. 
2.57 In a biological system, N2 is often bubbled through a fermentor to maintain anaerobic con-
ditions. As the N2 bubbles through the fermentor, the gas strips water from the liquid. Consider 
an isothermal continuous fermentation process operated at 30°C, where 0.5 g/min of water are 
evaporated. 
(a) Does heat need to be added of removed to compensate for the water evaporation?
(b) What is the resulting heat load on the fermentor?
2.58 An electric generator coupled to a waterfall produces an average electric power output of 
5 kW. The power is used to charge a storage battery. Heat transfer from the battery occurs at a 
constant rate of 1 kW.
(a) Determine the total amount of energy stored in the battery, (in [kJ]) in 10 hours of operation.
(b) If the water fl ow rate is 200 kg/s and conversion of kinetic energy to electric energy has an 
effi ciency of 50%, what is the average velocity (in m/s) of the water? Where does the rest of the 
energy go?
2.59 Air enters a well-insulated turbine operating at steady, state with negligible velocity at 
4 MPa, 300ºC. The air expands to an exit pressure of 100 kPa. The exit velocity and temperature 
are 90 m/s and 100ºC, respectively. The diameter of the exit is 0.6 m. Determine the power 
developed by the turbine (in kW). You may assume air behaves like an ideal gas throughout the 
process.

Turbine

Air in

Air out

V1 = 0

P1 = 4 MPa

T1 = 300°C
V2 = 90 m/s

P2 = 100 kPa

T2 = 100°C

2.60 Ethylene 1C2H4 2  at 100ºC passes through a heater and emerges at 200ºC. Compute the 
heat supplied into the unit per mole of ethylene that passes through. You may assume ideal gas 
behavior.
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2.61 Propane at 350ºC and 600 cm3/mol is expanded in a turbine. The exhaust temperature is 
308ºC, and the exhaust pressure is atmospheric. What is the work obtained? You may assume ideal 
gas behavior.
2.62 Consider 20 mol/s of CO fl owing through a heat exchanger at 100ºC and 0.5 bar.
(a) At what rate must heat be added (in kW) to raise the stream to 500ºC?
(b) Consider the same molar fl ow rate of n-hexane and the same rate of heat input calculated 
in part (a). Without doing any calculations, explain whether you expect the fi nal temperature of 
n-hexane to be greater or less than 500ºC.
2.63 Steam enters a well-insulated nozzle at 10 bar and 200ºC. It exits as saturated vapor at 100 kPa. 
The mass fl ow rate is 1 kg/s. What is the steady-state exit velocity? What is the outlet cross-sectional 
area?
2.64 Propane enters a nozzle at 5 bar and 200ºC. It exits at a velocity of 500 m/s. At steady-state, 
what is the exit temperature? Assume ideal gas conditions.
2.65 Consider a diffuser operating at steady-state with an outlet twice the area of the inlet. Air 
fl ows in with a velocity of 300 m/s, a pressure of 1 bar, and a temperature of 70ºC. The outlet is at 
1.5 bar. What is the exit temperature? What is the exit velocity?
2.66 A stream of air is compressed in an adiabatic, steady-state fl ow process at 50 mol/s. The inlet 
is at 300 K and 1 bar. The outlet is at 10 bar. Estimate the minimum power that the compressor 
uses. You may assume air behaves as an ideal gas.

2.67 Sulfur dioxide 1SO2 2  with a volumetric fl ow rate of 5000 cm3/s at 1 bar and 100ºC is mixed 
with a second SO2 stream fl owing at 2500 cm3/s at 2 bar and 20ºC. The process occurs at steady-
state. You may assume ideal gas behavior. For SO2, take the heat capacity at constant pressure 
to be:

cP

R
5 3.267 1 5.324 3 1023T

(a) What is the molar fl ow rate of the exit stream?
(b) What is the temperature of the exit stream?
2.68 A mass fl ow controller (MFC) is used to accurately control the molar fl ow rate of gases into 
a system. A schematic of an MFC is shown below. It consists of a main tube and a sensor tube, 
to which a constant fraction of the fl owing gas is diverted. In the sensor tube, a constant amount 
of heat is provided to the heating coil. The temperature difference is measured by upstream and 
downstream temperature sensors, as shown. A control valve can then be opened or closed to 
ensure the desired fl ow rate.

ElectronicsPower
supply

Valve control

Gas outGas in

Inlet Sensor tube Main tube Valve Outlet

Upstream
temperature

sensor (T1)

Downstream

temperature
sensor (T2)

(a) Flow rates are typically reported as standard cubic centimeters per minute (SCCM), which 
represents the volume the gas would have at a “standard” pressure of 1.0135 bar and a “standard” 
temperature of 0ºC. What molar fl ow rate (in [mol/s]), does 1 SCCM correspond to?
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(b) Consider controlling the fl ow of N2. Develop an equation for the molar fl ow rate of N2 in 
SCCM in terms of the measured temperature difference, the heat input to the heating coil, and 
the fraction of gas diverted to the sensor tube. State the assumptions that you make.
(c) Instead of recalibrating the MFC for any gas that is used, conversion factors allow you to cor-
rect the MFC readout for different gases. Consider controlling SiH4 instead of N2. What conver-
sion factor must be applied?
2.69 Using data from the steam tables, come up with an expression for the ideal gas heat capacity 
of H2O in the form:

cv 5 A 1 BT

Compare your answer to the values in Appendix A.2.
2.70 Steam at 8 MPa and 500ºC fl ows through a throttling device, where it exits at 100 kPa. What 
is the exit temperature?
2.71 A monatomic, ideal gas expands reversibly from 500 kPa and 300 K to 100 kPa in a piston–
cylinder assembly. Calculate the work done if this process is (a) isothermal; (b) adiabatic.
2.72 Compare the change in internal energy for the following two processes: 
(a) Water is heated from its freezing point to its boiling point at 1 atm.
(b) Saturated liquid water is vaporized at 1 atm.
Repeat for the change in enthalpy.
2.73 Calculate the values of the heat capacity of Ar, O2, and NH3 at 300 K. Account for their 
relative magnitudes in terms of the three modes (translational, rotational, and vibrational) in which 
molecules can exhibit kinetic energy.
2.74 Two kilograms of water, initially saturated liquid at 10 kPa, are heated to saturated vapor 
while the pressure is maintained constant. Determine the work and the heat transfer for the pro-
cess, each in kJ.
2.75 A rigid vessel contains 5 kg of saturated liquid water and 0.5 kg of saturated vapor at 10 kPa. 
What amount of heat must be transferred to the system to evaporate all the liquid?
2.76 Consider the cooling of a glass of tap water by the addition of ice. The glass contains 400 ml 
of tap water at room temperature, to which 100 gm of ice is added. Assume the glass is adiabatic 
and that thermal equilibrium is obtained. The ice is originally at 210°C when removed from the
freezer and put in the glass. For ice, Dhfus 5 26.0 3kJ/mol 4.
(a) What is the fi nal temperature?
(b) What % of the cooling is achieved by latent heat (the melting of ice)?
2.77 One mole of saturated liquid propane and 1 mole of saturated vapor are contained in a rigid 
container at 0ºC and 4.68 bar. How much heat must be supplied to evaporate all of the propane. 
At 0ºC,

Dhvap 5 16.66 3kJ/mol 4

You may treat propane as an ideal gas.
2.78 Calculate the enthalpy of reaction at 298 K for the following reactions: 
(a) CH4 1g 2 1 2O2 1g 2 S CO2 1g 2 1 2H2O 1g 2
(b) CH4 1g 2 1 2O2 1g 2 S CO2 1g 2 1 2H2O 1 l 2
(c) CH4 1g 2 1 H2O 1g 2 S CO 1g 2 1 3H2 1g 2
(d) CO 1g 2 1 H2O 1g 2 S CO2 1g 2 1 H2 1g 2
(e) 4NH3 1g 2 1 5O2 1g 2 S 4NO 1g 2 1 6H2O 1g 2
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2.79 Calculate the adiabatic fl ame temperature of acetylene gas at a pressure of 1 bar under 
the following conditions. The reactants are initially at 298 K. Assume that the acetylene reacts 
 completely to form CO2 and H2O:
(a) It is combusted in a stoichiometric mixture of O2.
(b) It is combusted in a stoichiometric mixture of air.
(c) It is combusted with twice the amount of air as needed stoichiometrically.
2.80 Calculate the adiabatic fl ame temperature of the following species in a stoichiometric mix-
ture of air at a pressure of 1 bar. The reactants are initially at 298 K. Assume that they react com-
pletely to form CO2 and H2O. Compare the answers and comment.
(a) propane
(b) butane
(c) pentane
2.81 In an experiment, methane is burned with the theoretically required amount of oxygen 
for complete combustion. Because of faulty operation of the adiabatic burner, the reaction 
does not proceed to completion. You may assume all of the methane that does react forms H2O 
and CO2. If the reactants are fed into the reactor at 25ºC and 1 bar and the exiting gases leave 
at 1000ºC and 1 bar, determine the percentage of methane that passes through the reactor 
unburned.
2.82 The following data are from a system that undergoes a thermodynamic cycle among 
three states. Fill in the missing values for DU, Q, and W. Is this a power cycle or a refrigera-
tion cycle?

Process DU 3kJ 4 W [kJ] Q [kJ]

State 1 to 2 350

State 2 to 3 800 800

State 3 to 1 2750 2500

2.83 One mole of air undergoes a Carnot cycle. The hot reservoir is at 800ºC and the cold reser-
voir is at 25ºC. The pressure ranges between 0.2 bar and 60 bar. Determine the net work produced 
and the effi ciency of the cycle.
2.83 One mole of air undergoes a Carnot refrigeration cycle. The hot reservoir is at 25ºC and the 
cold reservoir is at 215+C. The pressure ranges between 0.2 bar and 1 bar. Determine the coef-
fi cient of performance.
2.84 A Rankine cycle is shown below. This cycle is used to generate power with water as the 
working fl uid. It consists of four unit processes in a thermodynamic cycle: a turbine, a condenser, 
a compressor, and a boiler. The state of each stream is labeled on the plot and defi ned in the table 
below. The mass fl ow rate of water is 100 kg/s. Kinetic and potential energy effects are negligible. 
Answer the following questions:

State 1 2 3 4

T[ºC] 520  80

P [bar] 100 0.075 0.075 100

Quality 90% sat. 
vapor

sat. 
liquid
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Fuel
air

Turbine

Rankine cycle

1

4

3

Condenser

Compressor

WC

WS

QH

QCBoiler
Cooling
water

2

(a) Sketch all four processes on a Pv diagram. Include the vapor–liquid dome.
(b) From the plot above, explain why the net power is negative.
(c) Determine the heat-transfer rates in the boiler, Q

#
H, and the condenser, Q

#
C.

(d) Determine the net power developed in the cycle.
(e) What is the thermal effi ciency, h of the cycle?

h ;
net power delivered by the plant

rate of heat tranfer in the boiler
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►CHAPTER

127

Entropy and the Second 
Law of Thermodynamics

Learning Objectives

To demonstrate mastery of the material in Chapter 3, you should be able to:

 ► State and illustrate by example the second law of thermodynamics—that 

is, entropy analysis—and its basic concepts, including directionality, 

reversibility and irreversibility, and effi ciency.

 ► Write the integral and differential forms of the second law for (1) closed 

systems and (2) open systems, under steady-state and transient (uniform-

state) conditions. Convert these equations between intensive and extensive 

forms and between mass-based and molar forms.

 ► Apply the second law of thermodynamics to identify, formulate, and solve 

engineering problems for isothermal and adiabatic processes in the following 

systems: rigid tank, expansion/compression in a piston—cylinder assembly, 

nozzle, diffuser, turbine, pump, heat exchanger, throttling device, fi lling or 

emptying of a tank, and vapor compression power and refrigeration cycles.

 ► State the assumptions used to develop the Bernoulli equation, and apply this 

equation when appropriate to solve engineering problems.

 ► Develop a hypothetical reversible path to calculate the entropy change 

between any two states. Develop the expression for the entropy change of 

an ideal gas, a liquid, or a solid when the heat capacity is known.

 ► Calculate the entropy difference between two states if you are given either 

heat capacity data or property tables. Calculate entropy changes for species 

undergoing phase change or chemical reaction.

 ► Describe how a vapor-compression power cycle produces power and a 

refrigeration cycle achieves refrigeration. Identify the key issues in selecting the 

working fl uid. Solve for the net power obtained and the effi ciency of a reversible 

power cycle and the coeffi cient of performance of a reversible refrigeration 

cycle. Correct those values for real systems by using isentropic effi ciencies.

 ► Describe the context in which exergy analysis is commonly used. Calculate 

the exergy of a species in a system or the exthalpy of a fl owing stream if 

you are given either heat capacity data or property tables. Calculate the ideal 

work, useful work, and lost work for a process.

 ► Describe the molecular basis for entropy, including its relation to spatial 

and energetic confi gurations. Relate macroscopic directional processes to 

molecular mixing.

3
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 ► 3.1  DIRECTIONALITY OF PROCESSES/SPONTANEITY
Thermodynamics rests largely on the consolidation of many observations of nature into 
two fundamental postulates or laws. Chapter 2 addressed the fi rst law—the energy of 
the universe is conserved. We cannot prove this statement, but based on over a hundred 
years of observation, we believe it to be true. In order to use this law quantitatively—
that is, to make numerical predictions about a system—we cast it in terms of a thermo-
dynamic property: internal energy, u. Likewise, the second law summarizes another set 
of observations about nature. We will see that to quantify the second law, we need to 
use a different thermodynamic property: entropy, s. Like internal energy, entropy is a 
conceptual property that allows us to quantify a “law” of nature and solve engineering 
problems. This chapter examines the observations on which the second law is based; 
explores how the property s quantifi es these observations; illustrates ways we can use 
the second law to make numerical predictions about closed systems, open systems, and 
thermodynamic cycles; and discusses the molecular basis of entropy.

We fi rst examine several examples of the type of observation on which the second 
law is based—the directionality of processes. These examples are taken from scenarios 
with which you are probably familiar. First, consider the tank of compressed gas shown 
in Figure 3.1a as the system. It is initially in state 1. The surroundings are at atmospheric 
temperature and pressure. When the valve is opened, gas will spontaneously fl ow from 
the system to the surroundings until the pressure in the tank reaches 1 atm. With time, 
the system reaches state 2, where the pressure inside the cylinder is equal to the pressure 
outside. During this process, energy is conserved. Hence, if we consider the fi rst law, the 
energy of the universe is identical in each of the two states. However, there is clearly a 
direction in which this process occurs spontaneously. It would be absurd to declare that 
the gas will spontaneously fl ow from the atmosphere (state 2) into the cylinder (state 1). 
Since the driving force that pushes the system from state 1 to state 2 is pressure, we label 
this as an example of mechanical directionality.

Similarly, there is a clear directionality if we place a high-temperature block in a 
room at 25ºC, as illustrated in Figure 3.1b. With time, the block cools to room tem-
perature (state 2). Again, the system will spontaneously go from state 1 to state 2, but 
it will not go spontaneously from state 2 to state 1. Again, energy is conserved. Since a 
temperature gradient provides the driving force for this process, we label this example 
“thermal directionality”. Figure 3.1c illustrates a system in which two different gases, 
gas A and gas B, are initially separated by a diaphragm in state 1. Upon removing the 
diaphragm, the gases will eventually mix completely, obtaining state 2. Again, we do not 
observe a mixed gas to spontaneously separate into pure species. This provides an exam-
ple of chemical directionality.

In all three examples, the fi rst law says nothing about which direction the system 
spontaneously will go. However, there is a clear directionality associated with each pro-
cess. Assigning a direction to these processes is easy, since we have experience with 
them. In other cases, the direction in which a process will go may not be so obvious. For 
example, consider the following scenario: An excess amount of zinc has been found in 
the groundwater near the former site of a metal-plating plant. You have been tasked with 
developing a process to clean up the groundwater. It has been suggested to form a zinc 
precipitate through reaction with lime, Ca 1OH 2 2. Is this a reasonable approach? How 
much Zn can you expect to remove? Another way to phrase these questions is, “To what 
extent can zinc react with lime so that it does not violate my experience about the direc-
tionality of nature?” As we will soon see, the second law of thermodynamics provides a 
quantitative statement about the directionality of nature and allows us to predict which 
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Figure 3.1 Examples of directionality in common processes observed in engineering. (a) The 
expansion of a compressed gas illustrates mechanical directionality. (b) The cooling of a hot 
block exhibits thermal directionality. (c) The mixing of gas A and gas B represents chemical 
directionality.
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(a ) Mechanical Directionality

(b ) Thermal Directionality

(c ) Chemical Directionality
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Tatm

way a process, such as the one described above, will spontaneously go. Thus, with knowl-
edge of the second law of thermodynamics, you can evaluate whether the proposed solu-
tion to clean up groundwater is possible.

► EXERCISE  In 5 minutes, come up with as many examples as you can that illustrate the directionality 
of nature.

From one perspective, the second law of thermodynamics addresses directionality. From 
another, it is about the reversibility and irreversibility of processes. In this section, we 
review examples of when mechanically and thermally driven processes are reversible and 
when they are irreversible.

 ► 3.2  REVERSIBLE AND IRREVERSIBLE PROCESSES (REVISITED) 
AND THEIR RELATIONSHIP TO DIRECTIONALITY
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Process I: Mechanical Process
Let’s review the mechanical process from which we learned about reversibility and 
 irreversibility. In Section 2.3, we considered a piston–cylinder assembly that underwent 
an isothermal expansion/compression, as shown in Figure 3.2a. When we remove the 
1020-kg block, as depicted on the left, the piston expands irreversibly. Likewise, when 
we replace the block on the piston, it compresses irreversibly. In this case, the driving 
force for change is a pressure difference. The processes are illustrated on the Pv curve 
at the bottom. Notice that the irreversible processes have a defi nite directionality. The 
arrows that describe the expansion process do not overlap with those that describe the 
compression process. As we saw, the work needed to compress the assembly was greater 
than the work obtained from expanding it and is represented by a very different direc-
tional process (with different arrows and different shaded area on the Pv curve). The 
irreversible expansion and compression processes are distinct and different.

The reversible process is executed by changing the force that acts on the piston by 
differential amounts, as shown to the right. In this case, the expansion and the compres-
sion curves on the Pv diagram meet. The reversible process can be reversed at any point 
in the process and, therefore, does not have a directionality like those real processes 
illustrated in Section 3.1. Remember, a reversible process is an idealization and repre-
sents the limiting case where a process is perfectly executed. In terms of work, a revers-
ible process represents the upper limit of the work we get out of the system for expansion 

Figure 3.2 Illustration of irreversible and reversible processes. (a) Mechanical process of iso-
thermal expansion/compression. (b) Thermal process in which work can be obtained from a Car-
not engine.
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and the lower limit for the work we must put in for compression. The reversible process 
represents the best we can do and serves as a useful reference to which we can compare 
real, irreversible processes. Additionally, for a reversible process the work obtained in 
expansion is exactly the same as that required in compression. In short, the reversible 
expansion and compression processes follow equivalent paths.

Process II: Thermal Heat Engine
In Section 2.9, we learned how to execute a Carnot cycle. This represents the thermal 
analogy to the mechanical process described above. In this case, the driving force for 
change is a temperature difference. Consider the two thermal reservoirs shown in Fig-
ure 3.2b. We know that energy will spontaneously transfer from the hot body to the cold 
body in the form of heat. In the irreversible process illustrated on the left-hand side, an 
amount of heat, Q, fl ows spontaneously from the hot reservoir to the cold reservoir, and 
we get no work out. Again, this process is directional in that energy will not fl ow sponta-
neously from the cold reservoir to the hot reservoir. If instead we insert a Carnot engine 
between these two reservoirs, we can use a reversible transport of energy via heat to 
obtain work. Again, the reversible process (the Carnot heat engine) represents the maxi-
mum work we can get out of the system. The process can also be reversed. By reversing 
the work and putting it into the Carnot cycle, we transfer the heat from the cold body to 
the hot body in the form of a Carnot refrigerator.

In an intermediate case to those discussed above, we place an irreversible (real) heat 
engine between these two reservoirs. In this case, the work obtained would be less than 
that provided by the reversible Carnot cycle. Similarly, a real refrigeration cycle would 
not represent the reverse of the real heat engine but rather would require more work to 
get a desired level of refrigeration than the corresponding Carnot refrigerator.

Let’s summarize this discussion:

 • Irreversible processes are distinct and show directionality.
 • Reversible processes do not show directionality and represent the best that we 

can do (e.g., the maximum work we get out or minimum work we put in).

In each example in this section, we can see the driving force for an irreversible process 
and the direction that each process wants to go. In each example, we see how to make 
the process reversible so it produces the maximum work (or consumes the minimum). 
In more complex systems, these effects may not be as obvious. In such cases, we look 
for answers using the second law of thermodynamics and the related property, entropy.

 ► 3.3  ENTROPY, THE THERMODYNAMIC PROPERTY
We would like to generalize our experience with the directionality of nature (and the 
limits of reversibility) into a quantitative statement that allows us to do calculations and 
draw conclusions about what is possible, what is not possible, and whether we are close 
to or far away from the idealization represented by a reversible process. Indeed, it would 
be nice if we had a thermodynamic property (i.e., a state function) which would help us 
to quantify directionality, just as internal energy, u, was central in quantifying the con-
servation of energy (the fi rst law of thermodynamics). It turns out the thermodynamic 
property entropy, s, allows us to accomplish this goal.

Three historical milestones have established three corresponding distinct contex-
tual paradigms for entropy. First, the property entropy was conceived by Rudolph Clau-
sius in 1865, based largely on Sadi Carnot’s work on maximizing the effi ciency of cyclic 

3.3  Entropy, the Thermodynamic Property ◄ 131
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processes. He coined the term entropy from the Greek word meaning “transformation,” 
deliberately choosing a word that sounded like energy to emphasize its equal impor-
tance. Clausius related entropy to reversible heat transfer and temperature. This defi ni-
tion is the basis for entropy in classical thermodynamics and will be presented below.

In 1877, Ludwig Boltzmann conceptualized entropy in terms of the behavior of 
molecules. This formulation is the basis of statistical mechanics. In this context, entropy 
is related, in the most general sense, to molecular probability and statistics.1 States that 
can exhibit a larger number of different molecular configurations are more probable and 
have greater entropy. Since macroscopic systems contain such a large number of atoms, 
knowledge of the probable behavior of the molecules in a system leads to knowledge 
about how the system will behave as a whole. Based on this view, entropy is often inter-
preted as the degree of disorder in a system, or, as J. Willard Gibbs prefers, the “mixed-
up-ness.”2 We will learn more about the molecular origins of entropy in Section 3.10.

According to the molecular concept of entropy, there are more molecular confi gu-
rations accessible when a system has high entropy and is disordered than when it has 
low entropy and is more ordered. We can view this axiom in terms of information; since 
there are more possibilities from which to choose in the disordered state, we have less of 
a chance of guessing the precise molecular confi guration of the disordered state as com-
pared to its more ordered counterpart. In analogy, Claude Shannon in 1948 conceived 
of “entropy” associated with missing information and thus gave birth to the fi eld of infor-
mation theory. In information theory, “entropy” is seen as a measure of the uncertainty 
of the true content of a message. In fact, Shannon mathematically defi ned information 
“entropy” for bits of information using the identical formula that Boltzmann applied to 
molecular confi gurations. Similarly, “entropy”-based arguments have expanded into such 
diverse fi elds as economics, theology, sociology, art, and philosophy.

We can gain some insight about how entropy is defi ned for the macroscopic systems 
in classical thermodynamics by borrowing from Boltzmann’s molecular views, where 
entropy can be seen as the degree of disorder. Consider a closed system where energy 
transfer can occur by work or by heat. Energy transfer by work occurs in a very directed 
way. For example, in the rotation of a shaft or the movement of a piston, the interaction of 
the system with the surroundings occurs via a boundary that moves in a specifi c and well-
defi ned direction; that is, all the molecules in the shaft or the piston have the same (angu-
lar) speed and are moving in the same direction. Similarly, electrical work is achieved by 
directed fl ow of electrons in a wire. On the other hand, energy transfer via heat is driven 
by temperature, which can be related to the random motion of molecules and therefore 
can be related to a “disordered” form of energy transfer. In Boltzmann’s terms, the effect 
of energy transfer by work is directed and ordered and should not affect the entropy. 
Conversely, we should be able to relate entropy to the disordered energy transfer by heat.

Correspondingly, the thermodynamic property entropy, s, is defined in terms of heat 
absorbed during a reversible process. In differential form, the change in entropy of a 
substance undergoing a reversible process is equal to the incremental heat it absorbs 
divided by the temperature:

 ds ;
dqrev

T
 (3.1)

1 In fact, the equation for his statistical based entropy, S 5 k log V, serves as Boltzmann’s epitaph and is engraved 
on his tombstone. In the equation above, V is the number of distinct, different molecular confi gurations to 
which a macroscopic state has access.
2 We will use the common term disordered to represent what may be more objectively viewed as greater spread 
or dispersion.
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We can integrate Equation (3.1) between the initial and fi nal states to give:

 Ds 5 3

final

initial

dqrev

T
 (3.2)

For entropy to be considered a thermodynamic property, the entropy change from the 
initial state to the fi nal state must have the same value no matter what path is taken. 
Since the defi nition in Equation (3.2) is written in terms of the path-dependent property 
qrev, the path independence of s is not obvious. However, we can logically show that 
entropy is indeed a thermodynamic property, independent of path, and that it is defi ned 
by Equation (3.1). Thus, any process that goes between the initial state and the fi nal state 
has the entropy defi ned by Equation (3.2), be it reversible or irreversible. The proof 
can be demonstrated either by using arbitrarily small Carnot cycles3 or, more formally, 
through the general examination of reversible and adiabatic surfaces using the principle 
of Caratheodory.4 Those interested in the specifi c details of these arguments are referred 
to the sources cited.

The property s quantitatively tells us about the directionality of nature, reversibil-
ity vs. irreversibility, and the maximum work that we can get out of a process (or the 
minimum work we need to put in). We cannot deduce this supposition directly from the 
defi nition in Equation (3.1), but rather, as we shall see, it just works out that way! Specif-
ically, we will need to determine the entropy change of the universe for a particular 
process of interest. Recall that the universe is comprised of the system together with the 
surroundings.

In this section, we will illustrate how the entropy change of the universe relates to 
directionality and reversibility through two cases: adiabatic expansion/compression (case I), 
and thermodynamic cycles (case II). For each case, we will look both at the reversible 
processes that represent the best we can do and at the corresponding irre versible pro-
cesses. These cases provide an interesting juxtaposition. In case I, the entropy change to 
the surroundings is always zero; therefore, we can determine the entropy change of the 
universe solely by examining the entropy change of the system. Conversely, in case II, the 
entropy change to the system is always zero, allowing us to examine the entropy change 
of the universe through the entropy change of the surroundings. The conclusions from 
these two cases will be generalized in Section 3.4 to form the second law of thermo-
dynamics. In Example 3.1, we verify the second law for a set of isothermal expansion/
compression processes where both the entropy change of the system and that of the sur-
roundings need to be taken into account.

Case I: Adiabatic Expansion/Compression
To illustrate how entropy tells us about the directionality of nature, we fi rst pick a set of 
four mechanical processes similar to those described in Figure 3.2a: (1) reversible expan-
sion, (2) irreversible expansion, (3) reversible compression, and (4) irreversible compres-
sion. In this case, however, we choose adiabatic rather than isothermal processes. The 
adiabatic process represents the limit of no heat transfer between the system and the 

3 See, e.g., Kenneth Denbigh, The Principles of Chemical Equilibrium, 3rd ed. (New York: Cambridge 
University Press, 1971).
4 See, e.g., Adrian Bejan, Advanced Engineering Thermodynamics, 2nd ed. (New York: Wiley, 1997).
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surroundings. If you look at Equation (3.1), you might induce why an adiabatic process 
was chosen for this fi rst illustrative case. In Example 3.1, we show that identical conclu-
sions are formed for isothermal expansion/compression processes, which represent the 
limit of rapid heat transfer. As in our discussion of Figure 3.2, the reversible expansion 
gives the most work we can get out of the system while the irreversible expansion has a 
defi nite directionality. Similarly for compression, the reversible process defi nes the least 
amount of work that we must put into the system while the irreversible compression 
process has a defi nite directionality.

For each process, we will calculate three forms of entropy: Dssys, the entropy change 
of the system (note that we will often omit the subscript “sys” and write it as Ds); Dssurr, 
the entropy change of the surroundings; and Dsuniv, the entropy change of the universe. 
These three forms are related by:

 Dsuniv 5 Dssys 1 Dssurr (3.3) 

First consider a reversible, adiabatic expansion of a piston–cylinder assembly in 
which the system expands from state 1 to state 2. This process is marked “reversible” 
on the PT diagram shown in Figure 3.3. The entropy change for the system is given by:

Ds 5 s2 2 s1 5 3

final

initial

dqrev

T
5 0

since there is no heat transfer. This process is termed isentropic. For a reversible, adi-
abatic process, the entropy of the system remains constant. The entropy change for the 
surroundings is zero, since there is no heat transferred to the surroundings. (For closed 
systems, all adiabatic processes, reversible or irreversible, result in Dssurr 5 0, since
qsurr 5 0). Inspection of Equation (3.3) shows that the entropy change of the universe is 
also zero. The changes in entropy for the reversible, adiabatic expansion are summarized 
in the left column of Table 3.1.

An energy balance gives:

Du 5 u2 2 u1 5 wrev

Since energy from the system is required in the form of Pv work to execute the expan-
sion, wrev is negative and state 2 has a lower internal energy and, consequently, a lower 
temperature.
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How about an irreversible process? The irreversible process brings the system to a 
new state that we will label “3” on the PT diagram. We wish to ask, “Does the entropy 
of the system go up, go down, or remain the same?” Well, an energy balance on the 
 irreversible expansion gives:

Du 5 u3 2 u1 5 wirrev 

We know that 0wirrev 0 , 0wrev 0  because a reversible process gives us the maximum possible 
work out from an expansion. If we now compare the previous two equations, we can see 
that:

u3 . u2

So, for an ideal gas,

T3 . T2

as shown in Figure 3.3. 
How about the entropy change? Our defi nition of entropy requires that we have a 

reversible process. So to calculate entropy, we must construct a reversible process to go 
from state 1 to state 3.5 In this case, we can fi rst go reversibly and adiabatically from state 1 
to state 2. Second, we can reversibly and isobarically transfer heat into the system to 
bring the gas from state 2 to state 3. From state 2 to state 3, qrev is positive, so:

Ds 5 s3 2 s2 5 3

final

initial  

dqrev

T
5 3

T3

T2

  
cP

T
 d T . 0

From the previous equation, we see that s3 . s2 5 s1. Therefore, for the irreversible 
expansion,

Ds 5 s3 2 s1 . 0

Thus, for an irreversible, adiabatic expansion, the entropy of the system increased. Again, 
the entropy change to the surroundings is zero, since qsurr 5 0. Summing together the 
entropy changes of the system and surroundings, we fi nd the entropy change of the uni-
verse increases for the irreversible process. The entropy changes for the irreversible case 
are summarized in the right column of Table 3.1.

TABLE 3.1 Summary of Entropy Change for Reversible and Irreversible Expansion 

(or Compression) of the Adiabatic Piston–Cylinder Assembly in Case I

Reversible Process Irreversible Process

s2 5 s1 s3 . s1
q 5 0 q 5 0
Ds 5 0 Ds . 0
Dssurr 5 0 Dssurr 5 0
Dsuniv 5 0 Dsuniv . 0

5 We will frequently calculate entropy changes of irreversible processes by constructing an alternative reversible 
process between the initial state and the fi nal state.

3.3  Entropy, the Thermodynamic Property ◄ 135
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We will now apply the same analysis to an adiabatic compression. The PT diagrams 
for this process are shown in Figure 3.4. The reversible compression brings the system 
from state 1 to state 2. The entropy change for the system is given by:

D s 5 s2 2 s1 5 3

final

initial  

dqrev

T
5 0

Again, for a reversible, adiabatic process the entropy of the system remains constant. 
Likewise, the entropy changes of the surroundings and universe are zero. We see that 
the results for reversible, adiabatic compression are identical to the results presented in 
Table 3.1 for reversible, adiabatic expansion. An energy balance gives:

Du 5 u2 2 u1 5 wrev

In this case, state 2 is at a higher temperature, since we are adding energy to the system 
via work to compress the gas.

How about an irreversible process? An energy balance on an irreversible compres-
sion gives:

Du 5 u3 2 u1 5 wirrev . wrev

where the inequality results because we know a reversible process takes the least amount 
of work for a compression. If we now compare the previous two equations, we can see that:

u3 . u2

So,

T3 . T2 

Thus state 3 is shown at a higher temperature in Figure 3.4. 
To fi nd the entropy change of the system, again let’s go from state 1 to state 3 by 

a reversible process. As with the expansion, we can fi rst go adiabatically from state 1 to 
state 2. Second, we must isobarically transfer heat into the system to bring the gas from 
state 2 to state 3. From state 2 to state 3, qrev is positive and:

Ds 5 s3 2 s2 5 3

final

initial

  
dqrev

T
. 0

Figure 3.4 PT diagrams of 
adiabatic reversible and irrevers-
ible compression. Note that after 
an irreversible compression, heat 
must be expelled to bring the sys-
tem to the same state as after the 
reversible compression.
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The results show that for the irreversible compression,

s3 . s2 5 s1

Thus, for an irreversible, adiabatic compression the entropy of the system also increased! 
The entropy change to the surroundings is again zero while the entropy change to the 
universe has increased. In summary, the results for the irreversible, adiabatic compres-
sion are identical to the irreversible expansion presented in Table 3.1.

If we generalize, we see that:

For an adiabatic reversible process (whether compression or expansion), the entropy of 
the system remains unchanged while for an irreversible process (whether compression or 
expansion), the entropy of the system increases. In both cases, the entropy changes for the 
surroundings are zero. Therefore, the entropy change of the universe remains unchanged for 
a reversible process and increases for an irreversible process.

The mechanical expansion/compression process described above is convenient since it is 
adiabatic, so the entropy change of the surroundings is, by defi nition, zero. We have seen 
from Equation (3.3) that the entropy change of the universe is the sum of the change of 
the system and the surroundings, so our next question is, “What happens if the entropy 
change of the surroundings is not zero?” In our next case, we will consider a set of cyclic 
processes in which there are only entropy changes in the surroundings and see that we 
come to a similar generalization as above.

Case II: Carnot Cycle
We wish to calculate the entropy change for the Carnot cycle, the reversible process 
by which we converted heat into work as illustrated in Figure 2.17. We then analyze an 
irreversible cyclic process that has defi nite directionality. Since this is a cyclic process 
in which the system returns to its initial state, all properties must return to their initial 
value, that is, for the system Ducycle 5 0, and similarly Dscycle 5 0. The entropy change to 
the surroundings for the entire cycle equals the entropy change of each of the four steps:

where negative signs are used for q because the heat transfer to the surroundings is the 
negative of the heat transfer to the system; that is, if energy enters the system, it must 
leave the surroundings. The previous equation reduces to:

 Dssurr 5 Dssurr, H 1 Dssurr, C 5 2
qH

TH
2

qC

TC
 (3.4)

We will now come up with alternative expressions for the right-hand side of Equation 
(3.4) based on our fi rst-law analysis of the reversible processes presented in Section 2.7.
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0 0 2
qH

TH
 2

qC

TC

 3

final

initial   

dqrev

T
   1  3

final

initial

 
dqrev

T
   1  3

final

initial

 
dqrev

T
   1  3

final

initial

 
dqrev

T

                           
Process 1         2 Process 2         3 Process 3         4 Process 4         1

         isothermal adiabatic isothermal adiabatic
         expansion expansion compression compression

entropy change
to surroundings
for the Carnot
cycle

=
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138 ► Chapter 3. Entropy and the Second Law of Thermodynamics 

We can rewrite Equation (2.39) as follows:

 qH 5 2RTH ln 

P2

P1
 (3.5)

and, 

  qC 5 2RTC ln 

P4

P3
 (3.6)

For the two adiabatic processes 12 S 3 and 4 S 1 2 , Equation (2.48) can be applied:

PVk 5 const

Hence, for the adiabatic process  2 S 3:

P2

P3
5 ¢V3

V2
≤

k

5 ¢ nRTC

nRTH
≤

k

¢P2

P3
≤

k

Rearranging the previous equation gives:

P2

P3
5 ¢ TC

TH
≤

k/12k

Similarly, we fi nd the pressures of states 1 and 4 can be related by:

P1

P4
5 ¢ TC

TH
≤ k/12k

Equating the previous two equations, we get:

P2

P3
5

P1

P4

or rearranging:

P2

P3
5

P3

P4

Dividing Equation (3.5) by (3.6) and using the previous equation gives:

qH

qC
5 2

TH

TC
 D

ln 

P2

P1

ln 

P3

P4

T 5 2
TH

TC

or, 

 2
qH

TH
2

qC

TC
5 0 (3.7)

For both Equations (3.7) and (3.4) to be true, the total entropy change to the surround-
ings for the four reversible processes in the Carnot cycle must be zero:

DsH, surr 1 DsC, surr 5 0
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As an aside, if we look at the effi ciency of the Carnot power cycle (see Section 2.9), 
we get:

h ;
net work

heat absorbed from the hot reservoir
5
0wnet 0

0qH 0
5
0qH 0 2 0qC 0

0qH 0
5 1 2

0qC 0

0qH 0
 (3.8)

We can relate the heat transferred to the temperature by Equation (3.7), giving:

 h 5 1 2
TC

TH
 (3.9)

We fi rst encountered this relationship in Example 2.23. Equation (3.9) represents the 
highest effi ciency that we can possibly have in operating between a hot reservoir at TH 
and a cold reservoir at TC. To improve the effi ciency further requires a hotter energy 
source or a colder energy sink. Similarly, we can use Equation (3.7) to write the coef-
fi cient of performance of a Carnot refrigeration cycle as:

COP 5
0qC 0

wnet
5

0qC 0

0qH 0 2 0qC 0
5

TC

TH 2 TC

Now let’s consider an irreversible cycle. We know that an irreversible process pro-
duces less work than a reversible one. If the heat absorbed from the hot bath is identical, 
less net work means more heat must be discarded to the cold bath (since wnet 5 qH 1 qC ):

1qC 2 irrev, surr . 1qC 2 rev, surr

So for an irreversible cycle, 1DsC 2 surr 5
1qC 2 irrev, surr

TC
  is greater than for the Carnot cycle; thus,

Dssurr 5 1DsH 2 surr 1 1DsC 2 surr . 0

So we fi nd that the entropy change to the surroundings for an irreversible cycle is greater 
than zero. The changes in entropy for the reversible Carnot cycle and the irreversible 
power cycle are given in Table 3.2.

We can summarize this analysis as follows:
For the set of reversible processes described in the Carnot cycle, the entropy of the 
surroundings remains unchanged, while for an equivalent irreversible cycle the entropy 
of the surroundings increases. In both cases, the entropy changes for the system are zero. 
Therefore, the entropy change of the universe remains unchanged for a reversible process 
and increases for an irreversible process.

Comparison of Tables 3.1 and 3.2 shows a common theme. The entropy change for the 
universe is zero for the reversible process and greater than zero for the irreversible process.

TABLE 3.2 Summary of Entropy Change for the Reversible 

Carnot Cycle and the Irreversible Cycle in Case II

Reversible Cycle Irreversible Cycle

Dscycle 5 0 Dscycle 5 0

Dssurr 5 0 Dssurr . 0

Dsuniv 5 0 Dsuniv . 0
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140 ► Chapter 3. Entropy and the Second Law of Thermodynamics 

In Section 2.3, we learned about reversible and irreversible processes in the context of a 
 piston–cylinder assembly undergoing isothermal expansion and compression processes. Four 
of these processes are summarized in Figure 3.2:
(i) Irreversible expansion, process A
(ii) Irreversible compression, process B 
(iii) Reversible expansion, processes E 
(iv) Reversible compression, processes F

EXAMPLE 3.1

Calculation of Dsuniv 
for Processes with 
Contributions from 
Both Dssys and Dssurr

 ► 3.4  THE SECOND LAW OF THERMODYNAMICS
In case I of Section 3.3, we looked at the adiabatic expansion and compression of a 
piston–cylinder assembly. In these processes, the entropy change to the surroundings is 
zero. We saw that the entropy change of the system is zero for a reversible process and 
that the entropy change for the system is greater than zero for an irreversible process. 
In case II, we looked at the entropy change associated with a thermodynamic cycle, 
where the entropy change to the system is, by defi nition, zero. The entropy change of the 
surroundings is zero for a reversible process, and the entropy change for the surround-
ings is greater than zero for an irreversible process. It turns out that we can generalize 
our observations above for all processes by considering the entropy change of the uni-
verse. Equation (3.3) indicates that the entropy change of the universe is the sum of the 
entropy change to the system and the entropy change to the surroundings. We call this 
generalization the second law of thermodynamics:

For any reversible process, the entropy of the universe remains unchanged, while for any 
irreversible process, the entropy of the universe increases.

or, in other words,

Entropy is time’s arrow—the larger the entropy of the universe, the more recent the event.

Just as with the fi rst law, we believe these statements because all the observations 
we have made and used to test this statement are consistent with it (just as in the two 
specifi c cases above). If we quantify the statement above (so that we can solve problems 
such as determining whether we can remove zinc with lime), we have, for the second 
law of thermodynamics,

 Dsuniv $ 0 (3.10)

For a reversible process,

 Dsuniv 5 0 (3.10r)

and for an irreversible process,

 Dsuniv . 0 (3.10i)

Equation (3.10r) sets the limit of reversibility. This case represents the best we can 
possibly do for a given design. Equation (3.10i) tells us about directionality. If you can 
determine the entropy of the universe for two states, the one with the higher entropy 
associated with it happened more recently. If the entropy of the universe is the same, the 
process is reversible and can occur in any direction.
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Calculate Dsuniv for each of these isothermal processes and show that the result is consistent 
with the second law of thermodynamics.

SOLUTION In this example, we must consider both the entropy change of the system and 
the entropy change of the surroundings. We outline the solution methodology with process 
A, the isothermal, irreversible expansion from state 1 at 2 bar and 0.04 m3/mol to state 2 at 
1 bar and 0.08 m3/mol. Since the process is isothermal, we assume the temperature of the 
surroundings and that of the system are identical. Their values can be found using the ideal 
gas law:

T 5 Tsurr 5
Pv
R

5 962 3K 4

To calculate the entropy change of the system, we must devise a reversible process 
between the same states, 1 and 2 so that we can apply Equation (3.2). Such a process is depicted 
in Figure 2.7 by process E. Since the property entropy is independent of path, the entropy 
change of the system for process E and process A must be identical. Applying the defi nition 
provided by Equation (3.2) to the isothermal process, we get:

 Dssys 5 3
dqrev

T
5

qrev

T
 (E3.1A)

We can fi nd the heat transfer by applying the fi rst law to the reversible process:

Du 5 qrev 1 wrev

The internal energy change for an ideal gas undergoing an isothermal process is zero; thus,

 qrev 5 2wrev 5 5545 3J/mol 4 (E3.1B)

where we have used the value reported in the analysis in Chapter 2. Substituting Equation 
(E3.1B) into (E3.1A) gives:

 Dssys 5
5545
962

5 5.76 3J/mol K 4 (E3.1C)

This value is reported for Dssys, for both process A and process E in Table E3.1.
We next calculate the entropy change for the surroundings. To compute this value, a 

conceptual argument is useful. The change in entropy of the surroundings is identical for 
reversible heat transfer and for irreversible heat transfer, as long as the magnitude of q is the 
same. Macroscopically, we can envision the same effect on the surroundings for a given amount 

3.4  The Second Law of Thermodynamics ◄ 141

Table E3.1 Summary of Entropy Change for the Isothermal Expansion/Compression 

Processes Described in Section 2.3

Irreversible Processes Reversible Processes

Expansion 
(Process A)

Compression 
(Process B)

Expansion 
(Process E)

Compression 
(Process F)

Dssys 3J/ 1mol K 2 4 5.76 25.76 5.76 25.76

Dssurr 3J/ 1mol K 2 4 24.14 8.32 25.76 5.76

Dsuniv 3J/ 1mol K 2 4 1.61 2.56 0 0

(Continued)
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Historically, the second law was construed in the context of producing power (work) 
from cyclic processes in which heat was absorbed from a hot reservoir and rejected to a 
cold reservoir. Thus, the second law is often stated in terms of work produced and heat 
rejected. For example, the second law is often defi ned as follows:

Heat cannot be caused to flow from a cooler body to a hotter body without producing some 
other effect.

Clausius

We can see that the Clausius statement is consistent with the general defi nition pre-
sented in Section 3.4. If a positive quantity of heat, q, fl ows reversibly from a cool body 
at TC to a hot body at TH, with no other effect, the associated entropy change is equal to:

Dsuniv 5 Dssurr 5 2
q

TC
1

q

TH
, 0

The quantity on the right-hand side is less than zero, since TC , TH. Since Dsuniv is nega-
tive, it violates the second law of thermodynamics, unless there is “some other effect” 
that has a positive Dsuniv large enough to offset this transfer of energy via heat.

Another common form of the second law is given by:

It is impossible to build an engine which operating in a cycle can convert all the heat it 
absorbs into work.

Kelvin and Planck

of heat transfer. Heat represents the transfer of energy by a temperature gradient. From a 
molecular perspective, temperature is representative of the random motion of molecules. 
Thus, energy transfer via heat represents the greatest possible increase in disorder, that is, 
increase in entropy—whether it occurs reversibly or irreversibly. In contrast, when energy 
is transferred via work, molecules are specifi cally directed. Therefore, the entropy does not 
increase. Hence, for this calculation we use the actual magnitude of q found for process A. 
Since the heat transfer to the surroundings is the negative of the heat transfer to the system—
that is, heat that leaves the surroundings enters the system—we get:

 Dssurr 5
2qA

Tsurr
5

wA

Tsurr
5 2

4000
962

5 24.14 3J/mol K 4 (E3.1D)

where the value of work for process A is taken from the analysis in Chapter 2. The entropy 
change of the surroundings is recorded in Table E3.1. 

Finally, the entropy change of the universe is obtained by adding the values in Equations 
(E3.1C) and (E3.1D):

Dsuniv 5 Dssys 1 Dssurr 5 1.61 3J/ 1mol K 2 4

We see that the entropy change for the universe is greater than zero for this irreversible 
process, as the second law requires. Values for Dssys, Dssurr, and Dsuniv for processes B, E, and 
F can be found in a similar manner. The values that are obtained are reported in Table E3.1. 
For both irreversible processes, the entropy change for the universe is greater than zero; on the 
other hand, the entropy change of the universe equals zero for the reversible processes. 

In the compression processes, the entropy change of the system is negative. This result is 
possible as long as the entropy change of the surroundings is suitably positive.

 ►3.5  OTHER COMMON STATEMENTS OF THE SECOND LAW OF THERMODYNAMICS
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Again, we can see that this statement is consistent with the general defi nition presented 
in Section 3.4. Let’s consider the most effi cient engine possible, the Carnot engine. If 
qC 5 0. Equation (3.4) gives:

Dsuniv 5 Dssurr 5 2
qH

TH
, 0

which also violates the second law of thermodynamics. There are many other specifi c 
forms of the second law. It is clear that the statements above can be viewed in terms of 
the generalizations presented in Section 3.4, but the reverse is not so clear.

Calculation of Ds for Closed Systems

In a closed system, mass cannot transfer across the system boundary. We can write 
 Equation (3.11) as:

 DSsys 1 DSsurr $ 0 (3.12) 

The change in entropy of the surroundings is identical for reversible heat transfer and for 
irreversible heat transfer, as long as the magnitude of Q is the same (see the discussion 
in Example 3.1). If the surroundings are at constant temperature, Tsurr , we can write 
the entropy change to the surroundings as:

DSsurr 5 3

final

initial

dQsurr

Tsurr
5

1
Tsurr

3

final

initial

dQsurr 5
Qsurr

Tsurr

We must be careful about sign conventions. If heat fl ows into the system, it must fl ow out 
of the surroundings, that is:

Qsurr 5 2Q 

 ► 3.6  THE SECOND LAW OF THERMODYNAMICS FOR CLOSED AND OPEN SYSTEMS
In general, there are two ways to apply the second law of thermodynamics:

 DSuniv $ 0 (3.11)

 1. We may determine whether a process is possible (and estimate how effi cient it 
is). This applies to real, irreversible processes for which the entropy change of 
the universe is greater than 0:

 DSuniv . 0 (3.11i)

 2. The second law can also be used to provide an additional constraint to solve a 
problem; that is, it provides us another equation to use. To apply the second law 
in this way, we must assume the process is reversible. In this case, we apply:

 DSuniv 5 0 (3.11r)
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Substitution of the previous two equations into Equation (3.11) gives:

  DSsys 1
Qsurr

Tsurr
5 n 1sfinal 2 sinitial 2 1

Qsurr

Tsurr
$ 0 (3.13)

 5 n 1sfinal 2 sinitial 2 2
Q

Tsurr
$ 0

As with the fi rst law, the second law can be written in differential form:

 nds 1
dQsurr

Tsurr
$ 0 (3.14)

Where do we obtain values of s?

An insulated tank 1V 5 1.6628 L 2  is divided into two equal parts by a thin partition. On the left 
is an ideal gas at 100 kPa and 500 K; on the right is a vacuum. The partition ruptures with a 
loud bang.
(a) What is the fi nal temperature in the tank?
(b) What is Dsuniv for the process?

SOLUTION A schematic of the system is shown on the left-hand side of Figure E3.2.
(a) We can apply the fi rst law of thermodynamics to fi nd the fi nal temperature. If we choose 
the entire tank as the system, there is no work or heat transfer across its boundaries during this 
process. Hence,

 DU 5 Q 1 W 5 0 (E3.2)

The internal energy in the fi nal state is the same as it was initially. For an ideal gas u 5 u 
(T only); thus, to follow Equation (E3.2), the temperature does not change:

T2 5 500 K

EXAMPLE 3.2

Calculation of 
Dsuniv by Selecting 
a Hypothetical 
Reversible Process

Vacuum
V = 0.8314 L

P = 100 kPa
T = 500 K

V = 0.8314 L

P = 100 kPa
T = 500 K

Well
insulated

∂m

Reversible

isothermal

expansion

Process chosen to
calculate entropy

change for the
system

Figure E3.2 The irreversible process in the problem statement is on the left-hand side. The 
hypothetical reversible path between the same initial and final states shown on the right-hand 
side is used to calculate the entropy change of the system.
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(b) We must apply the second law of thermodynamics. Since s is a property of the system, it 
depends only on the fi nal state and the initial state, not on the process (or path). To calculate 
Dssys, we choose a reversible path by which the system goes from the same initial state to the 
same fi nal state as the real system. We can then use the defi nition for change in entropy, since it 

involves a reversible process, ¢ 3
final

initial

 
dqrev

T
; Ds≤ . Such a hypothetical path is illustrated on the 

right-hand side of Figure E3.2. For this hypothetical reversible process, we have:

DU 5 Qrev 1 Wrev 5 0

or,

Qrev 5 2Wrev 5 3

1.6628 L

0.8314 L
   
PdV 5 3

nRT
V

 dV

Solving with numerical values, we get:

qrev 5
Qrev

n
5 RT ln¢V2

V1
≤ 5 ¢8.314 c

J

mol K
d ≤ 1500 3K 4 2  ln 2 5 2881 c

J

mol
d

Plugging into the defi nition for Ds:

Dssys 5 3
dqrev

T
5

qrev

T
5

2881 3J/mol 4

500 3K 4
5 5.76 B J

mol K
d

where we pulled T out of the integral since the hypothetical process is isothermal. Since there 
is no heat transferred to the surroundings in the real irreversible process,

Dssurr 5 0

Finally, the entropy change of the universe can be found by adding that of the system to the 
surroundings according to Equation (3.3):

Dsuniv 5 Dssys 1 Dssurr 5 5.76 J/ 1mol k 2

Note that this value is greater than zero, indicating an irreversible process, as we might expect 
for this very spontaneous process:

Dsuniv . 0

Consider an isolated system containing two blocks of copper with equal mass. One block is 
initially at 0ºC while the other is at 100ºC. They are brought into contact with each other and 
allowed to thermally equilibrate. What is the entropy change for the system during this pro-
cess? Take the heat capacity for copper to be:

cP 5 24.5 3J/ 1mol K 2 4 

SOLUTION We label the cooler block “block I” and the hotter block “block II” as illustrated in 
Figure E3.3. The blocks go from state 1, in which they are at different temperatures, to state 
2, in which their temperatures are equal. The pressure remains constant during the process.

EXAMPLE 3.3

Entropy Change in 
Obtaining Thermal 
Equilibrium

3.6  The Second Law of Thermodynamics for Closed and Open Systems ◄ 145

(Continued)
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146 ► Chapter 3. Entropy and the Second Law of Thermodynamics 

We must fi rst fi nd the fi nal temperature, T2. From the fi rst law for an isolated system at 
constant pressure, we get:

 DH 5 nIDhI 1 nIIDhII 5 0 (E3.3A)

where the subscripts “I” and “II” refer to the appropriate block. For constant heat capacity, 
Equation (E3.3A) can be written:

 nIcP 1T2 2 T1,I 2 1 nIIcP 1T2 2 T1,II 2 5 0 (E3.3B)

Since the blocks have equal mass,

 nI 5 nII 5 n (E3.3C)

Solving Equation (E3.3B) subject to (E3.3C) gives:

T2 5
T1,I 1 T1,II

2
5 323 3K 4

To get the total entropy change for the system, we can add the changes of each block 
individually:

 DS 5 nIDsI 1 nIIDsII (E3.3D) 

We can apply Equation (3.1) to solve for DsI and DsII. We fi rst need to fi nd dqrev. We do that 
by constructing a reversible path at constant pressure from T1 to T2. Such a process can be 
conceived by placing each block in thermal contact with a series of reservoirs that are each just 
differentially hotter (or cooler) than the block. Then qrev is given by:

qrev 5 Dh 5 3

T2

T1

cPdT

or, 

dqrev 5 cPdT

Thus, the entropy change is described by:

 Ds 5 3
dqrev

T
5 3

T2

T1

 
cPdT

T
  (E3.3E)

T1,I = 0°C T1,II = 100°C T2,I = T2 T2,II = T2

State 1

Block I Block II Block I Block II

State 2

Figure E3.3 Initial (state 1) and final (state 2) states of two copper blocks that obtain thermal 
equilibrium.
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Applying Equation (E3.3E) to the system of two blocks with constant heat capacity, we get:

DS 5 n1cP ln¢ T2

T1,I
≤ 1 nIIcP ln¢ T2

T1,II
≤

Rearranging and plugging in numerical values yields:

 Ds 5
DS
2n

5
cP

2
 B ln¢ T2

T1,I
≤ 1 ln¢ T2

T1,II
≤ R 5

cP

2
 ln¢ T2

2

T1,I 3 T1,II
≤

 5 ¢24.5
2

 c
J

mol K
d ≤  ln 

3232

1273 2 1373 2
5 0.30 c

J

mol K
d

Since this is an isolated system, the entropy change to the surroundings is zero. The positive 
value we obtained confi rms that energy spontaneously fl ows from a hot block to a cold block.

Calculate the change in entropy when 1 mole of saturated ethanol vapor condenses at its nor-
mal boiling point.

SOLUTION For ethanol, we can fi nd that the enthalpy of vaporization and normal boiling point are:

Dhvap,C2H6O 5 38.56 3kJ/mol 4 and Tb 5 78.2 3°C 4

The boiling point is, by defi nition, the temperature at which the phase change occurs reversibly. 
Hence, we can apply it directly to the defi nition of entropy, Equation (3.2). From an energy 
balance at constant P, we get:

 Dh 5 hl 2 hv 5 qrev 5 2Dhvap C2H2O (E3.4) 

We then substitute Equation (E3.4) into the defi nition for entropy. Realizing that this process 
occurs at constant temperature Tb, we get:

Ds 5 3

liquid

vapor
   

dqrev

T
5

2Dhvap,C2H6O

Tb

Plugging in the values above gives:

Ds 5
238.56 3kJ/mol 4

351.4 K
5 20.1098 c

kJ

mol K
d

The entropy change for the system has a negative value since the liquid is in a more ordered 
state than the vapor. However, this process does not violate the second law, since it is the entropy 
change of the universe that must be greater than zero. Therefore, we can also say that the entropy 
change of the surroundings must be at least 0.1098 3kJ/ 1mol K 2 4 for this process to occur.

EXAMPLE 3.4

Entrophy Calculation 
for a Phase Change

Calculation of Ds for Open Systems

In open systems, mass can fl ow into and out of the system. Thus, the entropy from fl owing 
streams transfers from the surroundings to the system. An example of an open system with 
two streams in and two streams out is shown in Figure 3.5. As was the case with the fi rst 
law, it is often convenient to discuss rates of fl ow [mol/sec] and energy transfer [J/s] or [W].

3.6  The Second Law of Thermodynamics for Closed and Open Systems ◄ 147
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Dividing Equation (3.12) by Dt and taking the limit as the time step becomes zero, 
the second law becomes:

 a
dS
dt
b

univ
5 a

dS
dt
b

sys
1 a

dS
dt
b

surr
$ 0 (3.15)

At steady-state, the entropy change of the system is zero:

 a
dS
dt
b

sys
5 0 (3.16)

In addition to the heat exchanged with the surroundings, the entropy change in the sur-
roundings is affected by the mass fl ow out of or into the system. Each mole of an outlet 
stream contains a quantity of entropy, sout, that it adds to the surroundings, while each inlet 
stream takes a quantity of entropy, sin, away from the surroundings. Therefore, at constant 
temperature, Tsurr, the rate of entropy change with the surroundings can be written:

 a
dS
dt
b

surr
5 a

out
n# outsout 2 a

in
n# insin 1

Q
#

surr

Tsurr

  5 a
out

n# outsout 2 a
in

n# insin 2
Q
#

Tsurr
 (3.17)

Applying Equations (3.16) and (3.17), at steady-state Equation (3.15) becomes:

 a
out

n# outsout 2 a
in

n# insin 2
Q
#

Tsurr
$ 0 (3.18)

In the case of one stream in and one stream out, Equation (3.18) can be written:

 n# 1sout 2 sin 2 2
Q
#

Tsurr
$ 0 (3.19)

where the outlet and inlet molar fl ow rates are identically n# . In differential form, the 
steady-state entropy balance becomes:

 n# ds 2
dQ

Tsurr
$ 0 (3.20)

in out

n2

s2

s1n1 n3

n4

s4Tsurr

Qsys

s3

Ws

System

in

Stream 2

Stream 1

Stream 4

Stream 3

out

Figure 3.5 Schematic of open system with two streams in and two streams out.
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For unsteady-state problems, the entropy change of the system, 1dS/dt 2 sys, must be 
included. Adding this term to Equation (3.18) gives:

 
dS
dt

1 a
out

n# outsout 2 a
in

n# insin 2
Q
#

Tsurr
$ 0 (3.21)

Steam enters a nozzle at 300 kPa and 700ºC with a velocity of 20 m/s. The nozzle exit pressure 
is 200 kPa. Assuming this process is reversible and adiabatic determine (a) the exit temperature 
and (b) the exit velocity.

SOLUTION First we draw a schematic of the process including all the information we know. 
We label the inlet state “1” and the outlet state “2,” as shown in Figure E3.5.

A fi rst-law balance for an open system at steady-state gives:

0 5 m# 1 1 ĥ 1  

V
S2

2
1 gz 2 1 2 m# 2 1 ĥ 1  

V
S

2

2
1 gz 2 2

We have written this equation on a mass basis in anticipation of using the steam tables for 
thermodynamic property data. Using a mass balance, m# 1 5 m# 2, and the defi nition for kinetic 
energy, we get:

 ĥ1 1
V
S

1
2

2
5 ĥ2 1

V
S

2
2

2
 (E3.5A)

Equation (E3.5A) has two unknowns, ĥ2 and V
S

2; therefore, we need another equation. For a 
reversible adiabatic process, the second law gives Ds 5 0, or:

 ŝ1 5 ŝ2 (E3.5B) 

It is worthwhile, at this point, to refl ect on the overall solution methodology. State 1 is thermo-
dynamically determined, since we know T1 and P2. Thus, we can fi nd any other property, 
including ŝ1. Once the specifi c entropy of state 1 is determined, we know ŝ2 from Equation 
(E3.5B). This value, along with P2, constrains state 2, so we can, in principle, fi nd any other 
property, including temperature and enthalpy.

From the steam tables, for state 1, we get:

ĥ1 5 3927.1 3kJ/kg 4

and, ŝ1 5 8.8319 3kJ/ 1kg K 2 4 5 ŝ2

EXAMPLE 3.5

Using Entropy to 
Help Calculate the 
Exit Velocity 
from a Nozzle

Figure E3.5 Nozzle of Example 3.5 with known and unknown properties of steam delineated.

T1 = 700°C
P1 = 300 kPa

V1 = 20 m/s

T2 = ?
P2 = 200 kPa

V2 = ?

1 Q 1 Ws

0 0 0 0

3.6  The Second Law of Thermodynamics for Closed and Open Systems ◄ 149

(Continued)
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We now go to the table for P 5 200 kPa and determine (by interpolation) that steam has S
ŝ2 5 8.8319 3kJ/ 1kg K 2 4 when:

T2 5 623 3°C 4

and, ĥ2 5 3754.7 3kJ/kg 4

Now we can solve Equation (E3.5A) for the outlet velocity:

V
S

2 5 "2 1 ĥ1 2 ĥ2 2 1 V
S

1
2 5 "2 1172.4 3 103 2  3J/kg 4 1 400 3m2/s2 4 5 587.5 3m/s 4

The steam lost enough internal energy in cooling from 700ºC to 623ºC to manifest itself in a 
very high exit velocity (587.5 m/s). Again, this example illustrates the large amounts of energy 
manifest in u.

In Example 2.21, we analyzed an open feedwater heater. Superheated water vapor at a pres-
sure of 200 bar, a temperature of 500ºC, and a fl ow rate of 10 kg/s was brought to a saturated 
vapor state at 100 bar by mixing this stream with a stream of liquid water at 20ºC and 100 bar. 
The fl ow rate for the liquid stream was found to be 1.95 kg/s. What is the entropy generated 
during this process?

SOLUTION First let’s draw a diagram of the system, as shown in Figure E3.6. If we assume the 
rate of heat transfer is negligible, the entropy change reduces to the sum of the outlet stream 
minus the inlet streams:

 a
dS
dt
b

univ
5 m# 3ŝ3 2 1m# 1ŝ1 1 m# 2ŝ2 2  (E3.6A)

A mass balance at steady-state gives:

 m# 3 5 m# 1 1 m# 2 5 11.95 3kg/s 4 (E3.6B)

We can look up values for the entropies from the steam tables (Appendix B). For state 1 
[superheated steam is at 500ºC and 200 bar 15 20 MPa 2 ],

ŝ1 5 6.1400 c
kJ

kg K
d

For state 2, we use subcooled liquid at 20ºC and 100 bar:

ŝ2 5 0.2945 c
kJ

kg K
d

and saturated vapor at 100 bar (10 MPa) for state 3:

ŝ3 5 5.6140 c
kJ

kg K
d

EXAMPLE 3.6

Entropy Generated 
by an Open 
Feedwater Heater 
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Finally, rearranging Equation (E3.6A) and plugging in values gives:

 a
dS
dt
b

univ
5 b ¢11.95 c

kg

s
d ≤ ¢5.6140 c

kJ

kg K
d ≤ r

 2b ¢10.0 c
kg

s
d ≤ ¢6.1400 c

kJ

kg K
d ≤

 1¢1.95 c
kg

s
d ≤ ¢0.2945 c

kJ

kg K
d ≤ r 5 5.11 c

kW
K
d

The entropy increases, as we would expect for this spontaneous process. 

Figure E3.6 Schematic of the open feedwater heater.

Open
feedwater

heater

Superheated
vapor

Saturated vapor

P3 = 100 bar
T1 = 500°C
P1 = 200 bar

m1 = 10

Subcooled
liquid

kg

s

T2 = 20°C
P2 = 100 bar

m2 = 1.95
kg

s

 ►3.7  CALCULATION OF Ds FOR AN IDEAL GAS
This section illustrates how to calculate the change in entropy of an ideal gas between 
two states if P and T for each state are known. We will defi ne the initial state as state 1, 
at P1 and T1, and the fi nal state as state 2, at P2 and T2. Since entropy is a state function, 
we can construct any path that is convenient between state 1 and state 2 to calculate Ds.
Figure 3.6 illustrates such a hypothetical path. We choose a reversible process for our 
hypothetical path so that we can apply the defi nition of entropy. The fi rst step consists 
of isothermal expansion, while the second step is isobaric heating. To fi nd Ds, we will 
calculate the entropy change for each step and add them together. Details of the analysis 
for each step follow.

Step 1: Reversible, isothermal expansion
  The change in internal energy for an ideal gas is, by defi nition, zero; thus, the 

differential energy balance is:

du 5 dqrev 1 dwrev 5 0

 Solving for the differential heat transfer, we get:

dqrev 5 2dwrev 5 Pdv
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Applying this expression for dqrev to the defi nition of entropy, Equation (3.2), gives:

Dsstep1 5 3
dqrev

T
5 3 a

P
T
bdv

Using the ideal gas law 1P/T 5 R/v 2  and recognizing that the volume at the end of step 
1 is RT1/P2 gives:

Dsstep1 5 3

RT1/P2

v1

a
R
v b

dv 5 R lnBRT1/P2

v1
R 5 R ln¢P2

P1
≤ 5 2R ln¢P2

P1
≤

Step 2: Reversible, isobaric heating
  Again, we want to solve for the reversible heat transfer, qrev, and use it in the 

defi nition of entropy. Applying the fi rst law gives:

du 5 dqrev 1 dwrev 5 dqrev 2 Pdv 

 Solving for dqrev:

dqrev 5 du 1 Pdu 1 vdP 5 d 1u 1 Pv 2 5 dh

  where the term vdP was added to the right-hand side since d P 5 0 for a 
 constant-pressure process. Thus the entropy change is equal to:

Dsstep2 5 3
dqrev

T
5 3

dh
T

5 3

T2

T1

cP

T
 dT

 where the defi nition of heat capacity, Equation (2.29), is used.

State 2 (T2, P2) 

State 1 (T1, P1) 

Real pathS
te

p
 1

Temperature (K)

Step 2P
re

s
s
u
re

 (
P

a
)

Δshypothetical

(reversible)

Δsreal

T1

P1

P2

T2

Figure 3.6 Plot of a process 
in which a system goes from 
state 1 to state 2 in TP space. 
The change in entropy is 
calculated along a reversible 
hypothetical path.
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Adding together the two steps of our hypothetical reversible path gives:

 Ds 5 Dsstep2 1 Dsstep1 5 3

T2

T1

cP

T
 dT 2 R ln¢P2

P1
≤  (3.22)

Equation (3.22) is true, in general, for the entropy change associated with an ideal gas 
between state 1 and state 2. In this expression, the property, Ds just depends on other 
properties—that is, cP, T, P—so it is independent of path. Therefore, Equation (3.22) 
can be applied to any process, be it reversible or irreversible. It is not limited only to the 
reversible processes for which it was developed.

If cP is constant, Equation (3.22) becomes:

 Ds 5 cP ln¢T2

T1
≤ 2 R ln¢P2

P1
≤  1cP is constant 2  (3.23)

In a similar manner, it can be shown that for an ideal gas, the entropy change between 
1T1, v1 2  and 1T2, v2 2  is given by (see Problem 3.17):

 Ds 5 3

T2

T1

cv

T
 dT 1 R ln¢ v2

v1
≤  (3.24)

With cv constant, Equation (3.24) becomes:

 Ds 5 cv ln¢T2

T1
≤ 1 R ln¢ v2

v1
≤  1cv is constant 2  (3.25)

3.7  Calculation of Ds for an Ideal Gas ◄ 153

A piston–cylinder device initially contains 0.50 m3 of an ideal gas at 150 kPa and 20ºC. The 
gas is subjected to a constant external pressure of 400 kPa and compressed in an isothermal 
process. Assume the surroundings are at 20ºC. Take cP 5 25R and assume the ideal gas model 
holds.
(a) Determine the heat transfer (in kJ) during the process.
(b) What is the entropy change of the system, surroundings, and universe? 
(c) Is the process reversible, irreversible, or impossible?

SOLUTION (a) To determine the heat transfer during the process, we can apply the fi rst law. 
The change in internal energy of an ideal gas undergoing an isothermal process is zero:

DU 5 Q 1 W 5 0

Solving for Q gives:

Q 5 2W 5 Pext 1V2 2 V1 2 5 P2¢P1V1

P2
2 V1≤ 5 V1 1P1 2 P2 2

Finally, plugging in numerical values:

Q 5 10.50 3m3 4 2 12250 3kPa 4 2 5 2125 3kJ 4

EXAMPLE 3.7

Calculation of 
Entropy Change 
for an Irreversible, 
Isothermal 
Compression

(Continued)
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(b) To fi nd the entropy change of the system, we can apply Equation (3.23):

Dssys 5 cP ln 

T2

T1
2 R ln 

P2

P1

The fi rst term is zero, since the process is at constant temperature. Thus,

DSsys 5 nDssys 5 a
PV
T
b

1
¢2ln 

P2

P1
≤

Plugging in numerical values gives:

DSsys 5 ¢150 3kPa 40.5 3m3 4

293 3K 4
≤ a2ln 

400
150

b 5 20.25 c
kJ

K
d

The entropy change of the surroundings is given by:

DSsurr 5
Qsurr

T
5

2Q

T
5

125 3kJ 4

293 3K 4
5 0.43 B kJ

K
R

The entropy change of the universe is equal to that of the system plus the surroundings:

DSuniv 5 DSsys 1 DSsurr 5 0.18 3kJ/K 4

(c) Since entropy of the universe increases, this process is irreversible. The irreversibility arises 
from the fi nite pressure difference.

Calculate the entropy change when 1 mole of air is heated and expanded from 25ºC and 1 bar 
to 100ºC and 0.5 bar.

SOLUTION At these low pressures, we can assume that air is an ideal gas. The entropy change 
between the initial state (1) and fi nal state (2) is given by Equation (3.22):

 Ds 5 3

T2

T1

cP

T
 dT 2 R ln¢P2

P1
≤  (E3.8A)

We can integrate the fi rst term on the right-hand side as follows:

    3

T2

T1

cP

T
 dT 5 R 3

373

298

3AT21 1 B 1 DT23 4dT 5 RBA ln T 1 BT 2
D

2T 2
R

298

373

5 0.793R (E3.8B)

where the following parameters were used for air:

A 5 3.355, B 5 0.575 3 1023, and D 5 20.016 3 105

Substituting Equation (E3.8B) into (E3.8A) gives:

Ds 5 R 10.793 2 ln2 2 5 0.83 3J/ 1mol K 2 4 

EXAMPLE 3.8

Calculation of 
Entropy Change 
Between Two States
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An alternative approach is to use the mean heat capacity values in Example 2.8:

Ds 5 cP ln¢T2

T1
≤ 2 R ln¢P2

P1
≤ 5 29.37 ln a

373
298

b 2 8.314 ln a
1

0.5
b 5 0.83 c

J

mol K
d

We have interpolated between 300 K and 400 K to get cP 5 29.37 3J/ 1mol K 2 4. In this case, 
these two approaches give identical values. Do you think that is always true? 

One mole of pure N2 and 1 mole of pure O2 are contained in separate compartments of a rigid 
container at 1 bar and 298 K. The gases are then allowed to mix. Calculate the entropy change 
of the mixing process.

SOLUTION A schematic of the mixing process represented by DSmix is shown in Figure E3.9A. We 
are free to choose any path to calculate the change in entropy of the mixing process. One possible 
solution path is shown in Figure 3.9B. In the fi rst step (step I), each of the pure species, N2 and O2, is 
reversibly and isothermally expanded to the size of the container of the mixture. During this process, 
the pressure drops to pO2 and pN2 respectively.

The entropy change for each step is given by Equation (3.22):

DSO2

I 5 nO2
1sO2

1at pO2, T 2 2 sO2
1at P, T 2 2 5 2nO2R¢ ln 

pO2

P
≤

and,

EXAMPLE 3.9

Calculation of 
Entropy Change 
of Mixing

O2 O2

O2
O2

O2

O2

O2 O2

O2

O2

O2

O2

O2
O2

O2

O2

P , TP , TP , T

N2 N2

N2

N2

N2

N2

N2
N2

N2

N2 N2

N2N2

N2 N2

N2

Mixing

process

Figure E3.9A Mixing of N2 and O2 in a rigid container at constant P and T.
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O2 O2 O2 O2

O2
O2

O2 O2

O2

O2

O2

O2O2

O2

O2

O2O2

O2

O2
O2 O2

O2

O2
O2

N2 N2
N2 N2

N2
N2

N2

N2
N2

N2 N2

N2

N2

N2

N2N2

N2

N2 N2

N2

N2N2

N2 N2

ΔSII = 0

ΔSI
N2 

= nN2
[sN2

(at pN2
,T )

− sN2 (at P,T)]

ΔSI
O2 

= nO2
[sO2

(at pO2
,T )

− sO2 (at P,T)]

P , T

P , T

P , T

pN2
,T

pO2
,T

Figure E3.9B Hypothetical solution path to calculate DS for the mixing process

(continued)
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DSN2

I
5 nN2

1sN2
1at pN2, T 2 2 sN2

1at P, T 2 2 5 2nN2R¢ ln 

pN2

P
≤

where the partial pressures PO2 and PN2 equal 0.5 bar. The next step (step II) is to superimpose 
both these expanded systems. Since O2 behaves as an ideal gas, it does not know N2 is there and 
vice versa; thus, the properties of each individual species do not change. Therefore,

DSII 5 nO2DsO2

II 1 nN2DsN2

II 5 0

so,

DS 5 DSO2

I 1 DSN2

I 1 DSII 5 2 nO2R¢ ln 

pO2

P
≤ 2 nN2R¢ ln 

pN2

P
≤ 5 11.53 c

J

K
d

The path shown in Figure E3.9B has interesting implications in terms of the molecular 
viewpoint of the entropy increase for each species. Increased entropy dose not directly result 
because N2 mixes in O2, but rather because O2 has more room to move around in, so that there 
is more uncertainty where it is; therefore, information is lost, and the entropy is higher. 

In Section 2.7, we came up with the following expression for a reversible, adiabatic process on 
an ideal gas with constant heat capacity, based on fi rst-law analysis:

PVk 5 const

Come up with the same equation based on second-law analysis, starting from Equation (3.23).

SOLUTION Equation (3.23) can be set to zero for a reversible, adiabatic process:

Ds 5 cP ln¢T2

T1
≤ 2 R ln¢P2

P1
≤ 5 0

Rearranging, we get:

 ln¢T2

T1
≤

cP

5 ln¢P2

P1
≤R

 (E3.10)

Applying the ideal gas law and the relation R 5 cP 2 cv, Equation (E3.10) becomes:

¢T2

T1
≤

cP

5 ¢ 1PV
nR 2 2

1PV
nR 2 1

≤
cP

5 ¢P2

P1
≤

cP2cv

However, since n1 5 n2, we get:

¢P2

P1
≤

cv

5 ¢V1

V2
≤

cP

or,     PVk 5 const

with,            k 5
cP

cv

The analysis is much easier using what we have learned about entropy.

EXAMPLE 3.10

Reformulation of 
Polytropic Process in 
Terms of Entropy
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Consider a cylinder containing 4 moles of compressed argon at 10 bar and 298 K. The cylinder 
is housed in a big lab maintained at 1 bar and 298 K. The valve develops a leak and Ar escapes 
to the atmosphere until the pressure and temperature equilibrate. After a suffi cient amount of 
time, the argon in the room reaches its background mole fraction of 0.01. Estimate, as closely 
as possible, the entropy change for the universe. You may assume that argon behaves as an ideal 
gas. Do you think this expansion process as a whole can be treated as reversible?

SOLUTION  A schematic of the process is shown in Figure E3.11A. We label the initial state 
“state 1” and the fi nal state “state 4.” We are tempted to solve this problem as an open system 
where our boundary is contained by the walls of the cylinder; however, instead we will choose 
a system containing all the gas in the cylinder. Our problem is then reduced to that of a fi xed 
amount of gas expanding in a closed system, with some of the gas then mixing with the envi-
ronment. Our solution path is shown in Figure E3.11B. In step 1, we isothermally expand the 
gas to 1 bar. Our calculation for this part will be similar to the approach in Example 3.7.6 In 
step 2, we divide the gas into two parts: that which remains in the cylinder and that which is 
in the air-fi lled room. The entropy change for this step is zero. Step 3 involves calculating the 
entropy change of the mixing of the Ar with the other gases in the atmosphere (such as we 

EXAMPLE 3.11

Entropy Change 
for the Expansion 
of Argon From 
a Compressed 
Cylinder

6 Alternatively, the open-system approach to step 1 will be presented at the end of this example.

State 1 State 4

Process

Real system PE = 1 bar

P = 10 bar
 T = 298 K 

P = 1 bar
T = 298 K 

Tsurr = 298 K

Q

Figure E3.11A Real system of a gas undergoing an expansion from a cylinder.

PE = 1 bar

P = 10 bar
T = 298 K

P = 1 bar
T = 298 K

P = 1 bar
T = 298 K

P = 1 bar
T = 298 K P = 1 bar

T = 298 K
 Tsurr = 298 K

State 1 State 2
State 4

State 3

Step 1

Similar to
Example 3.7

Similar to
Example 3.9

Calculation
Path Ar outside the

cylinder

Ar mixed

with air

Ar remaining
in the cylinder

Δs = 0 

Step 2 Step 3

Q

PAr = 1 bar
T = 298 K

Figure E3.11B Calculation path for  Ds from state 1 to state 4.
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(Continued)
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calculated in Example 3.9). We will assume that the Ar mixes until it reaches its composition 
in air (about 1%) and that no air diffuses back into the cylinder; that is, the cylinder remains 
pure Ar.

Step I:    State 1 to state 2
  To solve for the entropy change of the universe in step I, we must determine the 

entropy change of the system as well as the entropy change of the surroundings. Since 
the initial and fi nal states are constrained, the entropy change of the system can be 
calculated from Equation (3.23):

Dssys 5 cP ln¢T2

T1
≤ 2 R ln¢P2

P1
≤

 Thus, the value for the entropy change of the system is given by:

Dssys 5 2R ln¢P2

P1
≤ 5 2¢8.314 c

J

mol K
d ≤  ln a

1
10
b 5 17.1 c

J

mol K
d

  As the argon does work on the surroundings during the expansion process, it will 
lose energy. An equal amount of energy must be transferred in via heat to keep the 
temperature constant at 298 K. To fi nd the entropy change to the surroundings, we 
need to determine the amount of heat transferred. A fi rst-law balance gives:

Du 5 q 2 Pext 1v2 2 v1 2 5 q 2 P2 1v2 2 v1 2 5 0

  where we have set the change in internal energy equal to zero, since we are treating 
Ar as an ideal gas at constant temperature. Solving for q, we get the entropy change 
of the surroundings to be:

 Dssurr 5
qsurr

Tsurr
5 2

q

T2
5

2P2 1v2 2 v1 2

T2
5 2RB1 2

P2

P1
R

 5 2 18.314 2 10.9 2 5 27.5 c
J

mol K
d

 Thus, the entropy change of the universe is then given by:

Dsuniv
I 5 Dssys 1 Dssurr 5 17.1 2 7.5 5 9.6 3J/ 1mol K 2 4

 or, for the extensive value,

 DSuniv
I 5 n 1Dsuniv 2 5 38.4 3J/K 4 (E3.11A)

Step II: State 2 to state 3
 The entropy change for step II is zero:

DSuniv
II 5 0

  The number of moles remaining in the cylinder can be found using the ideal gas law 
(with T and V constant):

1ncyl 2 3 5 1ncyl 2 1 

P3

P1
5 0.4 3mol 4

0
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Step III: State 3 to state 4
  The entropy change for the system from state 3 to state 4 is similar to that of the gases 

in Example 3.9. The entropy of mixing of argon outside the cylinder is given by:

DSsys
III 5 noutside 1s 1at pAr, T 2 2 s 1at P, T 2 2 5 2noutsideR¢ ln 

pAr

P
≤

 Plugging in numbers, we get:

DSsys
III 5 2 13.6 2 18.314 2 1 ln 10.01 2 2 5 137.8 3J/K 4

  Assuming the composition of the air in the room does not noticeably change by the 
dilute addition of argon, the entropy change to the surroundings is zero and:7

DSuniv
III 5 137.8 3J/K 4

 Adding together the three steps in the solution path, we get:

DSuniv 5 DSuniv
I 1 DSuniv

II 1 DSuniv
III 5 176.2 3J/K 4

  The value is greater than zero, as we would expect for this very irreversible process. 
It should be noted that solutions to this kind of problem are often presented where 
reversibility is assumed if the leak is “slow enough.” However, this approach is wrong. 
No matter how slow the leak, the driving force for the expansion is fi nite (as opposed 
to differential), so this process is not reversible. It would be just as absurd as to 
invoke reversibility in Example 3.9 by saying that the mixing of the gases in the two 
compartments occurred through a vary small hole and, therefore, very slowly.

 [Step I] alternative: Open-system analysis
  We begin with the unsteady-state open-system entropy equation, Equation (3.21), 

with no inlet and one exit stream:

 a
dS
dt
b

univ
5 a

dS
dt
b

sys
1 n# ese 1

Q
#

surr

Tsurr
5 a

dS
dt
b

sys
1 n# ese 2

Q
#

Tsurr
    (E3.11B)

 If the exit state is assumed to be uniform, we can integrate Equation (E3.11B) to give:

  DSuniv 5 n2s2 2 n1s1 1 se 3

t

0

n# edt 2
Q

Tsurr
 (E3.11C)

 However, since the exit state and state 2 are identical,

 se 5 s2 (E3.11D)

 and by a mole balance:

 3

1

0

n# edt 5 n1 2 n2 (E3.11E)

7 Alternatively, this problem can be solved by mixing the argon with an infi nite amount of air, with the same 
result.
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(Continued)
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160 ► Chapter 3. Entropy and the Second Law of Thermodynamics 

Plugging Equations (E3.11D) and (E3.11E) into Equation (E3.11C) gives:

 DSuniv 5 n1 1s2 2 s1 2 5
Q

Tsurr
 (E3.11F)

We can fi nd the entropy difference between states 1 and 2 by using Equation (3.23):

 s2 2 s1 5 3

T2

T1

cP

T
 dT 2 R ln¢P2

P1
≤ 5 0 2 ¢8.314 c

J

mol K
d ≤  ln a

1
10
b

  5 17.1 c
J

mol K
d  (E3.11G)

We must now solve for the heat transfer Q, by an energy balance. Integrating Equation (2.22), 
we get:

 n2u2 2 n1u1 5 2B 3
t

0

n# edtRhe 1 Q 5 2B 3
t

0

n# edtR 1ue 1 Peve 2 1 Q   (E3.11H)

Applying Equation (E3.11E) and solving Equation (E3.11H) for Q gives:

Q 5 B 3
1

0

n# edtRPve 5 1n1 2 n2 2Peve 5 n1¢1 2
n2

n1
≤Peve 5 n1¢1 2

P2

P1
≤RT2

Therefore, we get:

 
Q

Tsurr
5 n1RB1 2

P2

P1
R 5 4 18.314 2 10.9 2 5 29.93 c

J

K
d   (E3.11I)

Plugging the results from Equations (E3.11G) and (E3.11I) into Equation (E3.11F):

 DSuniv 5 4 117.1 2 2 29.9 5 38.5 3J/K 4 (E3.11J) 

The results for the closed- and open-system analysis, Equations (E3.11A) and (E3.11J), are 
identical to within round-off error.  

 ►3.8  THE MECHANICAL ENERGY BALANCE AND THE BERNOULLI EQUATION
We next consider a special case—fl ow processes that are at steady-state and revers-
ible, with one stream in and one stream out. We wish to come up with an expression 
to evaluate the work in such a process. The fi rst-law balance, in differential form, is 
given by:

 0 5 2 n# cdah 1 MW 

V
S

2

2
1 MWgzb d 1 dQ

#
sys 1 dW

#
s (3.26)

where MW is the molecular weight. The second law is:

n# ds 1
dQ
#

surr

T
5 0
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3.8  The Mechanical Energy Balance and the Bernoulli Equation ◄ 161

However, since:

dQ
#

surr 5 2dQ
#

sys

Equation (3.27) can be substituted into (3.26) to give:

0 5 2 n# cdah 1 MW 

V
S

2

2
1 MWgzb d 1 n# Tds 1 dW

#
s

Rearranging to solve for work:

 
dW
#

s

n#
5 cdh 2 Tds 1 MWd a

V
S

2

2 b
1 MWgdz§ (3.28)

We can simplify Equation (3.28) even further. For a reversible process, we can write:

du 5 dqrev 1 dwrev 5 Tds 2 Pdv

If we add d(Pv) to both sides, we get:

dh 5 d 1u 1 Pv 2 5 Tds 1 vdP

Solving for 1dh 2 Tds 2  and plugging into Equation (3.28) gives:

 
dW
#

s

n#
5 cvdp 1 MWda  

V
S

2

2 b
1 MWgdz§ (3.29)

Equation (3.29) is termed the differential mechanical energy balance. It is a useful form, 
since the work is written in terms of the measured properties P and v as well as bulk 
potential and kinetic energy. It is applicable to reversible, steady-state processes with 
one stream in and one stream out. 

If we integrate Equation (3.29), we get:

  W
#

s/n
#  5 3

2

1

vdP 1 MW c 1V
S

2
2

2 V
S

1
2 2 /2 d 1 MWg 1z2 2 z1 2      (3.30)

There are two frequent cases where Equation (3.30)is applied:

Case 1: No Work (Nozzles, Diffusers)

 0 5 3

2

1

vdP 1 MW ¢V
S

2
2 2 V

S

2
1

2
≤ 1 MWg 1z2 2 z1 2  (3.31)

Equation (3.31) is the celebrated Bernoulli equation.

Case 2: No eK, eP (Turbines, Pumps)

 
W
#

s

n#
5 3

2

1

vdP (3.32)
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An ideal gas enters a turbine with a fl ow rate of 250 mol/s at a pressure of 125 bar and a specifi c 
volume of 500 cm3/mol. The gas exits at 8 bar. The process operates at steady-state. Assume the 
process is reversible and polytropic with:

Pv1.5 5 const

Find the power generated by the turbine.

SOLUTION Since this process is at steady-state and is reversible, we can use Equation (3.32):

 
W
#

s

n#
5 3

P2

P1

vdP (E3.12A)

Since both v and P vary during the process, we must write v in terms of P to perform the 
integral in Equation (E3.12A). This polytropic process is described by:

Pv1.5 5 const 5 P1v1
1.5

where we have written the constant in terms of state 1, since we know both v and P. Solving 
for v gives:

 v 5 ¢P1v1
1.5

P
≤

2/3

 (E3.12B)

Substituting Equation (E3.12B) into (E3.12A) and integrating leaves:

W
#

s

n#
5 1P1 2 0.6667v1 3

P2

P1

P212/32dP 5 3 1P1 2 0.6667v1 3P0.3333 4P1

P2

Plugging in numerical values, we get:

 
W
#

s
n#

5 3 11.25 3 107 3Pa 4 2 0.6667a5 3 1024 3m3/mol 4b a 3"8 3 105 3Pa 4 2 3"1.25 3 107 3Pa 4b

  5 211,250 3J/mol 4

Finally, solving for power gives:

W
#

s 5 1250 3mol/s 4 2  1211,250 3J/mol 4 2 5 22.8 3MW 4

The sign is negative, since we get useful work out of the turbine. Note, for comparison, that a 
coal-fi red power plant generates on the order of 1000 MW. 

EXAMPLE 3.12

Power Generated 
by a Turbine
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3.8  The Mechanical Energy Balance and the Bernoulli Equation ◄ 163

In an actual expansion through the turbine of Example 3.12, 22.1 3MW 4 of power is obtained. 
What is the isentropic effi ciency, hturbine, for the process? The isentropic effi ciency is given by:

hturbine 5
1W
#

s 2 real

1W
#

s 2 rev

where 1W
#

s 2 rev represents the power obtained in the reversible process from the same inlet 
state and outlet pressure and 1W

#
s 2 real is the power of the actual process.

SOLUTION We run into several different defi nitions of effi ciency, depending on the context. 
Isentropic efficiencies compare the actual performance of a process operation with the per-
formance it would obtain if it operated reversibly; that is, we compare the given process to 
the best it could do. For a turbine, the same inlet state and same exit pressure are used in the 
calculation. Figure E3.13 shows both the actual process (solid line) and the ideal, reversible 
process (dashed line) on a Ts diagram. Both processes start at the same state and end at the 
same pressure. The fi nal temperature of the actual process is higher than the reversible pro-
cess, since less energy is removed via work.

The isentropic effi ciency is calculated to be:

hturbine 5
22.1 3MW 4

22.8 3MW 4
5 0.75

We obtain an isentropic effi ciency of 75%.
We can use a similar approach to determine isentropic effi ciencies of other unit processes, 

such as pumps or nozzles. The isentropic effi ciency of a pump compares the minimum work 
needed from the same inlet state and an outlet at the same pressure to the actual work:

hpump 5
1W
#

s 2 rev

1W
#

s 2 real

Can you draw a fi gure analogous to Figure E3.13 for a pump? The isentropic effi ciency of a 
nozzle compares the actual exit kinetic energy to that the fl uid would obtain in a reversible 
process. Values between 70% and 90% are typical for turbines and pumps, while nozzles 
typically obtain 95% or better.

EXAMPLE 3.13

Correction for 
Effi ciency in a 
Real Turbine

P = 125 bar

P = 8 bar

Inaccessible

States

Actual process

2real

s2,real

T2,real

T2,rev

s1 = s2,rev

2rev

Isobars

T1

T

Δs
 =

 0

1

s

Figure E3.13 A Ts diagram 
llustrating the states between 
which the isentropic efficiency is 
calculated. The actual process is 
shown by the solid line, between 
states 1 and 2real, while the ideal, 
reversible process is shown by 
the dashed line between states 1 
and 2rev.
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 ► 3.9  VAPOR-COMPRESSION POWER AND REFRIGERATION CYCLES
In this section, we will examine the basic elements of common industrial power and 
refrigeration systems. These systems employ a thermodynamic cycle in which a working 
fl uid is alternatively vaporized and condensed as it fl ows through a set of four processes. 
Recall from Section 2.9 that, after completing a cycle, the working fl uid returns to the 
same state it was in initially so that the cycle can be repeated. We will use the principles 
of energy conservation and entropy to analyze the performance of power and refrig-
eration cycles. We will fi rst examine the Rankine cycle, which is used to convert a fuel 
source to electrical power. We will then look at a vapor-compression cycle operated in 
“reverse” to expel heat from a cold reservoir and produce refrigeration.

The Rankine Cycle

Say we wish to convert a fossil-fuel, nuclear, or solar energy source into net electrical 
power. To accomplish this task, we can use a Rankine cycle. The Rankine cycle is an ide-
alized vapor power system that contains the major components found in more detailed, 
practical steam power plants. While hydroelectric and wind are possible alternative 
sources, the steam power plant is presently the dominant producer of electrical power.

A schematic of the Rankine cycle is shown in Figure 3.7. The left-hand side shows 
the four unit processes in order: a turbine, a condenser, a compressor, and a boiler. 
States 1, 2, 3, and 4 are labeled. The right-hand side identifi es each of these states on a 
Ts diagram. Each of the four individual processes operates as an open system at steady-
state, such as those modeled in Section 2.8. Moreover, these processes are assumed to be 
reversible; hence, the effi ciency we calculate will be the best possible for a given design 
scenario. 

The working fl uid that fl ows through these processes is usually water. We will for-
mulate our analysis on a mass basis, in anticipation of using the steam tables for ther-
modynamic data. Electrical power is generated by the turbine, while the energy from 
combustion of the fuel is input via heat transfer in a boiler. Energy transfer between the 
surroundings and the system is further needed to return the system to its initial state and 
complete the cycle. This energy transfer occurs via heat expulsion in the condenser and 
via work input to the compressor. A more detailed analysis of the four processes in the 
Rankine cycle follows.

Fuel
air

Turbine

Rankine cycle

1

4

3
Condenser

Compressor

Boiler
Cooling
water

2

Ws

Wc

QC

QC

QH

Wc

Ws
QH

1

23

4

s

T

Figure 3.7 The ideal Rankine cycle used to convert fuel into electrical power. The four unit processes 
are sketched on the left, while the path on a Ts diagram is shown on the right. The working fluid is 
typically water.
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3.9  Vapor-Compression Power and Refrigeration Cycles ◄ 165

We start from state 1 in the diagram in Figure 3.7, where the working fl uid enters 
the turbine as a superheated vapor. As it goes through the turbine, it expands and cools 
while producing work. It exits the turbine at state 2. The rate of work produced can be 
determined by applying the fi rst law [Equation (2.50)]. Assuming that bulk kinetic and 
potential energy and heat transfer are negligible, the power produced by the turbine 
becomes:

W
#

s 5 m# 1 ĥ2 2 ĥ1 2

where m#  is the fl ow rate of the working fl uid. 
Since the process is reversible with negligible heat transfer, the entropy remains 

constant, as depicted by the vertical line in the Ts diagram:

ŝ1 5 ŝ2

The steam enters as a superheated vapor, and does not condense signifi cantly in the 
turbine. If the steam were saturated when it entered the turbine, a signifi cant fraction of 
liquid would be formed when the temperature dropped isentropically. The dashed line 
on the Ts diagram illustrates this case. This option is impractical, since too much liquid 
causes erosion and wear of the turbine blades.

The steam next enters a condenser; it exits in state 3 as saturated liquid water. The 
change of phase occurs at constant pressure and requires that energy be removed from 
the fl owing stream via heat. Thus, a low-temperature reservoir is needed. A fi rst-law bal-
ance around the condenser gives:

Q
#

C 5 m# 1 ĥ3 2 ĥ2 2

Next it is desired to raise the pressure of the liquid, which is accomplished using a 
compressor. High-pressure water exits the compressor in state 4. The work required to 
compress the liquid is given by:

 W
#

c 5 m# 1 ĥ4 2 ĥ3 2 5 m# v̂1 1P4 2 P3 2  (3.33)

where Equation (3.32) was integrated assuming v̂l is constant. Since the molar volume of 
the liquid is signifi cantly less than that of the vapor, the work required by the compressor 
is much less than that produced by the turbine. Typically, a small fraction of the power 
produced by the turbine is used to compress the liquid, and the remaining power is the 
net power obtained by the cycle. The liquid that enters the compressor is saturated, by 
design, since most compressors cannot handle a two-phase mixture. 

Finally, the high pressure liquid is brought back to a superheated vapor state in the 
boiler. It is in this step that energy released from the combustion of fuel is transferred to 
the working fl uid. The fuel provides the high-temperature reservoir for the boiler. The 
boiler isobarically heats the liquid to saturation, vaporizes it, and then superheats the 
vapor. The rate of heat transfer in the boiler is given by:

Q
#

H 5 m# 1 ĥ1 2 ĥ4 2

The vapor exits the boiler in state 1 and the cycle is repeated.
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We defi ne the effi ciency of the cycle as the ratio of the net work obtained divided by 
the heat absorbed from the boiler:

 hRankine 5
0W
#

s 0 2 W
#

c

Q
#

H
5
0 1 ĥ2 2 ĥ1 2 0 2 1 ĥ4 2 ĥ3 2

1 ĥ1 2 ĥ4 2
 (3.34)

In this defi nition, it is assumed that the heat absorbed is proportional to the amount of 
fuel consumed. 

The Ts diagram provides a useful graphical aid in interpreting the Rankine cycle. 
From the defi nition of entropy,

qrev 5 3Tds

Since we are assuming reversibility for the cycle, the heat absorbed by the water in the 
boiler, qH, and the heat expelled in the condenser, qC, are equal to the respective area 
under the Ts curve. These graphical depictions are illustrated in the fi rst two diagrams of 
Figure 3.8. The net work produced by the cycle is given by the difference of these two 
quantities:

qH 2 0qC 0 5 0ws 0 2 wc 5 wnet

Thus, the net work is equal to the area of the box in the third diagram. If we can make 
this box bigger relative to qH, we increase the effi ciency. Can you think of ways to accom-
plish this?

q H − qC = wnet

2

s s s

T T T

3
4

1

23
4

1

23
4

1

wnet

qC

qH

Figure 3.8 Graphical representation of the heat absorbed in the boiler, qH, the heat expelled 
in the condenser, qC, and the net work, wnet, in an ideal Rankine cycle.

Steam enters the turbine in a power plant at 600ºC and 10 MPa and is condensed at a pressure 
of 100 kPa. Assume the plant can be treated as an ideal Rankine cycle. Determine the power 
produced per kg of steam and the effi ciency of the cycle. How does the effi ciency compare to 
a Carnot cycle operating between these two temperatures?

SOLUTION We can refer to Figure 3.7 to identify the states of water as it goes through the 
cycle. It is useful to refer to this fi gure as we are solving the problem. Examining Equation 
(3.34), we see that we need to determine the enthalpies in the four states to solve for the 

EXAMPLE 3.14

Calculation of 
the Power 
and Effi ciency 
of a Rankine 
Power Cycle
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3.9  Vapor-Compression Power and Refrigeration Cycles ◄ 167

effi ciency. Steam enters the turbine at 600ºC and 10 MPa. Looking up values from the steam 
tables (Appendix B), we get:

ĥ1 5 3625.3 3kJ/kg 4

and, ŝ1 5 6.9028 3kJ/ 1kg K 2 4 5 ŝ2

Since the entropy at state 1 is equal to the entropy at state 2. We also know the pressure at state 
2, P2 5 100 kPa. Thus, state 2 is completely constrained, and we can determine its enthalpy 
from the steam tables. Since it exists as a liquid–vapor mixture, we must determine the quality, 
x, of the steam as follows:

ŝ2 5 6.9028 3kJ/ 1kg K 2 4 5 11 2 x 2 ŝl 1 xŝv 5 11 2 x 2 11.3025 3kJ/kg K 4 2 1 x 17.3593 3kJ/kg K 4 2

Solving for x gives:
x 5 0.925

Therefore, the enthalpy in state 2 is given by:

ĥ2 5 11 2 x 2 ĥl 1 xĥv 5 10.075 2 1417.44 3kJ/kg 4 2 1 0.925 12675.5 3kJ/kg 4 2 5 2505.3 3kJ/kg 4

The power generated by the turbine is found by the enthalpy difference between state 2 
and state 1:

ŵs 5 ĥ2 2 ĥ1 5 2505.3 2 3625.3 5 21120.0 3kJ/kg 4

The enthalpy of state 3 is a saturated liquid at 100 kPa:

ĥ3 5 ĥ1 5 417.44 3kJ/kg 4

The enthalpy at state 4 can be determined from Equation (3.33):

ĥ4 5 ĥ3 1 v̂l 1P4 2 P3 2 5 427.34 3kJ/kg 4

Note that since we are increasing the pressure of water in the liquid state, the work required is 
only 9.9 kJ/kg. This value is less than 1% of the work produced by expansion of vapor through 
the turbine (1120 kJ/kg). The net work is given by:

ŵnet 5 ŵs 1 ŵc 5 21120.0 1 9.9 5 21110.1 3kJ/kg 4

Solving for the effi ciency from Equation (3.34), we get:

hRankine 5 1 0W
#

s 0 2 W
#

c 2 /Q
#

H 5 3 0 1 ĥ2 2 ĥ1 2 0 2 1 ĥ4 2 ĥ3 2 4/ 1 ĥ1 2 ĥ4 2 5 0.347

The 34.7% effi ciency is the best-case scenario for this cycle, since we assumed reversible 
processes. In reality, we would not even achieve this value!

The Carnot effi ciency is given by Equation (3.9):

hCarnot 5 1 2
TC

TH
5 1 2

373
873

5 0.573

The Rankine effi ciency is lower than the Carnot effi ciency. We can see the basis if we compare 
the net work graphically, as we did in Figure 3.8. The box representing net work for each cycle 
is shown in Figure E3.14. Recall that the steam that enters the turbine of the Rankine cycle is 
superheated to eliminate wear and corrosion on the turbine blades. In modifying the cycle in 
this way, we “crop off” a signifi cant portion of the rectangle that represents the Carnot cycle.
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Redo the analysis of the Rankine cycle of Example 3.14 but include isentropic effi ciencies of 
85% in the pump and turbine. Determine the net power and the overall effi ciency of the power 
cycle.

SOLUTION Recall the discussion of isentropic effi ciencies from Example 3.13. The isentropic 
effi ciency of the turbine is given by:

hturbine 5
1W
#

s 2 actual

1W
#

s 2 rev
5
1ŵs 2 actual

1ŵs 2 rev

The reversible work was found in Example 3.14. Solving for actual work gives:

1ŵs 2 actual 5 hturbine 1ŵs 2 rev 5 0.85 121120.0 2 5 2952.0 3kJ/kg 4

As we suspect, the work we get out of the turbines in the real, irreversible process is less than 
that for the reversible process. 

Solving the energy balance around the turbine gives the enthalpy in state 2 as:

1 ĥ2 2 actual 5 1ŵs 2 actual 1 ĥ1 5 2952.0 1 3625.3 5 2673.3 3kJ/kg 4

This value is higher than that found in Example 3.14, indicating that the temperature entering 
the condenser for the actual process is higher than it would be in the reversible case. State 3 
remains the same:

ĥ3 5 ĥ1 5 417.44 3kJ/kg 4

Since the reversible work represents the best we can possibly do, the actual work needed 
in the compressor must be greater than the reversible value. Hence, the isentropic effi ciency 
in the compressor is given by:

1ŵc 2 actual 5
1ŵc 2 rev

hcompressor
5

9.9
0.85

5 11.6 3kJ/kg 4

Solving for the enthalpy at the exit of the compressor gives:

1 ĥ4 2 actual 5 1ŵc 2 actual 1 ĥ3 5 11.6 1 417.44 5 429.1 3kJ/kg 4

EXAMPLE 3.15

Modifi cation of 
Rankine Analysis for 
Nonisentropic Steps

Figure E3.14 Graphical depiction of the net work in a Carnot cycle and a Rankine cycle.

233

4 1

2

4

1

Carnot Cycle Rankine Cycle

TT

s s

wnet wnet
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The net work can be found by adding the actual work generated in the turbine to that 
consumed in the compressor:

ŵnet 5 ŵs 1 ŵc 5 2952.0 1 11.6 5 2940.4 3kJ/kg 4

Similarly, the actual effi ciency must be calculated using these values:

hRankine 5 1 0W
#

s 0 2 W
#

c 2 /Q
#

H 5 3 0 1 ĥ2 2 ĥ1 2 0 2 1 ĥ4 2 ĥ3 2 4/ 1 ĥ1 2 ĥ4 2 5 0.294

Introducing irreversibilities in turbine and pump reduced effi ciency from 34.7% to 29.4%. 

The Vapor-Compression Refrigeration Cycle

Refrigeration systems are important in industrial and home use when temperatures less 
than the ambient environment are required. Of the several types of refrigeration sys-
tems, the most widely used is the vapor-compression refrigeration cycle. It is essentially 
a Rankine cycle operated in “reverse,” where heat is absorbed from a cold reservoir and 
rejected to a hot reservoir. Due to the constraints of the second law, this process can be 
accomplished only with a concomitant consumption of power.

A schematic of the ideal vapor-compression cycle is shown in Figure 3.9. The left-
hand side shows the four unit processes in order: an evaporator, a compressor, a con-
denser, and a valve. Each of the four individual processes operates as an open system at 
steady-state. States 1, 2, 3, and 4 are labeled. The right-hand side identifi es each of these 
states on a Ts diagram. Unlike in the Rankine cycle, the work required for refrigeration 
is not represented by the area enclosed on the Ts diagram because the expansion through 
the valve is irreversible.

The working fl uid is termed the refrigerant. In choosing a refrigerant, we must real-
ize that both the evaporation and condensation processes contain phase transformations. 
Thus, in each of these processes, T and P are not independent. Specifying the tempera-
ture at which these processes occur, restricts the pressure for a given choice of refriger-
ant. For example, the evaporator temperature is determined by the temperature, TC,
required from our refrigeration system. For a given working fl uid, constraining TC also 
constrains the evaporator P. We typically want a species that boils at lower temperatures 
than water. Ideally, we choose a species that provides the desired refrigeration tempera-
ture at a pressure slightly above atmospheric. In that way there is a positive pressure 
against the environment. Common choices are CCl2F2 (refrigerant 12), CCl3F (refriger-
ant 11), CH2FCF3 (refrigerant 134a), and NH3. The fi rst two species, the chlorofl uoro-
carbons, are very stable if released to the environment. They have mostly been phased 
out of use because they lead to depletion of the ozone layer and also contribute to the 
greenhouse effect, which leads to global climate change.

An analysis of the four processes in the vapor-compression refrigeration cycle 
follows. We start from state 1 in the diagram in Figure 3.9, where the working fluid 
enters the evaporator. In the evaporator, heat is transferred from the refrigerated unit to 
the working fl uid. This occurs at temperature TC. The working fl uid absorbs Q

#
C as it 

changes phase.
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It emerges in state 2, where it is a vapor. The heat transferred is given by:

 Q
#

C 5 n# 1h2 2 h1 2  (3.35)

where n#  is the molar fl ow rate of the refrigerant.
We must then compress the refrigerant to a high enough pressure in state 3 that it 

will condense at the temperature of the hot reservoir available to us, TH.The choice of 
refrigerant determines the outlet pressure of the compressor required at state 3. Since 
we are performing the compression in the vapor phase, where molar volumes are large, a 
signifi cant amount of work is needed. The higher the pressure, the more work is required 
for a given refrigeration effect. The power of compression is given by:

W
#

c 5 n# 1h3 2 h2 2

If the compression is assumed to be reversible,

s3 5 s2

The high-pressure vapor is then condensed at TH, expelling heat Q
#

H to the hot reservoir.
This process occurs in the condensor where the fl uid exits at state 4.

Q
#

H 5 n# 1h4 2 h3 2

The high-pressure liquid is then expanded in a valve back to state 1 so the cycle can 
be repeated. A valve is used instead of the turbine that was used in the Rankine cycle. 
The amount of work that would be produced by a turbine is small, so we replace it with 
a valve to reduce the complexity. This step is represented by a throttling process, where:

 h4 5 h1 (3.36) 

Since the pressure decreases as the refrigerant passes through the valve, its entropy 
increases, as shown in Figure 3.9. Can you locate the evaporator and condenser on the 
refrigerator you have at home?

Figure 3.9 The ideal vapor-compression refrigeration cycle. The four unit processes are sketched 
on the left, while the path on a Ts diagram is shown on the right.
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The coeffi cient of performance, COP, of a refrigeration cycle measures its perfor-
mance. It is defi ned as the ratio of the heat absorbed from the cold reservoir (the refrig-
eration effect) to the work required:

 COP 5
Q
#

C

W
#

c
5

h2 2 h1

h3 2 h2
 (3.37)

In real refrigeration systems, a fi nite temperature difference is needed to get practical 
heat-transfer rates in the evaporator and the condenser. Thus, the evaporator must oper-
ate at a lower temperature than the desired refrigeration temperature, while the con-
denser must operate at a higher temperature than the ambient heat reservoir. Thus, more 
work is required to obtain a given refrigeration effect. Moreover, irreversibilities in the 
compressor must be considered, also adding to required work load and further decreasing 
the COP. COPs of well-designed real refrigeration systems typically fall between 2 and 5.

It is desired to produce 10 kW of refrigeration from a vapor-compression refrigeration cycle. 
The working fl uid is refrigerant 134a. The cycle operates between 120 kPa and 900 kPa. 
Assuming an ideal cycle, determine the COP and the mass fl ow rate of refrigerant needed. 
Properties of refrigerant 134a can be found at http://webbook.nist.gov/chemistry/fl uid/. Data 
can be viewed in an HTML table.

SOLUTION A sketch of the process on a Ts diagram is shown in Figure E3.16.
The following saturated data for refrigerant 134a are obtained from the NIST site (see citation 
Pg. 27):

P
[MPa]

T
[K]

hl

3kJ/mol 4
hv

3kJ/mol 4
sl

3J/ 1mol K 2 4
sv

3J/ 1mol K 2 4

0.12 250.84 17.412 39.295 5 h2 90.649 177.89 5 s2

0.90 308.68 25.486 5 h4 42.591 119.32 5 s4 174.74

EXAMPLE 3.16

Estimation of the 
COP of a Vapor-
Compression 
Refrigeration Cycle

Figure E3.16 A Ts diagram of the ideal vapor-compression refrigeration cycle of 
Example 3.16.
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To get the amount of refrigeration, we can combine Equations (3.35) and (3.36):

qC 5 1h2 2 h1 2 5 1h2 2 h4 2 5 39.295 2 25.486 5 13.809 3kJ/mol 4

To fi nd the state at the exit of the isentropic compressor, we recognize:

s3 5 s2

At a pressure of 0.90 MPa, from the NIST website, we get the entropies to match state 
3 at:

P
[MPa]

T
[K]

hv

3kJ/mol 4
sv

3J/ 1mol K 2 4

0.90 317.62 43,578 177.89

The work required by the compressor is:

wc 5 1h3 2 h2 2 5 43.578 2 39.295 5 4.283 3kJ/mol 4

Solving for the coeffi cient of performance gives:

COP 5
Q
#

C

W
#

c
5

h2 2 h1

h3 2 h2
5 3.22

To get the desired 10 kW of refrigeration, we need:

n# 5
Q
#

C

qC
5

10 3kW 4

13.809 3kJ/mol 4
5 0.73 3mol/s 4

The temperature of the evaporator is around 250 K, below the freezing point of water. On 
the other hand, the condenser operates between 308 K and 317 K. This temperature is warm 
enough to expel heat to the ambient environment. 

 ►3.10  EXERGY (AVAILABILITY) ANALYSIS 
As engineers, our goal is to design processes that best utilize the resources that are avail-
able. In terms of energy resources, we would want to maximize the work we obtain from 
a process or minimize the work we need to supply. We have learned that a reversible pro-
cess, where the entropy change of the universe is zero, represents the “best that we can 
do.” However, an alternative perspective is sometimes useful—especially in the context 
of analyzing complex systems containing many unit processes. In this section, we intro-
duce exergy analysis (which is also called availability analysis). This analysis looks at the 
most work we can get out of a process when considering the environment immediately 
adjacent in the surroundings. This approach is useful for a methodological analysis of 
complex processes. Specifi cally exergy (availability) analysis allows us to look at each step 
of a multistep process and allows us to determine the relative magnitude of the irrevers-
ibilities and lost work. This approach allows us to focus design efforts. The intent here is 
to provide a brief introduction to exergy analysis within the context of the thermodynam-
ics that you are learning. This topic may be developed further in your design class, where 
you examine chemical and biological plants with many unit processes.
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We defi ne the environment as the part of the surroundings that are immediately 
adjacent to the system. The environment exists at a state labeled “0,” constrained by 
properties P0, T0, and so on. We assume that the environment is stable and that its 
temperature, pressure and composition are uniform and unchanging (i.e., the environ-
ment does not change as a result of the processes we are analyzing). When the system 
reaches the state of the environment (P0, T0, etc.), there is no longer any driving force 
for mechanical, thermal, or chemical change. At this point, we cannot get any more work 
from the system; hence, at this point, we say the system is in the dead state. We defi ne 
the ideal work, wid, as the maximum amount of work we can obtain as a system under-
goes a process from its initial state to the dead state. 

Exergy

Let’s consider the adiabatic expansion of a piston-cylinder that was discussed as case I 
in Section 3.3. The reversible process takes the gas from State 1 to State 2, as shown 
in  Figure 3.10. In this fi gure, the temperature and pressure of the environment are 
labeled T0 and P0, respectively. Because the process reaches mechanical equilibrium, 
the  pressure of state 2, P2, equals P0. However, the temperature of the system does not 
equilibrate with the environment because the cylinder is well insulated.

A fi rst law balance around the piston-cylinder assembly can be written as:

Du 5 q 1 w 5 3wid,Pv 2 Po 1v2 2 v1 2 4

We label the ideal work for this expansion process, wid,Pv. Its value indicates the maxi-
mum useful work we can obtain from this process. We do not count the work required 
to expand against the environment at constant pressure 35 Po 1v2 2 v1 2 4 as part of the 
ideal work because we cannot make use of it. Thus, wid,Pv is lower in magnitude than Du.

The reversible process shown in Figure 3.10 shows us the “best that we can do” in 
expanding the gas from state 1 to state 2; however, if we are clever, we can obtain even 
more work! Because the temperature in the system has not yet reached that of the sur-
roundings, energy will fl ow spontaneously from the system to the surroundings if we 
remove the insulation. If we treat the gas in the system as a “hot reservoir” and the envi-
ronment as a “cold reservoir,” we can place a Carnot engine between them and get more 
work! Such a process is shown in Figure 3.11.

We next calculate the ideal work, wid, for the system shown in Figure 3.11 where a 
gas is fi rst adiabatically and reversibly expanded in a piston-cylinder assembly and then 
heat from the piston-cylinder assembly is expelled to a Carnot engine to obtain even 

Figure 3.10 Process by which to calculate the Pv component of ideal work.
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more work. As before, we denote the ideal work coming from the expanding cylinder as 
wid,Pv; the ideal work coming from the Carnot cycle is denoted as wid,cycle.

A fi rst law balance around the piston-cylinder assembly for both steps can now be 
written:

 Du 5 q 1 w 5 2qH 1 3wid,Pv 2 Po 1v0 2 v1 2 4 (3.38)

where q is the heat expelled to the Carnot engine. We must be careful with signs when we 
write our fi rst law balance around the Carnot engine. As shown in Figure 3.11, the value 
for heat that enters the cycle 1qH 2  is the negative of what leaves the piston cylinder (q).

For the Carnot engine: 

Du 5 0 5 qH 1 q0 1 wid,cycle

where the nomenclature in Figure 3.11 is used. We keep the sign for qH and q0 consistent 
with the defi nition of the fi rst law, with a negative value indicating heat transfer from the 
system to the environment. As we shall see, the signs will soon take care of themselves. 
Rewriting the previous equation, we get:

wid,cycle 5 2 1qH 1 q0 2 5 2¢1 1
q0

qH
≤qH 5 2¢1 1

T0

T
≤qH

where we have used Equation (3.7) for a Carnot cycle to convert from heat to temperature. 
Because the temperature of the hot reservoir is changing as we execute the process, 

we rewrite the previous equation for a differential increment. Thus,

dwid,cycle 5 2¢dqH 1 T0d¢qH

T
≤ ≤ 5 2dqH 2 T0ds

where the defi nition of entropy was used. Integrating from the initial state (1) to the 
dead state (0), we get:

Figure 3.11 Process by which to calculate the ideal work. The labeling for heat and work in the 
Carnot engine has been modified to match with the nomenclature for exergy analysis.

Ideal gas

State 1

Well-
insulated

T1 P1

T0

P0

Ideal gas

State 2
Dead State

Reversible
Process

Adiabatic
Expansion

T0

P0

Wid, Pv

q0

qH
Wid, cycle

Cold reservoir, T0

Carnot engine

c03.indd   174c03.indd   174 05/11/12   6:24 PM05/11/12   6:24 PM



3.10  Exergy (Availability) Analysis ◄ 175

3

0

1

dwid,cycle 5 2 3

0

1

dqH 2 3

s0

s1

T0ds

or,

wid,cycle 5 2qH 2 T0 1s0 2 s1 2

Note the value for q0 given by the second term ends up being opposite in sign because 
the fi nal (cooler) state 1s0 2  has lower entropy than the initial (hot) state 1s1 2 .

We next solve the previous equation for heat:

2qH 5 q 5 wid,cycle 1 T0 1s0 2 s1 2

Substituting this expression for q back into Equation (3.38) gives:

Du 5 1u0 2 u1 2 5 wid,cycle 1 T0 1s0 2 s1 2 1 3wid,Pv 2 Po 1v0 2 v1 2 4

Solving for the negative of ideal work, 2wid, (which gives us a positive number if we get 
work out of the system), we have the magnitude of the maximum useful work that is 
available for a process starting at state 1 and ending at the dead state of the environment, 
state 0. Although we have framed this development in terms of the most work we can 
obtain, we could alternatively view wid, as the minimum amount of work we need to put 
into process to take a system from the dead state to state 1.

We defi ne the exergy of state 1, b1, as the magnitude of the ideal work from state 1 
to the dead state, that is, 2wid or 2 1wid,cycle 1 wid,Pv 2 :

 b1 ; 1u1 2 u0 2 1 Po 1v1 2 v0 2 2 T0 1s1 2 s0 2  (3.39)

For systems where macroscopic kinetic energy and macroscopic potential energy are 
important, we can generalize to:

 b1 5 1u1 2 u0 2 1 MW¢V
S

2
1

2
2

V
S

2
0

2
≤ 1 MWg 1z1 2 z0 2 1 Po 1v1 2 v0 2 2 T0 1s1 2 s0 2

 5 1u1 2 u0 2 1 MW
V
S2

1

2
1 MWgz1 1 Po 1v1 2 v0 2 2 T0 1s1 2 s0 2   (3.40)

because the kinetic energy, eK,0, and potential energy, eP,0, at the dead state are zero, by 
defi nition. 

The exergy provides the maximum useful work we can obtain from a system in a 
given state. It is also useful to consider two other forms of work, the useful work and the 
lost work. The useful work, wu, is the amount of work that we can obtain from a system 
that we can actually use to do something. To fi nd the useful work, we must not include 
the work it “costs” us to either expand against the environment or to fl ow into a system. 
The lost work, wl, is the difference between the ideal work (i.e., the maximum useful 
work) and the useful work we actually obtain:

wl 5 wid 2 wu

In Example 3.17, we will calculate each of these types of work for a specifi c process.
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Consider a piston-cylinder assembly containing an ideal gas, initially at 20.0 bar and 1000 K. 
The initial volume is 1.6 L. The system undergoes a reversible process in which it is expands to 
1 bar. Take the environment to be at 1 bar and 20°C. Take cp 5 17/2 2R. The pressure volume 
relationship during this process is given by:

Pv1.5 5 const

(a) Calculate the work obtained during this process.
(b)  Calculate the useful work that could be obtained by subtracting the energy needed to push 

back the ambient pressure.
(c) Calculate the exergy and the ideal work.
(d) Calculate the lost work.

Solution (a) A schematic of the process is shown in Figure E3.17, where we defi ne the initial 
state as state 1 and the fi nal state as state 2. 

Because this is a reversible process, we can calculate work as follows:

w 5 23PEdv 5 23Pdv

For the limits on the integral, we need to know the molar volume of the initial and fi nal state. 
For state 1, we apply the ideal gas law:

v1 5
RT1

P1
5

8.314 3 1000 B J

mol
R

2 3 106 B J

m3
R

5 0.0042 B m3

mol
R

We can calculate v2 from the equation in the problem statement:

Pv1.5 5 const 5 P1v1.5
1 5 P2v1.5

2

Example 3.17

Closed System 
Exergy Analysis

Figure E3.17 Initial and final states of of the expansion process.
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Solving for v2 gives:

v2 5 ¢P1v
1.5
1

P2
≤ 1/1.5

5 120 3 0.00421.5 2
1/1.5

5 0.031 Bm3

kg
R

Now we can solve for work:

w 5 23

0.031

0.0042
Pdv̂ 5 23

0.031

0.0042

P1v
1.5
1

v1.5
 dv 5 2P1v1.5

1 B 1
v0.5

2

2
1

v0.5
1

R
0.031

0.0042

5 210.6 B kJ

mol
R

The sign of work is negative because we are transferring energy from the system to the 
surroundings to perform work.

(b) To calculate the useful work, we need to fi nd the molar volume, v0, at the dead state:

v0 5
RT0

P0
5

8.314 3 293 B J

mol
R

1 3 105 B J

m3 R
5 0.024 B m3

mol
R

As in Equation (3.38), the work needed to push back the envirounment is given by:

Po 1n1 2 n0 2 5 2.0 B kJ

mol
R

So the amount of useful work is:

wu 5 w 1 Po 1v1 2 v0 2 5 210.6 1 2.0 5 28.6 B kJ

mol
R

(c) To calculate exergy of state 1, we use Equation (3.39):

 b1 5 1u1 2 u0 2 1 Po 1v1 2 v0 2 2 T0 1s1 2 s0 2

     5 cv 1T1 2 T0 2 1 Po 1v1 2 v0 2 2 T0Bcv ln¢T1

T0
≤ 1 R ln¢ v1

v0
≤ R

 b1 5
5
2

 R 11000 2 293 2 1 1 3 105 10.0042 2 0.024 2 2 293R B2.5 ln¢1000
293

≤ 1 ln¢0.0042
0.024

≤ R

 5 9.5 B kJ

mol
R

Since the ideal work is the negative value of exergy, we get:

wid 5 29.5B kJ

mol
R

(d) If we compare answers to part (c) and part (b), we see that the lost work, wl, is given by:

wl 5 wid 2 wu 5 29.5 1 8.6 5 20.9B kJ

mol
R

The magnitude of the lost work is about 10% of the useful work; results like this allow us to 
prioritize our engineering design and improvement efforts. In addition, we see that the value 
for exergy, which indicates the maximum useful work, calculated in part (c), is actually lower 
than the work calculated in part (a). Can you explain why?
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In the preceding discussion, we learned how to calculate the maximum available 
work (i.e., the exergy) and lost work of a system that goes from an initial state, state 1, 
to the dead state, state 0. However, often we are interested a system that undergoes a 
process from state 1, to some fi nal state, state 2, that is not yet at the dead state. In such a 
case, the magnitude of the lost work is given by the exergy difference between the states:

wl 5 Db 5 b2 2 b1

Alternatively, the lost work can be represented by the increase in entropy of the universe 
due the irreversibilities in the process:

 2 wl 5 T0Dsuniv (3.41) 

Example 3.18 will illustrate that calculation for lost work using Equation (3.41) gives us 
an equivalent answer to that calculated using the change in exergy between the fi nal and 
initial states.

As we learned in Chapter 2, for open systems, we must account for the mass and the 
fl ow work of streams fl owing into and out of the system. The fl ow work required to 
push a stream 1 into the system is P1v1. However, the environment provides a part 
of this work from the ambient pressure, P0v1. Hence, it does not “cost” us anything. 
Therefore, we add the difference in these two terms, 1P1 2 P0 2v1, to the exergy to 
account for fl ow work.

This analysis leads to the defi nition of exthalpy of state 1 (also called fl ow exergy), 
defi ned as follows:

bf,1 5 b1 1 1P1 2 P0 2n1 5 1u1 2 u0 2 1 Po 1v1 2 v0 2 2 T0 1s1 2 s0 2 1 1P1 2 P0 2v1

Gathering like terms and using the defi nition for enthalpy, we get:

 bf,1 5 1u1 1 P1v1 2 2 1u0 1 P0v0 2 2 T0 1s1 2 s0 2 5 1h1 2 h0 2 2 T0 1s1 2 s0 2  (3.42)

Like enthalpy, we use exthalpy, bf, for any stream fl owing into or out of a system.

A shell and tube heat exchanger is designed to warm air from the environment by condensing 
steam that is passed through the tubes on the other side. The maximum air fl ow is 30 kg/min, and 
the air is inlet at the temperature and pressure of the environment, 285 K and 1 bar, respec-
tively. The steam fl ows through the system at a pressure of 10 bar and a fl ow rate of 3 kg/min. 
The quality of the steam at the inlet is 0.9, and at the exit is 0.2. 
(a)  Calculate the lost work during this process using the “Exergy Method” by calculating the 

difference in exthalpy between the initial and fi nal states. 
(b)  Calculate the lost work during this process using the entropy change of the universe, i.e., 

Equation (3.41).

Example 3.18

Calculation of 
Internal Exergy 
Loss in a Heat 
Exchanger

Exthalpy—Flow Exergy in Open Systems
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Solution

ENERGY CONSERVATION

A schematic of the process is shown in Figure E3.18. 

Figure E3.18 Heat exchanger in Example 3.18 with inlet and outlet stream properties 
labeled.

Heat Exchanger

water

air

T2 = ?
P2 = 1 bar

x3 = 0.9

P3 = 10 bar
x4 = 0.2

P4 = 10 bar

T1 = 285 K
P1 = 1 bar

mwater = 3
KG

min

mair = 30
kg

min

First we need to fi nd the outlet temperature of the air. To do this we perform an energy 
balance:

 0 5 n
#
air 1h2 2 h1 2 1 m

#
water 1 ĥ4 2 ĥ3 2  (E3.18A)

Where,

 n# air 5
m# air

MWair
5

30 B kg

min
R

0.029 B kg

mol
R

5 1034 Bmol
min

R  (E3.18B)

The enthalpy change for air is given by:

h2 2 h1 5 3

T2

T1

cP,air dT 5 R 3

T2

T1

3A 1 BT 1 DT22 4dT

5 RBA 1T2 2 T1 2 1
B
2

 1T 2
2 2 T2

1 2 2 D¢ 1
T2

2
1
T1
≤ R (E3.18C) 

Where the values for air can be found in Appendix A.2:

A 5 3.355;    B 5 0.575 3 1023;     and D 5 20.016 3 105

For water we look up the values of enthalpy for saturated steam at 10 bar (1 MPa) in the 
steam tables (Appendix B.2):

ĥv 5 2778.1  B kJ

kg
R  and ĥl 5 762.79  B kJ

kg
R

(Continued)
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Using the defi nition of quality:

ĥ3 5 xĥv 1 11 2 x 2 ĥl 5 0.9 3 2778.1 1 0.1 3 762.79 5 2576.6 B kJ

kg
R

Similarly,

ĥ4 5 xĥv 1 11 2 x 2 ĥl 5 0.2 3 2778.1 1 0.8 3 762.79 5 1165.9 B kJ

kg
R

Substitution of these values for specifi c enthalpy gives: 

 m
#

water 1 ĥ4 2 ĥ3 2 5 242,300 B kJ

min
R  (E3.18D) 

Substitution of Equations (E3.18B), (E3.18C), and (E3.18D) into Equation (E3.18A) and 
solving for T2 implicitly gives:

T2 5 423.8 K

(a) Calculation using the exergy method:
First we fi nd the change in exthalpy in the air stream. Here we use the extensive form of 

exthalpy, expressed in a rate form:

B
#

f,2 2 B
#

f,1 5 n# air 3 1h2 2 h1 2 2 T0 1s2 2 s1 2 4

s2 2 s1 5 3

T2

T1

cP,air

T
 dT 2 ln 

P2

P1
5 R 3

T2

T1

BA
T

1 B 1 DT23RdT

5 RBA ln 

T2

T1
1 B 1T2 2 T1 2 2

1
2

 ¢ 1
T 2

2
2

1
T 2

1
≤ R

423.8K

285K
5 11.7 B J

mol K
R

so,

B
#

f,2 2 B
#

f,1 5 1034 Bmol
min

R B4090B J

mol
R 2 285 3K 4 3 11.7 B J

mol K
R R 5 787 B kJ

min
R

For the exthalpy change of steam, we have:

b̂f,4 2 b̂f,3 ; 1 ĥ4 2 ĥ3 2 2 T0 1 ŝ4 2 ŝ3 2

From the steam tables:

ŝv 5 6.5864 B kJ

kg K
R  and ŝl 5 2.1386 B kJ

kg K
R

So,

ŝ3 5 xŝv 1 11 2 x 2 ŝl 5 0.9 3 6.5864 1 0.1 3 2.1386 5 6.142B kJ

kg K
R
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Example 3.18 showed the mechanics of calculating internal exergy loss. This 
approach is particularly useful in evaluating complex processes, such as chemical or bio-
logical plants. Exergy analysis allows us to evaluate each unit process and allows us to 
identify the opportunities to reduce the largest ineffi ciencies. Thus, it is a useful tool to 
determine ways to become more energy effi cient and apply toward sustainable engineer-
ing. We illustrate with a simple case next.

and,

 ŝ4 5 xŝv 1 11 2 x 2 ŝl 5 0.2 3 6.5864 1 0.8 3 2.1386 5 3.028 B kJ

kg K
R

So,

 b̂f,4 2 b̂f,3 5 11165.9 2 2576.6 2 2 T0 13.028 2 6.142 2 5 2523.4 B kJ

kg
R

And,

B
#

f,4 2 B
#

f,3 5 m# water 1 b̂4 2 b̂3 2 5 21570 B kJ

min
R

Finally, for the entire heat exchanger, we sum the total exthalpy change:

W
#

l 5 DB
#

f 5 1B
#

f,2 2 B
#

f,1 2 1 1B
#

f,4 2 B
#

f,3 2 5 2783 B kJ

min
R

Thus, we lose 783 kJ of useful work for every minute the heat exchanger operates! This value 
represents the internal exergy loss in this process. Said another way, 783 kJ of work is lost 
because heat is transferred nonreversibly due to the temperature difference. If we could place 
a Carnot engine between the steam and air, we could generate 783 kJ/min of power.

(b) Calculation using the change in entropy of the universe:
Since there is no heat transfer to the surroundings, we can calculate the change in the 

entropy of the universe by the extensive entropy differences in each stream during the process:

DS
#
univ 5 n# air 1s2 2 s1 2 1 m# water 1 ŝ4 2 ŝ3 2

Inserting values from above, we get:

DS
#
univ 5 1034Bmol

min
R 3 11.7B J

mol K
R 1 3B kg

min
R 3 13.028 2 6.142 2 B J

mol K
R

5 2749B J

min K
R

We can then calculate the lost work based on Equation (3.41):

 W
#

l 5 2T0DS
#
univ 5 2285 3K 4 3 2749B J

min K
R 5 2783B kJ

min
R

This value is identical to that calculated in part A.
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Exergy lost
internally

Exergy lost
in flue gas

Exergy lost
in cooling

water
Exergy lost
in exhaust

CompressorCondenserTurbineBoiler

E
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rg
y

In

Useful work

Figure 3.12 Graphical representation of exergy analysis for a vapor-compression power cycle. 

Figure 3.12 shows a graphical representation of the results for an exergy analysis 
of a vapor compression power cycle like the one shown in Figure 3.7. The vertical scale 
represents how the exergy is divided among exergy lost (e.g., lost work) and useful work 
among the processes. An engineer can use such a diagram to compare the lost work for 
each of the unit processes (e.g., boiler, turbine, condenser, or compressor) of the power 
cycle and the useful work that is obtained in the turbine. Such a diagram is drawn to scale 
as a result of the thermodynamic analysis (not shown), and the width of the lines repre-
sents either the exergy lost (white) or the useful work (shaded). Inspection of Figure 3.12 
shows that design improvement efforts should focus on the boiler and the turbine. Can 
you think of possible design modifi cations?

This type of diagram becomes quite useful as the design becomes more complex and 
the number of unit processes increases. It allows recognition of the critical units needed 
for effi ciency improvement. As the number of processes increases even further, the data 
can be reported in tabular format for convenience. 

 ►3.11  MOLECULAR VIEW OF ENTROPY
When we discussed internal energy, u, in the context of the fi rst law, we gained insight 
through understanding it on a molecular level. To that end, we discussed the molecular 
components of kinetic and potential energy that atoms and molecules possess. In analogy, 
we may ask, what is the molecular basis of entropy, s? The molecular view of entropy relates, 
in the most general sense, to molecular probability. The more different molecular configu-
rations a state exhibits, the more likely that state will exist and the greater its entropy.

To examine the idea of molecular probability and confi gurations, consider a system 
with two different ideal gaseous species, which we will call atom A and atom B. Entropy 
is a measure of how many different ways we can confi gure these species. To illustrate 
this concept, let’s start with a system whose center is divided by a porous membrane. 
To simplify the problem, but still get our central idea across, we will assign roughly 
equal volume elements to each atom in the system. We can relax this constraint later if 
we wish. We will begin modestly, by considering there to be four atoms (two A atoms 
and two B atoms) in the system. We must realize, however, that we need to extend this 
concept to roughly 1023 atoms to understand the macroscopic systems that we encounter 
in our physical world. 

Initially, we will say that the system contains pure gas A on the left of the membrane 
and pure gas B on the right of the membrane, as shown in Figure 3.13a. In this case, we 
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know exactly where all the A atoms are located (and where all the B atoms are located). 
Next we allow the atoms to randomly distribute. Figure 3.13b illustrates that six possible 
distinguishable molecular configurations result. It seems logical to assume that all these 
confi gurations are equally likely;8 hence, there is a 1/6 chance the A atoms will be found 
in their initial state with two atoms on the left-hand side of the membrane, a 4/6 chance 
there will be 1 A to the left of the membrane, and a 1/6 chance there will be no A. The 
most probable state of the system is the one in which there is 1 A and 1 B on each side, 
or, in other words, when A and B are mixed! Moreover, in this mixed state, we are not 
certain exactly where the A atom is; we have lost some information about the system.

This effect of mixing becomes even more dramatic as we increase the size of the 
 system. We now wish to extend the size of the system toward macroscopic amounts. 
 Figure 3.14 shows a stick diagram of the probabilities of the number of A atoms on the 
left-hand side of a porous membrane for system consisting of ideal gases A and B, as 
above. The upper-left-hand corner of this fi gure shows the case depicted in Figure 3.13, 
that is, a system consisting of 2 A atoms and 2 B atoms. The case with 1 A on the left-
hand side is represented by a stick four times as great as the case of 0 A atoms or 2 A 
atoms, since its probability is four times higher. 

Let’s double the size of the system so that we have 4 A atoms and 4 B atoms. There 
are now fi ve possibilities for A on the left-hand side: 0, 1, 2, 3, or 4. The probability for 
this system is presented in the next diagram to the right in Figure 3.14. If we consider 
each confi guration equally likely, the number of configurations with 2 A atoms to the 
left-hand side represents 36 out of 70 possible confi gurations. Again, we fi nd the case of 
complete mixing most probable. Again, in its most probable state, we become less cer-
tain about the exact positions of the A atoms. On the other hand, only one configuration 
in 70 leads to pure A on the left-hand side, where we know, with certainty, where all the 
A atoms are. 

Similar stick diagrams are shown for systems consisting of 8 A atoms and 8 B atoms, 
16 A atoms and 16 B atoms, 32 A atoms and 32 B atoms, and 128 A atoms and 128 B 
atoms. As the number of species increases, the mixing becomes more pronounced; that 
is, the likelihood of having roughly identical numbers of A atoms and B atoms on each 

8 This assumption forms the basis for the ergodic hypothesis upon which statistical thermodynamics is 
constructed.

Figure 3.13 System consisting of ideal gases A and B separated by a porous membrane. (a) Initial 
state of the system with all gas A on the left and all gas B on the right. (b) Possible configurations 
after the atoms are allowed to randomly redistribute.
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side of the membrane is great and the probability of fi nding all the A atoms on a given 
side becomes negligible. For example, in the case of 128 A atoms and 128 B atoms, only 
1 in 5.8 3 1075 confi gurations leads to pure A on the left-hand side. Thus, if all molecular 
configurations are equally likely, fi nding pure A by chance is so improbable that it essen-
tially will not happen. On the other hand, the confi gurations between 52 and 76 A atoms 
on the left-hand side of the membrane occurs 99.8% of the time.

What does this argument about molecular probability say about macroscopic sys-
tems in which we have on the order of 1023 A atoms and 1023 B atoms? Regardless of the 
initial state, if all the molecular configurations in this system are allowed to occur with 
equal probability, the system will evolve to the point where, for all practical purposes, 
roughly the same number of A atoms and B atoms are on each side of the membrane. 
We can relate our understanding of molecular probability to our macroscopic observa-
tion of the second law if we say that the number of molecular configurations a system 
can take is proportional to its entropy.9 Thus, if we start with a macroscopic system with 
pure A on the left-hand side of a porous membrane and pure B on the right-hand side, 
it has only one possible molecular confi guration, so its entropy is low. On the other hand, 
if it completely mixes, it has a large number of molecular configurations and its entropy 
is high. Thus, the spontaneous mixing of pure gases can be related on a molecular level 
to molecular probability and on a macroscopic level to entropy. In short, we can relate 
the irreversibility of macroscopic processes to mixing on a molecular level, where we 
become less certain of the exact molecular state of the system, because it can exist in 
many equivalent molecular confi gurations.

We can relate the above discussion to the commonly expressed viewpoint that 
entropy relates to “disorder.” As entropy increases, we become less certain about the 
exact molecular state of a system; that is, there are more equivalent molecular confi g-
urations in which it can exist. Therefore, in a loose sense, we would view it as more 

Figure 3.14 Conditional probabilities of the number of A atoms on the left-hand side of a system 
consisting of ideal gases A and B separated by a porous membrane. Cases are shown for a system 
consisting of 2 A atoms and 2 B atoms (as depicted in Figure 3.13), 4 A atoms and 4 B atoms, 8 A 
atoms and 8 B atoms, 16 A atoms and 16 B atoms, 32 A atoms and 32 B atoms, and 128 A atoms 
and 128 B atoms. As the number of species increases, the mixing becomes more pronounced.
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9 It is actually mathematically proportional to es.
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disordered. Thus, if we relate the degree of disorder to the number of confi gurations a 
system can have, higher entropy means more disorder.

Several examples of directional processes were presented in Section 3.1. We know 
that the directionality of an irreversible process relates to an increase in entropy. Let’s 
consider a few examples of how it also corresponds to an increase in molecular confi gura-
tions, that is, mixing.

Maximizing Molecular Configurations over Space

Example 1: Chemical Directionality
The example discussed above directly corresponds to chemical directionality with the 
mixing of molecules A and B. As Figure 3.14 illustrates, the more completely the two 
species mix, the greater the number of equivalent spatial confi gurations and, conse-
quently, the greater the probability the system will be found in that state. This mixing 
occurs over space, as is illustrated in Figure 3.15.

Example 2: Mechanical Directionality
Another example of an increase in spatial confi gurations is given by a gas expanding 
from a compressed cylinder. In this case, the molecules increase in entropy because 
there are more confi gurations available in the larger volume after the gas has expanded; 
that is, we are less certain exactly where a particular molecule is located. This type of 
spreading or “mixing over space” is illustrated in Figure 3.16. In this fi gure, the box 
inset is an expanded molecular view partly within the cylinder and partly outside of it. 
We can see we have greater knowledge of where the species are in state 1 than in state 
2; hence, state 1 has a lower value of entropy. In fact, the spatial mixing depicted in 
Figure 3.16 is very similar to the species mixing of Figure 3.15. If we examine the hypo-
thetical solution path we used in Example 3.9 (Figure E3.9B), we see that the increase 
in entropy of a given species as ideal gases mix arises from the fact that it has more 
space in which to move, whether another species is there or not. Said another way, if 
we replace species B in Example 1 with empty space, as far as species A is concerned, 
the situation in Examples 1 and 2 are equivalent. Therefore, this spatial mixing is often 
referred to as “spreading.”

Figure 3.15 Example of chemical directionality as the mixing of molecules A and B over space.
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Remove
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of molecules A and B
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10 An alternative argument asserts that increases in spatial confi gurations are all essentially just manifestations 
of increases in energetic confi gurations, and that the molecular interpretation of entropy can be understood by 
only considering the latter. For more information, see F.L. Lambert, J. Chem. Ed, 84(9), 1548 (2007).
11 This representation is meant to be schematic. Actually, the energy levels in solids form bands of available 
states and are not discrete as is the case for individual atoms.

Figure 3.16 Example of mechanical directionality as the mixing of molecule A over space as the 
gas expands. The molecular projection in this illustration consists of a region within the cylinder 
and a region outside the cylinder.
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Maximizing Molecular Configurations over Energy

In determining the number of possible confi gurations of a set of molecules, we must 
consider not only where they are in space but also how their energy is distributed. This 
factor results from the quantized nature of energy on the molecular scale. The energy 
within a given system must be assigned to quantized energy levels in much the same way 
the mass in the system must be assigned to a specifi c space. The fi lling of energy levels 
is constrained by the total energy of the system. We can understand the role of how the 
molecules distribute over energy in analogy to the way we related the spatial confi gu-
rations and probability in the discussion with Figures 3.15 and 3.16. The greater the 
number of equivalent confi gurations with which a set of molecules can distribute their 
energy, the greater the state’s entropy. Thus, an increase in entropy can be characterized 
by either “mixing” over space or “mixing” over energy. Mixing over energy decreases our 
knowledge of where the energy in the system is.10

Example 3: Thermal Directionality
In addition to mixing spatially, irreversible processes are sometimes driven by a mixing 
of states at different energy levels. For example, consider the case shown in Figure 3.17 
which shows an isolated system containing a hot solid, initially at T1,H, placed in contact 
with a cool solid, initially at T1,L. After time, the temperatures equilibrate at the interme-
diate temperature, T2. The thermal directionality of this process can be thought of as the 
“mixing” of states with different energy levels, which we will refer to as energetic mixing 
(and, as with spatial confi gurations, can just as appropriately be considered energetic 
spreading). The energy level diagrams at the bottom of the fi gure represent schemati-
cally how the energy of the electrons are distributed in the solids at the three different 
temperatures.11 In analogy to our discussion of spatial mixing, we can see that there 
are more confi gurations of energy states as the temperatures of the solids equilibrate, 
i.e., there are more ways to arrange the electrons in state 2 than state 1. Therefore, the 
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probability the system will be in that state is greater than in state 1. Thus, state 2 has 
higher entropy and occurs later in time.

Example 4: Kinetic Energy to Friction
Other entropic processes can also be viewed of in terms of mixing of energy. Consider a 
block that is sliding across a surface. It slows down as macroscopic kinetic energy 1EK 2  
is converted into internal energy by friction. This irreversible process can be thought 
of as mixing of energy from a directed form to dissipation in all directions. Figure 3.18 
illustrates this concept. There is only one confi guration the block’s kinetic energy can 
be in—that of directed, forward motion. After the block slows down, the increase in 
temperature leads to greater lattice vibrations in which the energy can be distributed in 
many confi gurations. Hence, the conversion of kinetic energy to internal energy by fric-
tion represents an irreversible process in which entropy increases.

Example 5: Chemical Reaction
Let’s look at the reaction we studied when we learned about the energetics of reaction in 
Section 2.6. Two molecules of hydrogen gas will spontaneously react with one molecule 
of oxygen to give two molecules of water. The rearrangement of chemical bonds liber-
ates 3.5 eV of energy. Suppose this reaction occurs adiabatically, so that the entropy of 
the surroundings does not change. The products will manifest the bond energy liberated 
by an increase in temperature. Since this process is spontaneous and irreversible, the 
second law tells us the products must have greater entropy than the reactants. We can 
understand this in terms of energy confi gurations.

Recall that there are two types of molecular energy: potential energy, such as that 
stored within a chemical bond, and kinetic energy, which includes translational, vibra-
tional, and rotational motion. In this discussion we will not consider vibrational and 

Figure 3.17 Schematic representation of thermal directionality as the mixing of energy configura-
tions between a cool solid initially at T1,L and a hot solid at T1,H.
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Figure 3.18 Example of energetically directional process being randomized as mixing of energy. 
Here the block’s kinetic energy is being dissipated into friction.

Mixing of energy
(by direction, from

directed to random)

friction

EK

c03.indd   187c03.indd   187 05/11/12   6:24 PM05/11/12   6:24 PM



188 ► Chapter 3. Entropy and the Second Law of Thermodynamics 

rotational motion; however, even with their inclusion, the essence of the argument does 
not change. Before reaction, the 3.5 eV of energy stored in the reactants can only exist 
in one confi guration—that of bond energy between atoms in the H2 and O2 molecules. 
In other words, each bond has a specifi ed and known strength. Once they react, the two 
molecules of water must share this exact amount of energy; however, they do not need 
to share it equally. In fact, there are many combinations of increased velocity these two 
molecules can have to sum up to the total 3.5 eV of energy. If we pick one of the water 
molecules, we are not sure of its exact speed. We have lost information. There are more 
energetic confi gurations and higher entropy. If we consider four molecules of H2 and two 
molecules of O2, the situation becomes even more drastic. Again, we can specify com-
pletely the energy confi guration of the reactants. However, now the products are free to 
distribute 7.0 eV between four molecules. There are many confi gurations of molecular 
kinetic energy that can accomplish the feat. If we extend this concept to macroscopic 
sizes, we have on the order of 105 J of energy to distribute among 1 mole of water pro-
duced. The 1023 molecules will have many confi gurations of velocity (molecular kinetic 
energy) to distribute the energy of reaction. This state is much more probable than that 
of the reactants which distribute this energy in a specifi c way, that is, in the form of bond 
energy—so the entropy of reaction is positive and the reaction proceeds spontaneously.

The above discussion focuses on the energy component of chemical reaction. How-
ever, there is also a spatial component, which counteracts the energy component. If the 
system completely reacts, it contains pure water. On the other hand, if some reactant 
remains, we have a mixture of three species. Those species have many more spatial 
confi gurations than pure water. Hence, as the reaction approaches completion, there 
is a trade-off between the entropy it gains by an increase in the energy confi gurations 
with an increase in temperature and the spatial confi gurations it loses due to “unmixing” 
in going to pure water.12 In general, the trade-off between these two components will 
determine how far a reaction will proceed. We will learn to quantify the extent to which 
species chemically react in Chapter 9.

In summary, as a system evolves to states with more possible confi gurations (spa-
tially or energetically) of its molecular states (more probable), its entropy increases.

12 For every three molecules that react, only two molecules form; this effect also contributes to the decrease in 
the spatial component of entropy.

Magnetic refrigeration cycles can be used to achieve supercold temperatures. They typically 
operate between a “hot” reservoir at liquid helium temperature (4.4 K) and a cold reservoir 
at very low temperature (as low as 0.0065 K). One confi guration consists of a paramagnetic 
working material, such as gadolinium gallium garnet (GGG) or ferric ammonium alum (FAU), 
in the form of a rim of a wheel. The wheel is rotated between the high-temperature (4.4 K!) 
reservoir and the low-temperature reservoir. In the high-temperature reservoir, the working 
material expels heat as it is subjected to a large magnetic fi eld (7 tesla). As the working material 
is rotated into the low-temperature reservoir, the fi eld slowly becomes smaller and eventually 
zero. This demagnetization process may be assumed to be adiabatic and reversible. As the 
working material demagnetizes, it cools off. When the working material is then exposed to 
a low-temperature reservoir, it absorbs heat. From a molecular basis, explain how adiabatic 
demagnetization cools the working material.

SOLUTION A paramagnetic material consists of many unpaired electrons, each of which has a 
defi nite spin state (spin-up or spin-down). In the absence of a magnetic fi eld, the energies of 

EXAMPLE 3.19

Refrigeration 
by Adiabatic 
Demagnetization
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each of the electron states are identical. Thus, an equal number of electrons will occupy each 
state. When a magnetic fi eld is applied to the material, the energies of the spin-up and spin-
down states are no longer identical. Consequently, more electrons occupy the lower energy 
state then the upper energy state. A schematic of the spin states with a magnetic fi eld (state 1) 
and without a magnetic fi eld (state 2) is illustrated in Figure E3.19.

The entropy of this system can be thought of as having two components, that due to 
magnetization, smagnetization and that due to temperature, stemperature.We fi rst consider smagnetization. 
Inspection of Figure E3.19 shows that there are fewer confi gurations possible (less disorder) in 
state 1, with the magnetic fi eld applied, than in state 2. Thus, the entropy due to magnetization 
increases during the demagnetization process as the working material goes from state 1 to 2:

Dsmagnetization . 0

However, since the overall process is reversible and adiabatic, the entropy change is zero:

Ds 5 0 5 Dsmagnetization 1 Dstemperature

Thus, 

Dstemperature , 0

The entropy of the temperature component is lowered as the temperature decreases, that is,

T2 , T1

It is interesting to compare the two states in an adiabatic demagnetization cycle 
(Figure E3.19) with those in the conventional vapor-compression refrigeration cycle described 
in Section 3.9. Both cycles rely on the working substance absorbing heat from a cold reservoir 
as the working substance goes from a more ordered state to a less ordered state. In this 
example, the liquid-to-vapor transition of conventional refrigeration is replaced with the 
demagnetization of the paramagnetic material. Similarly, in both cycles, heat is rejected to a hot 
reservoir as the working substance transits to a more ordered state (liquid or magnetic). This 
example illustrates one approach to creatively developing engineering processes—applying 
the same fundamental approach in a new way that is better suited for the given application. 
Clearly, the super-low temperatures obtained by adiabatic demagnetization refrigeration 
systems could not be obtained by a conventional liquid–vapor transition, since vapors do not 
exist at these temperatures. However, in developing this process, the same fundamental type 
of process (i.e., ordered-to-disordered transition) is exploited. It is just accomplished in a way 
that is appropriate for the application, where the ordered-to-disordered transition occurs 
within a solid. Many clever engineering processes have been created by applying analogous 
fundamental mechanisms in this manner.

Magnetic Field

State 1 State 2

Energy

No Magnetic Field

Figure E3.19 Electronic 
spin states of a paramagnetic 
material in the presence of a 
magnetic field (state 1) and 
with no magnetic field 
present (state 2).
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 ►3.12  SUMMARY
The second law of thermodynamics states that the total entropy of the universe increases or, at 
best, remains the same. It never decreases. The entropy of the universe remains unchanged for a 
reversible process, while it increases for an irreversible process. 

Entropy balances have been developed for closed systems and for open systems. In each case, 
we account for the entropy change of the universe by adding together the entropy change for the 
system and the entropy change for the surroundings. For example, the integral equation of the 
second law for a closed system, written in extensive form, is:

 DSuniv 5 n 1sfinal 2 sinitial 2 2
Q

Tsurr
$ 0 (3.13)

In Equation (3.13), the surroundings are at constant temperature, Tsurr. For open systems, it is 
convenient to write the second law on a rate bases. The integral equation, in extensive form, is:

 
dS
dt

1 a
out

n# outsout 2 a
in

n# insin 2
Q
#

Tsurr
$ 0 (3.21)

The fi rst term in Equation (3.21) describes the rate of entropy change of the system, while the next 
three terms describe the entropy change of the surroundings due to mass fl ow out of the system, 
mass fl ow into the system, and heat transfer. The fi rst and second laws can be combined for fl ow 
processes that are at steady-state and reversible, with one stream in and one stream out, to give 
the Bernoulli equation:

 
W
#

s

n
# 5 3

2

1

vdP 1 MW¢ V
S

2
2

2 V
S

1
2

2
≤ 1 MWg 1z2 2 z1 2  (3.30)

We have also used these equations in intensive forms, on a mass and a molar basis, and for 
 differential increments.

We applied the second law to many engineering systems. Given a physical problem, we 
must determine which terms in these equations are important and which terms are negligible or 
zero. Examples of closed systems included the rigid tank and adiabatic or isothermal expansion/ 
compression in a piston–cylinder assembly. Steady-state open systems include nozzles, diffusers, 
turbines, pumps, heat exchangers, and throttling devices. Transient open-system problems can 
entail fi lling or emptying of a tank. Finally, vapor-compression power and refrigeration cycles 
provided useful examples of thermodynamic cycles. In this case, the performance of the cycles 
is quantifi ed by the efficiency and the coefficient of performance, respectively. You should 
understand the concepts well enough that you are not restricted to the systems discussed above 
but rather can apply the second law to any system that interests you.

When we perform calculations on a reversible process, the second law provides an additional 
constraint that allows us to determine an unknown state or to calculate quantities such as heat or 
work. We can use these values to estimate the corresponding values of real processes. The isen-
tropic efficiency compares the actual performance of a unit process with the performance it 
would obtain if it operated reversibly.
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The change in entropy between state 1 and state 2 is defi ned as:

 Ds 5 3

2

1

5
dqrev

T
 (3.2)

Since entropy is defined in terms of heat absorbed during a reversible process, we can calculate the 
entropy between any two states by constructing a path that follows a reversible process from state 
1 to state 2. In this way, we found that the entropy change of an ideal gas is given by:

 Ds 5 3

T2

T1

cP

T
 dT 2 R ln¢P2

P1
≤  (3.22)

Equation (3.22) is true, in general, for the entropy change associated with an ideal gas 
between state 1 and state 2; it is not limited only to the reversible process that we chose to develop 
it. For an ideal gas, the entropy change between 1T1, v1 2  and 1T2, v2 2  is analogously given by Equa-
tion (3.24). Alternatively, the entropy change between two states can be directly obtained from 
property tables, if they are available.

Exergy can be used for a methodological analyses of complex processes. Exergy is related to 
the ideal work, the most work we can get out of a process that brings the system from its current 
state to the dead state. The dead state has the same properties as the environment, immediately 
adjacent in the surroundings. (Alternatively, we can conceive ideal work as least work we have 
to put in to go from the dead state to the state of interest.) Similarly exthalpy, or fl ow exergy, 
accounts for the fl ow work of inlet and outlet streams as well. Exergy analysis allows us to quantify 
the amount of useful work we are losing in the unit processes that comprise a system. We can then 
prioritize where to focus design and process improvement.

The molecular view of entropy relates, in the most general sense, to molecular probability. 
The more different molecular configurations a state exhibits, the more likely that state will 
exist and the greater its entropy. In determining the number of possible confi gurations of a set of 
molecules, we must consider not only where they are in space but also how their energy is distrib-
uted. This factor results from the quantized nature of energy on the molecular scale. The greater 
the number of equivalent confi gurations with which a set of molecules can distribute in space or 
spread their energy, the greater the state’s entropy. Thus, an increase in entropy can be charac-
terized by either “mixing” over space or “mixing” over energy. These molecular-based concepts 
have propogated to many other fi elds. Information theory mathematically defi nes information 
“entropy” for bits of information using the identical formula that Boltzmann applied to molecular 
confi gurations. Similarly, “entropy”-based arguments have expanded into such diverse fi elds as 
economics, theology, sociology, art, and philosophy.

 ►3.13  PROBLEMS
Conceptual Problems

3.1 A set of mixing processes is shown in the following fi gures. The volumes are represented by 
the size of the boxes. For each process, determine whether Ds is greater than zero, less than zero, 
or equal to zero. Explain your answer. You may assume O2 and N2 behave as ideal gases.
Refl ect on your results in parts (a) through (d), and comment on the common statement that 
entropy  represents the “degree of disorder” in a system.
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3.2  State the conditions under which the following equations apply. Be as specifi c as you can with 
the limitations.

(a) q 5 3Tds

(b) h2 2 h1 5 cp 1T2 2 T1 2

(c) Dsuniv . 0

(d) DSsurr 5
Qsurr

Tsurr

(e) DSuniv 5
QH

TH
2

QC

TC

(f) 0 5 3

2

1

vdP 1 ¢V 2
2 2 V 2

1

2
≤ 1 g 1z2 2 z1 2

3.3 Consider two ideal gases, A and B, that are initially separated. For each of the following pro-
cesses, the gases are allowed to mix. Determine if the entropy change of the system is positive, 
negative, or zero. Explain.
(a) The process occurs isothermally, at constant P.
(b) The process occurs adiabatically, at constant P.
(c) The process occurs isothermally, at constant V.
(d) The process occurs adiabatically, at constant V. 

3.4 Consider an ideal gas. For each of the following processes, determine if the entropy change 
of the system is positive, negative, zero, or you cannot tell. Explain.
(a) Isothermal compression
(b) Adiabatic compression
(c) Isobaric heating
(d) Isochoric heating

3.5 Consider the following processes and determine if the entropy change of the system is 
 positive, negative, zero, or you cannot tell. Explain.
(a) Liquid water is frozen to form ice.
(b) 1 mol of oxygen and 2 mol of hydrogen react isothermally and completely to form 1 mol of 
water vapor.
(c) 1 mol of oxygen and 2 mol of hydrogen react adiabatically and completely to form 1 mol of 
water vapor.

3.6 Consider an ideal gas that undergoes two alternative processes from state 1 to state 2. The 
path for the fi rst process (Path 1) is reversible, and the path of the second process (Path 2) is irre-
versible. Answer the following questions.
(a) If we compare the entropy change of the system, we can say that the entropy change for Path 
1 is (greater than, equal to, less than) the entropy change for Path 2. Explain.
(b) If we compare the entropy change of the surroundings, we can say that the entropy change for 
Path 1 is (greater than, equal to, less than) the entropy change for Path 2. Explain. 

3.7 A black box is bolted to a beam with a cable as shown in the following fi gure. Consider the 
box as the system. During the process, the box raises in height as the cable goes into the box by an 
unknown mechanism. Assume that there is some friction associated with this process. 

Black Box

During the process
the cable goes into
the black box

Black Box

C
ab

le

C
ab

le
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(a) During the process, is the change in total energy of the box: greater than zero, equal to zero, 
less than zero, or cannot tell? Explain.
(b) During the process, is the change in entropy of the universe: greater than zero, equal to zero, 
less than zero, or cannot tell? Explain. 
(Thanks to Prof. Octave Lvenspiel for providing the idea for this problem.)
3.8 In Problem 2.12, you explained why a thick rubber band heats when stretched. Offer an alter-
native explanation in the context of entropy. You may consider this process isentropic.
3.9 Qualitatively sketch the Ts diagram corresponding to the real Rankine cycle given in Example 
3.15.
3.10 Ts diagrams for two reversible thermodynamic power cycles are shown in the following fi gure. 
Both cycles operate between a high temperature reservoir at 500 K and a low temperature reservoir 
at 300 K. The process on the left is the Carnot cycle described in Section 2.9. The process on the 
right is a Stirling cycle, which is similar to a Carnot cycle, except that the two steps (state 4 to state 1) 
and (state 2 to state 3) are at constant volume. Which cycle, if either, has a greater effi ciency? Explain.

