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Preface

One change with this edition of Sampling is that I have included sections of
computing notes for sample selection, calculation of estimates, and simulations.
These computations are illustrated using the statistical programming language R.
In doing this I have avoided the use of specialized packages for specific complex
designs, choosing instead to show simple calculations and sampling procedures
from scratch using a few basic functions. The purpose of these sections is as much
for understanding of sampling ideas as for easy ways to select samples and calcu-
late estimates. Other software than R can, of course, be used for the same purpose.
The advantages of R include: it is a free and open source, is widely supported by
the statistical and other research communities, is available to anyone, and is easily
installed on a computer with any of the common operating systems, including
Windows, Macintosh OS X, Linux, and other types of Unix. The syntax of R tends
to read like generic code and conveys the thinking that goes along with calculations
rather than serving as a magic box. R is interactive and has very nice graphics.

Once one learns how to select a sample with a given type of design and to pro-
duce various types of estimates using the sample data from the design, it is an easy
step to wrap that procedure into a simulation of a sampling strategy. Much of the
attention of the computing sections is devoted to the simulation of sampling strate-
gies. The idea is to construct a “population” in the computer as much as possible
like the real one which needs to be sampled. With this artificial but more-or-less
realistic population, the sampling strategy is then carried out many times. So on
each of the runs a sample is selected using the design, and estimates are calculated
from the sample data obtained. The distribution of these estimates over the many
runs is the sampling distribution. It depends as much on the sampling design and
estimation procedure chosen as upon the characteristics of the population. In this
way one prospective sampling strategy can be evaluated in comparison to others
before committing to one to use in the field. In addition to providing a practical
way to evaluate and improve potential sampling strategies, simulations of this kind
can give an understanding that is right at the heart of sampling.

Some new examples have been added to this edition. New figures have been
added, in particular illustrating the ideas of sampling distributions and the results

xv



xvi preface

of various types of simulations. Numerous incremental improvements and the odd
new section have been added.

I would like to thank especially the students in my classes and colleagues at other
institutions who have helped with corrections of typographical errors and other
improvements. I would like to thank Susanne Steitz-Filler and Stephen Quigley
at John Wiley & Sons for encouragement in preparation of this edition. Research
support for my work in the area of sampling has been provided by the Natural Sci-
ences and Engineering Research Council, the National Center for Health Statistics,
Centers for Disease Control and Prevention, the U.S. Census Bureau, the National
Institutes of Health, and the National Science Foundation.

Steven K. Thompson
Simon Fraser University
British Columbia



Preface to the Second Edition

The Second Edition retains the general organization of the first, but incorporates
new material interspersed throughout the text. For example, model-based ideas
and alternatives are included from the earliest chapters, including those on simple
random sampling and stratified sampling, rather than suddenly appearing along
with ratio and regression estimation methods as has been traditional. Estimation
methods deriving from a combination of design and model considerations receive
added attention in this edition. Some useful ideas from the ever-developing theory
of sampling are briefly described in the chapters on making the most of survey data.

Among the added sections is an expanded description of methods for adjusting
for nonsampling errors. A wider discussion of link-tracing designs for sampling
hidden human populations—or the Internet—has been added to the chapter on
network sampling. New developments in the rapidly expanding field of adaptive
sampling are briefly summarized.

Additional numerical examples, as well as exercises, have been added. A number
of additional derivations of results have been tucked into the later parts of chapters.

A brief history of sampling has been added to the introduction.
I would like to express my thanks and appreciation to the many people who

have so generously shared with me their views on sampling theory and methods
in discussions, collaborations, and visits to field sites. They include my colleagues
at The Pennsylvania State University and those in the wider research community
of sampling and statistics, as well as researchers in other fields such as ecology,
biology, environmental science, computer science, sociology, anthropology, ethnog-
raphy, and the health sciences. I would like to thank my editor Steve Quigley and
editorial program coordinator Heather Haselkorn at John Wiley & Sons for their
encouragement and assistance with this project. Research support for my work has
been provided by grants from the National Science Foundation (DMS-9626102)
and the National Institutes of Health (R01 DA09872).

Steven K. Thompson
University Park, Pennsylvania
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Preface to the First Edition

This book covers the basic and standard sampling design and estimation methods
and, in addition, gives special attention to methods for populations that are inher-
ently difficult to sample, elusive, rare, clustered, or hard to detect. It is intended as
a reference for scientific researchers and others who use sampling and as a textbook
for a graduate or upper-level undergraduate course in sampling.

The twenty-six chapters of the book are organized into six parts. Part I cov-
ers basic sampling from simple random sampling to unequal probability sampling.
Part II treats the use of auxiliary data with ratio and regression estimation and
looks at the ideas of sufficient data and of model and design in practical sam-
pling. Part III covers major useful designs including stratified, cluster, systematic,
multistage, double, and network sampling. Part IV examines detectability methods
for elusive populations: Basic problems in detectability, visibility, and catchabil-
ity are discussed and specific methods of line transects, variable circular plots,
capture–recapture, and line-intercept sampling are covered. Part V concerns spatial
sampling, with the prediction or “kriging” methods of geostatistics, considerations
of efficient spatial designs, and comparisons of different observational methods
including plot shapes and detection aspects. Part VI introduces adaptive sam-
pling designs, in which the sampling procedure depends on what is observed
during the survey; for example, sampling effort may be increased in the vicin-
ity of high observed abundance. The adaptive cluster sampling designs described
can be remarkably effective for sampling rare, clustered populations, which by
conventional methods are notoriously difficult to sample.

Researchers faced with such problems as estimating the abundance of an animal
population or an elusive human population, predicting the amount of mineral or
fossil-fuel resource at a new site, or estimating the prevalence of a rare disease
must be aware that the most effective methods go beyond the material traditionally
found in sampling books. At the same time, such researchers may not be aware of
the potential usefulness of some of the relatively recent developments in sampling
theory and methods—such as network sampling, adaptive sampling designs, and
generalized ratio and regression estimation with unequal probability designs. For

xix



xx preface to the first edition

these reasons, the selection of topics covered in this book is wider than has been
traditional for sampling texts.

Some important sampling methodologies have developed largely in particular
fields—such as ecology, geology, or health sciences—seemingly in isolation from
the mainstream of statistical sampling theory. In the chapters on such methods, I
have endeavored to bring out the connections with and the advantages to be gained
from basic sampling design, estimation, and prediction results. Thus, for instance,
in the chapters on detectability methods associated in particular with ecological
sampling, sampling design is emphasized. In the chapter on the prediction or krig-
ing methods associated with geostatistics, the connection to regression estimation
results is noted. In the chapter on network sampling, originally associated with
epidemiological surveys, the notation has been simplified and connections to basic
unequal probability sampling estimators are observed.

Although the range of topics in this book is for the above-noted reasons con-
siderably wider than has been traditional for sampling texts, it has been necessary,
in order to keep the book of the desired size, to be selective in what to include.
To the reader for whom an additional topic would have been particularly helpful,
I can only offer the recompense of the references cited throughout the text to give
access to the wider literature in sampling.

My immediate purposes in writing this book were to provide a text for graduate
and upper-level undergraduate courses in sampling at the University of Alaska
Fairbanks and at the University of Auckland and to provide a manual of useful
sampling and estimation methods for researchers with whom I had worked on
various projects in a variety of scientific fields. No available manual or text covered
the range of topics of interest to these people.

In my experience the backgrounds of the researchers and students interested
in sampling topics have been extremely diverse: While some are in statistics or
mathematics, many others are in the natural and social sciences and other fields.
In writing this book I have assumed the same diversity of backgrounds; the only
common factor I feel I can take for granted is some previous course in statistics.
The chapters are for the most part organized so that the basic methods and worked
examples come first, with generalizations and key derivations following for those
interested.

A basic one-semester course in sampling can consist of Chapters 1 through 8
and 11 through 13 or 14, with one or more topics from the remainder of the book
added, depending on time and interest. For a graduate class in which many of the
students are interested in the special topics of the last three parts of the book, the
instructor may wish to cover the basic ideas and methods of the first three parts
quite quickly, drawing on them for background later, and spend most of the time
on the second half of the book.

I would like to give my thanks to the many people who have influenced and
enriched the contents of this book through conversations, joint work, and other
interactions on sampling and statistics. In particular, I would like to express appre-
ciation to Fred Ramsey, P. X. Quang, Dana Thomas, and Lyle Calvin. Also, I
am grateful to Lyman McDonald, David Siegmund, Richard Cormack, Stephen
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Buckland, Bryan Manly, Scott Overton, and Tore Schweder for enlightening con-
versations on statistical sampling methods. I would like to thank my colleagues at
Auckland—George Seber, Alastair Scott, Chris Wild, Chris Triggs, Alan Lee, Peter
Danaher, and Ross Ihaka—for the benefits of our collaborations, discussions, and
daily interactions through which my awareness of relevant and interesting issues
in sampling has been increased. I thank my sabbatical hosts at the Institute of
Mathematical Statistics at the University of Copenhagen, where some of the sam-
pling designs of this book were first seen as sketches on napkins in the lunch
room: Søren Johansen, Tue Tjur, Hans Brøns, Martin Jacobsen, Inge Henningsen,
Søren Tolver Jensen, and Steen Andersson. Among the many friends and asso-
ciates around Alaska who have shared their experiences and ideas on sampling
to the benefit of this book are Pat Holmes, Peter Jackson, Jerry McCrary, Jack
Hodges, Hal Geiger, Dan Reed, Earl Becker, Dave Bernard, Sam Harbo, Linda
Brannian, Allen Bingham, Alan Johnson, Terry Quinn, Bob Fagen, Don Marx, and
Daniel Hawkins. Questions and comments leading to rethinking and rewriting of
sampling topics have been contributed by many students, to each of whom I offer
my thanks and among whom I would particularly like to mention Cheang Wai
Kwong, Steve Fleischman, Ed Berg, and Heather McIntyre.

I would like to give a special thanks to my editor, Kate Roach, at John Wiley
& Sons for her encouragement and enthusiasm. Research support provided by two
grants from the National Science Foundation (DMS-8705812, supported by
the Probability and Statistics Program and DMS-9016708, jointly supported by
the Probability and Statistics Program and the Environmental Biology Division)
resulted in a better book than would have otherwise been possible. I wish to thank
Mary for, among many other things, her supportive sense of humor; when on a
trip through Norway I could not find a certain guide book after ransacking the
luggage jumble from one end of our vehicle to the other, she reminded me to
“use adaptive sampling” and, starting with the location of another book randomly
discovered amidst the chaos, soon produced the wanted volume. Finally, I thank
Jonathan, Lynn, Daniel, and Christopher for an environment of enthusiasm and
innovativeness providing inspiration all along the way.

Steven K. Thompson
Auckland, New Zealand



C H A P T E R 1

Introduction

Sampling consists of selecting some part of a population to observe so that one
may estimate something about the whole population. Thus, to estimate the amount
of lichen available as food for caribou in Alaska, a biologist collects lichen from
selected small plots within the study area. Based on the dry weight of these speci-
mens, the available biomass for the whole region is estimated. Similarly, to estimate
the amount of recoverable oil in a region, a few (highly expensive) sample holes
are drilled. The situation is similar in a national opinion survey, in which only a
sample of the people in the population is contacted, and the opinions in the sam-
ple are used to estimate the proportions with the various opinions in the whole
population. To estimate the prevalence of a rare disease, the sample might consist
of a number of medical institutions, each of which has records of patients treated.
To estimate the abundance of a rare and endangered bird species, the abundance
of birds in the population is estimated based on the pattern of detections from a
sample of sites in the study region. In a study of risk behaviors associated with the
transmission of the human immunodeficiency virus (HIV), a sample of injecting
drug users is obtained by following social links from one member of the population
to another.

Some obvious questions for such studies are how best to obtain the sample and
make the observations and, once the sample data are in hand, how best to use them
to estimate the characteristic of the whole population. Obtaining the observations
involves questions of sample size, how to select the sample, what observational
methods to use, and what measurements to record. Getting good estimates with
observations means picking out the relevant aspects of the data, deciding whether
to use auxiliary information in estimation, and choosing the form of the estimator.

Sampling is usually distinguished from the closely related field of experimental
design , in that in experiments one deliberately perturbs some part of a population
in order to see what the effect of that action is. In sampling, more often one likes
to find out what the population is like without perturbing or disturbing it. Thus,
one hopes that the wording of a questionnaire will not influence the respondents’

Sampling, Third Edition. Steven K. Thompson.
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2 introduction

opinions or that observing animals in a population will not significantly affect the
distribution or behavior of the population.

Sampling is also usually distinguished from observational studies , in which one
has little or no control over how the observations on the population were obtained.
In sampling one has the opportunity to deliberately select the sample, thus avoiding
many of the factors that make data observed by happenstance, convenience, or other
uncontrolled means “unrepresentative.”

More broadly, the field of sampling concerns every aspect of how data are
selected, out of all the possibilities that might have been observed, whether the
selection process has been under the control of investigators or has been determined
by nature or happenstance, and how to use such data to make inferences about
the larger population of interest. Surveys in which there is some control over the
procedure by which the sample is selected turn out to have considerable advantages
for purposes of inference about the population from which the sample comes.

1.1. BASIC IDEAS OF SAMPLING AND ESTIMATION

In the basic sampling setup, the population consists of a known, finite number N of
units—such as people or plots of ground. With each unit is associated a value of a
variable of interest, sometimes referred to as the y-value of that unit. The y-value
of each unit in the population is viewed as a fixed, if unknown quantity—not a
random variable. The units in the population are identifiable and may be labeled
with numbers 1, 2, . . . , N .

Only a sample of the units in the population are selected and observed. The data
collected consist of the y-value for each unit in the sample, together with the unit’s
label. Thus, for each hole drilled in the oil reserve, the data not only record how
much oil was found but also identify, through the label, the location of the hole.
In addition to the variable of interest, any number of auxiliary variables, such as
depth and substrate types, may be recorded. In a lichen survey, auxiliary variables
recorded could include elevation, presence of other vegetation, or even “eyeball”
estimates of the lichen biomass. In an opinion poll, auxiliary variables such as
gender, age, or income class may be recorded along with the opinions.

The procedure by which the sample of units is selected from the population is
called the sampling design . With most well-known sampling designs, the design is
determined by assigning to each possible sample s the probability P(s) of selecting
that sample. For example, in a simple random sampling design with sample size
n , a possible sample s consists of a set of n distinct units from the population,
and the probability P(s) is the same for every possible sample s . In practice, the
design may equivalently be described as a step-by-step procedure for selecting
units rather than the resulting probabilities for selecting whole samples. In the case
of simple random sampling, a step-by-step procedure consists of selecting a unit
label at random from {1, 2, . . . , N}, selecting the next unit label at random from
the remaining numbers between 1 and N , and so on until n distinct sample units
are selected.
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The entire sequence y1, y2, . . . , yN of y-values in the population is considered a
fixed characteristic or parameter of the population in the basic sampling view. The
usual inference problem in sampling is to estimate some summary characteristic of
the population, such as the mean or the total of the y-values, after observing only
the sample. Additionally, in most sampling and estimation situations, one would
like to be able to assess the accuracy or confidence associated with estimates; this
assessment is most often expressed with a confidence interval.

In the basic sampling view, if the sample size were expanded until all N units
of the population were included in the sample, the population characteristic of
interest would be known exactly. The uncertainty in estimates obtained by sampling
thus stems from the fact that only part of the population is observed. While the
population characteristic remains fixed, the estimate of it depends on which sample
is selected. If for every possible sample the estimate is quite close to the true
value of the population characteristic, there is little uncertainty associated with
the sampling strategy; such a strategy is considered desirable. If, on the other
hand, the value of the estimate varies greatly from one possible sample to another,
uncertainty is associated with the method. A trick performed with many of the
most useful sampling designs—cleverer than it may appear at first glance—is that
this variability from sample to sample is estimated using only the single sample
selected.

With careful attention to the sampling design and using a suitable estimation
method, one can obtain estimates that are unbiased for population quantities, such
as the population mean or total, without relying on any assumptions about the
population itself. The estimate is unbiased in that its expected value over all possible
samples that might be selected with the design equals the actual population value.
Thus, through the design and estimation procedure, an unbiased estimate of lichen
biomass is obtained whether lichens are evenly distributed throughout the study area
or are clumped into a few patches. Additionally, the random or probability selection
of samples removes recognized and unrecognized human sources of bias, such as
conscious or unconscious tendencies to select units with larger (or smaller) than
average values of the variable of interest. Such a procedure is especially desirable
when survey results are relied on by persons with conflicting sets of interests—a
fish population survey that will be used by fishery managers, commercial fishermen,
and environmentalists, for instance. In such cases, it is unlikely that all parties
concerned could agree on the purposive selection of a “representative” sample.

A probability design such as simple random sampling thus can provide unbi-
ased estimates of the population mean or total and also an unbiased estimate of
variability, which is used to assess the reliability of the survey result. Unbiased
estimates and estimates of variance can also be obtained from unequal probability
designs, provided that the probability of inclusion in the sample is known for each
unit and for pairs of units.

Along with the goal of unbiased or nearly unbiased estimates from the survey
come goals of precise or low-variance estimates and procedures that are convenient
or cost-effective to carry out. The desire to satisfy as many of these goals as
possible under a variety of circumstances has led to the development of widely used



4 introduction

sampling designs and estimation methods, including simple random and unequal
probability sampling; the use of auxiliary information; stratified, systematic, cluster,
multistage, and double sampling; and other techniques.

1.2. SAMPLING UNITS

With many populations of people and institutions, it is straightforward to identify
the type of units to be sampled and to conceive of a list or frame of the units in the
population, whatever the practical problems of obtaining the frame or observing
the selected sample. The units may be people, households, hospitals, or businesses.
A complete list of the people, households, medical institutions, or firms in the
target population would provide an ideal frame from which the sample units could
be selected. In practice, it is often difficult to obtain a list that corresponds exactly
to the population of interest. A telephone directory does not list people without
telephones or with unlisted numbers. The set of all possible telephone numbers,
which may be sampled by random dialing, still does not include households without
telephones. A list of public or private institutions may not be up-to-date.

With many other populations, it is not so clear what the units should be. In a
survey of a natural resource or agricultural crop in a region, the region may be
divided into a set of geographic units (plots or segments) and a sample of units may
be selected using a map. However, one is free to choose alternative sizes and shapes
of units, and such choices may affect the cost of the survey and the precision of
estimators. Further, with a sampling procedure in which a point location is chosen
at random in a study region and sample units are then centered around the selected
points, the sample units can potentially overlap, and hence the number of units in
the population from which the sample is selected is not finite.

For an elusive population with detectability problems, the role of units or plots
may be superseded by that of detectability functions, which are associated with
the methods by which the population is observed and the locations are selected for
making the observations. For example, in selecting the locations of line transects in
a bird survey and choosing the speed at which they are traversed, one determines
the “effective areas” observed within the study area in place of traditional sampling
units or plots.

In some sampling situations the variable of interest may vary continuously over
a region. For example, in a survey to assess the oil reserves in a region, the variable
measured may be the depth or core volume of oil at a location. The value of such a
variable is not necessarily associated with any of a finite set of units in the region,
but rather, may be measured or estimated either at a point or as a total over a
subregion of any size or shape.

Although the foregoing sampling situations go beyond the framework of a
population divided uniquely into a finite collection of units from which the sam-
ple is selected, basic sampling design considerations regarding random sampling,
stratified sampling, and other designs, and estimation results on design-unbiased
estimation, ratio estimation, and other methods still apply.
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1.3. SAMPLING AND NONSAMPLING ERRORS

The basic sampling view assumes that the variable of interest is measured on every
unit in the sample without error, so that errors in the estimates occur only because
just part of the population is included in the sample. Such errors are referred to as
sampling errors . But in real survey situations, nonsampling errors may arise also.
Some people in a sample may be away from home when phoned or may refuse to
answer a question on a questionnaire, and such nonrespondents may not be typical
of the population as a whole, so that the sample tends to be unrepresentative of the
population and the estimates are biased. In a fish survey, some selected sites may
not be observed due to rough weather conditions; sites farthest from shore, which
may not be typical of the study region as a whole, are the most likely to have such
weather problems.

The problem of nonresponse is particularly pronounced in a survey with a very
low response rate, in which the probability of responding is related to the character-
istic to be measured—magazine readership surveys of sexual practices exemplify
the problem. The effect of the nonresponse problem may be reduced through addi-
tional sampling effort to estimate the characteristics of the nonresponse stratum of
the population, by judicious use of auxiliary information available on both respond-
ing and nonresponding units, or by modeling of the nonresponse situation. But
perhaps the best advice is to strive to keep nonresponse rates as low as possible.

Errors in measuring or recording the variable of interest may also occur. Quality-
control effort throughout every stage of a survey is needed to keep errors to a
minimum. In some situations, it may be possible to model measurement errors
separately from sampling issues in order to relate the observations to population
characteristics.

Detectability problems are a type of nonsampling error that occurs with a wide
range of elusive populations. On a bird survey, the observer is typically unable to
detect every individual of the species in the vicinity of a sampling site. In a trawl
survey of fish, not every fish in the path of the net is caught. Nor is every homeless
person in a society counted in a census. A number of special techniques, including
line transect, capture–recapture, and related methods, have been developed for
estimating population quantities when detectability problems are a central issue.

1.4. MODELS IN SAMPLING

In the basic sampling view the population is a finite set of units, each with a fixed
value of the variable of interest, and probability enters only through the design, that
is, the procedure by which the sample of units is selected. But for some populations
it may be realistic and of practical advantage to consider a probability model
for the population itself. The model might be based on knowledge of the natural
phenomena influencing the distribution of the type of population or on a pragmatic
statistical model summarizing some basic characteristics of such populations.

For example, a regression model may empirically describe a relationship
between a variable of interest, the yield of a horticultural crop, say, with an
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auxiliary variable, such as the median level of an air pollutant. The model relating
the variable of interest with the auxiliary variable has implications both for how
to design the survey and how to make estimates.

In spatial sampling situations, the existence of correlations between values of
the variable of interest at different sites, depending on the distance between the
sites, has implications for choices regarding sampling design, estimation or predic-
tion, and observational method. A model-based approach utilizing such correlation
patterns has been particularly influential in geological surveys of mineral and fossil-
fuel resources. In ecological surveys, such correlation patterns have implications
not only for the spatial selection of observational sites, but for the observational
methods (including plot shapes) used.

Ideally, one would like to be able to use a model of the population without
having all conclusions of the survey depend on the model’s being exactly true.
A “robust” approach to sampling uses models to suggest efficient procedures while
using the design to protect against departures from the model.

1.5. ADAPTIVE AND NONADAPTIVE DESIGNS

Surveys of rare, clustered populations motivate a further advance beyond the basic
view of a sampling design. In adaptive sampling designs, the procedure for selecting
sites or units on which to make observations may depend on observed values of
the variable of interest. For example, in a survey for estimating the abundance of a
natural resource, additional sites may be added to the sample during the survey in
the vicinity of high observed abundance. Such designs have important applications
to surveys of animal, plant, mineral, and fossil-fuel resources and may also have
applications to other fields such as epidemiology and quality control.

The main purpose of adaptive procedures is to achieve gains in precision or
efficiency, compared to conventional designs of equivalent sample size, by tak-
ing advantage of observed characteristics of the population. Adaptive procedures
include such procedures as sequential stopping rules and sequential allocation
among strata—procedures that have been rather heavily studied outside the finite-
population context in the field of sequential analysis. With the population units
identifiable as in the sampling situation, the possibilities for adaptive procedures
are even greater, since it is possible to decide during a survey not just how many
units to sample next but exactly which units or group of units to sample next.

In adaptive cluster sampling, whenever an observed value of the variable of inter-
est satisfies a given criterion—for example, high abundance of animals observed at
a site—units in the neighborhood of that unit (site) are added to the sample. A num-
ber of variations on this type of design are described in the final chapters of this
book. For some populations, the designs produce remarkable increases in efficiency
and appear to be particularly effective for sampling rare, clustered populations.

The sampling design is given for a conventional or nonadaptive design by a
probability P(s) of selecting any particular sample s . For an adaptive design, the
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probability of selecting a given sample of units is P(s|y), that is, the probability of
selecting sample s is conditional on the set y of values of the variable of interest
in the population. Of course, in practice, the selection procedure can depend only
on those values already observed.

Many natural populations tend to aggregate into fairly small portions of the
study region, but the locations of these concentrations cannot be predicted prior to
the survey. An effective adaptive design for such a population can result in higher
selection probabilities assigned to samples that have a preponderance of units in
those concentration areas. While the primary purpose of such a design may be to
obtain a more precise estimate of the population total, a secondary benefit can be
a dramatic increase in the yield of interesting observations—for example, more
animals seen or more of a mineral obtained. Once adaptive designs are considered,
the scope and potential of sampling methodology widens considerably.

1.6. SOME SAMPLING HISTORY

In the earliest known European nonfiction book, The Histories (ca. 440 B.C.), the
author Herodotus describes a sampling method used by a Persian king to estimate
the number of his troops during an invasion of Greece. A sample group of a fixed
number of soldiers was instructed to stand as close together as possible and the area
in which they had stood was enclosed by a short fence. Then the entire army was
marched through, filling the enclosure group by group, and the number of groups
required was tabulated. Multiplying the number of groups by the number in the
sample group gave the estimated size of the whole force. No attempt was made to
assess the accuracy of the estimate, and no description is given of how the initial
sample group was selected. In fact, historians believe that the estimate reported,
1,700,000, was a gross overestimate based on present knowledge regarding feasible
sizes of populations and armies at that time. Even so, the sampling strategy appears
to be a fairly sensible use of an expansion estimator, and the recorded overestimate
may have more to do with military propagandizing or to Herodotus’s enthusiasm
for large numbers than to sampling variability or bias.

This place seemed to Xerxes a convenient spot for reviewing and numbering his soldiers;
which things accordingly he proceeded to do. . . .What the exact number of the troops of
each nation was I cannot say with certainty—for it is not mentioned by any one—but the
whole land army together was found to amount to one million seven hundred thousand
men. The manner in which the numbering took place was the following. A body of ten
thousand men was brought to a certain place, and the men were made to stand as close
together as possible; after which a circle was drawn around them, and the men were
let go: then where the circle had been, a fence was built about the height of a man’s
middle; and the enclosure was filled continually with fresh troops, till the whole army
had in this way been numbered. When the numbering was over, the troops were drawn
up according to their several nations. (The History of Herodotus, Book VII , translated
by George Rawlingson, The Internet Classics Archive by Daniel C. Stevenson, Web
Atomics, 1994–2000, http:classics.mit.edu/Herodotus/history.html)
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Many of the specific sampling designs and estimation methods in wide use
today were developed in the twentieth century. Early in the twentieth century
there was considerable debate among survey practitioners on the merits of random
sampling versus purposively trying to select the most “representative” sample pos-
sible. The basic methods and formulas of simple random sampling were worked
out in the first two decades of the century. An article by Neyman (1934) com-
pared the two methods and laid out the conceptual basis for probability sampling,
in which the sample is selected at random from a known distribution. Most stan-
dard sampling designs—stratified sampling, systematic sampling, cluster sampling,
multistage sampling, and double or multiphase sampling—had been introduced by
the end of the 1930s. The U.S. Census introduced probability sampling methods
when it took over the sample survey of unemployment in the early 1940s. Unequal
probability designs were introduced in the 1940s and 1950s.

The theory and methods of sampling have continued to develop and expand
throughout the second half of the twentieth and the early twenty-first centuries.
Studies in the theory of sampling by Godambe and others from the early 1950s
forward have helped clarify the inference issues in sampling and have opened
the way for subsequent development of new methods. A number of new designs
and inference methods have been introduced in response to difficult problems in
studies of natural and human populations, with contributing developments coming
from many fields. Differences of opinion over design-based versus model-based
approaches in sampling have led to the development of methods that combine both
approaches. Recent developments in the field of missing data analysis have opened
up new analysis methods and underscored the importance of how observed data
are selected from the potential observations.

More detailed notes on the history of sampling are found in Bellhouse (1988b),
Hansen et al. (1985), and Kruskal and Mosteller (1980). Some general references to
sampling or specific aspects of sampling include Barnett (1991), Bart et al. (1998),
Bolfarine and Zacks (1992), Chaudhuri and Stenger (1992), Cochran (1977), Fore-
man (1991), Ghosh and Meeden (1997), Govindarajulu (1999), Hansen et al. (1953),
Hedayat and Sinha (1991), Kish (1965), Lohr (1999), Orton (2000), Raj (1968),
Rubin (1987), Sampath (2001), Särndal et al. (1992), Schreuder et al. (1993),
Sukhatme and Sukhatme (1970), M. E. Thompson (1997), Thompson and Seber
(1996), Tryfos (1996), and Yates (1981).
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Simple Random Sampling

Simple random sampling , or random sampling without replacement , is a sampling
design in which n distinct units are selected from the N units in the population
in such a way that every possible combination of n units is equally likely to be
the sample selected. The sample may be obtained through n selections in which
at each step every unit of the population not already selected has equal chance of
selection. Equivalently, one may make a sequence of independent selections from
the whole population, each unit having equal probability of selection at each step,
discarding repeat selections and continuing until n distinct units are obtained.

A simple random sample of n = 40 units from a population of N = 400 units
is depicted in Figure 2.1. Another simple random sample, just as likely as the first
to be selected, is shown in Figure 2.2. Each such combination of 40 units has
equal probability of being the sample selected. With simple random sampling, the
probability that the i th unit of the population is included in the sample is πi = n/N ,
so that the inclusion probability is the same for each unit. Designs other than simple
random sampling may give each unit equal probability of being included in the
sample, but only with simple random sampling does each possible sample of n
units have the same probability.

2.1. SELECTING A SIMPLE RANDOM SAMPLE

A simple random sample may be selected by writing the numbers 1 through N on
N pieces of paper, putting the pieces of paper in a hat, stirring them thoroughly,
and, without looking, selecting n of the pieces of paper without replacing any.
The sample consists of the set of population units whose labels correspond to the
numbers selected. To reduce the labor of the selection process and to avoid such
problems as pieces of paper sticking together, the selection is more commonly
made using a random number table or a computer “random number” generator.

To select a simple random sample of n units from the N in the population
using a random number table, one may read down columns of digits in the table

Sampling, Third Edition. Steven K. Thompson.
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Figure 2.1. Simple random sample of 40 units from a population of 400 units.

Figure 2.2. Another simple random sample of 40 units.
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starting from a haphazard location. As many columns of the table as N − 1 has
digits are used. When using three columns, the digits “000” would be interpreted
as unit 1000. When using the table, repeat selections and numbers greater than N
are ignored, and selection continues until n distinct units are obtained.

The basic random number generator on most computers produces decimal frac-
tions uniformly distributed between zero and 1. The first few digits after the decimal
place in such numbers can be used to represent unit label numbers.

Table 2.1 lists 285 uniform random numbers, each shown to 10 digits after the
decimal point, produced by a computer random number generator. Suppose that we
wish to select a simple random sample of n = 10 units from a population of N = 67
units. Starting from the first entry in Table 2.1 and reading pairs of digits downward
(it would also be valid to read across rows of the table, to use pairs of digits other
than the first after the decimal point, or to start at a point other than the beginning
of the list), the first pair is 99. Since there is no unit 99 in the population, this entry
is passed over, and the first unit selected to be in the sample is unit 21. Continuing
down the column, the sample selected consists of the units 21, 12, 1, 15, 29, 43,
30, 63, 2, and 8. In making the selection, note that entries 68, 76, 86, 97, and 100
(represented by the pair 00) were passed over since each is larger than N . Entry
43 was passed over the second time it appeared, so the sample contains 10 distinct
units. Many computer systems include facilities for direct random selection without
replacement of n integers between 1 and N , eliminating the tedium of passing over
repeat values or values larger than N . For example, in either of the statistical
systems R or S-PLUS, the command “s <- sample(1:27502, 12500, replace = F)”
selects n = 12,500 integers at random without replacement from the set of integers
from 1 to 27,502 and stores the selected numbers in “s.”

2.2. ESTIMATING THE POPULATION MEAN

With simple random sampling, the sample mean y is an unbiased estimator of the
population mean μ. The population mean μ is the average of the y-values in the
whole population:

μ = 1

N
(y1 + y2 + · · · + yN) = 1

N

N∑
i=1

yi (2.1)

The sample mean y is the average of the y-values in the sample:

y = 1

n
(y1 + y2 + · · · + yn) = 1

n

n∑
i=1

yi (2.2)

Also with simple random sampling, the sample variance s2 is an unbiased estima-
tor of the finite-population variance σ 2. The finite-population variance is defined as

σ 2 = 1

N − 1

N∑
i=1

(yi − μ)2 (2.3)
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Table 2.1: Uniform Random Numbers

.9915338159 .3376058340 .1529208720 .0008221702 .3645994067

.2110764831 .4482254982 .0259101614 .1159885451 .5011445284

.1215928346 .4434396327 .1677099317 .5284986496 .9135305882

.0125039294 .2536827028 .1724499613 .5171836615 .5422329903

.1583184451 .4694896638 .9516881704 .3874872923 .0451180041

.2974444926 .9606751800 .2988916636 .7681296468 .3288438320

.4321415126 .9025109410 .6112304330 .4916386008 .8434410095

.3065150678 .5485164523 .6078377366 .1443793625 .7657701969

.6806892753 .0791656822 .7079550028 .7407252192 .7297828197

.7614942193 .4598654807 .8545978069 .4847860932 .7846541405

.8696339726 .2160511613 .5071278811 .0302107912 .3910638690

.4398060441 .0101473443 .0496022329 .2955447733 .6359770298

.9754472375 .0900140777 .9543433189 .7030580044 .6982350349

.6345051527 .9645981193 .4215144813 .8500274420 .4303097129

.0047403700 .9751796722 .6224800944 .4581535459 .3851253986

.0205896683 .2392801940 .0118337637 .6197799444 .9798330665

.0894387960 .1349214613 .0790547207 .1108237952 .1181035042

.6207187772 .4988264143 .9772401452 .2934628427 .7792176604

.8887537122 .3153925836 .4549961388 .3680104315 .8818087578

.3764214814 .6713073850 .9082747102 .3485270441 .7828890681

.9147837162 .4565998316 .2507463396 .8603917360 .3503700197

.7551217675 .6151723266 .6706758142 .9292267561 .7541347742

.4477638602 .4369836152 .4551322758 .8340566158 .6796288490

.8799548149 .5218108892 .2309677154 .6433401108 .0874217674

.6529608965 .9821792245 .8369561434 .8693770766 .3227941990

.9485814571 .7658874393 .5788805485 .8377626538 .1910941452

.9316777587 .5495033860 .7132855058 .9236876369 .1685705334

.6445560455 .1993282586 .1627506465 .0411975421 .0192697253

.0773160681 .6400896907 .4214436412 .5431558490 .5692960024

.8540129066 .5267632008 .6384039521 .4066059291 .0482674502

.6418970227 .2250400186 .6437576413 .2099322975 .3629093170

.1715016663 .1052204221 .6630748510 .1328498721 .1639286429

.1240955144 .0937742889 .4384917915 .4143532813 .8565336466

.9962730408 .1046832651 .1845341027 .7540032864 .8298202157

.1585547477 .7293077707 .7993465066 .7446641326 .5463740826

.7089923620 .1290157437 .8575667739 .0251938123 .7664318085

.3898053765 .9139558077 .3378374279 .2337769121 .4814206958

.7222445011 .6537817717 .1274980158 .0039445930 .3522033393

.1698853821 .5726385117 .7305127382 .2965210974 .2888952196

.5344746709 .2255166918 .0169686452 .5906063914 .9546776414

.7548384070 .0843338221 .8771440983 .7653347254 .5916480422

.1039589792 .6858401299 .6389055848 .9076186419 .8857548237

.5081589222 .2550631166 .1969931573 .0558514856 .6456795335

.3169104457 .5660375357 .6318614483 .1304887086 .4802035689

.6693667173 .9299270511 .8694118261 .2035958767 .9613003135
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Table 2.1: Uniform Random Numbers (Continued )

.3214286268 .8198484778 .8971202970 .0275031179 .1577183455

.1545569003 .2482915521 .7872648835 .4376204610 .2435218245

.5372928381 .5366832614 .4940558970 .5881735682 .5513799191

.0131097753 .9373838305 .9739696383 .5421801805 .3240519464

.3482980430 .7070090175 .6941514015 .1654081792 .3356401920

.4537515640 .8378376961 .3140848875 .5731232762 .2575304508

.3538932502 .5364976525 .0633419156 .2484393269 .7877063751

.6873268485 .3285647929 .7112956643 .5748419762 .8346126676

.1625820547 .6026779413 .9953029752 .7957111597 .2106933594

.9141720533 .6276242733 .7062586546 .0587451383 .3998769820

.4099894762 .7787652612 .3133662939 .8499189615 .0682335123

.4036674798 .4339759648 .7664646506 .0310811996 .7275006175

The sample variance is defined as

s2 = 1

n − 1

n∑
i=1

(yi − y)2 (2.4)

The variance of the estimator y with simple random sampling is

var(y) =
(

N − n

N

)
σ 2

n
(2.5)

An unbiased estimator of this variance is

v̂ar(y) =
(

N − n

N

)
s2

n
(2.6)

The square root of the variance of the estimator is its standard error; the estimated
standard error is in general not an unbiased estimator of the actual standard error.

The quantity (N − n)/N , which may alternatively be written 1 − (n/N), is
termed the finite-population correction factor . If the population is large relative to
the sample size, so that the sampling fraction n/N is small, the finite-population
correction factor will be close to 1, and the variance of the sample mean y will
be approximately equal to σ 2/n. Omitting the finite-population correction factor in
estimating the variance of y in such a situation will tend to give a slight overestimate
of the true variance. In sampling small populations, however, the finite-population
correction factor may have an appreciable effect in reducing the variance of the
estimator, and it is important to include it in the estimate of that variance. Note
that as sample size n approaches the population size N in simple random sampling,
the finite-population correction factor approaches zero, so that the variance of the
estimator y approaches zero.
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2.3. ESTIMATING THE POPULATION TOTAL

To estimate the population total τ , where

τ =
N∑

i=1

yi = Nμ (2.7)

the sample mean is multiplied by N . An unbiased estimator of the population
total is

τ̂ = Ny = N

n

n∑
i=1

yi (2.8)

Since the estimator τ̂ is N times the estimator y, the variance of τ̂ is N2 times
the variance of y. Thus,

var(τ̂ ) = N2 var(y) = N(N − n)
σ 2

n
(2.9)

An unbiased estimator of this variance is

v̂ar(τ̂ ) = N2v̂ar(y) = N(N − n)
s2

n
(2.10)

Example 1: Estimates from Survey Data. In an experimental survey of caribou
on the Arctic Coastal Plain of Alaska, caribou were counted from an aircraft flying
over selected lines across the study region (Davis et al. 1979; Valkenburg 1990). All
caribou within 1/2 mile to either side of each line flown were recorded, so that each
unit was a 1-mile-wide strip. A simple random sample of 15 north–south strips
was selected from the 286-mile-wide study region, so that n = 15 and N = 286.
The numbers of caribou in the 15 sample units were 1, 50, 21, 98, 2, 36, 4, 29, 7,
15, 86, 10, 21, 5, and 4.

The sample mean [using Equation (2.2)] is

y = 1 + 50 + · · · + 4

15
= 25.9333

The sample variance [using Equation (2.6)] is

s2 = (1 − 25.93)2 + (50 − 25.93)2 + · · · + (4 − 25.93)2

15 − 1
= 919.0667

The estimated variance of the sample mean [using Equation (2.6)] is

v̂ar(y) =
(

286 − 15

286

)
919.07

15
= 58.0576

so that the estimated standard error is
√

58.06 = 7.62.
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An estimate of the total number of caribou in the study region [using Equation
(2.8)] is

τ̂ = 286(25.9333) = 7417

The estimated variance associated with the estimate of the total [using Equation
(2.10)] is

v̂ar(τ̂ ) = 2862(58.0576) = 4,748,879

giving an estimated standard error of
√

4,748,879 = 2179. �

2.4. SOME UNDERLYING IDEAS

The estimator y is a random variable, the outcome of which depends on which
sample is selected. With any given sample, the value of y may be either higher
or lower than the population mean μ. But the expected value of y, taken over all
possible samples, equals μ. Thus, the estimator y is said to be design-unbiased
for the population quantity μ, since the probability with respect to which the
expectation is evaluated arises from the probabilities, due to the design, of selecting
different samples.

Therefore, the unbiasedness of the sample mean of the population mean with
simple random sampling does not depend on any assumptions about the population
itself.

The variance estimates are similarly design-unbiased for their population coun-
terparts. The actual variance of the estimator y depends on the population through
the population variance σ 2. For a given population, however, a larger sample size
n will always produce a lower variance for the estimators y and τ̂ .

Example 2: All Possible Samples. The ideas underlying simple random sampling
can be illustrated with the sampling of a very small population. The object of the
sampling is to estimate the number of persons attending a lecture. To make a very
quick estimate, a random sample of n = 2 of the N = 4 seating sections in the
lecture theater was selected, and the number of persons in each section selected
was counted. The units (seating sections) were labeled 1, 2, 3, and 4, starting from
the entrance.

Using random digits generated on a computer (four numbered pieces of paper
in a hat would have done as well), the sample {1, 3} was selected. There were 10
people in unit 1 and 13 people in unit 3. The data, which include the unit labels
as well as the y-values in the sample, are {(i, yi), i ∈ s} = {(1, 10), (3, 13)}.

The sample mean is y = (10 + 13)/2 = 11.5. The estimate of the population
total τ , the number of people attending the lecture, is τ̂ = Ny = 4(11.5) = 46.
The sample variance [using Equation (2.4)] is s2 = [(10 − 11.5)2 + (13 − 11.5)2]/
(2 − 1) = 4.5. The estimated variance of τ̂ [using Equation (2.10)] is v̂ar(τ̂ ) =
[(4)(4 − 2)(4.5)]/2 = 18.
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Had another sample of two units been selected, different values would have
been obtained for each of these statistics. Since the population is so small, it is
possible to look at every possible sample and the estimates obtained with each.
Counting the number of people in the remaining seating sections, the population
y-values were determined as summarized in the following table:

Unit, i 1 2 3 4
People, yi 10 17 13 20

The population parameters are τ = 60 people attending the lecture and μ = 15
people per section on average; the finite-population variance is σ 2 = 19.33. With
N = 4 and n = 2, there are

(4
2

) = 6 possible samples. Table 2.2 lists each of the
possible samples s along the y-values ys , and the estimates and the confidence
interval (c.i.) obtained with each sample.

Because of the simple random sampling used, each possible sample has prob-
ability P(s) = 1/6 of being the one selected. An estimator such as τ̂ is a random
variable whose value depends on the sample selected. The expected value of τ̂

with respect to the design is the sum, over all possible samples, of the value of the
estimator for that sample times the probability of selecting that sample. Thus, the
expected value of τ̂ is

E(τ̂ ) = 54

(
1

6

)
+ 46

(
1

6

)
+ 60

(
1

6

)
+ 60

(
1

6

)
+ 74

(
1

6

)
+ 66

(
1

6

)
= 60

demonstrating for this population that the estimator τ̂ is indeed unbiased for the
parameter τ under simple random sampling. Similarly, one can show directly for
the other estimators that E(y) = μ, E(s2) = σ 2, and E[v̂ar(τ̂ )] = var(τ̂ ). On the
other hand, direct computation of the expected value, over all possible samples,
of the sample standard deviation s =

√
s2 gives E(s) = 4.01, while the population

standard deviation is σ = √
19.33 = 4.40, so the sample standard deviation is not

unbiased for the population standard deviation under simple random sampling.
The variance of τ̂ is the sum, over all possible samples, of the value of (τ̂ − τ)2

times the probability of that sample. Thus, direct computation of the variance of τ̂

Table 2.2: Data for Example 2

Sample ys y τ̂ s2 v̂ar(τ̂ )

(1, 2) (10, 17) 13.5 54 24.5 98
(1, 3) (10, 13) 11.5 46 4.5 18
(1, 4) (10, 20) 15.0 60 50.0 200
(2, 3) (17, 13) 15.0 60 8.0 32
(2, 4) (17, 20) 18.5 74 4.5 18
(3, 4) (13, 20) 16.5 66 24.5 98
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(using the data in Table 2.2) gives

var(τ̂ ) = (54 − 60)2
(

1

6

)
+ (46 − 60)2

(
1

6

)
+ (60 − 60)2

(
1

6

)
+ (60 − 60)2

(
1

6

)
+ (74 − 60)2

(
1

6

)
+ (66 − 60)2

(
1

6

)
= 77.333

�

2.5. RANDOM SAMPLING WITH REPLACEMENT

Imagine drawing n poker chips from a bowl of N numbered chips one at a time,
returning each chip to the bowl before selecting the next. With such a proce-
dure, any of the chips may be selected more than once. A sample of n units
selected by such a procedure from a population of N units is called a random
sample with replacement . The n selections are independent, and each unit in the
population has the same probability of inclusion in the sample. Simple random
sampling with replacement is characterized by the property that each possible
sequence of n units—distinguishing order of selection and possibly including
repeat selections—has equal probability under the design.

One practical advantage of sampling with replacement is that in some situations
it is an important convenience not to have to determine whether any unit in the data
is included more than once. However, for a given sample size n , simple random
sampling with replacement is inherently less efficient than simple random sampling
without replacement.

Let yn denote the sample mean of the n observations; that is,

yn = 1

n

n∑
i=1

yi (2.11)

Note that if a unit is selected more than once, its y-value is utilized more than
once in the estimator.

The variance of yn is

var(yn) = 1

nN

N∑
i=1

(yi − μ)2 = N − 1

nN
σ 2 (2.12)

Thus, the variance of the sample mean with simple random sampling without
replacement is lower, since it is (N − n)/(N − 1) times that of the sample mean
of all the observations when the sampling is with replacement.

An unbiased estimate of the variance of yn is

v̂ar(yn) = s2

n
(2.13)
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The estimator yn depends on the number of times each unit is selected, so that
two surveys observing exactly the same set of distinct units, but with different
repeat selections, would in general yield different estimates. This situation can be
avoided by using the sample mean of the distinct observations.

The number of distinct units contained in the sample, termed the effective sample
size, is denoted ν. Let yν be the sample mean of the distinct observations:

yν = 1

ν

ν∑
i=1

yi (2.14)

The estimator yν is an unbiased estimator of the population mean. The variance
of yν can be shown to be less than that of yn. However, it is still not as small as the
variance of the sample mean under simple random sampling without replacement
(see Cassel et al. 1977, p. 41). Even so, in some survey situations the practical
convenience of sampling with replacement could allow a larger sample size to be
used, resulting in improved precision for a given amount of time or expense.

Example 3: Random Sampling with Replacement. In a simple random sample
with replacement with nominal sample size n = 5, the following y-values are
obtained: 2, 4, 0, 4, 5. However, examination of the labels of the units in the
sample reveals that one unit, the one with yi = 4, was selected twice. The estimate
of the population mean based on the sample mean of the five observations, not all
of which are distinct [using Equation (2.11)], is

yn = 2 + 4 + 0 + 4 + 5

5
= 3.0

The estimate based only on the four distinct units in the sample [using Equation
(2.14)] is

yν = 2 + 4 + 0 + 5

4
= 2.75

�

2.6. DERIVATIONS FOR RANDOM SAMPLING

Since the number of combinations of n distinct units from a population of size
N is (

N

n

)
= N !

n!(N − n)!
(2.15)

the design simple random sampling assigns probability 1/
(
N

n

)
to each possible

sample s of n distinct units. The probability πi that a given unit i is included in
the sample is the same for every unit in the population and is given by πi = n/N .

It is customary in sampling to write the y-values in the population as
y1, y2, . . . , yN and the y-values in the sample as y1, y2, . . . , yn, and for most
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purposes no confusion results from this simple notation. A more precise notation
lists the y-values in sample s as ys1, ys2, . . . , ysn, distinguishing, for example,
that the first unit in the sample is not necessarily the same unit as the first unit in
the population. With the more careful notation, the sample mean for sample s is
written ys = (1/n)

∑n
i=1 ysi .

The expected value of the sample mean y in simple random sampling is defined
as E(y) = ∑

ysP(s), where the summation is over all possible samples s of size
n , and ys denotes the value of the sample mean for the sample s . This expectation
may be computed directly, since P(s) = 1/

(
N

n

)
for every sample. The number of

samples that include a given unit i is
(
N−1
n−1

)
. Thus,

E(y) =
∑

ysP(s) = 1

n

N∑
i=1

yi

(
N − 1
n − 1

) / (
N

n

)
= 1

N

N∑
i=1

yi (2.16)

so the sample mean is an unbiased estimator of the population mean under simple
random sampling.

Alternatively, the expectation of the sample mean under simple random sampling
can be derived using a device that proves useful in many more complicated designs
as well. For each unit i in the population, define an indicator variable zi such that
zi = 1 if unit i is included in the sample and zi = 0 otherwise. Then the sample
mean can be written in the alternative form

y = 1

n

N∑
i=1

yizi (2.17)

Each of the zi is a (Bernoulli) random variable, with expected value E(zi) =
P(zi = 1) = n/N . Hence the expected value of the sample mean is

E(y) = 1

n

N∑
i=1

yiE(zi) = 1

n

N∑
i=1

yi

n

N
= 1

N

N∑
i=1

yi = μ (2.18)

The variance of the sample mean under simple random sampling can be derived
similarly by either method. Using the indicator-variable method, the variance is

var(y) = var

(
1

n

N∑
i=1

yizi

)
= 1

n2

⎡⎣ N∑
i=1

y2
i var(zi) +

N∑
i=1

∑
j �=i

yiyj cov(zi, zj )

⎤⎦
Since zi is a Bernoulli random variable, var(zi) = (n/N)(1 − n/N).
The number of samples containing both units i and j , when i �= j , is

(
N−2
n−2

)
,

so that the probability that both units are included is
(
N−2
n−2

)
/
(
N

n

) = n(n − 1)/

[N(N − 1)]. The product zizj is zero except when both i and j are included
in the sample, so

E(zizj ) = P(zi = 1, zj = 1) = n(n − 1)

N(N − 1)
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The covariance is

cov(zi, zj ) = E(zizj ) − E(zi)E(zj ) = n(n − 1)

N(N − 1)
−

( n

N

)2
= −n(1 − n/N)

N(N − 1)

Thus, the variance of the sample mean is

var(y) = 1

n2

( n

N

) (
1 − n

N

) ⎡⎣ N∑
i=1

y2
i − 1

N − 1

N∑
i=1

∑
i �=j

yiyj

⎤⎦
Using the identity

N∑
i=1

(yi − μ)2 =
N∑

i=1

y2
i − (

∑
yi)

2

N
= 1

N

⎡⎣(N − 1)

N∑
i=1

y2
i −

N∑
i=1

∑
j �=i

yiyj

⎤⎦

the variance expression simplifies to

var(y) = 1

n

(
1 − n

N

) ∑
(yi − μ)2

N − 1
=

(
1 − n

N

) σ 2

n

For simple random sampling with replacement, the expected value and variance
of the sample mean and the expected value of the sample variance are obtained from
the usual statistical properties of the sample mean of independent and identically
distributed random variables. On any draw, unit i has probability pi = 1/N of
being selected. The probability that unit i is included (one or more times) in the
sample is πi = 1 − (1 − N−1)n. The expected number of times unit i is included
in the sample is n/N .

2.7. MODEL-BASED APPROACH TO SAMPLING

In the fixed-population or design-based approach to sampling, the values
y1, y2, . . . , yN of the variable of interest in the population are considered as
fixed but unknown constants. Randomness or probability enters the problem only
through the deliberately imposed design by which the sample of units to observe
is selected. In the design-based approach, with a design such as simple random
sampling the sample mean is a random variable only because it varies from
sample to sample. One sample gives a value of the sample mean that is greater
than the population mean; another sample gives a value of the sample mean that
is lower than the population mean.

In the stochastic-population or model-based approach to sampling, the values of
the variable of interest, denoted Y1, Y2, . . . , YN , are considered to be random vari-
ables. The population model is given by the joint probability distribution or density
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function f (y1, y2, . . . , yN ; θ), which may depend on one or more unknown param-
eters θ . The population values y1, y2, . . . , yN realized represent just one outcome
of many possible outcomes under the model for the population.

Suppose that the object is to estimate the population mean: for example, mean
household expenditure for a given month in a geographical region. Economic theory
may suggest a statistical model, such as a normal or lognormal distribution, for the
amount a household might spend. The amount that the household spends that month
is then one realization among the many possible under the assumed distribution.

As a very simple population model, assume that the population variables
Y1, Y2, . . . , YN are independent, identically distributed (i.i.d.) random variables
from a distribution having a mean θ and a variance γ 2. That is, for any unit i , the
variable of interest Yi is a random variable with expected value E(Yi) = θ and
variance var(Yi) = γ 2, and for any two units i and j , the variables Yi and Yj are
independent.

Suppose that we have a sample s of n distinct units from the population and the
object is to estimate the parameter θ of the distribution from which the population
comes. For the given sample s , the sample mean

Y = 1

n

∑
i∈s

Yi

is a random variable, whether or not the sample is selected at random, because
for each unit i in the sample Yi is a random variable that can take on different
outcomes. With the assumed model, the expected value of the sample mean is
E(Y ) = θ and its variance is var(Y ) = γ 2/n. Thus, Y is a model-unbiased estimator
of the parameter θ . An approximate 1 − α confidence interval for the parameter θ ,
based on the central limit theorem for the sample mean of independent, identically
distributed random variables, is given by

Y ± tS/
√

n

where S is the sample standard deviation and t is the upper α/2 point of the t
distribution with n − 1 degrees of freedom. If additionally the Yi are assumed to
have a normal distribution, then the confidence level is exact, even with a small
sample size.

In the study of household expenditure the focus of interest may not be on the
parameter θ of the model, however, but on the actual average amount spent by
households in the community that month. That is, the object is to estimate (or
predict) the value of the random quantity

Z = 1

N

N∑
i=1

Yi

The difference between inference about the random variable Z and the model
parameter θ can be appreciated by considering a survey in which every house-
hold in a community is included in the sample, so that n = N . Then, with the
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expenditure Yi measured for every household, there is no uncertainty about the
value of the population mean Z = (1/N)

∑N
i=1 Yi . However, even with the whole

population observed, there is still uncertainty about the parameter θ of the model
that produced the population values, since we have observed only one realization
of the N values from that distribution. That is, with the entire population of house-
holds observed, there is no uncertainty about the household expendure realized in
that population (assuming no measurement error), but there is uncertainty about
the exact distribution or process that produced the expendure pattern realized. In
reality, the more common situation is that the sample size is much smaller than
the population size, so that there is uncertainty about both the population values
realized and the parameters of their distribution.

To estimate or predict the value of the random variable Z = (1/N)
∑N

i=1 Yi from
the sample observations, an intuitively reasonable choice is again the sample mean
Ẑ = Y = ∑

i∈s Yi/n. Both Z and Ẑ have expected value θ , since the expected value
of each of the Yi is θ . Because E(Ẑ) = E(Z), with the expectations evaluated under
the assumed model distribution, the predictor Ẑ is said to be “model unbiased”
for the population quantity Z . More precisely, a predictor Ẑ is said to be model
unbiased for Z if, for any given sample s , the conditional expectations are equal,
that is,

E(Ẑ|s) = E(Z|s)

Additionally, for the type of designs we are considering, the expectation of the
population quantity Z does not depend on the sample s selected, so that E(Z|s) =
E(Z).

Note that the design unbiasedness of the sample mean for the population mean
under our assumed model does not depend on how the sample was selected, that is,
does not depend on the design. Under the assumed model, the predictor is unbiased
with the specific sample selected.

In estimating or predicting the value of a random variable Z with a predictor
Ẑ, one measure of the uncertainty is the mean square prediction error

E(Ẑ − Z)2

If the predictor Ẑ is model unbiased for Z , then E(Ẑ − Z) = 0 and the mean
square prediction error is the variance of the difference,

E(Ẑ − Z)2 = var(Ẑ − Z)

In the case of the sample mean Ẑ = Y as a predictor of the population mean
Z = ∑N

i=1 Yi/N , with the model in which Y1, . . . , YN are independent, identically
distributed from a distribution with mean θ and variance γ 2, the mean square
prediction error is

E(Y − Z)2 =
(

N − n

N

)
γ 2

n
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Proof: Because E(Y ) = E(Z),

E(Y − Z)2 = var

(
1

n

∑
i∈s

Yi − 1

N

N∑
i=1

Yi

)
Separating the terms for units in the sample s from the units in s outside the

sample yields

var

(
Y − 1

N

N∑
i=1

Yi

)
= var

[(
1

n
− 1

N

) ∑
i∈s

Yi − 1

N

∑
i∈s

Yi

]
Since the values in the sample are independent of the values outside the sample,

the variance of the difference between the two independent terms is

var

[(
1

n
− 1

N

)∑
i∈s

Yi − 1

N

∑
i∈s

Yi

]
=

(
1

n
− 1

N

)2

nγ 2 + 1

N2
(N − n)γ 2

=
[
(N − n)2

nN2
+ n(N − n)

nN2

]
γ 2

= N − n

nN
γ 2

�
Notice that in the model framework, the finite-population variance

V =
∑N

i=1(Yi − Z)2

N − 1

is itself a random variable. The notation Z in place of μ and V in place of σ 2 is
used only to emphasize the model-based viewpoint in which these population quan-
tities are themselves random variables. With the independent, identically distributed
model,

E(V ) = γ 2

since by standard results in statistics, the expectation of a sample variance of i.i.d.
random variables equals the variance of the distribution from which the variables
come.