4

1 2

3

Carnot Cycle

500

300

T [K]

s

4

1 2

3

Stirling Cycle

v = const

v = const

500

300

T [K]

s

3.11 Ts diagrams for two reversible thermodynamic power cycles are shown in the following fi g-
ure. Both cycles operate between a high temperature reservoir at 500 K and a low temperature 
reservoir at 300 K. The process on the left is the Carnot cycle described in Section 2.9. The process 
on the right is a Brayton cycle, which is similar to a Carnot cycle, except that the two steps (state 
1 to state 2) and (state 3 to state 4) are at constant pressure. Which cycle, if either, has a greater 
effi ciency? Explain.

4

1 2

3

Carnot Cycle

500

300

T [K]

s

4

1

2

3

Stirling Cycle

p = const

p = const

500

300

T [K]

s

3.12 CdTe forms a II–VI compound semiconductor. This solid forms a well-ordered single crystal 
where Cd atoms and Te atoms sit in distinct sites adjacent to each other in a crystal lattice. Esti-
mate the entropy of mixing from an initial state of 1 mole of pure solid Cd and 1 mole of pure solid 
Te to a fi nal state of 1 mole of CdTe at constant temperature and pressure.
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3.13 In the 1959 Rede Lecture, The Two Cultures, C. P. Snow asserts:

A good many times I have been present at gatherings of people who, by the standards of 
traditional culture, are thought highly educated and who have with considerable gusto been 
expressing their incredulity at the illiteracy of scientists. Once or twice I have been provoked 
and have asked the company how many of them could describe the Second Law of Thermo-
dynamics. The response was cold: it was also negative. Yet I was asking something which is 
about the equivalent of: Have you read a work of Shakespeare’s?

Do you think that this analogy (between the second law and Shakespeare) is appropriate? Write a 
paragraph defending your position.
3.14 In his book The Trouble Waters, Henry Morris proclaims:

The Law of Increasing Entropy is an impenetrable barrier which no evolutionary mechanism 
yet suggested has ever been able to overcome. Evolution and entropy are opposing and mutu-
ally exclusive concepts. If the entropy principle is really a universal law, then evolution must 
be impossible.

Is this argument scientifi cally sound? Explain.
3.15 “Four of a kind” is one of the best hands you can have in poker. Can you relate this statement 
to the concept of entropy? Would you say this hand has a high value of s?
3.16 The concept of entropy was developed in the nineteenth century, in order to study the effi -
ciency of the steam engine, largely through the work of Sadi Carnot, Rudolph Clausius, and Lord 
Kelvin. However, it has had major implications well beyond the realm of engineering, including 
impacting the thought, philosophy, and theology of nineteenth-century Europe. Go to the library 
or the Web and fi nd a nonengineering topic in which entropy plays a major role. Describe it in 
about a hundred words and cite your source(s).

Numerical Problems

3.17 Develop a general expression for Dssys for an ideal gas that goes from 1v1, T1 2  to 1v2, T2 2  
based on the path below.

State 1 
v1

v2

(T1 ,v1)

(T2 ,v2)State 2 

Real path

Step 1

Temperature (K)

S
te

p
 2

V
o
lu

m
e
 (

m
3
/m

o
l)

Δshypothetical

Δsreal

T1 T2

3.18 Develop a general expression for Dssys for an ideal gas that goes from 1P1, T1 2  to 1P2, T2 2  
where heat capacity is given by:

cP 5 A 1 BT 1 CT2
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3.19 A rigid vessel contains 10 kg of steam. The steam is initially at 10 bar and 300°C. After 
a period of time, the pressure in the vessel is reduced to 1 bar due to heat transfer with the 
surroundings. The surroundings are at a constant temperature of 20°C. Determine the change in 
entropy of the system, the surroundings, and the universe during this process.

3.20 A 10-kg block of copper is initially at 100°C. It is thrown in a very large lake that is at 280 K. 
What is the entropy change of the copper? What is the entropy change of the universe?

3.21 Calculate the change in entropy for the system for each of the following cases. Explain the 
sign that you obtain by a physical argument.
(a) A gas undergoes a reversible, adiabatic expansion from an initial state at 500 K, 1 MPa, and
8.314 L to a fi nal volume of 16.628 L.
(b) One mole of methane vapor is condensed at its boiling point, 111 K; Dhvap 5 8.2 3kJ/mol 4
(c) One mole of liquid water is cooled from 100°C to 0°C. Take the average heat capacity of water 
to be 4.2 JK21g21.
(d) Two blocks of the same metal with equal mass are at different temperatures, 200°C and 
100°C. These blocks are brought together and allowed to come to the same temperature. Assume 
that these blocks are isolated from their surroundings. The average heat capacity of the metal is 
24 J K21 mol21.
3.22 Calculate the change in entropy of the universe for the process described in Problem 2.28. 
Repeat for Problem 2.29.
3.23 Determine the change in entropy of an ideal gas with constant heat capacity, cP 5 17/2 2R,
between the following states:
(a) P1 5 1 bar, T1 5 300 K; P2 5 0.5 bar, T2 5 500 K
(b) v1 5 0.05 m3/mol, T1 5 300 K; v2 5 0.025 m3/mol, T2 5 500 K
(c) P1 5 1 bar, T1 5 300 K; v2 5 0.025 m3/mol, T2 5 500 K

3.24 Compare the change in entropy (a) when water is heated from its freezing point to its boiling 
point at 1 atm and (b) when saturated liquid water is vaporized at 1 atm.

3.25 You have just cooled a glass of tap water at 20°C by adding ice, at 210°C. The glass originally 
contains 400 mL of tap water, to which 100 g of ice is added. Assume that the glass is adiabatic. 
Calculate the change in entropy of the universe after thermal equilibrium has been obtained. For 
ice, take Dhfus 5 26.0 3kJ/mol 4.

3.26 Consider a piston–cylinder assembly that initially contains 0.5 kg of steam at 400°C and 
100 bar. For the isothermal expansion of the steam in this system to a fi nal pressure of 1 bar, 
determine the following:
(a) What is the maximum possible work (in [kJ]) that can be obtained during this process and the 
entropy change of the surroundings (in [kJ/K])?
(b) Repeat part (a) using the ideal gas model for steam. Compare your answers.

3.27 Consider the piston–cylinder assembly shown at the top of page. It is well insulated and ini-
tially contains two 5000-kg blocks at rest on the 0.05-m2 piston. The initial temperature is 500 K. 
The ambient pressure is 5 bar. One mol of an ideal gas is contained in the cylinder. This gas is 
compressed in a process in which another 5000-kg block is added. The heat capacity of the gas 
at constant volume can be taken to have a constant value of (5/2) R, where R is the gas constant.
(a) What are the initial and fi nal pressures of the gas in the system?
(b) Do you expect the temperature to rise or fall? Explain.
(c) What is the fi nal temperature? (This is not necessarily a polytropic process!)
(d) Calculate Dssys and Dssurr. [Hint: You may want to refer to the Carnot cycle to get an idea of a 
possible set of reversible processes to pick.]
(e) Does this process violate the second law of thermodynamics? Explain.
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Psurr = 5 bar

A = 0.05 m2

1 mol of pure,
ideal gas

Well

insulated

T initial = 500 K

cv =    
5

2

Process consists of adding third

5000 kg block to compress piston

m = 5000
kg

m = 5000
kg

m = 5000
kg

R

3.28 Problem 3.27 consists of an irreversible process in which an ideal gas with constant heat 
capacity was compressed in a piston–cylinder assembly. As part of this problem, you were asked to 
calculate Dssys for this process. Entropy change is defi ned for a reversible process as:

Ds 5 3

final

initial

dqrev

T

Since entropy is a property, the change in entropy depends only on the fi nal and initial states of the 
system, not on the path the system went through for a particular process. Therefore, we can pick 
any reversible path we want, as long as it takes us from the initial state to the final state. Calculate 
Dssys for the process depicted in Problem 3.27, using each of the following paths:
(a) a reversible, adiabatic compression, followed by a reversible, isothermal expansion (two of the 
four steps in the Carnot cycle)
(b) a reversible, isobaric heating followed by a reversible, isothermal compression
(c) a reversible, isochoric (constant-volume) heating followed by a reversible, isothermal 
compression
3.29 Consider a well-insulated piston–cylinder assembly. O2, initially at 250 K and 1 bar, under-
goes a reversible compression to 12.06 bar. You may assume oxygen is an ideal gas. Answer the 
following questions:
(a) What is the entropy change for this process? 
(b) What is the fi nal temperature of the oxygen? 
(c) What is the value of work for this process?
(d) If the oxygen in this system had undergone an irreversible compression to 12.06 bar, would the 
fi nal temperature be higher than or lower than that calculated in part (b)? Explain.
3.30 The insulated vessel shown below has two compartments separated by a membrane. On one 
side is 1 kg of steam at 400°C and 200 bar. The other side is evacuated. The membrane ruptures, 
fi lling the entire volume. The fi nal pressure is 100 bar. Determine the entropy change for this 
process.

Vacuum
H2O

T1 = 400°C
P1 = 200 bar

Insulation
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3.31 A partition divides a rigid, well-insulated 1-m3 tank into two equal parts. The left side con-
tains an ideal gas 3cP 5 15/2 2R 4 at 10 bar and 300 K. The right side contains nothing; it is a vac-
uum. A small hole forms in the partition, gas slowly leaks out from the left side, and eventually the 
temperature in the tank equalizes. What is the entropy change?
3.32 An insulated tank is divided by a thin partition.
(a) On the left is 0.79 mole of N2 at 1 bar and 298 K; on the right is 0.21 mole of O2 at 1 bar and
298 K. The partition ruptures. What is DSuniv for the process?
(b) On the left is 0.79 mole of N2 at 2 bar and 298 K; on the right is 0.21 mole of O2 at 1 bar and
298 K. The partition ruptures. What is DSuniv for the process?
[Hint: Consider the entropy change of each gas separately and add them together. To do this, you 
will need to use the concept of partial pressure.]
3.33 Consider the well-insulated, rigid container shown in the following fi gure. Two compart-
ments, A and B, contain H2O and are separated by a thin metallic piston. Side A is 50 cm long. Side 
B is 10 cm long. The cross-sectional area is 0.1 m2.

Latch

Thin metallic piston

A

P1,A = 10 bar
T1,A = 700°C

P1,B = 20 bar
T1,B = 250°C

H2OH2O

B

10 cm50 cm

Well-insulated

wall

The left compartment is initially at 10 bar and 700°C; the right compartment is initially at 20 bar 
and 250°C. The piston is initially held in place by a latch. The latch is removed, and the piston 
moves until the pressure and temperature in the two compartments become equal. Determine the 
entropy change of the universe for this process. 
3.34 Consider the well-insulated container shown below. Two gases, gas A and gas B, are sepa-
rated by a metallic piston. The piston is initially held in place by a latch 10 cm from the left of the 
container.

Latch Thin metallic piston

Gas A

P1,A = 10 bar
T1,A = 500°C

P1,B = 1bar
T1,B = 100°C

cv /R = 3/2 cv /R = (5/2 + 1.5 × 10–3T )

Gas B

20 cm10 cm

Well-insulated

wall

Gas A, which is located in the left compartment, is initially at 10 bar and 500°C. The heat capacity 
of gas A is constant: 1cv,A/R 2 5 3/2. Gas B is located in the right compartment and is initially at 
1 bar and 100°C. The heat capacity of gas B is given by 1cv,B/R 2 5 5/2 2 1.5 3 1023 T where T is 
in Kelvin. You may use the ideal gas model for both gases.
(a) The latch is removed and the piston moves until the pressure and temperature in the two 
compartments become equal. What are the fi nal pressure and temperature? State any assumptions 
that you make.
(b) Calculate the entropy change of the universe. Is this process possible?
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3.35 Steam at 8 MPa and 500°C fl ows through a throttling device, where it exits at 100 kPa. 
Determine the entropy change for this process.
3.36 A fast-talking salesperson comes to your doorstep and says she is down on her luck and is 
willing to sell you the patent rights to her most glorious invention. She brings out a mysterious 
black box and says it can take an inlet stream of ideal gas at 2 kg/s and 4 bar and cool part of it (0.5 
kg/s) from 50°C to 210°C with no external parts, as shown below.

Mysterious black box
0.5 kg/s 1.5 kg/s

1 bar

–10°C

1 bar

70°C

2 kg/s

4 bar

50°C

You are feeling somewhat adventurous and are tempted by this offer but must ask the fundamental 
question: “Can it work?” Can it? Explain.

3.37 Steam enters a nozzle at 4 MPa and 640°C with a velocity of 20 m/s. This process may be 
considered reversible and adiabatic. The nozzle exit pressure is 0.1 MPa.
(a) Draw a sketch of this process. Include all known information.
(b) What is the entropy change of the steam?
(c) What is the exit temperature?
(d) What is the exit velocity?
3.38 Propane at 350°C and 600 cm3/mol is expanded in a turbine. The exhaust pressure is atmos-
pheric. What is the lowest possible exhaust temperature? How much work is obtained? You may 
assume ideal gas behavior and that heat transfer to the surroundings is negligible.
3.39 What is the minimum amount of work required to separate an inlet stream of air fl owing at
20°C and 1 bar into exit streams of pure O2 and pure N2 at 20°C and 1 bar?
3.40 An adiabatic turbine is designed to take stream of steam fl owing at 10 kg/s from an inlet at 
10 bar and 500°C to an outlet at 1 bar. It is reported that at steady-state, this turbine can deliver 
7,619 kW of power. Is this possible? Explain.
3.41 An ideal gas at a fl ow rate of 10.0 m3/min enters a compressor at 25°C and 1 bar. It leaves 
at 1 MPa. During this process, heat is dissipated to the surroundings at a rate of 2100 W. You may 
take the surroundings to be at a constant temperature of 25°C. The heat capacity of the ideal gas 
is given by:

cP

R
5 2.00 1 0.0400T

where T is in [K]. Answer the following questions:
(a) Assuming this process is reversible, calculate the temperature at the compressor outlet.
(b) Calculate the minimum power required to compress the gas.
(c) If the compressor effi ciency is 70%, calculate the actual power needed.
(d) Calculate the actual fi nal temperature. 
3.42 Consider a Carnot (reversible) power cycle operating between a hot reservoir of 727°C 
and a cold reservoir of 27°C. If 700 W of power are generated, calculate the total entropy change 
of the universe, the entropy change of the hot reservoir, and the entropy change of the cold 
reservoir.
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3.43 An ideal gas enters an adiabatic turbine with a molar fl ow rate of 10 [mol/s]. The inlet 
 pressure is 100 bar, and the inlet temperature is 500°C. The gas exits at 1 bar. The ideal gas heat 
capacity is given by:

cP

R
5 3.6 1 0.5 3 1023T

where T is in [K]. 
(a) At steady state, calculate the maximum power (in kW) generated by the turbine.
(b) If the isentropic effi ciency is 80%, calculate the actual power delivered. 
3.44 A rigid tank of volume 0.1 m3 is fi lled from a supply line at 127°C and 2 bar, as drawn in the 
following fi gure. It is initially at vacuum. The valve is opened, and the tank fi lls until the pressures 
equilibrate. The valve is then shut. During this process, 6,000 [J] of heat transfers to the sur-
roundings. The fi nal temperature in the tank is 227°C. The surroundings are at 27°C. What is the 

entropy change of the universe for this process? Take the heat capacity to be constant, cP 5 ¢7
2
≤R. 

Tsurr = 27°C Tsurr = 27°C

Initially
Vacuum

State 1

V = 0.1 m3

Ideal Gas
Tin = 127°C

p in = 2 bar

State 2

V = 0.1 m3

Ideal Gas p2 = 2 bar

T2 = 227°C

Ideal Gas
Tin = 127°C
p in = 2 bar

3.45 A rigid tank of volume 0.5 m3 is connected to a piston–cylinder assembly by a valve as shown 
below. Both vessels contain pure water. They are immersed in a constant-temperature bath at 
200°C and 600 kPa. Consider the tank and the piston–cylinder assembly as the system and the 
constant-temperature bath as the surroundings. Initially the valve is closed, and both units are 
in equilibrium with the surroundings (the bath). The rigid tank contains saturated water with a 
quality of 95% (i.e., 95% of the mass of water is vapor). The piston–cylinder assembly initially has 
a volume of 0.1 m3. The valve is then opened. The water fl ows into the piston–cylinder assembly 
until equilibrium is obtained. For this process, calculate the change in entropy for the system, the 
surroundings, and the universe.

Temperature bath TB = 200°C
P = 600 kPa

Vinitial = 0.1 m3

V = 0.5 m3

Quality = 95%

Surroundings

Pure
H2O

H2O
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3.46 A rigid, well-insulated container is initially divided into three compartments. The top com-
partment contains a vacuum. It is separated from the middle compartment A by a frictionless mass 
of 1000 kg and area 0.098 m2. Compartment A contains 2 moles of ideal gas at 300 K and is sepa-
rated from compartment B, on the bottom of the container, by a rigid partition. Compartment B 
initially contains 2 moles of the same ideal gas at 300 K and occupies a volume of 0.1 m3 A process 
is initiated by removing the partition. The mass then re-equilibrates in the container. What is the 
change in entropy? Take cP 5 15/2 2R.

V1,b = 0.1 m3

n1,b = 2 moles
T1,b = 300 K

 n1,a = 2 moles
 

Ideal gas

A = 0.098 m2

Vacuum

Well insulated

g

Ideal gas

Vacuum

remove

partition

partition

M = 1000 kg

M = 1000 kg

T1,a = 300 K

T2 = ?

3.47 Consider the system shown below. Tank A has a volume of 0.3 m3 and initially contains an 
ideal diatomic gas at 700 kPa, 40°C. Cylinder B has a piston resting on the bottom, at which point 
the spring exerts no force on the piston. The piston–cylinder has a cross-sectional area of 0.065 m2, 
the piston has a mass of 40 kg, and the spring constant is 3500 N/m. Atmospheric pressure is 100 kPa. 
Tanks A and B are well insulated and do not transfer heat between each other. The valve is opened 
and gas fl ows into the cylinder until pressures in A and B become equal and the valve is closed. 
You may assume constant heat capacity. Determine the fi nal pressure in the system. Assuming the 
gas in A has undergone a reversible, adiabatic expansion, fi nd the fi nal temperature in cylinder 
A. The temperatures in tank A and B are not necessarily equal.

AB

Patm

F = −kx

3.48 A steam turbine in a small electric power plant is designed to accept 4500 kg/hr of steam at 60 
bar and 500°C and exhaust the steam at 10 bar. Heat transfers to the surroundings 1Tsurr 5 300K 2  
at a rate of 69.86 kW. Answer the following questions:
(a) Calculate the maximum power 1W

#
max 2  that the turbine can generate.

(b) In this case, what is the exit temperature of the steam?
(c) You know that the isentropic effi ciency of the turbine is actually 66.5%. What is the actual 
power produced?
(d) Do you expect the exit temperature to be higher or lower than that calculated in part (a). 
Explain. (Assume the heat transfer does not change.)
(e) What is the actual exit temperature?
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3.49 Air fl owing at 1 m3/s enters an adiabatic compressor at 20°C and 1 bar. It exits at 200°C. The 
isentropic effi ciency of the compressor is 80%. Calculate the exit pressure and the power required.
3.50 Steam enters a turbine at 10 MPa and 500°C and leaves at 100 kPa. The isentropic effi ciency 
of the turbine is 85%. Calculate the exit temperature and the work generated per kg of steam 
fl owing through.
3.51 Nitrogen gas at 27°C fl ows into a well-insulated device operating at steady-state. There is no 
shaft work. The device has two exit streams. Two-thirds of the nitrogen, by mass, exits at 127°C 
and 1 bar. The remainder exits at an unknown temperature and 1 bar. Find the exit temperature 
of the third stream. What is the minimum possible pressure of the inlet stream? Assume ideal gas 
behavior.
3.52 Consider a well-insulated piston–cylinder assembly containing 5 kg of water vapor, initially 
at 540°C and 60 bar, that undergoes a reversible expansion to 20 bar. The surroundings are at 1 bar 
and 25°C. Answer the following questions:
(a) What is the entropy change (Dsuniv, Dssurr, and Dssys) for this process? 
(b) What is the fi nal temperature of the water?
(c) What is the value of work for this process?
(d) What is the fi nal volume of the system?
3.53 Consider a well-insulated, rigid tank containing 5 kg of water vapor in the same initial state 
as in Problem 3.52 (540°C, 60 bar). Again, the surroundings are at 1 bar and 25°C, as shown below. 
A tiny leak develops, and water slowly escapes until the pressure reaches 20 bar.

m = 5kg

Pure H2O

Very tiny

leak hole

Well insulated

Tsurr = 25°C

T2 = ?°C

Psurr = 1 bar

P2 = 20 bar

Pure H2O

T1 = 540°C

P1 = 60 bar

Do you expect the fi nal temperature to be higher than, lower than, or the same as that calculated 
in part (b) of Problem 3.52? Explain your answer.
3.54 Consider fi lling a “type A” gas cylinder with water from a high-pressure supply line as shown 
on next page. Before fi lling, the cylinder is empty (vacuum). The valve is then opened, exposing 
the tank to a 3-MPa line at 773 K until the pressure of the cylinder reaches 3 MPa. The valve is 
then closed. The volume of a “type A” cylinder is 50 L.
(a) What is the change in entropy of the universe immediately after the valve is closed?
(b) If the cylinder then sits in storage at 293 K for a long time, what is the entropy change of the 
universe?
3.55 A rigid tank has a volume of 0.01 m3. It initially contains saturated water at a temperature of 
200°C and a quality of 0.4. The top of the tank contains a pressure-regulating valve that maintains 
the vapor at constant pressure. This system undergoes a process whereby it is heated until all the 
liquid vaporizes. You may assume there is no pressure drop or heat transfer in the exit line. The 
surroundings are at 200°C. What is the entropy change of the universe?
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Water 3 MPa; 773 K

Initially:
vacuum

Tsurr = 293 K

3.56 Consider the system sketched below in which a turbine is placed between two rigid tanks. Tank 
1 initially contains an ideal gas at 10 bar and 1000 K. Its volume is 1 m3. Tank 2 is 9 m3 and is initially 
at vacuum. The heat transfer with the surroundings is negligible. Determine the maximum work (in 
[J]) obtainable by the turbine. You may take the heat capacity of the gas to be cP 5 15/2 2R. You may 
neglect the volume in the turbine and assume the fi nal temperature in the two tanks is equal.

Turbine

Ws

 

V = 1 m3

P1 = 10 bar

T1 = 1000 K 

Rigid tank

Rigid tank

V = 9 m3

Initially

vacuum

Ideal

gas in

Ideal

gas out

3.57 A hot reservoir is available at 500°C and a cold reservoir at 25°C. Calculate the maximum 
possible effi ciency of a power cycle that operates between these two reservoirs.
3.58 An ideal Rankine cycle operates with the following design: 100 kg/s of steam enters the 
turbine at 30 bar and 500°C and is condensed at 0.1 bar. Determine the power produced and the 
effi ciency of the cycle.
3.59 Come up with four ways in which you can make the power cycle of Problem 3.58 more effi -
cient. Illustrate how your ideas achieve increased effi ciency using sketches like that in Figure 3.8.
3.60 An ideal Rankine cycle produces 100 MW of power. If steam enters the turbine at 100 bar 
and 500°C and is condensed at 1 bar, determine the mass fl ow rate of steam. Recalculate the mass 
fl ow rate assuming that the isentropic effi ciency of the turbine and the compressor are 80%.
3.61 You are considering building a solar power plant which uses CCl2F2 as its working fl uid. It 
enters the turbine as a saturated vapor at 1.7 MPa and leaves at 0.7 MPa. Based on the ideal Rank-
ine cycle, determine the effi ciency. Property data for CCl2F2 may be found at http://webbook.nist
.gov/chemistry/fl uid/.
3.62 Consider a refrigeration system based on an ideal vapor-compression cycle using R-134a as 
the refrigerant. It operates between 0.7 MPa and 0.12 MPa with a fl ow rate of 0.5 mol/s. Calculate 
the following:
(a) the rate of heat removal from the refrigerated unit
(b) the power input needed to the compressor
(c) the COP

The properties of R-134a can be found at http://webbook.nist.gov/chemistry/fl uid/.
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3.63 If the throttling valve in Problem 3.62 is replaced by an isentropic turbine, what is the COP? Is 
this modifi cation practical? Explain.

3.64 A two-stage cascade refrigeration system is shown below. The refrigerant is R134a. It consists 
of two ideal vapor-compression cycles with heat exchange between the condenser of the lower- 
temperature cycle and the evaporator of the higher-temperature cycle. The hotter cycle operates 
between 0.7 MPa and 0.35 MPa, while the cooler cycle operates between 0.35 MPa and 0.12 MPa. If 
the fl ow rate in the hotter cycle is 0.5 mol/s, determine the following:

Valve

P = 0.35 MPaP = 0.12 MPa P = 0.7 MPa

Wc

5

6

7

Evaporator

Compressor 2

Condenser

Refrigeration

unit at

low T 

8

Q

Evaporator

Valve

Wc

1

2

3
Condenser

High T
reservoir

Compressor 1

4

QH

QC

(a) What is the fl ow rate in the cooler cycle?
(b) What is the rate of heat removal from the refrigerated unit?
(c) What is the power input needed to the compressors?
(d) What is the COP?
(e) Compare the performance with the cycle in Problem 3.62.

3.65 Design a vapor-compression refrigeration system to cool a system to 25°C with the capabil-
ity for up to 20 kW of cooling. You have a reservoir at 20°C to reject heat to. Refrigerants and their 
properties can he found at http://webbook.nist.gov/chemistry/fl uid/.

3.66 Modify the vapor-compression refrigeration system presented in Section 3.9 to apply to a 
refrigerator for home use. This system needs to provide cooling to two units: the freezer at 215°C 
and the main compartment at 5°C. Take the refrigeration capacity, QC, of each compartment to be 
equal. You are limited to one compressor and one condenser. Draw a schematic of the process and 
the associated Ts diagram. Select an appropriate refrigerant and defi ne the states of the system. 
Refrigerants and their properties can be found at http://webbook.nist.gov/chemistry/fl uid/.

3.67 Consider an ideal, reversible magnetic refrigeration cycle shown in the fi gure on next page. 
A paramagnetic working material in the form of the rim of a wheel is rotated between a high- 
temperature reservoir and a low-temperature reservoir. In the high-temperature reservoir, the work-
ing material expels heat into the reservoir as it is subjected to a high magnetic fi eld. As the working 
material moves into the low-temperature reservoir, the fi eld becomes smaller and eventually zero. 
The demagnetization process causes the working fl uid to absorb heat from the low-temperature 
reservoir. The working material is gadolinium sulphate octahydrate. On the upper-left-hand side 
of the fi gure, helium enters the porous wheel at temperature 1.1 K and a magnetic fi eld of 0.9 tesla 
[T] and is forced to fl ow in heat exchange with the moving wheel. The wheel absorbs heat from the 
helium as it is demagnetized. The temperature of the helium drops 0.2 K during this process. The 
helium then absorbs heat QC from the load and reenters the heat exchanger area at 1.1 K. Similarly, 
in the lower-right-hand side of the fi gure, helium enters the porous wheel at 8 K and a magnetic 
fi eld of 1.6 T. The wheel deposits heat into helium as the material is magnetized. The temperature 
rises to 9.5 K at 6.4 T.
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High-magnetic
field region

Low-magnetic
field region

Wheel

QH
QC

T = 9.5 KT = 1.1 K
B = 6.4 TB = 0.9 T

T = 0.9 K
B = 0

T = 8 K
B = 1.6 T

Approximately how much heat is being expelled by the cold reservoir? How much heat is 
being absorbed by the hot reservoir? Estimate the coeffi cient of performance for this process. 
How does the numerical value compare with a conventional refrigeration cycle? How is work 
being supplied to perform the refrigeration process? A Ts diagram for gadolinum sulphate octa-
hydrate is provided.

0.4
0.9

Gadolinium sulphate octa-hydrate Gd2 (SO4)3 8H2O

1.6
2.5

3.6
4.9

6.4 8.1
10 Tesla

0.1

H, T = 0 Tesla
2.0

1.5

1.0

0.5

0
1 2 3 4 5 6 7 8 9 10

Temperature, K

RS
 to

t

3.68 Consider the oxidation of cuprous oxide to form cupric oxide by the following reaction:

2Cu2O 1s 2 1 O2 1g 2  4 4CuO 1s 2

Calculate Dsrxn. This task can be done in the same type of path described in Section 2.6 for Dhrxn. 
You can calculate the values of entropies of formation from the data in Appendix A.3 by applying 
the following relationship:

Dsf
o 5

Dhf
o

2 Dgf
o

T

Physically explain the sign of Dsrxn. Does the formation of CuO violate the second law of thermo-
dynamics? Explain.
3.69 Determine the exergy of the following states. Take the environment to be at 25°C and 1 bar.
(a) Argon at 500 K and 2 bar
(b) Propane at 500 K and 2 bar
(c) Water at 500 K and 2 bar
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3.70 Determine the exergy of a system of pure water containing 1 kg ice and 10 g water vapor at 
220°C. Take the environment to be at 10°C and 1 bar.
3.71 1 kg of copper at 600°C and 1 bar is immersed in 20 kg of water at 20°C and 1 bar in a 
well-insulated container. Consider the system to be both the copper and the water. Calculate the 
change in internal energy, energy and exergy of the system for the process. Take the environment 
to be 25°C and 1 bar. 
3.72 An ideal gas is contained in a piston–cylinder assembly. The pressure of the gas is initially 
balanced by two 2000 kg blocks plus the atmospheric pressure of 1 [bar]. The piston has a cross-
sectional area of 0.098 3m2 4 and is initially 0.2 [m] from the base of the cylinder. The gas is allowed 
to expand in the two-step isothermal expansion process drawn in the following fi gure. One 2000 kg 
block is removed. The gas expands until the pressures are equal. The next block is then removed, 
and the gas expands until it reaches a pressure of 1 [bar]. The temperature in the system remains at 
300 [K] throughout the process. The surroundings are at a temperature of 300 [K] and a pressure 
of 1 [bar]. The heat capacity is given by:

cP

R
5 3.6 1 0.5 3 1023T

where T is in [K]. Determine the following quantities:
(a) The work obtained during this process
(b) The useful work obtained
(c) The exergy and the ideal work
(d) The lost work 

Process: 
Isothermal

Expansion

0.2 m

Process: 
Isothermal

Expansion

Initial State

A = 0.098 m2 

Pure, ideal gas

m = 2000 Kg
m = 2000 Kg

m = 2000 Kg

P0 = 1 [bar]

T0 = 300 [K]

Intermediate State Final State

3.73 Steam enters a turbine with a mass fl ow rate of 5 [kg/s]. The inlet pressure is 60 bar, and the 
inlet temperature is 500°C. The outlet contains saturated steam at 1 bar. The surroundings are at 
20°C. At steady state, 
(a) Calculate the power generated by the turbine. 
(b) Calculate the isentropic effi ciency of the turbine. 
(c)  Calculate the change in exthalpy during the process. 
3.74 1 mol of steam is initially at 10 bar and 200°C. The surroundings are at 20°C and 1 bar. 
(a) Calculate the exergy of the system.
(b)  Calculate the change in exergy for a process where the steam is heated at constant pressure 
until the volume doubles.
(c) Calculate the change in exergy for a process where the steam isothermally expands until its 
volume doubles. 
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3.75 Ethylene 1C2H4 2  at 100°C and 1 bar passes through a heater and emerges at 200°C. Calcu-
late the change in exthalpy per mole of ethylene that passes through. You may assume ideal gas 
behavior. The environment is at 20°C. 
3.76 Consider a tank containing 100 kg of water initially at 70°C. Due to heat transfer, the tem-
perature of water in the tank drops to 50°C. The surroundings are at 10°C. Calculate the lost work.
3.77 An open feedwater heater is used to take inlet stream of water vapor at 5 bar and 200°C and 
have it leave as saturated liquid at 5 bar. This is accomplished by mixing it with an appropriate 
amount of a second inlet stream at 5 bar and 20°C. Calculate the lost work.
3.78 You wish to heat a stream of CO2 at pressure 1 bar, fl owing at 10 mol/s, from 150°C to 300°C 
in a countercurrent heat exchanger. To do this task, you are using a stream of high-pressure steam 
available at 40 bar and 400°C, as shown in the following fi gure. The steam exits the heat exchanger 
as a saturated vapor. You may assume the pressure of each stream stays constant as it fl ows through 
the heat exchanger (i.e., neglect the pressure drop of the fl owing streams). The entire system is 
well insulated as shown. Calculate the change in exthalpy of each stream and the lost work during 
this process. 

Heat Exchanger

Insulation

Steam Steam

CO2CO2

Tin = 150 [°C]
Tout = 300 [°C]

Pin = 1 [bar]

Tin = 400 [°C]

Pin = 40 [bar]

nCO2 
= 10

mol
s

3.79 An ideal gas at 6 MPa and 200°C is fl owing in a pipe, as shown in the following fi gure. Con-
nected to this pipe through a valve is a tank of volume 0.4 m3. This tank initially is at vacuum. The 
valve is opened, and the tank fi lls with the ideal gas until the pressure is 6 MPa, and then the valve 
is closed. Heat transfer occurs from the tank to the surroundings in the amount of 3.9325 kJ per 
each mol of gas that fl ows into the tank. The surroundings are at 25°C. The heat capacity is given by:

cP

R
5 3.6 1 0.5 3 1023T

where T is in K. 

Tsurr = 25°C

Initially
Vacuum

Ideal Gas
6MPa, 200°C
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(a) Determine the fi nal temperature of the gas in the tank immediately after the valve is closed.
(b) Determine the entropy change of the universe for this process. 
3.80 Steam at 6 MPa and 400°C is fl owing in a pipe. Connected to this pipe through a valve is a 
tank of volume 0.4 m3. This tank initially is at vacuum. The valve is opened, and the tank fi lls with 
the steam until the pressure is 6 MPa, and then the valve is closed. Heat transfer occurs from the 
tank to the environment in the amount of 95 kJ per each kg of gas that fl ows into the tank. The 
environment is at 25°C. 
(a) Determine the fi nal temperature of the steam in the tank immediately after the valve is closed.
(b) Determine the entropy change of the universe for this process.
(c) Determine the lost work during this process.
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►CHAPTER

209

4

Equations of State and 
Intermolecular Forces

Learning Objectives

To demonstrate mastery of the material in Chapter 4, you should be able to:

 ► Given a chemical species, identify which intermolecular interactions are 

signifi cant. Given different species, qualitatively compare the magnitude of 

their dipole moments, polarizabilities, intermolecular interactions, Lennard-

Jones parameters ε and s, and van der Waals parameters a and b.

 ► Given two of the measured properties P, v, and T, calculate the value of the 

third using: cubic equations of state (e.g., van der Waals, Redlich–Kwong, 

Peng–Robinson), the virial equation, generalized compressibility charts, and 

ThermoSolver software. Apply the Rackett equation, the thermal expansion 

coeffi cient, and the isothermal compressibility to fi nd molar volumes of 

liquids and solids.

 ► State the molecular components that contribute to internal energy. Describe 

and illustrate by example the following intermolecular interactions: point 

charges, dipoles, induced dipoles, dispersion (London) interactions, 

repulsive forces, and chemical effects. Defi ne a van der Waals force, and 

relate it to the dipole moment and polarizability of a molecule. Ultimately, 

you want to be able to relate macroscopic thermodynamic behaviors to their 

molecular origins as much as possible.

 ► Defi ne a potential function. Write equations for the ideal gas, hard 

sphere, Sutherland, and Lennard-Jones potentials and relate the terms to 

intermolecular interactions.

 ► State the molecular assumptions of an ideal gas. Describe how the terms 

in the van der Waals equation relax these assumptions. Identify how the 

general form of cubic equations of state accounts for attractive and repulsive 

interactions in a similar manner.

 ► State the principle of corresponding states on molecular and macroscopic 

levels. Apply this principle to develop expressions to solve for parameters in 

equations of state from the critical property data of a given species. Describe 

why the acentric factor was introduced and its role in constructing the 

generalized compressibility charts.

 ► Write the van der Waals mixing rules for coeffi cients a and b. Explain their 

functionality in terms of molecular interactions. Write the mixing rules for 

the virial coeffi cients and for pseudocritical properties using Kay’s rules. 

c04.indd   209c04.indd   209 05/11/12   6:51 PM05/11/12   6:51 PM



210 ► Chapter 4. Equations of State and Intermolecular Forces

Apply these mixing rules to solve for P, v, or  T of a mixture using equations 

of state or generalized compressibility charts.

 ►4.1  INTRODUCTION

Motivation

The intensive thermodynamic properties that can be experimentally measured are 
pressure, temperature, molar volume, and composition. For any pure species, only two 
intensive properties are independent; thus, we can graphically map a “surface” from 
experimental data using P, v, and T as coordinates and plot it as we did in Section 1.6. 
Alternatively, we could tabulate the data as was done for water in the steam tables 
 (Section 1.7). However, in solving problems, it is often inconvenient to have to resort 
to graphs or tables for numerical values (as well as slopes for derivatives and areas for 
integrals). We therefore seek to come up with an equation that relates these measured 
variables by fi tting experimental data. 

In the language of math, we want an equation of the form:

 f 1P, v, T 2 5 0  

Such an equation is fi t to experimental data and is known as an equation of state (EOS) 
since it allows us to calculate the unknown measured property from the two that con-
strain the state. Equations of state can be explicit in pressure, that is,

 P 5 f 1T, v 2  (4.1)

in molar volume,

 v 5 f 1T, P 2  (4.2)

or in terms of the dimensionless compressibility factor, z,

z 5
Pv
RT

5 f 1T, v 2  

or,

z 5
Pv
RT

5 f 1T, P 2

In developing an equation of state, the goal is to come up with an equation that fi ts 
experimental data as accurately as possible; there may or may not be a physical basis 
for its form. An equation of this type is called constitutive (as opposed to a fundamen-
tal equation such as the fi rst law). What are other constitutive equations that you have 
encountered as a chemical engineer?

In practice, there are hundreds of analytical equations of this form in the literature 
from which to choose! It would be quite burdensome (and very impractical) to examine 
every one to decide when to use a particular form. Consequently, we will take a differ-
ent tack. We will start with the “friendliest” equation of state, the ideal gas model. After 
examining its limitations, we will explore how we can describe deviations from ideal gas 
behavior. We will investigate the generalities of these different forms as well as try to 
develop an intuition about what equations to use and when to use them. To this end, we 
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will examine the molecular origins of macroscopic thermodynamic property behavior. 
Perilous straits indeed, but a journey with rich rewards!

The Ideal Gas

As you know well, the most common equation of state is the ideal gas model. It can be 
written explicitly for pressure in terms of the intensive properties v and T as follows:

 P 5
RT
v

 (4.3)

The ideal gas model is of the form presented in Equation (4.1) in that it relates the 
measured variables P, T, and v. The ideal gas equation can be derived directly from 
the kinetic theory of gases for a gas consisting of molecules that are infinitesimally 
small, hard round spheres that occupy negligible volume and exert forces upon each 
other only through collisions. Stated more concisely, the assumptions of the ideal gas 
model are that molecules:

 1. Occupy no volume
 2. Exert no intermolecular forces (except when they collide with each other or 

with the container’s walls)

As we shall see in Section 4.2, the absence of intermolecular forces leads to the 
internal energy being independent of pressure. It depends only on temperature, that is, 
the molecular kinetic energy of the molecules. Hence,

uideal gas 5 f 1T only 2

As the pressure goes to zero, all gases approach ideal gas behavior.

 ►4.2  INTERMOLECULAR FORCES

Internal (Molecular) Energy

“Molecular” energy, or internal energy, u, can be divided into two parts: molecular kinetic 
energy and molecular potential energy. Kinetic energy results from the translational, 
rotational, and vibrational motion of the molecules; hence, kinetic energy manifests itself 
by the molecules’ velocities and is directly related to the measured variable tempera-
ture via Maxwell–Boltzmann statistics. The potential energy results from the position of 
one atom or molecule relative to others in the system. As we saw in Section 2.6, a signifi -
cant component of molecular potential energy is related to the covalent bonds between 
atoms of the same molecule. We refer to this type of potential energy as intramolecular 
potential energy. When these bonds rearrange in a chemical reaction, there can be large 
changes in the molecular potential energy.

In this section, we will examine another component of molecular potential energy—
that related to interactions between different molecules (or atoms that are not covalently 
bonded), the intermolecular potential energy. As we will soon learn, the intermolecular 
potential energy between molecules depends on how close the molecules are relative 
to one another. Because the intermolecular potential energy depends on the molecules’ 
positions, we can relate it directly to the measured variable pressure. At constant temper-
ature, as the pressure increases, the average distance between molecules decreases, and 
their positions relative to one another get closer. Therefore, as the pressure increases, 
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the intermolecular interactions become more important, and we need to consider their 
effect on the thermodynamic properties. On the other hand, an ideal gas has no inter-
molecular forces, so the positions of the molecules relative to one another do not mat-
ter. Consequently, the internal energy of an ideal gas is independent of pressure and 
depends only on temperature.

We wish to relax the ideal gas assumption so that we can develop more general 
equations of state. To accomplish this task, we need to establish the relationship for the 
internal energy of a system as a function of distance between the molecules and their 
orientations. We are specifi cally interested in the intermolecular potential energy com-
ponent of internal energy. 

1 Unit systems related to electrical quantities can be confusing. Depending on the unit system, these equations 
can take different forms. The equations below are written for CGS (Gaussian) units as opposed to SI.

Equations that are denoted with “CGS units” are valid only in those units. See Appendix D for further 
discussion.

The Electric Nature of Atoms and Molecules

The intermolecular interactions between species arise from the electronic and quantum 
nature of atoms. An atom can be viewed as containing a fi xed, positively charged nucleus 
surrounded by a relatively mobile, negatively charged electron cloud. When a molecule 
is in close enough proximity to another molecule, the electrically charged structure of its 
atoms can lead to attractive and repulsive forces. The attractive forces include electro-
static forces between point charges or permanent dipoles, induction forces, and disper-
sion forces.

Since intermolecular interactions result from the electric nature of atoms, it is often 
useful to apply the concept of an electric fi eld when discussing the effect of a given spe-
cies on the system. Recall the electric fi eld intensity, E

S

, is defi ned as the force per unit 
charge exerted on a positive test charge, Q, in the fi eld. It is related to the negative gradi-
ent of the molecular potential energy, G, by:

 E
S

5
F
Q

5
2=G

Q
 (4.4)

The electric fi eld intensity from a given molecule is the same regardless of the species 
with which it interacts. The principle of superposition says the total electric fi eld in the 
system is given by the vector sum of the individual electric fi elds of all the species in a 
system. Therefore, if we understand the behavior of a single molecule, we can quan-
tify its contribution to the energy of the macroscopic system as a whole. Equation (4.4) 
relates the electric fi eld, E

S

, to the intermolecular forces, F, and to the intermolecular 
potential energy, G. In the discussion that follows, we will refer to all of these quantities, 
as appropriate, to characterize the intermolecular interactions that cause the system to 
deviate from ideal gas behavior.1

It is important to realize that there is presently no direct quantitative relationship 
between molecular physics and classical thermodynamics except in very simple systems. 
So why are we studying molecular physics? This topic warrants study for four reasons:

 1. To strengthen our intuition about nonideal behavior and our judgment about 
what equations of state to use.

 2. To understand why some mathematical relationships for f (P, v, T) work better 
than others.
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4.2 Intermolecular Forces ◄ 213

 3. While there is no quantitative connection between molecular physics and classical 
thermodynamics, with the increased computational power of modern computers, 
and the development of such techniques as density functional theory and Monte 
Carlo simulations, this quantitative connection may soon be realized.

 4. To develop “mixing rules” for how thermodynamic properties of a mixture 
depend on composition. This ability allows us to extend data of pure systems to 
mixtures. Note that while thermodynamic data for pure species are readily avail-
able, the availability of data for the particular mixture you may be interested in 
is much less likely since there is an infi nite number of permutations of mixtures.

Attractive Forces

Electrostatic Forces
Electrostatic interactions between molecules can result from the net charges of ions and 
also from permanent charge separation in neutral species. In this section, we will exam-
ine the nature of these interactions.

Point charges The simplest electrostatic interaction results from the force of attrac-
tion between two species with nonzero charge. There are two types of electric charge, 
positive and negative. If two species have the same type of charge, they will repel each 
other, while species of unlike charge attract. Consider species i and j which have positive 
charges, Qi and Qj, respectively, and are separated by a distance r. The resulting repul-
sive force is illustrated in Figure 4.1. If the length r is much greater than the radius of 
i or j, these charges can be treated as point charges. 

Recall from basic physics that the force between point charges is inversely propor-
tional to the square of the distance between the charges, that is:

Fij 5
QiQj

r2
 CGS units

This equation is written for CGS units and is known as Coulomb’s law. See Appendix 
D for the SI units equivalent of Coulomb’s law. The potential energy between species 
i and j is found by rearranging Equation (4.4), and using the expression for force given 
by Coulomb’s law:

 Gij 5 23Fij dr 5
QiQj

r
 CGS units (4.5)

Examination of Equation (4.5) shows the potential energy is negative for unlike charges. 
A lower (more negative) energy indicates a more stable system, that is, an attractive 
force. For like charges, the potential is positive, indicating a repulsive interaction. At 
large separations 1r S ` 2 , the potential goes to zero, indicating that the point charges 
do not interact.

Q i

r

FF +

Q j

+

Figure 4.1 The coulombic repulsion between two like point charges separated by a distance r.
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214 ► Chapter 4. Equations of State and Intermolecular Forces

The effect of a given point charge on its neighbors can also be visualized in terms 
of electric fi elds. Electric fi eld lines for positive and negative point charges are shown in 
Figure 4.2. The fi eld lines represent “lines of force” and point in the direction a positive 
test charge would move if it were put in that fi eld. The density of fi eld lines is propor-
tional to their strength; the closer the lines are spaced, the stronger the fi eld at that point. 
Examination of Figure 4.2 shows that the positive test charge would move away from the 
positive point charge on the left and toward the negative point charge on the right and 
that the force exerted by the fi eld falls off as the distance away from the point charge 
increases. These qualitative observations are consistent with the analytical relation given 
by Equation (4.5). If the “lines of force” given by the electric fi elds caused by the species 
in system suffi ciently affect the system’s bulk behavior, intermolecular forces are signifi -
cant and we can no longer treat the system using the ideal gas model.

Point charges exert strong forces and fall off relatively slowly with distance. It is 
uncommon for an isolated net charge to exist in nature since it will typically fi nd an oppo-
sitely charged species and combine. However, some molecular examples exist, including 
the following:

 1. Ionic solids (e.g. NaCl crystals) Ionic solids are made up of positively charged 
and negatively charged ions within a crystal lattice. The bond energy of the solid 
results from attractive forces of the oppositely charged ions, as given by Equa-
tion (4.5). For example, in table salt, NaCl, a positively charged sodium ion, 
Na1, is electrostatically attracted to the negatively charged chloride ions, Cl2,
that surround it. In Problem 4.19, you will calculate the bond strength of this 
ionic solid.

 2. Electrolytes (e.g., 18M H2SO4) Net charges exist in the liquid phase in elec-
trolyte solutions and molten salts. In an H2SO4 acid bath, for example, H1 and 
SO4

22 exist in the liquid and exert Coulombic forces. The polar structure of water 
allows charged species to be stable. The water forms an electrostatic cloud that 
shields the ions from one another. The electrostatic interactions of the charged 
species within the electrolyte solution form a key component in the behavior of 
electrochemical systems.2

→ →
+Q −Q

E E

Figure 4.2 Electric field lines from positive and negative point charges.

2 For a treatment of the behavior of ions in electrochemical solutions, see J. O. M. Bockris and A. K. N. Reddy, 
Modern Electrochemistry (New York: Plenum Press, 1970).
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4.2 Intermolecular Forces ◄ 215

 3. Ionized gases or plasmas Point charges exist in the gas phase in the form of 
plasmas. Plasmas exist in many forms, from the Earth’s ionosphere to the glow 
discharge plasmas used in etching to the deposition of thin fi lms in integrated 
circuit manufacturing.

The thermodynamic properties of point charges requires particular attention to these 
strong electrical forces and will not be covered further in this text.

Electric Dipoles While they have a net neutral charge, some molecules are config-
ured so that there is an overall separation of charge. These molecules may be treated as 
an electric dipole (two poles). In a dipole, there is a region of positive charge 11Q 2  next 
to a region of negative charge 12Q 2 . The magnitudes of positive and negative charges 
are equal. 

A dipole is illustrated on the left of Figure 4.3. The electric fi eld lines associated 
with the dipole are shown on the right. We can see from these fi eld lines that dipoles can 
exert forces on other species in their vicinity. The strength of the dipole is characterized 
by the dipole moment, µ, a vector that points from the negative charge to the positive 
charge. The magnitude of the dipole moment is equal to the product of the magnitude 
of charge, Q, and the distance by which the positive charge and the negative charge are 
separated, l. The common unit of the dipole moment is the debye [D]:

c1D 5 10218 1erg cm3 2 1/2
d

Dipole moments are commonly found in nature at the molecular level. Molecules 
are formed by covalent bonds between the valence electrons of their atoms. When the 
sharing of electrons in a covalent bond is unequal, an atom can gain electron density at 
the expense of the atom to which it is bonded. For example, consider an HCl molecule. 
The Lewis dot structure is depicted on the left of Figure 4.4. The valence electrons 
of the chlorine atom are indicated by dots, while the valence electron of hydrogen is 
an “x.” The bond in this molecule is formed by the sharing of one electron from chlorine 
and one from hydrogen. However, the Cl is highly electronegative since it needs an elec-
tron to complete its outer shell. It pulls the electron from H much more strongly than 
hydrogen pulls the electron from Cl. Thus, the electrons are not shared equally; rather, 

→+Q

−Q

+Q

−Q

μ = Q I

μ

E

I

Figure 4.3 Schematic of charge separation leading to an electric dipole. Electric field lines are 
depicted on the sketch to the right.
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216 ► Chapter 4. Equations of State and Intermolecular Forces

the lone hydrogen electron spends more time close to the Cl atom than the shared Cl 
electron does next to hydrogen. The result is a net charge separation with the Cl obtain-
ing a net negative charge and the H a net positive charge, as depicted on the right of 
Figure 4.4. This separation of charge leads to a permanent dipole moment. In the case 
of HCl, the magnitude of the dipole moment is around 1.1 D. Diatomic molecules with 
electronegative (F, Cl) and electropositive (Li, Na) atoms have large dipole moments.

Diatomic molecules with dissimilar atoms, such as HCl, will always exhibit some 
degree of charge separation; however, it may be small. Thus, these molecules will have 
permanent dipoles. On the other hand, for polyatomic molecules with more than two 
atoms, we must look at the molecular structure to see whether a dipole exists. Dipole 
moments in these molecules are caused by nonsymmetric distributions of the electron 
cloud in the molecule. Symmetric molecules have no dipole moment. The greater the 
molecular asymmetry, the greater the dipole moment. For example, the electron cloud 
in CH3Cl is pulled strongly to the electronegative Cl and exhibits a dipole of 1.87 D. On 
the other hand, CH4 is symmetric and does not have a permanent dipole moment. There 
are many other molecular examples of dipoles: H2O, HF, and so on. Can you think of 
some? Will CO2 exhibit a dipole? Dipole moments of several representative molecules 
are presented in Table 4.1.

The interaction of one dipole with a neighboring dipole is termed a dipole–dipole 
interaction. Such an interaction can lead to deviations from ideal gas behavior. The 
dipole–dipole interaction depends on the relative orientation of the molecules. How-
ever, to relate this type of electrostatic force to macroscopic behavior, we must average 
over all orientations. For example, consider the case of two HCl molecules in proximity 
to each other. As the electric fi eld from the dipole depicted in Figure 4.4 shows, each 
HCl can exert an electrical force on its neighbor. The bottom of Figure 4.5 illustrates 
dipoles in the two extreme limits of orientation. In the lowest energy confi guration, the 
negative side of one dipole is aligned next to the positive side of the other. This leads 
to electrostatic attraction, as depicted in Figure 4.5. Conversely, in the highest energy 
confi guration, like-charged sides of the dipole align, leading to electrostatic repulsion. 
Dipoles may take any orientation in between these two limits. 

If the orientation of the two dipoles were completely random, the average force 
would be zero, since attractive and repulsive orientations would occur equally. As the 
top of the Figure 4.5 shows, however, molecular dipoles in gases and liquids are free to 
rotate. This movement allows the energetically favored lower-energy attractive interac-
tions to occur more frequently, as the dipoles tend to rotate to align. On the other hand, 
thermal energy leads to a randomization of orientation. 

+ ++

–

–

–

––

++ H

Cl
Cl

H
× μ

Figure 4.4 The Lewis dot structure of an HCl molecule and the electric field lines emanating 
from its dipole.
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Molecule
 m
[D]

 a
3cm3 3 1025 4

 I
[eV]

H2 0 8.19 15.42
He 0 2.06 24.59
N2 0 17.7 15.58
O2 0 16 12.07
Ne 0 3.97 21.56

Cl2 0 46.1 11.5
Ar 0 16.6 15.76
Kr 0 25.3 14
Xe 0 41.1 12.13
HF 1.91 5.1 16.03

HCl 1.08 26.3 12.74
HBr 0.8 36.1 11.68
HI 0.42 54.5 10.39
H2O 1.85 14.8 12.62
H2S 0.9 37.8 10.46

CH3OH 1.7 32.3 10.84
NH3 1.47 22.2 10.07
NO 0.2 17.4 9.26
N2O 0.2 30 12.89
SF6 0 44.7 15.32

SO2 1.63 38.9 12.35
CH4 0 26 12.61
CH3F 1.85 26.1 12.5
CH3Cl 1.87 45.3 11.26
CH3Br 1.81 55.5 10.54

CH2F2 1.97 27.3 12.71
CH2Cl2 1.8 64.8 11.33
CHF3 1.65 28 13.86
CHCl3 1.1 85 11.37
CF4 0 28.5 16

CHCl3 0.45 82.4 11.68
CCl4 0 105 11.47
CO 0.12 19.8 14.01
CO2 0 26.3 13.78
CS2 0 87.4 10.07

C2H6 0 44.7 11.52
C2H4 0 42.2 10.51
C2H2 0 34.9 11.4
C3H8 0 62.9 10.94
HCN 3 25.9 13.6

1CN 2 2 0.2 50.1 13.37
CH3OCH3 1.7 51.6 10.02

TABLE 4.1 Dipole Moments, Polarizabilities, and Ionization Energies

(contined)
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218 ► Chapter 4. Equations of State and Intermolecular Forces

The trade-off between these two effects can be quantifi ed according to the Boltz-
mann factor, e2G/1kT2. Thus, the ratio of the number of dipoles in any two states, N1 andN2 
is related to their potential energy difference and the temperature according to:

N1

N2
5 e2c1G12G22 / 1kT2d

We can see that this equation implies that more dipoles will align in lower-energy orien-
tations. Averaging the potential energy of the dipole–dipole interaction between species 
i and j over all possible orientations gives the following expression:

 Gij 5 2
2
3

 
mi

2mj
2

r6kT
 CGS units (4.6)

where G is the average potential energy of the dipole–dipole interaction. The potential 
energy between dipoles has a 1/r6 dependence on position; it falls off much more quickly 
than the Coulomb interaction. It is also proportional to the square of the dipole moment 
of each species. The (kT) term in the denominator results from the averaging. At higher 
temperatures, the orientations are more randomly distributed and the attractive force 
decreases.

In addition to permanent dipoles, species can exhibit higher-order terms in the 
multipolar expansion, such as quadrapoles (four poles), octapoles (eight poles), or 
higher-order multipoles. However, these higher-order terms do not measurably infl u-
ence macroscopic property behavior.

Γ

Γ1 Γ2
(1) vs. (2)− ++ −

−

+ −

+ −

+ −

Free rotation

of a dipole

Lowest energy configuration Highest energy configuration

+
Figure 4.5 Different possible orientations of a freely rotating electric dipole–dipole pair.

Molecule
 m
[D]

 a
3cm3 3 1025 4

 I
[eV]

1CH2 2 3 0.4 56.4 9.86
CH3 1CO 2CH3 2.9 63.3 9.7
C6H6 0 104 9.24

C6H5Cl 1.69 122.5 9.07
C6H5NO2 4 129.2 9.94
o-C6H4Cl2 2.5 141.7 9.06
m-C6H4Cl2 1.72 142.3 9.1

TABLE 4.1 Continued
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Induction Forces
Induction results when the electric fi eld from a dipole affects the electric structure of its 
neighbor. Since the negatively charged electrons are free to move about the atom, the 
electrons in molecule i can be displaced due to a neighboring dipole, molecule j. This 
displacement “induces” the separation of charge in molecule i, causing a dipole to form. 
Consequently i and j are attracted to each other. This phenomenon is termed induction. 

Dipoles can be induced in both polar and nonpolar species. As an example, let’s 
consider the effect of the electric fi eld from the dipole HCl on an Ar atom in close prox-
imity to it. Without any external infl uences, Ar has no net charge separation. However, 
as shown in Figure 4.6, the electrons in Ar will respond to the dipole fi eld of HCl. Recall 
that the electric fi eld lines show the direction in which a positive test charge will go. 
Hence, the negatively charged electrons will be attracted to the top of the Ar atom in 
Figure 4.6, leading to an induced dipole. The induced dipole in Ar will then be attracted 
to the permanent HCl dipole.

Since the nature of induction is the same as a dipole-dipole attraction, we also 
expect a 1/r6 dependence. Again, the magnitude of induction depends on the orientation 
of dipole j. The average over all orientations of the potential energy between an induced 
dipole i and the permanent dipole j is given by:

 Gij 5 2
aimj

2

r 6
 CGS units (4.7)

where a is the polarizability of molecule i.
Polarizability is a parameter that characterizes the ease with which a molecule’s 

electron cloud can be displaced by the presence of an electric fi eld. A larger displace-
ment induces a stronger dipole. Electrons position themselves around the positively 
charged nucleus of an atom. Since the valence electrons of larger atoms are farther away 
from the nucleus, they are less rigidly “held” and the atom is more polarizable, Thus, 
in general, the larger the atom, the larger the value for a. Polarizability is also roughly 
additive; that is, the value of polarizability scales with the number of atoms. For example, 
ozone, O3, has roughly 1.5 times the polarizability of oxygen, O2, since the ratio of oxygen 
atoms is 3:2. A rough estimation of the polarizability of a molecule can be obtained by 
adding together the polarizability of all the atoms in the molecule.3 Hence molecules 
with more atoms have greater polarizabilities. Polarizabilities of several representative 
molecules are reported in Table 4.1.

3 A more accurate approach is to proportion polarizability to the type and number of covalent bonds in a 
molecule. Values for the contribution of several types of bonds (e.g., C2C, C5C, C2H, N2H, C2Cl,
etc.) and molecular groups (e.g., C2O2H, C5O, C2O2C, etc) can be found in J. O. Hirshfelder, 
C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, (New York: Wiley, 1954).
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−
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Cl
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Charge
separation

“induced”
by the electric

field from the
HCl dipole Figure 4.6 The induction 

of a dipole in argon from 
the electric field due to a 
HCl dipole.
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220 ► Chapter 4. Equations of State and Intermolecular Forces

Dispersion (London) Forces
Nonpolar molecules, such as N2 and O2, show forces of attraction; otherwise they would 
not condense or freeze at low temperatures. Yet they do not have a dipole moment, and 
the pure species are not subject to dipole–dipole interactions and induction. The attrac-
tive interactions between nonpolar molecules result from a third type of interaction; 
dispersion (or London) forces. 

Dispersion is inherently a quantum-mechanical phenomenon; we would need to 
understand quantum electrodynamics to develop a rigorous model of dispersion. How-
ever, it can be viewed “classically” as follows: Nonpolar molecules are really only non-
polar when the electron cloud is averaged over time. In a given “snapshot” of time, the 
molecule has a temporary dipole moment. Dispersion forces result from the instantane-
ous nonsymmetry of the electron cloud surrounding a nucleus. The instantaneous dipole 
moment induces a dipole in a neighboring molecule, leading to an attractive force. 

Using quantum mechanics and perturbation theory, London developed the follow-
ing expression for the energy of attraction of symmetric molecules i and j:

 Gij < 2
3
2

 
aiaj

r6
 ¢ IiIj

Ii 1 Ij
≤  CGS units (4.8)

where I is the fi rst ionization potential, that is, the energy required for the following reaction: 
M S M1 1 e. Ionization potentials of common species are presented in Table 4.1. These 
“temporary dipole” interactions also have a 1/r6 dependence on position. They also depend 
on the polarizability of each species involved, since the extent of the instantaneous dipole is 
related to the looseness of the nucleus’s control of the valence electrons; similarly, the induc-
tion in the neighboring molecule depends on its polarizability. While Equation (4.8) was 
developed for nonpolar species, polar molecules are subject to dispersion interactions as well.

The classical explanation of dispersion above would leave us to believe that disper-
sion is a relatively small force. However, as is often the case, our classical intuition is 
defi ed by quantum mechanics. It turns out that dispersion forces are surprisingly large 
in magnitude, as we will see in Examples 4.1 and 4.2.

van der Waals Forces
Dipole–dipole, induction, and dispersion forces are collectively referred to as van der 
Waals forces. The intermolecular potential energy for each of these interactions falls off 
as the sixth power of position. Thus, all three van der Waals interactions are of the form:

 Gij 5 2
C6

r6
 (4.9)

The magnitude of the constant C6 is proportional to the strength of the attractive force. 
The subscript “6” indicates that the potential falls off as the sixth power of distance.

As best as you can, compare the strength of the dipole–dipole, induction, and dispersion inter-
actions for each of the following pure species at 298 K: H2O, NH3, CH4, CH3Cl, CCl4. Discuss 
the results.

SOLUTION The dipole moment, m, the polarizability, a, and the ionization energy, I, can be 
obtained from Table 4.1. They are summarized in Table E4.1. With these molecular parameters, 
we can determine the approximate dipole–dipole, induction, and dispersion potentials. Putting 
Equations (4.6), (4.7), and (4.8) in the form of Equation (4.9), for any pure species i, we get:

 dipole2dipole: 1C6 2dipole2dipole 5
2
3

 
mi

4

kT
 CGS units (E4.1A)

EXAMPLE 4.1

Comparison of van 
der Waals Forces 
for Pure Species
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4.2 Intermolecular Forces ◄ 221

Consider a mixture of Ar and HCl. Predict the relative importance of the van der Waals interac-
tions of the different “two-body” interactions in the mixture. Compare the unlike interactions 
to that which is obtained from prediction using the geometric mean of the like interactions.

SOLUTION In a binary mixture, there are three possible interactions:Ar–Ar, HCl–HCl, and 
Ar–HCl.The like species interactions, Ar–Ar and HCl–HCl can be found using the same 
approach as in Example 4.1. Thus, Equations (E4.1A) through (E4.1D) are used. For the Ar
–HCl. interaction, Equations (4.6), (4.7), and (4.8) can be used to get:

1C6 2dipole2dipole 5
2
3

  
mAr

2 mHCl
2

kT
  CGS units

1C6 2 induction 5 aArmHCl
2 1 aHClmAr

2   CGS units

EXAMPLE 4.2

Magnitude of van 
der Waals Potentials 
in a Mixture

Molecule
 m
3D 4

    a
3cm3 3 1025 4

  I
[eV]

C6 3 1060

3erg cm6 4 1C6 2dipole2dipole 1C6 2 induction 1C6 2dispersion

H2O 1.85 14.8 12.62 233 190 10 33

NH3 1.47 22.2 10.07 145 76 10 60

CH4 0 26 12.61 102 0 0 102

CH3Cl 1.87 45.3 11.26 507 198 32 277

CCl4 0 105 11.47 1517 0 0 1517

Table E4.1 Relative van der Waals Interactions for Species of Example 4.1

 induction:   1C6 2 induction 5 2aimi
2  GCS units (E4.1B)

 dispersion:   1C6 2dispersion <
3
4

 ai
2Ii  CGS units (E4.1C)

Note Equation (E4.1B) is multiplied by 2, since each species in a two-body interaction can 
induce a dipole in its neighbor. Equation (E4.1C) is rigorously valid only for the symmetric 
species CH4 and CCl4. However, we assume it provides a valid estimate for the other three 
species. The total van der Waals interaction is given by:

 C6 5 1C6 2dipole2dipole 1 1C6 2 induction 1 1C6 2dispersion (E4.1D)

The values for C6 calculated from Equations (E4.1D), (E4.1A), (E4.1B), and (E4.1C) for each 
of the fi ve species are presented in Table E4.1.

Even though it is nonpolar, CCl4 exhibits the largest intermolecular forces, approximately 
fi ve times greater than the strongly polar CH3Cl. The magnitude results from the large 
polarizability associated with the four Cl atoms in CCl4. It is curious to note how large the 
dispersion forces can be! Although it is roughly the same size as ammonia or methane, water 
is more apt to be nonideal due to its more polar structure and concomitant dipole–dipole 
interactions. However, CH3Cl, which has a similar dipole moment to water, demonstrates 
much larger van der Waals interactions (over twice the value for C6) since this larger molecule 
is much more easily polarized and, consequently, has a larger dispersion interaction. 

0

(Continued)
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and,  1C6 2dispersion 5
3
2

 aAraHCl ¢ IArIHCl

IAr 1 IHCl
≤   CGS units 

Again, the total van der Waals interaction is given by:

C6 5 1C6 2dipole2dipole 1 1C6 2 induction 1 1C6 2dispersion

The values of C6 obtained from these equations are shown in Table E4.2. In every case, 
the dispersion interaction is the largest. The magnitude of the unlike interaction, Ar–HCl,
falls in between each of the like-species interactions. Often we estimate the magnitude 
of the unlike interaction as the geometric mean of the like interactions. In this case we 
would get:

1C6 2Ar2HCl 5 "1C6 2Ar2Ar 1C6 2HCl2HCl 5 83 3 1060 3erg/cm6 4

This value is different from that reported in Table E4.2 by 9%.

TABLE E4.2 Relative Magnitudes of Attractive Forces Between Different Molecules

Molecule–Molecule
C6 3 1060

3erg cm6 4 1C6 2dipole2dipole 1C6 2 induction 1C6 2dispersion

Ar–Ar 52 0 0 52

HCl–HCl 134 22 6 106

Ar–HCl 76 0 2 74

Consider the following molecules: CCl4, CF4, SiCl4. List these species in order of their total 
van der Waals forces of attraction, C6, from the largest value to the smallest. Explain your 
choice based on molecular arguments.

SOLUTION The molecular parameters for SiCl4 are not reported in Table 4.1. However, 
we can use qualitative molecular arguments to solve this problem. In general, attrac-
tive interactions include dispersion, dipole–dipole, and induction forces. The three species 
listed—CCl4, CF4, SiCl4—are all nonpolar and, therefore, exhibit only dispersion forces. The 
magnitude of these forces is related to the polarizability, a, of these species. Each atom in CF4 
is from the second row of the periodic table. In SiCl4 each atom is in the third row. Thus, the 
valence electrons in CF4 are held in toward the nuclei the most tightly (least “sloshy”), so this 
molecule has the smallest dispersion forces. Conversely, the electrons in SiCl4 are the farthest 
away and most easily polarized. So we would expect that for these species:

1C6 2SiCl4 . 1C6 2CCl4 . 1C6 2CF4

EXAMPLE 4.3

Prediction of the 
Relative Size of van 
der Waals Forces 
Based on Molecular 
Structure
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To account for nonideal gas behavior, we want to describe how the intermolecular 
 potential energy depends on the position between molecules. A function or plot of 
potential energy vs. molecular separation is called a potential function. The potential 
function is ultimately what determines how the internal energy of a gas depends on 
pressure. There are many models of potential functions that are used to approximate 
the relation between intermolecular energy and position. These models include both 
attractive and repulsive interactions. For net neutral species, the attractive forces can be 
described by the van der Waals forces discussed previously. We next examine two ways 
in which the repulsive forces are approximated and the potential functions which result.

The Hard Sphere Model and the Sutherland Potential
Repulsive forces among molecules result from their fi nite sizes. In the simplest model, 
the hard sphere model, we consider the molecules to be fi nite hard spheres of diameter s. 
Thus, molecules act like billiard balls; when they physically get close together, they run 
into each other and repel. Therefore, the potential between a pair of molecules is zero 
until the two molecules’ diameters touch, where the potential increases to infi nity. Math-
ematically, the potential function is described by:

G 5 b0 for r . s

` for r # s

A plot of the hard sphere potential function is presented in Figure 4.7a.
The Sutherland model adds the van der Waals attractive term proportional to r26 to 

the hard sphere model. Therefore, the potential function is mathematically described by:

G 5 c
2 1C6 2

r6
for r . s

` for r # s

The Sutherland model is illustrated in Figure 4.7b. The Sutherland potential accounts 
for both attractive and repulsive forces; however, there is discontinuity right at r 5 s.

What would the ideal gas model look like on the plots in Figure 4.7?

The Lennard-Jones Potential
In reality, molecules are not rigid but rather are bounded by diffuse electron clouds. 
Repulsive interactions occur when the molecules get so close that their electron clouds 
overlap, leading to coulombic repulsion as well as a possible violation of the Pauli exclu-
sion principle. This effect leads to a violent repulsion of the two molecules.

Quantum mechanics says the repulsion should have an exponential dependence on 
position, since atomic wavefunctions fall off exponentially at large distances. However, it 
is more convenient to represent the repulsive potential empirically in terms of an inverse 
power law expression, as follows:

Gij 5
1Cn 2

rn
       where 8 , n , 16

Intermolecular Potential Functions and Repulsive Forces
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224 ► Chapter 4. Equations of State and Intermolecular Forces

where Cn is a constant proportional to the magnitude of the repulsive force that falls off 
as the inverse of separation to the power n. If we consider both van der Waals attractive 
forces and quantum (repulsive) effects, we come up with an expression for the molecular 
potential energy of the form:

Gij 5
1Cn 2

rn
2
1C6 2

r6

The attractive part is negative, since it lowers the energy, while the repulsive part is posi-
tive, raising the energy.

Lennard-Jones recognized a mathematically convenient form of this equation came 
about if n 5 12, resulting in the Lennard-Jones potential function:

 G 5 4e B as

r
b

12

2 a
s

r
b

6R  (4.10)

where,    C12 5 4es12        and       C6 5 4es6

A plot of the Lennard-Jones potential function is given in Figure 4.8. The parameters e 
and s can be physically interpreted as an energy parameter and a distance parame-
ter, respectively. As illustrated in Figure 4.8, the energy parameter, e, is given by the 
depth of the potential well, while the distance parameter, s, is given by the distance at 
which attractive and repulsive potentials are equal and is characteristic of the molecular 
size. Some typical values of Lennard-Jones parameters are given in Table 4.2.4 The size 
parameter, s, increases with molecular size, and the energy parameter, e, scales with the 
magnitude of the van der Waals interaction.

Figure 4.9a plots Lennard-Jones potential functions for O2, Cl2, and C6H6. These 
species are all nonpolar; the only van der Waals forces of attraction are from dispersion. 
Thus, their potential interactions depend only on the distance of separation between two 

Hard Sphere Model
1 1

(a)

(b)

r r

Sutherland Model

(C6)

σ6

ΓΓ
σ σ

Figure 4.7 Potential functions. (a) Hard sphere model; (b) Sutherland model.

4 From Hirshfelder et al., Molecular Theory of Gases and Liquids.
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4.2 Intermolecular Forces ◄ 225

molecules, not on their relative orientation. The relative contribution of attractive and 
repulsive interactions in these three species approximately scales with size; that is, as 
these species size get larger, their attractive forces get proportionately larger. We term 
these species simple molecules. For comparison, the Lennard-Jones potential functions 
for CH3OH and SO2 are included with the three simple species in Figure 4.9b. CH3OH 
has a much larger force of attraction in proportion to its size—presumably due to its 
polar structure. Moreover, its polar structure leads to a dependence on orientation of 
one CH3OH relative to another. Thus, the interactions with this species are inherently 
more “complex.” A more accurate potential function would include orientation as a vari-
able. The potential function depicted in Figure 4.9b is an approximation of the average 
over all the orientations one methanol molecule can have relative to another. We say 
that CH3OH belongs to different class. SO2 has large repulsive interactions but relatively 
weak attractive forces.

TABLE 4.2 Lennard-Jones Parameters for Several Species

Gas e/k 1K 2 s 1A+ 2

He 10.2 2.58
H2 35.7 2.94
C2H4 205 4.23
C6H6 440 5.27
F2 112 3.65
Cl2 307 4.62
O2 101 3.5
N2 86 3.7
CCl4 327 5.88
CH4 148.2 3.82
Ne 31.6 2.8
Ar 120 3.4
Ke 190 3.6
Xe 229 4.1
CH3OH 507 3.6
SO2 252 4.3

σ

Γ

ε
r

Figure 4.8 Plot of the 
Lennard-Jones potential 
as a function of distance 
between molecules.
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Figure 4.9 Comparison of the Lennard-Jones potential for (a) three different molecules and 
(b) fi ve different molecules.

Principle of Corresponding States

We now wish to generalize our treatment of the intermolecular interactions that lead to 
nonideal gas behavior. We fi rst consider nonpolar molecules. Inspection of Figure 4.9a 
suggests that if we scale the intermolecular potential appropriately, we can come up with 
a universal expression that applies to all nonpolar molecules. The ability to scale intermo-
lecular interactions in this way leads to the principle of corresponding states:

The dimensionless potential energy is the same for all species.

In quantitative form, it says there exists a universal function that applies to all species if 
we scale the potential energy to the energy parameter and the distance between mol-
ecules to the size parameter. Therefore, we can write:

 F ¢Gii

Pi
, 

r
si
≤ 5 0 (4.11)

Equation (4.11) is not restricted to the Lennard-Jones potential function but rather it 
says the dimensionless potential energy is some universal function of the dimensionless 
distance.

We can extend the principle of corresponding states to macroscopic thermodynamic 
properties. In this form, we can write a general equation of state that applies to all spe-
cies if we scale the measured properties P, v, and T appropriately. Van der Waals recog-
nized that, for a given species, it was particularly suitable to scale the values to those at its 
critical point. The critical point represents a unique state, and that state is determined by 
the intermolecular interactions characteristic of a given species. Thus, we can construct a 
“reduced” coordinate system with the following three dimensionless groupings:5

Tr 5
T
Tc

,         Pr 5
P
Pc

,        and       vr 5
v
vc

5 Pc, Tc, and vc are not all independent, since we need only two properties to constrain the state of the critical 
point. Thus both molecular and macroscopic versions of the principle of corresponding states have two 
independent scaling parameters.
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The principle of corresponding states says that there is some universal function that is 
the same (i.e., the same form and the same constants) for all substances:

 F ¢ T
Tc

, 
P
Pc

, 
v
vc
≤ 5 0 (4.12a)

Alternatively, one of the dimensionless groupings might be the compressibility factor, z. 
Thus,

 z 5
Pv
RT

5 F ¢ T
Tc

, 
P
Pc
≤  (4.12b)

Equation (4.12b) illustrates the macroscopic version of the principle of corresponding 
states:

All fluids at the same reduced temperature and reduced pressure have the same compressibility 
factor.

We based the discussion above on nonpolar species. Figure 4.9b illustrates that there 
are different classes of molecules based on the particular nature of the intermolecular 
interactions involved. For example, CH3OH, with its strong dipole moment, behaves 
differently from the nonpolar species depicted in Figure 4.9a. We can improve the prin-
ciple of corresponding states if we group molecules according to class and assert that 
within any one class intermolecular interactions scale similarly.

To accomplish this objective, we introduce a third parameter characteristic of classes 
of molecules. There are many ways to introduce a parameter for classes of molecules; we 
will explore only one—the Pitzer acentric factor, v. It characterizes how “nonspherical” 
a molecule is, thereby assigning it to a class. The defi nition of v is somewhat arbitrary:

 v ; 21 2 log10 3Psat 1Tr 5 0.7 2 /Pc 4, 

where Psat 1Tr 5 0.7 2  is the saturation pressure at a reduced temperature of 0.7. This def-
inition for a third parameter is convenient, since it gives a value of zero for the simple fl u-
ids Ar, Kr, and Xe. Moreover, other fl uids have positive values less than 1. Since tabulated 
data for v are usually available, we seldom need to calculate v—we just know where to 
look v up. Appendix A.1 presents acentric factors for a number of common species.

With the introduction of the acentric factor to categorize classes of molecules, the 
general macroscopic equation is of the form:

 F¢ T
Tc

, 
P
Pc

, 
v
vc

, v ≤ 5 0 (4.13)

Equation (4.13) is often written in the form:

 z 5 F0 1Tr, Pr 2 1 vF1 1Tr, Pr 2  (4.14)

where F0 and F1 depend only on the reduced pressure and temperature and the acen-
tric factor is used to modulate the effect of the F1 term. Thus a perfectly “spherical” 
 molecule (such as Ar) depends only on F0.
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228 ► Chapter 4. Equations of State and Intermolecular Forces

Chemical Forces

The physical forces described above aptly account for most molecular interactions in 
the gas phase. We now direct our discussion toward the condensed phases. Solids and 
liquids form when the net attractive intermolecular forces are stronger than the ther-
mal energy in the system and, consequently, hold the molecules together. While the 
force of attraction can sometimes be attributed to the electrostatic and van der Waals 
interactions described above, chemical forces also frequently play a role in condensed 
phases.6 Chemical forces are based on the nature of covalent electrons, the concept of 
the chemical bond, and the formation of new chemical species. The main difference 
between chemical and physical forces is that chemical forces saturate whereas physi-
cal forces do not, since chemical interactions are specifi c to the electronic wavefunc-
tions of the chemical species involved. Indeed, a complete quantitative description of 
chemical interactions involves solution of the Schrödinger equation to describe the 
overlap of the molecular orbitals involved. We will consider chemical interactions only 
qualitatively. The goal of this discussion is to realize that there may be other important 
forces that govern the behavior of solids and liquids and to get a fl avor of what these 
forces might be.

The most prevalent chemical effects are due to hydrogen bonds and acid–base com-
plexes. In both cases, there exists a sharing of valence electrons between different mole-
cules. Hydrogen bonding is the “chemical bond” that results between an electronegative 
atom (usually F, O, or N) and a hydrogen atom bonded to another electronegative atom 
in a second molecule.

Figure 4.10 illustrates the hydrogen bond that forms between the electronegative 
oxygen in water molecule 1 and the adjacent hydrogen in water molecule 2. Since the 
electronegative oxygen atom in water 2 pulls the hydrogen atom’s electron away from its 
nucleus, a partial charge separation results. The resulting positive charge on the hydro-
gen atom can be attracted to a partial negative charge of an electronegative atom in the 
adjacent oxygen atom in water 1, leading to an attractive force. So far, this sounds like 
the van der Waals interactions we just described, and we might be tempted to say that 
hydrogen bonds are caused by the dipole–dipole interactions. However, the mechanism 
of attraction is not purely electrostatic but rather has a signifi cant amount of sharing of 
lone-pair electrons characteristic of a covalent bond. This leads to fundamental differ-
ences between hydrogen bonds and dipole–dipole forces. Hydrogen bonds form a rela-
tively strong, highly directional interaction with characteristic saturation. Typically, this 
force is two orders of magnitude stronger than the van der Waals forces 11/r6 2  described 
above but one order of magnitude weaker than a covalent bond. In other words, if you 
plugged numbers into Equation (4.6) to try to account for the strength of a hydrogen 
bond, you would get a number whose magnitude is far below the strength experimentally 
observed. Moreover, the distance between the hydrogen-bonded atoms is considerably 
less than that predicted based on the hard sphere model. Thus, the hydrogen is actually 

6 In some unique gas systems, chemical forces also manifest themselves.

O

Hydrogen

bond

Covalent
bond

H

H O

H

H

+  −
+  −

Water “1”

Water “2”   

Figure 4.10 Hydrogen bonding in water.
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4.2 Intermolecular Forces ◄ 229

penetrating into the electron cloud of the electronegative atom in the other molecule. 
The hydrogen bond leads to interesting thermodynamic phenomena. For example, the 
extensive network of hydrogen bonds leads to the open structure of ice. Thus, unlike 
most species, water expands when it freezes.7

To illustrate how chemical interactions can affect thermodynamic properties, con-
sider two types of chemical behavior: solvation and association. Solvation is the tendency 
of unlike molecules to form chemical complexes. It is generically represented by the 
following reaction:

A 1 B h AB

Association is the tendency of like molecules to form complexes (polymerize) and 
can be represented as follows:

A 1 A h A2

Naturally, the ability of a molecule to solvate or associate is intimately linked to its 
electronic structure. Hydrogen bonding can lead to either of these behaviors. An exam-
ple of solvation is given by a mixture of chloroform and acetone. Hydrogen bonding 
causes the unlike molecules to form a complex:

7 Imagine what our world would look like if ice were denser than water. All the ice in the ocean would sink to 
the bottom and, consequently, be insulated from energy input from the sun. Thus, most of the ocean would 
be permanently frozen.

CI O

(A) (B) (AB)

CH3CH3

+H

CI

C CCI I I I

I

I II

O

CH3CH3

CI I

II

I
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H
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CCI II

I
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H-bond

Acid–base pairs also solvate. The dimerization of acetic acid illustrates association:

C

C
O

(2A)
(A2)

OHCH
3

CH
3

CH
3

2 I

I

OH

HO

C

O

I I

O

II

II II
II

Can you think of other possible solvation and association reactions?
To see how chemical effects can change the equilibrium behavior of a system, let’s 

examine Figure 4.11, which depicts species A and B in liquid–vapor equilibrium. We will 
assume ideal gas behavior in the vapor. We wish to compare the composition of the vapor 
phase for three scenarios occurring in the liquid:

(i) A and B are the only species present in the system and Raoult’s law applies.

(ii) Species A and B solvate in the liquid phase, but we are unaware of this chemistry.

(iii) Species A associates in the liquid phase, but we are unaware of this chemistry.
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230 ► Chapter 4. Equations of State and Intermolecular Forces

We wish to examine how solvation [scenario (ii)] or association [scenario (iii)] 
changes our perception of this system. In scenario (ii), species A and B solvate in the 
liquid phase. This reaction depletes the liquid of species A and B, since the complex AB 
is formed. Since AB is a different chemical species from A or B, some A and B in the 
vapor phase will then condense to compensate. This leads to lower total system pressure 
than in the ideal case [scenario (i)]; thus solvation effects lead to a “negative” deviation 
from Raoult’s law.

Next we wish to examine what happens in scenario (iii), where species A associates 
in the liquid phase. The dimer is a different chemical species and assumed involatile. 
Let’s consider the point of view of molecule B. The association causes a higher mole 
fraction of B to be in the liquid than if A did not associate. Thus B will evaporate to com-
pensate. This will lead to a higher system pressure than the ideal case. Association leads 
to “positive” deviations from Raoult’s law.

The above arguments have provided a qualitative and intuitive feel for what we will 
spend a large percentage of the text developing: ways to predict equilibrium behavior 
and deviations from ideality in chemical systems.

Figure 4.11 Binary system where (i) system exhibits ideal behavior; (ii) species A and species B 
solvate in the liquid phase; (iii) species A associates in the liquid phase.
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sat
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Raoult's law:

Determine the saturation pressure, Psat, of water and methanol at 100°C, 50°C, and 25°C. 
Report values in [Pa]. Based on intermolecular forces explain (i) why the vapor pressure of 
methanol at a given temperature is greater than water and (ii) why vapor pressure increases 
with temperature.

EXAMPLE 4.4

Comparison of psat 
for H2O and CH3OH
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SOLUTION We can obtain the saturation pressure of water from the steam tables (Appendix 
B.1). The saturation pressure of methanol is given by the Antoine equation,

ln 1Psat 3bar 4 2 5 A 2
B

T 3K 4 1 C
5 11.9673 2

3626.55
T 2 34.29

where the constants were found consulting Appendix A.1. The resulting values of Psat are 
reported in Table E4.4:

(i) Vapor pressure is a function of how easily molecules can “escape” from the liquid phase. 
This is dictated by the strength of the intermolecular interactions of the species involved given 
a certain thermal energy. The weaker the intermolecular forces, the larger Psat.

Both methanol and water form hydrogen bonds in the liquid phase. Hydrogen bonds are 
much stronger than van der Waals interactions, so they will control the behavior of the vapor 
pressure for these two species. Water can form two hydrogen bonds/molecule, as shown in 
Figure E4.1, while CH3OH can form only one. Thus at a given temperature, water has stronger 
attractive forces in the liquid, and a lower vapor pressure.

(ii) Explanation #1: Temperature is a measure of the molecular kinetic energy (part of 
the internal energy, u). While it is representative of the average molecular kinetic energy, 
species at thermal equilibrium have a distribution of energies. This distribution is given by the 
Maxwell-Boltzmann equation. A certain fraction of species (water or methanol in this case) 
will have enough kinetic energy to overcome the attractive forces (H-bonds) keeping them 
in the liquid phase. As this fraction increases, more molecules enter the vapor phase and Psat 
increases. Since the Maxwell-Boltzmann distribution depends exponentially on temperature, 
Psat also increases exponentially with temperature.
Explanation #2: You may be tempted to use the following explanation for the temperature 
dependence of Psat. As T increases, more molecules would hit the walls of the container. This 
can be seen, for example, in the ideal gas equation P 5 RT/v. Thus Psat increases with T. This 
explanation is not wrong but it is incomplete! This would predict a linear relation between Psat 
and T not the exponential relation we observe experimentally.

Viewed in another way, we may ask, do the number of molecules in the vapor phase 
increase as T increases? Explanation #1 asserts that they do. In explanation #2, however, you 
could get a higher Psat without adding any more species to the vapor. Viewing it the latter way 
is wrong.

TABLE E4.4 Values of Psat for Water and Methanol

T[°C]

Psat 3Pa 4

Water Methanol

25 3.169 3 103 1.69 3 104

50 1.235 3 104 5.56 3 104

100 1.014 3 105 3.54 3 105

O

O

H

H

H

H

O

O

O

H

H

H

H

H

H

Lone electron

pair

Two H-bonds

Figure E4.1 Schematic of two H-bonds formed 
per H2O molecule.
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 ►4.3  EQUATIONS OF STATE

The van der Waals Equation of State

Relation to Molecular Interaction
We will now use our knowledge of intermolecular interactions to modify the ideal gas 
model for situations when potential interactions between the species are important. In 
this section, we will use the Sutherland potential function to describe the intermolecular 
interactions, that is, use the hard sphere model to account for repulsive forces and van 
der Waals interactions to describe attractive forces. This development leads to the van 
der Waals equation of state. This equation is particularly well suited for illustrating how 
the molecular concepts we learned about in Section 4.2 can be related to macroscopic 
property data. However, it should be emphasized that more accurate equations of state 
have been developed and will be covered next.

First, let’s consider the “size” of the molecules based on the hard sphere model. The 
entire volume of the system will no longer be available to the molecules. We can account 
for this effect by replacing the volume term in the ideal gas model with one for available 
volume. Recall that in the hard sphere model, the molecules have a diameter s. Thus, 
the center of one molecule cannot approach another molecule closer than a distance s. 
The excluded volume of the two molecules is then 14/3 2ps3. Dividing by 2 and mul-
tiplying by Avogadro’s number, NA, we get one mole of molecules occupying a volume 
b 5 12/3 2ps3NA. To correct for size, we modify the ideal gas model to include only the 
unoccupied molar volume, 1v 2 b 2 . Hence, we get:

P 5
RT

v 2 b

since one molecule cannot occupy the space in which another molecule already sits.
We still need to take into account attractive intermolecular forces. In the absence of 

net electric charge, the attractive forces in the gas phase can include dispersion, dipole– 
dipole, and induction, all of which have an r26 dependence. However, we do not have 
“distance” as a parameter in our equations, but rather volume, which is proportional 
to the cube of the distance 1v < r3 2 . We can say, therefore, that all of these terms are 
proportional to v22.

But how do we incorporate this into our equation of state? As we saw in Section 4.2, 
the variable most related to potential energy is pressure. So we correct the pressure by 
including a term that accounts for attractive forces. Attractive forces should decrease 
the pressure, since the molecules will not bang into the container as readily; hence, we 
subtract a correction term as follows:

 P 5
RT

v 2 b
2

a
v2

 (4.15)

This equation was fi rst proposed by the Dutch physicist van der Waals in 1873. Since it 
assumes a 1/r6 dependence for all attractive forces, any force with this functionality (be 
it dispersion, dipole–dipole, or induction) has been termed a “van der Waals force.” The 
parameter a in Equation (4.15) can be related to molecular constants by integrating the 
Sutherland potential function. This calculation gives a 5 12pNA

2C6 2 / 13s3 2 . In practice, 
a and b are treated as empirical constants that account for the magnitude of the attrac-
tive and repulsive forces. Can you think of how we might fi nd values for the constants a 
and b?
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We can rewrite Equation (4.15) as follows:

Pv3 2 1RT 1 Pb 2v2 1 av 2 ab 5 0

van der Waals as a Cubic Equation of State
This equation is termed a cubic equation of state since there are three roots for volume 
for fi xed values of T and P given the values of the parameters a and b. We will consider 
other cubic equations of state shortly. Figure 4.12 illustrates the general characteris-
tics of this equation for various isotherms. The three roots have different characteristics 
above the critical point than below it. Above the critical point there is one positive, real 
root and two roots containing negative or imaginary numbers. Only the positive, real root 
represents a physical value—the volume of the supercritical fl uid. The other roots are 
mathematical artifacts with no physical basis. Below the critical point, however, there 
may be three real, positive roots. We can ascribe the lowest root to the molar volume 
of the liquid state and the highest root to the vapor state. We throw out the middle 
root where dP/dv . 0 on physical grounds. Can you think of a physical reason why this 
relationship is not possible at constant temperature? In reality, isotherms are horizontal 
in the two-phase envelope where vapor and liquid coexist. This discontinuity eludes 
description by cubic equations of state.

One feature of the two-phase region can be determined by cubic equations. Max-
well’s “equal-area rule” (which will be verifi ed in Chapter 6) provides a graphical means 
to determine Psat for a given T. It states that the saturation pressure is the pressure at 
which a horizontal line equally divides the area between the real isobar and the solu-
tion given by the cubic equation. Such a construct is illustrated in Figure 4.12, where 
the equal areas above and below the isobar fi x the value for Psat. This procedure can be 
achieved by trial and error. If a higher saturation pressure were predicted, the upper 
area would be too small. Conversely, too low a value for Psat would make the upper area 
too large.

van der Waals Parameters by Corresponding States
To use the van der Waals equation, the parameters a and b must be determined for a spe-
cies of interest. The most accurate values are obtained by fi tting experimental PvT data. 
However, when these data are not available, we can use the principle of corresponding 
states (see Section 4.2).

Equal
areas
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∂v 2∂v

v sat(liq) v sat(vap) Volume
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re

ss
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re

T < Tc

T  = Tc

T > Tc

Tc Tc 

= = 0

 Figure 4.12 Pv behavior of the van der 
Waals equation. This behavior is rep-
resentative of other cubic equations of 
state.
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Recall that the principle of corresponding state scales property data to that at the 
critical point. We can relate the van der Waals parameters to the temperature and pres-
sure at the critical point by noting that there is an infl ection point on the critical iso-
therm, as shown in Figure 4.12. Mathematically, we can say:

 a
'P
'v
b

Tc

5 ¢ '2P
'v2
≤Tc 5 0 (4.16)

Thus, at the critical point we have:

 Pc 5
RTc

vc 2 b
2

a
vc

2
 (4.17)

 a
'P
'v
b

Tc

5 0 5
2RTc

1vc 2 b 2 2
2

2a
vc

3
 (4.18)

and, ¢ '2P
'v2
≤

Tc

5 0 5
2RTc

1vc 2 b 2 3
2

6a
vc

4
 (4.19)

If we multiply Equation (4.18) by 2 and Equation (4.19) by 1v 2 b 2  and add them 
together, we get:

0 5
4a
vc

3
2

6a 1vc 2 b 2

vc
4

Solving for vc gives:

 vc 5 3b (4.20)

If we plug Equation (4.20) back into Equation (4.18) and solve for a, we get:

a 5
9
8

 vcRTc

Finally, if we plug this equation back into Equation (4.17), we can solve for the van der 
Waals constants in terms of the critical temperature and the critical pressure:

 a 5
27
64

 
1RTc 2 2

Pc
 (4.21)

and, b 5
1RTc 2

8Pc
 (4.22)

Example 4.7 shows another approach to obtaining van der Waals parameters from 
properties at the critical point. We now have an equation of state for which we only need 
critical property data to solve for the parameters. This approach will not be as accurate 
as fi tting PvT data to get the constants, a and b, but then again you do not have to go 
through the expense of laboratory measurements, since values of critical properties are 
usually known and readily available.

We can use the results above to write the van der Waals equation in terms of the 
reduced variables Tr, Pr, and vr. We start with Equation (4.15):

 P 5
RT

v 2 b
2

a
v2

 (4.15)

c04.indd   234c04.indd   234 05/11/12   6:51 PM05/11/12   6:51 PM



4.3 Equations of State ◄ 235

We can substitute for a and b and rearrange using Equations (4.20), (4.21), and (4.22) to give:

¢ P
Pc
≤ 5

8 ¢ T
Tc
≤

3 ¢ v
vc
≤ 2 1

2
3

¢ v
vc
≤ 2

This equation can be written in reduced form as:

 Pr 5
8Tr

3vr 2 1
2

3
vr

2 (4.23)

If we compare Equation (4.23) to (4.12a), we see we have defi ned a universal function 
for the reduced pressure in terms of the reduced temperature and the reduced vol-
ume. Thus, we have a specifi c expression to delineate the corresponding states between 
species.

We can calculate the compressibility factor at the critical point from Equations 
(4.20) and (4.22):

zc 5
Pcvc

RTc
5

3
8

Thus, applying the principle of corresponding states to the van der Waals equation 
leads to a value of 0.375 for the compressibility factor at the critical point for all species. 
Experimental values for the compressibility factor at the critical point are around 0.29 for 
simple species and usually less for complex species. Thus, the value predicted by the van der 
Waals equation is considerably high—indicating its limitations in predicting PvT behavior.

Consider the following molecules: CCl4, CF4, SiCl4, SiCl3H.
(a)  List these species in order of their van der Waals constant a, from the largest value of a to 

the smallest. Explain your choice based on molecular arguments.
(b) Repeat for the van der Waals constant b. Explain your choice based on molecular arguments.

SOLUTION (a) The van der Waals a constant is representative of attractive interactions due to dis-
persion, dipole–dipole, and induction forces. The fi rst three species listed—CCl4, CF4, SiCl4— are 
all nonpolar and exhibit only dispersion forces. The magnitude of these forces is related to the polar-
izability a, of these species. In CF4, the valence electrons are held in toward the nuclei the most 
tightly (least “sloshy”), so this has the smallest dispersion forces. Conversely, the electrons in SiCl4 are 
the farthest away and most easily polarized. So we would expect that for these species:

aSiCl4 . aCCl4 . aCF4

The fourth species, SiCl3H, has two forces, dispersion and dipole–dipole, which add together. 
So the question becomes where we place this species in the hierarchy above. This is a tough 
call. We expect a fairly strong dipole 1. 1 D 2 , as shown below:

Si

H

Cl

Cl

Cl +

−

EXAMPLE 4.5

Prediction of the 
Relative Size of 
van der Waals 
Forces Based on 
Molecular Structure

(Continued)

c04.indd   235c04.indd   235 05/11/12   6:51 PM05/11/12   6:51 PM



236 ► Chapter 4. Equations of State and Intermolecular Forces

However, polarizabilities are additive among atoms in a molecule, and this species replaces a 
very polarizable atom (Cl) with an almost nonpolarizable atom (H). We may say that the dipole 
wins out and:

aSiCl3H . aSiCl4 . aCCl4 . aCF4

however,

aSiCl4 . aSiCl3H . aCCl4 . aCF4 and even aSiCl4 . aCCl4 . aSiCl3H . aCF4

are possible.
(b) The van der Waals constant b is representative of the volume a molecule occupies. SiCl4 is 
certainly the largest and CF4 the smallest, but how about SiCl3H vs.CCl4? Si is bigger than C, 
but Cl is bigger than H. If you imagine how the atoms stack—starting with a triangle of Cl and 
then either an Si in the middle with an H on top or a C in the middle with a Cl on top—you 
can see that CCl4 is larger. So for b:

bSiCl4 . bCCl4 . bSiCl3H . bCF4

Calculate the van der Waals parameters from critical point data for the following gases: ben-
zene, toluene, cyclohexane. Explain the relative magnitudes of a and b from a physical basis.

SOLUTION The van der Waals parameters are calculated from the critical pressure and tem-
perature as follows:

EXAMPLE 4.6

Calculation of van 
der Waals 
Constants from 
Critical Properties

Pc 3bar 4 Tc 3K 4 a 5
27
64

 
1RTc 2 2

Pc
 B Jm3

mol2
R b 5

1RTc 2

8Pc
 B m3

mol
R

Benzene 49.1 562 1.88 1.19 3 1024

Toluene 42.0 594 2.45 1.47 3 1024

Cyclohexane 40.4 553 2.21 1.42 3 1024

The attractive interactions of all three compounds are dominated by dispersion interactions 
(parameter a), while size affects parameter b. Toluene has the highest values for a and b. 
Toluene has seven carbon atoms, whereas the other molecules have only six. This results in the 
largest polarizability as well as the largest size. Cyclohexane’s electrons are freer to move than 
the tight resonance structure exhibited by benzene. This leads to a greater polarizability than 
benzene. In fact the magnitude of dispersion forces is closer to toluene than benzene. Finally, 
cyclohexane has a three-dimensional structure, while the other two are planar and fl at. Hence, 
the constant b, representative of size, is almost as large for cyclohexane as it is for benzene.

At the critical point, the three roots in volume to a cubic equation must converge. Thus,

 1v 2 vc 2 3 5 0 (E4.7A) 

Use Equation (E4.7A) to write the van der Waals parameters a and b in terms of the critical 
pressure and temperature.

EXAMPLE 4.7

Alternative 
Determination of van 
der Waals Constants 
from Corresponding 
States
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4.3 Equations of State ◄ 237

SOLUTION We can rewrite Equation (4.15) as follows:

v3 2 c
RT
P

1 b d v2 1
a
P

 v 2
ab
P

5 0

or at the critical point:

 v3 2 BRTc

Pc
1 bR  v2 1

a
Pc

 v 2
ab
Pc

5 0 (E4.7B)

Expanding Equation (E4.7A) gives:

 v3 2 3v2vc 1 3vvc
2 2 vc

3 (E4.7C)

We can now set each of the terms in volume from Equation (E4.7B) equal to those from 
Equation (E4.7C). For the root of v0, we have:

 
ab
Pc

5 vc
3 (E4.7D)

For the root of v1, we have:

 3vc
2 5

a
Pc

 (E4.7E)

and for the root of v2, we have:

 3vc 5 BRTc

Pc
1 bR  (E4.7F)

We can solve Equation (E4.7E) for the parameter a:

 a 5 3vc
2Pc (E4.7G)

and then Equation (E4.7D) for b:

 b 5
Pcvc

3

a
5

vc

3
 (E4.7H)

Finally, solving Equation (E4.7F) for b and substituting the result of Equation (E4.7H) gives:

 vc 5
3RTc

8Pc
 (E4.7I)

We can solve for the parameters a and b by substituting Equation (E4.7I) into Equations
(E4.7G) and (E4.7H), respectively:

a 5
27 1RTc 2 2

64Pc

and, 

b 5
RTc

8Pc

Note the expressions we obtained for the parameters a and b in this example match those given 
by Equations (4.21) and (4.22).
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238 ► Chapter 4. Equations of State and Intermolecular Forces

As we have just seen, the van der Waals equation is an example of a cubic equation of 
state because its highest term in volume is raised to the third power. The van der Waals 
equation is presented because of the clear way in which it incorporates the attractive and 
repulsive interactions we have discussed. We will see that many modern cubic equations 
have the same basic form as the van der Waals equation, but are considerably more 
accurate. In other words, if you need an accurate answer, there are better equations to 
use than the van der Waals equation. 

In fact, hundreds of different cubic equations of state exist. All these equations are 
approximate. They merely fi t experimental data. Yet, in general, many can provide rea-
sonable values for both the vapor and liquid regions of hydrocarbons and the vapor 
region for many other species. In this section, we will not attempt to go through a critical 
review of all the available cubic equations of state; rather, we will illustrate the scientifi c 
concepts and engineering application through a few commonly used cubic equation. The 
majority of other equations that have been proposed are variations of the forms we will 
study. 

The general form of a cubic equation is:

v3 1 f1 1T, P 2v2 1 f2 1T, P 2v 1 f3 1T, P 2 5 0

where fi 1T, P 2  represent a function that can contain fi tting parameters as well as the 
properties T and P. The three characteristic roots in volume follow the same trends as 
those we discussed with the van der Waals equation in relation to Figure 4.12. Table 4.3 
illustrates some examples of the form:

P 5
RT

v 2 b
2 Attr

All these equations use the same “repulsive” term as the van der Waals equation. The 
term indicated by “Attr” quantifi es attractive interactions. In general, these terms are 
empirically established to best fi t experimental data.

The Redlich–Kwong equation, the Soave–Redlich–Kwong8 equation, and the Peng–
Robinson equation are all commonly used. The Redlich–Kwong equation of state is 
given by:

TABLE 4.3 Parameters for Some Popular Cubic Equations of State of the Form 

P 5 RT/ 1v 2 b 2 2 Attr

Equation Year Attr

van der Waals 1873 a
v2

Redlich–Kwong 1949 a/"T
v 1v 1 b 2

Soave–Redlich–Kwong 1972 aa 1T 2

v 1v 1 b 2

Peng–Robinson 1976
 

aaT
v 1v 1 b 2 1 b 1v 2 b 2

8 This equation is also referred to as the Redlich–Kwong–Soave equation of state.

Cubic Equations of State (General)
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4.3 Equations of State ◄ 239

 P 5
RT

v 2 b
2

a
T1/2v 1v 1 b 2

 (4.24)

The relationships for parameters a and b can be written in terms of critical temperature 
and critical pressure using the same methodology that we applied to the van der Waals 
equation. In this case, the alternative method illustrated in Example 4.7 is convenient to 
implement (Problem 4.35). After working through the math, we get:

 a 5 ¢ 1

9 1 3
"2 2 1 2

≤  
R2Tc

2.5

Pc
5

0.42748R2Tc
2.5

Pc
 (4.24a)

and, 

 b 5 ¢
3
"2 2 1

3
≤  

RTc

Pc
5

0.08664RTc

Pc
 (4.24b)

Note the parameters a and b in the Redlich–Kwong equation are different from those for 
the van der Waals parameters and cannot be interchanged. The Redlich–Kwong equa-
tion works well over a wide range of conditions but departs signifi cantly from measured 
values near the critical point. In reduced form, the Redlich–Kwong Equation gives:

Pr 5
3Tr

vr 2 0.2599
2

1

0.2599"Trvr 1vr 1 0.2599 2

and the compressibility factor at the critical point is found to be:

zc 5
1
3

While this value is closer to experimental values than the van der Waals equation, it is 
still too high.

The Peng–Robinson equation of state is given by:

 P 5
RT

v 2 b
2

aa 1T 2

v 1v 1 b 2 1 b 1v 2 b 2
 (4.25)

with,    a 5 0.45724 

R2Tc
2

Pc

b 5 0.07780 

RTc

Pc

a 1T 2 5 31 1 k 11 2 "Tr 2 42

k 5 0.37464 1 1.54226v 2 0.26992v2

The compressibility factor at the critical point is found to be: zc 5 0.307. The Peng– 
Robinson equation is an option in the equation of state menu of the ThermoSolver soft-
ware that comes with the text.

The Redlich–Kwong equation with critical constant estimation of parameters uses 
a “two-parameter” corresponding states expression represented, in general, by Equation 
(4.12a). On the other hand, the Peng–Robinson equation utilizes the third parameter, w; 
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240 ► Chapter 4. Equations of State and Intermolecular Forces

thus, we expect it to be better suited for different classes of molecules. The Soave–Redlich–
Kwong equation of state is a three-parameter equation similar in form to the Peng– Robinson 
equation and is also commonly used.

The Virial Equation of State

The virial equation of state has a sound theoretical foundation; it can be derived from fi rst 
principles using statistical mechanics. This equation is given by a power series expansion 
for the compressibility factor in concentration (or the reciprocal of molar volume) about 
1/v 5 0:

 z 5
Pv
RT

5 1 1
B
v

1
C
v2

1
D
v3

1 c (4.26)

Here B, C, ... are called the second, third, ... virial coeffi cients; these parameters depend 
only on temperature (and composition for mixtures). An alternative expression for the 
virial equation is a power series expansion in pressure:

 z 5
Pv
RT

5 1 1 B rP 1 C rP2 1 D rP3 1 c (4.27)

By solving Equation (4.26) for P and substituting into Equation (4.27), it is straightfor-
ward to show the two sets of coeffi cients are related by:

B r 5
B

RT

 C r 5
C 2 B2

1RT 2 2
 and so on (4.28)

A common question is: What power series expansion do I use? Well, Equation (4.26) 
is explicit in pressure and Equation (4.27) is explicit in volume, so if you need an expres-
sion that is explicit in one of these variables (so you can take a derivative, for example), 
use the appropriate form. The next issue is a question of accuracy. It turns out that at 
moderate pressures (up to about 15 bar) when you keep only the second virial coeffi -
cient, the power series expansion in pressure is better:

z 5
Pv
RT

5 1 1 B rP 5 1 1
BP
RT

From 15 to 50 bar, the virial equation should contain three terms, and the expansion in 
concentration is more accurate:

z 5 1 1
B
v

1
C
v2

Using statistical mechanics, we can relate the virial coeffi cients to intermolecular 
potentials. We will leave the derivation to a physical chemistry course and merely pre-
sent the results. The second virial coeffi cient, B, results from all the “two-body” interac-
tions in the system, that is, all the interactions between two molecules; the third virial 
coeffi cient, C, results from all the “three-body” interactions in the system; and so on. 
From this point of view, can you see why you need to include more and more terms as 
the pressure increases? Additionally, if the pressure is so low that not even two-body 
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4.3 Equations of State ◄ 241

interactions affect the system properties, we have an ideal gas. As an example, consider 
the case of spherically symmetric molecules. According to statistical mechanics, the sec-
ond virial coeffi cient is given by the following expression:

 B 5 2pNA 3

`

0

11 2 e2G1r2/1kT2 2r2 dr (4.29)

The principle of corresponding states is often applied to the truncated virial  equation. 
It can be put in the form given by Equation (4.14):

Br 5 B102 1 vB112

where, Br 5
BPc

RTc

Several correlations of parameters B102 and B112 to reduced temperature have been pro-
posed.9 For example, Abbott found that they can be calculated by:

B102 5 0.083 2
0.422
Tr

1.6

and, 

B112 5 0.139 2
0.172
Tr

4.2

respectively.
The Beattie–Bridgeman equation of state is a specifi c version of the virial 

equation:

 z 5
Pv
RT

5 1 1
B
v

1
C
v2

1
D
v3

 (4.30)

where,     B 5 B0 2
A0

RT
2

c
T3

C 5 2B0b 1
A0a
RT

2
cB0

T3

D 5
bcB0

T3

where A0, B0, a, b, and c are adjustable parameters.
The Benedict–Webb–Rubin equation of state modifi es the virial equation by 

adding an exponential term. The form is given by:

 z 5 1 1 ¢B0 2
A0

RT
2

C0

RT3
≤v21 1 ab 2

a
RT
bv22 1

aa

RT
 v25

 

 1
b

RT 3v2 ¢1 1
g

v2
≤  exp ¢2

g

v2
≤  (4.31)

9 S. M. Walas, Phase Equilibria in Chemical Engineering (Boston: Butterworth, 1985).
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242 ► Chapter 4. Equations of State and Intermolecular Forces

It has been shown to model both liquid and vapor PvT behavior well even close to the 
critical point, where it is the most challenging to accurately model PvT behavior. How-
ever, you must have values for all eight coeffi cients, and you must have the computational 
muscle to do the calculations. The extension of the Benedict–Webb–Rubin equation by 
Lee and Kessler is presented in Appendix E and forms the basis for the generalized 
compressibility charts discussed in Section 4.4.

Show that a Taylor series expansion for the compressibility factor, z, about temperature, T, and 
concentration, c 5 1/v, gives the form of the virial equation shown in Equation (4.26). 

SOLUTION We are looking for an equation of the form:

z 5 f 1T, c 2

Because this function is continuous, we can write the Taylor series expansion about the point 
c 5 0:

z 5 f 1T, c 5 0 2 1 ¢'f 1T, c 2

'c
≤ c50 c 1 ¢'2f 1T, c 2

'c2
≤ c50  

c2

2!
1 ¢'3f 1T, c 2

'c3
≤ c50  

c3

3!
1 c

Because all gases become ideal gases at low concentration 1c0 2 :

f 1T, c 5 0 2 5 z 1T, c 5 0 2 5
RT
Pv

5 1

So,

z 5 1 1 ¢'f 1T, c 2

'c
≤

c50  c 1 ¢'2f 1T, c 2

'c2
≤

c50
  
c2

2!
1 ¢'3f 1T, c 2

'c3
≤

c50
  
c3

3!
1 c

We can rewrite this expression as:

z 5
P

cRT
5 1 1 Bc 1 Cc2 1 Dc3 1 c

where,

 B 5 ¢'f 1T, c 2

'c
≤ c5c0

and,

 C 5

¢'2f 1T, c 2

'c2
≤ c5c0

2!
  c

Finally, this can be rewritten substituting c 5 1/v to give Equation (4.26):

z 5
Pv
RT

5 1 1
B
v

1
C
v2

1
D
v3

1 c

From this development, we see that the virial coeffi cients, B, C, D, … depend on T, but not on 
v because they are evaluated at a specifi ed value of v (i.e., c 5 1/v 5 0).

Example 4.8

Development of the 
Expression for the 
Virial Equation 
in Concentration
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4.3 Equations of State ◄ 243

Calculate an expression for the second virial coeffi cient, B, for the hard sphere potential model.

SOLUTION We begin with Equation (4.29), the expression for the second virial coeffi cient in terms 
of intermolecular potential:

B 5 2pNA 3

`

0

11 2 e2G1r2/kT 2r2dr

To use the hard sphere model (Figure 4.7a), we divide the integral into two parts. For distances 
of 0 to r, the potential is infi nite 1` 2  so , e2G1r2/kT 5 0. From r to `, the potential is zero. Thus, 
we get:

B 5 2pNAB 3
s

0

r2dr 1 3

`

s

11 2 e20/kT 2r2drR

Evaluating the integrals gives:

B 5 2pNA 

r3

3
 2s

0

And fi nally,

 B 5
2
3

 pNAs3 (E4.9A) 

Example 4.9 

Calculation of 
the Second Virial 
Coeffi cient from 
Hard Sphere 
Potential

Calculate the second virial coeffi cient, B, for CH4 over the temperature range 100–900 directly 
from the Lennard-Jones parameters. Compare the values to the following data reported in the 
literature.

T [K] 110 120 130 140 150 160 180 200

B 3cm3/mol 4 2330 2273 2235 2207 2182 2161 2129 2105

T [K] 225 250 275 300 350 400 500 600

B 3cm3/mol 4 283 266 253 242 226 215 20.5 8.5

SOLUTION We can solve this problem by substituting the Lennard-Jones potential (Equation 4.10) 
into the molecular formulation for the second virial coeffi cient, Equation (4.29), as follows:

B 5 2pNA 3

`

0

11 2 e2G1r2/kT 2r2dr 5 2pNA 3

`

0

D1 2 exp§
24eB ¢s

r
≤ 12

2 ¢s

r
≤ 6R

kT
¥Tr2dr (E4.10) 

Example 4.10

Calculation of 
the Second Virial 
Coeffi cient from 
Lennard-Jones 
Parameters

(Continued)
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244 ► Chapter 4. Equations of State and Intermolecular Forces

The integral in Equation (E4.10A) cannot be solved analytically, so we must perform it 
numerically. Varying length scales are in the integrand. Therefore, for numerical accuracy, it 
is convenient to put the variables in dimensionless form. In this way the scale for each of the 
variables is approximately one, and the likelihood of a numerical error is reduced. We can scale 
the dependent variable, B, according to the result for the hard sphere potential, from Example 4.9 
[Equation (E4.9A)]. So the dimensionless variables become: 

B* 5
B

2
3 ps3NA

; T * 5
kT
e

; r* 5
r
s

where the temperature, T, and the distance, r, are scaled by the Lennard-Jones parameters 
1e/k 2  and s, respectively. Substituting these expressions into Equation (E4.10A) gives:

 B* 5
B

2
3 ps3NA

5 3 3

`

0

B1 2 exp¢24 3 1r* 2 12 2 1r* 2 6 4

T*
≤ R 1r* 2 2dr* (E4.10B) 

Equation (E4.10B) can be integrated numerically. For example, in MATLAB, the commands 
might read:

f = @(rstar)(1.-(exp(-4./Tstar*(rstar.^-12-rstar.^- ...
6))).*rstar.^2);
Bstar = 3 * quad(f,jstart,jend)

We then numerically integrate Equation (E4.10B) at different values of dimensionless 
temperature, and convert back to T and B, using the Lennard-Jones parameters in Table 4.2. 
The results are plotted as a solid curve in Figure E4.10A. The experimental data given earlier 
are also plotted for comparison. The second viral coeffi cient obtained from the Lennard-Jones 
potential reasonably represents the experimental data.
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−100

0

B
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c
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3
/m

o
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300

Temperature [K]:

500 700 900

Lennard - Jones

Experiment

Figure E4.10A Comparison of values for the second virial coefficient for CH4 obtained using 
the Lennard-Jones potential function with experimental data at different temperatures.
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4.3 Equations of State ◄ 245

Equations of State for Liquids and Solids

Liquid and solid molar volumes are straightforward to measure in the lab. For example, 
there is data available for the molar volume of many liquids at room temperature or at 
their normal boiling point. Table 4.4 reports the volume of a sample set of liquids and 
solids at 20°C and 1 bar. 

The volumes of condensed phases are also much less sensitive to temperature and 
pressure than gases. The measured values can be adjusted for temperature or pressure 
changes by using a Taylor series expansion on density. For liquids signifi cantly below the 
critical temperature and for solids, we can neglect all terms but the fi rst (linear) term 
of the Taylor expansion. This approach leads to quantifi cation of the temperature and 
pressure dependencies of volume with the thermal expansion coeffi cient,10 b, and the 
isothermal compressibility, k, respectively. 

These quantities are defi ned as:

 b ;
1
v

 ¢ 'v
'T
≤P (4.32)

and, 

 k ; 2
1
v

 ¢ 'v
'P
≤T (4.33)

From inspection of Equations (4.32) and (4.33), it can be deduced that b has SI units 
of 3K21 4 and k has SI units of 3Pa21 4. Representative values of b and k are reported in 
Table 4.4. More extensive compilations are found in many engineering and materials 
handbooks.

TABLE 4.4 Molar Volume, Thermal Expansion Coefficient, and Isothermal Compressibility of 

Some Liquid and Solid Species at 20°C and 1 bar

v 3cm3/mol 4 b 3K21 4 3 103 k 3Pa21 4 3 1010

Liquid

Acetone 73.33 1.49 12.7
Benzene 86.89 1.24 9.4
Methanol 39.56 1.12 12.1
Ethanol 58.24 1.12 11.1
n-Hexane 130.77 15.5
Mercury 14.75 0.181 0.40

Solid

Aluminum 9.96 0.0672 0.145
Copper 7.11 0.0486 0.091
Iron 7.10 0.035 0.048
Diamond 3.42 0.0036 0.010

Source: R. H. Perry, D. W. Green, and J. O. Maloney (eds.), Perry’s Chemical Engineers’ Handbook, 7th ed. 
(New York: McGraw-Hill, 1997); D. R. Lide, CRC Handbook of Chemistry and Physics, 83rd ed. (Boca 
Raton, FL: CRC Press, 2002–2003).

10 This quantity is also referred to as the volume expansivity.
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246 ► Chapter 4. Equations of State and Intermolecular Forces

Some of the equations of state discussed above are applicable to liquids as well as 
gases. For example, the Benedict–Webb–Rubin equation of state provides reasonable 
estimates for most hydrocarbons. The generalized compressibility charts that will be 
discussed in the next section are based on an extension of this equation of state and can 
be used for both gas and liquid phases. Alternatively, correlations have been developed 
explicitly for the liquid phase. For example, the liquid volume at saturation is given by 
the Rackett equation:

 vl,sat 5
RTc

Pc
10.29056 2 0.08775v 2 311 112Tr22/74 (4.34)

Determine the molar volume of copper at 500°C from the data in Table 4.4. 

SOLUTION  We can rewrite Equation (4.32) as follows: 

a
'v
'T
b

P
5 bv

Separation of variables leads to:

 
dv
v

5 bdT (E4.11A)

Integration of Equation (E4.11A) from state 1 at 20°C to state 2 at 500° C gives:

ln 

v2

v1
5 b 1T2 2 T1 2

Solving for the molar volume of solid in state 2, and plugging in values from Table 4.4, we get:

 v2 5 v1 exp 3b 1T2 2 T1 2 4 5 7.28 3cm3/mol 4 (E4.11B)

Since values for the thermal expansion coeffi cient are usually small, Equation (E4.11B) is often 
rewritten using a series expansion for the exponential:

 v2 < v1 31 1 b 1T2 2 T1 2 4 (E4.11C)

In this example, the use of the approximation given by Equation (E4.11C) results in an error 
of only 0.03% as compared to Equation (E4.11B).

EXAMPLE 4.11

Temperature 
Correction for Molar 
Volume of Solid Cu

 ►4.4  GENERALIZED COMPRESSIBILITY CHARTS
The principle of corresponding states invokes a unique generalized relation between 
the compressibility factor and reduced temperature and pressure for a given class of 
molecules. It is sometimes convenient to have graphs or tables that quantify this rela-
tionship. In this section, we present charts and tabular data for the compressibility 
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4.4 Generalized Compressibility Charts ◄ 247

factor, z, in terms of Pr, Tr, and v. To account for different classes of molecules, we use 
the form:

 z 5 z102 1 vz112 (4.35)

The fi rst term on the right hand side of Equation (4.35), z102, accounts for simple mol-
ecules, while the second term, z112, is a correction factor for the “nonsphericity” of a spe-
cies. Both z102 and z112 depend only on Tr and Pr.

Values for z102 and z112 vs. Pr at different values of Tr are shown in Figures 4.13 
and 4.14, respectively. These charts are developed based on the Lee-Kesler equation of 
state.11 The same data are reported in tabular form in Appendix C (Tables C.l and C.2).12

If you want to fi nd the volume at a specifi c temperature and pressure, it is straight-
forward to use these the graphs or tables. First, determine the reduced temperature 
1T/Tr 2  and reduced pressure 1P/Pr 2  and look up the acentric factor. Then go to Figures 
4.13 and 4.14 or Tables C.1 and C.2, and determine the compressibility factor by Equa-
tion (4.35). You can then calculate the volume from z. When P or T is unknown, a trial-
and-error method must be used. 

The generalized compressibility factor using the Lee–Kesler equation is an option 
in the equation of state menu of the ThermoSolver software that comes with the text.

11 See Appendix E to see how these were calculated.
12 Lee and Kesler’s value for the critical compressibility factor (Pr 5 1 and Tr 5 1) is at the infl ection point of 
the critical isotherm, while Tables C.1 and C.2 report the value obtained directly from the solution of their 
equation of state.

Figure 4.13 Generalized compressibility factor—simple fluid term. Based on the Lee–Kesler 
equation of state.
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Figure 4.14 Generalized compressibility factor-correction term based on the Lee-Kesler equa-
tion of state.

Calculate the volume occupied by 10 kg of butane at 50 bar and 60°C using the Redlich–
Kwong equation and the generalized compressibility charts.

SOLUTION Using the Redlich-Kwong equation of state
We fi rst fi nd the Redlich–Kwong parameters a and b using critical properties:

a 5
0.42748R2Tc

2.5

Pc
5 29.08 B JK1/2m3

mol2
R  and b 5

0.08664RTc

Pc
5 8.09 3 1025 B m3

mol
R

We can use these with the Redlich–Kwong equation:

P 5
RT

v 2 b
2

a
T1/2 v 1v 1 b 2

Solving by trial and error, we get:

v 5 1.2 3 1024 3m3/mol 4

and, 

V 5
m

MW
3 v 5

10
.05812

3 1.20 3 1024 5 0.021 3m3 4

Using the compressibility charts
We fi rst fi nd Pr, Tr, and v:

Pr 5
P
Pc

5
50 bar

37.9 bar
5 1.32,         Tr 5

T
Tc

5
333.2K
425.2K

5 0.78,         and v 5 0.193

EXAMPLE 4.12

Calculation of v by 
the Redlich–Kwong 
Equation of State 
and the Generalized 
Compressibility 
Charts
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4.5 Determination of Parameters for Mixtures ◄ 249

From Tables C.1 and C.2, we get:

z0 z1

Pr Pr

Tr 1.3 1.4 Tr 1.3 1.4

0.75 0.2142 0.2303 0.75 20.0871 20.0934

0.78
(interpolated)

0.2116 0.2274 20.0843 20.0903

0.80 0.2099 0.2255 0.80 20.0825 20.0883

By double linear interpolation, where the fi rst interpolation is performed in the table, we get:

z102 5 0.2116 1
0.02
0.1

 10.2274 2 0.2116 2 5 0.2148

z112 5 20.0843 1
0.02
0.1

 120.0903 2 120.0843 2 2 5 20.0855

Thus, 
z 5 z102 1 vz112 5 0.198

The low value for the compressibility factor indicates that butane is a liquid. Now solving for 
volume:

v 5
zRT

P
5

0.198 3 8.314 3 333.15
50 3 105

5 1.1 3 1024 B m3

mol
R

and, 

V 5
m

MW
3 v 5

10
.05812

3 1.1 3 1024 5 0.019 3m3 4

The compressibility charts and the Redlich–Kwong equation give similar values for liquid 
butane at 50 bar and 60°C.

 ►4.5  DETERMINATION OF PARAMETERS FOR MIXTURES
Most chemical and biological engineering processes include systems in which the work-
ing fl uid is a mixture of two or more components. In Chapter 6, we will learn how to 
carefully approach the thermodynamic properties of mixtures; however, it is useful to 
introduce the approach to apply equations of state to mixtures while intermolecular 
interactions are fresh in our mind. 

When approaching mixtures, it is useful to consider all the possible types of interac-
tions between the molecules in the mixture. These include “like” interactions between 
two molecules of the same species and “unlike” interactions between molecules of dif-
ferent species. For example, a binary mixture of species 1 and 2 can have three types of 
interactions: like interactions between 1 and 1, like interactions between 2 and 2, and 
unlike interactions between 1 and 2. Similarly, a ternary mixture can have six types of 
interactions, a quaternary mixture 10 types, and so on. As we quickly can recognize, vir-
tually an unlimited combination of mixtures is possible. Mixtures can vary not only by the 
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250 ► Chapter 4. Equations of State and Intermolecular Forces

choice of components, but also in the quantity of each component present. Therefore, 
the most practical approach to using equations of state is to form mixing rules whereby 
we develop equations for properties of the mixture based on pure component data and 
apply them to the types of interactions present. 

Only the virial equation provides a complete theoretical basis for mixing rules. Some 
mixing rules are ad hoc and generated as much by mathematical convenience as by any 
fi rm theory. Other mixing rules for equations of state, however, can be related to the 
physical origin of the terms involved. In this section, we fi rst study the mixing rules 
proposed by van der Waals that can be applied to his equation and also to other cubic 
equations of state. We then study mixing rules for the virial equation, and fi nally, mixing 
rules for critical properties that we can use with the generalized compressibility charts.

Let’s see how we develop mixing rules according to those originally proposed by van der 
Waals for his equation of state. As we have seen, the van der Waals a term is related to 
the attractive force between two molecules, while we can consider the van der Waals b 
term to be related to the volume that a species occupies. A schematic for a binary mix-
ture of species 1 and 2 is shown in Figure 4.15. 

The van der Waals term a1 represents the attractive interaction between two mole-
cules of species 1, as shown in the fi gure. These interactions are based on a so-called two 
body interaction; that is one “1” molecule must fi nd another “1.” It will occur in propor-
tion to the mole fraction of the fi rst “1” times the mole fraction of the other “1,” that is, 
y1

2. Similarly the 2-2 interaction will occur in proportion to y2
2. The unlike 1-2 interaction 

will occur in proportion to y1y2 since a “1” molecule must fi nd a “2” molecule, while the 
2-1 interaction is in proportion to y2y1. Summing these attractive interactions together 
to account for their relative proportions gives:

amix 5 y1
2a1 1 y1y2a12 1 y2y1a21 1 y2

2a2

However, the 1-2 and 2-1 interactions are equivalent, so:

a12 5 a21

so the mixing rule simplifi es to:

 amix 5 y1
2a1 1 2y1y2a12 1 y2

2a2 (4.36)

The cross coeffi cient is often found from pure species data according to:

 a12 5 "a1a2 (4.37)

or, if data are available for the binary pair in the form of the binary interaction parameter,
k12, the cross coeffi cient can be written:

 a12 5 "a1a2 11 2 k12 2  (4.38)

The van der Waals coeffi cient b represents excluded volume, so, on average, it is given by:

 bmix 5 y1b1 1 y2b2 (4.39)

Cubic Equations of State
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An extension of the above mixing rules to a multicomponent mixture gives:

 amix 5 a
i
a

j
yiyjaij (4.40)

where aii 5 ai, and,

 bmix 5 a
i

yibi (4.41)

The mixing rules defi ned by Equations (4.38), (4.40), and (4.41) can be applied to any 
van der Waals type cubic equation of state—such as the Redlich–Kwong equation, the 
Soave–Redlich–Kwong equation, or the Peng–Robinson equation. In the latter cases, 
Equation (4.40) is written as:

 amix 5 a
i
a

j
yiyj 3aa 1T 2 4ij (4.42)

Figure 4.15 Van der Waals interactions in a 
binary mixture of species 1 and 2.
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Virial Equation of State

Let’s now consider application of mixing rules to the virial equation. Since there is a 
sound theoretical basis for the virial coeffi cients in terms of intermolecular interactions, 
we can relate the virial coeffi cients for mixtures in terms of intermolecular potentials via 
Equation (4.29) with no arbitrary assumptions; that is, these mixing rules are rigorous 
results from statistical mechanics. 

Consider fi rst a binary mixture of 1 and 2. Again, there are three different types of 
“two-body” interactions characteristic of the second virial coeffi cient: 1-1 interactions 
characterized by G11 and therefore B11, 2-2 interactions characterized by G22 and B22, 
and 1-2 interactions characterized by G12 and B12. The three second virial coeffi cients 
characteristic of these interactions depend only on the intermolecular potential; they are 
independent of concentration and composition. Thus, the second virial coeffi cient for 
a binary mixture is proportional to the number of different possible binary interactions 
weighted by the amount of species present. It is given by:

 Bmix 5 y1
2B11 1 2y1y2B12 1 y2

2B22 (4.43)
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252 ► Chapter 4. Equations of State and Intermolecular Forces

where B12 5 B21. Note that Bmix refers to the parameter for the entire mixture and is dif-
ferent from B12, which refers to a specifi c binary interaction. In general, for a mixture of 
n components, the second virial coeffi cient is given by:

 Bmix 5 a
n

i51
a

n

j51
yiyjBij (4.44)

Similarly, the third virial coeffi cient, which depends on three-body interactions, can 
be written as:

 Cmix 5 a
n

i51
a

n

j51
a

n

k51
yiyjykCijk (4.45)

So for our binary system, for example:

Cmix 5 y1
3C111 1 3y1

2y2C112 1 3y1y2
2C122 1 y2

3C222

where C112 5 C121 5 C211. Once again, it is the theoretical foundation of the virial equa-
tions from statistical mechanics that provides validity to this extension to mixtures and 
makes them such a powerful tool. In fact, the virial equation is the only equation of state 
for which rigorous mixing rules are available.

To apply corresponding states and generalized correlations to mixtures, we need the 
relationship of the pseudocritical properties, the critical properties of the mixture, to 
the pure component critical properties. Many mixing relationships have been proposed. 
The simplest and most commonly used approximation is known as Kay’s rules. The pseu-
docritical temperature, Tpc, is given by averaging the critical temperature’s of each spe-
cies in proportion to the amount of that species present in the mixture:

 Tpc 5 a yiTc,i (4.46)

Similarly, the pseudocritical pressure, Ppc, and acentric factor, vpc, become:

 Ppc 5 a yiPc, i (4.47)

and,    vpc 5 a yi, vc, i (4.48)

respectively. There is absolutely no basis for these rules other than convenience. Alter-
natively, a geometric mean combining rule for critical temperature has been used:

Tpc, ij 5 "Tc, jTc,j 

This has been extended to include an additional parameter the binary interaction param-
eter k rij to better fi t experimental data:

Tpc,ij 5 "Tc,iTc,j 11 2 k rij 2

The understanding of the relationship between mixing rules and the thermodynamic 
properties of mixtures is still incomplete and warrants study.

Corresponding States
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Calculate the following:
(a) The volume occupied by 20 kg of propane at 100°C and 70 bar
(b) The pressure needed to fi ll a 0.1 m3 -vessel at room temperature to store 50 mol of propane
(c)  The pressure needed to fi ll a 0.1 m3-vessel at room temperature to store a mixture of 

20 mol of propane and 30 mol of ethane

SOLUTION As a general strategy, fi rst check whether conditions represent ideal gas behavior. 
If they do, Pv 5 RTcan be used. If they do not, we must use an approach that incorporates 
nonidealities. If P and T are given, we can use the compressibility charts directly.

If T and v are given, an equation of state of the form P 5 f 1T, v 2  is easier, since we can 
calculate P directly. An accurate equation of state is the Redlich–Kwong equation:

P 5
RT

v 2 b
2

a
T1/2v 1v 1 b 2

where the relationships for parameters a and b can be found using the principle of corresponding 
states:

  a 5
0.42748R2Tc

2.5

Pc
       and       b 5

0.08664RTc

Pc

Why did we choose this equation instead of the van der Waals equation?
(a) At 70 bar, propane is not an ideal gas. Since we are given T and P, we can use the 
compressibility charts directly. First, we need to fi nd the reduced pressure and reduced 
temperature using the critical data available in Appendix A:

Pr 5
P
Pc

5
70 bar

42.4 bar
5 1.65     and     Tr 5

T
Tc

5
373K
370K

5 1.01

We also have to look up the value of the acentric factor:

v 5 0.153

Interpolating from Tables C.1 and C.2,

z 5 z102 1 vz112 5 0.2822 1 0.153 3 120.0670 2 5 0.272
So,

V 5 nv 5
m

MW
 ¢ zRT

P
≤ 5

20 3 103

44
 ¢0.272 3 8.314 3 373

70 3 105
≤ 5 0.0548 m3

(b) Here we are given T and v, so we can use the Redlich–Kwong equation. Plugging in 
constants (Pc 5 42.24 bar and Tc 5 370 K):

a 5
0.42748R2Tc

2.5

Pc
5 18.35  

JK1/2m3

mol2
       and      b 5

0.08664RTc

Pc
5 6.29 3 1025 

m3

mol

These parameters give (with room temperature 5 295 K):

P 5
RT

v 2 b
2

a
T1/2v 1v 1 b 2

5 1.01 MPa

EXAMPLE 4.13

PvT Calculations 
for Pure Species 
and Mixtures

(Continued)
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254 ► Chapter 4. Equations of State and Intermolecular Forces

(c) Now we have a mixture of propane (1) and ethane (2), so we must use mixing rules. We can 
use a1 and b1 for propane as above. For ethane (Pc 5 48.7 bar and Tc 5 305.5 K):

a2 5
0.42748R2Tc

2.5

Pc
5 9.90 

JK1/2m3

mol2
     and     b2 5

0.08664RTc

Pc
5 4.52 3 1025 

m3

mol

We will use the van der Waals mixing rules with y1 5 0.4 and y2 5 0.6:

amix 5 y
1
2a1 1 2y1y2"a1a2 1 y

2
2a2

            bmix 5 y1b1 1 y2b2

This gives:

amix 5 9.73 

JK1/2m3

mol2
       and       bmix 5 5.23 3 1025 

m3

mol

Plugging into the Redlich–Kwong equation:

P 5
RT

v 2 bmix
2

amix

T1/2v 1v 1 bmix 2
5 1.12 MPa

Note that the pressures reported in parts (b) and (c) are too large for the ideal gas law to be 
accurate.

In this chapter, we studied equations of state, which relate the measured properties P, v, and 
T. Examples include cubic equations of state (e.g., van der Waals, Redlich–Kwong, Peng– 
Robinson), the virial equation (with several specifi c forms), and the generalized compressibility 
charts. The Rackett equation allows us to estimate the molar volume of liquids at saturation, while 
the thermal expansion coefficient and the isothermal compressibility allow us to determine 
how to correct for the volumes of liquids and solids with temperature and pressure, respectively.

We developed an understanding of the underlying form of these equations by looking at the 
molecular behavior of chemical species. “Molecular” energy, or internal energy, u, can be divided 
into two parts: molecular kinetic energy and molecular potential energy. In Chapter 1, we saw that 
molecular kinetic energy is proportional to the macroscopic property temperature. In this chapter, 
we identifi ed the basis for potential energy between molecules. Specifi cally, we related intermo-
lecular interactions to: point charges, dipoles, induced dipoles, dispersion (London) inter-
actions, repulsive forces, and chemical effects. Dipole–dipole, induced dipole, and dispersion 
interactions all demonstrate a r26 dependence on the distance between the molecules and are 
collectively referred to as van der Waals forces. The molecular parameters, dipole moment, 
and polarizability determine the magnitude of these interactions.

The molecular assumptions of the ideal gas model were relaxed to develop the van der Waals 
equation of state, by including a r26 attractive term and a hard sphere repulsive term. This equa-
tion heuristically illustrates how molecular concepts can be applied to developing an equation of 
state. In fact, it was shown that the more accurate cubic equations that have been developed since 
van der Waals’s time have the same general form. Alternatively, the virial equation results from a 
power series expansion of the compressibility factor, either in concentration (1/v) or in pressure.

The values for the parameters in a given equation of state must be determined before it can 
be applied. The best course is to fi t these parameters with measured experimental data. When 
measured data are not available, we can use the principle of corresponding states. On a molec-
ular scale, the principle of corresponding states asserts that the dimensionless potential energy 
is the same for all species. On a macroscopic scale, it translates to the statement that all fl uids at 
the same reduced temperature and reduced pressure have the same compressibility factor. We 
applied the principle of corresponding states to relate the parameters of equations of state to the 
critical temperature and pressure by noting that there is an infl ection point on the critical isotherm 

 ►4.6  SUMMARY
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at the critical point. Relations were given for the following cubic equations: van der Waals [Equa-
tions (4.21) and (4.22)], Redlich–Kwong [Equations (4.24a) and (4.24b)], and Peng–Robinson.

We can extend the principle of corresponding states to account for different classes of mol-
ecules, based on the particular nature of the intermolecular interactions involved. One way to 
accomplish this objective is by introducing a third parameter—the Pitzer acentric factor, v.We 
then write the compressibility factor in terms of z102, which accounts for simple molecules, and z112, 
a correction factor for the “nonsphericity”:

    z 5 z102 1 vz112 (4.35)

Both z102 and z112 depend only on Tr and Pr. Values for z102 and z112 vs. Pr at different values of Tr are 
presented as generalized compressibility charts and shown in Figures 4.13 and 4.14, respec-
tively. They are also reported in Tables C.1 and C.2 in Appendix C. These charts are based on the 
Lee–Kesler equation of state (see Appendix E).

We use mixing rules to extend equations of state to mixtures. The mixing rules allow us to 
extrapolate these equations to mixtures, from mostly pure component data. Mixing rules for van der 
Waals–type parameters a and b were developed based on a two-body attractive interaction and a hard 
sphere repulsion, respectively. The binary interaction parameter allows us to better describe the cross 
coeffi cient, a12; however, data from the mixture are needed. Mixing rules for the viral coeffi cients 
arise from a theoretical basis. Mixing rules for the second virial coeffi cient, B, are based on two-body 
interactions; for the third virial coeffi cient, C, on three-body interactions; and so on. Finally, Kay’s 
rules were presented, from which we can fi nd the psuedocritical properties of the mixture from the 
pure component properties. These values allow us to apply the generalized compressibility charts to 
mixtures.

4.1 Consider BClH2. In each of the following cases, when do you expect the compressibility factor 
to be closer to one. Explain.
(a) At 300 K, 10 bar or at 300 K, 20 bar
(b) At 300 K, 20 bar or 1000 K, 20 bar
(c) Consider a mixture of BClH2 and H2 at 300 K, 10 bar. Qualitatively plot the compressibility 
factor vs. mole fraction BClH2. Point out any important features.
4.2 The Lennard-Jones potential function is often used to describe the molecular potential 
energy between two species. Rank each of the following sets of species, from largest to smallest, 
in terms of Lennard-Jones parameters s and e. If there is no noticeable difference, write that they 
are roughly the same. Explain your choice using molecular arguments.
(a) O2, S2, I2.

(b)  
 
 
 

H3C_C_C_C_OH,  
H  H  H

H  H  H
H3C_C_O_C_CH3 ,

H       H

H       H
H3C_C_C_CH3

H

H =

O

n-butanol diethylether methyl ethyl ketone

4.3 Using your knowledge of intermolecular forces, explain the following observation:
(a) At 300°C and 30 bar, the internal energy of water is less than at 300°C and 20 bar.
(b) At 300 K and 30 bar, the compressibility factor of isopropanol 1H3CCOHCH3 2  is less 
than that of n-pentane 1C5H12 2 , but at 500 K and 30 bar, the compressibility factor of isopropanol 
(H3CCOHCH3) is greater than that of n-pentane 1C5H12 2 .

H3C
_C_

CH3
H

H
O

isopropanol

_

 ►4.7  PROBLEMS
Conceptual Problems
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4.4 Consider comparing 1 mole of NH3 at 10 bar and 500 K behaving as a real gas (i.e., consider-
ing its intermolecular interactions) vs. 1 mole of NH3 at 10 bar and 500 K behaving as an ideal gas 
(i.e., hypothetically “turning off” the intermolecular interactions). Answer the following questions 
using molecular arguments. Explain your choice with diagrams and descriptions of the interac-
tions involved.
(a) In which case is the compressibility factor, z, higher?
(b) In which case is the internal energy, u, higher?
(c) In which case is the entropy, s, higher? You need consider only the “spatial” contribution to 
entropy.
4.5 Consider comparing 1 mole of NH3 at 10 bar and 500 K vs. 1 mole of Ne at 10 bar and 500 K. 
Answer the following questions using molecular arguments. Explain your choice with diagrams 
and descriptions of the interactions involved.
(a) In which case is the compressibility factor, z, higher?
(b) In which case is the entropy, s, higher? You need consider only the “spatial” contribution to 
entropy.
4.6 The normal boiling points of some halide silanes are reported below. Explain the order in 
terms of intermolecular forces.

Species SiClF3 SiBrF3 SiCl3F SiBr3F SiICl3
Boiling point [°C] 270.0 241.7 12.2 83.8 114

4.7 Three isomers of C3H6O2 have the following normal boiling points: propanoic acid 
1CH3CH2COOH 2 , 141°C; methyl acetate 1CH3COOCH3 2 , 58°C; and ethyl formate 
1HCOOCH2CH3 2 , 53°C. Using your understanding of intermolecular interactions, explain why 
(i) propanoic acid boils at a much higher temperature than the other two and (ii) the boiling points 
of methyl acetate and ethyl formate are relatively close.
4.8 Normal boiling points are shown for sets of species in the following tables. Explain the order 
based on your understanding of intermolecular interactions:
(a) Alkyl halides

Species CH3CH3 CH3CH2Cl CH3CH2Br CH3CH2I

Boiling Point (°C) 288 12 38 71

(b) Alkanes

Species CH4 CH3CH3 CH3CH2CH3 CH3CH2CH2CH3

Boiling Point (°C) 2161 288 242 20.4

4.9 If the diatomic gas of Problem 3.47 were nonideal at the pressures in the problem and attrac-
tive forces dominate, qualitatively describe how the fi nal temperature in tank A would change 
from the answer you obtained in that problem.
4.10 Consider a high-pressure tank at room temperature. It undergoes a process where a valve is 
opened and the gas escapes until the pressure reaches 1 bar.
(a) The process is undertaken with an ideal gas, as shown as system A. Will the fi nal temperature 
T2A be greater than, equal to, or less than 298 K? Explain.
(b) Consider now a tank of propane, a real gas, at the same initial pressure as the tank in part A. 
This tank undergoes an identical process where it is opened and the gas escapes until it too reaches 
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a pressure of 1 bar. It obtains a fi nal temperature T2B. This is shown as system B. Will the fi nal 
temperature T2B be greater than, equal to or less than T2A? Explain.
4.11 The second virial coeffi cient for argon is reported versus temperature in the following table. 
Explain the trend with temperature in terms of dominant intermolecular interactions. What can 
you say about what is happening around 410 K?

T [K] 100 200 300 400 500 600 700 800

B 3cm3/mol 4 2183.5 247.4 215.5 21 7 12 15 17.7

4.12 Table 4.3 compares the van der Waals (1873), Redlich–Kwong (1949), and Peng–Robinson 
(1976) equations of state in similar forms. Based on intermolecular interactions, qualitatively ana-
lyze how the progression of equations may have given more accurate results.

P = high

T = 298 K

Tsurr = 298 K

PE = 1 bar PE = 1 bar

Ideal

gas

State 1A

System A: Ideal gas System B: Propane

P = 1 bar

T2A = ?

State 2A

P = 1 bar

T2B = ?

State 2B

P = high

State 1B

T = 298 K

Tsurr = 298 K
C3H8

Process Process

Numerical Problems

4.13 At very high temperatures, a gas can be ionized and remain in thermodynamic equilibrium. 
Consider the case of gas containing only ions, A1. Your supervisor requests that you come up with 
a simple (one-parameter) equation of state for this gas. Your assistant leaves you a memo that she 
has fi t the PvT data to an equation of state of the form:

¢PA1 1
a

vA1
n
≤vA1 5 RT

She tells you the data fi t this equation well but, unfortunately, leaves you no numbers. Your meet-
ing with your supervisor is in 10 minutes, and your assistant is nowhere to be found! In order to be 
ready for the meeting, you need to answer the following questions:
(a) Is the form of this equation reasonable? Explain.
(b) What sign would you expect for the constant, a? Will this be a small or large number? Explain.
(c) What number will you use for n (it can be a fraction)? What are the units of a? Show your work.
4.14 Consider a mixture of O2 (a) and C3H8 (b):
(a) Write expressions for the attractive interactions Gaa, Gbb, and Gab as a function of distance 
between the molecules, r.
(b) How does Gab compare to "GaaGbb?
(c) Write a general expression for the average attractive intermolecular interaction in a mixture as 
a function of mole fractions of O2 and C3H8 represented by ya and yb, respectively.
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258 ► Chapter 4. Equations of State and Intermolecular Forces

4.15 While returning to your dorm late last night with a hot cup of coffee, the heat overcomes 
you and, much to your chagrin, you drop the paper cup, spilling its entire contents. As you had just 
spent your laundry money, this is somewhat upsetting, especially since you still have a good deal of 
thermo left to study and your last clean pair of pants are now covered with coffee.

You yearn for the old days of polystyrene (Styrofoam) cups, which never got hot. Being an 
ambitious student (and looking for a distraction), you decide to come up with a process to recycle 
polystyrene (Styrofoam) so that environmental concerns will no longer keep the coffee shop from 
using this very good insulating material.

After several hours, you have come up with what you think is a very reasonable process (you 
cannot wait to call the patent attorney!) and have just a few fi nal issues to resolve. In the purifi ca-
tion process, you believe you have reduced the polystyrene to its monomer, styrene, shown below:

C

C

styrene

In this case, the reactor would consist of 100 moles of styrene in a volume of 30 L at a pressure 
of 10 bar. You are concerned that the temperature is beyond the limit for the decomposition of 
styrene, 289°C.

Since you are studying for the thermo exam, and have just gotten to the van der Waals equa-
tion, you want to decide whether this would be a good equation of state to use.
(a) What deviations from ideality would you expect at these reaction conditions? In order of 
importance, list the types of intermolecular forces you think contribute to nonideality. Is the van 
der Waals equation appropriate? Explain.
(b) Your search for experimental values for the van der Waals constants, a and b, is futile; you do, 
however, fi nd values for the critical constants for styrene:

Pc 5 39 bar

Tc 5 374°C

Calculate the temperature of the reactor, using the van der Waals equation. Will the styrene 
decompose?
(c) Your classmate, who’s taking a polymers class, says the polystyrene probably has not reduced 
to a monomer but still exists as a reduced polymer chain, perhaps fi ve monomers long:

C C C C CC

C

Using only the information above, what are reasonable values for the van der Waals constants, a 
and b, of this reduced polymer chain? Explain.
(d) Calculate the temperature in the reactor at the same reactor volume and pressure and initial 
Styrofoam mass as for part (b), except where you have a fi ve-unit polymer instead of the monomer. 
Explain the difference in value to that calculated in part (b). Will decomposition occur (assume 
around 289°C)?
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4.16 The London force is directly related to the polarizabilities of the corresponding molecules. 
Consider the following table of molecular polarizability, a:

Species a 11025 cm3 2

CH4 26
C2H6 44.7
C3H8 62.9
CH3Cl 45.6
CH2Cl2 64.8
CHCl3 82.3
CCl4 105

From these data, come up with a model to account for the contribution of each atom to the polariz-
ability of a molecule. Predict the polarizability of C4H10 and C2H5Cl.
4.17 Consider 2 neighboring Ar atoms in a system of pure Ar at 25 bar and 300 K:
(a) What is the average distance between them (in Å)?
(b) Calculate the potential energy due to gravity (between the two atoms).
(c) Calculate the potential energy due to London interactions.
(d) Compare the values obtained in parts (b) and (c).
4.18 As discussed in the text, the repulsive term in the Lennard-Jones potential should have an 
exponential dependence rather than r212. Graphically compare the features of the Lennard-Jones 
potential to one that has the same attractive term but whose repulsive term is given by:

C1eC2/r

C1 and C2 are constants that you need to choose so the term above fi ts as closely as possible to 
the Lennard-Jones potential (Figure 4.8). Comment on the differences between these potential 
functions.
4.19 Calculate the bond strength in [eV] of a sodium ion in a crystal of NaCl. For the salt 
lattice:

(a) Consider only the six nearest-neighbor Cl2 ions. The Cl2 ions are at a distance r 5 2.76 A+ . 
from the Na1 ion.
(b) In addition to the six nearest-neighbor Cl2 ions, include the twelve next-nearest-neighbor Na1 
ions at a distance "2r.

(c) Now include the eight next-next-nearest-neighbor Cl2 ions at a distance "3r.
(d) Finally, include the six next Na1 ions at a distance of 2r.
4.20 Using data from Table 4.2, estimate the equilibrium bond length that would exist in a mol-
ecule of Xe2.
4.21 Calculate the van der Waals parameters from critical point data for the following gases: He, 
CH4, NH3, and H2O. Explain the relative magnitudes of a and b from a physical basis.
4.22 Calculate the van der Waals parameter b for CH4, C6H6, and CH3OH. Based on these val-
ues, estimate the molecular diameter of each species. Compare the values obtained with those in 
Table 4.2.
4.23 Calculate the van der Waals parameter a for CH4, C6H6, and CH3OH. Based on these val-
ues, estimate the value of C6 for each species. Compare the values obtained with that calculated 
by Equation (4.8).
4.24 Consider a cylinder fi tted with a piston that contains 2 mol of H2O in a container at 1000 K. 
Calculate how much work is required to isothermally and reversibly compress this gas from 10 L 
to 1 L, in each of the following cases:
(a) Use the ideal gas model for water.
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260 ► Chapter 4. Equations of State and Intermolecular Forces

(b) Use the Redlich–Kwong equation to relate P, v, and T:

P 5
RT

v 2 b
2

a
T1/2v 1v 1 b 2

where, a 5 14.24 3 1JK1/2m3 2 /mol2 4 and b 5 2.11 3 1025 3m3/mol 4

(c) Use the Steam tables.
Compare these three methods.
4.25 Determine the second and third virial coeffi cients using the van der Waals equation of state. 
Hint: Begin by writing the van der Waals equation in compressibility factor form and performing 
a power-series expansion. The following mathematical relation is useful: 

1
1 2 x

5 1 1 x 1 x2 1 x3 1 c

4.26 Determine the second and third virial coeffi cients using Redlich–Kwong equation of state. 
Hint: Begin by writing the Redlich–Kwong equation in compressibility factor form and perform-
ing a power-series expansion. The following mathematical relation is useful:

1
1 2 x

5 1 1 x 1 x2 1 x3 1 c

4.27 The Dieterici equation of state is given by:

 P 5

RT exp¢2
a

RTv
≤

v 2 b

(a) Find an expression for the parameters a and b in terms of the critical properties Tc and Pc.
(b) Find the compressibility factor at the critical point, zc, for a Dieterici gas.
(c) Rewrite the Dieterici equation in virial form for molar volume. What are the expressions for 
the second virial coeffi cient, B, and the third virial coeffi cient, C? The following mathematical 
relations are useful:

1
1 2 x

5 1 1 x 1 x2 1 x3 1 c

and,

ex 5 1 1 x 1
x2

2!
1

x3

3!
1 c

4.28 Verify Equations (4.28) by rewriting the expansion of the virial equation in pressure [Equa-
tion (4.27)] in terms of the virial expansion in the reciprocal of molar volume [Equation (4.26)].
4.29 Consider the Berthelot equation of state given below. Show how to calculate the constants a 
and b using only critical point data.

P 5
RT

v 2 b
2

a
Tv2

4.30 Find the reduced form of the Berthelot equation of state. See Problem 4.29.
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4.31 (a) Use the data in the steam tables to come up with an expression for the second virial 
 coeffi cient for water vapor.
(b) Calculate the value of BH2O using the principle of corresponding states. Compare the value to 
that obtained in part (a). A helpful value is the critical volume for water:

vc 5 56 3cm3/mol 4

4.32 Calculate the saturation pressure of n-pentane at 90°C by applying the “equal area” rule to 
(a) the Redlich–Kwong equation;
(b) the Peng–Robinson equation. Compare these results to the measured value of 5.7 bar.
4.33 At 230°C, the saturation pressure of ethane is 10.6 bar. Calculate the densities of the liquid 
and vapor phases using the Peng–Robinson equation. Compare to the reported values for the 
liquid and vapor densities of 0.468 and 0.0193 g/cm3.
4.34 Welcome to Beaver Gas Co.! Your fi rst task is to calculate the annual gross sales of our 
superpure-grade nitrogen and oxygen gases.
(a) The total gross sales of N2 is 30,000 units. Take the volume of the cylinder to be 43 L, the pres-
sure to be 12,400 kPa, and the cost to be $6.1/kg. Compare your result to that you would obtain 
using the ideal gas model.
(b) Repeat for 30,000 units of O2 at 15,000 kPa and $9/kg.
4.35 For the Redlich–Kwong equation, develop expressions for the parameters a and b, the equa-
tion reduced form, and the value of the compressibility factor at the critical point as a function of 
the critical pressure and the critical pressure using an approach similar to Example 4.7.
4.36 Calculate the second virial coeffi cient, B, for C6H6 over the temperature range 100–900 K 
directly from the values of the Lennard-Jones parameters reported in Table 4.2. Compare the 
values to the following data reported in the literature.

T [K] 290 320 340 360 380 400 440 480 520 560 600

B 3cm3/mol 4 21590 21230 21050 2920 2810 2710 2570 2470 2390 2340 2290

4.37 The square-well potential function is given by:

G 5 c
`      for r # s1

2e   for s1 , r , s2

0       for r $ s2

Answer the following questions:

(a) Sketch a plot of square-well potential energy versus distance.
(b) Using this potential function, develop an expression for the second virial coeffi cient.
(c) For CH4, the parameters are reported to be s1 5 2.856, s2 5 4.678, and e/k is 132.2. Calcu-
late the value of B for methane at 200 K and 400 K. Compare the results to the experimental values 
reported in Example 4.9. 
4.38 In this problem we seek to develop an expression for the van der Waals constants a and b in 
terms of molecular parameters using the Sutherland model for potential energy.
(a) Show that writing the van der Waals model in virial form gives an expression for the second 
virial coeffi cient as: B 5 b 2

a
RT

. The following mathematical relation is useful:

 
1

1 2 x
5 1 1 x 1 x2 1 x3 1 c
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262 ► Chapter 4. Equations of State and Intermolecular Forces

(b) Develop an expression for the second virial coeffi cient from the Sutherland model. In doing 
this, use the series expansion for the exponential, 

ex 5 1 1 x 1
x2

2!
1

x3

3!
1 c

and only keep the fi rst two terms.

(c) Relate the results from parts A and B to develop an expression for the van der Waals param-
eters, a and b. 
4.39 Experimental values for the second virial coeffi cients for NH3 versus temperature are 
reported in the following table. Use these data to obtain the best estimates that you can for the 
Lennard-Jones parameters 1e/k 2  and s.

T [°C] 0 25 50 100 150 200 250 300

B 3cm3/mol 4 2345 2261 2209 2142 2101 275 258 244

4.40 Determine expressions for the thermal expansion coeffi cient, b, and the isothermal com-
pressibility, k, for an ideal gas.
4.41 Using the steam tables, estimate the values for the thermal expansion coeffi cient, b,and the 
isothermal compressibility, k, of liquid water at 20°C and 100°C.
4.42 Use the Rackett equation to calculate the liquid-phase molar volume of each of the following 
species at the same temperature as the measured values reported. Which species had the greatest 
absolute percent error? The least? Can the trend be explained by molecular concepts?
(a) methane 1CH4 2 , vexp 5 37.7 cm3/mol at 111 K
(b) ethane 1C2H6 2 , vexp 5 54.8 cm3/mol at 183 K
(c) n-octane 1C8H18 2 , vexp 5 162.5 cm3/mol at 293 K
(d) water 1H2O 2 , vexp 5 18.0 cm3/mol at 293 K
(e) acetic acid 1C2H4O2 2 , vexp 5 57.2 cm3/mol at 293 K
4.43 Calculate the following:
(a) the volume occupied by 20 kg of ethane at 70°C and 30 bar
(b) the pressure needed to fi ll a 0.1 m3-vessel at room temperature to store 40 kg of ethane
4.44 Calculate the volume occupied by 50 kg of propane at 35 bar and 50°C, using the following: 
(a) the ideal gas model
(b) The Redlich–Kwong equation of state
(c) The Peng–Robinson equation of state
(d) The compressibility charts
(e) The textbook software, ThermoSolver
4.45 For a lecture-demonstration experiment, it is desired to construct a sealed glass vial contain-
ing a pure substance that can be made to pass through the critical point by heating the vial in a 
person’s hand. Thus, at room temperature the vial should contain a liquid and its vapor.
(a) From the list of critical properties, select a suitable substance to be sealed within the vial. 
(b) What magnitude of pressures must the vial withstand?
(c) For a vial of 100 cm3, how much of the substance should be enclosed in the vial?
(d) Describe the changes within the vial as it is heated if it contains an amount of substance that 
is less than that calculated in part (c).
4.46 Compare the compressibility factor of methane at Tr 5 1.1 and Pr 5 1.2 using the Peng– 
Robinson equation of state and the compressibility charts. Repeat the calculations for methanol.
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4.47 Using the generalized compressibility charts, calculate the molar volume of ammonia at 
92°C and 306.5 bar. What phase is ammonia in?
4.48 Use the Redlich–Kwong equation to calculate the size of vessel you would need to contain 
30 kg of acetylene mixed with 50 kg of n-butane at 30 bar and 450 K. The binary interaction 
 coeffi cient is given by k12 5 0.092.
4.49 You wish to use the Redlich–Kwong equation of state to describe a mixture of carbon dioxide 
(1) and toluene (2). To be as accurate as possible with the mixing rules, you want to include the binary 
interaction parameter, k12. In the literature, you fi nd reference to an experiment with the following 
conditions:

n1 2.0 mol
n2 3.0 mol
V 10.0 L
T 400.0 K
P 1.353 MPa

Using the data above and critical point property data, estimate k12.
4.50 The process that you are designing requires that a vapor mixture of benzene and propane 
enter a holding tank at 480 K and 2 MPa, and a benzene mole fraction of 0.6. The design specifi es 
that 100 kg of vapor are in the tank. What volume must the tank be?
(a) Calculate using the ideal gas model.
(b) Calculate using the Redlich–Kwong equation.
(c) What is the percent error assuming an ideal gas?
4.51 Calculate the second virial coeffi cient, B11, for pure Ar, B22 for pure CH4, and the second 
virial coeffi cient for the unlike interaction in a mixture, B12 at 239.8 K directly from the values of 
the Lennard-Jones parameters reported in Table 4.2. Compare the values to the following data 
reported in the literature: B11 5 231.4 cm3/mol, B22 5 273 cm3/mol, and B12 5 248.1 cm3/mol. 
Use the following “mixing” rules for the Lennard-Jones parameters:

   s12 5
1
2

 1s1 1 s2 2  and e12 5 "e1e2

4.52 You are planning an experiment in which you have a mixture of 5 moles of hydrogen 1H2 2 . 
4 moles of water 1H2O 2 , and 1 of mole ethane 1C2H6 2 . You want to calculate the pressure of this 
mixture to determine which material to use to construct the vessel to contain these gases. The ves-
sel needs to be able to hold 12.5 L 10.0125 m3 2 , and the maximum temperature in the laboratory is 
27°C. You then go to the library and fi nd the pure species parameters for the van der Waals equation, 
a and b. However, when you get back to the laboratory, and realize you forgot to label them.
(a) Using only molecular arguments, match each species to its appropriate set of parameters.
Explain your reasoning.

a 3Jm3/mol 4 b 1m3/mol 2 Species

0.564 6.38 3 1025

0.025 2.66 3 1025

0.561 3.05 3 1025

(b) Calculate the van der Waals parameters, a and b, for the mixture.
(c) Calculate the pressure of this mixture.
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4.53 The following second virial coeffi cients have been reported for a mixture of n-butane (1) and 
carbon dioxide (2) at 313.2 K.