An unbiased estimator or predictor of the mean square prediction error is

Ê(Ẑ − Z)2 = N − n

N

S2

n

since E(S2) = γ 2 since the Yi are i.i.d. with variance γ 2.
Further, an approximate 1 − α prediction interval for Z is given by

Y ± t

√
Ê(Ẑ − Z)2
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where t is the upper α/2 point of the t distribution with n − 1 degrees of freedom.
If, additionally, the distribution of the Yi is assumed to be normal, the confidence
level is exact.

Thus, with the assumed i.i.d. model, the estimation and assessment of uncertainty
are carried out using exactly the same calculations from the sample data as those
used with simple random sampling in the design-based approach. The validity of the
inference in the model-based approach does not require that the sample be selected
by random sampling, but does depend on the realism of the assumed model.

2.8. COMPUTING NOTES

Simple computations for sampling will be illustrated using the open-source
statistical programming language R (Ihaka and Gentleman, 1996). For information
about R, the main R Project Web page is http://www.r-project.org/. Following the
link to Manuals a basic guide is “An Introduction to R.” A good starting point
in that manual is the Appendix called “A Sample Session.” Below the official
manuals is a link to “contributed” documents, which provides introductions and
references ranging in length from one or two pages to several hundred pages.
It is generally very quick and easy to install R on your own computer. You can
download it from the R-project site. Follow the instructions for Windows, Mac
OSX, or Linux, depending on which type of computer system you have.

Entering Data in R

To set the variable x to one specific value:

x <- 20

To set x to a set of values, say, 3, 7, 5, and 2, use the combine function “c”:

x <- c(3,7,5,2)

This combines the five values into a vector named “x”.
Another way is to type “scan()” and at the prompt enter the values with spaces

between them, rather than commas. Hit enter twice when you are done.
Check that x is what you want by typing either “x” or “print(x)”.
To read data into R from a spreadsheet program such as Excel, the easiest way is

to save the data while in the spreadsheet program as a text file with values separated
by commas. Then the file can be read into R with the read.table command or the
more specialized read.csv command. The details will be provided later whenever
we need one of these functions.

Here are some simple R commands to get started:

# everything after "#" is a comment line. You don’t need to
type these lines.
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# type the following commands into the R command window.
# produce the x and y coordinates for a randomly

distributed population of objects in space (eg, trees
# or animals):

popnx <- runif(100)
popny <- runif(100)

# plot the spatial distribution of the population
plot(popnx,popny)

# change the size of the circle representing each object:
# plot(popnx,popny,cex=2)

# select a random sample, without replacement, of 10 objects
out of the 100 in the population oursample
<- sample(1:100,10)

# draw the sample points, in the same plot
points(popnx[oursample],popny[oursample])

# distinguish the sample points from the others by color
points(popnx[oursample],popny[oursample],
pch=21,bg="red",cex=2)

Sample Estimates

The caribou data of Example 2.1 can be entered and stored as a vector called “y”
as follows.

y <- c(1, 50, 21, 98, 2, 36, 4, 29, 7, 15, 86, 10, 21, 5, 4)

The sample mean is

mean(y)

Expanding that by the population size gives the estimate of the population total.

N <- 286
N * mean(y)

The calculations for Example 2.1 along with the output looks like this:

> y <- c(1, 50, 21, 98, 2, 36, 4, 29, 7, 15, 86, 10, 21, 5, 4)
# the sample mean:
> mean(y)
[1] 25.93333
# the sample variance:
> var(y)
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[1] 919.0667
# the estimate of the variance of the sample mean:
> (1-15/286) *var(y)/15
[1] 58.05759
# and standard error:
> sqrt(58.06)
[1] 7.619711
# the estimate of the population total:
> 286*25.9333
[1] 7416.924
# the estimated variance of that estimate:
> 286^2 * 58.0576
[1] 4748879
# and standard error:
> sqrt(4748879)
[1] 2179.192
>

Simulation

The effectiveness of a sampling strategy can be studied through the use of stochastic
simulation. In this method a “population” of N units with corresponding y-values,
as similar as possible to the type to be studied, is obtained or constructed by some
means and stored in the computer. Then (i) a sample is selected using the design
under consideration, such as simple random sampling with sample size n; and (ii)
with the sample data, an estimate of a population characteristic is obtained. These
two steps are repeated b times, where the number of runs b is a large number.
The b repetitions of the sampling procedure produce b different samples s, each of
n units, and b corresponding values of the estimate. The average of these values
approximates the expected value of the estimator under the design. The mean square
error of the b values approximates the mean square error of the estimator under
the design. With an unbiased strategy, the mean square error is the same as the
variance.

The sample mean is used as an estimate of the population mean. For a population
a data set included in R called “trees” is used. The “tree” data set contains mea-
surements on 31 fir trees, so N = 31 in the simulation. A simple random sample
of n = 10 of these units is selected using the R function “sample” and the sample
mean is calculated for the n units in the sample using the R function “mean.” Then
a simulation is carried out by repeating the selection and estimation procedure b

times using a loop and storing the results in a vector called ybar . First b = 6 is
used to make sure the simulation is working. Then b = 10,000 iterations or runs of
the simulation are done. Resulting summary statistics are printed and a histogram
is plotted showing the distribution of y over the many samples.

Lines after the symbol “#” are comments, and are included only for explanation.

# Print the trees data set.
trees
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# The variable of interest is tree volume, which for
simplicity we name "y".

y <- trees$Volume
# The 31 trees will serve as our "population" for
# purposes of simulation.
N <- 31
# sample size:
n <- 10
# Select a simple random sample of n units from 1, 2,..., N.
s <- sample(1:N, n)
# Print out unit numbers for the 10 trees in the sample:
s
# Print the y-values (volumes) of the sample trees:
y[s]
# The sample mean:
mean(y[s])
# Select another sample from the population and repeat the
# estimation procedure:
s <- sample(1:N, n)
s
mean(y[s])
# Compare the estimate to the population mean:
mu <- mean(y)
mu
# Try a simulation of 6 runs and print out the six
# values of the estimate obtained, mainly to check
# that the simlation procedure
# has no errors:
b <- 6
# Let R know that the variable ybar is a vector:
ybar <- numeric(6)
for (k in 1:b){
s <- sample(1:N,n)
ybar[k] <- mean(y[s])
}
ybar
# Now do a full-size simulation of 10,000 runs:
b <- 10000
for (k in 1:b){
s <- sample(1:N,n)
ybar[k] <- mean(y[s])
}
# Summarize the properties of the sampling strategy
# graphically and numerically:
hist(ybar)
mean(ybar)
var(ybar)
# Compare the variance calculated directly from the
# simulation above to the formula that applies



30 simple random sampling

# specifically to simple random sampling with the
#v sample mean:
(1-n/N)*var(y)/n
sd(ybar)
sqrt((1-n/N)*var(y)/n)
# The mean square error approximated from the
# simulation should be # close to the variance but
# not exactly equal, since they are calculated
# slightly differently:mean((ybar - mu)^2)

# quit R.
q()

The above code shows only the commands typed but not the resulting output.
The commands together with the output as shown in the R window are shown
below.

> y <- trees$Volume
> N <- 31
> n <- 10
> s <- sample(1:N, n)
> s
[1] 4 16 17 7 1 10 25 20 2 22

> y[s]
[1] 16.4 22.2 33.8 15.6 10.3 19.9 42.6 24.9 10.3 31.7

> mean(y[s])
[1] 22.77
> s <- sample(1:N, n)

Figure 2.3 shows the histogram obtained in the above simulation with 10,000
runs. The histogram provides a close approximation of the sampling distribution
of the estimator y with simple random sampling. The actual sampling distribution
is over all possible samples, rather than just 10,000. Since the strategy is unbiased
the histogram should balance on the actual population mean of the N = 31 tree
volumes. The variance var(y) or standard deviation

√
var(y) summarize the spread

of that sampling distribution. If the spread is small, then with high probability the
sampling strategy will produce an estimate close to the actual population mean, a
desirable property.

> s
[1] 1 27 22 11 18 31 8 3 9 20

> mean(y[s])
[1] 30.22
> mu <- mean(y)
> mu
[1] 30.17097
> b <- 6
> ybar <- numeric(6)
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Figure 2.3. Simulation in R of the tree data with N = 31, n = 10, and b = 10,000 iterations.

> for (k in 1:b){
+ s <- sample(1:N,n)
+ ybar[k] <- mean(y[s])
+ }
> ybar
[1] 34.08 34.26 31.87 27.45 27.91 31.93
> b <- 10000
> for (k in 1:b){
+ s <- sample(1:N,n)
+ ybar[k] <- mean(y[s])
+ }

>
> hist(ybar)

> mean(ybar)
[1] 30.21421
> var(ybar)
[1] 18.59638
> (1-n/N)*var(y)/n
[1] 18.30406
> sd(ybar)
[1] 4.312352
> sqrt((1-n/N)*var(y)/n)
[1] 4.278324
> mean((ybar - mu)^2)
[1] 18.59639
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Further Comments on the Use of Simulation

When a researcher conducts a survey, he/she selects a sample of n units from
the real population and observes the variables of interest in the sample units. From
those data, the researcher calculates estimates of population quantities. For practical
reasons including time and cost, it is generally not possible to select more than one
sample from the population, nor is it possible to observe the whole population in
order to determine how well a certain sampling strategy has done. The best way
to see how a given sampling strategy does for a given type of study is to set up
a simulation of the sampling situation. Furthermore, in learning about sampling,
many people feel that they truly understand it for the first time once they have
carried out a simple simulation of a sampling strategy. Since we do not have data
on our entire real population, the best we can do is to find or create a population
as similar to it as possible and try sampling that population with our strategy again
and again to see how it works.

You could do this by having a field study area or other test population that is
more accessible, smaller, or more thoroughly studied than the actual population you
are interested in, and physically implementing different sampling strategies in it to
see how the estimates compare to the known population values there. Generally,
though, it is more practical to set up a test population on the computer that is as
realistic as you can make it, select a sample from that population with the design
you are considering, make estimates using the data from that sample, and compare
those estimates with the known characteristics of the test population. Repeat this
whole procedure many times, each time selecting a sample of n units with the
given design and making estimates using the data from that sample.

Suppose the simulation has 10,000 runs of this type. The distribution of an
estimate over those 10,000 trials gives a pretty good picture of the sampling distri-
bution of that estimate with that sampling design for a population of the type used
in the simulation.

Example 4: Simulation of simple random sampling using the fir seedling data as
a test population. The fir data from the R library “boot” has fir seedling counts for
50 plots, so our test population has N = 50 units. We will simulate the sampling
strategy simple random sampling design with sample size n = 5, using the sample
mean as an estimate of the population mean.

In R, load the boot package:

library(boot)

Take a look at the test population:

fir

The variable of interest is called “count”. For convenience, call it “y”:

y <- fir$count
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Take a look at y for the whole population and get a summary table of its
values:

y
table(y)

Determine the actual population mean. Note that in the field with your real
population you would not have the privilege of seeing this.

mean(y)

Select a random sample without replacement (simple random sample) of 5 units
from the unit labels numbered 1 through 50. A unit label corresponds to a row in
the fir data file.

s <- sample(1:50,5)

Look at the unit labels of the selected sample, then at the y-values associated
with those units. Make sure you recognize the meaning of these by finding them
in the fir population file you printed out above.

s
y[s]

Now compute the sample mean for just the 5 seedling counts in your sample
data. Typically, this will not be equal to the population mean, so there is an error
associated with the estimate.

mean(y[s])

Two or more commands like this can be put together on a single line, separated
by a semicolon. Repeat the line several times using the up-arrow key and you will
see different sample means with different samples.

s <- sample(1:50,5);mean(y[s])

We are already doing a simulation of the sampling strategy. Each time you enter
the above command, a simple random sample is selected and an estimate is made
from the sample data.

So far we have not been saving the values of the sample mean for the dif-
ferent samples. We will save them in a vector we’ll call “ybar.” Before starting
we tell R to expect ybar to be a vector, though without specifying how long it
will be.

ybar <- numeric()
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We can put our commands in a “for” loop to get ten simulation runs automati-
cally. This says, as the run number k goes from 1, 2,... to 10, for each run do all
the commands within the brackets.

for (k in 1:10){s<-sample(1:50,5);ybar[k]<-mean(y[s])}

On each run, a simple random sample of 5 units is selected from the test popu-
lation using simple random sampling. The sample mean for the sample data in that
run is stored as the k th component of the vector ybar.

Since we only did 10 runs, you can look at the sample mean for each run:

ybar

Now look at the average of those 10 sample means. Probably it is not the same
as the actual population mean, but might be fairly close.

mean(ybar)

Since we only did 10 runs, we do not get a very good picture of the sampling
distribution of the sample mean with our simple random sampling design.

hist(ybar)

We should get a much better picture of the sampling distribution of our estimator
by doing 1000 or more simulation runs:

ybar <- numeric(1000)
for (i in 1:1000){s<-sample(1:50,5);ybar[i]<-mean(y[s])}
mean(ybar)
hist(ybar)

If you are using a fast computer, you could try it with 10,000 or 100,000 runs,
which should result in a nice smooth histogram. (But don’t wait forever. If it is
taking too long try “control C” or “escape” to stop it.)

With a large number of runs, the average value of the estimator over all the
runs should be very close to its theoretically expected value. One can assess the
bias or expected error by looking at the difference between the average value of
the estimator over all the samples and the true test population characteristic.

Calling the test population mean “mu”,

mu <- mean(y)

the bias in the strategy revealed by the simulation is

mean(ybar)-mu

With simple random sampling, the sample mean is an unbiased estimator of the
population mean, so the above difference should be very close to zero. It would
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approach exactly zero if we increased the number of simulation runs. Another
common measure of how well a sampling strategy is doing is the mean square
error. The simulation value of this quantity is

mean((ybar - mu)^2)

A good strategy has small (or no) bias and small mean square error.
A simulation study such as this offers usually the most practical approach to

assessing how well a certain sampling strategy will work for your study, whether
the sample size is adequate, and whether a different sampling design or choice of
estimator would work better. In addition, it offers perhaps the best insight into how
sampling works and what makes an effective design. �

EXERCISES

1. In Figure 2.4, the locations of objects (e.g., trees, mines, dwellings) in a study
region are given by the centers of “+” symbols. The goal is to estimate the
number of objects in the study region.

(a) A random sample without replacement of n = 10 units has been selected
from the N = 100 units in the population. Units selected are indicated by

Figure 2.4. Simple random sample of 10 units from a population of 100 units. The variable of interest
is the number of point objects within each unit. (See Exercise 1.)
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shading in Figure 2.4. List the sample data. Use the sample to estimate the
number of objects in the figure. Estimate the variance of your estimator.

(b) Repeat part (a), selecting another sample of size 10 by simple random
sampling (without replacement) and making new estimates. Indicate the
positions of the units of the samples on the sketch.

(c) Give the inclusion probability for the unit in the upper left-hand corner.
How many possible samples are there? What is the probability of selecting
the sample you obtained in part (a)?

2. A simple random sample of 10 households is selected from a population of
100 households. The numbers of people in the sample households are 2, 5, 1,
4, 4, 3, 2, 5, 2, 3.

(a) Estimate the total number of people in the population. Estimate the variance
of your estimator.

(b) Estimate the mean number of people per household and estimate the vari-
ance of that estimator.

3. Consider a small population of N = 5 units, labeled 1, 2, 3, 4, 5, with respective
y-values 3, 1, 0, 1, 5. Consider a simple random sampling design with a
sample size n = 3. For your convenience, several parts of the following may
be combined into a single table.

(a) Give the values of the population parameters μ, τ , and σ 2. List every
possible sample of size n = 3. For each sample, what is the probability
that it is the one selected?

(b) For each sample, compute the sample mean y and the sample median m .
Demonstrate that the sample mean is unbiased for the population mean
and determine whether the sample median is unbiased for the population
median.

4. Show that E(s2) = σ 2 in simple random sampling, where the sample variance
s2 is defined with n − 1 in the denominator and the population variance σ 2

is defined with N − 1 in the denominator. [Hint : Write yi − y as yi − μ −
(y − μ), verify that

n∑
i=1

(yi − y)2 =
n∑

i=1

(yi − μ)2 − n(y − μ)2

and either take expectation over all possible samples or define an indicator
variable for each unit, indicating whether it is included in the sample.]

5. The best way to gain understanding of a sampling and estimation method is to
carry it out on some real population of interest to you. If you are not already
involved in such a project professionally, choose a population and set out to
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estimate the mean or total by taking a simple random sample. Examples include
estimating the number of trees on a university campus by conceptually dividing
the campus into plots, estimating the number of houses in a geographic area by
selecting a simple random sample of blocks, or estimating the mean number of
people per vehicle during rush hour. In the process of carrying out the survey
and making the estimates, think about or discuss with others the following:

(a) What practical problems arise in establishing a frame, such as a map or
list of units, from which to select the sample?

(b) How is the sample selection actually carried out?

(c) What special problems arise in observing the units selected?

(d) Estimate the population mean and total.

(e) Estimate the variance of the estimators used in part (d).

(f) How would you improve the survey procedure if you were to do it again?

6. Repeat the simulation exercise with the tree data.

(a) Using n = 10 check to see that your results are the same as those in the
text.

(b) Using n = 15 compare your results to those of part (a) first by inspection
of the two histograms (note the scale) and by comparing the numerical
results summarizing mean and variance of the estimator.
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Confidence Intervals

Having selected a sample and used the sample data to make an estimate of the pop-
ulation mean or total, it is desirable in addition to make an assessment regarding
the accuracy of the estimate. This is most often done by constructing a confi-
dence interval within which one is sufficiently sure that the true population value
lies or, equivalently, by placing a bound on the probable error of the estimate.
A confidence interval procedure uses the data to determine an interval with the
property that—viewed before the sample is selected—the interval has a given
high probability of containing the true population value.

3.1. CONFIDENCE INTERVAL FOR THE POPULATION MEAN
OR TOTAL

Let I represent a confidence interval for the population mean μ. Choosing some
small number α as the allowable probability of error, the procedure should have
the property that P(μ ∈ I ) = 1 − α. The random quantity in this expression is the
interval I . The endpoints of the interval I vary from sample to sample, whereas
the parameter μ, although unknown, is fixed.

The quantity 1 − α is termed the confidence coefficient , and the interval is called
a 100(1 − α)% confidence interval. Typical (arbitrary but conventional) choices for
the value of α are 0.01, 0.05, and 0.1. With α = 0.05, for instance, the confidence
coefficient is 0.95. Under simple random sampling, a 95% confidence interval
procedure has the interpretation that for 95% of the possible samples of size n , the
interval covers the true value of the population mean μ.

Approximate 100(1 − α)% confidence intervals for the population mean and
total can be constructed based on a normal approximation for the distribution of
the sample mean under simple random sampling. An approximate 100(1 − α)%
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confidence interval for the population mean μ is

y ± t

√(
N − n

N

)
s2

n

where t is the upper α/2 point of Student’s t distribution with n − 1 degrees of
freedom.

An approximate 100(1 − α)% confidence interval for the population total τ is

τ̂ ± t

√
N(N − n)

s2

n

For sample sizes larger than 50, the upper α/2 point of the standard normal
distribution may be used for the value of t in the confidence intervals above.

More generally, if θ̂ is a normally distributed, unbiased estimator for a population
parameter θ , then a 1 − α confidence interval for θ is given by

θ̂ ± z

√
var(θ̂)

where z is the upper α/2 point of the normal distribution. In practice, the estimator
may have a distribution which is approximately normal (based on the central limit
theorem) even if the original y-values are not. Also, the variance of the estimator
is typically estimated from the sample data, and the confidence interval is

θ̂ ± z

√
v̂ar(θ̂)

In such cases, the coverage probability of the confidence interval is only approx-
imately 1 − α. For sample sizes less than 50, it is advisable to use the upper α/2
point t from the t distribution with n − 1 degrees of freedom, giving a somewhat
wider interval than that obtained with the normal value z .

Example 1: An approximate 90% confidence interval for the total number of cari-
bou in the study area of Example 1 of Chapter 2 with sample size n = 15, estimator
τ̂ = 7417, and variance estimate v̂ar(τ̂ ) = 4,748,879, is

7417 ± 1.761
√

4,748,879 = 7417 ± 3838 = (3578, 11,255)

where the value 1.761 is the upper 0.05 point from the t-table with 14 degrees of
freedom.

Since the number of units in the population was N = 286, a confidence interval
for the mean could be obtained by dividing each endpoint of the interval for the
total by 286, giving a 90% interval of (12.5, 39.4). �
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3.2. FINITE-POPULATION CENTRAL LIMIT THEOREM

When the individual observations y1, y2, . . . , yn are not normally distributed, the
approximate confidence levels of the usual confidence intervals depend on the
approximate normal distribution of the sample mean y. If y1, y2, . . . , yn are a
sequence of independent and identically distributed random variables with finite
mean and variance, the distribution of

y − μ√
var(y)

approaches a standard normal distribution as n gets large, by the central limit
theorem. The result also holds if the variance is replaced by a reasonable estimator
of variance.

When a finite population is sampled using random sampling with replacement,
the n observations are indeed independent and identically distributed, so that the
usual central limit theorem applies. With random sampling without replacement,
however, the sample observations are not independent—selecting a unit with a
large y-value on the first draw, for instance, removes that unit from the selection
pool and hence reduces the probability of obtaining large y-value subsequent draws.
A special version of the central limit theorem applies to random sampling without
replacement from a finite population (Erdös and Rényi 1959; Hájek 1960, 1961;
Lehmann 1975, p. 353; Madow 1948; Scott and Wu 1981; M. E. Thompson 1997).

For sampling without replacement from a finite population, it is necessary to
think of a sequence of populations, with population size N becoming large along
with sample size n . For the population with a given size N in the sequence, let
μN be the population mean and yN be the sample mean of a simple random
sample selected from that population. According to the finite-population central
limit theorem, the distribution of

yN − μN√
var(yN)

approaches the standard normal distribution as both n and N − n become large.
The result also holds with the estimated variance v̂ar(yN) of the sample mean
of a simple random sample of size n from a population of size N substituted
for var(yN). A technical condition in the theorem requires that in the progression
of hypothetical populations of increasing size, the proportion of the population
variance contributed by any one unit is not too large.

For more complicated survey design and estimation methods, it is often still
possible to use confidence intervals of the basic form described in this chapter,
with approximate coverage probability based on some form of the central limit
theorem. Estimation of the variance of an estimator may be more involved in the
more complex survey situations, however. A number of approaches to variance
estimation are introduced as needed in this book. Further discussion of variance
estimation in survey sampling can be found in J. N. K. Rao (1988), Skinner et al.
(1989), and Wolter (1985).
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Confidence intervals that avoid the normal approximation are available for some
sampling situations. When the variable of interest indicates the presence or absence
of some attribute (see Chapter 5), confidence intervals based on the exact distribu-
tion are possible with simple random sampling. Nonparametric confidence intervals
for the population median and other quantiles may also be constructed [see Sedransk
and Smith (1988) for a review].

Example 2: All Possible Samples. For the sample {1, 3} of Example 2 of
Chapter 2, having y-values 10 and 13, the estimate of the population total
was τ̂ = 46 and the estimated variance of τ̂ was v̂ar(τ̂ ) = 18. A nominal 95%
confidence interval, constructed mechanically but not justified by the sample size,
is 46 ± 12.706

√
18 = 46 ± 54, where 12.706 is the upper 0.025 point of the

t distribution with 1 degree of freedom.
The exact coverage probability for the confidence interval procedure can also

be determined from Table 3.1, as the proportion of samples for which the interval
includes the true value 60. While the nominal confidence level was 95%, the actual
coverage is 100% for this population. �

Some Details
The finite-population central limit theorem requires the concept of a sequence
of populations U1, U2, . . .; the N th population in the sequence has N units and
y-values y1N, y2N, . . . , yNN . The sample size nN of the simple random sample
selected from the N th population also depends on N , and the sample mean of this
sample is yN = ∑

i∈s yiN . For any positive constant ε, let the set of units with
y-values farthest from the mean in the N th population be denoted

AN =
⎧⎨⎩i : |yiN − μN | > ε

√√√√( n

N

) (
1 − n

N

) N∑
j=1

(yjN − μN)2

⎫⎬⎭
A necessary and sufficient condition for the distribution of

yN − μN√
var(yN)

Table 3.1: Data for Example 2

Sample ys y τ̂ s2 v̂ar(τ̂ ) c.i.

(1, 2) (10, 17) 13.5 54 24.5 98 54 ± 126
(1, 3) (10, 13) 11.5 46 4.5 18 46 ± 54
(1, 4) (10, 20) 15.0 60 50.0 200 60 ± 180
(2, 3) (17, 13) 15.0 60 8.0 32 60 ± 72
(2, 4) (17, 20) 18.5 74 4.5 18 74 ± 54
(3, 4) (13, 20) 16.5 66 24.5 98 66 ± 126
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to approach the normal (0, 1) distribution as N → ∞ is that

lim
N→∞

∑
AN

(yiN − μN)2∑N
i=1(yiN − μN)2

= 0

for any ε > 0. An additional description of these results, dating back to Erdös and
Renyi (1959) and Hájek (1960), is given in the book by M. E. Thompson (1997,
pp. 56–61).

3.3. SAMPLING DISTRIBUTIONS

One way to look at the sampling distribution of an estimator that results from using
a particular design with a particular population is to use a very small population and
small sample size, so that every possible sample may be listed. To see the sampling
distribution of an estimator with a particuar design with a larger population and
larger sample size simulation can be used. In the simulation, a sample of units is
selected from the population using the design, and the estimate is computed with
the resulting sample data. This is repeated many times, with each sample selected
giving a new value of the estimate. The distribution of these values shows us the
relevant properties of the sampling strategy. Is the distribution balanced around
the true population value of interest, that is, is it unbiased, and is the distribution
narrow, that is, is the mean square error or variance small?

When we use a particular sampling design and a particular estimator to esti-
mate some population quantity, such as the population total, our estimate might
come out higher or lower than the true population value, depending on which sam-
ple we select. The distribution of these estimates over all possible samples one
might select with the design is called the sampling distribution of the estimate
under that design. The properties of the particular sampling strategy depend on
this distribution. Desirable properties of a sampling distribution are that it is cen-
tered or balanced over the true population quantity value (unbiased), and that it is
concentrated right around that value (low variance or mean squared error).

Note that because we view the population values of the variable of interest as
fixed but unknown, rather than assuming a statistical model for how they arise,
the sampling distribution is induced by the sampling design used in selecting the
sample. The properties of the sampling distribution depend on the sampling design
used, the estimator used, and the values in the population.

On the one hand, sampling distributions illustrate the basic idea underlying
a sampling strategy. What are the properties of the strategy, what is the exact
distribution of an estimator under a design or how good is a normal approximation
for it. On the other hand, simulation of sampling distributions for different designs
and estimators with a given population is the ultimate tool for investigators who
want to know if one sampling strategy will work better than another for their
population. To do this simulation, they must construct as realistically as possible
what the entire population may look like and then try sampling from it with a
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given design many times on the computer, computing the value of the estimate
each time. This method is applicable no matter how complicated the designs to be
compared may be.

Aside: With simulation we would have no trouble sampling from a population
with N much larger than 31 and using sample sizes much larger than 10. But our
small problem is already much too large for conveniently listing every possible
sample:

choose(31,10)
[1] 44352165

From a population of 31 units, there are more than 44 million different simple
random samples possible.

3.4. COMPUTING NOTES

Confidence Interval Computation

With the caribou example,

> y <- c(1, 50, 21, 98, 2, 36, 4, 29, 7, 15, 86, 10, 21, 5, 4)
> n <- length(y)
> n
[1] 15
> N <- 286
> ybar <- mean(y)
> ybar
[1] 25.93333
> var_hat_y_bar <- (1 - n/N) * var(y)/n
> var_hat_y_bar
[1] 58.05759
> tau_hat <- N * ybar
> tau_hat
[1] 7416.933
> var_hat_tau_hat <- N^2 * var_hat_y_bar
> var_hat_tau_hat
[1] 4748879
> se_tau_hat <- sqrt(var_hat_tau_hat)
> se_tau_hat
[1] 2179.192
> qt(0.95,df=14)
[1] 1.76131
> LowerLimit <- tau_hat - qt(0.95,df=14) * se_tau_hat
> LowerLimit
[1] 3578.7
> UpperLimit <- tau_hat + qt(0.95,df=14) * se_tau_hat
> UpperLimit
[1] 11255.17
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> qt(c(0.05,0.95),df=14)
[1] -1.76131 1.76131
> CI <- tau_hat + qt(c(0.05,0.95),df=14) * se_tau_hat
> CI
[1] 3578.70 11255.17

Variable names such as “var_hat_tau_hat” are perhaps more awkward than nec-
essary. They are at the reader’s discretion, so any simple name that will remind
one that the entity in question is v̂ar(τ̂ ) can be chosen. The R function “qt” gives
a quantile of the t distribution. Thus “qt(0.95,df = 14)” gives the value having
probability 0.95 below it for a t distribution with n − 1 = 14 degrees of freedom.
So for a t distribution with 14 degrees of freedom, the probability of a value less
than −1.76131 is 0.95. The probability of a value less than −1.76131 is −0.05.
The probability of a value between 0.05 and 0.95 is 0.95 − 0.05 = 0.90, the desired
confidence. Notice that the two end points can be calculated simultaneously as in
the last line of the computations.

Simulations Illustrating the Approximate Normality of a Sampling
Distribution with Small n and N

The population of 31 black cherry trees used in the computing section of Chapter 2
can now be used to illustrate the finite-population central limit theorem. First, the
distribution of tree volumes in the population itself is illustrated with the histogram
of the 31 y-values. Notice the variable of interest in the population is not at all
normally distributed, having an asymmetric and bumpy shape.

Next, simulations are run for the sampling strategy simple random sampling
with sample sizes 1, 2, 5, 15, 25, and 30.

y <- trees$Volume
N <- 31

hist(y)
hist(y,xlim=c(10,80))

ybar <- numeric(0)
b=10000
n=1
for (k in 1:b){s<-sample(1:N,n);ybar[k]<-mean(y[s])}
hist(ybar)
n<-2
for (k in 1:b){s<-sample(1:N,n);ybar[k]<-mean(y[s])}
hist(ybar)
n<-5
for (k in 1:b){s<-sample(1:N,n);ybar[k]<-mean(y[s])}
hist(ybar)
n<-15
for (k in 1:b){s<-sample(1:N,n);ybar[k]<-mean(y[s])}
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hist(ybar)
n<-25
for (k in 1:b){s<-sample(1:N,n);ybar[k]<-mean(y[s])}
hist(ybar)
n<-30
for (k in 1:b){s<-sample(1:N,n);ybar[k]<-mean(y[s])}
hist(ybar)

The above histograms show that as sample size n increases the distribution of
y becomes increasingly normal as long as N − n is also sufficiently large. With
such a small finite population, with N = 31, the effect of the nonsampled number
N − n is pronounced. Thus the normal approximation gets better as n increases up
to about one-half of N and then gets worse.

Since the scale of the histograms on the horizontal axis adjusts automatically, the
effect is that the raw histograms of y have much the same shape as histograms of the
normalized values (y − μ)/sqrt var(y). That is good for depicting the approximate
normality as sample size increases. On the other hand the width-adjusted histograms
do not convey the fact that the estimates are actually getting better, that is, obtaining
lower variance, as sample size increases, right up to sample size equaling population
size. In the following the width of the histograms is held constant, showing that
the spread of the sampling distribution of y gets narrower, even if less symmetric,
as sample size increases.

ybar <- numeric(0)
b=10000
n=1
for (k in 1:b){s<-sample(1:N,n);ybar[k]<-mean(y[s])}
hist(ybar,xlim=c(10,80))
n<-2
for (k in 1:b){s<-sample(1:N,n);ybar[k]<-mean(y[s])}
hist(ybar,xlim=c(10,80))
n<-5
for (k in 1:b){s<-sample(1:N,n);ybar[k]<-mean(y[s])}
hist(ybar,xlim=c(10,80))
n<-15
for (k in 1:b){s<-sample(1:N,n);ybar[k]<-mean(y[s])}
hist(ybar,xlim=c(10,80))
n<-25
for (k in 1:b){s<-sample(1:N,n);ybar[k]<-mean(y[s])}
hist(ybar,xlim=c(10,80))
n<-30
for (k in 1:b){s<-sample(1:N,n);ybar[k]<-mean(y[s])}
hist(ybar,xlim=c(10,80))

Daily Precipitation Data

The following simulations illustrate the finite-population central limit theorem again
using data on total daily precipitation for Vancouver, British Columbia, Canada,
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for the 90-day period January through March of 2009 (data from Simon Fraser
University http://www.climate.weatheroffice.ec.gc.ca).

You can read in the data using

weather <- read.table(file="http://www.stat.sfu.ca/
∼thompson/data/weather.txt")

The columns in the data file are day of the month, maximum temperature,
minimum temperature, mean temperature, heat degree days, cool degree days, total
rain, total snow, and total precipitation. Temperatures are in degrees celsius, rain
and precipitation are in millimeters, and total snow is in centimeters. We will use
only the total daily precipitation, which is the last or ninth column of the data, as
our variable of interest.

Note that if the data are in a file called “weather.txt” in your working directory,
with the columns separated by tabs or spaces, you can read it in with

read.table("weather.txt")

That would read it and print it but not save it. To save it as a data frame called
“weather”,

weather <- read.table("weather.txt")

The columns in this data file are not named. To see what R names them by
default type

names(weather)

To verify that the object “weather” has data frame structure:

class(weather)

The ninth column in the data set is total daily precipitation. R has named it by
default “V9” for the ninth vector. We can create a vector y with these values and
print out the 90 precipitation measurements by typing

y <- weather$V9

y

[1] 9.6 0.0 6.8 13.8 4.2 28.6 14.6 7.0 1.6 34.0 2.6 1.6 0.6 0.0 0.0

[16] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.1 0.6 0.2

[31] 0.0 18.4 1.4 0.0 0.0 2.0 2.0 0.0 0.4 1.8 1.0 1.2 0.0 0.0 0.0

[46] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 12.0 3.8 3.6 1.0 0.1 0.2 9.8

[61] 3.8 4.2 0.0 0.2 0.0 0.6 0.1 5.4 0.0 0.0 0.0 0.4 11.4 8.6 0.6

[76] 1.4 3.6 13.6 11.4 0.0 0.1 6.0 7.4 0.1 0.0 0.1 0.8 0.1 9.8 5.6
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We consider the vector y having N = 90 precipitation values and our popula-
tion of interest for simulation purposes. The population values themselves have a
distribution that is very far from normal. We can see this with a simple histogram.
We can also control the number of breaks or cells in the histogram if desired.

hist(y)
hist(y,breaks=20)

Furthermore, the precipitation values do not appear to be independent from day
to day. Rather, there are periods with several zero values in a stretch and other
periods with high but variable rainfall. The following plots the precipitation values
by day, then connects the data points with lines.

plot(1:90, y)
lines(1:90, y)

A histogram gives a simple visual approximation to the distribution of the values.
However, the intervals into which the histogram is divided are arbitrary and can
sometimes influence the visual interpretation.

Another way to check for normality is to do a “QQ plot” which compares the
quantiles of a theoretical normal distribution with the data quantiles:

qqnorm(y)

If the values were normally distributed the plot should form a straight line.
The cumulative distribution function for a normal distribution has a smooth “S”

shape with symmetric curvature. Another way to compare the population y values
with a normal distribution is to plot the empirical cumulative distribution function:

plot(ecdf(y))

A nonparametric estimate of the density function of y is

plot(density(y))

This would approximate the normal bell shape if y was approximately normal,
which it is not (Figures 3.1, 3.2, and 3.3).

Simulations
Here we compare the sampling distributions of ybar from the precipation population
with N = 90 using simple random sampling with n = 3, 15, 45, and 87 days:

s <- sample(1:90,3);mean(y[s])
ybar <- numeric()
ybar
for (k in 1:10){s <- sample(1:90,3);ybar[k]<-mean(y[s])}
ybar
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Vancouver precipitation, 90 days
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Figure 3.1. The distribution of daily rain in Vancouver over a 90-day period.
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Figure 3.2. Day-to-day pattern of rainfall in the 90-day period.

for (k in 1:10000){s <- sample(1:90,3);ybar[k]<-mean(y[s])}
hist(ybar)
qqnorm(ybar)
for (k in 1:10000){s <- sample(1:90,15);ybar[k]<-mean(y[s])}
hist(ybar)
qqnorm(ybar)
for (k in 1:10000){s <- sample(1:90,45);ybar[k]<-mean(y[s])}
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Figure 3.3. Illustration of the approximation based on the finite-population central limit theorem for a
simple random sample of n days to estimate mean precipitation in the N = 90 day period. The normal
approximation is best when n and N − n are both large, so at about n = 45 or half the population size.
With n = 3 the small sample size gives a skewed distribution to the sample mean. With n = 87, there
are only N − n = 3 unsampled units and the distribution of the sample mean is skewed in the opposite
direction. Noticing the change of scale on the x-axis though, the sample mean has very low variance
with the large sample size, even if the normal approximation is not as good.

hist(ybar)
qqnorm(ybar)
plot(ecdf(ybar))
for (k in 1:10000){s <- sample(1:90,87);ybar[k]<-mean(y[s])}
hist(ybar)
qqnorm(ybar)
plot(ecdf(ybar))

EXERCISES

1. From the data of parts (a) and (b) of Exercise 1 of Chapter 2, construct
approximate 95% confidence intervals for the population total. Also construct
approximate 95% confidence intervals for the population mean per unit. On
what assumptions or results is the confidence interval procedure based, and
how well does the method apply here?

2. For Exercise 2 of Chapter 2, give an approximate 90% confidence interval (a)
for the population total and (b) for the mean.
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3. For the population of N = 5 units of Exercise 3 of Chapter 2:

(a) Compute directly the variance var(y) of the sample mean and the variance
var(m) of the sample median.

(b) From each sample, compute the sample variance s2 and the estimate v̂ar(y)

of the variance of the sample mean. Show that the sample variance s2 is
unbiased for the finite-population variance σ 2 but that the sample standard
deviation s =

√
s2 is not unbiased for the population standard deviation

σ =
√

σ 2.

(c) For each sample, construct a standard 95% confidence interval for the
population mean. What is the actual coverage probability for the method
with this population and design?

4. Using the data from your own survey (see Exercise 5 of Chapter 2) give 95%
and 99% confidence intervals for the population mean and total.
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Sample Size

The first question asked when a survey is being planned is, more often than not:
What sample size should be used? Obtaining the answer is not always as simple
as desired.

Suppose that one wishes to estimate a population parameter θ —for example,
the population mean or total—with an estimator θ̂ . One would wish the estimate to
be close to the true value with high probability. Specifying a maximum allowable
difference d between the estimate and the true value and allowing for a small
probability α that the error may exceed that difference, the object is to choose a
sample size n such that

P(|θ̂ − θ | > d) < α (4.1)

If the estimator θ̂ is an unbiased, normally distributed estimator of θ , then

θ̂ − θ√
var(θ̂)

has a standard normal distribution. Letting z denote the upper α/2 point of the
standard normal distribution yields

P

⎛
⎜⎝ |θ̂ − θ |√

var(θ̂)

> z

⎞
⎟⎠ = P

(
|θ̂ − θ | >z

√
var(θ̂)

)
= α (4.2)

The variance of the estimator θ̂ decreases with increasing sample size n , so that
the inequality above will be satisfied if we can choose n large enough to make

z

√
var(θ̂) ≤ d.

Sampling, Third Edition. Steven K. Thompson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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4.1. SAMPLE SIZE FOR ESTIMATING A POPULATION MEAN

With simple random sampling, the sample mean y is an unbiased estimator of the
population mean μ with variance var(y) = (N − n)σ 2/Nn. Setting

z

√(
N − n

N

)
σ 2

n
= d

and solving for n gives the necessary sample size:

n = 1

d2/z2σ 2 + 1/N
= 1

1/n0 + 1/N
(4.3)

where

n0 = z2σ 2

d2
(4.4)

If the population size N is large relative to the sample size n , so that the finite-
population correction factor can be ignored, the formula for sample size simplifies
to n = n0.

For sampling designs more elaborate than simple random sampling, sample size
can generally be chosen in much the same way, with sample size (or sizes) deter-
mined so that the half-width of the confidence interval equals the specified distance.
The weak point in the system is usually the estimate of population variance used.

4.2. SAMPLE SIZE FOR ESTIMATING A POPULATION TOTAL

For estimating the population total τ , the equation to be solved for n is

z

√
N(N − n)

σ 2

n
= d (4.5)

which gives the necessary sample size as

n = 1

d2/N2z2σ 2 + 1/N
= 1

1/n0 + 1/N
(4.6)

where

n0 = N2z2σ 2

d2
(4.7)

Ignoring the finite-population correction factor, the formula for sample size
reduces to n = n0.

A bothersome aspect of sample size formulas such as these is that they depend
on the population variance, which generally is unknown. In practice, one may be
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able to estimate the population variance using a sample variance from past data
from the same or a similar population.

Example 1: What sample size would be necessary to estimate the caribou pop-
ulation total to within d = 2000 animals of the true total with 90% confidence
(α = 0.10)?

Ignoring the finite size of the population and using the sample variance s2 =
919 from the preliminary survey (Example 1 of Chapter 2) as an estimate of the
population variance σ 2, the simpler sample size formula [Equation (4.7)] would
give

n0 = 2862(1.645)2(919)

20002
= 50.9 ≈ 51

The constant 1.645 is the upper α/2 = 0.05 point of the standard normal dis-
tribution. Although simpler to compute, the formula ignoring the finite-population
correction always gives a larger sample size to meet given criteria. In fact, for small
populations, the simple formula can give a sample size larger than the number of
units in the population.

Taking the finite-population size into account produces the following choice of
sample size (Equation (4.3)) for any future survey of this population:

n = 1

1/50.9 + 1/286
= 43.2 ≈ 44

with the choice to round up considered conservative. �

4.3. SAMPLE SIZE FOR RELATIVE PRECISION

If instead of controlling the absolute error d , one is concerned with the relative
error r —that is, the difference between the estimate and the true value, divided by
the true value—the criterion to be met is

p

(∣∣∣∣∣ θ̂ − θ

θ

∣∣∣∣∣> r

)
< α

or, equivalently,

p(|θ̂ − θ | > rθ) < α

where θ represents either the population mean or the population total. To estimate
the population mean μ to within rμ of the true value or to estimate the population
total τ to within rτ of the true value, with probability 1 − α, the sample size
formula is

n = 1

r2μ2/z2σ 2 + 1/N
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This result may be obtained either by substituting rμ for d in the sample size
formula for estimating the mean or by substituting rτ = rNμ for d in the sample
size formula for estimating the population total.

Letting γ denote the coefficient of variation for the population (i.e., γ = σ/μ),
the sample size formula may be written

n = 1

r2/z2γ 2 + 1/N

Thus, the coefficient of variation is the population quantity on which sample
size depends when the desire is to control relative precision.

EXERCISES

1. A botanical researcher wishes to design a survey to estimate the number of
birch trees in a study area. The study area has been divided into 1000 units or
plots. From previous experience, the variance in the number of stems per plot
is known to be approximately σ 2 ≈ 45. Using simple random sampling, what
sample size should be used to estimate the total number of trees in the study
area to within 500 trees of the true value with 95% confidence? To within 1000
trees? To within 2000 trees?

2. Compute the sample sizes for Exercise 1 when the finite-population correction
factor is ignored. What do you conclude about the importance of the finite-
population correction factor for this population?

3. Using the sample variance from the data of your own survey to estimate the
population variance, specify a desired precision and calculate the sample size
necessary to achieve it with 95% confidence in a future survey of the same
population.
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Estimating Proportions, Ratios,
and Subpopulation Means

In some sampling situations, the object is to estimate the proportion of units in
the population having some attribute. For example, one may wish to estimate the
proportion of voters favoring a proposition, the proportion of females in an animal
population, the proportion of plots in a study area in which a certain plant species
is present, or the proportion of a specific mineral in the composition of a rock. In
such a situation, the variable of interest is an indicator variable: yi = 1 if unit i
has the attribute, and yi = 0 if it does not.

With the y-variables taking on only the values zero and 1, the population total
τ is the number of units in the population with the attribute, and the population
mean μ is the proportion of units in the population with the attribute. Thus, to
estimate a population proportion using simple random sampling, the usual methods
associated with estimating a population mean, forming confidence intervals based
on the normal approximation and determining sample size could be used. However,
several special features are worth noting: (1) the formulas simplify considerably
with attribute data; (2) exact confidence intervals are possible; and (3) a sample size
sufficient for a desired absolute precision may be chosen without any information
on population parameters.

A section on estimating a ratio is included in this chapter mainly to distinguish
that situation from estimating a proportion. The statistical properties of estimates
of ratios are covered in later chapters. Estimating proportions, means, and totals
for subpopulations is treated as a special topic because when the simple random
sample is selected from the whole population, the sample size for the subpopulation
is a random variable.

Sampling, Third Edition. Steven K. Thompson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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5.1. ESTIMATING A POPULATION PROPORTION

Writing p for the proportion in the population with the attribute

p = 1

N

N∑
i=1

yi = μ

the finite-population variance is

σ 2 =
∑N

i=1(yi − p)2

N − 1
=

∑
y2

i − Np2

N − 1
= Np − Np2

N − 1
= N

N − 1
p(1 − p)

Letting p̂ denote the proportion in the sample with the attribute

p̂ = 1

n

n∑
i=1

yi = y

the sample variance is

s2 =
∑n

i=1(yi − y)2

n − 1
=

∑
y2

i − np̂2

n − 1
= n

n − 1
p̂(1 − p̂)

Thus, the relevant statistics can be computed from the sample proportion alone.
Since the sample proportion is the sample mean of a simple random sample, it is
unbiased for the population proportion and has variance

var(p̂) =
(

N − n

N − 1

)
p(1 − p)

n

An unbiased estimator of this variance is

v̂ar(p̂) =
(

N − n

N

)
p̂(1 − p̂)

n − 1

5.2. CONFIDENCE INTERVAL FOR A PROPORTION

An approximate confidence interval for p based on a normal distribution is given
by

p̂ ± t
√

v̂ar(p̂)

where t is the upper α/2 point of the t distribution with n − 1 degrees of freedom.
The normal approximation on which this interval is based improves the larger the
sample size and the closer p is to 0.5.

Confidence limits may also be obtained based on the exact hypergeometric
distribution of the number of units in the sample with the attribute. The exact
method is conceptually simple but computationally complex. Let a = ∑n

i=1 yi be
the number of units with the attribute in the sample obtained in the survey. For
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exact limits, one equates the situation to an urn model. The urn contains τ red
balls (units with the attribute in the population) and N − τ white balls. A random
sample of n balls is selected without replacement from the urn. Let the random
variable X denote the number of red balls in the sample from the urn. Given τ red
balls in the urn, the probability that the number of red balls in the sample from the
urn is j is

P(X = j |τ) =
(

τ

j

) (
N − τ

n − j

) / (
N

n

)

For a desired 100(1 − α)% confidence limit for the number τ of units in the
population with the attribute, an upper limit τU is determined as the number of
red balls in the urn giving probability α1 of obtaining a or fewer red balls in the
sample, where α1 is approximately equal to half the desired α. That is, τU satisfies

P(X ≤ a|τU ) =
a∑

i=0

(
τU

i

) (
N − τU

n − i

) / (
N

n

)
= α1

The lower limit τL is the number of red balls in the urn giving probability α2

of obtaining a or more red balls in the sample, where α2 is approximately equal
to half the desired α. That is, τL satisfies

P(X ≥ a|τL) =
n∑

i=a

(
τL

i

) (
N − τL

n − i

) / (
N

n

)
= α2

Confidence limits for the population proportion p are pL = τL/N and
pU = τU/N .

If α1 and α2 are chosen in advance, one should choose τU as the largest whole
number such that P(X ≤ a|τU )> α1 and choose τL as the smallest whole number
such that P(X ≥ a|τL)> α2. This procedure ensures a coverage probability of at
least 1 − α1 − α2 and gives a slightly narrower interval than that given by the
related method prescribed in Cochran (1977). The requirement that τ be a whole
number may preclude the possibility of attaining precisely a preselected confidence
coefficient 1 − α. Approximate confidence intervals can also be constructed based
on the binomial distribution.

5.3. SAMPLE SIZE FOR ESTIMATING A PROPORTION

To obtain an estimator p̂ having probability at least 1 − α of being no farther than
d from the population proportion, the sample size formula based on the normal
approximation gives

n = Np(1 − p)

(N − 1)(d2/z2) + p(1 − p)
(5.1)
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where z is the upper α/2 point of the normal distribution. When the
finite-population correction can be ignored, the formula reduces to

n0 = z2p(1 − p)

d2
(5.2)

For computational purposes, the exact sample size formula (1) may be written

n = 1

(N − 1)/Nn0 + 1/N
≈ 1

1/n0 + 1/N
(5.1a)

Note that the formulas depend on the unknown population proportion p. If no
estimate of p is available prior to the survey, a worst-case value of p = 0.5 can be
used in determining sample size. The quantity p(1 − p), and hence the value of n
required by the formula, assumes its maximum value when p is 1/2.

Example 1: A geologist wishes to estimate the proportion of gold in a thin section
of rock by taking a simple random sample of n points and noting the presence or
absence of the mineral. How large a sample is needed to obtain an estimate within
d = 0.05 of the true proportion with probability 0.95 (α = 0.05)?

The finite-population correction factor can be ignored, since the sample “points”
(units) are small in area so that the sample size n is small relative to N . Using the
simple formula [Equation (5.2)]

n = (1.962)(0.5)(0.5)

0.052
= 384.16

where 1.96 is the upper 0.025 point of the normal distribution. Thus, a sample size
of 384 or 385 would be sufficient to meet the criteria no matter what the actual
population proportion p is. �

5.4. SAMPLE SIZE FOR ESTIMATING SEVERAL PROPORTIONS
SIMULTANEOUSLY

Suppose that a biologist needs to collect a sample of fish to estimate the proportion
of the population in each age class and that she would like the probability to be at
least 0.95 that all of the estimates are simultaneously within 0.05 of the population
proportions. She does not have prior knowledge of the population proportions and
is not even sure how many age classes there are in the population. How large a
sample size should she take?

The worst-case population would be one with the combination of k proportions
that give the maximum probability of a sample for which at least one of the sam-
ple proportions was unacceptably far from the corresponding population proportion.
Since the proportions must sum to 1, the situation can never be quite so bad as
every population proportion equal to 1

2 . The worst case to be considered in such
a situation is given in a theorem in Fitzpatrick and Scott (1987) and Thompson
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(1987). Typically, the worst case is a situation in which virtually the whole pop-
ulation is equally distributed between two or three categories (age classes). The
exact case that is worst depends on the α-level chosen, but does not depend on the
number k of categories in the population.

The sample size needed may be obtained from Table 5.1. For Example 1, the
biologist has chosen d = 0.05 and α = 0.05. In the row of the table for α = 0.05
the entry 1.27359 for d2n0 is divided by d2 = 0.052 to determine the sufficient
sample size of n0 = 510 fish. This sample size ensures that all the estimates will
simultaneously be as close as desired to their respective population proportions.
This sample size will be adequate whether the population of fish is divided into
three age classes or 15.

The sample size n0 from Table 5.1 for estimating multinomial proportions is
appropriate when the population size N is large relative to sample size n , so
that finite-population correction factors in the variances can be ignored. When the
population size N is small, a smaller sample size n will be adequate to meet the
same precision criteria, d and α.

Obtaining n0 from Table 5.1, the smaller sample size n may be obtained from
the relationship

(N − 1)n

N − n
= n0

Solving for n gives

n = 1

(N − 1)/Nn0 + 1/N
≈ 1

1/n0 + 1/N

For example, if the population size is N = 1000 and one wishes each estimated
proportion to be simultaneously within d = 0.05 of the true value with probability

Table 5.1: Sample Size n0 for Simultaneously Estimating Several Proportions within
Distance d of the True Values at Confidence Level 1 − α

α d2n0 n0 with d = 0.05 m

0.50 0.44129 177 4
0.40 0.50729 203 4
0.30 0.60123 241 3
0.20 0.74739 299 3
0.10 1.00635 403 3
0.05 1.27359 510 3
0.025 1.55963 624 2
0.02 1.65872 664 2
0.01 1.96986 788 2
0.005 2.28514 915 2
0.001 3.02892 1212 2
0.0005 3.33530 1342 2
0.0001 4.11209 1645 2

Source: Thompson (1987). With permission from the American Statistical Association.
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1 − α = 0.95, an adequate worst-case sample size is

n = 1

1/510 + 1/1000
= 338

Comments
The sample sizes for simultaneously estimating several proportions—that is, k pro-
portions which add up to 1—are based on the normal approximation together with
Bonferroni’s inequality, which states that the probability that any one or more of
the estimates misses the corresponding true value (by more than d ) is less than or
equal to the sum of the k individual probabilities of missing them. The theorem in
Fitzpatrick and Scott (1987) and Thompson (1987) showed that the worst case—that
is, the population values demanding the largest sample size—occurs when some m
of the proportions in the population are equal and the rest are zero. The value of
m depends on α. For example, when α = 0.01,m = 2, and when α = 0.05,m = 3.
Sample size does not depend on the number k of categories in the population as long
as k is greater than or equal to m . The sample sizes are “conservative” in that they
may actually be somewhat larger than necessary to attain the precision desired.

5.5. ESTIMATING A RATIO

Suppose that a biologist studying an animal population selects a simple random
sample of plots in the study region and in each selected plot counts the number yi

of young animals and the number xi of adult females, with the object of estimating
the ratio of young to adult females in the population. In a household survey to
estimate the number of television sets per person in the region, a random sample of
households is selected and for each household selected the number yi of television
sets and the number xi of people are recorded.

In such cases the population ratio is commonly estimated by dividing the total
of the y-values by the total of the x -values in the sample. The estimator may be
written r = ∑n

i=1 yi/
∑n

i=1 xi = y/x and is called a ratio estimator . Because the
denominator x as well as the numerator y is a random variable, ratio estimators are
not unbiased with the design simple random sampling, although they may be nearly
so. Properties of ratio estimators under simple random sampling are described in
Chapters 7 and 12.

5.6. ESTIMATING A MEAN, TOTAL, OR PROPORTION
OF A SUBPOPULATION

In a sample survey to estimate the proportion of registered voters who intend to vote
for a particular candidate, a simple random sample of n people in the voting district
are selected. Of the people in the sample, n1 are found to be registered voters, and
of these, a1 intend to vote for the candidate. The proportion of registered voters
favoring the candidate is estimated with the sample proportion p̂1 = a1/n1. The
proportion to be estimated is a proportion not of the whole population but of a
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subpopulation (or domain of study), the subpopulation of registered voters. The
estimator p̂1 differs from the sample proportions considered in the first part of
this chapter in that the denominator n1, the number of registered voters in the
sample, is a random variable. A similar situation arises when a random sample of
households is selected for estimating mean or total expenditures, but estimates are
wanted not just for the whole population but for subpopulations based on family
size, geographic area, or other factors. Subpopulation estimation is of interest in
an ecological survey of the abundance of an animal species when it is desired,
using a simple random sample of plots in a study region, to estimate not only the
abundance or density of the species in the region, but also the abundance in the
subregion of the study area that has been most strongly affected by pollution.