 B11 5 2625 3cm3/mol 4

 B22 5 2110 3cm3/mol 4

 B12 5 2153 3cm3/mol 4

From these data, do the following:
(a) Predict the molar volume of a mixture of 25 mol % butane in carbon dioxide at 313.2 K and 
10 bar.
(b) Estimate the value of the binary interaction parameter, k12, at 313.2 K.
4.54 Re-solve Example 4.9 using the text software, ThermoSolver. Compare your answer to the 
answer that is given in the example.
4.55 Solve the following using ThermoSolver:
(a) In Species Database, select Ethane. Report its critical temperature and pressure and Dhf,298

o .
(b) In Saturation Pressure Calculator, fi nd the saturation temperature of ethane at 40 bar.
(c) In Equation of State Solver, fi nd the volume and compressibility factor of ethane in the 
following states using the Lee–Kesler equation (generalized correlations) and the Peng– Robinson 
equation. Report the value of each and the percent difference between the two methods: 
(i) P 5 40 bar, T 5 290 K; (ii) P 5 40 bar; T 5 302 K.
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►CHAPTER

265

5

The Thermodynamic Web

Learning Objectives

To demonstrate mastery of the material in Chapter 5, you should be able to:

 ► Apply the thermodynamic web to relate measured, fundamental, and 

derived thermodynamic properties. In doing so, apply the fundamental 

property relations, Maxwell relations, the chain rule, derivative inversion, 

the cyclic relation, and Equations (5.22), (5.23), and (5.24). Use Figure 5.3 to 

rewrite partial derivatives with T, P, s, and v in more convenient forms.

 ► Develop hypothetical paths to calculate the change in a thermodynamic 

property between two states, using appropriate property data. Appropriate 

data may include heat capacity data, pressure or volume explicit equations 

of state, or thermal expansion coeffi cients and isothermal compressibilities.

 ► Write the exact differential for any intensive thermodynamic property in 

terms of partial derivatives of specifi ed independent, intensive properties. 

For example, given h = h(T, P), write dh. Defi ne what is meant by 

independent properties and dependent properties.

 ► Write Ds, Du, and Dh in terms of independent properties T and P or the 

independent properties T and v. Use these expressions to solve fi rst- and 

second-law problems.

 ► Defi ne a departure function. Use generalized enthalpy and entropy departure 

functions to solve fi rst- and second-law problems for systems that exhibit 

nonideal behavior.

 ► Defi ne Joule–Thomson expansion and the Joule–Thomson coeffi cient. 

Explain how Joule–Thomson expansion is used in liquefaction.

 ►5.1  TYPES OF THERMODYNAMIC PROPERTIES
We have seen that the thermodynamic state of a system can be characterized by its 
 properties. Our goal in this chapter is to develop mathematical expressions through 
which we can relate the properties of a system to one another and to forms in which data 
are typically reported. We begin by defi ning three distinct categories of thermodynamic 
properties: measured properties, fundamental properties, and derived properties.

Measured Properties

As we explored in Chapter 1, the measured properties are:

P, v, T, composition
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Measured properties are those properties that are directly accessible from measure-
ments in the laboratory. Can you think of a couple of ways in which each of the properties 
above can be measured?

Fundamental Properties

Observations of nature led us to the two laws of thermodynamics presented in Chapters 2 
and 3. In formulating these laws, we introduced two new properties:

 u (from conservation of energy)

 s (from directionality of nature)

Since internal energy and entropy come from the two fundamental postulates of thermo-
dynamics—that energy is conserved (First law) and that entropy of the universe always 
increases (Second law)—we call them fundamental properties. These properties can-
not be measured directly. In fact, it could be said that these are not real things (at least 
in the measurable sense) but rather constructs of our mind to generalize experimental 
observations.

Derived Thermodynamic Properties

Finally, the most distant from direct experience are derived thermodynamic quantities. 
These cannot be measured in the lab, nor are they properties directly fundamental to 
the postulates that govern thermodynamics; they are merely some specifi c combination 
of the above two types of properties that are defi ned out of convenience. Consider, for 
example, enthalpy:

 h 5 u 1 Pv (5.1) 

In open systems, the mass that crosses the boundary between the surroundings and 
the system always contributes to two terms in the energy balance: internal energy 
and fl ow (Pv) work. Since these terms are always coupled, it is convenient to define a 
property that includes both terms. In this way we never need to explicitly account for 
fl ow work. Likewise, enthalpy is a convenient property for a closed system undergoing a 
process at constant pressure. In this case, we need to consider both the change in inter-
nal energy and the Pv work.

Two other convenient properties are the Helmholz energy,

 a ; u 2 Ts  (5.2)

and the Gibbs energy,

 g ; h 2 Ts  (5.3)

For the time being, we will not elucidate why a and g may be conveniently derived thermo- 
dynamic properties.1 However, you should realize that because they are combinations 
of state functions, they, too, must be properties that are independent of path.

1 In Chapter 6, we will learn why Gibbs energy is so useful.
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 ►5.2  THERMODYNAMIC PROPERTY RELATIONSHIPS

Dependent and Independent Properties

In this section, we will develop a web of property relationships whereby we can relate 
the thermodynamic properties we need to solve problems to properties we can measure 
in the lab. We want to relate fundamental and derived thermodynamic properties, such 
as u, s, h, a, and g, to things we can measure, such as measured properties P, v, T or to 
quantities for which measured data are typically reported, for example, cv, cP, b, and k. 
We will exploit the rigor of mathematics to allow us to develop an intricate web of these 
relationships. As with searching for sites on the Internet, there is usually more than one 
way to obtain our fi nal answer; some are quicker, while others are slower.

We limit our present discussion to constant composition systems; we will learn about 
mixtures that can change in composition in Chapter 6. Recall that the state postulate says 
that for systems of constant composition, values of two independent, intensive proper-
ties completely constrain the state of the system. In mathematical terms, the change in 
any intensive thermodynamic property of interest, z, can be written in terms of partial 
derivatives of the two independent intensive properties, x and y, as follows:

 dz 5 a
'z
'x
b

y
dx 1 a

'z
'y
b

x
dy  (5.4)

The total differential dz is exact; that is, the integral of dz is independent of path. On the 
other hand, the partial differential, ∂, indicates we are specifying a constraint to the path. For 
example, consider the surface representing z as a function of x and y, as shown in Figure 5.1. 
The slopes of the dashed lines represent the two partial derivatives written in Equation (5.4). 
In taking the partial derivative, (∂z/∂x)y, we evaluate the change in the dependent property z 
with respect to the independent property x over a path where the independent property y 
is constant. However, in inspecting the fi gure, we can clearly see that the value of the partial 
derivative (the slope of the line tangent to the curve) will be different at different values 
of the constant y. Similarly, the partial derivative, (∂z/∂y)x, represents the change in z with 
respect to y over a path x is constant. Through the use of partial derivatives, we can isolate the 
effect of one independent property by holding the second independent property constant.

y

x

z

∂z
∂x y

∂z
∂y x

Figure 5.1 The surface represents the value of the dependent property z at any given value of 
independent properties x and y. The slope of the two dashed lines gives the values of the partial 
derivatives at the point indicated. 
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268 ► Chapter 5. The Thermodynamic Web

The form of Equation (5.4) is general and we can use it to express any of the proper-
ties we examined in Section 5.1 in terms of two independent properties. For example, say 
we want to calculate the change in internal energy for a fi rst-law analysis of a closed system. 
We may choose to relate the differential change in internal energy, du, to the measured 
properties temperature, T, and molar volume, v. In the form of Equation (5.4), we write:

 du 5 a
'u
'T
b

v
dT 1 a

'u
'v
b

T
dv (5.5)

In Equation (5.5), the intensive properties T and v constrain the state of the system; we 
call these two the independent properties. For brevity, we will use the notation:

u 5 u 1T, v 2  

as an equivalent form of Equation (5.5), that is, to indicate our choice of T and v as 
independent properties to constrain u. All the other properties in the system are depend-
ent properties since they are all constrained by the two independent properties. In 
Equation (5.5) the change in internal energy is written as an exact differential, du. 
The exact differential is used since once changes to both T and v are specifi ed, the inter-
nal energy u can change in only one way, as constrained by the state postulate. We are free 
to specify any two independent properties to constrain the exact differential du. For 
example, we can use any of the following forms: u 5 u 1T, P 2 , u 5 u 1T, s 2 , u 5 u 1h, s 2 , 
and so on. However, it turns out that the measured properties T and v are particularly 
convenient choices for the independent properties when looking at changes in u.

Hypothetical Paths (revisited) 

Now let’s look at how we can use the construct of dependent and independent properties 
to help us solve thermodynamics problems. Say we are solving a fi rst-law problem where 
we need to determine the change in internal energy of a gas between two states. In this 
case, we might formulate the problem in the form of Equation (5.5), where u is the 
dependent property that is constrained by our choice of independent properties T and 
v, that is, u 5 u(T,v). In other words, we frame the problem that the gas in the system 
undergoes a process from state 1 (T1 and v1) to state 2 (T2 and v2).

Figure 5.2 presents a graphical representation of our problem on a Tv diagram. Such 
diagrams are very useful in formulating solutions to problems. We often use sketches like 
this one that delineate the process in which we are interested in terms of the independ-
ent properties we have chosen. Knowing that u is a state function, we recognize that 
we may choose any path that is convenient to calculate the change in this property for a 
given process. One possible path from state 1 to state 2 is to vary both T and v simultane-
ously, as occurs in the actual process. This path is depicted by the solid line in Figure 5.2. 

Another possibility is to develop a hypothetical path in which we change only one 
property at a time (see Section 2.2). In the hypothetical path depicted in Figure 5.2, we 
fi rst perform an isothermal expansion to a volume large enough for the system to behave 
as an ideal gas. In step 2, we perform a constant volume heating to the fi nal temperature 
T2. Finally, step 3 consists of an isothermal compression to v2. Because internal energy 
is a state function, it is independent of path; therefore, both paths will have the same 
value for Du. In practice, the hypothetical process is easier for our calculations. In that 
case, we can use available data for ideal gas heat capacity to calculate Du for step 2. It 
is not as easy to fi nd heat capacity data for nonideal gases! Thus, the hypothetical path 
shown in Figure 5.2 has been constructed to make use of data available in the literature. 
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5.2  Thermodynamic Property Relationships ◄ 269

This theme will commonly recur as we solve problems in thermodynamics. To solve for 
the hypothetical path depicted in Figure 5.2, we also need to calculate the changes in 
steps 1 and 3. This task will be made possible by developing a web of thermodynamic 
relations, as we will see in this chapter. 

The preceding example illustrates an important strategy in solving thermodynamic 
problems. We can construct an infi nite number of possibe paths to connect one state 
to another. Solving a problem often reduces to picking the proper path. In considering 
which path to choose, two things should be considered. (1) What property data are avail-
able? (2) Within the constraints posed by consideration (1), what path yields the easiest 
calculation? As you become aware of the forms in which data are typically available, you 
will become more profi cient at identifying which paths to choose. However, if the fi rst 
path you choose does not work, you can always try another. Sometimes that requires you 
to select a different set of independent properties.

We wrote Equation (5.5) in terms of 1'u/'T 2 v. Is there a difference between 
1'u/'T 2 v and ('u/'T)P?

Δureal = Δuhypothetical = Δu1 + Δu2 + Δu3

Δuhypothetical

Δureal

Step 2

State 1 (T1, v1)

State 2 (T2, v2)

S
te

p
 3

S
te

p
 1

Actual path

Ideal Gas

V
o
lu

m
e

Temperature

 Figure 5.2 Computational paths for the 
change in internal energy from state 1 to 
state 2.

Fundamental Property Relations

Let’s consider again the calculation of internal energy. This time we begin with the fun-
damental postulates of thermodynamics. For a closed system undergoing a reversible 
process with only Pv work, the relations developed in Sections 2.3 and 3.3 can be applied 
to the differential energy balance, Equation (2.14). Hence, the fi rst law and second laws 
are combined to give:

 du 5 dqrev 1 dwrev

  5 Tds 2 Pdv (5.6)

We can apply the defi nition of the derived thermodynamic property h given by Equation
(5.1) to get:

 dh 5 du 1 d 1Pv 2

  5 Tds 1 vdP (5.7)
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270 ► Chapter 5. The Thermodynamic Web

Similarly, we can apply the defi nitions of the derived thermodynamic properties a and g 
given by Equations (5.2) and (5.3) to get:

 da 5 du 2 d 1Ts 2

  5 2sdT 2 Pdv  (5.8)

and,  dg 5 dh 2 d 1Ts 2

  5 2sdT 1 vdP  (5.9)

respectively. 
Equations (5.6) through (5.9) are known as the fundamental property relations. 

Although Equation (5.6) was derived for a reversible process, the ultimate expressions 
that defi ne the fundamental property relations are only between properties. There-
fore, these equations can be applied to any process: reversible or irreversible. We 
can make this statement since properties are independent of path and, therefore, inde-
pendent of process. So even though these equations were derived for the specifi c case 
of a reversible process, we can apply these equations even if the physical process that 
leads from one state to another is irreversible! However, in the case of irreversibility, Tds 
is no longer equal to the differential heat transferred across the boundary and 2Pdv no 
longer gives the value of dw.

If we apply the approach that we developed in the previous section, we can write 
the change in internal energy in terms of independent properties s and v, that is, 
u 5 u 1s, v 2 :

 du 5 a
'u
's
b

v
ds 1 a

'u
'v
b

s
du (5.10)

For both Equations (5.10) and (5.6) to be true, we must have:

 a
'u
's
b

v
5 T       and       a

'u
'v
b

s
5 2P (5.11)

The grouping represented by u 5 u 1s, v 2  results in the partial derivatives of Equation 
(5.10) corresponding to thermodynamic properties as defi ned in Equation (5.11). While 
any two properties can be used to constrain u, no other grouping of independent prop-
erties x and y, for u 5 u 1x, y 2 , allows us to write partial derivatives in terms of thermo- 
dynamic properties as we did in Equation (5.11). Therefore, we say that 5u, s, v6 form a 
fundamental grouping. 

From Equation (5.7), we can see that 5h, s, P6 also form a fundamental grouping. 
It follows that:

 a
'h
's
b

P
5 T        and        a

'h
'P
b

s
5 v (5.12)

Likewise, the fundamental grouping 5a, T, v6 results in:

 a
'a
'T
b

v
5 2s        and        a

'a
'v
b

T
5 2P (5.13)
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and 5g, T, P6 gives:

 a
'g

'T
b

P
5 2s        and        a

'g

'P
b

T
5 v (5.14)

The latter two fundamental groupings give us our fi rst insight into the utility of g 
and a. These derived thermodynamic quantities are grouped with measured proper-
ties, T, P, and v. Thus, there is a direct link between the change of dependent proper-
ties g and a and what we can measure in the lab. Specifi cally, we may anticipate that 
the Gibbs energy will become useful when we approach phase equilibria. As we saw in 
Chapter 1, T and P form the criteria for thermal and mechanical equilibrium; thus, the 
fundamental grouping 5g, T, P6 is of special interest. We will learn more about such 
things in Chapter 6.

Maxwell Relations

Additional relations between thermodynamic properties and their derivatives can be 
derived from the second derivatives of the fundamental property relationships. These 
relations are called Maxwell relations and can be obtained by noting that the order of 
partial differentiation of an exact differential does not matter. For example, we can 
equate the following two sets of partial derivatives of the exact differential du from the 
fundamental grouping 5u, s, v6:

 B '
'v

 a
'u
's
b

v
R

s
5 B '

's
 a
'u
'v
b

s
R

v
 (5.15)

Substitution of Equation (5.11) into Equation (5.15) gives:

 a
'T
'v
b

s
5 2a

'P
's
b

v
 (5.16)

Similarly, from the other three fundamental property relationships we get:

 a
'T
'P
b

s
5 a

'v
's
b

P
 (5.17)

 a
's
'v
b

T
5 a

'P
'T
b

v
 (5.18)

 2a
's
'P
b

T
5 a

'v
'T
b

P
 (5.19)

Can you verify these last three relations? In the Maxwell relations given by Equations 
(5.18) and (5.19), all the properties on the right-hand side are measured properties! 
These permit the calculation of change in entropy from the measured PvT data. 
The derivative relations of Equations (5.6), (5.7), and (5.9) then enable us to calculate 
changes in u, h, and g.
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272 ► Chapter 5. The Thermodynamic Web

Other Useful Mathematical Relations

In this section, we present three other mathematical relations that will be of use in 
 helping us surf the thermodynamic web. The fi rst relationship is the chain rule, which 
can be written in general as follows:

 
a
'z
'x
b

a
5 a

'z
'y
b

a
a
'y

'x
b

a
 (5.20)

Derivative inversion allows us to fl ip partial derivatives as follows:

 a
'x
'z
b

y
5

1

a
'z
'y
b

y

 (5.21)

We are not through yet. We can derive an additional relation based on the mathematical 
behavior of state functions. We begin with Equation (5.4):

 dz 5 a
'z
'x
b

y
dx 1 a

'z
'y
b

x
dy (5.4)

If we take the partial derivative of each term with respect to x at constant z, we get:2

 a
'z
'x
b

z
5 a

'z
'x
b

y
a
'x
'x
b

z
1 a

'z
'y
b

x
a
'y

'x
b

z
 (5.22)

Since we cannot simultaneously change z and keep it constant,

 a
'z
'x
b

z
5 0 (5.23)

Equation (5.23) is useful in its own right. It is easy to see that:

 a
'x
'x
b

z
5 1 (5.24)

Applying Equations (5.21), (5.23), and (5.24) to (5.22) and rearranging gives the cyclic 
relation:3 

 21 5 a
'x
'z
b

y
a
'y

'x
b

z
a
'z
'y
b

x
 (5.25)

2 The mathematical development of Equation (5.22) from Equation (5.4) is actually more complex than this heuristic 
explanation. However, viewing it in this simplifi ed manner is convenient and, in general, works. We present it here 
since we will use this method in other places. See Example 5.1 for an alternative development of Equation (5.25).
3 This relation is alternatively termed the triple product rule.
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This expression is easy to remember; each property appears in the numerator once, 
appears in the denominator once, and is held constant once. Hence, Equation (5.25) is 
termed the cyclic relation.

Develop an expression for the cyclic relation by equating z 5 z 1x, y 2  and y 5 y 1x, z 2

SOLUTION We can write the change in dependent property z in terms of independent prop-
erties x and y according to Equation (5.4):

 dz 5 a
'z
'x
b

y
dx 1 a

'z
'y
b

x
dy (E5.1A)

Alternatively, we can choose y as the dependent property and write it in terms of independent 
properties x and z:

 dy 5 a
'y

'x
b

z
dx 1 a

'y

'z
b

x
dz (E5.1B)

Solving Equation (E5.1A) for dy using derivative inversion gives:

 dy 5 2a
'y

'z
b

x
a
'z
'x
b

y
dx 1 a

'y

'z
b

x
dz (E5.1C)

The fi rst term on the right-hand sides of Equations (E5.1B) and (E5.1C) must be equal; 
therefore,

 a
'y

'x
b

z
5 2a

'y

'z
b

x
a
'z
'x
b

y
 (E5.1D)

Rearranging Equation (E5.1D) and applying derivative inversion, we get the cyclic rule:

 21 5 a
'x
'z
b

y
a
'y

'x
b

z
a
'z
'y
b

x
 (5.25)

This derivation of the cyclic rule does not depend on the heuristic mathematical argument 
presented earlier; yet it gives the equivalent result.

EXAMPLE 5.1

Alternative 
Derivation for the 
Cyclic Rule

Using the Thermodynamic Web to Access Reported Data

We have seen that problem solving in thermodynamics frequently involves construction of 
hypothetical paths to fi nd the change in a given property between two states. In applying 
this procedure, we often come up with a partial derivative of one property with respect to 
another, holding a third constant. In this section, we will use the thermodynamic web to 
translate partial derivatives to forms in which experimental data are routinely reported, 
such as cv, cP, b, k, and derivatives of equations of state.

Figure 5.3 presents a way to navigate the thermodynamic web when partial deriva- 
tives with T, P, s, and v are encountered. It provides 12 permutations of partial derivatives 
between these properties. Derivative inversion can also be applied to form 12 additional 
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relationships to make a complete set. Each of the terms in Figure 5.3 is related to other 
terms using either the cyclic rule or Maxwell relations and is delineated with the appro-
priate icon as defi ned in the upper right of the fi gure. In those cases where the cyclic 
rule is used, the term at the origin of the two arrows can be replaced by the product 
of the two terms at the other end of the arrows. For example, at the top of the fi gure, 
2 1'P/'v 2 s can be replaced by the product 1'P/'s 2 v 1's/'v 2P. Any of the terms on one 
side of the double arrow of a Maxwell relation can be replaced by the term on the other 
side. For example, we can use 2 1'T/'v 2 s for 1'P/'s 2 v. 

Any derivative presented in Figure 5.3 can be rewritten by following a path in the 
diagram to ultimately lead to set of quantities for which measured data are conveni-
ently reported. Three general sources for such data are (1) derivatives of equations of 
state; (2) the thermal expansion coeffi cient, b, and the isothermal compressibility, k; and 
(3) the heat capacities at constant pressure, cP, and at constant volume, cv.

First, if we have a pressure explicit equation of state, P 5 f 1T, v 2 , we can analytically 
assess the partial derivative 1'P/'T 2 v. A volume explicit equation of state, v 5 f 1T, P 2 ,
allows us to obtain 1'v/'T 2P. Second, we may use the thermal expansion coeffi cient, b, and 
the isothermal compressibility, k as an alternative to equations of state to assess 1'P/'T 2 v 
and 1'v/'T 2P. Both alternatives are indicated in Figure 5.3. These properties were defi ned 
in Section 4.3 as:

 b ; 2
1
v

 a
'v
'T
b

P
 (4.32)

∂P
∂v−

−

∂P

∂P

∂P
∂T

cP

∂P

∂P

∂s
∂s

Relations
without T 

Relations

without s

Cyclic Relation

Maxwell Relation
In the case of:

A

A = BC∂T
∂v

∂v

∂T

∂T

∂s
∂s

∂T
∂T
∂v

∂s
∂s
∂v

∂v

1 v explicit
EOSβv

Relations
without P

Relations

without v

B

=

=

orP explicit
EOS

β
κ

=

=

or

–

s

v

s

v T

v

T

P

T TP

P

s

T
cv

C

−

Figure 5.3 Roadmap through the thermodynamic web. Partial derivatives of T, P, s, and v are 
related to each other and to reported properties cv, cP, b, and k.
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and,

 k ; 2
1
v

 ¢ 'v
'P
≤

T
 (4.33)

Using the cyclic rule (see Problem 5.20), we get:

 ¢ 'P
'T
≤

v
5

b

k
 (5.26)

whereas applying the defi nition for thermal expansion coeffi cient gives:

 ¢ 'v
'T
≤

P
5 bv (5.27)

Third, partial derivatives of s with T can be related to heat capacity by applying the 
fundamental property relations to the defi nition of heat capacity. Inserting Equation 
(5.6) into the defi nition of heat capacity at constant volume, we get:

cv 5 ¢ 'u
'T
≤

v
5 T¢ 's

'T
≤

v
2 P¢ 'v

'T
≤

v
5 T¢ 's

'T
≤

v

Thus,

 ¢ 's
'T
≤

v
5

cv

T
 (5.28)

Similarly applying the fundamental property relation for h, Equation 5.7, to the defi ni-
tion of cP gives:

cP 5 ¢ 'h
'T
≤

P
5 T¢ 's

'T
≤

P
1 v¢ 'P

'T
≤

P
5 T¢ 's

'T
≤

P

or,

 ¢ 's
'T
≤

P
5

cP

T
 (5.29)

Equations (5.28) and (5.29) are used in the appropriate places in Figure 5.3. 
Using the paths in the diagram, we can rewrite any derivative in Figure 5.3. For 

example, we can follow the diagram to represent as 2 1'P/'v 2 s as 2 cP/vkcv. See if 
you can justify this relation (and the others indicated in Figure 5.3). This exercise will 
pay dividends when you encounter these forms in solving problems with the thermo-
dynamic web.
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The relations shown in Figure 5.3 allow us to express the dependent property s in terms 
of measured properties. We can write s in terms of independent properties T and v by 
applying the form of Equation (5.4):

ds 5 a
's
'T
b

v
dT 1 a

's
'v
b

T
dv

Substitution of Equation (5.28) and the Maxwell relation (5.18) into this equation gives:

 ds 5
cv

T
 dT 1 a

'P
'T
b

v
dv (5.30)

Equation (5.30) is generally applicable to a system with constant composition. Integration 
of this equation gives:

 Ds 5 3
cv

T
 dT 1 3 a

'P
'T
b

v
dv (5.31)

If we choose the measured properties T and P as our independent properties, we 
get:

ds 5 a
's
'T
b

P
dT 1 a

's
'P
b

T
dP

Substituting in Equation (5.29) and the Maxwell relation (5.19) into this equation gives:

 ds 5
cP

T
 dT 2 a

'v
'T
b

P
dP (5.32)

Integration of Equation (5.32) gives:

 Ds 5 3
cP

T
 dT 2 3 a

'v
'T
b

P
dP (5.33)

If we use the ideal gas model, Equation (5.33) simplifi es to Equation (3.22).
It is instructive to compare Equation (5.31) to Equation (5.33). Equation (5.31) was 

developed using T and v as the independent properties, while Equation (5.33) used T 
and P. We see that in the former case we get a partial derivative in P. Therefore, this 
form is amenable to a pressure-explicit equation of state. Conversely, Equation (5.33) 
gives a partial derivative for v and is more amenable to a volume-explicit equation of 
state. This observation holds generally; that is, T and v are convenient independent prop-
erties when we have a pressure-explicit equation of state, while T and P are convenient 
for a volume-explicit equation. This rule of thumb is reinforced in Example 5.4, where 
the choices of independent properties (T,v) and (T,P) are compared for a calculation 
using the pressure-explicit Redlich–Kwong equation of state.

 ►5.3  CALCULATION OF FUNDAMENTAL AND DERIVED PROPERTIES USING EQUATIONS 
OF STATE AND OTHER MEASURED QUANTITIES

Relation of ds in Terms of Independent Properties T and v and Independent Properties T and P
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We can now go back to the calculation for Du illustrated by the hypothetical path in 
Figure 5.2. Recall that we can relate the differential change in internal energy to the 
independent properties T and v by Equation (5.5):

 du 5 a
'u
'T
b

v
dT 1 a

'u
'v
b

T
dv (5.5)

The fi rst term on the right-hand side of Equation (5.5) can be written using the defi nition 
of heat capacity at constant volume:

a
'u
'T
b

v
5 cv

We usually want to evaluate this term under ideal gas conditions, since ideal gas heat 
capacity data are readily available for most gases. In Example 5.3, we will take another 
approach. The second term can be simplifi ed using the fundamental property relation, 
Equation (5.6):

a
'u
'v
b

T
5 a

T's 2 P'v
'v

b
T

5 BTa
's
'v
b

T
2 PR

We can then use the Maxwell relation, Equation (5.13), to get:

 a
'u
'v
b

T
5 BTa

'P
'T
b

v
2 PR  (5.34)

In general, we can add together the effect of changes in both independent proper-
ties to get:

 du 1T, v 2 5 cvdT 1 BTa
'P
'T
b

v
2 PRdv (5.35)

Integrating Equation (5.35) gives:

 Du 1T, v 2 5 3cvdT 1 3 BTa
'P
'T
b

v
2 PRdv (5.36)

We can solve the second integral on the right-hand side of Equation (5.36) with 
the appropriate PvT data or with data for the thermal expansion coeffi cient and the 
isothermal compressibility. For example, if an equation of state is available of the 
form P 5 f 1T, v 2 , we can take the partial derivative with respect to T at constant v, 
multiply by T, subtract P, and integrate. If no equation is available, we could solve 
graphically.

The hypothetical path depicted in Figure 5.2 allows us to reduce Equation (5.36) 
to one term for each step. The fi rst and third steps are isothermal, so the fi rst term 
on the right-hand side goes to zero and we use only the second term. Conversely, 
step 2 is isochoric and we use only the fi rst term. Furthermore, we constructed this 
path to carry out step 2 under ideal gas conditions, where heat capacity data are readily 

Relation of du in Terms of Independent Properties T and v
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available. The ideal gas heat capacity depends only on the individual molecular structure 
of the species themselves, not on the interactions between them.4 On the other hand, the 
second term relates to b and k or an equation of state and its derivatives, and it depends 
on how the molecules interact with one another.

In constructing these hypothetical thermodynamic paths—be it for u, s, h, or other 
properties—we often choose T for one independent property and either P or v for the 
other independent property. In doing so, we relate the T dependent term to cP or cv, 
which can be reduced to the individual molecular structure of the species in the system. 
The P or v term then accounts for the interactions of the species with one another.

4 Recall the discussion after Equation (2.25).

One mole of propane gas is to be expanded from 0.001 m3 to 0.040 m3 while in contact with a 
heating bath that keeps the temperature constant at 100ºC. The expansion is not reversible. The 
heat extracted from the bath is 10.4 KJ. Using the van der Waals equation of state, determine 
the work for the expansion.

SOLUTION To fi nd the work, we apply the fi rst law:

 Du 5 q 1 w (E5.2A) 

Since we know q 5 10,400 J/mol, we just need to fi nd Du. 
A schematic of the path is shown in Figure E5.2A. In this case, the actual path can be used 

for the computation. Writing du as a function of the independent properties T and v:

 du 5 a
'u
'T
b

v
dT 1 a

'u
'v
b

T
dv 5 cvdT 1 BTa

'P
'T
b

v
2 PR  dv (E5.2B)

where we have applied Equation (5.35). This process occurs at constant T, so integration of 
Equation (E5.2B) gives:

 Du 5 3 BTa
'P
'T
b

v
2 PR  du (E5.2C)

EXAMPLE 5.2

First-Law—Closed- 
System—Calculation 
Using the Thermo- 
dynamic Web

Figure E5.2A Computational path to solve the problem in Example 5.2. 

0.001 m3

State 2
(T2, v2)

State 1
(T1, v1)

100°CTemperature

V
o
lu

m
e

0.040 m3

Δu
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From the van der Waals equation, we have:

 P 5
RT

v 2 b
2

a
v2

 (E5.2D)

and differentiating: a
'P
'T
b

v
5

R
v 2 b

 (E5.2E)

Using Equations (E5.2D) and (E5.2E) in Equation (E5.2C) gives:

Du 5 3 B a
v2
Rdu

or,  Du 5
2a
v

 2
0.001 m3

0.040 m3

5 2
27 1RTc 2 2

64Pc
¢ 1

v2
2

1
v1
≤

 5 2¢0.96B Jm3

mol2
R ≤ a 1

0.04
2

1
0.001

b Bmol
m3

R 5 936 

J

mol

Using this value of Du in Equation (E5.2A) gives:

w 5 Du 2 q 5 2 9,460 3J/mol 4

The value of the work is negative, indicating the gas is doing work on the surroundings.

Develop a methodology for calculating Du according to the path shown in Figure E5.3A, in 
which the change in T occurs when intermolecular interactions are important.

SOLUTION There are many ways to get from one thermodynamic state to another using the 
thermodynamic web. We consider the path shown in Figure E5.3A as an alternative calculation 
path for Du to that presented in Figure 5.2. In this case, our hypothetical path consists of two 
steps: isochoric heating (step 1) followed by isothermal compression (step 2). However, for the 
temperature change in step 1, the gas no longer behaves as an ideal gas. 

Again, we can write the change in internal energy as a function of the independent 
properties T and v:

 du 5 a
'u
'T
b

v
dT 1 a

'u
'v
b

T
dv 5 cv

realdT 1 BTa
'P
'T
b

v
2 PRdv (E5.3A)

We have used the results given by Equation (5.35). In calculating the internal energy 
change in step 1, we must now recognize that the heat capacity is no longer under ideal gas 
conditions but rather in the region where intermolecular interactions are signifi cant; therefore, 
cv now depends on both T and v, that is,

cv
real 5 cv 1T, v1 2

EXAMPLE 5.3

Alternative 
Calculation Path 
for Du

(Continued)
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280 ► Chapter 5. The Thermodynamic Web

In general, however, heat capacity data are available only at ideal gas conditions. Hence, 
we need to relate the real heat capacity at any given temperature along step 1 to the ideal 
gas heat capacity. Again, this task can be accomplished by utilizing the thermodynamic web. 
As illustrated in Figure E5.3B, we need to calculate 1'cv/'v 2T and then integrate from the 
volume of an ideal gas to the volume of the real gas, v1. We can develop this relationship by 
using the defi nition of heat capacity and then changing the order of differentiation (as we did 
in developing the Maxwell relations):5

 ¢'cv

'v
≤

T
5 B '

'v
 a
'u
'T
b

v
R

T
5 B '

'T
 ¢'u
'v
b

T
R

v
 (E5.3B)

Using the value for 1'u/'v 2T obtained in Equation (5.34) and expanding, we get:

¢'cv

'v
≤

T
5 B '

'T
 ¢ BTa

'P
'T
b

v
2 PR ≤ R

v
5 a

'P
'T
b

v
1 T¢ '2P

'T2
≤

v
2 a

'P
'T
b

v
5 T¢ '2P

'T2
≤

v

where we have used the product rule. 

State 1
(T1, v1)

State 2
(T2, v2)

Step 1

Temperature

Alternative path to calculate Δu  

S
te

p
 2

V
o
lu

m
e

ΔuStep 1 Δ
u

S
te

p
 2

Figure E5.3A Alternative 
computational path to Figure 5.2 
for the change in internal energy 
from state 1 to state 2.

5 Again, we see a common theme of creative problem solving: being able to take what we learn in one place 
and apply it in a different context.

∂cv
∂v  ∫

Path to calculate cv
real

cv
ideal gas = cv(T only)

v∞

v1

V
o
lu

m
e

Temperature

cv
real = cv

real (T, v1)

T
dv

v
ideal gas

v
real

Figure E5.3B Computational paths to 
calculate cv

real from cv
ideal gas.
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We can obtain an expression for the change in enthalpy in terms of the independent 
properties T and P by applying the thermodynamic web in a manner similar to that 
used for entropy and internal energy. We fi rst write the differential expression in the 
form of Equation (5.4) using the independent properties T and P:

dh 5 a
'h
'T
b

P
dT 1 a

'h
'P
b

T
dP

Applying the defi nition for heat capacity:

a
'h
'T
b

P
5 cP

and the fundamental property relation for h, Equation (5.7), and the Maxwell relation 
(5.14):

a
'h
'P
b

T
5 a

T's 1 v'P
'P

b
T

5 Ta
's
'P
b

T
1 v 5 2Ta

'v
'T
b

P
1 v

Substitution gives:

 dh 5 cPdT 1 B2Ta
'v
'T
b

P
1 vRdP (5.37)

The differential change in heat capacity at any given temperature is therefore given by:

 dcv 5 BT¢ '2P
'T2

≤
v
Rdv (E5.3C)

Integrating both sides of Equation (E5.3C) gives:

3

real

ideal gas

dcv 5 3

vreal

videal gas

BT¢ '2P
'T2

≤
v
Rdv

Solving for cv
real, we get:

 cv
real 5 cv 1T, v1 2 5 cv

ideal gas 1 3

v1

videal gas

BT¢ '2P
'T2

≤
v
Rdv (E5.3D)

Examining Equation (E5.3D), we see that if we have ideal gas heat capacity data and an 
appropriate equation of state, we can solve for the real gas heat capacity. We can then use 
this expression in Equation (E5.3A) to get:

du 5 bcv
ideal gas 1 3

v1

videal gas

BT¢ '2P
'T2

≤
v
RdvrdT 1 BTa

'P
'T
b

v
2 PRdv

Relation of dh in Terms of Independent Properties T and P
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282 ► Chapter 5. The Thermodynamic Web

Integrating this expression gives:

 Dh 5 3cPdT 1 3 B2Ta
'v
'T
b

P
1 vRdP (5.38)

In analogy to our discussion for Du, we usually construct a path whereby we take 
the system to a low enough pressure to apply the ideal gas heat capacity. Alternatively, 
we could calculate the real heat capacity at constant pressure using the same method we 
used to calculate cv

real in Example 5.3. In Problem 5.25 you will verify that:

 cP
real 5 cP 1T, P 2 5 cP

ideal gas 2 3

Preal

Pideal gas

BT¢ '2v
'T2

≤
P
RdP (5.39)

 The fi rst step in manufacturing isobutene from isomerization of n-butane is to compress the 
feed stream of n-butane. It is fed into the compressor at 9.47 bar and 80ºC and optimally exits 
at 18.9 bar and 120ºC, so that it can be fed into the isomerization reactor. The work supplied 
to the compressor is 2100 J/mol. Calculate the heat that needs to be supplied into the unit per 
mole of n-butane that passes through.

SOLUTION First, the process is sketched in Figure E5.4A. To fi nd the heat in, we will apply 
the fi rst law (i.e., do an energy balance). Assuming steady-state, the open-system energy bal-
ance with one stream in and one stream out can be written:

0 5 n# 1ah 1 MW
V
S

2

2
1 MWgzb

1
2 n# 2ah 1 MW

V
S

2

2
1 MWgzb

2
1 Q

#
1 W

#
s

or,

q 5
Q
#

n#
5 h2 2 h1 2

W
#

s

n#

We know the power used by the compressor. Thus this problem reduces to fi nding the 
change in the thermodynamic property enthalpy from the inlet to the outlet. We know two 
intensive properties at both the inlet and outlet, so the values for the other properties (like 
enthalpy!) are already constrained.

Since pressures on the order of 10 bar are being used, we do not expect the ideal gas law 
to hold. However, since enthalpy is a property and independent of path, we are free to choose 
whatever path is convenient.

EXAMPLE 5.4

First-law—Open-
System—Calculation
Using the 
Thermodynamic 
Web

Compressor
P2 = 18.9 kPa
T2 = 120°C

P1 = 9.47 bar
T1 = 80°C

wS

q

Figure E5.4A 
Schematic of the 
compressor for 
Example 5.4.
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5.3  Calculation of Fundamental and Derived Properties Using Equations of State and Other Measured Quantities ◄ 283

First, it may be helpful to fi nd some data for n-butane. From Appendix A.2, we have an 
expression for the ideal gas heat capacity:

cP

R
5 1.935 1 36.915 3 1023

 T 2 11.402 3 1026
 T2

with T in [K]. Since this expression is limited to ideal gases, any change in temperature must 
be under ideal conditions.

An equation of state may also be useful. Many equations are available; an accurate one is 
the Redlich–Kwong equation of state:

P 5
RT

v 2 b
2

a
T1/2v 1v 1 b 2

We can fi nd the parameters a and b using the principle of corresponding states. To do this, 
we fi rst fi nd critical parameters from Appendix A.1: 1Tc 5 425.2 K; Pc 5 37.9 bar 2 . Applying 
Equations (4.24a) and (4.24b):

a 5
0.42748R2Tc

2.5

Pc
5 29.08B JK1/2m3

mol2
R  and b 5

0.08664RTc

Pc
5 8.09 3 1025B m3

mol
R

Next we choose a path to solve this problem. We are constrained in that any change in 
temperature should be carried out when C4H10 behaves as an ideal gas. We fi rst will solve 
this with T and v as independent properties, then show that it can be solved with T and P as 
independent properties.

Solution with T and v
The solution path is depicted in the Tv plane in Figure E5.4B.

To execute this path, we need to know the molar volumes of states 1 and 2. The Redlich–
Kwong equation is implicit in v; solving for the three roots and taking the largest gives:

v1 5 2.59 3 1023 3m3/mol 4

and ,

v2 5 1.27 3 1023 3m3/mol 4

Figure E5.4B Solution path in the Tv plane 
for the compressor in Example 5.4.

Δh = q + w
s

Step 2

S
te

p
 3

v2, T2

v1, T1

v

S
te

p
 1

Ideal gas

T

(Continued)
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284 ► Chapter 5. The Thermodynamic Web

Now we can write an expression for enthalpy in terms of our independent properties T and v:

dh 5 a
'h
'T
b

v
dT 1 a

'h
'v
b

T
dv

For steps 1 and 3, T is constant:

 Dh1 or 3 5 3 a
'h
'v
b

T
dv (E5.4A)

From the fundamental property relation, Equation (5.7), Equation (E5.4A) becomes:

Dh 5 3 a
T's 1 v'P

'v
b

T
dv 5 3 BTa

's
'v
b

T
1 va

'P
'v
b

T
Rdv

If we use the Maxwell relation (5.18), we get:

 Dh 5 3 BTa
'P
'T
b

v
1 va

'P
'v
b

T
Rdv (E5.4B)

We can now use the Redlich–Kwong equation, which is explicit in pressure: 

 P 5
RT

v 2 b
2

a
T1/2v 1v 1 b 2

 (E5.4C)

Differentiating Equation (E5.4C) gives:

 a
'P
'T
b

v
5

R
v 2 b

1
a

2T3/2v 1v 1 b 2
 (E5.4D)

and,

 a
'P
'v
b

T
5 2

RT
1v 2 b 2 2

1
a 12v 1 b 2

T1/2 1v2 1 bv 2 2
 (E5.4E)

Plugging Equations (E5.4D) and (E5.4E) back in to Equation (E5.4B) gives:

Dh 5 3 BT c
R

v 2 b
1

a
2T3/2v 1v 1 b 2

d 1 vB2
RT

1v 2 b 2 2
1

a 12v 1 b 2

T1/2 1v2 1 bv 2 2
R Rdv

Simplifying,

 Dh 5 3 B2
bRT

1v 2 b 2 2
1

a
T1/2

 ¢ 1
2v 1v 1 b 2

1
v 12v 1 b 2

3v 1v 1 b 2 42
≤ Rdv (E5.4F)

and integrating:

Dh1 or 3 5
bRT
1v 2 b 2

1
a

T1/2
 ¢ 3

2b
 lna

v
v 1 b

b 2
1

1v 1 b 2
b 2

vi

vf

We can now plug in numerical values. What should we use for vlarge? For step 1, we use 
T 5 353.15 K, getting:

Dh1 5 1368 3J/mol 4
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For step 3, we use T 5 393.15 K, getting:

Dh3 5 22542 3J/mol 4

For step 2, we have an ideal gas undergoing an isochoric process:

Dh2 5 3 a
'h
'T
b

v
dT 5 3 a

' 1u 1 Pv 2

'T
b

v
dT

or,

Dh2 5 3 B a'u'Tbv
1 a

'Pu
'T
b

v
RdT 5 3 3cv 1 R 4dT 5 3cPdT

where we used the ideal gas law to simplify. Plugging in numbers:

Dh2 5 R 3

393

353

31.935 1 36.915 3 1023
 T 2 11.402 3 1026

 T2 4dT

and integrating:

Dh2 5 8.314 31.935 1393 2 353 2 1 18.458 3 1023 13932 2 3532 22 3.801 3 1026 13933 2 3533 2 4

Dh2 5 4696 3J/mol 4

Finally, summing together gives the heat input as:

Dh 5 Dh1 1 Dh2 1 Dh3 5 q 1 ws 5 3522 3J/mol 4

q 5 Dh 2 ws 5 1422 3J/mol 4

Solution with T and P
The solution path is depicted in the TP plane in Figure E5.4C. In this case, we need a low 
pressure to obtain ideal gas behavior. If we write the change in enthalpy in terms of the 
independent properties T and P, we get:

 dh 5 a
'h
'T
b

P
dT 1 a

'h
'P
b

T
dP 5 cPdT 1 B2Ta

'u
'T
b

P
1 vRdP (E5.4G)

Step 2

S
te

p
 1

P1, T1

P2, T2

S
te

p
 3

Ideal gas

Δh = q + w s

T

P

Figure E5.4C Solution path in the TP plane 
for the compressor in Example 5.4.

(Continued)
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286 ► Chapter 5. The Thermodynamic Web

where Equation (5.37) was used. The constant-pressure part, step 2, is equivalent to Dh2 above, 
so the result is identical. For steps 1 and 3, we must evaluate the second term on the right-
hand side of Equation (E5.4G) and integrate. We cannot write the Redlich–Kwong equation 
explicitly in v to solve. However, we can differentiate Equation (E5.4C) to get:

 dP 5 B2
RT

1v 2 b 2 2
1

a 12v 1 b 2

T1/2v2 1v 1 b 2 2
Rdv (E5.4H)

At constant T, substituting Equation (E5.4H) into (E5.4G) gives:

 dh 5 B2Ta
'v
'T
b

P
1 vR B2

RT
1v 2 b 2 2

1
a 12v 1 b 2

T1/2v2 1v 1 b 2 2
Rdv (E5.4I)

The partial derivative of volume with respect to temperature cannot be obtained directly. 
However, we can apply the cyclic relation as follows:

 21 5 a
'v
'T
b

P
a
'P
'v
b

T
a
'T
'P
b

v
 (E5.4J)

We can rewrite Equation (E5.4J) in terms of a form that allows us to use the P explicit Redlich– 
Kwong equation. Performing this manipulation and taking derivatives gives:

 a
'v
'T
b

P
5 2

a
'P
'T
b

v

a
'P
'v
b

T

5

2
R

v 2 b
2

a
2T3/2v 1v 1 b 2

B2
RT

1v 2 b 2 2
1

a 12v 1 b 2

T1/2v2 1v 1 b 2 2
R

 (E5.4K)

Substitution of Equation (E5.4K) into (E5.4I) and simplifi cation gives: 

 dh 5 B2
bRT

1v 2 b 2 2
1

a
T1/2a

1
2v 1v 1 b 2

1
v 12v 1 b 2

3v 1v 1 b 2 42
b Rdv (E5.4L)

If we integrate Equation (E5.4L), we get a result identical to Equation (E5.4F), so the 
rest of the problem is equivalent to the part above where we used T and v as independent 
properties. We come up with the same result applying the thermodynamic web to each path; 
the form h 5 h 1T, v 2  yields an equivalent result to h 5 h 1T, P 2 . However, the fi rst choice 
of independent properties made the math easier. This result is not surprising in light of the 
discussion after Equation (5.33); that is, T and v are the convenient independent properties 
when we have a pressure-explicit equation of state.

Solution Using Du
A third alternative for calculating the enthalpy change is to apply the defi nition for h:

Dh 5 Du 1 D 1Pv 2

We have already calculated the volumes of states 1 and 2, so it is straightforward to obtain 
D 1Pv 2 . We can calculate Du from Equation (5.36) in conjunction with the path shown in Figure 
(E5.4B). The result we obtain is equivalent to those presented above.
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Alternative Formulation of the Web using T and P as Independent Properties

As the name Thermodynamic Web implies, many approaches can be used to develop the 
useful relations between measured properties and the fundamental and derived proper-
ties that we need to solve problems. As we learned in Chapter 1, pressure and temperature 
are the properties that “drive” systems toward mechanical and thermal equilibrium, respec-
tively. Because we will focus on equilibrium systems in the remainder of the text (phase equi-
librium in Chapters 6–8 and chemical reaction equilibrium in Chapter 9), it is instructive 
to recast the thermodynamic web, exclusively in terms of independent properties, T and P. 

To achieve this objective, we will fi rst write volume and entropy in terms of the 
independent properties, T and P, that is, v 5 v 1T, P 2  and s 5 s 1T, P 2 . We then use the 
fundamental property relations to apply this formulation to determine the differential 
changes in the “energy properties,” u, h, a, and g as a function of T and P. The develop-
ment that follows is cast in terms of the measured quantities cP, b, and k; however, the 
latter two quantities can then be replaced by derivatives of equations of state if needed.

Writing the intensive property volume in terms of independent properties T and P gives:

dv 5 ¢ 'v
'T
≤

P
dT 1 ¢ 'v

'P
≤

T
dP

Using Equations (5.26), (5.27) and the cyclic rule, we get:

 dv 5 bvdT 2 kvdP (5.40)

Similarly writing entropy as a function of T and P gives:

ds 5 ¢ 's
'T
≤

P
dT 1 ¢ 's

'P
≤

T
dP

And applying Equation (5.29) and the Maxwell relation, Equation (5.19), we get:

ds 5
cP

T
 dT 2 ¢ 'v

'T
≤

P
dP

Again using Equations (5.26), (5.27), and the cyclic rule, gives:

 ds 5
cP

T
 dT 2 bvdP (5.41)

We can use Equations (5.40) and (5.41) in the fundamental property relations to get 
values for the “energy parameters.” Substitution in Equation (5.6) for internal energy gives:

du 5 Tds 2 Pdv 5 TB cP

T
 dT 2 bvdPR 2 P 3bvdT 2 kvdP 4

Rearranging like terms gives: 

 du 5 1cP 2 bPv 2dT 1 1kPv 2 bvT 2dP (5.42)

Similarly, using Equations (5.7), (5.8), and (5.9), we get:

 dh 5 1cP 2 bPv 2dT 1 vdP  (5.43)

 da 5 2sdT 1 1kPv 2 bvT 2dP (5.44)

 dg 5 2sdT 1 vdP  (5.45)
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Use Equations (5.40) and (5.41) to develop an expression for s 5 s 1T, v 2  in terms of 
cP, b, k, and v. From the relationship that is developed, determine a general relationship for 
cP 2 cv.

SOLUTION We can write s 5 s 1T, v 2  as:

 ds 5 ¢ 's
'T
≤

v
dT 1 ¢ 's

'v
≤

T
dv (E5.5A)

Substituting in Equation (5.40) gives:

ds 5 ¢ 's
'T
≤

v
dT 1 ¢ 's

'v
≤

T

1bvdT 2 kvdP 2 5 B ¢ 's
'T
≤

v
1 ¢ 's

'v
≤

T
bvRdT

 2 ¢ 's
'v
≤

T
kvdP (E5.5B) 

However, from Equation (5.41), we have:

ds 5
cP

T
 dT 2 bvdP

Because the second terms of the right-hand sides of Equations (E5.5A) and (E5.5B) must be 
equal:

¢ 's
'v
≤

T
kv 5 bv

or,

 ¢ 's
'v
≤

T
5

b

k
 (E5.5C)

Similarly, the fi rst terms of the right-hand sides of Equations (E5.5A) and (E5.5B) must be 
equal:

¢ 's
'T
≤

v
1 ¢ 's

'v
≤

T
bv 5

cP

T

So,

¢ 's
'T
≤

v
5

cP

T
2

b2v
k

where Equation (E5.5C) was used. Substituting back into Equation (E5.5A) gives:

ds 5 ¢ cP

T
2

b2v
k
≤dT 1

b

k
 dv

Inspection of Equation (5.28) shows the fi rst term on the right-hand side must also be equal to 
cv

T
. Therefore, in general:

cP 2 cv 5
b2Tv

k

EXAMPLE 5.5 

Developing 
Relations with 
Other Independent 
Variables
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If an equation of state is available, expressions can be calculated for b and k in Equa-
tions (5.40) to (5.45). We will illustrate this point using the ideal gas law,

v 5
RT
P

Applying the defi nitions of b, and k gives:

b ;
1
v

 ¢ 'v
'T
≤

P
5

R
Pv

5
1
T

         1 ideal gas 2

and, 

 k ; 2
1
v

 ¢ 'v
'P
≤

T
5

RT
P2v

5
1
P

     1 ideal gas 2

Substitution into Equations (5.40) to (5.45) and simplifi cation gives the expressions listed 
in the ideal gas column in Table 5.1. This result illustrates that three of the “energy param-
eters,” u, h, and a only depend on T for an ideal gas. (We have seen this relation to be the 
case for u and h in Chapter 2.) On the other hand, the Gibbs energy g depends on both T 
and P. We will explore this aspect of the property Gibbs energy more in Chapter 6.

Table 5.1 Relations of Properties in Terms of Independent Properties T and P. Both the 

General Case and the Ideal Gas Case are Shown.

Dependent 
Property General 5 f 1T, P 2 Ideal gas ¢b 5

1
T

; k 5
1
P
≤

ds 5
cP

T
 dT 2 bvdP cP

T
 dT 2

R
P

 dP

dv 5 bvdT 2 kvdP
v
T

 dT 2
v
P

 dP

du 5 1cP 2 bPv 2dT 1 1kPv 2 bvT 2dP 1cP 2 R 2dT

dh 5 1cP 2 bPv 2dT 1 vdP cPdT

da 5 2sdT 1 1kPv 2 bvT 2dP 2sdT

dg 5 2sdT 1 vdP 2sdT 1 vdP

1 mole of iron is at 1000 K and 1 bar. It is reversibly compressed in a well-insulated system to 
10,000 bar. What is the fi nal temperature?

SOLUTION Because this process is reversible and adiabatic, the entropy of the system does not 
change. Hence, we can solve this problem by writing s 5 s 1T, P 2  and setting ds to 0. From Table 5.1:

ds 5
cP

T
 dT 2 bvdP 5 0

EXAMPLE 5.6 

Change in 
Temperature for 
Compression of Iron

(Continued)
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290 ► Chapter 5. The Thermodynamic Web

Rearranging and substituting in the form for the heat capacity from Table A.2:

cP

T
 dT 5

1AR 1 BRT 2

T
 dT 5 bvdP

Assuming iron is incompressible, we can integrate to get:

 AR ln¢T2

T1
≤ 1 BR 1T2 2 T1 2 5 bv 1P2 2 P1 2  (E5.6A)

Values from Tables 4.4 and Appendix A give:

A 5 2.104

B 5 2.98 3 1023

b 5 3.5 3 1025 3K21 4

v 5 7.10 3cm3/mol 4 5 7.1 3 1026 3m3/mol 4

Substitution of these values into Equation (E5.6A) gives:

2.104 3 8.314 B J

mol K
R 3 ln¢ T2

1000 3K 4
≤ 1 2.98 3 1023 B 1

K
R 3 8.314 B J

mol K
R

3 1T2 2 1000 2  3K 4

5 3.5 3 1025 B 1
K
R 3 7.10 3 1026 B m3

mol 
R 3 110,000 3 105 2 1 2 B J

m3
R

Finally, solving implicitly for T2 gives:

T2 5 1006 3K 4

Th e temperature does not rise very much!

 ►5.4  DEPARTURE FUNCTIONS

Enthalpy Departure Function

Departure functions often provide us a convenient path for calculating the nonideal 
contribution to property changes for real gases (or liquids). The departure function of 
any thermodynamic property is the difference in that property between the real, physi-
cal state in which it exists and that of a hypothetical ideal gas at the same T and P. For 
example, the enthalpy departure is given by:

 DhT, P
dep

5 hT, P 2 hT, P
ideal gas (5.46)

On a molecular level, we can consider this departure function to represent the change 
in enthalpy if we could “turn off” the intermolecular interactions in the real fl uid. In this 
section, we will specifi cally explore how to calculate changes in enthalpy and entropy 
using departure functions; however, this methodology can be expanded to any property.6

6 For example, in Problem 5.43, you will develop the departure function for internal energy.
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5.4  Departure Functions ◄ 291

We can use the enthalpy departure function to calculate the enthalpy difference 
between a species in an initial state 1 at temperature T1 and pressure P1 and fi nal state 2 
at T2 and P2. Figure 5.4 shows a calculation path constructed using departure functions. 
The PT diagram to the left side of the fi gure represents real, physical space, while the TP 
diagram on the right-hand side is the hypothetical, ideal gas state in which all the inter- 
molecular interactions are turned off. We fi rst “turn off” the intermolecular interactions 
the species exhibits at T1 and P1. We thus transform from a real fl uid into a hypothetical 
ideal gas. The ideal gas then undergoes an isobaric temperature change to T2 followed 
by an isothermal change in pressure to P2. Finally, we “turn on” the intermolecular inter- 
actions, returning to the real, physical state 2. Adding together the four steps in Figure 5.4, 
we get:

h2 2 h1 5 2DhT1, P1

dep 1 3DhT1hT2

ideal gas
1 DhP1hP2

ideal gas 4 1 DhT2, P2

dep

Using ideal gas heat capacity data for the temperature dependence and recognizing that 
the enthalpy of an ideal gas does not depend on pressure, we can simplify this equation 
to give:

 h2 2 h1 5 2DhT1, P1

dep 1 B 3
T2

T1

cPdT 1 0R 1 DhT2, P2

dep  (5.47)

We now need to come up with an expression for the enthalpy departure function so 
that we can solve Equation (5.47). Since enthalpy departure at a given state is related 
to the intermolecular forces involved, we will need to use the PvT relation developed in 
Chapter 4 and then apply the relationships of the thermodynamic web to come up with 
an expression for the enthalpy departure function. In the development that follows, we 
will use the generalized compressibility charts and tables discussed in Section 4.4 to 
develop values for the generalized enthalpy departure function based on corresponding 

P
re

s
s
u
re

Temperature

Real fluid

Hypothetical ideal gas

State 2
(T2,P2)

(T2,P2)
State 1
(T1,P1)

–Δh dep
         T1,P1

Δh dep
       T2,P2

  ΔhT1→T2

ideal gas

ΔhP1→P2

ideal gas

(T1,P1) (T2,P1)

Figure 5.4 Computational paths for the change in enthalpy from state 1 to 
state 2 using departure functions. The PT diagram on the left is for the real 
fluid while that on the right represents the hypothetical ideal gas in which 
all the intermolecular interactions are “turned off.”
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292 ► Chapter 5. The Thermodynamic Web

states. If we wanted to apply departure functions using other property data, we might 
have to appropriately modify our approach.

First, we add and subtract hT, P50
ideal gas

 to Equation (5.46):

DhT,P
dep

5 hT,P 2 hT,P
ideal gas

5 1hT,P 2 hT,P50
ideal gas 2 2 1hT,P

ideal gas
2 hT,P50

ideal gas 2 5 hT,P 2 hT,P50
ideal gas (5.48)

We have simplifi ed this equation since the enthalpy of an ideal gas is independent of 
pressure, that is,

hT,P
ideal gas

2 hT,P50
ideal gas

5 0

At constant T, Equation (5.37) becomes:

dhT 5 B2Ta
'v
'T
b

P
1 vRdP

We wish to put PvT data in terms of the compressibility factor so that we can use the 
generalized compressibility charts. Thus, we want to put this equation in terms of z. By 
the defi nition of the compressibility factor, the molar volume is written as:

v 5
zRT

P

Applying the product rule, the partial derivative with respect to temperature becomes:

a
'v
'T
b

P
5 BRT

P
 a
'z
'T
b

P
1

zR
P
R

Substitution gives:

dhT 5 B2
RT2

P
 a
'z
'T
b

P
2

zRT
P

1
zRT

P
RdP 5 B2

RT2

P
a
'z
'T
b

P
RdP

Since we are applying the corresponding states relation, we write this equation in 
reduced coordinates:

dhTr

RTc
5 B2

Tr
2

Pr
 a
'z
'Tr
b

P
RdPr

Integrating between 0 and P, and plugging into Equation (5.48) gives: 

 
DhTr,Pr

dep

RTc
5

hTr,Pr 2 hTr,Pr

ideal gas

RTc
5

hTr,Pr 2 hTr,Pr50
ideal gas

RTc
5 Tr

2
3

P

0

B2
1
Pr

 ¢ 'z
'Tr

≤
P
RdPr (5.49)

If we have a relation for z from 0 to Pr, we can integrate Equation (5.49) to give the 
enthalpy departure. For example, we can use the generalized compressibility results of 
the form given in Section 4.4 to get simple fl uid and correction enthalpy departure terms. 

The generalized enthalpy departure can then be determined according to:

 
hTr,Pr 2 hTr,Pr

ideal gas

RTc
5 BhTr,Pr 2 hTr,Pr

ideal gas

RTc
R
102

1 v BhTr,Pr 2 hTr,Pr

ideal gas

RTc
R
112

 (5.50)
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5.4  Departure Functions ◄ 293

While the data presented in Section 4.4 can be numerically integrated, they were gen- 
erated by Lee and Kesler according to their equation of state. This equation can be 
analytically integrated to fi nd values for enthalpy departure that can be used in Equation 
(5.50). The results are shown in Appendix E. Plots of the simple fl uid and correction 
terms that result are presented in Figures 5.5 and 5.6, respectively. Tables of their values 
are presented in Appendix C (Tables C.3 and C.4).
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Figure 5.5 Generalized enthalpy departure—simple fluid term. Based on the Lee–Kesler equa-
tion of state.

Entropy Departure Function

Like the enthalpy departure function, the entropy departure function can be used to fi nd 
the entropy change of a real fl uid. It is defi ned as the difference in that property between 
the real, physical state and that of a hypothetical ideal gas at the same T and P:

 DsT,P
dep

5 sT,P 2 sT,P
ideal gas

 (5.51)

The change in entropy from state 1 to state 2 can be written in analogy to Figure 5.4:

s2 2 s1 5 2DsT1,P1

dep
1 3DsT1hT2

ideal gas
1 DsP1hP2

ideal gas
4 1 DsT2,P2

dep

Substituting Equation (3.23) for the two ideal gas terms gives:

 s2 2 s1 5 DsT2,P2

dep
1 B 3

T2

T1

cP

T
 dT 2 R ln 

P2

P1
R 2 DsT1,P1

dep
 (5.52)
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Figure 5.6 Generalized enthalpy departure—correction term. Based on the Lee–Kesler equation 
of state.

As opposed to enthalpy, the entropy change with pressure of an ideal gas is nonzero. 

To calculate the entropy departure, we add and subtract sT,P50
ideal gas

 to Equation (5.45): 

 DsT, P
dep

5 sT,P 2 sT,P
ideal gas

5 1sT,P 2 sT,P50
ideal gas

2 2 1sT,P
ideal gas

2 sT,P50
ideal gas

2  (5.53)

Using the thermodynamic web, we can determine each difference on the right-hand side 
of Equation (5.53). At constant temperature, the entropy can be written in terms of the 
independent property P. According to Equation (5.32), 

dsT 5 2a
'v
'T
b

P
dP

In the case of an ideal gas, the ideal gas law can be differentiated to give:

dsT
ideal gas

5 2R 

dP
P

Integration gives:

sT,P
ideal gas

2 sT,P50
ideal gas

5 2 3

P

0

R 

dP
P

For the real fl uid, we get:

dsT 5 2a
'v
'T
b

P
dP 5 2B zR

P
1

RT
P

 a
'z
'T
b

P
RdP
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5.4  Departure Functions ◄ 295

Integrating from zero pressure to the pressure of the state of interest gives:

sT,P 2 sT,P50
ideal gas

5 3

P

0

2 B zR
P

1
RT
P

 a
'z
'T
b

P
RdP

Finally, we get the entropy departure by inserting these results in Equation (5.47):

DsT,P
dep

5  sT,P 2 sT,P
ideal gas

5 R 3

P

0

2 B z 2 1
P

1
T
P

 a
'z
'T
b

P
RdP

To use the generalized compressibility, we rewrite this equation in reduced 
coordinates:

 
DsTr,Pr

dep

R
5

sTr,Pr 2 sTr,Pr

ideal gas

R
5 3

P

0

2 B z 2 1
Pr

1
Tr

Pr
 ¢ 'z
'Tr

≤
P
RdPr (5.54)

Again, Equation (5.54) can be integrated with the appropriate data or equation of state 
for z. Using the Lee–Kesler equation of state gives results that include a simple fl uid 
term and a correction term. The form of entropy departure using this equation of state 
is given in Appendix E.

The entropy departure can then be calculated by:

 
sTr,Pr 2 sTr,Pr

ideal gas

R
5 B sTr,Pr 2 sTr,Pr

ideal gas

R
R
102

1 v B sTr,Pr 2 sTr,Pr

ideal gas

R
R
112

 (5.55)

Plots of the simple fl uid and correction terms for entropy departure are given in 
 Figures 5.7 and 5.8, respectively. Tables of values generated in the same way are pre-
sented in Appendix C (Tables C.5 and C.6).
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Figure 5.7 Generalized entropy departure—simple fluid term. Based on the Lee–Kesler equa-
tion of state.
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296 ► Chapter 5. The Thermodynamic Web

Repeat Example 5.4 using the Lee–Kesler generalized correlation data for enthalpy departure 
to account for nonideal behavior.

SOLUTION The schematic of the process is drawn in Figure E5.4A. To fi nd the heat, we need 
to calculate the enthalpy difference between the outlet (state 2) and the inlet (state 1). From 
Equation (5.47), we get:

 q 1 ws 5 h2 2 h1 5 2DhT1, P1

dep
1 B 3

T2

T1

cPdT 1 0R 1 DhT2, P2

dep  (E5.7A)

To fi nd values of enthalpy departure, we can use the Lee–Kesler tables. They have the form:

DhTr,Pr

dep

RTc
5

hTr,Pr 2 hTr,Pr

ideal gas

RTc
5 BhTr,Pr 2 hTr,Pr

ideal gas

RTc
R
102

1 vBhTr,Pr 2 hTr,Pr

ideal gas

RTc
R
112

Looking up the critical properties and acentric factor for n-butane from Appendix A.1 gives:

 Tc 5 425.2 3K 4

 Pc 5 37.9 3bar 4

 v 5 0.199

EXAMPLE 5.7

Alternative Solution 
to Example 5.4 Using 
Departure Functions
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Figure 5.8 Generalized entropy departure—correction term. Based on the Lee–Kesler  equation 
of state.
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5.4  Departure Functions ◄ 297

Thus, the reduced coordinates for state 1 and state 2 are:

T1,r 5
T1

Tc
5

353.15 3K 4

425.2 3K 4
5 0.83     and     P1,r 5

P1

Pc
5

9.47 3bar 4

38.0 3bar 4
5 0.20

T2,r 5
T2

Tc
5

393.15 3K 4

425.2 3K 4
5 0.925     and     P2,r 5

P2

Pc
5

18.9 3bar 4

37.9 3bar 4
5 0.50

We can fi nd the values for the enthalpy departure terms in Tables C.3 and C.4 in Appendix C. 
For state 1, by interpolation:

BhT1, r, P1, r 2 hT1, r, P1, r
ideal gas

RTc
R
102

5 20.413  BhT1, r, P1, r 2 hT1, r, P1, r
ideal gas

RTc
R
112

5 20.622

so,

hT1, r, P1, r 2 hT1, r, P1, r
ideal gas

RTc
5 BhT1, r, P1, r 2 hT1, r, P1, r

ideal gas

RTc
R
102

1 vBhT1, r, P1, r 2 hT1, r, P1, r
ideal gas

RTc
R
112

5 20.536 (E5.7B)

and for state 2:

BhT2, r, P2, r 2 hT2, r, P2, r
ideal gas

RTc
R
102

5 20.771   and   BhT2, r, P2, r 2 hT2, r, P2, r
ideal gas

RTc
R
112

5 20.994

so,

hT2, r, P2, r 2 hT2, r, P2, r
ideal gas

RTc
5 BhT2, r, P2, r 2 hT2, r, P2, r

ideal gas

RTc
R
102

1 vBhT2, r, P2, r 2 hT2, r, P2, r
ideal gas

RTc
R
112

5 20.969 (E5.7C)

The value for the integral of the heat capacity is the same as in Example 5.4:

DhT1hT2

ideal gas
5 3

T2

T1

cPdT5R 3

393

353

31.935136.91531023T211.40231026T 2 4dT54,696 3J/mol 4 (E5.7D)

Plugging in the values from Equations (E5.7B), (E5.7C), and (E5.7D) into Equation (E5.7A) 
gives:

h2 2 h1 5 0.536RTc 1 4,696 2 0.969RTc 5 3,167 3J/mol 4

The value calculated using the Redlich–Kwong equation of state differs from this value by 
11.0%. What value do you think is more accurate? Solving for heat, we get:

q 5 Dh 2 ws 5 1067 3J/mol 4
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298 ► Chapter 5. The Thermodynamic Web

The pressure dependence of the thermodynamic property enthalpy leads to interesting 
phenomena in the unrestrained, free expansion of real gases. Figure 5.9 shows a sche-
matic of a gas fl owing through a porous plug. It enters the system in state 1 at P1 and T1 
and it exits at a signifi cantly lower pressure, P2. We wish to study the effect of this so-
called Joule–Thomson expansion on the temperature of the gas at the exit, T2.

Develop an expression for the enthalpy departure function for a gas that obeys the van der 
Waals equation of state. Write it in terms of reduced coordinates.

SOLUTION Since the van der Waals equation is explicit in pressure, it is convenient to choose 
T and v as the independent properties.7 Consequently, we use infi nite volume as the limit of an 
ideal gas. In analogy to Equation (5.42), we write:

DhT,v
dep

5 hT,v 2 hT,P
ideal gas

5 ahT,v 2 hT,v5`
ideal gas

b 2 ahT,v
ideal gas

2 hT,v5`
ideal gas

b 5 hT,v 2 hT,v5`
ideal gas

Thus, we want to fi nd the difference between the enthalpy at the volume of the state of 
interest and an infi nite volume at constant temperature. We write the change in the dependent 
property h as:

dh 5 a
'h
'T
b

v
dT 1 a

'h
'v
b

T
dv

At constant temperature,

dhT 5 a
T's 1 v'P

'v
b

T
dv 5 BTa

's
'v
b

T
1 va

'P
'v
b

T
Rdv 5 BTa

'P
'T
b

v
1 va

'P
'v
b

T
Rdv

where we have used the fundamental property relation for h, Equation (5.7), and a Maxwell 
relation, Equation (5.18). The derivatives can be found by differentiating the van der Waals 

equation aP 5
RT

v 2 b
2

a
v2b  to give:

 dhT 5 BT 

R
v 2 b

1 va2
RT

1v 2 b 2 2
1

2a
v3 b Rdv 5 B2

RTb
1v 2 b 2 2

1
2a
v2
Rdv (E5.8)

Integrating Equation (E5.8) from the ideal gas state of infi nite volume to volume v gives:

Dhdep 5 3

v

v5`

B2
RTb

1v 2 b 2 2
1

2a
v2
Rdv 5

RTb
1v 2 b 2

2
2a
v

We can write the enthalpy departure in terms of reduced coordinates if we substitute in 
Equations (4.21) and (4.22) for the van der Waals constants a and b:

Dhdep

RTc
5

Tr

3vr 2 1
2

9
4vr

EXAMPLE 5.8

Enthalpy Departure 
for a van der Waals 
Gas

7 See the discussion after Equation (5.33); additionally, inspection of Figure 5.3 shows that derivatives of 
entropy with volume reduce to P explicit equations of state.

 ►5.5 JOULE-THOMSON EXPANSION AND LIQUEFACTION

Joule-Thomson Expansion
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5.5 Joule-Thomson Expansion and Liquefaction ◄ 299

Since the gas spends so little time in the plug, there is no opportunity for heat transfer; 
thus, we consider this process adiabatic. Additionally, the shaft work is zero. If kinetic 
energy effects are negligible, the fi rst law for this steady-state, adiabatic throttling pro-
cess reduces to:

h2 2 h1 5 Dh 5 0

We call a process that occurs at constant enthalpy, such as this one, isenthalpic.
We can determine the change in temperature that results as the pressure decreases 

in the isenthalpic throttling process if we know the derivative, 1'T/'P 2h. We call this 
relation the Joule–Thomson coefficient, mJT.

 mJT ; a
'T
'P
b

h
 (5.56)

Figure 5.10 plots characteristic lines of constant enthalpy (isenthalps) on a TP dia-
gram. In the shaded region, the slopes of the curves are positive; therefore, mJT . 0, as 
defi ned by Equation (5.56). In this region, the temperature will decrease as the pres-
sure decreases during the throttling process. Since the decrease in temperature as the 
pressure drops corresponds to a decrease in molecular kinetic energy, the molecular 
potential energy must be increasing or else energy conservation would be violated. We 
can say the molecules are more stable when they are closer together at the higher pres-
sure and, consequently, that attractive forces are dominant in this region. Conversely, in 
the nonshaded region, the slopes of the isenthalps are negative; therefore mJT , 0. The 
temperature will increase as pressure decreases, indicating that repulsive forces domi-
nate the behavior in this region. These two regions are separated by the inversion line, 
where the slope of T vs. P is zero and where attractive and repulsive interactions exactly 
balance. For a given pressure, the temperature at which these interactions balance is 
known as the Boyle temperature.

Gas in P1 P2T1 T2 Gas out

Porous plug

Figure 5.9 Schematic of Joule–Thomson expansion through a porous plug.

Inversion line

Net Attraction Net Repulsion

P

T

h = const

μJT > 0 μJT < 0

Figure 5.10 Typical lines of constant 
enthalpy on a PT diagram. The inversion 
line separates the region of positive and 
negative Joule–Thomson coefficients.
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300 ► Chapter 5. The Thermodynamic Web

We can use the thermodynamic web to develop an expression for mJT in terms of
PvT property relations and heat capacities. We begin with Equation (5.37):

dh 5 cpdT 1 B2Ta
'v
'T
b

P
1 vRdP

We must use the real heat capacity given by Equation (5.39). During the Joule–Thomson 
expansion, dh is zero; thus, we can rewrite the previous equation as:

 mJT 5 a
'T
'P
b

h
5

BTa
'v
'T
b

P
2 vR

cp
5

BTa
'v
'T
b

P
2 vR

cP
ideal gas

2 3

Preal

Pideal gas

BTa
'2v
'T2b

P
RdP

 (5.57)

where we have substituted in Equation (5.39) for the real heat capacity, since intermolecular 
interactions are important. If we have an equation of state or other appropriate PvT data and 
the heat capacity of a fl uid, we can evaluate Equation (5.57) for mJT. Alternatively, we could 
measure mJT experimentally using the porous plug in Figure 5.9 to fi nd an unknown cP.

Develop an expression for the Joule–Thomson coeffi cient using the pressure-based expansion 
of the virial equation truncated at the second virial coeffi cient. Use the corresponding state 
relationships presented in Chapter 4 for the temperature dependence of B to develop a gen-
eralized correlation for mJT.

SOLUTION To use Equation (5.57), we need to write the virial equation in a form that is 
explicit in volume. This can be done by rearranging Equation (4.27):

 v 5
RT
P

 11 1 B rP 2 5
RT
P

1 B rRT (E5.9A)

We then take the fi rst and second derivatives:

 a
'v
'T
b

P
5

R
P

1 RB r 1 RTa
dB r
dT
b  (E5.9B)

and, ¢ '2v
'T2

≤
P

5 Ra
dB r
dT
b 1 RT¢d2B r

dT2
≤  (E5.9C)

Using Equations (E5.9A), (E5.9B), and (E5.9C) in Equation (5.57) gives:

 mJT 5 a
'T
'P
b

h
5

BTa
'v
'T
b

P
2 vR

cp
5

BTa
'v
'T
b

P
2 vR

cP
ideal gas

2 3

Preal

Pideal gas

BT¢ '2v
'T2

≤PRdP

  5

RT2a
dB r
dT
b

cP
ideal gas

2 3

Preal

Pideal gas

bTBR a
dB r
dT
b 1 RT ¢d2B r

dT2
≤ R rdP

 (E5.9D)

EXAMPLE 5.9

Joule–Thomson 
Coeffi cient from the 
Virial Equation

c05.indd   300c05.indd   300 02/11/12   12:34 PM02/11/12   12:34 PM



5.5 Joule-Thomson Expansion and Liquefaction ◄ 301

To evaluate this expression for mJT, we can use the corresponding state relations given in 
Chapter 4. Using Equation (4.28) and the equations that follow Equation (4.29), we get:

 B r 5
B

RT
5

BrTc

PcT
5

Br

PcTr
5

B102 1 vB112

PcTr
 (E5.9E)

Substituting the generalized relations on page 241 into Equation (E5.9E) gives:

 B r 5
1
Pc

 B ¢0.083
Tr

2
0.422
Tr

2.6
≤ 1 v¢0.139

Tr
2

0.172
Tr

5.2
≤ R  (E5.9F)

We then take the fi rst and second derivatives:

 a
dB r
dT
b 5

1
Pc

 B ¢2
0.083
TTr

1
1.097
TTr

2.6
≤ 1 v¢2

0.139
TTr

1
0.894
TTr

5.2
≤ R  (E5.9G)

and, ¢d2B r
dT2

≤ 5
1
Pc

 B ¢0.166
T2Tr

2
3.950
T2Tr

2.6
≤ 1 v¢0.278

T2Tr
2

5.545
T2Tr

5.2
≤ R  (E5.9H)

Substituting Equations (E5.9G) and (E5.9H) into (E5.9D) and simplifying gives:

 mJT 5

2
RT
Pc

 B ¢2
0.083

Tr
1

1.097
Tr

2.6
≤ 1 v¢2

0.139
Tr

1
0.994
Tr

5.2
≤ R

cP
ideal gas

2 3

P

0

B R
Pc
B ¢0.083

Tr
2

2.853
Tr

2.6
≤ 1 v¢0.139

Tr
2

4.651
Tr

5.2
≤ R RdP

 (E5.9I)

where we have set Pideal to zero. Finally, integrating and substituting in T 5 TrTc, we get:

 mJT 5

2
Tc

Pc
 B ¢20.083 1

1.097
Tr

1.6
≤ 1 v¢20.139 1

0.994
Tr

4.2
≤ R

cP
ideal gas

R
2 PrB ¢0.083

Tr
2

2.853
Tr

2.6
≤ 1 v¢0.139

Tr
2

4.651
Tr

5.2
≤ R

 (E5.9J)

Equation (E5.9J) presents a generalized relation for mJT. If the critical properties and acentric 
factor of a species are known, we can use Equation (E5.9J) to calculate the Joule–Thomson 
coeffi cient at a specifi ed state at temperature T and pressure P.

Joule–Thomson expansion can be used to liquefy gases if it is performed in the region 
where mJT . 0 to the left of the inversion line in Figure 5.10. Liquefaction is an impor- 
tant process industrially; there is a signifi cant market for liquefi ed gases. For example, 
liquid nitrogen, helium, and hydrogen are often used to remove energy from cryogenic 
systems. Additionally, separation of nitrogen and oxygen from air can be accomplished 
by liquefaction. However, the temperatures at which these gases condense are quite low. 
He condenses at 4.4 K while N2 condenses at 77 K. The liquefaction of these gases can 
require a signifi cant amount of refrigeration.

A schematic of such a liquefaction process is shown in Figure 5.11a. The gas is fi rst 
compressed from state 1 to 2 to increase its pressure. However, during compression, 

Liquefaction
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302 ► Chapter 5. The Thermodynamic Web

the temperature of the gas also rises. It is then cooled from state 2 to state 3 to lower 
its temperature. These two processes are intended to bring it to the shaded region in 
Figure 5.10 and to put it in a state where a throttling process will bring it into the two- 
phase region. It now goes through an isenthalpic Joule–Thomson expansion, from state 3 
to state 4, where the temperature drops low enough to lead to condensation. The vapor 
and liquid streams at states 5 and 6, respectively, are then separated. An improvement 
to the liquefaction process is shown in Figure 5.11b. In this process, an additional heat 
exchanger is employed to recover the energy from the noncondensed gas. This gas is 
then recycled. The process depicted in Figure 5.11b is known as the Linde process.

Gas

Gas

1
2 3 4

5

6

68

5432
1

7

Liquid

Liquid

Separator

Compressor

Wc

Wc

Q
cooler

Q

Heat exchanger

 

Recycle

Joule-Thomson
expansion

Joule-Thomson

expansion

(a)

(b)

Figure 5.11 Liquefaction of gases using Joule–Thomson expansion. (a) Basic liquefaction process 
using Joule–Thomson expansion and (b) Linde process.

Consider the liquefaction of N2 by Joule–Thomson throttling. If the inlet to the expansion valve 
is at T1 5 2122°C and P1 5 100 bar and the outlet is at 1 bar, determine the percentage of 
N2 that is liquefi ed.

SOLUTION We can solve this problem using the generalized charts for enthalpy departure. 
Looking up properties for N2 from Appendix A.1, we get:

 Tc 5 126.2 3K 4

 Pc 5 33.8 bar

 v 5 0.039

Since the acentric factor, v, is small, we will use only the simple fl uid term in the generalized 
correlations. The reduced coordinates for state 1 are:

T1, r 5
T1

Tc
5

151 3K 4

126.2 3K 4
5 1.20     and     P1, r 5

P1

Pc
5

100 3bar 4

33.8 3bar 4
5 3.0

EXAMPLE 5.10

Liquefaction of N2 
by Joule–Thomson 
Throttling
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5.5 Joule-Thomson Expansion and Liquefaction ◄ 303

We can then fi nd the values for the enthalpy departure term in Table C.1 in Appendix C:

 BhT1, r, P1, r 2 hT1, r, P1, r
ideal gas

RTc
R 5 22.81 (E5.10A)

For state 2, we have:

P2,r 5
P2

Pc
5

1 3bar 4

33.8 3bar 4
5 0.03

Looking at Figure 5.5, we see that the two-phase region is at:

T2,r 5 0.61

so, T2 5 T2,rTc 5 0.61 3 126.2 3K 4 5 77 3K 4 

Applying Equation (5.47) for this isenthalpic process:

 
h2 2 h1

RTc
5 0 5

2DhT1, P1

dep

RTc
1

DhT1hT2

ideal gas

RTc
1

DhT2, P2

dep

RTc
 (E5.10B)

To fi nd the ideal gas enthalpy change, we need to look up the heat capacity from Appendix A.2:

cP

R
5 3.28 1 0.593 3 1023T

Therefore,

 
DhT1hT2

ideal gas

RTc
5

1
Tc
3

T2

T1

cP

R
 dT 5

1
126.2 3

77

151

33.28 1 0.593 3 1023T 4dT 5 21.28 (E5.10C)

Rearranging Equation (E5.10B) and plugging in values from Equations (E5.10A) and 
(E5.10C), we get:

DhT2, P2

dep

RTc
5

DhT1, P1

dep

RTc
2

DhT1hT2

ideal gas

RTc
5 21.53

It is useful to view this process on an hP generalized enthalpy chart, as shown in Figure E5.10. 
The “lever rule” is illustrated. The quality can be found by:

Dhdep
5 11 2 x 2Dhl

dep
1 xDhv

dep

Solving for x, we get:

x 5
Dhdep

2 Dhl
dep

Dhv
dep

2 Dhl
dep 5

21.5 1 5.1
20.1 1 5.1

5 0.72

Since the quality represents the fraction of vapor, we conclude that roughly 28% the inlet 
stream is liquefi ed.

(Continued)
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304 ► Chapter 5. The Thermodynamic Web

In this chapter, we developed a thermodynamic web to relate measured, fundamental, and 
derived thermodynamic properties. The web allows us to use available property data to solve 
fi rst- and second-law problems for gases with nonideal behavior. Typically, we want relationships 
between fundamental and derived thermodynamic properties, such as u, s, and h, and things we 
can measure, such as measured properties P, v, T, or quantities in which measured data are typi-
cally reported, such as cv, cP, b, k, and equations of state.

In solving these problems, it is often necessary to construct hypothetical paths to calculate the 
change in a desired property between two states. Similarly, the approach for developing solutions to 
the phase equilibria and chemical reaction equilibria problems in the second half of the text will rely on 
an ability to exploit property relations and form paths that allow us to use appropriate measured data.

For a system with constant composition, the two properties that we choose to constrain the 
state of the system become the independent properties. We can write the differential change of 
any other property, the dependent property, in terms of these two properties, as illustrated by 
Equation (5.4). From a combined form of the fi rst and second laws, we developed the fundamental 
property relations. We then used the rigor of mathematics to allow us to form this intricate web of 
thermodynamic relationships. Included in the web are the Maxwell relations, the chain rule, deriv-
ative inversion, the cyclic relation, and Equations (5.22) through (5.24). A set of useful relationships 
relating partial derivatives with T, P, s, and v is summarized in Figure 5.3. We use these relation-
ships to solve fi rst- and second-law problems similar to those in Chapters 2 and 3, but for real fl uids.

Departure functions often provide us a convenient path to calculate the nonideal contribu- 
tion to property changes for real gases (or liquids). The departure function of any thermodynamic 
property is the difference in that property between the real, physical state in which the species 
exists and that of a hypothetical ideal gas at the same T and P. On a molecular level, we can consider 
the departure function to represent the change in the value of a property if we could “turn off” 
the intermolecular interactions in the real fl uid. Plots of the simple fl uid and correction terms for 

 ►5.6  SUMMARY
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Figure E5.10 Liquefaction process of N2 from state 1 to state 2.
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5.7  Problems ◄ 305

the enthalpy departure function are presented in Figures 5.5 and 5.6, respectively. Tables of their 
values are presented in Appendix C (Tables C.3 and C.4). Analogous data for entropy departure 
are presented in Figures 5.7 and 5.8 and in Appendix C (Tables C.5 and C.6). These values are 
obtained from the Lee–Kesler equation of state.

Joule–Thomson expansion results from the unrestrained, free expansion of real gases. Such 
a process occurs at constant enthalpy and is termed isenthalpic. We can determine the change 
in temperature that results as the pressure decreases in the isenthalpic throttling process if we 
know the Joule–Thomson coefficient, mJT 5 1'T/'P 2h. Joule–Thomson expansion is the basis 
for  liquefaction processes, such as those shown in Figure 5.11.

 ►5.7  PROBLEMS
Conceptual Problems

5.1 Consider the following partial derivatives. For an ideal gas, state whether the value is positive, 
negative, zero, close to zero, or you cannot tell. Explain your answer.

¢ 'u
'T
≤

v
, ¢ 's
'T
≤

v
, ¢'u
'v
≤

T
, ¢ 's
'v
≤

T

5.2 Consider the following partial derivatives. For an ideal gas, state whether the value is positive, 
negative, zero, close to zero, or you cannot tell. Explain your answer.

¢ 'h
'T
≤

P
, ¢ 's
'T
≤

P
, ¢ 'h
'P
≤

T
, ¢ 's
'P
≤

T
, ¢ 'P
'T
≤

h

5.3 Consider the following partial derivatives. For a real gas dominated by attractive interactions, 
state whether the value is positive, negative, zero, close to zero, or you cannot tell. Explain your answer.

¢ 'u
'T
≤

v
, ¢ 's
'T
≤

v
, ¢'u
'v
≤

T
, ¢ 's
'v
≤

T

5.4 Consider the following partial derivatives. For a real gas dominated by attractive interactions, 
state whether the value is positive, negative, zero, close to zero, or you cannot tell. Explain your answer.

¢ 'h
'T
≤

P
, ¢ 's
'T
≤

P
, ¢ 'h
'P
≤

T
, ¢ 's
'P
≤

T
, ¢ 'P
'T
≤

h

5.5 Consider the following partial derivatives. For a liquid, state whether the value is positive, 
negative, zero, close to zero, or you cannot tell. Explain your answer.

¢ 'h
'T
≤

P
, ¢ 's
'T
≤

P
, ¢ 'h
'P
≤

T
, ¢ 's
'P
≤

T
, b, k

5.6 Consider the following partial derivatives. For an ideal gas, state whether the value is positive, 
negative, zero, close to zero, or you cannot tell. Explain your answer.

¢ 'g
'T
≤

P
, ¢ 'g
'P
≤

T
, ¢ 'g
'P
≤

P
, ¢ 'v
'P
≤

s

5.7 This question should be completed without doing any calculations. Consider the enthalpy depar-
ture function for the following cases. Rank them from the smallest magnitude to the largest. Explain.
(a) Methane at 180°C and 1 bar
(b) Methane at 240°C and 1 bar
(c) Methane at 180°C and 10 bar
(d) Water at 180°C and 1 bar
(e) Water at 240°C and 1 bar
(f) Water at 180°C and 10 bar
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306 ► Chapter 5. The Thermodynamic Web

5.8 Of the following mixture, which do you think has entropy departure function of larger 
magnitude
(a) 50 mol% methane mixed with 50 mol% ethane
(b) 50 mol% acetone mixed with 50 mol% chloroform? Explain.
5.9 You are using the Peng–Robinson equation of state to determine the entropy change of an 
ideal gas:

P 5
RT

v 2 b
2

aa 1T 2

v 1v 1 b 2 1 b 1v 2 b 2

Is it better to try s 5 s 1T,v 2  or s 5 s 1T,P 2? Explain.
5.10 Consider a gas that undergoes a process from state 1 to state 2. You know the ideal gas heat 
capacity and an equation of state. Which of the following hypothetical paths would be most appro-
priate to chose to calculate Du? Explain.

Path 1

Path 2 State 2

(T2, v2)

State 1

(T1, v1)

Path 3

Path 4

Δu

Temperature

V
o
lu

m
e

Path 1

Path 2 State 2

(T2, P2)

State 1

(T1, P1)

Path 3

Path 4

Δh

Temperature

P
re

s
s
u
re

5.11 Consider a gas that undergoes a process from state 1 to state 2. You know the ideal gas heat 
capacity and an equation of state. Which of the following hypothetical paths would be most appro-
priate to chose to calculate Dh? Explain.
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5.12 Consider the following property relation:

a
'u
'P
b

s

(a) Come up with a physical process on a system which is described by the relation above. Sketch 
the process and describe it as completely as needed so that this relation holds.
(b) Based on the process you chose in part (a), do you think the relation has a positive value, has a 
negative value, or is 0. Justify your answer.

Numerical Problems

5.13 Write equations analogous to Equation (5.5) for the exact differential of internal energy, du, 
in terms of each of the following sets of independent properties:
(a) u 5 u 1T, P 2  
(b) u 5 u 1T, s 2

(c) u 5 u 1h, s 2

5.14 Using the thermodynamic web, show that for an ideal gas:

u 5 u 1T only 2

5.15 For an ideal gas, show that:

cP 5 cv 1 R

5.16 Show that an ideal gas follows the cyclic relationship in P, v, and T.
5.17 Evaluate the derivative:

a
'h
'v
b

T,P

for a pure species that follows the Peng–Robinson equation of state. The subscript T,P indicates 
that both temperature and pressure are held constant.
5.18 Using the van der Waals equation, fi nd an expression for the derivative:

a
'h
'T
b

s
 

in terms of a, b, cP, R, v, and T.
5.19 Consider the following equation of state:

Pv
RT

5 1 1 B rP 1 C rP2

where B r and C r are constant parameters with no temperature dependence. In terms of B r, C r, R, 
P, T, and cP, fi nd the following expressions:

a
'h
'P
b

T
, a
'h
'P
b

s
, a
'h
'T
b

P
, a
'h
'T
b

s

5.20 Verify that:

(a) a
'P
'T
b

v
5

b

k

(b) cP 2 cv 5
vTb2

k
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308 ► Chapter 5. The Thermodynamic Web

5.21 Use the result of Problem 5.20(b) to calculate the difference, cP 2 cv, for liquid acetone at 
20°C and 1 bar. Data can be found in Table 4.4. Repeat for benzene and copper. How do the values 
you obtain for cv compare to the value for cP? Explain.
5.22 Verify that:

a
's
'v
b

T
5

b

k

and, a
's
'P
b

T
5 2bv

5.23 Before the proliferation of personal computers, it was often convenient to summarize ther-
modynamic property data in the form of graphic diagrams. The Mollier diagram presents h (y-axis) 
vs. s (x-axis). Obtain an expression for the slope of an isochor (constant-volume line) on a Mollier 
diagram for (a) an ideal gas (in terms of T, v, cv, cP, and R); (b) a van der Waals gas (in terms of T, 
v, cv, cP, a, b and R).
5.24 Develop a general relationship for the change in temperature with respect to pressure at 
constant entropy:

a
'T
'P
b

s

(a) Evaluate the expression for an ideal gas. 
(b) From the result in part (a), show that for an ideal gas with constant cP, an isentropic expansion 
from state 1 and state 2 yields Equation (2.49).
(c) Evaluate the expression for a gas that obeys the van der Waals equation of state.
5.25 Derive Equation (5.39).
5.26 Your company has just developed a new refrigeration process. This process uses a secret gas, 
called Gas A. You are told that you need to come up with thermodynamic property data for this 
gas. The following data have already been obtained for the superheated vapor:

P 5 10 bar P 5 12 bar

T [°C] v 3m3/kg 4 s [kJ/(kg K)] v 3m3/kg 4 s [kJ/(kg K)]

  80 0.16270 5.4960 0.13387 ?

100 0.17389 0.14347

As accurately as you can, come up with a value for s in the table above. Clearly indicate your 
approach and state any assumptions that you make. Do not assume ideal gas behavior.
5.27 Consider water at 250°C and 800 kPa. Determine a value for the partial derivative ¢ 's

'v
≤

Tby the following methods:
(a) Use the Redlich–Kwong equation of state.
(b) Use the steam tables directly.
(c) Use the steam tables together with the Maxwell relation given in Equation (5.18). 
Compare your answers and explain which one you think is the most accurate. 
5.28 A gas can be described by the following equation of state:

P 5
RT

v 2 b

where b 5 5 3 1024 m3/mol and c
ideal gas
P 5 35 J/ 1mol K 2 .

(a) Develop an expression of creal
P  for this gas.

(b) One mole of this gas fl ows through an adiabatic porous plug. It enters at 10 bar, 300ºC and it 
exits at 1 bar. What is the exit temperature?
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(c) Determine whether the Joule–Thompson coeffi cient, mTP 5 ¢'T
'P
≤

h,
 is positive, zero, or 

negative for this process. Is this result consistent with your result in part b?

(d) What is the entropy change of the universe? Is this a reversible process? 
5.29 One mole of methane in a piston-cylinder assembly undergoes an adiabatic compression from an 
initial state 1P1 5 0.5 bar, v1 5 0.05 m3/mol 2  to a fi nal state 1P2 5 10 bar, v2 5 3 3 1023 m3/mol 2 . 
Use the van der Waals equation of state for nonideal gas behavior. 

(a) How much work is done on the system?

(b) Do you expect the magnitude of work to be larger or smaller than what would be needed if 
methane behaved like an ideal gas? Explain based on molecular potential energy.
5.30 One mole of n-butane in a piston-cylinder assembly undergoes an irreversible isothermal 
expansion against a constant external pressure until the forces balance. The initial pressure is 10 
bar, and the initial molar volume is 3 3 1023 m3/mol, and the fi nal volume is 0.05 m3/mol. Take the 
temperature of the surroundings to be 298 K. Use the van der Waals equation of state and answer 
the following questions:

(a) What is the initial temperature?

(b) What is the fi nal pressure?

(c) How much work is done during this process?

(d) How much heat is transferred this process?

(e) What is the entropy change of the universe for this process?
5.31 Two moles of ethane in a piston-cylinder assembly undergo a reversible adiabatic compres-
sion. The initial pressure is 0.5 bar, and the initial volume is 0.1 m3. The fi nal volume is 0.002 m3. 
Use the van der Waals equation of state to account for intermolecular interactions. Answer the 
following questions:

(a) What is the initial temperature?

(b) What is the entropy change of the system for this process?

(c) What is the fi nal pressure? What is the fi nal temperature?

(d) How much work in [J] is done during this process?

(e) How much heat is transferred this process?

(f) Do you expecting the magnitude of work to be larger or smaller than what you would obtain if 
ethane behaved like an ideal gas? Please comment on your answer based on molecular interactions. 
5.32 Propane at 350°C and 600 cm3/mol is expanded in an isentropic turbine. The exhaust pres- 
sure is atmospheric. What is the exhaust temperature? PvT behavior has been fi t to the van der 
Waals equation with:

 a 5 92 3 105 3 1atm cm6 2 /mol2 4

 b 5 91 3cm3/mol 4

(a) Solve this problem using T and v as the independent properties, that is,

s 5 s 1T, v 2

(b) Solve this problem using T and P as the independent properties.
5.33 You need to design a heater to preheat a gas fl owing into a chemical reactor. The inlet tem-
perature is 27°C and the inlet pressure is 50 bar. You desire to heat the gas to 227°C and 50 bar. 
You are provided with an equation of state for the gas:

z 5 1 1
aP

"T
        with      a 5 20.070 3K1/2/bar 4
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310 ► Chapter 5. The Thermodynamic Web

and with ideal gas heat capacity data:

 
cP

R
5 3.58 1 3.02 3 1023T  where  T is in [K]

(a) Under these conditions, do attractive forces or repulsive forces dominate the behavior of this 
gas? Explain.

(b) As accurately as you can, calculate, in [J/mol], the amount of heat required.
5.34 Consider the piston-cylinder assembly shown below; 250 moles of gas expand isothermally 
after the removal of a 10,000-kg block.

(a) What is the internal energy change for the expansion process?

(b) What is the entropy change of the universe for this process?

Assume that the PvT behavior can be described by the van der Waals equation with 
a 5 0.5 3Jm3/mol2 4;  b 5 4 3 1025 3m3/mol 4; and that the ideal gas heat capacity has a constant 
value of cP

ideal gas
5 35J/ 1mol K 2 .

A = 0.1 m2

0.4 m

Isothermal expansion

Weightless, frictionless piston

State 1

250 mol of

van der

Waals gas

m = 10,000

kg
Patm

Patm

A = 0.1 m2

State 2

5.35 Consider the piston-cylinder assembly shown below. It is well insulated and initially contains 
two 10,000-kg blocks at rest on the 0.05-m2 piston. The initial temperature is 500 K. The ambient 
pressure is 10 bar. Two moles of gas A are contained in the cylinder. This gas is compressed in a 
process where another 10,000-kg block is added. The following data are available for gas A:

(i) Ideal gas heat capacity of gas A at constant pressure:

cP 5 20 1 0.05T

where cp is in [J/(mol K)] and T is in [K].

(ii) Gas A is can be described by the following equation of state:

P 5
RT

v 2 b
2

aP
T

with constants:

a 5 25 K     and     b 5 3.2 3 1025 m3/mol

Determine the temperature of gas A after this process. Note: This compression process is not 
isentropic. What is the entropy change of the universe for this process? 
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5.36 One mole of CO is initially contained on one-half of a well-insulated, rigid tank. Its tem-
perature is 500 K. The other half of the tank is initially at vacuum. A diaphragm separates the two 
compartments. Each compartment has a volume of 1 L. Suddenly, the diaphragm ruptures. Use 
the van der Waals equation for any nonideal behavior. Answer the following questions:
(a) What is cv at the initial state?
(b) Do you expect the temperature to increase, decrease, or remain constant. Justify your answer 
with molecular arguments. Be specifi c about the nature of the forces involved.
(c) What is the temperature of the fi nal state?
(d) What is the entropy change of the universe for this process?
5.37 A well-insulated, rigid vessel is divided into two compartments by a partition. The volume of 
each compartment is 0.1 m3. One compartment initially contains 400 moles of gas A at 300 K, and 
the other compartment is initially evacuated. The partition is then removed and the gas is allowed 
to equilibrate. Gas A is not ideal under these circumstances but can be described well by the fol-
lowing equation of state: 

P 5
RT

v 2 b
2

a
Tv2

with constants:

a 5 42 3 1J K m3 2 /mol2 4      and     b 5 3.2 3 1025 3m3/mol 4.

You may take the ideal gas heat capacity of gas A to be:

cv 5 13/2 2R

Calculate the fi nal temperature.
5.38 Consider fi lling a gas cylinder with ethane from a high-pressure supply line. Before fi lling, 
the cylinder is empty (vacuum). The valve is then opened, exposing the tank to a 3-MPa line at 
500 K until the pressure of the cylinder reaches 3 MPa. The valve is then closed. The volume of 
the cylinder is 50 L. For ethane, use the truncated virial equation of state, in pressure:

z 5
Pv
RT

5 1 1 B rP

with, B r 5 22.8 3 1028 3m3/J 4 

(a) What is the temperature immediately after the valve is closed?
(b) If the cylinder then sits in storage at 293 K for a long time, what is the entropy change of the 
universe (from the original, unfilled state)?

Psurr = 10 bar

A = 0.05 m2

2 moles of gas A

Well
insulated

Tinitial = 500 K

m = 10,000
kg

m = 10,000
kg

m = 10,000
kg

Process consists of adding third
10,000 kg block to compress piston
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5.39 One mole per second of gas at 10 bar and 500°C fl ows through an isentropic, adiabatic tur-

bine, where it exits at 1 bar. This gas can be described by the equation of state, P 5
RT

v 2 b
.

Where b 5 5 3 1024 m3/mol. The ideal gas heat capacity is given by cv 5
3
2

 R. Answer the follow-
ing questions:
(a) What is the exit temperature? 

(b) Is the coeffi cient m 5 ¢'T
'P
≤

s
 positive, zero, or negative for this process? Is this consistent with 

your result in part A? 

(c) What is the work obtained by the turbine, in [J/mol]? 

5.40 Following the process used in Example 5.5, develop an expression for the change in the 
dependent variable s in terms of the independent properties P and v, that is, s 5 s 1P,v 2 . Write 
your answer using cp, b, k, and v.

5.41 Following the process used in Example 5.5, develop an expression for the change in the 
dependent variable h in terms of the independent properties T and v, that is, h 5 h 1T,v 2 . Write 
your answer using cp, b, k, and v.

5.42 Following the process used in Example 5.5, develop an expression for the change in the 
dependent variable h in terms of the independent properties T and s, that is, h 5 h 1T,s 2 . Write 
your answer using cp, b, k, and v. Consider an isentropic expansion process. Determine how h 
changes with T. 

5.43 In analogy to Equation (5.43), develop an expression for the internal energy departure func-
tion in dimensionless coordinates:

DuTr, vr

dep

RTc
5

uTr, vr 2 uTr, vr

ideal gas

RTc
5 ?

5.44 Develop expressions for the enthalpy and entropy departure functions for a gas that follows 
the Redlich–Kwong equation of state.

5.45 Calculate the enthalpy and entropy departure for water at 400°C and 30 MPa using gener- 
alized correlations. Compare these values to those in the steam tables. The ideal heat capacity of 
steam is useful in this calculation.

5.46 Calculate the enthalpy and entropy change of C2H6 from a state at 300 K and 30 bar to a 
state at 400 K and 50 bar using departure functions.

5.47 Repeat Problem 5.32 using the entropy departure function.

5.48 Methane fl owing at 2 mol/min is adiabatically compressed from 300 K and 1 bar to 10 bar. 
What is the minimum work required?

5.49 Develop a relationship for the Joule–Thomson coeffi cient in terms of only the thermal expan-
sion coeffi cient, the heat capacity at constant pressure, and measured thermodynamic properties.

5.50 What is mJT for an ideal gas?

5.51 Determine expressions for the thermal expansion coeffi cient, the isothermal compressibility, 
and the Joule–Thomson coeffi cient for a gas that obeys the van der Waals equation of state, in 
terms of T, v, cv, a, b, and R.

5.52 Determine mJT for steam at 1 MPa and 300°C using data from the steam tables.

5.53 Use the van der Waals equation of state to plot the inversion line for N2 on a PT diagram, as 
schematically shown in Figure 5.10.

5.54 Ethylene is liquefi ed by a Joule–Thomson expansion. It enters the throttling process at 
50 bar and 0°C and leaves at 10 bar. What is the fraction of the inlet stream that is liquefi ed?
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5.55 The speed of sound, Vsound 3m/s 4, is formally equal to the partial derivative of pressure with 
respect to density at constant entropy:

Vsound
2 5 a

'P
'r
b

s

Show that,

a
'P
'r
b

s
5 2a

'P
'v
b

s
¢ v2

MW
≤

where MW is the molecular weight.
5.56 Based on the defi nition in Problem 5.55, use the thermodynamic web to come up with an 
expression for 3Vsound 4 in air. What is the value of 3Vsound 4 in air at 20°C? You may consider air to be 
an ideal gas with cP 5 17/2 2R. Based on this result, how far away is a bolt of lightning if you hear 
the thunder four seconds after you see the lightning.
5.57 Based on the defi nition in Problem 5.55, use the thermodynamic web to come up with an 
expression and a value for 3Vsound 4 in water at 20°C. Use the steam tables for thermodynamic prop-
erty data of liquid water.
5.58 We are interested in the thermodynamic properties of a strip of rubber as it is stretched (see 
below). Consider n moles of pure ethylene propylene rubber (EPR) that has an unstretched length z0. 
If it is stretched by applying a force F, it will obtain an equilibrium length z, given by:

F 5 kT 1z 2 z0 2

where k is a positive constant.

Mass

Stretched

state

Unstretched

state

E
P

Rz0

E
P

R

z

F = mg = kT(z − z0)

The heat capacity of unstretched EPR is given by:

 cz 5 a
'u
'T
b

z
5 a 1 bT  where a and b are constants

(a) Come up with fundamental property relations for dU and dA for this system, where A is the 
Helmholtz energy 1A 5 U 2 TS 2 . Recall from mechanics that the work required for a reversible 
elastic extension is given by:

dWrev 5 Fdz

(b) Develop an expression that relates the change in entropy to the changes in temperature and 
length, that is, the independent properties z and T (and constants a, b, k, n and z0). In other words, 
for S 5 S 1T, z 2 , fi nd dS. Hint: You will need to derive an expression for 1'S/'z 2T. This can be done 
with the appropriate Maxwell relationship.
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(c) Develop an expression that relates the change in internal energy to the changes in tempera-
ture and length. For U 5 U 1T, z 2 , fi nd dU.
(d) Consider the relative energetic and entropic contributions to the isothermal extension of EPR. 
The energetic force (the component of the force that, on isothermal extension of the rubber, 
increases the internal energy) is given by:

FU 5 a
'U
'z
b

T

while the entropic force is given by:

FS 5 2Ta
'S
'z
b

T

Come up with expressions for FU and Fs for EPR.
(e) If the change from the unstretched state to the stretched state above occurred adiabatically, 
would the temperature of the EPR go up, stay the same, or go down? Explain.
5.59 The process in Example 5.2 indicates that we need to put work into the system during an 
expansion process. Determine whether this result is possible (in a thermodynamic sense); if it is, 
explain this result physically.
5.60 Gas A expands through an adiabatic turbine. The inlet stream fl ows in at 100 bar and 600 K 
while the outlet is at 20 bar and 445 K. Calculate the work produced by the turbine. The following 
data are available for gas A. The ideal gas heat capacity for this process is:

cP 5 30.0 1 0.02T

where cP is in [J/(mol K)] and T is in [K]. PvT data has been fi t to the following equation:

P 1v 2 b 2 5 RT 1
aP2

T

where, a 5 0.001 3 1m3K 2 / 1bar mol 2 4  and,  b 5 8 3 1025 3m3/mol 4

5.61 A vessel with a total volume of 0.1 m3 has two compartments separated by a membrane. 
Compartment A has a volume of 0.005 m3 and contains 1 mol of ethane. Compartment B has a vol-
ume of 0.095 m3 and is evacuated. The vessel sits in an isothermal bath at 100°C. The membrane 
ruptures, fi lling the entire vessel with ethane. Assuming ethane can be described by van der Waals 
equation of state, answer the following questions:
(a) What do you expect the sign of DU to be? Explain based on your understanding of intermo-
lecular interactions.
(b) Determine the values for DU, Q, and W.
(c) Calculate the change in entropy of the system, surroundings, and universe. 
(d) If ethane is replaced with n-hexane, do you expect the magnitude of Q to increase, decrease, 
or stay the same? Explain.
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►CHAPTER

315

6

Phase Equilibria I: Problem 
Formulation 

Learning Objectives

To demonstrate mastery of the material in Chapter 6, you should be able to:

 ► Explain why it is convenient to use the thermodynamic property Gibbs 

energy to determine pure species phase equilibrium. Discuss the balance 

between energetic and entropic effects at equilibrium.

 ► Apply the fundamental property relation for Gibbs energy and other tools 

of the thermodynamic web to predict how the pressure of a pure species 

in phase equilibrium changes with temperature and how other properties 

change in relation to one another. Write the Clapeyron equation and use it to 

relate T and P for a pure species in phase equilibrium. Derive the Clausius–

Clapeyron equation for vapor–liquid mixtures, and state the assumptions 

used. Relate the Clausius–Clapeyron equation to the Antoine equation.

 ► Apply thermodynamics to mixtures. Write the differential for any extensive 

property, dK, in terms of m 1 2 independent variables, where m is the 

number of species in the mixture. Defi ne and fi nd values for pure species 

properties, total solution properties, partial molar properties, and property 

changes of mixing.

 ► Defi ne a partial molar property and describe its role in determining the 

properties of mixtures. Calculate the value of a partial molar property for 

a species in a mixture from analytical and graphical methods. Apply the 

Gibbs–Duhem equation to relate the partial molar properties of different 

species.

 ► Relate the volume, enthalpy, and entropy changes of mixing to the relative 

intermolecular interactions of like (i-i) and unlike (i-j) interactions. Defi ne the 

enthalpy of solution. Calculate the enthalpy of mixing from the enthalpy of 

solution or vice versa.

 ► Identify the role of the chemical potential—that is, the partial molar Gibbs 

energy—as the chemical criteria for equilibrium.

 ►6.1  INTRODUCTION
So far, we have used thermodynamics to form relationships between the states of a system 
that undergoes certain processes. We can apply the fi rst and second law to both revers-
ible and irreversible processes to get information about (1) how much power is needed 
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316 ► Chapter 6. Phase Equilibria I: Problem Formulation 

or obtained, (2) how much heat has been absorbed or dissipated, or (3) the value of an 
unknown property (e.g., T) of the fi nal (or initial) state. In the remaining chapters, we 
examine another type of problem that we can also use thermodynamics to address—the 
composition a mixture obtains when it reaches equilibrium between coexisting phases or 
in the presence of chemical reactions.

Chemical and biological engineers routinely deal with processes through which spe-
cies chemically react to form a desired product(s). This product must then be sepa-
rated from the other by-products as well as any reactants that remain. Typical separation 
schemes involve contact or formation of different phases through which one species of 
a mixture preferentially segregates. Separations technology is also a major concern in 
cleaning contaminated environments. Therefore, it is desirable to be able to estimate the 
degree to which species will react and the degree to which a given species will transfer 
into a different phase as a function of process conditions.

These problems lead to the second major branch of thermodynamics, which we will 
now formulate. It deals only with equilibrium systems. It should be pointed out that this 
branch still uses the same observations of nature (conservation of energy and directional-
ity) that we have already studied. In these problems, however, we wish to calculate how 
species distribute among phases when more than one phase is present (phase equi-
libria) or what types of species are formed and how much of each type is produced as 
systems approach equilibrium when the molecules in the system chemically react (chem-
ical reaction equilibria). We will consider phase equilibria fi rst. These calculations are 
restricted to equilibrium systems; therefore, they give information on the direction of the 
driving force for a given system (i.e., the system will spontaneously move toward its equi-
librium state) but no information on the rate at which it will reach equilibrium.

α

β

?

T P

nα
1,nα

2,nα
3,...,nα

i,...n
α
m

nβ
1
,nβ

2
,nβ

3
,...,nβ

i,...n
β
m

Figure 6.1 Generic phase equilibria problem.

The Phase Equilibria Problem

A generic representation of the phase equilibria problem is illustrated in Figure 6.1. 
In this picture, a and b can represent any phase: solid, liquid, or vapor. We may be 
interested in any of the following: vapor–liquid, liquid–liquid, liquid–solid, gas–solid, or 
solid–solid equilibrium. Can you think of an example of each type? We consider a closed 
system, since strictly speaking only closed systems can be in thermodynamic equilib-
rium. In an open system, mass fl ows into and out of the boundary. For mass to fl ow, some 
type of driving force, such as a pressure gradient, is necessary. However, we cannot 
simultaneously have a pressure gradient and mechanical equilibrium (equal pressure). 
Thus, we will develop our formalism for closed systems. Equilibrium analysis still plays 
an important part in open systems, since it tells us the driving force for the transfer of 
species from one phase to another.
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6.1  Introduction ◄ 317

As we learned in Chapter 1, for a system to be in thermal equilibrium, there are no 
temperature gradients in the system. Similarly, in mechanical equilibrium there cannot 
be a pressure gradient. Therefore, we can write.

 Ta 5 Tb      Thermal equilibrium (6.1)

and, Pa 5 Pb      Mechanical equilibrium (6.2)

These two criteria for equilibrium are obvious and therefore straightforward to for-
mulate; they deal with measurable properties. To see that these conditions represent 
criteria for equilibrium, you may ask, for example, “What would happen if Ta . Tb? ” 
Energy fl ows from hot to cold and will, therefore, fl ow from phase a to b until the tem-
peratures equilibrate. A similar argument can be made for pressure and mechanical 
equilibrium.1 

We will take thermal and mechanical equilibrium for granted in the following dis-
cussion; hence, in formulating the phase equilibria problem, we need only measure 
the temperature and pressure of one phase, and these values must apply to the entire 
system. This concept is illustrated schematically in Figure 6.1, where temperature and 
pressure measurements that are made only to phase a apply to the entire system. A 
piston–cylinder assembly is used to remind us that the system must be able to change in 
volume to accommodate thermal and mechanical equilibrium.

The driving force for species transfer is not so apparent. This chapter will focus on 
the following questions:

• What is the criterion for chemical equilibria of any species i?

?i
a

5 ?i
b for chemical equilibrium?

• How do I use these criteria to solve phase equilibria problems (with T and P known)?

Before we begin, note that neither mole fraction nor concentration, both measura-
ble properties, represents the driving force for species transfer between phases (as tem-
perature difference represents the driving force for energy transfer between phases). 
For example, consider an air–water system in phase equilibrium between the vapor and 
liquid phases. It would be absurd to think that oxygen will transfer from the air into the 
water until the mole fraction was 0.21 in the water, or conversely that water would trans-
fer into the air until the vapor was almost all water! Unfortunately, the thermodynamic 
property that drives a system toward chemical equilibrium, unlike thermal or mechani-
cal equilibrium, is not a measurable property.

There are two distinct issues imbedded in the problem described above. (1) We 
must learn why different phases coexist, be it for pure species or for mixtures. (2) We 
must also develop a formalism to account for mixtures and changing composition; up 
to this point, we have only dealt with constant-composition systems. Rather than tackle 
both these tasks simultaneously, our approach is to isolate each problem, solve it, and 
then integrate them together to solve the entire phase equilibria problem. Figure 6.2 
illustrates our solution strategy. In Section 6.2, we will learn why two phases coexist at 
equilibrium. We will do this for the simplest case possible—a pure species. In  Section 6.3, 
we will learn how to carefully (and formally) describe the thermodynamics of mixtures. 
Once we have learned these two concepts, they will be integrated together in Section 6.4 
to formulate the solution to the problem posed in Figure 6.1.

1 These criteria can be shown formally through the maximization of entropy.
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Figure 6.2 Reduction of the multicomponent phase equilibria problem.
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 ►6.2  PURE SPECIES PHASE EQUILIBRIUM

Gibbs Energy as a Criterion for Chemical Equilibrium

In this section, we will begin our discussion of equilibrium systems by considering phase 
equilibrium of a pure species (as shown in the upper right of Figure 6.2). Figure 6.3 
shows the the PT projection of the PvT surface that was introduced in Section 1.6. Three 
coexistence lines are denoted; these lines indicate the pairs of P and T values where more 
than one phase can be present at equilibrium. At all other values of P and T, a single 
phase is most stable, and we will not have phase equilibrium. 

Our objective in this section is to develop a criterion that tells us when two or more 
phases can coexist at equilibrium or, conversely, when only a single phase is stable. The 
second law of thermodynamics can give us some insight into answering this question. We 

Figure 6.3 Identification of the coexistence lines on the PT projection of the PvT surface. Along 
these lines, two phases can coexist in phase equilibrium.

Vapor

LiquidSolid

P

T

Coexistence

lines

Critical
point
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saw in Chapter 3 that entropy relates to the directionality of a process. Equilibrium rep-
resents the state at which the system has no tendency to change (i.e., no further direc-
tionality). The equilibrium state occurs when the entropy of the universe is a maximum. 
Thus, we can determine if a pure species at temperature T and pressure P will exist in 
a single phase or if it can exist with two (or three) phases present at equilibrium by cal-
culating in which case the entropy of the universe is greater. However, this approach is 
inconvenient because we need to do calculations of the entropy of the entire universe 
(i.e., we need to calculate changes in entropy of the surroundings as well as the system). 

We would prefer a way to tell if we have phase equilibrium by considering only 
properties of the system. In this section, we use a combination of the fi rst and the second 
laws to develop a new property, Gibbs energy, G. This property is useful because by 
just looking at the Gibbs energy of each phase in the system, we can determine if either 
phase is more stable or, alternatively, if the two phases can coexist at equilibrium. We will 
now explore how Gibbs energy provides this information.

Consider a closed system composed of pure species i in mechanical and thermal 
equilibrium and, therefore, at constant T and P. In most phase equilibria problems, the 
only work is Pv work. If we assume there is only Pv work, the fi rst law in differential form 
can be written as:

dUi 5 dQ 1 dW 5 dQ 2 PdVi 

We introduce the subscript “i” to denote that the analysis is performed for pure spe-
cies i. The rationale for this nomenclature will be discussed further when mixtures are 
addressed in Section 6.3. 

For mechanical equilibrium, we have constant pressure, that is, dP 5 0. Therefore, 
we can subtract VidP from the right-hand side of the previous equation to get:

 dUi 5 dQ 2 PdVi 2 VidP 5 dQ 2 d 1PVi 2  

Bringing the d 1PVi 2  term to the left-hand side and applying the defi nition of enthalpy 
gives:

dHi 5 dQ

The second law can be written:

dSi $
dQ

T

where the inequality holds for irreversible (directional) processes while the equality 
holds for reversible processes. Solving for dQ, in each of the previous two equations and 
rearranging gives:

0 $ dHi 2 TdSi

Thermal equilibrium requires that we be at constant temperature 1dT 5 0 2 ; thus, the 
term SdT may be subtracted from the right-hand side as follows:

0 $ dHi 2 TdSi 2 SidT 5 d 1Hi 2 TSi 2

We recognize the group of variables on the right-hand side from Chapter 5 as the 
derived thermodynamic property Gibbs energy, Gi:

 Gi ; Hi 2 TSi (5.3) 
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Hence, combination of the fi rst and second laws attributes the following behavior to our 
closed system:

 0 $ 1dGi 2T,P (6.3)

The subscripts “T” and “P” remind us that this expression is valid only at constant tem-
perature and pressure, which are the criteria for thermal and mechanical equilibrium, 
respectively. Equation (6.3) says that for a spontaneous process, the Gibbs energy of a 
system at constant pressure and temperature always gets smaller (or stays the same); 
it never increases.2 The system wants to minimize its Gibbs energy. Equilibrium is the 
state at which the system no longer changes properties; therefore, equilibrium occurs at 
minimum Gibbs energy. 

If we have two phases a and b, we can write the total Gibbs energy of pure species 
i as:

 Gi 5 ni
agi

a 1 ni
bgi

b (6.4)

where ni
aand ni

b refer to the number of moles of i in phases a and b, respectively. Dif-
ferentiating this expression and applying the inequality represented in Equation (6.3), 
we get:

 dGi 5 d 1ni
agi

a 1 ni
bgi

b 2 5 ni
adgi

a 1 gi
adni

a 1 ni
bdgi

b 1 gi
bdni

b # 0 

Two independent properties constrain the state of each phase of the pure substance i; 
thus, at a given T and P, gi

a and gi
b are constant. Consequently, the fi rst and third terms 

go to zero.
Since we have a closed system, a species leaving one phase must be added to the 

other phase, so,

dni
a 5 2dni

b

Substitution into the previous equation gives:

1gi
b 2 gi

a 2dni
b # 0

From this equation, we can infer how the species in a system respond to approach equi-
librium. Consider a system that initially has species in both phases a and b. If gi

b is 
larger than gi

a, dni
b must be less than zero to satisfy the inequality. Physically, species i 

will transfer from phase b to phase a, lowering the Gibbs energy, Gi, of the system. Spe-
cies will transfer until only phase a is present, and we will not have phase equilibrium. 

2 Alternatively, the development of Gibbs energy can also include the more general case of non-Pv work, W* . 
The analog to Equation (6.3) would then read:

 dW* $ 1dGi 2T,P (6.3*)

Integration of Equation (6.3*) shows that a process that raises the Gibbs energy is possible, but it will not occur 
spontaneously; rather, it will only occur with a commensurate input of work, W*, of at least the same amount 
that the Gibbs energy rises. This relationship can tell us, for example, the minimum amount of work required 
to separate two gases that have spontaneously mixed. Conversely, Equation (6.3*) provides us the maximum 
useful work we can get from a spontaneous process at constant T and P. Section 9.6 treats a case where non-Pv 
work is important.

0 0
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Conversely if gi
a is larger than gi

b, only phase b will be present at equilibrium. However, 
if the Gibbs energies of both phases are equal, this equation becomes an equality and the 
system has no impetus to change. This condition represents equilibrium. 

Thus, the criterion for chemical equilibrium is when the Gibbs energy is at the 
minimum:

 gi
a 5 gi

b (6.5)

Note the similarity between Equation (6.5) and Equations (6.1) and (6.2). The derived 
variable, Gibbs energy, although not directly measurable, provides the same information 
with regard to chemical equilibrium that temperature does for thermal equilibrium and 
pressure for mechanical equilibrium!

Roles of Energy and Entropy in Phase Equilibria

We will look at the simple system shown in Figure 6.4 to explore the implications of the 
criterion discussed above. Specifi cally, we will examine the interplay between energetic 
effects and entropic effects in determining the Gibbs energy. Figure 6.4 shows a system 
in which an ideal gas and a perfect crystal coexist at temperature T and pressure P. The 
solid consists of pure a, while the ideal gas is comprised of both a and b. Species b is 
noncondensable and is not incorporated into the solid lattice. 

We will explore how the Gibbs energy of this system depends on the fraction of a 
that is vaporized. As we have just seen, the system obtains equilibrium in the state where 
the Gibbs energy is minimized. However, Gibbs energy can be lowered by either lower-
ing h or increasing s. The right side of Figure 6.4 shows plots of various properties of a in 
this system vs. fraction of species a in the vapor. In these plots, enthalpy is related to the 
energetics of the system. Recall from Section 2.6 that enthalpy is the appropriate prop-
erty to quantify the energetics of a closed system at constant pressure, as it combines 
internal energy with Pv work. The entropy is multiplied by T to give it units of energy, so 
we can plot it on the same graph. The Gibbs energy is found by subtracting Ts from h.

First, consider the enthalpy of the system. Since we have an ideal gas, there is no 
intermolecular potential energy in the gas phase, just molecular kinetic energy, which is 

Figure 6.4 A schematic of a simple phase equilibria problem and a plot of some thermodynamic 
properties at a temperature where both solid and vapor phases coexist at equilibrium.
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solely a function of temperature. On the other hand, the solid is more stable than the 
gas and has lower enthalpy due to the attractive forces between bonded a atoms. The 
enthalpy in the entire system can be related to the fraction of atoms in the solid. Con-
sider the vaporization process. As a bond in the solid is broken to increase the fraction of 
a in the vapor, the system increases in molecular potential energy by an amount propor-
tionate to the bond enthalpy. Each atom that leaves the solid increases the enthalpy in 
the system by the same amount. This proportionate increase manifests itself in a linear 
relation between the enthalpy and the fraction of a in the vapor phase, as illustrated in 
Figure 6.4. 

Now consider the entropy of the system. The entropy will not increase linearly, as 
enthalpy did. In the case that all a is in the solid and all the vapor is b, we have as ordered 
a system as we possible can. The fi rst atom of solid that evaporates will cause a large 
increase in “disorder,” or more precisely the gas will be able to take on many more dif-
ferent confi gurations. As more and more atoms vaporize, they enter a gas that has more 
and more a; therefore, for each additional atom, the additional increase in entropy is 
less and less. Intuitively, we can see that there is a lot more randomness introduced by 
the fi rst atom leaving a pure solid and going into the vapor than when there are already 
many a atoms in the gas phase.3 This relationship was described in Chapter 3 and can be 
formally developed using statistical mechanics. It is also plotted in Figure 6.4.

In this system, there are two tendencies that oppose each other. The perfect crystal 
with no fraction of a in vapor is the system of minimum energy (or enthalpy), but the gas 
with all a vaporized maximizes entropy. To see the state that the system will obtain at equi-
librium, we need to determine the extent to which each effect dominates. To do so, we 
need only consider the Gibbs energy 1ga 5 ha 2 Tsa 2  for the system. The optimal com-
promise between minimum enthalpy and maximum entropy occurs with part solid and 
part vapor. At low vapor fractions, the increase in entropy caused by introducing a into 
the gas phase more than offsets the increase in enthalpy caused by breaking a bond in the 
solid. Therefore, the Gibbs energy is lowered, so this process will occur spontaneously, 
and the system will tend to sublimate. Conversely, at high vapor fractions, the increase in 
stability caused by forming a solid more than adequately compensates for the decrease in 
entropy associated with losing an atom from the vapor; thus, the gas will tend to crystal-
lize. These two effects are indicated by arrows in Figure 6.4. The system will exist with 
two phases in equilibrium in between these extremes with ga

s 5 ga
v 4 as illustrated.

Now consider a much lower temperature. Since entropy is multiplied by T, the 
effect of randomness (entropy) cannot compete with the minimization of enthalpy; in 
this case, the equilibrium state (minimum g) occurs when the system exists as a pure 
solid with no a in vapor. Hence all the vapor crystallizes. Conversely, at very high tem-
peratures, the effect of entropy dominates and only vapor exists. This behavior is con-
sistent with our experience. Solids exist at low temperature and as the temperature is 
increased, they sublime (or melt).

The second law states that entropy goes to a maximum; yet if our system were at 
maximum entropy, the solid phase would not exist. How do you resolve this paradox? 
[Hint: How is the temperature being kept constant?] 

3Alternatively, we can view the increase in entropy when species a goes into the gas without reference to 
species b. Since the gas is ideal, species a does not know that b is there. However, the partial pressure of a 
increases as more and more a goes into vapor phase. In Example 6.11, we will quantitatively show that the 
increase in entropy goes as ya lnya and is, indeed, not linear.
4 Intuitively, we can see that this equilibrium problem can be cast as a “pure” species problem since the gas 
phase is ideal and a does not know b is there. After we treat mixtures, in general, we will formally see that this 
relation holds in this special case. It is presented here to help form a conceptual framework for g.
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6.2  Pure Species Phase Equilibrium ◄ 323

We have seen that the Gibbs energy determines whether a process can occur spontaneously. 
This concept can be applied to understand aspects of biological systems. Use the Gibbs energy 
to show why the proteins that control complex living organisms are not stable at high ambient 
temperatures.

SOLUTION The structure of proteins can be considered in different levels of organization. 
Proteins are long-chain polymers in which a sequence of amino acids are linked by peptide 
bonds—a bond between the carbon atom in the carboxyl group from one amino acid and the 
nitrogen atom in the amino group from the neighboring amino acid. This chain forms the pri-
mary structure of the protein. The polymer molecule then folds back upon itself, forming intra-
molecular coulombic, hydrogen, and van der Waals bonds between different, non- neighboring 
amino acids in the chain. The fi rst folding level forms the secondary structure of the protein. 
Common secondary structures include a-helices and b-pleated sheets. The third and fourth 
folding levels form the tertiary and quaternary structure of the protein. The resulting well-
defi ned structure has the precise chemical properties that enable the protein to perform its 
specifi c function.

We consider a native protein (n) with its structure intact and a denatured protein (d) that 
no longer has its well-defi ned structure and cannot perform its specifi ed function. The native 
protein remains intact only within a limited temperature range above room temperature. We 
can understand this result in terms of the Gibbs energy of the protein. The intramolecular 
bonds that defi ne the structure of a protein make it energetically favorable relative to its 
denatured analog in which some of the bonds of the higher levels of organization are broken; 
thus,

 hd . hn (E6.1A)

On the other hand, the denatured protein is no longer limited by its specifi c constrained 
three-dimensional structure and may undertake many more possible confi gurations. Hence, its 
entropy is higher, that is:

 sd . sn (E6.1B) 

To see whether a protein will spontaneously denature, we consider the Gibbs energy 
difference between its native and denatured forms. Applying the defi nition of Gibbs energy:

 Dg 5 gd 2 gn 5 1hd 2 hn 2 2 T 1sd 2 sn 2  (E6.1C)

The sign of the Gibbs energy change in Equation (E6.1C) depends on the temperature 
of the system. At ambient temperature, the fi rst term in Equation (E6.1C) dominates and 
inspection of Equation (E6.1A) shows Dg . 0. Thus, the protein will not spontaneously 
denature. As the temperature becomes higher, the second term becomes more important and 
Dg , 0 since the entropy of the denatured protein is higher. Thus, at higher temperatures, 
proteins spontaneously denature. The trade-off between the energetically favored hydrogen 
bonds and electrostatic and van der Waals interactions and the entropically favored randomness 
of the denatured state determines the temperature at which a protein is no longer stable. In 
biological systems, this balance commonly occurs between 50°and 70°C. We will calculate this 
temperature for the protein lysozyme in Example 6.2.

The above analysis is simplifi ed since we have not considered the interactions of the 
protein with the solution in which it sits; yet it is essentially valid. However, in many cases the 
solvent–protein interactions form an important component in understanding the behavior of 
these systems; we will have to wait until we learn about the thermodynamics of mixtures to 
address this more complicated case.

EXAMPLE 6.1

Role of Gibbs 
Energy in Biological 
Systems–Qualitative

c06.indd   323c06.indd   323 05/11/12   8:23 PM05/11/12   8:23 PM



324 ► Chapter 6. Phase Equilibria I: Problem Formulation 

We can use the principles of phase equilibrium to learn about the stability of proteins in 
biological systems. In this example, we consider the phase equilibrium of the protein lysozyme 
(l) between its native phase, n, and its denatured phase, d, where unfolding occurs. 
The following thermochemical data are available. The heat capacity for each state is independent 
of temperature and is given by:

 Denatured: cP,d 5 15.1 B kJ

mol K
R    Native: cP,n 5 6.0 B kJ

mol K
R  

At 25°C, the enthalpy and entropy differences between native and denatured states are given 
by:

 hd 2 hn 5 242 B kJ

mol
R   and  sd 2 sn 5 618 B J

mol K
R

Answer the following questions:
 A. At 25°C, which phase is stable? Justify your answer.
 B. Plot the difference in Gibbs energy from the native state to the denatured state 

1gd 2 gn 2  versus temperature, T. On the plot label the following:
 i.  The heat-denaturation temperature, which is given as the temperature above 

which the native protein is no longer thermodynamically stable. 
 ii.  The cold-denaturation temperature, which is given as the temperature below 

which the native protein is no longer thermodynamically stable.
 iii. The temperature that the native state is most stable. 

SOLUTION A schematic of these two phases at equilibrium is shown in Figure E6.2A. In its 
native phase, the polymer folds back over itself with the molecules forming secondary bonds, 
as shown in the inset in the lower left of the fi gure. When it becomes denatured, it unfolds as 
shown in the upper right. As discussed in Example 6.1, the additional bonding in the native 
state gives it a lower enthalpy relative to the denatured state; however, the native state is also 
more constrained in movement giving it a lower entropy.

 A. As we have just learned, the thermodynamic property Gibbs energy, g, characterizes 
the trade-off between enthalpy and entropy and tells us which phase is more stable. 
Hence, we need to calculate the difference in Gibbs energy between the protein’s 

EXAMPLE 6.2

Thermodynamic 
Prediction for the 
Temperatures at 
Which a Protein 
Unfolds

Figure E6.2A Schematic of the equilibrium between the native phase, n, and the denatured 
phase, d, of the protein lysozyme. The insets show molecular representations of the protein, 
which unfolds in the denatured phase. 

d

n

1

26

84

72

66

56

110

124

9540

nn
l

nd
l

T

Protein lysozyme phase

equilibrium

P

1

40

95

2684

124

58

6572

110

Native molecule

Denatured molecule

c06.indd   324c06.indd   324 05/11/12   8:23 PM05/11/12   8:23 PM



6.2  Pure Species Phase Equilibrium ◄ 325

denatured state and the native state. Using the values for enthalpy and entropy dif-
ferences provided earlier, we get:

 gd 2 gn 5 1hd 2 hn 2 2 T 1sd 2 sn 2

 5 24,200 2 298 3 618 5 57,800 B J

mol
R

Because the change in Gibbs energy is positive, the Gibbs energy in the native state 
is lower than the denatured state. Therefore, the native state is more stable, and the 
protein will not spontaneously unfold.

 B. To solve for the difference in Gibbs energy as a function of temperature, it is conveni-
ent to fi rst specify a hypothetical path. As is often the case in creating hypothetical 
paths, We can take one of many approaches. We illustrate one approach next, but two 
other possibilities are developed in Problem 6.40. 

To calculate the difference in Gibbs energy at any temperature, we can calculate 
the differences in enthalpy and entropy separately and then use the defi nition, 
g 5 h 2 Ts. Figure E6.2B shows the three-step process for enthalpy (left) and 
entropy (right). We start each path at the native state at temperature, T. The fi rst 
step is to change the temperature in that phase to 298 K. This is a “sensible heat” 
calculation, as shown in Sections 2.6 and 3.6. In this way, each path goes through a 
temperature of 298K, where we can use the provided data in the next step. In the 
third step, we change the temperature of the denatured protein back to T. Hence, the 
limits of integration for step 3 are opposite those of step 1.

denaturednative

denaturednative T

cP,ndT∫
T

298

T = 298[K]

∫ cP,ddT
T

298

(hd − hn)298

hd − hn

denaturednative

denaturednative T

cP,n∫
T T

298

T = 298[K]

(sd − sn)298

sd − sn

dT
cP,d∫

T

T298
dT

Figure E6.2B  Thermodynamic paths to calculate differences in enthalpy (left) and entropy (right) between 
the denatured state and the native state at any temperature. 

Applying the paths shown in Figure E6.2B, we get:

hd 2 hn 5 3

298

T

cP,n dT 1 1hd 2 hn 2 298 1 3

T

298

cP,d dT

 5 1hd 2 hn 2 298 1 1cP,d 2 cP,n 2 1T 2 298 2  (E6.2A) 

(Continued)
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sd 2 sn 5 3

298

T

cP,n

T
 dT 1 1sd 2 sn 2 298 1 3

T

298

cP,d

T
 dT 5 1sd 2 sn 2 298

   1 1cP,d 2 cP,n 2  ln¢ T
298

≤  (E6.2B) 

where we took the heat capacity out of the integral because it is constant. Inserting Equations 
(E6.2A) and (E6.2B) into the defi nition for Gibbs energy gives:

 gd 2 gs 5 1hd 2 hn 2 2 T 1sd 2 sn 2

 5 1hd 2 hn 2 298 1 1cP,d 2 cP,n 2 1T 2 298 2 2 TB 1sd 2 sn 2 298 1 1cP,d 2 cP,n 2  ln¢ T
298

≤ R
We can use the values for the thermochemical data presented earlier to get:

 gd 2 gs 5 242 1 9.1 1T 2 298 2 2 TB0.618 1 9.1 ln¢ T
298

≤ R  (E6.2C) 

where the numerical values are in units of kJ, mol, and K, as appropriate. Equation (E6.2C) 
can be used to plot gd 2 gn vs. T, as shown in Figure E6.2C. The Gibbs energy difference 
increases, goes through a maximum, and then decreases. From this plot, we see that there is a 
“window” in which the native state of the protein has a lower Gibbs energy than the denatured 
state and is, therefore, stable. This region is shown by the shaded area. The points where the 
curve crosses zero demark the cold- and heat-denaturation temperatures.

The cold-denaturation temperature and heat-denature temperature are found by 
setting Equation (E6.2C) to zero. The values are found to be 218 K and 343 K, respectively. 
In between these temperatures the native protein is stable. Outside this range, the protein 
unfolds and becomes denatured. The maximum value for gd 2 gn occurs at 278 K. This value 
can be found either by setting the derivative of Equation (E6.2C) equal to zero and solving 
for T, or by simply fi nding where the function reaches a maximum numerically (solver in 
Excel can be useful for this approach).
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Figure E6.2C Difference in Gibbs energy between the native phase, n, and the denatured 
phase, d, of the protein lysozyme. The shaded area represents the range over which the native 
protein has a lower Gibbs energy and is stable.  
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The Relationship Between Saturation Pressure and Temperature: The Clapeyron Equation

In Section 1.5, we learned that P and T are not independent for a pure species that exists 
in two phases at equilibrium. We now wish to come up with an expression relating the 
pressure at which two phases can coexist to the temperature of the system. This expres-
sion will allow us to calculate, for example, how the saturation pressure changes with 
temperature. Recall that the saturation pressure, Pi

sat, is defi ned as the unique pressure 
at which pure species boils at a given temperature.

Before we begin, we will qualitatively look at the issues of this problem in the 
context discussed above. We begin with the criterion for equilibrium between two 
phases:

 gi
a 5 gi

b (6.5)

Again, a and b can represent the vapor, liquid, or solid phases. Since two intensive vari-
ables completely specify the state of the system, the value of g for each phase is con-
strained at a given T and P. Thus, we can plot surfaces of Gibbs energy for each phase, as 
the left side of Figure 6.5 illustrates. The intersection of the two surfaces, the so-called 
coexistence line, represents the conditions where Equation (6.5) is satisfi ed and the two 
phases are in equilibrium. This is the same line you see on the PT projection of the PvT 
surface in Figure 6.3. To the left of the coexistence line, phase b has lower Gibbs energy 
and will represent the phase at which the Gibbs energy is at a minimum. Conversely, 
to the right, only phase a will exist. At the given set of conditions for P and T on the 
 coexistence line, however, both phases exhibit identical Gibbs energies; thus, phases a 
and b coexist in phase equilibrium.

Which phase is more random? Which phase has stronger intermolecular attraction? 
Let us say we know the equilibrium temperature and pressure of a two phase system, 

such as at state 1 shown on the PT diagram on the right side of Figure 6.5. We would like 
to be able to calculate how much the pressure will need to change for any given tem-
perature change so that the system remains in phase equilibrium. The approach we take 
is shown in Figure 6.5. For a differential change in the equilibrium temperature dT, the 
change in equilibrium pressure, dP, can be calculated, because Equation (6.5) must be 

Phase α is
more stable

Phase β
has lower

g and is
more stable

Phase β

Coexistence
line (phase

equilibrium)

Coexistence

line

α

β

P

g

gα
i   

= gβ
i

gα
i   

+ dgα
i  = gβ

i   
+ dgβ

i 

T

P

T

Stable 1 Phase α

dg

Figure 6.5 (left) Intersection of two Gibbs surfaces for phases a and b to form a coexistence line; 
(right) calculation strategy to determine how the equilibrium pressure changes with temperature 
along a coexistence line. 
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valid along both points on the coexistence line. Hence, both ga
i 1 dga

i 5 gb
i 1 dgb

i  and
ga

i 5 gb
i . Subtraction gives:

 dgi
a 5 dgi

b (6.6)

As we saw in Chapter 5, the thermodynamic web provides a useful vehicle for relat-
ing derived thermodynamic properties to measured properties. Applying the funda-
mental property relation for g [Equation (5.9)] to each phase, we get:

 vi
adP 2 si

adT 5 vi
bdP 2 si

bdT 

The phases have been omitted on T and P. Why? Rearrangement yields:

 
dP
dT

5
si

a 2 si
b

vi
a 2 vi

b
 (6.7)

Now we can also apply Equation (6.5):

 gi
a 5 gi

b 

or using the defi nition of Gibbs energy, Equation (5.3) we get:

 hi
a 2 Tsi

a 5 hi
b 2 Tsi

b 

Solving for the difference in entropy:

si
a 2 si

b 5
hi

a 2 hi
b

T

Substitution into Equation (6.7) yields the Clapeyron equation:

 
dP
dT

5
hi

a 2 hi
b

1vi
a 2 vi

b 2T
 (6.8)

The Clapeyron equation relates the slope of the coexistence curve to the enthalpy and 
volume changes of phase transition, both experimentally accessible properties! Can you 
think of how to measure these values? In other words, it tells us the pressure change, 
dP, which is necessary to maintain phase equilibria of a substance when the tempera-
ture has changed by dT.

Pure Component Vapor–Liquid Equilibrium: The Clausius–Clapeyron Equation

Next we consider the specifi c case of vapor–liquid equilibrium. In this case, the molar 
volume of the liquid is often negligible compared to the volume of the vapor:

 vi
l V vi

v or vl < 0 1Assumption I 2

This assumption implies we are down the liquid–vapor dome shown in Figure 1.6, away 
from the critical point. If additionally we consider the vapor to obey the ideal gas model,

 vi
v 5

RT
P

 1Assumption II 2

c06.indd   328c06.indd   328 05/11/12   8:23 PM05/11/12   8:23 PM



6.2  Pure Species Phase Equilibrium ◄ 329

the coexistence equation for vapor–liquid equilibrium [Equation (6.8)] becomes:

dPi
sat

dT
5

Pi
satDhvap,i

RT2

where Dhvap,i 5 hi
v 2 hi

l and Pi
sat represent the enthalpy of vaporization and the satura-

tion pressure, respectively, of species i at temperature T. 
Separating variables,

 
dPi

sat

Pi
sat

5
Dhvap,idT

RT2
 (6.9a)

Equation (6.9a) is called the Clausius–Clapeyron equation. It can be rewritten in the 
form:

 d lnPi
sat 5 2

Dhvap,i

R
 da

1
T
b  (6.9b)

If we assume the enthalpy of vaporization is independent of temperature, that is,

 Dhvap,i 2 Dhvap,i 1T 2  (Assumption III)

we can either defi nitely integrate Equation (6.9b) between state 1 and state 2 to get:

 ln 
P2

sat

P1
sat

5 2
Dhvap,i

R
 B 1

T2
2

1
T1
R  (6.10)

or write the indefi nite integral of Equation (6.9b):

 ln Pi
sat 5 const 2

Dhvap,i

RT
 (6.11)

In fact, Assumption III is not valid over large temperature ranges. The enthalpy of 
vaporization decreases as temperature increases, so Equations (6.10) and (6.11) can be 
used only over a limited temperature range. However, in surprisingly many cases, the 
error introduced by Assumption III is approximately offset by the errors of Assumptions 
I and II, leading to linear behavior of ln Psat vs. T21 over a larger range than would be 
originally surmised.

Saturation pressure correlations are commonly reported in terms of the Antoine 
equation:

 lnPi
sat 5 A 2

A
C 1 T

 (6.12)

Here A, B, and C are empirical parameters that are available for many fl uids. Values for 
Antoine constants can be found in Appendix A.1. The Antoine equation, an empirical equa-
tion, is strikingly similar to Equation (6.11). The Antoine equation brings back a similar 
theme to that discussed with equations of state (Chapter 4). When an empirical equation’s 
form refl ects the basic physics that it is trying to describe, it tends to work better. Why do 
you think the Antoine equation works better than the Clausius–Clapeyron equation in cor-
relating saturation pressures? There are several more complex correlations reported in the 
literature for Psat as a function of T. These forms will not be covered in this text.
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Trimethyl gallium, Ga 1CH3 2 3, can be used as a feed gas to grow fi lms of GaAs. Estimate the 
enthalpy of vaporization of Ga 1CH3 2 3 from the data of saturation pressure vs. temperature 
given in Table E6.3.5

SOLUTION Examination of Equation (6.11) suggests that if we plot ln Psat i   vs. T21, the slope 
will give 2 1Dhvap, Ga1CH323/R 2 . The data in Table E6.3 are plotted in such a manner in Figure 
E6.3. A least-squares linear regression is also shown in Figure E6.3. The high correlation coef-
fi cient implies Dhvap, Ga1CH323 is constant in this temperature range.

Taking the slope of the line, we get:

2
Dhvap,Ga 1CH323

R
5 24222.1 3K 4 

Solving for the enthalpy of vaporization gives:

Dhvap, Ga1CH323 5 35.1 3kJ/mol 4

For comparison, a value measured by static bomb combustion calorimetry has been reported 
as 33.1 kJ/mol, a difference of 6.0%.

EXAMPLE 6.3

Estimation of 
the Enthalpy of 
Vaporization from 
Measured Data

TABLE E6.3 Saturation Pressure Data for Ga 1CH3 23 

T [K] Psat
i   3kPa 4

 

250  2.04

260  3.3

270  7.15

280 12.37

290 20.45

300 32.48

310 49.75

Figure E6.3 Plot of data in Table E6.2 and a least-squares linear fi t of the data.

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0.00330.0032 0.0034 0.0035 0.0036

T

0.0037 0.0038 0.0039 0.004
0

1 [K−1]

InPi
sat  = −4222.1T −1 + 17.556

R 2 = 0.9973

In
(P

is
a
t [

k
P

a
])

5 (Via NIST) J. F. Sackman, and L. H. Long, Trans. Faraday Soc., 54, 1797 (1958).
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In the discussion of cubic equations of state (Section 4.3), it was stated that the vapor–liquid 
dome could be constructed from a subcritical isotherm generated by the equation of state. 
The saturation pressure was identifi ed as the line that divided the isotherm into equal areas, as 
shown in Figure E6.4. Verify that this statement is consistent with the criteria for equilibrium 
developed above.

SOLUTION The vapor–liquid equilibrium criterion developed in this section states that the 
saturated vapor and the saturated liquid have equal Gibbs energies, that is,

gi
v 5 gi

l

or, 

 gi
v 2 gi

l 5 0 (E6.4)

Another way to write Equation (E6.4) is that the integral, from saturated liquid to saturated 
vapor, of the differential Gibbs energy must be zero:

3

gi
v

g
i
l

dg 5 0 

We can apply the fundamental property relation for dg, that is, Equation (5.9):

3

sat. vap.

sat. liq.

3vidP 2 sidT 4 5 0

EXAMPLE 6.4

Verifi cation of the 
“Equal Area” Rule 
Presented in 
Section 4.3

Equal
areas

v sat(liq) v sat(vap) Volume

P
re

s
s
u
re

P sat

Figure E6.4 Subcritical isotherm given 
by a cubic equation of state divided into 
equal areas.

0

(Continued)
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The second term goes to zero, since we are evaluating the integral along an isotherm; hence, 
dT 5 0. Using the product rule, we get:

3

sat. vap.

sat. liq.

vidP 5 Pi
satvi 0 vi

l

vi
v

2 3

vi
v

vi
l

Pdvi 5 0

or,

Pi
sat 1vi

v 2 vi
l 2 2 3

vi
v

vi
l

Pdvi 5 0

The resulting expression can be interpreted in regard to the plot in Figure E6.4. The integrated 
area from vi

l to vi
v on the plot of P vs. v is equal to the product Pi

sat 1vi
v 2 vi

l 2 ; therefore, the 
saturation pressure is the line that divides the isotherm into equal areas, resulting in a net area 
under the saturation line matching the net area above it.

The fi eld of nanotechnology is an emerging area for chemical and biological engineers. 
Consider nickel nanoparticles for use as a catalyst to grow carbon nanotubes. The normal 
melting temperature, Tm, of nickel is 1728 K. In a nanoparticle, the curved surface leads to a 
force acting tangentially to the surface of the particles, which changes the Gibbs energy of the 
solid. The magnitude of this effect is determined by the surface tension, s. The differential 
change in Gibbs energy can be written to account for surface tension in terms of curvature, or 
inverse radius (1/R). In this case, the fundamental property relation given by Equation (5.9) 
can be modifi ed as follows: 

 dgi 5 2sidT 1 vidP 1 2visid¢ 1
R
≤

The following properties are available for Ni:

 surface tension of solid Ni: ss
Ni 5 1.75 B J

m2
R

 density of solid Ni: rs
Ni 5 8,900 B kg

m3
R

 Enthalpy of fusion: Dhfus,Ni 5 217.48 B kJ

mol
R

Consider Ni nanoparticles with radius of approximately 2 nm 12 3 1029 m 2 . You 
are interested in whether they might melt when they are processed at 750°C and 1 atm. 
For simplicity, you may assume that the system contians only pure nickel nanoparticles. At 
750°C and 1 atm, what is the phase of pure 2 nm Ni nanoparticles at equilibrium? State any 
assumptions that you make.

SOLUTION Figure E6.5A shows a schematic of phase equilibrium between solid nickel and liq-
uid nickel. On the left of the diagram, bulk (macroscopic) Ni is shown, and the Ni nanoparticles 

EXAMPLE 6.5

Change in the 
Melting Point of a 
Solid Nanoparticle
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6.3  Thermodynamics of Mixtures ◄ 333

in which we are interested are shown on the right. We wish to calculate the temperature at 
which the nanoparticles melt. To do this calculation, we can develop a relationship between 
(1/R) and T along a coexistence line in a similar way to how we developed a relationship between 
P and T for the Clapeyron equation. A schematic path for such a calculation is shown in Figure 
E6.5B.

Along the coexistence line the differential change in Gibbs energy of the solid must equal 
that of the liquid:

dgs 5 dgl

Applying the modifi ed form of the Equation (5.9) yields:

2sNi
s dT 1 vNi

s dP 1 2vNi
s

sNi
s d¢ 1

R
≤ 5 2sNi

l dT 1 vNi
l dP 1 2vNi

l sNi
l d¢ 1

R
≤

where the differential term in pressure is set equal to zero because the system is at constant 
pressure, and the differential term for curvature of the liquid is also set to zero. Gathering like 
terms, we get:

 1ss
Ni 2 sl

Ni 2dT 5 2vs
Nis

s
Nid¢ 1

R
≤  (E6.5A) 

Liquid Liquid

Solid–Liquid

Equilibrium

Solid–Liquid Equilibrium

of nanopalticles of radius, R

Solid

R

Tm T = ?

nl
Ni

s

s
s

s

s s
s s

s
sss

s

s s
s s

s

Solid

ns
Ni

Figure E6.5A Schematic of the equilibrium between solid and liquid nickel. The schematic on 
the left shows the system for bulk nickel, which melts at Tm. The case on the right shows nickel 
nanoparticles of radius, R. 

Curvature

Solid

liquid

State 1
(T1, 1/R1)

State 2
(T2, 1/R2)

T

Tm

dg s = dg l

T
e
m

p
e
ra

tu
re

1
R2

P = const

1
R1

= 0

Figure E6.5B Coexistence line from the bulk state (1) to the nanocrystalline state (2). 

0 0 0

(Continued)
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We do not have data for the entropy change from the liquid to the solid, but we do have 
data for the enthalpy change for bulk Ni. These quantities can be related by equating the Gibbs 
energies (as was done in the development of the Clapeyron equation):

1ss
Ni 2 sl

Ni 2 5
1hs

Ni 2 hl
Ni 2

T
5

Dhfus,Ni

Tm

Substituting this result back into Equation (E6.5A) and solving for dT gives:

 dT 5
2vs

Nis
s
NiTm

Dhfus,Ni
 d¢ 1

R
≤  (E6.5B) 

Finally, we can integrate Equation (E6.5B) from the bulk state to the state associated with 
the solid nanoparticles of 2 nm:

 3

T

Tm

dT 5
2vs

Nis
s
NiTm

Dhfus,Ni
3

1/R

1/R50

d¢ 1
R
≤  (E6.5C) 

We can calculate the molar density of the solid by using the density of solid nickel provided 
earlier and the molecular weight of Ni, 58.69 [g/mol]:

 vs
Ni 5

MWNi

rs
Ni

5

58.69 B g

mol
R

8,900 B kg

m3
R 3 1,000 B g

kg
R

5 6.6 3 1026 B m3

mol
R

Integrating Equation (E6.5C) and solving for the temperature at which the nickel nanoparticles  
melt, we get:

 T 5 Tm 1
2vs

Nis
s
NiTm

Dhfus,Ni
 ¢ 1

R
≤ 5 TmB1 1

2vs
Nis

s
Ni

Dhfus,Ni
 ¢ 1

R
≤ R 5 587 K

Thermodynamically, the nickel nanoparticles will melt at the processing temperature of 750°C! 
Analyses such as the one illustrated in this example have helped researchers understand 
seemingly anomalous data in processing carbon nanotubes. This example also illustrates how 
property behavior can signifi cantly change at the nanoscale. 

 ►6.3  THERMODYNAMICS OF MIXTURES

Introduction

In this section, we explore how to formally treat thermodynamic properties of species in 
mixtures. In terms of possible combinations of intermolecular interactions, mixtures are 
inherently more complex than pure species. For a pure species i, all the intermolecular 
interactions are identical. The resulting thermodynamic properties—such as Vi, Ui, Si, Hi, 
and Gi —are a manifestation of those interactions. Since a mixture contains more than 
one species, its properties are determined only in part by an average of each of the pure 
species (i-i) interactions. We must now also take into account how each of the species 
interacts with the other species in the mixture, that is, the unlike (i-j) interactions. Thus 
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50 ml

20 ml

Pure ethanol Pure water

67 ml

Mixture of
ethanol and water

+ =

Figure 6.6 Mixing of ethanol and water.

the properties of a mixture depend on the nature and amount of each of the species in 
the mixture. The values of the mixture’s properties will be affected not only by how those 
species behave by themselves but also by how they interact with each other.

Consider, for example, the experiment depicted in Figure 6.6. If we mix 50 ml of 
ethanol with 20 ml of water at 25°C and measure the resulting volume of solution, as 
careful as we might be, we get 67 ml! (Try this yourself.) Where has the other 3 ml gone? 
The solution has “shrunk” because the ethanol and water can pack together more tightly 
than can each species by itself. This is due to the nature of the hydrogen bonding involved 
in the structure of the liquid. We still have the same total mass, since mass is a conserved 
quantity; however, the mixture volume is different from the sum of the pure species vol-
ume. The difference in the mixture is based on the nature of the unlike ethanol–water 
interactions and the fact that they are different from the water–water or ethanol–ethanol 
pure species interactions. This example shows that in the treatment of multicomponent 
mixtures, it is important to realize that species in solution can behave quite differently 
than they do by themselves, depending on the chemical nature of their neighbors in solu-
tion. This behavior will affect all the thermodynamic properties of the solution.

When a species becomes part of a mixture, it loses its identity; yet it still contributes 
to the properties of the mixture, since the total solution properties of the mixture depend 
on the amount present of each species and its resultant interactions. We wish to develop 
a way to account for how much of a solution property (V, H, U, S, G . . .) can be assigned 
to each species. We do this through a new formalism: the partial molar property.

Partial Molar Properties

The state postulate tells us that if we specify two intensive properties for any pure spe-
cies, we constrain the state of a single-phase system. For extensive properties, we must 
additionally specify the total number of moles.6 In Chapter 5, we learned how to math-
ematically describe any intensive thermodynamic property in terms of partial derivatives 
of two independent, intensive properties. Since we are now concerned with thermal and 
mechanical equilibrium, it makes sense to choose T and P as the independent, intensive 
properties. We wish to extend the formulation to mixtures with changing composition. 
In addition to specifying two independent properties, we must also consider the number 
of moles of each species in the mixture.

We now wish to specify the extensive thermodynamic property of the entire mix-
ture, K, where we use the symbol K to represent any possible extensive thermodynamic 
property, that is, K 5 V, H, U, S, G, and so on. In essence, by using K, we avoid repeti-
tive derivations by treating the problem in general. If we were to divide K by the total 

6 Or an analogous quantity that specifi es the size of the system. 
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number of moles in the system, we would get the intensive property k 5 v, h, u, s, g, and 
so on. We call K (or k) the total solution property.

Mathematically, we can write the extensive total solution property K in terms of T, P, 
and the number of moles of m different species:

 K 5 K 1T, P, n1, n2, c, ni, c, nm 2  (6.13)

for example 

C
V 5 V 1T, P, n1, n2, c, ni, c, nm 2

H 5 H 1T, P, n1, n2, c, ni, c, nm 2

(
S

Note that Equation (6.13) is an extension and generalization of the equation on page 18 
to  systems of m species. We need to know m 1 2 independent quantities to completely 
specify K. In Equation (6.13) we specifi cally choose the system temperature, pressure, 
and number of moles of each of the m species. Once these measured properties are 
specifi ed, the state of the system is constrained and all the extensive properties, K, take 
specifi c values.

The differential of K can then be written as the sum of partial derivatives of each of 
these independent variables, as follows:

 dK 5 a
'K
'T
b

P,ni

dT 1 a
'K
'P
b

T,ni

dP 1 a
m

i51
¢ 'K
'ni
≤

T,P,nj21

dni (6.14)

for example,

E
dV 5 a

'V
'T
b

P,ni

dT 1 a
'V
'P
b

T,ni

dP 1 a
m

i51
a
'V
'ni
b

T,P,nj21

dni

dH 5 a
'H
'T
b

P,ni

dT 1 a
'H
'P
b

T,ni

dP 1 a
m

i51
¢ 'H
'ni
≤

T,P,nj21

dni

(

U

We use the notation nj21 to specify that we are holding the number of moles of all 1m 2 1 2  
species except species i constant when we take the partial derivative with respect to ni. 

It is convenient to defi ne a new thermodynamic function, the partial molar 
 property, Ki :

 Ki ; ¢ 'K
'ni
≤

T,P,nj21

 (6.15)

for example,

F
Vi 5 ¢ 'V

'ni
≤

T,P,nj21

Hi 5 ¢ 'H
'ni
≤

T,P,nj21

(

V

always in terms 
of ni never xi

always hold the 
intensive properties 
P and T constant

the number of moles of 
all other species except 
i are held constant
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A partial molar property is always defi ned at constant temperature and pressure, two of 
the criteria for phase equilibrium. Partial molar properties are also defi ned with respect 
to number of moles. The number of moles of all other j species in the mixture are held 
constant; it is only the number of moles of species i that is changed. A common mistake 
in working with partial molar properties is to erroneously replace number of moles with 
mole fractions. We must realize, however, that Equation (6.15) does not simply convert 
to mole fraction, that is,

 Ki 2
1
nT

 ¢ 'K
'xi
≤

T,P,xj2 i

 

In changing the number of moles of species i, we change the mole fractions of all the 
other species in the mixture as well, since the sum of the mole fractions must equal 1.

Placing Equation (6.15) into Equation (6.14), the total differential of the variable K 
becomes:

dK 5 a
'K
'T
b

P,ni

dT 1 a
'K
'P
b

T,ni

dP 1 a
m

i51
Kidni

for example,

E
dV 5 a

'V
'T
b

P,ni

dT 1 a
'V
'P
b

T,ni

dP 1 a
m

i51
Vidni

dH 5 a
'H
'T
b

P,ni

dT 1 a
'H
'P
b

T,ni

dP 1 a
m

i51
Hidni

(

U

At constant temperature and pressure, this equation reduces to

 dK 5 aKidni (6.16)

If, in addition to keeping T and P constant, we also keep the composition of the mix-
ture constant (i.e., the mole fraction of all m species), then the partial molar properties 
are constant. In this case, we can integrate Equation (6.16) to get:

K 5 aKini 1 C

where C is a constant of integration. To determine C, we can use either a physical argu-
ment or a more mathematical argument involving Euler’s theorem on homogeneous 
functions. The physical argument follows; the mathematical argument is presented in 
Example 6.6.

The intensive property, k, depends only on temperature, pressure, and composition 
of the m species present. Thus, k depends only on the relative amounts of each species in 
the system. On the other hand, the extensive property K is linearly dependent on the total 
amount of species present. For example, let’s consider volume, a property that can exist 
in intensive form as k 5 v or in extensive form as K 5 V. If the number of all species in 
the system doubles at constant T and P (i.e., n1 S 2n1, n2 S 2n2, c, nm S 2nm), the 
molar volume, v, remains the same. The extensive property, V, however, will double. 
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Similarly, if the number of all the m chemical species are cut in half, v remains the same 
but V will be cut in half. The number of species can be divided in half an arbitrary num-
ber of times and v will remain unchanged. However, in the limit of an infi nitesimally 
small number of species, the extensive property, V, will go to 0. In general, the exten-
sive property K must go to zero as ani goes to zero; thus, the constant of integration 
becomes 0, and we have: 

 K 5 aniKi (6.17)

for example,

F
V 5 aniVi

H 5 aniHi

(

V

or, dividing by the total number of moles,

 k 5
K

ntotal
5 a xiKi (6.18)

for example,

F
v 5 a xiVi

h 5 a xiHi

(

V

where k is the corresponding intensive property to K and xi is the mole fraction of 
species i. Both Equations (6.17) and (6.18) are consistent with the physical argument 
above.

Physical Interpretation of Ki

Equation (6.17) indicates that the extensive total solution property K is equal to the sum 
of the partial molar properties of its constituent species, each adjusted in proportion to 
the quantity of that species present. Similarly, Equation (6.18) shows that the intensive 
solution property k is simply the weighted average of the partial molar properties of each 
of the species present. The partial molar property, Ki, can then be thought of as species 
i’s contribution to the total solution property, K. 

We can logically extend this thought to interpret a partial molar property as though 
it represents the intensive property value of an individual species as it exists in solution. 
In contrast, the pure species property, ki, indicates how an individual species acts when 
it is by itself. The difference Ki 2 kl compares how the species behaves in the mixture 
to how it behaves by itself. If this number is zero, the species behaves identically in 
the mixture to how it behaves as a pure species. In contrast, if this number is large, the 
species interactions in the mixture are quite different from when it is by itself.

c06.indd   338c06.indd   338 05/11/12   8:23 PM05/11/12   8:23 PM



6.3  Thermodynamics of Mixtures ◄ 339

Figure 6.7 presents a schematic representation of a process to measure the partial 
molar volume of water (w) for the mixture that is shown on the right side of Figure 6.6. 
To determine the partial molar volume of water for the well-defi ned composition 
of nw (moles of water) and ne (moles of ethanol) at a temperature T and pressure 
P, we measure the volume change, DV, for an incremental addition of Dnw moles of 
water while holding the number of moles ethanol, the temperature, and the pressure 
constant. The partial molar volume is then given by the change in volume divided 
by the change in number of moles of water. For the composition in Figure 6.6, we 
get Vw 5 16.9 3ml/mol 4, which is less than the pure species molar volume of water, 
vw 5 18 3ml/mol 4. Thus, the contribution of water to the volume of this mixture is 
less than its contribution to the volume when it exists as a pure species. This result 
indicates that the inclusion of water–ethanol interactions leads to a closer packing than 
exclusively water–water interactions.

As we change the composition of the mixture, we change the relative amounts of 
water– ethanol and water–water interactions, so the value of the partial molar volume 
will change. While Figure 6.7 specifi cally illustrates the partial molar volume, similar 
depictions can be drawn for any partial molar property.

Process

Partial molar volume:

State 1 State 2

Mixture of
water (w ) and

ethanol (e )

ΔV

Δnw

Pure water (w )

ml
mol

V1

vw = 18

ne, 2 = ne,1

nw, 2 = nw, 1 + Δnw

V2 = V1 + ΔV

ne, 1

nw, 1

T,P T,P

ΔV
Δnw 

∂V
∂nw   T,P,ne

Vw =
≅

= 16.9
ml
mol

Figure 6.7 Schematic of experimental determination of the partial molar volume of water in a 
specified mixture of ethanol (e) and water (w).

Mathematically verify that integration of Equation (6.16) leads to Equations (6.18) or (6.17) (a) 
starting with the expression for dK; (b) based on applying Euler’s theorem to Equation (6.13).

SOLUTION (a) We begin with the expression for dK:

 dK 5 a
'K
'T
b

P,ni

dT 1 a
'K
'P
b

T,ni

dP 1 a
m

i51
Kidni (E6.6A)

Recognizing that K 5 nTk and ni 5 nTxi, we can rewrite Equation (E6.6A) as:

nTdk 1 kdnT 5 nTa
'k
'T
b

P,ni

dT 1 nTa
'k
'P
b

T,ni

dP

 1 a
m

i51
KixidnT 1 a

m

i51
KinTdxi (E6.6B)

EXAMPLE 6.6

Integration of 
Equation 6.16

(Continued)
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Collecting terms in Equation (E6.6B) of nT and dnT, we get:

Bdk 2 a
'k
'T
b

P,ni

dT 2 a
'k
'P
b

T,ni

dP 2 a
m

i51
KidxiRnT

 1 Bk 2 a
m

i51
KixiRdnT 5 0 (E6.6C)

We can now make an argument similar to the physical argument given above. The total size of 
the system should not affect how the system is affected by changes in composition; thus nT and 
dnT are independent of each other. For Equation (E6.6C) to hold, in general, each of the terms 
in the bracket must be zero. Hence,

 k 5 a
m

i51
Kixi (E6.6D)

and, 

 dk 5 a
'k
'T
b

P,ni

dT 1 a
'k
'P
b

T,ni

dP 1 a
m

i51
Kdxi (E6.6E)

Equation (E6.6D) is identical to Equation (6.18).
(b) We start by multiplying the number of moles in a system by an arbitrary amount a. At a 
given T and P, the extensive property K should also be increased by that amount:

 aK 5 K 1T, P, an1, an2, c, ani, c, anm 2  (E6.6F)

Euler’s theorem would describe Equation (E6.6F) by saying that the extensive thermodynamic 
quantity K is a first-order, homogeneous function of ni. Differentiating Equation (E6.6F) by 
a, we get:

B' 1aK 2

'a
R

T,P
5 K 5 n1B 'K

' 1an1 2
R

T,P,ni

1 n2B 'K
' 1an2 2

R
T,P,ni

1 c

 1 niB 'K
' 1ani 2

R
T,P,nj2 i

1 c1 nmB 'K
' 1anm 2

R
T,P,nj2 i

 (E6.6G)

where we have applied the chain rule to get the expression on the right-hand side of Equation 
(E6.6G). Equation (E6.6G) should be valid for any a, so at a 5 1, we get:

K 5 aniB 'K'ni
R

T,P,nj2 i

5 aniKi

which is identical to Equation (6.17).

The Gibbs–Duhem Equation

The Gibbs–Duhem equation provides a very useful relationship between the partial 
molar properties of different species in a mixture. It results from mathematical manipu-
lation of property relations. The approach is similar to that used in Chapter 5 to develop 
relationships between properties. The reason the Gibbs–Duhem equation is so useful 
is that it provides constraints between the partial molar properties of different species 
in a mixture. For example, in a binary mixture, if we know the values for a partial molar 
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property of one of the species, we can apply the Gibbs–Duhem equation to simply cal-
culate the partial molar property values for the other species. The formulation of the 
Gibbs–Duhem equation follows.

We begin with Equation (6.17), the defi nition of a partial molar property:

 K 5 aniKi (6.17)

We differentiate Equation (6.17) at constant T and P:

dKPT 5 a 3nidKi 1 Kidni 4

where the subscript “PT” indicates that these properties are held constant. But from 
Equation (6.16), we know:

 dKPT 5 aKidni (6.16)

For the previous two equations to both be true, in general:

 0 5 anidKi  Const T and P (6.19)

for example,

≥

0 5 anidVi

0 5 anidHi

(

¥

Equation (6.19) is the Gibbs–Duhem equation. Its straightforward derivation should not 
overshadow its tremendous utility.

To see the usefulness of the Gibbs–Duhem equation, let’s examine the scenario 
where we wish to fi nd the partial molar volume of species b in a binary solution when we 
know the partial molar volume of species a, Va, as a function of composition. If we apply 
Equation (6.19) to the property volume, we get:

 0 5 anidVi Const T and P

For a binary system, we can differentiate with respect to xa to get:

0 5 na 

dVa

dxa
1 nb 

dVb

dxa

If we divide by nT, rearrange, and integrate:

Vb 5 23
xa

1 2 xa
 ¢dVa

dxa
≤dxa

Thus, if we have an expression for (or plot of) the partial molar volume of species a vs. 
mole fraction, we can apply this equation to get the corresponding expression for species 
b. The expressions for partial molar properties are not independent but rather constrained 
by the Gibbs–Duhem equation. Such an interelation makes sense from a molecular per-
spective. The partial molar properties are governed by how a species behaves in the mix-
ture. We expect the partial molar properties of a and b to be related since it is the same 
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interaction between a and b that determines the difference between how each of these 
species behaves in the mixture as compared to by themselves, as pure species.

Summary of the Different Types of Thermodynamic Properties

There are many different types of properties of which to keep track in mixtures. In this 
section, we review our nomenclature and see how we keep track of the different types 
of properties. We consider total solution properties, pure species properties, and partial 
molar properties.

Total Solution Properties
The total solution properties are the properties of the entire mixture. They are written 
as:

extensive  K: V, G, U, H, S, c

 intensive  k 5 K/ntotal 5 v, g, u, h, s, c

What is V for the experiment in Figure 6.6?

Pure Species Properties
The pure species properties are the properties of any one of the species in the mixture as 
it exists as a pure species at the temperature, pressure, and phase of the mixture. 
We denote a pure species property with a subscript “i”. In general, for species i, we have:

extensive:  Ki: Vi, Gi, Ui, Hi, Si, c

 intensive:  ki 5
Ki

ni
5 vi, gi, ui, hi, si, c

What is Vwater for the experiment in Figure 6.6?

Partial Molar Properties
Partial molar properties can be viewed as the specifi c contribution of species i to the total 
solution property, as discussed in the previous section. They are written:

Ki: Vi, Gi, Ui, Hi, Si, c

Examination of Equations (6.17) and (6.18) shows that these properties must be inten-
sive and, in general,

Ki 2 ki

We can envision two limiting cases. First, consider when the mole fraction of species 
i goes to 1. In this case, any given molecule of i will interact only with other molecules of i. 
Hence, the solution properties will match those of the pure species, and,

Ki 5 ki       lim xi h 1

Second, we can imagine the case where species i becomes more and more dilute. In that 
case, a molecule of species i will not have any like species with which it interacts; rather, 
it will interact only with unlike species. We call this case that of infinite dilution and write 
the partial molar property as:

Ki 5 Ki
`       lim xi h 0
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Property Changes of Mixing

A property change of mixing, DKmix, describes how much a given property changes as a 
result of the mixing process. It is defi ned as the difference between the total solution 
property in the mixture and the sum of the pure species properties of its constituents, 
each in proportion to how much is present in the mixture. Mathematically, the property 
change of mixing is given by:

 DKmix 5 K 2 aniki (6.20)

for example,

E
DVmix 5 V 2 anivi

DHmix 5 H 2 anihi

(

U

where the pure species properties, ki, are defi ned at the temperature and pressure of 
the mixture. What is DVmix for the experiment in Figure 6.6? 

Substituting Equation (6.17) into Equation (6.20) gives:

 DKmix 5 aniKi 2 aniki 5 ani 1Ki 2 ki 2  (6.21)

for example,

E
DVmix 5 ani 1Vi 2 vi 2

DHmix 5 ani 1Hi 2 hi 2

(

U

Label the volumes depicted in Figure 6.6 according to the different types of thermodynamic 
properties depicted in this section.

SOLUTION The experiment depicted in Figure 6.6 is now labeled in Figure E6.7 according to the dif-
ferent types of properties defined above. Properties identified include the molar volume 1ve, vw 2 and 
the extensive volume of each pure species 1Ve, Vw 2, as well as the partial molar volumes 1Ve, Vw 2 and 
total solution volume of the mixture (V).

EXAMPLE 6.7

Types of 
Thermodynamic 
Properties in 
Figure 6.6

Figure E6.7 Nomenclature of different types of volume in mixing of ethanol (e) and water (w).

50 ml + =

20 ml

Pure ethanol Pure water

67 ml

or V 

Mixture of
ethanol and water

neve or Ve

nwvw or Vw

neVe

nwVw
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344 ► Chapter 6. Phase Equilibria I: Problem Formulation 

Equation (6.21) shows that the property change of mixing is given by the proportionate 
sum of the difference between the partial molar property and the pure species property 
for each of the species in the mixture. This result is not surprising, since we interpret 
a partial molar property of a given species as the contribution of that species to the 
mixture, while the pure species property is indicative of how that species behaves by 
itself. In the special case where all the partial molar properties equal the pure species 
 properties—that is Ki 5 ki —the property change of mixing is zero.

Analogously for intensive properties, we get:

 Dkmix 5 k 2 a xiki (6.22)

for example,

E
Dvmix 5 v 2 a xivi

Dhmix 5 h 2 a xihi

(

U

and, 

 Dkmix 5 a xi 1Ki 2 ki 2  (6.23)

for example,

E
Dvmix 5 a xi 1Vi 2 vi 2

Dhmix 5 a xi 1Hi 2 hi 2

(

U

We can interpret the property change of mixing by considering a hypothetical pro-
cess in which pure species undergo an isothermal, isobaric mixing process. On a molecu-
lar level, the property change of mixing refl ects how the interactions between unlike 
species in the mixture compare to the like interactions of the pure species they replaced. 
For example, a volume change of mixing results from differences in how closely spe-
cies in a mixture can pack together in comparison to how they pack as pure species. A 
negative Dvmix will result when the unlike interactions “pull” the species in the mixture 
closer together, while a positive Dvmix will result when the unlike interactions “push” the 
species apart when they are mixed. Negative volume changes of mixing tend to imply 
that the unlike interactions are more attractive than the like interactions they replace, 
while positive volume changes result when the unlike interactions are not as attractive. 
If the species behave identically in the mixture as they did as pure species, Dvmix is zero. 
We see a negative Dvmix in the ethanol–water mixture depicted in Figures 6.7 and E6.7 
since the two species can pack together more closely in the mixture as compared to when 
they are by themselves.

Enthalpy of Mixing
Similarly, we can understand the enthalpy change of mixing in terms of this hypo- 
thetical mixing process at constant T and P. Again, we use the idea that at constant 
pressure, enthalpy is the appropriate thermodynamic property to characterize energetic 
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6.3  Thermodynamics of Mixtures ◄ 345

interactions.7 Thus, Dhmix quantifi es the difference between the energetic interactions of 
the species in the mixture to those of the pure species. In general, the enthalpy of mixing 
is negative when the species in the mixture are more stable than their pure species coun-
terparts. Conversely, positive enthalpies of mixing result when the species are less stable 
in the solution than as pure species. When the energetic interactions of the mixture are 
identical to those of the pure species, Dhmix is zero.

For example, consider a liquid mixture of water 1H2O 2  and sulfuric acid 1H2SO4 2 . 
Sulfuric acid will dissociate in water, forming positively charged hydrogen ions and sin-
gle and doubly negative charged sulfate ions. Figure 6.8 schematically compares the 
energetic interactions of water as a pure species compared to water in the mixture. The 
top left of the fi gure shows pure water hydrogen-bonding to other molecules of water 
at the mixture T and P. The characteristic energy of this interaction is given by its pure 
species liquid enthalpy, hH2O, which is depicted on the left of the energy-level diagram 
at the bottom of the fi gure. At the top right of the fi gure, water molecules are shown 
orienting around a negatively charged bisulfate ion in the mixture. The characteristic 
enthalpy of water in the mixture is  given by its partial molar enthalpy, HH2O. The elec-
trostatic interactions that form are more stable, energetically, than the hydrogen bonds 
depicted for the pure species at the left of the fi gure. Thus, the energy-level diagram at 
the bottom of the fi gure shows HH2O at a lower (more stable) value than as a pure spe-
cies. Similar arguments can be made about the decrease in enthalpy of sulfuric acid as it 
dissociates in the mixture.8 Inspection of Equation (6.23) shows that since HH2O , hH2O 
and HH2SO4 , hH2SO4, then Dhmix , 0. In fact, the energetics of this binary mixture have 
been well studied, and the mixing process is highly exothermic. For example, at 21°C, 
the enthalpy of mixing of sulfuric acid and water can be fi t to the following equation:9

 Dhmix 5 274.40xH2SO4 xH2O 11 2 0.561xH2SO4
2 3kJ/mol 4 (6.24)

Figure 6.9 shows the enthalpy and volume changes of mixing for water and methanol 
at 0°, 19.7°, and 42.4°C. The enthalpy of mixing is negative, indicating that the species 

7 Section 2.6 relates enthalpy to energy changes in a closed system at constant P.
8 The enthalpy of mixing also includes the ionization energy.
9 Equation fi t to data reported by W. D. Ross, Chem. Eng. Progr., 43, 314 (1952).

 Figure 6.8 Energetic 
interactions of molecules of 
water as a pure species and 
interacting with HSO4

2 in a 
sulfuric acid–water mixture.
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in the mixture are energetically more stable than they are by themselves, as pure spe-
cies. Likewise, the volume change of mixing associated with these species is negative, 
indicating that the species in the mixture pack together more tightly.10 Again, we can 
understand the mixing behavior in this system in terms of intermolecular interactions. 
The strongest energetic interaction is hydrogen bonding; however, these species also 
manifest van der Waals forces. Both water and methanol can form hydrogen bonds as 
pure species as well as in the mixture. Apparently, this hydrogen-bonded network can 
pack more effi ciently with both species present in a mixture as compared to when they 
are separate, as pure species. Since the species are closer, the van der Waals interactions 
are stronger and the energy is lower. The order of magnitude of this effect is 102 3J/mol 4, 
far less than the mixing effects of a sulfuric acid–water system, which arises from the 
presence of point charges of the ions in solution. The enthalpy of mixing decreases as the 
temperature increases. However, the functionality of Dhmix with mole fraction is similar 
at all three temperatures. By contrast, the volume change of mixing is practically identi-
cal for all three temperatures.

Figure 6.10 shows the enthalpy of mixing for cyclohexane 1C6H12 2  and toluene at 
18°C. In this case, the enthalpy of mixing is positive. Its order of magnitude is 102 3J/mol 4, 
which is comparable to a methanol–water mixture. The dominant energetic interaction 
in this nonpolar system is dispersion. The magnitude of unlike dispersion interactions is 
often well approximated as the geometric mean of the corresponding like interactions. 
With such a relation, the mixture will always be less stable than the weighted average of 
the pure species,11 thus, nonpolar mixtures usually exhibit positive enthalpies of mixing.

Figure 6.11 shows the enthalpy of mixing for chloroform and methanol at 25°C. This 
fi gure shows unusual behavior in that the enthalpy of mixing changes sign with changing 
chloroform mole fraction. At low chloroform mole fractions, the enthalpy of mixing is 
negative, while at high mole fractions it is positive. This behavior can be understood in 
terms of the superposition of two competing effects. Over all composition ranges, there 
is behavior similar to the one described for the system of cyclohexane–toluene, where 
the average of the like interactions is more favorable than that of the unlike interactions. 
This effect contributes a positive value to Dhmix. However, the specifi c and directional 
nature of the hydrogen bonds involved also play a role in the energetics of this system. 
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Figure 6.9 Enthalpy and volume changes of mixing of a binary mixture of water and methanol at 
0°, 19.7°, and 42°C.

10 In the case of volume changes of mixing, all three curves overlap.
11 This point will be discussed more in Chapter 7. See Example 7.9.
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6.3  Thermodynamics of Mixtures ◄ 347

Methanol has both an electronegative O with two sets of lone pairs of electrons as well as 
one H atom to contribute to H-bonding, while CCl3H contributes only an H atom. Thus, 
at a CCl3H mole fraction of roughly one-third, the number of hydrogen and number 
of oxygen lone pairs match, and the system can form the most possible H-bonds and, 
therefore, is most stable. This composition represents the minimum in the enthalpy of 
mixing in Figure 6.11.

Figure 6.10 Enthalpy of mixing of a binary mixture of cyclohexane 1C6H12 2  and toluene at 18°C.
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Figure 6.11 Enthalpy of mixing of a binary mixture of chloroform 1CHCl3 2  and methanol at 25°C.
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An experiment is performed to measure the enthalpy of mixing of chloroform, CHCl3, and 
acetone, C3H6O. In this experiment, pure species inlet streams of different compositions are 
mixed together in an insulated mixer at steady-state. This mixing process is exothermic, and 
the heat that is removed in order to keep the system at a constant temperature of 14°C is 
measured. The measured data are presented in Table E6.8A. Based on these data, calculate the 
enthalpy of mixing vs. mole fraction and plot the result.

SOLUTION A schematic of the system is shown in Figure E6.8A. Chloroform is labeled species 1 
and acetone species 2. The weight fractions, wi, of the inlet streams and enthalpies of all the

EXAMPLE 6.8

Calculation of Dhmix 

from Experimental 
Data

(Continued)
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streams are labeled. The mole fraction can be calculated from the weight fraction as follows:

 x1 5

w1

MW1

w1

MW1
1

w2

MW2

 (E6.8A)

where MWi is the molecular weight of species i. A fi rst-law balance gives:

 0 5 1n# 1h1 1 n# 2h2 2 2 1n# 1 1 n# 2 2h 1 Q
#
 (E6.8B)

We need to write Equation (E6.8B) in terms of what we are looking for, Dhmix, and what 
we have measured, 12q̂ 2 :

 Dhmix 5 h 2 1x1h1 1 x2h2 2 5
Q
#

1n# 1 1 n# 2 2
5 q 5 2 12q̂ 2MW (E6.8C)

where the average molecular weight is given by MW 5 x1MW1 1 x2MW2. Table E6.8B gives 
enthalpy of mixing vs. mole fraction, as calculated from Equations (E6.8A) and (E6.8C), 
respectively, using data from Table E6.8A. These data are plotted in Figure E6.8B. 

A large negative enthalpy of mixing results from mixing chloroform and acetone. This result 
is consistent with the energetic interactions in the system. The dominant unlike interaction 

TABLE E6.8A A Heat Evolved vs. Weight Percentage 

Chloroform

Weight % CHCl3 Heat evolved 3J/g 4, 12q̂ 2

10 4.77
20 9.83
30 14.31
40 19.38
50 23.27
60 25.53
70 25.07
80 21.55
90 13.56

Source: E. W. Washburn (ed.), International Critical 
Tables (Vol. V) (New York: McGraw-Hill, 1929).

Figure E6.8A Schematic representation of experiment to measure enthalpy of mixing.

CHCl3

CHCl3 and C3H6O

h1w1

h2w2C3H6O

T = 14°C

^

h

−q
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6.3  Thermodynamics of Mixtures ◄ 349

results from hydrogen bonding between the H of chloroform and O of acetone (see Section 
4.2). Neither of the pure species forms hydrogen bonds; thus, the unlike interactions are more 
stable than the like interactions they replace, and a large negative enthalpy of mixing results.

TABLE E6.8B Enthalpy of Mixing vs. Mole Fraction 

Chloroform, Using Data from Table E6.8A

x1 Dhmix 3J/mol 4 

0 0
0.050 2291.9
0.107 2636.6
0.170 2984.1
0.242 21,420.7
0.323 21,826.4
0.418 22,156.1
0.527 22,291.4
0.657 22,146.2
0.811 21,483.5
1.000 0

Figure E6.8B Enthalpy of mixing of a binary mixture of chloroform 1CHCl3 2  and acetone at 
14°C.
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An insulated piston–cylinder assembly contains two compartments divided by a partition. As 
shown in Figure E6.9A, the top compartment initially contains 2 moles of pure liquid 1, whereas 
the bottom contains a mixture of 4 moles of liquid 2 and 4 moles of liquid 3. The temperature 
is initially 4°C, and the pressure is 1 bar. The piston–cylinder assembly is well insulated. If 
the partition is removed and the species are allowed to mix and come to equilibrium, determine 
the fi nal temperature.

The following data are available. The heat capacity of each of the three species is:

 cp,1 5 27.5 B J

mol # KR , cp,2 5 25 B J

mol # KR , cp,3 5 20.0 B J

mol # KR

EXAMPLE 6.9

Calculation of Final 
Temperature for a 
Mixing Process

(Continued)
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Figure E6.9A Scematic of the mixing process. 

Initial State

Partition

n1 = 2 mol

n2 = 4 mol

n3 = 4 mol

4°C 1 bar

The enthalpy of mixing for a ternary mixture of 1, 2, and 3 is given by:

Dhmix 5 400x1x2 1 800x1x3 1 80x2x3 1 37.5x1x2x3 B J

mol
R

SOLUTION Applying the fi rst law to this adiabatic process, we get:

DH 5 0

Because enthalpy is a property that depends only on initial and fi nal states, we are free to 
choose a convenient hypothetical path. One such path is illustrated in Figure E6.9B, where we 
fi rst isothermally mix pure 1 to the mixture of 2 and 3 and then change the temperature of the 
mixture. In drawing this path, we consider that for the endothermic enthalpy of mixing relation 
provided earlier, further mixing will lead to a temperature decrease. Along this path, we can 
expand the fi rst law as follows:

DH 5 0 5 DHmix 1 DHsens

Figure E6.9B Two-step thermodynamic path to solve the problem. The enthalpy change for 
this process is decomposed into the enthalpy of mixing, DHmix, and the enthalpy due to a tem-
perature change within the liquid phase (sensible heat), DHsens.

Pure 1
Mixed 2, 3

Mixed 1,2,3

T1 = 4°C

T2 = ???

ΔHmix

ΔHsens
ΔH = 0
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6.3  Thermodynamics of Mixtures ◄ 351

where DHmix represents the enthalpy change due to mixing and DHsens represents the enthalpy 
change due to a decrease in temperature (sensible heat).

To calculate the enthalpy of mixing, it is useful to consider another hypothetical path. 
In this case, we need to recognize the thermochemical data are in the form of the difference 
between the pure species (unmixed state) and the mixture in the form of the given equation 
for Dhmix. However, both the initial state and the fi nal state contain mixtures of more than 
one species. Therefore, we pick the hypothetical path shown in Figure E6.9C where we fi rst 
“unmix” the initial state into its pure species components and then mix all three components to 
arrive at the fi nal state. As a procedural note, in this case it is useful to formulate the problem 
in terms of extensive properties (i.e., DHmix) rather than intensive properties (i.e., Dhmix) because 
the “unmixing” process and the mixing process contain different numbers of moles (8 vs. 10 
mol).

We can now calculate:

  DHmix 5 DHunmix
I 1 DHmix

II  (E6.9A) 

First, we fi nd DHunmix
I , which describes the enthalpy change in unmixing species 2 and 3 and 

is equal in magnitude but opposite in sign to the enthalpy change in mixing species 2 and 3.

DHunmix
I 5 2DHmix

I 5 2 1n2 1 n3 2Dhmix

We use the given form for Dhmix:

 Dhmix 5 400x1x2 1 800x1x3 1 80x2x3 1 37.5x1x2x3 B J

mol
R

In this case, only species 2 and 3 are involved in the process so:

n1 5 0 3mol 4, n2 5 4 3mol 4, n3 5 4 3mol 4, x1 5 0, x2 5 0.5, x3 5 0.5

and,

DHunmix
I 5 2160 3J 4

Next, we determine DHmix
II  as follows:

DHmix
II 5 1n1 1 n2 1 n3 2Dhmix

with:

 n1 5 2 3mol 4, n2 5 4 3mol 4, n3 5 4 3mol 4, x1 5 0.2, x2 5 0.4, x3 5 0.4

so,

DHmix
II 5 1100 3J 4

To fi nd the overall enthalpy of mixing, we add the two contributions:

 DHmix 5 DHunmix
I 1 DHmix

II 5 2160 1 1100 5 940 3J 4 (E6.9B) 

To determine the fi nal temperature, we can relate the heat capacity values in the problem 
to DHsens.

 DHsens 5 3

T2

T1

1n1cp,1 1 n2cp,2 1 n3cp,3 2  dT (E6.9C) 

(Continued)
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Inserting numerical values gives:

DHsens 5 235 1T2 2 277 2 3J 4

Finally, substituting Equations (E6.9B) and (E6.9C) into Equation (E6.9A) gives:

DH 5 0 5 DHmix 1 DHsens 5 940 1 235 1T2 2 277 2

Solving for temperature, we get, T2 5 273K.

Unmixed State

Partition

4°C 1 bar

Partition

Initial State

Partition

n1 = 2 mol

n2 = 4 mol

n3 = 4 mol

4°C 1 bar

Final State

n1 = 2 mol

n1 = 2 mol

n2 = 4 mol

n2 = 4 mol

n3 = 4 mol

n3 = 4 mol

4°C 1 bar

ΔH I
unmix = −ΔH I

mix

ΔH mix

(n1 + n2 + n3) (n2 + n3) 
ΔH II

mix

Figure E6.9C Thermodynamic path to determine the enthalpy of mixing. The enthalpy change 
is first determined by “unmixing” species 2 and 3 and then mixing all the species. 

Enthalpy of Solution
The energetic interactions characteristic of the mixing process are often reported as the 
enthalpy of solution, Dh|s, instead of the enthalpy of mixing. The enthalpy of solution 
corresponds to the enthalpy change when 1 mole of pure solute is mixed in n moles of 
pure solvent. It is defi ned per mole of solute as opposed to enthalpy of mixing, which is 
written per total moles of solution. The value of Dh|s can be determined calorimetrically, 
and since Dh|s is convenient to measure in the laboratory, reported values are often in 
this form. 

Table 6.1 reports Dh|s for several solutes in water at 25°C. Example 6.10 illustrates 
how to calculate values for the enthalpy of mixing when enthalpy of solution data are 
available. The enthalpy of solution is also commonly used when the solute exists in the 
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solid or gas phase as a pure species. In this case, the enthalpy difference associated to 
the phase change is also manifest in Dh|s. For example, solids held together with ionic 
bonds—for example, salts such as NaCl—demonstrate positive enthalpies of solution. In 
this case, the ions in the pure species solid are close together. When they dissolve into 
the mixture, the energy increases as the ions get father away from one another. Can you 
think of a practical application for a system with a large positive enthalpy of solution? 
On the other hand, gases tend to have negative enthalpies of solution, as the species are 
closer to their neighbors in the mixture and exhibit stronger attraction.

The fi rst six species listed in the Table 6.1 are acids. Their enthalpies of solution 
differ appreciably, corresponding to different degrees of dissociation. The stronger the 
acid, the greater the extent to which it disassociates into ionic species and the larger the 
electrostatic interactions that result. For example, acetic acid, C2H4O2, is a weak acid 
and has a positive enthalpy of solution at higher solute concentrations. On the other 
hand, Dh|s for sulfuric acid is always large and negative due to the energetic interactions 
discussed earlier. The other species reported in Table 6.1 give a fl avor of the energetic 
mixing effects of other types of solutes. Gaseous NH3 and solid NaOH form basic solu-
tions; an alcohol 1C2H5OH 2  and salts (ZnCl2 and NaCl) are also reported.

 Table 6.1 presents data for the enthalpy of solution, Dh|s, for nitric acid in water at 18°C. Find 
the corresponding values for the enthalpy of mixing vs. mole fraction of solute.

SOLUTION Let the solute, HNO3, be species 1 and the solvent, H2O, be species 2. The enthalpy 
of solution can be written by dividing the enthalpy of mixing by the mole fraction solute:

 Dh|s 5
Dhmix

x1
 (E6.10A)

The mole fraction of solute is defi ned as the number of moles of solute, 1, divided by the total 
number of moles in the system, 1 1 n:

 x1 5
1

1 1 n
 (E6.10B)

Substituting Equation (E6.10B) in (E6.10A) and rearranging gives:

 Dhmix 5
Dh|s

11 1 n 2
 (E6.10C)

Table E6.10 presents values for Dhmix as calculated from Equation (E6.10C) vs. mole fraction 
as calculated from Equation (E6.10B) for the data presented in Table 6.1. The order of table 
entries has been reversed so that the values for mole fraction appear in ascending order. 

TABLE E6.10 Enthalpy of Mixing vs. Mole Fraction HNO3, Using Data from Table 6.1

x1 Dhmix 3J/mol 4

0.048 21,556
0.091 22,895
0.167 24,788
0.200 25,396
0.250 26,075
0.333 26,694
0.500 26,556

EXAMPLE 6.10

Calculation of Dhmix 
from Dh|s
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6.3  Thermodynamics of Mixtures ◄ 355

Entropy of Mixing
While the enthalpy of mixing is characteristic of the how the energetic interactions 
change upon mixing, the entropy of mixing, Dsmix, characterizes the increase in the num-
ber of confi guration induced by the mixing process. We can interpret Dsmix by again 
considering a hypothetical process in which pure species undergo an isothermal, isobaric 
mixing process. Entropy is proportional to the number of possible molecular configura-
tions that a state can exhibit. Since there are always many more ways to confi gure the 
species in a mixture as compared to a pure species, Dsmix is always positive. In Example 
6.11, we calculate the entropy of mixing for a binary mixture using the ideal gas model. 
The result from that example can be generalized for an ideal gas mixture of m species 
to give:

 Dsmix 5 2Ra
m

i51
yi, ln yi (6.25)

In contrast, the enthalpy and volume changes of mixing of an ideal gas are identically 
zero, since an ideal gas does not exhibit any intermolecular interactions and the mol-
ecules size is negligible. 

Often it is assumed that liquid solutions mix completely randomly, and so the entropy 
of mixing follows the ideal gas relation given by Equation (6.25). Such a liquid is said to 
form a regular solution. Species that interact exclusively through van der Waals forces 
can form regular solutions. However, mixtures whose species signifi cantly differ in size 
deviate from regular solution behavior. Chemical effects such as association and solva-
tion can also lead to deviation from regular solution behavior. For example, the associa-
tion reaction between chloroform and acetone leads to mixtures that are structured, and 
the entropy change of mixing is signifi cantly less than what would be predicted for a 
regular solution.

Develop an expression for the entropy change of mixing for a binary ideal gas mixture.

SOLUTION  This example is a generalization of Example 3.9. A schematic of the process repre-
sented by DSmix is shown in Figure E6.11A. By defi nition the temperature and pressure of the 
pure species must be the same as the mixture. Therefore, the (extensive) volume of the mixture 
will be larger than each of the pure species. 

We are free to choose any path to calculate the entropies in Equation (E6.11A). One possible 
solution path is shown in Figure 6.11B. In the fi rst step (Step I), each of the pure species, a and 
b, are isothermally expanded to the size of the container of the mixture. During this process, the 
pressure drops to pa and pb, the partial pressure of species a and b in the mixture. The next step 
(Step II) is superimposing both these expanded systems. For this process,

 DSmix 5 DSI
a 1 DSI

b 1 DSII (E6.11A) 

We begin by applying Equation (3.22) at constant temperature to species a:

DsI
a 5 2R ln 

pa

P
5 2R ln 

yaP

P
5 2R ln ya

For the extensive entropy we multiply by the number of moles of a to get:

 DSI
a 5 naDsI

a 5 2Rna ln ya (E6.11B) 

EXAMPLE 6.11

Dsmix, for an Ideal 
Gas Mixture
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356 ► Chapter 6. Phase Equilibria I: Problem Formulation 

Similarly for b:

Dsb 5 2R ln yb

and,

  DSI
b 5 nbDsI

b 5 2Rnb ln yb  (E6.11C) 

For step II, we recognize that ideal gas a does not know b is there and vice versa. Thus, 
the properties of each individual species do not change and:

 DSII 5 naDsa
II 1 nbDsb

II 5 0 (E6.11D)

The path shown in Figure E6.11B has interesting implications in terms of the molecular view-
point of the entropy increase for species a. Increased entropy is not directly from b mixing in 

Figure E6.11A Process representative of DSmix for a binary system of species a and b. 
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Figure E6.11B  Solution path to calculate DSmix for a binary system of species a and b.
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6.3  Thermodynamics of Mixtures ◄ 357

a, but rather that species a has more room in which to move so that there is more uncertainty 
where it is; therefore, information is lost, and the entropy is higher. 
Substituting Equations (E6.11B), (E6.11C), and (E6.11D) in (E6.11A) gives:

 DSmix 5 2R 1na ln ya 1 nb ln yb 2

To find the intensive entropy change of mixing, we divide by the total number of moles:

Dsmix 5
DSmix

na 1 nb
5 2R 1ya ln ya 1 yb ln yb 2

In general, when there are m species, we can sum together similar contributions from each 
species to get:

Dsmix 5 2Rayi ln yi

Equation (E6.11E) is presented in the text as Equation (6.25).

Determination of Partial Molar Properties

We have introduced a new type of property, the partial molar property. This property 
tells us about the contribution of a given species to the properties of a mixture. Our 
next question is: How do we obtain values for these partial molar properties? There are 
several ways in which to accomplish this task. In this section, we consider two examples 
of how we might calculate a partial molar property: by analytical means when we have 
an equation that describes the total solution property or by graphical means from plots 
of total solution data.

Energy-related properties such as enthalpy or internal energy must be defi ned with 
respect to a reference value. In this case, it is often convenient to consider the partial 
molar property change of mixing, which can be written as:

 DKmix,i 5 ¢ 'DKmix

'ni
≤

T,P,nj2 i

5 ¢ 'K
'ni
≤

T,P,nj2 i

2 C'a
1niki 2

'ni

S
T,P,nj2 i

 

where Equation (6.20) was used. Since the pure species properties are constant at a 
given temperature and pressure, every term for the derivative in the sum becomes zero 
except the one associated with ni. Therefore, the partial molar property change of mixing 
becomes:

 DKmix,i 5 Ki 2 ki (6.26)
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358 ► Chapter 6. Phase Equilibria I: Problem Formulation 

for example,

≥

DHmix,i 5 Hi 2 hi

DGmix,i 5 Gi 2 gi

(
¥

Inspection of Equation (6.26) shows that DKmix,i gives the relative value of how spe-
cies i behaves in a mixture to how it behaves by itself as a pure species. In this form, 
the pure species property forms a reference state to which the particular partial molar 
property is referred.

Analytical Determination of Partial Molar Properties
Often an analytical expression for the total solution property, k, is known as a function 
of composition. In that case, the partial molar property, Ki, can be found by differentia-
tion of the extensive expression for K with respect to ni, holding T, P, and the number of 
moles of the other j species constant, as prescribed by Equation (6.15). 

We illustrate this method by showing how to calculate partial molar volumes for a 
binary mixture of species 1 and 2 with the virial equation of state. The virial equation can 
be written in terms of the total solution molar volume using Equations (4.27) and (4.43):

v 5
RT
P

 B1 1
BmixP
RT

R 5
RT
P

1 y1
2B11 1 2y1y2B12 1 y2

2B22

If we know the virial coeffi cients, B11 and B22, and the cross-virial coeffi cient, B12, we can 
solve for the partial molar volumes of each species in the mixture. 

We fi rst write the virial equation in terms of extensive volume and number of moles:

V 5 1n1 1 n2 2v 5 1n1 1 n2 2  

RT
P

1
n1

2B11 1 2n1n2B12 1 n2
2B22

1n1 1 n2 2

where we have used y1 5 n1/ 1n1 1 n2 2  and y2 5 n2/ 1n1 1 n2 2 . Differentiation gives:

V1 5 ¢ 'V
'n1

≤
T,P,n2

5
RT
P

1
2n1B11 1 2n2B12

1n1 1 n2 2
2

n1
2B11 1 2n1n2B12 1 n2

2B22

1n1 1 n2 2 2

We can simplify this expression to get:

V1 5
RT
P

1 1y1
2 1 2y1y2 2B11 1 2y2

2B12 2 y2
2B22

Similarly, the partial molar volume of species 2 can be written:

V2 5
RT
P

2 y1
2B11 1 2y1

2B12 1 1y2
2 1 2y1y2 2B22

To obtain a value for the pure species molar volume, we set y2 5 0 in the virial equation 
to give:

v1 5
RT
P

1 B11

This expression can also be obtained through the expression for V1 above, since V1 5 v1  
in lim x1 h 1. 
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The volume change of mixing is given by:

Dvmix 5 v 2 1y1v1 1 y2v2 2

Substituting in for v, v1, and v2:

Dvmix 5 BRT
P

1 y1
2B11 1 2y1y2B12 1 y2

2B22R 2 By1¢RT
P

1 B11≤ 1 y2¢RT
P

1 B22≤ R

or simplifying:

 Dvmix 5 2y1y2 BB12 2
B11 1 B22

2
R  (6.27)

Inspection of the term in brackets on the right-hand side of Equation (6.27) shows that 
the magnitude and sign of Dvmix are determined by comparing the strength of the unlike inter-
actions, given by B12, to that of the like interactions, given by the average of B11 and B22. If the 
unlike term is stronger (i.e., has a larger-magnitude negative number), the volume change of 
mixing is negative, whereas a positive change results when the like interactions are stronger.

6.3  Thermodynamics of Mixtures ◄ 359

Consider a binary mixture of 10 mole% chloroform (1) in acetone (2) at 333 K and 10 bar. The 
second virial coeffi cients for this system are reported to be B11 5 2910, B22 5 21330, and 
B12 5 22005 cm3/mol. Determine v1, V1, and Dvmix.

SOLUTION Applying the equations for the pure species and partial molar volumes above, we 
get:

 v1 5
RT
P

1 B11 5 1860 3cm3/mol 4 (E6.12A)

and,

  V1 5
RT
P

1 1x1
2 1 2x1x2 2B11 1 x2

2B12 2 x2
2B22 5 991 3cm3/mol 4 (E6.12B)

where we represent the liquid mole fractions by xi instead of yi. Using Equation (6.27) gives

 Dvmix 5 x1x2 12B12 2 B11 2 B22 2 5 2372 3cm3/mol 4 (E6.12C)

Comparing Equations (E6.12A) and (E6.12B), we see that the molar volume of pure chloroform, 
vi, is about double its contribution to the molar volume of the mixture with 10% chloroform, 
as indicated by V1. This result can be explained in terms of hydrogen bonding between H in 
chloroform and carbonyl in acetone. This association reaction “pulls” the species in the mixture 
closer to each other (see Section 4.2 and Example 6.8). The result of this interaction between 
chloroform and acetone is a reduced solution volume; therefore, Dvmix is negative. It should be 
noted that the interaction between chloroform and acetone is unusually strong in comparison 
to the pure species interactions and is not typical of most mixtures. 

EXAMPLE 6.12

Calculation of 
Mixture Properties 
Using the Virial 
Equation

12 In fact, this system is chosen for illustration because its pronounced interactions depict the graphical approach 
well.
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Develop expressions for the partial molar enthalpies of sulfuric acid and water in a binary mix-
ture at 21°C. The pure species enthalpies are 1.596 [kJ/mol] and 1.591 [kJ/mol], respectively, 
and the enthalpy of mixing is given by Equation (6.24). Calculate their values for an equimolar 
mixture of sulfuric acid and water. Plot HH2SO4 and HH2O vs. xH2SO4.

SOLUTION We can write the total solution enthalpy as:

h 5 hH2SO4xH2SO4 1 hH2OxH2O 1 Dhmix

or, numerically,

   h 5 1.596xH2SO4 1 1.591xH2O 2 74.40xH2SO4xH2O 11 2 0.561xH2SO4
2 3kJ/mol 4 (E6.13A)

To apply the defi nition of a partial molar property, Equation (6.15), we need to write 
Equation (E6.13A) in terms of the extensive enthalpy and the number of moles of sulfuric acid 
and water:

H 5 nTh 5 1.596nH2SO4 1 1.591nH2O 2 74.40 

nH2SO4nH2O

nH2SO4 1 nH2O

 1 41.74 

nH2SO4

2 nH2O

1nH2SO4 1 nH2O 2
2
 (E6.13B)

Differentiating Equation (E6.13B) with respect to nH2SO4 gives the partial molar enthalpy of 
sulfuric acid:

HH2SO4 5 ¢ 'H
'nH2SO4

≤
T,P,nH2O

5 1.596 2 74.40 

nH2O
2

1nH2SO4 1 nH2O 2
2

1 83.48 

nH2SO4nH2O
2

1 1nH2SO4 1 nH2O 2
3

EXAMPLE 6.13

Calculation of
HH2SO4 and HH2O

Figure E6.13 Partial molar enthalpies of water and sulfuric acid at 21°C.
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6.3  Thermodynamics of Mixtures ◄ 361

and, simplifying,

 HH2SO4 5 1.596 2 74.40xH2O
2 1 83.48xH2SO4xH2O

2  3kJ/mol 4 (E6.13C)

Similarly, for water we get:

 HH2O 5 1.591 2 74.40xH2SO4

2 1 41.74xH2SO4

2 11 2 2xH2O 2  3kJ/mol 4 (E6.13D)

A plot of the partial molar enthalpies calculated from these expressions is presented 
in Figure E6.13. For an equimolar mixture 1xH2SO4 5 xH2O 5 0.5 2 , Equations (E6.13C) and 
(E6.13D) give:

HH2SO4 5 26.6 3kJ/mol 4     and    HH2O 5 217.0 3kJ/mol 4

Verify that the expressions developed in Example 6.12 for the partial molar enthalpies of sulfu-
ric acid and water in a binary mixture at 21°C satisfy the Gibbs–Duhem equation.

SOLUTION The Gibbs–Duhem equation can be written for the partial molar enthalpies in this 
system as:

 0 5 nH2SO4dHH2SO4 1 nH2OdHH2O (E6.14A)

Differentiating Equation (E6.14A) with respect to mole fraction of sulfuric acid and dividing 
by the total number of moles gives:

 0 5 xH2SO4

dHH2SO4

dxH2SO4

1 xH2O
dHH2O

dxH2SO4

 (E6.14B)

We now take the derivatives of the two expressions in Equation (E6.14B) by using 
Equations (E6.13C) and (E6.13D). First, the derivative of the partial molar enthalpy of sulfuric 
acid gives:

dHH2SO4

dxH2SO4

5 2148.80xH2O 

dxH2O

dxH2SO4

1 166.96xH2OxH2SO4 

dxH2O

dxH2SO4

 1 83.48xH2O
2  (E6.14C)

However, the change in number of moles of water with respect to the number of moles of 
sulfuric acid is given by:

dxH2O

dxH2SO4

5 21

EXAMPLE 6.14

Use of the Gibbs–
Duhem Equation 
to Relate Partial 
Molar Properties

(Continued)
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362 ► Chapter 6. Phase Equilibria I: Problem Formulation 

Thus, Equation (E6.14C) becomes: 

dHH2SO4

dxH2SO4

5 148.80xH2O 2 166.96xH2OxH2SO4 1 83.48xH2O
2

 5 218.16xH2O 1 250.44xH2O
2  (E6.14D)

where we have used xH2SO4 5 11 2 xH2O 2 . Finally, multiplying Equation (E6.14D) by mole 
fraction of sulfuric acid gives:

 xH2SO4 

dHH2SO4

dxH2SO4

5 218.16xH2OxH2SO4 1 250.44xH2O
2 xH2SO4 (E6.14E)

Likewise, for the derivative of the partial molar enthalpy of water, we get:

dHH2O

dxH2SO4

5 2148.80xH2SO4 1 83.48 3xH2SO4
11 2 2xH2O 2 1 xH2SO4

2 4 5 xH2SO4
118.16 2 250.44xH2O 2

and, xH2O 

dHH2O

dxH2SO4

5 18.16xH2OxH2SO4 2 250.44xH2O
2 xH2SO4 (E6.14F)

Inspection of Equations (E6.14E) and (E6.14F) shows that Equation (E6.14B) is satisfi ed.

Graphical Determination of Partial Molar Properties
Say we want to calculate the partial molar volume (or any other partial molar property) 
for a binary mixture when we have a graph of the molar volume (or whatever molar 
property) vs. mole fraction of one component, as shown in Figure 6.12. The values in 
this fi gure are taken from the chloroform (1)–acetone (2) binary mixture discussed in 
Example 6.12. Recall that the unlike interaction, in this case, is unusually large.12 

Applying Equation (6.18) to this case:

 v 5 x1V1 1 x2V2 (6.28)

Substituting x1 5 1 2 x2 yields:

v 5 11 2 x2 2V1 1 x2V2

Differentiating with respect to x2, multiplying by x2, and applying the Gibbs–Duhem 
equation gives:

x2 

dv
dx2

5 2x2V1 1 x2V2

or,  x2 

dv
dx2

5 2V1 1 1x1V1 1 x2V2 2  

Using the defi nition for v in Equation (6.28) and rearranging, we get:

 v 5 V1 1 x2 

dv
dx2

 (6.29)

intercept
slope
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6.3  Thermodynamics of Mixtures ◄ 363

If v is plotted vs. x2, Equation (6.29) represents a straight line with slope dv/dx2 and 
intercept V1. Therefore, the partial molar volume for any composition, x2, can be found 
by drawing a line tangent to the curve and taking the value of the intercept, as shown 
for x2 5 0.7 in Figure 6.13. Analogously, V2 can be found by taking the value of the line 
at x2 5 1. This method is descriptively referred to as the tangent-intercept method.13

We can generalize Equation (6.29) to get:

 K1 5 k 2 x2 

dk
dx2

 (6.30)

for example,

F
V1 5 v 2 x2 

dv
dx2

H1 5 h 2 x2 

dh
dx2

(

V

Equation (6.30) holds only for binary mixtures. For the generalization to mixtures with 
more than two components, see Problem 6.71.

It is interesting to consider the limiting cases of the partial molar volume of spe-
cies 1 in terms of composition of 1. In the limit as x1 goes to 1, we have all 1 and no 2 
in the mixture. In this case, the partial molar volume just equals the pure species molar 
volume:

V1 5 v1 lim x1 h 1

This result is the logical consequence of our interpretation of a partial molar property. 
If only species 1 is present, it must contribute entirely to the solution properties. There-
fore, it must be equal to the pure solution property.

13 The tangent-intercept method can also be applied to the partial molar property change of mixing; if Dvmix is 
plotted vs. x2, the intercept gives 1DVmix 2 1 5 V1 2 v1.

Figure 6.12 Experimental data of the molar volume for a binary system of com-
ponents 1 and 2
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In the other extreme, consider one molecule of species 1 placed in a solution of 2. 
In this case, 1 interacts only with molecules of 2 and may have a partial molar volume 
very different from the fi rst case if the nature of the 1-2 interaction differs from the 1-1 
interaction. We call this the limit of infi nite dilution, V1

`
.

V1 5 V1
`
 lim x1 h 0

Both limits are shown in Figure 6.14. Note: V1
`
2 v1.

c
m

3

m
o
l

v

v2

V2

(x2) mix = 0.7V1

v1

2000

1750

1500

1250

1000

750
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90 1

Δv mix

x2

Figure 6.13 Determination of partial molar volumes from graphical data for a binary mixture.
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Figure 6.14 Limiting cases of partial molar volumes. (Note that the y-axis scale 
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6.3  Thermodynamics of Mixtures ◄ 365

Develop an expression for the partial molar enthalpy of sulfuric acid in water at 21°C using 
Equation (6.30).

SOLUTION If we apply Equation (6.30) to this system, we get:

 HH2SO4 5 h 2 xH2O 

dh
dxH2O

 (E6.15A)

Thus, we begin with the expression for the molar enthalpy given by Equation (E6.13A).

  h 5 1.596xH2SO4 1 1.591xH2O 2 74.40xH2SO4xH2O 11 2 0.561xH2SO4
2 3kJ/mol 4 (E6.15B)

Differentiating Equation (E6.15B) gives:

dh
dxH2O

5 21.596 1 1.591 2 74.40 3 1xH2SO4 2 xH2O 2 11 2 0.561xH2SO4
2 1 0.561xH2SO4xH2O 4

 (E6.15C)

Substituting Equations (E6.15B) and (E6.15C) into (E6.15A) gives:

HH2SO4 5 1.596 1xH2SO4 1 xH2O 2 2 74.40xH2O
2 11 2 0.561xH2SO4

2 1 41.74xH2SO4xH2O
2

 HH2SO4 5 1.596 2 74.40xH2O
2 1 83.48xH2SO4xH2O

2 3kJ/mol 4 (E6.15D)

Expressions (E6.15D) and (E6.13C) are identical. 

EXAMPLE 6.15

Alternative 
Calculation of HH2SO4 
and HH2O

Graphically determine values for the partial molar enthalpies of sulfuric acid and water in an 
equimolar mixture at 21°C by plotting Equation (E6.13A).

SOLUTION A plot of Equation (E6.13A) is shown in Figure E6.16. Also illustrated in the fi g-
ure is the tangent line to the plot at a mole fraction of 0.5. The values of the intercepts of the 
tangent lines give:

HH2SO4 5 26700 3J/mol 4 and HH2O 5 217,100 3J/mol 4

These values agree with the numbers obtained analytically in Example 6.13.

EXAMPLE 6.16

Graphical 
Determination of 
HH2SO4 and HH2O

(Continued)
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Figure E6.16 Graphical determination of values for the partial molar enthalpies of sul-
furic acid and water.

Relations Among Partial Molar Quantities

Partial molar properties can be related to each other, further extending the thermo-
dynamic web. For example, consider the total solution enthalpy:

H 5 U 1 PV

Differentiating with respect to ni at constant T, P, and nj, we get:

¢ 'H
'ni
≤

T,P,nj2 i

5 ¢ 'U
'ni
≤

T,P,nj2 i

1 ¢ 'PV
'ni

≤
T,P,nj2 i

Since the pressure is constant,

¢'H
'ni
≤

T,P,nj2 i

5 ¢ 'U
'ni
≤

T,P,nj2 i

1 P¢ 'V
'ni
≤

T,P,nj2 i

Applying the defi nition of a partial molar quantity, we get:

 Hi 5 Ui 2 PVi (6.31)

Note the similarity between Equation (6.31), which applies to the partial molar enthalpy, 
and the total solution enthalpy. 

It is straightforward to show that the similar derived property relations described in 
Chapter 5 likewise hold:

Gi 5 Hi 2 TSi

Ai 5 Ui 2 TSi

We can also fi nd relations for the partial molar Gibbs energy analogous to the Max-
well relations discussed in Chapter 5. We begin by applying the expression for the dif-
ferential change of Gibbs energy in a mixture: 

 dG 5 a
'G
'T
b

P,ni

dT 1 a
'G
'P
b

T,ni

dP 1 a
m

i51
Gidni (6.32)
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6.4  Multicomponent Phase Equilibria ◄ 367

When there is no change in composition, dni 5 0, the above relationship must reduce to 
Equation (5.9). Therefore, we can write Equation (6.32) as:

 dG 5 2SdT 1 VdP 1 a
m

i51
Gidni (6.33)

By equating the second derivatives of the fi rst and third terms (as we did for the Maxwell 
relations), we get:

 ¢ 'Gi

'T
≤

P,ni

5 2Si (6.34)

A convenient form of the temperature dependence of the partial molar Gibbs energy is 
given by taking the partial derivative of 1Gi/T 2  with respect to T at constant P:

 §
'¢Gi

T
≤

'T
¥

P,ni

5
1
T

 ¢ 'Gi

'T
≤

P,ni

2
Gi

T 2
5

2TSi 2 Gi

T 2
5 2

Hi

T 2
 (6.35)

where fi rst the chain rule was applied,  then Equation (6.34) was used. Cross-differentiation 
of the second and third terms of Equation (6.33) yields:

 ¢ 'Gi

'P
≤

T,ni

5 Vi (6.36)

The role of the partial molar Gibbs energy in phase equilibria will be discussed in 
the next section. For now, we can see that the two equations above are useful in deter-
mining the pressure and temperature dependence of this quantity.

 ►6.4  MULTICOMPONENT PHASE EQUILIBRIA

The Chemical Potential—The Criteria for Chemical Equilibrium

We are now ready to combine the phase equilibria criteria developed in Section 6.2 with 
our description for mixtures in Section 6.3 to synthesize the complete phase equilibria 
problem (see Figure 6.2). We begin with our criterion for chemical equilibria, Equation 
(6.3). Writing the differential change in the total Gibbs energy as the sum of the differ-
ential change in each phase gives:

dG 5 0 5 dGa 1 dGb

Substituting the fundamental property relation given by Equation (6.33) to each phase, 
we get:

 0 5 B2SdT 1 VdP 1 a
m

i51
GidniR

a

1 B2SdT 1 VdP 1 a
m

i51
GidniR

b

 (6.37)
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We can now apply our criteria for thermal equilibrium and mechanical equilibrium. 
For thermal equilibrium, we have:

Ta 5 Tb

Thus, if we have a differential change in the temperature of phase a, it must be matched 
by a corresponding differential change in the temperature of phase b:

dTa 5 dTb

Similarly, the criteria for mechanical equilibrium can be applied to differential changes 
in pressure to get:

dPa 5 dPb

Applying the criteria for thermal and mechanical equilibrium to Equation (6.32) gives:

0 5 Ba
m

i51
GidniR

a

1 Ba
m

i51
GidniR

b

The partial molar Gibbs energy is such an important quantity in chemical equilibria 
that it is given a special name: the chemical potential, mi:

 mi ; ¢ 'G
'ni
≤

T,P,nj2 i

 (6.38)

We will see shortly why. It is important to remember that chemical potential and partial 
molar Gibbs energy are synonymous. In terms of chemical potential, we have:

0 5 a
m

mi
adni

a 1 a
m

mi
bdni

b

However, since we have a closed system, any species leaving phase a will enter phase b. 
Hence,

dni
a 5 2dni

b

Thus, we get:

0 5 a
m
1mi

a 2 mi
b 2dni

a

Now, for this equation to be true in general,

 mi
a 5 mi

b (6.39)

Equation (6.39) applies to all m species in the system; that is, there are m differ-
ent equations here. By comparing Equation (6.39) to Equation (6.5), it is evident 
that the criterion for chemical equilibrium in mixtures is obtained by replacing the 
pure species quantity, the molar Gibbs energy, gi, with the contribution of species i 
to the Gibbs energy of the mixture, that is, its partial molar Gibbs energy, Gi 5 mi. 
This realization could be intuited by our interpretation of a partial molar quantity in 
 Section 6.3.
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6.4  Multicomponent Phase Equilibria ◄ 369

The chemical potential is an abstract concept; it cannot directly be measured. How-
ever, the relation between chemical potential and mass transport is identical to the rela-
tion between temperature and energy transport or pressure and momentum transport. 
This concept is illustrated in Figure 6.15. In Figure 6.15a, we see two systems of dif-
ferent temperature. If they are placed in contact, there will be energy transfer via heat 
from high to low temperature until the temperatures become equal and we have reached 
thermal equilibrium. We could very well call temperature “thermal potential,” since it 
provides the driving force toward thermal equilibrium. However, we already know this 
property from physical experience as temperature, so we stick with that name. 

Figure 6.15b shows the analogous relation between chemical potential and diffu-
sion. Here we see two systems of different chemical potential for species i. In this case, 
species i will transport from high to low chemical potential until the chemical potentials 
become equal and we have reached chemical equilibrium. If we know mi for each phase, 
we know which way species i will tend to transfer. The biggest diffi culty in understand-
ing chemical potential is that it is an abstract concept, whereas T and P are measured 
properties with which we have direct experience. However, we can apply the concept of 
chemical potential to learn about driving forces for species transfer in much the same 
manner as we apply temperature to energy transport.

Figure 6.15 Conceptual illustration of the 
analogy between (a) temperature as the driv-
ing force for energy transfer and (b) chemi-
cal potential as the driving force for mass 
transfer.

Energy
transferThigh

Tlow

μi,high

μi,low

Mass transfer
of species i 

(a)

(b)

Consider a system at temperature T and pressure P with m species present in p phases. How 
many measurable properties need to be determined (e.g., T, P, and xi) to constrain the state of 
the entire system?

SOLUTION From Equations (6.1), (6.2), and (6.39), we can construct the following set of equa-
tions for m species and p phases:

 Ta 5 Tb 5 c 5 Tp

 Pa 5 Pb 5 c 5 Pp

 m1
a 5 m1

b 5 c 5 m1
p

  m2
a 5 m2

b 5 c 5 m2
p (E6.17A)

 (

  mm
a 5 mm

b 5 c 5 mm
p

EXAMPLE 6.17

Determination of the 
Gibbs Phase Rule 
for Nonreacting 
Systems

(Continued)
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In analogy to the case for pure species we saw in Section 6.2, we can determine how a 
mixture in equilibrium responds to changes in measured variables. We can use the ther-
modynamic web to relate the change in chemical potential and the criteria for chemical 
equilibrium between phases with changes in pressure, temperature, and mole fraction.

It is convenient to begin by dividing Equation (6.39) by T:

 
mi

a

T
5

mi
b

T
 (6.40)

If we choose temperature, pressure, and mole fraction of species i as independent vari-
ables, the change in chemical potential divided by temperature can be related by the 
following partial differentials:

B' 1mi
a/T 2

'T
R

P,xm
a
 dT 1 B' 1mi

a/T 2

'P
R

T, xm
a 
dP 1 B' 1mi

a/T 2

'xi
R

T,P
dxi

a

5 B' 1mi
b/T 2

'T
R

P,xm
b

dT 1 B' 1mi
b/T 2

'P
R

T, xm
b
 dP 1 B' 1mi

b/T 2

'xi
R

T,P
dxi

b

Factoring out (l/T) in the second and third terms on each side gives:

B' 1mi
a/T 2

'T
R

P,xm
a

dT 1
1
T

 B'mi
a

'P
R

T,xm
a
 dP 1

1
T

 B'mi
a

'xi
R

T,P
dxi

a

5 B' 1mi
b/T 2

'T
R

P,xm
b
 dT 1

1
T

 B'mi
b

'P
R

T,xm
b
 dP 1

1
T

 B'mi
b

'xi
R

T,P
dxi

b

Each row in the set of equations above has 1p 2 1 2  equal signs. Thus, there are a total of 
1p 2 1 2 1m 1 2 2  equalities in the set of equations above. The chemical potential in a given 
phase depends on the temperature, pressure, and mole fraction of each of the species present. 
Since the sum of mole fractions equals 1, we have to know 1m 2 1 2  mole fractions for each 
phase along with the temperature and pressure to constrain the state of that phase. Thus we 
must specify 1m 1 1 2p variables to determine the state of the system. The number of variables 
we can independently pick (the so-called degrees of freedom, I) is obtained by subtracting the 
total 1m 1 1 2p variables we need to specify by the 1p 2 1 2 1m 1 2 2  equalities in Equations 
(E6.17A). Thus, we can independently specify:

 I 5 1m 1 1 2p 2 1p 2 1 2 1m 1 2 2 5 m 2 p 1 2 (E6.17B)

quantities. Equation (E6.17B) is identical to Equation (1.12). This example does not consider 
chemical reaction. If we have reactions, we place additional constraints due to the reaction 
stoichiometry. This case is addressed in Chapter 9.

Temperature and Pressure Dependence of mi
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Applying Equations (6.35) and (6.36) gives:

 2
Hi

a

T2
 dT 2

Vi
a

T
 dP 1

1
T

 B'mi
a

'xi
a R

T,P
dxi

a 5 2
Hi

b

T2
 dT 1

Vi
b

T
 dP 1

1
T

 B'mi
b

'xi
b R

T,P
dxi

b (6.41)

Equation (6.41) is valid for any two phases a and b, in general. We now consider the 
specifi c case of vapor–liquid equilibrium. Denoting the vapor-phase mole fraction, yi, 
and the liquid-phase mole fraction, xi, Equation (6.41) becomes:

 2
Hi

v

T2
 dT 1

Vi
v

T
 dP 1

1
T

 B'mi
v

'yi
R

T,P
dyi 5 2

Hi
l

T2
 dT 1

Vi
l

T
 dP 1

1
T

 B'mi
l

'xi
R

T,P
dxi (6.42)

For the case of an ideal gas, we can simplify further. The partial molar enthalpy 
and the partial molar volume equal the pure species molar enthalpy and volume, respec-
tively, since the interactions of species i in the mixture are the same as its interactions as 
a pure species:

 Hi
v 5 hi

v (6.43)

 Vi
v 5 vi

v 5
RT
P

 (6.44)

Similarly, the change in chemical potential with respect to mole fraction is given by the 
change in pure species Gibbs energy with respect to mole fraction:

¢ 'gi

'yi
≤

T,P
5 ¢ 'hi

'yi
≤

T,P
2 T¢ 'si

'yi
≤

T,P

For an ideal gas, the enthalpy is independent of mole fraction. To fi nd the dependence 
of entropy, we apply the analogy of Equation (E6.11B). So at constant pressure:

dsi 0T,P 5 2Rd ln 1yi 2 5 2
R
yi

 dyi

Thus,

 B'mi
v

'yi
R

T,P
5 B'gi

v

'yi
R

T,P
5

RT
yi

 (6.45)

Substituting Equations (6.43), (6.44), and (6.45) into Equation (6.42) gives:

 2
hi

v

T2
 dT 1 R 

dP
P

1 R 

dyi

yi
5 2

Hi
l

T2
 dT 1

Vi
l

T
 dP 1

1
T

 B'mi
l

'xi
R

T,P
dxi (6.46)

Equation (6.46) shows how the temperature or pressure of a phase transition for a 
 liquid–ideal gas mixture is related to changes in composition. We will discuss phenom-
ena of boiling point elevation in this context in Chapter 8.
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In this chapter, we formulated the criteria for equilibrium between two phases. We labeled the 
phases generally as a and b, which can represent the vapor, liquid, or solid phases. We reduced 
this problem into two parts. First, we addressed pure species phase equilibrium. We determined 
that the derived property Gibbs energy is a minimum at equilibrium, so only when two phases 
have equal values of Gibbs energy can they coexist. Second, we addressed the thermodynamics of 
mixtures. We discovered that the partial molar property, Ki, is representative of the contribu-
tion of species i to the mixture. In analogy to the case for pure species, the criterion for chemical 
equilibrium between two phases for species i in a mixture is that the partial molar Gibbs energy, 
Gi, is equal in the two phases. Since it sets the criteria for chemical equilibrium, we often call the 
partial molar Gibbs energy the chemical potential, mi. In summary, the criteria for equilibrium 
between phases a and b can be written:

 Ta 5 Tb     Thermal equilibrium (6.1)

 Pa 5 Pb      Mechanical equilibrium (6.2)

and,  mi
a 5 mi

b     Chemical equilibrium (6.39)

Gibbs energy establishes the criteria for pure species phase equilibria by accounting for 
the balance between the system’s tendency to minimize energy and its tendency to maximize 
entropy. At low temperature, energetic effects become more important, while at higher tempera-
ture entropic effects dominate. We can apply the thermodynamic web to relate how the pressure 
of a system in phase equilibrium varies with temperature. This analysis leads to the Clapeyron 
equation. Application of the Clapeyron equation to vapor–liquid equilibrium, together with the 
assumptions of a negligibly small liquid volume and an ideal gas, leads to the  Clausius– Clapeyron 
equation. The integrated form of the Clausius–Clapeyron equation is functionally similar to the 
Antoine equation, a common empirical equation used to correlate pure species saturation pres-
sures with temperature.

Thermodynamic properties of a mixture are affected both by the like (i-i) interactions and 
by the unlike (i-j) interactions, that is, how each of the species in the mixture interacts with all 
of the other species it encounters. The total solution property K, 1K 5 V, H, U, S, G,c 2 , 
represents a given property of the entire mixture. It can be written as the sum of the par-
tial molar properties of its constituent species, each adjusted in proportion to how much is 
present:

 K 5 a
ni

niKi (6.17)

where the partial molar property is defi ned by:

 Ki 5 ¢ 'K
'ni
≤

T,P,nj2 i

 (6.15)

Additionally, the pure species property, ki, is defi ned as the value of that property of species i as 
it exists as a pure species at the same T and P of the mixture. Values of a partial molar property for 
a species in a mixture can be calculated from an analytical expression by applying Equation (6.15) 
and by graphical methods, as illustrated in Figure 6.13. In the case of infinite dilution, species i 
becomes so dilute that a molecule of species i will not have any like species with which it interacts; 
rather, it will interact only with unlike species. Additionally, partial molar properties of different 
species in a mixture can be related to one another by the Gibbs–Duhem equation:

 0 5 anidKi Const T and P (6.19)

 ►6.5  SUMMARY
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 A property change of mixing, DKmix, describes how much a given property changes as a 
result of a process in which pure species are mixed together. It is written as:

 DKmix 5 K 2 aniki

  5 ani 1Ki 2 ki 2  (6.21)

Volume and enthalpy changes of mixing have values of zero when the like and unlike interactions 
are identical. When the unlike interactions are more attractive, these quantities are negative, while 
they are positive when unlike interactions are less favorable. Conversely, the entropy of mixing is 
positive in all cases, since there are many more ways to confi gure a mixture as compared to the 
pure species. The energetic interactions characteristic of the mixing process are often reported as 
the enthalpy of solution Dh|s. The enthalpy of solution corresponds to the enthalpy change when 
1 mole of solute is mixed in n moles of solvent.

6.1 A pot of boiling water is open to the atmosphere when, at time 0, the pot is sealed by a tight 
lid so no gas can escape. With continued heating, the water continues to boil. As best you can, esti-
mate how the temperature changes with time and plot it on the following graph. You may assume 
that the amount of water that evaporates (the evaporation rate) stays constant with time. Explain 
your answer. 

Time(lid on)

T
[°

C
]

50
1 2 3

100

150

200

250

0

6.2 The boiling point for species A at 1 bar is reported to be 250 K, and you desire to know the 
boiling point at 10 bar. Knowing the enthalpy of vaporization, you apply the Clausius-Clapeyron 
equation and calculate the temperature to be 300 K. However, at that pressure, you also know that 
species A is not an ideal gas, but rather attractive intermolecular interactions are signifi cant. If you 
accounted for the attractive interactions, you would fi nd that Species A boils (at less than 300 K, at 
300 K, at greater than 300 K, or there is no way to determine). Explain your answer.
6.3 The boiling point for species A at 1 bar is reported to be 250 K, and you desire to know the satu-
ration pressure at 300 K. Knowing the enthalpy of vaporization, you apply the Clausius-Clapeyron 
equation and calculate the pressure to be 10 bar. However, at that pressure, you also know that spe-
cies A is not an ideal and that attractive intermolecular interactions are signifi cant. If you accounted 
for the attractive interactions, you would fi nd that the saturation pressure for Species A is (less than 
10 bar, equal to 10 bar, greater than 10 bar, or there is no way to determine) Explain your answer.

 ►6.6  PROBLEMS
Conceptual Problems
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6.4 A well-insulated tank with a valve at the top contains saturated water at 5 MPa. The quality 
of the water is 0.1. 
(a) What is the ratio of the liquid volume to the vapor volume?
(b) The valve is opened, and the vapor is allowed to escape to atmosphere while the water 
continues to boil. Plot how you think the temperature will change with pressure. Explain your 
reasoning. 
6.5 Your coworker has scribbled down the saturation pressures for a pure species from the solid 
(sublimation) and liquid (evaporation) as follows:

ln Psat 5 2
15800

T
2 0.76 ln T 1 19.25

and,

ln Psat 5 2
15300

T
2 1.26 ln T 1 21.79

However, in his haste, he forgot to note which equation was for sublimation and which was 
for evaporation. Please help your coworker by determining the correct matches. Explain your 
reasoning.
6.6 (a) A pure fl uid shows the following s vs. T behavior. Draw schematically how the chemical 
potential would change with temperature.

g

T

s

T

(b) A pure substance shows the following v vs. P behavior at constant temperature. Draw sche-
matically how the molar Gibbs energy would change with pressure. Explain your reasoning and 
describe the important features on your plot.

v

P
P

g

6.7 At room temperature, iron exists in the ferrite phase 1a-Fe 2 . At 912°C, it goes through a 
phase transformation to the austenite phase 1g-Fe 2 . Which phase of iron has stronger bonds? 
Explain.
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6.8 Consider the crystallization of species a. The molar Gibbs energy of pure species a vs. tem-
perature at a pressure of 1 bar is shown below. Take the molar volume of species a in the liquid 
phase to be 20% larger than its molar volume as a solid.

6,000

4,000

2,000

Pure species a 

Temperature,T (K) 
100 200 300

G
ib

b
s
 e

n
e
rg

y
, 
 g

 [
J
/m

o
l]

Answer the following questions:
(a) Identify the location of the freezing point on the diagram above. Identify which section of 
the plot corresponds to liquid and which part corresponds to solid. What is the temperature at 
which the liquid crystallizes? What is the Gibbs energy of the liquid at this point?
(b) Come up with a value for the entropy of the solid phase and the liquid phase.
(c) Consider this process occurring at a much higher pressure. Sketch how the plot above will 
change. Will the freezing point be higher or lower? Try to be as accurate as possible with the 
features of your sketch. Write down all your assumptions.
6.9 The slope of the coexistence line between the solid and liquid phases shown in Figure 6.3 is 
positive. Most pure species behave this way. However, species that expand on freezing (like liquid 
water to ice) exhibit a negative slope. Using the thermodynamic principles presented in this chap-
ter, show that the slope must be negative. 
6.10 For two species, A and B, with a positive enthalpy change of mixing:
(a) Are the like interactions or the unlike interactions stronger? Explain.
(b) If pure species A and B are mixed adiabatically, will the temperature (increase, stay the same, 
decrease, or cannot tell)? Explain.
(c) If pure species A and B are mixed isothermally, what will be the sign of Q? Explain.
(d) If an equamolar mixture of species A and B is mixed adiabatically with pure A, will the tem-
perature (increase, stay the same, or decrease)? Explain. 
6.11 The following diagram shows the normal melting point of pure solid 1 to be Tm. Consider 
now that the same pure solid 1 is in a liquid mixture with four species 1, 2, 3, and 4 as shown on the 
right. How does the temperature at which 1 will be in equilibrium with liquid, T, compare to the 
case on the left (T , Tm, T 5 Tm, T . Tm, or you cannot tell without more information)? Explain 
your answer.
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6.12 The normal boiling point of pure liquid 1 is Tb. Consider now that the same pure liquid 1 is 
in a vapor mixture with itself and another species. How does the temperature at which liquid 1 will 
be in equilibrium with vapor, T, compare to the case for the pure species (T , Tb, T 5 Tb, T . Tb,
or you cannot tell without more information)? Explain your answer.
6.13 The normal melting point of pure solid 1 is Tm. Consider now that the same pure solid 1 is 
melting into a liquid that initially contains pure 2. How does the temperature at which 1 will melt 
into the liquid, T, compare to Tm? You may assume that the enthalpy of mixing of liquid 1 and 2 
is zero.
6.14 In Example 6.5, we found Ni nanopartibles of 2 nm radius would melt at 587 K, assuming 
the system contained pure Ni liquid. Consider now 2 nm Ni nanoparticles in equilibrium with 
a liquid mixture. How would the actual melting temperatature compare to the value using the 
assumptions in Example 6.5? Explain.
6.15 In this problem you will compare properties of species 1 as a pure liquid at 1 atm and 300 K 
(System I) to species 1 in a mixture with species 2, 3, and 4 at the same pressure and temperature 
(System II), as shown in the following fi gure. Select the correct answer in each case, and explain 
your reasoning.

System II

LiquidLiquid

nl
1, nl

2, nl
3, nl

4,

System I

300
K

1
atm

300
K

1
atm

nl
1

(a) How does the partial molar enthalpy of species 1 in system I compare to the partial molar 
enthalpy in system II (HI

1 , HII
1 , HI

1 5 HII
1 , HI

1 . HII
1 , or need more information)? Assume that all 

the intermolecular interactions in the mixture are the same.
(b) How does the partial molar entropy of species 1 in system I compare to the partial molar 
entropy in system II (SI

1 , SII
1 , SI

1 5 SII
1 , SI

1 . SII
1 , or need more information)? Assume that all the 

intermolecular interactions in the mixture are the same.
(c) How does the molar Gibbs energy of species 1 in system I compare to the partial molar Gibbs 
energy in system II (GI

1 , GII
1 , GI

1 5 GII
1 , GI

1 . GII
1 , or need more information)? Assume that all 

the intermolecular interactions in the mixture are the same.
(d) How does the partial pure species Gibbs energy of species 1 in system I compare to the pure 
species Gibbs energy in system II (gI

1 , gII
1 , gI

1 5 gII
1 , gI

1 . gII
1 , or need more information)? Assume 

that all the intermolecular interactions in the mixture are the same.

1
atm

1
atm

Tm T= ?

Liquid Liquid

nl
1, nl

2, nl
3, nl

4,

Solid

nl
1

ns
1

Solid

ns
1
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(e) How does the partial molar enthalpy of species 1 in system I compare to the partial molar 
enthalpy in system II (HI

1 , HII
1 , HI

1 5 HII
1 , HI

1 . HII
1 , or need more information)? Assume that the 

intermolecular interactions of species 1 with itself are stronger than with any of the other species 
in the mixture. 
6.16 For a given binary system, the partial molar volume of species 1 is constant. What can you 
say about species 2? Explain.

6.17 (a) Use the Clausius–Clapeyron equation and data for water at 100°C to develop an expres-
sion for the vapor pressure of water as a function of temperature.
(b) Plot the expression you came up with on a PT diagram for temperatures from 0.01°C to 100°C.
(c) Include data from the steam tables on your plot in part (b) and comment on the adequacy of 
the Clausius–Clapeyron equation.
(d) Repeat parts (b) and (c) for 100°C to 200°C.
(e) Repeat parts (a)–(c), but correct for the temperature dependence of Dhvap, using heat capacity 
data from Appendix A.2.
6.18 What pressure is needed to isothermally compress ice initially at 25°C and 1 bar so that it 
changes phase?
6.19 One mole of a pure species exists in liquid–vapor equilibrium in a rigid container of volume 
V 5 1 L, a temperature of 300 K, and a pressure of 1 bar. The enthalpy of vaporization and the 
second virial coeffi cient in the pressure expansion are:

Dhvap 5 16,628 3J/mol 4   and   B r 5 21 3 1027 3m3/J 4

Assume the enthalpy of vaporization does not change with temperature. You may neglect the molar 
volume of the liquid relative to that of the gas.
(a) How many moles of vapor are there?
(b) This container is heated until the pressure reaches 21 bar and is allowed to reach equilibrium. 
Both vapor and liquid phases are still present. Find the fi nal temperature of this system.
(c) How many moles of vapor are there now?
6.20 Tired of studying thermo, you come up with the idea of becoming rich by manufacturing 
diamond from graphite. To do this process at 25°C requires increasing the pressure until graphite 
and diamond are in equilibrium. The following data are available at 25°C:

 Dg 125°C, 1 atm 2 5 gdiamond 2 ggraphite 5 2866 3J/mol 4

 rdiamond 5 3.51 3g/cm3 4

 rgraphite 5 2.26 3g/cm3 4

Estimate the pressure at which these two forms of carbon are in equilibrium at 25°C.
6.21 You wish to know the melting temperature of aluminum at 100 bar. You fi nd that at atmo-
spheric pressure, Al melts at 933.45 K and the enthalpy of fusion is:

Dhfus 5 210,711 3J/mol 4 

Heat capacity data are given by:

cP
l 5 31.748 3J/ 1mol K 2 4, cP

s 5 20.068 1 0.0138T 3J/ 1mol K 2 4

Take the density of solid aluminum to be 2700 3kg/m3 4 and liquid to be 2300 3kg/m3 4. At what 
temperature does Al melt at 100 bar?

Numerical Problems
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6.22 The vapor pressure of silver (between 1234 K and 2485 K) is given by the following 
expression:

ln P 5 2
14,260

T
2 0.458 ln T 1 12.23

with P in torr and T in K. Estimate the enthalpy of vaporization at 1500 K. State the assumptions 
that you make.
6.23 At a temperature of 60.6°C, benzene exerts a saturation pressure of 400 torr. At 80.1°C, 
its saturation pressure is 760 torr. Using only these data, estimate the enthalpy of vaporization of 
benzene. Compare it to the reported value of Dhvap 5 35 3kJ/mol 4.
6.24 Pure ethanol boils at a temperature of 63.5°C at a pressure of 400 torr. It also boils at 78.4°C 
and 760 torr. Using only these data, estimate the saturation pressure for ethanol at 100°C.
6.25 An alternative criteria for chemical equilibrium between two phases of pure species i can 
be written:

¢ gi

T
≤a

5 ¢ gi

T
≤b

Apply the thermodynamic web to show that the partial derivative of this function with respect to 
temperature at constant pressure is given by:

C'¢
gi

T
≤

'T

S
P

5 2
hi

T2

6.26 At 922 K, the enthalpy of liquid Mg is 26.780 [kJ/mol] and the entropy is 73.888 [J/(mol K)]. 
Determine the Gibbs energy of liquid Mg at 1300 K. The heat capacity of the liquid is constant 
over this temperature range and has a value of 32.635 [J /(mol K)].
6.27 Solid sulfur undergoes a phase transition between the monoclinic (m) and orthorhombic (o) 
phases at a temperature of 368.3 K and pressure of 1 bar. Calculate the difference in Gibbs energy 
between monoclinic sulfur and orthorhombic sulfur at 298 K and a pressure of 1 bar. Which phase 
is more stable at 298 K? Take the entropy in each phase to be given by the following expressions:

 Monoclinic phase: sm 5 13.8 1 0.066T 3J/ 1mol K 2 4

 Orthorhombic phase: so 5 11.0 1 0.071T 3J/ 1mol K 2 4

6.28 At 900 K, solid Sr has values of enthalpy and entropy of 20.285 [kJ/(mol)] and 91.222 
[J/(mol K)], respectively. At 1500 K, liquid Sr has values of enthalpy and entropy of 49.179 [kJ/mol] 
and 116.64 [J/(mol K)], respectively. The heat capacity for the solid and liquid phases is given by:

1cP 2Sr
s

5 37.656 3J/ 1mol K 2 4   and   1cP 2Sr
l 5 35.146 3J/ 1mol K 2 4

respectively. Using only these data, determine the temperature of the phase transition between 
solid and liquid. What is the enthalpy of fusion? The result of Problem 6.25 could be useful.
6.29 At 1100 K, solid SiO2 has values of enthalpy and entropy of 2856.84 3kJ/mol 4 and 
124.51 [J/(mol K)], respectively. At 2500 K, liquid SiO2 has values of enthalpy and entropy of 
2738.44 3kJ/mol 4 and 191.94 [J/(mol K)], respectively. The heat capacities for the solid and liquid 
phases are given by:

 1cP 2SiO2

s
5 53.466 1 0.02706T 2 1.27 3 1025 T 2 1 2.19 3 1029 T 3 3J/ 1mol K 2 4
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 1cP 2SiO2

l 5 85.772 3J/ 1mol K 2 4

Using only these data, determine the temperature of the phase transition between solid and liquid. 
What is the enthalpy of fusion?
6.30 Determine the second virial coeffi cient, B, for CS2 at 100°C from the following data. The 
saturation pressure of carbon disulfi de 1CS2 2  has been fi t to the following equation:

ln PCS2

sat 5 62.7839 2
4.7063 3 103

T
2 6.7794 ln T 1 8.0194 3 1023 T

where T is in [K] and ln PCS2

sat  is in [Pa]. The enthalpy of vaporization for CS2 at 100°C has been 
reported as

Dhvap, CS2 5 24.050 3KJ/mol 4

Compare to the reported value of

BCS2 5 2492 3cm3/mol 4

6.31 Calculate the Gibbs energy of the liquid and vapor phases of water for the following 
conditions: 
(a) Saturated water at 100°C
(b) 100°C and 50 kPa
Are these results consistent with Equation (6.3) and your intepretation of Gibbs energy? 
6.32 The saturation pressure of pure solid species A is given by:

ln P sat
A 5 12.0 2

3000.
T

where Psat
A  is in [bar] and T is in [K]. You wish express the vapor pressure of the liquid in the form:

ln Psat
A 5 A 2

B
T

You know the enthalpy of fusion is 210.94 kJ/mol. As best you can, determine the constants A 
and B. For this problem, you can assume that the enthalpy differences for phase changes do not 
change with T.
6.33 At 1 bar, silver melts at 1233.95 K. The density of the liquid and solid are:

rl 5 9,300 B kg

m3
R      and     rs 5 10,500 B kg

m3
R

You may assume these values are constant in this problem. The entropy at the normal melting 
point is:

sl 5 90.885 B J

mol K
R      and     ss 5 81.730 B J

mol K
R
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The molecular weight of silver is 107.9 [g/mol].
(a) Calculate the Gibbs energy of fusion for silver at 5,000 bar and 1400 K, assuming the entropy 
of each phase is constant.
(b) Which phase is stable at 5,000 bar and 1400 K? Explain.
(c) Account for the temperature dependence of entropy in the calculation for part A. The follow-
ing heat capacity data are available:

cl
P 5 33.472 B J

mol K
R      and

cs
P 5 22.963 1 6.904 3 1023T B J

mol K
R

with T in [K].
(d) What is the melting temperature of silver at 1 bar? At 3,000 bar? 
6.34 You need to fi nd the triple point of pure species A and are unable to fi nd its value in any 
reference books. You can fi nd the following data for A. It sublimes at 200 K and 0.1 bar, and it boils 
at 250 K and 1 bar.
(a) Calculate the temperature and pressure at the triple point. You may assume the enthalpies of 
sublimation and vaporization are constant. The values are:

Dhsub,i 5 13.921 B kJ

mol
R      and     Dhvap,i 5 28.937 B kJ

mol
R

(b) It turns out that the enthalpy changes are better represented in the following forms:

Dhsub,i 5 A 1 BT     and     Dhvap,i 5 C 1 DT

where A, B, C, and D are constants. Come up with an expression to fi nd T and P at the triple point 
with these forms. 
6.35 You need to fi nd the enthalpy of sublimation of solid A at 300 K. The following equilibrium 
vapor pressure measurements have been made on pure A: (1) at 250 K, the pressure is 0.258 bar 
and (2) at 350 K, the pressure is 2.00 bar. The following heat capacity data are known:

cs
P 5 40 B J

mol K
R      and     cv

P 5 40 1 0.1T B J

mol K
R

(a) Calculate the enthalpy of sublimation, assuming Dhsub is constant.
(b) Calculate the enthalpy of sublimation, accounting for the temperature variation of Dhsub.
(c) Estimate the error in the constant T assumption.
6.36 A TP diagram of carbon is presented in the following fi gure. The following data are available 
at 25°C.

rdiamond 5 3.51 B g

cm3
R      and    rgraphite 5 2.26 B g

cm3
R
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Answer the following questions:
(a) Identify the region where diamond is the thermodynamically stable phase of carbon. In this 
region, what can you say about the Gibbs energy of diamond relative to the other phases of carbon?
(b) What is the lowest temperature that liquid carbon can exist? What is the pressure at that tem-
perature? Identify the location on the TP diagram.
(c) Using the preceding phase diagram, estimate the difference in enthalpy between diamond (d) 
and graphite (g), Dh 5 hd 2 hg at 300K. You may assume Dh is constant.
(d) From the value of Dh in Part (c), which phase has stronger bonds? Explain. Does this make 
physical sense? 
(e) Obtain a more accurate estimate of Dh at 300K using the values of specifi c heat for diamond 
and graphite:

cP,d 5 6.1 B J

mol K
R       and     cP,g 5 8.5 B J

mol K
R

6.37 Consider the use of CF2Cl2 as a dispersing agent for aerosol spray cans. Estimate the pres-
sure a can has to withhold at 40°C. Its enthalpy of vaporization at its normal boiling point (244 K)

is Dhvap 5 20.25B kJ

mol
R . State your assumptions. 

6.38 At 1 atm titanium melts at 1941 K and boils at 3560 K. Its triple point pressure is 5.3 Pa. 
Using only these data, estimate the enthalpy of vaporization of titanium. You will need to think 
about a reasonable assumption to solve this problem.

liquid
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6.39 You wish to determine the enthalpy of vaporizaton of species A. You are able to fi nd the fol-
lowing data: Species A has a normal boiling point of 207.3 K, and at 20.0 atm, it boils at 301.5 K. 
The following equation of state is reported:

P 5
RT
v

2
aP
T

with a 5 25 K. As best as you can, estimate Dhvap. State any assumptions that you make.
6.40 In Example 6.2, we developed an expression for gd 2 gn vs. T for the protein lysozyme (l) 
between its native phase, n, and its denatured phase, d, where unfolding occurs. Develop the same 
expression from the following different approaches:
(a) Use the property relation given by Equation (5.14).
(b) Use the results of Problem 6.25.
6.41 Consider an ideal gas mixture at 83.14 kPa and 500 K. It contains 2 moles of species A and 
3 moles of species B. Calculate the following:VA, VB, vA, vB, VA, VB, V, v, DVmix, Dvmix.
6.42 For a given binary system at constant T and P, the molar volume (in cm3 /mol) is given by

v 5 100ya 1 80yb 1 2.5yayb

(a) What is the pure species molar volume for species a, va?
(b) Come up with an expression for the partial molar volume, Va, in terms of yb. What is the partial 
molar volume at infi nite dilution, Va

`?
(c) Is the volume change of mixing, Dvmix, greater than, equal to, or less than 0? Explain.
6.43 Consider a mixture of species 1, 2, and 3. The following equation of state is available for the 
vapor phase:

Pv 5 RT 1 P2 3A 1y1 2 y2 2 1 B 4

where,

A
RT

5 29.0 3 1025B 1
atm2

R , 
B

RT
5 3.0 3 1025B 1

atm2
R

and y1, y2, and y3 are the mole fractions of species 1, 2 and 3, respectively. Consider a vapor mix-
ture with 1 mole of species 1, 2 moles of species 2, and 2 moles of species 3 at a pressure of 50 atm 
and a temperature of 500 K. Calculate the following quantities: v, V, v1, v2, v3, V1.
6.44 The molar enthalpy of a ternary mixture of species a, b, and c can be described by the fol-
lowing expression:

h 5 25000xa 2 3000xb 2 2200xc 2 500xaxbxc 3J/mol 4

(a) Come up with an expression for Ha

(b) Calculate Ha for a solution with 1 mole a, 1 mole b, and 1 mole c.
(c) Calculate Ha for a solution with 1 mole a but with no b or c present. 
(d) Calculate Hb  for a solution with 1 mole b but with no a or c present.
6.45 Plot the partial molar volumes of CO2 and C3H8  in a binary mixture at 100°C and 20 bar as 
a function of mole fraction CO2 using the van der Waals equation of state.
6.46 The Gibbs energy of a binary mixture of species a and species b at 300 K and 10 bar is given 
by the following expression:
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g 5 240xa 2 60xb 1 RT 1xa ln xa 1 xb ln xb 2 1 5xaxb 3kJ/mol 4

(a) For a system containing 1 mole of species a and 4 moles of species b, fi nd the following:

ga, Ga, Ga
`, DGmix.

(b) If the pure species are mixed together adiabatically, do you think the temperature of the sys-
tem will increase, stay the same, or decrease. Explain, stating any assumptions that you make.
6.47 Consider a binary mixture of species 1 and species 2. A plot of the partial molar volumes  
in 3cm3/mol 4 of species 1 and 2, V1  and V2, vs. mole fraction of species 1 is shown below. For a 
mixture of 1 mole of species 1 and 4 moles of species 2, determine the following quantities for this 
mixture: V1, V2, v1, v2, V1, V2, V, v, DVmix.

70

67.5

65

62.5

60

57.5

55

52.5

50

47.5

45
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
i

V1

x1

V2

6.48 Enthalpies of mixing for binary mixtures of cadmium (Cd) and tin (Sn) have been fi t to the 
following equation at 500°C:

Dhmix 5 13,000XCdXSn 3J/mol 4

where, XCd and XSn are the cadmium and tin mole fractions, respectively. Consider a mixture of 
3 moles Cd and 2 moles Sn.
(a) Show that: 

1DHmix 2Cd 5 HCd 2 hCd

(b) Based on the equations above, calculate values for HCd 2 hCd and HSn 2 hSn at 500°C.
(c) Show that the results are consistent with the Gibbs–Duhem equation.
(d) Data from which the above equation was derived are presented below, along with the model 
fi t. Graphically determine values for HCd 2 hCd and HSn 2 hSn at 500°C. Compare your answer to 
part (b). Show your work.
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6.49 3 moles of pure water are adiabatically mixed with 1 mole of pure ethanol at a constant pres-
sure of 1 bar. The initial temperatures are the pure components are equal. If the fi nal temperature 
is measured to be 311.5 K, determine the initial temperature. The enthalpy of mixing between 
water (1) and ethanol (2) has been reported to be fi t by:

Dhmix

R
5 x1x2 32190.0 1 214.7 1x2 2 x1 2 2 419.4 1x2 2 x1 2 2 1 383.3 1x2 2 x1 2 3

2 235.4 1x2 2 x1 2 4 4 3K 4

6.50 A stream of pure water fl owing at 1 mol/s is adiabatically mixed with a stream containing 
equamolar amounts of water and ethanol, also fl owing at 1 mol/s. This steady-state process occurs 
at a constant pressure of 1 bar. The temperatures of the inlet streams are 298 K. Determine the 
temperature of the outlet stream. The enthalpy of mixing between water (1) and ethanol (2) is 
given in Problem 6.49.
6.51 The Gibbs energy of a binary mixture is given by the following expression:

Dgmix 5 RT 3xa ln xa 1 xb ln xb 4 1 1000xaxb B J

mol
R

where R is the ideal gas constant and T is in [K]. For a mixture at 298 K with the following mole 
fractions of a, calculate Ga 2 ga.
(a) xa 5 1
(b) xa 5 0.4
(c) xa 5 0 1a in infinite dilution 2

6.52 The molar enthalpy of a binary liquid mixture of species 1 and 2 is given by:

h 5 x1 1275 1 75T 2 1 x2 1125 1 50T 2 1 750x1x2 B J

mol
R

where T is the temperature in [K]
(a) What is the enthalpy of mixing, DHmix in [J], of a mixture with 2 mol of 1 and 3 mol of 2 at 20°C?
(b) Consider the adiabatic mixing of a stream of pure 1 fl owing at 2 mol/s with a stream of pure 2 
fl owing at 3 mol/s. Both inlet streams are at 20°C. What is the exit temperature of the mixture? 
6.53 The molar volume, in 3cm3/mol 4, of a binary mixture of ethanol (1) and ethylene glycol (2) 
at 25°C is given in the following table. 

6000

5400

4800

4200

3600

3000

2400

1800

1200

600

0
0 0.2 0.4 0.6 0.8 1

Heat of mixing in cadmium(Cd)-tin (Sn) system

dataJ
m

o
l

Δh
m

ix

fit to:
J

mol
Δhmix = 13,000 XCdXSn

xCd
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x1 v [cm3/mol] 

0 55.828

0.1092 55.902

0.2244 56.06

0.3321 56.245

0.4393 56.513

0.5499 56.866

0.6529 57.178

0.7818 57.621

0.8686 58.004

1 58.591

Using the graphical method, determine the partial molar volume of ethanol at 25°C for the follow-
ing mole fractions of species 1:
(a) x1 5 0.8
(b) x1 5 0.4
(c) x1 5 0 11 in infinite dilution 2

6.54 Fit the data in Problem 6.53 to the form: 

v 5 ax1 1 bx2 1 cx1x2

(a) Use the analytical method to come up with an expression of the partial molar volume of ethanol. 
(b) Determine the values at x1 5 0.8, x1 5 0.4, and x1 5 0 (1 in infi nite dilution)
6.55 The volume change of mixing, in 3cm3/mol 4, for binary liquid mixture of sulfuric acid (1) and 
water (2) at 25°C is given by the following expression:

Dvmix 5 213.1x1x2 2 2.25x2
1x2

The density of pure sulfuric acid is 1.8255 3g/cm3 4.
(a) Plot the partial molar volumes of H2SO4 and H2O versus mole fraction H2SO4.

(b) What is the value for the partial molar volume of water at infi nite dilution, V
`

2 ?
(c) Comment on the numerical results in Part (b) and relate it to what you think is physically hap-
pening in the system. 
6.56 The molar enthalpy of a binary liquid mixture of species 1 and 2 is given by:

h 5 1500x1 1 800x2 1 125.0x1 1 35.0x2 2 11.86x1x2 2T B J

mol
R

where T is the temperature in [K]. This expression is valid in the temperature range from 280 K to 
360 K. Please answer the following questions:
(a) You wish to dilute and cool a process stream containing 50 mol% species 1 and 50 mol% spe-
cies 2. Consider the adiabatic mixing of a stream a (containing 50 mol% species 1 and 50 mol% 
species 2) with a molar fl ow rate of 2 mol/s at 75°C and 1 bar with a stream b of pure species 1 
fl owing at a rate of 3 mol/s at 20°C and 1 bar. What is the exit temperature of the outlet stream? 
You may assume steady-state.
(b) What is the partial molar enthalpy of species 1, H1, in stream a?

(c) What is the partial molar enthalpy of species 1 at infi nite dilution, H
`

1  at 75°C?
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(d) Would the fi nal temperature you calculate be higher or lower than that calculated in Part C if 
you didn’t include the “mixing” effects of the unlike interactions? 
6.57 You are running a manufacturing process where a mole fraction of 0.40 species 1 in a binary 
mixture of 1 and 2 is required at a fl ow rate of 5 mol/s and a temperature of 300 K. This is achieved 
by mixing pure streams of 1 and 2. The stream of pure 2 fl ows into the mixer at a temperature of 
300 K. The molar enthalpy of mixing of species 1 and 2 is given by:

 Dhmix 5 833x1x2 B J

mol
R  

Heat capacity data are as follows:

 cP,1 5 50 B J

mol K
R  

T1 = ? 

x1 = 0.4

Pure 1

Pure 2

T2 = 300 K 

Tmix = 300 K 

nmix = 5 mol/s

mixer

and,

 cP,2 5 70 B J

mol K
R  

Assuming an adiabatic mixing process, what is the inlet temperature required for stream 1 to 
achieve the desired outlet stream temperature?
6.58 The partial molar Gibbs energy of species 1 in a binary liquid mixture of species 1 and 2 is 
given by:

G1 5 2500 1 2,500 ln x1 1 833x2
2 B J

mol
R

The pure species Gibbs energy of species 2 is 2800 3J/mol 4.

(a) Determine values or expressions for the following quantities: g1, G2, g.
(b) If pure 1 and pure 2 are mixed adiabatically, how do you expect the temperature to change 
(raise, lower, or stay the same)? State any assumptions that you make. 
6.59 The following expression describes the molar volume of a binary liquid mixture of species 
1 and 2:

v 5 20x1 1 50x2 1 6x1x2
2 B cm3

mol
R

Consider a mixture that contains 2 mol of species 1 and 4 mol of species 2. Answer the following 
questions:
(a) What are the values of V1 and v1?
(b) Develop an expression for the partial molar volume of species 1 in terms of x1 and x2.
(c) What is the value for the partial molar volume of species 1?
6.60 You are designing a process that requires a molten liquid solution of copper (Cu) and silver 
(Ag). You start with a charge of 1,000 kg of pure Cu and 2,000 kg of pure Ag at 298 K and 1 atm. 
You place the materials in a well-insulated, open container and heat them to 1356 K so that they 
form a liquid mixture. The heater provides 114.2 kW of power. The enthalpy of mixing of liquid 
Ag and liquid Cu is given by:

Dhmix 5 220,600XCuXAg B J

mol
R
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The following property data are available:

Property Cu Ag

Heat capacity, liquid 31.0 30.1 J / (mol K)

Heat capacity, solid 22.3 1 0.0062 T 21.0 1 0.0084 T J / (mol K)

Enthalpy of fusion 212,800 211,100 J/mol

Normal melting 
temperature

1,356 1,234 K

Molecular weight 63.5 107.8 g/mol

(a) Estimate how long it will take (in hours) to obtain the liquid mixture. State any assumptions 
that you make.
(b) Is it possible that some solid still remains at 1356 K? Explain.
6.61 Consider a binary mixture of ethanol, EtOH 1CH3CH2OH 2  and water 1H2O 2 . A plot of the 
partial molar volumes of EtOH and H2O versus mole fraction EtOH 1xEtOH 2  is provided in the 
following fi gure. Note that the units of partial molar volume are on a per mass basis so that both 
plots fi t on the same scale. Answer the following questions:

0.20.0
0.7

0.8

0.9

1.0

1.1

1.2

1.3

0.4 0.6 0.8 1.0

V
i VH20

c
m

3

g

xEtOH

VEtOH

(a) Consider a mixture of 3 moles EtOH and 2 moles H2O. Determine vEtOH, v, V 
`

EtOH and 
V

`

H2O, DVmix. Show your reasoning and where you got values on the graph.
(b) At approximately, xEtOH 5 0.14, the curve for VH2O goes through a maximum at the same xEtOH 
as the curve for VEtOH  goes through a minimum. What is the thermodynamic relationship that 
requires these extema to occur at the same mole fractions? Explain. 
6.62 A group of students came across an unsuspected supply of laboratory alcohol containing 
96 weight % ethanol (EtOH) and 4 weight % water 1H2O 2 . As an experiment, they wanted to see if 
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they could make exactly 2.00 L of vodka having a composition of 56 weight % ethanol. Determine 
the volume of lab alcohol and the volume of water that are needed. A plot of the partial molar 
volumes of EtOH and H2O is given in Problem 6.61.
6.63 The Gibbs energy of mixing, Dgmix in [J/mol], of a binary liquid mixture of water (1) and 
1-propanol (2) vs. mole fraction water 1x1 2  is shown below. These data are at a temperature at 
40°C.

0.40.1 0.2 0.3 0.5 0.6 0.7 0.8 0.90
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−400

−300

−200
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Δg
m

ix
 

J
m

o
l

(a) Determine the partial molar Gibbs energy of water in the liquid, Gl
1, for a mixture of 2 moles 

water and 3 moles 1-propanol at 40°C
(b) Consider this mixture in equilibrium with vapor at 40°C, what is the partial molar Gibbs 
energy of water in the vapor, Gv

1?
6.64 A binary mixture of species a and b behaves as an ideal gas at 300 K and 1 bar. Calculate the 
partial molar Gibbs energy of species a, Ga, and the total solution Gibbs energy, g, at the follow-
ing compositions. The pure species Gibbs energy for species a is 225 kJ/mol and for species b is 
240 kJ/mol.
(a) At ya 5 1
(b) At ya 5 0.5
(c) At “infi nite dilution” 
6.65 The partial molar volumes of a binary mixture of ethanol (1) and ethylene glycol (2) at 25°C 
are reported in the following table. Answer the following questions:

x1  V1 V2

3cm3/mol 4 3cm3/mol 4

0 56.519 55.807

0.05 56.722 55.802

0.15 57.097 55.760

0.25 57.430 55.677
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0.35 57.721 55.552

0.45 57.971 55.386

0.55 58.179 55.178

0.65 58.345 54.928

0.75 58.470 54.637

0.85 58.553 54.304

0.95 58.595 53.929

1 58.600 53.726 

(a) Consider forming a solution by mixing 50 cm3 of pure ethanol with 50 cm3 of pure ethylene 
glycol. Based on the data in the preceding table, calculate the volume change of mixing. Do you 
think the mixture will feel warm or cold to your touch immediately after the pure species are 
mixed? Explain your answer using principles of intermolecular interactions. 
(b) Consider a mixture of 3 moles ethanol and 1 mol ethylene glycol at 25°C, determine numerical 
values for the following quantities: V1, v1, V, v , DVmix, Dvmix, V

`

1 . For this mixture, determine if the 
Gibbs–Duhem equation is valid. Justify your answer with the appropriate analysis.
6.66 Enthalpies of solution, Dh|s, are reported in Table 6.1 for 1 mole of HCl diluted in n moles 
of H2O at 25°C:
(a) Consider a mixture of 8 moles H2O and 2 moles HCl. As best you can from these data, esti-
mate HH2O 2 hH2O and HHCl 2 hHCl.
(b) For a mixture of 80 moles H2O and 2 moles HCl, estimate HH2O 2 hH2O.
6.67 Aqueous HCl can be manufactured by gas-phase reaction of H2 and Cl2 to form HCl(g), fol-
lowed by absorption of HCl(g) with water. Consider a steady-state process at 25°C where HCl(g) 
and pure water are fed to form aqueous acid with 30% HCl by weight. What is the amount of cool-
ing that must be provided per mole of product produced?
6.68 How does the enthalpy of mixing data for H2SO4 given by Equation (6.24) compare to the 
enthalpy of solution data from Table 6.1? Is the agreement reasonable? What are the reasons they 
may be different?
6.69 Calculate the enthalpy of mixing for HCl from the enthalpy of solution data reported in 
Table 6.1.
6.70 What is the heat requirement to dilute an inlet aqueous stream of 50% NaOH, by weight, to 
a fi nal concentration of 10%?
6.71 Develop an equation for a ternary mixture analogous to Equation (6.30). Then generalize to 
a mixture with m components.
6.72 The partial molar volume of benzene (1) in cyclohexane (2) at 30°C is given by the following 
expression:

V1 5 92.6 2 5.28x1 1 2.64x1
2 3cm3/mol 4

Find an expression for the partial molar volume of cyclohexane. The density of cyclohexane at 
30°C is 0.768 3g/cm3 4.
6.73 Using data from Table 6.1, fi nd the partial molar enthalpy of water in a mixture of ethanol 
(1) and water (2) at 25°C with x1 5 0.33. Use the same reference state as used in the steam tables.
6.74 Consider the isothermal mixing of 20% solute 1 by weight and 80% water, 2, at 25°C. What 
is the heat transferred for the following mixtures?
(a) pure H2SO4 (1) and H2O (2)
(b) 18 M H2SO4 (1) and H2O (2). (the density of 18 M H2SO4 is reported as 1.84 g/cm3) 
(c) solid NaOH (1) and H2O (2)
(d) NH3 gas (1) and H2O (2)
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6.75 The following data are available for a binary mixture of ethanol and water at 20°C:

Wt % EtOH r [g/ml]

0 0.99823
10 0.98187
20 0.96864
30 0.95382
40 0.93518
50 0.91384
60 0.89113
70 0.86766
80 0.84344
90 0.81797
100 0.78934

E. W. Washburn (ed.), International Critical Tables 
(Vol. V) (New York: McGraw-Hill, 1929).

(a) Make a plot of the partial molar volumes of ethanol and water vs. mole fraction ethanol.
(b) What is Dvmix for an equimolar solution?
6.76 The following data have been reported for the density, r, vs. mole fraction ethanol of binary 
mixtures of ethanol (1) and formamide (2) at 25°C and 1 bar.

x1 r, 3g/cm3 4

0 1.1314
0.1000 1.0846
0.1892 1.0457
0.2976 1.0042
0.3907 0.9678
0.5009 0.9335
0.5929 0.9022
0.6986 0.8701
0.8009 0.8401
0.8995 0.8126
1 0.7857

E. W. Washburn (ed.), International Critical Tables 
(Vol. V) (New York: McGraw-Hill, 1929).

Consider a mixture of 3 moles ethanol and 1 mole formamide at 25°C and 1 bar. As best you can, 
determine the following quantities: v1, V1, v2,V2, v, V, Dvmix, DVmix, V1, V2. The molecular weights 
are MW1 5 46 3g/mol 4 and MW2 5 45 3g/mol 4.
6.77 Consider a binary mixture of ideal gases, a and b, at temperature T and pressure P. Come  up 
with an expression for 1DGmix 2 a in terms of T, P, and ya. What is the value of 1DGmix 2 a`?
6.78 Consider a system in which liquid water is in phase equilibrium with wet air at 25°C and 
1 bar. What is the partial molar Gibbs energy of the water in the vapor phase? You may assume the 
liquid is pure water and the vapor behaves as an ideal gas.
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►CHAPTER

391

7

Phase Equilibria II: Fugacity 

Learning Objectives

To demonstrate mastery of the material in Chapter 7, you should be able to:

 ► Find the fugacity and fugacity coeffi cient of gaseous species i as a pure 

species and in a mixture using tables, equations of state, and general 

correlations. Identify the appropriate reference state. Write the Lewis fugacity 

rule, state the approximation on which it is based, and identify the conditions 

when it is likely to be valid.

 ► For liquids and solids, determine the activity coeffi cients for binary and 

multicomponent mixtures through activity coeffi cient models, including the 

two-suffi x Margules equation, the three-suffi x Margules equation, the van 

Laar equation, and the Wilson equation. Identify when the symmetric activity 

coeffi cient model is appropriate and when you need to use an asymmetric 

model.

 ► State the molecular conditions when a liquid or solid forms an ideal solution. 

Identify Lewis/Randall and Henry’s law reference states for ideal solutions, 

including the molecular interactions on which each reference state is based.

 ► Calculate the pure species fugacity of a liquid or solid at high pressure using 

the Poynting correction. Identify how you correct a value of Henry’s law for 

different pressures or temperatures.

 ► Defi ne fugacity, fugacity coeffi cient, activity, activity coeffi cient, and excess 

Gibbs energy. State the criteria for chemical equilibrium in terms of fugacity. 

State why the excess Gibbs energy is useful for empirical models of activity 

coeffi cients.

 ► Apply the Gibbs–Duhem equation to relate activity coeffi cients of different 

species in a mixture. Evaluate whether a set of activity coeffi cient data is 

thermodynamically consistent. Given values of the pure species fugacity 

and the Henry’s law constant, convert between activity coeffi cients based the 

Lewis/Randall rule, gi, and Henry’s Law, gi
Henry’s.

 ►7.1  INTRODUCTION
We have just learned that the chemical potential provides the criteria for chemical 
 equilibrium of species i between phases a and b in a multicomponent system:

 mi
a 5 mi

b (7.1)
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It is a derived thermodynamic property, unlike the measured thermodynamic proper-
ties, temperature and pressure, that provide the criteria for thermal and mechanical 
equilibrium, respectively. Although the chemical potential is an abstract concept, it is 
useful since it provides a simple criterion for chemical equilibria of each species i.

Unfortunately, in application, it turns out the chemical potential has some incon-
venient mathematical behaviors (which we will see shortly). Consequently, it is con-
venient to defi ne a new derived thermodynamic property that is mathematically better 
behaved but provides just as simple a criterion for equilibrium: the fugacity.

As we will learn, fugacity is an immensely useful property because it contains all the 
information that the chemical potential provides in a form that is mathematically better 
behaved. One aspect about its formulation is different than what we have seen so far 
in thermodynamics—and it is useful to explicitly identify this aspect. Thus far, we have 
defi ned many “derived” properties, such as enthalpy and Gibbs energy, that are hard to 
understand at fi rst. But these properties provide us useful information about chemical 
and physical processes. Moreover, the more we work with these properties (i.e., the 
more contexts we view them in and the more problems we solve with them), the more 
comfortable we get and the better we understand them. This process applies to fugacity 
as well. However, an aspect to its development is different. All the properties that have 
been developed so far have been in a deductive way. For example, enthalpy is devel-
oped deductively by combining internal energy and fl ow work (or Pv work). Similarly, to 
develop Gibbs energy we combine the fi rst and second laws at constant P and T. As we 
will learn next, fugacity is different. We develop fugacity inductively. With fugacity, we 
start with a specifi c case of an ideal gas, then generalize to all gases, liquids, and solids. 
Therefore, beyond the initial discomfort of learning a new property, an additional dis-
comfort may be that it is developed in a different way. But stick with it—for fugacity is a 
very useful construct to learn.

 ►7.2  THE FUGACITY

Definition of Fugacity

The defi nition of fugacity can be attributed to the thermodynamics giant G. N. Lewis. 
Unlike the other concepts we have seen so far in this text, it developed inductively rather 
than deductively. In fact, fugacity is undoubtedly but one of many ways to get around the 
mathematical anomalies of the chemical potential; however, it is the way that is used in 
practice, and we will learn about it next.

To introduce fugacity, we start with Equation (6.36):

¢ 'mi

'P
≤

T,ni

5 Vi

This equation is valid only at constant temperature. We will begin by restricting our-
selves to an ideal gas. We will remove this restriction and include real systems when 
we introduce fugacity. In the development of fugacity that follows, we will always be at 
constant temperature. With this restriction, we can write:

dmi 5 VidP     At constant T
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where we have replaced the partial derivatives with total derivatives, since we are 
explicitly keeping the temperature constant. Applying the defi nition of the partial 
molar volume and then the ideal gas relation yields:

dmi 5 ¢ 'V
'ni
≤

T,P,nj2 i

dP 5
RT
P

 dP     1 ideal gas 2

Since energies never have absolute values, we need a reference state for the 
partial molar Gibbs energy. The reference state is indicated by a superscript “o”. In 
choosing a reference state, we must specify the appropriate number of thermodynamic 
properties as prescribed by the state postulate; the rest of the properties of the refer-
ence state are then constrained. The reference chemical potential, mi

o, is the chemi-
cal potential at the reference pressure, Po, and at the same temperature as the 
chemical potential of interest, T. The latter constraint derives from our stipulation 
of constant temperature. Integrating between a reference state and the state of the 
system, we get:

mi 2 mi
o 5 RT lnB P

Po
R

As we saw in Section 6.3, the chemical potential describes the contribution of species 
i to the Gibbs energy of the mixture; thus, it is convenient to multiply the top and bottom 
in the log term by the mole fraction of species i, yi:

 mi 2 mi
o 5 RT lnB pi

pi
o
R     1 ideal gas 2  (7.2)

where pi 5 yiP is the partial pressure of the gas. The use of partial pressure is valid since 
we are considering ideal gases. If we examine Equation (7.2), we see that in going from 
the reference state to the state of the system at constant temperature, the change in 
the abstract quantity, mi, is proportional to the simple log of the partial pressures of spe-
cies i, pi. In fact, every property on the right-hand side of Equation (7.2) is a measured 
property. Hence we have expressed the difference in the abstract quantity, chemical 
potential, in terms of measured quantities—T, P, and yi. 

Equation (7.2) exposes the mathematical problems associated with the chemical 
potential in two very important limits: (1) as the mole fraction of species i goes to zero, 
that is, infi nite dilution, and (2) as the pressure goes to zero, that is, the ideal gas limit. 
In both these cases, the value of mi goes to negative infi nity.

So far this analysis is relatively straightforward. G. N. Lewis had tremendous insight 
and inductively defi ned a new thermodynamic property, the fugacity, f̂i , in analogy to 
Equation (7.2). Fugacity is defined as:

 mi 2 mi
o ; RT lnB f̂i

f̂ i
o
R  (7.3)

Accordingly, fugacity has units of pressure. Comparison of Equations (7.2) and (7.3) 
shows that fugacity plays the same role in real gases that partial pressure plays in ideal 
gases. In this sense fugacity can be thought of as a “corrected pressure.” In fact, fugacity 
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can roughly be translated from Latin as “the tendency to escape.” However, the concept 
of fugacity goes beyond gases. This defi ning equation is valid for an isothermal change 
from the reference state chemical potential to that of the system for all real species. 
Lewis did not restrict the fugacity to the gas phase! It applies to liquid or solids as well.

The defi nition above is not complete. The reference state is arbitrary; we are free 
to choose the most convenient reference state imaginable; however, both mi

o and f̂ i
o 

depend on the single choice of reference state and may not be chosen independently. 
Let’s consider a limiting condition to complete the defi nition. As the pressure goes to 
zero, all gases behave ideally; consequently, we defi ne:

 lim
SP 0 
¢ f̂i

pi
≤ ; 1     1 ideal gas 2  (7.4)

Equations (7.3) and (7.4) together form the abstract but very useful defi nition for 
fugacity.

The group, f̂i /pi, often shows up in our encounters with fugacity; we call it the fugac-
ity coeffi cient, ŵi:

 ŵi ;
f̂i

pi,sys
5

f̂i

yiPsys
 (7.5)

The fugacity coeffi cient represents a dimensionless quantity that compares the fugacity 
of species i to the partial pressure species i would have in the system as an ideal gas. A 
fugacity coeffi cient of one represents the case where attractive and repulsive forces bal-
ance and is usually indicative of an ideal gas. If ŵi , 1, the corrected pressure, or “ten-
dency to escape,” is less than that for an ideal gas. In this case, attractive forces dominate 
the system behavior. Conversely, when ŵi . 1, repulsive forces are stronger. Warning: 
We defi ne the fugacity coeffi cient relative to the system partial pressure, not the partial 
pressure of the reference state. A common mistake is to use the wrong pressure here.

The defi nitions above were based on mi, a partial molar property. Hence they 
describe the contribution of species i to the solution. The fugacity and fugacity coef-
fi cient are given a hat instead of a bar to remind us that while they represent the 
contribution of species i in solution, they do not represent the mathematical defi nition 
of a partial molar property, that is,

f̂i 2 ¢ ' 1nf 2

'ni
≤T,P,nj2 i        or        f 2 a

i
xi f^i

We can also defi ne the pure species fugacity, fi, in analogy with our discussion in Section 6.3:

Pure species fugacity:

 gi 2 gi
o ; RT lnB  

fi

fi
oR  (7.3p)

 lim
SP 0
¢ fi

P
≤ ; 1 (7.4p)

 wi ;
fi

Psys
 (7.5p)
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Criteria for Chemical Equilibria in Terms of Fugacity

The concept of fugacity works so well because the criterion for chemical equilibria is just 
as simple as that using chemical potential. To derive this relationship for fugacity, we 
begin by equating the chemical potentials of phases a and b:

mi
a 5 mi

b

Substitution of Equation (7.3) gives:

mi
a,o 1 RT lnB f̂ i

a

f̂ i
a,o
R 5 mi

b,o 1 RT lnB f̂i
b

f̂i  
b,o
R

Applying a mathematical relationship to the quotient in the logarithms and rearranging 
gives:

mi
a,o 2 mi

b,o 5 RT lnB f̂i
a,o

f̂ i
b,o
R 1 RT lnB f̂i

b

f̂ i
a
R

Defi nition

The fi rst three terms are just a restatement of Equation (7.3); hence the remaining term 
must be equal to zero, that is,

0 5 RT lnB f̂i
b

f̂ i
a
R

or, f̂i
a 5 f̂ i

b (7.6)

Equation (7.6) forms the criterion for chemical equilibrium in terms of fugacity. It is just 
as simple as that for chemical potential. Fugacity is also mathematically much better 
behaved.

Thus, in practice, we can replace Equation (7.1) with Equation (7.6) in defi ning our 
criteria for equilibrium:

 Ta 5 Tb thermal equilibrium

 Pa 5 Pb mechanical equilibrium

 mi
a 5 mi

b     f̂ i
a 5 f̂i

b chemical equilibrium

Since our equations for chemical equilibria equate fugacities in different phases, we 
will now explore how to calculate fugacity for (1) the vapor phase (Section 7.3), (2) the 
liquid phase (Section 7.4), and fi nally, (3) the solid phase (Section 7.5). We can then 
equate the fugacity of any phases that coexist (Chapter 8). For example, for vapor–liquid 
equilibria, we have:

f̂i
v 5 f̂ i

l
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Once we have examined how to calculate fugacities for the vapor and liquid phases 
separately, we can merely equate the two expressions and then calculate the composition 
of species i in each phase.

 ►7.3  FUGACITY IN THE VAPOR PHASE
The difference in the expression for fugacity between vapor and condensed phases typi-
cally lies in the choice of reference state. Since we have learned extensively about the 
intermolecular forces of gases that cause deviations from ideality, the vapor phase is a 
logical starting point. We will begin by considering the fugacity of pure species in the 
vapor phase, fi

v, and then address the fugacity of species i in a vapor ixture, f̂i
v.

Fugacity and Fugacity Coefficient of Pure Gases

To use fugacity in practice, the fi rst step is to identify an appropriate reference state. 
There is an obvious choice of reference state for gases: a low enough pressure that the 
gas behaves as an ideal gas. With this choice, f

i
o S P and wi

o S 1. Remember, as a result 
of our defi nition for fugacity, the reference state must be at the same temperature as 
the system of interest To 5 Tsys.

We can write the expression for fugacity of pure species i using the ideal gas reference 
state. In this case, Equation (7.3p) becomes:

 gi 2 gi
o ; RT lnB fi

v

Plow
R  (7.7)

where we have chosen the following reference state:

 Po 5 Plow

 To 5 Tsys

where Plow represents a pressure low enough to be an ideal gas and Tsys indicates the 
system temperature. Similarly Equation (7.5p) is,

 wi
v ;

fi
v

Psys
 (7.5p)

The pressures in Equations (7.7) and (7.5p) have different values. The chemical poten-
tial has been replaced with the molar Gibbs energy, since they are equivalent for a pure 
species.

In order to obtain the fugacity of a real gas, we must have appropriate thermodyn-
amic property data available. We will explore three possible sources of data for pure gases:

 1. Tables
 2. Equations of state
 3. Generalized correlations

Expression for the Fugacity Coefficient of a Pure Gas Using Tables
Tables of thermodynamic properties typically have h, s, T, and P. From the fi rst three 
properties, g can be calculated. Values for every quantity in Equation (7.7), except fugac-
ity, are obtained. We can, therefore, use these property values to solve for fi. Example 7.1 
illustrates this methodology.
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Determine the fugacity and the fugacity coeffi cient for saturated steam at 1 atm.

SOLUTION The steam tables provide the appropriate data to solve this problem. It is straight-
forward to fi nd gH2O for saturated steam at 1 atm. For example, from Appendix B:

 ĝH2O 5 ĥH2O 2 TŝH2O

 ĥH2O 5 2676.0 kJ/kg     ŝH2O 5 7.3548 kJ/ 1kg K 2      T 5 373.15 K

so that,

ĝH2O 5 268.44 kJ/kg

To fi nd the fugacity, we must now choose a reference state. We want as a low a pressure as 
possible at the same temperature as the system of interest (100° C). We can fi nd this state in the 
superheated steam tables (Appendix B.4). The lowest pressure available in the steam tables 
is 10 kPa. So for the reference state, we choose 10 kPa, 100° C:

ĝH2O
o 5 ĥH2O

o
2 TŝH2O

o

Looking up values:

ĥH2O
o

5 2687.5 kJ/kg    ŝH2O
o

5 8.4479 kJ/ 1kg K 2     T 5 373.15 K

ĝH2O
o 5 2464.83 kJ/kg

Now, rearranging Equation (7.7),

fH2O
v

5 PH2O
o  expB ĝH2O 2 ĝH2O

o

RT
R

Converting R to mass units and plugging in values:

fH2O
v 5 10 kPa exp C

268.44 kJ/kg 2 12464.83 kJ/kg 2

8.314kJ/ 1kmol K 2  

1
18

 kmol/kg 373.15 KS

fH2O
v

5 99.73 kPa

In solving for the fugacity coeffi cient, we must use the system pressure:

wH2O
v 5

fH2O
v

Psys
5

99.73 kP
101.35 kPa

5 0.984

Comment: Even with its strong dipole moment (and associated forces of attraction), the fugacity 
coeffi cient of water deviates from ideality by less than 2% at 1 atm.

EXAMPLE 7.1

Calculation of 
Fugacity Using the 
Steam Tables
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Expression for the Fugacity Coefficient of a Pure Gas Using Equations of State
We can also get thermodynamic property data to solve for the left-hand side of Equation (7.7) 
through an equation of state. At constant temperature (as mandated by the defi nition of fugacity), 
we can write the fundamental property relation of the Gibbs energy of pure species i as:

dgi 5 vidP     at const T

Hence Equation (7.7) becomes:

 gi 2 gi
o 5 3

P

Plow

vidP 5 RT lnB fi
v

Plow
R  (7.8)

where we have integrated Equation (7.8) from the reference state to that of the system. We now 
use our equation of state to relate vi to P, at constant T, and solve for fi. Example 7.2 illustrates 
this methodology.

Determine an expression for the fugacity of a pure gas from the van der Waals equation of 
state.

SOLUTION We begin with the van der Waals equation:

 P 5
RT

vi 2 b
2

a
vi

2 (E7.2A)

At constant temperature, we can differentiate Equation (E7.2A) to get:

 dP 5 B 2RT
1vi 2 b 2 2

1
2a
vi

3
Rdvi (E7.2B)

Plugging Equation (E7.2B) into Equation (7.8) yields:

 3

vi

RT

Plow

B 2viRT
1vi 2 b 2 2

1
2a
vi

2 Rdvi 5 RT lnB fi
v

Plow
R  (E7.2C)

To integrate the fi rst term, it is convenient to decompose the quotient using partial fractions:

 
vi

1vi 2 b 2 2
5

1
1vi 2 b 2

1
b

1vi 2 b 2 2
 

Inserting this expression in Equation (E7.2C), integrating, and dividing by RT, we get:

ln B fi
v

Plow
R 5 2ln D 1vi 2 b 2

RT
Plow

2 b
T 1 bD 1

1vi 2 b 2
2

1
RT
Plow

2 b
T 2

2a
RT

 D 1
vi

2
1

RT
Plow

T

However, since RT/Plow .. b, we can simplify the denominators in the two terms above:

lnB fi
v

Plow
R 5 2lnB 1vi 2 b 2Plow

RT
R 1 bB 1

1vi 2 b 2
2

Plow

RT
R 2

2a
RT

 B 1
vi

2
Plow

RT
R

EXAMPLE 7.2

Calculation of 
Fugacity Using 
the van der Waals 
Equation
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Adding ln 1Plow 2  to each side and then letting Plow S 0, we get:

ln 3 fi
v 4 5 2lnB 1vi 2 b 2

RT
R 1

b
1vi 2 b 2

2
2a

RTvi

Finally, subtracting ln(P) from both sides gives:

ln B fi
v

P
R 5 ln 3wi

v 4 5 2lnB 1vi 2 b 2P
RT

R 1
b

1vi 2 b 2
2

2a
RTvi

This result for the fugacity coeffi cient can be interpreted through our physical understanding 
of the van der Waals parameters, a and b. If a and b are negligible, we get wi

v 5 1 1 ln wi
v 5 0 2 , 

which is true for an ideal gas, by defi nition. If attractive interactions dominate, the parameter 
a will most infl uence the system behavior. The third term on the right-hand side will cause 
wi

v , 1 1 ln wi
v , 0 2 . Conversely, if size is more important (repulsive interactions), and the 

parameter b determines the behavior, then wi
v . 1 1 ln wi

v . 0 2 .

ALTERNATIVE APPROACH We have an easier time, mathematically, if we use the virial form of 
the van der Waals equation truncated to the second term. As shown in Problem 4.25, the van 
der Waals equation written in virial form becomes:

PV 5 nT BRT 1 ab 2
a

RT
bP 1 terms in P2, P3, cR

Recall that for moderate pressures, we can truncate the above expression at P. Solving for 
vi 5 1V/nT 2  and substituting into Equation (7.8):

3

P

Plow

BRT
P

1 ab 2
a

RT
b RdP 5 RT lnB fi

v

Plow
R

Integrating, rearranging (note that the terms in reference pressure cancel), and setting Plow to 
zero:

ab 2
a

RT
bP 5 RT lnB fi

v

P
R 5 RT ln wi

So for pure i, we get:

 wi
v 5

fi
v

P
5 expb ab 2

a
RT
b

P
RT
r  (E7.2D)

The van der Waals equation is not as accurate as more modern cubic equations of state. 
However, as inspection of Equation (E7.2D) shows, it provides a simple relation between the 
fugacity coeffi cient and molecular parameters. For an ideal gas a 5 b 5 0, so the fugacity 
coeffi cient is 1, as we expect. Again if attractive forces are greater than repulsive forces, 
b , a/RT and w i

v , 1; whereas when repulsive forces dominate, b . a/RT and wi
v . 1. As 

the temperature increases, attractive forces become less important relative to repulsive forces.
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Expression for the Fugacity Coeffi cient of a Pure Gas Using 
Generalized Correlations
As we saw in Chapter 4, we can use generalized correlations to relate the compressibil-
ity factor to reduced temperature, reduced pressure, and the Pitzer acentric factor. In 
Chapter 5, we extended the use of general correlations to account for nonideal behavior 
in enthalpy and entropy through the use of departure functions. In this section, we wish 
to use general correlations to solve for the fugacity coeffi cient in terms of reduced tem-
perature and reduced pressure. To do this, we will fi rst develop a relationship between 
the compressibility factor, zi, and the fugacity coeffi cient, wi, for the pure species i. Since 
we have already related zi to Tr and Pr, it is conceptually straightforward to express the 
fugacity coeffi cient in terms of a generalized correlation. As in Chapters 4 and 5, we will 
present results for a simple fl uid term and a correction term based on the Lee–Kesler 
equation of state.

Using the ideal gas reference state, the defi nition for fugacity of a pure species is:

 gi 2 gi
o 5 3

P

Plow

vidP 5 RT lnB fi
v

Plow
R  (7.8)

Equation (7.8) can be rewritten by dividing by RT and subtracting 3

P

Plow

11/P 2dP each side 
to give:

3

P

Plow

vi

RT
 dP 2 3

P

Plow

1
P

 dP 5 lnB fi
v

Plow
R 2 3

P

Plow

1
P

 dP

Combining the integrals on the left-hand side and integrating and rewriting the logarith-
mic terms on the right-hand side gives:

3

P

Plow

B vi

RT
2

1
P
RdP 5 lnB fi

v

P
R 5 ln w

i
v

Expressing this equation in terms of the compressibility factor, we get:

 ln wi
v 5 3

P

Pideal

3zi 2 1 4  
dP
P

 (7.9)

or, in terms of reduced variables,

 ln wi
v 5 3

Pr

Pr, ideal

3zi 2 1 4  
dPr

Pr
 (7.10)

As we saw in Chapter 4, there are charts available for the compressibility factor as a 
function of the reduced variables, Tr and Pr. It is straightforward, in principle, to graphi-
cally integrate the right-hand side of Equation (7.10) and come up with a chart for the 
fugacity coeffi cient in reduced coordinates. Alternatively, we can analytically integrate 
Equation (7.10) with the appropriate equation of state. Figures 7.1 and 7.2 show values 
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Figure 7.1 Corresponding states correlation for the fugacity coefficient in reduced coordinates—
simple fluid term. Based on the Lee–Kesler equation of state.
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Figure 7.2 Corresponding states correlation for the fugacity coefficient in reduced coordinates—
correction term. Based on the Lee–Kesler equation of state. 
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 Determine the fugacity and the fugacity coeffi cient of ethane at a pressure of 50 bar and a 
temperature of 25°C using generalized correlations.

SOLUTION We begin by fi nding Pr, Tr, and v:

Pr 5
P
Pc

5
50 bar

48.7 bar
5 1.03    and    Tr 5

T
Tc

5
298.2K
305.5K

5 0.98    v 5 0.099

where the critical properties and the acentric factor were obtained from Appendix A.1. From 
Tables C.7 and C.8:

log w102 log w112

Pr Pr

Tr 1 1.1 1 1.1

0.98 20.206 20.240 20.059 20.062

By linear interpolation:

log w102 5 20.206 1
0.03
0.1

 120.240 1 0.206 2 5 20.216

and, log w112 5 20.059 1
0.03
0.1

 120.062 1 0.059 2 5 20.060

Thus, log weth 5 log w102 1 v log w112 5 20.222

so, weth 5 0.60

and, feth 5 wethP 5 0.60 3 50 5 30 3bar 4

In this case, there are signifi cant deviations from ideality. Since weth , 1, we surmise that 
attractive forces dominate. This result is expected since the system is around the critical point 
of ethane, where intermolecular interactions are large. 

EXAMPLE 7.3

Fugacity Calculation 
Using Generalized 
Correlations

for the simple fl uid term log w102 and the correction term log w112, respectively, based on 
the Lee–Kesler equation of state. Once we have determined the reduced temperature 
and pressure for a given system, we can then use the form:

 log wi 5 log w102 1 v  log w112 (7.11)

to solve for wi. These same data are reported in tabular form in Appendix C (Tables C.7 and 
C.8). The expression that was used to generate these values is described in Appendix E. 
These data are reported as a base-10 logarithm (log) as opposed to the natural logarithm (ln), 
which is base-e. So be careful.
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Fugacity and Fugacity Coefficient of Species i in a Gas Mixture

We now extend our discussion of fugacity in the gas phase to include mixtures. In addi-
tion to temperature and pressure, the fugacity of species i depends on what other species 
are present in the mixture. In a mixture, the chemical nature of the interactions between 
species i and all the other species in the mixture must be taken into account. In other 
words, the fugacity and fugacity coeffi cient in the mixture are functions of the compo-
sition of the mixture. Equation (7.5) can be rewritten to indicate such dependence as 
follows:

f̂ i
v 1T, P, n1, n2, cnm 2 5 yiŵi

v 1T, P, n1, n2, cnm 2P

Recall that we include the hat on the fugacity and fugacity coeffi cient to indicate species 
i in a mixture.

To illustrate the impact of the interactions between the different species in a mix-
ture in our calculations, we compare binary mixtures of (i) methane–ethane and (ii) 
methane–n-pentane at identical temperature. The fugacity coeffi cients of methane cal-
culated using the Peng–Robinson equation of state for the two mixtures at 300°C are 
plotted versus pressure for six different mole fraction ethane in Figure 7.3. We will 
learn shortly how such a calculation is done (see Example 7.5). At the same tempera-
ture, pressure, and methane mole fraction, the deviation from ideality of the methane in 
n-pentane is generally greater than when methane is mixed with ethane. Moreover, the 
differences between the two binary systems become more pronounced at lower methane 
mole fraction, where a methane molecule is more likely to interact with the other com-
ponent in the mixture. Indeed, the chemical composition of the mixture is a major factor 
in determining the fugacity coeffi cient of species i. 

Next, we will learn how to calculate the fugacity and fugacity coeffi cient of a spe-
cies in the vapor phase of a mixture. As with pure species, it is important to defi ne an 
appropriate reference state. We choose a low enough pressure, Plow, so that the mixture 
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Figure 7.3 Fugacity coefficient of CH4 (1) in binary mixtures of CH4 and C2H6 (on left) and CH4 
and C5H12 (on right) at different CH4 mole fractions, as calculated from the Peng-Robinson equa-
tion of state. 
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behaves as an ideal gas. Again, due to how fugacity is defi ned, the reference tempera-
ture is that of the system of interest, Tsys. To completely specify the reference state for 
a mixture, we must also specify its composition. It turns out to be convenient to specify 
the composition of the system ni, sys. We will see why we chose this composition shortly. 
In summary, the reference state for a mixture is:

 Po 5 Plow

 To 5 Tsys

 ni
o 5 ni,sys (7.12) 

By defi nition, the fugacity for this reference state becomes the partial pressure at the 
reference state, f̂i

o 5 pi
o 5 yi,sys Plow.

Expression for the Fugacity Coeffi cient of a Vapor Mixture 
Using Equations of State
In order to use an equation of state to calculate the fugacity and fugacity coeffi cient for 
species i in a mixture, we need to describe PvT property behavior for the mixture. Unlike 
with pure species, there are little data available explicitly for mixtures. Our approach is 
therefore to use mixing rules such as those described in Section 4.5. However, recall that 
the theoretical justifi cation for mixing rules is limited.

We begin by incorporating our reference state in Equation (7.3) to get:

mi 2 mi
o 5 RT lnB f̂i

v

pi
o
R

where the temperature of the reference state is constrained (by the defi nition of fugac-
ity) to be the temperature of the mixture and we have chosen the composition of the 
reference state to be the composition of the mixture. In order to relate this expression to 
an equation of state, we need to apply the thermodynamic web. Using the partial deriva-
tive relation given by Equation (6.36), we get:

 mi 2 mi
o 5 3

P

Plow

VidP 5 RT lnB f̂ i
v

yiPlow
R  (7.13)

If we have a volume-explicit equation of state, we can determine the partial molar  volume 
directly, as in Example 6.12, and then integrate to determine the fugacity.

Many equations of state are explicit in P but not V (such as the cubic equations 
 discussed in Section 4.3), so it is convenient to try to rewrite the second term in Equation 
(7.13) in terms of a derivative in P. Recall from the defi nition of a partial molar property:

Vi 5 ¢ 'V
'ni
≤

T,P,nj2 i

By the cyclic rule, at constant T:

¢ 'V
'ni
≤

T,P
 ¢ 'P'V ≤T,ni

 ¢ 'ni

'P
≤

T,V
5 21
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We can now see why it is so convenient to choose identical compositions for the 
 system and the reference state. With this choice, the integral in Equation (7.13) is car-
ried out with ni constant. Since both T and ni are always constant, we can replace the sec-
ond partial derivative in the cyclic rule expression with a total derivative. Consequently, 
we can rearrange it to get:

¢ 'V
'ni
≤

T,P
dP 5 2¢ 'P

'ni
≤

T,V
dV

Substituting into Equation (7.13) gives:

 RT lnB f̂ i
v

yiPlow
R 5 2 3

V

1
nTRT
P

low
2 

¢ 'P
'ni
≤

T,P,nj2 i

dV (7.14)

Equation (7.14) allows us to calculate fugacity when we have an equation of state that is 
explicit in P.

To take the derivative of a pressure-explicit (e.g., cubic) equation of state in Equa-
tion (7.14), we need appropriate mixing rules. For example, recall that the van der Waals 
equation is:

P 5
RT

v 2 bmix
2

amix

v2

Since the van der Waals constants amix and bmix depend on composition, it is necessary to 
come up with an expression for the composition functionality of these parameters (recall 
the discussion of mixing rules in Chapter 4). Unfortunately, these cannot be  rigorously 
obtained from molecular theory, so we must “guess” at the appropriate mixing rules.

Our best “guess” combines qualitative molecular arguments with mathematical sim-
plicity. Common choices are that the “force” parameter, a, represents the strength of 
attraction between binary pairs of molecules (two-body interactions), so,

 amix 5 aa yiyjaij (7.15)

where, aij 5 "aiiajj (7.16)

In this interpretation aii represents the attraction between like i molecules while aij rep-
resents the interaction between one i molecule and one j molecule, the unlike interac-
tion. When more extensive data are available, an empirical fi tting parameter, kij, is often 
used to obtain better agreement:

 aij 5 "aiiajj 11 2 kij 2  (7.17)

kij is termed the binary interaction parameter. For the “size” parameter, it is mathemati-
cally most convenient to average molecular volumes:

 bmix 5 a yibi (7.18)

c07.indd   405c07.indd   405 05/11/12   7:10 PM05/11/12   7:10 PM



406 ► Chapter 7. Phase Equilibria II: Fugacity 

What would this look like if we averaged molecular diameters?
In Example 7.4, we develop expressions for the fugacity and fugacity coeffi cient in 

a binary mixture using the van der Waals equation of state and the van der Waals mixing 
rules. The results can be compared to those from Example 7.2, which used the same 
equation of state to come up with expressions for a pure species.

Consider a binary gas mixture composed of species a and b. Determine an expression for 
the fugacity of species a from the van der Waals equation of state. Use mixing rules given by 
Equations (7.15), (7.16), and (7.18).

SOLUTION We begin by writing Equation (7.14) for species a in a mixture of a and b:

 RT lnB f̂a
v

yaPlow
R 5 2 3

V

1nTRT
Plow
2 

¢ 'P
'na

≤
V, T, nb

dV (E7.4A)

For a binary mixture, the van der Waals equation can be written as:

 P 5
RT 1na 1 nb 2

V 2 1naba 1 nbbb 2
2

na
2aa 1 2nanb!aaab 1 nb

2ab

V2
 (E7.4B)

where the following expressions are used:

 amix 5 ya
2aa 1 2yayb!aaab 1 yb

2ab

 bmix 5 yaba 1 ybbb

and,
nT 5 na 1 nb

Taking the derivative of Equation (E7.4B) gives:

¢ 'P
'na

≤
T,V,nb

5
RT

V 2 1naba 1 nbbb 2
1

baRT 1na 1 nb 2

3V 2 1naba 1 nbbb 2 42
2

2 1naaa 1 nb!aaab 2

V2
 (E7.4C)

Substituting Equation (E7.4C) into Equation (E7.4A) and integrating we get:

lnB f̂a
v

yaPlow
R 5 2lnC

V 2 nTbmix

¢nTRT
Plow

≤ 2 nTbmix
S 1

ba 1na 1 nb 2

3V 2 nTbmix 4
2

ba 1na 1 nb 2

B ¢nTRT
Plow

≤ 2 nTbmixR

2 
2 1naaa 1 nb!aaab 2

RTV
1

2 1naaa 1 nb!aaab 2

RT¢nTRT
Plow

≤
However, since RT/Plow .. bmix, we can simplify the denominators in two terms above. 
Adding ln 1Plow 2  to each side, simplifying, and then letting Plow S 0, we obtain:

lnB f̂ a
v

ya
R 5 2lnB 1V 2 nTbmix 2

nTRT
R 1

ba 1na 1 nb 2

3V 2 nTbmix 4
2

2 1naaa 1 nb!aaab 2

RTV

EXAMPLE 7.4

Fugacity in a Mixture 
Using the van der 
Waals Equation
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Subtracting ln(P) from both sides leaves:

lnB f̂ a
v

yaP
R 5 ln 3ŵa

v4 5 2ln 

P 1v 2 bmix 2

RT
1

ba

3v 2 bmix 4
2

2 1yaaa 1 yb"aaab 2

RTv

ALTERNATIVE APPROACH We can use the virial form of the van der Waals equation truncated 
to the second term as in Example 7.2:

 PV 5 nTBRT 1 ¢bmix 2
amix

RT
≤P 1 term in P2, P3, cR  (E7.4D)

Recall that this is valid for moderate pressures. Differentiating Equation (E7.4D) gives:

 Va 5
RT
P

1 ¢ba 2
2 1naaa 1 nb"aaab 2 2 nTamix

nTRT
≤  (E7.4E)

We must now plug Equation (E7.4E) into Equation (7.13) and integrate:

3

P

Plow

BRT
P

1 ¢ba 2
2 1naaa 1 nb"aaab 2 2 nTamix

nTRT
≤ RdP 5 RT lnB f̂a

^v

yaPlow
R

so, RT ln 

P
Plow

1 3

P

Plow

¢ba 2
2 1naaa 1 nb"aaab 2 2 nTamix

nTRT
≤dP 5 RT lnB f̂a

v

yaPlow
R

Rearranging:

3

P

Plow

¢ba 2
2 1naaa 1 nb"aaab 2 2 nTamix

nTRT
≤dP 5 RT lnB f̂a

v

yaP
R 5 RT ln ŵa

v

Integrating and rearranging, we get:

 ŵa
v 5

f̂a
v

yaP
5 expb ¢ba 2

aa

RT
≤  

P
RT
r  exp b 1"aa 2 "ab 2

2yb
2P

1RT 2 2
r  (E7.4F)

From Example 7.2, the fi rst exponential term is just equal to the pure species fugacity 
coeffi cient, so Equation (E7.4F) becomes:

 f̂a
v 5 ya fa

v exp b 1"aa 2 "ab 2
2yb

2P

1RT 2 2
r  (E7.4G)

Again, the van der Waals equation provides us with insight as to the relationship between 
the fugacity coeffi cient and molecular parameters. If the intermolecular forces between species 
a and b are the same, the remaining exponential in Equation (E7.4G) becomes 1, and we get:

f̂a
v 5 ya fa

v

or,
ŵa

v 5 wa
v

This approximation is known as the Lewis fugacity rule and will be discussed in more detail 
shortly.
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Table 7.1 summarizes expressions for fugacity coeffi cients of pure species and 
 mixtures for three cubic equations of state: the van der Waals equation, the Redlich–
Kwong equation, and the Peng–Robinson equation. You can develop these expressions 
using Equation (7.8) for pure species or Equation (7.14) for mixtures (see Problems 
7.16, 7.17, 7.35, and 7.36). The parameters a, b, and a can be obtained from the critical 
temperature, the critical pressure, and Pitzer’s acentric factor, as discussed in Chapter 
4. For the mixtures, mixing rules given by Equations (7.15), (7.18), and either (7.16) or 
(7.17) are typically used; however, others have proposed alternative mixing rules.

TABLE  7.1 Fugacity Coefficients for Three Cubic Equations of State

Van der Waals Equation of State

Pure species i ln wi 5
bi

vi 2 bi
2 ln¢ 1vi 2 bi 2P

RT
≤ 2

2ai

RTvi

Species 1 in a binary mixture ln ŵ1 5
b1

v 2 b
2 ln¢ 1v 2 b 2P

RT
≤ 2

2 1y1a1 1 y2a12 2

RTv

Species i in a mixture ln ŵi 5
bi

v 2 b
2 ln¢ 1v 2 b 2P

RT
≤ 2

2a
m

k51
ykaik

RTv

Redlich–Kwong Equation of State

Pure species i ln wi 5 zi 2 1 2 ln¢ 1vi 2 bi 2P
RT

≤ 2
ai

biRT1.5
 ln¢1 1

bi

vi
≤

Species 1 in a binary mixture ln ŵ1 5
b1

b
 1z 2 1 2 2 ln¢ 1v 2 b 2P

RT
≤  

1
1

bRT1.5
 B ab1

b
2 2 1y1a1 1 y2a12 2 R ln¢1 1

b
v
≤

Species i in a mixture ln ŵ1 5
b1

b
 1z 2 1 2 2 ln¢ 1v 2 b 2P

RT
≤ 1

1
bRT1.5

 B ab1

b
2 2a

m

k51
ykaikR  ln¢1 1

b
v
≤

Peng–Robinson Equation of State

Pure species i ln wi 5 zi 2 1 2 ln¢ 1vi 2 bi 2P
RT

≤ 2
1aa 2 i

2"2biRT
 lnB vi 1 11 1 "2 2bi

vi 1 11 2 "2 2bi

R

Species 1 in a binary mixture ln ŵ1 5
b1

b
 1z 2 1 2 2 ln¢ 1v 2 b 2P

RT
≤

1
aa

2"2bRT
 Bb1

b
2

2
aa

 1y1 1aa 2 1 1 y2 1aa 2 12 2 R  lnB v 1 11 1 "2 2b

v 1 11 2 "2 2b
R

Species i in a mixture ln ŵi 5
bi

b
1z 2 1 2 2 ln¢ 1v 2 b 2P

RT
≤  

1
aa

2"2bRT
 Bbi

b
2

2
aaa

m

k51
yk 1aa 2 ikR  lnB v 1 11 1 "2 2b

v 1 11 2 "2 2b
R
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Outline the calculations that you would do to produce the graph for the fugacity coeffi cient of 
methane in a binary mixture of methane and ethane, as shown on the left side of Figure 7.3. 
Show the representative part of a MATLAB code that could be used to perform this calcula-
tion. Use mixing rules given by Equations (7.15), (7.17), and (7.18).

SOLUTION We begin with the Peng–Robinson equation of state, Equation (4.25):

 P 5
RT

v 2 b
2

aa

v2 1 2bv 2 b2
 (E7.5A) 

where the parameters of the pure species can be found from the critical temperature, the 
critical pressure, and Pitzer’s acentric factor, as follows:

ai 5
0.45724R2T 2

c,i

Pc,i
, ai 5 31 1 10.37464 1 1.54226vi 2 0.26992v2

i 2 11 2 T 0.5
r,i  2 4

2,

and,

 bi 5
0.07780RTc,i

Pc,i
 (E7.5B)

The van der Waals mixing rules are as follows:

      aa 5 y2
1
1aa 2 1 1 2y1y2 1aa 2 12 1 y2

2
1aa 2 2 and b 5 y1b1 1 y2b2 (E7.5C) 

Applying the binary interaction parameter gives:

      aa 5 y2
1 1aa 2 1 1 2y1y2"1aa 2 1 1aa 2 2 11 2 k12 2 1 y2

2 1aa 2 2 (E7.5D)

Finally, in a way similar to Example 7.4, the Peng–Robinson equation of state can be used to 
develop an expression for the fugacity coeffi cient of species 1 (see Problem 7.36). Such an 
expression is given in Table 7.1:

ln ŵ1 5
b1

b
 1z 2 1 2 2 ln¢ 1v 2 b 2P

RT
≤   

1
aa

2"2bRT
 Bb1

b
2

2
aa

 1y1 1aa 2 1 1 y2 1aa 2 12 2 R  lnB v 1 11 1 "2 2b

v 1 11 2 "2 2b
R

where Equation (7.5A) can be used to fi nd v and z 15 Pv/RT 2 , given values of P and T. Using 
Equations (7.5B), (7.5C), and (7.5D), we can calculate numerical values for the fugacity 
coeffi cient with the parameter values from Table A.1 (Appendix A). 

Parts of a MATLAB code that can be used in this way are shown here.

clear all;
format short g;
format compact;
clc;

T = 300+273.15;  % K
R = 8.314; % gas constant [=] J/(mol K)

%
% This set is for methane (1) and ethane (2)
%

EXAMPLE 7.5

Determination of the 
Fugacity Coeffi cient 
for a Binary Mixture 
Using the Peng–
Robinson Equation 
of State

(Continued)
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% Properties
%
Tc = [190.6 305.4]; % K
Pc =[4.6*1e6 4.874*1e6]; % Pa
w = [.008 0.099]; % Pitzer’s acentric factor
k = 0.01; % binary interaction parameter

% Reduced temperature and mole fractions
Tr = T./Tc ;
yy = [1 0; .8 .2;.6 .4;.4 .6; .2 .8; 0.001 0.999];

% Parameters of the EOS for the pure components
m = 0.37464 + 1.54226.*w - 0.26992*w.^2;
alfa = (1 + m.*(1 - sqrt(Tr))).^2;
a = 0.45724*(R*Tc).^2./Pc.*alfa;
b = 0.0778*R*Tc./Pc;

% Call the function to calculate the fugacity coeffi cients of 
% the mixture
for mm = 1:6
  y = yy(mm,:);
  for i= i:14000

    PP = i/20; % bar
    P = PP * 1e5; % Pa
    Pr = P./Pc ;
    [Z,phihat] = phipr(a,b,R,P,T,y,k); % call function prphi
    phi(i,mm) = phihat;
    press(i,mm) = PP;

  end 
end
____________________________________________________________

                %  This function calculates the compressibility factor and the
%  fugacity coeffi cient of the vapor of species 1 in a binary
% mixture using the Peng_Robinson EOS

function [Z,phihat] = phipr(a,b,R,P,T,y,k)

amix = y(1)^2*a(1) + 2*y(1)*y(2)*(a(1)*a(2))^.5*(1-k)...
       + y(2)^2*a(2);
bmix = sum(b.*y);
A = amix*P./(R*T).^2;
B = bmix*P./(R*T);
B1 = b(1)*P/(R*T);
B2 = b(2)*P/(R*T);

% Compressibility factor
% Z(1) is vapor and Z(2) is liquid

comp = roots([1 -(1-B) (A-3*B.^2-2*B) -(A.*B-B.^2-B.^3)]);
Z(1) = max(comp);
Z(2) = min(comp);
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% phihat is fugacity coeffi cient of the vapor of species 1

phihat = exp(B1/B*(Z(1) - 1)- log(Z(1) - B) + A/(2.828*B)*(B1/B ... 
2/amix*(y(1)*a(1)+y(2)*(a(1)*a(2))^.5*(1-k))) * log ((Z(1)+ ... 
2.414 * B) / (Z(1) -0.414 * B)));

The Lewis Fugacity Rule

As we have seen, the fugacity coeffi cient (or fugacity) depends not only on T and P but 
also on the composition (chemical nature) of all the other species in the mixture. How-
ever, as shown in Example 7.4, we can sometimes approximate the fugacity coeffi cient of 
species i in a mixture by its pure species fugacity coeffi cient:

ŵv
i 5 wv

i     Lewis fugacity rule

This approximation is known as the Lewis fugacity rule. It approximates all interac-
tions in the mixture as being identical to the i-i interaction and simplifi es calculations 
signifi cantly because the pure species fugacity coeffi cient does not depend on the other 
species in the mixture but rather depends only on T and P (e.g., compare the complexity 
of Examples 7.2 and 7.4). 

Therefore, to calculate the fugacity coeffi cient of a mixture, we may choose from 
three levels of rigor.

 1. We can solve the full problem with compositional-dependent fugacity coeffi -
cients. To apply this approach, we need mixing rules for the equation of state 
parameters to account for the i-j interactions of a mixture:

 f̂ v
i 5 yiŵv

i P    1 i 2 j interactions 2  (7.19) 

 2. As a fi rst approximation, we can use the Lewis fugacity rule and base the fugacity 
coeffi cient on the pure species value, as discussed in Section 7.3. This approach 
treats all the interactions as the same (i-i interactions). The advantage of this 
approach is that mixing rules are not needed, and it is mathematically much 
easier:

 f̂ v
i 5 yiw

v
i  P    Lewis fugacity rule 1 i-i interactions 2  (7.20) 

 3. As a second approximation, we can assume ideal gas behavior, in which case 
there are no intermolecular interactions present, and the fugacity of species i is 
simply equal to its partial pressure:

 f̂ v
i 5 y P    ideal gas 1no interactions 2  (7.21) 

The Lewis fugacity rule can also be written as

 f v̂
i 5 yi f v

i     Lewis fugacity rule  (7.22) 
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where Equation (7.5p) was used. This form suggests that when all the intermolecular inter-
actions are the same, the fugacity of species i in the mixture is linearly related to its pure spe-
cies fugacity, and that value is just scaled to the proportion of species i present in the mixture.

When is the Lewis fugacity rule a good approximation? For some insight, we can 
look at the expression developed in Example 7.4 for a binary mixture of species a and b 
using the van der Waals equation of state and van der Waals mixing rules. The fugacity 
of species a is given by:

 f̂ v
a 5 ya f v

a expb 1"aa 2 "ab 2 2y2
bP

1RT 2 2
r  (E7.4G)

Comparison of Equation (E7.4G) with Equation (7.22) shows that the Lewis fugacity 
rule is a good approximation when the term in the exponential is small. This condition is 
valid when the following are true:

 1. The pressure is low or the temperature is high. This condition corresponds to an 
ideal gas.

 2. Component a is present in large excess (yb is small).
 3. The chemical nature of species a is similar to that of all the other components 

1aa < ab 2 .

The preceding criteria are true in general; they are not limited to the van der Waals 
equation or to binary mixtures, the conditions for which Equation (E7.4G) was derived.1 

For example, if we again compare the two binary mixtures—(1) methane–ethane and 
(2) methane–n-pentane—we would not expect the latter mixture to follow the Lewis 
fugacity rule at all compositions because the species are chemically dissimilar (n-pentane 
is bigger and has much larger dispersion interactions). On the other hand, methane 
and ethane are more similar, and we may well expect this mixture to be reasonably rep-
resented by the Lewis fugacity approximation, especially at low ethane mole fraction. 
Indeed, inspection of Figure 7.3 verifi es this supposition.

1 This analysis illustrates the use of engineering models derived from physical principles. Although the van der 
Waals equation has its quantitative limitations, it provides us with a valuable conceptual guideline in applying 
the Lewis fugacity rule. Although we should use a more accurate equation of state to quantify the behavior of a 
species in a mixture, this analysis tells us when we need to concern ourselves with this more diffi cult calculation 
and when we may omit it.

Property Changes of Mixing for Ideal Gases

The ideal gas provides the reference state for the vapor phase. To set up our discussion 
of reference states for the liquid phase, we will review the property changes of mixing for 
an ideal gas as discussed in Section 6.3. Recall that a property change of mixing is defi ned 
as the difference between the total solution property and the sum of the pure species 
properties apportioned by the amount each species present in the mixture:

Dkmix 5 k 2 a yiki 5 a yi 1Ki 2 ki 2

We wish to determine Dvmix, Dhmix, Dsmix, Dgmix for an ideal gas. We will represent 
this case with the superscript “ideal.” Under the ideal gas approximation, the species 
occupy no volume, and we have no intermolecular forces. Therefore,

Dvmix
ideal 5 0   Amagat’s law

Dhmix
ideal 5 0
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7.3  Fugacity in the Vapor Phase ◄ 413

However, there will be a positive entropy change of mixing, since the ideal gas mixture 
has more possible confi gurations (i.e., is more random) than the separated pure species. 
The expression for the entropy change of mixing of an ideal gas is given by Equation 
(6.25):

 Dsmix
ideal

5 2Ra yi ln yi (7.23)

See Example 6.11 for the development of this expression for a binary mixture. 
To fi nd the Gibbs energy of mixing, we apply the defi nition of this thermodynamic prop-
erty. At constant temperature,

 Dgmix
ideal 5 Dhmix

ideal 2 TDsmix
ideal 5 RTa yi ln yi (7.24)

Figure 7.4 shows the Gibbs energy of ideal gas species a and b. Curve 1 plots the value 
of g for a given mixture composition when the two gases exist separately, as pure species, 
while curve 2 plots the value of g in the mixture. The lowering of g when a and b mix is 
due to the Gibbs energy of mixing, Dgmix. Note that the Gibbs energy of the mixture is 
always lower than the weighted average of the pure species. Thus, two ideal gases can 
lower their Gibbs energy if they are allowed to mix; this indicates that the mixing process 
occurs spontaneously.