Estimating a Subpopulation Mean

Of the N units in the population, let Nk be the number that belong to the k th
subpopulation. The variable of interest for the i th unit in the k th subpopulation
is yki . The subpopulation total is τk = ∑Nk

i=1 yki and the subpopulation mean is
μk = τk/Nk . A simple random sample of n units is selected from the N units in
the population, and nk of the sample units are found to be from subpopulation k .
The sample mean of those nk units is yk = (1/nk)

∑nk

i=1 yki .
The domain sample mean yk is an unbiased estimator of the subpopulation

mean μk . This can be shown by conditioning on the domain sample size nk .
Given nk , every possible combination of nk of the Nk subpopulation units has
equal probability of being included in the sample. Thus, conditional on nk, yk

behaves as the sample mean of a simple random sample of nk units from Nk , so
that the conditional expectation is E(yk|nk) = μk . The unconditional expectation
is E(yk) = E[E(yk|nk)] = μk , so yk is unbiased. The variance of yk is obtained
using the well-known decomposition var(yk) = E[var(yk|nk)] + var[E(yk|nk)]. The
second term is zero since the conditional expectation is constant. The conditional
variance of yk , from simple random sampling, is

var(yk|nk) = Nk − nk

Nknk

σ 2
k = σ 2

k

(
1

nk

− 1

Nk

)

where σ 2
k is the population variance for the units in the k th subpopulation,

σ 2
k = 1

Nk − 1

Nk∑
i=1

(yki − μk)
2

The unconditional variance is thus

var(yk) = σ 2
k

[
E

(
1

nk

)
− 1

Nk

]

The sample size nk is a random variable with expected value nNk/N . A design
with a fixed sample size nNk/N would give lower variance, since E(1/nk) is
greater than N/(nNk) (by Jensen’s inequality from probability theory).
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For an estimated variance with which to construct a confidence interval, one can
use

v̂ar(yk) = Nk − nk

Nknk

s2
k

where s2
k is the sample variance of the sample units in the k th subpopulation,

s2
k = 1

nk − 1

nk∑
i=1

(yki − yk)
2

This is an unbiased estimate of the conditional variance of yk given nk .
An approximate 100(1 − α)% confidence interval for μk is provided by

yk ± t
√

v̂ar(yk)

where t is the upper α/2 point of the t distribution with nk − 1 degrees of free-
dom. Since the confidence interval procedure has the desired approximate coverage
probability conditional on domain sample size nk , it has the desired approximate
coverage probability unconditionally as well.

If the subpopulation size Nk is unknown, as is often the case, the finite-
population correction factor (Nk − nk)/Nk can be replaced with its expected value
(N − n)/N .

Estimating a Proportion for a Subpopulation

A subpopulation proportion is a special case of a subpopulation mean, with the
variable of interest yki = 1 if the i th unit of the k th subpopulation has the attribute
and yki = 0 otherwise. The number of units in the k th subpopulation having the
attribute is denoted Ak and the number of those in the sample is denoted ak . The
subpopulation sample proportion p̂k = ak/nk , as a subpopulation sample mean, is
unbiased for the subpopulation proportion p = Ak/Nk . The estimate of variance
with attribute data reduces to

v̂ar(p̂k) =
(

Nk − nk

Nk

)
p̂k(1 − p̂k)

nk − 1

with (Nk − nk)/NK replaced by (N − n)/N when Nk is unknown.

Estimating a Subpopulation Total

If the subpopulation size NK is known, the subpopulation total τk can be unbiasedly
estimated with Nkyk . The variance of the estimator is var(Nkyk) = N2

k var(yk) and
the estimate of (conditional) variance v̂ar(Nkyk) = N2

k v̂ar(yk) may be used.
If Nk is not known, the unbiased estimator

τ̂k = N

n

nk∑
i=1

yki

may be used.
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To show that τ̂k is unbiased for τk , define a new variable of interest y ′ that is
identical to y for every unit in the subpopulation and is zero for all other units.
The population total for the new variable is

∑N
i=1 y ′

i = τk . The population variance
for the new variable is σ ′2 = ∑N

i=1(y
′
i − τk/N)2/(N − 1).

With a simple random sample of n units from the population, the sample mean
of the new variables is y ′ = ∑n

i=1 y ′
i/n. The estimator τ̂k can be written τ̂k = Ny ′.

By the usual results of simple random sampling, τ̂k is an unbiased estimator of τk

with variance

var(τ̂k) = N2
(

N − n

Nn

)
σ ′2

An unbiased estimate of this variance is

v̂ar(τ̂k) = N2
(

N − n

Nn

)
s ′2

where s ′2 is the sample variance computed with the new variables,

s ′2 = 1

n − 1

n∑
i=1

(y ′
i − y ′)2

When the subpopulation size Nk is known, the first estimator Nkyk is preferable
to τ̂k as the variance of Nkyk is smaller.

In many surveys it is important to make estimates not just for the overall
population or large subgroups, but also for small geographic areas and small sub-
populations. For example, in a national health survey it may be important to have
estimates for small geographic subdivisions and for specific ethnic groups or for
recent immigrants from a given region. Because of practical and budgetary lim-
itations, the number of sample units in a given domain of interest may be very
small, so that direct estimates based just on those units will have high variances.
To obtain better estimates for small areas, a number of techniques have been devel-
oped that “borrow strength” from surrounding areas. One approach, referred to as
synthetic estimation , makes use of estimates and auxiliary information from the
larger area to adjust estimates for the small area of interest. Composite estima-
tors use a weighted average of the synthetic and direct estimators. A variety of
model-based methods using auxiliary information from the small area and larger
population have also been introduced. Ghosh and Rao (1994) provide a review and
appraisal of small-area estimation methods.

EXERCISES

1. To estimate the proportion of voters in favor of a controversial proposition, a
simple random sample of 1200 eligible voters was contacted and questioned.
Of these, 552 reported that they favored the proposition. Estimate the popu-
lation proportion in favor and give a 95% confidence interval for population
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proportion. The number of eligible voters in the population is approximately
1,800,000.

2. A market researcher plans to select a simple random sample of households from
a population of 30,000 households to estimate the proportion of households
with one or more videocassette recorders. The researcher asks a statistician
what sample size to use and is told to use the formula

n = Np(1 − p)

(N − 1)(d2/z2) + p(1 − p)

Describe exactly what the researcher needs to know or decide to fill in values
for d, z , and p in the equation, and what will be accomplished by that choice
of sample size.

3. What sample size is required to estimate the proportion of people with blood
type O in a population of 1500 people to be within 0.02 of the true proportion
with 95% confidence? Assume no prior knowledge about the proportion.

4. For the population of Exercise 3, what sample size is required to simultane-
ously estimate the proportion with each blood type to within 0.02 of the true
proportion with 95% confidence?

5. Carry out a survey to estimate a proportion in a population of your choice.
Examples include the proportion of vehicles with only one occupant and the
proportion of a university campus covered by tree canopy. For the latter, the
campus can be partitioned into extremely small plots, so that each plot location
may be determined to be either covered or not covered and the finite-population
correction factor will be negligible. In the process of carrying out the survey
and making the estimate, think about or discuss with others the following:

(a) What practical problems arise in establishing a frame, such as a map or
list of units, from which to select the sample?

(b) How is the sample selection actually carried out?

(c) What special problems arise in observing the units selected?

(d) Estimate the population proportion.

(e) Estimate the variance of the estimated proportion.

(f) Give a 95% confidence interval for the population proportion.

(g) How large a sample size would be needed to estimate the proportion to
within 0.02 of the true value with 95% confidence? (Answer this first using
your estimate proportion and second for the worst case.)

(h) How would you improve the survey procedure if you were to do it again?



C H A P T E R 6

Unequal Probability Sampling

With some sampling procedures, different units in the population have different
probabilities of being included in a sample. The differing inclusion probabilities
may result from some inherent feature of the sampling procedure, or they may be
imposed deliberately to obtain better estimates by including “more important” units
with higher probability. In either case, the unequal inclusion probabilities must be
taken into account in order to come up with reasonable estimates of population
quantities.

Examples of unequal probability designs include line-intercept sampling of veg-
etation cover, in which the size of a patch of vegetation is measured whenever a
randomly selected line intersects it. The larger the patch, the higher the probability
of inclusion in the sample. Forest surveys to assess the board feet in a stand of
trees are often done in such a way as to give higher inclusion probabilities to larger
trees.

If a study area is divided into plots of unequal sizes, it may be desired to assign
larger inclusion probabilities to larger plots; this may be done by selecting points in
the study area with equal probability and including a plot whenever a point selected
is within it. More generally, unequal probability selections may be carried out by
assigning to each unit an interval whose length is equal to the desired probability
and selecting random numbers from the uniform distribution: A unit is included if
the random number is in its interval.

6.1. SAMPLING WITH REPLACEMENT: THE HANSEN–HURWITZ
ESTIMATOR

Suppose that sampling is with replacement and that on each draw the probability of
selecting the i th unit of the population is pi , for i = 1, 2, . . . , N . Then an unbiased

Sampling, Third Edition. Steven K. Thompson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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estimator of the population total τ is

τ̂p = 1

n

n∑
i=1

yi

pi

(6.1)

The variance of this estimator is

var(τ̂p) = 1

n

N∑
i=1

pi

(
yi

pi

− τ

)2

(6.2)

An unbiased estimator of this variance is

v̂ar(τ̂p) = 1

n(n − 1)

n∑
i=1

(
yi

pi

− τ̂p

)2

(6.3)

An unbiased estimator of the population mean μ is μ̂p = (1/N)τ̂p, having vari-
ance var(μ̂p) = (1/N2)var(τ̂p) and estimated variance v̂ar(μ̂p) = (1/N2)v̂ar(τ̂p).
An approximate (1 − α)100% confidence interval for the population total, based
on the large-sample normal approximation for the estimator τ̂p, is

τ̂p ± z

√
v̂ar(τ̂p)

where z is the upper α/2 point of the standard normal distribution. For sample
sizes less than about 50, the t distribution with n − 1 degrees of freedom may be
used in place of the normal distribution.

This estimator was introduced by Hansen and Hurwitz (1943). Note that because
of the with-replacement sampling, a unit may be selected on more than one draw.
The estimator utilizes that unit’s value as many times as the unit is selected.

If the selection probabilities pi were proportional to the variables yi , the ratio
yi/pi would be constant and the Hansen–Hurwitz estimator would have zero
variance. The variance would be low if the selection probabilities could be set
approximately proportional to the y-values. Of course, the population y-values are
unknown prior to sampling. If it is believed that the y-values are approximately
proportional to some known variable such as the sizes of the units, the selection
probabilities can be chosen proportional to the value of that known variable.

Example 1: Large mammals in open habitat are often surveyed from aircraft. As
the aircraft flies over a selected strip, all animals of the species within a prescribed
distance of the aircraft path are counted, the distance sometimes being determined
by markers on the wing struts of the aircraft. Because of the irregularities in the
shape of the study area, the strips to be flown may be of varying lengths. One
may select units (strips) with probability proportional to their lengths by randomly
selecting n points on a map of the study region and including in the sample any
strip that contains a selected point. The draw-by-draw selection probability for
any strip equals its length times its width divided by the area of the study region.
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Table 6.1: Sample Observations for Example 1

yi Length pi

60 5 0.05
60 5 0.05
14 2 0.02
1 1 0.01

A strip is selected more than once if it contains more than one of the points selected.
It is immaterial whether the unit is physically observed more than once. The design
unbiasedness of the estimator depends on the observation receiving a weight in the
estimator equal to the number of times the unit is selected.

For simplicity, consider a study area of 100 square kilometers partitioned into
strips 1 kilometer wide but varying in length. A sample of n = 4 strips is selected
by this method. One strip, with yi = 60 animals, was selected twice; its length was
5 kilometers, and hence its selection probability was pi = 0.05. The set of sample
observations is listed in Table 6.1, with the repeat selection listed twice.

The Hansen –Hurwitz estimator , also known as the probability-proportional-
to-size (PPS) estimator in this type of design situation [using Equation (6.1)],
is

τ̂p = 1

4

(
60

0.05
+ 60

0.05
+ 14

0.02
+ 1

0.01

)
= 1

4
(1200 + 1200 + 700 + 100) = 800 animals

To compute the estimated variance, note that an ordinary sample variance of the
numbers 1200, . . . , 100, the mean of which is 800, is involved [Equation (6.3)]:

v̂ar(τ̂p) = 1

4(3)
[(1200 − 800)2 + · · · + (100 − 800)2] = 273,333

4
= 68,333

The standard error is
√

v̂ar(τ̂p) = √
68,333 = 261. �

6.2. ANY DESIGN: THE HORVITZ–THOMPSON ESTIMATOR

With any design, with or without replacement, given probability πi that unit i is
included in the sample, for i = 1, 2, . . . , N , an unbiased estimator of the population
total τ , introduced by Horvitz and Thompson (1952), is

τ̂π =
ν∑

i=1

yi

πi

(6.4)



70 unequal probability sampling

where ν is the effective sample size—the number of distinct units in the
sample—and the summation is over the distinct units in the sample.

This estimator does not depend on the number of times a unit may be selected.
Each distinct unit of the sample is utilized only once.

Let the probability that both unit i and unit j are included in the sample be
denoted by πij . The variance of the estimator is

var(τ̂π ) =
N∑

i=1

(
1 − πi

πi

)
y2

i +
N∑

i=1

∑
j �=i

(
πij − πiπj

πiπj

)
yiyj (6.5)

An unbiased estimator of this variance is

v̂ar(τ̂π ) =
ν∑

i=1

(
1 − πi

π2
i

)
y2

i +
ν∑

i=1

∑
j �=i

(
πij − πiπj

πiπj

)
yiyj

πij

=
ν∑

i=1

(
1

π2
i

− 1

πi

)
y2

i + 2
ν∑

i=1

∑
j > i

(
1

πiπj

− 1

πij

)
yiyj (6.6)

if all of the joint inclusion probabilities πij are greater than zero. An unbiased
estimator of the population mean μ is μ̂π = (1/N)τ̂π , having variance var(μ̂π ) =
(1/N2)var(τ̂π ) and estimated variance v̂ar(μ̂π ) = (1/N2)v̂ar(τ̂π ).

An approximate (1 − α)100% confidence interval for the population total, based
on the large-sample normal approximation for the estimator τ̂π , is

τ̂π ± z
√

v̂ar(τ̂π ) (6.7)

where z is the upper α/2 point of the standard normal distribution. As a pragmatic
rule, the t distribution with ν − 1 degrees of freedom could be substituted for the
normal distribution with small sample sizes (less than about 50).

Although unbiased, the variance estimator v̂ar(τ̂π ) is somewhat tedious to com-
pute and with some designs can give negative estimates, whereas the true variance
must be nonnegative. A very simple approximate variance estimation formula,
which though biased is considered “conservative” (tending to be larger than the
actual variance) and is invariably nonnegative, has been suggested as an alterna-
tive (see Brewer and Hanif 1983, p. 68). For the i th of the ν distinct units in the
sample, a variable ti = νyi/πi is computed, for i = 1, . . . , ν. Each of the ti is an
estimate of the population total, and their average is the Horvitz–Thompson esti-
mate. The sample variance of the ti is defined by s2

t = [1/(ν − 1)]
∑ν

i=1(ti − τ̂π )2.
The alternative variance estimator is

ṽar(τ̂π ) =
(

N − ν

N

)
s2
t

ν
(6.8)

If the inclusion probabilities πi could be chosen approximately proportional to
the values yi the variance of the Horvitz–Thompson estimator would be low. It is
not easy, however, to devise without-replacement sampling schemes that obtain a
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desired set of unequal inclusion probabilities, nor is it easy to compute the inclusion
probabilities for given without-replacement sampling schemes. Reviews of methods
developed for these purposes are found in Brewer and Hanif (1983) and Chaudhuri
and Vos (1988).

For a design in which the effective sample size ν is fixed rather than random,
the variance can be written in the form

var(τ̂π ) =
N∑

i=1

∑
j<i

(πiπj − πij )

(
yi

πi

− yj

πj

)2

and an unbiased variance estimator is given by

v̂ar(τ̂π ) =
ν∑

i=1

∑
j<i

(
πiπj − πij

πij

) (
yi

πi

− yj

πj

)2

provided that all of the joint inclusion probabilities πij are greater than zero (Sen
1953; Yates and Grundy 1953).

Example 2: The Horvitz–Thompson estimator can be used with the PPS design of
Example 1, so that the estimate will depend only on the distinct units in the sample,
not on numbers of repeat selections. On each of the n draws, the probability of
selecting the i th unit is pi , and, because of the with-replacement selection, the n
draws are independent. Thus, the probability of unit i not being included in the
sample is (1 − pi)

n, so that the inclusion probability is πi = 1 − (1 − pi)
n.

For the first unit in the sample, with p1 = 0.05, the inclusion probability is
π1 = 1 − (1 − 0.05)4 = 1 − 0.8145 = 0.1855. (See Table 6.1 for data.) Similarly,
for the second distinct unit in the sample, with p2 = 0.02, we get π2 = 1 −
(1 − 0.02)4 = 1 − 0.9224 = 0.0776. For the third unit, π3 = 1 − (1 − 0.01)4 =
1 − 0.9606 = 0.0394.

The Horvitz–Thompson estimator [using Equation (6.4)] is

τ̂π = 60

0.1855
+ 14

0.0776
+ 1

0.0394
≈ 529 animals

Using the relation between probabilities of intersections and unions of events,
the probability of including both unit i and unit j in the sample is the probability
of including unit i plus the probability of including unit j minus the probability of
including either i or j . Thus, the joint inclusion probability is

πij = πi + πj − [1 − (1 − pi − pj )
n]

For the three units in the sample, this gives π12 = 0.0112, π13 = 0.0056, and
π23 = 0.0023. The estimated variance [using Equation (6.6)] is

v̂ar(τ̂π ) =
(

1

0.18552
− 1

0.1855

)
602 +

(
1

0.07762
− 1

0.0776

)
142

+
(

1

0.03942
− 1

0.0394

)
12
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+ 2

[
1

0.1855(0.0776)
− 1

0.0112

]
(60)(14)

+ 2

[
1

0.1855(0.0394)
− 1

0.0056

]
(60)(1)

+ 2

[
1

0.0776(0.0394)
− 1

0.0023

]
(14)(1)

= 74,538

so that the estimated standard error is
√

74,538 = 273 animals.
For the alternative variance estimate, an estimate of the total based on the first of

the ν = 3 distinct units in the sample is t1 = 3(60)/0.1855 = 970.35. For the other
two units, the values are t2 = 3(14)/0.0776 = 541.24 and t3 = 3(1)/0.0394 =
76.14. The sample variance of these three numbers is s2

t = 200,011. The estimated
variance [using Equation (6.8)] is

ṽar(τ̂π ) =
(

100 − 3

100

)(
200,011

3

)
= 64,670

giving an estimated standard error of 254. Note that because the effective sample
size is not fixed for this design, the Sen–Yates–Grundy variance estimator does
not apply. �

6.3. GENERALIZED UNEQUAL-PROBABILITY ESTIMATOR

The Horvitz–Thompson estimator is unbiased but can have a large variance for
populations in which the variables of interest and inclusion probabilities are not
well related. A generalized unequal-probability estimator of the population mean is

μ̂g =
∑

i∈s yi/πi∑
i∈s 1/πi

In the numerator of this estimator is the ordinary Horvitz–Thompson estimator,
which gives an unbiased estimate of the population total τ . The denominator can
be viewed as another Horvitz–Thompson estimator, giving an unbiased estimate
of the population size N . Thus, the estimator μ̂g estimates τ/N = μ. As the ratio
of two unbiased estimators the estimator μ̂g is not precisely unbiased, but the bias
tends to be small and to decrease with increasing sample size.

The variance or mean square error of μ̂g is approximately

var(μ̂g) = 1

N2

[
N∑

i=1

(
1 − πi

πi

)
(yi − μ)2

+
N∑

i=1

∑
j �=i

(
πij − πiπj

πiπj

)
(yi − μ)(yj − μ)

⎤⎦ (6.9)



small population example 73

An estimator of this variance is given by

v̂ar(μ̂g) = 1

N2

[
ν∑

i=1

(
1 − πi

π2
i

)
(yi − μ̂g)

2

+
ν∑

i=1

∑
j �=i

(
πij − πiπj

πiπj

)
(yi − μ̂g)(yj − μ̂g)

πij

⎤⎦ (6.10)

provided that all of the joint inclusion probabilities πij are greater than zero. The
value of N in this estimator may be replaced by its estimator, N̂ = ∑

i∈s(1/πi).
For the population total, the generalized estimator is τ̂g = Nμ̂ and its variance

is var(τ̂g) = N2var(μ̂g) with variance estimator v̂ar(τ̂g) = N2v̂ar(μ̂g).

Example 3: For the aerial survey of Example 1 and Example 2, the number of
strips in the study region is N = 50. The generalized unequal-probability estimator
of the population total is

τ̂g = (50)
60/0.1855 + 14/0.0776 + 1/0.0394

1/0.1855 + 1/0.0776 + 1/0.0394
≈ 606 animals

�

6.4. SMALL POPULATION EXAMPLE

To illustrate the design-based properties of the two unbiased estimators with an
unequal probability design, consider the following artificially small example. The
population consists of N = 3 farms, of which n = 2 are selected with probabilities
proportional to size with replacement. The variable of interest is production of
wheat in metric tons. The population values are given in the following table.

Unit (Farm), i 1 2 3
Selection Probability, pi 0.3 0.2 0.5
Wheat Produced, yi 11 6 25

Every possible ordered sample, with units listed in the order selected, is listed
in Table 6.2, together with the probability p(s) that the ordered sample is the one
selected. The sample values ys of the variable of interest and the values of the two
estimators τ̂p and τ̂π are also listed for each of the samples. Because sampling is
with replacement, the draws are independent, so the probability p(s) of selecting
a given sample of units is the product of the draw-by-draw selection probabilities
for the units in the ordered sample.

The inclusion probabilities πi can be obtained directly from the table using

πi = P(i ∈ s) =
∑

{s:i∈s}
P(s)
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Table 6.2: Samples for Small Population Example

s p(s) ys τ̂p τ̂π τ̂g

1, 1 0.3(0.3) = 0.09 (11, 11) 36.67 21.57 33.00
2, 2 0.2(0.2) = 0.04 (6, 6) 30.00 16.67 18.00
3, 3 0.5(0.5) = 0.25 (25, 25) 50.00 33.33 75.00
1, 2 0.3(0.2) = 0.06 (11, 6) 33.33 38.24 24.21
2, 1 0.2(0.3) = 0.06 (6, 11) 33.33 38.24 24.21
1, 3 0.3(0.5) = 0.15 (11, 25) 43.33 54.90 50.00
3, 1 0.5(0.3) = 0.15 (25, 11) 43.33 54.90 50.00
2, 3 0.2(0.5) = 0.10 (6, 25) 40.00 50.00 36.49
3, 2 0.5(0.2) = 0.10 (25, 6) 40.00 50.00 36.49
Mean: 42 42 47.64
Bias: 0 0 5.64
Variance: 34.67 146.46 334.02
Std. Dev.: 5.89 12.10 18.28

Thus,

π1 = 0.09 + 0.06 + 0.06 + 0.15 + 0.15 = 0.51

π2 = 0.04 + 0.06 + 0.06 + 0.10 + 0.10 = 0.36

π3 = 0.25 + 0.15 + 0.15 + 0.10 + 0.10 = 0.75

Alternatively, the inclusion probabilities can be computed using the analytical
formula for this particular design as πi = 1 − (1 − pi)

n. For example, p1 = 1 −
(1 − 0.3)2 = 1 − 0.49 = 0.51.

For computing the sample values of the Hanson–Hurwitz estimator
τ̂p = (1/n)

∑n
i=1 yi/pi , it is first useful to compute

y1

p1
= 11

0.3
= 36.37

y2

p2
= 6

0.2
= 30.00

y3

p3
= 25

0.5
= 50.00

For each sample, τ̂p is the average of two of these values.
For computing the sample values of the Horvitz–Thompson estimator τ̂π =∑ν
i=1 yi/πi , it is first useful to compute

y1

π1
= 11

0.51
= 21.57

y2

π2
= 6

0.36
= 16.67
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y3

π3
= 25

0.75
= 33.33

For each sample, τ̂π is the sum of these values for the ν distinct units in the
sample.

The expectation of an estimator τ̂ under the design is

E(τ̂ ) =
∑

s

τ̂sP(s)

where τ̂s is the value of the estimator for sample s and the summation is over every
possible sample.

The expected value of the estimator τ̂p for this population with the design used
is thus

E(τ̂p) = 36.67(0.09) + 30.00(0.04) + 50.00(0.25) + 2(33.33)(0.06)

+ 2(43.33)(0.15) + 2(40.00)(0.10) = 42

The expected value of the estimator τ̂π for this population with the design used
is thus

E(τ̂π ) = 21.57(0.09) + 16.67(0.04) + 33.33(0.25) + 2(38.24)(0.06)

+ 2(54.90)(0.15) + 2(50.00)(0.10) = 42

The expected value of the generalized estimator τ̂g , computed in similar fashion,
is E(τ̂g) = 47.64, so the bias of this estimator with this population total is E(τ̂g) −
τ = 47.64 − 42 = 5.64. The variance is var(τ̂g) = E(τ̂g − 47.64)2 = 334.02. The
mean square error is E(τ̂g − τ)2 = E(τ̂g − 42)2 = 365.85.

A small population example with small sample size such as this illustrates con-
ceptually how each of the estimators works with the given design but does not
provide guidance on which estimator to use in a given real situation. In this par-
ticular population, there is a roughly proportional relationship between the yi and
the pi values, and the estimator τ̂p performs well, whereas for many real popula-
tions with roughly proportional relationships, the estimator τ̂π has been found to
perform better. The estimator τ̂g , which is recommended for cases in which the yi

and πi values are not well related, performs least well of the three estimators here.
None of the three estimators is uniformly better than the others for every type of
population or design.

6.5. DERIVATIONS AND COMMENTS

When sampling is with replacement, the selections are independent. Consider a
single draw. The j th unit of the population is selected with probability pj , for
j = 1, . . . , N . Let ys denote the sample y-value and ps the selection probability
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for the unit in the sample. The Hansen–Hurwitz estimator for the sample of one
unit may be written ts = ys/ps . Its expected value is

E(ts) =
∑

s

tsps =
N∑

j=1

yj = τ

so that ts is an unbiased estimator of the population total.
The variance of ts is

var(ts) =
∑

s

(ts − τ)2ps =
N∑

j=1

(
yj

pj

− τ

)2

pj

With n independent draws, in which unit j has selection probability pj on
each draw, the Hansen–Hurwitz estimator is the sample mean of n independent,
identically distributed (i.i.d.) random variables ts1, ts2, . . . , tsn, each with the mean
and variance above, so that one may write τ̂p = (1/n)

∑n
i=1 tsi = t s . Thus, using

the properties of a sample mean of i.i.d. random variables, E(τ̂p) = τ and var(τ̂p) =
(1/n)

∑N
j=1 pj [(yj /pj ) − τ ]2.

Further, since the tsi are i.i.d., a sample variance based on them is an unbiased
estimator of their variance, so that

E

[
1

n(n − 1)

n∑
i=1

(tsi − τ̂p)2

]
= E[v̂ar(τ̂p)] = 1

n
var(ts) = var(τ̂p)

The above derivation method is useful for any with-replacement sampling strat-
egy, in which the estimator may be written as the sample mean of independent,
unbiased estimators.

For the Horvitz–Thompson estimator, define the indicator variable zi to be 1
if the i th unit of the population is included in the sample and zero otherwise,
for i = 1, 2, . . . , N . For any unit i , zi is a Bernoulli random variable with E(zi) =
P(zi = 1) = P(i ∈ s) = πi and variance var(zi) = πi(1 − πi). For two distinct units
i and j , with i �= j , the covariance of zi and zj is

cov(zi, zj ) = E(zizj ) − E(zi)E(zj ) = P(zi = 1, zj = 1) − πiπj = πij − πiπj

The Horvitz–Thompson estimator may be written in terms of the random vari-
ables zi as

τ̂π =
N∑

i=1

yizi

πi

in which the only random quantities are the zi . The expected value is thus

E(τ̂π ) =
N∑

i=1

yiE(zi)

πi

=
N∑

i=1

yiπi

πi

=
N∑

i=1

yi = τ
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so that the Horvitz–Thompson estimator is unbiased.
Similarly, the variance of the estimator is

var(τ̂π ) =
N∑

i=1

(
yi

πi

)2

var(zi) +
N∑

i=1

∑
j �=i

yiyj

πiπj

cov(zi, zj )

=
N∑

i=1

(
1 − πi

πi

)
y2

i +
N∑

i=1

∑
j �=i

(
πij − πiπj

πiπj

)
yiyj

To see that v̂ar(τ̂π ) is unbiased for var(τ̂π ), define zij to be 1 if both units i and
j are included in the sample and zero otherwise. The estimator of variance may be
written

v̂ar(τ̂π ) =
N∑

i=1

(
1 − πi

π2
i

)
y2

i zi +
N∑

i=1

∑
j �=i

(
πij − πiπj

πiπj

)
yiyj zij

πij

Since E(zij ) = P(zi = 1, zj = 1) = πij , unbiasedness follows immediately.
Alternative estimators of the variance of the Horvitz–Thompson estimator, based

on a simple sum of squared deviations, have been investigated by a number of
authors. Such estimators are to be desired for the computational simplicity and for
favorable properties under specific population models. More general forms for such
variance estimators are described in Brewer and Hanif (1983), Hájek (1981), and
Kott (1988).

Asymptotic normality of the Hansen–Hurwitz estimator under sampling with
replacement follows from the usual central limit theorem for the sample mean of
independent, identically distributed random variables. For the Horvitz–Thompson
estimator the situation is more complicated, since the terms yi/πi of the distinct
units in the sample are not in general independent. Results on the asymptotic
normality of the Horvitz–Thompson estimator under certain designs are given in
Rosen (1972a,b) and Sen (1988).

The generalized unequal probability estimator μ̂g can be obtained using an
“estimating equation” approach. The population mean is defined implicitly by the
population estimation equation

N∑
i=1

(yi − μ) = 0

Notice that solving this equation for μ gives μ = (1/N)
∑N

i=1 yi , the usual
definition of the population mean. The left-hand side of the estimating equation
can itself be viewed as a kind of population total, although it depends on an
unknown parameter. Denote this total by φ(μ) = ∑N

i=1(yi − μ). From a sample s
an unbiased estimator of this total, of Horvitz–Thompson form, is

φ̂(μ) =
∑
i∈s

yi − μ

πi
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Setting this sample quantity to zero, since the total it estimates equals zero,
gives the sample estimating equation∑

i∈s

yi − μ

πi

= 0

Now solving this equation for μ gives the generalized estimator, μ̂g .
Since the generalized estimator μ̂g is the ratio of two random variables, Taylor

series approximation can be used to give

μ̂g − μ ≈ 1

N

∑
i∈s

yi − μ

πi

which has the form of a Horvitz–Thompson estimator. The approximate vari-
ance and variance estimator formulas are then obtained from the usual formulas
for a Horvitz–Thompson estimator. Taylor series approximations of ratios of ran-
dom variables are described in more detail in Chapter 7. For designs to which a
finite-population central limit theorem applies for the Horvitz–Thompson estima-
tor, approximate 1 − α confidence intervals may be based directly on the unbiased
variance estimator for the sample estimation function. The interval consists of those

values of μ for which −t

√
v̂ar(φ̂(μ)) ≤ φ̂(μ) ≤ t

√
v̂ar(φ̂(μ)). The estimated vari-

ance v̂ar(φ̂(μ)) is obtained from the Horvitz–Thompson variance estimator with μ̂g

substituted for μ. The estimating equation approach to inference in survey sampling
is discussed in Binder and Patak (1994), Godambe (1995), Godambe and Thompson
(1986), and M. E. Thompson (1997). Further discussion on this type of estimator
can be found in Särndal et al. (1992, pp. 176–184) and M. E. Thompson (1997,
pp. 93–111). A more general form of this estimator is described in Chapter 7.

As mentioned earlier, it is difficult to devise without-replacement designs with
inclusion probabilities exactly proportional to unit size or another specified variable.
One simple design consists of selecting the first unit with probability proportional
to size and, at each step thereafter, selecting the next unit with probability pro-
portional to size among those units not already selected, until n distinct units are
included in the sample. The inclusion probabilities for this design are not easy to
compute, but the conditional probability of selection, given the units selected pre-
viously, is easy. Das (1951) and Raj (1956) introduced unbiased estimators based
on these conditional selection probabilities. The value of the estimator depends on
the order in which the units in the sample were selected. Murthy (1957) improved
the estimator by removing the dependence on order—but the improved estimator is
not easy to compute. Comparisons of these estimators with others are summarized
in Brewer and Hanif (1983, pp. 90–91).

6.6. COMPUTING NOTES

Following is some R code for selecting samples with unequal probability replace-
ment and computing Hansen–Hurwitz and Horvitz–Thompson estimates. Note that
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lines following “#” are comments. The “tree” data set in R has data on N = 31
black cherry trees that we will use for an empirical population. Tree girth (circum-
ference), which is measured at a convenient height, is an easier measurement to
get for each tree and the unequal probability design used will have draw-by-draw
selection probability proportional to girth.

# Read in the trees data set from R, let the variable of
# interest y be tree volume and draw by draw selection
# probability be proportional to girth. The variable
# of interest is tree volume.

trees
y <- trees$Volume

y
N <- 31
p <- trees$Girth
p
sum(p)
p <- p/sum(p)
p
sum(p)

# select a sample with probability proportional to girth,
# with replacement.
n <- 10
s <- sample(1:N,n,repl=T,prob=p)
s
y[s]
mean(y[s])
mu <- mean(y)
mu

# Do a small simulation of six runs so the output can be
# checked by looking at the six values of the sample mean
# obtained.

ybar <- numeric(6)
for (k in 1:6){s <- sample(1:N,n,repl=T,prob=p; ybar[k] <-
mean(y[s])}
for (k in 1:6){s <- sample(1:N,n,repl=T,prob=p); ybar[k] <-
mean(y[s]) ybar}

# Now do a full simulation:

b <- 10000
for (k in 1:b) {
s<- sample(1:N,n,repl=T,prob=p); ybar[k] <- mean(y[s])}
mean(ybar)
hist(ybar)
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points(mu,0)

# Note the sample mean is not unbiased for the population mean
# with the unequal probability design.
# So try the Hansen–Hurwitz estimator instead:

hh <- mean(y[s]/p[s])/N
s
hh
hh <- numeric(0)
for (k in 1:b){s <- sample(1:N,n,repl=T,prob=p); hh[k] <-
mean(y[s]/p[s])/N}
mean(hh)
mu
hist(hh)
points(mu,0)
hist(ybar)
points(mu,0)
hist(hh, add=T, col="blue")

# A third strategy to compare is the sample mean with
# simple random sampling:

ybarSRS <- numeric(0)
for (k in 1:b){s <- sample(1:N,n); ybarSRS[k] <- mean(y[s])}
hist(ybarSRS,add=F, col="yellow")
hist(hh, add=T, col="blue")

# A fourth strategy is unequal probability sampling with the
# Horvitz-Thompson estimator.
# The unique units in the sample s:

s
unique(s)
hh <- mean(y[s]/p[s])
hh

# Calculate the inclusion probabilities:

pii <- 1 - (1-p)^n
pii
hh
ht <- sum(y[unique(s)]/pii[unique(s)])
unique(s)
ht
su <- unique(s)
s
su
y[s]
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y[su]
ht <- sum(y[su]/pii[su])
ht

# The simulation can be laid out this way:

b <- 6

for (k in 1:b) {
s <- sample(1:N,n,T,p)
su <- unique(s)
hh[k] <- mean(y[s]/p[s])
ht[k] <- sum(y[su]/p[su])

}
ht

# or this way (entered all on one line):

for (k in 1:b){s <- sample(1:N,n,T,p); su <- unique(s);
hh[k] <- mean(y[s]/p[s]); ht[k] <- sum(y[su]/p[su])}

# Full simulation:

b <- 10000
for (k in 1:b){

s <- sample(1:N,n,T,p)
su <- unique(s)
hh[k] <- mean(y[s]/p[s])
ht[k] <- sum(y[su]/pii[su])

}

tau <- sum(y)
tau
mean(hh)
mean(ht)
hist(hh)
hist(ht)
var(hh)
var(ht)
mean((hh-tau)^2)
mean((ht-tau)^2)

# Frequency histograms:

hist(ht)
hist(hh)

# "Probability density histograms":
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hist(ht,freq=F)
hist(hh,freq=F)

# Make the histograms a little nicer:

hist(ht,freq=F,ylim=c(0,.005))
hist(hh,add=T,freq=F,col="blue")

Writing an R Function to Simulate a Sampling Strategy

A set of commands can be organized into a function in R. For example, our
simulation of the sampling strategy simple random sampling with the sample mean
consisted of a set of commands such as the following:

y <- treesVolume # if we want to use the black cherry
tree data for our population.

N <- length(y) # making N=31 in this case

n <- 4 # if we want to start out with a small sample size

ybar <- numeric() # to define ybar as a numeric vector

b <- 10 # letting b represent the number of runs we will
start with

for (k in 1:b) {
s <- sample(1:N,n)
ybar[k] <- mean(y[k])

}

hist(ybar)

These commands can be saved to a text file using any common text editor, such
as Notepad, Wordpad, Emacs, or Gedit for example. If you use a word processor
such as Word or Openoffice the file should be saved as a text file. Often by default
a text file is saved with the suffix “.txt”. That will work fine in our case, though it
is somewhat better to save a file consisting of R commands with the suffix ”.R”.

We can turn our simulation into a function by creating a file with the following
lines and saving it with a name of our choice such as ”srs.R”.

srs <- function(y, n = 4, b = 10){
ybar <- numeric(b)
N <- length(y)
for (k in 1:b){

s<- sample(1:N,n)
ybar[k] <- mean(y[s])

}
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hist(ybar)
}

Now in R type

source("srs.R")

If the saved source file is not in the working directory its exact path should be
entered. In Windows or MAC OS X you can also use the menu to navigate to the
R source file.

Now run the simulation with any desired sample size and number of runs, such
as

srs(y, n=10, b=1000)

Similarly, a function for sampling with replacement with selection probabilities
proportional to some measure x of unit size could be written and saved as follows:

ppx <- function(y, x, n = 4, b = 10){
hh <- numeric(b)
p <- x/sum(x)
N <- length(y)
for (k in 1:b) {
s <- sample(1:N,n,repl=T,prob=p)
hh[k] <- mean(y[s]/p[s])/N

}
hist(hh)

}

The following function assesses an estimator which is similar to the
Hansen–Hurwitz estimator except that each distinct unit in the sample is counted
only once, instead of as many times as it is selected. Thus this estimator is not
precisely unbiased with the design having n independent draws and unequal
selection probabilities. The function compares this estimator, called “hhunique,”
with the Hansen–Hurwitz estimator and prints the mean and mean square error
of each Figure 6.1.

ppxu <- function(y, x, n = 4, b = 10){
hh <- numeric(b)
hhu <- numeric(b)
p <- x/sum(x)
N <- length(y)
for (k in 1:b) {
s <- sample(1:N,n,repl=T,prob=p)
su <- unique(s)
hh[k] <- mean(y[s]/p[s])/N
hhu[k] <- mean(y[su]/p[su])/N

}
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Figure 6.1. Comparison of the sampling distributions of the Hansen-Hurwitz estimator with an unequal
probability design and the sample mean with the same design. The first strategy is unbiased while the
second is biased. The actual population mean is 30.17.

hist(hh)
X11()
hist(hhu)
print(c(mean(y),mean(hh),mean(hhu)))
mu <- mean(y)
print(c(mean((hh - mu)^2),mean((hhu - mu)^2)))

}

Comparing Sampling Strategies

# black cherry tree data:
x <- trees$Girth
y <- trees$Volume

# population mean:
mu <- mean(y)

# relationship between tree diameter and tree volume:
plot(x,y)

# arbitrary spatial coordinates for locations of trees
c1 <- runif(31)
c2 <- runif(31)
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plot(c1,c2)

# plot showing diameters
size <- x/min(x)
plot(c1,c2,cex=size)
plot(c1,c2,cex=size, pch=21, bg="yellow")

# select a simple random sample of 12 trees
s <- sample(1:31, 12)
points(c1[s],c2[s],cex=size[s],pch=21,bg="red")
mean(y[s])

# replot population:
plot(c1,c2,cex=size,pch=21,bg="yellow")

# select a sample of trees with probability proportional
# to diameter:
px <- x/sum(x)
s<-sample(1:31,12,replace=T,prob=px)
points(c1[s],c2[s],cex=size[s],pch=21,bg="red")

# sample mean with unequal probability sample:
mean(y[s])

# Hansen-Hurwitz (PPX) estimator of population mean:
mean(y[s]/px[s])/31

# initialize vectors for simulation of sampling strategies:
ybar <- numeric()
hh <- numeric()

# simulation, 1000 runs:
for(k in 1:1000){s<-sample(1:31,12,replace=T,prob=px);

ybar[k]<-mean(y[s]); hh[k]<-mean(y[s]/px[s])/31}

# sampling distribution of sample mean with ppx sampling
# design:
hist(ybar,col="lightyellow")

# sampling distribution of HH estimator with ppx sam-
pling design:
hist(hh,add=T,col="blue")

# better plot labels:
hist(ybar,col="lightyellow",main="Sampling distributions",

xlab="estimate")
hist(hh,add=T,col="blue")

# to add a legend:
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legend(x=45,y=1000,legend=c("ybar","HH"),
fill=c("lightyellow","blue"))

# mean, bias, variance, and mean square error of the
# sample mean with ppx:
mu
mean(ybar)
mean(ybar - mu)
var(ybar)
mean((ybar - mu)^2)

# mean, bias, variance, and mean square error of HH
# estimator with ppx:
mean(hh)
mean(hh - mu)
var(hh)
mean((hh-mu)^2)

The following R function compares three of the strategies. The function prints
some numerical comparisons and produces the histograms shown in Figure 6.2.
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Figure 6.2. Comparison of the strategies simple random sampling with the sample mean, unequal
probability sampling with replacement with the sample mean, and unequal probability sampling with
replacement with the Hansen–Hurwitz estimator. The first and third strategy are unbiased while the
second is biased. The actual population mean of the tree volumes is marked by the small triangle.



computing notes 87

strategies <- function(b=10000,n=10){
N <- 31
Volume <- trees$Volume
Girth <- trees$Girth
ybar <- numeric(0)
hh <- numeric(0)
ht <- numeric(0)
grt <- numeric(0)
nu <- numeric(0)
px <- Girth/sum(Girth)
mu <- mean(Volume)
pix <- 1 - (1-px)^n
par(mfcol=c(3,1))

# simple random sampling, ybar
for (k in 1:b)
{
s <- sample(1:31,n)
ybar[k] <- mean(Volume[s])

}
hist(ybar,xlim=c(10,50),col="grey",add=F,prob=T,
main=paste("srs, ybar, n = ",n))

points(mean(Volume),0,pch=24,bg="black",cex=2)
print.noquote(paste("true population mean mu =", mu))
print.noquote(paste("design=srs","n=",n))
print.noquote(paste(" est E(est) var(est)
E(est-mu)^2"))

print.noquote(paste(" ybar", mean(ybar),var(ybar),
mean((ybar-mu)^2)))

# pps design, ybar and hh
for (k in 1:b)
{

s <- sample(1:31,n,repl=T,prob=px)
su <- unique(s)
nu[k] <- length(unique(s))
ybar[k] <- mean(Volume[s])
hh[k] <- mean(Volume[s]/px[s])/N
ht[k] <- sum(Volume[su]/pix[su])/N
grt[k] <- (sum(Volume[su]/pix[su]))/(sum(1/pix[su]))

}
# summaries

print.noquote(paste("design=pps","n=",n, "E(nu)=",
mean(nu)))

print.noquote(paste(" ybar", mean(ybar),var(ybar),
mean((ybar-mu)^2)))

print.noquote(paste(" hh", mean(hh),var(hh),
mean((hh-mu)^2)))

print.noquote(paste(" ht", mean(ht),var(ht),
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mean((ht-mu)^2)))
print.noquote(paste(" grt", mean(grt),var(grt),
mean((grt-mu)^2)))

# summary of ybar, pps
hist(ybar,xlim=c(10,50),col="grey",add=F,prob=T,
main=paste("pps, ybar, n = ",n))

points(mean(ybar),0,pch=24,bg="white",cex=1.5)
points(mean(Volume),0,pch=24,bg="black",cex=1.5)

# summary of hh, pps
hist(hh,xlim=c(10,50),col="grey",add=F,prob=T,
main=paste("pps, hh, n = ",n))
points(mean(hh),0,pch=24,bg="white",cex=1.5)
points(mean(Volume),0,pch=24,bg="black",cex=1.5)

if (0 > 1)
{

# summary of ht, pps
hist(ht,xlim=c(10,50),col="grey",add=F,prob=T,

main=paste("pps, ht, n = ",n))
points(mean(ht),0,pch=24,bg="white",cex=1.5)
points(mean(Volume),0,pch=24,bg="black",cex=1.5)

# summary of grt, pps
hist(grt,xlim=c(10,50),col="grey",add=F,prob=T,

main=paste("pps, gry, n = ",n))
points(mean(grt),0,pch=24,bg="white",cex=1.5)
points(mean(Volume),0,pch=24,bg="black",cex=1.5)

}
}

The function is called “strategies.” It can be run in the R console by typing
“strategies()”.

EXERCISES

1. An unequal probability sample of size 3 is selected from a population of size
10 with replacement. The y-values of the selected units are listed along with
their draw-by-draw selection probabilities: y1 = 3, p1 = 0.06; y2 = 10, p2 =
0.20; y3 = 7, p3 = 0.10.

(a) Estimate the population total using the Hansen–Hurwitz estimator.

(b) Estimate the variance of the estimator.

2. For the design and data of Exercise 1:

(a) Estimate the population total using the Horvitz–Thompson estimator.

(b) Give an unbiased estimate of the variance of the estimator. (This may be
compared to the value of the simpler alternative estimator.)
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3. In a water pollution study, a sample of lakes is selected from the 320 lakes in
a study region by the following procedure. A rectangle of length l and width w
was drawn around the study region on a map. Pairs of random numbers between
0 and 1 were generated from the uniform distribution using a random number
generator on a computer. The first random number of a pair was multiplied by
l and the second by w to give location coordinates within the study region. If
the location was in a lake, that lake was selected. This process was continued
until four of the points had fallen on lakes. The first lake in the sample was
selected twice by this process, while each of the other two was selected just
once. The pollutant concentrations (in parts per million) for the three lakes in
the sample were 2, 5, and 10. The respective sizes of the three lakes (in km2)
were 1.2, 0.2, and 0.5. In all, 80 km2 of the study region was covered by lakes.

(a) Describe concisely the type of design used.

(b) Give an unbiased estimate of the mean pollution concentration per lake in
the population.

(c) Estimate the variance of the estimator above.

4. Use sampling with probability proportional to size, with replacement, to esti-
mate the mean or total of a population of your choice. One example would be
the average elevation of lakes on a topographic map. In the process of carrying
out the survey and making the estimate, think about or discuss with others the
following:

(a) What practical problems arise in establishing a frame, such as a map or
list of units, from which to select the sample?

(b) How is the sample selection actually carried out?

(c) What special problems arise in observing the units selected?

(d) Estimate the population mean or total.

(e) Estimate the variance of the estimator used above.

(f) Give a 95% confidence interval for the population proportion.

(g) How would you improve the survey procedure if you were to do it again?
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C H A P T E R 7

Auxiliary Data and Ratio Estimation

In addition to the variable of interest yi , one or more auxiliary variables xi may
be associated with the ith unit of the population. For example, if the variable of
interest is the volume of a tree, the breast-height diameter or an “eyeball” estimate
of volume may serve as an auxiliary variable. If the variable of interest is the
number of animals in a plot, auxiliary variables could include the area of the plot,
the vegetation type, or the average elevation of the plot. In many surveys of human
populations, the value of the variable of interest from a previous census may serve
as an auxiliary variable.

Auxiliary information may be used either in the sampling design or in estimation.
Stratification based on vegetation type or elevation represents a use of auxiliary
information in the design. Sampling with replacement with selection probabilities
proportional to size—for instance, size of the plot or size of the tree—is another
use of auxiliary information in the design.

At the estimation stage, the relationship between yi and xi can sometimes be
exploited to produce more precise estimates than can be obtained from the y-
data alone. Ratio and regression estimators are examples of the use of auxiliary
information in estimation. In some situations, the x-values may be known for the
entire population, while in other situations, the x-values are known only for units
included in the sample.

In this chapter the ratio estimator is examined first in the traditional, design-based
context, in which the y- and x-values for each unit in the population are viewed
as fixed and probability is involved only through the sample selection procedure.
The ratio estimator is considered first when the design is simple random sampling
and then more generally under unequal probability designs. In many sampling
situations, it may be reasonable to assume a statistical relationship between the x-
and y-values that goes beyond the sampling design, that is, to assume a regression-
through-the-origin model. With such a model, one thinks of the y-values as random
variables that can take on different values even for a given sample, depending on the

Sampling, Third Edition. Steven K. Thompson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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whims of nature. The implications of the model-based approach to both estimation
and design are discussed in the latter part of this chapter.

7.1. RATIO ESTIMATOR

Suppose that the x-values are known for the whole population and that the rela-
tionship between the x’s and the y’s is linear and it is reasonable to assume that
when xi is zero, yi will be zero. For example, as plot size goes to zero, the number
of animals on the plot will almost certainly go to zero; as tree diameter approaches
zero, so will tree volume.

Let τx denote the population total of the x’s (i.e., τx = ∑N
i=1 xi). Let μx denote

the population mean of the x’s (i.e., μx = τx/N). These population quantities
for the x-variable are assumed known; the object of inference is to estimate the
population mean μ or total τ of the y-values.

For a simple random sample of n of the units, the sample y-values are recorded
along with the associated x-values. The population ratio R is defined to be

R =
∑N

i=1 yi∑N
i=1 xi

= τy

τx

(7.1)

and the sample ratio r is

r =
∑n

i=1 yi∑n
i=1 xi

= y

x
(7.2)

The ratio estimate of the population mean μ is

μ̂r = rμx (7.3)

Since the ratio estimator is not unbiased, its mean square error will be of interest
for comparing its efficiency relative to other estimators. The mean square error
of the ratio estimator is by definition mse(μ̂r ) = E(μ̂r − μr)

2. For an unbiased
estimator the mean square error equals the variance, but for a biased estimator the
mean square error equals the variance plus the bias squared, that is, mse(μ̂r ) =
var(μ̂r ) + [E(μ̂) − μ]2. With the ratio estimator, the squared bias is small relative
to the variance, so the first-order approximation to the mean square error is the
same as for the variance.

A formula for the approximate mean square error or variance of the ratio esti-
mator is

var(μ̂r ) ≈
(

N − n

N

)
σ 2

r

n
(7.4)

where

σ 2
r = 1

N − 1

N∑
i=1

(yi − Rxi)
2
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The ratio estimator thus tends to be more precise than the sample mean of the
y-values for populations for which σ 2

r is less than σ 2. This is the case for pop-
ulations for which the y’s and x’s are highly correlated, with roughly a linear
relationship through the origin.

The traditional estimator of the mean square error or variance of the ratio esti-
mator is

v̂ar(μ̂r ) =
(

N − n

N

)
s2
r

n
(7.5)

where

s2
r = 1

n − 1

n∑
i=1

(yi − rxi)
2 (7.6)

The estimator v̂ar(μ̂r ) tends to give high values with samples having high values
of x and low values with samples having low values of x. The adjusted estimator

ṽar(μ̂r ) =
(μx

x

)2
v̂ar(μ̂r ) (7.7)

has therefore been suggested (see Cochran 1977, p. 155; P. S. R. S. Rao 1988;
Robinson 1987).

An approximate 100(1 − α)% confidence interval for μ, based on the normal
approximation, is given by

μ̂r ± tn−1(α/2)
√

v̂ar(μ̂r ) (7.8)

where tn−1(α/2) denotes the upper α/2 point of the Student t distribution with n − 1
degrees of freedom. The alternative variance estimate ṽar(μ̂r ) may be substituted
in the confidence interval expression.

The ratio estimate of the population total τ is

τ̂r = Nμ̂r = rτx (7.9)

for which the variance expressions above are multiplied by N2 and the confidence
interval endpoints by N .

For estimating the population ratio R, the sample ratio r may be used. Although
not unbiased, it is approximately so with large sample sizes. The approximate
variance is

var(r) ≈
(

N − n

Nμ2
x

)
σ 2

r

n

An estimate of this variance is

v̂ar(r) =
(

N − n

Nμ2
x

)
s2
r

n
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or the adjusted estimator

ṽar(r) =
(

N − n

Nx2

)
s2
r

n

Example 1: Survey Data with Auxiliary Information. In surveys of financial
variables, , exact or audited figures may be difficult to obtain, whereas less accu-
rate reported figures may be readily available. In such surveys, the actual figures
are the variables of interest and the reported figures provide auxiliary information.
A small-scale version of such a survey was carried out to estimate the average
amount of money—in coins only—carried by N = 53 persons in a lecture theater.
First, each person was asked to write down a guess xi of the amount of money that
she or he was carrying in change. These amounts were available for all 53 people
in the population. Then a simple random sample of n = 10 people was selected,
and each person in the sample counted the actual amount yi of money that he or
she had in coins.

The average of the values guessed for the whole population was μx = $3.33.
(The experiment was carried out in New Zealand, where one- and two-dollar coins
had recently been added to the currency; all figures are in New Zealand dollars.)
The (xi, yi) values for the 10 people in the sample were ($8.35, $8.75), ($1.50,
$2.55), ($10.00, $9.00), ($0.60, $1.10), ($7.50, $7.50), ($7.95, $5.00), ($0.95,
$1.15), ($4.40, $3.40), ($1.00, $2.00), and ($0.50, $1.25).

The sample mean of the amounts guessed is x = $4.275, and the sample mean
of the actual amounts is y = $4.17. The sample ratio is r = $4.17/$4.275 = 0.975.
The ratio estimate of the population mean μ [using Equation (7.3)] is

μ̂r = 0.975($3.33) = $3.25

The estimated variance of the ratio estimator (using Equation (7.5)) is

v̂ar(μ̂r ) =
(

53 − 10

53

)
1

(10)9
{[$8.75 − 0.975($8.35)]2

+ [2.55 − 0.975($1.50)]2 + · · · + [$1.25 − 0.975($0.50)]2}

= 43

53

(
1.387

10

)
= $0.1125

An approximate 95% confidence interval (using Equation (7.8)) is

$3.25 ± 2.262
√

0.1125 = $3.25 ± $0.76 = ($2.49, $4.01)

in which 2.262 is the upper 0.025 point of the t distribution with 9 degrees of
freedom.

The adjusted variance estimator for this example (from Equation (7.7)) is

ṽar(μ̂r ) =
(

$3.33

$4.275

)2

(0.1125) = 0.0683
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Figure 7.1. Plot of the amounts guessed (x) and the actual amounts (y) of money ($NZ) in coins on
53 people. The fitted ratio line is shown.

and the 95% confidence interval based on this variance estimator is $3.25 ±
$0.59 = ($2.66, $3.84).

The estimate of the population mean based on the sample y-values only, ignoring
the auxiliary data, is y = $4.17. The sample variance of the y-values is s2 =
$10.12, and the estimated variance of y is v̂ar(y) = (53 − 10)($10.12)/[53(10)] =
$0.8211. The 95% confidence interval is $4.17 ± $2.05 = ($2.12, $6.22).

In essence, the ratio estimator adjusts for our sample with higher-than-average
x-values, since x = 4.275 is greater than μx = 3.33. At the end of the survey, the
remaining members of the class were asked to count their money, and the true
population mean was determined to be μ = $3.52. The x- and y-values for the
entire population are plotted in Figure 7.1. The slope of the line in the figure is the
population ratio R. �

7.2. SMALL POPULATION ILLUSTRATING BIAS

The bias and mean square error under simple random sampling of the ratio estimator
can be illustrated by imagining the sampling of a very small population and looking
at the sample space, that is, the set of all possible samples. Imagine that it is desired
to estimate the total number of fish caught, in a given day, along a river on which
fish are caught in nets fixed adjacent to established fishing sites. Suppose that there
are N = 4 sites along the river and suppose that the number of nets xi at each site
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in the population is readily observed, say from an aircraft flying the length of the
river. The number yi of fish caught can be supposed to be obtained only with more
difficulty, by visiting a given site at the end of the fishing day. A simple random
sample of n = 2 sites will be selected and ratio estimation used to estimate the
total number of fish caught.

Values for the entire population are listed in the following table:

Site, i 1 2 3 4
Nets, xi 4 5 8 5
Fish, yi 200 300 500 400

The actual population total τ —the number to be estimated by the samplers—is
1400 fish caught. The population total for the auxiliary variable—which is known
to the samplers—is 22 nets. If, for example, the samplers selected s = {1, 2},
consisting of the first and second sites, the ratio estimator [Equation (7.9)] would
be τ̂r = (22)(200 + 300)/(4 + 5) = 1222.

The number of possible samples [from Equation (2.15) of Chapter 2] is(
N

n

)
=

(
4
2

)
= 4!

2!(4 − 2)!
= 6

Table 7.1 lists every possible sample, along with the value of the ratio estimator
for that sample of sites.

Since each possible sample has the same probability P(s) = 1/6 of being the one
selected with simple random sampling, the expected value of the ratio estimator
E(τ̂r ) = ∑

s τ̂rsP(s) is the arithmetic average of the six possible values of the
estimator. Thus, E(τ̂r ) = 1398.17, while τ = 1400, so the ratio estimator is slightly
biased under simple random sampling with this population.

The mean square error for the ratio estimator with this population is

mse(τ̂r ) =
∑

s

(τ̂rs − τ)2p(s)

= (1222 − 1400)2
(

1

6

)
+ · · · + (1523 − 1400)2

(
1

6

)
= 14,451.2

Table 7.1: Samples for Small Population with Bias

Sample τ̂r

(1, 2) 1222
(1, 3) 1283
(1, 4) 1467
(2, 3) 1354
(2, 4) 1540
(3, 4) 1523
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and the root mean square error is
√

14,451 = 120. The variance would be
obtained by subtracting 1398.17, rather than 1400, from each term before squaring,
giving var(τ̂r ) = 14,447.8. The bias is 1398.17 − 1400 = −1.83, and the squared
bias is 3.4.

With the same sampling design, the samplers could use the unbiased estimator
τ̂ = Ny based on the sample y-values only. The variance of this estimator, by the
standard formula, is 66,667, with square root (standard error) 258. Thus, although
the ratio estimator is slightly biased with this population, it is considerably more
precise than the unbiased estimator based on the y-values alone.

7.3. DERIVATIONS AND APPROXIMATIONS FOR THE RATIO
ESTIMATOR

Because the sample mean x of the x’s, as well as the sample mean y of the
y’s, varies from sample to sample, the sample ratio r = y/x is not unbiased, over
all possible samples under simple random sampling, for the population ratio R =
μ/μx , even though E(y) = μ and E(x) = μx . In fact, an exact expression for the
bias of r can be obtained (Hartley and Ross 1954) as follows:

cov(r, x) = E(rx) − E(r)E(x)

= μ − μxE(r)

so that the expectation of r is

E(r) = μ − cov(r, x)

μx

= R − cov(r, x)/μx

Thus the bias is E(r) − R = −cov(r, x)/μx .
Since the covariance of two random variables cannot exceed in absolute value

the product of their standard deviations,

|E(r) − R| ≤
√

var(r)var(x)

μx

so that

|E(r) − R|√
var(r)

≤
√

var(x)

μx

That is, the magnitude of bias relative to the standard deviation of the estimator
is no greater than the coefficient of variation of x.

The approximate mean square error of the ratio estimator μ̂r is obtained by
using a linear approximation for the (nonlinear) function f (x, y) = y/x. The
linear approximating function is (yi − Rxi)/μx , obtained as the first term in a
Taylor series of f about the point (μx,μ). The expected value of yi − Rxi under
simple random sampling is zero, since E(yi) = μ and E(xi) = μx and Rμx = μ.
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Thus, the mean square error of the ratio estimator μ̂r is approximated by the
variance of the variables yi − Rxi , which under simple random sampling is given
by Equation (7.4).

Proceeding in more detail, the Taylor series expansion of a function g(x, y)
about a point (a, b) is

g(x, y) = g(a, b) + gx(a, b)(x − a) + gy(a, b)(y − b)

+ 1

2
gxx(a, b)(x − a)2 + gxy(a, b)(x − a)(y − b) + 1

2
gyy(a, b)(y − b)2

+ · · · + 1

p! q!
gxpyq (a, b)(x − a)p(y − b)q + · · ·

where gx(a, b) is the partial derivative of g with respect to x evaluated at (a, b)
and, more generally,

gxpyq (a, b) = ∂p+q

∂xp∂yq
g(x, y)

evaluated at x = a, y = b.
For the sample ratio r = y/x, let

g(x, y) = y

x

and approximate r = g(x, y) by expanding about the point (μx,μy). The first
term of the expansion is g(μx, μy) = μy/μx = R. The partial derivative of g

with respect to x is (∂/∂x)g(x, y) = −y/x2, which evaluated at (μx,μy) gives
gx(μx, μy) = −μy/μ

2
x . Similarly, gy(μx, μy) = 1/μx . The first-order approxima-

tion for the sample ratio r is thus

r = g(x, y)

≈ μy

μx

− μy

μ2
x

(x − μx) + 1

μx

(y − μy)

= R − μy

μ2
x

(x − μx) + 1

μx

(y − μy)

Under simple random sampling, the expected value of the sample ratio is, to a
first-order approximation,

E(r) ≈ R

since E(x − μx) = 0 and E(y − μy) = 0. The approximate variance from the first-
order approximation is

var(r) ≈
(

μy

μ2
x

)2

var(x) + 1

μ2
x

var(y) − 2
μy

μ3
x

cov(x, y)

= 1

μ2
x

var(y − Rx)
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With simple random sampling, var(x) = [(N − n)/Nn]σ 2
x and var(y) = [(N −

n)/Nn]σ 2
y . The covariance can be shown to be

cov(x, y) = N − n

Nn

N∑
i=1

(xi − μx)(yi − μy)

N − 1

This is shown either by using the inclusion indicator variable zi as in the deriva-
tion for var(y) under simple random sampling, or by defining for each unit a
variable ui = xi + yi and noting that under simple random sampling

var(u) = N − n

Nn(N − 1)

N∑
i=1

(xi − μx + yi − μy)
2

= N − n

Nn(N − 1)

N∑
i=1

[(xi − μx)
2 + (yi − μy)

2 + 2(xi − μx)(yi − μy)]

= var(y) + var(x) + 2
N − n

Nn(N − 1)

N∑
i=1

(xi − μx)(yi − μy)

Since also

var(u) = var(x + y) = var(x) + var(y) + 2 cov(x, y)

the expression for cov(x, y) follows by subtraction.
Approximations using more terms than one of Taylor’s formula are used in

examining the bias, mean square error, and higher moments of the ratio estimator.
It is worth noting in passing that, for most populations, the Taylor series for y/x

does not converge for some samples, specifically those for which |x − μx | > μx .
For those samples, the approximation becomes worse, not better, as more terms are
added to the series. Even so, however, expectations under simple random sampling
of the approximations based on the initial one to several terms of the series do
provide consistent and useful approximations, which get closer to the true values
the larger the sample size, as shown in David and Sukhatme (1974), who in addition
give bounds for the absolute difference between the actual and the approximating
bias and mean square error.

7.4. FINITE-POPULATION CENTRAL LIMIT THEOREM FOR THE
RATIO ESTIMATOR

The finite-population central limit theorem for the ratio estimator is proved in Scott
and Wu (1981). As with the finite-population central limit theorem for the sample
mean, one conceives of a sequence of populations, with both population size N and
sample size n increasing. The theorem states that the standardized ratio estimator

μ̂r − μ√
v̂ar(μ̂r )



102 auxiliary data and ratio estimation

has an asymptotic standard normal distribution as n and N − n tend to infinity,
provided that certain conditions are satisfied. One of these conditions requires that
the proportion of σ 2

r due to outliers should not be too large, while another condition
requires that the coefficient of variation of x should not be too large.

Of course, the central limit theorem cannot tell one exactly how large the sample
size must be for a given population to ensure that the coverage probabilities for
confidence intervals are adequate. A common rule of thumb prescribes a sample size
of at least 30. Empirical studies by Royall and Cumberland (1985) with sample
sizes of 32 showed that for some populations—particularly those in which the
natural relationship between y and x was not a proportional ratio relationship—the
coverage probabilities were much lower than the nominal level and tended to
depend conditionally on the sample x-values.

7.5. RATIO ESTIMATION WITH UNEQUAL PROBABILITY DESIGNS

For a design in which unit i has probability πi of inclusion in the sample, used in
sampling a population in which the variable of interest y has a linear relationship
through the origin with an auxiliary variable x, a generalization of the ratio esti-
mator for estimating the population total has been suggested (Brewer 1963; Cassel
et al. 1976, 1977, pp. 122, 151; Hájek 1971, 1981; Sukhatme and Sukhatme 1970).
The generalized ratio estimator is

τ̂G = τ̂y

τ̂x

τx

The components τ̂y and τ̂x are Horvitz–Thompson estimators of τ and τx ,
respectively, that is,

τ̂y =
ν∑

i=1

yi

πi

and

τ̂x =
ν∑

i=1

xi

πi

Note that the usual ratio estimator is a special case of the generalized ratio
estimator under simple random sampling, in which πi = n/N for all units.

Although τ̂y is an unbiased estimator of τ and τ̂x is unbiased for τx , the gener-
alized ratio estimator, as a ratio estimator, is not unbiased in the design sense for
the population total. It is recommended in cases in which the y-values are roughly
proportional to the x-values, so that the variance of the residuals yi − Rxi is much
smaller than the variance of the y-values themselves.

For an approximate formula for the mean square error or variance of τ̂G, the
Taylor series leads to using the variance formula for the Horvitz–Thompson esti-
mator with yi − Rxi as the variable of interest, where R = τy/τx is the population
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ratio. For estimating the variance, the corresponding Horvitz–Thompson formula
with the estimate R̂ = τ̂y/τ̂x can be used (see Cochran 1977, p. 271).

The generalized ratio estimator may be written

τ̂G = τ̂y + R̂(τx − τ̂x)

The first term in Taylor’s formula, expanding about the point (τx, τ ), gives the
approximation τ̂G ≈ τ̂y + R(τx − τ̂x).

The mean square error or variance of τ̂G may be approximated by substituting
the population ratio R for the estimate R̂, giving

τ̂ − τ ≈ τ̂y + R(τx − τ̂x) − τ = τ̂y − Rτ̂x

since Rτx = τ . Noting that E(τ̂y − Rτ̂x) = 0, the approximation for the mean
square error or variance is

var(τ̂G) ≈ E(τ̂y − Rτ̂x)
2 = var(τ̂y − Rτ̂x) = var

(
ν∑

i=1

yi − Rxi

πi

)

The approximate variance is thus the variance of a Horvitz–Thompson estima-
tor based on the variables yi − Rxi . Denoting yi − Rxi by y ′

i , the approximate
formula is

var(τ̂G) ≈
N∑

i=1

(
1 − πi

πi

)
y ′

i
2 +

N∑
i=1

∑
j �=i

(
πij − πiπj

πiπj

)
y ′

iy
′
j

An estimator of this variance is obtained using ŷi = yi − R̂xi in the
Horvitz–Thompson variance estimation formula:

v̂ar(τ̂G) =
ν∑

i=1

(
1 − πi

π2
i

)
ŷ2

i +
ν∑

i=1

∑
j �=i

(
πij − πiπj

πiπj

)
ŷi ŷj

πij

=
ν∑

i=1

(
1

π2
i

− 1

πi

)
ŷ2

i +
ν∑

i=1

∑
j �=i

(
1

πiπj

− 1

πij

)
ŷi ŷj (7.10)

assuming all of the joint inclusion probabilities πij are greater than zero.
Recall that the Horvitz–Thompson estimator has small variance when the y-

values are approximately proportional to the inclusion probabilities, whereas if
there is no such relationship, the variance of that estimator can be very large. An
example in which the Horvitz–Thompson estimator performs very badly, because
inclusion probabilities were poorly related to y-values, is the notorious “Circus
Elephant Example” of Basu (1971, pp. 212–213). The circus owner in the example
is planning to ship his 50 elephants and wishes to obtain a rough estimate of their
total weight by weighing just one elephant. The average elephant (“Sambo” in
Basu’s example) is given probability π = 99/100 of being the one selected, while
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each of the other elephants is given inclusion probability of 1/4900. Thus if Sambo
is selected and found to weigh y, the total weight of the 50 elephants is estimated to
be τ̂ = y/π = 100y/99, or about the weight of one average elephant, while if the
largest elephant (“Jumbo”) is selected, the weight of the 50 elephants is estimated
to be 4900 times Jumbo’s weight! The generalized ratio estimator is recommended
for avoiding this sort of problem (Hájek 1971, p. 236).

If unequal probability sampling has for one reason or another been used and there
is no linear relationship between the y-values and either the inclusion probabilities
or any auxiliary variable, the following estimator, which is the generalized ratio
estimator with xi = 1 for all units, can be used:

τ̂G =
∑ν

i−1(yi/πi)∑ν
i=1(1/πi)

N (7.11)

The corresponding estimator of the population mean is

μ̂G =
∑ν

i=1(yi/πi)∑ν
i=1(1/πi)

For the estimator of variance τ̂G based on the Taylor approximation, one uses the
Horvitz–Thompson variance estimation formula with ŷi = yi − μ̂G as the variable
of interest. The estimator of the mean square error or variance of μ̂G is obtained
by dividing by N2.

Example 2: In the aerial survey (Example 1 of Chapter 6), a sample of ν = 3
distinct observations was selected from a population of N = 100 units. The sample
y-values were 60, 14, and 1 with respective inclusion probabilities 0.1855, 0.0776,
and 0.0394. The Horvitz–Thompson estimate was 529 of the animals in the study
region (see Example 2 of Chapter 6). Using the same data, the generalized ratio
estimate [using Equation (7.11)] is

τ̂G = 60/0.1855 + 14/0.0776 + 1/0.0394

1/0.1855 + 1/0.0776 + 1/0.0394
(100)

= 529.24

43.66
(100) = 1212

The estimate of the mean per unit is μ̂G = 1212/100 = 12.12.
For estimating the variance of τ̂G we will use ŷ1 = 60 − 12.12 = 47.88, ŷ2 =

14 − 12.12 = 1.88, and ŷ3 = 1 − 12.12 = −11.12. The joint inclusion probabili-
ties, computed in Example 2 of Chapter 6, are 0.0112, 0.0056, and 0.0023. The
estimated variance [using Equation (7.10)] is

v̂ar(τ̂G) =
(

1

0.18552
− 1

0.1855

)
47.882 +

(
1

0.07762
− 1

0.0776

)
1.882

+
(

1

0.03942
− 1

0.0394

)
(−11.12)2
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+ 2

[
1

0.1855(0.0776)
− 1

0.0112

]
(47.88)(1.88)

+ 2

[
1

0.1855(0.0394)
− 1

0.0056

]
(47.88)(−11.12)

+ 2

[
1

0.0776(0.0394)
− 1

0.0023

]
(1.88)(−11.12)

= 176,714

with square root 420.
In this example, the ordinary Horvitz–Thompson is probably to be preferred,

since there does seem to be a natural relationship between the y-value and the
inclusion probability based on unit size. �

7.6. MODELS IN RATIO ESTIMATION

Up to now, the population has been viewed as a collection of N units with fixed
y-values y1, . . . , yN , with probability entering the situation only through the proce-
dure by which the sample is selected. Another view is that the population y-values
are a realization of a vector Y = (Y1, . . . , YN) of random variables. For example,
if the population is a study region consisting of N plots and the variable of interest
yi for the ith plot is the volume of wood in the trees on that plot, one conceives
of the amount of timber as a random variable depending on stochastic or unknown
processes in nature, including such factors as rainfall and temperature.

If the population Y -values are random variables, so is any function of them
such as their total τ = ∑N

i=1 Yi . Having observed the realized values of the n ran-
dom variables in the sample, one may wish to predict or estimate the value of
another random variable such as τ . The prediction approach to survey sampling
under ratio and regression models has been described and developed in Cumberland
and Royall (1981, 1988), Royall (1970, 1976a,b, 1988), Royall and Cumberland
(1978, 1981a,b, 1985), Royall and Eberhardt (1975), Royall and Herson (1973a,b),
and Royall and Pfeffermann (1982). Ericson (1969, 1988) describes some sim-
ilar results attained through the related Bayesian approach. The small-population
example shows the sense in which the ratio estimator is biased under simple random
sampling. The mean value of the estimator over all possible samples is not equal to
the population parameter τ . Hence, the ratio estimator is not design-unbiased under
simple random sampling. Similarly, the associated variance estimator is not unbi-
ased. However, under the additional assumption of an ordinary regression model for
the relationship between the x’s and the y’s, with the regression line passing through
the origin, the ratio estimator is model-unbiased . Consider the regression model

Yi = βxi + εi

in which β is a fixed, though unknown parameter, the xi’s are known, and the εi

are independent random variables with E(εi) = 0. Under this model, the expected
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value of Yi given xi is

E(Yi) = βxi

so the expected value of the estimator τ̂r is

E(τ̂r ) =
∑n

i=1 βxi∑n
i=1 xi

τx = βτx = E

(
N∑

i=1

Yi

)
= E(τ )

no matter which sample s is selected. The expectations above and throughout this
section are with respect to the model assumed and are conditional on the sample
selected.

If, in addition to the model assumptions above, the Yi’s are assumed to be
uncorrelated, with variance

var(Yi) = viσ
2
R

then it is well known from linear model results that the best linear unbiased esti-
mator of β is

β̂ =
∑n

i=1(xiYi/vi)∑n
i=1(x

2
i /vi)

The variance under the model of β̂ is

var(β̂) = σ 2
R∑n

i=1(x
2
i /vi)

An unbiased estimator of this variance is

v̂ar(β̂) = σ̂ 2
R∑n

i=1(x
2
i /vi)

where

σ̂ 2
R = 1

n − 1

n∑
i=1

(Yi − β̂xi)
2

vi

(7.12)

Since the Y -values in the population are random variables, so is their total
τ = ∑N

i=1 Yi . Therefore, instead of estimating a fixed quantity, one needs to use
the sample to predict the value of a random variable τ . One would like a predictor
τ̂ that is model-unbiased for τ , that is, E(τ̂ ) = E(τ ), and having low mean square
prediction error E(τ̂ − τ)2 under the model. The unbiased linear predictor with the
lowest mean square error can be shown to be

τ̂ =
∑

s

Yi + β̂
∑
s′

xi

where s denotes summation over the sample and s ′ denotes summation over the
rest of the population. Thus, to predict the population total, one uses the known
total in the sample and predicts the total for the rest of the population. Writing Ys
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and xs to denote the sum of the Y - and x-values, respectively, in the sample and
Ys′ and xs′ for the sums in the rest of the population, the predictor may be written

τ̂ = Ys + β̂xs′

The mean square prediction error is

E(τ̂ − τ)2 = var(τ̂ − τ)

= var(β̂xs′ − Ys′)

= x2
s′ var(β̂) + var(Ys′)

since the two terms are independent under the assumed model. Thus,

E(τ̂ − τ)2 =
[

x2
s′∑

s(x
2
i /vi)

+
∑
s′

vi

]
σ 2

R

An unbiased estimator of the mean square error is obtained by substituting σ̂ 2
R

for σ 2
R .

If the variance of Yi is proportional to xi , that is, vi = xi , the best linear estimator
is

β̂ =
∑n

i=1 Yi∑n
i=1 xi

= r

and the estimator of the population total is

τ̂ =
∑

s

Yi +
∑

s Yi∑
s xi

∑
s′

xi = rτx

the ratio estimator.
The mean square error of the ratio estimator under this model is

E(τ̂ − τ)2 = τx(τx − xs)

xs

σ 2
R

= N(N − n)

n

(
μxxs′

xs

)
σ 2

R (7.13)

An unbiased estimator of this mean square error is obtained by substituting for
σ 2

R:

σ̂ 2
R = 1

n − 1

n∑
i=1

(Yi − β̂xi)
2

xi

For estimating the population mean, the estimator of τ is divided by N and the
variance and variance estimate divided by N2; that is, μ̂ = τ̂ /N , so that E(μ̂ −
μ)2 = E(τ̂ − τ)2/N2 and Ê(μ̂ − μ)2 = Ê(τ̂ − τ)2/N2.

This estimator of mean square error, although unbiased when the model is true,
has been found to be sensitive to departures from the assumed model (Royall 1988;
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Royall and Cumberland 1978, 1981a,b; Royall and Eberhardt 1975). Also, the mean
square error estimator given earlier in Equation (7.2) tends to overestimate mean
square error with samples having large x-values and underestimate with samples
having small x-values. One robust alternative proposed is

Ẽ(τ̂ − τ)2 = N2 μxxs′

x2
s (1 − V 2/n)

v̂ar(μ̂r )

where V = ∑n
i=1(xi − x)2/[(n − 1)x2] and v̂ar(μ̂r ) is given by Equation (7.5).

Another is the jackknife estimator

ÊJ (τ̂ − τ)2 = (N − n)(n − 1)

Nn

n∑
i=1

(t(i) − t)2

where t(i) is the ratio estimate of τ with the ith unit of the sample omitted and t

is the mean of these estimates.
Under a model assuming the Y ’s to be independent, the standard central limit

theorem for independent random variables applies, although it is still required
to conceive of both n and N − n becoming large. An approximate 100(1 − α)%
confidence interval is given by

τ̂ ± tn−1(α/2)

√
Ê(τ̂ − τ)2

The confidence interval is exact under the model if the Yi are normally dis-
tributed.

Example 3: Change Survey with Model. Suppose that the model E(Yi) = βxi,

var(Yi) = xiσ
2
R, cov(Yi, Yj ) = 0 for i �= j is assumed for the pocket change survey

discussed earlier (Example 1). Then the best linear unbiased predictor of average
change per person is the ratio estimate μ̂ = 3.25. The term σ̂ 2

R [using Equation
(7.12)] is

σ̂ 2
R = 1

9

{
[$8.75 − 0.975($8.35)]2

8.35
+ · · · + [$1.25 − 0.975($0.50)]2

0.50

}
= 0.526

The sum of the x-values in the population is τx = 53($3.33) = $176.5, and the
sum of the x-values in the sample is xs = $42.75. The model-unbiased estimate of
mean square error [using Equation (7.13) divided by N2] is

Ê(μ̂ − μ)2 = 176.5(176.5 − 42.75)

532(42.75)
σ̂ 2

R

= 0.1968(0.526) = 0.1034

A 95% confidence interval, which is exact under the assumed model if the
Y -values are normally distributed, is

$3.25 ± 2.262
√

0.1034 = $3.25 ± $0.73 = ($2.52, $3.98)
�
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Types of Estimators for a Ratio

Consider the linear model

Yi = βxi + εi

with

E(εi) = 0

and

var(εi) = viσ
2
R

where β and σ 2
R are unknown parameters of the model. The best linear unbiased

estimator of the ratio parameter β is

β̂ =
∑n

i=1(xiYi/vi)∑n
i=1(x

2
i /vi)

Note that E(Yi) = βxi and var(Yi) = viσ
2
R .

When the variance of εi is proportional to xi , that is, vi = xi , the best linear
unbiased estimator is the ratio estimator

β̂ =
∑n

i=1 yi∑n
i=1 xi

When the standard deviation of εi is proportional to xi , that is, vi = x2
i , the best

linear estimator is the mean-of-the-ratios estimator

β̂ = 1

n

n∑
i=1

yi

xi

When the variance of εi is constant, that is, vi = 1, the best linear unbiased
estimator is the regression-through-the-origin estimator

β̂ =
∑n

i=1 xiyi∑n
i=1 x2

i

7.7. DESIGN IMPLICATIONS OF RATIO MODELS

If one believes the regression-through-the-origin model without question, one can
question the necessity of random sampling. Regression theory asserts that under
such a model the most precise estimates are obtained by deliberately selecting the
n observations with the largest x-values. If the assumed model is wrong, such a
sample may lead to bias and inefficiency in the ratio estimator and does not offer
the opportunity to examine the fit of the model.
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A compromise approach, designed to provide robustness against departures from
the assumed model, is to seek to obtain a sample that is balanced or representative
in terms of the x’s. A sample balanced in x is a sample for which the sample mean
x of the x-values equals the population mean μx of the x-values. If the sample is
balanced, the ratio estimator μ̂r equals the sample mean y. The investigations by
Royall and his coauthors showed that with balanced samples, not only was the ratio
estimator robust against departures from the assumed model, but estimators of its
variance were also robust. Simple random sampling with a sufficiently large sample
size tends to produce samples balanced in the auxiliary variable. Stratifying on the
auxiliary variable and other, more complicated schemes may also be used to ensure
samples that are at least approximately balanced. Purposively choosing a sample
balanced in an auxiliary variable may seem temptingly ideal from a model-based
viewpoint, but can lead to unexpected problems when other important auxiliary
variables are unknown. For the generalized ratio estimator, a representative sample
is one for which μ̂x , the Horvitz–Thompson estimator based on the x-values,
equals μx , the population mean of the x-values. With a representative sample, the
generalized ratio estimator is identical to the Horvitz–Thompson estimator based
on the y-values.

7.8. COMPUTING NOTES

Example computations for the ratio estimator are done below, using the R data set
“trees.” The variable of interest is volume and the auxiliary variable is girth or
circumference.

First a sample of n = 4 units is used to illustrate calculation of the ratio esti-
mator, the estimator of its mean square error, and a 90% confidence interval. Then
a simulation is carried out to examine the properties of the ratio estimator with
simple random sampling and compare that to the strategy using the sample mean
with the same design (Figures 7.1 and 7.2).

y <- trees$Volume
x <- trees$Girth
s <- c(11,4,29,27)
s
N <- 31
n <- 4
N
n
y[s]
x[s]
r <- mean(y[s])/mean(x[s])
r
mux <- mean(x)
mux
muhatr <- r * mux
muhatr
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Figure 7.2. Using simple random sampling with the cherry tree empirical population, the ratio estimator
has a narrower sampling distribution (white histogram, front), or smaller mean square error, than the
sample mean (grey histogram, behind).

ssqr <- (1/(n-1))*sum((y[s] - r*x[s])\^2)
ssqr

varhatmuhatr <- (1-n/N)*ssqr/n
se <- sqrt(varhatmuhatr)
varhatmuhatr
se
qt(.95,3)
qt(.05,3)
qt(c(.05,.95),3)
muhatr + se * qt(c(.05,.95),3)
b <- 6
plot(x[s],y[s])
plot(x,y)
plot(x,y, xlim =c(0,22),ylim=c(0,80))
for (k in 1:b){s <- sample(N,n);}
muhatr <- numeric(b)
for (k in 1:b){s <- sample(N,n); muhatr[k] <- mean(y[s])/

mean(x[s]) * mux}
muhatr
mean(y)
for (k in 1:10000){s <- sample(N,n); muhatr[k] <- mean(y[s])/

mean(x[s]) * mux}
hist(muhatr)
hist(y)
hist(muhatr)
mean(muhatr)
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mu <- mean(y)
mu
mean(muhatr-mu)
mean((muhatr-mu)\^2)
var(muhatr)
for (k in 1:10000){s <- sample(N,n); muhatr[k] <- mean(y[s])/

mean(x[s]) * mux}
mean(muhatr-mu)
ybar <- numeric(b)
for (k in 1:10000){s <- sample(N,n); ybar[k] <- mean(y[s])}
hist(ybar)
mean(ybar)
mean(ybar - mu)
for (k in 1:10000){s <- sample(N,n); ybar[k] <- mean(y[s])}
mean(ybar - mu)
mean((ybar - mu)\^2)
mean((muhatr-mu)\^2)
sqrt(mean((muhatr-mu)\^2))
sqrt(mean((ybar - mu)\^2))
mean((ybar - mu)\^2)
var(ybar)

# Here the sampling distributions of the two strategies are
# compared by drawing the histogram of the sampling
# distribution for the ratio estimator on top of that for
# the sample mean, using the same scales for each:
hist(ybar,freq=F,ylim=c(0,0.1),xlim=c(10,60),col="gray")
hist(muhatr,freq=F,add=T,col="white")

EXERCISES

1. Consider the following data from a simple random sample of size n = 2 from
a population of size N = 8, in which y is the variable of interest and x is an
auxiliary variable: y1 = 50, x1 = 10; y2 = 22, x2 = 2. The population mean of
the x’s is 5.

(a) Give the ratio estimate of the mean of the y-values.
(b) Estimate the variance of the ratio estimator above.

2. In a city of 72,500 people, a simple random sample of four households is
selected from the 25,000 households in the population to estimate the average
cost on food per household for a week. The first household in the sample had
4 people and spent a total of $150 in food that week. The second household
had 2 people and spent $100. The third, with 4 people, spent $200. The fourth,
with 3 people, spent $140.

(a) Identify the sampling units, the variable of interest, and any auxiliary infor-
mation associated with the units.
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(b) Describe two types of estimators for estimating the mean expenditure per
household for a week’s food in the city. Summarize some properties of
each estimator.

(c) Estimate mean expenditure using the first estimator, and estimate the vari-
ance of the estimator.

(d) Estimate mean expenditure using the other estimator, and estimate the
variance of the estimator.

(e) Based on the data, which estimator appears preferable in this situation?

3. For a hypothetical survey to determine the number of pileated woodpecker
nests, the study area is divided into N = 4 plots. For the ith plot in the pop-
ulation, yi is the number of nests, while xi is the number of “snags” (old
trees that provide nesting habitat). The values for each population unit follow:
y1 = 2, x1 = 20; y2 = 3, x2 = 25; y3 = 0, x3 = 0; y4 = 1, x4 = 15. Consider a
simple random sampling design with sample size n = 2.

(a) Make a table listing every possible sample of size 2, the probability of
selecting each sample, the estimate Ny of the population total for each
sample, and the ratio estimate τ̂r for each sample.

(b) Give the value and variance expected for the estimator Ny.

(c) Compute the exact mean and mean square error of the ratio estimator τ̂r .

4. Carry out a survey to estimate the mean or total of a population of your choice,
in which an auxiliary variable is available along with the variable of interest.
Examples include the average amount of pocket change carried by attendees
to a lecture, as in Example 1, or eyeball estimates and careful measurements
of any sort of object. In the process of carrying out the survey and making the
estimate, think about or discuss with others the following:

(a) What practical problems arise in establishing a frame, such as a map or
list of units, from which to select the sample?

(b) How is the sample selection actually carried out?

(c) What special problems arise in observing the units selected?

(d) Estimate the population mean or total using the sample mean.

(e) Give a 95% confidence interval for the population mean or total based on
the sample mean.

(f) Estimate the population mean or total using the ratio estimator.

(g) Give a 95% confidence interval for the population mean or total based on
the ratio estimator.

(h) How would you improve the survey procedure if you were to do it again?

5. Determine the first- and second-order terms of a Taylor series expansion of the
ratio estimator. Use the approximation to obtain an approximate expression for
the bias of the ratio estimator under simple random sampling.
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6. Assume that the Y -values in the population are related to an auxiliary variable x

through the ratio model Yi = βxi + εi , for i = 1, 2, . . . , N , where the random
errors εi are independent with E(εi) = 0 and var(εi) = viσ

2
R , in which the vi

are known and β and σ 2
R are unknown constants. A simple random sample of

size n is selected. The best linear unbiased predictor of the population total τ

is τ̂ = Ys + β̂xs′ , where Ys is the total of the Y -values in the sample and xs′
is the total of the x-values not in the sample and

β̂ =
∑n

i=1(xiYi/vi)∑n
i=1(x

2
i /vi)

When the variance of Yi is proportional to xi , that is, vi = xi , the best linear
unbiased estimator β̂ is the ratio estimator r = Y/x.

(a) Show that when the variance of Yi is constant, that is, vi = 1, β̂ is the
regression-through-the-origin estimator

β̂ =
∑n

i=1 xiYi∑n
i=1 x2

i

Compute the value of τ̂ with this estimator with the data in Example 1.

(b) Show that when the variance of Yi is proportional to x2
i , that is, vi = x2

i , β̂

is the mean-of-the-ratios estimator

β̂ = 1

n

n∑
i=1

Yi

xi

Compute the value of τ̂ with this estimator with the data in Example 1.
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Regression Estimation

In some sampling situations, there may be an auxiliary variable x which is linearly
related to the variable of interest y, at least approximately, but without y being zero
when x is zero. For example, if y were the yield per unit area of a plant crop and
x were the average concentration of an air pollutant in the vicinity of the plot, y

might tend to decrease with x and be highest when x was zero. In such a situation,
a linear regression estimator rather than a ratio estimator might be appropriate.

In fact, there may be more than one auxiliary variable associated with each unit.
In the example above, the auxiliary variable x1 might be the level of atmospheric
sulfur dioxide and x2 the level of nitrous oxide, while another auxiliary variable
x3 might be an indicator variable equaling 1 if the plot’s soil type had been cat-
egorized as favorable and zero otherwise. Multiple regression models or general
linear statistical models can describe many such relationships between a variable
of interest and a number of auxiliary variables.

The linear regression estimator with one auxiliary variable is described first,
initially in the design-based or fixed-population context. Regression estimation with
unequal probability designs and multiple regression models are covered in later
sections of this chapter. Like the ratio estimator, the regression estimator is not
design-unbiased under simple random sampling. Under usual regression model
assumptions, however, the estimator is unbiased.

If a regression model describing a stochastic relationship between the auxiliary
variables and the variable of interest is assumed, a natural objective of sampling
is the “prediction” of some characteristic of the y-values of the population. The
characteristic to be predicted may be the population mean or total or the y-value
of a single unit not yet in the sample. The basic results of the linear prediction
approach are summarized for the simple linear regression model with one auxiliary
variable and then in general for multiple regression models with any number of
auxiliary variables.

Sampling, Third Edition. Steven K. Thompson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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8.1. LINEAR REGRESSION ESTIMATOR

Suppose that for the ith unit in the population there is associated a value yi of the
variable of interest and a value xi of an auxiliary variable, for i = 1, . . . , N .
The population mean and total of the y-values are denoted μ and τ , respectively.
The population mean and total of the x-values are denoted μx and τx and are
assumed known. A simple random sample of n units is selected.

The linear regression estimator for the population mean μ is

μ̂L = a + bμx

where

b =
∑n

i=1(xi − x)(yi − y)∑n
i=1(xi − x)2

a = y − bx

The value of b gives the slope and a gives the y-intercept of a straight line fitted
to the data by least squares. Substituting for a, the estimator may be written

μ̂L = y + b(μx − x)

Like the ratio estimator, the linear regression estimator is not design-unbiased
under simple random sampling.

An approximate formula for the mean square error or variance of μ̂L is

var(μ̂L) ≈ N − n

Nn(N − 1)

N∑
i=1

(yi − A − Bxi)
2

where

B =
∑N

i=1(xi − μx)(yi − μ)∑N
i=1(xi − μx)2

A = μ − Bμx

An estimator of this variance is provided by

v̂ar(μ̂L) = N − n

Nn(n − 2)

n∑
i=1

(yi − a − bxi)
2 (8.1)

An approximate (1 − α)100% confidence interval is given by

τ̂L ± tn−2(α/2)
√

v̂ar(μ̂L)

where tn−2(α/2) is the upper α/2 point of the t distribution with n − 2 degrees of
freedom.
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The finite-population central limit theorem for the regression estimator, on which
the confidence interval procedure above is based, is given in Scott and Wu (1981).
However, empirical studies of the regression and ratio estimators for real popula-
tions with sample sizes of n = 32 by Royall and Cumberland (1985) show that the
actual coverage probabilities, using the standard variance estimator as well as pro-
posed alternatives, may be substantially lower than the nominal confidence level. In
a subsequent theoretical study, Deng and Wu (1987) compare alternative variance
estimators and propose that different estimators be used depending on whether the
purpose is estimating mean square error or constructing a confidence interval. More
research is needed on the topic.

The linear regression estimator of the population total τ is

μ̂L = Nμ̂L = N(a + bμx) = Ny + b(τx − Nx)

with variance formulas obtained by multiplying those for μ̂L by N2.

Example 1: To estimate the total yield of a crop in a field of N = 100 plots, n = 4
plots are selected by simple random sampling and the amount yi of the yield of
each sample plot is measured. The yield of a plot depends on the amount xi of
fertilizer applied to the plot, which is known for each plot in the population. The
mean value of the auxiliary variable x for the population is μx = 100. The four
sample (xi, yi) pairs are (50, 1410), (100, 1690), (150, 1680), and (200, 1850).

The sample means are y = 1657.5 and x = 125. The other sample statistics are

b = (50 − 125)(1410 − 1657.5) + · · · + (200 − 125)(1850 − 1657.5)

(50 − 125)2 + · · · + (200 − 125)2

= 32,750

12,500
= 2.62

and a = 1657.5 − 2.62(125) = 1330.
The regression estimate of the total yield is

τ̂L = 100[1657.5 + 2.62(100 − 125)] = 100(1592) = 159,200

To estimate the variance of τ̂L, denote the value of the fitted regression line for
the ith unit in the sample as ŷi = a + bxi . The four fitted values are ŷ1 = 1330 +
2.62(50) = 1461, ŷ2 = 1592, ŷ3 = 1723, and ŷ4 = 1854. The estimated variance is

v̂ar(τ̂L) = N2v̂ar(μ̂L)

= 100(100 − 4)

4(4 − 2)
[(1410 − 1461)2 + · · · + (1850 − 1854)2]

= 100(96)

4
(7035) = 16,884,000

the square root of which is 4109.
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The estimate based on the y-values alone would be Ny = 165,750. Because
the units in the sample had overall higher-than-average fertilizer, the regression
estimator has used the auxiliary information to adjust the estimate downward. The
estimated variance of Ny is [100(96)/4](33,292) = 79,900,000, the square root of
which is 8939. The regression estimator appears to be more precise in this small
example because of the low residual variation about the fitted regression line. �

8.2. REGRESSION ESTIMATION WITH UNEQUAL PROBABILITY
DESIGNS

For a sampling design in which the inclusion probability for the ith unit is πi ,
for i = 1, . . . , N , the generalized ratio estimator of the population mean μ of the
y-values is

μ̃y =
(

ν∑
i=1

yi

πi

)
/

(
ν∑

i=1

1

πi

)
where the summation is over the ν distinct units in the sample. With an auxiliary
variable x, the generalized ratio estimator based on the sample x-values is

μ̃x =
(

ν∑
i=1

xi

πi

)
/

(
ν∑

i=1

1

πi

)
A generalized regression estimator, which is approximately (or asymptotically)

unbiased for the population mean under the given design, is

μ̂G = μ̃y + B̂(μx − μ̃x)

where B̂ is a weighted regression slope estimator, based on the inclusion probabil-
ities, given by

B̂ =
[

ν∑
i=1

(xi − μ̃x)(yi − μ̃y)

πi

]
/

[
ν∑

i=1

(xi − μ̃x)
2

πi

]

An approximate expression for the mean square error or variance of μ̂G is
obtained using

var(μ̂G) ≈ var

[
1

N

ν∑
i=1

(
yi − A − Bxi

πi

)]

so that, defining the new variable y ′
i = yi − A − Bxi , the Horvitz–Thompson vari-

ance formula may be used, giving

var(μ̂G) ≈
N∑

i=1

(
1 − πi

πi

)
y ′

i
2 +

N∑
i=1

∑
j �=i

(
πij − πiπj

πiπj

)
y ′

iy
′
j
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An estimator of this variance is obtained using ŷi = yi − Â − B̂xi in the
Horvitz–Thompson variance estimation formula, where Â is a weighted regression
intercept estimator given by

Â =
∑ν

i=1
yi

πi
− B̂

∑ν
i=1

xi

πi∑ν
i=1

1
πi

The resulting estimator of variance is

v̂ar(μ̂G) =
ν∑

i=1

(
1 − πi

π2
i

)
ŷ2

i +
ν∑

i=1

∑
j �=i

(
πij − πiπj

πiπj

)
ŷi ŷj

πij

=
ν∑

i=1

(
1

π2
i

− 1

πi

)
ŷ2

i +
ν∑

i=1

∑
j �=1

(
1

πiπj

− 1

πij

)
ŷi ŷj

assuming that all of the joint inclusion probabilities πij are greater than zero.
Generalized regression estimators are discussed in Brewer (1979), Brewer et al.

(1988), Cassel et al. (1976, 1977), Hájek (1981), Isaki and Fuller (1982), Little
(1983), Särndal (1980a,b), Särndal and Wright (1984), Tam (1988), and Wright
(1983). General references include Särndal et al. (1992, pp. 225–229) and M. E.
Thompson (1997, pp. 172–178).

8.3. REGRESSION MODEL

Like the ratio estimator, the regression estimator is not unbiased in the design
sense under simple random sampling. That is, viewing the y and x values as fixed
quantities, the expected value, over all possible samples, of the regression estimator
of the population mean of the y’s does not exactly equal the true population mean.
When an ordinary regression model is assumed, however, the regression estimator
is unbiased under that model.

Suppose that a standard simple linear regression model is assumed to hold. That
is, Y1, . . . , YN are random variables whose distributions depend on the x-values,
with

E(Yi) = α + βxi

for i = 1, . . . , N . The Y -values for different units are assumed to be uncorrelated
and constant variance is assumed,

var(Yi) = σ 2
L

for all i. The variance σ 2
L can be thought of as the variation of the Y -values around

the true regression line, which is determined by the parameters α and β.
Since the population Y -values are random variables, any function of them, such

as their mean μ = (1/N)
∑N

i=1 Yi , is a random variable. We wish by observing
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the sample values to predict the value of the random variable μ. It can be shown
(see in particular the papers by Royall) that the linear predictor that minimizes the
mean square error under the model is the linear regression estimator μ̂L. Under the
model, the linear regression estimator is model-unbiased, that is, E(μ̂L) = E(μ),
where the expectation is in terms of the model assumed, given the sample, and the
unbiasedness holds for any given sample s.

The mean square prediction error, given the sample s, under the assumed
model is

E(μ̂L − μ)2 = N − n

N

[
1

n
+ N

N − n

(x − μx)
2∑n

i=1(xi − x)2

]
σ 2

L (8.2)

An unbiased estimator of mean square error is obtained by replacing σ 2
L in

formula (2) with the sample residual variance:

σ̂ 2
L = 1

n − 2

n∑
i=1

(Yi − a − bxi)
2

However, the simpler estimator [Equation (8.1)] is considered to be more robust
to departures from the assumed model.

Regression models and the prediction approach in survey sampling are devel-
oped and discussed in Cumberland and Royall (1981, 1988), Hájek (1981), Pfef-
fermann and Nathan (1981), P. S. R. S. Rao (1988), Royall (1970, 1976b, 1988),
Royall and Cumberland (1978, 1981b, 1985), Royall and Eberhardt (1975), Royall
and Herson (1973a,b), and Royall and Pfeffermann (1982). Problems of estimating
the regression parameters of an assumed model from survey data are discussed in
Christensen (1987), Holt and Scott (1981), Nathan and Holt (1980), and Scott and
Holt (1982), and are reviewed in Smith (1984).

8.4. MULTIPLE REGRESSION MODELS

Regression models readily extend to situations in which there is more than one aux-
iliary variable. Let xi1, xi2, . . . , xip be the values of p auxiliary variables associated
with the ith unit. Consider the multiple regression model

E(Yi) =
p∑

k=1

βkxik

cov(Yi, Yj ) = σ 2
Lvij

for i = 1, . . . , N and j = 1, . . . , N . Simple linear regression and ratio models are
obtained as special cases.

Suppose that one wishes to predict some linear combination
∑N

i=1 liYi of the
population y-values. For example, with each coefficient li = 1, the function of
interest is the population total; with each li = 1/N , it is the mean. If one wished
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only to predict the value on one unsampled unit, say unit j , one would have lj = 1
and li = 0 for the other N − 1 units.

The linear prediction problem is to find a linear function
∑n

i=1 aiYi of the
observations which is unbiased for the population quantity and has the lowest
possible mean square prediction error. That is, find values a1, a2, . . . , an subject to

E

(
n∑

i=1

aiYi

)
= E

(
N∑

i=1

liYi

)

which minimize

E

(
n∑

i=1

aiYi −
N∑

i=1

liYi

)2

In matrix notation, the model is

E(Y) = Xβ

var(Y) = σ 2
LV

Given a sample s of n of the units, the vector Y may be ordered so that the
sample y-values hold the first n places and may be written in partitioned form as

Y =
(

Ys

Yr

)
where Ys is the n×1 vector of sample values and Yr the (N − n)×1 vector of the
values in the rest of the population. Similarly, the N × p dimensional matrix X
can be partitioned

X =
(

Xs

Xr

)
Similarly, the variance–covariance matrix V may be partitioned

V =
(

Vss Vsr

Vrs Vrr

)
The predictor based on the sample may be written a′Ys , where a = (a1, . . . , an)

′
is the vector of coefficients. The quantity to be predicted may be written l′Y =
l′sYs + l′rYr , where l = (l1, . . . , lN ) and ls and lr contain the l-values for units in
the sample and the rest of the population, respectively.

The mean square error for any such unbiased linear predictor is

E(a′Ys − l′Y)2 = [(a − ls)′Vss(a − ls) − 2(hs − l)′Vsr lr + l′rVrr lr]σ 2
L

Linear model theory (see, e.g., C. R. Rao 1965, Chap. 4; Royall and Herson
1973a; Seber 1977, pp. 60–64 and 84–86; also, the derivation of a somewhat more
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general prediction result is given in Chapter 20 of this book) gives the best linear
unbiased estimator of the parameter vector β as

β̂ = (X′
sV−1

ss Xs)
−1X′

sV−1
ss Ys

The best linear unbiased predictor of the random quantity l′Y is

â′Ys = l′sYs + l′r [Xr β̂ + VrsV−1
ss (Ys − Xs β̂)] (8.3)

The mean square error for this best predictor is

E(â′Ys − l′Y)2 = [l′r (Xr − VrsV−1
ss Xs)(X′

sV−1
ss Xs)

−1(Xr − VrsV−1
ss Xs)

′lr

+ l′r (Vrr − VrsV−1
ss Vsr lr )]σ 2

L (8.4)

An unbiased estimator Ê(a′Ys − l′Y)2 of the prediction mean square error is
obtained by replacing σ 2

L in expression (4) with

σ̂ 2
L = r′V−1

ss r
n − p

where r = Ys − Xs β̂ is the vector of residuals. However, a mean square error esti-
mator of the form

∑ν
i=1(ai − li)

2(Yi − ŷi )
2, where ŷi = ∑ν

i=1 β̂kxik , is considered
more robust to departures from the assumed model (see Royall (1988) for a review).

It is often assumed in regression models that the y-values are uncorrelated,
so that V is a diagonal matrix, the ith element on the diagonal being vi , where
var(Yi) = σ 2

Lvi . With this model, the predictor (3) simplifies to

l̂′Y = l′sYs + l′rXr β̂

= l′sYs + (l′X − l′sXs)β̂

For estimating a population total, this gives

τ̂L =
∑
i∈s

yi +
∑
i∈s

(β̂1xi1 + β̂2xi2 + · · · + β̂pxip)

where s is the set of units not in the sample. That is, the total is estimated by adding
the observed y-values in the sample to the estimated expected y-values outside the
sample. This simple interpretation does not hold for the more general case (3) in
which the covariances are not zero, since then a further adjustment is made based
on the covariance structure.

For regression estimation of the population mean with unequal probability
designs, an estimator that is approximately or asymptotically design-unbiased,
whether the assumed model is true or not, is the generalized regression estimator:

μ̂G = μ̂y +
p∑

k=1

β̂k(μk − μ̂k)



design implications of regression models 123

where μ̂y is the Horvitz–Thompson estimator of μ and μ̂k is the
Horvitz–Thompson estimator of the population mean of the kth auxiliary
variable, that is, μ̂k = (1/N)

∑ν
i=1 xik/πi . For the estimator β̂k of the regression

parameters, one may use either the usual best linear unbiased estimators or
weighted estimators using the inclusion probabilities. For the case with zero
covariances, in which V is a diagonal matrix with element νi for the variance of
yi , a weighted estimate is given by

β̂ =
(∑

i∈s

xix′
k

νiπi

)−1 ∑
i∈s

xiyi

νiπi

where xi is the row of the X matrix corresponding to unit i (cf. Sárndal et al. 1992,
pp. 227–230; M. E. Thompson 1997, pp. 172–178).

Approximate variance formulas are obtained by approximating the
parameter estimates with the true parameter values so that E(μ̂G − μ)2 ≈
var

(
μ̂y − ∑p

k=1 βkμ̂k

) = var
[
(1/N)

∑ν
i=1 Y ′

i /πi

]
, where Y ′

i = Yi − ∑p

k=1 βkxik .
The approximate mean square error is then obtained from the Horvitz–Thompson
formula with the variables Y ′

i . An estimator of the mean square formula is
obtained from the Horvitz–Thompson variance estimator formula with the
variables Ŷi = Yi − ∑p

k=1 β̂kxik .

8.5. DESIGN IMPLICATIONS OF REGRESSION MODELS

From Equation (8.2), the mean square error under an assumed simple linear regres-
sion model is minimized if a sample is chosen for which x = μx ; that is, it is
balanced in x. When the sample is balanced in x, the regression estimator is iden-
tical to the sample mean of the y-values, so balancing in x gives the estimator
robustness against departures from the assumed regression model. The studies of
Cumberland and Royall (1988) and Royall and Cumberland (1981b) showed fur-
ther that the usual estimators of mean square error behaved best when balanced
samples were selected.

For more general linear models, it may be possible to determine a sample
to minimize Equation (8.4). For robustness against departures from the assumed
model, samples balanced in each x-variable, that is, samples for which xk = μk

for k = 1, . . . , p1, are desired. With unequal probability sampling, a representative
sample is defined as one for which μ̂k = μk for each of the p auxiliary vari-
ables. With such a sample, the generalized regression estimator is identical to the
Horvitz–Thompson estimator based on the y-values.

Additionally, with the regression model E(Yi) = ∑p

k=1 βkxik with var(Yi) =
σ 2vi and the Y ’s independent, a design with each inclusion probability πi propor-
tional to the square root of νi is efficient in terms of minimizing the mean square
error under the combination of the model and the design while having a generalized
regression estimator which is approximately unbiased. Devising a selection proce-
dure that produces balanced samples while having the desired individual selection
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probabilities may be no easy task. A stratified random sample with stratification
based on the auxiliary variable and allocation based on the average value of νi

within strata may come close.
One could go badly astray in purposively choosing, without any randomization,

a sample balanced in an auxiliary variable x while being unaware of the importance
of one or more other auxiliary variables. Imagine, for example, a survey to estimate
the abundance of beetles of a certain species in a study area. Beetle abundance is
thought to be approximately linearly related to elevation (x), so sample plots are
systematically laid out alongside a road that cuts through the study area from
low elevation to high elevation, so that x = μx . Unbeknown to the researchers,
however, the truly important variable influencing beetle abundance in the study
area is x2, which is distance from roadways or other habitat disturbances. Thus, the
carefully balanced sample is entirely unrepresentative and produces a misleading
estimate. Of course, the researchers could redo the survey balancing on both known
auxiliary variables, but what if there are further unknown and important auxiliary
variables? For such reasons, many researchers would be more comfortable with a
design incorporating randomization at some level, although stratification based on
the known auxiliary variables could still be used.

EXERCISES

1. In a survey to determine the amount of crop yield due to an air pollutant, a
simple random sample of n = 20 plots was selected from N = 1000 in the
population. The summary statistics on yield yi (in weight) and level of pol-
lutant xi (in parts per million) were y = 10, x = 6,

∑20
i=1(xi − x)(yi − y) =

−60,
∑20

i=1(xi − x)2 = 30, and
∑20

i=1(yi − a − bxi)
2 = 80. The mean pollu-

tant level is μx = 5.0.

(a) Estimate the mean yield for the population with a linear regression esti-
mate.

(b) Estimate the variance of the linear regression estimate.

(c) Predict the yield on a plot in which the pollutant level is xi = 4.

2. Carry out a survey to estimate the mean or total of a population of your choice,
in which an auxiliary variable might be expected to have a linear relationship
with the variable of interest. In the process of carrying out the survey and
making the estimate, think about or discuss with others the following:

(a) Plot the x and y data.

(b) Estimate the population mean or total using the regression estimator.

(c) Give a 95% confidence interval for the population mean or total based on
the regression estimator.



C H A P T E R 9

The Sufficient Statistic in Sampling

9.1. THE SET OF DISTINCT, LABELED OBSERVATIONS

The information obtained from a survey may include, in addition to the value of
the variable of interest for each unit in the sample, the unit label associated with
each value, the order in which the units were selected, and—for a with-replacement
design—the number of times each unit was selected. How much of this information
is relevant for estimating a population parameter? There is a simple answer: The
minimal sufficient statistic for the finite-population survey sampling situation is the
unordered set of distinct, labeled observations (Basu 1969; Basu and Ghosh 1967;
see also Cassel et al. 1977, pp. 35–39). Thus, the set of y-values alone is not
enough—the identities of the associated units may be helpful in estimation. The
order in which the values were selected, on the other hand, is more information
than is necessary, at least in principle. The number of times a unit was selected is
similarly not needed.

In practice, many widely used estimators in survey sampling are not functions
of the minimal sufficient statistic. For example, in sampling with replacement,
the sample mean of all n observations depends on the number of times units are
selected and hence is not a function of the minimal sufficient statistic. In unequal
probability sampling without replacement, the Raj estimator, which uses conditional
inclusion probabilities only, depends on order and hence is not a function of the
minimal sufficient statistic. In unequal probability sampling with replacement, the
Hansen–Hurwitz estimator depends on repeat selections and hence is not a function
of the minimal sufficient statistic. Each of these estimators is used because it is
simple to compute. In large surveys, it may be inconvenient to determine whether
a unit in the sample has been selected previously. In unequal probability sam-
pling without replacement, unconditional inclusion probabilities may be extremely
difficult to compute.

In principle, however, one need consider only estimators that are functions of the
minimal sufficient statistic. For any estimator that is not a function of the minimal

Sampling, Third Edition. Steven K. Thompson.
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sufficient statistic, one may obtain (using the Rao–Blackwell method) an estimator,
depending on the minimal sufficient statistic, that is as good or better (see, e.g.,
Cassel et al. 1977). Results of minimal sufficiency in the sampling situation are
illustrated below.

9.2. ESTIMATION IN RANDOM SAMPLING WITH REPLACEMENT

In Example 3 of Chapter 2 a nominal sample size of n = 5 led to the selection of
ν = 4 distinct units, since one was selected twice. The label of each unit in the
sample, along with its y-value, is part of the data. From a population of N = 100
units, the selections, in order, were unit 37, with y37 = 2, unit 7, with y7 = 4, unit
25, with y25 = 0, unit 7 again, with y7 = 4 of course, and unit 15, with y15 = 5.

The minimal sufficient statistic t consists of the set of distinct unit labels together
with their y-values, that is,

t = {(25, 0), (37, 2), (7, 4), (15, 5)}

in which the order is immaterial.
The set of y-values obtained in the five selections was {0, 2, 4, 4, 5}. The sample

mean of the five y-values was yn = 3.0. However, suppose instead that unit 37
had been selected twice, while units 7, 15, and 25 were each selected once. Then
the minimal sufficient statistic would be exactly the same, but the sample mean
of the five y-values {0, 2, 2, 4, 5} would be yn = 2.6. Two other samples have the
same value of the minimal sufficient statistic. One has y-values {0, 0, 2, 4, 5} and
sample mean yn = 2.2. The other has y-values {0, 2, 4, 5, 5} and yn = 3.2. Each
of the four samples with the given value of t has the same probability of being
the one selected, because of the simple random sampling. Hence the conditional
probability of each of the four samples, given t , is one-fourth. Thus, the conditional
expectation of the estimator yn given t is

E(yn|t) = 3.0 + 2.6 + 2.2 + 3.2

4
= 2.75

Note that because of the equal probabilities, this estimator is in fact simply
the sample mean yν of the four distinct observations. But by the Rao–Blackwell
theorem, yν has lower variance than yn. Both estimators are unbiased for the sample
mean. The estimator yν is a function of the sufficient statistic, while yn is not.

The Horvitz–Thompson estimator is also a function of the minimal sufficient
statistic and is also unbiased. Under the design simple random sampling with
replacement, the inclusion probability for any unit i, since the draw-by-draw selec-
tion probability is 1/N and the n selections are independent, is

πi = 1 − (1 − 1/N)n
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The Horvitz–Thompson estimator under this design is

μ̂π = 1

N

ν∑

i=1

yi

πi

=
∑ν

i=1 yi

N [1 − (1 − 1/N)n]

For this example the Horvitz–Thompson estimator is

μ̂π = 11

100[1 − (1 − 0.01)5]
= 2.24

9.3. ESTIMATION IN PROBABILITY-PROPORTIONAL-TO-SIZE
SAMPLING

Next we consider Examples 1 and 2 of Chapter 6, in which selection was with
probability proportional to size with replacement (PPS). In that example, a nominal
sample size of n = 4 had led to selection of ν = 3 distinct units, since one unit
was selected twice. The Hansen–Hurwitz estimator, depending on the number of
repeat observations and hence not a function of the minimal sufficient statistic, gave
τ̂p = 800 as an estimate of the number of animals in the study region (Example
1), while the Horvitz–Thompson estimator, which depended only on the distinct
observations, gave τ̂π = 529 (Example 2).