Alternatively, we can calculate the Gibbs energy change of mixing of an ideal gas 
based on the defi nition of fugacity, as given by Equation (7.3). Consider applying this 
equation to species i, where we choose the pure species at the same T and P of the 
 mixture as a reference state. Since we have an ideal gas mixture, the fugacity of the mix-
ture is equal to the partial pressure, whereas the fugacity of pure i is equal to the total 
pressure. Applying the defi nition of fugacity, Equation (7.3), we get:

 mi
ideal 2 gi 5 RT lnB  

f̂i

fi
R 5 RT lnBpi

P
R 5 RT ln yi (7.25)

From the defi nition of a property change of mixing, we have:

 Dgmix
ideal

5 g 2 a yigi 5 a yi 1Gi 2 gi 2 5 a yi 1mi 2 gi 2  (7.26)
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Figure 7.4 Gibbs energy of ideal 
gas species a and b. Curve 1 plots 
the value of g for a given composition 
for the two gases that are separated, 
while curve 2 plots the lowering of g 
when a and b mix, due to the Gibbs 
energy of mixing.
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Plugging Equation (7.25) into Equation (7.26), we get:

 Dg
mix
ideal 5 RTa yi ln yi (7.27)

Equation (7.27) is identical to Equation (7.24). Again, we see that in thermodynamics, 
there are many paths to the same destination.

 ►7.4  FUGACITY IN THE LIQUID PHASE
In this section, we explore how we can calculate fugacity in the liquid phase. In doing so, 
we will develop an appropriate reference state for the liquid phase, the ideal solution, 
and then correct for real behavior through the activity coeffi cient. We will then learn a 
type of empirical model that correlates experimental data effi ciently. The methodology 
developed in this section can also be applied to solids. Finally, an alternative approach to 
calculating fugacity in the liquid using PvT equations of state is discussed. This approach 
is similar to that used for the vapor phase in Section 7.3.

Reference States for the Liquid Phase

In the liquid phase, just as in the vapor phase, we need to choose a suitable reference state 
with a corresponding reference chemical potential and reference fugacity to complete 
the defi nition provided by Equation (7.3). We then adjust for the difference between 
the reference phase and the real system. However, while there is an obvious reference 
case for gases—the ideal gas—there is no single suitable choice for the liquid phase. 
There are two common choices for the reference state: (1) the Lewis/Randall rule and 
(2) Henry’s law. The choice of reference state often depends on the system. Both these 
reference states are limiting cases that result from a natural idealization for condensed 
phases: the ideal solution.

The Ideal Solution
We wish to defi ne a reference state for the liquid phase to which we can compare the 
fugacity of a real liquid. Hence, we need something analogous to what an ideal gas pro-
vided us for real gases. For liquids, however, we cannot extrapolate to a state where there 
are no intermolecular interactions as we did at zero pressure for gases. Indeed, it is the 
very presence of intermolecular forces that makes condensed phases possible; without 
these forces, only the entropically favored gas phase would exist. Accordingly we will 
choose an ideal solution as our reference state. 

An ideal solution can be defi ned in several ways. On a macroscopic level, a solution 
is ideal when all the mixing rules are the same as for an ideal gas. Analogous to the dis-
cussion previously, an ideal solution is characterized by the following mixing rules:

Dvmix
ideal 5 0

Dhmix
ideal 5 0

 Dsmix
ideal 5 2Ra xi ln xi

Dgmix
ideal 5 RTa xi ln xi

In analogy to Equation (7.25) for an ideal gas, the following relation must hold for an 
ideal solution:
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 m
i
ideal 2 g

i
ideal 5 RT ln xi 5 RT lnB f̂i

ideal

fi
ideal R  (7.28)

Equation (7.28) has interesting implications. For this relation to hold, the fugacity of an 
ideal solution is linear in mole fraction to the pure species fugacity:

 f̂ i
ideal 5 xi fi

ideal (7.29)

This expression is identical to the Lewis fugacity rule [Equation (7.22)]. Recall that a 
species obeys the Lewis fugacity rule if all the intermolecular forces are equal.

On a molecular level, we defi ne a solution as ideal when the intermolecular inter-
actions are the same between all components of the mixture. Thus, in using the ideal 
solution as a reference state, we will be comparing the behavior of real mixtures to that 
where all the species in the mixture interact with equal magnitude. However, there is 
more than one possible interaction upon which to defi ne fi

ideal. We will now explore two 
common choices of fi

ideal that we use for reference states: The Lewis/Randall rule and 
Henry’s law.

Consider Figure 7.5, in which the fugacity in the liquid phase of species a in a 
binary mixture is plotted (solid curve) as a function of mole fraction of a. This curve is 
linear and, thus, satisfi es Equation (7.29) in two places—as xa approaches 1 and as xa 
approaches 0. In the fi rst case 1xa S 1 2 , the solution is almost completely a, as shown 
in the inset. Thus, species a sees essentially only other species a as it interacts with its 
neighbors. Therefore, we have an ideal solution because as far as a molecule of a is con-
cerned, all the intermolecular interactions are the same. They are all a-a interactions. The 
characteristic of this intermolecular interaction is given by the pure species fugacity, fa. 
Consequently, one choice of reference state is the pure species fugacity of species a. We 
call this the Lewis/Randall rule:

 fa
ideal

5 fa
o5 fa    1Lewis/Randall rule 2     a-a interactions (7.30)

Consider now the case when a is very dilute in b. This case is shown in the inset as 
xa  goes to zero. As far as a molecule of a is concerned, it essentially sees only species b 
in solution. Thus, again, we have an ideal solution because all the intermolecular inter-
actions species a has are the same. In this case, however, it is the a-b interaction that is 
characteristic of the ideal solution. This provides another choice on reference state based 
on a-b interactions, which we call Henry’s law:

 fa
ideal

5 fa
o5 Ha (Henry’s law) a-b interactions (7.31)

The Henry’s law limit can be conceptualized as a hypothetical, pure fl uid in which the 
characteristic energy of interaction is that between molecule a and molecule b. If species 
a is defi ned by a Lewis/Randall reference state, we call it a solvent, whereas when we 
describe it by Henry’s law, it is termed a solute. If we had a binary mixture of species 
a with a different molecule c, the Lewis/Randall reference state for species a would be 
unchanged. However, the Henry’s reference state could differ dramatically. The for-
mer is independent of any other species in the mixture, while the latter, by defi nition, 
depends on the chemical nature of the other species in the mixture.

In the intermediate concentration ranges in Figure 7.5, we see that the fugacity 
of species a in the liquid phase is between the two limiting cases given by the Lewis/
Randall rule and Henry’s law. We expect this behavior because, at intermediate concen-
trations, molecule a sees some other a molecules (characteristic of the Lewis/Randall 
rule) and some b molecules (characteristic of Henry’s law). Thus, the fugacity of species 
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a will be the appropriate “average” of a-a and a-b interactions: The more a molecules it 
sees (larger xa), the closer it will be to the Lewis/Randall reference state; the more b it 
sees, the closer to Henry’s law. To solve problems in phase equilibria, we need to essen-
tially come up with a quantitative formulation to “average” between these limits. The 
goal is to be able to estimate the fugacity of a liquid at any given composition based on 
 experimentally available data.

Figure 7.5 Fugacity of a binary liquid 
mixture. Also shown are ideal solution 
reference states based on a-a interac-
tions (Lewis/Randall rule) and a-b 
interactions (Henry’s law).
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Consider the binary mixture depicted in Figure 7.5. Which interaction is stronger, the like 
interactions, a-a, or the unlike interactions, a-b?

SOLUTION At equilibrium, the fugacity of the liquid equals the fugacity of the vapor:

fa
l 5 fa

v

For this argument, we will consider the specifi c case of an ideal gas where the fugacity of a in 
the vapor can be replaced with a partial pressure:

fa
l 5 pa

However, the conclusion we will reach holds in general. The lower the fugacity of the liquid 
of species a, the lower its partial pressure in the vapor phase. Having a lower partial pressure 
in the vapor phase means that species must be held more strongly in the liquid; therefore, the 
intermolecular interactions are stronger. The like a-a interaction is characterized by the pure 
species fugacity, fa, while the a-b interaction is characterized by the Henry’s law constant, Ha. 
In the case of Figure 7.5, fa, is less than Ha, implying the a-a interaction is stronger.

If we consider the fugacity as a “tendency to escape,” the stronger interaction should have 
the lower fugacity. Since the Henry’s constant is larger, the hypothetical ideal species based on 
the a-b interaction has a greater tendency to escape than the pure a. Thus the like interactions 
are stronger than the unlike interaction.

EXAMPLE 7.6

Relation between 
Fugacity and 
Strength of 
Intermolecular 
Interactions
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The Activity Coefficient, gi
Inspection of Figure 7.5 reveals a natural dimensionless group to express the fugac-
ity of the liquid phase—the activity coeffi cient, gi. The activity coeffi cient is defi ned as 
the ratio of the value of the fugacity in the actual mixture, represented by the solid line 
in Figure 7.5, to the fugacity that the ideal solution would have at the composition of 
the mixture, represented by either of the dashed lines in Figure 7.5 (depending on our 
choice of reference state). Thus, we can write:

 gi 5
f̂ i

l

f̂i
ideal

5
f̂i

l

xi fi
o (7.32)

The activity coeffi cient tells us how “active” the liquid is relative to our choice of 
reference state. The value of the activity coeffi cient depends on the specifi c choice of 
reference state. For example, consider the binary system represented in Figure 7.5. The 
activity coeffi cient for the Lewis/Randall reference state is greater than 1 throughout 
most of the composition range and equal to 1 in the limit of pure a. Thus,

ga $ 1     in Figure 7.5

On the other hand, the Henry’s reference state represented in Figure 7.5 is less than or 
equal to one:2

gHenry's
a # 1     in Figure 7.5

In other systems, where the unlike interactions are stronger than the like interactions, 
we see ga # 1 and gHenry's

a $ 1.
The activity coeffi cient for the Henry’s reference state approaches 1 in the limit as xa 

goes to zero, and the activity coeffi cient for the Lewis/Randall reference state approaches 
1 in the limit as xa goes to 1. We will next consider expressions for the activity coeffi cients 
in the other composition limit for each choice of reference state. In the limit as the mole 
fraction of species a goes to 1, the activity coeffi cient in the Henry’s reference state can 
be written by applying Equation (7.32):

1ga
Henry's 2pure a 5

f̂a
l

f̂
a

ideal
5

f̂al

xa fa
o 5

fa

Ha

On the other hand, in the limit of infi nite dilution, the activity coeffi cient in the Lewis/
Randall reference state becomes:

ga
` 5
Ha

fa

Comparing these two expressions, we see that:

1ga
Henry's 2pure a

5
1

ga
`

2 In this text, we use explicitly use the superscript “Henry’s” to denote the Henry’s law reference state. When 
the activity coeffi cient does not have a superscript, we implicitly assume the Lewis/Randall reference state, 
although, in some cases, the expression may apply to both the Lewis/Randall reference state and the Henry’s 
law reference state.
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Moreover, by applying the defi nition of the activity coeffi cient, Equation (7.32), we see 
that:

f̂a
l 5 xagafa 5 xaga

Henry'sHa 5 xaga
Henry'sga

`fa

Inspection of this expression shows that we can relate the activity coeffi cient in the Hen-
ry’s law reference state to the activity coeffi cient in the Lewis/Randall reference state by:

ga
Henry's 5

ga

ga
`

Note the similarity of the activity coeffi cient represented by Equation (7.32) to the 
fugacity coeffi cient given by Equation (7.5):

 ŵi
v ;

f̂i
v

pi,sys
5

f̂i
v

yiPsys
 (7.5)

While the fugacity coeffi cient can be viewed as a dimensionless quantity expressing how 
the fugacity in the vapor phase compares to how it would hypothetically behave as an ideal 
gas, the activity coeffi cient represents a dimensionless quantity of how the fugacity in the 
liquid compares relative to whatever ideal solution reference state is chosen. Like the 
fugacity coeffi cient, the activity coeffi cient tells us how far the system is deviating from 
ideal behavior. In the case of gases, that reference state depicts a unique state where the 
intermolecular interactions are zero. In the case of liquids, on the other hand, we refer 
to a state where all the interactions are the same. Consequently, we must remember to 
what particular reference state we are comparing the fugacity, that is, whether we are 
comparing the activity of the real liquid to the like interactions or the unlike interactions. 
Since the reference state for the vapor phase, the ideal gas, represents the case where 
there are no intermolecular potential interactions between the molecules in the system, 
it is realized in the limit as pressure goes to zero. On the other hand, the liquid-phase 
reference state, the ideal solution, occurs when all the intermolecular interactions are 
the same. This condition is reached in the limit of composition when the mole fraction 
goes either to 1 (Lewis/Randall rule) or to zero (Henry’s law). In liquids, therefore, we 
typically choose the pressure of the reference state equal to that of the system.

The activity of species i in the liquid, ai, is often used in conjunction with the activity 
coeffi cient. It is defi ned as follows:

 ai ;
f̂ i

l

fi
o (7.33)

The activity compares the fugacity of species i in the liquid to the fugacity of the pure 
species in its reference state. On the other hand, the activity coeffi cient is defi ned with 
respect to the fugacity of the mixture as an ideal solution. Comparison of Equations 
(7.32) and (7.33) shows:

 ai 5 xigi (7.34)

Due to its close analogy with the fugacity coeffi cient, we will for the most part use 
 activity coeffi cients, gi, to describe solution nonideality in phase equilibrium. However, 
activity will be more convenient to use when we address chemical reaction equilibrium 
in Chapter 9.
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In summary, the reference state for species i in the liquid (or solid) phase is no more 
than a particular state, real or hypothetical, at a given P and xi (usually that of the system) 
and at the temperature of the system. We choose the reference state to be that of an ideal 
solution in which the fugacity is linearly proportional to mole fraction. While the concept 
of an ideal solution was conjured up in analogy to an ideal gas, there are some interesting 
differences. A pure gas can be a nonideal gas, while a pure liquid cannot be a nonideal 
solution because all intermolecular forces in a pure liquid are the same! Additionally, an 
increase in pressure leads to deviations from ideal gas behavior, whereas deviations from 
ideal solution are caused by changes in composition because nonideal behavior results 
primarily from the chemical differences of species in a mixture, even at low pressures.

Calculation of Pure Species Fugacities, fi

To quantify the Lewis/Randall reference state, we must fi nd the value for the fugacity 
of pure species i, fi

l, at the T and P of the mixture. This state is depicted in Figure 7.6a. 
We can calculate this quantity with a judicious choice of thermodynamic path. We begin 
with the state shown in Figure 7.6b—component i at the T of the mixture and at the cor-
responding saturation pressure of pure i, Pi

sat. Take note of the different pressures in the 
states drawn in Figure 7.6. We can determine fi

l for the system depicted in Figure 7.6b 
by equating it to the vapor-phase fugacity since the vapor and liquid are in equilibrium. 
We then correct for pressure between the saturation pressure and system pressure utiliz-
ing the thermodynamic web.

The equilibrium state depicted in Figure 7.6b requires equal pure species fugacities 
in the vapor and liquid phases:

fi
v5 fi

l       at T, Psat

Using Equation (7.5p) for the vapor fugacity gives:

 wi
satPi

sat 5 fi
l     at T, Psat (7.35)

Here the saturation pressure of species i is used as the appropriate pressure. The fugac-
ity of the pure liquid used as the Lewis/Randall reference state (Figure 7.6a), however, 
is not generally at the saturation pressure, Pi

sat, but at the system pressure, P. Therefore, 
we must correct for pressure.

One approach is to say that fugacities are a weak function of pressure and so  Equation 
(7.35) gives an approximate expression for the fugacity of pure i at the system pressure. 
This approximation works well close to the saturation pressure. If we are uneasy with this 

l

Pure species fugacity
at the system pressure

T

T

ni
I

ni
I

ni
v

P

Psat

v

I

Pure species fugacity (phase
equilibria) at the saturation pressure

(b)(a)

Figure 7.6 Possible systems to 
calculate the fugacity of pure 
species i in the liquid phase.
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420 ► Chapter 7. Phase Equilibria II: Fugacity 

statement, we can always correct for pressure rigorously. We can express the pressure 
dependence of the fugacity from a fundamental property relation, using the approach we 
learned in Chapter 5 (see Problem 7.48):

¢ 'gi

'P
≤

T
5 vi 5 RT¢ ' 1 ln fi 2

'P
≤

T

Integrating this expression from Pi
sat to P and substituting into Equation (7.35) gives us a 

general expression for the pure species fugacity of component i at P and T of the system:

 fi
l 5 wi

satPi
sat expC 3

P

Pi
sat

1vi
l / 1RT 2 2dPS  at T, P (7.36)

Equation (7.36) can be used in general to fi nd the pure species fugacity for the 
Lewis/Randall reference state at any value of T and P. The exponential term on the right- 
hand side of Equation (7.36) is termed the Poynting correction. It takes into account the 
pressure dependence of the pure species fugacity. This term is usually negligible at pres-
sures below 100 bar. The molar volume in the integral term in the Poynting correction 
is that of the liquid. Since liquids can often be taken as incompressible, we often assume 
vi

l is a constant and, therefore,

fi
l 5 wi

satPi
sat expB vi

l

RT
1P 2 Pi

sat 2 R
Figure 7.7 plots the value of the Poynting correction for water as a function of 

 pressure at 25°, 100°, 200°, and 300°C. This term increases the fugacity of water at 
1000 bar and 25°C by a factor of 2.

At low pressures and low saturation pressures, this expression simplifi es consider-
ably. We have an ideal gas, so the fugacity coeffi cient is 1 and we do not need the Poynt-
ing correction since the pressure dependence of fugacity is negligible. Thus, Equation 
(7.36) simplifi es to:

 fi
l 5 Pi

sat       Low P, Pi
sat (7.37)

The Antoine equation (Appendix A.l) can be used to obtain values for Pi
sat. Equation 

(7.37) can be commonly used for the Lewis/Randall reference state fugacity in Equation 
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Figure 7.7 Poynting correction for water at 25°, 100°, 200°, and 300°C.
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7.4  Fugacity in the Liquid Phase ◄ 421

(7.30). However, realize that it is a special case of the more general expression shown in 
Equation (7.36).

Changes in Henry’s Constant Hi, with Pressure and Temperature
To use the Henry’s law reference state at high pressures, we need to correct for the pres-
sure dependence of the Henry’s law constant just as we did for the pure species fugacity 
above. Moreover, since the Henry’s law constant is a function of the unlike species in the 
mixture, we have to obtain its experimental value for the specifi c species in the mixture. 
Values reported in the literature may be at a different temperature than the system 
of interest. In this section, we develop relationships for the pressure and temperature 
dependence of the Henry’s law constant. 

We begin with Equation (6.46) for vapor-liquid equilibrium:

2
hi

v

T 2
 dT 1 R 

dP
P

1 R 

dyi

yi
5 2

Hi
l

T 2
 dT 1

V i
l

T
 dP 1

1
T

 B'mi
l

'xi
R

T,P 
dxi

This equation assumes ideal gas behavior in the vapor phase. Henry’s law is valid in the 
limit of infi nite dilution for species i in the liquid phase where xi S 0. In this limit, the 
partial derivative of the chemical potential can be determined using Equations (7.3) and 
(7.29):

B'mi
l

'xi
R

T,P
5 RTB' ln f̂i

l

'xi
R

T,P
5 RTB ¢ ' ln xi

'xi
≤ 1 ¢ ' ln Hi

'xi
≤ R 5

RT
xi

The second term in the chain rule expansion goes to zero because the Henry’s law 
 constant is independent of xi. Substitution into the previous equation gives:

2
hi

v

T2
 dT 1 Rd ln P 1 Rd ln yi 5 2

Hi
`

T2
 dT 1

Vi
`

T
 dP 1 Rd ln xi

In this expression we have explicitly written the partial molar properties to specify the 
limit of infi nite dilution for which Henry’s law is valid. Rearrangement gives:

 ¢hi
v 2 Hi

`

RT2
≤dT 1

Vi
`

RT
 dP 5 d ln¢ yiP

xi
≤ 5 d ln Hi (7.38)

Taking the partial derivatives of Equation (7.38) with respect to pressure and tem-
perature gives:

 ¢ ' ln Hi

'P
≤

T
5

Vi
`

RT
 (7.39)

and,

 ¢ ' ln Hi

'T
≤

P
5

hi
v

2 Hi
`

RT2
 (7.40)

Equations (7.39) and (7.40) can be used to correct literature values of Hi for pressure 
and temperature, respectively. Since Henry’s constants are generally reported at 1 bar, 
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we can obtain a value of the Henry’s law for pressure at any P by integrating Equation 
(7.39) as follows:

 Hi
at P

5 Hi
at 1 bar expc 3

P

1 bar

Vi
`

RT
 dPs  (7.41)

When the partial molar volume of species i is not available, we can roughly approximate 
it with the pure species molar volume.

Thermodynamic Relations between Gi

In this section, we explore the relationship between the activity coeffi cients of the dif-
ferent species in a mixture. Using the Gibbs–Duhem equation, we will show that the 
activity coeffi cients are not independent. Their interrelationship will motivate develop-
ment of a new type of thermodynamic property—excess Gibbs energy. Finally, we will 
illustrate an application of these principles by coming up with a way to test the quality of 
experimental data and see whether they are thermodynamically consistent.

Activity Coeffi cient Relationships Using the Gibbs–Duhem Equation
In Section 6.3, we used the Gibbs–Duhem equation to provide a relationship between 
the partial molar properties of different species in a mixture. We can use this equation to 
relate the activity coeffi cients of different species in a mixture as well. We begin by writ-
ing Equation (6.19) in terms of partial molar Gibbs energy, that is, chemical potential:

0 5 anidmi      Const T and P

We now want to rewrite this equation in terms of the activity coeffi cient. From the 
defi nition of fugacity, we have:

anidmi 5 RTanid ln f̂ i 5 0

Expanding the fugacity of species i in the mixture using Equation (7.32):

anid ln f̂ i 5 anid ln gi 1 anid ln xi 1 anid ln fi
o5 0

where either the Lewis/Randall or Henry’s reference state can be used for fi
o. In fact, 

sometimes some species in the mixture use one reference state while other species use 
the other. The second term on the right-hand side can be reduced as follows:

anid ln xi 5 anxi¢dxi

xi
≤ 5 andxi 5 nadxi 5 0

where adxi 5 0 since a xi 5 1. The third term drops out, since the derivative of a 
constant is zero. Hence, the equation reduces to:

 a xid ln gi 5 0 (7.42)
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7.4  Fugacity in the Liquid Phase ◄ 423

Equation (7.42) indicates that the activity coeffi cients in a mixture are interrelated. 
Consider, for example, a binary mixture of components a and b. Differentiating with 
respect to xa at constant T and P, Equation (7.42) becomes:

 xa¢ ' ln ga

'xa
≤

T,P
1 xb¢ ' ln gb

'xa
≤

T,P
5 0 (7.43)

The form of the Gibbs–Duhem equation given by Equation (7.43) implies that once you 
know ga as a function of xa, then gb (or, really, the slope of gb) is constrained. Example 
7.7 illustrates this relationship.

Equation (7.43) says that the activity coeffi cients of different species in the mixture 
are interrelated. Thus, when we develop models to fi t activity coeffi cients in the next 
section, we must make sure that the expressions for the activity coeffi cients of differ-
ent species in a mixture are consistent with the Gibbs–Duhem equation. On the other 
hand, this relationship also suggests an intriguing possibility—perhaps it is possible to 
consolidate the activity coeffi cient dependence on composition of all the species into one 
model expression and, therefore, be able to derive all the activity coeffi cients from a sin-
gle expression. Indeed, as we will discover next, we will take just this approach through 
a new thermodynamic property—the excess Gibbs energy.

Consider a binary liquid consisting of species a and b. The activity coeffi cient, based on the 
Lewis/Randall rule, for species a vs. mole fraction a is plotted in Figure E7.7A. On the same 
graph, plot the activity coeffi cient for species b (a) using the Lewis/Randall rule as reference 
for b; (b) using Henry’s law as reference for b.

SOLUTION In each case, the Gibbs–Duhem equation must hold, that is,

 xa¢' ln ga

'xa
≤

T,P

1 11 2 xa 2 ¢' ln gb

'xa
≤

T,P
5 0 (E7.7)

At any value of mole fraction, xa, we can take the slope of the curve above to get 1' ln ga 2 /'xa. 
This equation then constrains the slope of the activity coeffi cient of species b. If we know the 
value at one point, then we can “graphically integrate” the above equation.
(a) For the Lewis/Randall reference state, species b behaves ideally as xb S 1, that is, as 
xa S 0; thus, at this mole fraction, ln gb 5 0. This fi xes one point on the graph, as labeled in 
Figure E7.7B.

EXAMPLE 7.7

Application of the 
Gibbs–Duhem 
Equation to 
Determine γb 
Graphically

Figure E7.7A Activity coefficient 
of species a plotted vs. mole 
 fraction a, 

0 1
xa

ln γa

ln
 γ

i

(Continued)
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From this point, we can plot the curve for the activity coeffi cient of species b, since the slope at any 
mole fraction is constrained by the Gibbs–Duhem equation. The result is shown in Figure E7.7B.
The solution to Equation (E7.7) is illustrated for xa 5 0.25.
(b) For the Henry’s law reference state, the Gibbs–Duhem equation must also be satisfi ed; 
therefore, the slope of the curve for ln gb

Henry's remains the same as the one we determined 
for the Lewis/Randall reference state and plotted in Figure E7.7B. However, now species b 
behaves ideally as xa S 1 1xb S 0 2  and thus ln gb

Henry's 5 0 at that mole fraction. This simply 
shifts the entire curve as shown in Figure E7.7C.

0 1

xa

In γb
Henry's

In γb
Henry's = 0

In γa

In
 γ

i

Henry's Law for species b

Figure E7.7C Activity coefficient 
of species b plotted vs. mole frac-
tion a, using Henry’s law reference 
state.

Figure E7.7B Activity coefficient of 
species b plotted vs. mole fraction a, 
as determined by the Gibbs–Duhem 
equation.

In
 γ

i In γa

xa

xa
T,P T,P

In γb

In γb = 0

0 1

∂In γa

∂xa

∂In γb

∂xa
 (1 – xa)+ = 0
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7.4  Fugacity in the Liquid Phase ◄ 425

Excess Gibbs Energy and Other Excess Properties
Excess Gibbs energy forms the basis from which the activity coeffi cient of all the species 
in the mixture can be obtained from a single quantitative expression. An excess property, 
kE, is defi ned as the difference between the real value of any thermodynamic property, 
k, and the hypothetical value it would have as an ideal solution at the same temperature 
pressure and composition, kideal:

 kE ; k 1T, P, xi 2 2 kideal 1T, P, xi 2  (7.44)

for example,

D
vE 5 v 1T, P, xi 2 2 videal 1T, P, xi 2

hE 5 h 1T, P, xi 2 2 hideal 1T, P, xi 2

gE 5 g 1T, P, xi 2 2 gideal 1T, P, xi 2

(

T

For kideal, we must specify which reference state is chosen for the solution, that is, the 
Lewis/Randall reference state, Henry’s law, or the ideal gas. The departure functions 
discussed in Chapter 5 are a special case of excess properties.

Likewise, we can defi ne a partial molar excess property by applying Equation (6.15) 
to the extensive excess property as follows:

 Ki
E ; ¢ ' 1nkE 2

'ni
≤

T,P,nj2 i

5 ¢ ' 1K 2 Kideal2

'ni
≤

T,P,nj2 i

5 Ki 2 Ki

ideal
 (7.45)

for example,

E
Vi

E 5 Vi 2 Vi
ideal

Hi
E 5 Hi 2 Hi

ideal

Gi
E 5 Gi 2 Gi

ideal

(

U

Does it make sense to defi ne the pure species excess property, ki
E?

If we add and subtract a xiki to the right side of Equation (7.44), we get:

kE 5 ¢k 2 a xiki≤ 2 ¢kideal 2 a xiki≤

or, kE 5 Dkmix 2 Dkmix
ideal (7.46)

Thus, an excess property is also the difference between the real property change of mix-
ing and the ideal property change of mixing.

This suggests two classes of excess properties:

• Class I. For class I properties, the ideal property change of mixing is zero:

Dkmix
ideal 5 0      1k 5 u, h, v 2

For class I properties, the excess property is identical to the property change 
of mixing:

kE 5 Dkmix
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for example,

C
vE 5 Dvmix

hE 5 Dhmix

(
S

• Class II. For class II properties, the ideal property change of mixing is not zero

Dkmix
ideal 2 0 1k 5 g, s, a 2

In this case, the excess functions represent a new set of properties, which we 
can write as follows:

kE 5 Dkmix 2 Dkmix
ideal

for example,

C
sE 5 Dsmix 2 Dsmix

ideal

gE 5 Dgmix 2 Dgmix
ideal

(
S

As illustrated in Figure 7.4, the ideal property change of mixing for Gibbs energy is 
not zero; hence gE belongs in class II. If we apply Equation (7.46) to gE and substitute 
Equation (7.24), we get:

 gE 5 Dgmix 2 RTa xi ln xi (7.47)

The partial molar excess Gibbs energy is given by Equation (7.45), which can be 
extended to read:

Gi
E 5 Gi 2 Gi

ideal
5 mi 2 mi

ideal 5 RT ln 

f̂i

f̂ i
ideal

If we substitute Equation (7.32), we get the following important result:

 Gi
E 5 RT ln gi (7.48)

Equation (7.48) indicates that there is a direct relationship between the partial molar 
excess Gibbs energy of a species and its activity coeffi cient in solution. This equation implies 
that if we have a mathematical expression for the excess Gibbs energy of a mixture as a func-
tion of composition, we can get the activity coeffi cient for any of the m species in the mix-
ture. All we have to do is apply the defi nition of a partial molar property [Equation (6.15)] 
and take the partial derivative of the extensive form of the excess Gibbs energy with 
respect to the number of moles of a given species, holding temperature, pressure, and 
the number of moles of all the other species constant. Once we have obtained the partial 
molar Gibbs energy, Equation (7.48) tells us that we now know the activity coeffi cient for 
that species. Then we can solve for the fugacity in the liquid via Equation (7.32).

Our approach to come up with values for gi to find the fugacity of the liquid phase 
is to come up with an analytical expression for the excess Gibbs energy, gE. The activity 
coefficients for each species i in the mixture can then be found by Equation (7.48). In this 
way we need only one model for gE to obtain activity coefficients for every species.

Since we will be working with excess Gibbs energy to correlate experimental meas-
urements, it is useful to apply thermodynamic property relationships to form expressions 
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7.4  Fugacity in the Liquid Phase ◄ 427

for excess Gibbs energy and its derivatives. Applying Equations (6.17) to excess Gibbs 
energy and substituting in Equation (7.48) gives:

 gE 5 a xiGi
E

5 RTa xi ln gi (7.49)

Thermodynamic Consistency Tests
The Gibbs–Duhem equation provides a general relation for the partial molar proper-
ties of different species in a mixture that must always be true. For example, we just 
saw how the activity coeffi cient of different species can be related to one another. In 
this section, we explore one way to use this interrelation to judge the quality of experi-
mental data. The basic idea is to develop a way to see whether a set of data conform to 
the constraints posed by the Gibbs–Duhem equation. If the data reasonably match, we 
say they are thermodynamically consistent. On the other hand, data that do not con-
form to the Gibbs–Duhem equation are thermodynamically inconsistent and should be 
considered unreliable. The development that follows is based on the relation between 
activity coeffi cients in a binary mixture of species a and b. It serves as an example to 
this methodology; there are several other ways that have been developed to apply this 
same type of idea.

According to Equation (7.49), the excess Gibbs energy for a binary mixture can be 
written as:

gE 5 RT 1xa ln ga 1 xb ln gb 2

Differentiating with respect to xa at constant T and P gives:

dgE

dxa
5 RTB ln ga 1 xa 

d ln ga

dxa
2 ln gb 1 xb 

d ln gb

dxa
R 5 RT 3ln ga 2 ln gb 4

where we have simplifi ed this expression using the Gibbs–Duhem equation:

xa¢ ' ln ga

'xa
≤

T,P
1 xb¢ ' ln gb

'xa
≤

T,P
5 0

The previous expression can be rewritten as:

dgE 5 RT ln¢ga

gb
≤dxa

We next integrate over composition from pure b to pure a to get:

3

pure a

pure b

dgE 5 3

xa51

xa50

RT ln¢ga

gb
≤dxa

Since gE is a state function, the integral on the left-hand side depends solely on its 
value at each limit of integration. If we use a Lewis/Randall reference state for both spe-
cies, the value of gE is zero for pure a and for pure b. The integral becomes zero, and we 
can rewrite this equation:

 3

1

0

ln¢ga

gb
≤dxa 5 0 (7.50)
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Equation (7.50) suggests a way to evaluate experimental data for thermodynamic 
consistency. If we plot ln 1ga/gb 2  vs. xa, the area under the curve should be close to zero. 
Hence, there should be approximately as much area above the x-axis as below it. This 
test is often referred to as the area test. An example of the application of the area test to 
experimental data for a binary system of ethanol and water at 60°C is shown in Figure 7.8. 
In this case, the areas above and below the x-axis are roughly equal and we conclude 
these data are thermodynamically consistent.

Equation (7.50) was derived assuming constant T and P. However, for real data sets, 
either T or P must change as composition is varied. In most isothermal data sets, the 
pressure dependence of the activity coeffi cient is small over the range considered, so 
Equation (7.50) can be applied directly to test for thermodynamic consistency. However, 
in cases where the pressure is held constant, Equation (7.50) often needs to be corrected 
to include the change in the activity coeffi cient with temperature. In Problem 7.63, an 
expression that improves Equation (7.50) by accounting for the variation of activity coef-
fi cient with temperature is to be developed.

Figure 7.8 Area test for the thermodynamic consistency of a binary mixture of ethanol (a) in water 
(b) at 60°C.

2.0

1.0

–1.0
0 0.2 0.4 0.6

xa

0.8 1

0.0

γ a γ b
In

Models for Gi  Using gE

Once a reference state has been chosen, fugacities in the liquid phase can be expressed 
via gi by rearranging Equation (7.32) as follows:

 f̂i
l 5 xigi fi

o (7.51)

The Lewis/Randall reference state that is based on the i-i interaction gives:

 f̂i
l 5 xigi fi (7.52)

while the Henry’s law reference state, based on the i-j interaction, gives:

 f̂i
l 5 xigi

Henry'sHi (7.53)
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Since accurate equation of state data may not be available for condensed phases, we 
seek an alternative means for correlating and extending experimental data. This task is 
most commonly done through another type of model—activity coeffi cient models using 
gE. The nonideality in the liquid phase is most strongly dependent on composition. The 
goal, then, is to develop an expression for gE from which the compositional dependence 
of the activity coeffi cient can be obtained. Once the compositional dependence of the 
activity coeffi cient has been quantifi ed, Equation (7.51) can be used to determine the 
fugacity of the liquid phase at a given mole fraction i.

The Two-Suffi x Margules Equation
One approach to estimating the excess Gibbs energy is to try to fi t experimental results 
to analytical expressions in mole fraction for gE. This is similar to the equation of state 
concept. It is more convenient to model the excess Gibbs energy and take the appropri-
ate partial derivatives via Equation (7.48) for the activity coeffi cient than to model the 
activity coeffi cient of each species separately. The goal is to fi nd an expression for gE (and 
thus the activity coeffi cients) over the entire composition range given a limited amount 
of experimental data. In this section we will look at the simplest nonideal model that we 
can think of for gE in depth—the two-suffi x Margules equation. After seeing its strengths 
and limitations, we will extend it to other forms.

Consider a binary solution of species a and b with the Lewis/Randall reference 
state for both components. The activity coeffi cient model must satisfy the following two 
conditions:

 1. At mole fractions of xa 5 1 and xb 5 1, we have an ideal solution; therefore, the 
excess Gibbs energy is zero:

gE 5 0 bxa 5 1; xb 5 0
xb 5 1; xa 5 0

 2. The model for gE satisfi es the Gibbs–Duhem equation. If we attempted to 
model the activity coeffi cient of each species separately, we would have much 
more diffi culty with this condition.

What is the simplest nonideal model that satisfi es these two conditions?
Let’s try,

 gE 5 Axaxb (7.54)

The parameter A is fi t to experimental data for a given binary mixture. This parameter 
may change with temperature or pressure, but it is independent of the composition of 
the system. Moreover, as we will see shortly, we can apply the thermodynamic web to see 
how A varies with T and P. Equation (7.54) is called the two-suffi x Margules equation; 
it clearly satisfi es condition 1 above. Example 7.8 shows that it also satisfi es condition 2.

In the case of a Lewis/Randall reference state, the deviation from ideality results 
from the nature of unlike a-b interactions (recall the discussion of Figure 7.5). Con-
sequently, it is not surprising that the compositional dependence of Equation (7.54) is 
exactly the same as for the mixing term for the van der Waals energy parameter:

amix 5 xa
2aa 1 2xaxb!aaaa 1 xb

2ab

Example 7.9 provides further discussion of the molecular origins of the two-suffi x 
 Margules equation.
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Once we have this expression for gE, the corresponding activity coeffi cients for 
species a and b are given by the appropriate partial molar excess Gibbs energies via 
Equation (7.48). Applying the defi nition of a partial molar property to the excess Gibbs 
energy, we get:

 Ga

E
5 ¢ 'GE

'na
≤

T,P,nb

5 ¢ ' 1nTgE 2

'nb
≤

T,P,nb

5 AD
'¢ nanb

na 1 nb
≤

'na
T

T,P,nb

 5 AB nb

na 1 nb
2

nanb

1na 1 nb 2 2
R 5 a 

nb
2

1na 1 nb 2 2

Thus, Ga
E

5 Axb
2 5 RT ln ga (7.55)

Similarly, Gb
E

5 Axa
2 5 RT ln gb (7.56)

If we have a binary mixture and have determined a value for the two-suffi x Margules 
parameter A, we can fi nd the activity coeffi cient of both species in the mixture at any 
composition by Equations (7.55) and (7.56).

Show that the two-suffi x Margules equation satisfi es the Gibbs–Duhem equation.

SOLUTION Applying the Gibbs–Duhem equation, Equation (6.19), to excess Gibbs energy 
gives:

 xadGa
E

1 xbdGb
E

5 0 (E7.8A)

but, from Equation (7.55),
Ga

E
5 Axb

2

so, dGa
E

5 2Axbdxb (E7.8B)

Similarly, dGb
E

5 2Axadxa (E7.8C)

Plugging Equations (E7.8B) and (E7.8C) into (E7.8A):

xa 12Axbdxb 2 1 xb 12Axadxa 2 5 0

Therefore, the two-suffi x Margules equation satisfi es the Gibbs–Duhem equation since:

dxa 5 2dxb

EXAMPLE 7.8

Thermodynamic 
Consistency of the 
Two-Suffi x Margules 
Equation
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Provide a molecular explanation for the form of the two-suffi x Margules equation:

gE 5 Axaxb

Show how the relative magnitude of the unlike interactions to the like interactions determines 
the value of two-suffi x Margules parameter, A.

SOLUTION In this example, we assume that all the nonideality is associated with a differ-
ence in energetics between the species in the mixture and the pure species; that is, the excess 
entropy is zero. This assumption is valid for species of roughly the same size. Let’s consider the 
difference in energetics between a and b in a mixture vs. a and b as pure species. Figure E7.9A 
illustrates the possible interactions in the mixture and of pure a and pure b. Pure a and b 
exhibit only a-a interactions and b-b interactions, respectively. The mixture contains not only 
these like a-a and b-b interactions but also unlike a-b interactions. In fact, when species a and 
b are mixed, we can view the process in terms of intermolecular interactions. Some a-a interac-
tions of pure a are replaced by a-b interactions, while some b-b interactions of pure b are also 
replaced by a-b interactions. To quantify the difference in energy of the mixture relative to the 
pure species and, therefore, the nonideality of the mixture, we compare the magnitude of the 
interactions in the mixture with those that existed as pure species.

For two-body interactions, the energetic interactions for the mixture can be written:

 Gmix 5 xa
2Gaa 1 2xaxbGab 1 xb

2Gbb (E7.9A)

To compare the mixture to the pure species, each pure species has to be scaled in proportion 
to how much is present in the mixture:

 Gpure, a 5 xaGaa     and     Gpure, b 5 xbGbb (E7.9B)

Now the change in energetics upon mixing, at constant pressure, is the difference between 
these two expressions:

 Dhmix 5 NA 5Gmix 2 3Gpure, a 1 Gpure, b 4 6 (E7.9C)

We have multiplied Equation (E7.9C) by Avogadro’s number for dimensional consistency.
Substituting (E7.9A) and (E7.9B) into Equation (E7.9C) gives:

Dhmix

NA
5 xa

2Gaa 1 2xaxbGab 1 xb
2Gbb 2 3xaGaa 1 xbGbb 4

EXAMPLE 7.9

Molecular 
Justifi cation of the 
Two-Suffi x 
Margules Equation

Figure E7.9A Molecular interactions of species a and b in a mixture and as pure species.
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432 ► Chapter 7. Phase Equilibria II: Fugacity 

or, rearranging,

Dhmix

NA
5 1xa

2 2 xa 2Gaa 1 2xaxbGab 1 1xb
2 2 xb 2Gbb

We now factor out xa from the fi rst term on the right-hand side and xb from the third:

Dhmix

NA
5 xa 1xa 2 1 2Gaa 1 2xaxbGab 1 xb 1xb 2 1 2Gbb

Since the mole fractions sum to 1, we can use 1xa 2 1 2 5 2xb and 1xb 2 1 2 5 2xa to give

Dhmix

NA
5 32Gab 2 1Gaa 1 Gbb 2 4xaxb

For an ideal (liquid) solution,

Dhmix 5 0

So if all “excess” from ideality can be attributed to energetic effects—that is, gE 5 hE 5 Dhmix — 
then:

 A 5 NA 32Gab 2 1Gaa 1 Gbb 2 4 (E7.9D)

Equation (E7.9D) represents the arithmetic difference between the interaction in the mixture 
and those of the pure species, as shown in Figure E7.9B.

The magnitude of the two-suffi x parameter A can be viewed as the relative importance 
between the unlike a-b interactions and the average of the like a-a and b-b interactions. 
This quantity is independent of how much of each species is present in the mixture. If the 
unlike interactions are stronger, Gab is more negative, and A , 0. Conversely, weaker unlike 
interactions lead to A . 0. Thus, when we discuss how the unlike interactions compare to the 
like interactions, we are essentially comparing two a-b interactions to the sum of an a-a and an 
b-b interaction, as depicted in Figure E7.9B.

Certain two-body unlike intermolecular interactions are well approximated by a geometric 
mean of the like interactions. Consider, for example, spherically symmetric nonpolar species, a 
and b. As we saw in Chapter 4, London interactions describe the attractive forces in this system 
and can be described by:

 Gij < 2
3
2

 
aiaj

r6
 ¢ IiIj

Ii 1 Ij
≤  (4.8)

If we assume that the ionization potentials for species a and b are roughly equal, we get:

 Gaa < 2aa
2     Gbb < 2ab

2     and     Gab < 2aaab (E7.9E)

Hence,

Gab 5 "GaaGbb

Figure E7.9B Comparison of the difference in molecu-
lar interactions that determine the two-suffix Margules 
parameter, A.

vs.

b b

b

ab

a a a
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7.4  Fugacity in the Liquid Phase ◄ 433

In Chapter 6 we established that the criterion for spontaneity of a process is the 
minimization of Gibbs energy. It is interesting to look at the effect of the Margules 
parameter, A, on the total Gibbs energy of the system. Using Equations (7.47) and (6.22), 
we get:

g 5 a xigi 1 RTa xi ln xi 1 gE

For the case of a binary system that is described by the two-suffi x Margules equa-
tion, we can write the following expression for molar Gibbs energy:

 g 5 xaga 1 xbgb 1 RT 1xa ln xa 1 xb ln xa 2 1 Axaxb (7.57)

 1 2 3 

Examination of Equation (7.57) [or Equations (7.55) and (7.56)] already shows one limi-
tation in our model for gE. It is completely symmetric; that is, if we interchanged a and 
b in this equation, it would be no different. Accordingly, it could not be used to model 
systems in which the activity coeffi cients are not symmetric, such as that depicted in 
Example 7.7. Such asymmetric activity coeffi cient models will be presented in the next 
section.

Figure 7.9 plots successive terms on the right-hand side of Equation (7.57) as a 
function of mole fraction of species a. Species a and b have pure species Gibbs energies 
ga and gb, respectively. The fi rst term just connects the pure species Gibbs energies by 
a straight line. The second term, the ideal solution Gibbs energy of mixing, shows that 
the increase in entropy of a mixture leads to a lowering of the Gibbs energy and, there-
fore, represents a spontaneous process. This case was illustrated in Figure 7.4. The third 
term represents the effect of nonideality on the total Gibbs energy of the solution. Con-
sider fi rst the case where A , 0. Equation (7.55) shows that this corresponds to the case 
where ga , 1 for the Lewis/Randall reference state; that is, the case where the unlike 
interaction is stronger than the like interaction. As discussed in Example 7.9, when we 
compare unlike interactions to like interactions, we are comparing two a-b interactions 
to the sum of an a-a and a b-b interaction. As Figure 7.9 illustrates, this increases the 
tendency of the solution to mix spontaneously by lowering g even further.

We now consider the case where A . 0, or the like (a-a and b-b) interaction is 
stronger than the unlike (a-b) interaction. There are now two opposing tendencies: 
Mixing is entropically favored, while separating is energetically favored. In other words, 

Plugging Equations (E7.9E) back into (E7.9D):

A < 322aaab 1 aa
2 1 ab

2 4

or, A < 1aa 2 ab 2 2 (E7.9F)

Equation (E7.9F) shows that if the polarizabilities are equal, we have an ideal solution; in all 
other cases A . 0 (for spherically symmetric nonpolar molecules)! Thus, we are much more 
likely to fi nd in nature a case where like interactions dominate (i.e., have lower energy) and 
the activity coeffi cients (based on the Lewis/Randall reference state) are greater than 1; for 
example, see Equations (7.55) and (7.56).
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434 ► Chapter 7. Phase Equilibria II: Fugacity 

if species a and b mix, they increase their randomness; however, if they remain separate, 
they lower their energy. The magnitude of A tells us which effect will dominate. If A is 
small, then energetic effects are minor compared to entropic effects and species a and b 
will completely mix. In this case, the curve for g would be slightly above the 1 1 2 ideal 
curve in Figure 7.9. 

Alternatively, let’s look at the case where the like interactions are signifi cantly 
stronger than the unlike interactions and the magnitude of A is large. In this case, the 
excess Gibbs energy will drive the 1 1 2 curve for g up so far that it will actually fl ip and 
go through a maximum (with two corresponding minima), as illustrated in Figure 7.10. 
Figure 7.10a presents the analogous plot to Figure 7.9, while Figure 7.10b magnifi es 
the resultant portion of the g curve, which exhibits the maximum. We have seen sys-
tems spontaneously proceed to states in which their Gibbs energy is lowered. There is a 
composition range in which the mixture can lower its Gibbs energy by splitting into two 
phases. In Figure 7.10b, a tangent line is drawn below the maximum in Gibbs energy 
that touches the Gibbs energy curve at two points around the minima. A mixture of 

Figure 7.9 Various terms in 
 Equation (7.57) plotted vs. mole 
fraction of species a. In this case, 
the Margules parameter, A, is less 
than zero.

0 1xa

gE

gb

ga

1

+3

1 + 2

G
ib

b
s
 e

n
e
rg

y

Δg mix
ideal

Figure 7.10 (a) Gibbs energy plotted vs. mole fraction of species a. In this case, the Margules 
parameter, A, is much greater than zero. Note: At compositions between xa and xb, the system can 
minimize its free energy by splitting into two phases. (b) Expanded drawing of the Gibbs energy 
curve.
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7.4  Fugacity in the Liquid Phase ◄ 435

composition between these two tangent points can reduce its Gibbs energy by splitting 
into two phases, an a-rich phase, a, and a b-rich phase, b (see Figure 7.10b). Under these 
conditions, a and b are only partially miscible (like oil and water), since two liquid phases 
lead to a lower Gibbs energy. In this case, we can have liquid–liquid equilibrium (LLE) 
between two coexisting liquid phases. This so-called partial miscibility of liquid phases 
is often exploited in separations processes. On the other hand, if the total mole fraction 
of species a is less than the fi rst tangent point or greater than the second tangent point, 
only one phase will be present. While we used the two-suffi x Margules model to explore 
the case of partial miscibility, it is a general phenomenon that occurs when the attractive 
interactions of the like species dominate over the entropic effects of mixing. Liquid– 
liquid equilibria will be explored in greater detail in Section 8.2.

 Consider a binary mixture of cyclohexane (a) and dodecane (b) at 39.33°C. Activity coeffi cients 
at infi nite dilution have been reported to be:3

ga
` 5 0.88

and, gb
` 5 0.86

Use these data to estimate the value of the two-suffi x Margules parameter A.

SOLUTION From Equation (7.55), we have:

 ln ga 5
A

RT
 xb

2 (E7.10A)

At infi nite dilution of a, the mole fraction of b goes to 1 and Equation (E7.10A) becomes:

ln ga
` 5

A
RT

5 20.13

Solving for the Margules parameter gives:

 A 5 2332 3J/mol 4 (E7.10B)

We can apply the same methodology to fi nd the value of the activity coeffi cient of b at 
infi nite dilution. In that case,

ln ga
` 5

A
RT

5 20.15

and, A 5 2392 3J/mol 4 (E7.10C)

These values vary by 20%; however, their magnitudes are small, so on an absolute scale they are 
reasonably close. In solving problems, the best value is given by an average of the Equations 
(E7.10B) and (E7.10C) to give:

A 5 2362 3J/mol 4

3 J. Gmehling, U. Onken, and W. Arlt, Vapor–Liquid Equilibrium Data Collection (multiple volumes) 
(Frankfurt: DECHEMA, 1977–1980).

EXAMPLE 7.10

Calculation of 
Margules Parameter 
from Activity 
Coeffi cients at 
Infi nite Dilution
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436 ► Chapter 7. Phase Equilibria II: Fugacity 

Consider a binary system of dissolved gas a in solvent b. Henry’s law is used for the reference 
state for a and the Lewis/Randall reference state for b. If the activity coeffi cient for b is given 
by the two-suffi x Margules expression:

RT ln gb 5 Axa
2

determine the expression for the activity coeffi cient of species a in terms of the Margules 
parameter A.

SOLUTION We can begin with the expression for the activity coeffi cient of a using the Lewis/ 
Randall reference state:

 RT ln ga 5 Axb
2 (E7.11A)

Additionally, by defi nition:

 RT ln ga 5 RT ln ¢ f̂a

xafa
≤  (E7.11B)

In the limit of infi nite dilution—that is, as xa  S  0 and xb  S  1—the fugacity of a must equal the 
Henry’s law constant. If we apply this defi nition to the expressions in Equations (E7.11B) and 
(E7.11A), we get:

 ln 1ga
` 2 5 ln¢Ha

fa
≤ 5

A
RT

 (E7.11C)

On the other hand, the activity coeffi cient with the Henry’s law reference state is defi ned as:

 RT ln 1ga
Henry's 2 5 RT ln¢ f̂a

xaHa
≤ 5 RT ln¢ f̂a

xafa
≤ 1 RT ln¢ fa

Ha
≤  (E7.11D)

where the fi nal equality in Equation (E7.11D) is obtained by adding and subtracting RT 
ln 1 fa/Ha 2 . Substituting Equations (E7.11A) through (E7.11C) into (E7.11D) gives:

RT ln 1ga
Henry's 2 5 Axb

2 2 A 5 A 1xb
2 2 1 2

EXAMPLE 7.11

Margules Equation 
for a Henry’s Law 
Reference State

Asymmetric Models for gE

In this section, we discuss other common models used for gE to fi t experimental data 
and quantify the compositional dependence of the activity coeffi cients. Similar to our 
approach to equations of state in Chapter 4, we will restrict the discussion of models for 
gE to some common examples. The purpose is to gain some experience with different 
forms of these equations. It should be recognized, however, that this treatment is not 
comprehensive and many other models exist. However, many of the other models are 
derived from those presented here.

The two-suffi x Margules equation only has one parameter, A. If we interchange spe-
cies a and b, the equation for gE remains unchanged. Thus, it predicts that species a 
behaves exactly the same in a given proportion of b as species b does in that same amount 
of a. This representation of the behavior of activity coeffi cients in a binary system is termed 
symmetric. The system shown on the left of Figure 7.11 exhibits symmetric behavior. The 
plot of gb vs. xa is the mirror image of ga vs. xa. Species whose intermolecular interactions 
are similar in type and in magnitude show symmetric behavior and can be described 
well by the two-suffi x Margules equation. For example, the two-suffi x Margules equation 
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7.4  Fugacity in the Liquid Phase ◄ 437

could be used to describe a mixture with two species that exhibit only London attractive 
interactions of roughly the same strength and that are approximately the same size.

The activity coeffi cients on the right of Figure 7.11 show asymmetric behavior. If we 
wish to account for such asymmetric activity coeffi cients, we need to include more than 
one parameter in our model for gE. One obvious way to break the symmetry is by adding 
a term with 1xa 2 xb 2  to the model as follows:

 gE 5 xaxb 3A 1 B 1xa 2 xb 2 4 (7.58)

Inspection of Equation (7.58) shows that if we exchange species a and b, the sign of the 
parameter B will change.

We can fi nd the corresponding activity coeffi cients through differentiation of Equa-
tion (7.58) as prescribed by Equation (7.48). After some math, we get:

 RT ln ga 5 1A 1 3B 2xb
2 2 4Bxb

3 (7.59)

and, RT ln gb 5 1A 2 3B 2xa
2 1 4Bxa

3 (7.60)

Common expressions used to model gE for binary systems, and their correspond-
ing activity coeffi cients, are presented in Table 7.2. These models are ordered in terms 
of increasing complexity. The model parameters are found empirically through fi tting 
experimental data. Excluding the two-suffi x Margules equation, any of these equations 
can be used to model asymmetric activity coeffi cients. In fact, it turns out that none of 
these models exclusively work better than the others in predicting experimental vapor– 
liquid equilibrium data. While one model may work better in one system, another may 
work better in a second system, and a third in a third system, and so on. For exam-
ple, best fi ts of 3563 pairs of vapor–liquid equilibrium data have been reported for 
the DECHEMA data collection.4 Although it demonstrated the greatest success, the 
 Wilson equation showed the best fi t for only 30% of the data. Every asymmetric model 
in Table 7.2 provided best fi ts for at least 467 of these systems.

Figure 7.11 Illustration of binary systems that exhibit symmetric (left) and asymmetric (right) 
activity coefficients.
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4 S. M. Walas, Phase Equilibria in Chemical Engineering (Boston: Butterworth, 1985).
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7.4 Fugacity In the Liquid Phase ◄ 439

The software package accompanying this text allows you to compare the perfor-
mance of these different models on different data sets. Table 7.3 compares best-fi t per-
formance for 16 binary pairs reported in the DECHEMA data collection.5  Two samples 
from each of the eight different classes of binary systems are shown. These systems were 
chosen at random, and the results should not be taken to indicate the performance of 
a particular model over a larger sample of binary data. Both the results of the software 
in the text and the ones reported by DECHEMA are shown. The models were tested 
by independently comparing the predicted values of system pressure using the models 
with measured values. The average deviation for a given model is reported as “avgDevP,” 
while the maximum deviation is “maxDevP”. The model with the best performance, as 
indicated by the lowest value of “avgDevP,” is shown in bold for both the text software 
and the DECHEMA software. It can be seen that all models perform reasonably well 
and various models work better for different systems. More detailed discussion of fi tting 
these model parameters using objective functions is presented in Section 8.1.

The three-suffix Margules equation is equivalent in function to Equation (7.60):

 gE 5 xaxb 3Abaxa 1 Aabxb 4 (7.61)

This equation is algebraically the simplest of the asymmetric models and also gives rea-
sonable predictions of many binary systems; it can even model systems whose activity 
coeffi cients show a maximum or a minimum.

The van Laar equation is another two-parameter model:

 gE 5 xaxb¢ AB
Axa 1 Bxb

≤  (7.62)

While it was developed based on the van der Waals equation of state, its parameters 
are empirically fi t in practice. The two parameters A and B need to have the same sign 
for the model to work over the entire composition range, and it is unable to represent 
extrema.

The Wilson equation is given by:

 gE 5 2RT 3xa ln 1xa 1 Labxb 2 1 xb ln 1xb 1 Lbaxa 2 4 (7.63)

The Wilson equation works well for mixtures of polar and nonpolar species, such as 
alcohols and alkanes, and is recommended in these cases. It also works well for hydrocar-
bon mixtures and is readily extended to multicomponent mixtures. However, the Wilson 
parameters Lab and Lba must be restricted to positive numbers so that Equation (7.63) 
is valid in the case of infi nite dilution. Additionally, the Wilson equation is unable to 
describe systems exhibiting partial miscibility, such as the behavior exhibited in Figure 
7.10. The Wilson equation is derived from a molecular basis. The Wilson parameters, Lab 
and Lba, can be related to molecular parameters as follows:

 Lab 5
vb

va
 exp ¢2

lab

RT
≤  (7.64)

and,

 Lba 5
va

vb
 exp ¢2

lba

RT
≤  (7.65)

The terms lab and lba represent energetic parameters that describe how the a-a or b-b 
interaction, respectively, varies from the a-b interaction. The size of the molecules is also 
5 J. Gmehling et al., Vapor–Liquid Equilibrium Data.
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7.4  Fugacity in the Liquid Phase ◄ 441

taken into account through the ratio of their molar volumes. The parameters lab and lba 
are relatively insensitive to temperature; therefore, Equations (7.64) and (7.65) can be 
used to fi nd the Wilson equation parameters at one temperature when they are known 
at another temperature.

The nonrandom two-liquid (NRTL) model is given by

 gE 5 RTxaxbB tbaGba

xa 1 xbGba
1

tabGab

xb 1 xaGab
R  (7.66)

where Gab 5 exp 12atab 2  and Gba 5 exp 12atba 2 . There are three parameters in the 
NRTL equation, tab, tba, and a. Optimally fi tting these parameters to experimental data 
is more complicated than in the models previously discussed. However, the NRTL equa-
tion provides an advantage for systems with large deviations from ideality, including par-
tial miscibility and mixtures of organic species with water. Like the Wilson equation, the 
NRTL equation is derived from a molecular basis. The fi rst two parameters in the NRTL 
equation, tab and tba, represent energetic parameters that describe how the b-b or a-a 
interaction, respectively, varies from the a-b interaction. The fi nal term, α, represents 
an entropic parameter related to the nonrandomness of the mixture, that is, short-range 
order and molecular orientation.

More sophisticated models for gE have been developed from molecular principles. 
For example, the universal quasi-chemical theory, UNIQUAC, is an extension of the 
Wilson equation. It divides the excess Gibbs energy into two parts, one due to entropy, 
the combinatorial part, and one due to energy, the residual part:

gE 5 gE
combinatorial 1 gE

residual

Expressions for gE
combinatorial and gE

residual are presented in Table 7.4.
gE

combinatorial is determined by the sizes and shapes of the molecules and requires only 
pure component data in the form of a volume parameter, ri, and a surface area param-
eter, qi. The parameter values can be obtained from crystallographic measurements and 
are then related to volume fraction, F*

i , and area fraction, ui, respectively. 
The second term is based on intermolecular forces, similar in concept to the 

approach discussed in Example 7.8. It uses a modifi ed term for the surface area param-
eter, qri. Although UNIQUAC is mathematically more complicated than the models dis-
cussed so far, it has only two adjustable parameters to fi t to experimental data. These are 
the energy parameters: 

t12 5 exp¢2
a12

T
≤     and    t21 5 exp¢2

a21

T
≤

Again, we obtain the activity coeffi cients by applying Equation (7.48) and taking 
the appropriate derivatives to get ln g1 and ln g2. These expressions are also provided in 
Table 7.4, where again we write them as a combinatorial part and a residual part:

ln gi 5 ln gi,combinatorial 1 ln gi,residual

UNIQUAC works well for a large number of polar and nonpolar species, including par-
tially miscible liquids. Furthermore, it only has two adjustable parameters and can read-
ily be extended to multicomponent mixtures.

The UNIQUAC equation uses empirical data to obtain the molecular parameters 
in Table 7.4, but it has been modifi ed to the UNIFAC (Universal functional activity 
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442 ► Chapter 7. Phase Equilibria II: Fugacity 

coeffi cient) model where the molecular interactions are decomposed into the interac-
tions between each of the functional groups that comprise the molecule. An extensive 
property base has been compiled for functional groups based on experimental data. For 
example the contribution of ethanol 1C2H5OH 2  is decomposed into the three functional 
groups: CH3, CH2, and OH. If data are available for all the functional groups that com-
prise the molecules in a system, activity coeffi cients can be calculated without data from 
the specifi c molecules in the mixture. In this sense, UNIFAC is termed a predictive 
activity coeffi cient model.

TABLE 7.4 UNIQUAC Activity Coefficient Model

Combinatorial Residual

gE

RT

x1 ln 
F*

1

x1
1 x2 ln 

F*
2

x2

 1
z
2

 ¢x1q1 ln 
u1

F*
1

1 x2q2 ln 
u2

F*
2
≤

2x1qr1 ln 1u r1 1 u r2t21 2 2 x2qr2 ln 1u r1t12 1 u r2 2

ln g1 ln 
F*

1

x1
1

z
2

 q1 ln 

u1

F*
1

1 F*
2¢ l1 2 l2 

r1

r2
≤

2 qr1 ln 1u r1 1 u r2t21 2

1 u r2qr1¢ t21

u r1 1 u r2t21
2

t12

u r1t12 1 u r2
≤

ln g2 ln 

F*
2

x2
1

z
2

 q2 ln 
u2

F*
2

1 F*
1¢ l2 2 l1 

r2

r1
≤ 2 qr2 ln 1u r1t12 1 u r2 2

1 u r1qr2¢ t12

u r1t12 1 u r2
2

t21

u r1 1 u r2t21
≤

where

u1 5
x1q1

x1q1 1 x2q2
   u2 5

x2q2

x1q1 1 x2q2
   F*

1 5
x1r1

x1r1 1 x2r2
   F*

2 5
x2r2

x1r1 1 x2r2

u r1 5
x1qr1

x1qr1 1 x2qr2
   u r2 5

x2qr2
x1qr1 1 x2qr2

   z 5 10

l1 5
z
2

 1r1 2 q1 2 2 1r1 2 1 2        l2 5
z
2

 1r2 2 q2 2 2 1r2 2 1 2

Prepare a plot of the activity coeffi cients of a binary mixture of ethanol (1) and n-heptane 
(2) versus ethanol mole fraction in a binary mixture at 50°C using the UNIQUAC activity coef-
fi cient model. The UNIQUAC parameters are reported as follows:

ethanol n-heptane

r 2.11 5.17 and a12 5 2105.23
q 1.97 4.40 a21 5 21380.3
q r 0.92 4.40

EXAMPLE 7.12

Calculation of 
Activity Coeffi cients 
Using UNIQUAC
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7.4  Fugacity in the Liquid Phase ◄ 443

Compare the results to the following set of measured data:

x1 0.0514 0.118 0.3022 0.4383 0.5862 0.6646 0.7327 0.772 0.823 0.8788 0.9274 0.9769

g1 9.837 5.978 2.650 1.876 1.427 1.283 1.184 1.136 1.091 1.143 1.148 1.045

g2 0.985 1.069 1.320 1.629 2.158 2.550 3.161 3.561 4.249 4.184 4.540 6.719

SOLUTION We need to calculate g1 and g2 over the range of mole fractions. We illustrate the 
calculation procedure using the value of x1 5 0.3022. From the expressions in Table 7.4, we 
have:

ethanol n-heptane

F*
i 5

xiri

x1r1 1 x2r2
0.150 0.850

ui 5
xiqi

x1q1 1 x2q2
0.162 0.838

u ri 5
xiqri

x1qr1 1 x2qr2
0.083 0.917

li 20.41 20.32

For the combinatorial part of the activity coeffi cients, we get:

ln g1,combinatorial 5 ln 

F*
1

x1
1

z
2

 q1 ln 

u1

F*
1

1 F*
2¢ l1 2 l2

r1

r2
≤ 5 20.17

and,

ln g2,combinatorial 5 ln 
F*

2

x2
1

z
2

 q2 ln 

u2

F*
2

1 F*
1¢ l2 2 l1 

r2

r1
≤ 5 20.0184

For the residual part of the activity coeffi cients, we calculate the energy parameters:

t12 5 exp¢2
a12

T
≤ 5 1.39   and   t21 5 exp¢2

a21

T
≤ 5 0.014

With these values, we get:

ln g1,residual 5 2qr1 ln 1u r1 1 u r2t21 2 1 u r2qr1¢ t21

u r1 1 u r2t21
2

t12

u r1t12 1 u r2
≤ 5 1.148

and,

ln g2,residual 5 2qr2 ln 1u r1t12 1 u r2 2 1 u r1qr2¢ t12

u r1t12 1 u r2
2

t21

u r1 1 u r2t21
≤ 5 0.299

Summing the combinatorial and residual parts and taking the exponential gives:

g1 5 2.67 and g2 5 1.32.

These values are close to the experimentally measured values of gexp
1 5 2.65 and gexp

2 5 1.32.

(Continued)
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444 ► Chapter 7. Phase Equilibria II: Fugacity 

Models of gE for Multicomponent Systems
In chemical systems of interest, we usually have more than two components. In this 
section we will briefl y explore the extension of the activity coeffi cient models above to 
multicomponent systems. We begin with an extension of the two-suffi x Margules equa-
tion to a ternary system. The excess Gibbs energy is written as follows:

 gE 5 Aabxaxb 1 Aacxaxc 1 Abcxbxc (7.67)

Equation (7.67) quantifi es the unlike interaction for the three binary pairs—a-b, a-c, and 
b-c—independently of the other two. Thus, the parameters that represent these inter-
actions can be found from the corresponding data for the binary pairs in solution. For 
example, Aab can be found from data for a binary solution of a and b only. 

Again, the activity coeffi cients are related to the partial molar excess Gibbs energies 
by Equation (7.48). Thus,

 Ga
E

5 B' 1nTgE 2

'na
R

T,P,nb,nc

In this manner, we can calculate the activity coeffi cients for this system for different mole 
fractions of ethanol. A plot of the resulting data is shown in Figure E7.12. The UNIQUAC 
activity coeffi cient model represents the data well. Some discrepancy shows at high ethanol 
mole fractions where hydrogen bonding contributes signifi cantly to the system behavior. 

0 0.2 0 .4 0 .6 0 .8 1
100

101

102

Ethanol Mole Fraction

A
c
ti
v
it
y
 C

o
e

ff
ic

ie
n

t

g
1
 UNIQUAC

g
2
 UNIQUAC

g
1
 experiment

g
2
 experiment

Figure E7.12 Activity coefficients for ethanol and n-heptane. Lines represent values obtained 
from UNIQUAC. Experimental data are also reported for ethanol (open circles) and n- heptane 
(open squares).
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7.4  Fugacity in the Liquid Phase ◄ 445

 Ga
E

5 AabD
'¢ nanb

na 1 nb 1 nc
≤

'na
T

T,P,nb,nc

1 AacD
'¢ nanc

na 1 nb 1 nc
≤

'na
T

T,P,nb,nc

 1 AbcD
'¢ nbnc

na 1 nb 1 nc
≤

'na
T

T,P,nb,nc

which simplifi es to:

Ga
E

5 Aab 1xb
2 1 xbxc 2 1 Aac 1xc

2 1 xbxc 2 2 Abc 1xbxc 2

and can be rewritten as:

 Ga
E

5 RT ln ga 5 Aabxb
2 1 Aacxc

2 1 1Aab 1 Aac 2 Abc 2xbxc (7.68)

Similarly, Gb
E

5 RT ln gb 5 Aabxa
2 1 Abcxc

2 1 1Aab 1 Abc 2 Aac 2xaxc (7.69)

and, Gc
E

5 RT ln gc 5 Aacxa
2 1 Abcxb

2 1 1Aac 1 Abc 2 Aab 2xaxb (7.70)

If we extend this approach to m components, we write the excess Gibbs energy as:

 gE 5 a
i
a

j

Aij

2
 xixj (7.71)

with Aii 5 0 and Aij 5 Aji.
The Wilson equation is commonly used for multicomponent mixtures. It is relatively 

simple, represents many systems well, and also just depends on binary pair data. For a 
system of m components, the excess Gibbs energy is written as:

 gE 5 2RTa
m

k51
xk ln¢a

m

j51
xjLkj≤  (7.72)

where the Wilson parameter Ljj 5 1. The activity coeffi cient of species i in the mixture 
found from differentiation and is shown in Table 7.5. 

Other activity coeffi cient models analogous to those models for binary systems are 
also available. Table 7.5 shows expressions for the NRTL and UNIQUAC models. In 
other models, data may be needed for ternary a-b-c interactions. 

Temperature and Pressure Dependence of gE

Since fugacity is defi ned at the same temperature as the reference state, it is often useful 
to determine the temperature dependence of the activity coeffi cients through the excess 
Gibbs energy. The fundamental property relationship for multicomponent systems can 
be written for excess functions. For excess Gibbs energy, we get:

 dG
E

5 VEdP 2 SEdT 1 aGi
Edni (7.73)
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446 ► Chapter 7. Phase Equilibria II: Fugacity 

Differentiation of Equation (7.73) leads to:

 ¢ 'gE

'P
≤

T,ni

5 vE 5 Dvmix (7.74)

and,   ¢ 'gE/T

'T
≤P,ni 5

2hE

T2
5

2Dhmix

T2
 (7.75)

Equations (7.74) and (7.75) determine how an expression for Gibbs energy will 
change with P and T, respectively, in terms of experimentally accessible properties. 
Thus, a model for gE fi t at one set of experimental conditions can be extended to other 
values of P and T.

Volume and enthalpy changes of mixing were discussed in Section 6.3. Can you 
think of how you might measure the quantities on the right-hand side of Equations 
(7.74) and (7.75), the volume change of mixing and the enthalpy of mixing, respectively, 
in the laboratory?

TABLE 7.5 Activity Coefficients for Multicomponent Systems

Model ln gi

Wilson 
1 2 ln¢a

m

j51
xjLij≤ 2 a

m

k51

xkLki

ln¢a
m

j51
xjLkj≤

; Ljj 5 1

NRTL
a
m

j51
tjixjGji

a
m

l51
xlGli

1 a
m

j51

xjGij

a
m

l51
xlGlj

 §tij 2
a
m

k51
tkjxkGkj

a
m

l51
xlGlj

¥

where, 

ln Gij 5 2aijtij;  tjj 5 0;  Gjj 5 1

UNIQUAC ln 
F*

i

xi
1

z
2

 qi ln 

ui

F*
i

1 li 1
F*

i

xi
a
m

j51
xjlj 1 qriD1 2 a

m

j51
u rjtji 2 a

m

j51

u rjtij

a
m

k51
u rktkj

T

where,

li 5
z
2

 1ri 2 qi 2 2 1ri 2 1 2 ;  tjk 5 exp¢2
ajk

T
≤ ;  tkk 5 1

F*
i 5

xiri

a
m

j51
xjrj

;   ui 5
xiqi

a
m

j51
xjqj

;   and u ri 5
xiqri

a
m

j51
xjqrj
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7.4  Fugacity in the Liquid Phase ◄ 447

When such data are unavailable, it is helpful to consider two limiting cases for the 
temperature dependence of gE. We can write the excess Gibbs energy as:

 gE 5 hE 2 TsE (7.76)

In the fi rst case, we consider all the nonideality to be associated with energetic 
effects. We have been doing this implicitly throughout this chapter. In this case, the 
forces of attraction between the species of the mixture differ, but their size and shape are 
essentially the same. Hence sE is negligible and Equation (7.76) becomes:

 gE 5 hE 5 Dhmix (7.77)

Substitution of Equation (7.77) into Equation (7.75) and differentiation gives:

¢ 'gE/T

'T
≤

P,ni

5
2gE

T2
1

1
T

 ¢ 'gE

'T
≤

P,ni

5
2gE

T2

Thus, we must have:

¢ 'gE

'T
≤

P,ni

5 0

Integrating gives:

 gE 5 const 5 RTa xi ln gi (7.78)

We see that the sum of the activity coeffi cients is inversely proportional to temperature. 
In this case, we say we have a regular solution.

The other extreme consists of the case where the chemical nature of the species is 
essentially the same but the sizes and shapes differ. Thus, all the nonideality is associated 
with entropic effects. This might apply, for example, to polymers in solution. In this case, 
hE is negligible and Equation (7.76) becomes:

gE

T
5 2sE

so,

¢ 'gE/T

'T
≤

P,ni

5 0

Thus, the excess Gibbs energy is written as:

 
gE

T
5 const 5 Ra xi ln gi (7.79)

We see that the sum of the activity coeffi cients is independent of temperature. Conse-
quently, systems with this behavior are termed athermal. In reality, solutions can deviate 
due to both energetic and entropic effects, in which case the temperature dependence 
is between the two cases mentioned above.
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In a similar manner, we can also fi nd the temperature and pressure dependencies of 
the activity coeffi cient. From Equation (7.48), we have:

mi 2 mi
ideal 5 RT ln gi

Differentiating with respect to P at constant T and x gives:

 ¢ ' ln gi

'P
≤

T,x
5

1
RT

 B ¢ 'mi

'P
≤

T,x
2 ¢ 'gi

'P
≤

T
R 5

Vi 2 vi

RT
 (7.80)

Similarly, differentiating with respect to T gives:

¢ ' ln gi

'T
≤

P,x
5

1
RT

 B ¢ 'mi

'P
≤

P,x
2 ¢ 'gi

'P
≤

P
R 2

1
RT 2

 1GI 2 gi 2 5
Si 2 si

RT
2

Gi 2 gi

RT 2

Applying the defi nition of Gibbs energy, we get:

 ¢ ' ln gi

'T
≤

P,x
5 2

Hi 2 hi

RT 2
 (7.81)

We can use the methods described in Section 6.3 to get values for the right-hand 
sides of Equations (7.80) and (7.81).

Enthalpy of mixing data6  for benzene (1)–cyclohexane (2) at 18°C has been fi t to the following 
expression:

 Dhmix 5 3250x1x2 3J/mol 4 (E7.13A)

The two-suffi x Margules parameter A at 10°C is 1401 [J/mol]. Estimate A at 60°C. Compare 
to data from the literature.

SOLUTION From Equation (7.75):

 ¢'gE/T

'T
≤P,ni 5

2hE

T2
5

2Dhmix

T2
 (7.75)

Using the two-suffi x Margules equation, gE 5 Ax1x2, and Equation (E7.13A) in Equation (7.75)
gives:

 da
A
T
b 5

23250
T2

 dT (E7.13B)

Assuming the enthalpy of mixing is constant with temperature, we can integrate Equation (E7.13B)
to get:

A333 5 333B3250a
1

333
2

1
283

b 1
A283

283
R 5 1072 c

J

mol
d

The value of A obtained directly from experimental data is (see Problem 8.52):

A 5 1143 3J/mol 4

These two values differ by only about 5%.

EXAMPLE 7.13

Calculation of the 
Change in the 
Margules Parameter 
with Temperature

6 E. W. Washburn (ed.), International Critical Tables (Vol. V) (New York: McGraw-Hill, 1929).
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7.5  Fugacity in the Solid Phase ◄ 449

Equation of State Approach to the Liquid Phase

In Section 7.3, we explored the use of equations of state to calculate the fugacity in the 
vapor phase by means of the fugacity coeffi cient. This approach can be used in the liquid 
phase, where,

 f̂i
l 5 xiŵi

lP (7.82)

and, mi
l 2 gi

0 5 2 3

V

¢ 'P
'ni
≤

T,V, nj2 i

dV 5 RT lnB f̂i
l

yiPlow
R  (7.83)

However, its application is more limited in liquids than in the vapor phase. Equation 
(7.83) relies on the accuracy of an equation of state to describe liquid behavior for mix-
tures. Such behavior is hard to quantify due to uncertainties in mixing rules for liquids, 
which interact much more than gases. Moreover, in Equation (7.83), the equation of 
state must be valid over the entire range of integration, from a low-density, ideal gas state 
to a high-density liquid. Therefore, the activity coeffi cient approach discussed above is 
generally preferable for condensed phases. However, for “simple” molecules such as 
nonpolar hydrocarbons, the equation of state approach works well for liquids, especially 
at high pressure. We will see examples of how to calculate vapor–liquid equilibrium 
using the equation of state method in Chapter 8.

1 nTRT

Plow
2

 ►7.5  FUGACITY IN THE SOLID PHASE
Fugacity of the solid phase can be treated similarly to the liquid phase—by how “active” 
the solid is relative to an ideal solid reference state.

Pure Solids

If the solid is comprised only of a pure species, the solid is, by defi nition, ideal (all the 
intermolecular forces are the same). In this case, the activity coeffi cient of the solid is 1:

Gi

pure solid
5 1

Note, we use a capital letter, Gi, to identify the solid phase. The fugacity of the solid is 
just equal to the pure species fugacity:

f̂i
s 5 fi

s

Solid Solutions

Solid solutions are fi nding many applications due to their unique material properties. For 
example, high-temperature superconductors are being realized through oxide ceramics 
such as BaxY12xCuyO42y. These solid solutions can be treated just like liquid solutions, 
that is, by defi ning a reference state and seeking a model for gE. In this case,

 f̂i
s 5 XiGi fi

s (7.84)

To solve for the fugacity of a species in a solid solution, we can use the same approach as 
with liquid solutions (Section 7.4).
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Interstitials and Vacancies in Crystals

A perfect crystal is made up of a lattice with an atom on every lattice point. In nature, 
we do not fi nd perfect crystals. When an atom is missing from a lattice point, a vacancy 
is said to exist. If an extra atom is found between lattice points, we have an interstitial. 
The lowest energy state is that of a perfect crystal. Vacancies and interstitials, however, 
create greater entropy. Again, we can apply the concept of Gibbs energy to quantitatively 
predict the concentrations of interstitials and vacancies. In this case, we will use the con-
cepts developed in Chapter 9 to determine concentrations of interstitials and vacancies. 
This material will be covered in Section 9.8.

 ►7.6  SUMMARY
In this chapter, we introduce fugacity as an alternative to chemical potential to write 
the criteria for chemical equilibrium between species. Fugacity is more amenable to 
engineering calculations. It is defi ned as:

 mi 2 mi
o ; RT lnB f̂i

f̂
i
o R  (7.3)

In applying this defi nition, we must have a well-defi ned reference state (°). The cri-
teria for chemical equilibrium between phases a and b can be reformulated in terms of 
fugacity as:

 f̂i
a 5 f̂

i
b (7.6)

In order to solve Equation (7.6) for the composition of species i in each phase at equilib-
rium, we developed expressions for the fugacity in the vapor phase and in the condensed 
phases. The difference in the expression for fugacity between vapor and condensed 
phases typically lies in the choice of reference state.

The fugacity in the vapor phase is commonly calculated using an ideal gas ref-
erence state. Thus, the reference state for pure species i is at a pressure low enough 
that it behaves as an ideal gas and at the temperature of the system, as restricted by the 
defi nition in Equation (7.3). For species i in a mixture, we also specify that the reference 
state is at the composition of the mixture. We can formulate the fugacity in terms of the 
fugacity coefficient—a dimensionless quantity that compares the fugacity of species i 
to the partial pressure species i would have in the system as an ideal gas:

 ŵi ;
f̂i

pi, sys
5

f̂i

yiPsys
  (7.5)

A fugacity coeffi cient of 1 represents the case where attractive and repulsive forces balance 
and is usually indicative of an ideal gas. If ŵi , 1, attractive forces dominate the system 
behavior, while ŵi . 1 indicates that the repulsive forces are stronger. The fugacity and 
fugacity coeffi cient for pure species and for mixtures can be solved with available data from 
thermodynamic property tables, equations of state, or generalized correlations. In the case 
of mixtures, there are three levels of rigor from which to calculate the fugacity coeffi cient.

 1. We can solve the full problem with compositional-dependent fugacity coeffi -
cients. This approach is only as accurate as the mixing rules that we use:

f̂ i
v
5 yiŵi

vP      full rigor
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7.6  Summary ◄ 451

 2. As a fi rst approximation, we can use the Lewis fugacity rule and base the 
fugacity coeffi cient on the pure species value, as discussed in Section 7.3. The 
advantage of this approach is that mixing rules are not needed and it is math-
ematically much easier:

f̂ i
v 5 yiŵi

vP     Lewis fugacity rule    first approximation

 3. As a second approximation, we can assume ideal gas behavior, in which case 
there are no intermolecular forces present, and the fugacity of species i is equal 
to its partial pressure:

f̂i
v 5 yiP     ideal gas     second approximation

For the liquid or solid phases, we choose an ideal solution as our reference state. 
On a molecular level, we defi ne a solution as ideal when the intermolecular interactions 
are the same between all components of the mixture. This idealization results in a linear 
relation in mole fraction between the fugacity in the mixture and the pure species fugac-
ity. There are two common choices for the reference state. The Lewis/Randall rule 
reference state is based on the characteristic pure species interactions of species i, that 
is, the i-i interaction:

 f̂ i
ideal 5 f̂i

o 5 fi (7.30)

The Henry’s law reference state can be conceptualized as a hypothetical, pure fl uid in 
which the characteristic energy of interaction is that between molecule i and the other 
molecules j, that is, the i-j interactions:

 f̂ i
ideal 5 f̂i

o 5 Hi  (7.31)

To quantify the Lewis/Randall reference state, we must fi nd the value for the fugac-
ity of pure species i, f

i
l at the T and P of the mixture. Equation (7.36), which uses the 

Poynting correction, shows how the fugacity of the pure species changes with pres-
sure. Similarly, we can apply the thermodynamic web to determine how the Henry’s 
law constant changes with temperature and pressure, as given by Equations (7.40) and 
(7.41), respectively.

The activity coefficient is used to quantify how much the fugacity of a given spe-
cies deviates from the value it would have in an ideal solution. It is defi ned as follows:

 gi 5
f̂i

l

f^i
ideal

5
f̂i

l

xi fi
o (7.32)

Since the activity coeffi cient derives from the relative amount of unlike vs. like inter-
actions, its value changes with changing composition. The value also depends on the 
specifi c choice of reference state. Similarly, the activity of species i, ai compares the 
fugacity of species i in the liquid to the fugacity of the pure species at its reference state. 
The Gibbs–Duhem equation allows us to relate the activity coeffi cients of different spe-
cies in a mixture and, thereby, to test for thermodynamic consistency.

The excess Gibbs energy, gE, forms the basis from which the activity coeffi cient 
of all the species in the mixture can be obtained from a single quantitative composition-
dependent expression. Excess Gibbs energy is defi ned as the difference between the real 
value of the Gibbs energy and the hypothetical value it would have as an ideal solution 
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at the same temperature pressure and composition as the real mixture. Our approach 
to come up with values for gi to fi nd the fugacity of the liquid or solid phases is to come 
up with an analytical expression for the excess Gibbs energy, gE. We then empirically fi t 
the parameters in this expression to experimental data. The activity coeffi cients for each 
species i in the mixture can then be found by calculating the partial molar excess Gibbs 
energy, as shown by Equation (7.48). In this way we need only one model for gE to obtain 
activity coeffi cients for every species.

The two-suffix Margules equation forms the simplest nontrivial example of these 
activity coefficient models. On a molecular level, the two-suffi x Margules parameter, 
A, is proportional to the difference between the potential energy of the unlike interac-
tions and the potential energy of the like interactions. It is limited to systems where the 
activity coeffi cients are symmetric. Other activity coeffi cient models can be applied to 
asymmetric systems, including the three-suffix Margules equation, the van Laar 
equation, the Wilson equation, and the NRTL equation. Expressions for these 
models and their associated activity coeffi cients for binary mixtures are summarized in 
Table 7.2. The ThermoSolver software that comes with the text allows activity coeffi cient 
model parameters to be obtained from experimental data. Expressions that can be used 
to apply the two-suffi x Margules and the Wilson equations to obtain activity coeffi cients 
for multicomponent mixtures are given in Section 7.4. The equation of state approach 
can also be applied to the liquid and solid phases. This approach is similar to that used 
for vapor-phase fugacity.

 ►7.7  PROBLEMS
Conceptual Problems

7.1 Consider a bottle of water that you have just opened in the room in which you are sitting. How 
does the fugacity of water in the liquid in the bottle compare to the fugacity of water in the vapor 
(i.e., in the air in the room)? You may assume that the liquid in the bottle is at room temperature. 
Explain.
7.2 A gas mixture of species 1 and 2 at 300 K and 30 bar perfectly obeys the Lewis fugacity rule. 
What is the enthalpy of mixing? Choose one of the following answers, and explain your reasoning.
(Dhmix , 0 if attractive interactions dominate at 300 K and 30 bar/Dhmix . 0 if attractive interac-
tions dominate at 300 K and 30 bar/Dhmix 5 0/You cannot tell without more information).
7.3 In which of the following mixtures do you expect species 1 to be better represented by the 
Lewis fugacity rule? Explain. 

Mixture A: n-pentane (1) and n-hexane (2)
or,

Mixture B: water (1) and n-hexane (2)
7.4 Explain why the mixing rules for the van der Waals constants a and b have different forms.
7.5 It is 10 a.m. and already getting hot. You are wondering why you agreed to do fi eld work for 
the summer in Houston. On the radio, the weatherperson declares, “It will be another scorcher 
today with the temperature approaching 95 (°F) and a (relative) humidity of 90%.” Maybe it is the 
heat, but, as you wipe the sweat from your face, you long for the comfort of sitting in thermody-
namics class. Which gets you to thinking— how does the fugacity of water in my sweat (3.5% NaCl 
by weight in water) compare to the fugacity of water in the hot Houston air? Explain.
7.6 Henry’s law is often a convenient reference state for the dilute components in the liquid phase 
in equilibria calculations.
(a) Consider a solution of acetone (1) in water (2) vs. a solution of methane (1) in water (2). Which 
solution has the larger Henry’s law constant, Hi? Explain.
(b) Consider a binary mixture of (a) and (b), in which the Henry’s law constant for species a, Ha, 
at a certain temperature, is equal to its pure species fugacity, fa. Plot the activity coeffi cient, ga, as 
a function of mole fraction xa.
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7.7 Consider a binary liquid mixture of species a and b. The activity coeffi cients for this mixture 
are adequately described by the two-suffi x Margules equation.
(a) If Dhmix 5 0, what can you say about the two-suffi x Margules parameter, A? 
(b) If Dvmix 5 0, what can you say about the two-suffi x Margules parameter, A?
7.8 In the text, the development of fugacity is stated to be inductive. Explain what you think is 
meant by that. 
7.9 Sets of data for two different binary mixtures are plotted in the following fi gure. On the top 
are two plots of the liquid phase fugacity coeffi cient of species a versus mole fraction of a, and on 
the bottom are plots of activity coeffi cient of a and b versus mole fraction of a. Take Lewis/Randall 
reference states for a and b. Each of the plots above (I and II) corresponds to a specifi c plot in 
the fi gure. 
(a) Match the appropriate plot on top with the one on the bottom. Explain.
(b) On both of the bottom plots, identify which lines corresponds to ln ga. Explain.
(c) Draw in the lines for ln gHenry's

a  and ln gHenry's
b

 on the bottom plots.
Explain your method. 
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7.10 Data for two different binary mixtures are plotted in the following fi gure. For each plot 
determine if the a-b interaction is stronger than or weaker than the (a-a, b-b) interactions. Explain.
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ln γb
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xaxa

(a) 
(b) 

7.11 Consider the fugacity of water in the liquid. Rank the following from lowest value of 
fi

Psat
i

 to 

highest value of 
fi

Psat
i

 . Try to do this without doing any calculations.

(a) 70°C and 1 bar 1Psat
i 5 31.2 kPa 2

(b) 70°C and 1.56 MPa 1Psat
i 5 31.2 kPa 2

(c) 200°C and 1.56 MPa 1Psat
i 5 1.55 MPa 2

7.12 A piston–cylinder assembly contains a mixture of water and nitrogen, which is in vapor-
liquid equilibrium. A third liquid species with negligible saturation pressure is added to the con-
tainer while the pressure is kept constant. How will the number of moles of water in the vapor 
phase change? You can assume the liquid forms an ideal solution. Explain using the word fugacity 
in your answer.
7.13 A tub of pure water sits in a room open to the atmosphere at 20°C. When the water has 
reached equilibrium with the air in the room, what is the fugacity of water in the vapor? You may 
assume the vapor behaves as an ideal gas.

Numerical Problems

7.14 Calculate the fugacity and the fugacity coeffi cient of steam at (a) 2 MPa and 500°C; 
(b) 50 MPa and 500°C.
7.15 Consider the Berthelot equation of state:

P 5
RT

v 2 b
2

a
Tv2

(a) Develop an expression for the fugacity and fugacity coeffi cient of a pure species.
(b) Use the results of Problem 4.29 to write the result of part (a) in terms of reduced pressure, 
reduced temperature, and reduced volume.
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7.16 Develop an expression for the fugacity and fugacity coeffi cient of a pure species based on the 
Redlich–Kwong equation of state.
7.17 Develop an expression for the fugacity and fugacity coeffi cient of a pure species based on the 
Peng–Robinson equation of state.
7.18 Calculate the fugacity of water at 647 K and 114 atm using (a) the steam tables; (b) the van 
der Waals equation; (c) generalized correlations. Which value do you believe the most?
7.19 Calculate the fugacity and fugacity coeffi cient of the following pure substances at 500°C and 
150 bar: (a) CH4; (b) C2H6; (c) NH3; (d) 1CH3 2 2CO; (e) C6H12; (f) CO. Provide an explanation of 
the relative magnitude of these numbers based on molecular concepts.
7.20 You have a pure gas at 30 bar and 300 K. The compressibility factor (z) under these condi-
tions is 0.9. As best you can, calculate the fugacity and the fugacity coeffi cient.
7.21 Experimental data taken from 0 to 50 bar give the fugacity of a pure gas to be:

f 5 P exp 12CP 2

where P is the pressure in bar and C is a constant that depends only on temperature. For the 
region of 0°C to 100°C, C is given by:

C 5 20.065 1
30
T

where T is in Kelvin.
(a) Find an equation of state for this gas that is valid from 0°C to 100°C.
(b) What is the molar volume 1 in m3/mole 2  at 80°C and 30 bar?
7.22 Consider a system containing pure hydrogen sulfi de at 300 K and 20 bar. The following 
equation of state characterizes the PvT behavior of H2S well under these conditions:

Pv 5 RTB1 1
PTc

PcT
 ¢0.083 2

0.422Tc
1.6

T1.6
≤ R

Using this equation of state, fi nd the fugacity and fugacity coeffi cient.
7.23 In 1920, Schrieber proposed the following equation of state:

v 5
RT
P

1
kP2 2 c

T
1 b

where k, b, and c are constants. Develop an expression for the pure species fugacity coeffi cient of 
species i, ln wv

i , based on the Schrieber equation of state.
7.24 The following expression describes the relation between pressure and molar volume of pure 

SF6 vapor at 30°C, where P is in bar and v is in B cm3

mol
R

P 3bar 4 5
RT
v

2
6.70 3 106

v2
1

4.83 3 108

v3

Consider a container that is 10 L 110,000 cm3 2  that contains 10.79 mol of SF6 vapor at 30°C. 
Answer the following.
(a) Calculate an expression for ln wv

SF6
 in terms of T and vi.

(b) What are the numerical values for f v
SF6

 and wv
SF6

 under these conditions? 
7.25 You have an unknown pure gas. Its volume has been measured to be 1.86 3 1023 3m3/mol 4 
at 15 bar and 100°C and 6.12 3 1024 3m3/mol 4 at 40 bar and 100°C. As best you can, calculate the 
fugacity and fugacity coeffi cient of this gas at 50 bar and 100°C.
7.26 As accurately as you can, determine the fugacity of pure methane at 220 K and 69 bar.
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7.27 The following data are available for ethylene at 24.95°C. From these data, estimate the 
fugacity and the fugacity coeffi cient of ethylene at 50.5 bar and 24.95°C.

P [bar] v 3m3/mol 4

1.0 2.45 3 1022

5.1 4.78 3 1023

10.1 2.32 3 1023

15.2 1.50 3 1023

20.2 1.08 3 1023

25.3 8.34 3 1024

30.3 6.66 3 1024

35.4 5.44 3 1024

40.4 4.52 3 1024

45.5 3.78 3 1024

50.5 3.17 3 1024

7.28 Below is a plot of the natural log of the fugacity coeffi cient, ln 1wi 2 , of pure NH3 as a func-
tion of pressure at a temperature of 100°C. From this plot, as best you can, determine the molar 
volume of this species at 500 bar and 100°C.

7.29 A gas mixture containing an equal number of moles of species 1 and 2 at 300 K and 30 bar 
perfectly obeys the Lewis fugacity rule. Calculate the Gibbs energy of mixing.

7.30 Calculate the fugacity of n-butane, f̂ v
n2butane, in a vapor mixture of 1 mole n-butane, 

2.5 moles isobutane, 4 moles n-pentene and 1 mole n-pentane at 318.9 K and 3.79 bar. You may 
use the Lewis fugacity rule.
7.31 (a) Calculate the fugacity of pure methane vapor at T 5 190.6 K and P 5 32.2 bar.
(b) Using the Lewis fugacity rule, calculate the fugacity of methane in a mixture of 80 mol% meth-
ane and 20 mol% ethane at T 5 190.6 K and P 5 32.2 bar. 
7.32 Consider a mixture of species 1, 2, and 3. The following equation of state is available for the 
vapor phase:

Pv 5 RT 1 P2 3A 1y1 2 y2 2 1 B 4
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where,

A
RT

5 29.0 3 1025 31/atm2 4,       
B

RT
5 3.0 3 1025 31/atm2 4

and y1, y2, and y3 are the mole fractions of species 1, 2, and 3, respectively.
A vapor mixture of 1 mole of species 1, 2 moles of species 2, and 2 moles of species 3 is cooled 

to 300 K at constant pressure of 50 atm, where some of it condenses into a liquid phase.
(a) Calculate an expression for the pure species fugacity coeffi cient for species 1 in the vapor, w1

v, 
and the fugacity coeffi cient, ŵ1

v, of species 1 in the mixture.
(b) If the fugacity of species 1 in the liquid, f̂1  

l , is 15 atm, calculate the mole fraction of vapor 
species 1 in equilibrium with the liquid.
7.33 A mixture of 2 moles propane (1), 3 moles butane (2), and 5 moles pentane (3) is contained 
at 30 bar and 200°C. The van der Waals constants for these species are:

Species a 3Jm3mol22 4 b 3m3/mol 4

Propane 0.94 9.06 3 1025

Butane 1.45 1.22 3 1024

Pentane 1.91 1.45 3 1024

Determine the fugacity and fugacity coeffi cient of propane using the following approximations: 
(a) the Lewis fugacity rule
(b) the virial form of the van der Waals equation truncated to the second term
7.34 Consider a ternary system of methane (a), ethane (b), and propane (c) at 25°C and 15 bar. 
Assume this system can be represented by the virial equation truncated at the second term:

z 5 1 1
Bmix

v

At 25°C, the second virial coeffi cients 3cm3/mol 4  are given by:

Baa 242

Bbb 2185

Bcc 2399

Bab 293

Bac 2139

Bbc 2274

(a) Develop an expression for the fugacity coeffi cient of methane in the mixture.
(b) Estimate the fugacity and the fugacity coeffi cient of methane for a mixture with 20% (mole) 
methane, 30% ethane, and 50% propane.
(c) Repeat parts (a) and (b) using the Lewis fugacity rule.
7.35 Consider a binary mixture of species 1 and 2 that obeys the Redlich–Kwong equation of state 
with van der Waals mixing rules. Show that the fugacity coeffi cient for species 1 is given by the 
“Species 1 in a binary mixture” row in Table 7.1.
7.36 Consider a binary mixture of species 1 and 2 that obeys the Peng–Robinson equation of state 
with van der Waals mixing rules. Show that the fugacity coeffi cient for species 1 is given by the 
“Species 1 in a binary mixture” row in Table 7.1.
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7.37 Calculate the fugacity and the fugacity coeffi cient of phenol in a mixture of 20 mole % phe-
nol (1) and 80 mole % oxygen (2) at 694.2 K and 24.52 bar using the following:
(a) The ideal gas law
(b) The Lewis fugacity rule (choose the method that gives you as accurate an answer as possible)
(c) The Redlich-Kwong equation of state
Rank the answers in Parts (a)–(c) from most accurate to least accurate.
7.38 You wish to calculate in a mixture of 25.0 mole % propylene (1) and 75.0 mole % methane 
(2) at 219.0 K and 27.72 bar. For all your answers, use the following equation of state:

v 5
RT
P

 B1 1
1
8
¢y1Pr,1

Tr,1
1

y2Pr,2

Tr,2
≤ R

where the reduced pressure and temperature are used:

Pr,i 5
P

Pc,i
 and Tr,i 5

T
Tc,i

(a) i. Develop expressions for the fugacity and the fugacity coeffi cient of propylene using the 
Lewis fugacity rule.
 ii. Write the expression for the fugacity coeffi cient in reduced coordinates.
iii. Calculate the values for the fugacity and the fugacity coeffi cient of propylene.
(b) i. Develop expressions for the fugacity and the fugacity coeffi cient of propylene using the 
complete equation of state method for mixtures.
ii. Calculate the values for the fugacity and the fugacity coeffi cient of propylene.
(c) Compare your results from Parts (a) and (b). How do you explain the results? 
7.39 Consider a vapor phase mixture of 2 moles propane (1) and 3 moles nitrogen (2) at 15°C and 
12 bar. You wish to come up with the fugacity and fugacity coeffi cient for propane. Answer the 
following questions using the truncated virial equation of state, as follows:

Pv
RT

5 1 1 BrP         with  Br 5 y2
1B

r
11 1 2y1y2Br12 1 y2

2B
r
22

and with parameter values:

 Br11 21.9 3 1027 3Pa21 4

 Br12 23.6 3 1028  3Pa21 4

 Br22 22.0 3 1029 3Pa21 4

(a) Develop an accurate expression for the fugacity and fugacity coeffi cient of species 1 in this 
mixture, using the preceding equation of state.
(b) Determine numerical values for f̂1 and ŵ1.
(c) Comment on whether you can use Lewis fugacity rule for this case. Would you expect it to 
provide an accurate answer? 
7.40 Your supervisor has just stopped by your desk and is frantic. She has a meeting with the 
senior vice president in 25 minutes and has misplaced some data. She needs to report the fugacity 
of n-pentane at 192°C and 1.8 MPa in a mixture of 13.7 mol % n-pentane, 32.1 mol % n-butane, 
21.5 mol % isobutane, and 32.7 mol % n-hexane, and the number needs to be as correct as pos-
sible! Please calculate the value for the fugaciy of n-pentane in this mixture.
7.41 Determine the expression for the fugacity coeffi cient of species 1 in a binary vapor mixture 
of 1 and 2 using the modifi ed form of the cubic equation of state that has been recommended by 
Martin, as follows:

P 5
RT
v

2
a

1v 1 c 2 2
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Use the following mixing rules: 

a 5 y2
1a1 1 2y1y2a12 1 y2

2a2

c 5 y1c1 1 y2c2

Simplify the expression as much as possible. Only include T, v, z, y1, y2, R, a1, a12, a, c1, and c in 
the fi nal form.
7.42 The following form of a cubic equation of state has been recommended by Martin:

P 5
RT

v 2 b
2

a
1v 1 c 2 2

Using the following mixing rules, determine expressions for the fugacity of species 1, f̂ 1, and the 
fugacity coeffi cient of species 1, ŵ1, in a ternary vapor mixture of 1, 2, and 3. Simplify the expres-
sions as much as possible.

a 5 y2
1a1 1 y2

2
a2 1 y2

3a3 1 2y1y2a12 1 2y1y3a13 1 2y2y3a23

b 5 y1b1 1 y2b2 1 y3b3

c 5 y1c1 1 y2c2 1 y3c3

7.43 Consider a mixture of CH4 and H2S at 444 K and 70 bar. Use the results of Example 7.4 to 
plot the fugacity coeffi cient of methane as a function of methane mole fraction using the van der 
Waals equation of state and mixing rules. Compare the result with that obtained from the text 
software, ThermoSolver, using the Peng–Robinson equation of state.
7.44 Consider a mixture of CH4 and H2S at 444 K and 70 bar. Use the results of  Table 7.1 to 
plot the fugacity coeffi cient of methane as a function of methane mole fraction using the Redlich– 
Kwong equation of state with van der Waals mixing rules. Compare the result with that obtained 
from the text software, ThermoSolver, using the Peng–Robinson equation of state.
7.45 Consider a mixture of CH4 and H2S at 444 K and 70 bar. Calculate the fugacity coeffi cient 
of methane in an equimolar mixture using each of the following:
(a) the van der Waals equation of state
(b) the Redlich–Kwong equation of state
(c) the Peng–Robinson equation of state
(d) ThermoSolver using the Peng–Robinson equation of state
How do the results from Parts (a)–(d) compare?
7.46 You wish to represent a binary mixture of species a and b at 127°C and 80 bar by the virial 
equation. At 127°C, the second virial coeffi cients are given by:

Baa 5 216 3cm3/mol 4     and     Bbb 5 2101 3cm3/mol 4

You have also found that at infi nite dilution—that is, as ya S 0—the value of the fugacity coef-
fi cient is reported as ŵa

` 5 1.08. As best as you can, estimate Bab.
7.47 A binary mixture of species 1 and 2 can be described by the following equation of state:

P 5
RT
v

2
a

"v3T

with the mixing rule:

amix 5 y1a1 1 a2y2
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The pure species coeffi cients are given by:

a1 5 800 3 1Jm1.5K0.5 2 /mol1.5 4     and     a2 5 500 3 1Jm1.5K0.5 2 /mol1.5 4

Consider a vapor mixture of 1 mole of species 1 and 2 moles of species 2 that occupies a volume 
of 6L at 500 K.
(a) Determine the fugacity coeffi cient of the mixture, ŵl.
(b) By how much does your answer change if you approximate the solution using the Lewis fugac-
ity rule instead?
7.48 Verify that:

¢'gi

'P
≤

T
5 vi 5 RT¢' 1 ln fi 2

'P
≤

T

7.49 You wish to determine the fugacity of water at 300°C and 300 bar. Using only data for satu-
rated steam and superheated vapor from the steam tables, determine, as accurately as you can, the 
fugacity of water at 300°C and 300 bar. State any assumptions that you make.
7.50 What is the fugacity of pure liquid n-butane at 260 K at the following pressures: (a) 1 bar; 
(b) 200 bar. You may assume the density of liquid butane, 0.579 g/cm3, is independent of pressure.
7.51 Determine the fugacity of pure liquid acetone at 100 bar and 382 K. The molar volume of 
the liquid is 73.4 cm3/mol. You may assume vi does not change with pressure.
7.52 Calculate the fugacity of pure liquid propane at 333 K and 22 bar.
7.53 Determine the fugacity of pure water at 25°C and 500 bar. State any assumptions that you 
make.
7.54 Consider a binary mixture of a and b at T 5 300 K and P 5 40 kPa. A graph of the fugacity 
of species a as a function of mole fraction is shown below. Use Henry’s law as the reference state 
for species a and the Lewis/Randall rule for species b. Show all your work.
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0.6 0.7 0.8 0.9 1

f aI (
k
P

a
)

^

T = 300 K
P = 40 kPa

(a) What is the Henry’s law constant, Ha, for species a?
(b) What is the activity coeffi cient for species a at xa 5 0.4? At xa 5 0.8? (remember the Henry’s 
law reference state!). Show your work.
(c) Is the activity coeffi cient for species b at xa 5 0.4 greater than or less than 1? Explain.
(d) Is the a-b interaction stronger than the pure species interactions? Explain.
(e) Consider the vapor phase to be ideal. What is the vapor-phase mole fraction of a in equilib-
rium with 40% liquid a?
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7.55 Below is a plot of the natural log of the activity coeffi cients 1 ln gi 2  a binary liquid mixture of 
species a and b vs. mole fraction of species a 1xa 2  at 300 K.
(a) What is the reference state for each species (Lewis-Randall or Henry’s)?
(b) Show that the Gibbs–Duhem equation is satisfi ed at a mole fraction xa 5 0.6.
(c) Come up with an appropriate model for gE for this system and fi nd the values of the model 
parameters.
(d) Is it possible for species a and b to separate into two liquid phases? Explain.

 

In γb

In γa

In
 γ

i  

0 0.2 0.4 0.6
xa

0.8 1

0

–0.5

–1

–1.5

–2

–2.5

T = 300 K

7.56 Consider a binary mixture of species a and species b at 300 K and 1 bar. The vapor pressure 
of pure a at 300 K is 80 kPa. A plot of the activity coeffi cient of species a vs. mole fraction of species 
a is shown below. Based on this plot, answer the following questions:
(a) Specify the reference state for species a (Lewis-Randall or Henry’s). Explain. 
(b) What is the value of fa?
(c) What is the value of Ha?
(d) As best as you can, come up with the Margules parameter A in the two-suffi x Margules equation

gE 5 Axaxb

(e) Consider a liquid mixture of 2 moles of a and 3 moles of b at 300 K and 1 bar. At equilibrium, 
what is the mole fraction of a in the vapor phase, ya?
(f) For the mixture above, determine gb based on a Lewis/Randall reference state.

3
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7.57 The following plot shows values of excess Gibbs energy over the ideal gas constant, gE/R in 
[K], for mixtures of benzene–cyclohexane at 343 K. Answer the following questions:
(a) Estimate the activity coeffi cient of cyclohexane in benzene (1)–cyclohexane (2) at 343 K for
(i) a mole fraction of cyclohexane of x2 5 0.25; (ii) cyclohexane in infi nite dilution.
(b) Estimate the Henry’s law constant for cyclohexane in benzene.
(c) Are the like interactions stronger or weaker than the unlike interactions? Explain.
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x2

0.75 1

35

30
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25
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7.58 Derive the expressions for the activity coeffi cients for a binary mixture from the following 
models for gE:
(a) the three-suffi x Margules equation
(b) the van Laar equation
(c) the Wilson equation
(d) NRTL
7.59 Consider an equimolar binary mixture of species a and b. The activity coeffi cients at infi nite 
dilution are given by: ga

` 5 2.0 and gb
` 5 1.5. Calculate the activity coeffi cient of species a and b 

using the three-suffi x Margules equation, the van Laar equation, and the Wilson equation. 
7.60 Glycerol (a) and benzyl ethyl amine (b) form two partially miscible liquid phases. At 220°C 
and 1 atm, the compositions of the two phases are given by xa

a 5 0.9 and xa
b 5 0.2.

From these data, estimate the parameters in the three-suffi x Margules equation. At equilib-
rium, the fugacities in each liquid phase must be equal, that is,

f̂a
l, a 5 f̂ a    

l, b     and     f̂
b
l, a 5 f̂

b
l, b

7.61 Calculate the fugacity of liquid water in a binary liquid mixture with 40 mole % water and 60 
mole % ethanol at 70°C. The following activity coeffi cient data, at infi nite dilution, are available: 
gH2O

` 5 2.62 and gethanol
` 5 7.24.

7.62 Cline Black proposed the following model for excess Gibbs energy:

gE 5 B 1
Axa

1
1

Bxb
R21

1 Cxaxb 1xa 2 xb 2 2

Develop the corresponding expressions for ln ga and ln gb.
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7.63 For isobaric data, you want to account for the temperature change of the activity coeffi cients 
in the test for thermodynamic consistency. Develop the following equation to use in place of 
 Equation (7.50):

3

1

0

ln¢ga

gb
≤dxa 5 3

Tx1 5 1

Tx1 5 0

   
Dhmix

RT2
 dT 5 2 3

11/T2x1 5 1

11/T2x1 5 0 

  
Dhmix

R
 da

1
T
b

7.64 The activity coeffi cients at infi nite dilution of a mixture of hexane (a) and toluene (b) at 30°C 
are ga

` 5 1.27 and gb
` 5 1.34. Estimate the fugacity of hexane in mixtures with the following com-

positions at 1 bar: (a) 20% liquid hexane; (b) 50% liquid hexane; (c) 90% liquid hexane.
7.65 Consider a binary liquid mixture of 40 mole % 1-propanol (1) in water (2) at 25°C and 
100 bar. For this system, the Henry’s law constant for 1-propanol has been estimated to be:

H 1 5 0.61 bar

The density of pure liquid 1-propanol is 0.80 g/cm3. 
(a) As best as you can, determine the fugacity of 1-propanol in the liquid mixture, f̂ l

1 .
(b) Are the like interactions or the unlike interactions stronger? Explain. 
7.66 Your supervisor has assigned you to obtain parameters A and B for the three-suffi x 
 Margules equation to input in the company’s phase equilibrium computer database. The binary 
mixture of interest is benzene (a) in 1-propanol (b) at 75°C. You cannot fi nd any values in the lit-
erature for the three-suffi x Margules equation, but you do fi nd the following values from the van 
Laar (vL) equation:

AvL 5 3000 B J

mol
R     and     BvL 5 5040 B J

mol
R

(a) Use these values to estimate the three-suffi x Margules equation parameters A and B.
(b) Calculate the fugacity of benzene in the liquid, f̂  l

a , in a mixture of 30 mole% benzene at 75°C 
and 81 kPa.
(c) If this liquid mixture is in equilibrium with its vapor, what is the mole fraction of benzene in 
the vapor? 
7.67 You wish to determine the fugacity of a in a liquid mixture with 1 mole of a and 4 moles of 
b at 30 kPa and 20°C. At this temperature, the saturation pressure of pure a is 50 kPa. The excess 
Gibbs energy for a mixture of a and b has been fi t to the following relation:

gE

RT
5 10.25xa 1 0.5xb 2xaxb

(a) What is f̂ l
a ?

(b) Estimate the Henry’s law constant of a in b, Ha.
7.68 Calculate the activity coeffi cients of a binary mixture of 30 mol% acetone (1) in water (2) at 
61.1°C using the UNIQUAC activity coeffi cient model. Compare the values to the experimentally 
measured values, gexp

1 5 2.30 and gexp
2 5 1.32. The UNIQUAC parameters are reported as follows:

Acetone Water

r 2.57 0.92 and  a12 5    530.99

q 2.34 1.4 a21 5  2100.71

q r 2.34 1
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7.69 Calculate the activity coeffi cients of a binary mixture of 41.5 mol% ethanol (1) in benzene 
(2) at 45°C using the UNIQUAC activity coeffi cient model. The UNIQUAC parameters are 
reported as follows:

Ethanol Benzene

r 2.11 3.19 and a12 5 275.13

q 1.97 2.4 a21 5  242.53

q r 0.92 2.4

The system pressure under these conditions has been reported to be 309.59 torr and a mole frac-
tion of ethanol in the vapor of 0.3842. How do your calculated activity coeffi cients compare to the 
experimental data?
7.70 Calculate the activity coeffi cients of a binary mixture of 20.0 mol% acetone (1) in chloroform 
(2) at 35.17°C using the UNIQUAC activity coeffi cient model. The UNIQUAC parameters are 
reported as follows:

Acetone Chloroform

r 2.57 2.7 and a12 5 2171.71

q 2.34 2.34 a21 5      93.93

q r 2.34 2.34

The system pressure under these conditions has been reported to be 261.9 torr and a mole frac-
tion of acetone in the vapor of 0.143. How do your calculated activity coeffi cients compare to the 
experimental data?
7.71 Wilson parameters for mixtures of ethanol (1), 1-propanol (2), and water (3) at 60°C are 
reported as follows:

 L12 5 1.216 L21 5 0.617

 L13 5 0.203 L31 5 0.838

 L23 5 0.048 L32 5 0.612

Calculate the fugacity of ethanol in a liquid mixture containing 30% ethanol, 20% 1-propanol, and 
50% water at 60°C and 1 bar.
7.72 Estimate the fugacity of ethanol in a liquid mixture containing 30% ethanol, 20% 1-propa-
nol, and 50% water at 8°C and 1 bar using the Wilson equation. Wilson parameters at 60°C are 
given in Problem 7.38.
7.73 Enthalpy of mixing data for binary mixtures of water (1) and acetone (2) have been fi t to the 
following equation:7

Dhmix 5 x1x2 32447.8 1 3802 1x2 2 x1 2 2 1200 1x2 2 x1 2 2 1 1554 1x2 2 x1 2 3 4

where Dhmix has units of J/mol. At 60°C, the activity coeffi cient of water in an equimolar mixture 
of water and acetone is 1.65. Estimate the activity coeffi cient of water in an equimolar mixture of 
water and acetone at 100°C. State any assumptions that you make.

7 J. J. Christenson, R. W. Hanks, and R. M. Izatt, Handbook of Heats of Mixing (New York: Wiley, 1982).
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7.74 In Problem 6.48 heats of mixing for binary mixtures of solid-phase cadmium (Cd) and tin 
(Sn) were reported as:

Dhmix 5 13,000XCdXSn 3J/mol 4

where, XCd and XSn are the cadmium and tin mole fractions, respectively. If we assume cadmium 
and tin form a regular solution, calculate the activity coeffi cient of cadmium in a mixture of 2 moles 
Cd and 3 moles Sn.
7.75 In the ThermoSolver software that comes with the text, go to the Models for gE— 
Parameter Fitting menu. Find best-fi t model parameters for the ethanol (a) and water (b) sys-
tem at 74.79°C for the following activity coeffi cient models:
(a) two-suffi x Margules
(b) three-suffi x Margules
(c) Van Laar
(d) Wilson
(e) NRTL
Use the Plot Data . . . button to plot ln g vs. xa for all the models. Which model do you think best 
represents the data? Why? The information in the Statistics . . . button may be useful.
7.76 Repeat Problem 7.75 for pentane (a) and acetone (b) at 25°C.
7.77 Repeat Problem 7.75 for chloroform (a) and heptane (b) at 25°C.
7.78 An aqueous emulsion of perfl ubron (perfl uorooctyl bromide) and water is being considered 
for an artifi cial blood. The perfl ubron emulsion contains 24 g perfl ubron per 100 cm3 solution. A 
plot of the amount of O2 dissolved in the artifi cial blood 1mL/100 cm3 2  versus O2 partial pressure 
at 37°C is shown in the following fi gure. The volume of oxygen (mL) that is soluble in the blood 
is measured as the volume of pure O2 that leaves the gas phase at 37°C and 1 atm. The density of 
perfl ubron 1.93 g/cm3 is and its chemical formula is C8F17Br. 

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700 800

O
2
 C

o
n
te

n
t 
(m

l 
/ 
1
0
0
 c

m
3
)

Oxygen Partial Pressure (Torr)
 

(a) Consider this emulsion being used as a blood substitute. Estimate the amount of oxygen, in 
[mol], dissolved in a liter. State any assumptions that you make.
(b) Compare the result from part A with the amount of oxygen that would be found in pure water.
(c) Determine a value for the Henry’s law constant for O2 in C8F17Br in [bar]. State any assump-
tions that you make.
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►CHAPTER

466

8

Phase Equilibria III: 
Applications

Now that we have established a criteria for chemical equilibrium:

 f̂i
a5 f̂i

b (8.1)

and have examined the practical issues in calculating the fugacities of vapor and con-
densed phases, we are poised to look at some phase equilibria problems.

Learning Objectives

To demonstrate mastery of the material in Chapter 8, you should be able to:

 ► Construct phase diagrams for binary systems in vapor–liquid equilibria 

(VLE), liquid–liquid equilibria (LLE), vapor–liquid–liquid equilibria (VLLE), 

solid–liquid equilibria (SLE), solid–solid equilibria (SSE), and solid–solid–

liquid equilibria (SSLE), correcting for nonideal behavior in the vapor, liquid, 

or solid phases using fugacity coeffi cients and activity coeffi cients.

 ► Given a phase diagram for a binary mixture, identify what phase or phases are 

present at a specifi ed state; in the two-phase or three-phase regions, identify 

the composition of each phase and their relative amounts using the lever rule.

 ► Perform bubble-point and dew-point VLE calculations on your own and 

with ThermoSolver for binary and multicomponent mixtures when the 

temperature is known and the pressure is unknown or when the pressure is 

known and the temperature is unknown. Determine the exit compositions or 

fl ow rates for an isothermal fl ash.

 ► Treat the solubility of gases in liquids using Henry’s law for both ideal and 

nonideal behavior. Correct reported Henry’s law coeffi cients for pressure or 

temperature. Perform LLE, VLLE, SLE, and SSE phase equilibria calculations. 

Determine whether a liquid mixture is inherently instable and will split into 

two liquid phases.

 ► Identify when a binary mixture exhibits an azeotrope. Distinguish between 

maximum and minimum boiling azeotropes and explain this behavior in 

terms of intermolecular interactions. Use azeotropic data to determine 

activity coeffi cient model parameters.

 ► Defi ne the following terms and explain their context in terms of VLE, LLE, 

or SSLE: bubble point, dew point, positive deviation and negative deviation 

from Raoult’s law, binodal curve, spinodal curve, upper and lower consulate 

temperature, eutectic point, peritectic point, congruent melting, and 

incongruent melting.
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8.1  Vapor–Liquid Equilibrium (VLE) ◄ 467

 ► For VLE, LLE, and SLE, relate phase diagrams schematically to the Gibbs 

energy of each phase in the mixture using the minimization of Gibbs energy 

to determine the equilibrium state of the mixture.

 ► Calculate the following colligative properties of a dilute solution: boiling-

point elevation, freezing-point depression, and osmotic pressure.

 ► Fit parameters in binary activity coeffi cient models on your own and with 

ThermoSolver from experimental data with objective functions or by linear 

regression, when appropriate.

 ►8.1  VAPOR–LIQUID EQUILIBRIUM (VLE)
The most common phase equilibria problems chemical engineers encounter involve 
vapor–liquid equilibrium (VLE). We can write the general expression for VLE by apply-
ing the defi ning relations in Chapter 7. At equilibrium, the fugacity of species i in the 
vapor and liquid are equal:

f̂i
v 5 f̂i

l

If we choose to quantify the vapor-phase nonideality using the fugacity coeffi cient 
[Equation (7.5)] and the liquid-phase nonideality using the activity coeffi cient [Equation 
(7.32)],1 we get:

 yiŵi
vP 5 xigi

lfi
o (8.2)

Here yi represents the mole fraction in the vapor phase, while xi represents the liq-
uid mole fraction. Once we have chosen the appropriate liquid reference state (Lewis/
Randall rule or Henry’s law), we can solve this problem if we have composition depend-
encies of the activity coeffi cient and the fugacity coeffi cient. Equation (8.2) is actually 
a set of coupled equations, one for each species i. While Equation (8.2) is completely 
rigorous (and thus always correct), we have seen that it is not always trivial to calculate 
these terms.

Hence, we will begin our exploration of VLE by considering the limiting case of 
Equation (8.2), which is valid only under certain circumstances. When we make approxi-
mations to this equation, we must keep in mind that the analysis that follows is valid only 
for the specifi c cases where the approximations apply.

Raoult’s Law (Ideal Gas and Ideal Solution)

Consider the case when we are at low pressure and all the intermolecular forces are 
approximately the same. We can treat the vapor as an ideal gas and the liquid as an ideal 
solution. If we pick the Lewis/Randall reference state 1 fi

o5 fi 2 , our criteria for equilib-
rium can be simplifi ed to:

yiP 5 xifi

1 Alternatively, we can also use a fugacity coeffi cient for the liquid phase. This approach, which requires an 
accurate equation of state for the liquid, will be explored later in this chapter.
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Applying Equation (7.37) for the pure species fugacity, we get:

 yiP 5 xiPi
sat (8.3)

You will recognize Equation (8.3) as Raoult’s law, which you have undoubtedly seen 
before. It directly results from the criteria for equilibrium [Equation (8.1)] under the 
special circumstances described above (ideal gas, ideal solution, Lewis/Randall reference 
state). This equation is convenient, since the saturation pressure of species i depends 
only on the temperature of the system. The relation between Pi

sat and T is commonly fi t 
to the Antoine equation. Appendix A.1 provides Antoine equation parameters for several 
species.

Equation (8.3) is often rewritten:

yi 5 Kixi

When Raoult’s law applies, we have:

Ki 5
Pi

sat1T only 2

P

Ki is termed the K-value2 of species i and, in this case, depends only on the tempera-
ture and the pressure of the system. Equation (8.6) is frequently used in hydrocarbon 
systems, where extensive data for K-values are available. In fact, this approach can be 
extended beyond the limiting assumptions of Raoult’s law. If we use the Lewis fugacity 
rule to correct for the fugacity of real gases at higher pressure and apply the Poynting 
correction to the Lewis/Randall reference state, K remains independent of composi-
tion since both these corrections are based on pure species properties. Thus, K can be 
expressed for any species solely as a function of T and P. In some cases K-values are even 
extended to real gases, where the ideal gas and ideal solution assumptions discussed 
above no longer apply. In such a case, the nonideality of the system is buried in K. Now 
K depends on composition and must be found either empirically or through fugacity and 
activity coeffi cients, as described by Equation (8.2).

In order to further explore the implications of Raoult’s law, let’s consider a binary 
solution containing species a and species b. We can write the criteria for equilibrium 
given by Equation (8.3) for each species:

 yaP 5 xaPa
sat (8.4)

and, ybP 5 xbPb
sat (8.5)

We then obtain an expression for the total system pressure by adding together Equations 
(8.4) and (8.5):

 yaP 1 ybP 5 P 5 xaPa
sat 1 11 2 xa 2Pb

sat (8.6)

Plugging Equation (8.6) into (8.4) gives:

 ya 5
xaPa

sat

xaPa
sat 1 11 2 xa 2Pb

sat (8.7)

2 The K-value is the analogous quantity to phase equilibrium that the equilibrium constant is to chemical 
reaction equilibrium (Chapter 9).
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8.1  Vapor–Liquid Equilibrium (VLE) ◄ 469

Equations (8.6) and (8.7) can be generalized to a system with m components. In this 
case, the sum of the partial pressures gives:

 P 5 xaPa
sat 1 xbPb

sat
c 1 xiPi

sat
c 1 xmPm

sat 5 a
m

i51
xiPi

sat (8.8)

and the mole fraction of species i is given by:

 yi 5
xiPi

sat

a
m

i51
xiPi

sat

 (8.9)

Equations (8.8) and (8.9) apply to multicomponent mixtures where the vapor phase is 
assumed to be an ideal gas and the liquid phase, an ideal solution.

Bubble Point and Dew Point Calculations
Four common types of vapor–liquid equilibria calculations are illustrated by a grid in Fig-
ure 8.1. In a bubble-point calculation, the liquid-phase mole fractions of the system are 
specifi ed and the vapor mole fractions are solved for. The solution represents the com-
position of the fi rst bubble of vapor that forms when energy is supplied to a saturated 
liquid. Conversely, in a dew-point calculation, the liquid mole fractions are determined 
given the vapor mole fractions. This case corresponds to the composition of the fi rst 
drop of dew that forms from a saturated vapor. Bubble- and dew-point calculations are 
represented by the two columns in Figure 8.1. In addition to knowing the composition, 
the value of either the temperature or the pressure needs to be specifi ed to constrain the 
state of the system. The former case is represented by the fi rst row in Figure 8.2, while 
the latter case is represented by the second row. Hence, the grid in Figure 8.2 represents 
four typical combinations of independent and dependant variables found in VLE prob-
lems. They are defi ned by the quadrants I, II, III, and IV for reference in Examples 8.2, 
8.3, and 8.5. When faced with such a calculation, it is helpful to recognize the independ-
ent and dependant variables appropriately. For binary systems that follow Raoult’s law, it 
is possible to solve for the vapor and liquid mole fractions when T and P are known (see 
Problem 8.22). However, in mixtures containing three or more components, specifying 
only T and P underconstrains the problem (i.e., there are multiple possible solutions).

Bubble Point

(xi known)

Find yi, P
Pi

sat set

Find xi, T
Pi

sat unknown

Find yi, T
Pi

sat unknown

Find xi, P
Pi

sat set

T
  k

n
o
w

n
P

  k
n
o

w
n

Dew Point

(yi known)

II I

III IV

Figure 8.1 Grid of common VLE calculations.
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470 ► Chapter 8. Phase Equilibria III: Applications

Species n-C5H12 C6H12 n-C6H14 n-C7H16

Ai  9.2131  9.1325  9.2164  9.2535
Bi  2477.07  2766.63  2697.55  2911.32
Ci  239.94  250.50  248.78  256.51

TABLE E8.1A Antoine Coefficients

Species n-C5H12 C6H12 n-C6H14 n-C7H16

Psat at 333 3K 4 2.13 bar 0.514 bar 0.757 bar 0.218 bar
yi 0.639 0.154 0.151 0.056

TABLE E8.1B Saturation Pressures and Mole Fractions at T 5 333 [K]

Consider a system with liquid containing 30% n-pentane (1), 30% cyclohexane (2), 20% n-hexane 
(3), and 20% n-heptane (4) at 1 bar. Determine the temperature at which this liquid develops 
the fi rst bubble of vapor. What is the vapor composition?

SOLUTION This problem corresponds to quadrant III in the grid of Figure 8.1. Since the com-
ponents in this system are chemically similar, we will assume an ideal solution. Additionally, 
at 1 bar, we may assume an ideal gas; thus, we can write the criterion for phase equilibrium in 
terms of Raoult’s law for each of the components, that is:

 yiP 5 xiPi
sat (E8.1A)

Since the sum of the partial pressures equals the system pressure, we get:

 P 5 ayiP 5 a xiPi
sat 5 x1P1

sat 1 x2P2
sat 1 x3P3

sat 1 x4P4
sat (E8.1B)

The saturation pressure can be found according to Antoine’s equation:

 ln Pi
sat 3bar 4 5 Ai 2

Bi

T 3K 4 1 Ci
 (E8.1C)

where the coeffi cients for parameters Ai, Bi, and Ci are reported in Table E8.1A. 
Substitution of Equation (E8.1C) into (E8.1B) results in one equation with one 

unknown—T. This equation can be solved by trial and error, by Excel using “solver,” or by 
other graphical or numerical techniques to give:

T 5 333 3K 4

Saturation pressures and vapor-phase mole fractions for each of the species at this temperature 
can be calculated according to Equations (E8.1C) and (E8.1A), respectively. Their values are 
presented in Table E8.1B.

We see that proportionately much more of the lighter n-pentane goes into the vapor while 
very little of the heavier n-heptane does. This result forms the basis for separation by distillation.

EXAMPLE 8.1

Bubble-Point 
Calculation with P 
Known
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8.1  Vapor–Liquid Equilibrium (VLE) ◄ 471

Consider a system with vapor containing 30% n-pentane (1), 30% cyclohexane (2), 20% n-hexane 
(3), and 20% n-heptane (4) at 1 bar. Determine the temperature at which this vapor develops the 
fi rst drop of liquid. What is the liquid composition?

SOLUTION This problem is the dew-point analog to Example 8.1. It corresponds to quadrant 
IV in the grid of Figure 8.1. We can write Raoult’s law for each species as:

 xi 5
yiP

Pi
sat (E8.2A)

Since the sum of the liquid mole fractions equals 1:

 1 5 a
yiP

Pi
sat 5

y1P

P1
sat 1

y2P

P2
sat 1

y3P

P3
sat 1

y4P

P4
sat (E8.2B)

Again, the saturation pressures can be written in terms of Antoine’s equation:

 ln Pi
sat 3bar 4 5 Ai 2

Bi

T 3K 4 1 Ci
 (E8.2C)

where the coeffi cients for parameters A, B, and C are reported in Table E8.1A.
Substitution of Equation (E8.2C) into (E8.2B) gives one equation with one unknown—T. 

The temperature is solved to be:

T 5 349 3K 4

Saturation pressures and liquid-phase mole fractions for each of the species at this temperature 
can be calculated according to Equations (E8.2C) and (E8.2A), respectively. Their values are 
presented in Table E8.2.

In this case, proportionately much more of the heavier n-heptane is condensed while little 
of the lighter n-pentane is, again helping us separate by distillation.

EXAMPLE 8.2

Dew-Point 
Calculation with P 
Known

Species n-C5H12 C6H12 n-C6H14 n-C7H16

Psat at 349 3K 4 3.296 bar 0.870 bar 1.256 bar 0.494 bar
xi 0.091 0.345 0.159 0.405

TABLE E8.2 Saturation Pressures and Mole Fractions at T 5 349 [K]

A compressed liquid feed stream containing an equimolar mixture of n-pentane and n-hexane 
fl ows into a fl ash unit as shown in Figure E8.3 at fl ow rate F. At steady state, 33.3% of the feed 
stream is vaporized and leaves the drum as a vapor stream with fl ow rate V. The rest leaves as 
liquid with fl ow rate L. If the fl ash temperature is 20°C, what is the pressure required? What 
are the composition of the liquid and vapor exit streams?

SOLUTION A mass balance on component a gives:

 xa,feedF 5 yaV 1 xaL (E8.3A)

EXAMPLE 8.3

Isothermal Flash VLE 
Calculation

(Continued)
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472 ► Chapter 8. Phase Equilibria III: Applications

If we assume ideal gas and ideal solution, the equilibrium relation in the fl ash drum can be 
written according to Equation (8.3):

 yaP 5 xaPa
sat (E8.3B)

Substituting Equation (E8.3B) into (E8.3A) gives:

 xa,feedF 5
xaPa

sast

P
 V 1 xaL 5 xa¢Pa

sat

P
 V 1 L≤  (E8.3C)

Solving for xa:

 xa 5
xa,feed

Pa
sat

P
¢V

F
≤ 1 ¢L

F
≤

 (E8.3D)

Similarly, for the mole fraction of b in the liquid, we get:

 xb 5
xb,feed

Pb
sat

P
¢V

F
≤ 1 ¢L

F
≤

 (E8.3E)

Since the sum of mole fractions must equal 1, we can add Equations (E8.3D) and (E8.3E):

 1 5
xa,feed

Pa
sat

P
¢V

F
≤ 1 ¢L

F
≤

1
xb,feed

Pb
sat

P
¢V

F
≤ 1 ¢L

F
≤

 (E8.3F)

Using the Antoine equation, at 20°C, we get Pa
sat 5 0.56 3bar 4 and Pb

sat 5 0.16 3bar 4. Plugging 
in values to Equation (E8.3F) gives:

 1 5
0.5

0.56
P

 ¢1
3
≤ 1 ¢2

3
≤

1
0.5

0.16
P

 ¢1
3
≤ 1 ¢2

3
≤

 (E8.3G)

Solving Equation (E8.3G) for pressure gives:

P 5 0.32 3bar 4

Figure E8.3 Flash vaporization of an 
n-pentane and n-hexane feed stream.

Liquid, L

Vapor, V

Flash
tank

C6H14(b)

C5H12(a)

xa

ya

vT = 20°C

Ixa,feed = 0.5

Feed, F
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Construction of Phase Diagrams
Figure 8.2a shows a Pxy phase diagram for a binary mixture of a and b that follows 
Raoult’s law. The liquid- and gas-phase mole fractions of species a are plotted versus 
total pressure while the temperature of the system is held constant. The liquid mole 
fraction versus pressure line (labeled P–xa) is called the bubble-point curve. It gets this 
name because if we start at high pressure and decrease the system pressure at constant 
temperature, this curve marks the pressure at which the fi rst bubble of vapor forms. That 
bubble’s composition can be found where the “tie line” denoted in the fi gure intersects the 
Pya curve. Similarly, the vapor mole fraction versus pressure curve line (labeled P–ya) is 
termed the dew-point curve because this marks when the fi rst drop of liquid forms when 
a superheated vapor mixture is isothermally compressed. 

Phase diagrams are useful for identifying the thermodynamic state of a binary mix-
ture. They tell us what phase or phases are present and, in the two-phase region, the 
composition of the liquid and vapor phases as well as their relative amounts. For any 

Figure 8.2 Phase diagrams for a binary mixture following Raoult’s Law (a) Pxy diagram and 
(b) Txy diagram. 

The proportion of the amount of

vapor to the amount liquid is given

by the ratio of line segment v to

line segment I

Lever rule:

Mole fraction a

T
e
m

p
e

ra
tu

re

(b) Txy Phase Diagram(a) Pxy Phase Diagram

Tie line

Vapor

and liquid

Superheated

vapor
Constant P

v I
Tsys T − ya

T − xa

Ta
boil

Tb
boil

ya
eqxa

eq za
eq

Subcooled

liquid

Line
segment I

Tie

line

Line

segment v
Vapor and

liquid

Superheated
vapor

Subcooled

liquid

Constant T

P
re

s
s
u
re

Mole fraction a 

P − xa

P − ya

ya
eq

Pb
sat

Psys

xa
eq za 

Pa
sat

At this low pressure, the ideal gas assumption justifi ed. Substituting in Equations (E8.3D) and 
(E8.3B) gives:

 xa 5 0.40

 ya 5 0.70

This example is different in nature from those represented by the grid in Figure 8.1 and 
illustrated in Examples 8.1 and 8.2. It couples a species mass balance to the VLE phase 
equilibrium problem. Such calculations are representative of the type encountered in design 
and analysis of separations processes such as distillation.
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474 ► Chapter 8. Phase Equilibria III: Applications

given pressure and overall composition, the phase diagram depicted in Figure 8.2a 
allows us to identify whether we have only a liquid phase, only a vapor phase, or a combi-
nation of two phases—a liquid phase in equilibrium with a vapor phase. By convention, 
we typically label the lighter component, the one that boils more easily, species a. At 
high pressure, we have a subcooled liquid, as indicated on the top of the diagram in Fig-
ure 8.2a. Conversely, at low pressure, the mixture exists as a superheated vapor, as shown 
at the bottom of the diagram. In between these two regions, we observe a two-phase 
region where the mixture is in vapor–liquid equilibrium. 

In the two-phase region, the composition and amount of each phase can also be 
determined from the phase diagram. For example, Figure 8.2a depicts a system with 
overall composition za and pressure Psys. At this pressure and overall composition, we 
can draw a tie line, as indicated in the fi gure. The tie line gets its name because it “ties” 
together the composition of the liquid and vapor phases. It is horizontal because the 
pressures of the liquid and the vapor are the same. The liquid mole fraction in equilib-
rium, xa

eq, is obtained from the intersection of the tie line with the Pxa line on the left. 
Similarly, the vapor mole fraction, ya

eq, is obtained from the intersection with the Pya 
curve on the right. The more volatile species a has a higher concentration in the vapor 
phase. Similar relations can be observed on the Txy phase diagram.

In addition, we can determine the proportion of total moles in the vapor to the total 
moles in the liquid from the phase diagram. To fi nd the relative amounts, we use the 
lever rule, which says the ratio of the amount of vapor in the system to the amount of 
liquid is given by the ratio of the line segments from the feed composition to the opposite 
curve, as shown in both phase diagrams the fi gure. The lever rule is a graphical result of 
applying overall and species material balances, as shown in Example 8.4.

Figure 8.2b shows a Txy phase diagram. This diagram has similar features to the Pxy 
diagram, which are denoted in the fi gure. However, we now can see the behavior of the 
binary mixture as temperature changes while pressure is held constant. The superheated 
vapor region is at the top of the Txy diagram (high temperatures), whereas the subcooled 
liquid is at the bottom. Like a Pxy diagram, the Txy phase diagram lets us determine which 
phase or phases are present, the composition of the liquid and the vapor when there are 
two phases present, and the proportion of total moles in the vapor to that in the liquid. 

We can use Equations (8.6) and (8.7) to construct phase diagrams for binary mix-
tures. These can be formed either with pressure changing at constant temperature 
(a Pxy phase diagram) or with temperature changing at constant pressure (a Txy phase 
diagram). Next, we learn how to construct a Pxy diagram such as that shown in Figure 
8.2a. Using available data for the saturation pressure of a and b (such as the Antoine 
equation), we calculate the values of Psat

a  and Psat
b  at the given system temperature. P can 

then be calculated across the range of liquid mole fractions via Equation (8.6). The lin-
ear relationship between pressure and liquid-phase composition, indicated by Equation 
(8.6), manifests in a straight Pxa line for a mixture that obeys Raoult’s law. Equation (8.7) 
then provides a way to directly calculate the corresponding vapor-phase mole fraction for 
a given set of xa and P, providing the Pya curve. 

The Txy binary-phase diagram is constructed in a similar way. However, in this case, 
the computation is a little more involved. Because pressure is constant and the system 
temperature changes as the mole fraction of liquid changes, Psat

i  also changes. We can 
use the Antoine equation to calculate the values of Psat

a  and Psat
b  given T. Together with 

Equation (8.6), we therefore have one unknown T for each mole fraction xa. However, 
we cannot solve for T explicitly, but rather have to solve for T implicitly for each value 
of xa. Once T is determined, we calculate ya using Equation (8.7). In this way, we can 
construct a Txy phase diagram as shown in Figure 8.2b.
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Apply the appropriate material balance equations to verify that the lever rule gives the relative 
amount of species in each phase along a tie line as depicted in Figure 8.2.

SOLUTION A mass balance of species a gives:

 zan 5 yanv 1 xanl (E8.4A)

while a total mass balance gives:

 n 5 nv 1 nl (E8.4B)

Multiplying Equation (E8.4B) by za and equating the result to Equation (E8.4A) gives:

 yanv 1 xanl 5 zanv 1 zanl (E8.4C)

We can rearrange Equation (E8.4C) to give the lever rule:

 
nv

nl
5
1za 2 xa 2

1ya 2 za 2
5

line segment v

line segment l
 (E8.4D)

Alternatively, we can solve Equation (E8.4B) for nl and replace in Equation (E8.4A) to fi nd 
that:

 
nv

n
5
1za 2 xa 2

1ya 2 xa 2
5

line segment v

total length of the tie line
 (E8.4E)

The mass balances that lead to Equations (E8.4D) and (E8.4E) are general and not 
limited to the vapor and liquid phases; thus, the lever rule can be applied to fi nd the relative 
amounts of any two phases in equilibrium. The fraction of material present in one phase can be 
computed by taking the length of the tie line from the overall composition to the composition 
of the other phase and then dividing by the total length of the line.

EXAMPLE 8.4

Verifi cation of the 
Lever Rule

Nonideal Liquids

Real systems seldom follow Raoult’s law, since it is unlikely that the a-a interaction is 
identical to the a-b interaction. In this section we consider the behavior of some real 
binary systems for the case where we are still at low enough pressure for the vapor phase 
to be an ideal gas. We will explore the cases when the like (a-a and b-b) interaction is 
stronger than the unlike (a-b) interaction 1gi . 1 2  as well as when the like interaction is 
weaker 1gi , 1 2 .

If the liquid phase consists of chemically dissimilar species and we use a Lewis/ 
 Randall reference state, combination of Equations (8.2) and Equation (7.37) yields:

 yiP 5 xigiPi
sat (8.10)

Equation (8.10) still assumes that the vapor phase can be represented as an ideal gas and 
the fugacity of the pure liquid is given by Pi

sat. For a binary system we now have:

 yaP 5 xagaPa
sat (8.11)
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and, ybP 5 xbgbPb
sat (8.12)

Adding together Equations (8.11) and (8.12):

 yaP 1 ybP 5 P 5 xagaPa
sat 1 11 2 xa 2gbPb

sat (8.13)

The liquid mole fraction is no longer linear with respect to pressure as it was in Equation 
(8.6). Plugging Equation (8.13) into (8.11) yields:

 ya 5
xagaPa

sat

xagaPa
sat 1 11 2 xa 2gbPb

sat (8.14)

First consider the case where ga . 1. As we have already seen, this represents the 
case where like interactions are stronger than unlike interactions. From the Gibbs–
Duhem equation, we also know that in this case gb . 1. Comparing Equations (8.6) and 
(8.13), we see that for a given mole fraction of species a, the system will exhibit a greater 
pressure than its ideal counterpart. Therefore, we label this case a positive deviation 
from Raoult’s law.

From a molecular standpoint, this result makes sense. At a given temperature, the 
molecules in the liquid have a fi xed kinetic energy. However, the unlike interactions in 
the liquid are not as strong as the like interactions. Thus, the two species when mixed 
are not held as vigorously in the liquid phase. More molecules, therefore, escape to the 
vapor than in the case of an ideal solution, and the pressure exerted is higher.

Equations (8.13) and (8.14) can be generalized to a system with m components as 
follows:

 P 5 xagaPa
sat 1 xbgbPb

sat
c 1 xigiPi

sat
c 1 xmgmPm

sat 5 a
m

i51
xigiPi

sat (8.15)

and, yi 5
xigiPi

sat

a
m

i51
xigiPi

sat
 (8.16)

The development thus far assumes an ideal gas and a fugacity of the pure liquid as 
given by Pi

sat. Example 8.6 illustrates a case where these assumptions are no longer valid. 
In that case, a different VLE relation is developed from Equation (8.2).

A binary vapor mixture contains 48% ethanol (a) in water (b) at 70°C. Determine the pressure 
at which this vapor develops the fi rst drop of liquid. What is the liquid composition? The excess 
Gibbs energy can be described by the three-suffi x Margules equation with parameters:

A 5 3590 3J/mol 4   and   B 5 21180 3J/mol 4

SOLUTION This problem corresponds to quadrant I in the grid of Figure 8.1. Since both etha-
nol and water exhibit vapor pressures below 1 bar at a temperature of 70°C, we will assume the 
vapor phase is an ideal gas. Equation (8.13) gives:

 P 5 x1g1P1
sat 1 11 2 x1 2g2P2

sat (E8.5A)

EXAMPLE 8.5

Dew-Point 
Calculation of a 
Nonideal Liquid 
with T Known
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Applying the expressions in Table 7.2, we can write the activity coeffi cients in terms of the 
three-suffi x Margules parameters, A and B:

 ln g1 5
1A 1 3B 2

RT
 x2

2 2
4B
RT

 x2
3 (E8.5B)

Similarly, ln g2 5
1A 2 3B 2

RT
 x1

2 1
4B
RT

 x1
3 (E8.5C)

Substituting the expressions given by Equations (E8.5B) and (E8.5C) into Equation 
(E8.5A), we get:

P 5 x1 exp B 1A 1 3B 2

RT
 x2

2 2
4B
RT

 x2
3RP1

sat

 1 x2 exp B 1A 2 3B 2

RT
 x1

2 1
4B
RT

 x1
3RP2

sat (E8.5D)

Equation (8.14) can be solved for y1 using Equation (E8.5D) for pressure:

y1 5

x1 exp B 1A 1 3B 2

RT
x2

2 2
4B
RT

x2
3RP1

sat

x1 exp B 1A 1 3B 2

RT
x2

2 2
4B
RT

x2
3RP1

sat 1 x2 exp B 1A 2 3B 2

RT
x1

2 1
4B
RT

x1
3RP1

sat

 (E8.5E)

We can fi nd the saturation pressures from the appendices. From the Antoine equation, 
P1

sat 5 0.72 3bar 4, and from the steam tables, P2
sat 5 0.31 3bar 4. Since the liquid mole fractions 

must sum to 1, Equation (E8.5E) can be written in terms of one unknown, x1. Solving gives:

x1 5 0.12

Plugging this value into Equation (E8.5D) gives:

P 5 0.55 3bar 4

These values compare to experimental values of x1 5 0.13 and P 5 0.57 3bar 4, respectively.

At high pressures, both the vapor and liquid phases may be nonideal. Consider a binary mix-
ture of a and b with vapor-phase mole fraction and T known. Develop a set of equations and a 
solution algorithm to determine the composition in the liquid phase and the system pressure. 
Use the van der Waals equation to quantify deviations from ideality in the vapor and the three-
suffi x Margules equation to model the nonideal liquid. Assume that critical properties, liquid 
volumes, and Antoine coeffi cients for each species are readily available and that the three-
suffi x Margules parameters have been determined.

SOLUTION This problem corresponds to quadrant I in the grid of Figure 8.1. We illustrate 
the solution method using the van der Waals equation of state, since we learned how to solve 
for the fugacity coeffi cients in Chapter 7. There are other, more accurate equations of state to 
use; however, the basis of the solution method remains the same. Additionally, it is straight-
forward to extend the solution to mixtures with more than two components. For example, the 
text software uses the Peng–Robinson equation for dew-point calculations of multicomponent 
mixtures.

EXAMPLE 8.6

Dew-Point 
Calculation of a 
Nonideal Liquid and 
Nonideal Gas 
with T Known

(Continued)
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Solving Equation (8.2) for the liquid phase mole fraction gives:

 xi 5
yiŵiP

giwi
satPi

sat exp B vi
l

RT
 1P 2 Pi

sat 2 R
 (E8.6A)

Since the sum of the liquid mole fractions equals 1;

1 5
yaŵaP

gawa
satPa

sat exp B va
l

RT
 1P 2 Pa

sat 2 R
1

ybŵbP

gbwb
satPb

sat exp B vb
l

RT
 1P 2 Pb

sat 2 R
 (E8.6B)

Equation (E8.6B) can be solved for pressure to give:

P 5 D yaŵa

gawa
satPa

sat exp B va
l

RT
 1P 2 Pa

sat 2 R
1

ybŵb

gbwb
satPb

sat exp B vb
l

RT
 1P 2 Pb

sat 2 R
T

21

 (E8.6C)

At the system T, the saturation pressure of each species can be found from the Antoine 
coeffi cients:

 ln Psat 5 A 2
B

T 1 C
 (E8.6D)

The pure species fugacities can be found from Table 7.1:

 ln 3wa
sat 4 5 2lnB 1va

sat 2 b 2Pa
sat

RT
R 1

b
1va

sat 2 b 2
2

2a
RTva

sat (E8.6E)

and, ln 3wb
sat 4 5 2lnB 1vb

sat 2 b 2Pb
sat

RT
R 1

b
1vb

sat 2 b 2
2

2a
RTvb

sat (E8.6F)

where we can solve for the pure species volumes, va
sat and vb

sat, using the van der Waals equation:

 P 5
RT

v 2 b
2

a
v2

 (E8.6G)

With the critical properties known, the van der Waals parameters, a and b, can be found as 
follows:

 a 5
27
64

 
1RTc 2 2

Pc
 B Jm3

mol2
R  (E8.6H)

 b 5
1RTc 2

8Pc
 B m3

mol
R  (E8.6I)

We solved for the fugacity coeffi cients in the mixture in Example 7.4 (also see Table 7.1):

 ln 3ŵa
v 4 5 2ln 

P 1v 2 bmix 2

RT
1

ba

3v 2 bmix 4
2

2 1yaaa 1 yb!aaab 2

RTv
 (E8.6J)
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and, ln 3ŵb
v 4 5 2ln 

P 1v 2 bmix 2

RT
1

bb

3v 2 bmix 4
2

2 1ybab 1 yb!aaab 2

RTv
 (E8.6K)

Since we know ya and yb, we can fi nd amix and bmix by:

 amix 5 ya
2aa 1 2yayb!aaab 1 yb

2ab (E8.6L)

and, bmix 5 yaba 1 ybbb (E8.6M)

We can solve for the molar volume of the mixture in Equations (E8.6J) and (E8.6K) using the 
van der Waals equation, (E8.6G).

Using the three-suffi x Margules equation for activity coeffi cients gives:

 ga 5 exp B 1A 1 3B 2

RT
 xb

2 2
4B
RT

 xb
3R  (E8.6N)

and, gb 5 exp B 1A 2 3B 2

RT
 xa

2 1
4B
RT

 xa
3R  (E8.6O)

There are three unknowns we want to solve for: P, xa, and xb. These quantities are 
given by Equations (E8.6C) and (E8.6A), respectively. However, as Equations (E8.6J) and 
(E8.6K) show, the fugacity coeffi cients depend on P, which is unknown. Similarly, the activity 
coeffi cients presented in Equations (E8.6N) and (E8.6O) depend on the unknowns xa and xb. 
Therefore, an iterative scheme must be used. Figure (E8.6A) shows a fl ow chart of one possible 
computational algorithm. We initially set the fugacity coeffi cients and activity coeffi cients to 1. 
Thus, our initial guess treats the vapor as an ideal gas and the liquid as an ideal solution. We fi rst 

Figure E8.6A Flow diagram of solution algorithm.
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Solve Equation (E8.6G) for v
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(Continued)
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480 ► Chapter 8. Phase Equilibria III: Applications

iteratively solve for the fugacity coeffi cient. The solution is represented by the inner loop in the 
fl ow diagram. We successively solve for pressure [Equation (E8.6C)] and fugacity coeffi cients 
[Equations (E8.6J) and (E8.6K)] until the pressure difference between calculations falls below 
a specifi ed convergence criteria. We then iterate in a similar manner for the activity coeffi cient 
in the outer loop. Alternatively, we could have developed an algorithm whereby we iterated 
for the activity coeffi cient in the inner loop and the fugacity coeffi cient in the outer loop. 
Convergence occurs when values of P, xa, and xb give values of ŵa, ŵb, ga, and gb that satisfy 
Equations (E8.6C) and (E8.6A).

How would the solution algorithm change if you knew P and not T as in grid IV of Figure 8.2?

We can construct Pxy and Txy phase diagrams for nonideal liquids in a similar way 
as described earlier for Raoult’s law.

Pxy, Txy and xy Phase Diagrams
The dew-point and bubble-point curves for the case where the like and unlike inter-
actions differ will be different from Figure 8.2. An example of a Pxy phase diagram 
binary system exhibiting positive deviations from ideality, methanol and water at 323 K, 
is shown in Figure 8.3. Such phase diagrams can be constructed using Equations (8.13) 
and (8.14).In this case, an activity coeffi cient model is also needed to quantify the activity 
coeffi cients of species a and b at different values of xa. Can you come up with a model 
and parameters to describe this data set? The straight line in Figure 8.3 demonstrates 
what the liquid mole fraction would be in the case of Raoult’s law. In contrast, the dew-
point curve in the real system occurs at higher pressure.

Conversely, we say that systems which have ga , 1 exhibit negative deviations from 
Raoult’s law. Correspondingly, the liquid mole fraction is at pressures lower than pre-
dicted by Raoult’s law. Negative deviations occur when the unlike intermolecular inter-
actions are more attractive than the like interactions of the pure species. Hence, the 
species in the liquid mixture are pulled toward one another with greater vigor, leading to 
less molecules in the vapor and a smaller system pressure.
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Figure 8.3 Pressure vs. liquid and vapor mole fractions (Pxy) phase diagram for methanol 
(a)–water (b) binary mixtures at a constant temperature of 323 K. This system shows positive 
deviations from Raoult’s law. The straight line demonstrates what the liquid mole fraction would 
be in the case of Raoult’s law.
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8.1  Vapor–Liquid Equilibrium (VLE) ◄ 481

Two other common types of binary-phase diagrams are shown in Figures 8.4 and 
8.5. In Figure 8.4, temperature is plotted vs. liquid and vapor mole fraction to construct 
a Txy phase diagram for the water–methanol system. This type of phase diagram is simi-
lar to the Pxy diagram discussed above; however, instead of holding T constant, pressure 
is held constant, in this case at 1 atm. Could you construct such a plot? What data would 
you need?

The type of information we can get from a Txy plot is similar to that from a Pxy plot. 
For any given temperature and composition, we can again identify whether we have only 
a liquid phase, only a vapor phase, or a combination of two phases—liquid in equilibrium 
with vapor. The liquid phase is now on the bottom of the phase diagram—that is, at low 
T—while the vapor phase is on the top. For the two-phase region, the composition of 
each phase can also be determined, and a tie line connects vapor and liquid compositions 
for a given temperature. For example, the tie line shown in Figure 8.4 indicates that at 
358 K and 1 atm, methanol with liquid mole fraction xa 5 0.15 is in equilibrium with a 
vapor of composition ya 5 0.52. Again, the lever rule can be applied to discern the rela-
tive amounts of liquid and vapor.

In Figure 8.5a, the vapor mole fraction vs. liquid mole fraction is shown for the 
water–methanol system at 1 atm. This so-called xy diagram is convenient for illustrat-
ing the process of fractional distillation, whereby methanol can be purifi ed by a series 
of vaporization and condensation stages. The 45° line where xa 5 ya is also plotted in 
this fi gure. In essence, a distillation column is a series of fl ashes of the type described in 
Example 8.3. Distillation is closer, in practice, to constant pressure than constant tem-
perature. Figures 8.5b and 8.5c illustrate two cases where a graphical solution is applied 
to the xy diagram of Figure 8.5a to estimate the separation achieved in distillation.3 We 
now give an overview of such a process. Don’t worry so much about the details here; you 
will learn more about these solutions in your Unit Operations class. It is presented here 
to give you a big picture of how VLE can be applied and the utility of an xy diagram.

Figure 8.4  Temperature vs. liquid and vapor mole fractions (Txy) phase diagram for methanol 
(a)–water (b) binary mixtures at a constant pressure of 1 atm. This system shows positive deviations 
from Raoult’s law.
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3 This approach was fi rst presented by McCabe and Thiele.
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482 ► Chapter 8. Phase Equilibria III: Applications

Figure 8.5b shows the limiting case of total refl ux, whereby all the overhead vapor is 
condensed and returned to the distillation column. Likewise, none of the liquid bottoms 
are drawn from the distillation column. Total refl ux represents the minimum number 
of equilibrium stages that are needed to achieve a given separation (unfortunately, in 
this limit you get nothing out, so it is used merely as a theoretical boundary). The three 
fl ash stages to the right of Figure 8.5b correspond to the equilibrium “steps” drawn in 
the fi gure. The bottom fl ash tray (labeled “3”) takes a liquid containing 5% methanol in 
water and vaporizes it to 28% methanol. The temperature of this unit is 366 K, as can be 
inferred from Figure 8.4. This stage is represented by the vertical line labeled “3” in the 
xy diagram on the left. This methanol–water vapor mixture rises up the column and is 

Figure 8.5 Vapor vs. liquid mole fractions (xy) phase diagram for methanol (a)–water (b) binary 
mixtures at a constant pressure of 1 atm. (a) xy diagram with 45° line indicated (b) stages in distil-
lation at total reflux (c) stages in a five tray distillation column with operating lines shown. Stages 
in distillation are illustrated on the right of (b) and (c).
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8.1  Vapor–Liquid Equilibrium (VLE) ◄ 483

condensed at 345 K in tray 2. The condensation process is represented by the horizontal 
line in Figure 8.5b. How did we fi nd the temperature? The vaporization process is then 
repeated, causing a vapor of 62% methanol to leave this tray. Finally, another condensa-
tion and vaporization cycle leaves the vapor in the third tray containing 86% methanol 
at 345 K. Thus, in the limiting case of total refl ux, we can purify methanol from 5% in 
tray 1 to 86% in tray 3.

A more realistic distillation of methanol–water is illustrated in Figure 8.5c The fi ve 
trays are schematically shown to the right of the xy diagram. In this case, a fraction of the 
methanol-rich vapor is removed from the top as labeled “tops out,” and a fraction of the 
water-rich liquid is removed from the bottom as labeled “bottoms out.” The feed enters 
on tray 3 at a fl ow rate F. Vapor leaves tray 1 at a fl ow rate V, while the fraction of the liq-
uid that returns from this condensed vapor is at fl ow rate L. The remaining liquid is col-
lected as the separations product in the stream labeled “tops out.” Similarly, liquid leaves 
tray 5 at fl ow rate, L while a fraction of it is returned as vapor with fl ow rate V. The rest is 
collected in the stream “bottoms out.” In solving this problem, we must account for both 
the liquid–vapor phase equilibrium relationships of each tray and the mass balances of 
vapor and liquid fl owing in the tray, as we did in the fl ash of Example 8.3. It turns out we 
can represent the constraints posed by the mass balance with two operating lines above 
the 45° line. The slope of the operating lines are given by the ratio of the liquid fl ow to 
the vapor fl ow in each section of the distillation column. We then “step off” equilibrium 
stages to the operating lines, much as we did to the 45° line in the case of total refl ux (Fig-
ure 8.5b). The fi ve trays in column 8.5c take a feed of 58% methanol and separate it into 
a light stream containing 86% methanol and a heavy stream containing 5% methanol.

While Figures 8.3, 8.4, and 8.5 represent Pxy, Txy, and xy diagrams for a system for 
which the unlike interactions are weaker than the like interactions, such diagrams can 
also be constructed when the unlike interactions are stronger. 

Using Gibbs Energy to Understand Phase Diagrams
We can relate the phase behavior of these binary mixtures to the Gibbs energy of each 
phase. We know that the equilibrium state is defi ned where the Gibbs energy is mini-
mized. Since g 5 h 2 Ts, Gibbs energy can be lowered by either lowering h or increasing 
s. For systems consisting of liquid and vapors, the resulting phase behavior is determined 
from the trade-off between the energetically favored liquid phase and the entropically 
favored vapor. We will illustrate the relationship between Gibbs energy minimization 
and phase diagrams in terms of the Txy diagram shown in Figure 8.4. However, similar 
arguments can be made for a Pxy phase diagram.