The Hansen–Hurwitz estimator may be improved using the Rao–Blackwell
method. There are three possible samples of nominal size 4, giving the three distinct
units obtained. Each of these three samples, however, has a different probability
of being the one selected. Assigning sample unit labels 1, 2, and 3 to the three
distinct units in the sample, we have y1 = 60, p1 = 0.05, y2 = 14, p2 = 0.02, and
y3 = 1, p3 = 0.01.

For the sample obtained, unit 1 was selected twice and each of the other two
once. The probability of selecting a sample in which unit 1 is selected twice and
units 2 and 3 are selected once in n = 4 independent selections is given by the
multinomial probability

P(s1) = 4!

2!1!1!
0.052(0.02)(0.01) = 6 × 10−6

For the sample in which the second unit was selected twice, the probability is

P(s2) = 4!

2!1!1!
0.05(0.02)2(0.01) = 2.4 × 10−6

and for the sample in which the third unit is selected twice,

P(s3) = 4!

2!1!1!
0.05(0.02)(0.01)2 = 1.2 × 10−6

The sum of these probabilities gives the probability of obtaining the given value
of the sufficient statistic, P(t) = 9.6 × 10−6. Thus, the conditional probabilities are
P(s1 | t) = 6/9.6 = 0.625, P(s2 | t) = 0.25, and P(s3 | t) = 0.125.
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The Hansen–Hurwitz estimator for each of the three samples equals 800, 675,
and 525, respectively. The improved estimate obtained as the conditional expecta-
tion of τ̂p, given the minimal sufficient statistic, is thus

E(τ̂p|t) = 800(0.625) + 675(0.25) + 525(0.125) = 734

This improved version of the Hansen–Hurwitz estimator has been known for
some time (see Basu 1958; Pathak 1962) but has not been a popular estimator
because of its computational complexity (see Cassel et al. 1977, p. 42; Chaudhuri
and Vos 1988, p. 259).

9.4. COMMENTS ON THE IMPROVED ESTIMATES

By definition, a statistic t is sufficient for a parameter θ if the conditional distri-
bution of the data, given t , does not depend on θ . In the sampling situation, the
data are the sequence D of labels of the units selected, together with the associated
y-values. The sequence not only retains order of selection, but may contain repeat
selections. Writing the sequence of units selected as s = (i1, i2, . . . , in), the data
may be written D = {(i, yi) : i ∈ s}. Implicit in the inclusion of the identity of a
unit in the sample is any auxiliary information that may be associated with that
unit, such as the values of auxiliary variables or the location of the unit in relation
to other units.

In the sampling situation, the parameter of interest may be taken to be the
vector y = y1, y2, . . . , yN of population y-values. Let s denote the unordered set
of distinct unit labels in the sample and let t denote the unordered set of y-values,
together with the associated unit labels [i.e., t = {(i, yi) : i ∈ s}]. Then t is not
only sufficient for θ , but minimally sufficient; that is, t is a function of any other
sufficient statistic for θ .

With the two designs above, we obtained improved unbiased estimators, by the
Rao–Blackwell method, which were functions of the minimal sufficient statistic.
One would like to be able to say that such an estimator was the unique unbiased
estimator of lowest variance. However, in each example, a different function of the
minimal sufficient statistic—the Horvitz–Thompson estimator—was also unbiased
for the population mean (or total). When two different estimators based on the
minimal sufficient statistic can have the same expectation, the minimal sufficient
statistic is said to be not complete. In such a situation, one cannot usually make
sweeping statements about one estimator being best. The lack of completeness
of the minimal sufficient statistic in sampling is basically due to the presence of
the unit labels in the data. On the one hand, the lack of completeness caused by
this extra information in the data has been the underlying source of much of the
difficulty and lack of optimality results in the theory of sampling. On the other
hand, the label information is often useful in obtaining better estimators than could
be obtained otherwise.

For model-based predictive methods in sampling, a related concept called pre-
dictive sufficiency applies (Bjørnstad 1990; Bolfarine and Zacks 1992; Lauritzen
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1974; Skinner 1983; Thompson and Seber 1996, Chap. 3). To be sufficient for
predicting an unknown but random population quantity Z such as the population
total, a statistic T must first have the property that the conditional distribution of
the data D given T does not depend on any unknown parameters φ of the popula-
tion model. Second, D and Z must be conditionally independent given T . The first
property just says that T must be sufficient in the ordinary sense for inference about
the parameter φ. For the i.i.d. normal model presented in Chapter 2, with a fixed
sample size design the minimal predictive sufficient statistic consists of the sample
mean and variance. With a random sample size design, the realized sample size ν

is part of the minimal sufficient statistic. For the general linear regression model
with known covariance matrix, the minimal predictive sufficient statistic consists of
the usual sufficient statistic for estimating the parameters, supplemented by sample
statistics related to the covariances between the observed units and the quantity,
such as the population total, to be predicted.
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Design and Model

10.1. USES OF DESIGN AND MODEL IN SAMPLING

In the design-based approach to survey sampling, the values of a variable of
interest (y-values) of the population are viewed as fixed quantities and the selection
probabilities introduced with the design are used in determining the expectations,
variances, biases, and other properties of estimators. In the model-based approach,
on the other hand, the values of the variables of interest in the population are
viewed as random variables, and the properties of estimators depend on the joint
distribution of these random variables.

One reason for the historical reliance on design-based methods in sampling, in
addition to the elimination of personal biases in selecting the sample, is that in
many cases—and especially with natural populations—very little may be known
about the population. Most researchers find it reassuring in such a situation to
know that the estimation method used is unbiased no matter what the nature of
the population itself. Such a method is called design-unbiased: The expected value
of the estimator, taken over all samples which might be selected, is the correct
population value. Design-unbiased estimators of the variance, used for constructing
confidence intervals, are also available for most such designs.

One area of sampling in which the model-based approach has received con-
siderable attention is in connection with ratio and regression estimation. In many
sampling situations involving auxiliary variables, it seems natural to researchers to
postulate a theoretical model for the relationship between the auxiliary variables
and the variable of interest. A model can, of course, also be assumed for pop-
ulations without auxiliary variables. For example, if the N variables Y1, . . . , YN

can be assumed to be independent and identically distributed, many standard sta-
tistical results apply without reference to how the sample is selected. However,
it is difficult to cite examples of survey situations in which a model of indepen-
dent, identically distributed y-values can be assumed with confidence. In fact, a
pervasive problem with the model approach to sampling is that for many real pop-
ulations, attempts to specify models have been far from adequate. Typically, the
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models become mathematically complex while still not being suitably realistic.
In particular, any model assuming that the y-values are independent (or have an
exchangeable distribution) ignores the tendency in many populations for nearby or
related units to be correlated.

Moreover, many survey programs need to produce results that will be used by
people of widely different viewpoints and often conflicting preferences regarding
whether an estimate should be higher or lower. For example, a demographic survey
may be used to allocate governmental resources from one district to another; a
fishery survey may be used to determine the amount of commercial catch allowed.
It would be hard in such a situation to propose a model that would seem acceptable
or realistic to all interested parties. In such a situation, the elimination of ordinary
human selection biases through some sort of random selection procedure can be
a powerful pragmatic argument in favor of an approach that is at least partially
design-based.

With some populations, however, experience may have established convincingly
that certain types of patterns are typical of the y-values of that type of population.
For example, in spatially distributed geological and ecological populations, the
y-values of nearby units may be positively correlated, with the strength of the rela-
tionship decreasing with distance. If such tendencies are known to exist, they can
be used in obtaining efficient predictors of unknown values and in devising efficient
sampling procedures. This model-based approach has been prevalent in sampling
for mining and geological studies, in which the cost of sampling is particularly
high and the economic incentive is strong for obtaining the most precise possible
estimates for a given amount of sampling effort.

Sources of nonsampling error must be modeled if they are to be taken into
account. Problems of differential response, missing data, measurement errors, and
detectability must be modeled in some way in order to adjust for biases and to
assess the uncertainty of estimates.

10.2. CONNECTIONS BETWEEN THE DESIGN AND MODEL
APPROACHES

Let y = (y1, y2, . . . , yN) denote the vector of y-values associated with the N units
of the population. From the model viewpoint, these y-values are random variables
with some joint distribution F . Let P(s) denote the probability under the design of
selecting sample s, where s is a sequence or subset of the units in the population.

From the sample of n units, one wishes to estimate or predict the value of some
quantity y0, where y0 may, for example, be the population mean, the population
total, or the y-value at a unit not in the sample. The predictor or estimator ŷ0 is a
function of the y-values of the sample.

An estimator or predictor ŷ0 is said to be design-unbiased for y0 if its conditional
expectation, given the realization of the N population y-values, is the realized value
of y0, that is, if

E(ŷ0|y) = y0
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Notice that, although y0 may be viewed as a random variable, with a distribution
determined by F , the design-unbiased estimator ŷ0 is unbiased under the design
for the realized value of y0 —the actual value that y0 has taken on at the time of
the survey. The distribution F , which produced the population y-values, is thus
irrelevant to this unbiasedness.

An estimator or predictor ŷ0 is said to be model-unbiased for y0 if, given any
sample s, the conditional expectation of ŷ0 equals the expectation of y0, that is, if

E(ŷ0|s) = E(y0|s)
No matter what sampling design gave rise to the sample s, the model-unbiased
predictor ŷ0 is unbiased under the population distribution F for y0 given the sam-
ple s obtained. The design that produced the sample s is thus irrelevant to this
unbiasedness.

An estimator or predictor ŷ0 is unbiased (i.e., unconditionally unbiased) for y0

if the expectation of ŷ0 equals the expectation of y0, that is, if

E(ŷ0) = E(y0)

Any estimator that is either design-unbiased or model-unbiased for y0 will be
(unconditionally) unbiased for y0, by a well-known property of expectation.

Thus, if the desired end is simply unbiasedness, it can be achieved through
either the design or the model approach. However, some authors philosophically
demand one or the other types of unbiasedness—design unbiasedness, so that
assumptions about the population are not relied upon, or model unbiasedness, so
that the particular sample obtained is taken into account.

The mean square error associated with predicting y0 with ŷ0 is

E(y0 − ŷ0)
2

the expectation being taken with respect to both the distribution of the population
values and the design. If ŷ0 is unbiased for y0, the mean square error is the variance
of the difference:

E(y0 − ŷ0)
2 = var(y0 − ŷ0)

From the model viewpoint, interest focuses on the conditional mean square error,
given the sample s. If ŷ0 is model-unbiased for y0, this mean square error is a
conditional variance:

E[(y0 − ŷ0)
2|s] = var(y0 − ŷ0|s)

From the design viewpoint, the concern is with the conditional mean square error
given the realized population y-values. When ŷ0 is design-unbiased for y0, this
conditional mean square error is

E[(y0 − ŷ0)
2|y] = var(ŷ0|y)
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If ŷ0 is design-unbiased, the unconditional mean square error may be written

E(y0 − ŷ0)
2 = E[var(ŷ0|y)]

If ŷ0 is model-unbiased, the unconditional mean square error may be written

E(y0 − ŷ0)
2 = E[var(y0 − ŷ0|s)]

Estimators of variance may in similar fashion be design- or model-unbiased.
A variance estimator that is either design-unbiased or model-unbiased will be
unconditionally unbiased. Thus, with the design simple random sampling, the
usual estimator

v̂ar(ŷ) =
(

N − n

N

)
s2

n

which is design-unbiased for var(y), is unbiased for the true mean square error no
matter what distribution may give rise to the population.

10.3. SOME COMMENTS

A main result of the preceding section is that a sampling strategy is unconditionally
unbiased if it is either design-unbiased or model-unbiased. Even so, the two
approaches may lead to conflicting recommendations. An assumed-ratio model
may suggest purposive selection of the units with the highest x -values; such a pro-
cedure is certainly not design-unbiased. The sample mean may be design-unbiased
under simple random sampling; but under an assumed model the sample mean
for the particular sample selected may not be model-unbiased. Some advantages
of a design-based approach include obtaining unbiased or approximately unbiased
estimators (and estimators of variance) that do not depend on any assumptions
about the population—a sort of nonparametric approach—obtaining estimates
acceptable (if grudgingly) by users with differing and conflicting interests, avoiding
ordinary human biases in selection, obtaining fairly representative or balanced
samples with high probability, and avoiding the potentially disastrous effects
of important but unknown auxiliary variables. Some benefits of a model-based
approach include assessing the efficiency of standard designs and estimators under
different assumptions about the population, suggesting good designs to use—or
good samples to obtain—for certain populations, deriving estimators that make the
most efficient use of the sample data, making good use of auxiliary information,
dealing with observational data obtained without any proper sampling design, and
dealing with missing data and other nonsampling errors.

For a real population, however, even the best model is something one not so
much believes as tentatively entertains. Under the assumption of the model, one
can outline an efficient course of action in carrying out a survey. It is also nice
to be able to say that if that assumption is wrong, the strategy still has certain
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desirable properties—for example, the estimator is still unbiased, if less efficient.
One approach combining design and model considerations uses the best available
model to suggest an efficient design and form of estimator of the population mean
or total while seeking unbiasedness or approximate unbiasedness under the design,
and using estimators of variance that are robust against departures from the model.
With this approach, one looks for a strategy with low unconditional mean square
error, subject to the required (exact or approximate) design unbiasedness. Such an
approach has been useful in the development of such survey methods as the gener-
alized ratio and regression estimators under probability designs. “Model-assisted”
strategies such as these, using models to suggest good sampling designs and infer-
ence procedures but seeking to have good design-based properties that provide
robustness against any possible departures from the assumed model, are described
in depth in Särndal et al. (1992).

Reviews of the ideas and issues involved in the relationship of design and model
in sampling are found in Cassel et al. (1977), Godambe (1982), Hansen et al. (1983),
Hedayat and Sinha (1991), Särndal (1978), Smith (1976, 1984), Sugden and Smith
(1984), M. E. Thompson (1997), and Thompson and Seber (1996).

10.4. LIKELIHOOD FUNCTION IN SAMPLING

In the design-based, fixed-population approach to sampling, the values (y1, . . . , yN )
of the variable of interest are viewed as fixed or given for all units in the pop-
ulation. With this approach, the unknown values yi of the variable of interest in
the population are the unknown parameters. For designs that do not depend on
any unobserved y-values the likelihood function is constant, equal to the probabil-
ity of selecting the sample obtained, for every potential value y of the population
consistent with the sample data (Basu 1969).

In the model-based approach, the population values y are viewed as realizations
from a stochastic distribution. Suppose that there is a population model f (y; θ),
giving the probability that the y-values in the population take on the specific set of
values y = (y1, y2, . . . , yN). This probability may depend on an unknown param-
eter θ as well as on the auxiliary variables. The distribution may also depend on
auxiliary variables. However, the dependence of the data, sampling design, and
model on auxiliary variables will be left implicit in this section for notational sim-
plicity. Also for ease of notation, assume that the variable of interest is a discrete
random variable, so that sums rather than integrals are involved in the likelihood
function.

The likelihood function is the probability of obtaining the observed data as a
function of the unknown parameters. The data in sampling consist of the units in
the sample together with their associated values of the variable of interest and any
auxiliary variables recorded. For simplicity, the data can be written d = (s, ys),
where s is the set or sequence of units selected and ys represents the y-values in
the sample. Let p denote the sampling design giving for every possible sample
the probability that it is the one selected. Now in general, the design can depend
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on auxiliary variables x that are known for the whole population and even on the
variable of interest y. For example, in surveys that rely on volunteers or that involve
nonresponse, the probability of volunteering or of responding, and hence being in
the sample, is often related to the variable of interest. The adaptive sampling
designs in the last part of this book also depend on the variable of interest. Thus,
the sampling design can be written p(s|y).

The likelihood function is thus the probability that the sample s is selected and
the values ys are observed and can be written

Ld(θ) =
∑

p(s|y)f (y; θ)

where the sum is over possible realizations of the population y that are consistent
with the observed data d . Since the y-values in the sample are fixed by the data,
the sum is over all possible values ys for the units not in the sample.

An important point to note is that in general the likelihood function depends on
both the design and the model. A prevalent mistake in statistics and other fields is
to analyze data through careful modeling but without considering the procedure by
which the sample is selected. The “likelihood” based on the model only, without
consideration of the design, was termed the face-value likelihood by Dawid and
Dickey (1977) because inference based on it alone takes the data at face value
without considering how the data were selected.

There are certain conditions, however, under which the design can be ignored
for inference. For any design in which the selection of the sample depends on
y-values only through those values ys included in the data, the design probability
can be moved out of the sum and forms a separate factor in the likelihood. Then
the likelihood can be written

Ld(θ) = p(s|ys)
∑

ys

f (y; θ)

The design then does not affect the value of estimators or predictors based on
direct likelihood methods such as maximum likelihood or Bayes estimators. For
any such “ignorable” design, the sum in the likelihood above, over all values of
y leading to the given data value, is simply the marginal probability of the y and
values associated with the sample data. This marginal distribution depends on what
sample was selected but does not depend on how that sample was selected. For
likelihood-based inference with a design ignorable in this sense, the face-value
likelihood gives the correct inference.

Likelihood-based inference, such as maximum likelihood estimation or predic-
tion and Bayes methods, is simplified if the design can be ignored at the inference
stage. The fact that the sampling design does not affect the value of a Bayes or
likelihood-based estimator in survey sampling was noted by Godambe (1966) for
designs that do not depend on any values of the variable of interest and by Basu
(1969) for designs that do not depend on values of the variable of interest outside
the sample. Scott and Smith (1973) showed that the design could become relevant
to inference when the data lacked information about the labels of the units in the
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sample. Rubin (1976) gave exact conditions for a missing data mechanism—of
which a sampling design can be viewed as an example—to be relevant in frequen-
tist and likelihood-based inference. For likelihood-based methods such as maximum
likelihood and Bayes methods, the design is “ignorable” if the design or mecha-
nism does not depend on values of the variable of interest outside the sample or on
any parameters in the distribution of those values. For frequency-based inference
such as design- or model-unbiased estimation, however, the design is relevant if it
depends on any values of the variable of interest, even in the sample. Scott (1977)
showed that the design is relevant to Bayes estimation if auxiliary information used
in the design is not available at the inference stage. Sugden and Smith (1984) gave
general and detailed results on when the design is relevant in survey sampling
situations. Thompson and Seber (1996) discuss the underlying inference issues for
adaptive designs, in which the selection procedure deliberately takes advantage of
observed values of the variable of interest (and see the descriptions of these designs
in later chapters of this book).

The concept of design ignorability thus depends on the model assumed, the
design used, and the data collected. It is important to underscore that a design
said to be “ignorable” for likelihood-based inference might not be ignorable for
a frequentist-based inference, such as model-unbiased estimation, and that even
though a design may be ignorable at the inference stage, in that, for example, the
way an estimator is calculated does not depend on the design used, the design is
still relevant a priori to the properties of the estimator. Ironically, in the real world,
it is quite possible that the only data sets for which the designs are truly “ignorable”
for inference purposes are those that were obtained through deliberately planned
and carefully implemented sampling designs.
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Stratified Sampling

In stratified sampling, the population is partitioned into regions or strata, and a
sample is selected by some design within each stratum. Because the selections in
different strata are made independently, the variances of estimators for individual
strata can be added together to obtain variances of estimators for the whole popula-
tion. Since only the within-stratum variances enter into the variances of estimators,
the principle of stratification is to partition the population in such a way that the
units within a stratum are as similar as possible. Then, even though one stratum
may differ markedly from another, a stratified sample with the desired number of
units from each stratum in the population will tend to be “representative” of the
population as a whole.

A geographical region may be stratified into similar areas by means of some
known variable such as habitat type, elevation, or soil type. Even if a large geo-
graphic study area appears to be homogeneous, stratification into blocks can help
ensure that the sample is spread out over the whole study area. Human populations
may be stratified on the basis of geographic region, city size, sex, or socioeconomic
factors.

In the following, it is assumed that a sample is selected by some probability
design from each of the L strata in the population, with selections in different strata
independent of each other. The variable of interest associated with the ith unit of
stratum h will be denoted yhi . Let Nh represent the number of units in stratum h

and nh the number of units in the sample from that stratum. The total number of
units in the population is N = ∑L

h=1 Nh and the total sample size is n = ∑L
h=1 nh.

The total of the y-values in stratum h is τh = ∑Nh

i=1 yhi and the mean for that
stratum is μh = τh/Nh. The total for the whole population is τ = ∑L

h=1 τh. The
overall population mean is μ = τ/N .

The design is called stratified random sampling if the design within each stra-
tum is simple random sampling. Figure 11.1 shows a stratified random sample
from a population of N = 400 units. The sizes of the L = 4 strata are N1 = 200,

N2 = 100, and N3 = N4 = 50. Within each stratum, a random sample without
replacement has been selected independently. The total sample size of n = 40
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Figure 11.1. Stratified random sample.

has been allocated proportional to stratum size, so that n1 = 20, n2 = 10, and
n3 = n4 = 5.

The results in the next section are written to allow for the possibility of any
design within a given stratum, provided that the selections are independent between
strata; then specific results for stratified random sampling are given.

11.1. ESTIMATING THE POPULATION TOTAL

With Any Stratified Design

Suppose that within stratum h any specified design is used to select the sample sh

of nh units, and suppose that one has an estimator τ̂h which is unbiased for τh with
respect to that design. Let var(τ̂h) denote the variance of τ̂h, and suppose that one
has an unbiased estimator v̂ar(τ̂h) of that variance.

Then an unbiased estimator of the overall population total τ is obtained by
adding together the stratum estimators:

τ̂st =
L∑

h=1

τ̂h

Because of the independence of the selections in different strata, the variance
of the stratified estimator is the sum of the individual stratum variances:

var(τ̂st) =
L∑

h=1

var(τ̂h)



estimating the population total 143

An unbiased estimator of that variance is the sum of individual stratum
estimators:

v̂ar(τ̂st) =
L∑

h=1

v̂ar(τ̂h)

With Stratified Random Sampling

If the sample is selected by simple random sampling without replacement in each
stratum, then

τ̂h = Nhyh

is an unbiased estimator of τh, where

yh = 1

nh

nh∑
i=1

yhi

is the sample mean for stratum h.
An unbiased estimator for the population total τ is

τ̂st =
L∑

h=1

Nhyh

having variance

var(τ̂st) =
L∑

h=1

Nh(Nh − nh)
σ 2

h

nh

where

σ 2
h = 1

Nh − 1

Nh∑
i=1

(yhi − μh)
2

is the finite-population variance from stratum h.
An unbiased estimator of the variance of τ̂st is

v̂ar(τ̂st) =
L∑

h=1

Nh(Nh − nh)
s2
h

nh

where

s2
h = 1

nh − 1

nh∑
i=1

(yhi − yh)
2

is the sample variance from stratum h.
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11.2. ESTIMATING THE POPULATION MEAN

With Any Stratified Design

Since μ = τ/N , the stratified estimator for μ is

μ̂st = τ̂st

N

Assuming that the selections in different strata have been made independently,
the variance of the estimator is

var(μ̂st) = 1

N2
var(τ̂st)

with unbiased estimator of variance

v̂ar(μ̂st) = 1

N2
v̂ar(τ̂st)

With Stratified Random Sampling

With stratified random sampling, an unbiased estimator of the population mean μ

is the stratified sample mean:

yst = 1

N

L∑
h=1

Nhyh (11.1)

Its variance is

var(yst) =
L∑

h=1

(
Nh

N

)2 (
Nh − nh

Nh

)
σ 2

h

nh

(11.2)

An unbiased estimator of this variance is

v̂ar(yst) =
L∑

h=1

(
Nh

N

)2 (
Nh − nh

Nh

)
s2
h

nh

(11.3)

Example 1: The results of a stratified random sample are summarized in Table 11.1.
Substituting in Equation (11.1), the estimate of the population mean is

yst = 1

41
[20(1.6) + 9(2.8) + 12(0.6)]

= 1

41
(32 + 25.2 + 7.2)

= 64.4

41
= 1.57
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Table 11.1: Results of a Stratified Random Sample

Stratum h Nh nh yh s2
h

1 20 5 1.6 3.3
2 9 3 2.8 4.0
3 12 4 0.6 2.2

The estimator τ̂ of the population total, obtained by multiplying by 41, is 64.4.
The estimated variance of yst [from Equation (11.3)] is

v̂ar(yst) = 1

412

[
20(20 − 5)

3.3

5
+ 9(9 − 3)

4.0

3
+ 12(12 − 4)

2.2

4

]
= 322.8

412
= 0.192

The estimated variance for the estimator of the population total, obtained by
multiplying by 412, is 322.8. �

11.3. CONFIDENCE INTERVALS

When all the stratum sample sizes are sufficiently large, an approximate
100(1 − α)% confidence interval for the population total is provided by

τ̂st ± t
√

v̂ar(τ̂st)

where t is the upper α/2 point of the normal distribution. For the mean, the confi-
dence interval is μ̂st ± t

√
v̂ar(μ̂st). As a rule of thumb, the normal approximation

may be used if all the sample sizes are at least 30. With small sample sizes, the t dis-
tribution with an approximate degrees of freedom may be used. The Satterthwaite
(1946) approximation for the degrees of freedom d to be used is

d =
(

L∑
h=1

ahs
2
h

)2

/

[
L∑

h=1

(ahs
2
h)

2/(nh − 1)

]
(11.4)

where ah = Nh(Nh − nh)/nh.
Satterthwaite’s formula is based on approximating the distribution of a lin-

ear combination of sample variances with a chi-square distribution. Some pos-
sible refinements to Satterthwaite’s formula are discussed in Ames and Webster
(1991).

Example 2: Confidence Interval. For Example 1, the variance coefficients are
a1 = 20(20 − 5)/5 = 60, a2 = 9(9 − 3)/3 = 18, and a3 = 12(12 − 4)/4 = 24.
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The estimated degrees of freedom [from Equation (11.4)] are

d = [60(3.3) + 18(4.0) + 24(2.2)]2

[60(3.3)]2/4 + [18(4.0)]2/2 + [24(2.2)]2/3

= 322.82

13,322.28
= 7.82

or about 8 degrees of freedom. The approximate 95% confidence interval for the
mean is 1.57 ± 2.306

√
0.192 = 1.57 ± 1.01 = (0.56, 2.58). �

11.4. THE STRATIFICATION PRINCIPLE

Since the formula for the variance of the estimator of the population mean or total
with stratified sampling contains only within-stratum population variance terms, the
estimators will be more precise the smaller the σ 2

h . Equivalently, estimation of the
population mean or total will be most precise if the population is partitioned into
strata in such a way that within each stratum, the units are as similar as possible.
Thus, in a survey of a plant or animal population, the study area might be stratified
into regions of similar habitat or elevation, with the idea that within strata, abun-
dances will be more similar than between strata. In a survey of a human population,
stratification may be based on socioeconomic factors or geographic region.

Example 3: Comparison with Simple Random Sampling. Consider a small pop-
ulation of N = 6 units, divided into two strata of Nh = 3 units each, in order to
examine the effectiveness of stratified sampling in comparison to simple random
sampling. The population y-values in stratum 1 are 2, 0, and 1. In stratum 2, the y-
values are 5, 9, and 4. Thus, the overall population mean is μ = 3.5, and the overall
population variance is σ 2 = 10.7. Within stratum 1, the population mean is μ1 = 1
and the population variance is σ 2

1 = 1.0. Within stratum 2, μ2 = 6 and σ 2
2 = 7.0.

For simple random sampling with sample size n = 4, the sample mean is an
unbiased estimator of the population mean and has variance var(y) = [(6 − 4)/6]
(10.7/4) = 0.89. For stratified random sampling with sample sizes n1 = n2 = 2, so
that the total sample size is still 4, the stratified sample mean yst is an unbiased esti-
mator of the population mean having variance var(yst) = (3/6)2[(3 − 2)/3](1/2) +
(3/6)2[(3 − 2)/3](7/2) = 0.33. For this population, stratification has been effective
because the units within each stratum are relatively similar. �

11.5. ALLOCATION IN STRATIFIED RANDOM SAMPLING

Given a totalsample size n, one may choose how to allocate it among the L strata. If
each stratum is the same size and one has no prior information about the population,
a reasonable choice would be to assume equal sample sizes for the strata, so that
for stratum h the sample size would be

nh = n

L
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If the strata differ in size, proportional allocation could be used to maintain a
steady sampling fraction throughout the population. If stratum h has Nh units, the
sample size allocated to it will be

nh = nNh

N

The allocation scheme that estimates the population mean or total with the
lowest variance for a fixed total sample size n under stratified random sampling is
optimum allocation:

nh = nNhσh∑L
k=1 Nkσk

The stratum population standard deviations σh may in practice be estimated with
sample standard deviations from past data.

In some sampling situations, the cost of sampling, measured in terms of time
or money, differs from stratum to stratum, and total cost may be described by the
linear relationship

c = c0 + c1n1 + c2n2 + · · · + cLnL

where c is the total cost of the survey, c0 is an “overhead” cost, and ch is the cost
per unit observed in stratum h. Then for a fixed total cost c, the lowest variance is
achieved with sample size in stratum h proportional to Nhσh/

√
ch, that is,

nh = (c − c0)Nhσh/
√

ch∑L
k=1 Nkσk

√
ck

Thus, the optimum scheme allocates larger sample size to the larger or more
variable strata and smaller sample size to the more expensive or difficult-to-sample
strata.

Example 4: Allocation. A population consists of three strata of sizes
N1 = 150, N2 = 90, and N3 = 120, so that the total population size is N = 360.
Based on sample standard deviations from previous surveys, the standard devia-
tions within each stratum are estimated to be approximately σ1 ≈ 100, σ2 ≈ 200,
and σ3 ≈ 300.

Proportional allocation of a sample of total size n = 12 is given by n1 =
12(150)/360 = 5, n2 = 12(90)/360 = 3, and n3 = 12(120)/360 = 4.

Assuming equal cost per unit of sampling in each stratum, the optimal allocation
of a total sample size of n = 12 between the three strata is

n1 = 12(150)(100)

150(100) + 90(200) + 120(300)
= 2.6

n2 = 12(90)(200)

150(100) + 90(200) + 120(300)
= 3.1
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n3 = 12(120)(300)

150(100) + 90(200) + 120(300)
= 6.3

Rounding to whole numbers gives n1 = 3, n2 = 3, and n3 = 6. �

11.6. POSTSTRATIFICATION

In some situations it may be desired to classify the units of a sample into strata
and to use a stratified estimate, even though the sample was selected by simple
random, rather than stratified, sampling. For example, a simple random sample of
a human population may be stratified by sex after selection of the sample, or a
simple random sample of sites in a fishery survey may be poststratified on depth.
In contrast to conventional stratified sampling, with poststratification, the stratum
sample sizes n1, n2 . . . , nL are random variables.

With proportional allocation in conventional stratified random sampling, the
sample size in stratum h is fixed at nh = nNh/N and the variance (Eq. (11.2))
simplifies to var(yst) = [(N − n)/nN ]

∑L
h=1(Nh/N)σ 2

h . With poststratification of
a simple random sample of n units from the whole population, the sample size
nh in stratum h has expected value nNh/N , so that the resulting sample tends
to approximate proportional allocation. With poststratification the variance of the
stratified estimator yst = ∑L

h=1(Nh/N)yh is approximately

var(yst) ≈ N − n

nN

L∑
h=1

(
Nh

N

)
σ 2

h + 1

n2

(
N − n

N − 1

) L∑
h=1

N − Nh

N
σ 2

h (11.5)

and the variance of τ̂st = Nyst is var(τ̂st) = N2var(yst). The first term is the vari-
ance that would be obtained using a stratified random sampling design with propor-
tional allocation. An additional term is added to the variance with poststratification,
due to the random sample sizes.

For a variance estimate with which to construct a confidence interval for the
population mean with poststratified data from a simple random sample, it is rec-
ommended to use the standard stratified sampling method (Eq. (11.3)) rather than
substituting the sample variances directly into Equation (11.5). With poststratifica-
tion, the standard formula (Eq. (11.3)) estimates the conditional variance (given by
Eq. (11.2)) of yst given the sample sizes n1, . . . , nL, while Equation (11.5) is the
unconditional variance [and see the comments of J. N. K. Rao (1988, p. 440)].

To use poststratification, the relative size Nh/N of each stratum must be known.
If the relative stratum sizes are not known, they may be estimated using double
sampling (see Chapter 14). Further discussion of poststratification may be found
in Cochran (1977), Hansen et al. (1953), Hedayat and Sinha (1991), Kish (1965),
Levy and Lemeshow (1991), Singh and Chaudhary (1986), and Sukhatme and
Sukhatme (1970). Variance approximations for poststratification vary among the
sampling texts. The derivation for the expression given here is given in Section
11.8 under the heading “Poststratification Variance.”
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11.7. POPULATION MODEL FOR A STRATIFIED POPULATION

A simple model for a stratified population assumes that the population Y -values are
independent random variables, each having a normal distribution, and with means
and variances depending on stratum membership. Under this model, the value Yhi

for the ith unit in stratum h has a normal distribution with mean μh and variance σ 2
h ,

for h = 1, . . . , L, i = 1, . . . , Nh, and the Yhi are independent. A stratified sample
s is selected using any conventional design within each stratum. Since for each
unit Yhi is a random variable, the population total T = ∑L

h=1

∑Nh

i=1 Yhi is also a
random variable. Since the Y -values are observed only for units in the sample, we
wish to predict T using a predictor T̂ computed from the sample data. Desirable
properties to have in a predictor T̂ include model unbiasedness,

E(T̂ |s) = E(T )

where expectation is taken with respect to the model. In addition, we would like
the mean square prediction error E(T̂ − T )2 to be as low as possible.

For a given sample the best unbiased predictor of the population total T is

T̂ =
L∑

h=1

Nhyh

which is the standard stratified sampling estimator. Without the assumption of
normality, the predictor T̂ is best linear unbiased. This result is a special case of
prediction results about the general linear regression model.

In addition, a model-unbiased estimator of the mean square prediction error is
the standard stratified variance estimator

Ê(T̂ − T )2 =
L∑

h=1

(
Nh

N

)2 (
Nh − nh

Nh

)
S2

h

nh

in which S2
h is the sample variance within stratum h.

11.8. DERIVATIONS FOR STRATIFIED SAMPLING

Optimum Allocation

Consider the variance of the estimator τ̂st as a function f of the sample sizes, with
the total sample sizes given. The object is to choose n1, n2, . . . , nL to minimize

f (n1, . . . , nL) = var(τ̂st) =
L∑

h=1

Nhσ
2
h

(
Nh

nh

− 1

)
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subject to the constraint

L∑
h=1

nh = n

The Lagrange multiplier method may be used to solve such a problem. Write
g(n1, . . . , nL) = ∑

nh − n. The solution is obtained by differentiating the function
H = f − λg with respect to each nh and λ, where λ is the Lagrange multiplier,
and setting the partial derivatives equal to zero. The partial derivatives are

∂H

∂nh

= −N2
hσ 2

h

n2
h

− λ = 0

for h = 1, . . . , L. Differentiating with respect to λ reproduces the constraint∑
nh − n = 0. Solving for nh gives

nh = nNhσh∑L
k=1 Nkσk

To verify that the solution gives a minimum of the variance function, as opposed
to a maximum or saddle point, the second derivatives are examined. Writing Hhk

for the second partial derivative ∂2H/∂nh∂nk gives

Hhh = N2σ 2
h

n3
h

h = 1, . . . , L

Hhk = 0 h �= k

Hλh = −1

Hλλ = 0

A sufficient condition for the solution to be a minimum is that for
any set of numbers a1, . . . , aL satisfying

∑L
h=1 Hλhah = 0, the double sum∑L

h=1

∑L
k=1 Hhkahak is invariably positive (Hancock 1960, p. 115). Since Hhk = 0

for h �= k,
∑L

h=1

∑L
k=1 Hhkahak = ∑L

h=1 N2
hσ 2

h /n3
h, which is invariably positive.

The derivation proceeds similarly when the constraint depends on cost. An
alternative derivation uses the Cauchy–Schwartz inequality (see, e.g., Cochran
1977, p. 97).

Poststratification Variance

With simple random sampling, the number nh of sample units in stratum h has a
hypergeometric distribution with E(nh) = nNh/N and

var(nh) = n(Nh/N)(1 − Nh/N)[(N − n)/(N − 1)]
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The poststratification estimator yst is unbiased for the population mean μ pro-
vided that samples in which any of the nh are zero are excluded. Then

var(yst) = E[var(yst|n1, . . . , nL)]

= E

[
L∑

h=1

(
Nh

N

)2 (
Nh − nh

Nh

)
σ 2

h

nh

]

=
L∑

h=1

(
Nh

N

)2

σ 2
h

[
E

(
1

nh

)
− 1

Nh

]
Using a Taylor series approximation for 1/nh, whose first derivative is −n−2

h and
second derivation is 2n−3

h , and taking expectation gives the approximation

E

(
1

nh

)
≈ 1

E(nh)
+ 1

n3
h

var(nh)

= N

nNh

+
(

N

nNh

)2 (
N − Nh

N

) (
N − n

N − 1

)
Substituting this approximation into the variance expression gives

var(yst) ≈
L∑

h=1

(
Nh

N

)2

σ 2
h

[
N

nNh

+
(

N

nNh

)2 (
N − Nh

N

) (
N − n

N − 1

)
− 1

Nh

]

= N − n

nN

L∑
h=1

(
Nh

N

)
σ 2

h + 1

n2

(
N − n

N − 1

) L∑
h=1

(
N − Nh

N

)
σ 2

h

which completes the derivation.

11.9. COMPUTING NOTES

Calculations and a simulation for stratification will be illustrated using data from the
1997 aerial moose survey along the Yukon River corridor, Yukon-Charley Rivers
National Preserve, Alaska: Project report, November, 1997 (Burch and Demma,
1997). The survey was stratified into three strata and a stratified random sampling
design was used to estimate the number of moose in the study refuge. For units in
the sample moose were counted from the air. For the purposes of our example, we
will assume that every moose in a sample plot is detected. In the actual survey,
a factor for sightability (detectability) was estimated and an additional adjustment
was made.

The population has L = 3 strata based on habitat type. The numbers of units in
each stratum are N1 = 122, N2 = 57 and N3 = 22. The sample sizes used were
n1 = 39, n2 = 38 and n3 = 21.

First, estimates are made using the stratified sample data.
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# Read in the data or enter them from the print out below.
moosedat <- read.table(file="http://www.stat.sfu.ca/
∼thompson/data/moosedata")
moosedat
# You can see it by printing out the whole data structure:
moosedat
# Note there are two columns called "str" for stratum and
"moose" for the total count of
# moose in each sample plot. The strata are labeled 1 =
"low", 2 =
"medium", and 3 = "high", representing habitat favorability.
# You can rename these for accessibility as follows:
stratum <- moosedat$str
y <- moosedat$moose
# Their total sample size:
length(y)
# The stratum sample sizes:
table(stratum)
# Two simple ways to get stratum sample means and sample
variances to use in calculations:
?tapply
tapply(y,stratum,mean)
tapply(y,stratum,var)
y1 <- y[stratum==1]
y1
length(y1)
mean(y1)
var(y)
# With the second method, repeat for strata 2 and 3.

# Here are the moose data:

> moosedat
str moose

1 3 0
2 3 0
3 3 1
4 3 7
5 3 5
6 3 7
7 3 7
8 2 13
9 3 17
10 3 1
11 2 7
12 3 10
13 2 1
14 2 0
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15 2 1
16 3 4
17 2 8
18 1 2
19 2 3
20 2 0
21 2 2
22 1 2
23 1 2
24 2 4
25 1 1
26 1 1
27 1 0
28 3 10
29 2 4
30 3 8
31 2 23
32 1 1
33 1 0
34 1 0
35 1 0
36 1 0
37 1 4
38 3 2
39 1 0
40 1 12
41 2 3
42 2 3
43 2 0
44 1 1
45 2 18
46 2 3
47 2 2
48 2 2
49 2 13
50 2 1
51 2 0
52 2 8
53 2 10
54 3 17
55 1 3
56 1 3
57 1 0
58 1 0
59 1 0
60 1 0
61 1 2
62 1 0
63 3 3
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64 1 0
65 1 1
66 2 11
67 1 5
68 1 17
69 3 33
70 2 2
71 3 8
72 3 10
73 1 1
74 2 0
75 3 2
76 3 9
77 2 2
78 1 0
79 2 0
80 1 0
81 1 0
82 1 2
83 2 1
84 2 0
85 2 0
86 1 3
87 2 0
88 2 4
89 1 0
90 1 0
91 1 0
92 2 10
93 2 1
94 2 0
95 1 0
96 1 0
97 2 0
98 1 0
>

To investigate the properties of the sampling strategy for this population or to
consider alternative strategies, simulation is an invaluable tool. The problem of
course is that the existing data are themselves only a sample from the population,
whereas we would like data on the whole population to achieve the most realistic
simulation. One way of constructing a simulation population for a population like
this is to augment the data by repeating data values in each stratum to impute the
missing values and create an artificial, but arguably realistic, population of N = 201
units, the same number as in the actual study region. Stratum sample values are
used to fill in each complete stratum with repeated sample data. Since the stratum
sizes are not whole-number multiples of the stratum sample sizes, the remaining
needed values are selected at random from the respective stratum sample.
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A simulation like this can be used to compare a stratified design with a different
design such as simple random sampling from the whole population, or to study
the effect of changing sample size or allocation scheme. The simulation procedure
follows.

# A simulation for evaluating the stratified random sampling
# design for the moose population, with the artificially
# augmented population made by repeating or "bootstrapping"
# the data values in each stratum to get an augmented
# population as large as the real population and having
# values as realistic as possible.

y1aug <- c(rep(y1,3), sample(y1,5))
y2aug <- c(y2, sample(y2,19))
y3aug <- c(y3, sample(y3, 1))
tauhat <- numeric()
N1 <- 122
N2 <- 57
N3 <- 22
n1 <- 39
n2 <- 38
n3 <- 21

for (k in 1:b){
s1 <- sample(N1, n1)
tauhat1 <- N1 * mean(y1aug[s1])
s2 <- sample(N2, n2)
tauhat2 <- N2 * mean(y2aug[s2])
s3 <- sample(N3, n3)
tauhat3 <- N3 * mean(y3aug[s3])
tauhat[k] <- tauhat1 + tauhat2 + tauhat3

}

hist(tauhat)
mean(tauhat)
var(tauhat)
tau <- sum(y1aug) + sum(y2aug) + sum(y3aug)
tau
mean((tauhat-tau)^2)
sqrt(mean((tauhat-tau)^2))

EXERCISES

1. The following results were obtained from a stratified random sample:

Stratum 1: N1 = 100, n1 = 50, y1 = 10, s2
1 = 2800
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Stratum 2: N2 = 50, n2 = 50, y2 = 20, s2
2 = 700

Stratum 3: N3 = 300, n3 = 50, y3 = 30, s2
3 = 600

(a) Estimate the mean for the whole population.

(b) Give a 95% confidence interval for the mean.

2. Allocate a total sample size of n = 100 between two strata having sizes N1 =
200 and N2 = 300 and variances σ 2

1 = 81 and σ 2
2 = 16 (a) using proportional

allocation and (b) using optimal allocation (assume equal costs).

3. Use stratified random sampling to estimate the mean or total of a population of
your choice. In the process of carrying out the survey and making the estimate,
think about or discuss with others the following:

(a) What practical problems arise in establishing a frame, such as a map or
list of units, from which to select the sample?

(b) How is the sample selection actually carried out?

(c) What special problems arise in observing the units selected?

(d) Estimate the population mean or total.

(e) Estimate the variance of the estimator above.

(f) Give a 95% confidence interval for the population mean or total.

(g) Using the stratum sample variances from your data, give the proportional
and the optimum allocations of a sample of size 200 in a future survey.

(h) How would you improve the survey procedure if you were to do it again?
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Cluster and Systematic Sampling

Although systematic sampling and cluster sampling seem on the surface to be
opposites—the one spacing out the units of a sample and the other bunching them
together—the two designs share the same structure. The population is partitioned
into primary units , each primary unit being composed of secondary units . When-
ever a primary unit is included in the sample, the y-values of every secondary unit
within it are observed.

In systematic sampling, a single primary unit consists of secondary units spaced
in some systematic fashion throughout the population. In cluster sampling, a pri-
mary unit consists of a cluster of secondary units, usually in close proximity to each
other. In the spatial setting, a systematic sample primary unit may be composed
of a collection of plots in a grid pattern over the study area. Cluster primary units
include such spatial arrangements as square collections of adjacent plots or long,
narrow strips of adjacent units. A cluster sample consisting of a simple random
sample of 10 primary units, each consisting of eight secondary units, is shown
in Figure 12.1. A systematic sample with two randomly selected starting points
is shown in Figure 12.2. The systematic sample consists of two primary units
(distinguished by their shading), each with 16 secondary units.

The key point in any of the systematic or clustered arrangements is that whenever
any secondary unit of a primary unit is included in the sample, all the secondary
units of that primary unit are included. Even though the actual measurements may
be made on secondary units, it is the primary units that are selected. In principle,
one could dispense with the concept of the secondary units, regarding the primary
units as the sampling units and using, as the variable of interest for any primary
unit, the total of the y-values of the secondary units within it. Then all properties
of estimators may be obtained based on the design by which the sample of primary
units is selected. However, several common features of systematic and cluster
sampling make these designs worth considering as special cases:

Sampling, Third Edition. Steven K. Thompson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Figure 12.1. Cluster sample.

Figure 12.2. Systematic sample with two starting points.
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1. In systematic sampling, it is not uncommon to have a sample size of 1, that
is, a single primary unit.

2. In cluster sampling, the size of the cluster may serve as auxiliary information
that may be used either in selecting clusters with unequal probabilities or in
forming ratio estimators.

3. The size and shape of clusters may affect efficiency.

Let N denote the number of primary units in the population and n the number
of primary units in the sample. Let Mi be the number of secondary units in the
i th primary unit. The total number of secondary units in the population is M =∑N

i=1 Mi . Let yij denote the value of the variable of interest of the j th secondary
unit in the i th primary unit. The total of the y-values in the i th primary unit
will be denoted simply yi , that is, yi = ∑Mi

j=1 yij . The population total is τ =∑N
i=1

∑Mi

j=1 yij = ∑N
i=1 yi . The population mean per primary unit is μ1 = τ/N .

The population mean per secondary unit is μ = τ/M .

12.1. PRIMARY UNITS SELECTED BY SIMPLE RANDOM SAMPLING

Unbiased Estimator

When primary units are selected by simple random sampling without replacement,
an unbiased estimator of the population total τ is

τ̂ = N

n

n∑
i=1

yi = Ny (12.1)

where y = (1/n)
∑n

i=1 yi , the sample mean of the primary unit totals. The variance
of this estimator is

var(τ̂ ) = N(N − n)
σ 2

u

n
(12.2)

where σ 2
u is the finite-population variance of the primary unit totals,

σ 2
u = 1

N − 1

N∑
i=1

(yi − μ1)
2

An unbiased estimate of the variance of τ̂ is

v̂ar(τ̂ ) = N(N − n)
s2
u

n

where s2
u is the sample variance of the primary unit totals,

s2
u = 1

n − 1

n∑
i=1

(yi − y)2
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These results are familiar from simple random sampling. An unbiased estimator of
the mean per primary unit μ1 is y = τ̂ /N , and an unbiased estimator of the mean
per secondary unit μ is μ̂ = τ̂ /M . The variance of y is var(y) = (1/N2)var(τ̂ ), and
the variance of μ̂ is var(μ̂) = (1/M2)var(τ̂ ). The estimated variances are obtained
similarly by dividing the estimated variance of τ̂ by N2 for the mean per primary
unit or M2 for the mean per secondary unit.

Ratio Estimator

If primary unit total yi is highly correlated with primary unit size Mi , a ratio
estimator based on size may be efficient. The ratio estimator of the population total
is

τ̂r = rM

were the sample ratio r is

r =
∑n

i=1 yi∑n
i=1 Mi

The population ratio is the mean per secondary unit μ. As a ratio estimator, τ̂r is
not unbiased, but the bias tends to be small with large sample sizes, and the mean
square error may be considerably less than that of the unbiased estimator when the
yi and the Mi tend to be proportionally related.

An approximate formula for the mean square error or variance of the ratio
estimator is

var(τ̂r ) ≈ N(N − n)

n(N − 1)

N∑
i=1

(yi − Miμ)2

An estimator of this variance is given by

v̂ar(τ̂r ) = N(N − n)

n(n − 1)

n∑
i=1

(yi − rMi)
2

or the adjusted estimator for the variance of a ratio estimator

ṽar(τ̂r ) =
(

nM

N
∑n

i=1 Mi

)2

v̂ar(τ̂r )

Alternative variance estimators for ratio estimators are discussed in the chapter on
auxiliary data and ratio estimation (Chapter 7) and are reviewed in J. N. K. Rao
(1988, pp. 402–403), P. S. R. S. Rao (1988, pp. 454–456), and Royall (1988,
pp. 402–403).

To estimate the population mean μ1 per primary unit, the ratio estimator would
be μ̂1r = τ̂r /N , for which the mean square error formulas above would be divided
by N2. To estimate the population mean μ per secondary unit, the ratio estimator
is μ̂r = τ̂r /M = r , for which one would divide the mean square error expressions
above by M2.
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12.2. PRIMARY UNITS SELECTED WITH PROBABILITIES
PROPORTIONAL TO SIZE

Suppose that the primary units are selected with replacement with draw-by-draw
selection probabilities proportional to the sizes of the primary units, that is, pi =
Mi/M . One way to carry out such a design is to select n secondary units from the
M in the population, using simple random sampling with replacement: A primary
unit is selected every time any of its secondary units is selected.

Hansen–Hurwitz (PPS) Estimator

An unbiased estimator of the population total under sampling with replacement
with probabilities proportional to size, based on the Hansen–Hurwitz estimator, is

τ̂p = M

N

n∑
i=1

yi

Mi

with each observation utilized in the sum as many times as its primary unit is
selected. The variance of this estimator is

var(τ̂p) = M

n

n∑
i=1

Mi(yi − μ)2

where yi = yi/Mi . An unbiased estimator of this variance is

v̂ar(τ̂p) = M2

n(n − 1)

n∑
i=1

(yi − μ̂p)2

where μ̂p = τ̂p/M .
The estimator μ̂p is unbiased for the population mean per secondary unit μ

under the probability-proportional-to-size selection, while μ̂1p = τ̂p/N is unbiased
for the population mean per primary unit. Variance formulas for these estimators
are obtained by dividing the variance expressions for τ̂p by M2 or N2.

Horvitz–Thompson Estimator

A Horvitz–Thompson estimator can also be computed for this design, using the
inclusion probabilities

πi = 1 − (1 − pi)
n

and joint inclusion probabilities

πij = πi + πj − [1 − (1 − pi − pj )
n]

based on the selection probabilities pi = Mi/M .
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The Horvitz–Thompson estimator for the population total is

τ̂π =
v∑

i=1

Yi

πi

where v is the number of distinct primary units in the sample. Variance formulas
for this estimator were given in Section 6.2.

12.3. THE BASIC PRINCIPLE

Since every secondary unit is observed within a selected primary unit, the within-
primary-unit variance does not enter into the variances of the estimators. Thus, the
basic systematic and cluster sampling principle is that to obtain estimators of low
variance or mean square error, the population should be partitioned into clusters in
such a way that one cluster is similar to another. Equivalently, the within-primary-
unit variance should be as great as possible in order to obtain the most precise
estimators of the population mean or total. The ideal primary unit contains the full
diversity of the population and hence is “representative.”

With natural populations of spatially distributed plants, animals, or minerals,
and with many human populations, the condition above is typically satisfied by
systematic primary units, in which the secondary units are spaced apart, but not by
clusters of geographically adjacent units. Cluster sampling is more often than not
carried out for reasons of convenience or practicality rather than to obtain lowest
variance for a given number of secondary units observed.

12.4. SINGLE SYSTEMATIC SAMPLE

Many surveys utilizing a systematic design select a single starting unit at random
and then observe every secondary unit at the appropriate spacing from there. Thus
the sample consists of a single primary unit selected at random. From a sample of
size 1 it is possible to obtain an unbiased estimator of the population mean or total,
but it is not possible to obtain an unbiased estimator of its variance.

Naively proceeding as if the M1 secondary units in the single systematic primary
unit were a simple random sample from the M secondary units in the population and
using the variance formula from simple random sampling leads to good variance
estimates only if the units of the population can reasonably be conceived as being
in random order. With many natural populations, in which nearby units tend to
be similar to each other, this procedure tends to overestimate the variance of the
estimator of the population mean or total.

A variety of procedures for estimating variance from a single systematic sample
are discussed in Bellhouse (1988a), Murthy and Rao (1988), and Wolter (1984).
One of the simplest is to combine pairs (or larger groups) of adjacent units into
“strata” and estimate variance as if stratified random sampling had been used.
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Example 1: The distinctions between the estimators can be illustrated with a sys-
tematic sample selected from a population in which the number N of possible
systematic samples does not divide evenly into the number M of (secondary) units
in the population. In a survey of bald eagle nests, a coastline 1300 km in length
is divided into units of 100-km length, so that there are M = 13 of these units
in the population. A “one-in-three” systematic sample is selected by choosing at
random one of the first three units and then including that unit and every third
unit thereafter in the sample. For every unit included in the sample, all eagle nests
are counted using research vessels and aircraft. Thus, a single systematic sample
is selected, but the size Mi of the various possible samples differs. The number
of primary units (the number of possible systematic samples) is N = 3, of which
n = 1 will be selected. If the first unit is chosen as a starting point, M1 = 5 units
will be observed, whereas if either of the other starting points is chosen, Mi = 4
units will be observed.

Suppose that unit 3 is selected at random from the first three, and the y-values
observed on the survey are 5, 1, 10, and 18 nests. Then the unbiased estimate of
the total number of nests on the coastline is

τ̂ = 3

1
(5 + 1 + 10 + 18) = 102

However, presented with data from such a survey, many people would choose to
take the average of the four units observed and multiply by the number of units in
the population, obtaining the estimate

τ̂r = 5 + 1 + 10 + 18

4
(13) = 110.5

As a ratio estimator, this estimator is not unbiased with the design used.
With a single starting point (n = 1), the PPS estimator is identical to the ratio

estimator. Hence the second method above would give an unbiased estimate if the
systematic sample were selected with probability proportional to size. This could
be accomplished by selecting one unit out of the 13 in the population at random
and then including in the sample that unit and every third unit to the right and to
the left. �

12.5. VARIANCE AND COST IN CLUSTER AND SYSTEMATIC
SAMPLING

The effectiveness of cluster or systematic sampling depends both on the variance
resulting from using primary units of a given size and shape and the cost of sam-
pling such units. As a starting point, the variance of selecting n primary units may
be compared with a simple random sample of an equivalent number of secondary
units. The average size of clusters in the population is M = M/N , so the expected
number of secondary units in a simple random sample of n primary units is nM .
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For the unbiased estimate of the population total based on a simple random
sample of nM secondary units, write τ̂srs = My. The variance of this design-
estimator combination is

var(τ̂srs) = M2

(
(NM − nM)

nNM
2

)
σ 2

= N2

[
M(N − n)

nN

]
σ 2

where σ 2 is the finite-population variance for secondary units,

σ 2 =
N∑

i=1

M∑
j=1

(yij − μ)2

NM − 1

and μ = τ/NM .
For a cluster or repeated systematic sample, with a simple random sample of

n primary units, the unbiased estimator (see Eq. (12.1)) will be denoted τ̂u, with
the subscript u indicating that the design with which the estimator is used is a
random sample of primary units of type u . The label u identifies the size, shape,
or arrangement of primary units, which could be, for example, square clusters,
rectangular clusters, or systematic samples. The variance of this design-estimator
combination is

var(τ̂u) = N2
(

N − n

nN

)
σ 2

u

where σ 2
u = ∑N

i=1(yi − μ1)
2/(N − 1) and μ1 = τ/N .

The relative efficiency of the cluster (or systematic) sample to the simple random
sample of equivalent sample size, defined as the ratio of the variances, is

var(τ̂srs)

var(τ̂u)
= Mσ 2

σ 2
u

Thus cluster (systematic) sampling is efficient if the variance σ 2
u between primary

units is small relative to the overall population variance σ 2.
To estimate this relative efficiency using data from a cluster or systematic sam-

pling design, the usual sample variance s2 cannot be used as an estimate of σ 2,
because the data were not obtained with simple random sampling. Instead, σ 2 can
be estimated using analysis of variance of the cluster (systematic) sample data as
follows.

For simplicity, suppose that each of N primary units has an equal number M of
secondary units. The total sum of squares in the population can be partitioned as

N∑
i=1

M∑
j=1

(yij − μ)2 =
N∑

i=1

M∑
j=1

(yij − yi)
2 + M

N∑
i=1

(yi − μ)2
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where yi = ∑M
j=1 yij /M . The first term on the right contains the within-primary-

unit sum of squares and the second term the between-primary-unit sum of squares.
Write σ 2

w = ∑N
i=1

∑M
j=1(yij − yi)

2/[N(M − 1)] for the within-primary-unit
variance and σ 2

b = ∑N
i=1(yi − μ)2/(N − 1) for the variance between primary

unit means. (Note that σ 2
u = M

2
σ 2

b is the variance between primary unit
totals.) An unbiased estimate of σ 2

w using the random sample of clusters is
s2
w = ∑n

i=1

∑M
j=1(yij − yi)

2/[n(M − 1)], and an unbiased estimate of σ 2
b is

s2
b = ∑n

i=1(yi − μ̂)2/(n − 1), where μ̂ = τ̂u/M . The sum-of-squares equality
may be written

(NM − 1)σ 2 = N(M − 1)σ 2
w + (N − 1)Mσ 2

b

An unbiased estimate of σ 2 from the simple random cluster sample is

σ̂ 2 = N(M − 1)s2
w + (N − 1)Ms2

b

NM − 1

The estimated relative efficiency of cluster sampling (simple random sample of
n clusters) based on the data from the cluster sample is σ̂ 2/Ms2

b = Mσ̂ 2/s2
u. Given

a cluster sample with equal-sized clusters, one can thereby compare the efficiency
of a variety of smaller units.

The variance of cluster or systematic sampling can alternatively be examined in
terms of the correlation within primary units. The within-primary-unit correlation
coefficient is defined as

ρ =
∑N

i=1

∑M
j=1

∑
j ′ �=j (yij − μ)(yij ′ − μ)

(M − 1)(NM − 1)σ 2

The sum of squares in the primary unit variance σ 2
u may be written

N∑
i=1

(yi − μ1)
2 =

N∑
i=1

⎛⎝ M∑
j=1

yij − Mμ

⎞⎠2

=
N∑

i=1

⎡⎣ M∑
j=1

(yij − μ)

⎤⎦2

=
N∑

i=1

⎡⎣ M∑
j=1

M∑
j ′=1

(yij − μ)(yij ′ − μ)

⎤⎦
=

N∑
i=1

M∑
j=1

(yij − μ)2 +
N∑

i=1

M∑
j=1

∑
j ′ �=j

(yij − μ)(yij ′ − μ)
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Substituting into Equation (12.2), the variance with cluster sampling may be written

var(τ̂ ) = N2(N − n)

nN

(
M − 1

N − 1

)
σ 2[1 + (M − 1)ρ]

≈ N2M(N − n)

nN
σ 2[1 + (M − 1)ρ]

If ρ is zero, the variance with cluster sampling will be approximately the same as
the variance of a simple random sample of an equal number (nM) of secondary
units. If ρ is greater than zero, the simple random sample will give lower variance.
If ρ is less than zero, the cluster sample gives lower variance.

With many natural populations, units near each other tend to be similar, so with
compact clusters, ρ is greater than zero. For such populations, the value of ρ, and
hence the variance of τ̂ , will tend to be larger with square clusters, in which the
secondary units are close together, than with long, thin clusters, in which at least
some of the secondary units are far apart. With systematic sampling, the secondary
units of each primary unit are spaced relatively far apart, so that ρ may well be less
than zero. For this reason, systematic sampling is inherently efficient with many
real populations.

The advantage of cluster sampling is that it is often less costly to sample a
collection of units in a cluster than to sample an equal number of secondary units
selected at random from the population. Considering the case with equal-sized
clusters, let Mu be the number of secondary units in a primary unit of type u .
Let σ 2

u be the population variance for that type of unit. Let cu be the cost of
measuring a randomly selected unit of that type, so that the cost of a sample of nu

units is cunu. Ignoring the finite-population correction factor in Equation (12.2),
the variance of an estimator τ̂u = Nyu of the population total is approximately
var(τ̂u) ≈ N2

uσ 2
u /nu. For a fixed cost C , nu = C/cu and the variance is var(τ̂u) ≈

N2
uσ 2

u cu/C = cuσ
2
u /(M2

uC). The choice of primary unit giving the lowest variance
is the one giving the smallest value of cuσ

2
u /M

2
u. For specified variance, the primary

unit giving the lowest cost is again the one giving the smallest value of cuσ
2
u /M

2
u

(see Cochran 1977, p. 234).
In principle, the ideal size and shape of primary unit can be determined by a

variance function and a cost function, each depending on the size and shape of
primary unit. Such functions are not necessarily simple in real sampling situations.
Examples of such functions are discussed in Cochran (1977), Hansen et al. (1953),
Jessen (1978), and Kish (1965).

12.6. COMPUTING NOTES

Selecting a cluster sample is generally a matter of organizing the population units
into primary and secondary units, selecting a sample of primary units, and calcu-
lating the primary unit totals to work with.



computing notes 167

A survey of sea otters in a coastal study region counts visible otters in their
near-shore habitat. Because of the uneven shape of the suitable habitat in the study
region, the region has been divided into primary and secondary spatial units. There
are N = 16 primary units, divided into a total of M = 33 secondary units. A simple
random sample of n = 4 primary units is selected. The first of these has M1 = 1
secondary unit in it, in which y1 = 3 sea otters are observed. The second sample
unit has M − 2 = 4 secondary units, in which a total of y2 = 24 sea otters are
observed. The third sample unit has M − 3 = 3 and y3 = 7, and the fourth sample
unit has M − 4 = 2 and y4 = 2. For purposes of this example it is assumed that
every sea otter in a sample unit is observed; imperfect detectability in such surveys
is discussed in later chapters.

Below the population total is estimated using the expansion estimator (unbiased)
and the ratio estimator.

# some calculations for cluster
# sampling example (sea otter survey)
# with n = 4, N = 16, M = 33
> ys <- c(3,24,7,2)
> Mi <- c(1,4,3,2)
> N <- 16
> M <- 33

# expansion estimator,
# unbiased if design was SRS:
> Tauhat <- N * mean(ys)
> Tauhat
[1] 144
> ssq <- var(ys)
> ssq
[1] 104.6667
> varhatTauhat <- N\^2 * (1 - 4/N) * ssq / 4
> varhatTauhat
[1] 5024
> seTauhat <- sqrt(varhatTauhat)
> seTauhat
[1] 70.88018
> qt(.90,3)
[1] 1.637744
> Tauhat + qt(.9,3) * seTauhat
[1] 260.0836
> Tauhat - qt(.9,3) * seTauhat
[1] 27.91638

Had the sample of 4 primary units been selected with replacement with proba-
bility proportional to primary unit size, as measured by number of secondary units,
the Hansen–Hurwitz estimator and the Horvitz–Thompson estimator would each
be unbiased. Their calculation is carried out next.
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# Hansen Hurwitz estimator,
# unbiased if design had been PPS:
> pi <- Mi/M
> pi
[1] 0.03030303 0.12121212 0.09090909 0.06060606
> Tauhatp <- mean(ys/pi)
> Tauhatp
[1] 101.75
> varhatTauhatp <- var(ys/pi) / 4
> varhatTauhatp
[1] 1217.562
> ys/pi
[1] 99 198 77 33
> var(ys/pi)
[1] 4870.25
> seTauhatp <- sqrt(varhatTauhatp)
> seTauhatp
[1] 34.89359
> qt(.9,3) * seTauhatp
[1] 57.14678
> 102+57
[1] 159
> 102-57
[1] 45

# Horvitz Thompson estimator:
> pii = 1 - (1- pi)^4
> pii
[1] 0.1158129 0.4036019 0.3169865 0.2212626
> sum(ys/pii)
[1] 116.4904
> ys/pii
[1] 25.903841 59.464533 22.082956 9.039032
>

A systematic sample can be selected in R as follows. Suppose we want to sample
rainfall at a site every 10th day over a year. Thus, M = 365 and we wish to select
a 1 in k systematic sample, with k = 10. Note that a single primary unit is being
selected, and primary units are of unequal size, since 365 does not divide evenly
by 10.

M <- 365
k <- 10

start <- sample(1:k, 1)

s <- seq(start, M, k)
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# The ratio estimate of mean daily rainfall during the year:
mean(y[s])

# The unbiased estimate of mean daily rainfall:
10 * sum(y[s])/ 365

EXERCISES

1. Assume that the following are data from cluster sampling with simple random
sampling of clusters. There are 10 clusters (primary units) and a total of 100
secondary units in the population. For each of the n = 3 selected clusters, yi is
the cluster total for the variable of interest and Mi is cluster size: y1 = 4,M1 =
5; y2 = 12,M2 = 20; y3 = 7,M3 = 10.

(a) Give an unbiased estimate of the population total.

(b) Estimate the variance of that estimator.

2. Using the data of Exercise 1 and assuming simple random sampling, (a) give
the ratio-to-size estimate of the population total and (b) estimate the variance
of that estimator.

3. Using the data of Exercise 1, but assuming that the sample was obtained with
selection probabilities proportional to cluster size (PPS), with replacement,
(a) give an unbiased estimate of the population total and (b) estimate the
variance of that estimator.

4. Use random sampling of clusters to estimate the mean or total of a population
of your choice. In the process of carrying out the survey and making the
estimate, think about or discuss with others the following:

(a) What practical problems arise in establishing a frame, such as a map or
list of units, from which to select the sample?

(b) How is the sample selection actually carried out?

(c) What special problems arise in observing the units selected?

(d) Estimate the population mean or total.

(e) Estimate the variance of the estimator above.

(f) Give a 95% confidence interval for the population mean or total.

(g) How would you improve the survey procedure if you were to do it again?

5. To estimate the number of typographical errors in a 65-page manuscript, a
systematic sample of pages is selected by first selecting a random number
between 1 and 10 and including in the sample that numbered page and every
10th page thereafter. The random number selected was 6. The number of
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typographical errors on the sample pages were 1, 0, 2, 3, 0, and 1. Assume
that no errors on sample pages were missed.

(a) Give an unbiased estimate, under the design used, of the total number of
errors in the manuscript. What design was used?

(b) The person doing the survey estimated the total number of errors in the
manuscript by 65(1 + 0 + 2 + 3 + 0 + 1)/6 = 75.83. Which estimator was
used? Is it unbiased with the design used?

(c) The variance of the estimator was estimated by 65(65 − 6)(1.37)/6, where
1.37 is the sample variance of the six error counts. Is this unbiased for the
actual variance of the estimator of the total number of errors? Discuss.

6. Use repeated systematic sampling to estimate the mean or total of a population
of your choice. In the process of carrying out the survey and making the
estimate, think about or discuss with others the following:

(a) What practical problems arise in establishing a frame, such as a map or
list of units, from which to select the sample?

(b) How is the sample selection actually carried out?

(c) What special problems arise in observing the units selected?

(d) Estimate the population mean or total.

(e) Estimate the variance of the estimator above.

(f) Give a 95% confidence interval for the population mean or total.

(g) How would you improve the survey procedure if you were to do it again?

7. With a systematic sample having a single randomly selected starting point,
the expansion estimator τ̂ = Ny is design-unbiased for the population total τ ,
but no design-unbiased estimator of var(τ̂ ) exists. Assume for simplicity that
each possible sample (primary unit) has the same number of secondary units,
that is, Mi = m for all i . With the single starting point the sample has only
n = 1 primary units, and y, the sample mean of the primary unit totals, is the
sum of the m secondary units in the primary unit selected. N is the number
of possible starting points (the number of possible systematic samples), so the
total number of secondary units in the population is M = Nm.
Now consider a model-based approach, in which the population Y -values are
assumed to be independent, identically distributed random variables, each with
mean β and variance γ . Under the model, show that τ̂ is (model) unbiased
for the population total, find the mean square prediction error E(τ̂ − τ)2, and
find an unbiased estimator of E(τ̂ − τ)2. [Hint: The notation may be simplified
to avoid double subscripts by relabeling the M = Nm secondary units in the
population from 1 to M , with Yj representing the Y -value of the j th secondary
unit. The population total can be partitioned into sample and nonsample parts
as τ = ∑M

j=1 Yj = ∑
j∈s Yj + ∑

j /∈s Yj .]
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Multistage Designs

If, after selecting a sample of primary units, a sample of secondary units is selected
from each of the primary units selected, the design is referred to as two-stage sam-
pling . If in turn a sample of tertiary units is selected from each selected secondary
unit, the design is three-stage sampling . Higher-order multistage designs are also
possible.

Multistage designs are used for a variety of practical reasons. To obtain a sample
of fish caught in a commercial fishery, it may be necessary first to take a sample
of boats and then a sample of fish from each selected boat. To obtain a sample of
plants of some species, it may be convenient to take a sample of plots first and
then a sample of plants from each selected plot.

In a single-stage design such as cluster sampling, the variability of the estimator
occurs because different samples of primary units will give different values of the
estimate. With two-stage designs, the estimator has variability even for a given
selection of primary units, because different subsamples of secondary units will
give rise to different values of the estimator.

Let N denote the number of primary units in the population and Mi the number
of secondary units in the ith primary unit. Let yij denote the value of the variable
of interest for the j th secondary unit in the ith primary unit. The total of the y-
values in the ith primary unit is yi = ∑Mi

j=1 yij . The mean per secondary unit in

the ith primary unit is μi = yi/Mi . The population total is τ = ∑N
i=1

∑Mi

j=1 yij .
The population mean per primary unit is μ1 = τ/N , while the population mean per
secondary unit is μ = τ/M , where M = ∑N

i=1 Mi is the total number of secondary
units in the population.

Figure 13.1 shows a two-stage sample in which a simple random sample of
n = 10 primary units was selected at the first stage and, at the second stage, a
simple random sample of mi = 4 of the Mi = 8 the secondary units in each selected
primary unit was selected. Figure 13.2 shows a two-stage sample with the same
total number of secondary units, but with n = 20 primary units selected and mi = 2
secondary units selected from each primary unit.

Sampling, Third Edition. Steven K. Thompson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Figure 13.1. Two-stage sample of 10 primary units and four secondary units per primary unit.

Figure 13.2. Two-stage sample of 20 primary units and two secondary units per primary unit.



simple random sampling at each stage 173

13.1. SIMPLE RANDOM SAMPLING AT EACH STAGE

Consider first a two-stage design with simple random sampling at each stage. At
the first stage, a simple random sample without replacement of n primary units
is selected. From the ith selected primary unit, a simple random sample without
replacement of mi secondary units is selected, for i = 1, . . . , n.

Unbiased Estimator

Since simple random sampling is used at the second stage, an unbiased estimator
of the total y-value for the ith primary unit in the sample is

ŷi = Mi

mi

mi∑
j=1

yij = Miyi (13.1)

where yi = (1/mi)
∑mi

j=1 yij = ŷi/Mi . Then, since simple random sampling is used
at the first stage, an unbiased estimator of the population total is

τ̂ = N

n

n∑
i=1

ŷi (13.2)

The variance of τ̂ is

var(τ̂ ) = N(N − n)
σ 2

u

n
+ N

n

N∑
i=1

Mi(Mi − mi)
σ 2

i

mi

(13.3)

where

σ 2
u = 1

N − 1

N∑
i=1

(yi − μ1)
2 (13.4)

and for i = 1, . . . , N ,

σ 2
i =

(
1

Mi − 1

) Mi∑
j=1

(yij − μi)
2 (13.5)

The first term of the variance expression above is the variance that would be
obtained if every secondary unit in a selected primary unit were observed, while
the second term contains the variance due to estimating the primary unit values
yi from subsamples of secondary units. The quantity σ 2

u in the first term is the
population variance among primary unit totals, while σ 2

i in the second term is the
population variance within the ith primary unit.
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An unbiased estimator of the variance of τ̂ is obtained by replacing the popu-
lation variances with sample variances:

v̂ar(τ̂ ) = N(N − n)
s2
u

n
+ N

n

n∑
i=1

Mi(Mi − mi)
s2
i

mi

(13.6)

where

s2
u = 1

n − 1

n∑
i=1

(ŷi − μ̂1)
2 (13.7)

and for i = 1, . . . , n,

s2
i =

(
1

mi − 1

) mi∑
j=1

(yij − yi)
2 (13.8)

and μ̂1 = (1/n)
∑n

i=1 ŷi .
To estimate population means, μ̂1 = τ̂ /N is an unbiased estimator of the popu-

lation mean per primary unit μ1, for which the variance expressions above would
be divided by N2, and μ̂ = τ̂ /M is unbiased for the mean per secondary unit μ,
with the variance expressions divided by M2.

Example 1: A simple random sample of n = 3 primary units is selected from a
population of N = 100 primary units. From each of the primary units selected,
a random sample of mi = 2 secondary units is selected. The sizes of the three
primary units selected are M1 = 24,M2 = 20, and M3 = 15 secondary units. The
y-values for the first primary unit in the sample are 8 and 12. For the second
primary unit in the sample, the y-values are 0 and 0. For the third primary unit,
the y-values are 1 and 3.

The estimates for the total of each sample primary unit (9 from Eq. (13.1)) are

ŷ1 = 24

2
(8 + 12) = 240

ŷ2 = 20

2
(0 + 0) = 0

ŷ3 = 15

2
(1 + 3) = 30

The estimate of the population total (from Eq. (13.2)) is

τ̂ = 100

3
(240 + 0 + 30) = 100(90) = 9000

The estimate of the mean per primary unit is μ̂1 = 90.
The sample variance between primary unit totals [from Equation (13.7)] is

s2
u = 1

3 − 1
[(240 − 90)2 + (0 − 90)2 + (30 − 90)2] = 17,100
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The sample means within primary units are y1 = (8 + 12)/2 = 10, y2 = 0, and
y3 = 2. The sample variances within primary units are

s2
1 = 1

2 − 1
[(8 − 10)2 + (12 − 102] = 8

and similarly, s2
2 = 0 and s2

3 = 2.
The estimated variance of τ̂ [from Equation (13.6)] is

v̂ar(τ̂ ) = 100(100 − 3)
17,100

3

+ 100

3

[
24(24 − 2)

8

2
+ 20(20 − 2)

0

2
+ 15(15 − 2)

2

2

]
= 55,290,000 + 76,900 = 55,366,900

giving an estimated standard error of 7441. �

Ratio Estimator

A ratio estimator of the population total based on the sizes of the primary units is

τ̂r = r̂M

where

r̂ =
∑n

i=1 ŷi∑n
i=1 Mi

An approximate mean square error or variance formula for this estimator is

var(τ̂r ) ≈ N(N − n)

n(N − 1)

N∑
i=1

(yi − Miμ)2 + N

n

n∑
i=1

Mi(Mi − mi)
σ 2

i

mi

An estimator of the variance of τ̂ is

v̂ar(τ̂r ) = N(N − n)

n(n − 1)

n∑
i=1

(ŷi − Mir̂)
2 + N

n

n∑
i=1

Mi(Mi − mi)
s2
i

mi

Estimators for the population means μ1 and μ are μ̂1r = τ̂r /N and μ̂r =
τ̂r /M = r̂ , for which the variance expressions are divided by N2 and M2, respec-
tively.

Example 2: The ratio estimate of the population total for Example 1, with M =
2500 secondary units in the population, is

τ̂r = 240 + 0 + 30

24 + 20 + 15
(2500) = 11,441
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For the mean square error estimate the sum of the squared residuals is

n∑
i=1

(ŷi − Mir̂)
2 = [240 − 4.58(24)]2

+ [0 − 4.58(20)]2 + [30 − 4.58(15)]2 = 26,814

The estimated mean square error of τ̂r is

v̂ar(τ̂r ) = 100(100 − 3)
26,814

3
= 43,426,788

the square root of which is 6590. �

13.2. PRIMARY UNITS SELECTED WITH PROBABILITY
PROPORTIONAL TO SIZE

Next consider a two-stage design in which primary units are selected with replace-
ment, with probabilities proportional to size, and a sample of secondary units is
selected independently using simple random sampling without replacement each
time a primary unit is selected. Since the second-stage samples are selected inde-
pendently, any secondary unit could appear in the sample more than once because
of the with-replacement sampling at the first stage.

With this design, an unbiased estimator of the population total is

τ̂p = M

n

n∑
i=1

ŷi

Mi

= M

n

n∑
i=1

yi

where yi = (1/mi)
∑mi

j=1 yij , the sample mean within the ith primary unit of the
sample, and ŷi = Miyi . The variance is

var(τ̂p) = M

n

N∑
i=1

Mi(μi − μ)2 + M

n

N∑
i=1

⎡⎣ Mi − mi

mi(Mi − 1)

Mi∑
j=1

(yij − μi)
2

⎤⎦
An unbiased estimate of this variance is

v̂ar(τ̂p) = M2

n(n − 1)

n∑
i=1

(yi − μ̂p)2

where μ̂p = τ̂p/M .

Example 3: The unbiased estimate of the population total with the probability-
proportional-to-size design with the data from Example 1, with M = 2500
secondary units in the population, is

τ̂p = 2500

3

(
240

24
+ 0

20
+ 30

15

)
= 2500

3
(10 + 0 + 2) = 10,000
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The sample variance of the three numbers 10, 0, and 2 is 28. An unbiased
estimate of the variance of τ̂p is

v̂ar(τ̂p)
25002

3
(28) = 58,333,333

giving a standard error of 7638. �

13.3. ANY MULTISTAGE DESIGN WITH REPLACEMENT

Notice that the estimate of variance is particularly simple for the design with
probability-proportional-to-size sampling with replacement. In fact, variance esti-
mation is equally simple for any multistage design in which primary units are
selected with replacement with known draw-by-draw selection probabilities Pi ,
subsampling is done independently between different primary units, and an unbi-
ased estimator ŷi is available for the total in any selected primary unit i. Then an
unbiased estimator of the population total τ is

τ̂p = 1

n

n∑
i=1

ŷi

pi

In the probability-proportional-to-size design of the preceding section, ŷi = Miyi

and pi = Mi/M .
An unbiased estimator of the variance of this estimator is

v̂ar(τ̂p) = 1

n(n − 1)

n∑
i=1

(
ŷi

pi

− τ̂

)2

This result follows from the independence of the n selections, due to the with-
replacement primary selection and the independent selections in different primary
units. Thus, the ŷi/pi are a random sample from some distribution, and hence
their sample variance estimates the variance of that distribution. The simple result
holds no matter how many stages in the design (see J. N. K. Rao 1975, 1988,
pp. 431–432).

Even though the estimator of variance is simple with such a design, the actual
variance depends on the specific designs used at each stage and has terms for each
stage of sampling, as exemplified by the design in Section 13.2.

13.4. COST AND SAMPLE SIZES

The practical advantage of two-stage sampling, relative to a simple random sample
of the same number of secondary units, is that it is often easier or less expensive to
observe many secondary units in a cluster than to observe the same number of sec-
ondary units randomly spread over the population. Consider the unbiased estimator



178 multistage designs

τ̂ with simple random sampling of n primary units and simple random sampling of
mi secondary units from the ith selected primary unit. For simplicity, consider the
case in which the primary units are all the same size, with Mi = M for all i and
in which the subsample size in each selected primary unit is m secondary units.

Suppose that the average cost of sampling is described by the cost function

C = c0 + c1n + c2nm

where C is the total cost of the survey, c0 a fixed overhead cost, c1 the cost per
primary unit selected, c2 the cost per secondary unit. The number of secondary
units in the sample is nm . For a fixed cost C, the minimum value of var(τ̂ ) is
obtained with subsample sizes

mopt =
√

c1σ 2
w

c2(σ
2
b − σ 2

w/M)

where σ 2
b is the variance between primary unit means,

σ 2
b =

∑N
i=1(μi − μ)2

N − 1

and σ 2
w is the average within-primary-unit variance,

σ 2
w = 1

N

N∑
i=1

σ 2
i

If σ 2
b is not greater than σ 2

w/M , however, use mopt = M . Using the optimal choice
of m, one can then solve the cost equation for n, giving n = (C − c0)/(c1 +
c2mopt).

The derivation of mopt can be carried out using Lagrange’s method. With equal

primary unit and subsample sizes, and using the identity σ 2
b = σ 2

u /M
2
, the variance

of τ̂ under simple random sampling can be written

var(τ̂ ) = N(N − n)M
2
σ 2

b

n
+ N2M(M − m)σ 2

w

nm

Write V (n,m) = var(τ̂ ) and define the function F = V − λ(c0 + c1n + c2nm), in
which λ is the Lagrange multiplier. The function F is differentiated with respect
to n, m, and λ, the derivatives set to zero, and the equations solved for m and n.

To achieve a specified value of var(τ̂ ) at minimum cost, the optimal choice of
subsample size in each selected primary unit is again mopt. The variance equation
with m = mopt is then solved for n.

More complicated formulas for optimal subsample sizes are available for random
sampling of unequal-sized primary units and for probability-proportional-to-size
sampling of primary units (see Singh and Chaudhary 1986). A more exact solution
to the optimization problem, taking account of the discrete nature of the sample
sizes n and m, is described in Hedayat and Sinha (1991).
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13.5. DERIVATIONS FOR MULTISTAGE DESIGNS

Whatever the sampling design used at each stage, two basic results about condi-
tional expectations and variances underlie the properties of estimators from two-
stage designs. Let T represent some estimator, such as an estimator of the popula-
tion total, and let s1 be the set of primary units in the sample. Both T and s1 are
random, depending on the sample selected. The first result, regarding the expected
value of the estimator, is

E[E(T |s1)] = E(T ) (13.9)

The conditional expectation of T given the selection of primary units is taken
over all possible subselections of secondary units from those primary units. The
unconditional expected value is then obtained by considering all possible samples
of primary units. The second result, regarding the variance of T , is

var(T ) = var[E(T |s1)] + E[var(T |s1)] (13.10)

The first term on the right-hand side contains the between-primary-unit variance,
while the second term contains the within-primary-unit variance. The conditional
variance, like the conditional expectation, is obtained by considering all possible
subsamples of secondary units given the primary units selected. The unconditional
variance and expectation are taken over all possible samples of primary units.

Unbiased Estimator

Consider the two-stage design, with simple random sampling at each stage and
the unbiased estimator τ̂ . Given the sample s1 of primary units, the conditional
expectation of the estimator ŷi for the ith primary unit in the sample is the actual
total yi , because of the simple random sampling within primary unit i at the second
stage; that is,

E(ŷi |s1) = yi

The conditional expectation of τ̂ is

E(τ̂ |s1) = E

(
N

n

n∑
i=1

ŷi

)
= N

n

n∑
i=1

yi

The unconditional expectation, using Equation (13.9), is

E(τ̂ ) = E[E(τ̂ |s1)] = E

(
N

n

n∑
i=1

yi

)
= τ

because of the simple random sampling at the first stage.
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The variance of the conditional expectation of τ̂ is

var[E(τ̂ |s1)] = var

(
N

n

n∑
i=1

yi

)
= N(N − n)

σ 2
u

n

because of the simple random sampling of primary units at the first stage.
The conditional variance of ŷi , given the first-stage selection s1, is

var(ŷi |s1) = Mi(Mi − mi)
σ 2

1

mi

since ŷi is the estimate of the total yi under simple random sampling within primary
unit i. Thus the conditional variance of τ̂ , since the second-stage selections for
different primary units are made independently, is

var(τ̂ |s1) = var

(
N

n

n∑
i=1

ŷi

)

=
(

N

n

)2 n∑
i=1

var(ŷi |s1)

= N2

n2

n∑
i=1

Mi(Mi − mi)
σ 2

i

mi

To obtain the expected value of this variance, over all possible samples of
primary units, let the indicator variable zi equal 1 if the ith primary unit is in the
sample and zero otherwise, and write the conditional variance as

var(τ̂ |s1) = N2

n2

N∑
i=1

Mi(Mi − mi)zi

σ 2
i

mi

Since E(zi) = n/N , the inclusion probability for a primary unit under simple
random sampling, the expected conditional variance is

E[var(τ̂ |s1)] = N

n

N∑
i=1

Mi(Mi − mi)
σ 2

i

mi

Combining the two terms according to Equation (13.10) yields

var(τ̂ ) = N(N − n)
σ 2

u

n
+ N

n

N∑
i=1

Mi(Mi − mi)
σ 2

i

mi
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Ratio Estimator

For the ratio estimator with simple random sampling at each of the two stages,
the conditional expectation of ŷi is yi , because of the simple random sampling at
the second stage. Hence, the conditional expectation of τ̂r given s1 is the ordinary
ratio estimator. Thus, the approximate variance of the ratio estimator gives the first
component of variance, while the second component, based on the simple random
sampling at the second stage, remains unchanged.

Probability-Proportional-to-Size Sampling

When the primary units are selected with probabilities proportional to size, with
replacement, the conditional expectation of τ̂p is

E(τ̂p|s1) = M

m

n∑
i=1

1

Mi

E(yi |Si) = M

n

n∑
i=1

Yi

Mi

= 1

n

n∑
i=1

pi

yi

where pi = Mi/M is the selection probability for primary unit i. Thus, the condi-
tional expectation has the form of a Hansen–Hurwitz estimator, from which follow
unbiasedness for τ and the first term of the variance. For the second component of
the variance, the conditional variance is

var(τ̂p) = var

(
M

m

n∑
i=1

yi |s1

)
= M2

n2

n∑
i=1

(
Mi − mi

Mi

)
σ 2

i

mi

since, given primary unit i in the sample, yi is the sample mean of a simple random
sample of size mi . To obtain the expected value of this conditional variance, over
the probability-proportional-to size selection of primary units, let vi be the number
of times primary unit i is selected. The random variable νi is a binomial random
variable with expected value E(νi) = npi = mNi/M . Writing

var(τ̂p) = M2

n2

N∑
i=1

(
Mi − mi

Mi

)
viσ

2
i

mi

the expectation is

E[var(τ̂p)] = M

n

N∑
i=1

⎡⎣ Mi − mi

mi(Mi − 1)

Mi∑
j=1

(yij − μi)
2

⎤⎦
the second-stage component of variance.

More Than Two Stages

For designs with more than two stages, the expected values and variances of esti-
mators can be broken down further. For the third stage of sampling, the conditional
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variance in Equation (13.10) may be decomposed into

var(τ̂ |s2) = var[E(τ̂ |s1, s2)|s1] + E[var(τ̂ |s1, s2)|s1]

where s2 is the given sample of secondary units. Letting E1 denote expectation
conditional on s1 and E12 denote expectation conditional on s1 and s2, with similar
subscripting denoting the conditional variances, the decomposition may be written

var(τ̂ ) = var[E1(τ̂ )] + E{var1[E12(t)]} + E{E1[var12(τ̂ )]}

For each additional stage of sampling, the last term is further decomposed,
adding one more component to the variance.

EXERCISES

1. A population consists of N = 10 primary units, each of which consists of
Mi = 6 secondary units. A two-stage sampling design selects 2 primary units
by simple random sampling (without replacement) and 3 secondary units from
each selected primary unit, also by simple random sampling. The observed
values of the variable of interest are 7, 5, 3 from the first primary unit selected
and 4, 2, 3 from the second primary unit selected.

(a) Estimate the population mean μ per secondary unit.

(b) Estimate the variance of the estimator above.

2. Use two-stage sampling, with simple random sampling at each stage, to esti-
mate the mean or total of a population of your choice. In the process of carrying
out the survey and making the estimate, think about or discuss with others the
following:

(a) What practical problems arise in establishing a frame, such as a map or
list of units, from which to select the sample?

(b) How is the sample selection actually carried out?

(c) What special problems arise in observing the units selected?

(d) Estimate the population mean or total.

(e) Estimate the variance of the estimator above.

(f) Give a 95% confidence interval for the population mean or total.

(g) How would you improve the survey procedure if you were to do it again?
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Double or Two-Phase Sampling

In the earlier discussions of ratio and regression estimation, the values of the aux-
iliary variables were assumed known for the entire population. In conventional
stratified sampling, the auxiliary information necessary for classifying units into
strata is assumed known for every unit in the population. In some situations, how-
ever, the values of the auxiliary variables, like those of the variable of interest, can
be known only through sampling. If the auxiliary values are easier or cheaper to
obtain than the values of the variable of interest, it may be convenient to observe
the auxiliary variables on a larger sample than that on which the variable of interest
is recorded.

Double sampling refers to designs in which initially a sample of units is selected
for obtaining auxiliary information only, and then a second sample is selected in
which the variable of interest is observed in addition to the auxiliary information.
The second sample is often selected as a subsample of the first. The purpose of
double sampling is to obtain better estimators by using the relationship between
auxiliary variables and the variable of interest. Double sampling is also known as
two-phase sampling .

In surveys to estimate the volume of trees in a stand, “eyeball” estimates of
volume by trained observers may conveniently be obtained for a large sample
of standing trees, while accurate volume measurements requiring felling may be
limited to a small subsample of these trees. In surveys of abundance of some animal
or plant species, accurate counts may be made by ground crews, while less accurate
counts covering a much larger area may be made from the air. In such cases, the
variable of interest is the accurate measurement, while the less accurate but easier
to obtain measurements serve as auxiliary data.

In double sampling for stratification, the units in the initial sample are classified
into strata. The second sample is then selected by stratified sampling from the initial
sample. An important special use of this method is adjustment for nonresponse in
surveys. Figure 14.1 depicts a double sample, with a simple random sample of

Sampling, Third Edition. Steven K. Thompson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Figure 14.1. Double sample. The variable of interest and an auxiliary variable are both recorded on
the double-shaded (dark) units. On single-shaded units, only the auxiliary variable is observed.

n′ = 60 units on which xi is observed and a subsample (doubly shaded) of n = 20
units on which yi is observed in addition.

14.1. RATIO ESTIMATION WITH DOUBLE SAMPLING

The variable of interest for the ith unit will be denoted yi as usual, while the
auxiliary variable will be denoted xi . Let n′ be the number of units in the first
sample and n the number of units in the second sample. For each unit in the
second sample, both yi and xi are observed, while for the rest of the units in the
first sample, only xi is observed.

If the yi and xi are highly correlated, with a linear relationship in which yi = 0
when xi = 0, ratio estimation with double sampling may lead to improved estimates
of the population mean or total.

Suppose that from a population of N units, a sample of n′ units on which the
x-values are observed is selected by random sampling without replacement. From
the n′ units selected, a subsample of n units, on which the y-values are observed in
addition to the x-values, is selected, also by random sampling without replacement.

From the small sample containing both x and y values, one obtains the sample
ratio

r =
∑n

i=1 yi∑n
i=1 xi

where the summations are over the units in the second sample.
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From the full sample for which x-values were obtained, one can estimate the
population total τx of the x-values:

τ̂x = N

n′

n′∑
i=1

xi

in which the summation is over the entire initial sample.
The ratio estimator of the population total τ of the y-values is

τ̂r = rτ̂x

An approximate formula for the mean square error or variance of this estima-
tor is

var(τ̂r ) ≈ N(N − n′)
σ 2

n′ + N2
(

n′ − n

n′

)
σ 2

r

n

where σ 2 is the usual finite-population variance of the y-values and σ 2
r is the

population variance about the ratio line given by

σ 2
r = 1

N − 1

N∑
i=1

(yi − Rxi)
2

in which the population ratio R is τ/τx .
An estimate of this variance is provided by

v̂ar(τ̂r ) = N(N − n′)
s2

n′ + N2
[

n′ − n

n′n(n − 1)

] n∑
i=1

(yi − rxi)
2

where s2 is the sample variance of the y-values of the subsample.

Example 1: In a survey of moose abundance, a total of 240 moose were seen
in 20 plots in an aerial survey. When ground crews were sent in to thoroughly
examine five of these plots—in which 56 moose had been seen from the air—a
total of 70 moose were discovered. The study area consists of 100 plots of equal
size. Estimate the number of moose in the study area.

The variable of interest y is the actual number of moose in a plot, presumably
determined by the ground crews. The number observed from the air—less accurate
but enabling a larger number of plots to be covered—is an auxiliary variable x.
From the subsample of n = 5 units observed from both air and ground, the sample
ratio is

r = 70

56
= 1.25
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From the full sample of n′ = 20 units observed from the air, an estimate of the
total in the population is

τ̂x = 100

20
(240) = 1200

The ratio estimate of the number of moose in the study area, based on the
double-sampling design, is

τ̂r = rτ̂x = 1.25(1200) = 1500

Thus, the total number of moose in the study area is estimated to be 1500.
In sampling problems of this type, the reciprocal of the sample ratio is an

estimate of detectability . Thus, 56/70 = 1/1.25 = 0.8 estimates the probability
that any given moose in a selected plot is detected from the air. �

14.2. ALLOCATION IN DOUBLE SAMPLING
FOR RATIO ESTIMATION

Double sampling for ratio estimation is effective in situations in which the variable
of interest y tends to be linearly related to an auxiliary variable x, with y tending
to be zero when x is zero, and it is easier or cheaper to measure x than y. The ideal
proportion of the sample to subsample in double sampling depends on the relative
costs of observing the two variables and on the strength of the ratio relationship
between them.

Suppose that the cost of observing the x-variable on one unit is c′ and the cost
of observing the y-variable is c, so that the total cost C is given by

C = c′n′ + cn

Then for a fixed cost C the lowest variance of the estimator τ̂r is obtained by
using the following subsampling fraction:

n

n′ =
√

c′

c

(
σ 2

r

σ 2 − σ 2
r

)

14.3. DOUBLE SAMPLING FOR STRATIFICATION

In some sampling situations, the units can be assigned to strata only after the sample
is selected. For example, a sample of people selected by random dialing can be
stratified by sex, age, or occupation only after the phone calls are made. A random
sample of fish in a survey to estimate mean age may be stratified into size classes
after selection. The methods of poststratification, described in Chapter 11, were
useful in such situations only if the relative proportion Wh = Nh/N of population
units in stratum h is known for each stratum. If the population proportions are
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not known, double sampling may be used, with an initial (large) sample used to
classify the units into strata and then a stratified sample selected from the initial
sample. Double sampling can be advantageous if the units tend to be similar within
strata and if the auxiliary characteristic on which classification into strata is based
is easier or more inexpensive to measure than the variable of interest.

An initial simple random sample of size n′ units is selected from the population
of N units. These units are classified into strata, with n′

h observed to be in stratum
h, for h = 1, . . . , L. The population proportion Wh of units in stratum h is esti-
mated with the sample proportion wh = n′

h/n′. A second sample is then selected
by stratified random sampling from the first sample, with nh units selected from
the n′

h sample units in stratum h, and the variable of interest yhi recorded for each
unit in this second sample. The sample mean in stratum h in the second sample is
yh = ∑nh

i=1 yhi/nh. The population mean is estimated using

yd =
L∑

h=1

whyh

The estimator yd is unbiased for the population mean μ and has variance

var(yd) = N − n′

N

σ 2

n′ + E
L∑

h=1

[(
n′

h

n′

)2 (
n′

h − nh

n′
h

)
σ 2

h(s1)

nh

]
(14.1)

where σ 2 is the overall population variance and σ 2
h(s1) is the population vari-

ance within stratum h for the particular first-phase sample s1. The first term in
Equation (14.1) is the variance of the expected value of yd given the initial sam-
ple. It is the variance that would be obtained if the y-values were recorded for the
entire initial sample and the sample mean used as an estimator. The second term
is the expected value, over all possible initial samples, of the conditional variance
of the stratified sample mean yd given the initial sample. The expectation is left in
the second term because n′

h, nh, and σ 2
h(s1) are random variables depending on the

first-phase sample.
An unbiased estimate of the variance of yd with double sampling, using the

stratum sample variances s2
h from the second sample, is

v̂ar(yd) = N − 1

N

L∑
h=1

(
n′

h − 1

n′ − 1
− nh − 1

N − 1

)
whs

2
h

nh

+ N − n′

N(n′ − 1)

L∑
h=1

wh(yh − yd)
2

(14.2)

If the second-stage sampling fractions nh/n′
h are fixed in advance, and samples for

which any n′
h = 0 are excluded, the variance is approximately

var(yd) = N − n′

Nn′ σ 2 +
L∑

h=1

Whσ
2
h

n′

(
n′

h

nh

− 1

)
The estimator of variance remains the same for this case.
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14.4. DERIVATIONS FOR DOUBLE SAMPLING

Approximate Mean and Variance: Ratio Estimation

As in two-stage sampling, the estimators of double sampling are evaluated by
conditioning on the first sample. Let s1 denote the initial selection of n′ units.
Given s1, the estimator τ̂r is a ratio estimator based on a simple random sample of
n of the n′ units in s1, so that its conditional expectation is approximately

E(τ̂r | s1) ≈ Nys1

where ys1 is the mean of the y-values of the n′ units in s1. Since ys1 is the
sample mean of a simple random sample, the unconditional expectation is thus
approximately

E(τ̂r ) ≈ E(Nys1) = τ

and

var[E(τ̂r | s1)] ≈ var(Nys1) = N2
(

N − n′

Nn′

)
σ 2

The conditional variance given s1 of the ratio estimator τ̂r is approximately

var(τ̂r | s1) ≈ N2(n′ − n)

n′n(n′ − 1)

n′∑
i=1

(yi − r1xi)
2

where r1 is the total of the y-values divided by the total of the x-values in the
sample s1 of n′ units. Its expected value over all possible selections of the n′
units is, as a variance estimator in ratio estimation under simple random sampling,
approximately

E[var(τ̂r | s1)] ≈ N2(n′ − n)

n′n
σ 2

r

The variance of the estimator τ̂r is then obtained from the decomposition

var(τ̂r ) = var[E(τ̂r | s1)] + E[var(τ̂r | s1)]

giving

var(τ̂r ) ≈ N(N − n′)
σ 2

n′ + N2
(

n′ − n

n′

)
σ 2

r

n

The estimator of this variance uses the unbiased estimator s2 for σ 2 and a ratio
variance estimator for σ 2

r .
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Optimum Allocation for Ratio Estimation

The problem is to find n′ and n which minimize var(τ̂r ) subject to c′n′ + cn = C.
The problem can be solved using Lagrange’s method. Let f (n′, n) = var(τ̂r ), which
can be written

f (n′, n) = N2[n′−1(σ 2 − σ 2
r ) + n−1σ 2

r − N−1σ 2]

Let g(n′, n) = c′n′ + cn − C. Define H(n′, n, λ) = f − λg. The solution is
obtained by setting the partial derivatives of H equal to zero:

∂H

∂n′ = −N2(σ 2 − σ 2
r )

n
′2 − λc′ = 0

∂H

∂n
= −N2(σ 2

r )

n2
− λc = 0

Eliminating the Lagrange multiplier λ by dividing the first equation by N2c′
and the second by −N2c and adding the two equations together gives

σ 2 − σ 2
r

c′n′2
= σ 2

r

cn2

or

n

n′ =
√

c′

c

(
σ 2

r

σ 2 − σ 2
r

)

Expected Value and Variance: Stratification

The conditional expected value of yd given the first-phase sample s1 is

E(yd | s1) = E

(
L∑

h=1

n′
h

n′ yh | s1

)
=

L∑
h=1

n′
h

n′ E(yh | s1)

since given s1, the stratum sizes n′
h are fixed. Because of the simple random sam-

pling within strata at the second phase, the expected value of yh given s1 is the
actual mean y ′

h of the y-values for the n′
h units in that stratum. Thus the conditional

expectation of the estimator is

E(yd | s1) =
(

L∑
h=1

n′
h

n′ y
′
h | s1

)
= 1

n′
∑
i∈s1

yi

The last term on the right is the mean of the y-values for the entire first-phase
sample, which may be denoted ys1

.
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With the simple random sampling at the first phase, the unconditional expectation is

E(yd) = E[E(yd | s1)] = E(ys1
) = μ

The variance of yd given s1, with the stratified random sampling at the second
phase, is

var(yd | s1) =
L∑

h=1

var

(
n′

h

n′ yh | s1

)
=

L∑
h=1

(
n′

h

n′

)2 (
n′

h − nh

n′
h

)
σ 2

h (s1)

nh

where

σ 2
h (s1) =

∑
i∈s1h

(yi − y ′
h)

2

n′
h − 1

is the finite-population variance for the set of units in stratum h of the first-phase
sample, denoted by s1h.

The variance of the conditional expectation is var[E(yd)] = var(ys1
), which is

based on a simple random sample of size n′. Using the decomposition var(yd) =
var[E(yd) | s1] + E[var(yd | s1)], the variance expression (1) is obtained.

The unbiased estimator of variance and other results on double sampling for
stratification, including optimal sampling fractions, are given in J. N. K. Rao (1973).
Additional discussions of double sampling for stratification are given in Cochran
(1977) and Singh and Chaudhary (1986). Results for designs with unequal inclusion
probabilities at each phase are given in Särndal and Swensson (1987) and Särndal
et al. (1992).

14.5. NONSAMPLING ERRORS AND DOUBLE SAMPLING

Nonsampling errors refers to differences between estimates and population quan-
tities that do not arise solely from the fact that only a sample, instead of the whole
population, is observed. For example, in surveys asking questions on sensitive top-
ics, such as illicit drug use or sexual behaviors, respondents may tend to understate
behaviors perceived as socially stigmatized and overstate behaviors perceived to be
held in high esteem. Giving the questionnaire to every member of the population
will not eliminate the difference between the recorded values and the actual quan-
tities of interest. Similarly, in a survey of wintering waterfowl in which biologists
count birds in selected plots from an aircraft, the errors in counting and detection
will not be eliminated by flying over every plot in the study region.

In the idealized sampling situation there is a frame, such as a telephone book
or a map, which lists or indexes every unit in the population. A sample of these
units is selected using a known design, and the variables of interest and any rel-
evant auxiliary variables are observed without error for every unit in the sample.
Nonsampling errors can occur when the frame does not correspond exactly to the
target population, when auxiliary information associated with units in the frame
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is not accurate, when some of the selected units cannot be observed, when vari-
ables associated with units in the sample are observed with measurement error or
recorded inaccurately, and when the actual probabilities of selection differ from
those of the presumed design. Nonsampling errors can also be introduced when the
process of observing units in the sample affects the values of variables, as when
sample subjects required to monitor their diets unconsciously select more healthful
food items during the study period or when destructive sampling methods are used.

Sampling errors tend to become smaller the larger the sample size used. With
nonsampling errors, in contrast, the errors tend to persist as sample size increases.
The first line of defense against nonsampling errors is to make every effort to
keep them as small as possible. For example, in telephone surveys frame error
is reduced, although not eliminated, by using random number dialers rather than
phone directories. The random digit dialers eliminate frame errors associated with
unlisted telephone numbers and out-of-date directories but not those associated with
people in the target population who do not have telephones or who have mobile
phones not reachable by the random dialing scheme. Efforts to reduce or eliminate
nonresponse in surveys are usually imperative because the tendency toward non-
response may be associated, in unknown ways, with variables of interest, so that
with a high percentage of nonresponse, the remaining sample of respondents may
not be representative of the overall population. Measurement errors are kept to a
minimum with careful design of survey questionnaires, unobtrusive interview meth-
ods, observational methods that increase the detectability of animals, and precise
instruments for physical measurements.

A variety of methods are available for adjusting for nonresponse and measure-
ment errors. A wide literature exists on reducing and adjusting for nonsampling
errors, with many of the methodologies having developed in response to the par-
ticular realities of the substantive field of study.

A number of the methods for dealing with nonsampling errors are based on
double sampling, either as a deliberately imposed design method for overcoming
the errors or as a way of modeling and adjusting for the errors. For example, in the
moose survey of Example 1, double sampling with ratio estimation provided a way
to adjust for the measurement error caused by imperfect detectability, calibrating
the imperfect observations using the ratio of the accurate intensive observations
to the imperfect observations in the second-phase sample. The following sections
describe how double sampling is used to overcome problems in nonresponse. The
first method described involves an implemented double-sampling design utilizing
“callbacks” or intensive effort to obtain a response from a subsample of nonre-
spondents. Other methods model the response mechanism and view it as a natural
sampling design selecting the survey respondents as a subsample in the second
phase, using double-sampling estimators to adjust for the nonresponse.

Nonresponse, Selection Bias, or Volunteer Bias

The self-selection of volunteers for studies on socially sensitive behaviors
produces a form of nonresponse or selection bias. Some methods assume that
the population is divided into responders and nonresponders—or volunteers and
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refusers—with the characteristic of each person fixed. Methods for dealing with
this situation include double sampling with a second, more intensive effort to
sample the nonrespondents. In many situations it is considered more realistic to
model the response as a stochastic phenomenon, so that each person has a certain
probability of responding given selection in the sample, or of volunteering given
the opportunity to do so.

Double Sampling to Adjust for Nonresponse: Callbacks

An important use of double sampling for stratification involves the use of call-
backs to adjust for nonresponse in surveys. In surveys of human populations,
nonrespondents—people who were selected to be in the sample but are either
unavailable or unwilling to respond—are often not representative with respect to
the variable of interest. In such a situation, the sample mean of the respondents
would be biased as an estimate of the population mean. Similarly, in surveys of
natural populations, selected sites which for one reason or another remain unob-
served are often not representative of the study region as a whole. For example, in
a trawl survey of a fish population, some selected locations may not be observed
when the ocean floor terrain is found to be too rocky or otherwise obstructed for
the net. The habitat and hence the species composition at such sites may not be
typical of the population as a whole, so that the sample mean of the trawled sites
would give a biased estimate of the population mean.

In such cases the nonresponding units may be considered a separate
stratum—but a unit is not known to be in that stratum until after the sample is
selected. A subsample of the nonresponse stratum is then taken, usually requiring
more intensive effort or different methods than that used in the initial sample. In
the case of the telephone survey, the subsample consists of callbacks or visits by
interviewers. In the case of the fishery survey, a different type of net or other
sampling method may be needed for difficult sites.

Let stratum 1 consist of the responding units and stratum 2 the nonresponding
units. An initial simple sample of n′ units is selected. Let n′

1 be the number of
responding units and n′

2 the number of nonresponding units in the initial part of
the survey. In the callback or second effort, responses are obtained for a simple
random sample of n2 of the initial nonrespondents. Conceptually, the stratified
sample at the second stage includes all n′

1 of the initial respondents and n2 of the
initial n′

2 nonrespondents.
An unbiased estimate of the population mean is provided by the double-sampling

stratified estimator

yd = n′
1

n′ y1 + n′
2

n′ y2

An unbiased expression for the variance is obtained from Equation (14.1), with
n1 = n′

1:

var(yd) = N − n′

N

σ 2

n′ + E
L∑

h=1

(
n′

h

n′

)2 (
n′

h − nh

n′
h

)
σ 2

h(s1)

nh

(14.3)
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where σ 2 is the overall population variance and σ 2
h(s1) is the population vari-

ance within stratum h for the particular first-phase sample s1. The first term in
Equation (14.3) is the variance of the expected value of yd given the initial sam-
ple. It is the variance that would be obtained if the y-values were recorded for the
entire initial sample and the sample mean used as an estimator. The second term
is the expected value, over all possible initial samples, of the conditional variance
of the stratified sample mean yd given the initial sample. The expectation is left in
the second term because n′

h, nh, and σ 2
h(s1) are random variables depending on the

first-phase sample.
An unbiased estimate of the variance of yd with double sampling, using the

stratum sample variances s2
h from the second sample, is

v̂ar(yd) = N − 1

N

L∑
h=1

(
n′

h − 1

n′ − 1
− nh − 1

N − 1

)
whs

2
h

nh

+ N − n′

N(n′ − 1)

L∑
h=1

wh(yh − yd)
2

Response Modeling and Nonresponse Adjustments

Consider a population of N units—people, for example—in which we are inter-
ested in a behavioral characteristic y. Let s denote the set of people who are
selected (asked) to be in the study and r be the subset of those who respond or
volunteer. Let πi denote the probability that the ith person (unit i) is selected to
be in the study. Given the sample selected s with person i in it, let πi|s denote the
probability that this person responds given that he or she has been selected, that is,
the probability that the person agrees to volunteer. [Rosenbaum and Rubin (1983)
termed this probability the response propensity score.] Then an unbiased estimator
of the population mean of the y-values is

μ̂ = 1

N

∑
i∈r

yi

πiπi|s

If, on the other hand, the sample mean y of the respondents is used to summarize
the results of the study, its expected value is E(y) = (1/n)

∑N
i=1 yiπiπi|s , which in

general equals the population mean only if the selection and response probabilities
are all equal. The problem in real studies is either to control or estimate the selection
and response probabilities.

The nonresponse situation can be viewed as sampling in two phases, with the
natural response mechanism doing the selection at the second phase. The sample
s is selected by a probability design with known inclusion probabilities πi and
joint inclusion probabilities πij . Because the response mechanism that selects the
subsample r of respondents is not known, it must be modeled.

A common assumption is that units within identifiable groups have equal
response probabilities and that their responses are independent. With this
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assumption, the assumed natural sampling design is stratified Bernoulli sampling.
That is, from the nh units in group h in the first-phase sample, the second-phase
units are assumed selected by nh independent trials, each with the unknown
response probability θhs . The numbers nh and mh that are selected and respond
in group h are thus random variables. Conditional on the sample sizes nh and
mh, however, the Bernoulli sample has the property of a simple random sample,
so that any subset of mh units is equally likely to be the responding subsample.
The conditional response probability for person i in group h, given the first-phase
sample s and given the second-phase group sample sizes m1, . . . , mHs , is

πi|s,m = mh

nh

and the joint response probability for two units in group h is

πij |s,m = mh

nh

(
mh − 1

nh − 1

)
where nh is the number of people in group h and mh is the number of people who
respond. Särndal et al. (1992, pp. 577–582) term this the response homogeneity
group model . Since the double-sampling properties are derived first conditionally
on the first-phase sample, the definition of the groups, including their number Hs

and which group a given unit belongs to, can depend on the first-phase sample.
Provided that mh ≥ 1 for all groups, an estimator of the population total under

this model is

τ̂ =
∑
i∈r

yi

πiπi|s,m

The variance of this estimator is

var(τ̂ ) =
N∑

i=1

N∑
j=1

(
πij − πiπj

πiπj

)
yiyj + E

[
Hs∑
h=1

n2
h

(
nh − mh

nh

)
σ 2

hs

mh

]

where σ 2
hs is the finite-population variance of yi/πi in the group h of the first-phase

sample s.
An estimator of this variance, provided that mh ≥ 2 for all groups, is

v̂ar(τ̂ ) =
∑
i∈s

∑
j∈s

(
πij − πiπj

πiπjπij

)
yiyj +

Hs∑
h=1

n2
h

(
nh − mh

nh

)
s2
hs

mh

where s2
hs is the sample variance for the respondents in group h.

Additional methods for nonresponse based on two-phase sampling models use
ratio and regression estimation utilizing auxiliary information from the entire sam-
ple, the subsample of respondents, or both (cf. Särndal and Swensson 1987, Särndal
et al. 1992). Models for nonresponse and model-based methods for estimation in
the presence of nonresponse are described in Little (1982). Pfeffermann (1988)
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describes a regression-based approach with adjustments based on inclusion prob-
abilities for the sampling design and response mechanism. References to further
methods for dealing with missing data include Little and Rubin (1987), Rubin
(1987), and Schafer (1997). General references to nonsampling errors in surveys
include Biemer et al. (1991), Groves and Cooper (1998), and Lessler and Kalsbeek
(1992).