The top of Figure 8.6 shows plots of the Gibbs energy of the vapor and liquid phases, 
gvapor and gliquid, respectively, vs. mole fraction at three temperatures, T1, T2, and T3. On 
the bottom of the fi gure, the corresponding Txy phase diagram, as reproduced from 
Figure 8.4, is shown with the three temperatures corresponding to the Gibbs energy 
plots above identifi ed. First consider the lowest temperature, T1, below the boiling point 
of either species. The Gibbs energies of both the liquid and vapor show minima with 
respect to composition, resulting from the Gibbs energy of mixing. The Gibbs energy 
of the liquid is less than that of the vapor across the entire composition range. Thus, at 
equilibrium the system will be in the energetically favored liquid phase. As the tem-
perature is raised, the contribution of entropy becomes more and more important. The 
highest temperature shown, T3, is above the boiling point of both components. At this 
temperature, the Gibbs energy of the vapor is always lower than that of the liquid, as 
shown on the top right. Hence, the binary exists as a vapor at all values of xa. An inter-
mediate temperature, T2, between the boiling points of species a and b is shown in the 
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484 ► Chapter 8. Phase Equilibria III: Applications

Gibbs energy plot in the middle of the fi gure. At low values of xa, energetic effects domi-
nate and the Gibbs energy of the liquid is lower than the Gibbs energy of the vapor. Con-
versely, at high values of xa, the Gibbs energy of the vapor is lower. The resulting phase 
behavior shows three regions. When the value of xa is small, the equilibrium state is as 
a single liquid phase. Similarly, at large values of xa, the equilibrium state is as a single 
vapor phase. Between the minima in Gibbs energy, we can draw a tangent line, as shown 
in Figure 8.6. The Gibbs energy at mole fractions in between the minima can be lowered 
if the system separates into two phases in much the same way as was explained in our 
discussion of two liquid phases in Figure 7.10. In this case, we have vapor– liquid equi-
librium, with the composition in each phase determined by the mole fraction at which 
the tangent line abuts the two curves. We see, once again, that the trade-off between 
energy and entropy is quantitatively described by Gibbs energy and that phase separa-
tion results from minimizing this property.

Figure 8.6 Gibbs energy vs. mole fraction (top) at temperatures T1, T2, and T3 corresponding to 
three different isotherms on the phase diagram (bottom).
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When deviations from Raoult’s law are large enough, the Px and Py curves can exhibit 
extremas. Amazingly, if the Px curve exhibits a maximum, then the Py curve will also 
exhibit a maximum. Moreover, they will go through the maximum at exactly the same 
composition! Analogous behavior is observed for minima. We use the term azeotrope4 
to describe the point in the phase diagram where the Px and Py curves go through a 
maximum or a minimum. At the azeotrope, the mole fraction of each species in the liq-
uid phase equals that in the vapor phase:

 xi 5 yi     at the azeotrope  (8.17)

Example 8.8 provides justifi cation of the statements above by showing that thermo-
dynamic property relations dictate that vapor and liquid mole fractions are always equal 

4 From Greek, meaning “boiling without changing.”
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8.1  Vapor–Liquid Equilibrium (VLE) ◄ 485

for maxima or minima in pressure at constant temperature. Likewise, their mole frac-
tions must be equal for extremes in temperature at constant pressure.

For example, binary mixtures of chloroform (a) and n-hexane (b) show large positive 
deviations from Raoult’s law. A phase diagram for this binary system at 318 K is shown in 
Figure 8.7a. The Px curve goes through a maximum at xa 5 0.75. The Py curve exhibits 
a maximum at exactly the same composition and, consequently, touches the other curve. 
Hence, the liquid and vapor mole fractions are equal at this point, that is, xa 5 ya. We 
can compare this system with the methanol–water system shown in Figure 8.3. Both 
these systems show positive deviations from the straight-line behavior of an ideal solu-
tion. Apparently, an azeotrope occurs when the deviations are so large that the system 
pressure is “pushed” above the saturation pressure of the lighter component 1Pa

sat 2 . The 
Px curve must then go through a maximum to return to the saturation pressure at pure 
b. From this argument, we can surmise that azeotropes occur when unlike interactions 
are very different from like interactions. Additionally, we can induce that when the satu-
ration pressures of the two components are closer in value, an azeotrope is more likely 

Figure 8.7 Pressure vs. liquid and vapor mole fractions (Pxy) at equilibrium for (a) chloroform 
(a)–n-hexane (b) at a constant temperature of 318 K and (b) acetone (a)–chloroform (b) at 328 K. 
Both systems exhibit azeotropes.

70

60

50

40

100

90

80

70

T = 328 K

xa

ya

P sat
a

P sat
b

Chloroform (a) – n-Hexane (b)

Acetone (a) – Chloroform (b)

0.00 0.20 0.40 0.60 0.80 1.00

T = 318 K

Pa
sat

Pb
sat

xa

xa, ya

ya

(a)

0.00 0.20 0.40 0.60 0.80 1.00
xa, ya
(b)

P
re

s
s
u
re

 [
k
P

a
]

P
re

s
s
u
re

 [
k
P

a
]

Azeotrope

Azeotrope

c08.indd   485c08.indd   485 01/11/12   10:09 AM01/11/12   10:09 AM



486 ► Chapter 8. Phase Equilibria III: Applications

to occur. In other words, the fl atter the straight line representing the ideal solution, the 
more likely a maximum will result. Consequently, azeotropes are less common in binary 
mixtures with large differences in saturation pressure.

Another interesting ramifi cation of binary systems that exhibit azeotropes is that 
in some cases T and P no longer uniquely specify the vapor and liquid compositions of 
the system in phase equilibrium. For example, there are two different states that the 
chloroform–n-hexane system can take at 59 kPa and 318 K, one on the left side of the 
azeotrope with xa 5 0.65 and ya 5 0.68 and another to the right of the azeotrope with 
xa 5 0.90 and ya 5 0.88. In contrast, the methanol–water system depicted in Figure 8.3 
exhibits a unique solution of liquid and vapor mole fractions for any T and P. Problems 
8.22 through 8.24 provide cases where we can solve for vapor and liquid mole fractions 
given T and P.

If the unlike interaction is stronger than the like interaction, exactly the oppo-
site behavior can occur. In this case, we have negative deviations from Raoult’s law. In 
extreme cases, the Px and Py curves exhibit minima at exactly the same composition. 
The minima occur if the total pressure falls below the saturation pressure of the heavier 
component. Such behavior is shown in Figure 8.7b for acetone (a)–chloroform (b) at 
328 K. We see an azeotrope at a pressure of 73 kPa. At the azeotrope, the mole fraction 
of liquid and the mole fraction of vapor are both equal to 0.39. Azeotropes showing posi-
tive deviations from Raoult’s law—that is, maxima in P—are more common than those 
exhibiting negative deviations.

We can also see azeotropic behavior on Txy phase diagrams at constant pressure. A 
mixture in which the unlike interactions are weaker than the like interactions will boil 
more easily than its pure species components. Thus, a system that exhibits a maximum in 
pressure (positive deviations from Raoult’s law) will exhibit a minimum in temperature. 
As in the case with pressure, a minimum in the Ty curve occurs concurrently with a mini-
mum in the Tx curve and they occur at exactly the same composition. These are termed 
minimum boiling azeotropes. A phase diagram for chloroform (a)–n-hexane (b) at a con-
stant pressure of 1 atm is shown in Figure 8.8a. Again, at the azeotrope, the liquid and 
vapor have the same composition. In this case, an azeotrope becomes more likely as the 
boiling temperatures of the pure components approach each other. The boiling points 
of chloroform and n-hexane differ by only 7 K. Analogously a binary mixture of acetone 
(a)–chloroform (b), which has stronger unlike interactions, exhibits a maximum boiling 
azeotrope at 1 atm, as shown in Figure 8.8b.

Vapor vs. liquid mole fraction (xy) diagrams of the two systems presented in Figure 
8.8 are shown in Figure 8.9. Consider the xy plot of chloroform and n-hexane shown in 
Figure 8.9a. As we perform a fractional distillation process analogous to that described 
for methanol–water (Figures 8.5b,c), we become limited by the azeotrope. A liquid 
at the azeotrope, xa 5 0.76, vaporizes to the same composition. Hence, an azeotrope 
causes a pinch point in the distillation process. Since the vapor and liquid have equal 
compositions, no further separation is possible. Similarly, the acetone–chloroform sys-
tem shown in Figure 8.9b exhibits a pinch point that disrupts purifi cation by distillation. 
Thus, azeotropes pose a technical challenge to separation processes. It is possible to shift 
the azeotrope by large changes in P or T and, therefore, get around the pinch point or to 
break the azeotrope by the addition of another component.

While azeotropes are undesirable from a processing point of view, we can take 
advantage of the phenomena in obtaining parameters for models of gE. Since the vapor 
and liquid compositions are equal at the azeotrope, our condition for equilibrium for 
species a, Equation (8.11), becomes:

 P 5 gaPa
sat    at the azeotrope (8.18)
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Figure 8.8 Temperature vs. liquid and vapor mole fractions (Txy) at 1 atm for (a) chloroform 
(a)–n-hexane (b), which exhibits a minimum boiling azeotrope, and (b) acetone (a)–chloroform 
(b), which exhibits a maximum boiling azeotrope.
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Since both the saturation pressure and the azeotrope pressure are experimentally avail-
able, Equation (8.18) provides a simple measure of the activity coeffi cient at the azeo-
tropic composition. Moreover, if we write the corresponding equation for species b, we 
get:

 P 5 gbPb
sat   at the azeotrope (8.19)

Example 8.7 illustrates the use of Equations (8.18) and (8.19) to fi t the two-suffi x Mar-
gules equation. It is sometimes convenient to set Equations (8.18) and (8.19) equal to get:

 
ga

gb
5

Pb
sat

Pa
sat (8.20)
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488 ► Chapter 8. Phase Equilibria III: Applications

Figure 8.9 Vapor vs. liquid mole fractions at 1 atm for (a) chloroform (a)–n-hexane (b) and 
(b) acetone (a)–chloroform (b). A pinch point in the distillation process is illustrated.
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 At 50°C, a binary mixture of 1,4-dioxane (a) and water (b) exhibits an azeotrope at xa 5 0.554 
and a pressure of 0.223 bar. Use this datum to estimate the value of the two-suffi x Margules 
parameter A.

SOLUTION We need to determine the saturation pressures of each species. From the sat-
uration pressure calculator in ThermoSolver, Pa

sat 5 0.156 3bar 4 and from the steam tables, 
Pb

sat 5 0.124 3bar 4. From Equations (8.17) and (8.18): 

ga 5
P

Pa
sat

5
0.223
0.156

5 1.43

so, rewriting Equation (7.55), we get:

A 5
RT ln ga

xb
2 5 4826 c

J

mol
d

EXAMPLE 8.7

Use of Azeotropic 
Data to Calculate 
Activity Coeffi cient 
Model Parameters
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8.1  Vapor–Liquid Equilibrium (VLE) ◄ 489

We can analogously use the azeotrope datum to solve for A in terms of species b. In this 
case,

gb 5
P

Pb
sat 5

0.223
0.124

5 1.81

so, A 5
RTlngb

xa
2

5 5174 c
J

mol
d  

Our best estimate, to two signifi cant fi gures, would be obtained from averaging these two 
values to get:

A 5 5.0 3kJ/mol 4

Since the value for A based on species a is close to that from species b, the system is reasonably 
symmetric and we can use the two-suffi x Margules equation. Alternatively, we could use an 
asymmetric activity coeffi cient model; the van Laar equation is commonly used for azeotropes. 

Show that the composition of the vapor and liquid phases must be equal at an azeotrope.

SOLUTION  Consider a binary mixture of a and b in vapor–liquid equilibrium. Applying Equa-
tion (6.42), we get:

 2
Ha

v

T2
 dT 1

Va
v

T
 dP 1

1
T

 c
'ma

v

'ya
d

T,P
dya 5 2

Ha
l

T2
 dT 1

Va
l

T
 dP 1

1
T

 B'ma
l

'xa
R

T,P
dxa        (E8.8A)

               2
Hb

v

T2
 dT 1

Vb
v

T
 dP 1

1
T

 j
'mb

v

'ya
k

T,P
dya 5 2

Hb
l

T2
 dT 1

Vb
l

T
 dP 1

1
T

 j
'mb

l

'xa
k

T,P
dxa (E8.8B)

Upon rearranging Equation (E8.8A), we get:

 ¢'ma
l

'xa
≤

T,P
dxa 2 ¢'ma

v

'ya
≤

T,P
dya 5

1
T

 1Ha
l 2 Ha

v 2  dT 2 1Va
l 2 Va

v2  dP (E8.8C)

Similarly for component b:

 ¢'mb
l

'xa
≤

T,P
dxa 2 ¢'mb

v

'ya
≤

T,P
dya 5

1
T

 1Hb
l 2 Hb

v 2  dT 2 1Vb
l 2 Vb

v2  dP (E8.8D)

The Gibbs–Duhem equation places the following constraint on the chemical potentials 
of a and b:

 xa 

'ma
l

'xa
1 11 2 xa 2  

'mb
l

'xa
5 0 (E8.8E)

and for the vapor phase, the analogous relation:

 ya 

'ma
v

'ya
1 11 2 ya 2  

'mb
v

'ya
5 0 (E8.8F)

EXAMPLE 8.8

Thermodynamic 
Property Restraints 
at an Azeotrope

(Continued)

c08.indd   489c08.indd   489 01/11/12   10:09 AM01/11/12   10:09 AM



490 ► Chapter 8. Phase Equilibria III: Applications

Now, if we multiply Equation (E8.8C) by ya and Equation (E8.8D) by 1 2 ya and add them 
together, Equation (E8.8F) allows for the elimination of ma

v and mb
v. 

Finally, applying Equation (E8.8E), after all the algebraic dust settles:

¢ya 2 xa

1 2 xa
≤  

'ma
l

'xa
 dxa 5 bya

T
 1Ha

l 2 Ha
v2 1

11 2 ya 2

T
 1Hb

l 2 Hb
v2 rdT

 25ya 1Va
l 2 Va

v 2 1 11 2 ya 2 1Vb
l 2 Vb

v 2 6dP (E8.8G)

For Equation (E8.8G) to be true, in general, when:

¢ 'T
'xa
≤

P
5 0

or, ¢ 'P
'xa
≤

T
5 0 

then: xa 5 ya!! 

Hence, when a system goes through an extreme in temperature with respect to 
 liquid-phase mole fraction at constant pressure, or an extreme in pressure with 
respect to liquid-phase mole fraction at constant temperature, the mole fractions in 
each phase must be equal. This condition defi nes an azeotrope. 

Fitting Activity Coefficient Models with VLE Data

In Section 7.4, we learned how to quantify liquid-phase nonideality by using models 
for gE. Table 7.2 summarizes some commonly used models. These models allow us to 
come up with expressions for the activity coeffi cient as a function of composition. The 
effectiveness of such models rests on our ability to accurately assign values to the model 
parameters. For example, to use the two-suffi x Margules equation effectively, we must 
have a good representation of A. While it is possible to estimate the model parameters 
based on limited data (see Examples 7.10 and 8.7), a set of VLE data over the entire 
composition range provides a more precise estimate. To obtain the best choice for the 
value of a model parameter, we would like to make use of all the experimental data we 
have available. In this way, we minimize the inherent error associated with experimenta-
tion. We can achieve this objective in several ways. 

We fi rst look at how to obtain model parameters using objective functions. This 
treatment is general and can be applied to any model equation. Next, we look at how we 
can rewrite specifi c model equations to obtain model parameters through averages and 
linear regression. This approach depends on our ability to successfully manipulate the 
specifi c form of the model equation we are using; it cannot be applied to more compli-
cated model equations.

An objective function is written in terms of the difference between the calculated 
value of a given property and the experimental value of the same property. This differ-
ence is termed the residual. We can change the calculated value by adjusting the model 
parameters we are trying to determine. To fi nd the best choice of modal parameters, we 
minimize the sum of the square of the residual over all i measured points. 
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8.1  Vapor–Liquid Equilibrium (VLE) ◄ 491

Several choices of variables upon which to base the objective function can be used. 
For example, we can create an objective function based on pressure, OFP, as:

 OFP 5 a 1Pexp 2 Pcalc 2 i
2 (8.21)

where Pexp are the experimental values of pressure and Pcalc are the values calculated 
using the activity coeffi cient model. In this way, we compare the value of pressure calcu-
lated using the model parameters with the measured value for pressure at every experi-
mental point. By squaring the quantity in Equation (8.21), all numbers become positive, 
so that large errors in one direction cannot cancel large errors in the other direction. The 
square also increases the relative importance of calculated values that are farther away 
from the measured pressure. We now fi nd the value for the model parameters at which 
the objective function, Equation (8.21), is a minimum. By minimizing the objective func-
tion, the parameter that gives the best overall fi t is determined. 

Other common objective functions are based on minimizing the excess Gibbs energy:

 OFgE 5 a 1gexp
E 2 gcalc

E 2 i
2 (8.22)

or the individual activity coeffi cients. For example, for a binary mixture of species a and 
b, we get:

 OFg 5 a B ¢ga 2 ga
calc

ga
≤2

1 ¢gb 2 gb
calc

gb
≤2 R

i
 (8.23)

The performance of the different model parameters reported in Table 7.3 were evalu-
ated with OFg.

In Examples 8.9 and 8.10, we explore different ways to fi t model parameters of the 
two-suffi x and three-suffi x Margules equations, respectively, using experimental VLE 
data. We will use an entire data set to fi nd the best value for the two-suffi x Margules 
parameter A or the three-suffi x Margules parameters A and B. When a model equation 
can be written in a linear form, a least-squares linear regression can be employed to 
determine the model parameters. Example 8.11 uses this method on the same data as 
used in Examples 8.9 and 8.10. This latter method is restricted to simpler activity coef-
fi cient models that can be written in linear form.

5 J. Gmehling, U. Onken, and W. Arlt, Vapor–Liquid Equilibrium Data Collection (multiple volumes) 
(Frankfurt: DECHEMA, 1977–1980).

 Liquid–vapor equilibrium data have been collected for a binary system of benzene (1)–
cyclohexane (2) at 10°C. Mole fraction of liquid and vapor vs. total pressure are reported in 
Table E8.9A.5 From these data, determine the value of the two-suffi x Margules parameter A.

SOLUTION Since the pressures are low, we assume ideal gas and no Poynting correction. Thus, 
we can relate the pressure to the mole fraction of benzene using Equation (8.13):

 P 5 x1g1P1
sat 1 11 2 x1 2g2P2

sat (E8.9A)

EXAMPLE 8.9

Calculation of Best 
Fit of A to Data Using 
Objective Functions

(Continued)
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492 ► Chapter 8. Phase Equilibria III: Applications

We can use the two-suffi x Margules equation to write the activity coeffi cients in terms of the 
Margules parameter, A. Applying Equations (7.55) and (7.56) gives:

 ln g1 5
A

RT
 11 2 x1 2 2 (7.55)

Similarly, ln g2 5
A

RT
 x1

2 (7.56)

Substituting Equations (7.55) and (7.56) into Equation (E8.9A) gives:

 Pcalc 5 x1 exp B A
RT

 11 2 x1 2
2RP1

sat 1 11 2 x1 2  exp B A
RT

 x1
2RP2

sat (E8.9B)

We can compare the value calculated by Equation (E8.9B) with the value for pressure at every 
experimental point. We then take the square of this difference and sum over all the data to 
create the objective function, OFP:

 OFP 5 a 1Pexp 2 Pcalc 2 i
2 (E8.9C)

where Pexp are the experimental values of pressure reported in Table E8.9A. We fi nd the 
value for the parameter A in Equation (E8.9B) at which the objective function (E8.9C) is a 
minimum. Table E8.9B summarizes the results that minimize the deviation in pressure for the 
data in Table E8.9A. The minimum was found for:

A 5 1401 3J/mol 4

Table E8.9C compares the results to measured vapor mole fractions. The calculated values are 
always within 1% of the measured values.

x1 y1 P [Pa]

0 0 6344
0.0610 0.0953 6590
0.2149 0.2710 6980
0.3187 0.3600 7140
0.4320 0.4453 7171
0.5246 0.5106 7216
0.6117 0.5735 7140
0.7265 0.6626 6974
0.8040 0.7312 6845
0.8830 0.8200 6617
0.8999 0.8382 6557
1 1 6073

TABLE E8.9A Measured Px Data for Benzene (1)– 

Cyclohexane (2) at 10°C
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8.1  Vapor–Liquid Equilibrium (VLE) ◄ 493

The other objective functions described above give values as follows:

OFgE 5 a 1gexp
E 2 gcalc

E 2 i
2   

gives:

A 5 1399 3J/mol 4

and,

OFg 5 a B ¢g1 2 g1
calc

g1
≤ 2

1 ¢g2 2 g2
calc

g2
≤ 2R

i

gives:

A 5 1424 3J/mol 4

All three choices give values for A that are relatively close.  

y1 y1, calc % Difference

0 0
0.0953 0.0948 0.49%
0.2710 0.2688 0.80%
0.3600 0.3571 0.80%
0.4453 0.4411 0.93%
0.5106 0.5064 0.82%
0.5735 0.5691 0.77%
0.6626 0.6602 0.36%
0.7312 0.7324 20.16%
0.8200 0.8209 20.11%
0.8382 0.8426 20.52%
1 1

TABLE E8.9C  Comparison of Experimental 

Vapor-Phase Composition with Those Predicted 

by the Two-Suffix Margules Equation

x1 P [Pa] g1, calc g2, calc Pcalc 3Pa 4 P2
err

0 6344 1.81 1 6344 0
0.061 6590 1.69 1.00 6595 25
0.2149 6980 1.44 1.03 7001 456
0.3187 7140 1.32 1.06 7141 1
0.432 7171 1.21 1.12 7203 1086
0.5246 7216 1.14 1.18 7195 430
0.6117 7140 1.09 1.25 7139 0
0.7265 6974 1.05 1.37 6986 144
0.804 6845 1.02 1.47 6821 589
0.883 6617 1.01 1.59 6586 984
0.8999 6557 1.01 1.62 6525 1026
1 6073 1 1.81 6073 0

Sum 4740

TABLE E8.9B Minimization of OFp for the Data in Table E8.9A
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494 ► Chapter 8. Phase Equilibria III: Applications

Calculate the three-suffi x Margules parameters, A and B, for the system of Example 8.9.

SOLUTION As in Example 8.9, we start with the expression for pressure given by:

 P 5 x1g1P1
sat 1 11 2 x1 2g2P2

sat (E8.10A)

However, we now use the three-suffi x Margules equation to write the activity coeffi cients in 
terms of the Margules parameters, A and B. Applying the expressions in Table 7.2:

 ln g1 5
1A 1 3B 2

RT
 x2

2 2
4B
RT

 x2
3 (E8.10B)

Similarly, ln g2 5
1A 2 3B 2

RT
 x1

2 1
4B
RT

 x1
3 (E8.10C)

Using the values given by Equations (E8.10B) and (E8.10C) in Equation (E8.10A), we get:

Pcalc 5 x1 exp B 1A 1 3B 2

RT
 x2

2 2
4B
RT

 x2
3RP1

sat 1 11 2 x1 2  exp B 1A 2 3B 2

RT
 x1

2 1
4B
RT

 x1
3Rp2

sat

If we minimize the objective function in pressure, we get:

 OFP 5 a 1Pexp 2 Pcalc 2
2 5 2509 (E8.10D)

when, A 5 1397 3J/mol 4     and     B 5 69 3J/mol 4 

Since the value for A is so much greater than that for B, the system is adequately described by 
the simpler two-suffi x Margules equation.  

EXAMPLE 8.10

Calculation of Best 
Fit of A and B to 
Data Using Objective 
Functions

 Determine the model parameters for the two-suffi x and the three-suffi x Margules equations 
using the liquid–vapor equilibrium data for a binary system of benzene (1)–cyclohexane (2) at 
10°C. Mole fractions of liquid vs. total pressure are reported in Table E8.9A.

SOLUTION The excess Gibbs energy can be written:

 gE 5 RT 3x1 ln g1 1 x2 ln g2 4 5 RTBx1 ln¢ y1P

x1P1
sat ≤ 1 x2 ln¢ y2P

x2P2
sat ≤ R  (E8.11A)

where we have rearranged Equation (8.10) to give:

gi 5
yiP

xiPi
sat

and then substituted for gi. Thus, we can use the experimental data from Table E8.9A to obtain 
values for gE at every experimental point.

We can rewrite the two-suffi x and three-suffi x Margules equations by dividing gE by 1x1x2 2 . 
The two-suffi x Margules equation becomes:

 
gE

x1x2
5 A (E8.11B)

EXAMPLE 8.11

Re-estimate the 
Two- and Three-
Suffi x Margules 
Parameters by the 
Method of Linear 
Regression
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8.1  Vapor–Liquid Equilibrium (VLE) ◄ 495

Thus, the average of gE/x1x2 over all the data will give the best prediction for the value of A. The 
three-suffi x Margules equation becomes:

 
gE

x1x2
5 A 1 B 1x1 2 x2 2  (E8.11C)

A plot of gE/x1x2 vs. x1 2 x2 should give a straight line with slope B and intercept A. The data 
from Table E8.9A are plotted in this form in Figure E8.11.

The average of the data gives the value for the two-suffi x Margules parameter:

A 5 1409 3J/mol 4 

This value is close to those obtained by the objective functions in Example 8.9. Linear regression 
gives the best-fi t line to be:

 
gE

x1x2
5 1402 1 75.1 1x1 2 x2 2 3J/mol 4  (E8.11D)

Hence, we get:

A 5 1402 3J/mol 4     and     B 5 75.1 3J/mol 4

These values are close to those obtained in Example 8.10.
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x 2
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g

E

m
o
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Figure E8.11 Fit of gE/x1x2 vs. x1 2 x2 for benzene (1)–cyclohexane (2) at 10°C to straight line.

Solubility of Gases in Liquids

Another important class of VLE problems addresses the solubility of gases in liquids. For 
example, gases dissolved in seawater are crucial to the biology of marine species. Fish 
require dissolved oxygen and give off carbon dioxide, while algae performing photosyn-
thesis consume CO2 and emit O2. Suppose we wish to calculate the amount of oxygen 
dissolved in water for a system at 1 bar and 25°C. Pure O2 has a critical temperature of 
154.6 K and exists as a supercritical fl uid at the temperature of the system; thus, pure O2 
cannot be a liquid at 25°C. Consequently, it is problematic to calculate its pure species 
fugacity in the liquid phase and apply a Lewis/Randall reference state. Alternatively, we 
can use Henry’s law to express the liquid fugacity for O2. In general, it is common to use 
a Henry’s law reference state for a species when the system temperature is well above 
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496 ► Chapter 8. Phase Equilibria III: Applications

that species’ critical temperature.6 In this system, the dissolved gas, O2, is referred to as 
the solute, while H2O is termed the solvent.

Values of the Henry’s constant for different gases in water at 25°C are given in 
Table 8.1. Henry’s constant for gases in other solvents at 25°C are given in Table 8.2. 
The Henry’s constant is indicative of the unlike i-j interaction. Hence, its value depends 
not only of the identity of the solute but also on the solvent. For example, inspection of 
Table 8.2 shows that the magnitude of Henry’s constant for N2 in C6H6 is roughly three 
times less than that of CS2. We expect this result, since the polarizability of C6H6 is 
greater and, therefore, the London interactions are stronger. The stronger unlike attrac-
tive interaction leads to a lower “tendency to escape” and, therefore, a lower Henry’s 
law constant.

The values for Henry’s law constants are often reported at 25°C and 1 bar. If we 
are interested in a system at signifi cantly different temperature or pressure, we must 

6 If the system temperature is not too far above that of the critical temperature, an alternative approach is given 
by extrapolating for a hypothetical saturation pressure using the Clausius–Clapeyron equation and then using 
the Lewis/Randall reference state.

TABLE 8.1 Henry’s Law Constants for 

Various Gases in Water at 25°C

Gas Hi [bar]

Ar 35,987.9
Br2 74,686.8
H2 70,381.1
N2 87,365.0
O2 44,253.9
H2S 54,991.8
CO 58,487.0
CO2 1,651.9
CH4 41,675.8
C2H2 1,342.2
C2H4 11,522.0
C2H6 30,525.9

Source: Modifi ed from E. W. Washburn 
(ed.), International Critical Tables (Vol. 
III) (New York: McGraw-Hill, 1928).

TABLE 8.2 Henry’s Constants in [bar] of H2, N2, O2, CO, and CO2 in Four Different 

Liquids at 25°C

H2 N2 O2 CO CO2

C6H6  3,657.4 2,386.6 1,554.9 1,620.6  114.1
CS2  10,865.9 6,961.9 4,907.3  469.0
CH3OH  6,425.0 4,293.2 3,179.4 3,106.7  158.3
C3H6O  4,373.4 2,288.0 1,478.9 1,502.1  53.1

Source: Modifi ed from E. W. Washburn (ed.), International Critical Tables (Vol. III) 
(New York: McGraw-Hill, 1928).
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correct the value of Hi. Temperature and pressure dependencies of Henry’s constant 
were developed in Section 7.4 as:

 ¢ 'ln Hi

'P
≤

T
5

Vi
`

RT
 (7.39)

and, ¢ 'ln Hi

'T
≤

P
5

hi
v 2 Hi

`

RT2
 (7.40)

Equations (7.39) and (7.40) can be used to correct literature values of Hi for pressure 
and temperature. Henry’s constants usually increase with temperature. 

We can rearrange Equation (7.40) to get:

 ¢ 'ln Hi

' 11/T 2
≤

P
5

Hi
` 2 hi

v

R
 

This equation suggests that if Hi
` 2 hi

v is constant, a plot of ln Hi vs. 1/T should result 
in a straight line. Figure 8.10 plots values for Henry’s constants of N2 and O2 in H2O 
as a function of temperature. Figure 8.10a shows that the Henry’s constants increase 
with temperature and then plateaus. Figure 8.10b shows a plot of the natural logarithm 
of Henry’s constant vs. 1/T. In this case, the plot is not linear, suggesting that Hi

` 2 hi
v 

changes with temperature. This result can be attributed to the effect of hydrogen bonds 
in water. Problem 8.49 illustrates a case that is linear: O2 in benzene. 

To solve for equilibrium composition of the solute using Henry’s law, we again set 
the fugacity of the vapor equal to the fugacity of the liquid:

f̂ i
v5 f̂ i

l

Applying the Henry’s law reference state for species i gives:

 yiŵi
vP 5 xigi

Henry’s Hi (8.24)

Equation (8.24) is true in general and can always be applied. However, we can often 
apply simplifying approximations.

We will start with a binary system of dissolved gas (solute) a in liquid (solvent) b. We 
fi rst assume that the gas mixture is well represented by the ideal gas law. In the limit 

100
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a
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Figure 8.10 (a) Henry’s law constants for N2 and O2 in H2O vs. temperature. (b) Natural logarithm 
of Henry’s constant vs. 1/T.
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498 ► Chapter 8. Phase Equilibria III: Applications

of sparing solubility of gas a in the liquid, the liquid consists of almost all b. Thus, solute 
species a acts ideally in the Henry’s law limit; that is, the behavior is dominated by a-b 
interactions. On the other hand, solvent species b is almost all pure and is ideal in the 
Lewis/Randall limit (all b-b interactions). With these assumptions, we apply Equation 
(8.29) to species a to give:

yaP 5 xaHa

For species b, we have:

ybP 5 xbPb
sat

where we have approximated the pure species fugacity of species b with its saturation 
pressure.

Adding together the previous two equations gives:

P 5 xaHa 1 xbPb
sat

and substitution of this expression for pressure gives:

ya 5
xaHa

xaHa 1 xbPb
sat

and, yb 5
xbPb

sat

xaHa 1 xbPb
sat 

respectively. Treating species a as ideal is a good assumption, in most systems, up to 
roughly xa 5 0.03 and, in some cases, well beyond. Note the similarities between the 
previous equations and those of Raoult’s law.

If there is enough of the lighter component in the liquid, both a-a and a-b interac-
tions become important in describing the fugacity of the liquid phase, and we must 
account for the nonideality in the liquid. In this case, we can use Equation (8.24) to get 
the following expressions:

P 5 xaga
Henry’sHa 1 xbgbPb

sat

ya 5
xaga

Henry'sHa

xaga
Henry'sHa 1 xbgbPb

sat

and, yb 5
xbgbPb

sat

xaga
Henry'sHa 1 xbgbPb

sat 

Similarly, for high pressures and ideal liquid, the vapor is no longer an ideal gas. In 
this case, our Henry’s law expressions become:

yaŵaP 5 xaHa

and, ybŵbP 5 xbfb 
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To get the Henry’s law constant at high pressure, we must correct H for P. Integrating 
Equation (7.39) gives:

Ha
atP 5 Ha

at 1 bar exp £ 3

 P

1 bar  

Va
`

RT
 dP §

Similarly, we apply the Poynting correction to get a value for the pure species fugacity 
of species b:

fb
l 5 wb

satPb
sat exp £ 3

 
P

Pb
sat  

vb
l

RT
 dP §

Moreover, since the vapor is mostly solute, we can apply the Lewis fugacity rule to get:

ŵb 5 wb

Substitution gives:

yaŵaP 5 xaHa
at 1 bar exp £ 3

P

1 bar

Va
`

RT
 dP §

and,

ybwbP 5 xbwb
satPb

sat exp £ 3

  P

Pb
sat  

vb
l

RT
 dP §

Finally, for the case of nonideal liquids at high pressure, we must include activity 
coeffi cients in the previous equations to give:

yaŵaP 5 xaga
Henry'sHa

at 1 bar exp £ 3

  P

1 bar  

Va
`

RT
 dP §

and, ybwbP 5 xbgbwb
satPb

sat exp £ 3

  P

Pb
sat   

vb
l

RT
 dP § 

For multicomponent mixtures, ideal mixing gives the following mixing rule for the 
Henry’s constant of species a:

 ln Ha 5 a
j

xjlnHa, j (8.25)

where Ha, j is the Henry’s constant of solute species a in solvent j.
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500 ► Chapter 8. Phase Equilibria III: Applications

Calculate the solubility of O2 from air in the atmosphere in equilibrium with liquid H2O at 
25°C. Report the answer in mole fraction and in molarity.

SOLUTION The partial pressure of oxygen in air is approximately:

pO2 5 yO2P 5 0.21 3bar 4

Using the value for the Henry’s law constant in water given in Table 8.1, we get:

xO2 5
yO2P

HO2

5
0.21 3bar 4

44,253.9 3bar 4
5 4.75 3 1026

The concentration of oxygen, 3O2 4 in units of molality is defi ned as the number of moles 
of solute 1O2 2  per liter of solution, that is,

3O2 4 5
nO2

V

We can relate the number of moles of oxygen to its mole fraction as follows:

xO2 5
nO2

nO2 1 nH2 O
5

nO2

nH2O

where the denominator was simplifi ed since nO2 ,, nH2O. Since the amount of dissolved gas 
is so small, we can replace the solution volume with the pure species volume. Solving for the 
molarity, we get:

  3O2 4 5 xO2 

nH2O

V
5 xO2 

nH2O

VH2O
5

xO2

vH2O

  5 ¢4.75 3 1026

0.001
 B kg

m3
R ≤ ¢ 1

0.018
 Bmol

kg
R ≤ ¢0.001Bm3

L
R ≤ 5 2.63 3 1024 3M 4

EXAMPLE 8.12

Calculation of 
Dissolved O2 in H2O

 Determine the solubility of N2 in H2O at 300 bar and 25°C. Take,

VN2

` 5 3.3 3 1025 3m3/mol 4

SOLUTION We will assume the solubility is small enough that the liquid solution remains ideal. 
Solving for the mole fraction of N2 gives:

 xN2 5
yN2ŵN2P

HN2

 (E8.13A)

At 25°C, the vapor pressure of water is small, so we assume:

yN2 < 1

EXAMPLE 8.13

Henry’s Law Problem 
at High Pressure
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8.1  Vapor–Liquid Equilibrium (VLE) ◄ 501

To fi nd the Henry’s law constant, we must correct the value in Table 8.1 for pressure. 
Assuming that the partial molar volume at infi nite dilution does not change with pressure, we get:

 HN2

at P 5 HN2

at 1 bar exp £ 3

 P

1 bar  

VN2

`

RT
 dP § 5 HN2

at 1 bar exp BVN2

`

RT
 1P 2 1 2 R  (E8.13B)

Plugging in numbers to Equation (E8.13B) gives:

 

HN2

300 bar 5 187,365 3bar 4 2  exp B 13.3 3 1025 3m3/mol 4 2 1299 3 105 3J/m3 4 2

18.314 3J/ 1mol K 2 4 2 1298 3K 4 2
R 5 130,106 3bar 4

 (E8.13C)

The Henry’s constant has increased by approximately 50% at the higher pressure. 
Finally, to solve for the fugacity coeffi cient, we assume the Lewis fugacity rule, apply the 

generalized correlations, and use the values given in Appendix C. The reduced pressure and 
temperature are as follows:

Pr 5
P
Pc

5
300
33.8

5 8.88     and     Tr 5
T
Tc

5
298

126.2
5 2.36

Looking up the acentric factor from Appendix A.1 gives:

v 5 0.039

So that,

log wN2 5 log w102 1 v log w112 5 0.013 1 0.039 10.210 2 5 0.021

or, wN2 5 1.05 (E8.13D)

Finally, plugging in values from Equations (E8.13C) and (E8.13D) gives:

xN2 5
yN2wN2P

HN2

5
1.05 3 300

130,106
5 0.00242

Vapor–Liquid Equilibrium Using the Equations of State Method

Up to this point, we have used activity coeffi cients and models for gE to describe the 
nonideality in the liquid phase. In this section, we learn another approach to solve VLE 
problems, where we describe both the liquid and vapor phases using the fugacity coef-
fi cients. We term this approach the equation of state method. 

We again start by setting the fugacity coeffi cients for species i equal in each phase:

f̂ v
i 5 f̂ l

i

Next we apply Equation (7.19) to both the vapor and liquid phases:

 yiŵi
vP 5 x1ŵi

l P (8.26) 

where the pressures on each side of Equation (8.26) are identical and cancel. 
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502 ► Chapter 8. Phase Equilibria III: Applications

The fugacity coeffi cients in both the liquid and vapor phases can be found using an 
equation of state, as described in Section 7.3. The accuracy of this approach depends 
on selecting an equation of state that can represent PvT behavior in both the liquid and 
vapor phases well. Moreover, the equation of state must be valid over the entire range of 
integration of Equation (7.14). Because the liquid phase fugacity coeffi cient is calculated 
relative to the ideal gas reference state, we are integrating from 0 pressure (or infi nite 
volume) through the phase change to the system volume. Given these constraints, the 
equation of state method is more commonly used for simpler systems containing non-
polar molecules.

An example of VLE data and the corresponding equation of state method predic-
tions for three binary mixtures at 37.78°C is shown in Figure 8.11. The lines represent 
equilibrium mole fractions for the liquid (dashed) and vapor (solid) calculated from the 
Peng–Robinson equation using the equation of state method. In these mixtures, the 
critical temperature of methane, the lighter component, is 190.6 K, well below the sys-
tem temperature, whereas the other component (propane, n-butane, or n-pentane) has a 
value of Tc greater than the system temperature. Consequently, at higher methane mole 
fractions the mixture is supercritical (i.e., the two-phase region is limited to smaller mole 
fractions of methane). For example, the methane–propane mixture only shows a two-
phase region below mole fractions of around 0.67. At higher methane concentration, the 
system exists only as one homogeneous, supercritical phase. 

When the system temperature is above one of the species’ critical temperature, it can 
be problematic to use activity coeffi cient methods, and the equation of state method is 
preferred. The presence of such a lighter component also leads to high system pressures 
at equilibrium, as shown in Figure 8.11, where the pressure of the methane–n-pentane 
system can exceed 150 bar.

Figure 8.11 Vapor liquid equilibrium in binary mixtures of (1) CH4 and (2) C3H8, 
C4H10, or C5H12 versus CH4 mole fractions at 37.78°C, as calculated from the 
Peng–Robinson equation of state. Experimental data for two of the systems are 
also shown.
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8.1  Vapor–Liquid Equilibrium (VLE) ◄ 503

The examples that follow will lead us through the steps needed to predict VLE equi-
librium data like that shown in Figure 8.11. Although these examples use the van der 
Waals and Peng–Robinson equations for illustration, many other equations of state have 
been used to calculate VLE using the equation of state method.

Using the Peng–Robinson equation of state, calculate the saturation pressure of pure 
(i) propane, (ii) n-butane, and (iii) n-pentane at 300 K by using fugacity coeffi cients to calculate 
the fugacity for both vapor and liquid phases. Compare the results with the values of Psat

i  
obtained by the Antoine equation and report the percent error.

SOLUTION For a pure species, Equation (8.26) becomes:

wv
i 5 w l

i

We can calculate pure species fugacities as we learned in Section 7.3. For the Peng–Robinson 
equation of state, Equation (4.25) gives:

 P 5
RT

vi 2 bi
2

aiai

v2
i 1 2bivi 2 b2

i

 (E8.14A) 

where the parameters of the pure species can be found from the critical temperature, the 
critical pressure, and Pitzer’s acentric factor, as follows:

ai 5
0.45724R2T2

c,i

Pc,i
, ai 5 31 1 10.37464 1 1.54226vi 2 0.26992v2

i 2 11 2 T0.5
r, i 2 4

2,

and,

  bi 5
0.07780RTc,i

Pc,i
 (E8.14B) 

The values of the critical properties for propane, n-butane, and n–pentane from Appendix A.1 
and the resulting calculated parameters, ai, ai, and bi are shown in Table E8.14A. 

Knowing the Peng–Robinson parameters, we can calculate the molar volume, vi,  from 
Equation (E8.14A) given values of temperature and pressure. When the solution has three 
real roots, we assign the smallest root to the liquid phase and the largest root to the vapor 
phase. These values can then be used to fi nd the fugacity coeffi cient of the liquid and vapor, 
respectively, using the expression in Table 7.1:

ln wi 5 zi 2 1 2 ln¢ 1vi 2 bi 2P
RT

≤ 2
1aa 2 i

2"2biRT
 lnB vi 1 11 1 "2 2bi

vi 1 11 2 "2 2bi

R  (E8.14C) 

EXAMPLE 8.14

Pure Species 
Equilibrium Using an 
Equation of State

TABLE E8.14A Critical Properties and Peng–Robinson Parameters

Species
Tc

[K]
Pc

[bar] v

ai

B Jm3

mol2
R

ai

bj B m3

mol
R

C3H8 370 42.44 0.152 1.020 1.124 5.64 3 1025

n-C4H10 425.2 37.9 0.193 1.508 1.223 7.26 3 1025

n-C5H12 469.6 33.74 0.251 2.066 1.321 9.00 3 1025

(Continued)
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504 ► Chapter 8. Phase Equilibria III: Applications

To fi nd the saturation pressure at a given temperature, we solve Equation (E8.14A) for 
liquid and vapor volumes and then use those values in Equation (E8.14C) for the fugacity 
coeffi cient. This process requires iterative solution, and the saturation pressure is found as 
the pressure where the fugacity of the vapor and liquid are equal. The values that satisfy this 
criteria for propane, n-butane, and n-pentane at 300 K are shown in Table E8.14B.

The values for obtained Psat
i  from the Peng–Robinson equation are compared with the 

experimentally fi t values obtained from the Antoine equation ¢ ln Psat
i 5 Ai 2

Bi

T 1 Ci
≤  in 

Table E8.14B. We see that this method accurately predicts saturation pressures, with errors 
ranging from 0.3% to 4%.

TABLE E8.14B Calculation Values to Determine P 
Sat
I  and Comparison to the Antoine Equation

Species

vl
i,

B m3

mol
R

vv
i

B m3

mol
R

wi

when 
wv

i 5 wl
i,

Psat
i

[bar]

Psat
i

Antoine
[bar] error

C3H8 8.68 3 1025 2.05 3 1023 0.843 9.94 9.90 0.3%

n-C4H10 9.73 3 1025 8.87 3 1023 0.931 2.60 2.51 3.9%

n-C5H12 1.13 3 1024 3.29 3 1022 0.971 0.735 0.732 0.4%

Using the equation of state method, determine the equilibrium composition in the vapor phase 
and the system pressure of a mixture of methane (1) and n-pentane (2) with a liquid mole frac-
tion of x1 5 0.3 at 37.78°C. Use the van der Waals equation of state to determine fugacity for 
both vapor and liquid phases.

SOLUTION We need to perform a bubble-point calculation, as illustrated by quadrant II in the grid 
of Figure 8.1. A fl owsheet of the solution process we will use is depicted in Figure E8.15A. Although 
this solution is described specifi cally with reference to the van der Waals equation, the approach is 
general and can be applied to other equations of state by substituting the appropriate expressions in 
the middle box. 

To obtain an initial estimate of pressure and mole fractions, we use Raoult’s law. Values for 
the saturation pressure at 37.78°C are fi rst calculated from the Antoine equation. The Antoine 
equation parameters, Ai, Bi, and Ci, and resulting values for saturation pressure are shown in 
Table E8.15A. From these values, we calculate:

P 5 a xiPsat
i 5 85.9 bar

 yi 5
xiPsat

i

P
5 0.991

We use these values as input into the iterative loop shown in the middle box in Figure 
E8.15A. To use the van der Waals equation of state, we fi rst calculate the pure species 
parameters, ai and bi from the critical properties Tc and Pc. The resulting values are shown in 
Table E8.15A. With these parameters known, we can use the van der Waals mixing rules to get 
parameter values corresponding to this set of liquid and vapor mole fractions.

EXAMPLE 8.15

Use of van der 
Waals Equation of 
State to Predict VLE 
Behavior
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TABLE E8.15A Critical Properties and van der Waals Parameters for Species 1 and 2

Species xi Ai Bi Ci

Psat
i

Antoine
[bar]

Tc,i

[K]
Pc,i

[bar]

ai

B Jm3

mol2
R B m3

mol
R

bi

Methane(1) 0.3 8.6041 897.84    27.16  283.9 190.6 46.0 0.230 4.31 3 1025

n-Pentane (2) 0.7 9.2131 2477.1 239.94 1.08 469.6 33.74 1.91 1.45 3 1024

 P 112, yi
112

a 5 y1
2a1 1 2y1y2"a1a2 1 y2

2a2

b 5 y1b1 1 y2b2

P 5
RT

v 2 b
2

a
v2

1 vv, vl

ln ŵi 5
bi

v 2 b
2 lna

1v 2 b 2P
RT

b 2

2a
m

k51
ykaik

RTv
1 ŵi

v, ŵi
l

yi 5
xiŵi

l

ŵi
v

ayi 5 1?

  Yes
P, yi

No P 1 j11 2 5 P 1 j 2ayi
1 j 2

Figure E8.15 Flowsheet for bubble point calculation using the van der Waals equation

Pi
sat 5 exp¢A1 2

Bi

T 1 Ci
≤

P 5 a xiPi
sat

yi 5
xiPi

sat

P

Initial Estimate
Raoult’s law

T, xi 

Antoine

Coefficients

Ai

Bi

Ci

(Continued)
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506 ► Chapter 8. Phase Equilibria III: Applications

Because the liquid mole fraction is given, we use the same values for the liquid throughout:

al 5 x2
1a1 1 2x1x2"a1a2 1 x2

2a2 5 1.23B Jm3

mol2
R

bl 5 x1b1 1 x2b2 5 1.14 3 1025 B m3

mol
R

For the fi rst iteration of vapor, we get:

av 5 y2
1a1 1 2y1y2"a1a2 1 y2

2a2 5 0.238 B Jm3

mol2
R

 bv
5 y1b1 1 y2b2 5 4.40 3 1025 B m3

mol
R

These latter values are shown on the second row 1n 5 1 2  of Table E8.15B.
We can then fi nd the roots of v for using the van der Waals equation at T 5 37.78°C and 

P112 5 85.9 bar. For the liquid volume, we use the parameters a1 and b1 and take the smallest 
real root: 

v1 5 1.59 3 1024 m3/mol

Similarly, using av and bv, the largest root is taken as the vapor volume:

vv 5 2.55 3 1024 m3/mol

These values are reported on the second row of Table E8.15B. 
Using these values, the fugacity coeffi cients for each species in each phase are found using 

the expression developed in Example 7.4 or from the expression shown in Figure E8.15A:

w1
^ v 5 expB b1

vv 2 bv
2 ln¢ 1vv 2 bv 2P

RT
≤ 2

2 1y1a1 1 y2a12 2

RTvv
R 5 0.86

ŵv
2 5 expB b2

vv 2 bv
2 ln¢ 1vv 2 bv 2P

RT
≤ 2

2 1y2a2 1 y1a12 2

RTvv
R 5 0.37

w1
^ l 5 expB b1

vl 2 bl
2 ln¢ 1vl 2 bl 2P

RT
≤ 2

2 1y1a1 1 y2a12 2

RTvl
R 5 1.30

ŵ l
2 5 expB b2

vl 2 bl
2 ln¢ vl 2 blP

RT
≤ 2

2 1y2a2 1 y1a12 2

RTvl
R 5 0.10

These values are reported on the second row of Table E8.15B. 
To complete the fi rst iteration, we calculate the vapor mole fractions according to Equation 

(8.26):

y1 5
x1ŵ

l
1

ŵv
1

5 0.45     and     y2 5
x1ŵ

l
2

ŵv
2

5 0.18
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Because the sum of the vapor mole fractions equals 0.634 and does not equal 1 (to within a 
tolerance), we need to further iterate by changing pressure:

P122 5 P112ay112i 5 54.5 bar

We then repeat this calculation using the new value of pressure. Values for six iterations are 
shown in Table E8.15B. In this last row, the sum of vapor mole fractions approximately equals 
1, and we report values of:

P 5 34.5 bar and

y1 5 0.79.

If we want greater precision, we can continue to iterate. Sometimes the initial guess of pressure 
given by Raoult’s law is too high, and we converge on the initial liquid mole fraction. In this 
case, we need to adjust the initial guess to a lower value for P112. In the next example, we 
compare these values to those obtained by the Peng–Robinson equation of state.

TABLE E8.15B  Values of the Iterative Bubble-point Calculation. The Column Labeled n Represents 

the Iteration Number.

n

av

B Jm3

mol2
R

bv

B m3

mol
R

vv

B m3

mol
R

vl

B m3

mol
R

ŵv
1 ŵv

2 ŵl
1 ŵ l

2 y1 y2 ayi

P1k112

[bar]

1 0.238 4.40 
1025

2.55 
1024

1.59 
1024

0.86 0.37 1.30 0.10 0.45 0.18 0.634 54.5

2 0.241 4.72 
1025

4.38 
1024

1.65 
1024

0.91 0.56 1.78 0.12 0.59 0.15 0.739 40.3

3 0.328 5.48 
1025

5.97 
1024

1.69 
1024

0.93 0.63 2.24 0.15 0.72 0.16 0.887 35.7

4 0.401 6.07 
1025

6.49 
1024

1.70 
1024

0.94 0.61 2.47 0.16 0.79 0.19 0.971 34.7

5 0.433 6.32 
1025

6.43 
1024

1.71 
1024

0.96 0.57 2.53 0.16 0.79 0.20 0.995 34.5

6 0.443 6.40 
1025

6.34 
1024

1.71 
1024

0.96 0.56 2.54 0.16 0.79 0.21 0.999 34.5

Repeat Example 8.15 using the Peng–Robinson equation of state. Compare your answer to the 
reported measured value of P 5 69.1 bar and y1 5 0.95.

SOLUTION We can take essentially the same approach as we did in Example 8.15; however, in 
this case, we use a more accurate, but complex, equation to calculate the molar volumes and 
fugacity coeffi cients. To adapt the fl owsheet we used in Example 8.15 to the Peng–Robinson 
equation, the middle iterative box is changed, as shown in Figure E8.16. The mixing rule for 
the energy parameter 1aa 2  includes the binary interaction parameter, k12, which is set to zero 
in this example, but will be explored further in Example 8.18. 

EXAMPLE 8.16 

Use of the Peng–
Robinson Equation 
of State to Predict 
VLE Behavior

(Continued)
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508 ► Chapter 8. Phase Equilibria III: Applications

Figure E8.16 Modified iterative portion of the flowsheet for bubble-point calculation.

The values for the parameters for methane (1) and pentane (2) are:

1aa 2 1 5 0.199 B Jm3

mol2
R     and    1aa 2 2 5 2.68 B Jm3

mol2
R ,

b1 5 2.68 3 1025 B m3

mol
R     and    b2 5 9.00 3 1025 B m3

mol
R

These parameters are then used in the Peng–Robinson equation with the mixing rules specifi ed 
in Figure E8.16 to calculate molar volumes and fugacity coeffi cients.

Values for fi ve iterations of calculations analogous to those in Example 8.15 are shown in 
Table E8.16. In this last row, the sum of vapor mole fractions approximately equals 1, and we 
report values of:

P 5 62.8 bar and

P112, yi
112

aa 5 y1
2 1aa 2 1 1 2y1y2"1aa 2 1 1aa 2 2 11 2 k12 2 1 y2

2 1aa 2 2

b 5 y1b1 1 y2b2

P 5
RT

v 2 b
2

aa

v2 1 2bv 2 b2
1 vv, vl

ln ŵi 5
bi

b
 1z 2 1 2 2 lna

1v 2 b 2P
RT

b

1
aa

2"2bRT
 Bbi

b
2

2
aaa

m

k51
yk 1aa 2 ikR  lnB v 1 11 1 "2 2b

v 1 11 2 "2 2b
R 1 ŵi

v, ŵi 
l

yi 5
xiŵi

l

ŵi
v

ayi 5 1?

  Yes
P, yi

P 1 j11 2 5 P 1 j 2
ayi

1 j 2
No

EOS Parameters

Tc,i ai

Pc,i ai

v bi
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8.1  Vapor–Liquid Equilibrium (VLE) ◄ 509

y1 5 0.95. 

These values are quite different than those obtained with the van der Waals equation and 
compare favorably to the measured values. For the Peng–Robinson equation the pressure 
deviates from the reported value by 9% and the mole fraction by 0.3%. This example shows 
the importance of an accurate equation of state. In the next example, we compare these two 
equations of state over a wider range of liquid mole fractions.

TABLE E8.16 Values of the Iterative Bubble-point Calculation Using the Peng–Robinson Equation 

n

aav

B Jm3

mol2
R

bv

B m3

mol
R

vv

B m3

mol
R

vl

B m3

mol
R

ŵv
1 ŵv

2 ŵ l
1 ŵ l

2 y1 y2 ayi

P1k112

[bar]

1 0.208 2.74 1025 2.58 1024 9.74 1025 0.86 0.27 2.21 0.02 0.77 0.05 0.818 85.9

2 0.208 2.71 1025 3.32 1024 9.82 1025 0.88 0.38 2.59 0.02 0.88 0.04 0.920 70.3

3 0.235 2.88 1025 3.54 1024 9.85 1025 0.89 0.37 2.77 0.02 0.94 0.04 0.977 64.6

4 0.247 2.95 1025 3.55 1024 9.86 1025 0.89 0.35 2.83 0.02 0.95 0.04 0.994 63.2

5 0.250 2.97 1025 3.53 1024 9.86 1025 0.90 0.34 2.84 0.02 0.95 0.05 0.998 62.8

The following data are available for vapor–liquid equilibrium of the methane (1) –n-pentane (2) 
binary system at 37.78°C. Compare how well the van der Waals and Peng–Robinson equations 
can represent these data using the equation of state method to calculate fugacity coeffi cients 
of the vapor and the liquid.

EXAMPLE 8.17

Comparison of van 
der Waals and 
Peng–Robinson 
Equations of State 
for Predicting 
VLE Behavior

P [bar] 13.82 27.68 41.45 55.26 69.08 86.35 103.62 120.89 138.16 155.43 172.70

y1 0.8954 0.9322 0.9422 0.9486 0.9494 0.9483 0.9421 0.9296 0.9128 0.889 0.849

x1 0.0646 0.1293 0.1892 0.2453 0.2965 0.3565 0.4152 0.4782 0.5509 0.635 0.735

SOLUTION  We can use the solution approach developed in Examples 8.15 and 8.16 to calcu-
late the value of pressure and vapor phase mole fraction for any given liquid mole fraction at 
37.78°C. As illustrated in the fl owsheet on the left of Figure E8.17, we successively do such a 
calculation for a series of values of xi. This approach adds another loop to the algorithm.

The results of these calculations are plotted on the right of Figure E8.17. The Peng–
Robinson equation reasonably represents the data. On the other hand, although the results 
from the van der Waals equation qualitatively refl ect the shape, the quantitative values do not 
match.

(Continued)
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510 ► Chapter 8. Phase Equilibria III: Applications
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8.2  Liquid (�)—Liquid (b) Equilibrium: LLE ◄ 511

Repeat Example 8.17 for the Peng–Robinson equation with values of the binary interaction 
parameter, k12 of 0.025, 0.05, and 0.10. 

SOLUTION  The calculation methodology described in Example 8.17 is repeated with inclusion 
of different values of k12. The results are plotted in Figure E8.18. The curves for k12 5 0.025 
most closely match the data. This value compares well to that of k12 5 0.026 reported in the 
literature for the Peng-Robinson equation. 

This example shows the power of the equation of state method in predicting VLE data for 
“simple” systems at high pressure. With the use of only one adjustable parameter, k12, the Peng–
Robinson equation represents the experimental data well. All other parameter values are obtained 
from pure species data alone. In general, values for k12 are considered to be independent of com-
position and temperature; however, some evidence shows a systematic temperature dependence.

EXAMPLE 8.18 

The Effect of k12 on 
the Predictions 
of the Peng-
Robinson Equation 

0

40

80

120

160

200

240

 P
 [
b
a
r]

k
12

 = 0.10

k
12

 = 0.05

k
12

 = 0.025

k
12

 = 0

0 0.2 0.4 0.6 0.8 1

x1, y1

Figure E8.18 Comparison of different binary interaction parameters for 1aa 2  in the Peng–
Robinson EOS. The experimentally measured data given in Example 8.17 are also shown. 

 ►8.2  LIQUID 1a 2—LIQUID  1b 2   EQUILIBRIUM: LLE
In Chapter 7, we saw that when like (a-a and b-b) interactions are signifi cantly stronger 
than unlike (a-b) interactions, liquids can split into two different partially miscible phases, 
which we labeled a and b. They form separate phases to lower the total Gibbs energy 
of the system. In this case, each species i tends to equilibrate between the two phases, 
leading to liquid–liquid equilibrium (LLE). We can equate the fugacity of component i 
for each phase to solve for the equilibrium compositions.

To illustrate how to calculate the equilibrium compositions in LLE, let’s consider a 
binary mixture of species a and b. The fugacities of species a in each liquid phase are equal:

f̂a
a

5 f̂a
b

Applying Equation (7.32) for a Lewis/Randall reference state gives:

 xa
aga

afa 5 xa
bga

bfa (8.27)

and for species b:

 xb
a
gb

a
5 xb

bgb
b (8.28)
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512 ► Chapter 8. Phase Equilibria III: Applications

where we have canceled the pure species fugacity in the liquid. 
To solve Equations (8.27) and (8.28), we need an activity coeffi cient model for gE. 

We will illustrate the approach using the two-suffi x Margules equation; however, the 
same methodology can be applied to any model from Table 7.2. If we substitute Equa-
tion (7.55) for the activity coeffi cient of species a into Equation (8.27), we get:

 xa
a exp B A

RT
 1xb

a 2 2R 5 xa
b exp B A

RT
 1xb

b 2 2R  (8.29)

Similarly for species b, we have:

 xb
a exp B A

RT
 1xa

a 2 2R 5 xb
b exp B A

RT
 1xa

b 2 2R  (8.30)

Additionally, the mole fractions in each phase must sum to 1, so that:

 xa
a 1 xb

a 5 1 (8.31)

and,

 xa
b 1 xb

b 5 1 (8.32)

Equations (8.29) through (8.32) form a set of four coupled equations that can be solved 
for the four unknowns: xa

a, xa
b, xb

a, and xb
b. A similar approach could be used for other 

models of gE such as those described in Section 7.4, where the appropriate expressions 
for activity coeffi cients would be substituted into Equations (8.27) and (8.28).

A plot of T vs. mole fraction of species a is shown in Figure 8.12 for the case where 
the two-suffi x Margules parameter, A, is independent of temperature. This phase dia-
gram shows regions where only one liquid phase is present and a two-phase region. We 
typically make such plots at constant pressure, since A is weakly dependent on pressure.7

The curve dividing the two regions, the binodal curve, represents the compositions of 
coexisting liquid phases at any temperature. This curve can be obtained by solving the 
set of Equations (8.29) through (8.32). For example, at temperature T1, any liquid with 
an overall composition in the region labeled “2 phases” will split into an a-rich phase, xa

a, 
and a b-rich phase, xa

b. Again, the composition of these phases can be determined from 
where the binodal curve intersects the horizontal tie line, and their relative amounts are 
given by the lever rule. The inset illustrates that the compositions of phase a and phase 
b occur near the two minima in Gibbs energy, where the tangent line can be drawn, as 
depicted in Figure 7.10b.

For a given value of A in Figure 8.12, the lower the temperature, the larger the 
range of partial miscibility. Partial miscibility results when energetic effects dominate 
entropic effects. In the Gibbs energy, the entropy term is multiplied by temperature, 
that is, g 5 h 2 Ts; all other effects being equal, at lower temperatures energetic effects 
become more signifi cant relative to entropic effects, and the attractive effects of the 
like interactions become dominant over a larger composition range. We are more likely 
to have two phases as the mole fractions approach 0.5, another indication that the two-
suffi x Margules equation is symmetric. The value of the temperature above which the 

7 Can you justify this statement using the thermodynamic web and physical arguments? 
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8.2  Liquid (�)—Liquid (b) Equilibrium: LLE ◄ 513

liquid mixture no longer separates into two phases at any composition is termed the 
upper consulate temperature, Tu. It is also shown on this plot.

We now wish to examine when a single phase will spontaneously split into different 
liquid phases. The criterion for instability of a single liquid phase is given when the curve 
for the total solution Gibbs energy is concave down. Mathematically, this is expressed by:

 ¢ '2g

'xa
2
≤T,P , 0 (8.33)

Again, we will consider the case when the nonideality is described by the two-suffi x 
Margules equation; however, in general, any model for gE can be used. From Equation 
(7.57), we have:

 g 5 xaga 1 xbgb 1 RT 1xa ln xa 1 xb ln xb 2 1 Axaxb (7.57)

Differentiating twice and substituting in Equation (8.33) gives:

¢ '2g

'xa
2
≤T,P 5 RT¢ 1

xa
1

1
xb
≤ 2 2A , 0

x
α
a

< 0 

Tie line

2 liquid

phases

1 phase 1 phase

0

Binodal curve:

solution to

Equations

(8.29) − (8.32)

Spinodal curve:

solution to

Equation (8.34)T
e
m

p
e
ra

tu
re

Plot of g vs. xa at T1

(from Figure 7.10)

∂2g

∂x2
a

xα
axβ

a

xβ
a

T, P

1xa

T1

Tu
Constant  P

A = Ao

Figure 8.12 Gibbs energy plotted vs. mole fraction of species a. In this case, the Margules param-
eter, A, is much greater than zero. Note: At compositions between xa

a and xb
a , the system can mini-

mize its free energy by splitting into two phases.
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514 ► Chapter 8. Phase Equilibria III: Applications

This simplifi es to:

 
RT
xaxb

, 2A (8.34)

Equation (8.34) tells us how large the two-suffi x Margules parameter A has to be for 
a binary mixture to be unstable and spontaneously separate into two components. The 
set of solutions to this equation is denoted the spinodal curve in Figure 8.12 which is 
represented by dashes. The compositions denoted by the spinodal curve are different 
from the set of equilibrium compositions indicated by the binodal curve. At composi-
tions between these two curves, the liquid is metastable. While it is not at its lowest state 
of Gibbs energy, it will not necessarily spontaneously separate into two liquid phases.

Since the binodal and spinodal curves intersect at the upper consulate temperature, 
we can solve Equation (8.34) for Tu. The largest value of the product, xaxb, occurs at 
xa 5 0.5. Using these values for the mole fraction, we get:

Tu 5
A
2R

 

Characteristic phase diagrams also are strongly dependent on the temperature 
dependence of the Margules parameter, A. Recall that parameter A compares the unlike 
a-b interaction to that of the like interactions and, therefore, is intimately related to the 
chemical nature of the species in the liquid mixture. The liquid–liquid solubility diagram 
shown in Figure 8.12 is typical of many real systems; however, other systems show very 
different behavior. Insight into how these systems behave can be obtained by consider-
ing the temperature dependence of the intermolecular interactions. If A decreases with 
temperature, the solubility diagram is qualitatively similar to Figure 8.12. Consider if 
the case in which A increases with temperature, as shown in Figure 8.13a. Inspection of 
Equation (8.34) shows that the mole fraction range in which the homogeneous liquid is 
unstable may now increase with temperature. This behavior is shown in Figure 8.13b. In 
this case, a temperature exists below which phase separation is impossible at any compo-
sition. This temperature is called the lower consulate temperature.

For even more complicated systems, solubility behavior as shown in Figure 8.14 
has been observed. In these cases, we observe both an upper and a lower consulate 

2 liquid

phases

Lower

consolute
temperature

0
xa

TI

A

T
e
m

p
e
ra

tu
re

Temperature
1

Figure 8.13 Phase stability diagram for a binary mixture described by the two-suffix Margules 
equation. In this case, the Margules parameter, A, increases with temperature.
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2 liquid
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2 liquid
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2 liquid
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temperature
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temperature
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e
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p
e
ra

tu
re

0
xaxa

10 1

TI

TI

Tu

Tu

Figure 8.14 Other phase stability diagrams observed for binary mixtures.

Calculate the equilibrium composition of the two liquid phases in a binary mixture of methyl 
diethylamine (a) and water (b) at 1 bar and 20°C. Solve this problem in two ways; by graphical 
methods and by using a computer program to solve it numerically. The following three-suffi x 
Margules parameters have been obtained for this binary system:

A 5 6349 3J/mol 4     and     B 5 2384 3J/mol 4

SOLUTION To solve for the equilibrium mole fractions of a and b in each phase, we set the fugaci-
ties of liquid phase a equal to liquid phase b. Since the reference state fugacities are equal, we get:

 xa
aga

a 5 xa
bga

b (E8.19A)

and,

 xb
a
gb

a
5 xb

bgb
b (E8.19B)

We can substitute in the activity coeffi cient expressions for the three-suffi x Margules equation, 
Equations (7.59) and (7.60), and use xb

a 5 1 2 xa
a and xb

b 5 1 2 xa
b to get:

  xa
a exp B 1A 1 3B 2

RT
 11 2 xa

a 22 2
4B
RT

 11 2 xa
a 23R 5 xa

b exp B 1A 1 3B 2

RT
 11 2 xa

b 22 2
4B
RT

 11 2 xa
b 23R  (E8.19C)

EXAMPLE 8.19

Equilibrium 
Compositions 
Between Two 
Liquid Phases

temperature. In the phase diagram to the left, two phases exist in the middle tempera-
ture range in between the lower and upper consulate temperatures. This type of phase 
diagram is exhibited by mixtures of tetrahydrofuran and water or glycerol and benzyl 
ethyl amine. Binary mixtures of sulfur and benzene show the uncommon behavior on the 
right, where the upper consulate temperature is below the lower consulate temperature. 
Can you think of the temperature dependence of A that would give each of these char-
acteristics? It should be noted that any of the binodal curves on these solubility diagrams 
can be interrupted from other phase transitions, that is, the formation of a vapor phase 
as temperature increases or the formation of a solid phase as temperature decreases. An 
example of such cases will be considered in Sections 8.3 and 8.4.

(Continued)
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516 ► Chapter 8. Phase Equilibria III: Applications

and,

11 2 xa
a 2  exp B 1A 2 3B 2

RT
 1xa

a 2 2 1
4B
RT

 1xa
a 2 3R 5 11 2 xa

b 2  exp B 1A 2 3B 2

RT
 1xa

b 2 2 1
4B
RT

 1xa
b 2 3R  

 (E8.19D)

Since we know the parameters A and B, Equations (E8.19A) and (E8.19B) represent 
two equations with two unknowns, xa

a and xa
b. However, it helps to have an idea where the 

solution to these nonlinear equations lies so that we do not obtain the trivial answer xa
a 5 xa

b. 
Figure E8.19A plots the quantities xaga and 11 2 xa 2gb vs. xa The solution occurs at the two 
compositions of xa where Equations (E8.19A) and (E8.19B) are simultaneously satisfi ed and 
is indicated in the fi gure. If you examine the fi gure, you will see that the solution illustrated 
is unique and that no other values of xa will work. For example, if we increase the value of xa

b, 
the value of xa

a that matches xaga occurs at larger and larger values. However, the value of xa
a 

that matches 11 2 xa 2gb  occurs at smaller and smaller values; hence, they will never meet. A 
similar argument shows that no solution occurs at smaller values of xa

b  either.
It may not be so straightforward to see where the solution is on a plot like Figure E8.19A. 

However, we can be more clever in elucidating the solution. Figure E8.19B shows such a way. 
In this fi gure, we plot xaga  vs. 11 2 xa 2gb  as values of xa increase from 0 to 1. For a similar 
reasons as we put forward in the discussion of Figure E8.19A, the solution at which Equations 
(E8.19A) and (E8.19B) are satisfi ed lies at the two compositions where such a plot intersects, 
as shown in Figure E8.19B. We then determine the values of xa  at this point.

We can obtain the solution either directly from the graphical methods or from use of an 
equation solver with a reasonable fi rst guess provided by the approximate solution suggested by
the graphs. In either case, we fi nd the solution to be:

xa
a 5 0.855     and     xa

b 5 0.101

0 0.2 0.4 0.6 0.8

1.1

0.9

0.8

0.7

1

xa

x i
 γ i

 

1

x β
a γ β

a = xα
a γ α

a

x
a γ

a
(1

− x
a

)γ b

(1− x β
a)γ β

b = (1− xα
a )γ α

b

Figure E8.19A Values of xaga and 11 2 xa 2gb vs. xa for Example 8.19.
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8.2  Liquid (a)—Liquid (b) Equilibrium: LLE ◄ 517

Alternatively, the following MATLAB mfi le can solve for equilibrium mole fractions.

%% Matlab File to solve for LLE using the 3-suffi x Margules Equation
% This program solves for liquid mole fractions of a binary mixture 
% of a and b it assumes xa,beta < 0.49 and xa,alpha > 0.51

clear all;
format short g;
format compact;
clc;
n = 4900;   % set step size for recursive solution
lowest1 = 1;
 
% Input gas constant, Margules parameters, and system temperature
R = 8.314;       % J / (mol K)
A = 6349;        % J/mol
B = -384;        % J/mol
T = 50 +273.15;     % K
 
% set xaalpha matrix from 0.51 to 1 to resolution of 0.0001
xaalpha = [0.51:0.0001:1];
 
% Calculate the left hand side (LHS) of the two LLE equations
LHS1 = xaalpha .* exp ((A + 3 * B)/ R/ T .* (1 xaalpha).^2 ...

2 4 * B / R / T* (1 xaalpha).^3 );
LHS2 = (1 xaalpha) .* exp ((A 3 * B)/ R/ T .* (xaalpha).^2 ...

+ 4 * B / R / T* (xaalpha).^3 );
 
% Recursive solution solving the RHS of the two LLE equation
for i = 1:n             % sets step size for xabeta
xabeta = i * .0001;

0.2 0.4 0.6 0.8 1 1.20

1.2

1

0.8

0.6

0.4

0.2

 0 

increasing xa

x a
γ a

xα
a = 0.86

(1 − xa)γb

xa = 0

xa = 1

x β
a = 0.10

Figure E8.19B Values of xaga vs. 11 2 xa 2gb as we increase values of xa  for 
Example 8.19. The solution is indicated where the curve crosses itself.

(Continued)

c08.indd   517c08.indd   517 01/11/12   10:10 AM01/11/12   10:10 AM



518 ► Chapter 8. Phase Equilibria III: Applications

RHS1 = xabeta .* exp ((A + 3 * B)/ R/ T .* (1 xabeta).^2 ...
2  4 * B / R / T* (1 2 xabeta).^3 );
RHS2 = (1 2 xabeta) .* exp ((A 2 3 * B)/ R/ T .* (xabeta).^2 ...
+ 4 * B / R / T* (xabeta).^3 );
[lowest2 index] = min(abs(RHS1 2 LHS1) + abs(RHS2 2 LHS2));
    if lowest2 < lowest1
       lowest1 = lowest2;
       xans = [xabeta; xaalpha(index)];
    end
  end
 
% display the answer
disp(' ')
disp('Calculated mole fractions of species a in LLE')
C1 = sprintf('  xabeta = %0.5g', xans(1));
disp(C1)
C2 = sprintf('  xaalpha = %0.5g', xans(2));
disp(C2)

MATLAB output:
Calculated mole fractions of species a in LLE
  xabeta = 0.1014
  xaalpha = 0.8553

Find a graphical solution to Example 8.19 by determining where the Gibbs energy of the 
 system is at a minimum.

SOLUTION We can solve for the Gibbs energy by using the defi nition for g from page 433:

 g 5 1xaga 1 xbgb 2 1 RT 3xa ln xa 1 xb ln xb 4 1 gE (E8.20A)

Applying the three-suffi x Margules expression for gE in Equation (E8.20A) and rearranging gives:

 g 2 1xaga 1 xbgb 2 5 RT 3xa ln xa 1 xb ln xb 4 1 xaxb 3A 1 B 1xa 2 xb 2 4 (E8.20B)

EXAMPLE 8.20

Solution to Example 
8.19 by Minimization 
of Gibbs Energy

Figure E8.20 Plot of g 2 1xaga 1 xbgb 2  vs xa  for the binary system described 
in Example 8.19. The equilibrium composition is shown.
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0

−100

−200

−300

xa

g 
− 

x a
g a

 −
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8.3  Vapor–Liquid (a)—Liquid (b) Equilibrium: VLLE ◄ 519

Figure E8.20 shows a plot of g 2 1xaga 1 xbgb 2  vs. xa. The equilibrium compositions in the two-phase
region can be found by drawing a line tangent to the minima. The compositions are found to be:

xa
a 5 0.85     and     xa

b 5 0.10

Any composition of xa  between these values will lower its Gibbs energy by splitting into two 
phases. Inspection of Figure E8.20 shows that for xa , 0.10 or xa . 0.85, only one phase exists.

In Example 8.19 we solved for the equilibrium composition of the two liquid phases 
by setting the fugacities of each species equal. In this example, we came up with the same 
answer by using another approach—minimization of the Gibbs energy for the entire system. 
In general, we can solve equilibrium problems in thermodynamics either way. For example, we 
will see that both approaches are commonly taken in calculating chemical reaction equilibrium 
with multiple reactions (Section 9.7). We generally take the approach that is the most friendly 
computationally. Which approach would you favor, that of Example 8.19 or Example 8.20? 

Apply the criterion for inherent instability of a single liquid phase to determine the composi-
tion range at which the system in Example 8.19 will spontaneously split into two phases.

SOLUTION The instability condition is given by Equation (8.33):

 ¢'2g

'xa
2
≤

T,P
, 0 (8.33)

Again, we will consider the case when the nonideality is described by the three-suffi x Margules 
equation with parameters given in Example 8.19. We can write the Gibbs energy according to 
Equation (E8.20B):

 g 5 xaga 1 xbgb 1 RT 1xa ln xa 1 xb ln xb 2 1 xaxb 3A 1 B 1xa 2 xb 2 4 (E8.21A)

Differentiating Equation (E8.21A) twice gives:

 ¢'2g

'xa
2
≤

T,P
5 RT¢ 1

xa
1

1
xb
≤ 2 2A 1 6B 1xb 2 xa 2 , 0 (E8.21B)

Solving Equation (E8.21B) shows the liquid is unstable between:

0.225 , xa , 0.706

This composition range is tighter than the solution to Example 8.20 and can be seen as the 
infl ection points in Figure E8.20. 

EXAMPLE 8.21

Instability in 
Example 8.19

 ►8.3  VAPOR–LIQUID 1a 2—LIQUID 1b 2  EQUILIBRIUM: VLLE
In this section, we consider the case when three phases are in equilibrium: a vapor phase 
and two liquid phases, a and b. A generic diagram of a system with m components 
in vapor–liquid–liquid (VLLE) equilibrium is shown in Figure 8.15. How does such 
behavior come about? Let’s return to the binary mixture of a and b. Consider the case 
where we have both an azeotrope in VLE and liquid–liquid equilibrium (LLE). This 
scenario corresponds to a minimum-boiling azeotrope where the like interactions are 
stronger than the unlike interactions. Figure 8.16a shows the phase diagram for the case 
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520 ► Chapter 8. Phase Equilibria III: Applications

where the azeotrope and the LLE dome are clearly separated. As the system pressure 
decreases, however, the components can become volatile before the upper consulate 
temperature is reached.
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 Figure 8.16 (a) Phase dia-
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(b)  Phase diagram exhibiting 
VLLE.
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Figure 8.16b shows such a case where the VLE and LLE curves intersect. Three 
temperatures are delineated. At the lowest temperature, TLLE, three different types of 
phase behavior are possible. Only liquid-phase b is present at low xa, while only liquid-
phase a is present at high xa. Two liquid phases in equilibrium manifest at intermedi-
ate composition. Their compositions are indicated by the tie line in Figure 8.16b. At 
temperature TVLE, only liquid–phase b is present at low xa, while only liquid-phase a is 
present at high xa. However, as the concentration of xa increases, a liquid b–vapor phase 
appears followed by only vapor and then a liquid a–vapor phase. The compositions in 
the two phase regions are given by the appropriate tie lines. At the intermediate tem-
perature TVLLE, again only liquid-phase b is present at low xa, while only liquid-phase a 
is present at high xa. However, at mole fractions xa in between these two single-phase 
regions, both a and b liquid phases can coexist along with the vapor. The liquid b phase 
is given by the composition to the left, the liquid a phase by the composition to the right, 
and the vapor by the point in the center, as illustrated on the x-axis on the diagram. Thus, 
in the intermediate composition region at temperature TVLLE, this binary system exhibits 
VLLE. More complicated VLLE phase diagrams, where the vapor composition does not 
fall in between the two liquids, have also been observed. Can you identify the phases and 
compositions present in Figure 8.16b for a given T and composition of a system? Can you 
fi gure out what the Pxy phase diagram would look like?

To calculate the equilibrium compositions in VLLE, we set the fugacities of each 
species equal:

f̂ a
v 5 f̂ a

a 5 f̂ a
b

and, f̂ b
v 5 f̂ b

a 5 b̂b
b

To solve these equations, we need a model for gE. We will illustrate the approach using 
the two-suffi x Margules equation; however, the same methodology can be applied to any 
model from Table 7.2.

If we are at low pressure and the vapor phase is ideal, and we can write:

 yaP 5 xa
a exp B A

RT
 1xb

a 2 2RPa
sat 5 xa

b exp B A
RT

 1xb
b 2 2RPa

sat (8.35)

Similarly, for species b, we have:

 ybP 5 xb
a exp B A

RT
 1xa

a 2 2RPb
sat 5 xb

b exp B A
RT

 1xa
b 2 2RPb

sat (8.36)

Additionally, the mole fractions in each phase must sum to 1, so that:

 ya 1 yb 5 1 (8.37)

 xa
a 1 xb

a 5 1 (8.38)

and, xa
b 1 xb

b 5 1 (8.39)

The eight unknowns—ya, yb, xa
a, xb

a, xa
b, xb

b, P, and T—are related by seven equations 
in Equations (8.35) through (8.39). Thus, specifying any one of these variables constrains 
the other seven and fi xes the state of the system. Such a conclusion is also given by the 
Gibbs phase rule [see Equation (1.12) and Example 6.17]. In the general m component 
case specifi ed in Figure 8.15, m 2 1 variables must be specifi ed.
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522 ► Chapter 8. Phase Equilibria III: Applications

A binary mixture exhibits vapor–liquid–liquid equilibrium at 300 K. The excess Gibbs energy 
is described by the two-suffi x Margules equation with A 5 6235 3J/mol 4. Determine the com-
position of the three phases and the total pressure. The saturation pressures are given by 
Pa

sat 5 100 3kPa 4 and Pb
sat 5 50 3kPa 4.

SOLUTION We begin by solving for the composition of the two liquid phases at 300 K. We can use 
the approach of either Example 8.19 or Example 8.20. Using the former, we equate the fugacities of 
a and b in the liquid phases. In analogy to Equations (E8.19C) and (E8.19D), equating the liquid-
phase fugacities and applying the two-suffi x Margules equation gives:

 xa
a exp B A

RT
 11 2 xa

a 2 2R 5 xa
b exp B A

RT
 11 2 xa

b 2 2R  (E8.22A)

and,

 11 2 xa
a 2  exp B A

RT
 1xa

a 2 2R 5 11 2 xa
b 2  exp B A

RT
 1xa

b 2 2R  (E8.22B)

Since we know the parameter A, Equations (E8.22A) and (E8.22B) represent two equations 
with two unknowns, xa

a  and xa
b. Again, it helps to have an idea where the solution to these 

nonlinear equations lies, so that we do not obtain the trivial answer xa
a 5 xa

b. Figure E8.22 
plots the quantities xaga and 11 2 xa 2gb vs. xa. The solution occurs at the two compositions 
of xa where Equations (E8.22A) and (E8.22B) are simultaneously satisfi ed. In this case, both 
solutions xaga and 11 2 xa 2gb occurs at the same value, as is indicated in the fi gure.

In Figure E8.22, we can see that the plot xaga is a mirror image of 11 2 xa 2gb. This result 
is not surprising, since the activity coeffi cient model is symmetric. We can use this feature 
to formulate an alternative solution to Equations (E8.21A) and (E8.21B). Since the activity 
coeffi cients are symmetric, inspection of Figure E8.22 shows that we must have xa

a 5 1 2 xa
b. 

Thus Equation (E8.22A) becomes:

 xa
a exp B A

RT
 11 2 xa

a 2 2R 5 11 2 xa
a 2  exp B A

RT
 1xa

a 2 2R  (E8.22C)

EXAMPLE 8.22

Calculation of 
Composition in VLLE
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0.9

0.8

1

x β
a xα

a
xa

x i
 γ i

 

x β
a γ β

a = xα
a γ α

a

x
a γ

a

(1
 −

 x a
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a )γ α

b

Figure E8.22 Values of xagb  and 11 2 xa 2gb  vs. xa  for Example 8.22. The 
double arrow in the figure represents two lines that lay on top of each other.
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8.4  Solid–Liquid and Solid–Solid Equilibrium: SLE and SSE ◄ 523

Rewriting Equation (E8.22C) gives:

 ln¢ xa
a

1 2 xa
a
≤ 5

A
RT

 12xa
a 2 1 2  (E8.22D)

Equations (E8.22C) and (E8.22D) are valid only for the symmetric two-suffix Margules 
equation. Solving either Equation (E8.22D) or Equations (E8.22A) and (E8.22B):

xa
a 5 0.855     and     xa

b 5 0.145

To fi nd the pressure, we add Equations (8.35) and (8.36):

P 5 xa
a exp B A

RT
 1xb

a 2 2R
Pa

sat 1 xb
a exp B A

RT
 1xa

a 2 2R
Pb

sat 5 135 3kpa 4

Finally, solving Equation (8.35), we get:

ya 5

xa
a exp B A

RT
 1xb

a 2 2RPa
sat

P
5 0.667

 ►8.4  SOLID–LIQUID AND SOLID–SOLID EQUILIBRIUM: SLE AND SSE
We next treat the case of solid–liquid equilibria (SLE), solid–solid equilibria (SSE), and 
solid–solid–liquid equilibria (SSLE). Solids that are in equilibrium with liquids can take 
two forms: (1) pure solids that are immiscible with other species and (2) solid solutions 
that, like liquid solutions, contain more than one species. Crystalline solids are formed 
within a well-defi ned geometrical lattice structure. While partial miscibility in liquid sys-
tems is due solely to the relative strength of like intermolecular interactions compared 
to unlike intermolecular interactions, the ability of solids to mix depends primarily on 
how well one atom fi ts to the lattice structure of the other species. Thus, complete solid 
miscibility occurs only when species are nearly the same size, have the same crystal 
structure, and have similar electronegativities and valences. We treat pure solids fi rst and 
then address solid solutions.

Pure Solids

We consider fi rst a pure solid in equilibrium with a liquid mixture. Figure 8.17 shows 
two typical phase diagrams for binary systems of a and b. In both cases, the equilibrium 
between the pure, immiscible solid phases and the completely miscible liquid phase is 
shown. Figure 8.17a shows a phase diagram in which only solids of pure a or pure b are 
stable. The phase diagram shows three two-phase regions, solid a–solid b, solid b–liquid, 
and solid a–liquid. In each of the two-phase regions, the equilibrium compositions at a 
given temperature are determined in a similar manner to the phase diagrams discussed 
earlier. Similarly, the amount present in each phase can be determined by the lever rule. 
At higher temperatures, as in Figure 8.17a, the binary exists as a single liquid phase. We 
notice that the freezing point of the pure solid decreases as we add a little bit of the other 
species into the mixture. We will see why shortly. Thus, when a and b are mixed, a single-
phase liquid can exist at a lower temperature than the freezing point of either pure solid. 
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524 ► Chapter 8. Phase Equilibria III: Applications

The lowest possible temperature in which we have only liquid is called the eutectic 
point. The eutectic point, marked in Figure 8.17a, is the point at which the equilibrium 
line of liquid for the solid b–liquid binary intersects with that of the solid a–liquid binary. 
At the eutectic temperature, we have SSLE where three phases can exist in equilibrium 
(solid a, solid b, and liquid) much like the behavior of VLLE in Section 8.3. At this point 
the binary system is completely constrained, so all the properties are fi xed.

The phase diagram in Figure 8.17b consists of the case where a solid compound 
of stoichiometry a2b forms. Its features are similar to those in Figure 8.17a, but now 
there are fi ve two-phase regions: solid a–solid a2b, solid a2b–solid b, solid b–liquid, solid 
a2b–liquid, and solid a–liquid. Additionally, there are two compositions at which three 
phases can exist in SSLE: solid a–solid a2b–liquid and solid a2b–solid b–liquid. The for-
mer three-phase region occurs at a lower temperature than the latter. While the phase 
diagram in Figure 8.17b may look daunting at fi rst, it can in fact be considered as two 
simple eutectic diagrams like those shown in Figure 8.17a linked together.

In fact, many binary mixtures form more than two compounds; therefore, further 
linkages of the type shown in Figure 8.17b are noticed in their phase diagrams. Fig-
ure 8.18 shows the solid–liquid phase diagram of a binary mixture of copper and yttrium. 
In this system, four compound phases (g, d, P, and z) exist in addition to pure Cu and 
two pure Y phases (a and b). Can you identify the stoichiometry of the compounds? The 
three phases — d, P, and z — possess defi nite melting points; such compounds are said 
to have congruent melting points. However, the g phase is not stable all the way up to 
a well-defi ned melting point but rather dissociates into a liquid and d phase solid above 
around 931°C. Such a compound is said to have an incongruent melting point, and the 
state at which it dissociates is called the peritectic point. More complex phase behavior 
is also observed in phase diagrams containing pure solids. For example, the liquid phase 
may be only partially miscible.

We now look at how to construct these phase diagrams from thermodynamic prop-
erty data. Our criteria for species i in solid–liquid equilibrium is:

f̂ i
s 5 f̂ i

l

However, if the solid phase contains only pure species i, we can replace the fugacity of 
solid species i in the mixture with its pure species fugacity. Choosing the Lewis/Randall 
reference state for the liquid, we get:

fi
s 5 xigi fi

l

Liquid

Solid a and a2b

Solid a2b
and liquid

Solid a
and liquid

Solid a
and liquid

Solid a2b
and liquid

Solid a2b and bSolid a and b

T
Liquid

Eutectic
point

T

Solid b
and liquid

Solid b
and liquid

xaxa
(a) (b)

Figure 8.17 SLE in pure, immiscible solids. (a) Binary solution of a and b; (b) a compound a2b 
forms.
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8.4  Solid–Liquid and Solid–Solid Equilibrium: SLE and SSE ◄ 525

Which can be rewritten as:

 xigi 5
fi

s

fi
l
 (8.40)

However, we can relate the right-hand side to the defi nition of fugacity for a pure species:

gi
s 2 gi

l 5 RT ln 

fi
s

fi
l

The term on the left-hand side is equal to the Gibbs energy of fusion, Dgfus. Plugging in 
Equation (8.40) and rearranging:

 ln 3xigi 4 5
Dgfus

RT
5

Dhfus

RT
2

Dsfus

R
 (8.41)

We typically know the enthalpy (heat) and entropy of fusion at a specifi ed  temperature— 
the normal melting point, Tm. Therefore, we need to construct a thermodynamic pathway 
to fi nd the enthalpy and entropy of fusion at any T. Figure 8.19 illustrates a path for the 
calculation of Dhfus. Adding together the three steps, we get:
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Figure 8.18 Phase diagram of Cu–Y binary system. [From T. Lyman et al., Metals Handbook, 
Metalography, Structures, and Phase Diagrams, 8th ed. (Vol. 8) (Metals Park, OH: American 
Society for Metals, 1973).] Courtesy of ASM International.
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 Dhfus,T 5 3

Tm

T

cP
l dT 1 Dhfus,Tm 1 3

T

Tm

cP
s dT 5 Dhfus,Tm 1 3

T

Tm

DcP
sldT (8.42)

where we used the following defi nition:

DcP
sl 5 cP

s 2 cP
l

The entropy of fusion can be found by the same procedure:

Dsfus,T 5 3

Tm

T

cP
l

T
 dT 1 Dsfus,Tm 1 3

T

Tm

cP
s

T
 dT 5 Dsfus,Tm 1 3

T

Tm

DcP
sl

T
 dT

Since Dgfus 5 0 at the melting temperature, we can rewrite this equation as:

 Dsfus,T 5
Dhfus,Tm

Tm
1 3

T

Tm

DcP
sl

T
 dT (8.43)

Finally, substituting Equations (8.42) and (8.43) into Equation (8.41) gives:

 ln 3xigi 4 5
Dhfus,Tm

R
 B 1

T
2

1
Tm
R 2

1
R 3

T

Tm

DcP
sl

T
 dT 1

1
RT 3

T

Tm

DcP
sldT (8.44)

If DcP
sl is a constant, Equation (8.44) becomes:

 ln 3xigi 4 5
Dhfus,Tm

R
 B 1

T
2

1
Tm
R 1

DcP
sl

R
 B1 2

Tm

T
2 ln¢ T

Tm
≤ R  (8.45)

Find the eutectic point for a binary mixture of cadmium and lead. You may assume that the 
solid phases of these metals are completely immiscible and the liquid is completely miscible. 

The following data are available for the pure species:

EXAMPLE 8.22 

Prediction of 
Eutectic Point 
for Cd–Pb Binary 
System

Species Tm [K]
Dhfus 
[J/mol]

cs
P at Tm 

[J/(mol K)]
cl

P at Tm 
[J/(mol K)] 

Pb 600.1 24770 29.5 30.7

Cd 594.3 26192 25.9 29.7

Perform calculations for the following cases:
(a) The liquid forms an ideal solution
(b) The liquid nonideality can be described by the two-suffi x Margules equation with 
A 5 8,200 J/mol
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8.4  Solid–Liquid and Solid–Solid Equilibrium: SLE and SSE ◄ 527

Compare with the experimentally determined eutectic at xPb 5 0.719 and T 5 521 K.

SOLUTION (a) If we assume the solids are immiscible and the liquid mixture forms an ideal 
solution, we set gi 5 1 in Equation (8.45). We can write this equation for each species in the 
system. For Pb:

 ln 3xPb 4 5
Dhfus,Tm,Pb

R
 B 1

T
2

1
Tm,Pb

R 1
Dcsl

P ,Cd

R
 B1 2

Tm,Pb

T
2 ln¢ T

Tm,Pb
≤ R

  5 2573.7B 1
T

2
1

600.1
R 2 0.14B1 2

600.1
T

2 ln¢ T
600.1

≤ R  (E8.22A)

Similarly for Cd:

 ln 3xCd 4 5
Dhfus,Tm,Cd

R
 B 1

T
2

1
Tm,Cd

R 1
Dcsl

P ,Cd

R
 B1 2

Tm,Cd

T
2 ln¢ T

Tm,Cd
≤ R

  5 2744.8B 1
T

2
1

594.3
R 2 0.46B1 2

594.3
T

2 ln¢ T
594.3

≤ R  (E8.22B)

We now solve each of these two equations for T at different mole fractions by decreasing the 
mole fraction of Pb from pure Pb or of Cd from pure Cd, in Equations (E8.22A) and (E8.22B), 
respectively. 

When the curves generated intersect, we have the eutectic. For example, the second and 
third columns of Table E8.22 show representative values of this calculation. We only keep the 
highest of the temperatures from Equations (E8.22A) and (E8.22B). Figure E8.22a plots the 
result of these calculations. 

TABLE E8.22 Sample Calculations of Equilibrium Temperature for Different Pb Mole Fractions

T (part a) T (part b)

xPb Eqn (E8.22A) Eqn (E8.22B) Eqn (E8.22C) Eqn (E8.22D) 

0.1 548.8 555.9

0.2 506.6 532.2

0.3 466.8 519.2

0.4 428.8 513.2

0.5 391.9 510.8

0.55 373.5 509.8

0.6 395.3 508.3

0.65 417.2 505.7

0.7 439.9 505.9

0.8 488.3 521.0

0.9 541.4 550.5

(Continued)
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528 ► Chapter 8. Phase Equilibria III: Applications

From these data, we get the following at the eutectic:

xPb 5 0.549 and T 5 373.9 K

These values are considerably different than the experimental values in the problem statement.
(b) Equation (8.45) can be rewritten:

RT ln 3xi 4 1 RT ln 3gi 4 5 Dhfus,TmB1 2
T

Tm
R 1 Dcsl

P BT 2 Tm 2 T ln¢ T
Tm
≤ R

So for Pb, we get:

RT ln 3xPb 4 1 A 11 2 xPb 2 2 5 Dhfus,Tm,PbB1 2
T

Tm,Pb
R 1 Dcsl

P,PbBT 2 Tm,Pb 2 T ln¢ T
Tm,Pb

≤ R
(E8.22C) 

Similarly, for Cd, we get:

RT ln 3xCd 4 1 A 11 2 xCd 2 2 5 Dhfus,Tm,CdB1 2
T

Tm,Cd
R 1 Dcsl

P,CdBT 2 Tm,Cd 2 T ln¢ T
Tm,Cd

≤ R  

(E8.22D)

The right two columns and Figure E8.22b show the results of these calculations. From these 
data, we get the following at the eutectic:

xPb 5 0.675 and T 5 503.8 K

T
e
m

p
e
ra

tu
re

 [
K

]

T
e
m

p
e
ra

tu
re

 [
K

]

0.8 10.60.4

Liquid

Solid Pb

– liquid

Solid Cd

– liquid

Solid Cd – Solid Pb

Solid Cd – Solid Pb

Liquid

Mole fraction Pb Mole fraction Pb

(a) Ideal solution (b) Nonideal liquid phase

0.2
300

350

400

450

500

550

600

0 0.8 10.60.40.2
300

350

400

450

500

550

600

0

Figure E8.22 SLE phase behavior for the Cd–Pb binary system assuming (a) ideal liquid and 
(b) nonideal liquids.
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The resulting values for eutectic composition and temperature are 6% and 3% different than 
the experimentally measured values 1xPb 5 0.719 and T 5 521 K 2 . Although the assumption 
of an immiscible solid is good for Pd in Cd; Cd is actually slightly soluble (6%) in Pb. We will 
learn how to account for such solid mixtures next.

We see that the eutectic temperature increases signifi cantly when we include the liquid 
phase activity coeffi cient. We can understand this result from a molecular perspective. A large 
positive value of the two-suffi x Margules parameter, A, indicates that the like interactions are 
much stronger than the unlike interactions. Thus, the real liquid is less energetically stable than 
the ideal solution, and the resulting equilibrium temperature will be higher for the solid to melt.

Solid Solutions

It is also possible for solids to form solutions where they mix together in a manner similar 
to liquids. Consider a solid originally of pure a to which species b is added. A solid solution 
forms if the crystal structure stays the same upon addition of b. There are two ways in which 
solid solutions form. In a substitutional solid solution, species b occupies the lattice sites 
where species a once sat. As long as the crystal can accommodate b without altering its basic 
structure, a solid solution will occur. On the other hand, an interstitial solid solution forms 
when species b sits in interstitial spaces in between the lattice sites where a sits. These spaces 
are not part of the crystal structure. In this case, the b will be only sparingly soluble in a.

Two examples of phase diagrams of binary solid solutions with liquids are shown in 
Figure 8.20. Figure 8.20a shows the phase behavior of a solid solution where a and b are 
miscible in all proportions. It is similar to the type of behavior shown in Figure 8.4 for 
VLE. Solids that form completely miscible solutions can also show azeotropic behavior 
analogous to the behavior shown in Figure 8.8. Molybdenum and tungsten exhibit the 
type of phase behavior depicted in Figure 8.20a. The solid solution can mix in all pro-
portions since the species are similar in size (with nearest-neighbor distances of 2.72 Å 
and 2.73 Å), are chemically similar (both in Group VIb of the periodic table), and both 
form body center cubic crystal lattices. In general, a binary pair must have these charac-
teristics to be completely miscible; however, binary pairs with these characteristics are 
relatively rare. Therefore, most solid solutions are only partially miscible. Figure 8.20b 
shows the phase diagram for a binary mixture where each solid is partially miscible in the 
other. This behavior is the analog to Figure 8.16b for solid–liquid solutions. In addition 
to the phases found for pure solids in Figure 8.17a, single-phase regions are found for 
partially miscible solid a and partially miscible solid b. However, only a limited amount 
of b will dissolve in a and only a limited amount of a in b. Aluminum and silicon exhibit 
behavior similar to that shown in Figure 8.20b.

For the case of a solid solution, we must fi nd the composition of the solid, Xi, and 
the activity coeffi cient in the solid, Gi. In this case, equating the fugacity of species i in 
the solid to its fugacity in the liquid gives:

XiGi fi
s 5 xigif i

l

Rearranging we get:

xigi

XiGi
5

fi
s

fi
l
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We can rewrite the right-hand side using the same development as above for pure 
species:

 lnB xigi

XiGi
R 5

Dhfus,Tm

R
 B 1

T
2

1
Tm
R 2

1
R 3

T

Tm

DcP
sl

T
 dT 1

1
RT 3

T

Tm

DcP
sldT (8.46)

If  DcP is a constant, Equation (8.46) becomes:

 lnB xigi

XiGi
R 5

Dhfus,Tm

R
 B 1

T
2

1
Tm
R 1

DcP
sl

R
 B1 2

Tm

T
2 ln¢ T

Tm
≤ R  (8.47)

We can relate the phase behavior of these binary mixtures to the Gibbs energy of 
each phase. Figure 8.21 shows plots of Gibbs energy of the solid phase, gsolid, and the 
liquid phase, gliquid, for a completely miscible solid solution (Figure 8.21a) and a partially 
miscible solid solution (Figure 8.21b). The corresponding phase behavior is shown below 
the plot of Gibbs energy. The Gibbs energy curves in Figure 8.21a correspond to temper-
ature T1 on the phase diagram, between the melting points of the two pure solids. At low 
values of xa, energetic effects dominate and the Gibbs energy of the solid is lower than the 
Gibbs energy of the liquid. Conversely, at high values of xa, the Gibbs energy of the liquid 
is lower. The resulting phase behavior shows three regions. In low proportion of species a, 
the solid has a lower Gibbs energy and is favored at equilibrium. At high proportion of a 
the liquid is favored. Between the minima in Gibbs energy, we can draw a tangent line, as 
shown in Figure 8.21a. The Gibbs energy at mole fractions in between the minima can be 
lowered if the system separates into two phases, in much the same way as was explained in 
our discussion of two liquid phases in Figure 7.10 or vapor–liquid equilibrium in Figure 
8.6. In this case, we have solid–liquid equilibrium, with the composition in each phase 
determined by the mole fraction at which the tangent line abuts the two curves.

Figure 8.21b shows the case where the solids are only partially miscible. In this 
case, we see that the Gibbs energy of each solid phase rises dramatically when its lattice 
can no longer accommodate the other species. The Gibbs energy diagram is drawn for 
temperature T2  in the phase diagram below, which corresponds to a temperature below 
the melting temperature of either of the pure species. In this case, two tangent lines can 
be drawn between the three corresponding minima in Gibbs energy. At compositions 
in between those at which either tangent line abuts the two curves, Gibbs energy is 
minimized by the formation of two phases. The corresponding phases are shown on the 
phase diagram below.

Liquid

Liquid and
solid

Liquid

Solid solution

xaxa

(a) (b)

Solid b

Solid a
Solid b
and liquid

Solid a
and liquid

Solid a and b

Eutectic
point

TT

Figure 8.20 SLE in solid solutions. (a) The solid solution is miscible in all proportions; (b) a par-
tially miscible solid solution.
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Liquid
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(b)

Figure 8.21 SLE in solid solutions. Gibbs energies of solid and liquid phases are plotted on top; 
phase diagrams are on the bottom. (a) The solid solution is miscible in all proportions; (b) a par-
tially miscible solid solution.

 ►8.5  COLLIGATIVE PROPERTIES
In this section, we examine some effects on the properties of a pure liquid when a small 
amount of solute is added. When the mixture forms an ideal solution, the change in these 
properties depends only on the amount of solute present, not on the chemical nature of 
the solute. Such properties, termed colligative properties, include boiling-point eleva-
tion, freezing-point depression, and osmotic pressure.

Boiling Point Elevation and Freezing Point Depression

We know that if we specify the system pressure, the temperature at which pure species 
a boils is fi xed. For example, the normal boiling point of a substance, the temperature 
at which a pure species boils at a pressure of 1 atm, is well defi ned. The state of such a 
system is shown schematically as system I on the left-hand side of Figure 8.22. Consider 
now the presence of an essentially nonvolatile solute, species b in a liquid phase of mostly 
solvent a, as shown in system II on the right-hand side of Figure 8.22. System II is at 
the same pressure as system I. We observe that it always requires a greater temperature 
for a to boil in system II than in system I. This phenomenon is termed boiling-point 
elevation. Similarly, if we add a small amount of solute b to a liquid solution, solid a will 
freeze at a lower temperature than the freezing point of the pure liquid. The addition of 
solute leads to freezing-point depression.

We fi rst qualitatively examine these phenomena in terms of ideal solution behavior; 
then we will apply the principles of phase equilibrium to quantify these phenomena 
for both nonideal and ideal solutions. To understand why the boiling point elevates, we 
can apply the principles of phase equilibrium that we have just developed. We compare 
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532 ► Chapter 8. Phase Equilibria III: Applications

system I with pure a to system II, which is at the same pressure but also contains dilute 
b in the liquid. 

In system I, the system pressure is, by defi nition, the saturation pressure, that is,

 1Pa
sat 2 I 5 P (8.48)

Next, we examine the equilibrium criteria for species a in system II. If we are at low 
pressure and the solute is dilute enough, Raoult’s law applies:

yaP 5 xa 1Pa
sat 2 II

However, since the solute is not volatile, the mole fraction of a in the vapor is approxi-
mately 1. Thus,

 1Pa
sat 2 II 5

P
xa

 (8.49)

Comparing Equations (8.48) and (8.49), we conclude that 1Pa
sat 2 II . 1Pa

sat 2 I since xa , 1. 
Since the saturation pressure of a in system II is higher than in system I, the boiling 
temperature must also be elevated.

Alternatively, we can examine the colligative properties of species a in terms of its 
chemical potential. The state at which the liquid and the vapor or the liquid and the 
solid are in equilibrium is given when the chemical potential in each phase is equal. 
The chemical potential of a pure species is identical to its molar Gibbs energy. We fi rst 
assume b is dilute and we have an ideal solution. We will shortly relax this assumption. 

We have seen that the Gibbs energy quantifi es the trade-off between the energetic 
stability of one phase and the increased randomness of the other. We can compare these 
two effects for a pure liquid vs. a dilute ideal solution to which a small amount of solute 
has been added. Since all their intermolecular interactions are the same, the energetic 
interactions of the dilute solution are identical to the pure liquid and energetics will not 
affect the trade-off between the liquid and the vapor at the boiling point or the liquid 
and the solid at the freezing point. On the other hand, the entropy of the dilute liquid is 
greater than that of the pure liquid since the presence of solute gives it many more pos-
sible confi gurations. Entropy becomes more and more important as T becomes greater. 

ν

System Ι

a a

a

a
a

a a

a

a
a

Ideal
gas a 

Ideal
gas a 

Liquid, a

ν

System ΙΙ

Liquid,  a and ba a a

a
I

aa

a a
a b

b
b

I

a

a a

a

a
a a

a a a
aaaa a

a
a

aa
a a

a
aa

a
a

aa
a

a
a

a

Pext = 1 atm Pext = 1 atm

Tboil T P(P a
sat

 )
I

Figure 8.22 Illustration of boiling points for pure species a (left) and for species a in the presence 
of nonvolatile solute b (right).
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Since the entropy difference between the vapor and the dilute liquid has been reduced 
relative to that of the vapor and pure liquid, it takes a higher temperature for the more 
entropic vapor phase to balance the energetic dilute liquid solution, and the boiling point 
of a is elevated. Similarly, it takes a lower temperature to balance the increased entropy 
of the dilute liquid in favor of the energetic stability of a solid, and the freezing point is 
lowered.

We can look at the effect of going from pure species a to a in a mixture quantitatively 
by examining the effect of adding species b on the chemical potential of a in the liquid. 
Applying the defi nition of fugacity, the difference in the chemical potential of a in the 
mixture and that of pure liquid a can be written as:

 ma 2 ga 5 RT ln 

f̂a
ideal

fa
5 RT ln xa (8.50)

where the defi nition of an ideal solution, Equation (7.29), is used. Since the logarithm 
of the mole fraction is always a negative number, Equation (8.50) mandates that the 
chemical potential of a in the dilute solution is always less than its pure species molar 
Gibbs energy.

Figure 8.23 shows a plot of the chemical potential of species a in solid, liquid, and 
vapor phases. The chemical potentials of the solid and vapor phases are shown as a 
pure species a, while both pure a and a in a dilute solution are shown for the liquid. We 
see that the chemical potential of a in a dilute solution is lower than in the pure liquid, 
as prescribed by Equation (8.50). Phase equilibrium occurs when the lines marking 
the chemical potential in two phases intersect, as denoted in the fi gure. The freezing 
(melting) and boiling points of pure species a are labeled Tm  and Tb, respectively. We 
notice that the shift in chemical potential of a in solution leads to a lower freezing point 
and a higher boiling point. Therefore, the lowering of the chemical potential of liquid 
a in solution relative to its pure species value can be seen to give rise to the colligative 
 properties—freezing-point depression and boiling-point elevation.

We now quantify the rise in the boiling point of pure species i when a solute is added 
to the liquid, in general. If the vapor phase contains only pure species i, we can write the 
fugacity of the vapor in terms of the pure species fugacity. Choosing the Lewis/Randall 
reference state for the liquid, we get:

 fi
v5 xigi fi

l (8.51)

Equation (8.51) is similar to that in the last section for the pure species solid. Thus, in 
analogy to the development of Equation (8.45) for solids, we can see that:

 ln 3xigi 4 5
Dhvap, Tb

R
 B 1

T
2

1
Tb
R 1

DcP
vl

R
 B1 2

Tb

T
2 ln¢ T

Tb
≤ R  (8.52)

where DcP
vl 5 cP

v 2 cP
l  is assumed constant.

Let’s now apply the general result of Equation (8.52) to the system shown in Figure 
8.22. If we assume that solute b is dilute enough that the liquid can be treated as an ideal 
solution and that the boiling point elevation is small, Equation (8.52) becomes:

ln 1xa 2 5 ln 11 2 xb 2 5
Dhvap

R
 B 1

T
2

1
Tb
R
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534 ► Chapter 8. Phase Equilibria III: Applications

Since the mole fraction of b is small, we can write ln 11 2 xB 2 < 2xb. After rearrange-
ment, we see that the boiling point elevation is given by:

 T 2 Tb <
RTb

2

Dhvap
 xb (8.53)

The boiling-point elevation described by Equation (8.53) depends only on the properties 
of a; it is independent of the chemical nature of b, depending only on the amount of b 
present. 

On the other hand, if there is enough b that the liquid is not ideal, we must account 
for the activity of species a in solution. In such a case, we can approximate Equation 
(8.52) by:

 T 2 Tb <
RTb

2

Dhvap
 gaxb (8.54)

Equation (8.54) can be rewritten as:

 ga 5
DTDhvap

RTb
2xb

 (8.55)

where DT 5 T 2 Tb. Equation (8.55) can be used to find activity coefficient model 
parameters. Since enthalpies of vaporization are readily available, we can use Equa-
tion (8.55) to calculate the activity coefficient of the solute from a measured boil-
ing-point elevation. We can then use this value to calculate parameters in a model 
for gE.

Freezing
point

depression
Boiling
point

elevation

Tm Tb T

Liquid
solution

Pure
liquid

ga
s

ga
I

ga
v

μa
I

μa

Vapor

Solid Pure a

a in solution

a in solution

Pure a

Figure 8.23 Plot of the chemical potential of species a as a pure species and in a liquid solution as 
a function of temperature. The difference in where the Gibbs energy of the liquid intersects the 
solid and vapor leads to freezing-point depression and boiling-point elevation, respectively.
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A similar analysis can be applied to freezing-point depression. If we consider an 
ideal solution not too far away from the melting point, we can approximate Equation 
(8.45) by:

 ln 3xa 4 5
Dhfus,Tm

R
 B 1

T
2

1
Tm
R  (8.56)

Again, for a small amount of b, we write ln 11 2 xb 2 < 2xb. Thus, we can rearrange 
Equation (8.56) to give the freezing-point depression of a for a given mole fraction of b:

 T 2 Tm 5
RTm

2

Dhfus,Tm

 xb (8.57)

Again, if there is enough solute to have a nonideal solution, we can solve Equation (8.45) 
for the activity coeffi cient of a in terms of experimentally measurable quantities:

 ga 5
DTDhfus,Tm

RTm
2 xb

 (8.58)

where DT 5 T 2 Tm. We can then use Equation (8.58) to fi nd the activity coeffi cient for a. 
This information can let us fi t parameters in a model for gE.

At what temperature does seawater boil? The concentration of NaCl in seawater is 3.5% by 
weight.

SOLUTION The mole fraction of salt is given by:

xsalt 5

wsalt

MWsalt

wsalt

MWsalt
1

wwater

MWwater

5 0.011

If we assume that the NaCl completely dissociates into sodium and chloride ions, we get:

xb 5 2xsalt 5 0.022

To calculate the boiling-point elevation, we can use Equation (8.53):

T 2 Tb <
RTb

2

Dhvap
 xb 5

8.314 3J/ 1mol K 2 4 1373.15 3K 4 2 2

2257 3J/g 418 3g/mol 4
3 0.022 5 0.63 3K 4

So the temperature that seawater boils is 100.63°C.  

EXAMPLE 8.23

Determination 
of the Boiling-
Point Elevation 
of Seawater

Osmotic Pressure

Osmotic pressure is a third common type of colligative property. Osmosis is the trans-
port of a pure solvent into solution through a semipermeable membrane. The membrane 
allows passage of solvent but restricts fl ow of the solute. Figure 8.24 shows the equilib-
rium state from which we calculate the osmotic pressure. One compartment contains 
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536 ► Chapter 8. Phase Equilibria III: Applications

pure solvent a, while a dilute liquid solution of solvent a and solute b is housed on the 
other side. These two compartments are divided by a semipermeable membrane, which 
species a can transport through but b cannot. The difference in pressure between the 
dilute liquid solution on the right and pure species a on the left at equilibrium is given 
by the osmotic pressure P. If a pressure less than 1P 1 P 2  exists on the right compart-
ment, solvent a will spontaneously fl ow into it from the compartment on the left with 
pure a. Conversely, if the pressure is greater than 1P 1 P 2  is applied, solvent a will be 
forced into the compartment with pure a. This latter case is the basis of separation by 
reverse osmosis.

To calculate the osmotic pressure, we set the chemical potentials of the pure species 
on the left equal to the chemical potential of species a on the right:

ga
T,P 5 ma

T,P1P

The superscripts indicate the respective temperature and pressure.  Applying the defi ni-
tion of fugacity, we can write the chemical potential at P 1 P as:

ma
T,P1P 5 ga

T,P1P 1 RT ln 

f̂a

fa
5 ga

T,P1P 1 RT ln xaga

Substitution and rearrangement gives:

ga
T,P1P 2 ga

T,P 5 2RT ln xaga

We can apply the thermodynamic web to determine the difference in Gibbs energy 
from P to P 1 P at constant T:

3
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T,P 1 P
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T,P  
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 Figure 8.24 Illustration of 
osmotic pressure at equilib-
rium. The difference in pres-
sure between the dilute liquid 
solution on the right and pure 
species a on the left is given 
by the osmotic pressure P.
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Substitution gives:

3

  P1P

P  

vadP 5 2 RT ln xaga

If we assume the liquid is incompressible, we get:

 
vaP

RT
5 2ln xaga (8.59)

Equation (8.59) illustrates that the activity coeffi cient of the solvent can be found through 
measurement of the osmotic pressure. 

In the case that species b is dilute enough, the mixture forms an ideal solution. 
Applying ln 11 2 xb 2 < 2xb, we get:

 P 5
xbRT

va
 (8.60)

Membranes permeable to water but not large macromolecules are readily available. The 
osmotic pressure can then be measured to fi nd the average molecular weight, MWb, of 
the macromolecules in the solution. In this case we rewrite the mole fraction in Equation 
(8.60) on a mass concentration, Ci, basis as follows:

 xb 5 D
Cb

MWb

Ca

MWa
1

Cb

MWb

T < D
Cb

MWb

Ca

MWa

T  (8.61)

where we assume the moles of solvent are much greater than moles of solute. Substitu-
tion of Equation (8.61) into (8.60) gives:

 MWb 5
RTCb

P
 (8.62)

Example 8.24 illustrates how we can apply Equation (8.62) to determine the molecular 
weight of a protein in solution.

It is desired to measure the osmotic pressure lactic dehydrogenace to determine the molecular 
weight of the protein. The experiment to accomplish this objective is schematically shown in 
Figure E8.24. When 1.93 g of the protein is dissolved to make 520 cm3 of aqueous solution at 
25°C, the height of the dilute solution rises 0.71 cm above the pure solvent. Determine the 
osmotic pressure and the molecular weight.

SOLUTION The osmotic pressure is given by the barometric formula:

P 5 rgh 5 103 3kg/m3 49.8 3m/s2 40.0071 3m 4 5 70 3Pa 4

EXAMPLE 8.24

Determination of the 
Molecular Weight 
of a Protein Using 
Osmotic Pressure

(Continued)
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Figure E8.24 Measurement of 
osmotic pressure of protein in 
solution.

T T = 25°C

0.71 cm Protein
in solvent

Semipermeable
membrane

Pure
solvent

where the density has been approximated by the liquid density of water. The concentration of 
protein is given by:

Cb 5
mb

V
5 3.71 3kg/m3 4

From Equation (8.62), we have:

 MWb 5
RTCb

P
5

8.314 3J/ 1mol K 2 4298 3K 43.71 3kg/m3 4

70 3Pa 4

 5 132 3kg/mol 4 5 13,200 3g/mol 4

 ►8.6  SUMMARY In Chapter 7, we learned how to calculate the fugacity of a species in the vapor, liquid, and solid 
phases. In this chapter, we applied these concepts to treat practical phase equilibria problems, 
including vapor–liquid equilibria (VLE), liquid–liquid equilibria (LLE), vapor–liquid–liquid equi-
libria (VLLE), solid–liquid equilibria (SLE), solid–solid equilibria (SSE), and solid–solid–liquid 
equilibria (SSLE).

We can write the general expression for vapor–liquid equilibrium (VLE) as follows:

 yiŵi
vP 5 xigi

l fi
o (8.2)

The simplest type of VLE calculation is given by Raoult’s law, whereby the vapor is treated as an 
ideal gas and the liquid as an ideal solution. The pure species fugacity, used as the Lewis/Randall 
reference state, is given by Pi

sat. The saturation pressure is commonly determined at a given T from 
the Antoine equation. In a bubble-point calculation, the composition of the fi rst bubble of vapor 
that forms when energy is supplied to a saturated liquid is determined. Conversely, in a dew-point 
calculation, the liquid mole fractions are found given the vapor mole fractions. This case corre-
sponds to the composition of the fi rst drop of dew that forms from a saturated vapor.

By equating the fugacities of the species in each phase of a mixture, we are able to construct 
phase diagrams. Binary–phase diagrams have been illustrated for P vs. mole fraction at constant 
T, T vs. mole fraction at constant P, or mole fraction in the vapor phase vs. mole fraction in the 
liquid. Phase diagrams can be used to determine what phase or phases are present at a given ther-
modynamic state and, in the two-phase and three-phase regions, the composition of the phases as 
well as their relative amounts.

c08.indd   538c08.indd   538 01/11/12   10:11 AM01/11/12   10:11 AM



8.6  Summary ◄ 539

When intermolecular interactions become important in the liquid phase, we can correct for 
nonideality using the activity coeffi cient. In cases when the like interaction is stronger than the 
unlike interaction—that is, gi . 1 — we see a positive deviation in pressure from Raoult’s law. 
Conversely, a weaker like interaction—that is, gi , 1 — exhibits negative deviations. When 
deviations from Raoult’s law are large enough, the Px and Py curves can exhibit extremes. More-
over, they go through the extrema at exactly the same composition. We use the term azeotrope 
to describe the point in the phase diagram where the Px and Py curves or Tx and Ty curves go 
through an extrema. At the azeotrope, the mole fraction of each species in the liquid phase equals 
that in the vapor phase. Azeotropes are more likely to occur when the saturation pressures of 
the two components are close in value. Systems that exhibit a maximum in pressure also exhibit 
a minimum in temperature and are referred to as minimum-boiling azeotropes. Conversely, 
those that show a minimum in pressure have a maximum in temperature and are referred to a 
maximum-boiling azeotropes.

VLE data can be used to obtain best-fi t values of activity coeffi cient model parameters. A 
general approach applicable to any model is through the use of objective functions. An objec-
tive function takes account of the entire measured data set. It is written in terms of the difference 
between the calculated value of a given property and the experimental value of the same property. 
The model parameters are determined when the objective function is minimized. Alternatively, 
equations such as the two-suffi x and three-suffi x Margules equations can be rewritten to fi nd 
model parameters through averages and linear regression.

We use Henry’s law as the reference state for VLE of a dissolved gas in a liquid. The Henry’s 
constant is indicative of the unlike i-j interaction. Hence, its value depends on the identity not 
only of the solute but also of the solvent. Henry’s constants need to be obtained through measured 
data. If we are interested in a system at signifi cantly different temperature or pressure, we must 
correct the value of Hi.

Alternatively, we can solve VLE problems by describing nonideality in both the liquid and 
vapor phases using fugacity coeffi cients. We term this approach the equation of state method since 
the fugacity coeffi cients are found by integrating a suitable equation of state with appropriate mix-
ing rules.  The equation of state method is effective for simpler systems containing nonpolar mol-
ecules. When the system temperature is above one of the species’ critical temperature, it can be 
problematic to use activity coeffi cient methods and the equation of state method is preferred. The 
presence of such a lighter component also naturally leads to high system pressures at equilibrium.

When the like interactions are signifi cantly stronger than unlike interactions, liquids can split 
into two different partially miscible phases. They form separate phases to lower the total Gibbs 
energy of the system. In this case, each species i tends to equilibrate between the two phases, lead-
ing to liquid–liquid equilibrium (LLE). We can equate the fugacity of component i for each 
phase to solve for the equilibrium compositions:

 xi
agi

a 5 xi
bgi

b (8.27)

The two-phase region of the resulting phase diagram for such a system is separated from the 
region where only one phase is present by the binodal curve. The temperature above or below 
which a liquid mixture no longer separates into two phases is termed the upper consulate or 
lower consulate temperature, respectively. A liquid is inherently unstable if the Gibbs energy 
curve is concave down. The spinodal curve on a phase diagram distinguishes the region. Simi-
larly, systems with two liquid phases in equilibrium with a vapor phase give rise to vapor–liquid–
liquid equilibrium (VLLE).

Equilibrium involving a solid phase, including solid–liquid equilibrium (SLE), solid–solid 
equilibrium (SSE), and solid–solid–liquid equilibrium (SSLE), can take two forms: (1) pure 
solids, which are immiscible with other species, and (2) solid solutions, which, like liquid solu-
tions, contain more than one species. If the solid phase exists as a pure species, the condition for 
phase equilibrium with a liquid becomes:

fi
s 5 xigi fi

l
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For the case of a solid solution, we get:

XiGi fi
s 5 xigi f

where Xi is the composition of the solid, and Gi is the activity coeffi cient in the solid. Solid miscibil-
ity within the rigid crystalline lattice occurs only when species are nearly the same size, have the 
same crystal structure, and have similar electronegativities and valences.

Liquid mixtures freeze at lower temperatures than the pure components of which they are 
comprised. The lowest possible temperature in which we only have liquid is called the eutectic 
point. The presence of solid compounds of stoichiometry axby increases the complexity of their 
phase diagrams. A compound with a defi nite melting point is termed congruent, while a com-
pound that is not stable all the way up to a well-defi ned melting point is said to have an incongru-
ent melting point. The state at which the latter case dissociates is called the peritectic point.

Three colligative properties—boiling-point elevation, freezing-point depression, and 
osmotic pressure—result when a small amount of solute is added to a pure liquid. When the mix-
ture forms an ideal solution, the change in these properties depends only on the amount of solute 
present, not on the chemical nature of the solute. The lowering of the chemical potential of liquid 
a in solution relative to its pure species value leads to boiling-point elevation and freezing-
point depression. Osmotic pressure is given by the amount of additional pressure that needs 
to be added to the mixture to prevent a pure solvent from passing through a semipermeable 
membrane into solution. Expressions for these three colligative properties have been obtained by 
applying the principles of phase equilibrium.

 ►8.7  PROBLEMS
Conceptual Problems

8.1 You need to separate toluene from a vapor-phase mixture of toluene and cyclohexane. Your 
colleague suggests that because the boiling point of toluene is higher, all you need to do is lower 
the temperature to a value between the boiling points of toluene and cyclohexane. In that way, 
you can condense all the toluene without condensing any cyclohexane. Do you think this strategy 
will work? Explain.
8.2 A piston–cylinder assembly contains components 1 and 2 in vapor–liquid equilibrium. Assume 
ideal solution and ideal gas behavior. The composition of species 1 in the liquid is x1 5 0.50 and 
in the vapor is y1 5 0.25. Your technician performs an experiment where she adds a weight to the 
piston and compresses the system at constant temperature. Two phases remain at the fi nal pres-
sure. She claims that when she measures the mole fractions, both liquid and vapor decrease. Is 
this possible? Explain.
8.3 A piston–cylinder assembly contains a pure mixture of liquid water and steam in equilibrium. 
A second species that has negligible vapor pressure is mixed into the liquid at a constant tempera-
ture and constant pressure. Describe how the system will respond to maintain equilibrium. 
8.4 A rigid container contains a pure mixture of liquid water and steam in equilibrium. A sec-
ond species that has negligible vapor pressure is mixed into the liquid at a constant temperature. 
Describe how the system will respond to maintain equilibrium. 
8.5 A closed container contains a two-phase (liquid–vapor) mixture of water and air. The system 
temperature is 100°C. The mole fraction of water in the vapor is 0.333. Estimate the system pres-
sure. State any assumptions that you make.
8.6 For each of the following binary mixtures, describe if the like interactions are stronger, weaker, 
or the same as the unlike interactions. Explain your reasoning.
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(a) Activity coeffi cients (Lewis/Randall) versus xa
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8.7 From the list of the following species, choose the appropriate binary mixture (group of two 
species) for each of the following questions.
 Acetone Chloroform Ethane
 Ethanol Methane
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Explain your answers.
(a) Consider liquid–vapor equilibrium at 1 bar.
(i) What binary mixture will have the largest positive deviations from ideality? 
(ii) What binary mixture will have the largest negative deviations from ideality? 
(b) What binary mixture will most closely follow the Lewis fugacity rule?
(c) What binary mixture is most likely to have its second cross-virial coeffi cient, B12, more negative 
than that of either of the pure species, B11 and B22?
(d) What binary mixture is most likely to have B12 5 "B11B22 as its second cross-virial coeffi cient?
8.8 The Gibbs energies for the liquid phase and the vapor phase vs. mole fraction a for two sys-
tems (system I and system II) follow. These plots are at constant temperature and pressure. What 
type of behavior does each of these plots correspond to?

gvapor

gvapor

P = PΙ

T = TΙ
P = PΙΙ

T = TΙΙ

gliquid

gliquid

g

System Ι System ΙΙ

xa xa

g

8.9 Determine whether the following statements are true or false. Explain your choice.
(a) A binary liquid mixture contains species a and b. The two species are completely miscible at all 
temperatures that they exist in the liquid phase (i.e., they just form one liquid phase). This result 
means that the unlike interactions are stronger than the like interactions.
(b) A binary liquid mixture contains species a and b. Over a range of temperatures, the two species 
separate into two distinct liquid phases. This result means that the unlike interactions are weaker 
than the like interactions.
8.10  In the winter, salt is used as a deicer to improve traction on the roads. Use the phase dia-
gram below to explain how this process works. Note that only part of the phase diagram is illus-
trated. How much salt would you add? To what temperature is this method effective?

Liquid

NaCl, wt %

Salt
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liquid
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liquid

−21.12° C

T
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C
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8.11 A binary mixture of solids a and b is known to form three distinct solid phases: a, b and g. 
Gibbs energy is plotted vs. mole fraction a for the two systems shown on the next page. Each of 
these plots is made at constant temperature and pressure. For each system, describe the phases 
that are present and their composition for the entire range of mole fraction a. Explain.

gsolid, γ

gsolid, γ

gsolid, α

gsolid, α

gsolid, β

gsolid, β

P = PΙ

T = TΙ
P = PΙΙ

T = TΙΙ

System Ι System ΙΙ

xa xa

g g

8.12 Rank the following from highest boiling point to lowest boiling point: pure water, 0.05 M 
NaCl, 0.05 M MgCl2, 0.05 M glucose 1C6H12O6 2 . Explain.
8.13 Rank the following from highest freezing point to lowest freezing point: pure water, 0.05 M 
NaCl, 0.05 M MgCl2, 0.05 M glucose 1C6H12O6 2 . Explain.
8.14 Consider a fl exible container with two compartments, A and B, separated by a semiperme-
able membrane. The membrane allows movement of water but not solute molecules. For each of 
the following initial concentrations determine if compartment A will (increase in size/stay the same 
size/decrease in size). Explain.

System Compartment A Compartment B

I 0.1 M glucose 1C6H12O6 2 0.1 M sucrose 1C12H22O11 2

II 0.05 M glucose 1C6H12O6 2 0.1 M glucose 1C6H12O6 2

III 0.1 M glucose 1C6H12O6 2 0.05 M NaCl
IV 0.1 M glucose 1C6H12O6 2 0.05 M MgCl2

8.15 Para-xylene (p-xylene) is an important chemical intermediate in the manufacture of pol-
yester fi bers. It is produced in high volume (around 109 kg/year). Consider a mixed stream of 
60% m-xylene, 14% p-xylene, 9% o-xylene, and 17% ethylbenzene, as shown in the following 
fi gure. To manufacture polyester, pure p-xylene is needed.

p-Xylene
(14%)

o-Xylene
(9%)

Ethylbenzene
(17%)

m-Xylene
(60%)

CH3

CH3

CH3

CH3

CH3

CH3

CH3

H2O
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What do you thing would be a good way to achieve this product? Some physical property data are 
reported in the following table.

o-xylene m-xylene p-xylene Ethylbenzene

Boiling Point (BP), K 417.3 412.6 411.8 409.8
Freezing Point, K 248.1 225.4 286.6 178.4
Dhvap at BP (J/g) 347 343 340 339

Numerical Problems

8.16 Construct a Txy phase diagram for a binary mixture of cyclohexane and n-hexane at 1 bar. 
Assume that the liquid forms an ideal solution.
8.17 What is the lowest temperature to which a vapor mixture of 1 mole n-pentane and 2 moles 
n-hexane at 1 bar can be brought without forming liquid? Assume the liquid forms an ideal solution.
8.18 What is the composition of vapor that is in equilibrium with a liquid mixture with the follow-
ing composition at 250 K? What is the pressure? Assume ideal behavior.

Species Mole fraction

Propylene 0.1
Propane 0.25
n-Butane 0.2
Isobutane 0.35
n-Pentane 0.1

8.19 A liquid mixture containing 40% cyclohexane, 20% benzene, 25% toluene, and 15% 
n-heptane is in equilibrium with its vapor at 1 bar. Determine the temperature and the vapor 
composition.
8.20 A compressed liquid feed stream containing an equimolar mixture of n-butane and isobu-
tane fl ows into a fl ash unit at fl ow rate F. At steady state, 40% of the feed stream is vaporized and 
leaves the drum as a vapor stream with fl ow rate V. The rest leaves as liquid with fl ow rate L. If the 
fl ash pressure is 1 bar, what is the temperature required? What are the composition of the liquid 
and vapor exit streams?
8.21 A feed stream containing a mixture of 40% n-butane, 30% n-pentane, and 30% n-hexane 
fl ows into a fl ash unit. The fl ash temperature is 290 K and the fl ash pressure is 0.6 bar. What is 
the ratio of the exit vapor fl ow rate to the feed fl ow rate? What are the compositions of the exit 
streams?
8.22 Calculate the liquid and vapor compositions of butane (a) and n-hexane (b) at 0°C and 
0.5 bar. You may assume the liquid forms an ideal solution.
8.23 Calculate the liquid and vapor compositions of n-pentane (a) and benzene (b) at 16°C and 
0.333 bar. The excess Gibbs energy can be described by the two-suffi x Margules equation with 
A 5 1816 3J/mol 4.
8.24 Calculate the liquid and vapor compositions of a binary mixture of isobutane (a) and hydro-
gen sulfi de (b) at 4.5°C and 8.77 bar. The excess Gibbs energy can be described by the three-suffi x 
Margules equation with these parameters:

A 5 1918 3J/mol 4     and     B 5 21074 3J/mol 4

(a) Assume the vapor can be treated as an ideal gas.
(b) Correct for the vapor-phase nonideality using the Lewis fugacity rule.
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8.25 At 60°C, ethanol (1) and ethyl acetate (2) exhibit an azeotrope at a pressure of 0.64 bar and 
x1 5 0.4.
(a) You wish to use the two-suffi x Margules equation as a model for gE. From these data, deter-
mine, as accurately as you can, the Margules parameter, A.
(b) At 60°C, what is the composition of the vapor in equilibrium with a liquid of composition 
x1 5 0.8?
8.26 Consider a binary mixture of n-propanol and water in vapor–liquid equilibrium (VLE). Let 
n-propanol be designated species 1 and water, species 2. A plot of the activity coeffi cients for this 
system at 100°C follows. The Lewis/Randall reference state is chosen for both species. The mole 
fraction of n-propanol in the liquid, x1, is 0.2, and the temperature is 100°C. The saturation pres-
sure of n-propanol at 100°C is 1.12 bar.
(a) Label the curve that corresponds to the activity coeffi cient for n-propanol, g1, and the curve 
that corresponds to the activity coeffi cient for water, g2. Explain.
(b) Are like or unlike interactions stronger? Explain.
(c) Find the total pressure of the system.
(d) Find the mole fraction of n-propanol in the vapor phase.
(e) Estimate the value of the Henry’s law constant of n-propanol in water, H1.
(f) Does this system exhibit an azeotrope? Explain.

n–Propanol (1)–Water (2)
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8.27 An equimolar liquid phase of benzene (1) and m-xylene (2) coexists with its vapor at 260°C. 
At this temperature, the saturation pressures are P1

sat 5 35.2 3bar 4 and P2
sat 5 11.9 3bar 4. Using the 

van der Waals equation of state, calculate the equilibrium composition and pressure of vapor. You 
may assume that the liquid acts as an ideal solution.
8.28 Example 8.6 illustrates how you solve a dew-point calculation for a binary mixture of a non-
ideal liquid and a nonideal gas with T known. This problem corresponds to quadrant I in Figure 8.2. 
Develop an analogous solution for the bubble point with the liquid-phase mole fractions and T 
known (quadrant II). As in Example 8.6, use the van der Waals equation for vapor nonideality and 
the three-suffi x Margules equation for liquids. Assume that critical properties, liquid volumes, and 
Antoine coeffi cients for each species are readily available and that the three-suffi x Margules param-
eters have been determined.

c08.indd   545c08.indd   545 01/11/12   10:11 AM01/11/12   10:11 AM



546 ► Chapter 8. Phase Equilibria III: Applications

8.29 Consider a mixture of 1-propanol (a) and water (b) in vapor–liquid equilibrium at 25°C. For 
a liquid with mole fraction xa 5 0.2, answer the following questions. The three-suffi x Margules 
equation parameters are:

A 5 4640 B J

mol
R      and     B 5 21700 B J

mol
R

(a) Are the like interactions stronger or weaker than the unlike interactions? Explain.
(b) Calculate the system pressure.
(c) Calculate the mole fraction of a in the vapor. 
8.30 A binary mixture of water (1) and benzene (2) is in vapor–liquid equilibrium at a liquid mole 
fraction x1 5 0.6 and a pressure of 74.5 kPa. The liquid phase nonideality can be described by 
the two-suffi x Margules equation with A/ 1RT 2 5 2.74. Determine the temperature and the vapor 
phase mole fraction of a.
8.31 At 20°C and 0.073 bar, a binary liquid mixture of cyclohexane (1) and toluene (2) is in vapor–
liquid equilibrium. The liquid mole fraction of cyclohexane is measured to be x1 5 0.471. Assume 
that the liquid phase nonideality can be represented by the two-suffi x Margules equation. Answer 
the following questions. 
(a) From this measurement, determine the value of the two-suffi x Margules parameter, A.
(b) Are the like interactions or the unlike interactions stronger? Explain.
(c) Based on this model fi nd the Henry’s law constants for cyclohexane in toluene and toluene in 
cyclohexane.
(d) What is the composition of the vapor phase?
(e) If 7 moles of cyclohexane and 3 moles of toluene are mixed together at 20°C and 0.073 bar, 
how many total moles of liquid form? 
8.32 Consider a mixture of 1-propanol (a) and water (b). At 25°C, the three-suffi x Margules equa-
tion parameters are:

A 5 4640 B J

mol
R      and     B 5 21700 B J

mol
R

Does this binary mixture form an azeotrope at 25°C? If so, at what pressure does the azeotrope 
form?
8.33 Consider the system of ethanol (1)–benzene (2) at 25°C. This mixture exhibits an azeotrope 
at a mole fraction of x1 5 0.28 and a pressure of 122.3 torr. Determine values for the parameters 
in the van Laar equation. Estimate the liquid composition and pressure in equilibrium with a vapor 
of y1 5 0.75 at 25°C.
8.34 Consider a mixture of species 1 and 2 in vapor–liquid equilibrium at 25°C and 90 bar. The 
following equation of state is available for the vapor phase:

Pv 5 RT 1 P2 3Ay1y2 1 B 4

where, 
A

RT
5 22.0 3 1024 31/bar2 4   and   

B
RT

5 8.0 3 1025 31/bar2 4

and y1 and y2 are the mole fractions of species 1 and 2, respectively. Species 2 is dilute in the liquid 
phase and may be described by Henry’s law with the following values at 25°C:

H2 5 7000 bar

and, ln g2
Henry's 5 27 11 2 x1

2 2
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(a) Consider a vapor mixture with 5 mole of species 1 and 10 moles of species 2. Calculate the 
following quantities: v, V, v2, V2.
(b) Calculate an expression for the pure species fugacity coeffi cient, w2

v, and the mixture fugacity 
coeffi cient, ŵ2

v, of species 2 in the vapor.
(c) In the liquid, are like interactions stronger or weaker than unlike interactions? Explain.
(d) Find the mole fraction of species 2 in the liquid in equilibrium with the vapor in part (b).
(e) As best as you can, estimate the saturation pressure of pure species 2 at 25°C. State any 
assumptions that you make.
8.35 A mixture of methanol (a) and ethyl acetate (b) exhibits an azeotrope at 55°C. Their satura-
tion pressures are 68.8 and 46.5 kPa, respectively. The liquid-phase nonideality can be described 
by the two-suffi x Margules equation, with A 5 2900 J/mol. What is the pressure and composition 
of the azeotrope? Does this mixture form a maximum-boiling azeotrope or a minimum-boiling 
azeotrope? Explain.
8.36 Consider a mixture of benzene (1) and a proprietary organic molecule (2) that is in vapor–
liquid equilibrium at 70°C. The proprietary molecule and benzene form a completely miscible liq-
uid phase, but the proprietary molecule has a negligible vapor pressure. The activity coeffi cient at 
infi nite dilution for this system is reported to be g`

2 5 99.7. As best you can, determine the equilib-
rium mole fraction of the proprietary molecule in the liquid when the system pressure equals Psat

1 .
8.37 A mixture of toluene (1) and polystyrene (2) is placed in an evacuated closed container 
(there is no air in the container). The container is then brought to 20.57 bar and 301°C where the 
liquid solution is in equilibrium with pure toluene vapor. Because polystyrene is large, you can 
assume no polystyrene is in the vapor phase. Calculate the mole fraction of toluene in the liquid. 
You may neglect the Poynting correction. The following plot shows the activity coeffi cient of tolu-
ene in polystyrene.

0.80.70.60.50.40.30.20.1
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0 0.9 1

x1

γ1

8.38 The following data are reported for a binary mixture of species 1 and 2 at 40°C. The activity 
coeffi cients at infi nite dilution are:

ln g`
1 5 0.75   and   ln g`

2 5 0.75

The saturation pressures of the pure species are:

Psat
1 5 80 3kPa 4    and    Psat

2 5 60 3kPa 4
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Answer the following questions:
(a) 4 moles of species 1 and 6 moles of species 2 are placed in a closed container and allowed to 
come to vapor–liquid equilibrium at 40°C. The liquid mole fraction is measured to be x1 5 0.32. 
What is the pressure in the system? What is the gas phase mole fraction? How many total moles of 
liquid are there in the system?
(b) Does this system form an azeotrope at 40°C? If so, at what pressure and composition? If not, 
explain.
(c) Are the “like” interactions stronger than the “unlike”? Explain.
(d) Estimate the enthalpy of mixing. State any assumptions that you make.
8.39 A binary mixture of components a and b contains 1 mol a and 3 mol b in the liquid phase 
at 25°C and 0.50 bar. The excess Gibbs energy of the liquid mixture can be described by the 
van Laar equation with A 5 4,010 3J/mol 4 and B 5 2,501 3J/mol 4. The saturation pressure of a is 
Psat

a 5 75 kPa.
(a) If this mixture is in equilibrium with vapor under these conditions, what is the vapor phase 
mole fraction of a?
(b) Determine the saturation pressure of b.
(c) Calculate the value of the Henry’s law constant for component a.
8.40 The following plot shows a Pxy phase diagram for a binary mixture of species 1 and 2 at 300 K. 
Answer the following:
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(a) A mixture of 2 mol of species 1 and 1 mol of species 2 exists at 20 kPa. Identify where it is on 
the plot in the preceding fi gure, and label it “A.” What phase or phases are present? What is the 
composition of each phase that is present?
(b) You wish to isothermally compress this mixture so that there is 1 total mol of liquid in equilib-
rium with 2 mol vapor. What pressure must it be compressed to? Identify where it is on the plot 
above and label it “B.” What is the composition of each phase present?
8.41 At 90°C, a binary-mixture of n-propanol (a) and water (b) follows the van Laar equation with 
A 5 7,850 3J/mol 4 and B 5 3,410 3J/mol 4. 
(a) Consider a liquid with 60 mole% n-propanol at 90°C in equilibrium with its vapor, calculate 
the fugacity of water in the liquid.
(b) What is the partial pressure of water in the vapor?
(c) Calculate the value of the Henry’s law constant for water.
8.42 A vapor–liquid phase diagram for a binary mixture of species 1 and 2 at 293 K is shown in 
the following fi gure.
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Answer the following questions. 
(a) At 293 K, what is the value of Psat

1 ?
(b) Consider a mixture of 0.2 mol species 1 and 0.8 mol species 2 at 0.4 bar and 293 K.
(i) What phase or phases are present? 
(ii) What is the composition of each phase?
(iii) How many moles are in each phase?
(c) Consider a mixture of 1.2 mol species 1 and 0.8 mol species 2 at 0.4 bar and 293 K.
(i) What phase or phases are present? 
(ii) What is the composition of each phase?
(iii) How many moles are in each phase?
(d) Estimate the value of the two-suffi x Margules parameter, A.
(e) Consider the steady-state fl ash operation depicted here: 

F1 = 1.2 mol/s

F2 = 0.8 mol/s
Stage A

P = 0.4 bar

T = 293 K

LA, x1, A

VA, y1, A

What are the values for the fl ow rate, LA, and composition, xA, of the exit liquid stream and the 
fl ow rate, VA, and composition, yA, of the exit vapor streams?

(f) Consider the two-stage steady-state fl ash operation depicted here: 

F1 = 1.2 mol/s

F2 = 0.8 mol/s
Stage A

P = 0.4 bar

T = 293 K

LA, x1, A

VA, y1, A
Stage B

P = 0.6 bar

T = 293 K

LB, x1, B

VB, y1, B
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What are the values for the fl ow rates and compositions of the exit liquid and vapor streams? 
8.43 Consider a binary system of water vapor (1) in air (2) initially at room temperature and pres-
sure (such as the air in this room). You desire to compress the gas to 100 bar and then cool it to 
210 °C without any water condensing. Calculate the maximum mole fraction of water that can 
be in the air. Use the virial equation of state for the vapor phase. At 210°C, you have data for the 
second virial coeffi cients as follows:

B11 5 21500 B cm3

mol
R ,     B12 5 270 B cm3

mol
R ,      and,      B22 5 220 B cm3

mol
R

where,

Bmix 5 y2
1B11 1 2y1y2B12 1 y2

2B22

8.44 The Pxy phase diagram for a binary mixture of species “1” and “2” at 300 K is shown in the 
following fi gure.
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Answer the following questions:
(a) On the g  raph, identify the single-phase vapor region, the single-phase liquid region, and the 
two-phase region.
(b) On the graph, identify the azeotrope. What is the composition of the azeotrope?
(c) Are the like or unlike interactions stronger? Explain.
(d) Estimate the value of the two-suffi x Margules parameter, A.
(e) The following scheme has been proposed to increase the purity of species 1. The feed consists 
of 0.4 mol/s of species 1 1F1 2  and 1.6 mol/s of species 2 1F2 2 . Determine the values of the total fl ow 
rate of vapor out of Stage B, VB (mol/s), and the mole fraction of species 1 out of stage B, 1y1,B 2 . 

F1 = 0.4 mol/s

F2 = 1.6 mol/s
Stage A

P = 35 kPa

T = 300 K

LA, x1, A

VA, y1, A

Stage B

P = 45 kPa

T = 300 K

LB, x1, B

VB, y1, B
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8.45 The Henry’s law constant and an expression for the activity coeffi cient have been found for 
the solute for a binary mixture of species 1 (solute)–2 (solvent) at 20°C.

H1 5 0.5 3Pa 4

and, ln g1
Henry's 5 30.5 11 2 x2

2 2

(a) Is this expression for the activity coeffi cient consistent with the Henry’s law limit? Are the like 
interactions stronger than the 1-2 interaction? Explain.
(b) Find an expression for the activity coeffi cient of 2. Use the Lewis/Randall reference state for 
species 2.
(c) Consider a system of l-2 in vapor–liquid equilibrium at pressure P. Assume P is low enough 
for ideal gas behavior. Derive expressions for the vapor mole fraction divided by the liquid mole 
fraction of each species in terms of P, x2, P2

sat, and H1 only. Use the same reference states as in 
part (b).
(d) Is an azeotrope possible at 20°C? If so, determine the composition and pressure of the azeo-
trope. Take P2

sat 5 0.02 3bar 4.
8.46 What is the solubility of oxygen in methanol at 25°C and 1 bar? What is the solubility of 
oxygen in methanol at 25°C and 100 bar? Take VO2

`
5 4.5 3 1025 3m3/mol 4.

8.47 A binary mixture of carbon dioxide and water exists in vapor–liquid equilibrium at 
343.15 K and 1 bar. The solubility of CO2 in the liquid has been measured as xCO2 5 0.000255. 
What is the Henry’s law constant for CO2 at 343.15 K? State and justify any assumptions that 
you make.
8.48 The following data are available for the Henry’s law constant of N2 in H2O at 19.4°C. From 
these data, estimate VN2

` .

PN2
3bar 4 HN2

3bar 4

 1.33 83,391
 1.99 83,780
 2.66 84,230
 3.32 84,627
 3.99 85,028
 4.65 85,491
 5.32 85,959
 5.98 86,492
 6.64 87,031
 7.31 87,639
 7.97 88,316
 8.64 89,004
 9.30 89,703
 9.97 90,478
10.63 91,333

Source: E. W. Washburn (ed.), International Crit-
ical Tables (Vol. III) (New York: McGraw-Hill, 
1928).
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8.49 The following data are available for the Henry’s law constant of O2 in benzene. From these 
data, estimate HO2

` 2 hO2

v :

T(°C) H [bar]

14 20.0
18 23.6
22 28.3
26 33.1
30 38.7
35 46.5
40 55.7
45 65.1

Source: Modifi ed from E. W. Washburn (ed.), 
International Critical Tables (Vol. III) (New York: 
McGraw-Hill, 1928).

8.50 Develop a computer spreadsheet or write a program to verify that the objective function 
OFgE 5 a 1gE 2 gcalc

E 2 i
2 in Example 8.9 gives the value A 5 1399 3J/mol 4. What value do you 

obtain for OFgE?
8.51 Develop a computer spreadsheet or write a program to verify that the objective func-
tion OFg 5 a 3 1 1g1 2 g1

calc 2 /g1 2
2 1 1 1g2 2 g2

calc 2 /g2 2
2 4

i in Example 8.9 gives the value 
A 5 1424 3J/mol 4. What value do you obtain for OFg?
8.52 Liquid–vapor equilibrium data have been collected for a binary system of benzene (1)– 
cyclohexane (2) at 60°C. Mole fraction of liquid and vapor vs. total pressure are reported in the 
table below.

x1 y1 P [Pa]

0 0 51,857
0.0672 0.0912 53,431
0.2261 0.267 55,939
0.3201 0.3526 56,741
0.432 0.448 57,527
0.5203 0.5203 57,633
0.6029 0.5895 57,432
0.7095 0.677 56,989
0.7952 0.7563 56,095
0.8752 0.8386 54,934
0.8932 0.86 54,629
1 1 52,190

Source: J. Gmehling, U. Onken, and W. Arlt, Vapor–Liquid Equilibrium Data Collec-
tion (multiple volumes) (Frankfurt: DECHEMA, 1977–1980).

From these data, determine the value of the two-suffi x Margules parameter, A. Compare your 
result to that obtained in Example 7.13. What value do you think is more accurate?
8.53 Liquid–vapor equilibrium data have been collected for a binary system of methanol (1)–water 
(2) at 40°C. Mole fraction of liquid vs. total pressure are reported in the table below. Develop a 
computer spreadsheet or write a program to fi nd the three-suffi x Margules parameters, A and B, 
that best fi t the data by doing the following:

x1 y1 P [Pa]

0 0 7,295
0.05 0.275 9,562
0.1 0.436 11,695
0.15 0.543 13,682
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x1 y1 P [Pa]

0.2 0.618 15,536
0.25 0.675 17,256
0.3 0.720 18,883
0.35 0.756 20,390
0.4 0.786 21,817
0.45 0.811 23,150
0.5 0.833 24,404
0.55 0.853 25,604
0.6 0.871 26,751
0.65 0.888 27,845
0.7 0.903 28,898
0.75 0.918 29,925
0.8 0.933 30,938
0.85 0.949 31,939
0.9 0.964 32,952
0.95 0.981 33,979
1 1 35,032

Source: J. Gmehling, U. Onken, and W. Arlt, Vapor–Liquid Equilib-
rium Data Collection (multiple volumes) (Frankfurt: DECHEMA, 
1977–1980).

(a) minimizing the objective function OFP 5 a 1Pexp 2 Pcalc 2 i
2

(b) minimizing the objective function OFgE 5 a 1gexp
E 2 gcalc

E 2
i
2

(c) minimizing the objective function OFg 5 a B ¢g1 2 g1
calc

g1
≤ 2 1 ¢g2 2 g2

calc

g2
≤ R

i

2

(d) applying linear regression using the method of Example 8.11
Compare the results from parts (a)–(c) to the results using ThermoSolver.
8.54 Test the liquid–vapor equilibrium data for the binary system of methanol (1)–water (2) at 
40°C presented in Problem 8.53 for thermodynamic consistency by using the area test.
8.55 The following vapor–liquid equilibrium data have been reported for a binary mixture of 
acetone (1) in chloroform (2) at 35. 17°C. Test these data for thermodynamic consistency.

x1 y1 P [Pa]

0 0 39,086
0.0821 0.05 37,273
0.1953 0.146 35,019
0.2003 0.143 34,926
0.3365 0.317 33,232
0.4182 0.437 33,125
0.4917 0.544 33,726
0.595 0.682 35,593
0.709 0.806 38,100
0.8182 0.897 41,073
0.8768 0.897 42,634
0.938 0.938 42,687
0.972 0.972 44,287
1 1 45,941

Source: J. C. Chu, S. L. Wang, S. L. Levy, and R. Paul, textitVapor–
Liquid Equilibrium Data ( J. W. Edwards, 1956).
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8.56 The following vapor–liquid equilibrium data have been reported for a binary mixture of 
acetone (1) in water (2) at 1 atm. Test these data for thermodynamic consistency.

x1 y1 T [°C]

0 0 100.00
0.015 0.325  89.60
0.036 0.564  79.40
0.074 0.734  68.30
0.175 0.8  63.70
0.259 0.831  61.10
0.377 0.84  60.50
0.505 0.849  59.90
0.671 0.868  59.00
0.804 0.902  58.10
0.899 0.938  57.40

Source: J. Gmehling, U. Onken, and W. Arlt, Vapor–Liquid 
Equilibrium Data Collection (multiple volumes) (Frankfurt: 
DECHEMA, 1977–1980).

8.57 You wish to fi t the benzene (1)–isooctane (2) system to the following model for gE:

gE 5 x1x2 1A 1 B 1x1 2 x2 2 2

The system temperature of interest is 200°C. After a literature search, the only vapor–liquid equi-
librium data at this temperature that you can fi nd is:

T P x1 y1

200°C 11.6 bar 0.25 0.37

For the pure components, the Antoine constants

ln Psat 5 A 2 B/ 1T 1 C 2

where Psat sat is in torr (1/760 atm) and T is in K, liquid densities, and second virial coeffi cients 
are as follows:

Antoine Constants r l Bii

Pure Species Data A B C 3g/cm3 4 3cm3/mol 4

Benzene 1C6H6 2 15.90 2788.51 252.36 0.874 2490.0
Isooctane 1C8H18 2 15.685 2896.3 252.41 0.688 2833.8

(a) Using only the data given above, as accurately as you can, fi nd the constants A and B (in J/mol). 
State any assumptions that you make. 
(b) Is it ever possible for benzene and isooctane to split into two partially miscible liquid phases? 
Explain. If so, in what temperature range would you start to look for partial miscibility?
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8.58 Using the Peng–Robinson equation of state, calculate the saturation pressure of pure 
n- pentane at 400 K using fugacity coeffi cients to calculate the fugacity for both vapor and liquid 
phases. Compare the results with the values of Psat

i  obtained by the Antoine equation and report 
the percent error.
8.59 Using the Peng–Robinson equation of state, calculate the saturation pressure of pure pro-
pane at 0°C using fugacity coeffi cients to calculate the fugacity for both vapor and liquid phases. 
Compare the results with the values of Psat

i  obtained by the Antoine equation and report the per-
cent error.
8.60 Using the Peng–Robinson equation of state, calculate the saturation pressure of pure benzene 
at 400 K using fugacity coeffi cients to calculate the fugacity for both vapor and liquid phases. Com-
pare the results with the values of Psat

i  obtained by the Antoine equation and report the percent error.
8.61 Using the equation of state method, determine the equilibrium composition in the vapor 
phase and the system pressure of a mixture of methane (1) and n-pentane (2) with a liquid mole 
fraction of x1 5 0.2 at 60°C. Use the van der Waals equation of state to determine fugacity for both 
vapor and liquid phases. Iterate until |Syi 2 1| , 0.001.

8.62 Repeat Problem 8.61 using the Peng–Robinson equation of state. Use a value for the binary 
interaction parameter of 0.026.
8.63 Using the equation of state method, determine the equilibrium composition in the vapor 
phase and the system pressure of a mixture of carbon dioxide (1) and benzene (2) with a liquid mole 
fraction of x1 5 0.3 at 100°C. Use the van der Waals equation of state to determine fugacity for 
both vapor and liquid phases. To converge on the liquid mole fraction, it is helpful to start with an 
initial guess for pressure that is less than Raoult’s law (e.g., 106 Pa). Iterate until |Syi 2 1| , 0.001.

8.64 Repeat Problem 8.63 using the Peng–Robinson equation of state. Use a value for the binary 
interaction parameter of 0.077.
8.65 Using the equation of state method, construct a Pxy diagram for a binary mixture of carbon 
dioxide (1) and benzene (2) at 100°C. Use the van der Waals equation of state to determine fugac-
ity for both vapor and liquid phases. To converge on the liquid mole fraction, it is helpful to start 
with an initial guess for pressure that is less than Raoult’s law (e.g., 106 Pa).
8.66 Repeat Problem 8.65 using the Peng–Robinson equation of state. Use a value for the binary 
interaction parameter of:
(a) 0
(b) 0.077
8.67 Using the equation of state method, construct a Pxy diagram for a binary mixture of carbon 
dioxide (1) and benzene (2) at 25°C. Use the van der Waals equation of state to determine fugacity 
for both vapor and liquid phases. To converge on the liquid mole fraction, it is helpful to start with 
an initial guess for pressure that is less than Raoult’s law (e.g., 106 Pa).
8.68 Repeat Problem 8.67 using the Peng–Robinson equation of state. Use a value for the binary 
interaction parameter of:
(a) 0
(b) 0.077
8.69 At a 300 K and 1 bar, a binary mixture of species a and b form two partially miscible liquid 
phases. The following activity coeffi cients at infi nite dilution are reported: ga

` 5 8 and g
b
` 5 15. Using 

the three-suffi x Margules equation, determine the composition of two liquid phases in equilibrium.
8.70 Consider a binary liquid mixture of hexane (1) and acetone (2). At 15°C and 300 bar, this 
mixture forms two partially miscible liquid phases. Phase α has 20 total moles with x1

a 5 0.2, while 
phase b has 10 total moles with x1

b 5 0.8. The following data are available at 15°C:

Species i MW [g/mol] vi
l 3cm3/mol 4 Pi

sat 3kPa 4

Hexane 86 130.5 12.7
Acetone 58   73.4 19.5
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(a) Draw a schematic of the system, labeling it with all the information that you have. Make your 
schematic as accurate as possible; for example, consider which phase belongs on top.
(b) Are the like interactions stronger or weaker than the unlike interactions? Explain. 
(c) Calculate the value of f1.
(d) You wish to use the two-suffi x Margules equation to describe this system. Based on the data 
above, come up with a value for the two-suffi x Margules parameter, A.
(e) Estimate to what temperature you need to bring the system described above to make it com-
pletely miscible, that is, to make it have only one phase present. State the important assumptions 
that you make.
(f) Estimate the value of H1 at 15°C and 300 bar.

8.71 At 25°C and 1 bar, the following composition has been reported for a liquid–liquid mixture 
of CHCl3 (a) and H2O (b) : xa

a 5 0.987 and xa
b 5 0.0013. From these data predict the three-suffi x 

Margules parameters, A and B, for this binary mixture.

8.72 The Wilson equation requires positive values for binary parameters Lab and Lba. Verify that 
this activity coeffi cient model is incapable of describing the instability of partially miscible liquids.

8.73 Tetrahydrofuran (a) and water (b) separate into two liquid phases at 1 bar and 50°C. Deter-
mine the composition of each liquid phase. The following three-suffi x Margules parameters have 
been obtained for this binary system:

A 5 7395 3J/mol 4   and   B 5 21380 3J/mol 4

8.74 Tetrahydrofuran (a) and water (b) separate into two liquid phases at 1 bar and 50°C. Deter-
mine the composition range over which the system is inherently unstable and will spontaneously 
separate into two phases. The following three-suffi x Margules parameters have been obtained for 
this binary system:

A 5 7395 3J/mol 4   and   B 5 21380 3J/mol 4

8.75 The mole fraction of isobutane in a liquid–liquid mixture of isobutane (a) in equilibrium 
with furfural (b) at 64°C and 10 bar has been measured to be:

xb
a 5 0.113     and     xa

a 5 0.928

(a) Come up with an appropriate model for gE for this system and determine the numerical values 
for the parameters in the model.
(b) Are the like–like or unlike interactions stronger? Explain.

(c) Under these conditions, what is the fugacity of isobutane in the b phase, f̂ b
a ?

8.76 A binary mixture of species a and b are in liquid–liquid equilibrium at 25°C. This mixture 
can be described by the two-suffi x Margules equation with A 5 7,300 3J/mol 4. Assume A does not 
change with temperature.
(a) Determine the composition of each liquid phase.
(b) Consider a mixture with an overall composition of 2 mol A and 3 mol B. What is the minimum 
temperature that you need so that the mixture is not unstable and will split into two phases? 

8.77 A binary mixture of species a and b is in liquid–liquid–vapor equilibrium at 25°C. The liquid 
compositions are xa

a 5 0.92 and xb
a 5 0.08, and the saturation pressures of a and b are Psat

a 5 75 kPa 
and Psat

b 5 25 kPa. Determine the total pressure and the gas phase mole fraction.