14.6. COMPUTING NOTES

Following are some lines of R used to simulate double sampling for ratio estimation
and to compare that with using the expansion estimator with the same design. The
black cherry tree population is used.

trees
names(trees)
y <- trees$Volume
x <- trees$Girth
y
x
plot(x,y)
s1 <- sample(1:31,10)
s1
s2 <- sample(s1,5)
s2
plot(x[s2],y[s2])
x[s1]
mean(x[s1])
mean(x)
mean(y[s2])/mean(x[s2])
sum(y[s2])/sum(x[s2])
r <- mean(y[s2])/mean(x[s2])
r
tauhatr <- r * mean(x[s1]) * 31
tauhatr
sum(y)
# the next part is all one line:
s1 <- sample(1:31,10);s2 <- sample(s1,5);r <- mean(y[s2])/

mean(x[s2]);tauhatr <- r * mean(x[s1]) * 31

tauhatr
s1 <- sample(1:31,10);s2 <- sample(s1,5);r <- mean(y[s2])/

mean(x[s2]);tauhatr <- r * mean(x[s1]) * 31
tauhatr
tauhatr <- numeric()
for (k in 1:10){s1 <- sample(1:31,10);s2 <- sample(s1,5);r <-
mean(y[s2])/mean(x[s2]);tauhatr[k] <- r * mean(x[s1]) * 31}
tauhatr
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for (k in 1:1000){s1 <- sample(1:31,10);s2 <- sample(s1,5);r <-
mean(y[s2])/mean(x[s2]);tauhatr[k] <- r * mean(x[s1]) * 31}
hist(tauhatr)

tauhat <- 31 * mean(y[s2])
tauhat <- numeric(0)
for (k in 1:1000){s1 <- sample(1:31,10);s2 <- sample(s1,5);r <-
mean(y[s2])/mean(x[s2]);tauhatr[k] <- r * mean(x[s1])}

* 31;tauhat[k] <- mean(y[s2])
hist(tauhat)
hist(tauhatr,add=T,col="blue")
for (k in 1:1000){s1 <- sample(1:31,10);s2 <- sample(s1,5);r <-
mean(y[s2])/mean(x[s2]);tauhatr[k] <- r * mean(x[s1])}

* 31;tauhat[k] <- 31*mean(y[s2])
hist(tauhatr,add=T,col="blue")
hist(tauhat)
hist(tauhatr,add=T,col="blue")
hist(tauhat,freq=F)
hist(tauhatr,add=T,col="blue",freq=F)
hist(tauhat,freq=F,ylim=c(0,.01))
hist(tauhatr,add=T,col="blue",freq=F)
N <- 31
n1 <- 10
n2 <- 5
for (k in 1:1000){s1 <- sample(1:N,n1);s2 <- sample(s1,n2);r <-
mean(y[s2])/mean(x[s2]);tauhatr[k] <- r * mean(x[s1])}

* N;tauhat[k] <- N*mean(y[s2])
hist(tauhat,freq=F,ylim=c(0,.01))
hist(tauhatr,add=T,col="blue",freq=F)
mean(tauhat)
mean(tauhatr)
mean(y)
sum(y)
tau <- sum(y)
mean((tauhat - tau)^2)
var(tauhat)
mean((tauhatr - tau)^2)
msetauhat <- mean((tauhat - tau)^2)
msetauhatr <- mean((tauhatr - tau)^2)
sqrt(msetauhat)
sqrt(msetauhatr)

Another way to do this comparison between the two estimators with double
sampling is to create a function containing the commands and save it as a file,
called for example “doublefun.R.”

# Here is the function in this case:

doublefun <- function(N = 31, n1 = 10, n2 = 5, bb=10){
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y <- trees$Volume
x <- trees$Girth
tauhat <- numeric(bb)
tauhatr <- numeric(bb)

for (k in 1:bb){
s1 <- sample(1:N,n1);
s2 <- sample(s1,n2);
r <- mean(y[s2])/mean(x[s2]);
tauhatr[k] <- r * mean(x[s1]) * N;
tauhat[k] <- N*mean(y[s2])

}

hist(tauhat,freq=F,ylim=c(0,.01))
hist(tauhatr,add=T,col="blue",freq=F)
print(mean(tauhat))
print(mean(tauhatr))
print(length(tauhat))
print(length(tauhatr))

}

Save the file doublefun.R in the working R directory and read it into R as
follows or simply copy and past it into the R console. Print it out, and run it as
follows:

source("doublefun.R")
doublefun
doublefun(n1=10,n2=5,bb=1000)

Compare to the distribution with
doublefun(n1=20,n2=10,bb=1000)

EXERCISES

1. In an aerial survey of four plots selected by simple random sampling, the
numbers of ducks detected were 44, 55, 4, and 16. Careful examination of
photoimagery of the first and third of these plots (selected as a simple random
subsample) revealed the actual presence of 56 and 6 ducks, respectively. The
study area consists of 10 plots.

(a) Estimate the total number of ducks in the study area by using a ratio
estimator. Estimate the variance of the estimator.

(b) Suppose that the photo analysis doubles the cost of observing a plot. Esti-
mate the optimal subsampling fraction.
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2. Use double sampling to estimate the mean or total of a population of your
choice in which an auxiliary variable exists that is easier to observe than the
variable of interest. In the process of carrying out the survey and making the
estimate, think about or discuss with others the following:

(a) What practical problems arise in establishing a frame, such as a map or
list of units, from which to select the sample?

(b) How is the sample selection actually carried out?

(c) What special problems arise in observing the units selected?

(d) Estimate the population mean or total using ratio estimation.

(e) Estimate the variance of the estimator above.

(f) Give a 95% confidence interval for the population mean or total.

(g) How would you improve the survey procedure if you were to do it again?

3. In a survey to estimate average household monthly medical expenses, 500
households were selected at random from a population of 5000 households.
Of the selected households, 336 had children in the household and 164 had
no children. A stratified subsample of 112 households with children and 41
households without children was then selected, and monthly medical expendi-
ture data were collected from households in the subsample. For the households
with children, the sample mean expenditure was $280 with a sample standard
deviation of 160; for the households without children, the respective figures
were $110 and 60. Estimate mean monthly medical expenditure for households
in the population, and estimate the variance of the estimate.
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Network Sampling and Link-Tracing
Designs

In a survey to estimate the prevalence of a rare disease, a random sample of medical
centers is selected. From the records of each medical center in the sample, records
of patients treated for that disease are obtained. However, a given patient may have
been treated at more than one medical center. The more medical centers at which
a given patient has been treated, the higher is the probability that that patient’s
records will be obtained in the sample.

In another survey, also with the purpose of estimating the prevalence of a rare
characteristic in a population, a simple random sample of households is selected.
At a selected household, the adult occupants are asked to report on the occurrence
of the characteristic not only in themselves but also in their siblings. Thus, a
person with several siblings who are living in different households has a higher
inclusion probability than one with no siblings living in separate households. Even
within a single household, the inclusion probabilities for different occupants are
not necessarily equal.

Designs of the type described above are referred to as network sampling or
multiplicity sampling . In network sampling, a simple random sample or stratified
random sample of units (selection units) is selected, and all observation units (peo-
ple in the examples) linked to any of the units selected are included or observed.
The multiplicity of a person is the number of selection units—medical centers
or households—to which a person is linked. Defining a network to be a set of
observation units with a given linkage pattern, a network may be linked with more
than one selection unit (siblings living in more than one household), and a single
selection unit may be linked with more than one network (nonsiblings sharing a
household). If the population of selection units is stratified, a network may also
intersect more than one stratum.

Because of the unequal selection or inclusion probabilities, the sample mean
does not form an unbiased estimator of the population mean with such a design.

Sampling, Third Edition. Steven K. Thompson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Unbiased estimators for such designs were given by Birnbaum and Sirken (1965). In
one of the estimators termed the multiplicity estimator each observation is divided
by its multiplicity. Since multiplicity is proportional to the draw-by-draw selec-
tion probability, such an estimator is akin to the Hansen–Hurwitz estimator. The
Horvitz–Thompson estimator for network sampling, in which each person’s inclu-
sion probability is determined by the multiplicities, was also given by Birnbaum
and Sirken. Subsequent papers on network sampling (Nathan 1976; Sirken 1970,
1972a,b) have concentrated on the multiplicity estimator. Levy (1977) and Sirken
and Levy (1974) examined ratios of multiplicity estimators, which could be used,
for example, to estimate the proportion of an ethnic group with a rare disease. Czaja
et al. (1986) evaluated the effects of reporting errors through the linkages in net-
work sampling—cases in which, for example, the patient’s household may be more
reliable at reporting the disease than is a relative’s household. References to many
innovative applications of network sampling are found in Kalton and Anderson
(1986) and Sudman et al. (1988). Faulkenberry and Garoui (1991) discuss network
sampling estimators in the context of area sampling methods used in agricultural
surveys.

The network sampling design was first used not to increase efficiency but
because it unavoidably arose in the sampling situation (a patient having records at
more than one medical center). Later papers on the subject recognized its potential
for giving lower variance estimates than conventional procedures and for increasing
the “yield” of the survey; that is, the total number of people in the sample with the
disease or other characteristic. In Section 15.4 we take a look at the wider field of
link-tracing designs, in which social or other links between units are followed in
obtaining the sample.

15.1. ESTIMATION OF THE POPULATION TOTAL OR MEAN

Let the value of the variable of interest for the ith observational unit in a popu-
lation be denoted yi . In a survey to estimate the prevalence of a disease or other
characteristic, yi is an indicator variable, equal to 1 if the unit has the characteristic
and zero otherwise. The variable of interest yi need not be an indicator variable;
it could, for example, be the cost of medical treatment for the disease for the ith
person. Let N denote the number of observational units in the population. The
population total is τ = ∑N

i=1 yi . Let mi be the multiplicity of the ith observational
unit, that is, the number of selection units to which that observational unit is linked.
The number of selection units in the population will be denoted M . The population
mean per selection unit is μ = τ/M . Next we consider a sampling design in which
a simple random sample (without replacement) of n0 selection units is obtained
and every observational unit linked to any selection unit is included in the sample.

Multiplicity Estimator

The draw-by-draw selection probability pi for the ith observational unit is the
probability that any one of the mi selection units to which it is linked is selected,
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that is,

pi = mi

M
(15.1)

An unbiased estimator of the population total τ may be formed by dividing each
observed y-value by the associated selection probability. The multiplicity estimator
thus obtained is

τ̂m = M

n

∑
i∈s

yi

mi

(15.2)

in which s is the sequence of observational units in the sample, including repeat
selections. An observational unit may be selected more than once, even though
selection units are sampled without replacement, because the observational unit
may be linked to more than one selection unit. The expected number of times the
ith observational unit is selected is npi .

The notation for the multiplicity estimator may be simplified in a way that
renders the statistical properties of the multiplicity estimator transparent. For the
j th selection unit in the population, define the variable wj to be the sum of the
yi/mi for all observational units linked with selection unit j , that is,

wj =
∑
i∈Aj

yi

mi

(15.3)

where Aj is the set of observational units that are linked to selection unit j .
With this notation, the multiplicity estimator may be written

τ̂m = M

n

n∑
j=1

wj (15.4)

Thinking of wj as a new variable of interest associated with the j th selection
unit, the multiplicity estimator is just Mw, where w is the sample mean of a simple
random sample of size n. Thus, from the basic results on simple random sampling,

var(τ̂m) = M(M − n)

n
σ 2

w (15.5)

where

σ 2
w = 1

M − 1

M∑
j=1

(wj − μ)2 (15.6)

in which μ = τ/M is the population mean per selection unit.
An unbiased estimator of this variance is

v̂ar(τ̂m) = M(M − n)

n
s2
w (15.7)
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where

s2
w = 1

n − 1

n∑
j=1

(yj − w)2 (15.8)

For estimating the population mean per selection unit, μ̂m = τ̂m/M, var(μ̂m) =
var(τ̂m)/M2, and v̂ar(μ̂m) = v̂ar(τ̂m)/M2.

Horvitz–Thompson Estimator

The probability that the ith observational unit is included in the sample is the
probability that one or more of the mi selection units to which it is linked is
selected. Since the inclusion probabilities are identical for all observational units
in a network, the problem can be simplified by changing notation to be in terms
of networks rather than individual observational units.

Recall that a network is composed of all observational units having the same
linkage configuration. The population can be partitioned into K networks, which
will be labeled 1, . . . , K . Let y∗

k now denote the total of the y-values over all the
observational units in the kth network, and let m∗

k denote the common multiplicity
for any observational unit within this network.

The inclusion probability for the kth network, which is in fact the inclusion
probability for any of the observational units within this network, is

πk = 1 −
(

M − m∗
k

n

)/(
M

n

)
(15.9)

that is, 1 minus the probability that the entire simple random sample of n selec-
tion units is selected from the M − mk selection units that are not linked with
network k.

Let κ denote the number of distinct networks of observational units included in
the sample. The Horvitz–Thompson estimator of the population total is

τ̂π =
κ∑

k=1

y∗
k

πk

(15.10)

The Horvitz–Thompson estimator is an unbiased estimator which, unlike the
multiplicity estimator, does not depend on the number of times any unit is selected.

The m∗
kl denote the number of selection units that are linked to both networks

k and l. The probability that both networks k and l are included in the sample is

πkl = πk + πl − 1 +
(

M − m∗
k − m∗

l + m∗
kl

n

) / (
M

n

)
(15.11)

The usual variance formulas for the Horvitz–Thompson estimator then apply,
giving

var(τ̂π ) =
K∑

k=1

(
1 − πk

πk

)
y∗2

k +
K∑

k=1

∑
l �=k

(
πkl − πkπl

πkπl

)
y∗

k y∗
l (15.12)
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An unbiased estimator of this variance is

v̂ar(τ̂π ) =
κ∑

k=1

(
1 − πk

π2
k

)
y∗2

k +
κ∑

k=1

∑
l �=k

(
πkl − πkπl

πkπl

)
y∗

k y∗
l

πkl

=
κ∑

k=1

(
1

π2
k

− 1

πk

)
y∗2

k +
K∑

k=1

∑
l �=k

(
1

πkπl

− 1

πkl

)
y∗

k y∗
l

For estimating the population mean per selection unit, μ̂π = τ̂π /M, var(μ̂π ) =
var(τ̂π )/M2, and v̂ar(μ̂π ) = v̂ar(τ̂π )/M2.

Example 1: The computations of the network sampling estimators are demon-
strated in the following simple example. In a survey to estimate the prevalence of
a disease in a city, a simple random sample of n = 100 households is selected by
simple random sampling, and adult residents of selected households report on their
siblings living in the city as well as on themselves. Households are selection units,
adult people are the observational units, and the variable of interest yi equals 1 if
the person has the disease and zero otherwise. There are M = 5000 households in
the city.

The 100 households in the sample are arbitrarily ordered to put interesting
cases (those involving nonzero y-values) first. In sample household 1 live two
adults, a man and a woman. The man has one sibling living in the city in another
household. The man does not have the disease (y1 = 0), but his sibling does
(y2 = 1). Together these two siblings form a network (network 1) with multi-
plicity m1 = 2. The woman in household 1, who has the disease (y3 = 1), has
two siblings in separate households, one with the disease (y4 = 1) and the other
without (y5 = 0). These three siblings form a network (network 2) with multiplic-
ity m2 = 3. The household of this last sibling (person 5) was also selected in the
random sample, so that each of the three siblings in that network was selected or
reported on twice. In this household (household 2) lives also the sibling’s spouse,
who does not have the disease (y6 = 0) and who has no siblings in the city. That
spouse (person 6) forms individually a network of multiplicity m3 = 1. In house-
hold 3 lives one adult alone, who has the disease (y7 = 1) and has no siblings
in the city, so that person forms the fourth network, with multiplicity m4 = 1. In
the other 97 households selected, no one has the disease nor do any of their sib-
lings. The fact that the y-values are zero for all of these cases will simplify our
calculations.

For the multiplicity estimator, we will run through the household selections
computing the value of wj for each [using Equation (15.3)]. For the first household,
w1 = 1/2 + 2/3 = 7/6. For the second household, w2 = 2/3 + 0/1 = 2/3. For the
third, w3 = 1/1 = 1. For each of the other 97 households in the sample, wj = 0.

The multiplicity estimator of the total number τ of people with the disease in
the city [using Equation (15.4)] is

τ̂m = 5000

100

(
7

6
+ 2

3
+ 1 + 0 + · · · + 0

)
= 5000(0.02833) = 141.7
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The sample mean of the w-variables is 0.02833 and their sample variance is
s2
w = 0.02753. The estimated variance of the estimator [from Equation (15.7)] is

v̂ar(τ̂m) = (5000)(5000 − 100)

100
(0.02753) = 6745

and the estimated standard error is about 82.
For the Horvitz–Thompson estimator, the first four of the distinct networks in

the sample have total y-values y∗
1 = 1, y∗

2 = 2, y∗
3 = 0, and y∗

4 = 1. From Equation
(15.9) the inclusion probability for the first network is

π1 = 1 −
(

5000 − 2
100

) / (
5000
100

)
= 1 − 4998!

100!4898!

100!4900!

5000!

= 1 − 4899(4900)

4999(5000)
= 1 − 0.9603961 = 0.0396039

For the second network,

π2 = 1 −
(

5000 − 3
100

) / (
5000
100

)
= 1 − 0.9411805 = 0.0588195

For the third and fourth networks, each with multiplicity 1,

π3 = π4 = 100

5000
= 0.02

From Equation (15.10) the Horvitz–Thompson estimate of the number with the
disease is

τ̂π = 1

0.0396039
+ 2

0.0588195
+ 0

0.02
+ 1

0.02
+ 0 + · · · + 0 = 109.3

In estimating the variance of the Horvitz–Thompson estimator, only the net-
works with positive totals contribute nonzero terms. From Equation (15.11) the
relevant joint inclusion probabilities are

π12 = 0.0396039 + 0.0588195 − 1 +
(

5000 − 2 − 3 + 1
100

) / (
5000
100

)
= 0.020769

π14 = 0.0396039 + 0.02 − 1 +
(

5000 − 2 − 1
100

)/(
5000
100

)
= 0.0007844

π24 = 0.0588195 + 0.02 − 1 +
(

5000 − 3 − 1
100

)/(
5000
100

)
= 0.0011651
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The estimated variance [from Equation (15.13)], is

v̂ar(τ̂π ) =
(

1

0.03960392
− 1

0.0396039

)
+

(
1

0.05881952
− 1

0.0588195

)
22

+
(

1

0.022
− 1

0.02

)
+ 2

[(
1

0.0396039(0.0588195)
− 1

0.020769

)
2

+
(

1

0.0396039(0.02)
− 1

0.0007844

)
+

(
1

0.0588195(0.02)
− 1

0.0011651

)
2

]
= 5617

giving an estimated standard error of 75. �

15.2. DERIVATIONS AND COMMENTS

To show that the multiplicity estimator is unbiased for the population mean, let zi be
the number of times the ith observational unit is selected and write the multiplicity
estimator as

τ̂m =
N∑

i=1

yi

npi

zi (15.13)

where pi = mi/M . The random variable zi has a hypergeometric distribution with
expected value npi . Thus, the expected value of τ̂m is

E(τ̂m) =
N∑

i=1

yi

npi

E(zi) =
N∑

i=1

yi = τ (15.14)

Given the unbiasedness of τ̂m, the variance results follow from basic results of
simple random sampling in terms of the new variables of interest wj defined for
the selection units.

The multiplicity estimator has the form of a Hansen–Hurwitz estimator, with
the y-value for each unit multiplied by the number of times that unit is selected
and divided by the selection probability for that unit. Perhaps more to the point,
each yi is divided by npi , the expected number of times the unit is selected. The
unbiasedness holds even though the number of observational units in the sample is
a random variable in network sampling. The Hansen–Hurwitz estimator was orig-
inally introduced for sampling with unequal but known probabilities with replace-
ment. Because of the without-replacement sampling of selection units in network
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sampling, a finite-population correction factor enters the variance expressions in
network sampling. In network sampling, the selection and inclusion probabilities
are not in general known except for units in the sample.

The inclusion probabilities are obtained using the result from probability the-
ory that if A is any event and Ac its complement, p(A) = 1 − p(Ac). The joint
inclusion probabilities are based on the result that if A and B are any two events,
the probability that both A and B occur is the sum of the two individual probabil-
ities minus the probability of either A or B, that is, p(A ∩ B) = p(A) + p(B) −
p(A ∪ B).

15.3. STRATIFICATION IN NETWORK SAMPLING

When the selection units of the population are stratified, a complication arises in
that a given observational unit may be linked to selection units in more than one
stratum. Then observations in different strata are not independent as in conventional
stratified sampling.

Suppose that the M selection units in the population are partitioned into L strata,
with Mh selection units in stratum h, and suppose that a stratified random sample
is selected with sample size nh in stratum h, for h = 1, . . . , L. For each selection
unit in the sample, all observational units linked to it—regardless of which strata
they are in—are included in the sample. Let Ahj be the set of observational units
linked to the j th selection unit in stratum h. For the ith observational unit, let mi

be the number of selection units—which may be from more than one stratum—to
which it is linked. For the j th selection unit in stratum h, a new variable of interest
whj is defined by whj = ∑

i∈Ahj
yi/mi . Define the sample mean of the w-variables

in stratum h to be wh = (1/nh)
∑nh

j=1 whj .
The stratified multiplicity estimator (Birnbaum and Sirken 1965) has the form

τ̂m =
L∑

h=1

Mhwh (15.15)

It is an unbiased estimator of the population total, with variance

var(τ̂m) =
L∑

h=1

Mh(Mh − nh)

nh

σ 2
wh (15.16)

in which σ 2
wh is the finite-population variance of the w-values within stratum h.

An unbiased estimate of this variance is obtained by replacing σ 2
wh with s2

wh, the
sample variance of the w-values within stratum h.

Note that while τ̂m is unbiased for the overall population total τ , an individual
term Mhwh is not in general unbiased for a relevant population total within stratum
h. That is because wh may be based partly on y-values of observational units
associated with strata other than h. For example, if selection units are households,
which are stratified by geographic region, and observational units are people linked
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by sibling relationships, selection of a household in one stratum may result in
reporting on siblings in one or more other strata. The y-values for each of these
siblings are combined in the value whj for that household.

For an observational unit i linked to a sample selection unit in stratum h, the
weight given to the value yi in the estimator above [Equation (15.16)] is Mh/nhmi .
Thus, for an observational unit linked to selection units in more than one stratum,
the weight given to its y-value may vary depending on the stratum in which the
selection is made to which it is linked.

To avoid this seemingly arbitrary dependence on the stratum through which a
given observation is reported, an alternative estimator may be considered. In the
Hansen–Hurwitz estimator, each y-value is divided by the expected number of
times it is selected under the design. Let mhi denote the number of selection units
in stratum h to which the ith observational unit is linked. Let zhi be the number of
selection units in the sample linked to observational unit i. The random variable
zhi has a hypergeometric distribution with expected value nhmhi/Mh. The total
number of times observational unit i is selected is the sum, over the L strata,
of the zhi . The expected number of times observational unit i is selected is thus∑L

h=1 nhmhi/Mh.
An unbiased estimator perhaps closer to the spirit of the Hansen–Hurwitz esti-

mator is obtained by dividing each y-value by this expectation. To do this, define
the new variable w′

hj for the j th selection unit of stratum h by

w′
hj = nh

Mh

∑
i∈Aj

yi∑L
h=1 nhmhi/Mh

and let w′
h denote the sample mean of the w′-values within stratum h. An unbiased

estimator of τ is

τ̂p =
L∑

h=1

mhw
′
h

The variance formulas [Equation (15.17) and its estimator] for the stratified mul-
tiplicity estimator hold for this alternative estimator when w′-values are substituted
for w.

For the Horvitz–Thompson estimator with stratified network sampling, let m∗
hk

denote the number of selection units in stratum h linked to the kth network in the
population, and let m∗

hkl denote the number linked to both networks k and l. The
inclusion probabilities are

π = 1 −
L∏

h=1

(
Mh − m∗

hk

nh

) / (
Mh

nh

)

πkl = πk + πl − 1
L∏

h=1

(
Mh − m∗

hk − m∗
hl + m∗

hkl

nh

)/(
Mh

nh

)
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With these inclusion probabilities, the usual Horvitz–Thompson formulas
(Chapter 6) hold.

15.4. OTHER LINK-TRACING DESIGNS

Any design in which links or connections between units are used in obtaining the
sample can be referred to as a link-tracing design . In addition to the network sam-
pling designs described in previous sections, the literature on link-tracing designs
includes procedures variously termed snowball sampling, chain-referral sampling,
random walks, web crawls , and adaptive sampling . A wide range of innovative
link-tracing procedures have been used in actual studies to obtain samples from
hidden, hard-to-access, and elusive populations.

For example, in studies of injecting drug use and other risk behaviors in relation
to the transmission of HIV and hepatitis C infections, initial respondents may be
asked to identify drug-injecting or sexual partners, who are then added to the sam-
ple. In a study to examine the relation of network structure and risk behaviors, such
as needle sharing among drug injectors in the Bushwick section of Brooklyn, New
York, initial respondents were used as “auxiliary recruiters” to bring members of
their networks into the study (Friedman et al. 1997; Neaigus et al. 1995, 1996). In
a long-term study on the heterosexual transmission of HIV infection (Rothenberg
et al. 1995), the target population of interest consisted of commercial sex workers,
their paying and nonpaying partners, persons who use injectable drugs, and the
sexual partners of drug users in the Colorado Springs area. Persons in the purpo-
sively selected initial sample were interviewed and, in addition to their individual
characteristics, identities of their sexual partners were obtained. Persons named by
two or more respondents were also located and interviewed.

Link-tracing designs are also involved in sampling and searching the Internet
(Henzinger et al. 2000; Lawrence and Giles 1998). Even the largest search engine
indexes list only a fraction of the Web sites in existence at any given time, so that
obtaining a sample of Web sites for studies of World Wide Web characteristics,
such as the proportion of sites that are devoted to a given topic, involve “crawling”
or otherwise searching through the Web by following links from one site to another.
The probability that a site is included in the sample depends on such factors as the
number of other sites that link to it, how many other sites those sites link to, and
the probability that the other sites are included in the sample. Estimates of Internet
characteristics based naively on sample means of sample characteristics, without
taking the design or search procedure into account, therefore tend to be biased.

The network sampling designs described in this chapter are particularly nice
because the links between units are symmetric and it is possible to trace the
links to include in the sample every unit in a given network. Thus, the inclusion
probabilities can be computed for every unit in the sample and design-unbiased
estimators formed. In many real situations, however, the links followed may be
asymmetric—for example, one person will lead investigators to a second but the
second, if asked, will not lead investigators to the first—and for practical reasons
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it may not be possible to follow links to encompass an entire connected network.
In response to the inherent difficulties of the real situations, a rather wide range
of design and model-based inference methods for link-tracing designs have been
developed.

Mathematically, the situation can be conceptualized as sampling in a graph . In
graph theory, a graph consists of a set of nodes, representing people or other units,
and a set of edges or arcs representing the links or social connections between the
nodes. Visually, the graph can be depicted as a set of small circles representing
the nodes and lines or arrows representing the links. The whole graph represents
the population of interest, such as a population of people with its social structure of
relationships. The problem is that we can observe only a sample from the graph—a
sample of nodes and a sample of links.

The term snowball sampling has been applied to two types of procedures related
to network sampling. In one type (see Kalton and Anderson 1986), a few identified
members of a rare population are asked to identify other members of the popu-
lation, those so identified are asked to identify others, and so on, for the purpose
of obtaining a nonprobability sample or for constructing a frame from which to
sample. In the other type (Goodman 1961), individuals in the sample are asked
to identify a fixed number of other individuals, who in turn are asked to identify
other individuals, for a fixed number of stages, for the purpose of estimating the
number of “mutual relationships” or “social circles” in the population.

Some properties of sample statistics from graphs were investigated by Bloe-
mena (1969). Snowball designs were developed in the graph setting with a variety
of initial probability sampling designs and any numbers of links and waves by
Frank (1971, 1977a,b, 1978a,b, 1979a, 1997), who obtained a variety of design-
and model-based methods for estimating graph quantities from the sample data.
Snijders (1992) used the same term, snowball sampling , to include designs in
which only a subsample of links from each node is traced. The case in which
only one of the links from a node is selected at random and followed to another
node, and then one of its links selected, and so on, was called a random walk
by Klovdahl (1989). Link-tracing sampling methods in which there is only one
link from each node have been termed chains (Erickson 1979). Frank and Snijders
(1994) describe model- and design-based estimation of a hidden population size,
that is, the number of nodes in the graph, based on snowball samples. Additional
practical and statistical issues in sampling from social networks with various types
of snowball, chain referral, and other link-tracing designs are discussed in Frank
(1979b, 1981, 1988), Frank and Harary (1982), Granovetter (1976), Jansson (1997),
Karlberg (1997), Morgan and Rytina (1977), Robins (1998), Spreen (1992, 1998),
Spreen and Zwaagstra (1994), van Meter (1990), Wasserman and Faust (1994), and
Watters and Biernacki (1989). Maximum-likelihood estimation for a wide variety
of link-tracing designs is described in Thompson and Frank (2000).

Another link-tracing procedure for which design-based estimators are available is
adaptive cluster sampling (Thompson 1990, 1997a,b, Thompson and Seber 1996;
see also Chapter 24), which has been formulated in the graph setting as well
as the spatial setting. Following selection of an initial sample of nodes by any



212 network sampling and link-tracing designs

of a number of initial designs, the decision on whether to follow links from a
node or not depends on the value of a variable of interest observed for the node.
Flexible new network sampling designs were introduced in Thompson (2006a,
2006b), together with design-based estimators. Model-based estimators for network
designs following the approach of Thompson and Frank (2000) were developed by
Chow and Thompson (2003), Kwanisai (2006), and Handcock and Gile (2010).
Methods combining design and model based approaches are described in Félix
Medina and Thompson (2004), Félix Medina and Monjardin (2006), and Gile and
Handcock (2011). Thompson (2011) has additional variations and review.

15.5. COMPUTING NOTES

The following R code produces a realization of a simple network model and selects
a snowball sample (Figure 15.1).

# To simulate and draw a stochastic network population:

N <- 10
w <- matrix(0,N,N) # create a matrix of zeros
npairs <- N * (N-1)/2 # the number of distinct pairs of nodes
w[upper.tri(w)] <- rbinom(npairs,1,.2)
w # the upper triangle has random zeros and ones in it

# obtain the set of edges:
e1 <- rep(1:N,times=N)[w==1]

0.8

0.6

0.4

c2

0.2

0.2 0.4 0.6 0.8 1.0

c1

Figure 15.1. A simulated realization of a stochastic network model. The realization of N = 10 nodes
is viewed as a simulation “population.” An initial simple random sample of n0 = 4 nodes is selected
(red). Every link out from the initial sample is followed to add the first wave (blue) of a snowball
sample. More flexible network designs follow only some of the links and have variable numbers of
waves. See the computational example.
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e2 <- rep(1:N,each=N)[w==1]
cbind(e1,e2)

# plot the nodes and links
c1 <- runif(N)
c1 <- sort(c1)
c2 <- runif(N)
plot(c1,c2, cex=2)
segments(c1[e1],c2[e1],c1[e2],c2[e2])

# symmetrize w
w <- w + t(w)
w # the lower triangle is filled in with w_ji=w_ij

# Select a snowball sample:

n0 <- 4 # initial sample size
s0 <- sample(1:N,n0)
s0
nots0 <- setdiff(1:N, s0) # set of units not in the

initial sample
nots0
z <- apply(w[s0,nots0],2,sum) # sum of links from initial

sample node out
z
z <- pmin(z,1) # indicator of an unsampled node to add

to sample
z
s1 <- nots0[z==1] # first wave sample
s1
points(c1[s0],c2[s0],pch=21,cex=2,bg="red") # plot

initial sample
points(c1[s1],c2[s1],pch=21,cex=2,bg="blue") # plot

first wave sample

EXERCISES

1. Using the network sample of Example 1, estimate the total amount spent on
medical care for the disease investigated. The dollar amounts for the seven
people linked to the three households listed in the example are y1 = 0, y2 =
3400, y3 = 5000, y4 = 6600, y5 = 0, y6 = 0, and y7 = 12,000. None of the
people linked to the other 97 households in the sample required any medical
treatment for the disease. Use the multiplicity estimator and give an estimate
of its variance.

2. With the data of Exercise 1, estimate the total amount spent on medical care for
the disease using the Horvitz–Thompson estimator, and estimate its variance.
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Detectability and Sampling

In the basic sampling framework, it is assumed that the variable of interest is
recorded without error for each unit in the sample. In many actual situations,
however, this is hardly the case. In surveys of most bird species, it is unlikely that
every bird in a selected plot will be detected. In aerial surveys of large mammals,
some animals in the area observed may remain unsighted. In a trawl survey for
fish or other marine species, not every individual in the path of the net is caught.
Similarly, when soil or ore samples are assessed for discrete mineral objects such
as diamonds, some of the objects in the sample may be missed. In archaeological
surveys in which sample plots or trenches are searched for artifacts, some artifacts
in the sample plots may remain undiscovered. In surveys of human populations
also, some individuals in sampled units may remain undetected.

The probability that an object in a selected unit is observed—whether seen,
heard, caught, or detected by some other means—is termed its detectability . In this
chapter, to avoid endless references to nameless “objects” and because much of
the study of the detectability problem has been associated with ecological surveys,
the individual objects in the population will be referred to as “animals.”

16.1. CONSTANT DETECTABILITY OVER A REGION

Imagine that the detectability for a given species is some constant probability p

throughout a region of area A. Such a situation may be reasonable to assume in
the case of a survey from a high-altitude aircraft evenly covering a whole study
region or in the case of a survey of seabird cliff nesting sights from an offshore
vessel.

Let y represent the number of animals observed in the region, while the number
actually there is τ , the population total. Wherever an animal is in the region, its
probability of detection is p. If, in addition, detections are independent—detection

Sampling, Third Edition. Steven K. Thompson.
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of one animal not affecting detection of another—the number observed y has a
binomial distribution.

The expected number observed is

E(y) = τp (16.1)

and its variance is

var(y) = τp(1 − p) (16.2)

If the probability of detection p is known, an unbiased estimator of the population
total τ is

τ̂ = y

p
(16.3)

The variance of this estimator is

var(τ̂ ) = τ

(
1 − p

p

)
(16.4)

An unbiased estimator of this variance is

v̂ar(τ̂ ) = y(1 − p)

p2
(16.5)

The density of the population is defined to be D = τ/A, the number of animals
per unit area in the study region. An unbiased estimate of density is

D̂ = y

pA
(16.6)

having variance

var(D̂) = τ

A2

(
1 − p

p

)
and estimated variance

v̂ar(D̂) = y

A2

(
1 − p

p2

)

Example 1: The locations of brant nests in a study region of 400 by 1600 meters
in the Yukon–Kuskokwim Delta of Alaska (data from Anthony 1990) are shown in
Figure 16.1. The nests have been censused with a combination of aerial photography
and ground studies, and the 76 nests in the figure will be taken to be the actual
population total τ in the study region.

Suppose that a survey methodology is proposed, for example, aerial observation
alone, for which the detectability is known to be p = 0.9. From such a survey,
the total number of nests in the study region would be estimated by dividing the
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Figure 16.1. Locations of brant nests in a study region of 400 by 1600 meters in the Yukon–Kuskokwim
Delta of Alaska. (From Anthony 1990).

observed number y by 0.9, and the variance of the estimator [from Equation (16.4)]
would be

var(τ̂ ) = 76

(
1 − 0.9

0.9

)
= 8.4

The standard error is
√

8.4 = 2.9. �

16.2. ESTIMATING DETECTABILITY

In most situations, the probability of detection p would not be known but would
be estimated by one method or another. For example, for an aerial survey, p could
be estimated by comparing the number of animals seen from the air to the number
found by ground crews, either in the same study area or in similar areas. Other
methods of estimating detectability include double sampling; capture–recapture
methods and methods using radio-collared animals; distance-based methods such
as those associated with line transects; net mesh size experiments; and regression
methods that relate the number of animals detected to factors such as aircraft speed.

Based on the method by which p was estimated, an estimate of var(p̂) is usually
available. For example, suppose that p had been estimated as a ratio p̂ = x/y

in an independent study, with a random sample of n plots on which xi is the
number of animals detected on the ith plot by the standard survey method and yi

is the actual number present based on intensive searching of the plot. In estimating
population total τ with y/p̂ or density D with y/p̂A, one may think of dividing the
number of animals observed y by p̂ or of multiplying y by the reciprocal r = 1/p̂.
The variance of r may be estimated as v̂ar(r) = s2

d/nx2, where s2
d is the usual

residual sample variance used in ratio estimation, s2
d = ∑n

i=1(yi − p̂xi)
2/(n − 1).

The variance of p̂ may be estimated by reversing the roles of x and y in the ratio
estimation.

Double-sampling ratio estimation methods apply when an accurate count is made
for a subsample of the units surveyed by the usual survey method. For every
unit in a sample of size n′, the number xi of animals detected is recorded. For
a subsample of n of the sample units, an accurate count yi of animals present
is determined. The ratio r = y/x from the subsample estimates the reciprocal
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1/p of detectability. Estimation and variance formulas are given in Chapter 14.
Capture–recapture methods may be used to estimate detectability for a given
species. For example, to estimate catchability p in a fish trawl survey, a known
number of fish are captured, marked, and released back into the population. Then,
using the usual trawl survey methods and taking the area swept by the net into
account, the ratio of marked fish caught to the total number of marked fish in the
population is used as an estimate of catchability in further surveys. The variance
associated with this estimate is given in Chapter 18. For populations in which radio-
collared animals are present, detectability may be estimated from the proportion
of radio-collared animals detected by the usual survey methods. Capture–recapture
estimation methods can also be used in surveys in which two independent observers
record or map detections; animals detected by one observer serve as marked animals
to the other.

Multiple regression methods [Caughley (1974) and Caughley et al. (1976),
summarized in Pollock and Kendall (1987) and Seber (1982, p. 457)] have been
suggested for correcting for imperfect detectability in aerial surveys. Since observed
density of animals in an aerial survey decreased with such factors as aircraft speed
and altitude, the method involves regressing observed density on such variables
and extrapolating to estimate actual density at the point where these variables are
zero. Ramsey et al. (1987) combined a general regression model for such variables
with the distance-based methods of line transects and variable circular plots.

Methods for estimating detectability in aerial surveys are reviewed in Pollock
and Kendall (1987). Additional discussion of double-sampling methods for popu-
lations with detectability problems is found in Becker and Reed (1990), Eberhardt
and Simmons (1987), and Rivest and Crépeau (1990).

16.3. EFFECT OF ESTIMATED DETECTABILITY

For now, let us assume that an estimate p̂ of the detection probability has been
obtained, that p̂ is approximately unbiased for p, and that the estimate p̂ is uncor-
related with the number y of animals observed in the present survey. Then, using
Taylor series approximations, an estimator of the population total τ is

τ̂ = y

p̂

and an approximate formula for the variance of this estimator is

var(τ̂ ) ≈ 1

p2
[var(y) + τ 2var(p̂)] = τ

(
1 − p

p

)
+ τ 2

p2
var(p̂) (16.7)

Thus, the estimation of the detectability adds a term to the variance. To
estimate this variance, estimators for τ and var(p̂) would be substituted in the
formula.
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Example 2: Estimated Detectability. Suppose that the detectability in the proposed
survey methodology for the brant nests of Example 1 had been independently
estimated, by comparing aerial observations with more exhaustive air and ground
searches, to be p̂ = 0.9 with an estimation variance of var(p̂) = 0.000625, so that
the standard error of p̂ is

√
0.000625 = 0.025 and a 95% confidence interval for

the true detectability would be approximately from 0.85 to 0.95. Then the variance
of the estimator τ̂ would be [by Equation (16.7)]

var(τ̂ ) ≈ 2.9 + 762

0.92
(0.000625) = 8.4 + 4.5 = 12.9

�

16.4. DETECTABILITY WITH SIMPLE RANDOM SAMPLING

Now suppose that a simple random sample without replacement of n units is
selected from a population of N units, and that animals within a selected plot
are detected with probability p, detections being independent. Examples in which
such a situation could apply include aerial transect surveys of large mammals in
which visibility along the transect flown is roughly constant, surveys from offshore
of selected sections of cliffs for nesting sites, and trawl surveys of fish or shellfish
in which constant catchability applies to the area swept by the net. In any such
situation, the properties of observations, and hence of the estimators, will depend
both on the sampling design and the detectability.

Let Yi denote the number of animals actually in unit i and yi be the number
detected by the observer. The population total is τ = ∑N

i=1 Yi and the population
mean is μ = τ/N . The values Y1, Y2, . . . , YN are considered fixed. Given that the
unit i is in the sample, yi is a binomial random variable with expected value
E(yi) = Yip and variance var(yi) = Yip(1 − p). An estimate of the number of
animals actually in unit i is Ŷi = yi/p. Conditional on unit i being in the sample,
E(Ŷi) = Yi and var(Ŷi) = Yi(1 − p)/p.

With a simple random sample of n units, an estimator of the population
total τ is

τ̂ = N
y

p

where y = (1/n)
∑n

i=1 yi , the sample mean of the observed values.
The estimator τ̂ is an unbiased estimator of the population total τ and has

variance

var(τ̂ ) = N2
[(

N − n

N

)
σ 2

n
+

(
1 − p

p

)
μ

n

]
(16.8)

where the population variance σ 2 is

σ 2 = 1

N − 1

N∑
i=1

(Yi − μ)2
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The first term in the variance [Equation (16.8)] is due to sampling only n

units out of the N in the population, and the second term is due to the imperfect
detectability. Notice the lower detectability leads to higher variance in the estimator:
The term (1 − p)/p decreases as the detection probability p increases.

An unbiased estimator of the variance of τ̂ is

v̂ar(τ̂ ) = N2
[(

N − n

N

)
s2

p2n
+

(
1 − p

p2N

)
y

]
where s2 is the sample variance of the observed y-values, that is,

s2 = 1

n − 1

n∑
i=1

(yi − y)2

noindentFor estimating the mean μ, use μ̂ = y/p and divide the leading N2 out
of the variance formulas.

Example 3: Simple Random Sample with Detectability. Suppose that the 1600-
meter-long brant nest study region is divided into N = 16 plots, so that each plot
in Figure 16.1 extends 100 meters horizontally and 400 meters vertically. The
population y-values, giving the number of nests in each of the rectangular plots,
are (from left to right in Figure 16.1), 5, 4, 5, 3, 3, 1, 3, 1, 2, 5, 18, 4, 10, 4, and
4. The population mean of these 16 values is μ = 4.75 and the finite-population
variance is σ 2 = 16.73.

With perfect detectability, an estimate of the total number of nests in the study
region based on a simple random sample of n = 8 of the plots would be τ̂ = 16y

with variance

var(τ̂ ) = 16(16 − 8)
16.73

8
= 267.7

or a standard error of 16.4.
With detectability p = 0.9 in each plot selected, the estimate τ̂ = 16y/0.9 would

have variance [Equation (16.8)]

var(τ̂ ) = 267.7 + (16)2 (1 − 0.9)(4.75)

0.9(8)
= 267.7 + 16.9 = 284.6

or a standard error of 16.9. �

16.5. ESTIMATED DETECTABILITY AND SIMPLE RANDOM
SAMPLING

Suppose that the probability p of detection is not known, but an estimate p̂ is
obtained that is approximately unbiased for p and is uncorrelated with y. Assume
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also that an estimate v̂ar(p̂) of the variance of p̂ is available. For an estimator of
the population total, consider

τ̂ = Ny

p̂

With the estimated detectability in the denominator, τ̂ is no longer unbiased for
τ (although it may be approximately so). By Taylor’s theorem, an approximate
formula for the variance of τ̂ is

var(τ̂ ) ≈ N2

p2
[var(y) + μ2var(p̂)]

= N2
[(

N − n

N

)
σ 2

n
+

(
1 − p

p

)
μ

n
+ μ2

p2
var(p̂)

]
(16.9)

The third term in the variance is due to estimating the detectability.
An estimate of variance would be obtained by using

v̂ar(τ̂ ) = N2

p̂2

[(
N − n

N

)
s2

n
+

(
1 − p̂

N

)
y + y2

p̂2
v̂ar(p̂)

]
In some applications, it is not detectability p directly but its reciprocal β = 1/p

that is estimated. Let β̂ be an approximately unbiased estimate of β. If detectability
is known, τ̂ may be written τ̂ = Nyβ. If detectability is estimated, τ̂ = Nyβ̂. By
Taylor’s theorem, an approximate variance formula is

var(τ̂ ) ≈ N2
[(

N − n

N

)
σ 2

n
+ (β − 1)μ

n
+ μ2

β2
var(β̂)

]
An estimate of this variance is

v̂ar(τ̂ ) = N2

[
β̂2(N − n)

N

(
s2

n

)
+ β̂(β̂ − 1)y

N
+ y2v̂ar(β̂)

]

Example 4: Random Sampling and Estimated Detectability. With the detectabil-
ity of p = 0.9 of the brant nest example independently estimated with variance
var(p̂) = 0.000625 and the simple random sample of 8 of the 16 plots in the study
region, the variance of the estimator τ̂ = 16y/p̂ is approximately [by Equation
(16.9)]

var(τ̂ ) ≈ 267.7 + 16.9 + 162
(

4.752

0.92

)
(0.000625)

= 267.7 + 16.9 + 4.5

= 289.1
�
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16.6. SAMPLING WITH REPLACEMENT

If simple random sampling with replacement is used, the estimator τ̂ = Ny/p,
with known p, is unbiased for τ with variance

var(τ̂ ) = N2
[
σ 2

n
+ (1 − p)μ

pn

]
Let τ̂i = Nyi/p. Then τ̂ is a sample mean of n independent, identically distributed
random variables τ̂1, . . . , τ̂n, so an unbiased estimate of the variance of τ̂ is

v̂ar(τ̂ ) = 1

n(n − 1)

n∑
i=1

(τ̂i − τ̂ )2

Notice that as in so many similar situations, with-replacement sampling leads
to slightly higher variance, by giving up a finite-population correction factor, but
leads to simpler variance estimation.

When p is estimated, the term (N2μ2/p2)var(p̂) is added to the variance and
(N2y2/p4)v̂ar(p̂) to the estimated variance, as before.

16.7. DERIVATIONS

Unbiasedness of τ̂ . Given the sample s of n units,

E(τ̂ |s) = E

(
N

np

n∑
i=1

yi |s
)

= N

np

n∑
i=1

pYi = N

n

n∑
i=1

Yi

Unconditionally, E(N/n)
∑n

i=1 Yi = τ by results of simple random sampling. Thus,
E(τ̂ ) = E[E(τ̂ |s)] = τ , so that τ̂ is unbiased for τ . �
Variance of τ̂ . Conditional on the sample s, the variance of τ̂ is

var(τ̂ |s) = N2

p2n2

n∑
i=1

var(yi) = N2

p2n2

∑
Yip(1 − p) = N2

n2

(
1 − p

p

) n∑
i=1

Yi

since, conditional on s, the yi’s are independent. Unconditionally,

E[var(τ̂ |s)] = N2(1 − p)

pn
E

(
1

n

n∑
i=1

Yi

)
= N2(1 − p)

p

(μ

n

)
by simple random sampling results.

Also by simple random sampling,

var[E(τ̂ |s)] = var

(
N

n

n∑
i=1

Yi

)
= N2

(
N − n

N

)
σ 2

n
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Thus,

var(τ̂ ) = var[E(τ̂ |s)] + E[var(τ̂ |s)] = N2
[(

N − n

N

)
σ 2

n
+

(
1 − p

p

)
μ

n

]
which completes the derivation. �

Estimated Variance of τ̂ . The proof will use conditioning on y = y1, . . . , yN , a
realization of the observed values as if all N units of the population were sampled.
Conditional on y, simple random sampling of n units gives

E(y|y) = 1

N

N∑
i=1

yi

and

var(y|y) = N − n

Nn(N − 1)

N∑
i=1

(
yi − 1

N

N∑
i=1

yi

)2

Also by simple random sampling,

E

[(
N − n

Nn

)
s2|y

]
= var(y | y)

Unconditionally,

E(y) = 1

N

N∑
i=1

E(yi) = 1

N

N∑
i=1

pYi = pμ

and

var[E(y | y)] = var

(
1

N

N∑
i=1

yi

)
= p(1 − p)

N2

N∑
i=1

Yi = p(1 − p)μ

N

because of the independent binomial distributions of the yi , so that

E

[
(1 − p)y

N

]
= var[E(y | y)]

Also unconditionally,

E

[(
N − n

Nn

)
s2

]
= E[var(y | y)]

Since var(y) = var[E(y | y)] + E[var(y|y)], an unbiased estimate of var(y) is thus

v̂ar(ŷ) =
(

N − n

Nn

)
s2 +

(
1 − p

N

)
y
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Since τ̂ = (N/np)y, an unbiased estimate of var(τ̂ ) is (N2/p2)v̂ar(y), and the
derivation is complete. �

With Estimated Detectability. Let U be a random variable with mean μu and
variance σ 2

u , and let V be another random variable with mean μv and variance σ 2
v .

The first-order Taylor series approximations for the variance of the product and of
the ratio of the two random variables are

var(UV ) = μ2
vσ

2
u + μ2

uσ
2
v + 2μuμvcov(U, V )

var

(
U

V

)
=

(
1

μ2
v

)
σ 2

u +
(

μ2
u

μ4
v

)
σ 2

v − 2

(
μu

μ3
v

)
cov(U, V )

The results with estimated detectability use these approximations with y as U and
p̂ or β̂ as V , with the covariance term zero. �

16.8. UNEQUAL PROBABILITY SAMPLING OF GROUPS WITH
UNEQUAL DETECTION PROBABILITIES

Up to now we have considered simple random sampling of units, observing objects
such as individual animals, each with equal detection probability. A generalization
of this situation was considered in Steinhorst and Samuel (1989), in which the units
may be selected by any sampling design with known inclusion probabilities, the
objects are groups of animals for which the number in the group is recorded, and
the detection probability may differ for different objects, depending, for example,
on group size. In fact, the variable of interest yij of the j th object in the ith unit
may be any type of variable—continuous, discrete, or indicator.

Let πi be the probability that unit (plot) i is included in the sample, and let πii′
be the probability that both units i and i ′ are included. With the j th object (group)
in the ith unit (plot) is associated a variable yij , which may, for example, be the
number of animals in group ij . The probability of detection for the j th object of
the ith unit is gij . Let Mi denote the number of objects in the ith unit, and let
mi be the number of these that are detected. The number of distinct units in the
sample is ν. Let τi = ∑Mi

j=1 yij be the total of the y-values (number of animals) in
unit i.

The objective is to estimate the population total τ = ∑N
i=1

∑Mi

j=1 yij , for example
the total number of animals in the population. An unbiased estimator of τ , based
on the Horvitz–Thompson method, is

τ̂ =
ν∑

i=1

1

πi

mi∑
j=1

yij

gij
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The variance of the estimator is

var(τ̂ ) =
N∑

i=1

(
1 − πi

πi

)
τ 2
i +

N∑
i=1

∑
i′ �=1

(
πii′ − πiπi′

πiπi′

)
τiτi′

+
N∑

i=1

1

πi

Mi∑
j=1

(
1 − gij

gij

)
y2

ij

An unbiased estimator of this variance is

v̂ar(τ̂ ) =
ν∑

i=1

(
1 − πi

π2
i

)
τ̂ 2
i +

ν∑
i=1

∑
i′ �=1

(
πii′ − πiπi′

πii′πiπi′

)
τ̂i τ̂i′

+
ν∑

i=1

1

πi

mi∑
j=1

(
1 − gij

g2
ij

)
y2

ij

where

τ̂i =
mi∑
j=1

yij

gij

16.9. DERIVATIONS

The properties of τ̂ are most easily derived by writing the estimator in the form

τ̂ =
N∑

i=1

Ii

πi

Mi∑
j=1

yij zij

gij

where the indicator variable Ii = 1 if unit i is included in the sample and Ii =
0 otherwise and zij = 1 indicates detection of object ij and zij = 0 otherwise.
Formally, Ii = 1 with probability πi, zij = 1 with probability gij , and the z’s are
assumed independent of the I ’s. The ij th object is observed only if both Ii = 1
and zij = 1.

Unbiasedness of the estimator follows, since E(Ii) = πi, E(zij ) = gij , and
E(Iizij ) = πigij . The formula for the variance is obtained by conditioning on
the sample s selected, that is, by conditioning on the outcome of the vector
I = {I1, . . . , IN }. The derivation is given in Steinhorst and Samuel (1989).

For the estimator of the variance of τ̂ , it is easiest to condition on the set z of
all the zij in the population and use the decomposition

var(τ ) = E[var(τ̂ | z)] + var[(τ̂ | z)]
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Here, the formality of zij being defined even for objects in units not in the
sample is useful, even though the concept of detections in units not in the sample
is purely hypothetical.

Conditional on z, the conditional expectation of τ̂ is

E(τ̂ | z) =
N∑

i=1

Mi∑
j=1

yij zij

gij

Conditional on z, τ̂ is a Horvitz–Thompson estimator of
∑N

i=1

∑Mi

j=1 yij zij /gij

with conditionally unbiased estimator of variance

v =
ν∑

i=1

(
1 − πi

π2
i

)
τ̂ 2
i +

ν∑
i=1

∑
i′ �=1

(
πii′ − πiπi′

πijπiπi′

)
τ̂i τ̂i′

so that E(v|z) = var(τ̂ |z). Unconditionally, E(v) = E[var(τ̂ |z)].
The variance of the conditional expectation is

var[E(τ̂ | z)] = var

⎛⎝ N∑
i=1

Mi∑
j=1

yij zij

gij

⎞⎠
=

N∑
i=1

Mi∑
j=1

y2
ij

g2
ij

var(zij )

=
N∑

i=1

Mi∑
j=1

y2
ij

g2
ij

(1 − gij )

since the zij are independent Bernoulli random variables, each with a different
mean gij and variance gij (1 − gij ).

The variance var[(E(τ̂ |z))] is thus a population total of the variables

wij = y2
ij

gij

(1 − gij )

An unbiased estimator of this total, by the Horvitz–Thompson method, is

N∑
i=1

Ii

πi

Mi∑
j=1

(
wij zij

gij

)
=

ν∑
i=1

i

πi

mi∑
j=1

(
1 − gi

g2
i

)
y2

ij

Adding this part to v gives the unbiased estimator v̂ar(τ̂ ). Steinhorst and Samuel
(1989) give a slightly different formula for an estimator of variance, with no claim
of unbiasedness. Results on detectability in sampling more general than those in
this chapter are given in Thompson and Seber (1994).
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EXERCISES

1. In an aerial survey of a region in interior Alaska, 82 moose were detected.
Intensive supplemental studies determined the probability of detection to be
0.89. Estimate the total number of moose in the study region and estimate
the variance of that estimate. [The data for this exercise and Exercise 3 are
from Reed (1990); additional structure of the survey has been ignored for this
exercise.]

2. Suppose that detectability is p = 0.25 throughout a region of A = 100 square
kilometers and that y = 60 animals are seen during the survey. Estimate the
number and density of animals in the region and estimate the variance of each
estimator.

3. A simple random sample of n = 20 plots are selected for an aerial survey and
the following numbers of moose are detected: 0, 0, 0, 0, 1, 2, 6, 11, 5, 1, 9,
3, 1, 0, 10, 4, 7, 22, 0, 0. Assuming detectability of 0.89, estimate the mean
number of moose and give an estimate of variance. The study region contains
N = 100 plots.

4. Suppose that a simple random sample of n = 5 plots is selected from a study
area of N = 100 plots and that the numbers of animals detected in the five
plots are 10, 7, 0, 0, and 5, but that the probability of detection for any animal
in a selected plot is p = 0.80. Estimate the total number of animals in the
study region and estimate the variance of the estimator.
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Line and Point Transects

In a line transect survey of an animal or plant species, an observer moves along
a selected line and notes the location relative to the line of every individual of
the species detected. It typically occurs in such surveys that more individuals are
detected close to the line than far away from it, not because abundance is higher
near the line but because the probability of detection is higher near the line than
far from it. To estimate the abundance or density of the species in the study area
from one or more such transects, this nonconstant detectability must be taken into
account.

Line transect methods have been used for many types of populations, including
bird, mammal, and plant species as well as other objects for which detectability
depends on location relative to the observer. For convenience, the individuals in
the population will be referred to generically as “animals.” For surveys of some
species, the observer walks along the transect. Line transect methods have also been
applied to aerial surveys, surveys from research vessels, and sightings of animals
from automobiles.

A line transect is characterized by a detectability function giving the probability
that an animal (or plant) at a given location is detected. In most situations, the
probability of detection can be expected to decrease as distance from the transect
line increases. In many cases, detectability on the line itself can be assumed perfect.
In other cases, avoidance by the animals of the observer can result in detectability
reaching a maximum at some distance from the line.

Reviews and references on transect methods include Buckland et al. (1992),
Burnham et al. (1980), Eberhardt (1978a), Gates (1979), Ramsey et al. (1988), and
Seber (1982, 1986, 1992).

In this chapter we look first at some of the density estimation methods that can
be used with line transect data, initially without regard to the sampling procedure
for selecting transects. Then different designs for selecting a sample of transects
are examined. For estimating the variance of the population density estimators,
estimators relying on sampling procedures rather than model assumptions about the

Sampling, Third Edition. Steven K. Thompson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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population are emphasized. Some underlying ideas about sampling and estimation
with line transects are examined rather closely. Most of the line transect density or
abundance estimators are based on average detectability, effective area observed,
or density of detections along the line. Estimators based on individual detection
probabilities are also covered.

Detectability functions are useful for evaluating many survey methods in addi-
tion to line transects. One may think of detectability units, characterizing the
methods and the locations selected for making observations of an elusive pop-
ulation, as a generalization of the units of classical survey sampling. Some general
results on design and estimation in terms of detectability functions are given in
Sections 17.11 through 17.14. Section 17.15 is devoted to variable circular plots
or point transects in which the observer is stationary for a specified amount of
time at each selected site and locations or distances associated with detections are
recorded.