8.78 A binary mixture of water (a) and 1-butanol (b) exhibits vapor–liquid–liquid equilibrium at 
25°C. The activity coeffi cients at infi nite dilution are given by ga

` 5 7.02 and gb
` 5 72.37. Deter-

mine the composition of the three phases and the system pressure at which VLLE occurs. At 25°C, 
the saturation pressure for 1-butanol is 875 Pa. 
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8.79 Ethanol (1) and n-hexane (2) are in equilibrium at 75°C. There are two liquid phases and 
one vapor phase present (VLLE). The compositions of the liquid phases are:

x1
a 5 0.9098   and   x1

b 5 0.0902

The saturation pressures at 75°C are:

P1
sat 5 0.888 bar   and   P2

sat 5 1.223 bar

(a) Is the two-suffi x Margules expression 1gE 5 Ax1x2 2  a reasonable model for this system? 
Explain.
(b) Calculate the constant, A.
(c) What is the total pressure of the system? State and justify any assumptions that you make. 
(d) What is the composition of the vapor phase?
8.80 Para-xylene (p-xylene) is used as a raw material to make polyester fi bers. Billions of pounds 
are produced every year. It is manufactured by reforming crude oil. p-Xylene must then be sepa-
rated. In this problem, we consider the fi nal step of the separation process where p-xylene is 
separated from its isomers, ortho-xylene and meta-xylene. All the isomers have similar physical 
properties. The latent heats and the boiling and melting points of the pure xylene isomers are 
reported below.

Dhvap 3J/mol 4 Tb 3K 4 Dhfus 3J/mol 4 Tm 3K 4

Ortho-xylene 36,838 417.3 213,608 248.1
Meta-xylene 36,413 412.6 211,577 225.4
Para-xylene 36,094 411.8 217,125 286.6

(a) From the data given, explain why crystallization of p-xylene from a liquid mixture of xylenes 
works better than distillation to separate p-xylene.
(b) Consider a liquid feed containing 1 mol ortho-, 2 mol meta-, and 1 mol para-xylene. You may 
assume that the liquid forms an ideal solution and neglect DcP

sl in your calculations. Additionally, 
assume that each species forms a completely immiscible solid phase.
(i) Estimate the temperature at which the fi rst solid of each isomer will form, at the mole fraction 
that it exists in the liquid.
(ii) Estimate the temperature where half the p-xylene in the liquid has crystallized. Has either of 
the other isomers formed a solid at this temperature?
(iii) What is the lowest temperature that the system can have in which only p-xylene crystallizes? 
What percentage of feed p-xylene has been separated?
(c) Instead, the liquid in part (b) is vaporized at 140°C. The saturation pressures of the isomers at 
this temperature are as follows:

Psat 3kPa 4

Ortho-xylene 89.7
Meta-xylene 103.5
Para-xylene 105.5

(i) What is the composition of vapor in equilibrium with the liquid of part (b).
(ii) Consider successive distillation “stages” where the vapor calculated in part (i) is successively 
condensed and then evaporated. At total refl ux, how many stages would be required to reach a 
purity of 90% p-xylene?
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8.81 Your roommate likes really, really cold beer. How cold can you set the freezer temperature 
to have the beer be as cold as possible without its freezing and causing a big mess? Assume beer is 
4 mass% ethanol in water. For water, Dhfus 5 26.01 3kJ/mol 4.
8.82 Bismuth (a) and cadmium (b) form a eutectic at 144°C and xa 5 0.45. They are also com-
pletely immiscible in the solid phase. The melting points for bismuth and cadmium are 271°C and 
321°C, respectively. The enthalpies of fusion of these elements are 210.46 kJ/mol and 26.1 kJ/mol, 
respectively. Estimate the parameters of an appropriate model for gE based on these data.
8.83 The excess Gibbs energy for a binary mixture of liquid a and liquid b is given by:

gE 5 6000xaxb 11 2 0.0005T 2  3J/mol 4

where T is in [K]. The solids of these species are completely immiscible. The enthalpies of fusion 
and melting temperatures are as follows:

 species a :  Dhfus 5 212 3kJ/mol 4  Tm 5 1000 3K 4 

 species b :  Dhfus 5 210 3kJ/mol 4 Tm 5 800 3K 4

Determine the temperature and the composition at the eutectic point. You may neglect the change 
in heat capacity between the solid and liquid phases.
8.84 Antimony and lead form a eutectic at 251°C and 11.2 weight percent antimony. The enthalpy 
of fusion and melting point of lead are as follows:

Dhfus 5 25.1 3kJ/mol 4     Tm 5 327.5 3°C 4

As best you can, determine the composition of the lead-rich solid solution at the eutectic. State any 
assumptions that you make.
8.85 A phase diagram for the solid liquid equilibrium of a binary mixture of silver (Ag) and copper 
(Cu) is shown below. Answer the following questions. Note that the weight percentage is on the 
bottom and the mole percentage is on the top.
(a) What is the lowest temperature at which a binary mixture can exist entirely in the liquid phase? 
What is its composition?

1900F

1700F

1600F

1400F

1200F

1000F

850F

°C

71.9

1100

1000

900

800

700

600

500

400

10 20 30 40 50 60 70 80 90

Weight percentage silverJ.C. Chaston

Atomic percentage silver

Ag–Cu Silver–Copper

Cu 10 20 30 40 50 60 70 80 90 Ag

1084.5°

7.9

780°
91.2

961.93°

[From T Lyman et al., Metals Handbook, Metalography, Structures, and Phase Diagrams, 8th ed. 
(Vol. 8) (Metals Park, OH: American Society for Metals, 1973).] Courtesy of ASM International.
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(b) What is the most copper that can be present in a phase of solid silver? At what temperature 
does this occur?
(c) Consider a liquid mixture of 1 mole Ag and 4 moles Cu at 800°C. At equilibrium, what phases 
exist and what are their compositions? How many moles are present in each phase?
8.86 A phase diagram for a binary mixture of ammonia (1) – water (2) at 1 atm is shown in the fol-
lowing fi gure. Answer the following questions. Illustrate whenever possible the information 
you obtain from the diagram:
(a) What is the lowest temperature that only liquid can exist? What is the composition?
(b) What is the highest temperature that only liquid can exist? What is the composition?
(c) Consider a mixture of 1 mole NH3 and 4 moles H2O at 193.15 K. What phases exist? What are 
their compositions? How many moles of each phase are present.
(d) What is the activity coeffi cient of NH3 in a liquid in equilibrium with its vapor at a temperature 
of 80°C. Use the Lewis/Randall reference state. 

0.6 10.8

Liquid

°C
 →

Ice +
Solution

NH3
 . H2O +

Solution

Wt fraction NH3
 -

NH3 + 2NH3
 . H2O

Ice + NH3
 . H2O

2NH3
 . H2O +

Solution
NH3 Solid +
Solution

Vapor

L + V

0.20
−120

−80

−40

0

40

80

120

NH3
 . H2O

+
2NH3

 . H2O

8.87 A well-insulated container has 1.0 kg ice and 1.0 kg liquid water at 0°C in equilibrium. 1.0 kg 
of liquid ethanol at 0°C is added to the system. At equilibrium, what is the fi nal state of the system? 
A phase diagram for the binary mixture is shown in the following fi gure. The enthalpy of fusion for 
water is 6.01 kJ/mol and for ethanol is 5.02 kJ/mol. The enthalpy of mixing between water (1) and 
ethanol (2) has been reported to be fi t by:

Dhmix

R
5 x1x2 32190.0 1 214.7 1x2 2 x1 2 2 419.4 1x2 2 x1 2 2

1 383.3 1x2 2 x1 2 3 2 235.4 1x2 2 x1 2 4 4 3K 4
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8.88 The following solid–liquid equilibrium data are available for a binary mixture of C and meta-
stable g—Fe.

T[°C] Xc xc

1148 0.1000 0.2092
1154 0.0900 0.2072
1200 0.0877 0.1906
1250 0.0718 0.1689
1300 0.0613 0.1450
1350 0.0475 0.1179
1400 0.0333 0.0891
1450 0.0196 0.0570
1495 0.0079 0.0248

Source: T. Lyman et al., Metal Handbook, Metalography, 
Structures, and Phase Diagrams, 8th ed. (Vol. 8) (Metals 
Park, OH: American Society for Metals, 1973).

From these data estimate the melting point and enthalpy of fusion of g—Fe.
8.89 When 9 g of urea 1CH4N2O 2  are added to 1 kg of acetone at 1 bar, the boiling point of 
acetone raises 0.24 K. The normal boiling point of acetone is 329.2 K. From this datum, estimate 
acetone’s enthalpy of vaporization.
8.90 Ethylene glycol, C2H6O2, is used as an antifreeze to keep the water in the radiator of your car 
from freezing in the winter. Estimate the fraction of antifreeze, by volume, that you need to keep 
from freezing at 210° C. For water, Dhfus 5 26.01 3kJ/mol 4.
8.91 What is the minimum pressure required to desalinate seawater by reverse osmosis?
8.92 Find the osmotic pressure of a solution of 0.5 g of sucrose 1C12H22O11 2  in 500 g water at 
25°C and 1 bar.
8.93 Use ThermoSolver to fi nd the activity coeffi cient model parameters for the data presented 
in Problems 8.55 and 8.56.
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8.94 Use ThermoSolver to determine the dew-point temperature and composition of a vapor 
mixture of 0.2 mole fraction n-hexane, 0.25 cyclohexane, 0.25 benzene, and 0.3 toluene at pres-
sures of 1 bar and at 20 bar, using (a) Raoult’s law; (b) liquid-phase nonideality but keeping the 
gas ideal; (c) the best answer that you can get. How do cases (a)–(c) compare at 1 bar? At 20 bar?
8.95 Use ThermoSolver to determine the bubble-point temperature and composition of a liquid 
mixture of 0.2 mole fraction n-hexane, 0.25 cyclohexane, 0.25 benzene, and 0.3 toluene at 1 bar 
and at 20 bar, using (a) Raoult’s law; (b) liquid-phase nonideality, but keeping the gas ideal; (c) the 
best answer that you can get. How do cases (a)–(c) compare at 1 bar? At 20 bar?
8.96 Use ThermoSolver to determine the dew-point pressure and composition of a vapor mixture 
of 0.25 mole fraction methanol, 0.35 acetone, and 0.4 n-hexane at temperatures of 40°C and 200°C 
using (a) Raoult’s law; (b) liquid-phase nonideality, but keeping the gas ideal; (c) the best answer 
that you can get. How do cases (a)–(c) compare at 40°C? At 200°C?
8.97 Use ThermoSolver to determine the bubble-point pressure and composition of a liquid mix-
ture of 0.25 mole fraction methanol, 0.35 acetone, and 0.4 n-hexane at temperatures of 40°C and 
at 200°C using (a) Raoult’s law; (b) liquid-phase nonideality, but keeping the gas ideal; (c) the best 
answer that you can get. How do cases (a)–(c) compare at 40°C? At 200°C?
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►CHAPTER

562

9

Chemical Reaction Equilibria

Learning Objectives

To demonstrate mastery of the material in Chapter 9, you should be able to:

 ► Determine the equilibrium composition for a system with a single 

chemical reaction and with multiple chemical reactions given the reaction 

stoichiometry, temperature, and pressure.

 ► Describe the role of thermodynamics vs. the role of kinetics in the 

consideration of chemical reactions in chemical and biological processes.

 ► Write a balanced chemical reaction given a complete or incomplete set of 

reactants and products. Defi ne the extent of reaction and the stoichiometric 

coeffi cient.

 ► Use thermochemical data to determine the equilibrium constant for a 

chemical reaction at any given temperature.

 ► For a determined reaction stoichiometry and initial reactant composition, 

write the equilibrium constant in terms of the extent of reaction for gas-

phase, liquid-phase, and heterogeneous reactions for ideal or nonideal 

systems.

 ► Given a set of species in a system, apply the Gibbs phase rule to determine 

how many independent reactions need to be specifi ed to constrain the 

system. Write an appropriate set of reactions and solve them using the 

equilibrium constant formulation. Alternatively, solve for the equilibrium 

composition using the minimization of Gibbs energy.

 ► Describe the role of non-Pv work in electrochemical systems. Defi ne the 

roles of the anode, cathode, and electrolyte in an electrochemical cell. 

Given shorthand notation for an electrochemical cell, identify the oxidation 

and reduction reactions. Use data for the standard half-cell potential for 

reduction reactions, Eo
, to calculate the standard potential of reaction E

o
rxn. 

Apply the Nernst equation to determine the potential in an electrochemical 

cell given a reaction and reactant concentrations.

 ► Defi ne the following point defects and identify them as atomic defects or 

electronic defects: vacancy, interstitial, substitutional impurity, misplaced 

atoms, electron, hole, dopant.

 ► Use appropriate nomenclature to write the symbolic form of a defect in a 

crystal lattice. Write balanced chemical equations for defects in solids, 

and apply the principles of chemical reaction equilibrium to write 

expressions for the equilibrium constant in terms of defect concentration. 

Describe the formation of electronic defects in intrinsic semiconductors. 
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9.1  Thermodynamics and Kinetics ◄ 563

Describe the process of doping by a set of chemical reactions of the 

appropriate defects. Construct a Brouwer diagram to illustrate the effect of 

gas partial pressure on the concentration of defects in a solid.

Butadiene carbonium ion

(22)

(a)

3-bromo-1-butene

(20)

1-bromo-2-butene

(21)

intermediate state

HBr +

Br

Br

T = 40°CT = − 80°C

3-bromo-1-butene

(20)
3-bromo-1-butene

(20)

1-bromo-2-butene
(21)

1-bromo-2-butene
(21)

Kinetics controls the reaction Thermodynamics control the reaction

fast

slow

Butadiene Butadiene

(b)

Less stable

More stable

Figure 9.1 (a) Reaction pathway in the addition of hydrogen bromide to butadiene. (b) Kinetic 
and thermodynamic control in the addition of hydrogen bromide to butadiene.

 ►9.1  Thermodynamics and Kinetics
Analysis of chemical reactions is central to the profession of chemical engineering. There 
is an infi nite possibility of arrangements of chemical bonds between elements to form 
molecules. The goal of applying equilibrium analysis to chemical reactions is to deter-
mine the extent to which products are favored given specifi ed elemental composition, 
temperature, and pressure. However, chemical reaction equilibria tell us nothing about 
how fast a reaction will proceed; to answer that question we must study the reaction 
kinetics. We can calculate the equilibrium extent of a given reaction without specifi c 
knowledge of the mechanism or kinetics. This analysis tells us the farthest a reaction 
can possibly go. Hence, if thermodynamics tells us a given reaction will not proceed to a 
signifi cant degree, we do not need to consider it further. On the other hand, only when 
thermodynamics tells us the reaction is possible do we need to consider whether we can 
achieve the reaction in a reasonable time to implement it.

Before we learn how to calculate how far a reaction will proceed at equilibrium using 
thermodynamics, it is instructive to explore the difference between thermodynamics 
and kinetics in analyzing chemical reactions. To look at the role each can play, consider 
the reaction of hydrogen bromide with butadiene shown in Figure 9.1a. These species 
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564 ► Chapter 9. Chemical Reaction Equilibria

will fi rst react to form a positively charged intermediate-state carbonium ion, labeled 
“(22)” in the fi gure, together with a negatively charged bromide ion. The Br2 can then 
add into one of two places on the carbonium ion to form either 3-bromo-1-butene or 
1-bromo-2-butene, labeled “(20)” and “(21)”, respectively. Each of these steps requires 
that the species overcome a characteristic “activation energy” to proceed along the given 
reaction pathway and form product. The relative amount of each product depends on 
the reaction temperature. At 280°C, the reaction products are 80% of (20) and 20% of 
(21); however, at 40°C, we get 20% of (20) and 80% of (21). How can this difference in 
product distribution be explained?

Figure 9.2 plots the molecular potential energy from the intermediate state to 
each of these products along the reaction pathway. Two energy-related quantities are 
illustrated —the activation energy, EA, and the enthalpy of reaction, Dhrxn. The activation 
energies show the amount of energy required for the molecules to rearrange and form 
product along each given reaction pathway. From Figure 9.2, we can see the reaction 
leading to (20) has a lower value of EA and requires less energy. On the other hand, the 
potential energy of state (21) is lower than (20), and the enthalpy of reaction is larger in 
magnitude for the reaction leading to (21). These differences lead to the observations 
summarized in Figure 9.1b, as we explore next.

Only molecules with energies greater than the activation energy will have enough 
energy to form a given product. Recall from Chapter 1 that molecules have distributions 
of energy and that distribution depends on the temperature. Activation energies are 
typically large enough that only the molecules in the very upper end of the energy distri-
bution can form product. Thus, the rate at which the reaction occurs is proportional to 
the number of molecules moving very fast, and that number increases dramatically with 
temperature. Mathematically, reaction rate is usually characterized by an exponential 
dependence on T, as given by the Arrhenius equation. At low temperature 1280°C 2 , the 
reaction is said to be kinetically controlled. The reaction leading to (20) occurs more 
quickly because its activation energy is lower and more molecules have the requisite 
energy. Consequently, more (20) is formed—even though (20) is ultimately less stable 
than (21). Kinetic control is illustrated on the left-hand side of Figure 9.1b. In this case, 
we are limited by rates, and the equilibrium analysis of thermodynamics that we will 
learn in this chapter does not apply. 

On the other hand, as Figure 9.2 shows, the product (21) has a lower energy state 
than (20) and is more stable. As the temperature is raised, the rates become fast enough 

Reaction pathway
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EA,21

Δhrxn,21

1-bromo
-2-butene

(21)
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e
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y intermediate
state
(22)

intermediate
state
(22)EA,20

Δhrxn,20

3-bromo
-1-butene

(20)

Reaction pathway

Figure 9.2 Potential energy changes along the reaction pathway from the carbonium ion interme-
diate state (22) to the different reaction products. The product (20) shown on the left has smaller 
magnitudes of EA and Dhrxn. The path to product (21) is shown on the right.
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that the reacting system has enough energy to sample all the possible states along both 
reaction pathways. Stated another way, the larger activation energy along the path to 
(21) does not limit access to this product. Thus, all states in the system can be sam-
pled, and the fi nal reaction product distribution represents that which minimizes Gibbs 
energy. We then get more of the product that is energetically favorable. (As we will dis-
cuss in Section 9.2, we still get some of the less stable product due to entropic effects.) 
This regime is thermodynamically controlled, as illustrated on the right-hand side 
of  Figure 9.1b.

Figure 9.1b illustrates the symbols we will use to distinguish these two cases. For 
kinetic control, we will use a one-sided arrow 1h2 , indicating that the reaction proceeds 
in one direction, since it is rate limited. For thermodynamic control, we will use a two-
sided arrow 1Sd 2 , indicating that the reaction samples all available bonding confi gura-
tions and proceeds to its most favorable (lowest Gibbs energy) state. The determination 
of rates and kinetics requires specifi c knowledge and then quantifi cation of the reaction 
mechanism; these measurements are system specifi c, and data may be hard to fi nd. On 
the other hand, equilibrium analysis for thermodynamically limited reactions depends 
only on properties that are independent of path. Thus, thermochemical data are much 
more accessible than kinetic data.

This discussion is meant to provide you some context for this chapter, where we 
cover a thermodynamic analysis of reacting systems; the calculations we perform in this 
chapter do not account for rates of product formation. They are valid only at equilib-
rium, when the reactions are thermodynamically controlled. The fundamental question 
we wish to address is, “What effect do temperature, pressure, and composition have on 
the equilibrium conversion in a chemically reacting system?” This analysis tells us 
nothing about the rates at which a chemical reaction will proceed. It does, however, 
tell us to what extent a reaction is possible. As in phase equilibria, we will use the Gibbs 
energy of the system to study chemical reaction equilibria. To illustrate the use of G, we 
will fi rst consider a specifi c reaction (Section 9.2). We will then describe the general for-
malism for a single reaction (Sections 9.3–9.5) and multiple reactions (Sections 9.7–9.8).

 ►9.2  CHEMICAL REACTION AND GIBBS ENERGY
In this section, we will consider a specific example to illustrate how the same principle 
that we applied to solve phase equilibria problems also applies to chemical equilibria: 
the minimization of Gibbs energy. As we have seen, Gibbs energy represents a trade-off 
between reducing the energy of a system and maximizing its entropy.

Consider the following ideal gas reaction at low pressure:

 H2 1 Cl2 Sd 2HCl (9.1)

First, lets consider the energetics of this chemical reaction. We can determine the 
relative energies of products vs. reactants by looking up the bond dissociation energies 
(bond strengths), Di2 j, of the three different species involved; these values are reported 
as follows:

DHi H 5 4.5 eV,     DCliCl 5 2.5 eV,     DHiCl 5 4.5 eV

Inspection of these bond energies reveals that when two molecules of HCl are formed 
from Reaction (9.1), the energy of the molecules present will be reduced by 2 eV; there-
fore HCl is energetically favored (more stable). Does this mean that the reaction will go 

9.2  Chemical Reaction and Gibbs Energy ◄ 565
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566 ► Chapter 9. Chemical Reaction Equilibria

to completion? As we have seen before, entropy also plays a role. In this case, if we had 
all product, we would have pure HCl; however, if some reactant remains, we have three 
species in a mixture. Three species can arrange themselves in many more confi gura-
tions than one pure species can. Hence, having some H2 and Cl2 stay unreacted is more 
entropically favored. How do these two opposing tendencies balance? Again we turn 
to Gibbs energy.

Before we examine how to calculate the Gibbs energy, it is useful to introduce the 
concept of extent of reaction. This concept is based on the fact that once we specify 
the initial composition of the system, we are limited by Reaction (9.1) as to the possible 
composition of the system once the reaction has completed to equilibrium (or to any 
degree toward equilibrium). For illustration, let’s consider a system in which we initially 
have 1 mole of H2 (species 1) and 1 mole of Cl2 (species 2) at 1 bar total pressure. These 
species can react stoichiometrically to form HCl (species 3). 

The amount of each species with which we end up is constrained by Reaction 
(9.1). No matter how much species 1 reacts, it will always consume an equal amount of 
 species 2; therefore,

n2 5 n1

Similarly, the amount of species 3 present is merely the product that results from the 
amount of species 1 that has reacted. Since we started with 1 mole of species 1, we can 
mathematically relate how much species 3 is present by knowing how much species 1 is 
left, as follows:

n3 5 2 11 2 n1 2

Examination of these last two equations reveals that the composition of all three spe-
cies can be determined once we know how far the reaction has proceeded. Rather than 
arbitrarily constraining species 2 and 3 to species 1, it is easier if we put all three species’ 
composition in terms of how far the reaction has proceeded, or the extent of reaction, j. 
We designate one species, typically the limiting reactant, upon which to base the extent 
of reaction and then write the other species in relation to the species we have chosen. 
For example, we can defi ne j based on how much H2 has reacted. The extent of reaction 
will also tell us how much Cl2 has reacted. Since we started with 1 mole of each species, 
the number of moles of each species after the reaction has proceeded by an extent of 
reaction, j19,12, is given by1:

n1 5 1 2 j19.12

and, n2 5 1 2 j19.12

What are the units for j? Similarly, we can relate how much HCl was formed to the 
extent of reaction:

n3 5 2j19.12

In this case, the possible extent of reaction ranges from j 5 0 mole (no reaction) to 
j 5 1 mole (complete reaction).

We now wish to calculate the total Gibbs energy of the system whose initial state 
is described above for all possible extents of reaction; we can then determine at which 
1 The equations for j that follow are valid only for the specifi c reaction stoichiometry given by Reaction (9.1) 
and are, therefore, denoted with the subscript. The more general treatment follows in Section 9.3.
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9.2  Chemical Reaction and Gibbs Energy ◄ 567

extent of reaction the Gibbs energy is the smallest. This minimum in Gibbs energy will 
represent the equilibrium conversion. 

The total Gibbs energy is given by the appropriate proportions of partial molar 
Gibbs energies, as prescribed by Equation (6.17):

 G 5 aniGi 5 animi 5 n1m1 1 n2m2 1 n3m3 (9.2)

where we have replaced the partial molar Gibbs energy with the chemical potential. The 
chemical potential of each component in an ideal gas is given by Equation (7.2):

 mi 5 g
i
o 1 RT ln 

pi

1 bar
 (9.3)

where the reference state is the ideal gas state of the pure species at the temperature of 
the reaction and a partial pressure of 1 bar (pi then has units of bar). We call this refer-
ence state the standard state.We should also note that since we specifi ed the pressure of 
the standard state, gi

o is a function of only temperature. 
Substitution of Equation (9.3) into Equation (9.2) yields:

G 5 n1g1
o 1 n2 g2

o 1 n3 g3
o 1 RT 1n1 1 n2 1 n3 2  ln P

1 RT 3n1 ln y1 1 n2 ln y2 1 n3 ln y3 4

The last term corresponds to a decrease in the Gibbs energy of the system due to mixing 
Dgmix

ideal. This term quantifi es the contribution that entropy plays in determining G of this 
ideal gas. If we now replace each species’ composition with the extent of reaction, we get:

G 5 11 2 j 2 1g
1
o 1 g2

o2 1 jg3
o 1 2RT ln P 1 RT 3 11 2 j 2  ln y1

 1 11 2 j 2 ln y2 1 j ln y3 4 (9.4)

Figure 9.3 shows a plot of the Gibbs energy of this chemical reaction, as defi ned 
by Equation (9.4), as a function of j. The component due to the pure species contribu-
tion is labeled “term 1” in the plot and in Equation (9.4). To obtain the Gibbs energy 
of the system, we must add the Gibbs energy of mixing to term 1, as illustrated in the 
fi gure. The product, species 3, has lower Gibbs energy than the reactants, species 1 
and 2. However, the equilibrium conversion is not pure species 3, but rather the compo-
sition at which the Gibbs energy is a minimum (as labeled). This result comes from the 
entropy of mixing term in Equation (9.4). Again, we have a trade-off between entropy 
and energy. 

If we start with only species 1 and 2, as in the example above, we will follow the arrow 
to the right until we reach the lowest Gibbs energy. This point will represent the equilib-
rium conversion. Conversely, if the system starts as all species 3, it can minimize its Gibbs 
energy by actually going to a higher energy state. This is represented by the arrow going to 
the left in Figure 9.3. (We see here how reactions can proceed both “forward” and “back-
ward.”) This increase in energy is compensated by an even larger increase in entropy. As 
long as the entropic gain outweighs the penalty in energy, species 1 and 2 will be formed. 
At some point, however, energetics become as important. At that point, the Gibbs energy 
is a minimum and we are again at the equilibrium conversion. It does not matter where 
we start! Given identical T, P, and proportion of elements, we will always end up with the 
same equilibrium composition.

term 1
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568 ► Chapter 9. Chemical Reaction Equilibria

This analysis illustrates the generality of applying equilibrium analysis to chemically 
reacting systems. Since all the confi gurations of the system are adequately sampled at equi-
librium (as illustrated by the reaction of butadiene shown in Figure 9.1b), we need to know 
neither the starting composition nor the mechanism of reaction to predict what confi gura-
tion the system will end up with in its equilibrium state. We merely need to specify the 
amount of each of the elements that are present and the system temperature and pressure.
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 Figure 9.3 Minimization of 
Gibbs energy for a reacting 
 system of species 1, 2, and 3.

 ►9.3  EQUILIBRIUM FOR A SINGLE REACTION
So far, we have examined specifi c cases to illustrate the effect of kinetics vs. thermody-
namics upon reacting systems (butadiene) and how the thermodynamic property Gibbs 
energy allows us to calculate equilibrium compositions by quantifying the trade-off 
between energy and entropy (HCl). We now wish to develop a general approach so that 
we can analyze the chemical reaction equilibria for any system of interest.

The reaction we considered in Reaction (9.1), formation of HCl from H2 and Cl2, 
can be written as follows:

A1 1 A2
Sd 2A3

where Ai represents compound i of the chemical reaction, that is,

A1 5 H2,     A2 5 Cl2,     A3 5 HCl

To generalize, we can introduce νi, the stoichiometric coefficient. The stoichiometric 
coeffi cient tells us the proportion in which a given species is produced, or reacts, given a 
particular reaction. By convention, the stoichiometric coeffi cient is positive for products, 
negative for reactants, and zero for inerts, that is,

νreactants , 0,     νproducts . 0,     νinerts 5 0

For Reaction (9.1), we have:

ν1 5 21,     ν2 5 21,     ν3 5 2

We now wish to generalize this approach to any possible reaction. This is particu-
larly useful for making complex chemical equilibrium analysis amenable to computer 
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9.3  Equilibrium for a Single Reaction ◄ 569

solutions. Using the formalism developed in the example above, we can describe the 
stoichiometry of any chemical reaction by:

 a νiAi (9.5)

By defi ning the species, Ai, along with their stoichiometric coeffi cients, νi, in Reaction 
(9.5), a given chemical reaction is completely specifi ed. Moreover, the production or 
consumption of reacting species is not independent; rather, Reaction (9.5) constrains 
how each of the reacting species changes. 

To see this point, consider the ratio of the change in the number of moles of 
species 1 to species 2. It can be defi ned according to the ratio of the respective stoichio-
metric coeffi cients:

1change in moles 2 1
1change in moles 2 2

5
dn1

dn2
5

ν1

ν2

or, rearranging,
dn1

ν1
5

dn2

ν2

Similarly, between species 1 and 3,

dn1

dn3
5

ν1

ν3
         or         

dn1

ν1
5

dn3

ν3

The change in all the species that are reacting is determined by the specifi c reaction 
stoichiometry defi ned in Reaction (9.5).

As we have seen in the HCl example, we can defi ne the extent of reaction, j,2 which 
is formally given by:

 
dn1

ν1
5

dn2

ν2
5

dn3

ν3
; dj (9.6)

where j is zero at the initial state. The extent of reaction has units of moles and is a 
measure of how far a given reaction has proceeded. The extent of reaction is useful 
because it provides a single variable to relate how every species in the reaction has 
changed. It is not restricted to values between 0 and 1; it can even be negative if the 
reaction proceeds in the reverse direction than we had anticipated when we wrote the 
reaction stoichiometry.

We can rewrite Equation (9.6) for any species i:

 dni 5 νidj (9.7) 

Integrating, with the initial condition specifi ed by the defi nition of j, we get:

 ni 5 ni
o 1 νij (9.8)

where ni
o is the initial concentration of species i. We can sum all the species that are 

present in a given phase to get the total number of moles in that phase. For example, for 
the vapor phase:

 nv 5 a
vapor

ni 5 no 1 νj (9.9)

2 j is also called the reaction coordinate.
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570 ► Chapter 9. Chemical Reaction Equilibria

where, no 5 a
vapor

ni
o      and      ν 5 a

vapor
νi 

Moreover, the mole fraction of each species in the vapor is given by:

 yi 5
ni

nv
5

ni
o 1 νij

no 1 νj
 (9.10)

Equations (9.8) and (9.10) allow us to calculate the composition and vapor-phase 
mole fractions, respectively, of a reacting system based on j. As an example of the latter, 
consider the reaction described in Figure 9.3. In this case, no 5 2 and n 5 0; therefore,

yH2 5
1 2 j

2
,        yCl2 5

1 2 j

2
,        and        yHCl 5 j

Equations analogous to (9.9) and (9.10) can also be written for any liquid or solid 
phases present. For example, the mole fraction in the liquid phase is given by:

 xi 5
ni

nl
5

ni
o 1 νij

no 1 νj
 (9.11) 

In applying Equations (9.10) and (9.11) to heterogeneous reactions, it is important to 
remember to divide only by the total number of moles of species in the same phase.

Fuel cells provide an attractive alternative energy source. They require an H2 feed stream to 
operate. Consider a fuel cell based on the direct conversion of methanol to form hydrogen:

H2O 1g 2 1 CH3OH 1g 2 Sd CO2 1g 2 1 3H2 1g 2

The reaction is carried out at 60°C and low pressure, with a feed of twice as much water 
as methanol. The equilibrium extent of reaction is j 5 0.87. How many moles of H2 can be 
produced per mole of CH3OH in the feed? What is the mole fraction of H2?

SOLUTION Taking a basis of 1 mole methanol, the initial composition can be written as:

nCH3OH
o 5 1        and       nH2O

o 5 2

with the number of moles of product equal to zero. Plugging these values into Equations (9.8) 
and (9.9) gives

 nCH3OH 5  nCH3OH
o 1 νCH3OHj 5   1 2 j

 nH2O 5  nH2O
o 1 νH2Oj  5   2 2 j

 nCO2 5  nCO2

o 1 νCO2j  5   j

 nH2 5  nH2

o 1 νH2 j  5   3j

 nv 5  no 1 νj  5 3 1 2j

Note that the total number of moles, nv, can be obtained by adding each of the individual 
species. Solving for the number of moles of H2 gives:

nH2 5 3j 5 2.61 moles

EXAMPLE 9.1

Extent of Reaction 
for Fuel Cell 
Fuel Source
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9.3  Equilibrium for a Single Reaction ◄ 571

We can apply the general formalism developed so far to the criteria for chemical 
equilibrium. At constant temperature and pressure, the condition for equilibrium is the 
minimization of Gibbs energy. The change in Gibbs energy is given by Equation (6.16):

dG 5 amidni 5 ami νidj

where we have used Equation (9.7) for dni. The system comes to chemical equilibrium at 
the extent of reaction for which the Gibbs energy is a minimum. Applying this criterion 
gives:

 
dG
dj

5 0 5 amiνi (9.12)

This relation is the mathematical equivalent of the equilibrium conversion denoted at 
the minima of Gibbs energy on Figure 9.3.

To solve Equation (9.12), we need an expression for chemical potential. As we did in 
the case of phase equilibria, we can relate chemical potential to fugacity. To write such 
an expression we need a well-defi ned reference state. A particularly common reference 
state, called the standard state, is defi ned as the pure species at the temperature of the 
reaction and a pressure of 1 bar (or 1 atm, when appropriate). We will freely interchange 
1 atm and 1 bar as the reference state pressure. Since the Gibbs energy has only a weak 
dependence on P, its value is, for all practical purposes, identical at these two pressures.

Using the standard state, the chemical potential is written as:

 mi 5 gi
o 1 RT ln 

f̂i

fi
o (9.13)

where the pure species molar Gibbs energy, gi
o, is a function of temperature only. As 

we will see shortly, using the standard state as a reference state will allow us access to a 
vast array of tabulated thermochemical data. Substituting Equation (9.13) into Equation 
(9.12):

0 5 a Bgi
o 1 RT ln 

f̂i

f
i
o Rνi

and rearranging:

 ln q ¢ fî

fi
o ≤

ni

5 2a
νi g i

o

RT
; 2

Dg rxn
o

RT  (9.14)

where we have used the mathematical identity that the sum of logarithms is equal to the 
log of the products. We have also defi ned a new term, Dgrxn

o 5 a νigi
o, which is the Gibbs 

energy of reaction. It is based on the pure component Gibbs energies proportioned by 
the stoichiometric coeffi cients of the reacting species. For a given reaction stoichiom-
etry, this term is a function only of temperature.

and a mole fraction of:

yH2 5
nH2

nv
5

3j

3 1 2j
5 0.55
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572 ► Chapter 9. Chemical Reaction Equilibria

Examining Equation (9.14), we see that, in a sense, we have divided our chemical 
reaction equilibrium problem into two parts—one represented by the left-hand side 
of the equation and the second by the right-hand side. To solve the left-hand side, we 
need to employ the extent of reaction formulation developed above. It is here where 
process variables such as feed composition and reaction pressure affect the value of j. 
The details of this part of the chemical reaction equilibrium calculation will be explored 
in Section 9.5. The solution of the right-hand side, on the other hand, simply depends 
on determining the value of Dgrxn

o . As we just saw, Dgrxn
o  depends only on the tempera-

ture of the system. Thus, once the reaction stoichiometry has been defined, the reaction 
temperature is the only variable that needs to be specified to solve the right-hand side of 
Equation (9.14).

Since determination of the right-hand side of Equation (9.14) requires only the 
reaction T, we give it its own name, the equilibrium constant, K, which is defi ned as 
follows:

 ln K ; 2
Dgrxn

o

RT
 (9.15)

where the natural logarithm is used to simplify the left-hand side of Equation (9.14). 
Note that the equilibrium constant is only “constant” at a given temperature, that is,

K 5 f 1T only 2

We can now simplify our criteria for chemical reaction equilibrium as follows:

 q ¢  
f̂i

fi
o ≤

νi

; K (9.16)

In Section 9.4 we will learn how to solve for K at any temperature from available 
thermochemical data, while we will explore how to relate the left-hand side to the extent 
of reaction in Section 9.5.

 ►9.4  CALCULATION OF K FROM THERMOCHEMICAL DATA
To fi nd K, we typically use available thermochemical data (Dgi, Dhi, or permutations of 
these pure species properties), which allow us to calculate the Gibbs energy of reaction. 
We then solve for K via Equation (9.15). We will fi rst look at how to calculate K from 
Dg rxn

o  at 298 K; then we will examine how to determine Dgrxn
o  at any T. Appendix F pro-

vides a list of common sources to search for thermodynamic property data.

Calculation of K from Gibbs Energy of Formation

The most common thermochemical data available to calculate the equilibrium constant 
are in the form of the Gibbs energy of formation, Dgf

o; Appendix A.3 shows some repre-
sentative values for 25°C and 1 bar. The Gibbs energy of formation is defi ned analogously 
to the enthalpy of formation, introduced in Section 2.6. It is equal to the Gibbs energy 
of reaction when the species of interest is formed from its pure elemental  constituents, 
as found in nature, that is,

elements dS
Dgf

 species i
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9.4  Calculation of K from Thermochemical Data ◄ 573

The Gibbs energy of formation of a pure element, as it is found in nature, is identically 
zero.

With the Gibbs energies of formation available, it is straightforward to calculate 
the Gibbs energy of reaction. Such a calculation path for the Gibbs energy of reaction 
at 298 K is illustrated in Figure 9.4. In the dashed (calculation) path, the reactants are 
fi rst decomposed into their constituent elements, as found in nature. This part of the 
path is given by Dg1. The constituent elements are then allowed to react to form products, 
as given by Dg2. The stoichiometric coeffi cients of the reactants are negative, making the 
signs for Dg1 consistent with the defi nition of Gibbs energy of formation above. Equating 
the two paths yields:

Dgrxn,298
o 5 Dg1 1 Dg2 5 a

reactants
νi 1Dgf ,298

o 2 i 1 a
products

νi 1Dgf,298
o 2 i 5 a νi 1Dg

f ,298
o 2 i

Thus, if Gibbs energies of formation are available for all the species in the chemical reac-
tion of interest, the Gibbs energy of reaction can be determined by scaling each species’ 
Dg f  by its stoichiometric coeffi cient. In summary,

 Dgrxn
o 5 a νigi

o 5 a νi 1Dgf
o 2 i (9.17)

Figure 9.4 Calculation path of Dgo from the standard Gibbs energies of formation, ¢Dgf
o≤

i
.

Elemental form found in nature 298.15 K, 1 bar

Reactants
298.15 K, 1 bar

Products

298.15 K, 1 bar
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Calculate the equilibrium constant at 298 K for the reaction of Example 9.1: 

H2O 1g 2 1 CH3OH 1g 2 Sd CO2 1g 2 1 3H2 1g 2

SOLUTION The equilibrium constant can be found from the Gibbs energy of formation. In this 
case, Equation (9.17) can be written as follows:

Dgrxn,298
o 5 a νi 1Dgf ,298

o 2 i 5 1Dgf ,298
o 2CO2 1 3 1Dgf,298

o 2H2 2 1Dgf,298
o 2H2O 2 1Dg

f  ,298
o 2CH3OH

EXAMPLE 9.2

Calculation of K 
at 298 K

(Continued)
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574 ► Chapter 9. Chemical Reaction Equilibria

The Temperature Dependence of K

Most reactions we wish to analyze are at temperatures other than 25°C. If the Gibbs 
energies of formation (or other equivalent data) are available at the reaction tempera-
ture, the equilibrium constant can be calculated directly from Equation (9.15). However, 
often the data to calculate the Gibbs energy of reaction are available at a temperature 
different from the one of interest (typically, 25°C). By determining the temperature 
dependence of K, we can calculate the equilibrium constant of any reaction at any tem-
perature from one set of Gibbs energy data.

To calculate the temperature dependence of K, once again we take advantage of the 
thermodynamic web to give us a relationship among the desired properties. We wish to 
fi nd dln K/dT. However, by Equation (9.15),

dln K
dT

5 2
d 1Dgrxn

o     /RT 2

dT

Applying the product rule, we get:

d ln K
dT

5
Dgrxn

o

RT 2
2

1
RT

 
dDgrxn

o

dT
5

Dgrxn
o

RT 2
1

Dsrxn
o

RT

Since we are at constant pressure, the thermodynamic property relation given by 
 Equation (5.14), 1'Dgrxn

o /'T 2P 5 2Dsrxn
o , was used. By defi nition,

Dgrxn
o 5 Dhrxn

o 2 TDsrxn
o

so, 
dlnK
dT

5
Dhrxn

o

RT 2
 (9.18)

where the enthalpy of reaction, Dhrxn
o , is defi ned by Equation (2.35) as:

 Dhrxn
o 5 a νihi

o 5 a νi 1Dhf
o 2 i (9.19)

Examination of Equation (9.18) shows that for exothermic reactions 1Dhrxn
o , 0 2 , 

the equilibrium constant decreases as temperature increases, since RT 
2 is always greater 

than zero. For endothermic reactions 1Dhrxn
o . 0 2 , the equilibrium constant increases as 

temperature increases.

Taking values from Appendix A.3:

Dgrxn,298
o 5 12394.36 2 1 3 10 2 2 12228.57 2 2 12161.96 2 5 23.83 3kJ/mol 4

While water does not exist as a gas under these conditions, the hypothetical gaseous state was 
used for water. The practical application could be, for example, as the fi rst step in calculating 
K for the reaction described in Example 9.1. The next step would be to account for the 
temperature dependence of K (next section) and fi nd the equilibrium constant at 60°C, where 
H2O exists as a gas at low pressure. Plugging the appropriate values (in SI units) into Equation 
(9.15) gives:

K298 5 exp¢2
Dg298

o

RT
≤ 5 expa2

23,830
18.314 2 1298.15 2

b 5 4.69
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9.4  Calculation of K from Thermochemical Data ◄ 575

D
o

hrxn 5 Constant
For small temperature ranges or approximate calculations, we can assume Dhrxn

o  inde-
pendent of temperature. If we separate variables in (Equation 9.18), we get:

dlnK 5 ¢Dhrxn
o

R
≤  

dT
T2

Integration yields:

 ln 

K2

K1
5 2

Dhrxn
o

R
 ¢ 1

T2
2

1
T1
≤  (9.20)

If we have data for K available at 298 K, Equation (9.20) becomes:

 ln 

KT

K298
5 2

Dhrxn
o

R
 a

1
T

2
1

298
b  (9.21)

 Calculate the equilibrium constant at 60°C for the reaction of Example 9.1:

H2O 1g 2 1 CH3OH 1g 2 Sd CO2 1g 2 1 3H2 1g 2

SOLUTION From Example 9.2,
K298 5 4.69

We can fi nd the enthalpy of reaction from the enthalpies of formation:

Dhrxn
o 5 a νi ¢Dhf

o≤
i
5 ¢Dhf

o≤
CO2

1 3¢Dhf
o≤

H2

2 ¢Dhf
o≤

H2O
2 ¢Dhf

o≤
CH3OH

Using the values from Appendix A.3:

Dhrxn,298
o

5 12393.51 2 1 3 10 2 2 12241.82 2 2 12200.66 2 5 48.97 3kJ/mol 4

Using this value in Equation (9.21):

ln 

K333

4.69
5 2

48,970
8.314

 ¢ 1
333

2
1

298
≤ 5 2.08

Solving for the equilibrium constant:

K333 5 37.44

The value of the equilibrium constant of this reaction increases by an order of magnitude as the 
temperature increases from 25° to 60°C.

EXAMPLE 9.3

Calculation of K at 
60°C from K298

Dho
rxn 5 Dho

rxn 1T 2
In general, the enthalpy of reaction is a function of temperature, i.e., Dhrxn

o 5 Dhrxn
o 1T 2 . 

Figure 9.5 shows a calculation path that we can use to account for this temperature 
dependence. This path was constructed based on available data for Dho

rxn,298 and heat 
capacity data, cP,i, for each of the i reacting species. In step 1, we cool or heat the reac-
tants from the temperature of the system, T, to 298.15 K. In step 2, we undergo chemical 
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576 ► Chapter 9. Chemical Reaction Equilibria

reaction from reactants to products at 298.15 K. Finally, in step 3, we return the products 
to temperature T. 

In general, the heat capacity can be expressed in the following form:

1cP 2 i

R
5 Ai 1 BiT 1 CiT 2 1 DiT22 1 EiT 

3

The enthalpy of reaction at any temperature T is then found according to the path in 
Figure 9.5:

 Dhrxn,T
o 5 Dhrxn,298

o
1 3

T

298

£Ra
i

νi¢Ai 1 BiT 1 CiT2 1
Di

T2
1 EiT3≤≥

 

dT (9.22)

where the enthalpy of reaction at 298 K, Dhrxn,298
o , can be calculated from a table of 

standard enthalpies of formation (for example, see Appendix A.3). Integrating Equation 
(9.22) yields:

 Dhrxn,T
o 5 Dhrxn,298

o 1 RBDA 1T 2 298 2 1
DB
2

 1T2 2 2982 2 1
DC
3

 1T3 2 2983 2

2DDa
1
T

2
1

298
b 1

DE
4

 1T4 2 2984 2 R  (9.23)

where, DA 5 a
i

νiAi,     DB 5 a
i

νiBi,      DC 5 a
i

νiCi, 

DD 5 a
i

νiDi,     and     DE 5 a
i

νiEi,

Substituting Equation (9.23) into Equation (9.18) gives:

 
d ln K

dT
5 BDhrxn,298

o

R
1 DA 1T 2 298 2 1

DB
2

 1T2 2 2982 2 1
DC
3

 1T3 2 2983 2

 2DDa
1
T

2
1

298
b 1

DE
4

 1T4 2 2984 2 R^T2

Figure 9.5 Calculation path for determining Dho
rxn 1T 2 .

Δh1 = − ∫ R Σ νi (Ai + BiT + CiT 2 + DiT −2 + EiT 3 )dT
298

reactantsT

Δh3 =  ∫ R Σ νi (Ai + BiT + CiT 2 + DiT −2 + EiT 3)dT
T

products298

Δhrxn,T = Δh1 + Δh0
rxn,298 + Δh3

298.15 K

Reactants Products

ProductsReactants
T

Δhrxn, T

Δh0
rxn,298

Δ
h

3Δh
1
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9.4  Calculation of K from Thermochemical Data ◄ 577

upon integraton, we get:

 ln ¢ KT

K298
≤ 5 h

B2
Dhrxn,298

o

R
1 DA 1298 2 1

DB
2

 12982 2 1
DC
3

 12983 2

   2
DD
298

1
DE
4

 12984 2 R a1
T

2
1

298
b

   1DA lna
T

298
b 1

DB
2

 1T 2 298 2 1
DC
6

 1T2 2 2982 2

   1
DD
2

 a
1
T2

2
1

2982b 1
DE
12

 1T3 2 2983 2

x (9.24)

where the equilibrium constant at 298 K, K298 can be calculated from a table of standard 
Gibbs energies of formation (for example, see Appendix A.3). ThermoSolver can be used 
to solve Equation (9.24) for reactions using species in the data base.

We wish to produce formaldehyde, CH2O, by the gas-phase pyrolysis of methanol, CH4O, 
according to:

CH4O 1g 2 Sd CH2O 1g 2 1 H2 1g 2

(a)  What is the equilibrium constant at room temperature? Would you expect an appreciable 
yield of product?

(b) Consider the reaction at 600°C and 1 bar. What is the equilibrium constant
 (i) assuming Dhrxn

o 5 constant?
(ii) using Dhrxn

o
5 Dhrxn

o 1T 2?

SOLUTION First, we must get the appropriate thermochemical data. Data from Appendices A.2 
and A.3 are summarized in Table E9.4.
(a) The equilibrium constant at 25°C can be calculated from the Gibbs energy of reaction. 
From the Table E9.4:

  Dgrxn,298
o

5 a νi 1Dgf,298
o 2 i 5 1Dgf,298

o 2CH2O 1 1Dgf,298
o 2H2 2 1Dgf,298

o 2CH4O

 5 52.0 3kJ/mol 4

so, K298 5 exp¢2
Dgrxn,298

o

RT
≤ 5 expa2

52,000
18.314 2 1298.15 2

b 5 7.64 3 10210

This value is 11 orders of magnitude smaller than in Example 9.2. Since the equilibrium 
constant represents the degree to which products will form, this result tells us that very 
little formaldehyde will form at 298 K. This example illustrates the wide range of values the 
equilibrium constant can take. We used a hypothetical gaseous state for methanol, since it 
exists as a liquid at 298 K and 1 atm but as a gas at 600°C.
(b) (i) To calculate K at 600°C, we need the enthalpy of reaction. This value is available at 
298 K from the thermochemical data in Table E9.4. From the enthalpies of formation:

Dhrxn,298
o 5 a νi 1Dhf,298

o
2 i 5 1Dhf,298

o
2CH2O 1 1Dhf,298

o
2H2 2 1Dhf,298

o
2CH4O 5 84.7 3kJ/mol 4

EXAMPLE 9.4

Calculation of KT

(Continued)

c09.indd   577c09.indd   577 05/11/12   8:18 PM05/11/12   8:18 PM



578 ► Chapter 9. Chemical Reaction Equilibria

TABLE E9.4 Summary of Thermochemical Data from Appendices A.2 and A.3

CH4O CH2O H2

1Dgf,298
o 2 i 3kJ/mol 4 2162.0 2110.0 0

1Dhf,298
o 2 i 3kJ/mol 4 2200.7 2116.0 0

ni 21 1 1

Ai 2.211 2.264 3.249

Bi 1.222 3 1022 7.022 3 1023 0.422 3 1023

Ci 23.450 3 1026 21.877 3 1026 —

Di — — 0.083 3 105

Since this reaction is endothermic, K gets larger with T. Applying Equation (9.21):

ln 

k873

7.64 3 10210
5 2

84,700
8.314

 ¢ 1
873

2
1

298
≤ 5 22.5

Solving for the equilibrium constant:

K873 5 4.63

This result indicates that at 600°C we get a noticeable amount of product.
(ii) To account for the change in the enthalpy of reaction with temperature, we must use the 
heat capacity data. From the Table E9.4, we get:

 DA 5 a
i

νiAi 5 3.302

 DB 5 a
i

νiBi 5 24.776 3 1023

 DC 5 a
i

νiCi 5 1.57 3 1026

 DD 5 a
i

νiDi 5 0.083 3 105

Plugging these values into Equation (9.24):

ln ¢ K873

7.64 3 10210
≤ 5 h

 c2
84,700
8.314

1 13.302 2 1298 2 2
4.776 3 1023

2
 12982 2

   1 
1.57 3 1026

3
 12983 2 2

0.083 3 105

298
d a

1
873

2
1

298
b

   1 3.302 lna
873
298

b 2
4.776 3 1023

2
 1873 2 298 2

   1 
1.57 3 1026

6
 18732 2 2982 2 1

0.083 3 105

2
 ¢ 1

8732
2

1
2982

≤

x

Performing the calculation on the right-hand side gives:

ln¢ K873

7.64 3 10210
≤ 5 23.2

which results in:
K873 5 8.67

The assumption of constant heat capacity resulted in an equilibrium constant about half the 
size of this value. 
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 ►9.5  RELATIONSHIP BETWEEN THE EQUILIBRIUM CONSTANT 
AND THE CONCENTRATIONS OF REACTING SPECIES

We have just learned how to calculate a value for the equilibrium constant at any reac-
tion temperature. Examination of Equation (9.16) shows that the equilibrium constant 
is also related to the fugacities of the reactants and products. We will now apply what 
we have learned about fugacities and reference states to relate the equilibrium con-
stant directly to the extent of reaction. As we saw in Example 9.1, with j known, it is 
straightforward to calculate equilibrium concentrations and mole fractions. Since we 
have already examined how to calculate fugacities for the vapor phase and for condensed 
phases, we have the formalism by which to accomplish this goal. We will fi rst consider 
gas-phase reactions.

The Equilibrium Constant for a Gas-Phase Reaction

Recall that our reference state for the gas phase is a pressure low enough that the gas 
behaves as an ideal gas. For the sake of chemical reaction calculations, we usually choose 
the standard state pressure to be 1 bar (or 1 atm). For most gases, intermolecular interac-
tions are negligible at 1 bar and the ideal gas assumption is valid. However, if the gas is not 
ideal at this pressure, we go to a low enough pressure that it is an ideal gas, then extrapo-
late back to a pressure of 1 bar, assuming the gas is ideal. In this case, the standard state 
represents that of a hypothetical ideal gas at 1 bar where we have “turned off” the inter-
molecular interactions of the real gas. In either case, the standard state fugacity becomes:

fi
o5 1 bar

For this choice, Equation (9.16) becomes:

 K 5 q ¢ f̂ i 3bar 4 ≤
νi

5 q 1yiŵiP 3bar 4 2 νi (9.25)

The pressure in Equation (9.25) is written in bar since the reference state fugacity has 
units of bar. From this point on, these units will be implicit.

Recall from Section 7.3 that there are three levels of rigor to solve for the fugacity 
coeffi cient:

 (a) ŵi 5 ŵi

This is the rigorous solution, where the fugacity coeffi cient depends on the 
 concentration all the species in the mixture.

 (b) ŵi 5 wi fi rst approximation (Lewis fugacity rule)
In this case, we approximate the fugacity coeffi cient of species i in the mix-
ture by the pure species fugacity coeffi cient, which is therefore independent of 
concentration.

 (c) ŵi 5 1 second approximation (ideal gas)

Case (a) requires an iterative solution since equilibrium concentrations must be 
known to calculate the fugacity coeffi cient. However, we need the fugacity coeffi cient to 
calculate the equilibrium concentrations. Usually we do not approach chemical reaction 
equilibria with this level of rigor, but rather use case (b) 1 ŵi 5 wi 2 . For case (b), Equation 
(9.25) can be written:

 K 5 q 1yi 2
νi

q 1wi 2
νiPν (9.26)

9.5  Relationship Between the Equilibrium Constant and the Concentrations of Reacting Species  ◄ 579
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580 ► Chapter 9. Chemical Reaction Equilibria

For an ideal gas [case (c)], Equation (9.26) can be further simplifi ed to:

 K 5 q 1yi 2
νiPν      1 ideal gas 2  (9.27)

Consider the following general gas-phase reaction:

 aA 1g 2 1 bB 1g 2 Sd cC 1g 2 1 dD 1g 2  (E9.5A)

The constant-pressure reactor also contains an inert species, I. Describe how the following 
reactor conditions affect yield of reaction products: (a) temperature; (b) pressure; (c) addition 
of inert; (d) additional (nonstoichiometric) reactant in feed.

SOLUTION The total number of moles in the reactor is:

nT
v 5 nA 1 nB 1 nC 1 nD 1 n1

Equation (9.26) can be written:

K 5

¢nC

nT
v
≤ c¢nD

nT
v
≤d

¢nA

nT
v
≤ a¢nB

nT
v
≤b

 cq 1wi 2 νi dPν

and, rearranging,

 
K 1nT

v 2 ν

3P 1wi 2 νi 4Pν 5
1nC 2 c 1nD 2d

1nA 2 a 1nB 2b
 (E9.5B)

We are now ready to consider how changes in reactor conditions can affect the equilibrium 
conversion of this gas-phase reaction.
(a) A change in temperature will most notably affect K (and, to a much lesser extent, wi). We 
can rearrange Equation (E9.5B) as follows:

 
K

3P 1wi 2 νi 4
5 B Pν

1nT
v2 ν
R 1nC 2 c 1nD 2d

1nA 2 a 1nB 2b
 (E9.5C)

where we have kept the temperature-dependent terms on the left-hand side of Equation (E9.5C). 
As discussed in Section 9.4, in an exothermic reaction, K decreases as temperature increases; 
therefore, the right-hand side must also decrease. The equilibrium will shift to the left in Equation 
(E9.5A), decreasing nC and nD while increasing nA and nB. Thus, the equilibrium conversion and 
potential product yield will decrease. Conversely, the equilibrium conversion of an endothermic 
reaction increases with increasing temperature.
(b) Pressure is primarily affected by the term Pn (and, to a lesser extent, wi). K is independent 
of pressure. Rearranging Equation (E9.5B), we get:

1
Pν 3P 1wi 2 νi 4

5 B 1
K 1nT

v 2 ν
R  

1nC 2 c 1nD 2d

1nA 2 a 1nB 2b

Hence, the effect of pressure will primarily depend on the sign of ν. If the number of moles 
of products is greater than the number of moles of reactants, ν is positive. In this case, using 

EXAMPLE 9.5

Effect of Reactor 
Conditions on the 
Extent of Reaction
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an argument similar to that in part (a), an increase in pressure decreases the equilibrium 
conversion. Conversely, if there are more reactants than products, conversion increases with 
increasing pressure. This is a restatement of Le Châtelier’s principle, taught in general chemistry. 
If the number of moles of reactants equals the number of moles of products, then pressure only 
affects equilibrium conversion weakly through wi.
(c) Addition of inert will effect nT

v, which also depends on the sign of ν. Rearranging Equation 
(E9.5B), we get:

1nT
v 2

ν
5 BPν3 1Pwi 2

νi 4

K
R  

1nC 2
c
1nD 2

d

1nA 2
a 1nB 2

b

If there are more moles of products than of reactants 1ν . 0 2 , an increase of inert increases 
the equilibrium conversion. Conversely, if there are more moles of reactants than of products, 
conversion decreases with added inerts. If the moles of reactants equal the moles of products, 
there is no effect of adding inerts. 

This effect can be understood on a molecular scale. If we consider a reaction with more 
moles of products than of reactants 1ν . 0 2 , more individual species must collide (fi nd each 
other) for the reaction to proceed backward as compared to forward. Addition of an inert will 
then makes it harder for the backward reaction relative to the forward reaction, since the inerts 
will make it harder for the greater number of product species to fi nd each other. Thus, the 
forward reaction will be greater than the reverse reaction relative to the case of no inert, and 
equilibrium conversion will be greater.
(d) If there is a reactant in the feed, the denominator on the right-hand side requires more 
conversion to satisfy Equation (E9.5B). Thus, a reactant in the feed will increase the conver-
sion of the other (limiting) reactant.

9.5  Relationship Between the Equilibrium Constant and the Concentrations of Reacting Species  ◄ 581

Consider the production of ethylene from unimolecular decomposition of ethane as shown in 
the following reaction:

C2H6
Sd C2H4 1 H2

At a temperature of 1000°C and pressure of 1 bar, what is the equilibrium composition of the 
system? Assume Dhrxn

o
5 constant.

SOLUTION From Appendix A.3, we can construct Table E9.6. The bottom row of Table E9.6 
provides the enthalpy and Gibbs energy of reaction by summing the species’ values times 
the stoichiometric coeffi cient. Only ethane is present in the feed; hence, nC2H6

o 5 1. We can 
write the number of moles and mole fractions in terms of the extent of reaction according to 
 Equations (9.8) and ( 9.10), respectively:

 nC2H6 5 1 2 j

 nC2H4 5 j

 nH2 5 j

nv 5 1 1 j

We have simply summed the number of moles of the individual species to obtain the total 
number of moles in the vapor, nv. Alternatively we could have used Equation (9.9). 

EXAMPLE 9.6

Calculation of 
Extent of Gas-Phase 
Reaction with 
Dhrxn

o 5 Constant

      yC2H6 5
nC2H6

nv
5

1 2 j

1 1 j

yC2H4 5
nC2H4

nv
5

j

1 1 j

yH2 5
nH2

nv
   5

j

1 1 j

(Continued)
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582 ► Chapter 9. Chemical Reaction Equilibria

TABLE E9.6 Summary of Thermochemical Data from Appendix A.3

Species νi Dhf
o

Dgf
o

C2H6 21 284.68 kJ/mol 232.84 kJ/mol
C2H4    1   52.26 68.15
H2    1   0 0

a νi 1 2 i    1 136.94 100.99

Since we are at low pressure, ideal gas behavior is assumed. Thus, the equilibrium constant 
can be written using Equation (9.27):

K 5 q 1yi 2
νiPν 5

yC2H4 yH2

yC2H6

 P

where ν 5 121 1 1 1 1 2 5 1. Expressing K in terms of extent of reaction gives:

K 5
j2

11 2 j 2 11 1 j 2
 P 5

j2

11 2 j2 2
 P

rearranging, j 5
Å

K
K 1 P

 (E9.6)

Equation (E9.6) expresses the extent of reaction in terms of P and T (through K). To 
numerically evaluate Equation (E9.6), K must be determined from the thermochemical data 
in Table E9.6. First, we calculate K at 25°C:

K298 5 exp¢2
Dgrxn

o

RT
≤ 5 expa2

100,990
38.314 4 3298.2 4

b 5 2.04 3 10218

If we assume Dhrxn
o 5 constant, we can correct for T using Equation (9.21):

ln 

K1273

K298
5 2

Dhrxn
o

R
 a

1
T

2
1

298
b 5 2

136,940
8.314

 a
1

1273
2

1
298

b 5 42.33

Solving for the equilibrium constant:

K1273 5 4.95

Using this value in Equation (E9.6) gives:

j 5 0.91

or, in terms of number of moles,

nC2H6 5 0.09,     nC2H4 5 0.91,     nH2 5 0.91

We see that under these conditions, it is possible to convert 91% of the ethane in the feed to 
ethylene.  
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We can express the number of moles and mole fractions in terms of the extent of reaction 
according to Equations (9.8) and (9.10), respectively:

 nN2 5 1 2 1j

 nH2 5 3 2 3j

 nNH3 5 2j

 n 5 4 2 2j

 yN2 5
nN2

n
  5

1 2 j

4 2 2j

 yH2 5
nH2

n
  5

3 2 3j

4 2 2j

 yNH3 5
nNH3

n
5

2j

4 2 2j

Since we are at low pressure, ideal gas behavior is assumed. Thus, the equilibrium 
constant can be written as:

K 5 P 1yi 2 νiP 1wi 2 νiPν 5
yNH3

2

yN2  yH2
3  P22

or, in terms of extent of reaction,

 K 5

¢ 2j

4 2 2j
≤ 2

¢ 1 2 j

4 2 2j
≤ ¢3 2 3j

4 2 2j
≤ 3 P22 5

12j 2 2 14 2 2j 2 2

11 2 j 2 13 2 3j 2 3
 P22 (E9.7)

Consider the production of ammonia from the catalytic reaction of a stoichiometric feed of 
nitrogen and hydrogen. The reaction temperature is 500°C and the reactor pressure is 1 bar.

N2 1 3H2
Sd 2NH3

What is the maximum possible conversion?
(a) Take Dho 5 constant.
(b) Take Dho 5 Dho 1T 2 .
You may consider the reaction to occur under ideal gas conditions.

SOLUTION From Appendices A.2 and A.3, we can construct the Table E9.7. The bottom row 
of Table E9.7 provides the sum of the species’ values times the stoichiometric coeffi cient for 
each quantity listed. Since the feed is stoichiometric, there are three times the number of 
moles of H2 than of N2. Thus, the initial mole fraction can be written as follows:

nH2

o 5 3, nN2

o 5 1

EXAMPLE 9.7

Production of 
Ammonia at 1 Bar

TABLE E9.7 Summary of Thermochemical Data from Appendices A.2 and A.3

Species νi Dhf
o Dgf

o Ai Bi Di

NH3 2 246.11 kJ/mol 216.45 kJ/mol 3.578 3.020 3 1023 20.186 3 105

N2 21            0           0 3.280 0.593 3 1023 0.040 3 105

H2 23              0           0 3.249 0.422 3 1023 0.083 3 105

a νi 1 2 i 22       292.22      232.90 25.871 4.180 3 1023 20.661 3 105

9.5  Relationship Between the Equilibrium Constant and the Concentrations of Reacting Species  ◄ 583

(Continued)
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584 ► Chapter 9. Chemical Reaction Equilibria

The equilibrium constant is calculated in the usual manner. First, we use the Gibbs energy 
of reaction to calculate K at 25ºC:

K298 5 exp¢2
Dgrxn

o

RT
≤ 5 expa2

232,900
38.314 4 3298.2 4

b 5 5.81 3 105

(a) For Dhrxn
o 5 constant, we again use Equation (9.21):

ln 

KT

K298
5

Dhrxn
o

R
 a

1
T

2
1

298
b 5

92,220
8.314

 a
1

773
2

1
298

b 5 222.88

and solving:

KT 5 6.754 3 1025

Plugging this into Equation (E9.7) with P 5 1 bar and solving for the extent of reaction gives:

j 5 0.005

(b) For Dhrxn
o 5 Drxn

o 1T 2 , we can use Equation (9.24):

ln ¢ KT

K298
≤ 5 h

B2
Dhrxn,298

o

R
1 DA 1298 2 1

DB
2

 12982 2 1
DC
3

 12983 2

   2
DD
298

R a1
T

2
1

298
b

       1DA lna
T

298
b 1

DB
2

 1T 2 298 2 1
DC
6

 1T2 2 2982 2

       1
DD
2

 ¢ 1
T2

2
1

2982
≤

x 5 224.37

and solving:

KT 5 1.51 3 1025

Plugging this into Equation (E9.7) with P 5 1 bar and solving for the extent of reaction gives

j 5 0.003

In summary, under these conditions we do not expect to produce an appreciable amount 
of ammonia.

Consider the production of ammonia from the catalytic reaction of a stoichiometric feed of 
nitrogen and hydrogen as in Example 9.7. As we saw, when the reaction temperature is 500°C 
and the reactor pressure is 1 bar, the conversion is very low. We wish to change the reactor 
conditions to increase conversion. Would you pick T or P? Which way would you change?

SOLUTION This reaction is exothermic 1Dhrxn
o

, 0 2 . As can be deduced from Equation (9.18), 
lower temperature will lead to higher equilibrium conversions. However, reducing the tem-
perature also reduces the rate of reaction, which is also a major industrial concern. In this case, 
the rates become too slow, so T cannot be reduced to increase conversion. If we next consider 
P, the primary effect is determined by n, as shown in Equation (E9.5B). Since n is negative, an 
increase in pressure will increase conversion. Example 9.9 examines the equilibrium conver-
sion obtained when the pressure is increased to 300 bar. 

EXAMPLE 9.8

Strategy to Increase 
Conversion of 
Ammonia Production
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9.5  Relationship Between the Equilibrium Constant and the Concentrations of Reacting Species ◄ 585

 Consider the production of ammonia from the catalytic reaction of a stoichiometric feed of 
nitrogen and hydrogen as in Example 9.7. Consider again the reaction temperature of 500°C. 
Now the reactor pressure is increased to 300 bar (see Example 9.8 for discussion). What is the 
maximum possible conversion?
(a) Take the gas to be ideal.
(b) Use the van der Waals equation and the Lewis fugacity rule to account for gas-phase nonideality.

SOLUTION (a) Considering the gas to be ideal, Equation (E9.7) is still valid. At a pressure of 
300 bar:

KT 5

¢ 2j

4 2 2j
≤ 2

¢ 1 2 j

4 2 2j
≤ ¢3 2 3j

4 2 2j
≤ 3 P22 5

12j 2 2 14 2 2j 2 2

11 2 j 2 13 2 3j 2 3
 P22

where, KT 5 1.51 3 1025     and     P 5 300 bar 

Solving for the extent of reaction gives:

j 5 0.37

The conversion has increased dramatically at the higher pressure.
(b) At 300 bar, the gas is not ideal. To account for nonideal behavior, we can use Equation (9.26). 
Recall that this equation uses the Lewis fugacity rule to approximate the fugacity coeffi cient:

K 5 q 1yi 2 νiq 1wi 2 νiPν 5
yNH3

2       wNH3
2

yN2 wN2 yH2

3   wH2

3
 P22

Replacing the mole fraction with expressions for j determined in Example 9.6, we obtain:

 K 5
12j 2 2wNH3

2 14 2 2j 2 2

11 2 j 2wN2
13 2 3j 2 3wH2

3
 P22 (E9.9)

A summary of the solution is shown in Table E9.9. The solution algorithm is as follows:

 1. Look up Pc, Tc (from Appendix A.1)
 2. Calculate van der Waals constants, a and b, from corresponding states:

a 5
27
64

 
1RTc 2 2

Pc
           b 5

1RTc 2

8Pc

 3. Calculate vi from van der Waals equation of state:

P 5
RT

vi 2 b
2

a
v1

2

In practice, we would use a more modern and accurate equation of state; however, 
the van der Waals equation is used in this example to be consistent with the 
development in Chapter 7.

 4. Calculate wi from he result obtained in Example 7.2:

ln B f i
v

P
R 5 ln 3w i

v4 5 2ln B 1vi 2 b 2P
RT

R 1
b

1vi 2 b 2
2

2a
RTvi

EXAMPLE 9.9

Production of 
Ammonia at 300 Bar

(Continued)
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586 ► Chapter 9. Chemical Reaction Equilibria

Now, plugging values into Equation (E9.9) and solving gives:

j 5 0.33

A correction of about 10% results from accounting for nonideal behavior; however, the 
conversion is still signifi cant in comparison to Example 9.7.

TABLE E9.9 Summary of Fugacity Coefficient Calculation

Species Tc

3K 4
Pc 
3atm 4

a 
 3Jm3/mol2 4

b
3m3/mol 4

vi

3m3/mol 4
wi

NH3 405.5 111.3 0.43 3.75 3 1025 2.37 3 1024 1.10
N2 126.2 33.5 0.14 3.88 3 1025 2.38 3 1024 1.11
H2 33.3 12.80 0.02 2.65 3 1025 1.92 3 1024 0.88

Consider the isomerization reaction of methylcyclopentane 1CH3C5H9 2  to cyclohexane 
1C6H12 2  at 298 K. What is the equilibrium conversion? Gibbs energies of formation are as 
follows:

1Dgf
o2CH3C5H9 5 31.72 3kJ/mol 4     and     1Dgf

o2C6H12 5 26.89 3kJ/mol 4

SOLUTION The isomerization reaction can be written as:

CH3C5H9 1 l 2 Sd C6H12 1 l 2

EXAMPLE 9.10

Extent of an 
Isomerization 
Reaction at 298 K

The Equilibrium Constant for a Liquid-Phase (or Solid-Phase) Reaction

The fi rst step in applying Equation (9.16) to the liquid phase is to choose a reference 
state. Recall that the data from which we calculate K are at 1 atm (or 1 bar), which, 
therefore, confi nes the reference pressure. For a Lewis/Randall reference state, Equa-
tion (9.12) becomes:

K 5 q ¢ xigi fi

fi
o ≤ νi

Here fi is at the pressure of the reaction, while f
i
o is at 1 bar. 

For large differences between these pressures, we must use the Poynting correction 
described in Chapter 7. If the pressure dependence of the fugacities is not significant, the 
relation between the equilibrium constant and composition becomes:

 K 5 q 1xiyi 2
νi (9.28)

where we may have to use a model for gE to relate the activity coeffi cient to composition. 
In the case of an ideal solution, we have:

 K 5 q 1xi 2
νi

           1 ideal solution 2  (9.29)
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9.5  Relationship Between the Equilibrium Constant and the Concentrations of Reacting Species ◄ 587

The Gibbs energy of reaction is given by:

Dgrxn
o 5 126.89 2 31.72 2 5 24.83 3kJ/mol 4

Solving for the equilibrium constant:

 K 5 exp¢2Dgrxn
o

RT
≤ 5 expa2 

24,830
18.314 2 1298 2

b 5 7.03 (E9.10A)

From Equation (9.29), we can write:

K 5
xC6H12

xCH3C5H9

or, in terms of extent of reaction,

 K 5
j

1 2 j
 (E9.10B)

Equating Equations (E9.10A) and (E9.10B) and solving gives:

j 5 0.875

At equilibrium, 87.5% of the liquid exists as cyclohexane.

The Equilibrium Constant for a Heterogeneous Reaction

If we have both vapor and condensed phases present, we simply treat the vapor species 
and the condensed species as we did before. We must always remember that the mole 
fractions in these expressions, however, refer to the mole fraction in a given phase, not 
the total mole fraction.

Calcium carbonate can dissociate according to the following reaction:

 CaCO3 1s 2 Sd CaO 1s 2 1 CO2 1g 2  (E9.11)

Consider a closed system with pure CaCO3 in vacuum at 1000 K. What is the equilibrium 
pressure of the system? Assume that the two solid phases are completely immiscible. At 1000 K, 
the following Gibbs energies of formation are reported:

Species 1Dgf,1000
o 2 i

CaCO3 2951.25
CaO 2531.09
CO2 2395.81

EXAMPLE 9.11

Heterogeneous 
Dissociation of 
Calcium Carbonate

(Continued)
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588 ► Chapter 9. Chemical Reaction Equilibria

SOLUTION Applying the defi nition of the equilibrium constant given by Equation (9.16):

K 5

¢ f̂ CaO

fCaO
o ≤ ¢ f̂CO2

1 bar
≤

¢ f̂ CaCO3

fCaCO3

o ≤
We must treat each of the three pure phases distinctly. If we assume that the pressure will be 
low enough that we have an ideal gas at equilibrium, we can rewrite the equilibrium constant as:

K 5

¢ fCaO

 fCaO
≤ ¢yCO2P

1 bar
≤

¢ fCaCO3

 fCaCO3

≤
5 pCO2

At low and moderate pressures, the terms corresponding to the pure species solids go 
to 1, since the Lewis/Randall reference fugacity equals the pure solid fugacity. At very high 
pressure, we would have to account for the Poynting correction, since the standard state is 
defi ned at 1 bar. Thus, the equilibrium constant equals the CO2 partial pressure. 

Solving for K from the thermochemical data provided, we get:

K 5 exp¢2
Dgrxn

o

RT
≤ 5 expB2

12531.09 2 395.81 1 951.25 2 11000 2
18.314 2 11000 2

R 5 0.053

Thus, at 1000 K calcium carbonate will dissociate until the pressure reaches:

pCO2 5 K 5 0.053 bar

or until we run out of CaCO3. Note that our ideal gas assumption is valid at this pressure. From 
this analysis, we can also deduce the following: If we had a system with solid CaO and a CO2 
partial pressure greater than 0.053 bar at 1000 K, Reaction (E9.11) would have a tendency to 
occur backward and we would consume CO2 until its partial pressure reached 0.053 bar.

You have just ordered a cylinder of acetylene but are concerned that it might react during ship-
ment to form benzene. Consider the reaction of acetylene to form benzene:

3C2H2 1g 2 Sd C6H6 1 l 2

For the sake of calculation, take the initial pressure to be 1 bar and the temperature to be 298 K. 
What is the equilibrium conversion? What is the corresponding fi nal pressure in the system?

SOLUTION First, we will use thermochemical data to determine the equilibrium constant. 
Looking up the Gibbs energies of formation in Appendix A.3 yields:

Dgrxn
o 5 1Dg

f
o2C6H6 2 3 1Dg

f
o 2C2H2 5 1124.3 2 3 3 209.2 2 5 2503.3 3kJ/mol 4

EXAMPLE 9.12

Reaction of 
Acetylene Vapor to 
Form Liquid Benzene

c09.indd   588c09.indd   588 05/11/12   8:19 PM05/11/12   8:19 PM



9.6  Equilibrium in Electrochemical Systems ◄ 589

Solving for the equilibrium constant:

K 5 exp¢2
Dgrxn

o

RT
≤ 5 expa2

2503,300
18.314 2 1298 2

b 5 1.7 3 1088

If we assume ideal gas and liquid phases, Equation (9.16) becomes:

 K 5
xC6H6

1yC2H2P 2
3 (E9.12)

As a fi rst approximation, we will assume that no acetylene condenses and that no benzene is 
volatile; hence,

xC6H6 5 1   and   yC2H2 5 1

Equation (E9.12) becomes:

K 5
1
P3

Solving for pressure:

P 5 3.9 3 10230 bar

This pressure corresponds to essentially complete conversion of acetylene. 
However, this pressure does not represent the fi nal system pressure, since benzene will 

exert a vapor pressure at 298 K. Benzene’s vapor pressure can be determined by the Antoine 
equation. Looking up the Antoine coeffi cients in Table A.1 yields:

ln 1P 3bar 4 2 5 A 2
B

T 3K 4 1 C
5 9.2806 2

2788.51
298 2 52.36

or, P 5 0.12 bar

Thus, at equilibrium, the cylinder is almost completely benzene, with a pressure of 0.12 bar. 
However, we are still able to ship acetylene, in practice. Even though the thermodynamics 
favors benzene, this reaction is limited by reaction rates and will not noticeably proceed 
without a catalyst present.

 ►9.6  EQUILIBRIUM IN ELECTROCHEMICAL SYSTEMS
So far in our analysis of chemical equilibrium, we have assumed that there is no work 
other than the Pv work from the changing boundary in a constant-pressure system. In 
this section, we consider electrochemical systems, where work can be introduced by 
applying an electric potential to two electrodes. 

In this case, we must rewrite Equation (6.3) to include non-Pv work, W∗:

 dW* $ 1dG 2T,P (6.3∗)

Equation (6.3∗) suggests two general applications of electrochemical systems. Reactions 
that spontaneously proceed have a negative Gibbs energy change; Equation (6.3∗) shows 
that W∗ is negative and that we can generate useful electrical work. This principle forms 
the basis on which we design batteries and fuel cells. On the other hand, input of a 
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590 ► Chapter 9. Chemical Reaction Equilibria

suitable quantity of electrical work can lead to reactions that have a positive change in 
Gibbs energy and would not spontaneously occur. This aspect is used to advantage in 
electroplating operations, where a desired metal is grown on a surface, and in manu-
facturing of metals and other chemicals through electrolysis. Other important electro-
chemical systems include corrosion processes and electrochemical-based sensors. 

An electrochemical cell that uses a spontaneous reaction to obtain useful work is 
termed a galvanic cell; conversely, a cell that requires electrical work to induce a reac-
tion that would not occur on its own is called an electrolytic cell. We can apply ther-
modynamics to see how much work we can obtain from a given electrochemical cell or, 
conversely, the minimum work that is needed to create a desired product.

   

C
u

2+(I) +
 2

e
− →

 C
u
(s

) 

H+

H+

Cu2+

H2O

H2O

H2O

H2O

H2O

H2O

O
2
(g

) 
+ 

2
H

+ (
I )

+
 2

e
–

1 2
H

2
O

(I
 )→

H2O
SO4

2−

SO4
2−

Electrolyte

Anode Cathode

e−e−

Pt

E

Figure 9.6 Schematic of an 
 electrochemical process.

Electrochemical Cells

Electrochemical processes occur within an electrochemical cell. Figure 9.6 shows an 
electrochemical process to grow copper on a substrate. This process illustrates many 
common components found in electrochemical systems. The electrochemical cell con-
tains two electrodes in an electrolyte solution. The reactions occurring on each of the 
two electrodes shown are termed half-cell reactions.

The reduction half-reaction occurs at the cathode, where electrons are trans-
ferred to the reacting species. In Figure 9.6, we have reduction of cupric ions to grow 
solid copper:

Cu21 1 l 2 1 2e2 Sd Cu 1s 2

In the oxidation half-reaction at the anode, the reactant loses electrons. In Figure 9.6, 
the anode is a noble metal, Pt, which does not readily react. Instead, oxidation of water 
occurs as the oxidation half-reaction, as follows:

H2O 1 l 2 Sd
1
2

 O2 1g 2 1 2H1 1 l 2 1 2e2

This reaction is noticeable, as bubbles arise at the anode from the O2 gas produced. 
The overall reaction of the electrochemical cell is obtained by adding the two half-

reactions. The half-reactions must be balanced so that no net electrons are produced. 
Additionally, in balancing a half-reaction in an aqueous electrolyte, the appropriate 
amount of H2O and either H1, for acidic solutions, or OH2, for basic solutions, can be 
used to account for changes in the stoichiometric amount of O and H between the reac-
tants and the products. 
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9.6  Equilibrium in Electrochemical Systems ◄ 591

The overall reaction depicted in Figure 9.6 is obtained by adding the oxidation and 
reduction half reactions:

H2O 1 l 2 1 Cu21 1 l 2 dS
1
2

 O2 1g 2 1 2H1 1 l 2 1 Cu 1s 2

In this electrolytic cell, we need the input of electrical work to get the reaction to 
proceed.

The overall reaction in an electrochemical cell never contains electrons. In the 
example above, the electrons produced from oxidizing water fl ow in the external circuit 
to the cathode and are consumed in the reduction of cupric ions. To complete the exter-
nal circuit, charge must be able to fl ow through the solution. That charge is carried by 
the transport of ions. A medium with mobile charge carriers is termed an electrolyte. 
Electrolytes are typically liquids, but systems can contain solid electrolytes if they are 
able to sustain the transport of charged species. 

The electrolyte used in Figure 9.6 is made from copper sulfate and sulfuric acid. 
These species dissociate in water to form positively charged cupric and hydrogen ions 
and negatively charged sulfate ions. Typically, small concentrations of other additives 
are also used to modify and control the properties of the plated copper. The positive 
ions fl ow toward the cathode, while the negative ions fl ow toward the anode, complet-
ing the electric circuit. The cupric ions are depleted from the electrolyte as the copper 
solid grows, while the hydrogen ion concentration increases due to the anodic reaction. 
One of the cations, the hydrogen ion, transports through solution much more quickly 
than either of the other ions. Thus, H1 initially carries more than its share of the cur-
rent. Inspection of Figure 9.6 reveals that over time, there will then be a net separation 
of charge until a potential is set up that retards the fl ow of H1 and increases the fl ow 
of the anion, SO4

22. At steady state, a net potential will be established that opposes the 
potential that we are applying. This added potential due to charge separation is termed 
a liquid junction.

Figure 9.6 shows the simplest confi guration of electrochemical cell where both 
electrodes are immersed in a common electrolyte. Often electrochemical cells contain 
different electrolyte compositions at the anode and the cathode. For example, consider 
an alternative electroplating process for copper in which zinc is oxidized at the anode 
and goes into solution as Zn21. A schematic of this process is shown in Figure 9.7. This 
system is galvanic; that is, the copper growth occurs spontaneously without the input 
of electrical work. In this case, it is desirable to have the two electrolyte compartments 
interact through a salt bridge. The salt bridge is noted in Figure 9.7. A salt bridge allows 
a net charge to be transferred from one electrolyte solution to the other but does not 
allow undesired mixing of the electrolytes. It can be a simple porous disk or a gel satu-
rated with a strong electrolyte such as KCl. Since the mobilities of the K1 and Cl2 ions 
are roughly equal, the salt bridge minimizes the liquid junction potential.

Shorthand Notation

To avoid having to sketch an electrochemical cell for every process we are considering, 
a shorthand notation has been developed for describing electrochemical cells. Always 
starting at the anode, we pass through the electrolyte to the cathode and indicate the 
active species in chemical notation. A phase change is indicated by a vertical bar, that is, 
phase 1|phase 2. When the phases are separated by a salt bridge or other similar device, 
we use a double bar, that is phase 1||phase 2. 
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592 ► Chapter 9. Chemical Reaction Equilibria

Therefore, our shorthand notation for the system depicted in Figure 9.6 is:

Pt 0O2 1g 2 0H2SO4 1 l 2 , CuSO4 1 l 2 0Cu 1s 2

The copper electroplating process in Figure 9.7 is written:

Zn 1s 2 0ZnSO4 1 l 2 0 0CuSO4 1 l 2 0Cu 1s 2

We often designate the concentrations of the active species as well.

CathodeAnode
e−e−

E

Salt bridge Electrolyte 2Electrolyte 1

Z
n
 →

 Z
n

2
+  

+ 
2
e

− ZnSO4 CuSO4

cations anions

C
u

2+ +
 2

e
− →

 C
u

 

Figure 9.7 Schematic of an 
 electrochemical process with a salt 
bridge.

Electrochemical Reaction Equilibrium

We now wish to apply the principles of thermodynamics to determine the minimum 
electrical work needed or the maximum electrical work obtained in these systems at 
equilibrium. The differential electrical work can be related to the electric potential dif-
ference between the cathode and the anode, E, and the differential amount of charge 
transferred, dQ, as follows:

 dW* 5 2EdQ (9.30) 

The sign convention for Equation (9.30) is chosen so that when the cathode has a posi-
tive potential with respect to the anode, the system can generate useful work, while a 
negative potential indicates that work is required for the process to proceed. 

Electrons that carry the charge in the external circuit result from the oxidation half-
reaction; thus, the differential charge transferred can be related to the extent of reaction 
as follows:

  5charge transferred6 5 b mol e2 liberated
mole species reacting

r  b charge

mole e2
r  5extent reaction6 (9.31)

 dQ 5 zFdj

where z is the number of moles of electrons liberated per mole of species that reacts and 
F is Faraday’s constant, 96,485 C/ 1mole e2 2 , which represents the charge of 1 mole of 
electrons. Substituting Equation (9.31) into (9.30) gives:

dW* 5 2zFEdj

c09.indd   592c09.indd   592 05/11/12   8:19 PM05/11/12   8:19 PM



9.6  Equilibrium in Electrochemical Systems ◄ 593

For a reversible reaction, we use the equality in Equation (6.3∗) to give:

2zFEdj 5 dG 5 aminidj

Applying Equations (9.12) and (9.13), we get:

2zFE 5 amiνi 5 a ¢gi
o 1 RT ln 

f̂i

fi
o ≤νi

We can apply the fugacity coeffi cient formulation for gases and the activity coeffi cient 
formulation for liquids as we did in Section 9.5. Assuming the activity of the solids in the 
system is 1, this expression becomes:

 2zFE 5 Dgrxn
o 1 RT ln C q

vapors
1yiŵiP 2 νi q

liquids
1xigi 2 νiS  (9.32)

Systems with solid solutions will need a solid term in Equation (9.32) as well. Recall that 
the fugacity coeffi cient formulation uses a standard-state fugacity for the vapor of 1 bar, 
so all units of pressure are in bar. Electrochemical cells typically operate under ideal gas 
conditions, so we will assume ŵi 5 1. For processes at high pressure, the development 
that follows should be modifi ed to include the fugacity coeffi cient as well. Additionally, 
in dilute solutions, the activity of the solvent 1gx 2 , is approximately 1.

We need to defi ne the standard state for the liquid in the electrolyte. By convention, 
we characterize the liquid composition in terms of concentration instead of mole frac-
tion, where the concentration of species i, ci, has units of molality, m (moles i per 1 kg of 
solvent). Moreover, we must specify a Henry’s law standard state for the ions in solution; 
they do not exist as pure species, so we cannot use the Lewis/Randall reference state. 
Our standard state is chosen to be a 1-m ideal solution, in the Henry’s law sense. If spe-
cies i is not ideal at this concentration, we go to a low enough concentration that it obeys 
Henry’s law, then extrapolate back to a hypothetical ideal liquid with 1-m concentration. 
The l-m standard state for the electrolyte solution is analogous to that of 1 bar for vapors. 
Thus, all concentrations used should be in units of m. 

In this case, we can defi ne a molality-based, Henry’s law activity coeffi cient, gi
m, to 

describe the deviations from ideality in the real solution. In other words, if a component 
in the liquid has a concentration of 1 mole per kg of solvent and its interactions cor-
respond to an ideal solution, it has cigi

m 5 1. For other concentrations it takes distinct 
value of ci, and for real liquids the term gi

m differs from 1. Using the molality-based 
standard state, Equation (9.32) becomes:

 2zFE 5 Dgrxn
o 2 RT lnB q

vapors
1pi 2 νi q

liquids
1cigi

m2 νiR  (9.33)

If we divide Equation (9.33) by zF, we get:

 E 5 Erxn
o

2
RT
zF

 lnB q
vapors

1pi 2 νi q
liquids

1cigi
m 2 νiR  (9.34)

where the standard potential of reaction is defi ned as:

 Erxn
o 5 2

Dgrxn
o

zF
  (9.35)
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594 ► Chapter 9. Chemical Reaction Equilibria

Equation (9.34) is known as the Nernst equation. In applying the Nernst equation, 
we must remember to write concentrations in units of m, just as we have used units of bar 
for pressure throughout this chapter. This condition results from the standard state that we 
have chosen. An important feature of the standard potential is that it does not depend on 
how many electrons we use in our half-cell reactions. Inspection of Equation (9.35) shows 
that if we double the number of electrons, both z and Dgrxn

o  double, leaving Erxn
o  unchanged.

Thermochemical Data: Half-Cell Potentials

Like the equilibrium constant, Erxn
o  is obtained from thermochemical data. Since the 

overall reaction in the electrochemical cell is composed of two half-reactions, we can 
tabulate electrochemical data in terms of half-reactions. We then simply add together 
the appropriate reduction and oxidation half-reactions to calculate Erxn

o  for the entire 
electrochemical cell. 

An isolated half-cell reaction cannot occur by itself, so we need to choose a reference 
half-cell reaction to complete the reference cell. Thermochemical data for electrochemi-
cal half-reactions are commonly published as the standard half-cell potential for reduc-
tion reactions, Eo. Representative values are reported in Table 9.1; however, these are but 
a few of the extensive sets of values that are available. This potential is measured with ref-
erence to a hydrogen–hydrogen ion oxidation reaction, whose potential is defi ned as zero:

H2 1g 2 dS 2H1 1 l 2 1 2e2       Eo
5 0.000000 V

The reactant and product species for both the reduction half-reaction and the hydrogen 
oxidation half-reaction are specifi ed to be in their standard states. Recall that the stand-
ard state of a gas is an ideal gas at 1 bar, a liquid is a 1 m ideal solution in the Henry’s 
law sense, and a solid is the pure solid with an activity of 1. In terms of our shorthand 
notation, we can measure the standard potential of any reduction half-reaction with a 
standard hydrogen electrode (S.H.E.):

Pt 0H2 1g, 1 bar 2 0H1 1 l, 1M 2 0 0
c

It is also possible to obtain the value of oxidation reactions from Table 9.1. The half-
cell potential of an oxidation reaction is simply the negative of the reported reduction 
half-reaction. The half-reaction potential and the hydrogen reduction reaction reference 
are analogous to our use of Gibbs energy of formation and the elemental form of mol-
ecules in the other parts of this chapter.

It is instructive to compare the half-cell reactions from Table 9.1. To construct an 
electrochemical cell, we use one reduction half-reaction and one oxidation half-reaction. 
The value of Eo for the reduction reaction can be obtained directly from Table 9.1, while 
the oxidation reaction is the negative of the value listed. 

Consider the case where all the species in the system are in their standard states. 
Examination of Equation (9.35) reveals that if Erxn

o . 0, the reaction will spontaneously 
proceed. Since the half-reactions in Table 9.1 are listed in order of their numerical val-
ues, if we choose a given half-reaction as a possible reduction reaction, any oxidation 
half-reaction that is listed below it will result in a positive value of Erxn

o  and the reduction-
oxidation couple will occur spontaneously. Conversely, any reaction listed above it will 
require input of electrical work to oxidize. 

For example, consider again the reduction of cupric ion to form copper; 
Cu21 1 2e2 S Cu. It is listed at a standard reduction potential of 10.342 V. Any of the 
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9.6  Equilibrium in Electrochemical Systems ◄ 595

species in reduced form of the half-reactions listed below this half-reaction will sponta-
neously oxidize under standard-state conditions. For example, let’s consider oxidation of 
zinc metal: Zn S Zn21 1 2e2. The oxidation potential is the negative of the reduction 
potential reported in Table 9.1 and has a value of 10.762 V. Thus, the total cell has a 
value of 11.104 V, and the oxidation reduction couple will spontaneously occur. This 
result forms the basis for the electrochemical cell depicted in Figure 9.7. If any species 
is not in its standard state, the numerical values will change. Similarly, Pb, Fe, Al, . . . 
will oxidize to couple with copper reduction. Conversely, any reduced form of a species 
above Cu21 1 2e2 S Cu will not spontaneously oxidize.

For example, if we have a silver anode, the standard oxidation potential is 20.800 V. 
Adding this value to the copper reduction half-reaction gives 20.458 V. Thus, at a mini-
mum, a potential of 0.458 V must be applied to get Ag1. We can see that the higher 
up a half-reaction is in Table 9.1, the more it will tend to be in its reduced form. Con-
versely, the lower it is, the more readily it will be oxidized. Thus, Table 9.1 can be quickly 
scanned to see what oxidation–reduction reactions will spontaneously occur and provide 
useful work and what reactions will require the input of work.

TABLE 9.1 Standard Half-Cell Potentials at 298 K

Reduction Half-Reaction Eo

F2 1 2e2 h 2F2 12.866

Au1 1 e2 h Au 11.692

PbO2 1 4H1 1 2e2 h Pb21 1 2H2O 11.455

Cl2 1 2e2h 2Cl2 11.358

O2 1 4H1 1 4e2 h H2O 11.229

Pt21 1 2e2 h Pt 11.18

Ag1 1 e2 h Ag 10.800

Cu1 1 e2 h Cu 10.521

O2 1 2H2O 1 4e2 h 4OH2 10.401

Cu21 1 2e2 h Cu 10.342

AgCl 1 e2 h Ag 1 Cl2 10.222

Cu21 1 e2 h Cu1 10.153

2H1 1 2e2 h H2 0.000

Pb21 1 2e2 h Pb 20.126

Fe21 1 2e2 h Fe 20.447

Zn21 1 2e2 h Zn 20.762

2H2O 1 2e2 h H2 1 2OH2 20.828

Al31 1 3e2 h Al 21.662

Na1 1 e2 h Na 22.71

Li1 1 e2 h Li 23.040

Source: D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 83rd 
ed. (Boca Raton, FL: CRC Press, 2002–2003).
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596 ► Chapter 9. Chemical Reaction Equilibria

The reverse copper disproportionation reaction has been proposed to etch solid copper:

 Cu 1 Cu21 1 l 2 Sd 2Cu1 1 l 2  (E9.13)

Calculate the equilibrium constant of the disproportionation reaction. Will it occur 
spontaneously?

SOLUTION The standard potential of Reaction (E9.13) is obtained by adding together the two 
half-cell reactions obtained from Table 9.1, as follows:

Cu21 1 l 2 1 e2 S Cu1 1 l 2          Eo 5 0.153 V

Cu S Cu1 1 l 2 1 e2                  Eo 5 20.521 V

The sum of the half-cell standard potential gives:

Erxn
o

5 0.153 2 0.521 5 20.368 V

Applying Equation (9.35) gives:

Dgrxn
o 5 2zFErxn

o
5 ¢21B mol e2

mol Cu21
R ≤ 3 ¢96, 485B C

mol e2
R ≤

3 120.37 3V 4 2 5 35.6 3kJ/mol 4

Using the defi nition of the equilibrium constant, we get:

K 5 exp¢2
Dgrxn

o

RT
≤ 5 5.7 3 1027

The equilibrium constant is small, and etching will not proceed spontaneously. However, if we 
apply work through application of an electric potential, we can etch the copper. In fact, this 
process is used to etch lines in printed circuit board manufacturing. 

EXAMPLE 9.13

Calculation of K 
from E°

Consider the plating of copper from the process shown in Figure 9.6. Calculate the minimum 
electrode potential to achieve copper growth. The aqueous solution has the following composi-
tion: 0.07 m CuSO4 and pH 5 1. You may assume you have an ideal solution.

SOLUTION Cu21 1 l 2 1 2e2 h Cu 1s 2      Eo 5 0.34 V

To get the value of the oxidation half-reaction, we take the negative of the value in Table 9.1:

H2O 1 l 2 h
1
2

 O2 1g 2 1 2H1 1 l 2 1 2e2     Eo 5 21.23 V

where we made use of the point that standard cell potentials are independent of the number of 
electrons on which the reaction is based. Adding together the reduction half-reaction and the 
oxidation half-reaction gives:

H2O 1 l 2 1 Cu21 1 l 2 Sd
1
2

 O2 1g 2 1 2H1 1 l 2 1 Cu 1s 2       DErxn
o

5 0.34 2 1.23 5  20.89 V

EXAMPLE 9.14

Calculation of 
Electrode Potential 
Needed for Copper 
Plating
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9.6  Equilibrium in Electrochemical Systems ◄ 597

Applying Equation (9.34) to this system gives:

 E 5 Erxn
o 2

RT
zF

 ln c q
vapors

1pi 2
νi

q
liquids

1cigi
m2

νi
d 5 Erxn

o 2
RT
zF

 lnBPO2

1/2cH1

2

cCu21

R  (E9.14)

If we assume the O2 product bubbles up at a partial pressure of 1 bar, Equation (E9.14) becomes:

E 5 Erxn
o 2

2.303RT
zF

 log cH1
2 1

RT
zF

 ln 3cCu21 4

Since pH is defi ned as pH 5 2log 1cH1 2 , we get:

E 5 Erxn
o 2

2.303RT
zF

 2pH 1
RT
zF

 ln 3cCu21 4 5 20.90 V

Thus, we have to apply a potential greater than 0.90 V to get copper to electroplate solid from 
solution.

Activity Coefficients in Electrochemical Systems

This section illustrates that the thermodynamic principles we have learned so far can be 
applied to electrochemical systems. However, to solve Equation (9.28) in general, we 
need to determine the activity coeffi cients of the species in solution. The treatment of 
activity coeffi cients markedly differs from the nonelectrolyte solutions we have been dis-
cussing so far in the text. Charged species in solution have strong ionic interactions that 
are very different from other interactions in the solution. Recall from Chapter 4, these 
interacts vary as 11/r 2  in comparison to van der Waals interactions that vary as 1/ r 

6, even 
in a dilute solution.

Moreover, the condition of electroneutrality places another constraint on the rela-
tive concentrations of ions in solution. We cannot measure the activity coeffi cient of the 
cations, g1 or the anions g2 independently, since they cannot exist by themselves, but 
rather must exist as an anion–cation pair together in solution. Hence, we refer to the 
mean activity coeffi cient of both ions together, g6. 

For example, for NaCl or other “1-1” electrolytes:

g6 5 "g1g2

For the general case:

XaYb
Sd aXz1 1 bYz2

we get:

g6 5 1g1
a g2

b 2 1/1a1b2

where z1 is the valence of the cation and z2 the anion. Mean activity coeffi cients for 
electrolyte solutions are typically obtained from experiment but can be estimated for 
ions in dilute solution.

We can estimate the nonideality of ions in very dilute solutions by considering the 
coulombic electrostatic interactions that occur. For a given ion in solution, the presence 
of an oppositely charged ion is energetically favorable, while the presence of one with 
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598 ► Chapter 9. Chemical Reaction Equilibria

like charge is unfavorable; thus, an ion in solution will, on average, have more oppositely 
charged ions near it than like-charged ions.3

Quantifying these arguments, Debye and Huckel accounted for the nonideality in 
the limit of very dilute solutions, coming up with the following expression:4

 ln g6 5 2A 0z1z2 0"I (9.36)

The coeffi cient A groups several terms from the theory and can be considered a  solvent 
parameter that depends on the relative permittivity and temperature. The ionic strength, 
I, is given by:
 I 5

1
2a

zi
2ci (9.37)

where the sum is over all the ions. For water at 25°C, A 5 1.17, where the 1-m standard- 
state concentration is applied to I to make A dimensionless. 

Real systems start to diverge from Equation (9.36) at concentrations above only 
0.01 m. The Debye–Huckel theory has been modifi ed to get better agreement over wider 
concentration ranges. One such expression adds an adjustable experimental parameter B:

 ln g6 5 2
A 0z1z2 0"I

1 1 B"I
 (9.38)

For water at 25°C, B 5 0.33. Equation (9.38) agrees with experiment up to around 
0.1-m concentrations. 

An alternative approach is to describe the nonideality of the solvent through an 
activity coeffi cient model and then determine the activity of the ions through the Gibbs–
Duhem equation. More detail is provided elsewhere.5

3 In Chapter 4, we used this same type of argument to see why there was a net attractive force for species with 
dipole moments.
4 See J. O. Bockris and A. K. N. Reddy, Modern Electrochemistry (Vol. 1) (New York: Plenum Press, 1970).
5 J. M. Prausnitz, R. N. Lichtenthaler, and E. Gomes de Azeuedo, Molecular Thermodynamics of Fluid-Phase 
Equilibria, 3rd ed. (Upper Saddle River, NJ: Prentice-Hall, 1999).

The cell potential of the following cell has been measured to be 1.03 V at 25°C: 

Zn 0ZnCl2 1 l,0.5 m 2 0AgCl 1s 2 0Ag 1s 2

Calculate, the activity coeffi cient, g6.

SOLUTION The half-reactions and the half-cell standard potentials from Table 9.1 are written 
as follows:

 2AgCl 1s 2 1 2e2 S 2Ag 1s 2 1 2Cl2 1 l 2  Eo 5 0.762 V

 Zn S Zn21 1 l 2 1 2e2 Eo 5 0.222 V

The sum of the half-cell standard potential gives:

E
o
rxn 5 0.762 V 1 0.222 5 0.984 V

Applying Equation (9.28) to this system and taking the activities of the solids to be 1 gives:

 E 5 E
o
rxn 2

RT
zF

 lnB q
vapors

1pi 2 νi q
liquids

1cig
m
i 2 νiR 5 E

o
rxn 2

RT
zF

 lnBgm
Zn2 1cZn2 1 1g

m
Cl2cCl2 2 2R  (E9.15) 

EXAMPLE 9.15 

Determination of the 
Activity Coeffi cient 
from Measured 
Cell Potential
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9.7  Multiple Reactions ◄ 599

Because cZn2 1 5 cZnCl2 and c2
Cl2 5 4c2

ZnCl2, we can write Equation (E9.15) in terms of the mean 
activity coeffi cient as follows:

E 5 E
o
rxn 2

RT
zF

 ln 3g3
64c3

ZnCl2 4

and solving gives:

g6 5

3
 

É
exp B2

zF 1E 2 Eo
rxn 2

RT
R

411/32cZnCl2

5 0.381

 ►9.7  MULTIPLE REACTIONS

Extent of Reaction and Equilibrium Constant for R Reactions

In treating chemically reacting systems, we are often faced with cases where there are 
many possible reaction paths (Figure 9.1 shows one such case). It is straightforward to 
extend our development of chemical reaction equilibria to more than one reaction. To 
set up the multiple reaction equilibria problem, we must pick R different independent 
chemical reactions to describe the system. A set of reactions is deemed independent 
if you cannot construct any one of the given reactions by a linear combination of the 
others.

When multiple reactions are considered, each reaction has its own corresponding 
extent of reaction, jk. Thus, we must keep track of the stoichiometry of each species 
i for each of the k separate chemical reactions. Reaction (9.5) can be written for each 
separate reaction (1, 2, . . . k . . . R); thus, we must now sum over all of the i species for 
each of the k reactions. Mathematically, we accomplish this task by using a double sum, 
as follows:

 a
R

k51
a
m

i51
νki Ai (9.39)

Similarly, Equation (9.7) must be written for each of the k extents of reaction. Again, 
the mathematics requires a sum over all R reactions:

 dni 5 a
R

k51
νkidjk (9.40)

If we integrate Equation (9.40), we get:

 ni 5 ni
o 1 a

R

k51
νkijk (9.41)

Summing over all i species, in, for example, the vapor phase:

 nv 5 no 1 a
R

k51
νkjk (9.42)
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600 ► Chapter 9. Chemical Reaction Equilibria

where nv and no are defi ned analogously to Section 9.3. Finally, dividing Equation (9.41) 
by Equation (9.42) gives:

 yi 5
ni

nv
5

ni
o 1 a

R

k51
νkijk

no 1 a
R

k51
νkjk

 (9.43)

To fi nd the equilibrium composition in the system, we must determine the equi-
librium constants, Kk, for all R reactions. Each equilibrium constant can be found inde-
pendently, using the appropriate thermochemical data as discussed in Sections 9.4 and 
9.5. We can then apply Equation (9.16) to each reaction. The result we obtain is a set 
of k-coupled nonlinear algebraic equations that we must then solve for the extents of 
reaction, jk. Once all the extents of reaction are determined, the equilibrium composi-
tion can be found by either Equation (9.41) or (9.43). To illustrate how to set up such a 
problem, an example based on the reaction discussed with Figure 9.1 is illustrative.

Consider the addition of 1 mole of HBr to 1 mole of butadiene, as depicted in Figure 9.1. Develop 
the equations you would need to solve to describe the composition of the system at equilibrium 
given T and P.

SOLUTION We need to specify two independent reactions. One possible set we can choose is 
the reactions described in Figure 9.1:

 C4H6 1 HBr Sd 1 2 BrC4H7           reaction 1 (E9.16A)

 C4H6 1 HBr Sd 3 2 BrC4H7           reaction 2 (E9.16B)

According to Equations (9.41) through (9.43), we get:

 nC4H6 5 1 2 j1 2 j2

 nHBr 5 1 2 j1 2 j2

 n12BrC4H7 5 j1

 n32BrC4H7 5 j2

 nv 5 2 2 j1 2 j2

The two equilibrium constants are then written:

 K1 5
y12BrC4H7

yC4H6yHBrP
5

j1 12 2 j1 2 j2 2

11 2 j1 2 j2 2 2P
 (E9.16C)

 K2 5
y32BrC4H7

yC4H6yHBrP
5

j2 12 2 j1 2 j2 2

11 2 j1 2 j2 2 2P
 (E9.16D)

Each equilibrium constant can be found by using appropriate thermochemical data, as 
discussed in Section 9.4. Once values for K1 and K2 are obtained, Equations (E9.16C) and 
(E9.16D) can be solved for the two unknowns, j1 and j2. It is then straightforward to fi nd the 
number of moles and mole fractions of the species present.

EXAMPLE 9.16

Specifi cation of 
Chemical Reactions 
in Figure 9.1

yC4H6 5 11 2 j1 2 j2 2 / 12 2 j1 2 j2 2

yHBr 5 11 2 j1 2 j2 2 / 12 2 j1 2 j2 2

y12BrC4H7 5 j1/ 12 2 j1 2 j2 2

y32BrC4H7 5 j2/ 12 2 j1 2 j2 2
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9.7  Multiple Reactions ◄ 601

Gibbs Phase Rule for Chemically Reacting Systems and Independent Reactions

Say we have a system in which the species undergo chemical reaction by rearranging 
their bonds to minimize the total Gibbs energy and obtain equilibrium. While we have 
identifi ed the signifi cant species at play and their phases, we do not know what the reac-
tion mechanism is. In fact, there may be many simultaneous reactions that describe 
these molecular rearrangements. We may be concerned with questions about how to set 
up the chemical reaction equilibrium problem, such as “What equations should I use 
to describe the reactions?” and “How do I know if I have included enough reactions?”

It turns out that as far as the thermodynamic calculations go, we do not need to 
pick the actual reactions that the real system undergoes; we are free to choose any set of 
independent reactions we can think up. As we have seen many times, hypothetical paths 
can often be convenient for calculating thermodynamic properties. Since the chemical 
reaction equilibria calculation is based on a thermodynamic property—Gibbs energy—it 
should not surprise us that it does not depend on the specifi c reaction path used.

A set of chemical reactions is termed independent if we are unable to write any 
 reaction in the set as a linear combination of the other reactions. Equilibrium calcula-
tions or energy balances on reacting systems should only be performed on sets of inde-
pendent reactions. Additionally, it does not matter what set of reactions we consider, 
as long as we consider the largest number of linearly independent chemical reactions 
possible for the species present.

The number of independent chemical reactions we need to specify can be obtained 
by using the Gibbs phase rule for reacting systems. The phase rule for reacting systems 
is obtained by counting the total number of variables in the system and making sure we 
have the same number of independent equations. It is accomplished in much the same 
way we accounted for variables for nonreacting systems in Example 6.17. 

We will omit the details of the accounting and merely present the results. The num-
ber of independent chemical reactions, R, needed to specify the system is given by:

 R 5 m 2 � 1 2 2 p 2 s (9.44)

where

m 5 the number of chemical species
� 5 the degrees of freedom, that is, the number of intensive properties specifi ed
p 5 the number of phases in the system
s  5 stoichiometric constraints

Equation (9.44) tells us the number of independent reactions, R, we need to specify 
among the m chemical species present. The stoichiometric constraints, s, are dictated 
by the inlet conditions, since the ratio of elements must stay the same. As long as the 
reactions we come up with are independent, solution of the multiple reaction equilibria 
problem will give us the equilibrium composition of the system. Indeed, if we were 
to chose a different set of equations, as long as they were independent and satisfi ed 
the number given by Equation (9.44), we would get the same result for equilibrium 
composition.

It turns out the number of independent equations can also be found from the rank 
of the stoichiometric matrix, νki. Recall from linear algebra that the rank of a matrix is 
defi ned by the number of linearly independent rows in the matrix. It can be found using 
Gaussian elimination with partial pivoting or simply by using the rank(…) function in 
MATLAB. Once the rank is determined, we need to specify that number of independent 
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602 ► Chapter 9. Chemical Reaction Equilibria

reactions that include all the species in the system. For simpler systems, this set can 
often be determined from inspection. Alternatively, we can perform matrix operations 
on the stoichiometric matrix to diagonalize it. For example, for a matrix with 6 species of 
rank 3, these operations might yield the following:

νki 5 E
21 0 1 0 2 2 1
0 2 2 0 0 2 1
0 0 2 2 2 4 1
0 0 0 0 0 0
0 0 0 0 0 0

U

Notice that this matrix runs along the diagonal 1 21, 2 2, 2 2 2  until we get rows entirely 
of zeros. Example 9.20 illustrates a case where we fi nd the number of independent 
 reactions in a set of multiple reactions in this way.

Apply the phase rule to determine the number of independent reactions needed to calculate 
the equilibrium composition of the butadiene system shown in Figure 9.1, given T, P, and the 
initial composition of reactants.

SOLUTION We need to determine all the quantities on the right-hand side of Equation (9.44). 
The species present are:

C4H6,HBr, 1 2 BrC4H7, 3 2 BrC4H7

Thus, m 5 4. Since this reaction occurs in the gas phase, p 5 1. We have specifi ed 2 degrees 
of freedom, T and P. The inlet the ratio, nC4H6

o /nHBr
o , places a stoichiometric constraint. If we 

know how much product, 1 2 BrC4H7 and 3 2 BrC4H7 is formed, the number of reactants 
left is determined. From Equation (9.44),

R 5 m 2 � 1 2 2 p 2 s 5 4 2 2 1 2 2 1 2 1 5 2

Hence, we must specify two independent equations.

EXAMPLE 9.17

Application of 
Gibbs Phase Rule to 
Reactions in 
Figure 9.1

Example 9.16 suggests that we need to specify two independent equations to calculate the 
chemical reaction equilibrium of the butadiene system. Suggest an alternative set to those used 
in Example 9.16. Show how you would solve the problem with these reactions.

SOLUTION We now chose the isomerization reaction for reaction 2’ as follows:

 C4H6 1 HBr Sd 1 2 BrC4H7     reaction 1 (E9.18A)

 1 2 BrC4H7
Sd 1 2 BrC4H7     reaction 2’ (E9.18B)

EXAMPLE 9.18

Alternative 
Formulation of 
Example 9.16
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Since reactions 1 and 2’ are also independent, they can be used to solve for the composition of 
the system shown in Figure 9.1. In this case, we get:

 nC4H6 5 1 2 j1  yC4H6 5 11 2 j1 2 / 12 2 j1 2

 nHBr 5 1 2 j1  yHBr 5 11 2 j1 2 / 12 2 j1 2

 n12BrC4H7 5 j1 2 j2  y12BrC4H7 5 1j1 2 j2 2 / 12 2 j1 2

 n32BrC4H7 5 j2  y32BrC4H7 5 j2/ 12 2 j1 2

 nv 5 2 2 j1

The equilibrium constants can be written using the equilibrium constants:

 K1 5
y12BrC4H7

yC4H6yHBrP
5
1j1 2 j2 2 12 2 j1 2

11 2 j1 2 2P
 (E9.18C)

 K2 5
y32BrC4H7

y12BrC4H7

5
j2

1j1 2 j2 2
 (E9.18D)

Each equilibrium constant can be found by using appropriate thermochemical data, as discussed 
in Section 9.4. Once values for K1 and K2 are obtained, Equations (E9.18C) and (E9.18D) 
can be solved for unknowns j1 and j2. Notice that the specifi c values given by K2 will differ 
from that given by Equation (E9.16D); hence the value of j2 will also be different. However, 
the compositions that are calculated will turn out identical to those in Example 9.16. This 
result illustrates the magic of chemical reaction equilibria; No matter what set of independent 
reactions we pick, the equilibrium compositions that are calculated remain the same.

Steam reforming of methane can be used to make hydrogen gas. CO and CO2 are observed as 
by-products. Using a 4:1 H2O to CH4 inlet ratio and a pressure of 1 bar, calculate the equilib-
rium composition obtained in the temperature range of 600–1100 K.

SOLUTION We fi rst apply the phase rule to determine the number of independent reactions we 
must specify. For each calculation, we have fi ve species, one phase, and a specifi c temperature 
and pressure. We have also specifi ed the inlet feed ratio. Thus, the elements in the system form 
the stoichiometric constraint; the ratios must be identical to the ratios they have in the feed. The 
ratio of elemental O:H is constrained to 1:3; similarly, the ratio of C:H is constrained to 1:12. 
Hence, we have two additional stoichiometric constraints, s. The number of independent reac-
tions is now given by:

R 5 m 2 � 1 2 2 p 2 s 5 5 2 2 1 2 2 1 2 2 5 2

For a set of two independent reactions, we can choose:

 CH4 1 H2O Sd CO 1 3H2         reaction 1 (E9.19A)

 CH4 1 2H2O Sd CO2 1 4H2     reaction 2 (E9.19B)

EXAMPLE 9.19

Cracking of 
Methane

(Continued)
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604 ► Chapter 9. Chemical Reaction Equilibria

Can you do this problem with a different reaction set? 
According to Equations (9.41) through (9.43), we get:

 nCH4 5 1 2 j1 2 j2

 nH2O 5 4 2 j1 2 2j2

 nH2 5 3j1 1 4j2

 nCO 5 j1

 nCO2 5 j2

 nv 5 5 1 2j1 1 2j2

At 1 bar, the equilibrium constants can be written assuming ideal gas conditions:

   K1 5
yCOyH2

3

yCH4yH2O
 P2 5

1j1 2 13j1 1 4j2 2 3

15 1 2j1 1 2j2 2 2 11 2 j1 2 j2 2 14 2 j1 2 2j2 2
 p2 (E9.19C)

   K2 5
yCO2yH2

4

yCH4yH2O
2  P2 5

1j2 2 13j1 1 4j2 2 4

15 1 2j1 1 2j2 2 2 11 2 j1 2 j2 2 14 2 j1 2 2j2 2 2
  p2 (E9.19D)

To solve for the equilibrium constants at the elevated temperatures, we need appropriate 
thermochemical data. Gibbs energy and enthalpy of reaction, as well as heat capacity data 
available in Appendices A.2 and A.3 are summarized in Table E9.19A. From these data, 
we can solve for K1 and K2 at different temperatures using Equation (9.24). This solution is 
conveniently done in a spreadsheet. 

 yCH4 5
1 2 j1 2 j2

5 1 2j1 1 2j2

 yH2O 5
4 2 j1 2 2j2

5 1 2j1 2 2j2

 yH2 5
3j1 1 4j2

5 1 2j1 1 2j2

 yCO 5
j1

5 1 2j1 1 2j2

 yCO2 5
j2

5 1 2j1 1 2j2

TABLE E9.19A Summary of Thermochemical Data from Appendices A.2 and A.3

CH4 H2 H2O CO CO2 Reaction 1 Reaction 2

Dgf
250.72  c

KJ

mol
d

0 2228.57 2137.17 2394.36 142.12 113.50

Dhf
274.81  c

KJ

mol
d

0 2241.82 2110.53 2393.51 206.10 164.94

n1 21 3 21 1 0

n2 21 4 22 0 1

Ai 1.702 3.249 3.47 3.376 5.457 7.951 9.811

Bi 9.08 3 1023 4.22 3 1024 1.45 3 1023 5.57 3 1024 1.05 3 1023 28.708 3 1023 29.243 3 1023

Ci 22.16 3 1026 0 0 0 0 2.16 3 1026 2.16 3 1026

Di 0 8.30 3 103 1.21 3 104 23.10 3 103 21.16 3 105 9.70 3 103 21.067 3 105
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Table E9.19B presents the values obtained at different temperatures. Once the equilib-
rium constants are found, Equations (E9.19C) and (E9.19D) can be solved simultaneously for 
j1 and j2. The mole fractions are then straightforward to calculate using the equations above. 
Table E9.19B presents the results for the extent of reaction and the mole fractions of each 
species at different temperatures. The extents of reaction vs. temperature and mole fraction 
vs. temperature are plotted in Figure E9.19. From this analysis, what temperature would you 
pursue? What other questions would you ask?

9.7  Multiple Reactions ◄ 605

TABLE E9.19B Summary of Solution of Example 9.19

T K1 K2 j1 j2 yCH4 yH2 yH2O yCO yCO2

600 4.91 3 1027 1.40 3 1025 0.000 0.113 0.170 0.087 0.722 0.000 0.022

650 1.42 3 1025 2.24 3 1024 0.003 0.191 0.150 0.144 0.671 0.000 0.036

700 2.59 3 1024 2.47 3 1023 0.011 0.294 0.124 0.215 0.606 0.002 0.052

750 3.24 3 1023 2.02 3 1022 0.037 0.410 0.094 0.297 0.534 0.006 0.070

800 3.00 3 102 1.29 3 1021 0.099 0.515 0.062 0.378 0.461 0.016 0.083

850 2.15 3 1021 6.70 3 1021 0.207 0.579 0.033 0.447 0.401 0.032 0.088

900 1.25 2.93 0.332 0.584 0.012 0.488 0.366 0.049 0.085

950 6.07 1.11 3 101 0.424 0.551 0.004 0.500 0.356 0.061 0.079

1000 2.52 3 101 3.70 3 101 0.485 0.509 0.001 0.499 0.358 0.069 0.073

1050 9.20 3 101 1.11 3 102 0.540 0.458 0.000 0.493 0.364 0.077 0.065

1100 2.99 3 102 3.02 3 102 0.541 0.458 0.000 0.494 0.363 0.077 0.065

1150 8.78 3 102 7.57 3 102 0.541 0.458 0.000 0.494 0.363 0.077 0.065
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Figure E9.19 Extent of reaction vs. temperature and mole fractions vs. temperature at 
 equilibrium for the steam reforming of methane.
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606 ► Chapter 9. Chemical Reaction Equilibria

In Example 2.16, you calculated the heat released for two chemical reactions. Repeat the 
problem but also consider a third reaction is possible:

 CO 1
1
2

 O2 Sd 1 2 CO2 (1)

 C 1
1
2

 O2 Sd CO (2)

 C 1 O2 Sd CO (3)

SOLUTION We fi rst have to determine the number of independent reactions (independent 
stoichiometric relations) and select a set of independent reactions. We construct the stoichio-
metric matrix as follows:

C         O2    CO CO2

νki 5 C
0 21

2 21 1
21 21

2 1 0
21 21 0 1

S

The number of independent reactions is given by the rank of the matrix nij, which can be 
found to be 2 using MATLAB. We can see by inspection that Reaction (3) is simply obtained 
by adding Reactions (1) and (2). Hence, the fi rst two reactions specify the chemically reacting 
system.

We can see obtain this result formally using matrix operations by creating a diagonal 
matric. We start by interchanging rows 1 and 2:

nki 5 C
21 21

2 1 0
0 21

2 21 1
21 21 0 1

S

We can now subtract row 1 from row 3:

νki 5 C
21 21

2 1 0
0 21

2 21 1
0 21

2 21 1
S

Subtracting row 2 from row 3 gives:

νki 5 C
21 21

2 1 0
0 21

2 21 1
0 0 0 0

S

Since row 3 is zero we can eliminate it, leaving:

νki 5 B21 21
2 1 0

0 21
2 21 1

R

which is the stoichiometric matrix of Reactions (2) and (1); therefore we can select these 
reactions as the independent reactions.

Because Q was calculated from this set of Reactions in Example 2.16, we see that 
this completely describes the system and we will get the same value considering the extra 

EXAMPLE 9.20

Reconsideration of 
Example 2.16 with an 
Additional Reaction
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Reaction (3). Alternatively, it can be shown that that the same value of Q would be obtained 
if Reactions (2) and (3) were selected as the set of independent reactions. Similarly, when we 
calculate equilibrium compositions of systems multiple reactions, it does not matter which 
set we choose as long as we consider the largest number of linearly independent chemical 
reactions possible for the species present.

Single crystal, or epitaxial, thin fi lms of silicon are needed to manufacture integrated circuits. 
These fi lms are grown by chemically reacting a chlorosilane feed gas in the presence of H2 at 
elevated temperature. Consider the growth of epitaxial Si at 1300 K and 1 bar. Compare how 
much Si is produced at equilibrium from SiCl4 vs. SiCl3H as feed gases, at H2 dilutions from 
1:1 to 150:1 H2: chlorosilane ratio. Assume the following species are present at equilibrium: Si, 
SiCl2, SiCl4, SiCl3H, SiCl2H2, SiClH3, SiH4, H2, HCl.

The following data are available:

Gibbs Energies of Formation in [kJ/mol] at 1300 K

Species SiCl2 SiCl4 SiCl3H SiCl2H2 SiClH3 SiH4 HCl

1Dgf,1300
o 2 i 2216.012 2492.536 2356.537 2199.368 228.482 151.897 2102.644

SOLUTION We fi rst apply the phase rule to see how many independent reactions we need. 
Since silicon can be present in either the gas or solid phase, its stoichiometry in the vapor is not 
constrained to the feed ratio. On the other hand, the Cl:H ratio must remain constant. Thus, we 
have s 5 1 and can write:

R 5 m 2 � 1 2 2 p 2 s 5 9 2 2 1 2 2 2 2 1 5 6

Six independent reactions are then constructed as follows (other choices are also possible): 

  SiCl4 1 H2
Sd SiCl2 1 2HCl          reaction 1

  SiCl4 1 H2
Sd SiCl3H 1 HCl         reaction 2

  SiCl3H 1 H2
Sd SiCl2H2 1 HCl         reaction 3

  SiCl2H2 1 H2
Sd SiClH3 1 HCl         reaction 4

  SiClH3 1 H2
Sd SiH4 1 HCl        reaction 5

  SiCl4 1 2H2
Sd Si 1s 2 1 4HCl reaction 6

We then write each species’ concentration in terms of the extents of these six reactions:

 nSiCl4 5 nSiCl4
o

2 j1 2 j2 2 j6

 nSiCl2 5 j1

 nSiCl3H 5 nSiCl3H
o

1 j2 2 j3

 nSiCl2H2 5 j3 2 j4

 nSiClH3 5 j4 2 j5

 nSiH4 5 j5

 nH2 5 nH2

o
2 j1 2 j2 2 j3 2 j4 2 j5 2 2j6

EXAMPLE 9.21

Growth of Silicon 
Thin Films from 
Chlorosilane

9.7 Multiple Reactions ◄ 607

(Continued)
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608 ► Chapter 9. Chemical Reaction Equilibria

 
 nHCl 5 2j1 1 j2 1 j3 1 j4 1 j5 1 4j6

 nv,o 5 nSiCl4
o 1 nSiCl3H

o 1 nH2

o 1 j1 1 j6

 nSi 5 j6

The six equilibrium constants are then written assuming ideal gas behavior:

 K1 5
ySiCl2 yHCl

2

ySiCl4 yH2

 P

 5
1j1 2 12j1 1 j2 1 j3 1 j4 1 j5 1 4j6 2 2

1nSiCl4
o 2 j1 2 j2 2 j6 2 1nH2

o 2 j1 2 j2 2 j3 2 j4 2 j5 2 2j6 2 1nSiCl4
o 1 nSiCl3H

o 1 nH2

o 1 j1 1 j6 2
 P

 K2 5
ySiCl3HyHCl

ySiCl4yH2

5
1nSiCl3H

o 1 j2 2 j3 2 12j1 1 j2 1 j3 1 j4 1 j5 1 4j6 2

1nSiCl4
o 2 j1 2 j2 2 j6 2 1nH2

o 2 j1 2 j2 2 j3 2 j4 2 j5 2 2j6 2

 K3 5
ySiCl2H2yHCl

ySiCl3HyH2

5
1j3 2 j4 2 12j1 1 j2 1 j3 1 j4 1 j5 1 4j6 2

1nSiCl3H
o 1 j2 2 j3 2 1nH2

o 2 j1 2 j2 2 j3 2 j4 2 j5 2 2j6 2

 K4 5
ySiClH3yHCl

ySiCl2H2yH2

5
1j4 2 j5 2 12j1 1 j2 1 j3j4 1 j5 1 4j6 2

1j3 2 j4 2 1nH2
o 2 j1 2 j2 2 j3 2 j4 2 j5 2 2j6 2

 K5 5
ySiH4yHCl

ySiClH3yH2

5
1j5 2 12j1 1 j2 1 j3 1 j4 1 j5 1 4j6 2

1j4 2 j5 2 1nH2
o 2 j1 2 j2 2 j3 2 j4 2 j5 2 2j6 2

 K6 5

¢  
f̂ Si

fSi
o ≤yHCl

4

ySiCl4 yH2

2

 5
11 2 12j1 1 j2 1 j3 1 j4 1 j5 1 4j6 2 4

1no
SiCl4 2 j1 2 j2 2 j6 2 1no

H2
2 j1 2 j2 2 j3 2 j4 2 j5 2 2j6 2 2 1nSiCl4

o 1 nSiCl3H
o 1 nH2

o 1 j1 1 j6 2
 P

From the values of Gibbs energy, we can calculate the values of the six equilibrium constants. 
We must then solve for the six unknown extents of reaction to match the equilibrium constants. 
An example of one solution set taken from the solution spreadsheet for a feed ratio of H2:SiCl4 
of 1:1 is given below:

T [K] 1300

P [bar] 1

nH2

o 1

nSiCl4
o 1

nSiCl3H
o 0

1Dgf,1300
o 2 i ni yi

H2 0 0.8214 0.406

SiCl2 2216.012 0.0763 3.77 3 1022

SiCl4 2492.536 0.7770 3.84 3 1021

SiCl3H 2356.537 0.1912 9.44 3 1022
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SiCl2H2 2199.368 0.0066 3.28 3 1023

SiClH3 228.482 0.0001 3.20 3 1025

SiH4    151.897 0.0000 1.30 3 1027

HCl 2102.644 0.1525 7.53 3 1022

Total 2.0251

Si 20.0512

Ki ji Ki,calc Ki 2 Ki,calc

Reaction 1 1.37 3 1023 0.0763 1.37 3 1023 1.71 3 1028

Reaction 2 4.57 3 1022 0.1979 4.57 3 1022 1.02 3 1028

Reaction 3 6.44 3 1023 0.0067 6.44 3 1023 6.74 3 10210

Reaction 4 1.81 3 1023 0.0001 1.81 3 1023 1.19 3 10210

Reaction 5 7.52 3 1024 0.0000 7.52 3 1024 22.15 3 10211

Reaction 6 5.09 3 1024 20.0512 5.09 3 1024 2.84 3 10210

9.7 Multiple Reactions ◄ 609

Figure E9.21  
Deposition efficiency 
of SiCl4 and SiCl3H 
at 1300 K and 1 bar 
at different dilutions 
in H2.
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Solution is obtained by calculating the equilibrium constant Ki in two ways: (1) from 
Gibbs energy data (labeled Ki) and (2) from the extents of reaction (labeled Ki,calc). The extents 
are changed until the two values matched within a convergence criteria as determined by 
Ki 2 Ki,calc. In this case the extent of reaction 6 is negative, indicating that solid Si would actually 
be removed, or etched, from the substrate. Hence, thermodynamics tells us there is no way to 
deposit Si under these conditions. We defi ne the equilibrium deposition effi ciency, h, as:

h 5
amount of Si deposited as solid

amount of Si in feed gas

In the case above, we actually get an effi ciency of 20.0512, since Si was etched. The complete 
case study is plotted in Figure E9.21. 
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610 ► Chapter 9. Chemical Reaction Equilibria

Solution of Multiple Reaction Equilibria by Minimization of Gibbs Energy

In this section, we develop an alternative set of coupled nonlinear algebraic equations to 
solve chemical reaction equilibria problems involving multiple reactions. In Chapter 8, 
we showed how to solve an LLE problem fi rst by equating fugacities (Example 8.19) and 
then by minimizing Gibbs energy (Example 8.20). We can essentially do the same for 
multiple reaction equilibria. We have already seen how to solve this set of equations by 
explicitly writing a set of independent reactions. We then used the equilibrium con-
stant formulation analogous to a single reaction to solve a set of R equations for each 
extent of reaction. We will now learn another approach to arrive at the same answer. 
We solve for the equilibrium composition through minimization of the total Gibbs 
energy of the system. This approach is useful in developing computer algorithms to 
solve reactions for complex systems.

We fi rst introduce the formula coeffi cient matrix, bij. This matrix relates the j ele-
ments, bj, in our system to the species i. We can relate these two quantities as follows:

Σ ni βij = bj 
i = 1

m

All m species, ni that are

present in the system, e.g.,

CH4, H2O, H2, CO, CO2

All I elements, bj that are

present in the system, e.g.,

C,H,O  

(9.45)

where we sum over all m species in the system. We can write the Gibbs energy of the 
system as:

G 5 a
m

i51
mini

We next defi ne a new function G r by introduction of the Lagrangian multipliers, lj:

G r 5 a
m

i51
mini 1 a

l

j51
lj¢a

m

i51
nibij 2 bj≤

Inspection of Equation (9.45) shows that the term we added is zero. Hence, we can 
recast our problem as the minimization of G r.

To fi nd the composition at which this function is a minimum, we set its derivative 
with respect to ni to zero:

¢ 'G r
'ni

≤
T, P, nj21

5 0 5 mi 1 a
l

j51
ljbij

We now insert the phase-appropriate expression for the chemical potential, as we did 
before. For example, for an ideal gas, we get:

 gi
o 1 RT ln yiP 1 a

l

j51
ljbij 5 0 (9.46)

We can substitute the Gibbs energy of formation for the standard-state Gibbs energy 
of species i in Equation (9.46). Since we will write one equation for every species in the 
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9.7  Multiple Reactions ◄ 611

system, the pure species Gibbs energies part of the Gibbs energy of formation end up 
canceling one another. Thus, we get:

 Dgi
f 1 RT ln yiP 1 a

l

j51
ljbij 5 0 (9.47)

Equations (9.45) and (9.47) represent a set of m 1 l equations that can be solved 
for the unknowns yi and lj. Example 9.22 shows how we solve the same problem we 
encountered in Example 9.19 using the minimization of Gibbs energy. Expressions simi-
lar to Equation (9.47) can be developed for real gases, liquids, and solids by using the 
appropriate form of the chemical potential.

Reformulate the solution of Example 9.19 using the minimization of Gibbs energy. Compare 
the results at 800 K. The Gibbs energies of formation at 800 K are given by:

Species CH4 H2O CO CO2

1Dgf ,800
o 2 i in 3kJ/mol 4 22.105 2203.477 2182.257 2395.418

SOLUTION We fi rst formulate the coeffi cient matrix and the vector b for a 4:1 H2O: CH4 inlet 
ratio. For the formula coeffi cient matrix, we write the species in the rows and the elements in 
the columns:

C H O
CH4

H2O
H2

CO
CO2

 E
1 4 0
0 2 1
0 2 0
1 0 1
1 0 2

U      and      
bC 5 1
bH 5 12
bO 5 4

or in matrix form:

b 5 E
1 4 0
0 2 1
0 2 0
1 0 1
1 0 2

U      and      b 5 C
1
12
4
S

Equation (9.45) gives:

3nCH4  nH2O  nH2  nCO  nCO2
4   E

1 4 0
0 2 1
0 2 0
1 0 1
1 0 2

U 5 31 12 4 4

which can be written as three coupled equations:

 nCH4 1 nCO 1 nCO2 5 1 (E9.22A)

 4nCH4 1 2nH2O 1 2nH2 5 12 (E9.22B)

 nH2O 1 nCO 1 2nCO2 5 4 (E9.22C) 

EXAMPLE 9.22

Cracking of 
Methane— 
Revisited

(Continued)
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612 ► Chapter 9. Chemical Reaction Equilibria

Equation (9.47) can be written for each of the N 5 5 species as:

 Dgf,CH4

o 1 RT ln 

nCH4

nT
1 lC 1 4lH 5 0 (E9.22D)

 Dg
f ,H2O
o 1 RT ln 

nH2O

nT
1 2lH 1 lO 5 0 (E9.22E)

 Dgf,H2
o 1 RT ln 

nH2

nT
1 2lH 5 0 (E9.22F)

 Dgf,CO
o 1 RT ln 

nCO

nT
1 lC 1 lO 5 0 (E9.22G)

 Dgf,CO2
o 1 RT ln 

nCO2

nT
1 lC 1 2lO 5 0 (E9.22H)

where, nT 5 nCH4 1 nH2O 1 nH2 1 nCO 1 nCO2

Equations (E9.22A) and (E9.22H) form a set of eight coupled equations with eight unknowns. 
This set of equations can be solved to give:6

lC/RT lO/RT lH/RT nCH4 nH2O nH2 nCO nCO2

1.15 0.49 30.39 0.39 2.87 0.099 0.52 2.36

We have used lj/RT in the numerical solution to have values of a reasonable order of magnitude 
so that the numerical nonlinear solution algorithm is better behaved. 

6 This set of equations was solved by a modifi ed Newton–Raphson root fi nder using the text software 
ThermoSolver. For more detail, see the ThermoSolver documentation.

 ►9.8  REACTION EQUILIBRIA OF POINT DEFECTS IN CRYSTALLINE SOLIDS
The structure of a crystalline material is defi ned by its lattice. The crystal lattice consists 
of a well-defi ned geometry of repeating units with an atom at every lattice point. Any 
disruption of the perfect order of an ideal crystal is termed a defect. Even though defect 
concentrations at equilibrium are quite small (usually less than 1 part per million), it 
turns out that many important properties of solid materials are controlled by the nature 
and concentration of its defects. For example, the conductivity, diffusivity, and lumines-
cence of solid materials can all be dramatically altered by such defects. 

In this section, we examine point defects, defects which occur at single atomic 
site.7 We apply the principles from this chapter to describe the defect concentrations 
in a crystal at equilibrium as we change the state of the system. An ability to control 
the concentration of defects allows us to control the crystal properties related to those 
defects. Only a brief overview is presented here. Several books can be consulted for a 
more extensive treatment of this subject.8

7 Higher dimensional defects such as dislocations and grain boundaries are thermodynamically unstable, and 
their behavior must be left for a class that covers kinetics.
8 W van Gool, Principles of Defect Chemistry in Crystalline Solids, (New York: Academic Press, 1966); 
F. A. Kroeger, The Chemistry of Imperfect Crystals (Vol. 2), (New York: North Holland, 1973); R. A. Swalin, 
Thermodynamics of Solids, (New York: Wiley, (1972). For a ChE example, see, T. J. Anderson, “Examples 
of Chemical Engineering Principles Applied to the Growth of Semiconductors,” in S. L. Sandler and 
B. A. Finlayson (eds) Chemical Engineering Education in a Changing Environment. (New York: United 
Engineering Trustees, 1988), p. 311.
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Atomic Defects

There are two major types of point defects: atomic defects and electronic defects. An atomic 
defect occurs when atoms are misplaced from their regular position in the crystal lattice. 

Figure 9.8 shows a two-dimensional representation of a crystal lattice with some 
common types of atomic point defects. A vacancy occurs when an atom is absent from 
a lattice site that is normally occupied. An interstitial occurs when an atom sits in a 
place in the crystal that is not a distinct lattice site, but rather in between lattice sites. 
Figure 9.8 shows two types of interstitials. A self-interstitial contains an atom of the 
same type that makes up the host crystal, while an impurity interstitial consists of a 
foreign atom. A substitutional impurity occurs when a foreign atom occupies a lat-
tice site normally housed by a host atom. In compound solids, such as AB, we can have 
misplaced atoms, where species A sits in a B site or vice versa.

First, we introduce a nomenclature to identify the different types of point defects 
in a crystal. We will then write balanced chemical equations for processes that occur in 
the solid. The principles of thermodynamics that we have learned can then be applied to 
understand what defects are present at equilibrium and to quantify their concentrations.

In writing these balance equations, we must adhere to the following physical 
principles.

 1. The equation must be balanced in terms of lattice sites.
 2. In a compound material, the ratio of sites must remain fi xed; for example, in 

the crystal AB, we cannot create an additional A site without also creating an 
additional B site; in AB2, we must create two B sites for every A; and so on.

 3. We treat neutral crystals. Thus, in treating charged species, we must conserve 
charge; creation of a positively charged species must concomitantly be associ-
ated with the production of a negative charge. This condition is referred to as 
electroneutrality.

9.8  Reaction Equilibria of Point Defects in Crystalline Solids ◄ 613

Figure 9.8 Atomic point defects in a monatomic crystal lattice.
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614 ► Chapter 9. Chemical Reaction Equilibria

Defect Nomenclature
We use the following symbols to represent point defects: an i for an interstitial and a V 
for a vacancy. A zinc self-interstitial, for example, may have the following designation:

This is the net
charge (plus 1)

Zni
+

This is the site
in which it sits
(interstitial)

This represents
the species that you
have (a Zn atom)

In this symbol, three pieces of information are depicted. The center designates the spe-
cies of interest (zinc). The subscript tells us what crystal site that species sits in (inter-
stitial), while the superscript tells us the effective charge 111 2 . The effective charge is 
relative to that of the site in the perfect lattice. For example, consider a crystal of NaCl. 
The sodium normally gives up a valence electron to chloride to form the ionic bonds in 
the lattice. However, if a calcium atom exists as a substitutional impurity in a sodium 
site, it may lose both its valence electrons. Its effective charge, relative to the sodium 
that would normally sit there, is then 11. The nomenclature for such an impurity would 
be written as CaNa

1 .9

Let’s practice a few; what do the following symbols represent?

AlZn
1         VZn        VAs        VAs

1

AlZn
1  represents an aluminum substitutional impurity in a zinc site with an effective 

charge of 11. The next three terms represent neutral zinc, arsenic vacancies, and an 
arsenic vacancy with an effective charge of 11, respectively.

Using this nomenclature, we can describe processes involving defects in the crys-
tal lattice. For example, a zinc atom that leaves its lattice site for an interstitial may be 
described by the following reaction:10

ZnZn
Sd Zni 1 VZn

Equilibrium Constants for Defects
The extent of reaction for this process is determined by a trade-off between enthalpy and 
entropy. The perfect lattice is energetically favorable. To form this vacancy–interstitial 
pair, we need to overcome the bond energy of a zinc atom in its lattice site. However, 
when the crystal exists in a perfectly ordered lattice, every atom has a designated place 
to be; it can have only one confi guration. Therefore, its entropy is low. Formation of 

9 The widely used nomenclature proposed by Kroeger and Vink uses’, for each unit of negative effective 
charge and · for positive effective charge. They choose a separate nomenclature to distinguish between 
effective charge and real charge. In this text, any charges associated with defect equilibria will implicitly be 
the effective charge. 
10 There are also charged versions of this process. For example, the zinc interstitial can leave with a 11 charge, 
leaving behind a vacancy with a 21 charge ZnZn

Sd Zn1
i 1 V2

Zn.
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9.8  Reaction Equilibria of Point Defects in Crystalline Solids  ◄ 615

a vacancy–interstitial pair dramatically increases the number of confi gurations in the 
system. Any of the approximately 1023 lattice sites may be vacant; we cannot say exactly 
which one. Similarly, there are many confi gurations for the interstitial zinc atom. There-
fore, the entropy increases by introduction of these defects.11 The trade off between 
these two effects can be quantifi ed by the Gibbs energy. At equilibrium, a crystal exhibits 
a thermodynamically prescribed defect concentration that minimizes the Gibbs energy 
of the system. As we increase temperature, the effect of entropy becomes more impor-
tant relative to enthalpy and the defect concentration increases.

We can quantify the concentration of defects through the equilibrium constant 
 formulation. The following equilibrium constant can be written for the previous reaction:

K 5

¢  
f̂Zni

fZni

o ≤ ¢  
f̂VZn

fVZn

o ≤
¢  

f̂Zn

fZn
o ≤

Since the defects are very dilute and are not defi ned in the Lewis/Randall limit, we 
choose a Henry’s law reference state for them, i.e., fZn

o
5 HZn and fVZn

o
5 HVZn. This state 

is the hypothetical pure species characterized by all a-b interactions; its properties are 
given by those at infi nite dilution. Thus, we use the partial molar Gibbs energy at infi nite 
dilution for these terms in the Gibbs energy of reaction. 

Using Henry’s law for the defects,

K 5
1gZni

Henry'sxZni
2 1gVZn

Henry's
xVZn
2

¢ f̂ Zn

fZn
≤

If the defect concentrations are dilute, the Henry’s law activity coeffi cients go to 1. Addi-
tionally, the host crystal has a fugacity nearly equal to its pure species fugacity, so the 
denominator goes to 1. The previous equation can then be simplifi ed to:

K 5 xZnixVZn

In compounds that deviate signifi cantly from their stoichiometric proportions, high 
defect concentrations are observed and activity coeffi cients must be included. 

Since the atomic number density of the crystal is well defi ned, we often write the 
equilibrium constant in terms of defect concentration:

K c 5 3Zni 4 3VZn 4

where 3Zni 4 and 3VZn 4 are the zinc interstitial and zinc vacancy number densities in units 
of 3#/m3 4, and Kc is the equilibrium constant for units of concentration given by:

K c 5 KN2

where N is the number density of the host crystal.

11 Since the sites in a crystal are well defi ned, we can use statistical mechanics to come up with a quantitative 
expression for the increase in entropy; it ends up being analogous to the entropy of mixing given by 
Example 6.11.
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616 ► Chapter 9. Chemical Reaction Equilibria

There are many other defect-inducing processes that we may consider. We may have 
a system that forms a vacancy from diffusion of a zinc atom to the surface, followed by 
evaporation into the vapor. This process is described by the reaction:

ZnZn
Sd Zn 1g 2 1 VZn

Assuming an ideal gas, we can write the corresponding equilibrium constant:

Kc 5 pZn 3VZn 4

Again, the activity of zinc in the crystal has been assumed to be 1.

Electronic Defects

In addition to atomic point defects, semiconductor materials can also have elec-
tronic point defects. These defects provide mobile charge carriers that move about the 
crystal lattice. They provide the basis for many useful applications. In fact, the entire 
microelectronics industry is based on being able to control electronic defects in these 
materials. 

For example, consider silicon, the most prevalent semiconductor. Figure 9.9 shows 
two representations of a pure silicon lattice using Lewis dot structures. Each silicon atom 
has four valence electrons and is therefore tetrahedrally bonded to four neighboring Si 
atoms. This repeated structure forms the silicon lattice; its crystal structure is identical 
to diamond. The diagram in the middle shows a perfect Si lattice at absolute zero. In this 
case, all the electrons are covalently bonded between a given pair of silicon atoms. At 
0 K, silicon has no mobile charge carriers; it is insulating.

The diagram to the right shows pure silicon at 300 K. At fi nite temperatures, the 
atoms in the solid vibrate. The energy of vibration varies according to a Boltzmann dis-
tribution. A small number of atomic pairs vibrate with enough energy that the electrons 
shake free of their covalent bonds and are free to move around the crystal lattice. This 
process creates free electrons, which are mobile negative charge carriers. A free electron 
is shown in the diagram of pure Si at 300 K. Furthermore, as shown in the fi gure, the 
missing negatively charged electron leaves behind a positively charged hole. It turns 
out that holes are also mobile. A neighboring valence electron can tunnel through and 
exchange places with the hole. By this mechanism, the hole has moved from one bond 
to the next. Now, in this new position, another neighboring electron can tunnel through, 
causing the hole to move once again. This process can be repeated over and over, leading 

Figure 9.9 Lewis dot structure of pure Si at 0 K and 300 K. At 0 K, Si is insulating. Mobile elec-
trons and holes are created at 300 K. These electronic point defects in the Si lattice make the 
material semiconducting.

Si Si Si Si

Si Si Si Si

Si Si Si Si

Si Si Si Si
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Si Si Si Si
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Covalent

bond
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"Free"
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Intrinsic Si
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to the mobility of holes about the lattice. Of course, when a free electron runs into a hole, 
it can refi ll it; we call such a process recombination. Pure silicon, which forms an identi-
cal number of holes and electrons, is termed an intrinsic semiconductor.

Intrinsic Semiconductors
We can again use chemical reactions to describe processes associated with electronic 
defects. For example, the creation of an electron–hole pair from pure silicon is written as:

  0 Sd h1 1 e2 (9.48)

where we use the symbol “e” for a free electron and “h” for a hole. The zero on the left 
of Reaction (9.48) designates the crystal as it exists in its ideal, perfectly ordered state. 

Using a similar development as that described in the last section, it can be shown 
that the equilibrium constant for Reaction (9.48) can be written as:

 K c 5 pn 5 N2 exp ¢2
Dgrxn

o

RT
≤  (9.49)

The concentration of holes is given by “p”, and electrons by “n”, as is conventionally done in 
semiconductor physics, that is, p 5 3h1 4 and n 5 3e2 4. Conservation of charge requires:

P 5 n 5 ni

where ni is termed the intrinsic carrier concentration. Thus Equation (9.49) becomes:

Kc 5 ni
2

Equation (9.49) gives the intrinsic carrier concentration in pure Si as:

 ni 5 Nexp ¢2
Dgrxn

o

2RT
≤  (9.50)

Equation (9.50) indicates that for a given semiconductor material, the equilibrium 
carrier concentration of an intrinsic semiconductor depends only on temperature. Val-
ues of ni for four semiconductors—Si, Ge, GaAs, and InP—at four temperatures are 
presented in Table 9.2. The values range over 13 orders of magnitude from 5300 (GaAs 
at 250 K) to 1.9 3 1016 (Ge at 500 K). To put these concentrations in perspective, the 
number density of Si is on the order of 5 3 1022 3#/m3 4. Thus, even the largest value in 
Table 9.2 represents a total carrier concentration less than one part per million. For any 
given material, as T gets higher, the entropy becomes more important, shifting Reac-
tion (9.48) to the right. Therefore, the defect concentration rises. As we go down the 
periodic table, there is less energy to hold in valence electrons, and we also see higher 
carrier concentration. From the data in Table 9.2, can you determine Dgrxn

o  for Si, Ge, 
GaAs and InP?

Doping
The ability of semiconductors to create electrical devices lies in our ability to con-
trol the number of positive and negative mobile charge carriers through a process 
called doping. We dope a semiconductor by introducing a specifi c substitutional 
impurity into the crystal lattice. This atomic defect then affects the electron and hole 
concentrations.

9.8  Reaction Equilibria of Point Defects in Crystalline Solids ◄ 617
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618 ► Chapter 9. Chemical Reaction Equilibria

For example, consider the introduction of a phosphorous atom into the silicon lat-
tice, as shown in Figure 9.10. The dopant P has fi ve valence electrons, of which only 
four can bond to neighboring silicon atoms. The extra electron is free to move about the 
lattice and becomes a mobile charge carrier. Thus for every P that we introduce into a Si 
lattice site, we introduce a negative mobile charge carrier. Once the electron has left, P 
has an overabundance of protons and is positively charged.

We can again describe this process through a set of chemical equations. First, consider 
the creation of a silicon vacancy in a manner similar to that in Zn to discussed previously:

SiSi
Sd Sii 1 VSi

The phosphorous atom can then be incorporated into the lattice as follows:

P 1g 2 1 VSi
Sd PSi

1 1 e2

The creation of electron hole pairs still occurs via Reaction (9.48), so,

0 Sd h1 1 e2

Additionally, the charges in the crystal must balance. The condition of electroneu-
trality can be written by equating the total number of negative species equal to the total 
number of positive species:

n 5 3PSi
   1 4 1 p

We can see two limiting cases. In the limit of large dopant concentrations, 3PSi
1 4 . . p, 

the number of electrons is approximately equal to the number of dopants:

n < 3PSi
14

Figure 9.10 Lewis dot structure of doped Si. The phosphorous substitutional impurity forms n-Si 
while boron forms p-Si.

Si Si Si Si

Si Si P Si
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to provide boron
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TABLE 9.2 Intrinsic Carrier Concentration, ni [ #/ m3 ], in Selected Semiconductors

T [K]

Species 250 300 400 500

Si 5.0 3 107 1.0 3 1010 3.5 3 1012 1.7 3 1014

Ge 7.9 3 1011 2.08 3 1013 1.4 3 1015 1.9 3 1016

GaAs 5.3 3 103 2.8 3 106 8.1 3 109 1.1 3 1012

InP 1.6 3 107

Source: From http://jas2.eng.buffalo.edu.
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9.8  Reaction Equilibria of Point Defects in Crystalline Solids ◄ 619

Thus we can control the number density of free electrons directly by adjusting the 
dopant concentration. Moreover, the equilibrium relation of Equations (9.49) and (9.50) 
still holds:

 p 5
Kc

n
5

ni
2

3PSi
1   4

 (9.51)

For a given semiconductor at temperature T, Equation (9.51) shows that as the 
number of free electrons increases, the number of holes proportionately decreases, so 
that their product remains the same. Thus the amount of the phosphorus dopant that is 
introduced controls the amount of both the electrons and the holes in the semiconductor. 
We call the carriers of higher concentration the majority carriers, while those of lower 
concentration are the minority carriers. Since electrons are the majority carrier when 
we dope silicon with phosphorous, we call this material an n-type semiconductor. When 
the number densities of minority and majority carriers are controlled by the amount of 
dopant, we say we have an extrinsic semiconductor. In the limit of small dopant con-
centrations, 3PSi

1 4 , , p, there is no effect of the substitutional impurity of the electronic 
defects in the semiconductor, and it behaves similarly to an intrinsic semiconductor.

We have just seen that the addition of a dopant with one more valence electron 
than the atom it replaces in the lattice leads to additional free electrons. Similarly, the 
addition of a dopant with one fewer valence electrons leads to creation of holes. Such 
a case is shown on the right side of Figure 9.10. In this case, we incorporate boron as 
follows:

B 1g 2 1 VSi
Sd BSi

2 1 h1

Similarly, electroneutrality requires:

p 5 3BSi
2 4 1 n

and in the limit 3BSi
2 4 .. n, we get:

p < 3BSi
2 4

Such a material is called a p-type semiconductor, since holes are now the majority 
charge carriers. The electrons are the minority carriers and can be described by:

 n 5
K3

p
5

ni
2

3BSi
2 4

 (9.52)

By the proper choice of dopant, we can make semiconductor materials with a majority 
of positive or negative charge carriers, and by controlling the amount of dopant, we can 
target specifi c carrier concentrations. This ability forms the basis for engineering devices 
using these materials.

Effect of Gas Partial Pressure on Defect Concentrations

We can use defect equilibria expressions and equilibrium relations to understand the 
relation between the properties of solids and the gas environments in which they are pro-
cessed. In this section, we go through two examples of gas-defect equilibrium involving 
compound semiconductors, AB. We can consider defects in sublattice A or sublattice B. 
However, the ratio of site A to site B must remain fi xed, as defi ned by the stoichiometry.
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620 ► Chapter 9. Chemical Reaction Equilibria

There are two common types of atomic defect pairs that exist in compounds. A 
vacancy–interstitial defect pair is termed a Frenkel defect. If it is formed in sublattice 
B, it can be written as:

 BB
Sd Bi 1 VB (9.53)

Frenkel defects can occur in the A sublattice as well. Alternatively, a Schottky defect 
results from the formation of a vacancy–vacancy atomic defect pair, as follows:

 0 Sd VA 1 VB (9.54)

EXAMPLE 9.23

Growth Mechanism 
of ZnO by Oxidation 
of Zn12

 ZnO is a II-VI semiconductor that forms a hexagonal crystal structure with interpenetrating 
Zn and O sublattices. Consider the growth of ZnO by oxidation of Zn. At 390°C, a ZnO fi lm 
from zinc that contains 1% Al grows two orders of magnitude slower than when pure Zn is 
used. On the other hand, with 0.4% Li in the zinc, the growth rate increases two orders of 
magnitude. Develop a model to describe the defect equilibria in ZnO and, based on the above 
data, propose a growth mechanism.

SOLUTION We grow ZnO fi lms by placing metallic zinc in a furnace with an oxygen atmos-
phere. The overall reaction is given by:

Zn 1s 2 1
1
2

 O2 1g 2  Sd  ZnO 1s 2

After some ZnO product has been grown, the two reactants are physically separated from each 
other by the solid product, as schematically shown in Figure E9.23. It is clear that somehow an 
O-containing species or a Zn-containing species (or both) must diffuse through the ZnO fi lm 
for the reaction to proceed. We wish to know the growth mechanism. We will see how defect 
equilibria can help us understand how solid zinc becomes oxidized in the presence of oxygen 
gas. In the analysis that follows, we will assume singly ionized zinc and oxygen interstitials. 
However, the presence of some doubly ionized or neutral interstitials would not affect the 
argument.

We begin by writing balanced equations and corresponding equilibrium constants that 
describe the oxygen and zinc interstitials in the ZnO fi lm. The oxygen is assumed to dissociatively 
adsorb on the surface and be incorporated into an interstitial, as follows:

 O2 1g 2 dS 2Oi     K1 5
3Oi 42

pO2

 (E9.23A)

Figure E9.23 Growth of ZnO films by oxidation of Zn.

e−

h+

i

Zni
+

ZnO

O−

Solid interface

Gas
interface

O2(g) Z
n

12 Adapted from data presented in R. A. Swalin, Thermodynamics of Solids. (New York: Wiley, 1972).
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of Zn12
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9.8  Reaction Equilibria of Point Defects in Crystalline Solids ◄ 621

The oxygen interstitial may become ionized by grabbing an electron from a neighboring bond, 
leaving a hole behind:

 Oi
Sd Oi

2 1 h1         K2 5
3Oi

2 4  p

3Oi 4
 (E9.23B)

At the solid interface, zinc enters as an interstitial:

 Zn 1s 2 Sd Zni
1 1 e2        K3 5 3Zni

1 4n (E9.23C)

We again have the balance between production and consumption of electronic charge carriers 
in the semiconductor:

 0 Sd e2 1 h1        K4 5 pn (E9.23D)

Al and Li act as dopants in the ZnO lattice. The dopants incorporate on the zinc sites. 
Since Al has an extra valence electron, it forms n-type ZnO as follows:

 Al 1 VZn
Sd AlZn

1
1 e2        K5 5

3AlZn
1 4n

3Al 4 3VZn 4
 (E9.23E)

On the other hand, Li forms p-type ZnO since it only has one valence electron.

 Li 1 VZn
Sd LiZn

2
1 h1        K6 5

3LiZn
2 4  p

3Li 4 3VZn 4
 (E9.23F)

As stated in the problem, we observe the presence of Al decreases the growth rate of ZnO 
fi lms. Equation (E9.23E) shows that the presence of Al increases the electron concentration; 
hence, the hole concentration must proportionately decrease [Equation (E9.23.D)]. We can 
combine Equations (E9.23B) and (E9.23A) to give:

 3Oi
2 4 5

"K1pO2K2

p
 (E9.23G)

Thus, for constant temperature and oxygen pressure, a decrease in hole concentration translates 
into increased 3Oi

2 4. We deduce that the growth rate decreases when the oxygen interstitial 
concentration increases. Similarly, Reaction (E9.23C) shows that the zinc interstitial concentration 
decreases as the electron concentration increases. So the growth rate decreases when the zinc 
interstitial concentration decreases.

On the other hand, the presence of Li increases the growth rate. Equation (E9.23F) shows 
that the presence of Li increases the hole concentration, decreasing the electron concentration. 
From Equation (E9.23C), we conclude that 3Zn i

1 4 increases. We deduce that the growth rate 
increases when the zinc interstitial concentration increases. Additionally, Equation (E9.23G) 
shows that the oxygen interstitial concentration decreases. Since the growth rate goes in 
proportion to the zinc defect concentration, and behaves oppositely to the oxygen interstitial 
concentration, we conclude that transport of Zn across the ZnO fi lm is the mechanism by 
which the oxidation reaction proceeds. 

Consider a compound semiconductor AB. Species B is volatile and exists as a dimer, B2, in the 
vapor phase. Describe how the concentration of defects varies over a wide range of B2 partial 
pressure. For the sake of this analysis, consider only atomic defects of B and assume that they 
either are neutral or singly ionized.

EXAMPLE 9.24

Construction of a 
Brouwer Diagram

(Continued)
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622 ► Chapter 9. Chemical Reaction Equilibria

SOLUTION It is useful to be able to look at defect concentrations over a wide range of behav-
ior. In this example, we develop one such way—the Brouwer diagram. 

We consider the compound semiconductor AB. The anion B (e.g., O, S, P, As) may form 
a Frankel defect as follows:

 BB
Sd Bi 1 VB         K1 5 3Bi 4 3VB 4 (E9.24A)

The vacant lattice site may be ionized through the following reaction:

 VB
Sd VB

1
1 e2       K2 

3VB
1 4n
3VB 4

 (E9.24B)

Similarly, an interstitial can become charged by obtaining an electron. In this process, a hole 
is created:

 Bi
Sd Bi

2 1 h1        K3 5
3Bi

2 4  p

3Bi 4
 (E9.24C)

The gas-phase incorporation of B can be written:

 B2 1g 2 Sd 2Bi        K4 5
3Bi 42

pB2

 (E9.24D)

As always, electrons can be freed from their chemical bonds:

 0 Sd e2 1 h1        K5 5 pn (E9.24E)

Inserting Equation (E9.24C) into Equation (E9.24D) and rearranging:

 3Bi
2 4 5

K3"K4pB2

p
 (E9.24F)

Equations (E9.24A), (E9.24B), and (E9.24D) give:

 3VB
14 5

K1K2

n"K4 pB2

 (E9.24G)

and Equation (E9.24E) gives:

 p 5
K5

n
 (E9.24H)

Electroneutrality yields:

 n 1 3Bi
2 4 5 3VB

14 1 p (E9.24I)

As Equations (E9.24F) and E(9.24G) show, the atomic defects, 3Bi
2 4 and 3VB

1 4, depend on 
the B2 partial pressure in the system. We consider three regions:

In region 1, we have low pB2. Inspection of Equation (E9.24G) shows that the B vacancy 
concentration is large, while Equation (E9.24F) tells us that the interstitial concentration is 
small. We could deduce the results from physical arguments as well. Thus, for region 1, we take 
3VB

1 4 . . p and n . . 3Bi
2 4,  and Equation (E9.24) reduces to n > 3VB

1 4. With this limit, 
concentrations of the defects can be solved via Equations (E9.24F) through (E9.24H). Results 
for the charged defects are shown in the column marked “low pB2 ” in Table E9.24. From these 
results, we can also solve for the neutral atomic defects.
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In region 3, we have high pB2. Inspection of Equation (E9.24F) shows that B interstitial 
concentration is large, while Equation (E9.24G) tells us that the vacancy concentration is 
small. Thus, for region 3, we take 3Bi

2 4 . . n and p . . 3VB
1 4, and Equation (E9.24) reduces 

to n > 3VB
1 4. Equation (E9.24) reduces to p > 3Bi

2 4. With this limit, concentrations of the 
defects can be solved via Equations (E9.24F) through (E9.24H). Results are shown in the 
column marked “high pB2 ” in Table E9.24.

In region 2, we have intermediate pB2. We assume that the electronic defect concentration 
is larger than the atomic defect concentration (although in some systems the opposite may 
found; see Problem 9.72). Thus, we have n . 3Bi

2 4 and p . 3VB
1 4, and Equation (E9.24) 

reduces to n > p. Again, solutions are shown in Table E9.24.
Each of the charged defect types in Table E9.24 has a well-defi ned dependence on B2 

partial pressure. A convenient way to see the behavior of the defect concentrations over many 

TABLE E9.24 Defect Concentrations for Three Regions of pB2

Region 1: Low pB2 Region 2: Intermediate pB2 Region 3: High pB2

n > 3VB
1 4 n > p p > 3Bi

2 4

3VB
1 4 5

Å

K1K2

K4
1/4

 pB2

21/4 3VB
1 4 5

K1K2

"K4K5

 pB2

21/2
3VB

1 4 5
K1K2"K3

K5K4
1/4   pB2

21/4

3Bi
2 4 5

"K1K2K3K 4
1/4

K5
 p

B2

1/4 3Bi
2 4 5 K3

Å

K4

K5
 p

B2

1/2 3Bi
2 4 5 "K3K4

1/4
p

B2

1/4

p 5
K5K4

1/4

"K1K2

 p
B2

1/4 p 5 "K5 n 5
K5

"K3K4
1/4

  pB2

21/4

Figure E9.24 Brouwer diagram for Example 9.24.
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624 ► Chapter 9. Chemical Reaction Equilibria

orders of magnitude is to use a log-log plot of the defect concentrations vs. partial pressure. 
Figure E9.24 shows such a Brouwer diagram for the relations established in Table E9.24 for 
anion Frankel defects. The three regions analyzed above are shown. The limiting behavior of 
each region is presented; in reality, there would be smooth transitions between the regions. 
The slope of the lines on this log-log plot are given by the power of the partial pressure. For 
example, the slopes for 3VB

1 4, 3Bi
2 4, and p in region 1 are 21/4, 1/4, and 1/4 respectively. 

The nature of the semiconductor changes as we increase the partial pressure of B2. The AB 
semiconductor goes from n-type (region 1), to intrinsic (region 2), to p-type (region 3). Thus, 
we can control the doping through the partial pressure of B2.

 ►9.9  SUMMARY
In this chapter, we learned how to calculate the equilibrium composition for a system undergoing a 
single chemical reaction or a set of reactions at a specifi ed T, P, and initial composition. Our analy-
sis was based on the principle that when a system reaches the equilibrium state, its Gibbs energy 
is a minimum. For a determined stoichiometry of a chemical reaction, the minimization of Gibbs 
energy leads to the following expression for the equilibrium constant, K:

 K ; q ¢  
f̂i

fi
o ≤

νi

 (9.16)

The value of the equilibrium constant can be determined solely from thermochemical data. Addi-
tionally, the product of the fugacities on the right-hand side of Equation (9.16) can be related to a sin-
gle unknown variable, the extent of reaction, j. Thus, Equation (9.16) can be solved for j; it is then 
straightforward to solve for the composition of species in the system at equilibrium. Thermodynam-
ics tells us the possible extent to which a given reaction will proceed; however, the reaction kinetics 
also plays a role. Even when a reaction is thermodynamically favored, if its rate is very slow, it will not 
noticeably proceed. The analysis we learned in this chapter tells us nothing about reaction kinetics.

The fi rst step in equilibrium analysis of a chemical reaction is to defi ne the reaction stoichi-
ometry and identify the stoichiometric coefficients, ni, of all the species in the system. The stoi-
chiometric coeffi cient tells us the proportion in which a given species is produced, or reacts, for 
a particular reaction. It is positive for products, negative for reactants, and zero for inerts. With a 
known reaction stoichiometry, the equilibrium constant is then determined. The equilibrium con-
stant is related to the Gibbs energy of reaction and can be calculated from available Gibbs energies 
of formation. For a given reaction stoichiometry, the equilibrium constant depends only on tem-
perature, that is, K 5 f 1T only 2 . If we know the equilibrium constant at one temperature (e.g., 298 
K), we can fi nd it at another by applying the thermodynamic web to determine the change of the 
equilibrium constant with temperature. For limited temperature differences, an approximate solu-
tion that assumes the enthalpy of reaction is constant [Equation (9.21)] can be used. A more general 
expression, Equation (9.24), accounts for the temperature dependence of the enthalpy of reaction.

We can then calculate the equilibrium composition from the product of the fugacities 
described in Equation (9.16). First, the mole fractions of all the species are written in terms of a 
single variable, the extent of reaction. The extent of reaction is a measure of how far the reaction 
has proceeded. It can be related to the relative compositions of reactants and products through 
the reaction stoichiometry. For example, given an initial composition, the mole fraction of species 
i in the gas phase is given by:

 yi 5
ni

nv
5

ni
0 1 νij

no 1 νj
 (9.10)

The fugacity ratios for each component on the right-hand side of Equation (9.16) can be written by 
applying the concepts developed in Chapter 7. For the gas phase, we choose a reference state with 
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9.9  Summary ◄ 625

a pressure low enough that the gas behaves as an ideal gas and a fugacity f i
o 5 1 bar. If only gas-

phase species are present and we use the Lewis fugacity approximation, Equation (9.16) becomes:

 K 5 q 1yi 2 νi q 1wi 2 ν iPn (9.26)

For an ideal gas, Equation (9.26) can be further simplifi ed to:

 K 5 q 1yi 2 νiPν       1 ideal gas 2  (9.27)

Similarly, the liquid-phase (and solid-phase) mole fractions can be written in terms of the 
extent of reaction. For cases where the pressure dependence of the pure species fugacity is not 
important, reactions involving only liquid-phase species reduce to:

 K 5 q 1xigi 2 νi (9.28)

In the case of an ideal solution, we have:

 K 5 q 1xi 2 ν i       1 ideal solution 2  (9.29)

For heterogeneous reactions, where more than one phase is present, we simply treat the fugac- 
ities in the vapor as we did for Equation (9.26) or (9.27) and the liquid as we did for Equation (9.28) or 
(9.29). If a pure solid is present, we use an activity of 1; otherwise, we use a formulation analogous to 
liquids. When solving problems for heterogeneous systems, we must remember to use only the total 
number of moles in a given phase when we put the mole fractions into terms with extent of reaction.

Electrochemical systems make use of non-Pν work through application of an electric poten- 
tial across two electrodes. On one hand, reactions that spontaneously proceed can be used to gener-
ate useful electrical work, such as in batteries and fuel cells. On the other hand, input of a suitable 
quantity of electrical work can lead to reactions that would not spontaneously occur, such as in elec-
troplating or electrolysis. Electrochemical processes occur within an electrochemical cell that con-
tains two electrodes in an electrolyte solution. The oxidation half-reaction occurs at the anode, while 
the corresponding reduction half-reaction occurs at the cathode. Electrons generated from the oxi-
dation reaction are supplied to the cathode through an external circuit. The equilibrium composition 
can be related to the applied potential by the Nernst equation, Equation (9.34). Thermochemical 
data for electrochemical half-reactions are commonly published as the half-cell potential for oxida-
tion reactions, Eº, with reference to the hydrogen–hydrogen ion reduction reaction. Charged species 
in solution have strong ionic interactions that are very different from other interactions in the solu-
tion, even in a dilute solution. Thus, the treatment of activity coeffi cients of ions in solution must be 
approached differently than that of nonelectrolyte solutions. Mean activity coeffi cients for electrolyte 
solutions are typically obtained from experiment but can be estimated for ions in dilute solution.

In treating chemically reacting systems, we are often faced with cases where there are many 
possible reactions. It is straightforward to extend our development of chemical reaction equi-
libria to more than one reaction. To set up the multiple reaction equilibria problem, we use the 
Gibbs phase rule to determine how many different independent chemical reactions are needed 
to describe the system. Each reaction is then assigned its own corresponding extent of reaction, jk. 
Thus, we must keep track of the stoichiometry of each species i for each of the k separate chemical 
reactions. This method is termed the equilibrium constant formulation. Alternatively, we can 
solve for the equilibrium composition through minimization of the total Gibbs energy of the 
system by using the formula coeffi cient matrix, bij. This approach is useful in developing computer 
algorithms to solve reactions for complex systems and is used by ThermoSolver.

We can examine point defects, defects that occur at single atomic site, by applying the prin-
ciples of chemical reaction equilibrium from this chapter. Atomic point defects include vacancies, 
interstitials, substitutional impurities, and misplaced atoms. Electronic point defects include 
mobile electrons and holes. From this approach, we can study carrier concentrations in semi- 
conductors and see the effect of gas partial pressure on defect concentrations at equilibrium. The 
Brouwer diagram is a particularly useful tool in seeing the effect of gas partial pressure on defect 
concentration over many orders of magnitude.
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626 ► Chapter 9. Chemical Reaction Equilibria

 ►9.10  PROBLEMS
Conceptual Problems

9.1 Consider the following reaction where gaseous components A and B react to form solid C:

A 1g 2 1 B 1g 2 Sd C 1s 2 1 D 1g 2

This reaction proceeds to equilibrium at 500 K and 4 bar, where the following quantities of species 
are present: 0.25 mol A; 0.25 mol B; 0.5 mol C; 0.5 mol D. What is the equilibrium constant at 500 
K? You may assume ideal gas behavior.
9.2 Your boss has asked you to come up with a scheme to make a product through chemical reac-
tion. In doing the thermodynamic analysis, you determine that Dgo

rxn . 0. Your colleague claims 
that because the Gibbs energy of reaction is greater than zero, product will not form spontane-
ously, and you should not even consider this reaction. What are your thoughts?
9.3 Consider the following reaction: 

2A 1g 2 1 B 1g 2 dS 2C 1g 2

The Gibbs energy of reaction at 298 K is determined to be Dgo
rxn,298 5 21,000 J/mol, and at a given 

temperature, the equilibrium constant is reported to be KT 5 16. Now consider the reaction is 
written as follows:

A 1g 2 1
1
2

 B 1g 2 dS C 1g 2

What are the values of Dgo
rxn,298 and KT? 

9.4 At a given temperature, pressure, and initial composition, the equilibrium mole fraction of 
species C for the following reaction:

2A 1g 2 1 B 1g 2 dS 2C 1g 2

is found to be 0.75. What is the value of the mole fraction if the reaction is written as follows? 

A 1g 2 1
1
2

 B 1g 2 dS C 1g 2

9.5 At 300 K and 1 bar, the equilibrium constant for the following reaction:

A 1g 2 1 B 1g 2 dS C 1g 2

is reported to be 10. What is the equilibrium constant at 300 K and 10 bar? You may assume ideal 
gas behavior.
9.6 Consider the gas phase hydrogenation reaction of propylene to form propane:

C3H6 1g 2 1 H2 1g 2 dS C3H8 1g 2

To increase the equilibrium conversion, would it help to
(a) Increase the pressure?
(b) Increase the temperature?
(c) Add an inert?

Explain.
9.7 Your colleague reports that the conversion to n-butane from the gas phase hydrogenation 
reaction of 1-butene increases as temperature increases:

C4H8 1g 2 1 H2 1g 2 dS C4H10 1g 2

Is this possible? Explain.
9.8 Which of the following conditions would you use if you needed to develop an industrial pro-
cess to produce ethanol from acetylene? Explain.

C2H4 1 H2O dS C2H5OH
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9.10  Problems ◄ 627

(a) 25°C and 1 bar. 
(b) 250°C and 1 bar. 
(c) 25°C and 150 bar. 
(d) 250°C and 150 bar.
9.9 Write the equilibrium constant expression for the following reaction:

A 1g 2 1 B 1 l 2 dS C 1s 2

9.10 Consider the following liquid phase reactions:

2A dS B dS C

A plot of the concentrations in [mol/L], of A, B, and C in a constant-volume batch reactor operating 
isothermally at 500 K is shown in the following fi gure. Determine the values of K1 and K2

 at 500 K.

0 2 4 6 8 10
0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1

t (hr)

C

CA

CB

CC

9.11 The standard half-cell potential for the reduction of water to form hydroxyl ion in Table 9.1 
is reported as 20.828 V. If instead we write the reaction: 

H2O 1 e2 S 1
2

 H2 1 OH2

what should we use for the half-cell potential?
9.12 Consider an electrochemical cell with a 1 m concentration of sodium ions and Al and Pt 
electrodes electrically connected together. Will the Al spontaneously dissolve into solution?
9.13 Rank in order from largest in magnitude to smallest in magnitude the activity coeffi -
cients of the solute in the following aqueous solutions: 0.1 m sucrose, 0.1 m NaCl, 0.1 m CaCl2. 
Explain.
9.14 An electrochemical cell has Ag electrodes and an electrolyte containing different concentra-
tions of AgNO3 solutions separated by a salt bridge. When the two cell compartments have AgNO3 
concentration of 1 m and 0.1 m, the measured voltage is 0.06 V. What is the voltage if the two 
compartments have AgNO3 concentrations of 1 m and 0.01 m?
9.15 Gallium arsenide (GaAs) is a III-V semiconductor, which is often considered for applications 
where the speed of carrier transport is crucial (lasers, high-frequency detectors). 
(a) Suggest an atom that could be used as a dopant to make GaAs a p-type semiconductor.
(b) Suggest an atom that could be used as a dopant to make GaAs an n-type semiconductor.
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628 ► Chapter 9. Chemical Reaction Equilibria

9.16 Consider two semiconductors, one made of Si and the other made of Ge. Both are at room 
temperature and doped with 1015 phosphorous atoms.
(a) Which semiconductor has the greater number of free electrons?
(b) Which semiconductor has the greater number of holes?
9.16 Consider two semiconductors, one made of Si and the other made of Ge. Both are at room 
temperature and doped with 107 phosphorous atoms.
(a) Which semiconductor has the greater number of free electrons?
(b) Which semiconductor has the greater number of holes?

Numerical Problems

9.17 At 25°C and 1 atm, the Gibbs energy of reaction to produce liquid hydrogen peroxide 
1H2O2 2  from liquid water has been measured to be 116.8 kJ/mol. From this value determine the 
1Dgf, 298

o 2H2O2
.

9.18 Consider a system initially charged with 1 mole of pure I2 that is maintained at 1300 K and 
1 bar in which the following dissociation reaction occurs:

I2 1g 2 Sd 2I 1g 2

For monatomic iodine

 Dhf,1300
o 5 77.5 3kJ/mol 4

 Dsf,1300
o 5 53.4 3J/mol K 4

Plot DH, TDS and DG as a function of extent of reaction. What is the equilibrium conversion?
9.19 Calculate the Gibbs energy of formation of NH3 at 1000 K. Remember that the Gibbs ener-
gies of formation of the elements are still zero at this temperature.
9.20 Consider the hydrogenation reaction of 1-butene to butane by the following reaction: 

C4H8 1 H2
Sd C4H10

The feed fl ow ratio is 10 moles H2: mole C4H8. Consider a reactor temperature of 1000 K and 
reactor pressure of 5 bar. Calculate the ratio of butane:1-butene at equilibrium. You may assume 
ideal gas behavior and that Dhrxn

o  is constant for the reaction.
9.21 One step in the manufacture of sulfuric acid is the oxidation of sulfur dioxide to sulfur triox-
ide. Consider performing this oxidation at a pressure of 1 bar with an excess of 100 mole % oxygen, 
using air as the oxygen source. For the optimal yield of SO3, it is desirable to maintain the reactor 
at a constant temperature of 700°C. You may assume Dhrxn

o  is independent of temperature.
(a) What is the equilibrium constant at processing conditions?
(b) If equilibrium is attained within the reactor, what is the exit stream composition?
(c) How much heat must be supplied to or removed from the reactor to maintain isothermal 
operation?
(d) What is the effect of increasing the pressure on the extent of reaction? (e) What is the effect 
of increasing pressure on the equilibrium constant?
(f) Would an increase in pressure be justifi ed from a processing standpoint? Explain.
9.22 Calculate the equilibrium constant in Problem 9.21, accounting for the variation of Dhrxn

o  
with temperature.
9.23 Consider the industrial production of cyclohexane, C6H12, by the gas-phase hydrogenation 
of benzene, C6H6. Assume that this process is carried out by two reactors in series as shown below. 
The fi rst reactor is at 340°C and 5 bar, while the second reactor is at 265°C and 5 bar. The feed 
ratio of hydrogen gas to benzene is 10:1; there is no cyclohexane in the feed. All species are in the 
gas phase. You may assume ideal gas behavior and that Dhrxn

o  does not change with temperature.
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9.10  Problems ◄ 629

(a) What is the equilibrium composition at the exit of the second reactor?
(b) What is the purpose of the fi rst reactor; that is, why do we use two reactors instead of just one? 
(c) Would we get more product if we used a pressure of 1 bar instead of 5 bar. Explain.
(d) Would you recommend diluting the feed with an inert to increase the yield of C6H12? Explain.
9.24 You are a process engineer in charge of growing solid silicon from a feed of SiCl4 and H2 
gases. The growth process can be described by the following chemical reaction:

SiCl4 1g 2 1 2H2 1g 2 dS Si 1s 2 1 4HCl 1g 2

The reactor pressure is 100 Pa.
(a) Economics dictates that you need at least a 75% utilization of SiCl4; that is, 75% of the SiCl4 in 
the feed needs to end up as Si(s). Consider a stoichiometric feed 11 mol SiCl4 : 2 mol H2 2 . What is 
the minimum possible temperature in the reactor to obtain this objective. State any assumptions 
that you make.
(b) Your supervisor tells you that the temperature calculated in part (a) is too high. She suggests 
two possible strategies for decreasing the minimum reactor temperature. Indicate the effect of 
each of the following process changes on the minimum possible reactor temperature to obtain a 
utilization of 75%. Explain your reasoning.
 (i) Decrease the reactor pressure.
(ii)  Dilute the feed stream to a ratio of 1 mol SiCl4: 100 mol H2.
9.25 Consider the production of 1,1-dichloroethane 1C2H4Cl2 2  from ethylene 1C2H4 2  and chlo-
rine 1Cl2 2 . This gas-phase reaction is the fi rst step in producing polyvinyl chloride (PVC). The feed 
ratio of reactants is 2 moles chlorine: 1 mole ethylene. You may assume Dhrxn

o does not change with 
temperature.
(a) Calculate the maximum temperature at which 90.0% conversion can be obtained at a pressure 
of 1 bar.
(b) Consider an increase in pressure to 30 bar. What is the conversion obtained at the same tem-
perature as that calculated in part (a)? You may assume that the Lewis fugacity rule applies and 
use the virial truncated form of the van der Waals equation. The following van der Waals constants 
are available:

Species a 3J/m3 mol22 4 b 3m3/mol 4

1,1-Dichloroethane 1.71 1.09 3 1024

Chlorine 0.61 5.18 3 1025

Ethylene 0.46 5.81 3 1025

9.26 The following SO2 partial pressures have been observed from the reaction:13

CaS 1s 2 1 3CaSO4 1s 2 dS 4CaO 1s 2 1 4SO2 1g 2

T[°C] 900 960 1000 1040 1080 1120

pSO2 3bar 4 5.33 3 1023 0.0253 0.0547 0.110 0.206 0.317

T = 340°C T = 265°C

P = 5 bar P = 5 bar

Reactor 1 Reactor 2

H2(g)
H2(g)

C6H6(g)

C6H6(g)
C6H12(g)

10 moles/sec

1 mole/sec

13 Ralph A. Wenner, Thermochemical Calculations (New York: McGraw-Hill, 1941).
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630 ► Chapter 9. Chemical Reaction Equilibria

From these data, calculate Dhrxn,298
o  and Dgrxn,298

o . You may assume that each of the solids forms 
distinct phases and all are immiscible with one another.
9.27 Fuel cells produce electricity from hydrogen. The life of the fuel cell depends on produc-
ing relatively pure hydrogen. Methane (natural gas) is often used as a feed to produce hydrogen. 
Consider the production of hydrogen 1H2 2  by the dissociation of methane 1CH4 2  into solid carbon 
(C). The process can be described by the following chemical reaction:

CH4 1g 2 dS C 1s 2 1 2H2 1g 2

The temperature is 1000 K and the pressure is 1000 Pa. You may assume that D hrxn
o  does not 

change with temperature.
(a) What is the equilibrium constant at 298 K?
(b) What is the equilibrium constant at 1000 K?
(c) What is the maximum amount of H2 that can be produced per mole of CH4 in the feed?
(d) Why is this reaction run at 1000 K instead of 298 K?
(e) Why is this reaction run at 1000 Pa instead of 1 bar?
9.28 A vessel contains a liquid and a vapor phase in equilibrium at a pressure of 0.1 atm. The 
vapor phase contains 100 moles of species A and 200 moles of species B. The liquid phase contains 
500 total moles of species. The saturation pressure of species A is 0.1 atm and of B is 0.5 atm. Both 
the vapor and the liquid phases behave ideally!

Vapor
P = 0.1 atm

100 moles A

200 moles B

500 moles total 2A A2

Liquid

←→

Species A dimerizes in the liquid phase and A2 is completely involatile. 
(a) Calculate the equilibrium constant for the dimerization reaction.
(b)  Calculate the values for the number of moles of A, B, and A2 in the liquid phase.
(c) A colleague maintains that the dimerization reaction does not occur in the liquid phase; rather, 
he believes that the liquid phase behaves nonideally. If species A occurs only as a monomer (as A, 
not A2) as he thinks, how many moles of species A would exist in the liquid phase [keep the total 
number of A atoms in the liquid phase the same as for part (b)]?
(d) Given your colleague’s model in part (c), what value of gB is necessary for his model to fi t the data?
(e) Can you explain nonideality in phase equilibria solely by introducing an association reaction 
to an ideal vapor–liquid system? Can an association reaction be used to explain negative 1gB , 1 2  
deviations from ideality?
9.29 Gaseous hydrogen can be produced by the steam cracking of methane in a catalytic reactor 
at 500°C and 1 bar according to the following reaction:

CH4 1 2H2O Sd CO2 1 4H2

(a) If 5 moles of steam are fed into the reactor for every mole of methane, at equilibrium, how 
many moles of hydrogen are produced?
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(b) If we build a reactor and run it under these conditions, could we ever get a lower conversion 
(less hydrogen) than that calculated in part (a)? Can we ever get a higher conversion? Explain.
(c) Would it make sense to increase the pressure in order to increase the equilibrium conversion? 
Explain.
9.30 You have been tasked with the removal of H2S and SO2 from an industrial stack. The follow-
ing reaction is proposed to dispose of both species at once:

2H2S 1g 2 1 SO2 1g 2 dS 3S 1s 2 1 2H2O 1g 2

Consider this reaction at 500°C. PvT data for H2S and SO2 have been fi t to the following equation 
of state:

z 5
Pv
RT

5 1 1 B rP

with values of B r 2 2.2 3 1029 and 24.4 3 1029 3Pa21 4 for pure H2S and pure SO2, respectively. 
For H2O, use the steam tables for thermodynamic properties. For simplicity, you may use the fol-
lowing equation for the variation of the enthalpy of reaction with temperature:

Dhrxn
o 5 Dhrxn,298

o 31 1 C 1T 2 298 2 4

with C 5 9 3 1025 3K21 4 and T is in K.
(a) Find an expression for the pure species fugacity coeffi cients of H2S and SO2 as a function of 
pressure at 500°C. P should be the only variable in your fi nal expression. Solve for w explicitly.
(b) Calculate the equilibrium constant at 500°C.
(c) To see if this reaction scheme is plausible, a high-pressure laboratory reactor is set up using an 
inlet stream of only H2S and SO2, consisting of 75% H2S and 25% SO2. What is the equilibrium 
conversion, j, at 10 MPa? You may approximate the fugacity coeffi cients in the mixture by their 
pure species fugacity coeffi cients.
(d) If a higher conversion is desired than that calculated in part (c), would you increase or decrease 
P? Explain.
(e) Quickly and roughly estimate the approximate pressure needed to obtain j 5 0.95 at 500°C.
(f) Another possible way to obtain higher conversion is to change T. Would you increase or decrease 
T? Explain. In a real reactor, why would it be better to change P than T?
(g) There are many other species that do not take part in the reaction above. Would the addition 
of inerts lead to a greater conversion than that calculated in part (d)? Explain.
9.31 A gas mixture containing 1 mol/s H2, 2 mol/s CO and 1 mol/s CO2 is fed into a furnace at 
1.5 bar. In addition to the species at the inlet, the outlet stream is measured to contain 0.40 mol/s 
of H2O vapor that has formed through chemical reaction. Assuming the reaction to produce 
water has reached equilibrium, estimate the temperature of the furnace. You may assume that 
Dhrxn 5 const and that no other species is produced in the chemical reaction.
9.32 Solid species A reacts with gas B to form gas C with the following stoichiometry:

A 1s 2 1 B 1g 2 dS 2C 1g 2

At 500 K, the equilibrium constant for the reaction is K 5 4. The system is held at a constant pres-
sure of 3 bar and initially has 1 mole of B and plenty of solid A. You may assume ideal gas behavior. 
(a) If the reaction proceeds to equilibrium, how many moles of C will form?
(b) For the same temperature, can you increase the equilibrium conversion by changing pres-
sure? If so, would you raise or lower P? Explain.
9.33 Consider a mixture of 1-propanol (a) and water (b) in vapor-liquid equilibrium at 25°C. The 
liquid has a mole fraction xa 5 0.2. The three-suffi x Margules equation parameters are:

A 5 4640 j
J

mol
k       and      B 5 21700 j

J

mol
k
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In addition, propylene (c) can form via chemical reaction in the gas phase. To simplify the calcula-
tions you may assume that no propylene exists in the liquid (i.e., xc 5 0).
(a) Write the chemical reaction that occurs in the vapor, and calculate the numerical value of the 
equilibrium constant.
(b) If the gas phase reaction proceeds to equilibrium, calculate the system pressure. You will need 
to account for both phase equilibrium and chemical reaction equilibrium. 
(c) Calculate the mole fractions of a, b, and c in the vapor. 
9.34 H2 gas is needed as a gas source for fuel cells. You want to generate H2 through a gas phase 
reaction of n-pentane 1C5H12 2  with steam 1H2O 2 . You may assume the only by-product formed is 
carbon monoxide (CO). Consider a molar feed ratio of 1 mol C5H12 to 10 mol H2O at a pressure 
of 0.5 bar. It is desirable to convert 98% of the feed n-pentane to hydrogen (i.e, for every 1 mol of 
C5H12 fed into the reactor, 0.02 mol C5H12 exits).
(a) Calculate the minimum temperature you can run the reactor to achieve 98% conversion of 
C5H12. You may assume Dhrxn

o  is a constant.
(b) If you wanted to be more accurate in part A, what other thermodynamic property data would 
you need? Report the values of the property data you would need. (Do not do the calculation.)
(c) Explain why you would choose to operate this reactor at reduced pressure.
(d) Draw a quick schematic of a process you would use to separate H2 from the other species exit-
ing the reactor to feed to the fuel cell. 
9.35 One step in the manufacture of solar cells is the growth of solid silicon from gas feed. Con-
sider a feed source of pure chlorosilane that undergoes the following reaction:

SiH3Cl 1g 2 Sd Si 1s 2 1 HCl 1g 2 1 H2 1g 2

You are considering a process that runs at 500°C and 100 Pa. Answer the following questions.
(a) What is the maximum amount of Si product you can make for each mole of SiClH3 fed into the 
reactor? You may assume Dh°

rxn 5 const.
(b) What data would you need to calculate an answer without assuming Dh°

rxn 5 const? How 
would that change your calculation?
(c) Based on your answers to part A and B, how reasonable do you think the assumption that 
Dh°

rxn 5 const is? Given time and data, should you recalculate your answer? 
9.36 Pure H2O fl ows through a porous bed of solid carbon at 1000 K and 0.5 bar to produce H2 
and CO gases. Answer the following questions. You may assume Dh°

rxn 5 const.
(a) At equilibrium, how much H2 is produced per mole of steam fed?
(b) If the fl ow rate of steam into the reactor is 2 mol/s, how much heat needs to be added or 
removed to keep the system at 1000 K? 
9.37 Solid titanium can be produced by reacting titanium tetrachloride gas with molten 
 magnesium liquid using the following reaction:

TiCl4 1g 2 1 2Mg 1 l 2 dS 2MgCl2 1 l 2 1 Ti 1s 2

You wish to react 40% of the magnesium liquid at constant pressure and a temperature of 1000 K. 
Gibbs energy of formation data at 1000 K are as follows:

TiCl4 MgCl2

Dg0
f,1000 [kJ/mol] 2642 2293

(a)  For every kg of magnesium placed in the reactor, how many kg of Ti will be produced?
(b) Calculate the approximate pressure needed. You can assume ideal gas and ideal liquid behavior.
(c) Explain how you could calculate the pressure more accurately than in part (a). What data 
would you need? 
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9.38 Consider the production of ethanol from acetylene and water at 355 K and 1 bar by the fol-
lowing reaction:

C2H4 1g 2 1 H2O 1g 2 dS C2H5OH 1g 2

(a) If the feed contains an equimolar mixture of reactants, calculate the equilibrium conversion.
(b) Would the yield of ethanol produced per mol of acetylene fed increase if the feed ratio was 
changed to 10 : 1 H2O : C2H5OH? Explain.
(c) Another strategy to increase the yield is to increase the pressure to 10 bar. Comment on what 
would happen in the system if you tried this approach. 
9.39 Calculate the equilibrium composition of the isomerization reaction between propylene 
oxide 1C3H6O 2  and acetone 1C3H6O 2  at 298 K and 1 bar. Under these conditions, they form 
miscible liquids and can be described by the two-suffi x Margules equation with A 5 2650 J/mol.
9.40 Estimate the equilibrium composition at 1 bar of a gas mixture containing the following 
isomers: 1-butene (1), cis-butene (2), and trans-butene (3).
(a) at 298 K 
(b) at 1000 K
9.41 Determine the equilibrium composition of the following isomers of C3H8O: at 500 K and 
1 bar: ethyl methyl ether (1), n-propyl alcohol (2), and isopropyl alcohol (3). The following Gibbs 
energies of formation are available at this temperature:

1Dgf,500
o 2 1 5 247.3,      1Dgf,500

o 2 2 5 295.4,     1Dgf,500
o 2 3 5 2103.2 3kJ/mol 4

(a) Use the equilibrium constant approach.
(b) Use the minimization of Gibbs energy.
9.42 You have obtained the following equilibrium data for the reaction:

A 1g 2 1 2B 1g 2 dS 2C 1g 2

with a stoichiometric feed of A and B. At 200°C and 1 bar, 25% of the species in the reactor were 
the product C. At 300°C and 1 bar, 53.9% C was produced.
(a) One mole of A and 2 moles of B react at 250°C and 2 bar. Based on the data above, come up 
with an estimate of the equilibrium concentrations. State any assumptions that you make.
(b) As a process engineer, you wish to maximize the production of C. As completely as you can, 
discuss the implications of the following strategies:
  (i) Increase the temperature.
 (ii) Increase the pressure.
(iii) Add an inert to the feed stream.
9.43 Consider the production of hydrogen by the water gas shift reaction: 

H2O 1g 2 1 CO 1g 2 dS H2 1g 2 1 CO2 1g 2

The feed contains an equal amount of CO and H2. Water is present at 500% excess of its stoichio-
metric requirement. Calculate the equilibrium composition at 1000 K and 1 bar.
9.44 Consider the molecular dissociation of diatomic oxygen to monatomic oxygen: 

O2 dS 2O

What is the minimum temperature required to get 10% O at 1 bar? How can you change the pres-
sure to lower the minimum temperature required?
9.45 Determine the equilibrium composition of NO from air at 1 bar in the temperature range 
of 1100–3000 K. Plot the mole fraction of NO vs. temperature. You may assume Dhrxn

o  is constant 
for the reaction.
9.46 Determine the equilibrium composition of NO2 from air at a temperature 3000 [K] and 
1 bar. Repeat at 500 bar.
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634 ► Chapter 9. Chemical Reaction Equilibria

9.47 Consider the formation of NO and NO2 from air at 3000 K and 500 bar.
(a) Determine the equilibrium conversions and composition from the following set of independ-
ent reactions:

N2 1 O2
Sd 2NO

 
1
2

 N2 1 O2
Sd NO2

(b) Determine the equilibrium conversions and composition from the following set of independ-
ent reactions:

 N2 1 O2
Sd 2NO

 NO 1
1
2

 O2
Sd NO2

(c) Compare the answers obtained in parts (a) and (b).
9.48 Calculate the equilibrium compositions due to the decomposition of 1 mole of nitrogen 
tetroxide at 25°C and 1 bar in each of the following cases.

N2O4 1g 2 Sd 2NO2 1g 2

(a) The initial state consists of pure N2O4.
(b) The initial state consists of 1 mole of inert in addition to 1 mole of nitrogen tetroxide.
9.49 The Gibbs energy of reaction for the following reaction:

Ti 1s 2 1 2Cl2 1g 2 Sd TiCl4 1g 2

has been reported as:
Dgrxn

o 5 2757,000 2 7.5T log T 1 145T 3J/mol 4

with T in [K]. Estimate Dhrxn,298
o  for this reaction.

9.50 Solve the multiple chemical reaction equilibrium problem in Example 9.19 at 800 K using 
the following set of independent reactions:

 CH4 1 H2O Sd CO 1 3H2      reaction 1

 CO 1 H2O Sd CO2 1 H2        reaction 2

9.51 Hydrogen cyanide can be manufactured by reaction of acetylene and nitrogen:

C2H2 1 N2
Sd 2HCN

Calculate the equilibrium composition at 800 K and 1 bar.
9.52 Consider the equilibrium between copper and its oxide:

4Cu 1s 2 1 O2 1g 2 Sd 2Cu2O 1s 2

The Gibbs energy of formation of Cu2O is given by

Dgf
o

5 21.70 r 3 105 2 7.12T ln T 1 124T

Make a plot of pO2 vs. T, illustrating where Cu is stable and where Cu2O is stable in the tempera-
ture range of 300 K to 1300 K.
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9.53 Consider the reaction of CrCl2 with H2 to form solid Cr as follows:

CrCl2 1s 2 1 H2 1g 2 Sd Cr 1s 2 1 2HCl 1g 2

At T 5 632°C, K 5 1.98 3 1025. At T 5 806°C, K 5 1.12 3 1023. Answer the following 
questions:
(a) From these data, estimate the enthalpy of reaction.
(b)  In an attempt to increase the extent of reaction, the reaction temperature is raised to 1000°C 

and 1 bar. At equilibrium, how much Cr is produced for every mole of H2 in the feed?
(c)  Additionally, you wish to increase the extent of reaction by changing the pressure. Would you 

increase or decrease the pressure? Explain.
9.54 Repeat Problem 9.38, part (a), but also consider CO2 and H2 as possible products.
9.55 The following values (in kcal/mol) are reported for the Gibbs energy of formation of isomers 
of C9H20 at 1000 K 14. We wish to calculate the equilibrium composition at 1000 K and 1 atm.

Species

 

Dgf

Concentration rank 
(from 1 5 highest 
to 6 5 lowest)

C9H20 Nonane 162.15

C9H20 4-Methyloctane 161.90

C9H20 4-Ethylheptane 164.22

C9H20 2,2,3 Trimethylhexane 168.13

C9H20 3,3-Diethylpentane 171.79

C9H20 2,2,3,4 Tetramethylpentane 175.62

(a) By inspection, we can estimate what are the important species to consider. On the table, put 
these gas phase species in order from highest expected concentration to lowest concentration.
(b) Considering only the three species with the greatest concentrations, calculate the equilibrium 
composition, in mole fraction, of the mixture. 
9.56 The following two cracking reactions for n-pentane occur in parallel:

 C5H12 1g 2 dS C3H6 1g 2 1 C2H6 1g 2  (I)

and
C5H12 1g 2 dS trans C4H8 1g 2 1 CH4 1g 2  (II)

At 183°C and 0.5 bar, both these reactions contribute to the equilibrium composition of species 
in the system. For every 1.0 mole of n-pentane gas initially fed, 0.10 mol of propylene 1C3H6 2  
is formed at equilibrium from Reaction I. Calculate the equilibrium amount of trans-2-butene 
formed per mol of pentane fed. You may assume that Dhrxn for each reaction does not change with 
temperature.
9.57 You are responsible for a process that uses an acetylene 1C2H2 2  torch in atmospheric air. 
Your supervisor has just contacted you and said that she believes the process is generating (HCN) 
and is not safe. Answer the following questions:
(a) Your supervisor has stated that she has calculated the equilibrium mole fraction of HCN based 
on the following: 
(i) Consideration of only the single reaction to produce HCN 
(ii) 500% excess air for C2H2 combustion (however, the combustion reaction is not considered)
(iii) A torch temperature of 1000°C
(iv) The enthalpy of reaction is a constant
14 Stull, D. R. The Chemical Thermodynamics of Organic Compounds. 
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636 ► Chapter 9. Chemical Reaction Equilibria

Repeat her calculation, considering only the reaction to produce HCN (i.e., ignore the combustion 
reaction); what is the mole fraction of HCN produced?
(b) After more consideration, you decide you need to consider a second reaction, the combustion 
of C2H2 to form H2O and CO2. Solve for the equilibrium concentration of HCN, including this 
reaction, as well. Use the conditions of ii, iii, and iv from part (a).
9.58 Consider the reaction of n-pentane 1C5H12 2  with steam 1H2O 2  to form hydrogen 1H2 2  and 
carbon dioxide 1CO2 2  at 600 K. Consider a molar feed ratio of 1 mol C5H12 to 10 mol H2O at a 
pressure of 0.5 bar and a temperature of 600 K. You may assume Dho

rxn 5 const.
(a) What is the equilibrium composition?
(b) Repeat part (a) but consider CO as a possible product in addition to H2 and CO2. Comment 
on how your answer compares to part (a).
9.59 Repeat Problem 9.58, but consider that Dhrxn changes with temperature.
9.60 The reaction of vapor components A and B to form desired solid product C, vapor by- 
products D and F, and solid by-product E is described by the following three reactions:

 Reaction 1: A 1g 2 1 B 1g 2 dS C 1s 2 1 D 1g 2

 Reaction 2: C 1s 2 1 2B 1g 2 dS E 1s 2

 Reaction 3: A 1g 2 1 D 1g 2 dS 2F 1g 2

At a temperature of 500 K and a pressure of 50 kPa, and a feed ratio of 1 mol A to 3 mol B, the 
equilibrium extents of reaction are:

j1 5 0.6, j2 5 0.2, and j3 5 0.1 mol

(a) Calculate the values of the equilibrium constants K1, K2, and K3.
(b) How would you change the system pressure to increase the yield of C(s) relative to E(s)? 
Explain.
9.61 Hydrogen gas is a promising alternative source for energy. You want to produce H2 by pass-
ing water vapor through a bed of activated carbon at 1000 K and 50 kPa. Consider the following 
reaction:

 C 1s 2 1 H2O 1g 2 dS H2 1g 2 1 CO 1g 2

(a) At equilibrium, how much H2 is produced for every mol of H2O fed? You may assume carbon 
is present in large excess and that Dho

rxn is a constant.
(b) Explain why you think that this reaction is run at 50 kPa instead of at atmospheric pressure?
(c) In solving part (a), you assumed Dho

rxn 5 constant. What do you think is the single most impor-
tant reason that this assumption might not be valid? 
(d) Without redoing the detailed calculations that you did in part (a) determine the following 
values of K and yH2 if you write the reaction as:

2C 1s 2 1 2H2O 1g 2 dS 2H2 1g 2 1 2CO 1g 2

(e) You believe that CO2 might also form when water vapor is passed through the bed of activated 
carbon. How much H2 is produced for every mol of H2O fed, considering this second reaction? 
9.62 What is the electrode potential of the following electrochemical cell:

Zn 1s 2 0ZnSO4 1 l, 0.5 m 2 0 0CuSO4 1 l, 0.1 m 2 0Cu 1s 2?

What is the overall reaction? Is the reaction spontaneous? If the reaction is allowed to proceed 
until the cell reaches equilibrium, what are the concentrations of ZnSO4 and CuSO4 that result? 
Take each compartment in the cell to have the same volume.
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9.63 Consider the following electrochemical cell:

Pt 1s 2 0H2 1g 2 0 1H1 1 l, ? m 2 0 0Pb21 1 l, 1 m 2 0Pb 1s 2

Answer the following questions:
(a) Draw a schematic of the cell.
(b) Write the oxidation and reduction half-reactions.
(c) Calculate the pH in the electrolyte when the cell potential is E 5 0.244V; when E 5 0.717 V.
(d) Describe how an electrochemical cell can be used as a pH sensor.
9.64 Corrosion of steel in concrete can be described by the following shorthand notation:

Fe 1s 2 0Fe21 1 l, 0.1 m 2 0O2 1g 2 0Fe 1s 2

Where oxygen comes from atmospheric air, and the pH is 12. Calculate the electrode potential. 
Will the corrosion process occur spontaneously?
9.65 Electrolysis of NaCl is used to manufacture NaOH, Cl2, and H2. Answer the following 
questions:
(a) Determine the overall reaction and each half-cell reaction.
(b) Write the process in terms of shorthand notation.
(c) Determine the standard potential of reaction.
9.66 Verify that the standard half-cell potentials reported in Table 9.1 for the reactions 
between cupric, cuprous, and solid copper — Cu21 1 e2 S Cu1, Cu21 1 2 e2 h Cu, and 
Cu1 1 e2 h Cu —  are self-consistent.
9.67 Hydrogen-based fuel cells show promise as an alternative fuel source. They use a galvanic 
cell in which oxygen gas is supplied to one compartment and hydrogen gas to another. The reduc-
tion of O2 gas and oxidation of H2 gas are used to generate power. Consider a fuel cell where the 
cathodic compartment has an O2 partial pressure of 0.21 bar and the anodic compartment has an 
H2 pressure of 0.4 bar. At room temperature, what is the maximum work produced for every mole 
of H2 that reacts? What is the value if the fuel cell operates at 650°C? Assume Dhrxn

o 5 constant.
9.68 Electroplating is used to deposit the copper metal lines in integrated circuit processing. In 
this case, dissolution of a copper anode is used to provide cupric ions 1Cu21 2  for reaction; that is, 
the solid copper–cupric ion reaction is used both at the anode to generate cupric ions and at the 
cathode to grow the resulting fi lm. Calculate the minimum electrode potential to achieve copper 
growth for the following cell:

Cu 1s 2 0CuSO4 1 l, 0.1 m 2 0 0CuSO4 1 l, 0.01 m 2 0Cu 1s 2 .

Assume the following:
(a) It is an ideal solution.
(b) Equation (9.38) represents the activity coeffi cient of copper.
9.69 The cell potential of the following cell has been measured to be 0.4586 V at 25°C: 

Pt 0H2 1g 2 0HCl 1 l, 0.0122 m 2 0AgCl 1s 2 0Ag 1s 2

Assume that the fugacity of hydrogen gas is 1 bar. Calculate the activity coeffi cient, g6, of HCl in 
this solution.
9.70 A ZnO semiconductor is exposed to Cl2 gas. Write the associated chemical reactions for the 
incorporation of Cl in oxygen sites, with the generation of free electrons. Write the equilibrium 
constant relations for the reactions you propose.
9.71 Consider a compound semiconductor AB described by the following defect processes:

 0 Sd VA
2 1 VB

1

 B2 1g 2 Sd 2BB 1 2VA
2 1 2 h1
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638 ► Chapter 9. Chemical Reaction Equilibria

 2BB
Sd B2 1g 2 1 2VB

1
1 2e2

 0 Sd h1 1 e2

Construct a Brouwer diagram, including regions of low pB2, intermediate pB2, and high pB2. In the 
region of intermediate pB2, assume that the concentration of electronic defects is greater than the 
vacancy concentration. When is this material intrinsic? When is it n-type? When is it p-type?
9.72 In Example 9.23 we assumed that in the intermediate region, the concentration of electronic 
defects is greater than the atomic defects. Draw a Brouwer diagram for the case where the concen-
tration of atomic defects is greater than the electronic defects.
9.73 In Example 9.22, we studied the growth of ZnO by oxidation of Zn. The conductivity of 
these fi lms is proportional to the concentration of free electrons. Develop a relationship between 
the conductivity of ZnO and the oxygen partial pressure with which it is processed. How does the 
conductivity change if the oxygen partial pressure is increased by a factor of 10?
9.74 Consider a crystal of Cu2O in which the majority of the point defects are copper vacancies. 
This crystal is placed in 1 atm of air. At constant temperature, the pressure is reduced to 3 torr. 
Assuming chemical equilibrium, calculate the ratio of copper vacancies at reduced pressure to 
copper vacancies at atmospheric pressure. You need not consider oxygen vacancies or any intersti-
tials. Recall that in a compound material the ratio of lattice sites must remain fi xed.
9.75 Consider Si uniformly doped with 1015 cm23 boron atoms.
(a) What are the carrier concentrations at 27°C?
(b) What are the carrier concentrations at 100°C?
(c) If 11016/cm3 2  phosphorous atoms are added, what are the approximate equilibrium electron 
and hole concentrations at 27°C?
9.76 Copper is a promising interconnect for silicon. However, it is undesirable to have copper 
impurities in silicon. It is proposed that two types of copper impurities exist: Cu i

1 and CuSi
32. It has 

been reported that the Cu defect concentrations in intrinsic Si at 25°C are as follows:

Cui
1 5 106 cm23      and     CuSi

32 5 102 cm23

Your supervisor suggests that the total copper concentration will be reduced if Si is doped with phos-
phorus. Write defect equilibria equations for the incorporation of each of these species to examine 
the effect of phosphorus doping on each type of Cu impurity. At what concentration of P will you get 
the minimum total Cu concentration. By how much will the amount of Cu be reduced over intrinsic 
Si? Assume that the silicon vacancy concentration does not change with impurity concentration.
9.77 Consider a process whereby a crystal of silicon is placed in a furnace with diborane gas, 
B2H6. Using the concepts of defect equilibria, we wish to understand the effect of diborane pres-
sure in the furnace on doping concentration. Consider the following reactions

B2H6 1g 2 Sd 2B 1a 2 1 3H2 1g 2  (1)

B 1a 2 1 Vsi
Sd Bsi

2 1 h1 (2)

0 Sd h1e2 (3)

where B(a) is adsorbed boron on the silicon surface.
(a) Write equilibrium constant expressions for the three reactions above.
(b) Based on the species described above, write the condition for charge neutrality (electroneutrality).
(c) Consider the furnace at constant temperature. In this case, the concentration of silicon vacancies 
is a constant. Consider two regions possible—low diborane partial pressure and high diborane partial 
pressure. Come up with a qualitative plot of log[p] and log[n] vs. log pB2H6

 and indicate each region.
9.78 Use ThermoSolver to determine the equilibrium composition from the combustion of 
butane and a stoichiometric amount of air at 2000 K and 50 bar. Consider H2O, H2, CO, CO2, NO, 
and NO2 as possible reaction products. Repeat for 2500 K and 50 bar.
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APPENDIX A

Physical Property Data

 ► A.1 CRITICAL CONSTANTS, ACENTRIC FACTORS, AND ANTOINE COEFFICIENTS:1

   The Antoine equation is of the form: ln 1Psat 3bar 4 2 5 A 2
B

T 3K 4 1 C

TABLE A.1.1 Organic compounds

Formula Name MW3g/mol4 Tc 3K 4 Pc 3bar 4 v A B C Tmin Tmix

CH2O Formaldehyde 30.026 408 65.86 0.253 9.8573 2204.13 230.15 185 271
CH4 Methane 16.042 190.6 46.00 0.008 8.6041 897.84 27.16 93 120
CH4O Methanol 32.042 512.6 80.96 0.559 11.9673 3626.55 234.29 257 364
C2H4 Acetylene 26.038 308.3 61.40 0.184 9.7279 1637.14 219.77 194 202
C2H3N Acetonitrile 41.052 548 48.33 0.321 9.6672 2945.47 249.15 260 390
C2H4 Ethylene 28.053 282.4 50.36 0.085 8.9166 1347.01 218.15 120 182
C2H4O Acetaldehyde 44.053 461 55.73 0.303 9.6279 2465.15 237.15 210 320
C2H4O Ethylene oxide 44.053 469 71.94 0.200 10.1198 2567.61 229.01 300 310
C2H4O2 Acetic acid 60.052 594.4 57.86 0.454 10.1878 3405.57 256.34 290 430
C2H6 Ethane 30.069 305.4 48.74 0.099 9.0435 1511.42 217.16 130 199
C2H6O Ethanol 46.068 516.2 63.83 0.635 12.2917 3803.98 241.68 270 369
C3H6 Propylene 42.080 365.0 46.20 0.148 9.0825 1807.53 226.15 160 240
C3H6O Acetone 58.079 508.1 47.01 0.309 10.0311 2940.46 235.93 241 350
C3H8 Propane 44.096 370.0 42.44 0.152 9.1058 1872.46 225.16 164 249
C3H8O 1-Propanol 60.095 536.7 51.68 0.624 10.9237 3166.38 280.15 285 400
C4H6 1,3-Butadiene 54.090 425 43.27 0.195 9.1525 2142.66 234.30 215 290
C4H8 cis-2-Butene 56.106 435.6 42.05 0.202 9.1969 2210.71 236.15 200 305
C4H8 trans-2-Butene 56.106 428.6 41.04 0.214 9.1975 2212.32 233.15 200 300
C4H8O2 Ethyl acetate 88.105 523.2 38.30 0.363 9.5314 2790.50 257.15 260 385
C4H10 n-Butane 58.122 425.2 37.90 0.193 9.0580 2154.90 234.42 195 290
C4H10 Isobutane 58.122 408.1 36.48 0.176 8.9179 2032.76 233.15 187 280
C4H10O n-Butanol 74.122 562.9 44.18 0.590 10.5958 3137.02 294.43 288 404
C5H10 1-Pentene 70.133 464.7 40.53 0.245 9.1444 2405.96 239.63 220 325
C5H12 n-Pentane 72.149 469.6 33.74 0.251 9.2131 2477.07 239.94 220 330
C6H6 Benzene 78.112 562.1 48.94 0.212 9.2806 2788.51 252.36 280 377
C6H6O Phenol 94.111 694.2 61.30 0.440 9.8077 3490.89 298.59 345 481
C6H7N Aniline 93.127 699 53.09 0.382 10.0546 3857.52 273.15 340 500
C6H12 Cyclohexane 84.159 553.4 40.73 0.213 9.1325 2766.63 250.50 280 380
C6H12 1-Hexene 84.159 504.0 31.71 0.285 9.1887 2654.81 247.30 240 360
C6H14 n-Hexane 86.175 507.4 29.69 0.296 9.2164 2697.55 248.78 245 370

(Continued)
1 For a more complete set of compounds, consult ThermoSolver, the text software.
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TABLE A.1.1 Continued

Formula Name MW3g/mol4 Tc 3K 4 Pc 3bar 4 v A B C Tmin Tmax

C7H8 Toluene 92.138 591.7 41.14 0.257 9.3935 3096.52 253.67 280 410
C7H14 1-Heptene 98.186 537.2 28.37 0.358 9.2692 2895.51 253.97 265 400
C7H16 n-Heptane 100.202 540.2 27.36 0.351 9.2535 2911.32 256.51 270 400
C8H8 Styrene 104.149 647.0 39.92 0.257 9.3991 3328.57 263.72 305 460
C8H10 o-Xylene 106.165 630.2 37.29 0.314 9.4954 3395.57 259.46 305 445
C8H10 m-Xylene 106.165 617.0 35.46 0.331 9.5188 3366.99 258.04 300 440
C8H10 p-Xylene 106.165 616.2 35.16 0.324 9.4761 3346.65 257.84 300 440
C8H10 Ethylbenzene 106.165 617.1 36.07 0.301 9.3993 3279.47 259.95 300 450
C8H16 1-Octene 112.213 566.6 26.24 0.386 9.3428 3116.52 260.39 288 420
C8H18 n-Octane 114.229 568.8 24.82 0.394 9.3224 3120.29 263.63 292 425
C9H20 n-Nonane 128.255 594.6 23.10 0.444 9.3469 3291.45 271.33 312 452
C10H8 Naphthalene 128.171 748.4 40.53 0.302 9.5224 3992.01 271.29 360 545
C10H22 n-Decane 142.282 617.6 21.08 0.490 9.3912 3456.80 278.67 330 476

TABLE A.1.2 Inorganic Compounds

Formula Name MW3g/mol4 Tc 3K 4 Pc 3bar 4 v A B C Tmin Tmax

Ar Argon 39.948 150.8 48.74 20.004 8.6128 700.51 25.84 81 94
BCl3 Boron trichloride 117.169 451.95 38.71 0.148 9.0985 2242.71 238.99 182 286
B2H6 Diborane 27.670 289.80 40.50 0.138 8.7074 1377.84 222.18 118 181
Br2 Bromine 159.808 584 103.35 0.132 9.2239 2582.32 251.56 259 354
CCl3F Trichlorofl uoromethane 137.367 471.2 44.08 0.188 9.2314 2401.61 236.3 240 300
CF4 Carbon tetrafl uoride 88.004 227.6 37.39 0.191 9.4341 1244.55 213.06 93 148
C2F6 Hexafl uoroethane 138.012 292.8 30.42 0.255 9.1646 1559.11 224.51 180 195
CHCl3 Chloroform 119.377 536.4 54.72 0.216 9.3530 2696.79 246.16 260 370
CO Carbon monoxide 28.010 132.9 34.96 0.049 7.7484 530.22 213.15 63 108
CO2 Carbon dioxide 44.010 304.2 73.76 0.225 15.9696 3103.39 20.16 154 204
CS2 Carbon disulfi de 76.143 552 79.03 0.115 9.3642 2690.85 231.62 228 342
Cl2 Chlorine 70.905 417 77.01 0.073 9.3408 1978.32 227.01 172 264
F2 Fluorine 37.997 144.3 52.18 0.048 9.0498 714.10 26.00 59 91
H2 Hydrogen 2.016 33.2 12.97 20.22 7.0131 164.90 3.19 14 25
HBr Hydrogen bromide 80.912 363.2 85.52 0.063 7.8485 1242.53 247.86 184 221
HCN Hydrogen cyanide 27.025 456.8 53.90 0.407 9.8936 2585.80 237.15 234 330
HCl Hydrogen chloride 36.461 324.6 83.09 0.12 9.8838 1714.25 214.45 137 200
H2O Water 18.015 647.3 220.48 0.344 11.6834 3816.44 246.13 284 441
H2S Hydrogen sulfi de 34.082 373.2 89.37 0.100 9.4838 1768.69 226.06 190 230
NH3 Ammonia 17.031 405.6 112.77 0.250 10.3279 2132.50 232.98 179 261
He Helium-4 4.003 5.19 2.27 20.387 5.6312 33.7329 1.79 3.7 4.3
HF Hydrogen fl uoride 20.006 461 64.85 0.372 11.0756 3404.49 15.06 206 313
Kr Krypton 83.800 209.4 55.02 20.002 8.6475 958.75 28.71 113 129
N2 Nitrogen 28.013 126.2 33.84 0.039 8.3340 588.72 26.60 54 90
NF3 Nitrogen trifl uoride 71.002 234 45.29 0.132 8.9905 1155.69 215.37 103 155
N2O Nitrous oxide 44.013 309.6 72.45 0.160 9.5069 1506.49 225.99 144 200
NO Nitric oxide 30.006 180 64.85 0.607 13.5112 1572.52 24.88 95 140
NO2 Nitrogen dioxide 46.006 431.4 101.33 0.86 13.9122 4141.29 3.65 230 320
Ne Neon 20.180 44.4 27.56 0.00 7.3897 180.47 22.61 24 29
O2 Oxygen 31.999 154.6 50.46 0.021 8.7873 734.55 26.45 63 100
PH3 Phosphene 33.998 324.45 65.35 0.042 9.2700 1617.91 211.07 144 186
SF6 Sulfur hexafl uoride 146.056 318.7 37.59 0.286 12.7583 2524.78 211.16 159 220
SO2 Sulfur dioxide 64.065 430.8 78.83 0.251 10.1478 2302.35 235.97 195 280
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TABLE A.1.2 Continued

Formula Name MW3g/mol4 Tc 3K 4  Pc 3bar 4 v A B C Tmin Tmax

SO3 Sulfur trioxide 80.064 491.0 82.07 0.41 14.2201 3995.70 236.66 290 332
SiCl3H Trichlorosilane 135.452 479.0 41.7 0.203 9.7079 2694.02 227.00 275 305
SiCl4 Silicon tetrachloride 169.896 507.0 37.49 0.264 9.1817 2634.16 243.15 238 364
SiF4 Silicon tetrafl uoride 104.079 259.09 37.15 0.456 16.3709 2810.45 26.88 129 128
SiH4 Silane 32.117 269.69 48.43 0.089 9.7222 1620.99 5.35  94 162
WF6 Tungsten hexafl uoride 297.830 444.0 43.40 0.231 10.4899 2351.42 264.70 202 290

Sources: Mostly from R. C. Reid, J. M. Prausnitz, and T. K. Sherwood. The Properties of Gases and Liquids, 3rd ed. (New York: McGraw-Hill, 
1977). Also from: CRC Handbook of Chemistry and Physics (Boca Raiton, FL CRC Press, (various) years); P. J. Linstrom and W. G. Mallard, Eds., 
NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005, National Institute of Standards and Technology, 
Gaithersburg MD, 20899 (http://webbook.nist.gov/chemistry/fl uid).; C. L. Yaws, Handbook of Vapor Pressure (vol. 4) (Houston: Gulf Publishing, 1995).

 ►A.2  HEAT CAPACITY DATA
cp

R
5 A 1 BT 1 CT2 1 DT22 1 ET3 with T in 3K 4

TABLE A.2.1 Heat Capacity of Ideal gases: Organic Compounds

Formula Name A B 3 103 C 3 106 D 3 1025 E 3 109 Tmin Tmax Source

CH2O Formaldehyde 2.264 7.022 21.877 298 1500 1
CH4 Methane 1.702 9.081 22.164 298 1500 1
CH4O Methanol 2.211 12.216 23.45 298 1500 1
C2H2 Acetylene 6.132 1.952 21.299 298 1500 1
C2H4 Ethylene 1.424 14.394 24.392 298 1500 1
C2H4O Acetaldehyde 1.693 17.978 26.158 298 1000 1
C2H4O Ethylene oxide 20.385 23.463 29.296 298 1000 1
C2H6 Ethane 1.131 19.225 25.561 298 1500 1
C2H6O Ethanol 3.518 20.001 26.002 298 1500 1
C3H6 Propylene 1.637 22.706 26.915 298 1500 1
C3H8 Propane 1.213 28.785 28.824 298 1500 1
C4H6 l.3-Butadiene 2.734 26.786 28.882 298 1500 1
C4H8 1-Butene 1.967 31.63 29.873 298 1500 1
C4H10 n-Butane 1.935 36.915 211.402 298 1500 1
C4H10 Isobutane 1.677 37.853 211.945 298 1500 1
C5H10 1-Pentene 2.691 39.753 212.447 298 1500 1
C5H12 n-Pentane 2.464 45.351 214.111 298 1500 1
C6H6 Benzene 20.206 39.064 213.301 298 1500 1
C6H12 Cyclohexane 23.876 63.249 220.928 298 1500 1
C6H12 1-Hexene 3.220 48.189 215.157 298 1500 1
C6H14 n-Hexane 3.025 53.722 216.791 298 1500 1
C7H8 Toluene 0.290 47.052 215.716 298 1500 1
C7H14 1-Heptene 3.768 56.588 217.847 298 1500 1
C7H16 n-Heptane 3.570 62.127 219.468 298 1500 1
C8H8 Styrene 2.050 50.192 216.662 298 1500 1
C8H10 Ethylbenzene 1.124 55.38 218.476 298 1500 1
C8H16 1-Octene 4.324 64.96 220.521 298 1500 1
C8H18 n-Octane 8.163 70.567 222.208 298 1500 1

Sources:
1. J. M. Smith, H. C. Van Ness, and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, 5th ed. (New York: McGraw-Hill, 1996).
2. P. J. Linstrom and W. G. Mallard, Eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005, 
National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov/chemistry/fl uid).
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642 ► Appendix A Physical Property Data

TABLE A.2.2 Heat Capacity of Ideal Gases: Inorganic Compounds

Formula Name A B 3 103 C 3 106 D 3 1025 E 3 109 Tmin Tmax Source

Air 3.355 0.575 20.016 298 2000 1
BCl3 Boron trichloride 4.245 16.539 218.969 20.176 8.031 298 700 2

9.882 0.078 20.018 23.374 0.001 700 6000 2
B2H6 Diborane 21.494 32.188 218.314 0.361 3.988 298 1200 2

19.440 1.351 20.262 244.224 0.018 1200 6000 2
Br2 Bromine 4.493 0.056 20.154 298 3000 1
CF4 Carbon tetrafl uoride 1.921 25.299 222.789 20.261 7.482 298 1000 2

12.776 0.129 20.027 210.032 0.002 1000 6000 2
CO Carbon monoxide 3.376 0.557 20.031 298 2500 1
CO2 Carbon dioxide 5.457 1.045 21.157 298 2000 1
CS2 Carbon disulfi de 6.311 0.805 20.906 298 1800 1
C2F6 Hexafl uoroethane 8.389 27.106 220.948 21.751 5.671 298 1400 2

21.284 0.123 20.023 213.447 0.001 1400 6000 2
Cl2 Chlorine 4.442 0.089 20.344 298 3000 1
H2 Hydrogen 3.249 0.422 0.083 298 3000 1
HBr Hydrogen bromide 3.815 21.648 2.809 20.035 21.084 298 1100 2

3.956 0.339 20.057 23.819 0.004 1100 6000 2
HCN Hydrogen cyanide 4.736 1.359 20.725 298 2500 1
HCl Hydrogen chloride 3.156 0.623 0.151 298 2000 1
HF Hydrogen fl uoride 3.622 20.390 0.345 20.030 0.055 298 1000 2

2.955 0.829 20.150 20.282 0.010 1000 6000 2
H2O Water 3.470 1.45 0.121 298 2000 1
H2S Hydrogen sulfi de 3.931 1.49 20.232 298 2300 1
N2 Nitrogen 3.280 0.593 0.04 298 2000 1
NH3 Ammonia 3.5778 3.02 20.186 298 1800 1
N2O Nitrous oxide 5.328 1.24 20.928 298 2000 1
NO Nitric oxide 3.387 0.629 0.014 298 2000 1
NO2 Nitrogen dioxide 4.982 1.195 20.792 298 2000 1
N2O4 Dinitrogen tetroxide 11.660 2.257 22.787 298 2000 1
O2 Oxygen 3.639 0.506 20.227 298 2000 1
PH3 Phosphene 1.431 10.160 24.576 0.348 0.685 298 1200 2
SF6 Sulfur hexafl uoride 7.085 30.736 230.343 21.935 10.676 298 1000 2

18.901 0.058 20.012 29.959 0.001 1000 6000 2
SO2 Sulfur dioxide 5.699 0.801 21.015 298 2000 1
SO3 Sulfur trioxide 8.06 1.056 22.028 298 2000 1
SiCl4 Tetrachlorosilane 12.700 0.255 20.069 21.744 0.006 298 6000 2
SiClH3 Chlorosilane 2.977 14.807 29.231 20.432 2.242 298 1100 2

11.954 0.572 20.114 217.303 0.008 1100 6000 2
SiCl2H2 Dichlorosi lane 6.026 10.145 26.014 20.959 1.328 298 1500 2

12.603 0.195 20.035 215.277 0.002 1500 6000 2
SiCl3H Trichlorosilane 7.732 10.262 28.671 20.908 2.818 298 1000 2

12.552 0.253 20.052 27.179 0.004 1000 6000 2
SiF4 Silicon tetrafl uoride 5.170 19.158 218.179 20.514 6.207 298 1000 2

12.903 0.057 20.012 26.482 0.001 1000 6000 2
SiH4 Silane 0.729 16.835 29.368 0.163 1.953 298 1300 2

12.010 0.511 20.097 224.525 0.006 1300 6000 2
WF6 Tungsten hexafl uoride 18.137 0.730 20.197 23.690 0.017 1000 6000 2

Sources:
1. J. M. Smith, H. C. Van Ness, and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, 5th ed. (New York: McGraw- Hill, 
1996).
2. P. J. Linstrom and W. G. Mallard, Eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005, 
National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov/chemistry/fl uid).
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A.3  Enthalpy and Gibbs Energy of Formation at 298 K and 1 Bar ◄ 643

TABLE A.2.3 Heat Capacity of Liquids and Solids

Formula Name Phase A B 3 103 D 3 1025 Source

CH4O Methanol L, cP 9.815 2
C2H6O Ethanol L, cP 13.592 2
C3H6O Acetone L 11.184 13.375 2
C5H12 Pentane L 18.691 5.254 3
C6H6 Benzene L 16.310 0.000 2
C6H14 Hexane L 23.695 2
Al Aluminum L 3.819 1
Al Aluminum S 2.486 1.490 1
Al2O3 Aluminum oxide S 23.154 4
C Graphite S 2.063 0.514 21.057 1
C Diamond S 0.782 4
Cu Copper L 3.950 4
Cu Copper S 2.723 1
Cu2O Cuprous oxide S, alpha 7.498 1
CuO Cupric oxide S 4.666 1
Fe Iron S, alpha 2.104 2.979 1
Fe3O4 Iron oxide S 11.012 24.260 1
GaAs Gallium arsenide S 5.438 0.730 1
Ni Nickel S 1.508 4.308 0.297 1
Si Silicon L 3.272 4
Si Silicon S 2.879 0.297 20.498 1
SiO2 Silicon dioxide S 5.647 4.127 21.359 1
SiCl3H Trichlorosilane L, cP 15.678 2
SiCl4 Tetrachlorosilane L, cP 16.117 2
H2O Water L, cP 9.069 2
H2O Water (ice) S, cP 4.196 5
H2SO4 Sulfuric acid L 16.731 1.875 3
HNO3 Nitric acid L, cP 13.315 2
NH3 Ammonia L 6.880 9.682 2

Sources:

1. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th ed. (New York: Peramon Press, 1979).
2. Milan Zabransky et al., Heat Capacity of Liquids (Washington, DC: American Chemical Society; Woodbury, NY: National Bureau of Standards,
1996).
3. Richard M. Felder and Ronald W. Rousseau, Elementary Principles of Chemical Processes, 3rd ed. (New York: Wiley, 2000).
4. M. W. Chase et al., JANAF Themochemical Tables, 4th ed. (Washington, DC: American Chemical Society; National Bureau of Standards, 1998).
5. K. Ranjevic, Handbook of Thermodynamic Tables and Charts (New York: McGraw-Hill, 1976).

 ►A.3  ENTHALPY AND GIBBS ENERGY OF FORMATION AT 298 K AND 1 BAR

TABLE A.3.1 Organic Compounds

Formula Name Phase Lhf,298
o  3kJ/mol 4 Lgf,298

o  3kJ/mol 4 Source

CH2O Formaldehyde G 2115.97 2109.99 1
CH4 Methane G 274.81 250.72 1
CH4O Methanol L 2238.73 2166.34 1
CH4O Methanol G 2200.66 2161.96 1
C2H2 Acetylene G 226.88 209.24 1
C2H3N Acetonitrile L 53.17 98.93 1
C2H3N Acetonitrile G 87.92 105.67 1
C2H4 Ethylene G 52.26 68.15 1

(Continued)
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644 ► Appendix A Physical Property Data

TABLE A.3.1 Continued

Formula Name Phase Lhf,298
o  3kJ/mol 4 Lgf,298

o  3kJ/mol 4 Source

C2H4Cl2 1,1-Dichloroethane L 2160.86 276.20 1
C2H4Cl2 1,1-Dichloroethane G 2130.00 273.14 1
C2H4O Acetaldehyde G 2166.47 2133.39 1
C2H4O Ethylene oxide L 277.46 211.43 1
C2H4O Ethylene oxide G 252.67 213.10 1
C2H4O2 Acetic acid L 2484.41 2389.62 1
C2H4O2 Acetic acid G 2435.13 2376.94 1
C2H6 Ethane G 284.68 232.84 1
C2H6O Ethanol L 2277.17 2174.25 1
C2H6O Ethanol G 2234.96 2168.39 1
C3H6 Propylene G 20.43 62.76 1
C3H6O Acetone L 2248.28 2155.50 1
C2H6O Acetone G 2217.71 2153.15 1
C3H6O Propylene oxide L 2120.75 226.75 1
C3H6O Propylene oxide G 292.82 225.79 1
C3H8 Propane G 2103.85 223.49 1
C3H8O 1-Propanol L 2304.76 2170.78 1
C3H8O 1-Propanol G 2257.70 2163.08 1
C4H6 1,3-Butadiene L 85.41 149.68 1
C4H6 1,3-Butadiene G 110.24 150.77 1
C4H8 1-Butene G 20.13 71.34 1
C4H8 cis-2-Butene G 26.99 65.90 1
C4H8 trans-2-Butene G 211.18 63.01 1
C4H8O2 Ethyl acetate L 2479.35 2332.93 1
C4H8O2 Ethyl acetate G 2443.21 2327.62 1
C4H10 n-Butane L 2147.75 215.07 1
C4H10 n-Butane G 2126.23 217.17 1
C4H10 Isobutane L 2158.55 221.98 1
C4H10 Isobutane G 2134.61 220.89 1
C4H10O n-Butanol L 2326.03 2161.19 1
C4H10O n-Butanol G 2274.61 2150.77 1
C5H10 1-Pentene L 246.72 78.25 1
C5H10 1-Pentene G 220.93 79.17 1
C5H12 n-Pentane L 2173.33 29.46 1
C5H12 n-Pentane G 2146.54 28.37 1
C6H6 Benzene L 49.07 124.34 1
C6H6 Benzene G 82.98 129.75 1
C6H6O Phenol S 2165.13 250.45 1
C6H6O Phenol G 296.42 232.91 1
C6H7N Aniline L 31.11 149.18 1
C6H7N Aniline G 86.92 166.80 1
C6H12 Cyclohexane L 2156.34 26.89 1
C6H12 Cyclohexane G 2123.22 31.78 1
C6H12 1-Hexene L 272.43 83.44 1
C6H12 1-Hexene G 241.70 87.50 1
C6H14 n-Hexane L 2198.96 24.35 1
C6H14 n-Hexane G 2167.30 20.25 1
C7H8 Toluene L 12.02 113.84 1
C7H8 Toluene G 50.03 122.09 1
C7H14 1-Heptene L 298.01 88.84 1
C7H14 1-Heptene G 262.34 95.88 1
C7H16 n-Heptane L 2224.54 1.00 1

bapp01.indd   644bapp01.indd   644 31/10/12   9:30 AM31/10/12   9:30 AM



A.3  Enthalpy and Gibbs Energy of Formation at 298 K and 1 Bar ◄ 645

TABLE A.3.1 Continued

Formula Name Phase Lhf,298
o  3kJ/mol 4 Lgf,298

o  3kJ/mol 4 Source

C7H16 n-Heptane G 2187.90 8.00 1
C8H10 o-Xylene L 224.45 110.53 1
C8H10 o-Xylene G 19.01 122.17 1
C8H10 m-Xylene L 225.41 107.73 1
C8H10 m-Xylene G 17.25 118.95 1
C8H10 p-Xylene L 224.45 110.03 1
C8H10 p-Xylene G 17.96 121.21 1
C8H10 Ethylbenzene L 212.48 119.78 1
C8H10 Ethylbenzene G 29.81 130.67 1
C8H16 1-Octene L 2123.59 94.16 1
C8H16 1-Octene G 282.98 104.29 1
C8H18 n-Octane L 2250.12 6.49 1
C8H18 n-Octane G 2208.59 16.41 1
C9H20 n-Nonane L 2275.66 11.76 1
C9H20 n-Nonane G 2229.19 24.83 1
C10H8 Naphthalene S 78.13 201.18 1
C10H8 Naphthalene G 151.06 223.74 1
C10H22 n-Decane L 2301.24 17.25 1
C10H22 n-Decane G 2249.83 33.24 1

Sources:
1. Daniel R. Stull, Edgar F. Westrum, and Gerard C. Sinke, The Chemical Thermodynamics of Organic Compounds, (New York: Wiley, 1969).

TABLE A.3.2 Inorganic Compounds

Formula Name Phase Lhf,298
o  3kJ/mol 4 Lgf,298

o  3kJ/mol 4 Source

BCl3 Boron trichloride G 2402.96 2387.96 2
B2H6 Diborane G 35.61 86.77 2
BN Boron nitride S 2254.387 2228.501 2
B2O3 Boron oxide S 21271.94 21192.8 2
CCl3F Trichlorofl uoromethane G 2284.70 2245.51 1
CF4 Carbon tetrafl uoride G 2975.52 2889.03 1
C2F6 Hexafl uoroethane G 21343.06 21257.3 2
CHCl3 Chloroform L 2132.30 271.89 1
CHCl3 Chloroform G 2101.32 268.58 1
CHN Hydrogen cyanide G 130.63 120.20 1
CO Carbon monoxide G 2110.53 2137.17 2
CO2 Carbon dioxide G 2393.51 2394.36 2
CS2 Carbon disulfi de G 116.94 66.82 2
CaS Calcium sulfi de S 2473.2 2468.178 2
CaSO4 Calcium sulfate S 21434.11 21321.68 2
CaO Calcium oxide S 2635.09 2603.51 2
CuCl Copper chloride S 2155.65 2138.66 2
CuO Copper monoxide S 2156.06 2128.29 2
Cu2O Dicopper oxide S 2170.71 2147.88 2
CuS Copper sulfi de S 253.1 253.47 2
CuSO4 Copper sulfate S 2771.36 2662.08 2
Fe3C Triiron carbide S 25.104 20.029 2

(Continued)
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646 ► Appendix A Physical Property Data

TABLE A.3.2 Continued

Formula Name Phase Lhf,298
o  3kJ/mol 4 Lgf,298

o  3kJ/mol 4 Source

Fe2O3 Hematite S 2824.25 2742.29 2
Fe2O4 Magnetite S 21118.38 21015.23 2
HBr Hydrogen bromide G 236.38 253.45 2
HCl Hydrogen chloride G 292.312 295.29 2
HF Hydrogen fl uoride G 2272.55 2274.65 2
HNO3 Nitric acid G 2134.31 273.96 2
H2O Water L 2285.83 2237.14 2
H2O Water G 2241.82 2228.57 2
H2S Hydrogen sulfi de G 220.5 233.33 2
H2SO4 Sulfuric acid L 2813.99 2689.89 2
H2SO4 Sulfuric acid G 2735.13 2653.37 2
NH3 Ammonia G 246.11 216.45 2
N2O Nitrous oxide G 82.05 104.17 2
NO Nitric oxide G 90.29 86.6 2
NO2 Nitrogen dioxide G 33.1 51.26 2
N2O4 Dinitrogen tetraoxide L 219.564 97.51 2
N2O4 Dinitrogen tetraoxide G 9.079 97.79 2
NaCl Sodium chloride S 2411.12 2384.02 2
NaF Sodium fl uoride S 2573.48 2545.08 2
NaOH Sodium hydroxide S 2425.93 2379.73 2
NaOH Sodium hydroxide G 2197.49 2200.19 2
O Oxygen G 249.17 231.74 2
PH3 Phosphene G 5.57 13.59 2
TaN Tantalum nitride S 2252.3 2226.58 2
TiC Titanium carbide S 2184.5 2180.84 2
TiN Titanium nitride S 2337.86 2309.16 2
SiC Silicon carbide S 273.22 270.85 2
SiCl2 Dichlorosilylene G 2168.61 2180.36 2
SiCl4 Silicon tetrachloride G 2662.75 2622.76 2
SiF4 Silicon tetrafl uoride G 21614.94 21572.7 2
SiCl3H Trichlorosilane G 2496.22 2464.9 3
SiCl2H2 Dichlorosilane G 2320.49 2294.9 3
SiH3Cl Chlorosilane G 2141.838 2119.29 3
SiH4 Silane G 34.31 56.82 2
Si3N4 Silicon nitride S 2744.75 2647.34 2
SiO2 Silicon dioxide, trigonal S 2910.86 2856.44 2
SiO2 Silicon dioxide, hexagonal S 2906.34 2757.11 2
SiO2 Silicon dioxide, cristobalite S 2902.53 2716.46 2
SiO2 Silicon dioxide L 2935.34 2551.67 2
SF6 Sulfur hexafl uoride G 21220.47 21116.5 2
SO2 Sulfur dioxide G 2296.813 2300.1 2
SO3 Sulfur trioxide G 2395.77 2371.02 2
WF6 Tungsten hexafl uoride G 21721.72 21632.29 2
ZnO Zinc oxide S 2350.46 2320.48 2
ZnS Zinc sulfi de, wurtzite S 2191.84 2190.14 2
ZnS Zinc sulfi de, sphalerite S 2205.18 2200.4 2
ZnSO4 Zinc sulfate S 2982.8 2871.45 2

Sources:
1. Daniel R. Stull, Edgar F. Westrum, and Gerard C. Sinke, The Chemical Thermodynamics of Organic Compounds (New York: Wiley, 1969).
2. Ihsan Barin, Thermochemical Data of Pure Substances, 3rd ed. (vol. I and II) (New York: VCH, 1995).
3. M. W. Chase et al., JANAF Thermochemical Tables, 3rd ed. (Washington, DC: American Chemical Society; (New York: National Bureau of
Standards, 1986).
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►

647

APPENDIX B

Steam Tables 

 ► TABLE B.1: Saturated Water: Temperature Table [648]

 ► TABLE B.2: Saturated Water: Pressure Table  [650]

 ► TABLE B.3: Saturated Water: Solid-Vapor [652]

 ► TABLE B.4: Superheated Water Vapor [653]

 ► TABLE B.5: Subcooled Liquid Water  [659]

Symbols Used in the Steam Tables

 T Temperature °C
 P Pressure kPa or MPa
 v̂ Specifi c volume m3/kg
 û Specifi c internal energy kJ/kg
 ĥ Specifi c enthalpy kJ/kg
 ŝ Specifi c entropy kJ/kg K

Subscripts

 l Liquid in equilibrium with vapor
 s Solid in equilibrium with vapor
 v  Vapor in equilibrium with liquid or solid
 lv  Change by evaporation
 sv Change by sublimation

Source: New York: Wiley J. H. Keenan, F. G. Keys, P. G. Hill, and J. G. Moore, 
Steam Tables (1969), as used by G. J. Van Wylen, R. E. Sonntag, and C. Borgnakke, Fun-
damentals of Classical Thermodynamics, 4th ed., (New York: Wiley, 1994).
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ŝ l
kJ

/k
g 

K
 D
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ŝ v
kJ

/k
g 

K

0.
61

13
  k

Pa
0.

01
0.

00
10

00
 20

6.
13

2
0

23
75

.3
23

75
.3

  
0.

00
25

01
.3

25
01

.3
0

9.
15

62
9.

15
62

1.
0

6.
98

0.
00

10
00

 12
9.

20
8

29
.2

9
23

55
.7

23
85

.0
 2

9.
29

24
84

.9
25

14
.2

0.
10

59
8.

86
97

8.
97

56
1.

5
13

.0
3

0.
00

10
01

 8
7.

98
0

54
.7

0
23

38
.6

23
93

.3
 5

4.
70

24
70

.6
25

25
.3

0.
19

56
8.

63
22

8.
82

78
2.

0
17

.5
0

0.
00

10
01

 6
7.

00
4

73
.4

7
23

26
.0

23
99

.5
 7

3.
47

24
60

.0
25

33
.5

0.
26

07
8.

46
29

8.
72

36
2.

5
21

.0
8

0.
00

10
02

 5
4.

25
4

88
.4

7
23

15
.9

24
04

.4
 8

8.
47

24
51

.6
25

40
.0

0.
31

20
8.

33
11

8.
64

31

3.
0

24
.0

8
0.

00
10

03
 4

5.
66

5
10

1.
03

23
07

.5
24

08
.5

10
1.

03
24

44
.5

25
45

.5
0.

35
45

8.
22

31
8.

57
75

4.
0

28
.9

6
0.

00
10

04
 3

4.
80

0
12

1.
44

22
93

.7
24

15
.2

12
1.

44
24

32
.9

25
54

.4
0.

42
26

8.
05

20
8.

47
46

5.
0

32
.8

8
0.

00
10

05
 2

8.
19

3
13

7.
79

22
82

.7
24

20
.5

13
7.

79
24

23
.7

25
61

.4
0.

47
63

7.
91

87
8.

39
50

7.
5

40
.2

9
0.

00
10

08
 1

9.
23

8
16

8.
76

22
61

.7
24

30
.5

16
8.

77
24

06
.0

25
74

.8
0.

57
63

7.
67

51
8.

25
14

10
.0

45
.8

1
0.

00
10

10
 1

4.
67

4
19

1.
79

22
46

.1
24

37
.9

19
1.

81
23

92
.8

25
84

.6
0.

64
92

7.
50

10
8.

15
01

15
.0

53
.9

7
0.

00
10

14
 1

0.
02

2
22

5.
90

22
22

.8
24

48
.7

22
5.

91
23

73
.1

25
99

.1
0.

75
48

7.
25

36
8.

00
84

20
.0

60
.0

6
0.

00
10

17
 

7.
64

9
25

1.
35

22
05

.4
24

56
.7

25
1.

38
23

58
.3

26
09

.7
0.

83
19

7.
07

66
7.

90
85

25
.0

64
.9

7
0.

00
10

20
 

6.
20

4
27

1.
88

21
91

.2
24

63
.1

27
1.

90
23

46
.3

26
18

.2
0.

89
30

6.
93

83
7.

83
13

30
.0

69
.1

0
0.

00
10

22
 

5.
22

9
28

9.
18

21
79

.2
24

68
.4

28
9.

21
23

36
.1

26
25

.3
0.

94
39

6.
82

47
7.

76
86

40
.0

75
.8

7
0.

00
10

26
 

3.
99

3
31

7.
51

21
59

.5
24

77
.0

31
7.

55
23

19
.2

26
36

.7
1.

02
58

6.
64

41
7.

67
00

50
.0

81
.3

3
0.

00
10

30
 

3.
24

0
34

0.
42

21
43

.4
24

83
.8

34
0.

47
23

05
.4

26
45

.9
1.

09
10

6.
50

29
7.

59
39

75
.0

91
.7

7
0.

00
10

37
 

2.
21

7
38

4.
29

21
12

.4
24

96
.7

38
4.

36
22

78
.6

26
63

.0
1.

21
29

6.
24

34
7.

45
63

0.
10

0 
 M

Pa
99

.6
2

0.
00

10
43

 
1.

69
4

41
7.

33
20

88
.7

25
06

.1
41

7.
44

22
58

.0
26

75
.5

1.
30

25
6.

05
68

7.
35

93
0.

12
5

10
5.

99
0.

00
10

48
 

1.
37

49
44

4.
16

20
69

.3
25

13
.5

44
4.

30
22

41
.1

26
85

.3
1.

37
39

5.
91

04
7.

28
43

0.
15

0
11

1.
37

0.
00

10
53

 
1.

15
93

46
6.

92
20

52
.7

25
19

.6
46

7.
08

22
26

.5
26

93
.5

1.
43

35
5.

78
97

7.
22

32

0.
17

5
11

6.
06

0.
00

10
57

 
1.

00
36

48
6.

78
20

38
.1

25
24

.9
48

6.
97

22
13

.6
27

00
.5

1.
48

48
5.

68
68

7.
17

17
0.

20
0

12
0.

23
0.

00
10

61
 

0.
88

57
50

4.
47

20
25

.0
25

29
.5

50
4.

68
22

02
.0

27
06

.6
1.

53
00

5.
59

70
7.

12
71

0.
22

5
12

4.
00

0.
00

10
64

 
0.

79
33

52
0.

45
20

13
.1

25
33

.6
52

0.
69

21
91

.3
27

12
.0

1.
57

05
5.

51
73

7.
08

78
0.

25
0

12
7.

43
0.

00
10

67
 

0.
71

87
53

5.
08

20
02

.1
25

37
.2

53
5.

34
21

81
.5

27
16

.9
1.

60
72

5.
44

55
7.

05
26

0.
27

5
13

0.
60

0.
00

10
70

 
0.

65
73

54
8.

57
19

92
.0

25
40

.5
54

8.
87

21
72

.4
27

21
.3

1.
64

07
5.

38
01

7.
02

08

0.
30

0
13

3.
55

0.
00

10
73

 
0.

60
58

56
1.

13
19

82
.4

25
43

.6
56

1.
45

21
63

.9
27

25
.3

1.
67

17
5.

32
01

6.
99

18
0.

32
5

13
6.

30
0.

00
10

76
 

0.
56

2
57

2.
88

19
73

.5
25

46
.3

57
3.

23
21

55
.8

27
29

.0
1.

70
05

5.
26

46
6.

96
51

0.
35

0
13

8.
88

0.
00

10
79

 
0.

52
43

58
3.

93
19

65
25

48
.9

58
4.

31
21

48
.1

27
32

.4
1.

72
74

5.
21

30
6.

94
04

0.
37

5
14

1.
32

0.
00

10
81

 
0.

49
14

59
4.

38
19

56
.9

25
51

.3
59

4.
79

21
40

.8
27

35
.6

1.
75

27
5.

16
47

6.
91

74
0.

40
14

3.
63

0.
00

10
84

 
0.

46
25

60
4.

29
19

49
.3

25
53

.6
60

4.
73

21
33

.8
27

38
.5

1.
77

66
5.

11
93

6.
89

58

0.
45

14
7.

93
0.

00
10

88
 

0.
41

40
62

2.
75

19
34

.9
25

57
.6

62
3.

24
21

20
.7

27
43

.9
1.

82
06

5.
03

59
6.

85
65

0.
50

15
1.

86
0.

00
10

93
 

0.
37

49
63

9.
66

19
21

.6
25

61
.2

64
0.

21
21

08
.5

27
48

.7
1.

86
06

4.
96

06
6.

82
12

0.
55

15
5.

48
0.

00
10

97
 

0.
34

27
65

5.
30

19
09

.2
25

64
.5

65
5.

91
20

97
.0

27
52

.9
1.

89
72

4.
89

20
6.

78
92

0.
60

15
8.

85
0.

00
11

01
 

0.
31

57
66

9.
88

18
97

.5
25

67
.4

67
0.

54
20

86
.3

27
56

.8
1.

93
11

4.
82

89
6.

76
00

0.
65

16
2.

01
0.

00
11

04
 

0.
29

27
68

3.
55

18
86

.5
25

70
.1

68
4.

26
20

76
.0

27
60

.3
1.

96
27

4.
77

04
6.

73
30

0.
70

16
4.

97
0.

00
11

08
 

0.
27

29
69

6.
43

18
76

.1
25

72
.5

69
7.

20
20

66
.3

27
63

.5
1.

99
22

4.
71

58
6.

70
80

bapp02.indd   650bapp02.indd   650 31/10/12   9:42 AM31/10/12   9:42 AM



651

0.
75

16
7.

77
0.

00
11

11
0.

25
56

70
8.

62
18

66
.1

25
74

.7
70

9.
45

20
57

.0
27

66
.4

2.
01

99
4.

66
47

6.
68

46
0.

80
17

0.
43

0.
00

11
15

0.
24

04
72

0.
20

18
56

.6
25

76
.8

72
1.

10
20

48
.0

27
69

.1
2.

04
61

4.
61

66
6.

66
27

0.
85

17
2.

96
0.

00
11

18
0.

22
70

73
1.

25
18

47
.4

25
78

.7
73

2.
20

20
39

.4
27

71
.6

2.
07

09
4.

57
11

6.
64

21
0.

90
17

5.
38

0.
00

11
21

0.
21

50
74

1.
81

18
38

.7
25

80
.5

74
2.

82
20

31
.1

27
73

.9
2.

09
46

4.
52

80
6.

62
25

0.
95

17
7.

69
0.

00
11

24
0.

20
42

75
1.

94
18

30
.2

25
82

.1
75

3.
00

20
23

.1
27

76
.1

2.
11

71
4.

48
69

6.
60

40
1.

00
17

9.
91

0.
00

11
27

0.
19

44
4

76
1.

67
18

22
.0

25
83

.6
76

2.
79

20
15

.3
27

78
.1

2.
13

86
4.

44
78

6.
58

64

1.
10

18
4.

09
0.

00
11

33
0.

17
75

3
78

0.
08

18
06

.3
25

86
.4

78
1.

32
20

00
.4

27
81

.7
2.

17
91

4.
37

44
6.

55
35

1.
20

18
7.

99
0.

00
11

39
0.

16
33

3
79

7.
27

17
91

.6
25

88
.8

79
8.

64
19

86
.2

27
84

.8
2.

21
65

4.
30

67
6.

52
33

1.
30

19
1.

64
0.

00
11

44
0.

15
12

5
81

3.
42

17
77

.5
25

90
.9

81
4.

91
19

72
.7

27
87

.6
2.

25
14

4.
24

38
6.

49
53

1.
40

19
5.

07
0.

00
11

49
0.

14
08

4
82

8.
68

17
64

.1
25

92
.8

83
0.

29
19

59
.7

27
90

.0
2.

28
42

4.
18

50
6.

46
92

1.
50

19
8.

32
0.

00
11

54
0.

13
17

7
84

3.
14

17
51

.3
25

94
.5

84
4.

87
19

47
.3

27
92

.1
2.

31
50

4.
12

98
6.

44
48

1.
75

20
5.

76
0.

00
11

66
0.

11
34

9
87

6.
44

17
21

.4
25

97
.8

87
8.

48
19

18
.0

27
96

.4
2.

38
51

4.
00

44
6.

38
95

2.
00

21
2.

42
0.

00
11

77
0.

09
96

3
90

6.
42

16
93

.8
26

00
.3

90
8.

77
18

90
.7

27
99

.5
2.

44
73

3.
89

35
6.

34
08

2.
25

21
8.

45
0.

00
11

87
0.

08
87

5
93

3.
81

16
68

.2
26

02
.0

93
6.

48
18

65
.2

28
01

.7
2.

50
34

3.
79

38
6.

29
71

2.
50

22
3.

99
0.

00
11

97
0.

07
99

8
95

9.
09

16
44

.0
26

03
.1

96
2.

09
18

41
.0

28
03

.1
2.

55
46

3.
70

28
6.

25
74

2.
75

22
9.

12
0.

00
12

07
0.

07
27

5
98

2.
65

16
21

.2
26

03
.8

98
5.

97
18

17
.9

28
03

.9
2.

60
18

3.
61

90
6.

22
08

3.
00

23
3.

90
0.

00
12

16
0.

06
66

8
10

04
.7

6
15

99
.3

26
04

.1
10

08
.4

1
17

95
.7

28
04

.1
2.

64
56

3.
54

12
6.

18
69

3.
25

23
8.

38
0.

00
12

26
0.

06
15

2
10

25
.6

2
15

78
.4

26
04

.0
10

29
.6

0
17

74
.4

28
04

.0
2.

68
66

3.
46

85
6.

15
51

3.
5

24
2.

60
0.

00
12

35
0.

05
70

7
10

45
.4

1
15

58
.3

26
03

.7
10

49
.7

3
17

53
.7

28
03

.4
2.

72
52

3.
40

00
6.

12
52

4.
0

25
0.

40
0.

00
12

52
0.

04
97

78
10

82
.2

8
15

20
.0

26
02

.3
10

87
.2

9
17

14
.1

28
01

.4
2.

79
63

3.
27

37
6.

07
00

5.
0

26
3.

99
0.

00
12

86
0.

03
94

41
11

47
.7

8
14

49
.3

25
97

.1
11

54
.2

1
16

40
.1

27
94

.3
2.

92
01

3.
05

32
5.

97
33

6.
0

27
5.

64
0.

00
13

19
0.

03
24

40
12

05
.4

1
13

84
.3

25
89

.7
12

13
.3

2
15

71
.0

27
84

.3
3.

02
66

2.
86

25
5.

88
91

7.
0

28
5.

88
0.

00
13

51
0.

02
73

70
12

57
.5

1
13

23
.0

25
80

.5
12

66
.9

7
15

05
.1

27
72

.1
3.

12
10

2.
69

22
5.

81
32

8.
0

29
5.

06
0.

00
13

84
0.

02
35

18
13

05
.5

4
12

64
.3

25
69

.8
13

16
.6

1
14

41
.3

27
57

.9
3.

20
67

2.
53

65
5.

74
31

9.
0

30
3.

40
0.

00
14

18
0.

02
04

84
13

50
.4

7
12

07
.3

25
57

.8
13

63
.2

3
13

78
.9

27
42

.1
3.

28
57

2.
39

15
5.

67
71

10
.0

31
1.

06
0.

00
14

52
0.

01
80

26
13

93
.0

0
11

51
.4

25
44

.4
14

07
.5

3
13

17
.1

27
24

.7
3.

35
95

2.
25

45
5.

61
40

11
.0

31
8.

15
0.

00
14

89
0.

01
59

87
14

33
.6

8
10

96
.1

25
29

.7
14

50
.0

5
12

55
.5

27
05

.6
3.

42
94

2.
12

33
5.

55
27

12
.0

32
4.

75
0.

00
15

27
0.

01
42

63
14

72
.9

2
10

40
.8

25
13

.7
14

91
.2

4
11

93
.6

26
84

.8
3.

49
61

1.
99

62
5.

49
23

13
.0

33
0.

93
0.

00
15

67
0.

01
27

80
15

11
.0

9
98

50
.0

24
96

.1
15

31
.4

6
11

30
.8

26
62

.2
3.

56
04

1.
87

18
5.

43
23

14
.0

33
6.

75
0.

00
16

11
0.

01
14

85
15

48
.5

3
 9

28
.2

24
76

.8
15

71
.0

8
10

66
.5

26
37

.5
3.

62
31

1.
74

85
5.

37
16

15
.0

34
2.

24
0.

00
16

58
0.

01
03

38
15

85
.5

8
 8

69
.8

24
55

.4
16

10
.4

5
10

00
.0

26
10

.5
3.

68
47

1.
62

50
5.

30
97

16
.0

34
7.

43
0.

00
17

11
0.

00
93

06
16

22
.6

3
 8

09
.1

24
31

.7
16

50
.0

0
 9

30
.6

25
80

.6
3.

74
60

1.
49

95
5.

24
54

17
.0

35
2.

37
0.

00
17

70
0.

00
83

65
16

60
.1

6
 7

44
.8

24
05

.0
16

90
.2

5
 8

56
.9

25
47

.2
3.

80
78

1.
36

98
5.

17
76

18
.0

35
7.

06
0.

00
18

40
0.

00
74

90
16

98
.8

6
 6

75
.4

23
74

.3
17

31
.9

7
 7

77
.1

25
09

.1
3.

87
13

1.
23

30
5.

10
44

19
.0

36
1.

54
0.

00
19

24
0.

00
66

57
17

39
.8

7
 5

98
.2

23
38

.1
17

76
.4

3
 6

88
.1

24
64

.5
3.

93
87

1.
08

41
5.

02
27

20
.0

36
5.

81
0.

00
20

35
0.

00
58

34
17

85
.4

7
 5

07
.6

22
93

.1
18

26
.1

8
 5

83
.6

24
09

.7
4.

01
37

0.
91

32
4.

92
69

bapp02.indd   651bapp02.indd   651 31/10/12   9:42 AM31/10/12   9:42 AM



652

TA
B

LE
 B

.3
 

S
a

tu
ra

te
d

 W
a

te
r:

 S
o

li
d

–
V

a
p

o
r

T °C
 

 P
 k

Pa
 v̂

s1
3

10
3
2

  
m

3 /
kg

 
  

 v̂
v

m
3 /

kg
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û
kJ

/k
g 

ĥ
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û

kJ
/k

g
ĥ
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û

kJ
/k

g
ĥ
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ĥ

kJ
/k

g 
ŝ
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ŝ

kJ
/k

g 
K

T °C
v̂

m
3 /

kg
û
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ŝ

kJ
/k

g 
K

T °C
v̂

m
3 /

kg
û
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û

kJ
/k

g
ĥ
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ŝ

kJ
/k

g 
K

T °C
v̂

m
3 /

kg
û
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û

kJ
/k

g
ĥ
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APPENDIX C

Lee–Kesler Generalized 
Correlation Tables1

TABLE C.1 Values for z102

Tr Pr 
0.01

0.025 0.05 0.075 0.1 0.25 0.5 0.6 0.7 0.8 0.9 1 1.1

0.3 0.0029 0.0072 0.0145 0.0217 0.0290 0.0724 0.1447 0.1737 0.2026 0.2315 0.2604 0.2892 0.3181
0.35 0.0026 0.0065 0.0130 0.0196 0.0261 0.0652 0.1303 0.1564 0.1824 0.2084 0.2344 0.2604 0.2863
0.4 0.0024 0.0060 0.0119 0.0179 0.0239 0.0596 0.1191 0.1429 0.1667 0.1904 0.2142 0.2379 0.2616
0.45 0.0022 0.0055 0.0110 0.0166 0.0221 0.0552 0.1102 0.1322 0.1542 0.1762 0.1981 0.2200 0.2420
0.5 0.0021 0.0052 0.0103 0.0155 0.0207 0.0516 0.1031 0.1236 0.1441 0.1647 0.1851 0.2056 0.2261
0.55 0.9804 0.0049 0.0098 0.0146 0.0195 0.0487 0.0972 0.1166 0.1360 0.1553 0.1746 0.1939 0.2131
0.6 0.9849 0.9614 0.0093 0.0139 0.0186 0.0463 0.0925 0.1109 0.1293 0.1476 0.1660 0.1842 0.2025
0.65 0.9881 0.9697 0.9377 0.0134 0.0178 0.0445 0.0887 0.1063 0.1239 0.1415 0.1590 0.1765 0.1939
0.7 0.9904 0.9757 0.9504 0.9238 0.8958 0.0430 0.0857 0.1027 0.1197 0.1366 0.1535 0.1703 0.1871
0.75 0.9922 0.9802 0.9598 0.9386 0.9165 0.0420 0.0836 0.1001 0.1166 0.1330 0.1493 0.1656 0.1819
0.8 0.9935 0.9837 0.9669 0.9497 0.9319 0.8093 0.0823 0.0985 0.1147 0.1307 0.1467 0.1626 0.1784
0.85 0.9946 0.9864 0.9725 0.9582 0.9436 0.8465 0.0823 0.0983 0.1143 0.1301 0.1458 0.1614 0.1769
0.9 0.9954 0.9885 0.9768 0.9649 0.9528 0.8739 0.7019 0.1006 0.1164 0.1321 0.1476 0.1630 0.1783
0.93 0.9959 0.9896 0.9790 0.9683 0.9573 0.8871 0.7420 0.6635 0.1204 0.1359 0.1512 0.1664 0.1814
0.95 0.9961 0.9902 0.9803 0.9703 0.9600 0.8948 0.7637 0.6967 0.6107 0.1410 0.1557 0.1705 0.1852
0.97 0.9963 0.9908 0.9815 0.9721 0.9625 0.9018 0.7825 0.7240 0.6538 0.5580 0.1648 0.1779 0.1916
0.98 0.9965 0.9911 0.9821 0.9730 0.9637 0.9051 0.7910 0.7360 0.6714 0.5887 0.1748 0.1844 0.1966
0.99 0.9966 0.9914 0.9826 0.9738 0.9648 0.9082 0.7990 0.7471 0.6873 0.6138 0.5070 0.1959 0.2041
1 0.9967 0.9916 0.9832 0.9746 0.9659 0.9112 0.8065 0.7574 0.7017 0.6353 0.5477 0.2918 0.2167
1.01 0.9968 0.9919 0.9837 0.9754 0.9669 0.9141 0.8136 0.7671 0.7149 0.6542 0.5785 0.4648 0.2486
1.02 0.9969 0.9921 0.9842 0.9761 0.9679 0.9168 0.8204 0.7761 0.7271 0.6710 0.6038 0.5146 0.3597
1.03 0.9969 0.9924 0.9846 0.9768 0.9689 0.9194 0.8267 0.7846 0.7383 0.6863 0.6256 0.5501 0.4439
1.05 0.9971 0.9928 0.9855 0.9781 0.9707 0.9243 0.8385 0.8002 0.7586 0.7130 0.6618 0.6026 0.5312
1.1 0.9975 0.9937 0.9874 0.9811 0.9747 0.9350 0.8634 0.8323 0.7996 0.7649 0.7278 0.6880 0.6449
1.15 0.9978 0.9945 0.9891 0.9835 0.9780 0.9438 0.8833 0.8576 0.8309 0.8032 0.7744 0.7443 0.7129
1.2 0.9981 0.9952 0.9904 0.9856 0.9808 0.9511 0.8994 0.8779 0.8557 0.8330 0.8097 0.7858 0.7613
1.3 0.9985 0.9963 0.9926 0.9889 0.9852 0.9626 0.9240 0.9083 0.8924 0.8764 0.8602 0.8438 0.8275
1.4 0.9988 0.9971 0.9942 0.9913 0.9884 0.9710 0.9416 0.9298 0.9180 0.9062 0.8945 0.8827 0.8710
1.5 0.9991 0.9977 0.9954 0.9932 0.9909 0.9772 0.9546 0.9456 0.9367 0.9278 0.9190 0.9103 0.9018
1.6 0.9993 0.9982 0.9964 0.9946 0.9928 0.9820 0.9644 0.9575 0.9507 0.9439 0.9373 0.9308 0.9243
1.7 0.9994 0.9986 0.9971 0.9957 0.9943 0.9858 0.9721 0.9667 0.9614 0.9563 0.9512 0.9463 0.9414
1.8 0.9995 0.9989 0.9977 0.9966 0.9955 0.9888 0.9780 0.9739 0.9698 0.9659 0.9620 0.9583 0.9546
1.9 0.9996 0.9991 0.9982 0.9973 0.9964 0.9912 0.9828 0.9796 0.9765 0.9735 0.9706 0.9678 0.9650
2 0.9997 0.9993 0.9986 0.9979 0.9972 0.9931 0.9866 0.9842 0.9819 0.9796 0.9774 0.9754 0.9734
2.25 0.9999 0.9996 0.9993 0.9989 0.9986 0.9965 0.9935 0.9924 0.9913 0.9904 0.9895 0.9887 0.9879
2.5 0.9999 0.9999 0.9997 0.9996 0.9994 0.9987 0.9977 0.9975 0.9972 0.9971 0.9970 0.9969 0.9969
2.75 1.0000 1.0000 1.0000 1.0000 1.0000 1.0001 1.0005 1.0008 1.0011 1.0014 1.0018 1.0022 1.0027
3 1.0000 1.0001 1.0002 1.0003 1.0004 1.0011 1.0024 1.0030 1.0036 1.0043 1.0050 1.0057 1.0065
3.5 1.0001 1.0002 1.0004 1.0006 1.0008 1.0022 1.0045 1.0055 1.0065 1.0075 1.0086 1.0097 1.0108
4 1.0001 1.0003 1.0005 1.0008 1.0010 1.0027 1.0055 1.0066 1.0078 1.0090 1.0102 1.0115 1.0127
5 1.0001 1.0003 1.0006 1.0009 1.0012 1.0030 1.0060 1.0073 1.0085 1.0098 1.0111 1.0124 1.0137
   1 As calculated by text software.
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TABLE C.1 Continued

Tr

Pr

1.2 1.3 1.4 1.5 1.75 2 2.5 3 4 5 7.5 10
0.3 0.3470 0.3758 0.4047 0.4335 0.5055 0.5775 0.7213 0.8648 1.1512 1.4366 2.1463 2.8507
0.35 0.3123 0.3382 0.3642 0.3901 0.4549 0.5195 0.6487 0.7775 1.0344 1.2902 1.9251 2.5539
0.4 0.2853 0.3090 0.3327 0.3563 0.4154 0.4744 0.5921 0.7095 0.9433 1.1758 1.7519 2.3211
0.45 0.2638 0.2857 0.3076 0.3294 0.3840 0.4384 0.5470 0.6551 0.8704 1.0841 1.6128 2.1338
0.5 0.2465 0.2669 0.2873 0.3077 0.3585 0.4092 0.5103 0.6110 0.8110 1.0094 1.4989 1.9801
0.55 0.2323 0.2515 0.2707 0.2899 0.3377 0.3853 0.4803 0.5747 0.7620 0.9475 1.4042 1.8520
0.6 0.2207 0.2390 0.2571 0.2753 0.3206 0.3657 0.4554 0.5446 0.7213 0.8959 1.3247 1.7440
0.65 0.2113 0.2287 0.2461 0.2634 0.3065 0.3495 0.4349 0.5197 0.6872 0.8526 1.2573 1.6519
0.7 0.2038 0.2205 0.2372 0.2538 0.2952 0.3364 0.4181 0.4991 0.6588 0.8161 1.1999 1.5729
0.75 0.1981 0.2142 0.2303 0.2464 0.2863 0.3260 0.4046 0.4823 0.6352 0.7854 1.1508 1.5047
0.8 0.1942 0.2099 0.2255 0.2411 0.2798 0.3182 0.3942 0.4690 0.6160 0.7598 1.1087 1.4456
0.85 0.1924 0.2077 0.2230 0.2382 0.2759 0.3132 0.3868 0.4591 0.6007 0.7388 1.0727 1.3943
0.9 0.1935 0.2085 0.2235 0.2383 0.2751 0.3114 0.3828 0.4527 0.5892 0.7220 1.0421 1.3496
0.93 0.1963 0.2112 0.2259 0.2405 0.2766 0.3122 0.3822 0.4507 0.5841 0.7138 1.0261 1.3257
0.95 0.1998 0.2144 0.2288 0.2432 0.2787 0.3138 0.3827 0.4501 0.5815 0.7092 1.0164 1.3108
0.97 0.2055 0.2195 0.2334 0.2474 0.2821 0.3164 0.3841 0.4504 0.5796 0.7052 1.0073 1.2968
0.98 0.2097 0.2231 0.2366 0.2503 0.2843 0.3182 0.3851 0.4508 0.5789 0.7035 1.0030 1.2901
0.99 0.2154 0.2278 0.2407 0.2538 0.2871 0.3204 0.3864 0.4514 0.5784 0.7018 0.9989 1.2835
1 0.2237 0.2342 0.2459 0.2583 0.2904 0.3229 0.3880 0.4522 0.5780 0.7004 0.9949 1.2772
1.01 0.2370 0.2432 0.2529 0.2640 0.2944 0.3260 0.3899 0.4533 0.5778 0.6991 0.9912 1.2710
1.02 0.2629 0.2568 0.2624 0.2715 0.2993 0.3297 0.3921 0.4547 0.5778 0.6980 0.9875 1.2650
1.03 0.3168 0.2793 0.2760 0.2813 0.3053 0.3340 0.3948 0.4563 0.5780 0.6970 0.9841 1.2592
1.05 0.4437 0.3630 0.3246 0.3131 0.3219 0.3452 0.4014 0.4604 0.5790 0.6956 0.9776 1.2481
1.1 0.5984 0.5492 0.5003 0.4580 0.4026 0.3953 0.4277 0.4770 0.5851 0.6950 0.9639 1.2232
1.15 0.6803 0.6468 0.6129 0.5798 0.5116 0.4760 0.4718 0.5042 0.5972 0.6987 0.9538 1.2021
1.2 0.7363 0.7110 0.6856 0.6605 0.6029 0.5605 0.5295 0.5425 0.6155 0.7069 0.9471 1.1844
1.3 0.8111 0.7947 0.7784 0.7624 0.7243 0.6908 0.6467 0.6344 0.6681 0.7358 0.9427 1.1580
1.4 0.8595 0.8480 0.8367 0.8256 0.7992 0.7753 0.7387 0.7202 0.7299 0.7761 0.9486 1.1419
1.5 0.8933 0.8850 0.8768 0.8689 0.8499 0.8328 0.8052 0.7887 0.7884 0.8200 0.9619 1.1339
1.6 0.9180 0.9119 0.9059 0.9000 0.8863 0.8738 0.8537 0.8410 0.8386 0.8617 0.9795 1.1320
1.7 0.9367 0.9321 0.9277 0.9234 0.9133 0.9043 0.8899 0.8809 0.8798 0.8984 0.9986 1.1343
1.8 0.9511 0.9477 0.9444 0.9413 0.9339 0.9275 0.9176 0.9118 0.9129 0.9297 1.0174 1.1391
1.9 0.9624 0.9599 0.9575 0.9552 0.9500 0.9456 0.9391 0.9359 0.9396 0.9557 1.0348 1.1452
2 0.9715 0.9697 0.9680 0.9664 0.9628 0.9599 0.9561 0.9550 0.9611 0.9772 1.0503 1.1516
2.25 0.9873 0.9867 0.9861 0.9857 0.9849 0.9846 0.9854 0.9880 0.9986 1.0157 1.0805 1.1661
2.5 0.9970 0.9971 0.9973 0.9976 0.9984 0.9996 1.0031 1.0080 1.0215 1.0395 1.1003 1.1763
2.75 1.0033 1.0038 1.0045 1.0051 1.0070 1.0092 1.0143 1.0205 1.0357 1.0543 1.1125 1.1823
3 1.0074 1.0082 1.0091 1.0101 1.0126 1.0153 1.0215 1.0284 1.0446 1.0635 1.1196 1.1848
3.5 1.0120 1.0131 1.0143 1.0156 1.0187 1.0221 1.0292 1.0368 1.0537 1.0723 1.1249 1.1834
4 1.0140 1.0153 1.0166 1.0179 1.0214 1.0249 1.0323 1.0401 1.0567 1.0747 1.1239 1.1773
5 1.0150 1.0163 1.0176 1.0190 1.0224 1.0259 1.0331 1.0405 1.0559 1.0722 1.1153 1.1611
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APPENDIX D

Unit Systems 

The most common system of units for scientifi c work is the Systeme Internationale, or 
SI. The SI unit system uses seven primary dimensions: m, s, kg, kgmol, K, amp, and 
cd. These are presented in Table D.1. Each of these primary dimensions is defi ned 
in terms of some measured standard. For example, the length of a meter is defi ned as 
the length given by 1,650,763.73 times the wavelength of a particular emission in the 
spectrum of 86Kr. Additionally, the derived secondary units are also presented in terms 
of the primary dimensions of that measuring system, in the column labeled “SI units.” 
There are several other unit systems we encounter as engineers. The units of common 
thermodynamic variables for three common unit systems are presented in Table D.1: 
SI, CGS, and English units.

TABLE D.1 Common Variables Used in Thermodynamics and Their Associated Units

Variable SI Units
Primary SI 
Dimensions CGS Units English Units

Length meter [m] M centimeter [cm] foot [ft]

Time second [s] S second [s] second [s]

Mass kilogram [kg] kg gram [g] pound mass 3lbm 4

or slug [sl]

Moles kgmole kgmol gmole lb mole

Temperature

  Absolute Kelvin [K] K Kelvin [K] Rankine [°R]

  Relative Celsius [°C] Celsius [°C] Fahrenheit [°F]

Force newton [N] kgm/s2 dyne [dyne] pound force 3lbF 4

energy joule kgm2/s2 erg foot pound 3ft lbF 4

or British Thermal

Unit [BTU]

pressure pascal [Pa] kg/ms2 dyne/cm2 pound force per

square inch [PSI]

power watt [W] kgm2/s3 erg/s ft lbf /s BTU/s 

concentration kgmol/m3 gmol/cm3  lbmol/ft3

density kg/m3 g/cm3 lb/ft3
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In most cases, it is easy to convert between SI and CGS unit systems. For example, 
the form of Newton’s second law that force, F, equals mass, m, times acceleration, a, is 
the same in either system:

 F 5 ma      SI or CGS units (D.1)

Thus the fundamental unit for force is defi ned in the SI system as 1 3N 4 5 1 3kg m/s2 4, as 
shown in Table D.1. Similarly, in the CGS system, it is defi ned as 1 3dyne 4 5 1 3g cm/s2 4. 
With electric and magnetic units, however, changing between the two unit systems is not 
as straight-forward. The physical laws of nature can actually change form. For example 
Coulomb’s law presented in Chapter 4 has a different form depending on what unit sys-
tem is used. In the SI system of units, we have:

 F12 5
Q1Q2

4pe0r2
      SI units (D.2)

On the other hand, the CGS unit system gives a simpler form:

 F12 5
Q1Q2

r2
      CGS units (D.3)

The forces affecting the behavior of molecules are often caused by electric interac- 
tions. In this section, we explore the differences that manifest in the SI and CGS unit 
systems when we treat electric and magnetic quantities. The origin of the differences 
lies in how units are defi ned, and it actually leads to different forms of the fundamental 
equations, as illustrated above. The premise is that by understanding these differences, 
you will make fewer mistakes when calculating quantities associated with electric or 
magnetic properties. We further specify the unit system associated with CGS as Gauss-
ian units to distinguish it from other ways electric and magnetic units have been incor-
porated into the CGS unit system. For electromagnetics, the Gaussian unit system is 
simpler and better pedagogically than SI units. Thus, we use Gaussian units when we 
relate the electrical characteristics of matter to thermodynamic properties in Chapter 
4—unlike the rest of the text where SI units are employed.

The two basic forces on charges are electric and magnetic in nature. The electric 
force given by Coulomb’s law can be written in general as:

 F12 5 kE 

Q1Q2

r2
 (D.4)

where kE is a proportionality constant. Similarly, the magnetic force per length, f, 
between two wires carrying currents I1 and I2 is given by:

 f12 5 2kM 

I1I2

r
 (D.5)

where kM is a proportionality constant. The two proportionality constants, kE and kM 
determine the system of units, i.e., they relate units of charge and current on the right 
hand side of Equations D.4 and D.5, respectively, to units of force. Moreover, their ratio 
is fi xed by the laws of physics to be:

 
kE

kM
5 c2 (D.6)

where c is the speed of light. In both SI and CGS (Gaussian) units systems, units of force 
and distance are well defi ned. Furthermore, we choose the unit of current to be charge 
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per second, or vice versa; thus, Equations D.4 – D.6 have only one parameter left to 
specify. The diffi culty in converting between SI vs. CGS (Gaussian) unit systems is that 
each system chooses a different parameter to specify these equations. In CGS units, kE 
has a value of 1 and is unitless. Inspection of Equation D.4 shows the units of charge are 
then defi ned as:

unit of charge in cgs system 5 "dyne cm 5 g1/2 cm3/2/s ; esu

The defi nition above defi nes the unit of charge as the electrostatic unit 3esu 41. It is 
directly related to the primary units in the CGS unit system. Equation D.4 reduces to:

 F12 5
Q1Q2

r2
      CGS units (D.7)

Equation D.7 is identical to Equation 4.8 in the text. In this unit system, currents 
are 1 esu/s. Using Equation D.6, the magnetic force per length f between two wires 
carrying currents I1 and I2 is given by:

 f12 5
2I1I2

C2r
      CGS units (D.8)

On the other hand, in order to specify the one remaining parameter in Equations 
D.4 – D.6, the SI unit system defi nes a new unit for current, the ampere [A]. The ampere 
is defi ned so that the proportionality constant in Equation D.5 becomes:

 kM 5 1027 3N/A2 4 ;
m0

4p
      SI units (D.9)

The defi nition given in Equation D.9 also includes the value of kM in terms of the per-
meability of free space, m0. The unit for charge in the SI unit system becomes 1 [As] 
and is defi ned as the coulomb [C]. Using Equation D.6, the proportionality constant in 
Equation D.4 becomes:

 kE 5 c2 11027 3N/A2 4 2 ;
1

4pe0
      SI units (D.10)

The defi nition in Equation D.10 includes the value of the permittivity of free space, e0
 2. 

Thus, in the SI system, Equation D.4 become:

 F12 5
Q1Q2

4pe0r2
      SI units (D.11)

while the magnetic force per length f between two wires carrying currents I1, and I2 is 
given by:

 f12 5
2m0I1I2

4pr
      SI units (D.12)

Example D.1 illustrates calculations for of the Coulombic potential energy in each unit 
system and shows the two unit systems are, indeed, consistent.

1 This unit is often alternatively called the “statcoulomb.”
2 The terms permeability and permittivity of free space have their origins back when scientists viewed space as 
containing a material-type substance called “ether.”
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TABLE D.2 Conversion between CGS (Gaussian) units and SI units

Quantity CGS (Gaussian) Units SI Units

Converion Factor: 
SI 5 CGS 
multiplied by

Charge Q "dyne cm 5 g1/2 cm3/2/s ; esu C 3.34 3 10210

Current I "dyne cm/s 5 g1/2 cm3/2/s2 5 esu/s A 5 C/s 3.34 3 10210

Power W
#

erg/s 5 dyne cm/s 5 gcm2/s3 J/s 5 W 1.00 3 1027

Electric potential E "dyne V 5 J/C 300

Resistance R s/cm V 5 V/J 8.99 3 1011

Dipole moment m* g1/2 cm5/2/s 5 esu cm Cm 3.34 3 10212

Polarizability a cm3 C2m2/J 1.11 3 10216

Magnetic Field B "dyne/cm ; gauss Tesla 1.00 3 1024

*The commonly used unit for the dipole moment is the Debye [D]. 1 3D 4 5 10218 3esu cm 4.

For free space, it is straight-forward to translate between CGS (Gaussian) and SI 
units, by substituting e0 S 1/ 14p 2  and m0 S 4p/c2. For dielectric and magnetic materi-
als, conversion between the two quantities is not so easy. For details, see a treatise on elec-
tromagnetism.3 An abbreviated set of conversion factors between CGS and SI units that 
are relevant to the quantities of interest in this text is given in Table D.2. The convenience 
of Gaussian units is illustrated by the fact that all quantities presented in Table D.2 can be 
related to the three fundamental units of the CGS system—cm, g, and s.

3 John D. Jackson, Classical Electrodynamics, 3rd ed., New York: Wiley (1999).

EXAMPLE D.1

Electrostatic 
calculations in 
Gaussian and 
SI units

Consider a singly ionized negative ion and a singly ionized positive ion that are separated by 
1 nm. Calculate the potential energy between the two ions using SI units and CGS (Gaussian) 
units

SOLUTION In SI units, the charge of a singly ionized ion is approximately 1.60 3 10219 3C 4. 
The permittivity of free space has the value, e0 5 8.85 3 10212 3C2/ 1Jm 2 4. Thus, Equation D.11 
becomes:

 G12 5
Q1Q2

4pe0r
5

11.60 3 10219 3C 4 2 11.60 3 10219 3C 4 2
14p 2 18.85 3 10212 3C2/ 1Jm 2 4 2 11029 3m 4 2

5 22.30 3 10219 3J 4 (ED.1)

The charge of a singly ionized ion in CGS units can be found from Table D.2:

11.60 3 10219 3C 4 2 ¢ 3esu 4

3.34 3 10210 3C 4
≤ 5 4.80 3 10210 3esu 4

Thus, Equation D.7 becomes:

 G12 5
Q1Q2

r
5
124.80 3 10210 3esu 4 2 14.80 3 10210 3esu 4 2

1027 3cm 4
5 22.30 3 10212 3erg 4 (ED.2)

Since 1 3erg 4 5 1g cm2/s2 5 1 3 1027 3J 4, Expressions ED.l and ED.2 are equivalent. 
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ThermoSolver Software

Requirements: Windows Operating System
Features

 • Thermodynamic properties of 300+ compounds are provided.

 • Saturation pressure calculator is provided for any species in the database.

 •  Solver for the Peng–Robinson and Lee–Kesler equations of state is 
provided.

 • Fugacity coeffi cients can be solved for pure species or mixtures.

 •  Models for Gibbs energy can be fi t to isobaric or isothermal vapor–liquid 
equilibrium data. Sample data sets are provided. The results can be plotted.

 • Bubble-point and dew-point calculations are provided.

 • Equilibrium constant 1KT 2  solver is provided.

 • General chemical reaction equilibria calculations are provided.

 • Equations used in the calculation process can be viewed.

Installation is a one-time process. Simply download the software from http://www.wiley
.com/college/koretsky. If the setup process does not start automatically, double-click Setup
.exe. Once the setup process has started, follow the on-screen instructions. This process needs 
to be completed only for the fi rst-time installation. Once the software has been installed, 
you may consult the Documentation program for more detailed documentation, including 
screenshots and descriptions of the numerical methods used to solve these problems.

 ►E.1 SOFTWARE DESCRIPTION

Program Installation

Program Usage

Click Start, Programs, ThermoSolver, and click the ThermoSolver program icon to 
begin. The Thermodynamics Menu will appear. From here, eight programs are available 
to choose from:

Species Database
The thermodynamic properties of more than 300 species are available from here. Choose 
a species from the drop-down list at the top of the screen; the list is sorted by reduced 
chemical formula, so “Ethanol” will be found under “C2H6O.” Use the scrollbar at the 
side of the drop-down list to choose a species quickly.

►APPENDIX E
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E.1 Software Description ◄ 681

The Species Database provides all of the thermodynamic data used by the rest of 
the software. Thus, if a species is not available elsewhere in ThermoSolver, there are two 
causes: Either the given species does not have all of the fi elds fi lled in that are required for 
the calculation, or the species is not in the database. Edits can be made to the database. 
The program will ask if the changes are to be saved when the Species Database is closed.

Once a species is chosen, the thermodynamic properties are displayed. Choose one 
of the three tabs to view General Properties, Energy Properties, or Heat Capacity 
Properties. If a fi eld is blank, it is not provided for the given species.

In the General Properties tab, the Antoine constants are shown for the chosen 
logarithm base and units. Click the Antoine Eqn button at the bottom of the window 
to be shown the general form of the Antoine equation. The critical temperature, critical 
pressure, and acentric factor are also reported.

In the Heat Capacity tab, the heat capacity constants are reported for a generalized heat 
capacity equation. Click the Cp/R Eqn button at the bottom of the view to display the general 
heat capacity equation. The quantity cp/R is unitless and the temperature has units of K.

Saturation Pressure Calculator
This program uses the Antoine equation to calculate either a saturation pressure at a 
given temperature or a saturation temperature at a given pressure. Select a species, 
enter either a pressure or temperature, and click Solve next to the unspecifi ed variable.

Equation of State Solver
The equation of state solver uses two of the measure properties (P, v, T) to solve for the 
third, using either the Peng–Robinson or Lee–Kesler equation of state. For example, 
given the pressure and temperature of a species, the molar volume can be found. To 
use the program, fi rst choose a species, enter two of the values out of (P, v, T), and click 
Solve next to the third value.

EXAMPLE E.1

Using Equation of 
State Solver to fi nd v

Find the molar volume of helium at 0°C and 1 atm.

SOLUTION From the Select a Species drop-down list, scroll down and select He—Helium-4. 
Enter “1” for pressure and choose the units atm. Enter “273.15 K” for temperature. Choose 
L/mol for the molar volume unit and click Solve next to the molar volume fi eld. The result is 
22.4201 L/mol. This is expected, since ideal gases at STP should have molar volumes of 22.4 L/mol.

Departure Functions
This program calculates departure functions of enthalpy and entropy for a pure species given 
a known set of dependent properties. You may choose T and P as dependent properties to give 
hT, P 2 hT, P

ideal gas and sT, P 2 sT, P
ideal gas or T and v as dependent properties to give hT, v 2 hT, v

ideal gas 
and sT, v 2 sT, v

ideal gas. If you specify both the initial state (1) and the fi nal state (2), the differ-
ence in the departure functions between states will also be provided. You may select either 
the Lee–Kesler equation or the Peng–Robinson equation to perform the calculations.

Fugacity Coefficient Solver
The fugacity coeffi cient solver uses either the Peng–Robinson or the Lee–Kesler equa-
tion of state to calculate fugacity coeffi cients. At the main Fugacity Coeffi cient Solver 
window, add one or more species by clicking the Add button. The program will prompt 
for the number of moles and allow the species to be chosen from a drop-down list. Con-
tinue to add species until the entire-system is represented. Now choose a temperature 
and pressure at the bottom of the Fugacity Coeffi cient Solver window. On the right side 
of the window, the fugacity coeffi cients will be displayed for the current system. The 
mole values can be changed directly in the summary table.
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If the Peng–Robinson option is selected, the Peng–Robinson equation of state will 
be used to calculate both the pure species fugacity coeffi cients 1wi 2  and the fugacity 
coeffi cients in the mixture 1 ŵi 2 . The Lee–Kesler equation of state can calculate only pure 
fugacity coeffi cients.

Models for gE—Parameter Fitting
This software program solves for the parameters of two-suffi x Margules, three-suffi x 
Margules, van Laar, Wilson, and NRTL models. First, choose whether P or T will be 
held constant in the data. At the next window, the experimental data are listed on the left, 
and the activity coeffi cient model and parameters are listed on the right.

Any one of the currently saved data sets can be selected in the Experimental Data 
frame, via a drop-down list. To create a new data set, click New, and enter the data in 
the table. Data can be copied and pasted to and from Microsoft Excel. Make sure to 
select the appropriate units and enter the constant pressure or temperature at the bot-
tom of the window. Choose Save to save an entered data set—saved data sets will be 
available in the drop-down list of experimental data in all future sessions of the program. 
The built-in data sets are read-only and cannot be saved.

EXAMPLE E.2

Example 8.9 Using 
ThermoSolver

Verify the activity coeffi cient parameter for the two-suffi x Margules equation found for the 
binary system benzene (a) and cyclohexane (b) found in Example 8.9.

SOLUTION Choose the Isothermal button since constant temperature data will be used. The 
main binary mixture VLE coeffi cient solver window will appear next. From the drop-down list in the 
upper-left corner of the window, select Benzene (a) and Cyclohexane (b). The pressure, xa, and 
ya data will load into the data grid. Click Solve. Coeffi cient A is now 1400.75 J/mol, which is the opti-
mal two-suffi x Margules parameter for objective function pressure. To plot the curve that was just 
fi t to the data, click Plot Data. Choose Pressure vs Xa as the property to plot, and then click OK. 

Bubble-Point / Dew-Point Calculations
This program performs bubble-point and dew-point calculations, with various fugacity 
and activity coeffi cient corrections. After the appropriate bubble-point or dew-point cal-
culation type has been selected, the main window will be presented.

Add a species to the mixture by using the Add button. Choose the desired fugacity 
and activity coeffi cient corrections at the bottom of the window. If the multicomponent 
Wilson model is used, the model parameters should entered by choosing Edit in the 
Wilson Model Parameters frame. Once everything is set, choose Solve Unknowns to 
perform the bubble-point or dew-point calculation. Choose More Information to see 
the values of the correction factors at equilibrium.

A system with vapor contains 30% n-pentane (1), 30% cyclohexane (2), 20% n-hexane (3), and 
20% n-heptane (4) at 1 bar. Determine the temperature and liquid composition at which the 
vapor develops the fi rst drop of liquid.

SOLUTION This system corresponds to quadrant IV, since the vapor composition and pres-
sure are known. Choose Add, select C5H12—n-Pentane, and enter “0.3” for the vapor mole 
fraction. Next, choose Add, select C6H12—Cyclohexane, and enter “0.3” for the mole frac-
tion. Add C6H14—n-Hexane with 0.2 mole fraction and, fi nally, C7H16—n-Heptane with 
a mole fraction of 0.2. Enter “1 bar” for the pressure, and click Solve Unknowns. The liquid 
mole fractions and equilibrium temperature will be displayed. The dew point temperature is 
75.7° C, and the liquid composition is:

Species n-Pentane Cyclohexane n-Hexane n-Heptane

xi 0.10 0.35 0.16 0.40

EXAMPLE E.3

Dew-Point Calculation
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Equilibrium Constant 1KT 2  Calculator
Choose Chemical Reaction Equilibria from the ThermoSolver main menu, then 
choose the Equilibrium Constant Calculation. The equilibrium constant calculator 
solves for the equilibrium constant K at a given temperature, as described in Section 9.4. 
The reactants and products for an equation can be added by choosing the Add button on 
either the reactant or product side of the window. Make sure to specify the stoichiometric 
coefficient of each species as it is added.

Once all reactants and products have been added, the correct chemical equation 
should be displayed at the bottom of the window, and the equation status should read 
“Balanced.” If not, select a reactant or product and choose Edit to adjust the stoichio-
metric coeffi cient. Fractions may be used for stoichiometric coeffi cients. Finally, enter a 
temperature, and the corresponding equilibrium constant will be displayed.

Reaction Equilibria Calculations
Choose Chemical Reaction Equilibria from the ThermoSolver main menu, then 
choose the Reaction Equilibria Calculations. The reaction equilibria program solves 
for the composition of a reacting system at equilibrium, using the Gibbs energy minimi-
zation method discussed in Section 9.6. The software is limited to gases and solids.

Click the Add button to add one or more species to the reaction. In the Add dialog 
box, a method is needed to calculate the Gibbs energy of formation at a particular tem-
perature. If the species is selected from the database, the Gibbs energy of formation 
will be computed automatically. If the species is manually entered, its Gibbs energy of 
formation must be known for the temperature at which the reaction takes place. Enter 
the number of moles initially present, and click Add to add the species to the reaction.

At the main window, the temperature and pressure of the reaction can be adjusted, 
and the vapor phase correction can be chosen. Click Calculate EQ when everything 
is set. The results of the equilibrium calculation will be displayed in a pop-up window.

1 From B. I. Lee and M. G. Kesler, AIChE Journal, 21, 510 (1975).

 ►E.2 CORRESPONDING STATES USING THE LEE–KESLER EQUATION OF STATE1

Below the solution algorithm to the Lee–Kesler equation of state is described. Pick a 
reduced temperature and pressure:

Pr 5
P
Pc

     and     Tr 5
T
Tc

Solve for v*:

z 5
Pv
RT

5
Prv*
Tr

5 1 1
B
v*

1
C
1v* 2 2

1
D
1v* 2 5

1
c4

Tr
3 1v* 2 2

 ¢b 1
g

1v* 2 2
≤  exp ¢2

g

1v* 2 2
≤

where,   v* 5
Pcv
RTc

 

       B 5 b1 2
b2

Tr
2

b3

Tr
2

2
b4

Tr
3
,     C 5 c1 2

c2

Tr
1

c3

Tr
3
,     D 5 d1 1

d2

Tr

Simple: z 5 z102 
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Correction: z112 5
z1c2 2 z102

0.3978
 

Departure functions:

hTr,Pr 2 hTr,Pr

ideal gas

RTc
5 Trbz 2 1 2

1
Trv*

 ¢b2 1
2b3

Tr
1

3b4

Tr
2
≤

2
1

2Tr 1v* 2 2
 ¢c2 2

3c3

Tr
2
≤ 1

d2

5Tr 1v* 2 5
1

3c4

2Tr
3g

3 Bb 1 1 2 ¢b 1 1 1
g

1v* 2 2
≤  exp ¢2

g

1v* 2 2
≤ R r

sTr,Pr 2 STr,Pr

ideal gas

R
5 ln 

z
P 3atm 4

2
1
v*

 ¢b1 1
b3

Tr
2

1
2b4

Tr
3
≤

2 
1

2 1v* 2 2
 ¢c1 2

2c3

Tr
2
≤ 2

d1

5 1v* 2 5
1

c4

Tr
3g

3 Bb 1 1 2 ¢b 1 1 1
g

1v* 2 2
≤  exp ¢2

g

1v* 2 2
≤ R

Fugacity coeffi cient:

ln w 5 z 2 1 2 ln z 1
B
v*

1
C

2 1v* 2 2
1

D
5 1V* 2 5

1
c4

2Tr
3g

3 Bb 1 1 2 ¢b 1 1 1
g

1v* 2 2
≤  exp ¢2

g

1v* 2 2
≤ R

Simple (0) Correction (c)

b1 0.1181193 0.2026579
b2 0.265728 0.331511
b3 0.154790 0.027655
b4 0.030323 0.203488
c1 0.0236744 0.0313385
c2 0.0186984 0.0503618
c3 0 0.06901
c4 0.042724 0.041577
d1 1.55488 3 1025 4.8736 3 1025

d2 6.23689 3 1025 7.40336 3 1026

b 0.65392 1.226
g 0.060167 0.03754
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CHAPTER

Absolute temperature scale, 11
Absolute zero, 11
Activity coeffi cient

in electrochemical systems, 597–599
pressure dependence of, 448
reference states for liquid phase of fugacity, 

417–422
relations between (See Activity coeffi cient 

relationships)
temperature dependence of, 445, 446–448

Activity coeffi cient models
asymmetric, 436–444
best fi t results for parameters of, 440
DECHEMA, 437, 439, 440
molecular parameters of, 439, 441, 442
multicomponent, 444–445
NRTL, 441
predictive, 442
three-suffi x Margules, 439
two-suffi x Margules, 429–439
UNIFAC, 441, 442
UNIQUAC, 441–444
van Laar, 439
VLE data fi tted with, 490–495
Wilson, 439, 441

Activity coeffi cient relationships
excess Gibbs energy forms in, 425–427, 429–430
Gibbs-Duhem equation in, 422–424, 427, 429, 

430
thermodynamic consistency tests in, 427–428

Ad hoc mixing rules, 250
Adiabatic processes

defi ned, 5, 44
demagnetization, 188–189
expansion/compression, 133–137
fl ame temperature, 85–88
reversible expansion, 93

Anode, 590
Antoine equation, 231, 329, 420, 468, 474, 

503–504, 639, 681
Area test, 428
Asymmetric activity coeffi cient models, 436–444
Athermal systems, 447
Atomic defects, 613–616
Atoms, electric nature of, 212–213
Attractive forces

dispersion (London), 220
electrostatic, 213–218
induction, 219
van der Waals, 220–222

Availability analysis, 172–178
Azeotropes, 484–490

Balance. See Energy balance
Beattie-Bridgeman equation of state, 241
Benedict-Webb-Rubin equation of state, 241–242
Bernoulli equation, 161
Binary interaction parameter, 250, 252, 405, 409
Binodal curve, 512
Boiling point elevation, 531–535
Boundary, 3
Boyle temperature, 299
Brouwer Diagram, 621–624
Bubble point calculation, 469–470

Carnot cycle, 102–108
effi ciency, 104–108

entropy change for, 133–139
Celsius temperature scale (°C), 11
CGS (Gaussian) units, 212–213, 676–679
Chain rule relation, 272
Chemical directionality, 185
Chemical equilibrium, 16, 395–396
Chemical forces, 228–231
Chemical potential, 368–369
Chemical potential of interest, 393
Chemical reaction

endothermic, 81
energy component of, 187–188
enthalpy of, 70, 80–91
entropically favored, 566
exothermic, 81
extent of (See Extent of reaction)
gas-phase, 579–586
heterogeneous, 587–589
ideal gas, 565
independent, 599–602
isomerization, 586–587
kinetically controlled, 564–565
liquid-phase, 586–587
multiple, 599–612
oxidation half-reaction, 590
rate of, 565
reduction half-reaction, 590
single, 568–572
thermodynamically controlled, 565

Chemical reaction equilibrium, 16, 316, 562–638
constants, 579–589
in electrochemical systems, 589–599
Gibbs energy, 318–321, 565–568
of point defects in crystalline solids, 612–624
thermochemical data calculations, 572–578
thermodynamic vs. kinetic, 563–565

Clapeyron equation, 327–328
Class I properties, 425–426
Class II properties, 426
Clausius-Clapeyron equation, 328–334
Closed system

defi ned, 3
energy balance, 57–59
exergy analysis, 176–177
in fi rst law of thermodynamics, 55–59
reversible processes in, 92–95
in second law of thermodynamics, 143–147

Coeffi cient of performance, 190
Coexistence line, 327
Colligative properties

boiling point elevation, 531–535
freezing-point depression, 535
osmotic pressure, 535–538

Concave down curve, 513
Conduction, 45
Congruent melting points, 524
Constant-pressure calorimeter, 68
Constant pressure, heat capacity at, 67–71, 93–94
Constant temperature, 143, 392–393
Constant-volume calorimeter, 67–68
Constitutive equation, 210
Control surface, 3
Control volume, 3
Convection, 45–46
Corresponding states

mixtures applied to, 252–254
principle of, 226–227

van der Waals parameters by, 233–235
Coulomb’s law, 213
Critical point, 24–26
Cubic equations of state, 238–240, 250–251
Cycles

Carnot, 102–108, 133–139
Rankine, 164–169
refrigeration, 105, 169–172, 188–189
vapor-compression, 164–182

Cyclic relation, 272–273

Dead state, 173
DECHEMA data collection, 437, 439, 440
Deep understanding, 3
Defect, 612. See also Point defects
Defect concentrations, 619–624
Defect nomenclature, 614
Degree(°), 10
Degree of hotness, 8
Degrees of freedom, 370
Departure functions, 290–298
Dependent properties, 17–20
Dependent property relationship, 267–268
Derivative inversion, 272–274
Derived properties, 266, 276–290
Dew point calculation, 469, 471, 476–480
Differential balances, 57
Differential volume, 7
Diffusers, 96–97
Dipoles, 215–218
Directionality, 128–131, 185–187
Dispersion forces, 220
Doping, 617–619
Double interpolation, 28–29
Driving force, 15, 48, 131
Dynamic processes, 17

Effi ciency
of Carnot cycle, 104–108
isentropic, 163
of Rankine cycle, 166–167

Electric nature of atoms and molecules, 212–213
Electrochemical cells, 590–591
Electrochemical reaction equilibrium, 592–595
Electrochemical systems

activity coeffi cients in, 597–599
electrochemical cells in, 590–591
electrochemical reaction equilibrium in, 

592–595
half-cell potentials in, 594–597
shorthand notation in, 591–592

Electrolyte, 214, 591
Electrolytic cell, 590
Electroneutrality, 613
Electronic defects, 616–619
Electrostatic forces, 213–218
Endothermic reactions, 81
Energetics, 565
Energy balance. See also First law of 

thermodynamics
closed system, 57–59
differential, 57
heat exchangers, 98–101
integral, 55–56
material, 60
for multiple incomplete reactions, 89–90
nozzles and diffusers, 96–97
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Energy balance (Continued)
on process equipment, 95–102
in second law of thermodynamics, 160–163
steady-state, 62–63
throttling devices, 101–102
transient, 63–66
turbines and pumps (or compressors), 97–98
unsteady-state, 63, 64–66

Energy forms, 37–41
Energy transfer, 45–46
English units, 11, 676–679
Enthalpies of formation, 82–83, 91, 110
Enthalpy

defi ned, 62
departure function, 290–293, 296–298
of fusion, 76, 525–526
ideal gas, 371
inorganic compounds, 645–646
of mixing, 344–347
organic compounds, 643–645
of reaction, 70, 80–91
of solution, 352–354
of sublimation, 77
of vaporization, 76

Entropically favored reaction, 566
Entropy

to calculate exit velocity from nozzle, 149–150
change of the universe, 133–139
contextual paradigms for, 131–133
departure function, 293–296
of fusion, 525–526
generated from open feedwater heater, 150–151
ideal gas, 151–160, 321, 355
of mixing, 355
molecular view of, 182–189
in phase equilibrium, 321–326
polytropic processes in terms of, 156
thermodynamic properties, 131–139

Equation of state (EOS)
Beattie-Bridgeman, 241
Benedict-Webb-Rubin, 241–242
cubic, 238–240, 250–251
as data source for pure gas, 398–399
defi ned, 13, 210
fugacity coeffi cient of vapor mixture, 404–411
generalized compressibility charts, 246–249
ideal gas, 211
intermolecular forces, 211–231
Lee-Kesler, 247–248
liquid phase of fugacity, 449
for liquids and solids, 245–246
mixtures, determining parameters for, 249–253
motivation, 210–211
Peng-Robinson, 239–240, 408
properties calculated using, 276–290
Rackett, 246
Redlich-Kwong, 238–239, 408
Soave-Redlich-Kwong, 240
solver in ThermoSolver software, 681
van der Waals, 232–237, 408
virial, 240–244, 251–252
in VLE, 501–511

Equilibrium, 15–17. See also Chemical reaction 
equilibrium

chemical, 16, 395–396
composition of two liquid phases, 515–518
conversion, 565
liquid-solid, 16
mechanical, 15–16
molecular view of, 16–17
phase, 6, 16
solid-solid, 17
stable state, 15
steady-state, 15
thermal, 16
vapor-liquid, 16–17
vapor-solid, 16

Equilibrium constant
for defects, 614–616

for gas-phase reaction, 579–586
for heterogeneous reaction, 587–589
for liquid-phase reaction, 586–587

Eutectic point, 524, 526–529
Evaporate, 24
Exergy analysis, 172–182
Exothermic reactions, 81
Extensive properties, 4
Extent of reaction

defi ned, 566–567
in gas-phase reaction, 580–582
in isomerization reaction, 586–587
in single reaction, 570–571

External pressure, 49–54
Exthalpy-fl ow exergy in open systems, 178–182
Exthalpy of state, 178
Extrinsic semiconductor, 619

Fahrenheit temperature scale (°F), 11
First law of thermodynamics, 36–126

calculation of work from, 63–64
Carnot cycle, 102–108
for closed system, 55–59
energy forms, 37–41
heat, 44–46
hypothetical paths, 46–47
irreversible processes, 48–55
for open system, 60–67
reversible processes, 48, 53–54, 92–95
thermochemical data for U and H, 67–91
work, 42–44

Flow exergy, 178
Flow work, 60–62, 66
Freezing-point depression, 535
Frenkel defect, 619
Fugacity, 391–465

in chemical equilibrium, 395–396
defi ned, 392–394
in liquid phase, 414–449
in solid phase, 449–450
in vapor phase, 396–414

Fugacity coeffi cient
defi ned, 394
equations of state, 404–411
pure gases, 396–402
species i in gas mixtures, 403–411

Function of composition, 358
Fundamental equation, 210
Fundamental grouping, 270–271
Fundamental properties, 266, 276–290
Fundamental property relationship, 269–271

Galvanic cell, 590
Gas, 9–10
Gas partial pressure, 619–624
Gas-phase reaction, 579–586
Gaussian units, 212–213, 676–679
Generalized compressibility charts, 246–249
Generalized correlations, 400–402
Gibbs-Duhem equation, 340–342, 422–424, 427, 

429, 430
Gibbs energy

chemical reaction equilibrium, 318–321, 
565–568

in Clapeyron equation, 327–328
excess, 425–427, 429–430
of formation, calculation of K from, 572–574
inorganic compounds, 645–646
minimization of, 518–519, 610–611
organic compounds, 643–645
partial molar, 366–368
phase diagrams, 483–484
in phase equilibrium, 321–326

Gibbs phase rule, 18–20, 601–602

Half-cell potentials, 594–597
Hard sphere model, 223
Hard sphere potential, 223, 243
Heat, 44–46

Heat capacity, 67–76. See also Constant pressure, 
heat capacity at

enthalpy, 70
mean, 71, 73–74
piston-cylinder assembly example, 74–76

Heat capacity data, 641–643
Heat exchangers, 98–101
Henry’s law

activity coeffi cient in, 418
changes in, with pressure and temperature, 

421–422
constants, 496–498
in ideal solution, 415–416
Margules equation for, 436

Heterogeneous reaction, 587–589
Hole, positively charged, 616
Hypothetical paths, 6, 46–47, 268–269

Ideal gas, 13–15
adiabatic, reversible expansion of, 93–94
enthalpy, 371
entropy, 151–160, 191, 321, 355
heat capacity data, 641–643
inorganic compounds, 642
law, 497
liquids and solids, 643
model, 211
organic compounds, 641
property changes of mixing, 412–414
reaction, 565
reversible, 92–93

Idealization, 48
Ideal solution, 414–417
Ideal work, 173
Impurity interstitial, 613
Incongruent melting points, 524
Independent chemical reactions, 599–602
Independent properties, 17–20
Independent property relationship, 267–268, 

276–290
Induction forces, 219
Infi nite dilution, 342
Inorganic compounds

enthalpy and Gibbs energy, 645–646
heat capacity data, 642
physical properties, 640–641

Instability of single liquid phase, 519
Integral balances, 55–56
Intensive properties, 4
Intermolecular forces, 211–231

attractive, 213–222
chemical, 228–231
electric nature of atoms and molecules, 212–213
internal energy, 211–212
potential functions and repulsive, 223–226
principle of corresponding states, 226–227, 

252–254
Intermolecular potential energy, 211–212
Intermolecular potential functions, 223–226
Internal energy, 37, 39–40, 211–212
Internal exergy loss, 178–181
Interpolation, 28–29
Interstitial, 450, 529, 613
Intramolecular potential energy, 211
Intrinsic semiconductors, 617
Inversion line, 299
Ionic solids, 214
Ionized gases or plasmas, 215
Irreversible processes

in fi rst law of thermodynamics, 48–55
isothermal compression, 153–154
mechanical, 130–131
in second law of thermodynamics, 129–131
thermal heat engine, 131

Isenthalpic processes, 299
Isentropic effi ciency, 163
Isentropic processes, 134
Isobaric processes, 5
Isochoric processes, 5
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Isolated system, 3
Isomerization reaction, 586–587
Isothermal expansion, 48, 50, 53, 54, 92–93, 95, 

103
Isothermal fl ash VLE calculation, 471
Isothermal processes, 5

Joule-Thomson coeffi cient, 299, 300–301
Joule-Thomson expansion, 298–304

Kay’s rules, 252
Kelvin temperature scale (K), 11
Kinetically controlled reaction, 564–565
Kinetic energy

to friction, 187
macroscopic, 37, 39, 62, 63
molecular, 211
vs. thermodynamic, 563–565

Kinetic theory of gases, 9–10

Latent heat, 39, 44, 76–80
Laws, 2
Lee-Kesler equation of state

fugacity coeffi cients for, 400–402
generalized correlation tables, 660–675
parameters for, 247–248
ThermoSolver software, 683–684

Length scales, 6–7
Lennard-Jones potential, 223–226
Lever rule, 474–475
Lewis fugacity rule, 411–412
Lewis/Randall rule, 415–416, 423–424
Linde processes, 302
Linear regression, 491, 494–495
Liquefaction, 301–304
Liquid, 6
Liquid-liquid equilibrium (LLE), 435, 511–519
Liquid phase of fugacity, 414–449
Liquid-phase reaction, 586–587
Liquid-solid equilibrium, 16
Liquid-vapor dome, 21, 22–23, 24
London forces, 220
London interactions, 432, 437
Lower consulate temperature, 514–515

Macroscopic, 39–40
Macroscopic scales, 6–7
Majority carriers, 619
Margules equation

for Henry’s law, 436
three-suffi x, 439, 494–495
two-suffi x, 429–439, 494–495

Material balance, 60
Maximum boiling azeotropes, 486
Maxwell-Boltzmann distribution, 9, 39, 69, 211
Maxwell relations, 271
Mean heat capacity, 71, 73–74
Measured properties, 7–15, 265–266, 271
Mechanical directionality, 185–186
Mechanical equilibrium, 15–16
Mechanical processes, 130–131
Melting points, 524
Microscopic scales, 7
Minimization of Gibbs energy, 518–519, 610–611
Minimum boiling azeotropes, 486
Minority carriers, 619
Misplaced atoms, 613
Mixing

enthalpy of, 344–347
entropy of, 355
property changes of, 342–357, 412–414
rules, 250

Mixtures, 334–367
corresponding states applied to, 252–254
gas, fugacity coeffi cient of species i in, 403–411
Gibbs-Duhem equation, 340–342
parameters for, determining, 249–254

Molar volume, 4, 7, 8
Molecular energy, 39, 211–212

Molecular interaction, van der Waals and, 232–233
Molecular kinetic energy, 39, 211
Molecular parameters of activity coeffi cient 

models, 439, 441, 442
Molecular potential energy, 39, 211–212
Molecular probability and confi gurations, 132, 

182–189
Molecular scales, 7
Molecular view

of equilibrium, 16–17
of pressure, 11–12
of temperature, 8–10

Molecules, electric nature of, 212–213
Motivation, 210–211
Multicomponent phase equilibrium, 367–372
Multicomponent system models, 444–445
Multiple chemical reactions, 599–612

Nernst equation, 594
Nonideal liquids, 475–484
Nonrandom two-liquid (NRTL) model, 441
Normal boiling point, 23, 77
Nozzles, 96–97
n-type semiconductor, 619

Objective functions, 490–494
Open system

defi ned, 3
exthalpy-fl ow exergy in, 178–182
in fi rst law of thermodynamics, 60–67
in second law of thermodynamics, 147–151

Organic compounds
enthalpy and Gibbs energy, 643–645
heat capacity data, 641
physical properties, 639–640

Osmotic pressure, 535–538
Oxidation half-reaction, 590

Partial miscibility of liquid phases, 435
Partial molar properties, 335–340

analytical determination of, 358–362
defi ned, 336–338
Gibbs-Duhem equation, 340–342
Gibbs energy, 366–368
graphical determination of, 362–366
physical interpretation of, 338–340
relations among, 366–367
summary of, 342

Path
functions, 6
hypothetical, 46–47
work, 42

Peng-Robinson equation of state
fugacity coeffi cients for, 403, 408–411
parameters for, 239–240
VLE behavior predicted with, 503–504, 507–511

Peritectic point, 524
Phase boundary, 6
Phase diagrams

construction of, 473–475
defi ned, 21
Gibbs energy used to understand, 483–484
Pxy, Txy and xy, 480–483

Phase equilibrium
defi ned, 16, 316
fugacity, 391–465
multicomponent, 367–371
problem, 316–317
problem formation, 315–390
pure species, 318–334

Phase equilibrium problems, 466–561
colligative properties, 531–538
liquid-liquid equilibrium, 511–519
solid-liquid equilibrium, 523–531
solid-solid equilibrium, 523–531
solid-solid-liquid equilibrium, 523–531
vapor-liquid equilibrium, 467–511
vapor-liquid-liquid equilibrium, 519–523

Phases of matter, 6

Phonons, 40, 45
Physical property data, 639–641
Piston-cylinder assembly example, 43–44, 74–76
Pitzer acentric factor, 400, 408, 409
Plasmas, ionized, 215
Point charges, 213–215
Point defects, 612–624

atomic, 613–616
concentrations, gas partial pressure and, 

619–624
defi ned, 612
electronic, 616–619
Frenkel, 619
Schottky, 619

Polarizability, 219
Polytropic processes, 95
Potential energy

intermolecular, 211–212
intramolecular, 211
macroscopic, 37, 39, 62, 63
molecular, 39, 211–212

Potential function, 223–226
Poynting correction, 420
Predictive activity coeffi cient model, 442
Pressure, 11–13

dependence of mi, in multicomponent phase 
equilibrium, 370–372

molecular view of, 11–12
saturation, 17, 23–24
units of, 13
vapor, 23–24

Primary dimensions, 7
Principle of corresponding states. See 

Corresponding states
Processes

adiabatic (See Adiabatic processes)
defi ned, 5
directionality of, 128–131
irreversible (See Irreversible processes)
isenthalpic, 299
isentropic, 134
isobaric, 5
isochoric, 5
isothermal, 5
polytropic, 95
reversible (See Reversible processes)

Properties
calculations of, 276–290
defi ned, 4
extensive, 4
independent and dependent, 17–20
intensive, 4
measured, 7–15
tables, 26–30

Property change of mixing, 343–357
enthalpy, 344–347
entropy, 355

Property relationships, 267–275
chain rule, 272
cyclic, 272–273
dependent, 267–268
fundamental, 269–271
hypothetical paths, 268–269
independent, 267–268
Maxwell, 271
thermodynamic web, 265–290

Property types, 265–266
derived, 266
equations of state used to calculate, 276–290
fundamental, 266
measured, 265–266
partial molar, 335–340, 342
pure species, 342
total solution, 342

PT diagrams, 20–23
p-type semiconductor, 619
Pumps (or compressors), 97–98
Pure gases, data sources for, 396–402
Pure solids, 449, 523–529
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Pure species, 342, 394, 419–421
Pure species phase equilibrium, 318–334

Clapeyron equation, 327–328
Clausius-Clapeyron equation, 328–334
energy and entropy in, roles of, 321–326
using equation of state, 503–504

Pv diagrams, 20–23
PvT surface for pure substance, 20–26
Pxy diagrams, 480–483

Quality, 19–20

Rackett equation of state, 246
Radiation, 46
Rankine cycle, 164–169
Rankine temperature scale (°R), 11
Raoult’s law, 467–475

bubble point calculation, 469–470
dew point calculation, 469, 471, 476–480
isothermal fl ash VLE calculation, 471
lever rule, 474–475
negative deviation from, 480
phase diagrams, 473–475, 480–484
positive deviation from, 476

Rate of chemical reaction, 565
Reaction coordinate, 569
Redlich-Kwong equation of state, 238–239, 408
Reduction half-reaction, 590
Reference states for liquid phase of fugacity, 

414–422 
activity coeffi cient, 417–419
Henry’s law, 421–422
ideal solution, 414–417
pure species fugacites, calculation of, 419–421

Refrigerant, 169–172
Refrigeration cycle, 105, 169–172, 188–189
Regular solution, 355, 447
Repulsive forces, 223–226
Residual, 490
Reversible isothermal expansion, 92–93
Reversible processes

adiabatic, reversible expansion, 93
in closed system, 92–95
in fi rst law of thermodynamics, 48, 53–54, 92–95
ideal gas undergoing, 92–93
isothermal expansion, 92–93
mechanical, 130–131, 160–163
in second law of thermodynamics, 129–131
thermal heat engine, 131

Rotational motion, 39

Salt bridge, 591
Saturated condition, 22
Saturated liquid, 22
Saturated vapor, 23
Saturation pressure, 17, 23–24
Saturation temperature, 22–23, 648–649
Schottky defect, 619
Second law of thermodynamics, 127–208

Bernoulli equation, 161
for closed systems, 143–147
common statements of, 142–143
directionality, 128–131
energy balance in, 160–163
ideal gas, calculations of, 151–160
for open systems, 147–151
reversible/irreversible processes, 129–131
vapor-compression cycles, 164–182

Self-interstitial, 613
Semiconductor, 616
Sensible heat, 39, 44, 67
Shaft work, 44
Shorthand notation, 591–592
Sign conventions, 143
Single chemical reaction, 568–572
SI (Système International) units, 7, 676–679
Soave-Redlich-Kwong equation of state, 240

Solid-liquid equilibrium (SLE), 523–531
pure solids, 523–529
solid solutions, 529–531

Solid phase of fugacity, 449–450
Solids, 6
Solid-solid equilibrium (SSE), 17, 523–531
Solid-solid-liquid equilibrium (SSLE), 523–531
Solid solutions, 529–531
Solubility of gases in liquids, 495–501
Solute, 415
Solution, enthalpy of, 352–354
Solvent, 415
Spinodal curve, 514
Stable state, 15
Standard state, 571
State, 5
Steady-state, 15, 62–63, 160–163
Steam tables, 28–30, 647–659
Stoichiometric coeffi cient, 81, 568–569
Streams, in and out, 60–65, 70
Subcooled liquid, 22
Substitutional impurity, 613
Substitutional solid solution, 529
Supercritical fl uid, 25
Superheated vapor, 23
Surroundings, 3
Sutherland potential, 223
Symmetric behavior, 436
Système International (SI) units, 7, 676–679

Tangent-intercept method, 363
Temperature

activity coeffi cient, 445, 446–448
adiabatic fl ame, 85–88
Boyle, 299
chemical potential of interest, 393
constant, 143, 392–393
degree of hotness, 8
Henry’s law, 421–422
lower consulate, 514–515
macroscopic property, 39–40
measured properties, 8–11
modes of energy transfer, 45–46
molecular view of, 8–10
multicomponent phase equilibrium, 370–372
normal boiling point, 23, 77
saturation, 22–23, 648–649
saturation pressure, 17, 23–24
scales, 10–11
thermochemical data, 574–577
transient energy balances, 64–66
upper consulate, 513

Temperature only function, 571–572
Thermal conductivity, 45
Thermal directionality, 186–187
Thermal equilibrium, 16
Thermal heat engine, 131
Thermal reservoir, 92
Thermochemical data, 67–91, 572–578, 594–597
Thermodynamically controlled reaction, 565
Thermodynamic web, 265–290

departure functions, 290–298
Joule-Thomson expansion, 298–304
property calculations, 276–290
property relationships, 267–275
property types, 265–266

ThermoSolver software, 680–684
bubble point/dew point calculations, 682
departure functions, 681
equation of state solver, 681
Equilibrium Constant Calculation, 683
Fugacity Coeffi cient Solver, 681–682
installation, 680
Lee-Kesler equation of state, 683–684
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