17.1. DENSITY ESTIMATION METHODS FOR LINE TRANSECTS

Figure 17.1 depicts observations of animals or other objects from a segment of
a line transect. The perpendicular distances from the objects to the transect are
indicated with dashed lines. Given the set of distances of observed animals from
one or more transect lines, for which detectability is virtually perfect near the line
but decreases with distance from the line, it may not be immediately apparent how
to estimate the abundance or density of the animals in the population. We will start
with a couple of simple, commonsense methods for estimating population density
or abundance from such data, progressing to more advanced methods, noting the
similarity of the ideas underlying both the simple and the elaborate methods.

In the methods that follow, the object is to estimate the density of animals
or other objects in a study region of area A. For the ith transect in the sample,
the variable of interest yi is the number of animals observed. The sample size n

refers to the number of transects selected (not to the variable of interest). The total
number of animals in the study region is denoted τ , and the density of animals
is D = τ/A. Burnham et al. (1980, p. 33) suggest that the data should include at
least 40 detections to provide reliable estimates. For illustrative purposes, a smaller
number is used in the examples accompanying the following methods.

17.2. NARROW-STRIP METHOD

Although the detectability of animals far away from the transect line may be imper-
fect, there may be some narrow strip along the line in which detectability is virtually
perfect. Then by using only those observations within the strip and ignoring the
more distant observations, one may consider the strip a conventional unit or plot
and estimate the population total or density in the usual way.

Let L denote the length of the transect and let w0 be the maximum distance
from the line to which detectability is assumed perfect. Then the width of the strip
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Figure 17.1. Observations of animals or other objects from a transect line.

is 2w0 and its area is 2w0L. Let y0 be the number of animals detected within the
narrow strip. To estimate the density D, that is, the number of animals per unit
area, one may use the number of animals in the narrow strip divided by its area:

D̂ = y0

2w0L
(17.1)

If the study region has area A, the total number of animals in the study region is
estimated as

τ̂ = AD̂ = Ay0

2w0L
(17.2)

The distance w0 is generally smaller than the maximum distance to which animals
have been detected, and hence the number of animals y0 used to estimate density
is generally fewer than the total number y detected. Various methods have been
proposed for choosing the distance w0 to which detection is assumed perfect. One
way is to examine a histogram of the distance data and look for a distance at which
the relative frequency of observations drops off sharply.

Example 1: Narrow-Strip Method. On a line transect of length L = 100 meters,
a total of y = 18 birds were detected at the following distances (in meters) from
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the transect line: 0, 0, 1, 3, 7, 11, 11, 12, 15, 15, 18, 19, 21, 23, 28, 33, 34, 44. It
is desired to estimate the density of birds in the study region.

Plotting the numbers of birds detected in each 10-m distance interval
(Figure 17.2), we find that five were seen within 10 m of the line, seven were seen
between ten and twenty meters, three between 20 and 30 meters, 2 between 30
and 40 m, and one between 40 and 50 meters. Choosing w0 = 20 as the distance
beyond which sightings drop off markedly, the narrow strip has width 2w0 = 40
m. The number of birds detected within this strip was y0 = 12.

The estimate of population density [from Equation (17.1)] is

D̂ = 12

2(20)(100)
= 0.003

so that the estimate is 0.003 bird per square meter or 30 birds per hectare.
Although the narrow-strip method is very simple, it is not entirely satisfying, first

because not all observations obtained are used, second because the determination
of the width of the narrow strip seems somewhat arbitrary, and third because
detectability may in fact decrease smoothly with distance so that the narrow strip
with perfect detectability really has width zero. �

Figure 17.2. Example histogram of number of birds detected in each 10-meter distance interval from
the transect.
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17.3. SMOOTH-BY-EYE METHOD

In making a histogram to approximate a probability or probability density function
f , one first chooses an interval width and then sets the height f̂ of the histogram
for a given distance x by the following formula:

f̂ (x) = number of observations in the interval containing x

(total number of observations)(interval width)
(17.3)

Note that, in keeping with its probability interpretation, the area under the his-
togram adds to one. Using the data of Example 1 with an interval width of 20 m
(the width used in the narrow-strip method), the height of the histogram for the
first interval, and specifically for distance x = 0, using Equation (17.3), would be

f̂ (0) = 12

18(20)
= 0.0333

since 12 out of the 18 birds were seen in the first 20-meter interval.
The narrow strip used only the data of this first interval. For the interval of

the narrow strip, the histogram height [Equation (17.3)] is f̂ (0) = y0/(yw0), so
that the narrow-strip estimate of D may be written in terms of f̂ (0) as

D̂ = f̂ (0)y

2L
= 0.0333(18)

2(100)
= 0.003

The histogram for distance x from the transect line may be viewed as approxi-
mating a smooth probability density function f (x) that would describe the distri-
bution of detection distances that would be obtained if one ran an infinite number
of randomly selected transect lines for the species in question.

Looking at the histogram with 10-meter intervals (Figure 17.3), it is easy
to imagine that a better estimate might be obtained of f (0), the value of the
true, smooth density of detections at zero distance from the transect line. The
height of the histogram for the first interval, in which five birds were seen, is
5/[18(10)] = 0.028. For the second interval, in which seven were detected, the
height is 7/[18(10)] = 0.039. Similarly, for the remaining three intervals, the
heights are 0.017, 0.011, and 0.006.

The observed distribution of detections, as depicted in the histogram
(Figure 17.3), actually increases a bit with distance before decreasing. Suppose,
however, that the true density of detections decreases smoothly with distance,
reflecting decreasing detectability, and that the irregularities in the histogram
are due to random chance and the small number of observations. Then a better
estimate of f (0), the theoretically true density of detections at distance zero,
might be obtained by fitting a smooth, decreasing curve to the histogram.

Example 2: Smooth-by-Eye Method. Fitting such a curve by eye to the histogram
(Figure 17.3) and seeing where the fitted curve intersected the vertical axis, the
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Figure 17.3. Density of detections with fitted exponential curve.

author obtained the estimate f̂ (0) = 0.036, which is higher than the histogram at
the first interval but lower than the second.

The estimate of bird population density based on this smoothed-by-eye estimate
of density at zero is

D̂ = f̂ (0)y

2L
= 0.036(18)

2(100)
= 0.0032

or 32 birds per hectare.
The author’s smoothed-by-eye curve is not illustrated; the reader is encouraged

to make his or her own smooth-by-eye estimate from the density histogram of
Figure 17.3. Since the choice of interval width and the smoothing are subjective,
one person’s estimate may differ from another’s. The following methods reduce
this subjectivity to some extent, but are based on very much the same idea. �

17.4. PARAMETRIC METHODS

When animals are observed in a strip plot—that is, every animal within the strip
of half-width w and length L is observed—the estimate of density is D̂ = y/2Lw,
the number of animals observed divided by the area of the plot. When animals
are observed from a line transect with a detectability function g(x) having perfect
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detectability on the line and decreasing with distance x away from the line, the
distances to observed animals from randomly placed transects will tend to have a
probability density f (x) of the same shape as the detectability function but scaled
so that the area under the probability density function f equals 1. With perfect
detectability on the line, the density estimate is

D̂ = yf̂ (0)

2L
(17.4)

and the crux of the problem is estimating f (0), the density at zero distance from
the line.

One can imagine an equivalent strip plot, with perfect detectability out to some
distance w, in which the same number of animals would be seen, on average, as
are seen from the transect with decreasing detectability. The relationship between
the line transect and the effectively equivalent strip plot is

f (0) = 1

w
(17.5)

and w is called the effective half-width of the transect. In terms of effective half-
width, the density estimate based on an estimate ŵ of w is

D̂ = y

2Lŵ
(17.6)

Thus, one may equivalently proceed either to estimate f (0) or to estimate w.
When a specific parametric form—that is, a functional form depending on

unknown parameters—is assumed for the detectability function g(x), statistical
methods such as maximum likelihood may be used to estimate the unknown param-
eters and thereby obtain an estimate of f (0) or of w. Some classes of parametric
models are examined in Buckland (1985), Burnham et al. (1980), Pollock (1978),
Quinn and Gallucci (1980), and Ramsey (1979). Two of the simplest will be used
as examples here.

The advantage of assuming a simple form for the detectability curve is that
it leads to simple estimators of population density—estimators that are best in
some sense if the assumption is true. The disadvantage is that the assumed class of
curves may not have the flexibility to represent the true detectability realistically
enough. Two examples of parametric detectability functions, the exponential and
the half-normal, are described here mainly because they lead to simple estimators
of density.

The exponential class of detectability functions is g(x) = exp(−x/w). The
larger the value of the parameters w, the higher the detectability of animals far
from the transect line. The maximum likelihood estimator for w (Ramsey 1979) is
ŵ = x, that is, the average distance of detection.

Example 3: Exponential Detectability. With the data of the bird example
(Example 1), the average detection distance is x = 16.39 meters. The estimate
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[Equation (17.6)] of population density is

D̂ = 18

2(16.39)(100)
= 0.055

or 55 birds per hectare. The fitted exponential curve ĝ(x)/ŵ is shown in
Figure 17.3.

Although the exponential model leads to an extremely simple estimator, it is not
considered realistic for most real populations and does not in practice lead to good
estimation results. Several authors (Buckland 1985; Burnham et al. 1980; Eber-
hardt 1978a) have argued that the detectability function should have a “shoulder,”
that is, be level or have zero derivative in the immediate vicinity of the transect
line. The simplest model with such a shoulder is the half-normal. The half-normal
detectability function is

g(x) = exp

(−πx2

4w2

)
(17.7)

The maximum likelihood estimate of w is

ŵ =
√√√√ π

2y

y∑
i=1

x2
i (17.8)

�

Example 4: Half-Normal Detectability. With the bird data from Example 1, the
average squared detection distance is (1/n)

∑
x2

i = (1/18)(02 + · · · + 442) =
417.5. The estimate of w from Equation (17.8) is

ŵ =
√(

3.1417

2

)
(417.5) = 25.61

The estimate of density from Equation (17.6) is

D̂ = 18

2(25.61)(100)
= 0.0035

or 35 birds per hectare. The fitted half-normal curve ĝ(x)/ŵ is shown in Figure 17.4
More complicated models, with greater flexibility to fit real data, have been

examined, but estimation with such models is somewhat complicated. The most
adaptable models of all are the nonparametric models , which essentially are
smoothing techniques used to estimate f (0). �



nonparametric methods 237

Figure 17.4. Density of detections with fitted half-normal curve.

17.5. NONPARAMETRIC METHODS

To avoid assumptions about the shape of the unknown detectability functions,
non-parametric density estimation methods can be used. Using observations of
random variables from a probability density function f , the methods use smoothing
techniques to estimate the value f (x) of the density function at any given value
of x. With line transect sampling, the probability density function of interest is the
density of observed detection distances. Two examples of nonparametric methods
are given here; others are discussed in Buckland (1985), Burnham et al. (1980),
and Johnson and Routledge (1985). Detectability on the transect line is assumed
perfect, so that the estimate has the form D̂ = yf̂ (0)/2L.

Estimating f (0) by the Kernel Method

In the extensive statistical literature on the estimation of probability density func-
tions (PDFs), the dominant trend is kernel estimation, a nonparametric smoothing
approach (see, e.g., Silverman 1986). Application of the methodology to line tran-
sect estimation was suggested by Seber (1986) and has been utilized by Quang
(1993) for the closely related problem of estimation in variable circular plot surveys.

The method employs a kernel function K (x), which integrates to 1; that is,∫ ∞

−∞
K(x) dx = 1
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The kernel estimator of the PDF f at x is

f̂ (x) = 2

yh

y∑
j=1

K

(
x − xj

h

)
(17.9)

where h is called the window width and xj is the value of the ith observation
(i.e., the distance from the transect line to the j th animal) and y is the number of
observations (i.e., the number of animals detected). The coefficient 2 arises when
the density of unsigned distance, without regard to which side of the line, is used.

To estimate f (0) with a symmetric kernel, the estimator becomes

f̂ (0) = 2

yh

y∑
j=1

K
(xj

h

)
(17.10)

With the normal kernel, for example,

K
(xj

h

)
= 1√

2π
e(1/2)(xj /h)2

(17.11)

Silverman (1986, p. 48) gives a simple rule for choosing the window width h:

h = 0.9ay−1/5 (17.12)

where a = min(s,Q/1.34), in which s is the sample standard deviation of the
x’s observed and Q is their interquartile range. But when dealing with positive
distances only, one should use the median distance in place of the interquartile
range.

The estimator of the population density of animals is then

D̂ = yf̂ (0)

2L
(17.13)

Example 5: Normal Kernel. In the bird data from Example 1, the median absolute
distance is 15, and 15/1.34 = 11.19. Since 11.19 is less than the sample standard
deviation s = 12.56, Silverman’s rule [Equation (17.12)] for choosing window
width h gives

h = 0.9(11.19)(18)−1/5 = 5.65

The normal kernel estimate of f (0), from Equations (17.10) and (17.11), is

f̂ (0) = 2

18(5.65)
√

2π
[e−02/2(5.65)2 + · · · + e−442/2(5.65)2

] = 0.0376

The estimate of bird density [Equation (17.13)] is

D̂ = yf̂ (0)

2L
= 18(0.0376)

2(100)
= 0.0034

bird per square meter, or 34 birds per hectare. �
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Fourier Series Method

The Fourier series method of estimating f (0) is

f̂ (0) = 1

w∗ +
m∑

k=1

Âk (17.14)

where w∗ is the maximum distance at which animals can be observed and the
coefficients Âk are given by

Âk = 2

yw∗

[
y∑

i=1

cos

(
kπxi

w∗

)]
(17.15)

The number m of terms to use in the approximation is somewhat arbitrary, but the
following rule of thumb has been recommended (Burnham et al. 1980): Starting
with m = 1, choose the first whole number m such that

1

W ∗

√
2

y + 1
≥ |Âm+1| (17.16)

In determining the maximum detectability distance w∗, Burnham et al. (1980) and
Crain et al. (1979) recommend using some distance less than the greatest distance
at which an animal was detected, throwing out the largest 1%–3% of the observed
distances as outliers (see also Burnham et al. 1981; Quang 1990).

Example 6: Fourier Series Method. In applying the Fourier series method to the
bird data, the largest observation (from the array in Example 1), the detection at
44 meters, is thrown out as an outlier and the next largest, 34 meters, is used as
w∗. The inequality of the rule of thumb [Equation (17.16)] is satisfied for the value
m = 1, so only one term is needed. Thus only one coefficient, Â1, needs to be
computed, but it involves 17 terms (the number of observations after discarding
the largest). The coefficient A1 is calculated from Equation (17.15)):

Â1 = 2

17(34)

[
cos

1(3.1417)(0)

34
+ · · · + cos

1(3.1417)(34)

34

]
= 0.0091

The estimate of f (0) is calculated from Equation (17.14)):

f̂ (0) = 1

34
+ 0.0091 = 0.0385

The estimate of population density from Equation (17.13)) is

D̂ = 17(0.0385)

2(100)
= 0.0033

or 33 birds per hectare. �
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17.6. DESIGNS FOR SELECTING TRANSECTS

The sampling design in a line transect study is the procedure by which the transect
locations are selected. Desired properties such as unbiasedness or approximate
unbiasedness of density estimators and estimates of variance will be based as much
as possible on the design rather than on assumptions about the population.

However many animals may be seen from a transect, a single transect is still
a sample of size 1. A more precise estimate of abundance or density in a study
area would be expected from a probability sample of n transects, particularly if the
animals are very unevenly distributed over the study region.

Variance estimates based on a sample of several transects are to be preferred
to “analytical” estimates based on observations within a single transect, a recom-
mendation emphasized by a number of authors (see Burnham and Anderson 1976,
p. 329; Eberhardt 1978b; Overton 1969; and Seber 1982, p. 467). Procedures for
estimating the variance of estimators from data within a single transect invariably
rely on model assumptions about the distribution of animals, the typical assumption
for such procedures being that animals are uniformly and independently located in
the study region. So far, we are assiduously avoiding any such assumptions! Barry
and Welsh (2001) examine the interplay between design, model, and estimating
the detectability function with line transects and note in particular the problem of
implicitly assuming independence when evaluating the effectiveness of methods.

Other aspects of the observational method, such as speed at which a line transect
is traversed, affect the shape of the detectability functions and hence the properties
of the observations and estimators. The effects of such choices are examined in
Chapter 22.

17.7. RANDOM SAMPLE OF TRANSECTS

A random sample of n transects in the study area will be selected as follows. A
straight baseline of length B is drawn across (or below) the study region on a map.
The study area need not be regular in shape. The length of the baseline is the width
of the perpendicular projection onto the line of every point in the study area—that
is, the width of the shadow cast by the study area onto the line. A random sample of
n transect locations v1, v2, . . . , vn is selected from the uniform distribution on the
interval [0, B]. Transect lines perpendicular to the baseline are then located through
each selected point v1. The transects either run completely across the study area
(Figure 17.5), or if a maximum transect length L is desired that is less than the
distance across the study region, parallel baselines may be drawn distance L apart
and starting points selected from the total length of baseline (Figure 17.6). Note
that sampling is with replacement, although since transect locations are selected
from a continuous distribution, there is zero probability of selecting precisely the
same transect twice.

In selecting a random sample of transects, some biases may be introduced due
to boundary problems—that is, slightly lower average detection probability for an
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Figure 17.5. Random sample of 10 line transects in a study region.

Figure 17.6. Random sample of 15 line transects of length L in a study region of width wider than L.

animal near the boundary of the study area. Such biases would tend to be small in
any case when the study area is large relative to the effective width of transects. In
Section 17.11 it is shown how such biases can be eliminated completely if desired.
In the present section these boundary-induced biases are ignored.

Unbiased Estimator

Because of irregularities in the shape of the study region, the length Li of the ith
transect is a random variable, with expected value E(Li) = A/B, where A is the
area of the study region and B is the length of the baseline. Let yi denote the
number of animals seen from the ith transect.

If the effective width w or the density f (0) is known, an unbiased estimator of
density, based on the ith transect, is

D̂i = B

A

( yi

2w

)
= B

A

(
yif (0)

2

)
= yif (0)

2E(L)
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Hence an unbiased estimator based on the n transects is

D̂ = 1

n

n∑
i=1

D̂i = B

A

(
y

2w

)
= B

A

(
yf (0)

2

)

where y = (1/n)
∑n

i=1 yi is the sample mean of the numbers observed.
When w or f (0) in the expression for D̂ is estimated, for example, by one of the

methods just given, the estimated value ŵ or f̂ (0) is substituted in the expression
for D̂ and the unbiasedness holds only approximately.

If individual estimates ŵ1, . . . , ŵn or f̂1(0), . . . , f̂n(0) are made independently
for each transect and D̂i = Byi/2Aŵi or D̂i = Byif̂i(0)/2A, then D̂i, . . . , D̂n are
independent and an unbiased estimator of variance is

v̂ar(D̂) = 1

n(n − 1)

n∑
i=1

(D̂i − D̂)2

However, one often gets a better estimate of w or f (0) by pooling the distance data
from all transects in the survey. With D̂i = Byi/2Aŵ or D̂i = Byif̂ (0)/2A using
the pooled estimates, the D̂i are not independent and v̂ar(D̂) tends to underestimate
the true variance of the estimator.

With the pooled estimates, a better estimate of variance could be obtained
through a resampling method such as the bootstrap or jackknife. For the boot-
strap method (Efron 1982; Efron and Gong 1983), the sample of n transects is
treated as a population in itself. A bootstrap sample is obtained by selecting n of
these transects from the sample at random with replacement, and bootstrap estimate
D̂∗1 is computed from the bootstrap sample by the same method as used for the
original sample. Note that the bootstrap sample may differ from the original sample
because of the with-replacement sampling. Repeating the procedure to obtain M

independent bootstrap values D̂∗1, . . . , D̂∗M , the bootstrap estimate of variance is

v̂arb(D̂) = 1

M − 1

M∑
m=1

(D̂∗m − D̂b)
2

where D̂b = (1/M)
∑M

m=1 D̂∗M .
The jackknife estimate is obtained by systematically deleting one transect

at a time from the sample. Let D̂(i) be the estimate obtained from the n − 1
remaining transects in the sample after deleting the ith transect, and let
D̂(·) = (1/n)

∑n
i=1 D̂(i). Note that for each of the n jackknife samples, each

consisting of n − 1 transects, the entire process of making a pooled estimate of
w or f (0) and then estimating density is repeated. The jackknife estimate of
variance is

v̂arj (D̂) = n − 1

n

n∑
i=1

[D̂(i) − D̂(·)]2
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Note that for each method, the resampling is in terms of transects, which are inde-
pendent because of the initial random selection, not in terms of observed distances,
which cannot be assumed independent without assumptions about the population
itself.

Approximate 100(1 − α)% confidence intervals based on the jackknife method

are usually of the form D̂ ± t

√
v̂arj (D̂), where t is the upper α/2 point of the t

distribution with n − 1 degrees of freedom. With the bootstrap method, confidence
intervals are typically based on percentiles of the distribution of the bootstrap
estimates D̂∗m. Buckland (1982) used bootstrap methods based on distance obser-
vations to obtain confidence intervals for line transect estimates.

From any estimate D̂ of population density with estimated variance v̂ar(D̂),
an estimate of the total abundance in the study region is τ̂ = AD̂ with variance
estimate A2v̂ar(D̂).

Ratio Estimator

When the study area is irregular in shape, the transects will be of differing lengths.
When this is the case, a ratio estimate based on the lengths may be preferred. The
ratio estimator is

D̂r =
∑n

i=1 LiD̂i∑n
i=1 Li

=
∑n

i=1 yi

2ŵ
∑n

i=1 Li

=
∑n

i=1 yi

2
∑n

i=1 Li

f̂ (0)

where D̂i = yi/2Liŵ = yif̂ (0)/2Li .
As a ratio estimator, D̂r is not unbiased in the design sense, even when w

or f (0) is known. It would be model-unbiased, however, under assumptions of a
linear relationship between expected number of animals seen and transect length.

A variance estimator of adjusted ratio type is

v̂ar1(D̂r ) = 1

L2n(n − 1)

n∑
i=1

( yi

2ŵ
− D̂rLi

)2

= 1

L2n(n − 1)

n∑
i=1

(
yif̂ (0)

2
− D̂rLi

)2

where L = (1/n)
∑n

i=1 Li , the average length of the n transects in the sample.
A model-based ratio variance estimator has also been suggested (Buckland 1982;

Burnham and Anderson 1976; Burnham et al. 1980; Seber 1979, 1982, p. 463):

v̂ar2(D̂r ) = 1

Ln(n − 1)

n∑
i=1

Li(D̂i − D̂r )
2 = 1

Ln(n − 1)

n∑
i=1

[yif̂i(0)/2 − LiD̂r ]2

Li

For the jackknife estimate of variance when w or f (0) is estimated, Buckland
(1982) suggests the following slight modification of the length-weighted estimator
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given in Burnham et al. (1980). Let D̂(i) be the ratio estimate of density with the ith
transect deleted, and define the pseudovalue D̂(i) = [nLD̂r − (nL − Li)D̂(i)]/Li .
The jackknife estimate of variance is

v̂arj (D̂r ) = 1

Ln(n − 1)

n∑
i=1

Li(D̂
(i) − D̂r )

2

17.8. SYSTEMATIC SELECTION OF TRANSECTS

Many researchers will prefer a systematic selection of transects to avoid the uneven
coverage of the study region obtained with random sampling. Figure 17.7 shows a
systematic sample of 10 transect locations, evenly spaced from a single randomly
selected location along the initial tenth of the baseline. With such a sample, the
following results on unbiasedness or approximate unbiasedness of density estima-
tors will hold, but not the results on unbiasedness or approximate unbiasedness of
estimators of variance.

An unbiased estimator of variance is available for a systematic sample with
more than one randomly selected starting point, but the resulting coverage is not
as “even” as with the single starting point. For many natural populations, vari-
ance estimators designed to be used with simple random sampling will tend to
be conservative—tending to overestimate the actual variance—when used with
systematic sampling with a single starting point.

17.9. SELECTION WITH PROBABILITY PROPORTIONAL TO LENGTH

Transect lines may be selected with probability proportional to length by selecting
n points independently from a uniform distribution over the whole study area.
This may be accomplished by enclosing the study area in a rectangle and picking
random coordinate pairs until n locations within the study area are obtained. For
each point selected, a transect is selected through the point and perpendicular to
the baseline. A transect in a wide section of the study area—a long transect—has
a greater probability of selection because more points in the study area lead to its

Figure 17.7. Systematic sample of line transects.
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selection. The probability density function for transect location v along the baseline
is L(v)/A.

For a single transect selected by the design above, consider the estimator

D̂ = y

2wL(v)

where w is the effective half-width of the transect, v the intersection point of that
transect with the baseline, and L(v) the width of the study area—the length of the
transect—at that point.

Let zj be an indicator variable equal to 1 if the j th animal of the population
is detected and zero otherwise. Conditional on the selected starting point v, the
expected value of the estimator is

E

[
y

2wL(v)

]
= E

[ ∑τ
j=1 zj

2wL(v)

∣∣∣∣∣ v
]

=
∑τ

j=1 g(v − xj )

2wL(v)

Unconditionally under the design, the expected value is

E(D̂) = 1

2w

τ∑
j=1

∫ ∞

−∞

g(v − xj )

L(v)

[
L(v)

A

]
dv = τ

A
= D

Thus, D̂ is unbiased for D, assuming that w or f (0) is known. When an estimate
of w or f (0) = 1/w is substituted, the unbiasedness is approximate.

Denote by D̂i the estimator above for the ith transect in the sample. Each of
the n estimators is unbiased for D, so that their average

D̂p = 1

n

n∑
i=1

D̂i

is unbiased for D.
Since the n starting locations were selected independently and detections are

independent, the D̂i are independent and identically distributed random variables.
An unbiased estimator of the variance of their sample mean D̂p is therefore

v̂ar(D̂p) = 1

n(n − 1)

n∑
i=1

(D̂i − D̂p)2

When w or f (0) = 1/w are estimated, the unbiasedness of the estimator is only
approximate and the estimator of variance will be unbiased only with individual,
independent estimates ŵi or f̂i (0) for each transect. The methodology for estimating
w or f (0) and obtaining variance estimates with pooled estimators under sampling
with probability proportional to length is not yet well developed.



246 line and point transects

17.10. NOTE ON ESTIMATION OF VARIANCE FOR THE KERNEL
METHOD

If the observed distances were independent, as well as identically distributed, one
could obtain an estimate of the variance of D̂ from the kernel estimator, since the
terms K(xj/h) would be independent and identically distributed. It would then be
straightforward to estimate the variance of D̂ or f̂ (0) using the sample variance
of the K(xj/h). However, the observed distances, although identically distributed
due to random location of the transect, are not independent without additional
assumptions about the population itself. Independence of the observed distance
requires the assumption that the spatial distribution of the animals in the population
is random. Any tendency of the animals to aggregate, to defend territories, or to
be affected by a patchy environment will lead to correlations between distances
to animals observed from the same transect. With extremely patchy populations,
one may, for example, detect animals mostly at short distances from one transect
and at long distances from another. These correlations in observed distances will
occur even though detections may be conditionally independent—that is, given the
locations of two animals, detection of one from a given transect does not affect
detection of the other.

If n transects are selected by random sampling, then if f (0) is known, an unbiased
estimator of the population density D is

D̂ = 1

n

n∑
i=1

D̂i = yf (0)

2E(L)

where D̂i = yif (0)/2E(L), yi is the number of animals detected from transect i

and E(L) is the expected value of transect length (see Section 17.11).
An unbiased estimator of the variance of D̂, assuming independence, is

v̂ar(D̂) = 1

n(n − 1)

n∑
i=1

(D̂i − D̂)2

If it is unrealistic to assume that the animals in the population are independently
located, however, we must look to the sampling design for help in estimating
variance.

If f (0) is to be estimated by the kernel method, one can either determine a
window width hi separately for each transect or determine a single window width
h from all of the distance data. In the first case, let

D̂i = 1

hiE(L)

n∑
j=1

K

(
xj

hi

)
and let

D̂ = 1

n

n∑
i=1

D̂i
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Since density estimators in general are not unbiased, D̂ is not unbiased for D,
although it is approximately unbiased. However, the variance estimator

v̂ar(D̂) = 1

n(n − 1)

n∑
i=1

(D̂i − D̂)2

is unbiased for the variance of D̂, because the D̂i are independent and identically
distributed due to the random selection on the n transect locations.

If the n transects have similar detectability conditions, a better estimate of f (0)
may be obtained by combining all the distance data from the survey. Let h be the
window width used. The estimator is

D̂ = yf̂ (0)

2E(L)
= 1

nhE(L)

n∑
i=1

yi∑
j=1

K
(xij

h

)
where xij is the distance to the ith transect line of the j th animal detected from
that transect. Define

D̂i = 1

hE(L)

yi∑
j=1

K
(xij

h

)
Then D̂ = (1/n)

∑n
i=1 D̂i and the variance estimator

v̂ar(D̂) = 1

n(n − 1)

n∑
i=1

(D̂i − D̂)2

is unbiased for the variance of D̂ if the window width h is fixed—not determined
from the data. Some bias is introduced into the variance estimator when h is
determined from the data. The bias would tend to be small if h is determined from
a great many observations and hence has a small variance. It could be reduced by
using a bootstrap or jackknife estimate of variance.

17.11. SOME UNDERLYING IDEAS ABOUT LINE TRANSECTS

Line Transects and Detectability Functions

Letting x denote a location in the study area, the detectability function g(x) gives
the probability that an animal at location x is detected by the observer. Figure 17.8
shows a line transect detectability function with exponential profile. Figure 17.9
shows a line transect detectability function with half-normal profile. In each case,
the detectability function has a ridge, usually assumed equal to 1 in height, directly
over the transect line and decreases with distance away from the line. When the
detectability curve is symmetric about the line and constant along the line, as is
usually assumed with line transects, it is sufficient to consider only the profile, as
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Figure 17.8. Detectability function of a line transect with exponential profile.

Figure 17.9. Detectability function of a line transect with half-normal profile.

in the curves of Figures 17.3 and 17.4. However, many of the basic results on
observations made with detectability functions hold no matter what the shape of
the detectability curve (see, e.g., Sections 17.14 and 17.15 and Chapter 22).

With transects selected perpendicular to a baseline, it will be sufficient that x

denote the projection of the animal’s location onto the baseline. Note that g(x) is a
conditional probability of detection, given that an animal is at location x, and says
nothing about the probability that an animal is at that location in the first place.
In practice, it is common to let x represent the perpendicular distance from the
transect line rather than a coordinate-point location in the study area. The distance
measured from a transect can be signed as positive or negative, depending on which
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side of the transect the animal is on. However, because the detectability function is
usually assumed to be symmetric, it will subsequently be convenient to work with
the absolute or unsigned distances.

The population total τ is the number of animals in the study region. The locations
of the τ individuals in the study region will be denoted x1, x2, . . . , xτ . To avoid
any assumptions about a process or model giving rise to the population, the τ

locations will be viewed as given and fixed. This viewpoint would be equivalent
to the fixed-population approach of classical sampling if the observations were
made through sample plots, in which every animal or plant could be counted
(perfect detectability), rather than transects with associated detectability functions.
Consideration of models giving rise to the spatial patterns of the population is
postponed until later.

Detections are assumed to be conditionally independent—detection of one ani-
mal not affecting the probability of detection for any other.

Single Transect

Consider a single line transect laid out in a region A, which is small enough so that
the probability of detection g(x) from the transect is positive everywhere in A. The
position of the transect is taken as given, so that no sample selection probabilities
are involved. Let g(x) be the detectability function associated with the transect. In
concept, g(x) may be viewed as a surface over the entire two-dimensional region,
of height everywhere between 0 and 1. In many specific line transect applications,
however, g(x) is viewed as a function of distance only, so that x represents per-
pendicular distance from the line rather than location. Typically, g(x) = 1 directly
over the transect line—corresponding to perfect detectability for any animal on
the line—with g(x) decreasing symmetrically toward zero to either side of the
line. It will be useful to proceed as if the detectability function were known before
examining the methods of estimating detectability. The actual number of animals
in the region A is τ , while the number detected from the transect is denoted y.

Average Detectability

If the transect is selected by a probability sampling design, an animal at location x

has an average detection probability under the design. Let ρ(x) denote the average
detectability under the design at location x. The sample is determined by selecting a
location ν along the baseline and running the transect perpendicular to the baseline
at ν. The detectability at x given the transect is located at ν is denoted gν(x), so
that ρ(x) = E[gν(x)]. Given the τ animals in the population at locations x1, . . . , xτ

and given the transect location ν, the conditional expectation of the number y of
animals detected is

E(y | s) = E

⎛⎝ τ∑
j=1

zj | ν
⎞⎠ =

τ∑
j=1

gν(xj )
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The unconditional expectation is

E(y) =
τ∑

j=1

ρ(xj )

If the transect could be selected in such a way that average detectability ρ(x) was
constant everywhere in the study area, then E(y) = τρ and an unbiased estimator
of τ would be

τ̂ = y

ρ

where ρ denotes the constant average detectability.

Random Transect

Many line transect methods in the literature are justified by reference to a transect
“selected at random,” so an expression for τ̂ of the form above will be unbiased.
The interest in random selection is motivated by the desire to obtain unbiasedness
without having to appeal to assumptions about the distribution of the population
itself—without having to assume, for example, that the animals are uniformly
distributed in the study region or that their locations are a realization of a station-
ary stochastic process. Such assumptions are deemed unrealistic for many natural
populations.

The essence of a randomly selected transect is the attainment of constant average
detectability over the study region. This goal is not easy to obtain exactly for line
transect sampling, because of problems with transects located near the boundary
of the study region. Suppose that the study region is a rectangle of width W and
length L, and that the starting location v for a transect of length L is selected from
a uniform distribution on the interval [0, W ]. The transect line is then positioned
perpendicular to the base of the rectangle. For the j th animal in the population,
let xj denote its projected position along the base of the rectangle, so that xj is a
value between 0 and W . The distance from the animal to the transect is |v − xj |
and the detectability is given by g(v − xj ), where g is a symmetric function about
zero.

With such a design, since v has uniform probability density on the interval [0,
W ], the average detectability for an animal at location xj is

ρ(xj ) = 1

W

∫ W

0
g(v − xj ) dv

But the integral above depends on the location xj of the animal. Suppose, for
example, that there is some maximum distance wmax beyond which no detection
can occur. Then g(x) = 0 for all x >wmax, so that no animals farther than distance
wmax from the transect are detected. Then for all locations at least distance wmax

from either side boundary of the study region, ρ(x) is a constant—call it ρ. For an
animal on the side boundary, ρ(xj ) = (1/2)ρ. For animals within distance wmax of
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the side boundary, the average detectability will be something intermediate between
(1/2)ρ and ρ.

Thus, the expected number of animals seen is

E(y) =
τ∑

j=1

ρ(xj ) ≤ τρ

so that, with τ̂ = y/ρ,

E(τ̂ ) ≤ τ

and the estimator would tend to underestimate the true number in the population.
Fortunately, in real situations, the boundary region may be very small relative

to the whole study region, so that the induced bias would be small. One could in
principle eliminate the bias by “wrapping around” the study rectangle, connecting
the two sides. To apply that in practice, however, would require that whenever a
transect was selected at distance v < w from one boundary, the observers would
run an additional transect at distance v from the other boundary—outside the study
region! The plan is not likely to become popular in practice.

Average Detectability and Effective Area

Because of the random selection of transects, each transect location has a uniform
distribution on the interval [0, B], and the average detectability ρ at any location
x in the study region is

ρ = 1

B

∫ wmax

−wmax

g(v) dv = 2w

B

where wmax is a distance beyond which detectability is zero (and with any minor
differences for points near the boundary avoided by the wraparound concept), and

w =
∫ wmax

0
g(v) dv

represents the area under the detectability curve.
Since detectability g(v) is zero beyond distance wmax from the line, the integral

w can be written

w =
∫ ∞

0
g(v) dv

The integral w is referred to as the effective half-width of the transect, because
of the interpretation that the same number of animals would be expected to be
seen in a strip plot of half-width w—that is, with perfect detectability to distance
w to either side of the line and zero detectability beyond that. The effective area
covered by the transect is thus 2Lw .
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The estimator

τ̂i = yi

ρ
= yiB

2w

is unbiased for the population total τ by the result in the section above on a single
random transect. Hence an unbiased estimator based on all n transects is

τ̂ = 1

n

n∑
i=1

τ̂i = y

ρ
= yB

2w

where y = (1/n)
∑n

i=1 yi is the sample mean of the numbers observed. Also, the
estimator D̂ = τ̂ /A is unbiased for population density D = τ/A.

Because of the independent selection of the n starting locations and the inde-
pendence of detections, the n estimators τ̂1, . . . , τ̂n are independent and identically
distributed. Hence, an unbiased estimator of the variance of their sample mean τ̂ is

v̂ar(τ̂ ) = 1

n(n − 1)

n∑
i=1

= (τ̂i − τ̂ )2

Effect of Estimating Detectability

The results above hold when the effective half-width w is known. In real situations,
a major endeavor in line transect methodology is the estimation of w or of 1/w
or some other aspect of detectability. When w or its reciprocal is estimated, the
unbiasedness of the results above holds only approximately, and an additional
term—based on Taylor’s approximation—enters the variance expression.

Suppose that either w is replaced by an asymptotically unbiased estimator ŵ,
or 1/w is replaced by an unbiased estimator 1̂/w and that y is uncorrelated with
ŵ or 1̂/w. Then D̂1 = (B/2A)(y/w) contains the ratio of two random variables,
while D̂2 = (B/2A)[y(1̂/w)] contains the product of two random variables.

Using Taylor’s theorem, D̂1 and D̂2 are approximately unbiased for D and
approximate variance formulas are

var(D̂1) ≈ B2

(2Aw)2
var(y) + D2

w2
var(w)

var(D̂2) ≈ B2

(2Aw)2
var(y) + w2D2var(1̂/w)

Equivalent expressions are given in Burnham et al. (1980), Seber (1982), and
elsewhere. For each of the variances, the first term is var(By/2Aw), the vari-
ance that would apply if w were known. Thus, estimation of the effective half-
width or equivalent aspect of detectability results in an additional component
of variance.
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Probability Density Function of an Observed Distance

When the data from a line transect are examined, typically there are more observa-
tions of animals a short distance from the line than far from it. When the transect
lines are located at random, one can assume that this distribution of sighting dis-
tances is due to the detectability function decreasing as a function of distance from
the line, rather than to any peculiarity in the distribution of animals in the study
area. In this section, the probability density function of the distance from the line of
an observed animal will be derived based on the random selection of transect lines,
without any assumptions about the distribution of animals. The locations of animals
in the study area will be taken as given and fixed during the time of the survey.

The main results of this section have been obtained in Burnham and Anderson
(1976), Ramsey (1979), and Seber (1973), under the assumption that the animals
are randomly distributed in the study area—that is, the locations of animals are
independent and the expected number of animals per unit area is constant through-
out the study region. Burnham and Anderson and Ramsey assume, in addition,
random selection of a transect. Since the distributions of many animal populations
are anything but random, we will determine in this section which of the results
hold based on the design alone.

Because of the random location of the transect perpendicular to a baseline of
length B, the probability density function of the distance of the j th animal from
the transect is the uniform density 1/B. The conditional probability of detecting the
j th animal, given that it is distance d from the line, is g(d). The probability that
the distance of the j th animal in the study region from the line is in the interval
(d, d + �d), where �d is a small positive number, is �d/B. The unconditional
probability that the j th animal in the study area is detected is the average detection
probability

ρ = 1

B

∫
g(x) dx = 2w

B

where w is the effective half-width of the transect.
The probability that the distance of the j th animal from the line is in the inter-

val (d, d + �d) and the animal is detected is g(d)�d/B. Thus, the conditional
probability that the distance is in the interval (d, d + �d) given that the animal
is detected is g(d)�d/Bρ = g(d)�d/2w. The probability density function for the
signed distance x from the j th animal to the line, given that the animal is detected,
is g(x)/2w, so that the probability density function for the absolute distance is

f (x) = g(x)

w

This distribution is the same for each of the τ animals in the population, due to
the random selection of the transect. However, the distance from animal j to the
transect is not independent of the distance from animal k to the transect, the joint
probabilities depending on the relative locations of the two animals.
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Thus, the absolute distances x1, . . . , xy of the y animals from the transect are
identically distributed with PDF f , but are not independent without additional
assumptions about a model giving rise to the distribution of animals in the popu-
lation.

The expected number of animals seen from the randomly selected transect line
is

E(y) = E

⎡⎣E

⎛⎝ τ∑
j=1

zj | v
⎞⎠⎤⎦ =

τ∑
j=1

E[g(v − xj )] = τρ = τ
2w

B

where zj is 1 if the j th animal is detected and zero otherwise, and xj is the
projected location of animal j along the baseline.

When the assumption g(0) = 1 of perfect detectability along the transect line is
made, then

f (0) = 1

w

Under this assumption,

E(y) = 2τ

Bf (0)

Thus, if the density f of the observed distances is known for zero distance, an
unbiased estimator of the number τ of animals in the study area is

τ̂ = yf (0)B

2

An unbiased estimator of population density D is

D̂ = yf (0)
B

2A

where A is in the area of the study region.
Suppose that the length of a transect located perpendicular to point ν along the

baseline is L(ν). If the transect traverses the entire study region, its length will
vary if the region is irregularly shaped. If the study region is wider than the length
of a transect, the baseline can be continued in parallel segments so that every point
in the study region is on some potentially selected transect. The area of the study
region may be written

A =
∫ B

0
L(ν) dν

The ratio A/B is the expected length E(L) of a transect:

E(L) =
∫ B

0
L(ν)

1

B
dν = A

B
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Thus, an unbiased estimator of density D, if f (0) is known, is

D̂ = yf (0)

2E(L)

If transect length is a constant L, the estimator is

D̂ = yf (0)

2L

17.12. DETECTABILITY IMPERFECT ON THE LINE OR DEPENDENT
ON SIZE

Estimators of the form D̂ = yf (0)/2L are appropriate when objects on the line are
sure to be detected, that is, when g(0) = 1. When g(0) < 1, the estimator should
have the form D̂ = yf (0)/2g(0)L, with estimates inserted for f (0) and g(0) or
their ratio. More generally, if g(x) is known for some distance x, not necessarily
zero, an estimate is given by D̂ = yf (x)/2g(x)L. Line transects in which g(0) is
not 1 are considered in Pollock and Kendall (1987), Quang and Lanctot (1991),
Schweder (1989), Schweder et al. (1991), and Zahl (1989).

For animals that occur in groups, the probability of detecting the group may be
dependent on group size. If any individual of such a group is detected, the number
of individuals in the group may be counted. For such “size-based” situations, the
groups may be considered the objects detected. Methods of estimation for size-
based line transect studies are given in Drummer and McDonald (1987), Otto and
Pollock (1990), Quang (1991), and Quinn (1981).

17.13. ESTIMATION USING INDIVIDUAL DETECTABILITIES

The following result gives a way to obtain an unbiased estimate of the total number
τ of animals in A: Let the estimator τ̂ be given by

τ̂ =
y∑

j=1

1

g(xj )

where xj is the location of the j th animal observed and g(xj ) is the probability of
detection at that location. If g(x)> 0 for all locations x in A, then τ̂ is an unbiased
estimator of τ , with variance

var(τ̂ ) =
τ∑

j=1

1 − g(xj )

g(xj )
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An unbiased estimator of this variance is

v̂ar(τ̂ ) =
y∑

j=1

1 − g(xj )

g2(xj )

Derivation of Result Above For the j th individual in the population, with location
xj , define the random variable zj to be 1 if that individual is detected and 0 other-
wise. The zj are independent—but not identically distributed—Bernoulli random
variables, with E(zj ) = g(xj ) and var(zj ) = g(xj )[1 − g(xj )]. The estimator τ̂ can
alternatively be written

τ̂ =
τ∑

j=1

zj

g(xj )

Hence the expected value is

E(τ̂ ) =
τ∑

j=1

E(zj )

g(xj )
=

τ∑
j=1

g(xj )

g(xj )
= τ

so τ̂ is unbiased for τ .
Because of the independence of the Bernoulli trials, the variance of τ̂ is

var(τ̂ ) = var

⎡⎣ τ∑
j=1

zj

g(xj )

⎤⎦ =
τ∑

j=1

g(xj )[1 − g(xj )]

g2(xj )
=

τ∑
j=1

1 − g(xj )

g(xj )

The variance estimator can be written alternatively as

v̂ar(τ̂ ) =
τ∑

j=1

1 − g(xj )

g2(xj )
zj

and its unbiasedness for var(τ̂ ) follows since E(zj ) = g(xj ), so that the derivation
is complete. �

Estimation of Individual Detectabilities

To use the estimator above, one would have to know or to estimate the detection
probability g(xj ) for each individual detected. Further, it is unlikely that the study
region is so small that all detection probabilities are greater than zero for a given
transect. However, a probability selection of the transect location can ensure that
all points in the study region have positive detection probability.

Hayne (1949) proposed an estimator of the above form for use in line transect
surveys in which each animal has a “flushing radius.” If the observer comes within
the flushing distance rj of the j th animal in the population, the animal will flush
and hence be detected. Note that rj is the radial distance from the observer to the
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animal when detected. Suppose that a transect is selected at random (i.e., a point is
selected with uniform probability along the width W of a rectangular study area),
and the transect is located perpendicular to the baseline and through the point.
Assume that the transect runs the whole length L of the study area. If the transect
intersects a circle of radius rj centered on the location xj of the j th animal, the j th
animal will flush and be detected as the observer walks the transect. The probability
that the transect intersects the circle is g(xj ) = 2rj /W , provided that the animal’s
location xj is not too close to the side boundary of the study region. The Hayne
estimator of the total is

τ̂H = W

2

y∑
j=1

1

rj

Since the study area of the study region is LW , the corresponding estimator of
density is

D̂H = 1

2L

y∑
j=1

1

rj

Studies have shown the Hayne estimator to be sensitive to errors in measuring
the distances rj and to departures from the assumption of circular flushing region
and to have larger variance than other estimators (see Gates 1979, p. 111; Seber
1982, pp. 39–40). Burnham (1979) generalized the Hayne method to allow for
elliptic flushing regions. The methods based on flushing distances are more closely
related to line-intercept methods than to most other line transect methods. Most
estimators used in line transect methods do not, in fact, endeavor to divide by
individual detection probabilities but use, instead, average detection probabilities
or the equivalent quantities effective areas observed or detection density on the
line.

17.14. DETECTABILITY FUNCTIONS OTHER THAN LINE TRANSECTS

Detectability functions can characterize many observational methods used in sur-
veys of populations of elusive objects. As such, detectability functions are a gener-
alization of the units of classical survey sampling. For a survey in which the study
region is divided into plots and every object is observed within a selected plot, a
plot is characterized by a detectability function that equals 1 over the plot and zero
elsewhere. A detectability function that equals some constant p (less than 1) over
a plot and zero elsewhere characterizes an observational unit in an aerial survey in
which detectability can be assumed constant over a selected plot or a trawl fishery
survey in which fish in the path of the net are caught with probability p. In line
transect surveys, the detectability function is usually assumed laterally symmetric
and decreasing with distance from the transect line. With variable circular plots, the
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detectability function is usually assumed radially symmetric and decreasing with
distance from the center.

Associated with a selected site or observational unit is a detectability function
g giving the probability of detection for any object (animal) in the study region as
a function of the location of the object relative to the site. Let x = {x1, x2} denote
a rectangular coordinate location relative to the site. The effective area observed
from the site is

a =
∫∫

g(x1, x2) dx1 dx2

For a plot, the effective area is the actual area of the plot. For a line transect,
the effective area is the volume under the detectability function, as in Figure 17.8
or 17.9.

A site may be randomly selected by selecting a location from a uniform dis-
tribution over the study region of area A. For simplicity, consider a rectangular
study region. To avoid the issue of unequal average detectability for objects near
the boundary of the study region, we assume that for a site near the boundary the
detectability function can be continued at the opposite side of the study region.
Conceptually, the study area is folded into a torus (doughnut) by joining the right
to the left side and then the top to the bottom. To accomplish this amazing feat
in reality would require observations from sites outside the opposite edges of the
study region, from which only detections within the study region are recorded. In
practice, if the study area is large relative to the maximum detection distance, the
boundary issues will be unimportant. Random selection of a site gives the same
average detectability ρ = a/A to every point in the study region.
With a randomly selected site, the expected value of the number y of animals
detected is E(y) = τρ = aD. Thus, an unbiased estimator of the total number τ of
animals in the study region is

τ̂ = y

ρ

and an unbiased estimator of animal density is

D̂ = y

a

With a random sample of n sites, with a detectability function of the same
shape centered at each, the estimator is D̂ = y/a, where y is the sample mean of
the numbers of animals observed.

An estimator of the form D̂ = y/a is appropriate no matter what the shape of
the detectability function, provided that a sampling design is used which gives
every location in the study region equal average detectability. The estimator is
design-unbiased under such a design; no assumptions are made about the spatial
distribution of the population. When the effective area a cannot be determined
with certainty, it or its reciprocal must be estimated. With a or 1/a replaced by
a consistent estimator, the design unbiasedness of D̂ is approximate only and an
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additional component of variance, associated with the estimation of a or 1/a, is
introduced.

In Chapter 22, the unified framework of detectability functions as observa-
tional units will be used to compare mean square errors of different observational
methods—each with the same effective area and including plots of different shapes,
line transects of different outlines, variable circular plots, and plots of constant
detectability—under an assumed model.

17.15. VARIABLE CIRCULAR PLOTS OR POINT TRANSECTS

In many surveys of birds and other hard-to-detect animals, a sample of sites is
selected in the study region, and at each site selected, the observer spends a specified
amount of time and records every individual of the species detected. If distance
or location relative to the observer is recorded for each detection, methods similar
to those for line transects can be used to estimate population density. Because the
probability of detection typically depends on distance from the point at which the
observer is stationed, the observational method is referred to as variable circular
plots or point transects . Discussions of statistical aspects of the method are found
in Buckland (1987), Burnham et al. (1980, p. 195), Quang (1993), Ramsey and
Scott (1979), and Ramsey et al. (1987, 1988).

In variable circular plot surveys, it is usually assumed that the detectability
function is radially symmetric, so that the probability of detection depends only
on the distance from the observer and not on the direction. An example of such a
function, with a half-normal profile, is shown in Figure 17.10.

With a radially symmetric detectability function, it is convenient to change to
polar coordinates. Let r be the radial distance from the observer and θ the angle
to the object detected. The rectangular coordinates w1 and w2 may be obtained as
w1 = r cos(θ) and w2 = r sin(θ). The effective area is

a =
∫∫

g(x1, x2) dx1 dx2

=
∫∫

rg[r cos(θ), r sin(θ)] dr dθ

Since g does not depend on θ and
∫

dθ = 2π , the effective area may be written

a = 2π

∫ ∞

0
rgr(r) dr

where gr(r) is the probability of detection for an object at distance r from the
observer.

With random sampling, the probability density function of observed distance
given detection of an individual is

f (r) = 2πrgr(r)

a
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Figure 17.10. Detectability function of a variable circular plot with half-normal shape.

so that

f (r)

r
= 2πgr(r)

a

With the assumption gr(0) = 1,

lim
r→0

f (r)

r
= 2π

a

Since f (0) = 0, the limit of f (r)/r is the derivative at zero f ′(0). Thus, estimation
of the slope at zero of the density of observed distances is equivalent to estimating
the reciprocal of effective area, and an estimate of density is

D̂ = yf̂ ′(0)

2π

Quang (1993) uses kernel methods to estimate f ′(0). Burnham et al. (1980), Ram-
sey and Scott (1979), and Ramsey et al. (1987) point out that when each observed
radial distance r is transformed to the area variable z − πr2, the estimator is
D̂ = yf̂z(0), where fz(z) is the density function of the observed areas. The prob-
lem is then identical to that of line transects, in which the object is to estimate
density at zero. However, Buckland (1987) warns that some of the usual line tran-
sect methods do not work well with the area data; as one alternative, Buckland
introduces binomial methods in which every detection distance is classified into
one of two distance categories.

EXERCISE

1. On a line transect survey, the observer recorded the following distances (in
meters) from detected birds to the transect line: 0, 1, 1, 2, 3, 3, 4, 6, 7, 7,



exercise 261

9, 12, 17. The transect line is 50 m long. Estimate the density of the bird
population by three of the following methods. List key assumptions that go
with each method you use.

(a) Narrow strip

(b) Smooth-by-eye

(c) Exponential detectability

(d) Half-normal detectability

(e) Normal kernel

(f) Fourier series
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Capture–Recapture Sampling

In capture–recapture sampling to estimate the total number of individuals in a
population, an initial sample is obtained and the individuals in that sample are
marked or otherwise identified. A second sample is obtained independently, and
it is noted how many of the individuals in that sample are marked. If the sec-
ond sample is representative of the population as a whole, the sample proportion
of marked individuals should be about the same as the population proportion of
marked individuals. From this relationship, the total number of individuals in the
population can be estimated.

Capture–recapture methods have been used to estimate the abundance of animal
populations, including bird, mammal, fish, reptile, insect, and other species, to
estimate the detectability of animals for other survey methods, and to estimate
survival and other population parameters. Capture–recapture methods have also
been used to estimate the abundance of elusive human populations such as the
homeless, to adjust for census undercounts of minority groups, and to estimate the
number of vital events such as accidents in a population.

The animals or other individuals need not literally be captured or marked or
recaptured. If it is possible to identify individual animals by natural markings, then
two independent sighting surveys may be carried out, and the number of individuals
sighted in both surveys is the number of “recaptures.” Similarly, if a number of
animals in a population have been fitted with radio transmitters and hence have
known locations, then in a survey in which observers detect animals by some means
independently of the transmitters, the number of transmitter-fitted animals detected
is the number of recaptures. For other species, however, it may be necessary to
capture the animals by such means as traps or nets, and to mark them with bands,
tags, coded wire implants, paint, or streamers.

For human populations, the two samples often consist of two lists. For instance,
the first list may be from the census data and the second list may be data from a
follow-up survey. Or the first list may be health department records of accidents,
and the second list may be insurance company records.

Sampling, Third Edition. Steven K. Thompson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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In more complex capture–recapture animal studies, animals may be captured
and released on several different occasions, with the capture history of any animal
in the sample identifiable from the previous marks. Complicating factors include
capture probabilities that vary from animal to animal or from sample to sample,
mortality caused by tagging, mortality between sample times, births, immigration
and emigration from the study area, and animals becoming “trap happy” or “trap
shy” through the handling procedure.

Reviews and basic references on capture–recapture methods include Cormack
(1979), Otis et al. (1978), Pollock (1981, 1991), Pollock et al. (1990), and Seber
(1973, 1982, 1986, 1992). Seber (1973) classified the methods of mark–recapture
according to whether the population was closed—no change in the population
during the period of the study—or open—allowing for births, deaths, immigration,
and emigration—and according to whether there is a single mark–release or several
mark–releases. Recent articles on the use of capture–recapture methods for elusive
human populations include Cowan and Malec (1986), Freedman (1991), Sudman
et al. (1988), and Wolter (1986, 1991).

In the following summary of simple capture–recapture methods, a notation is
used to facilitate consideration of sampling design aspects, while keeping subscripts
to a minimum. The total number of individuals in the population is denoted τ , while
the total number of marked individuals in the population, which is also the number
of individuals in the initial sample, is X. The number of individuals in the second
sample is y, of which x are marked. A sample of size n refers to a selection of
n units—whether plots, strips, trawl paths, trap attraction regions, line transects,
variable circular plots, or other detectability units—by which individuals in the
population are observed.

18.1. SINGLE RECAPTURE

In a simple capture–recapture survey of the animal population, an initial sample
of X animals is captured, marked, and released back into the population. A second
sample, of y animals, is then captured independently, of which some number x are
observed to be marked. If the second sample is representative of the population as
a whole, the proportion of marked animals in the sample will be about the same
as the proportion of the whole population in the sample. The total number τ of
animals in the population may then be estimated by assuming that the proportion of
marked animals in the second sample is representative of the proportion of marked
animals in the population, that is, by setting

x

y
= X

τ
(18.1)

and solving for the unknown population size τ . Equivalently, the proportion of
the marked animals in the population that is captured in the second sample should
approximately equal the proportion of the population as a whole captured in the
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second sample, that is,

x

X
= y

τ
(18.2)

Solving either equation for the unknown population total τ gives the Petersen
estimator

τ̂ = y

x
X (18.3)

An estimator of the variance of τ̂ (Sekar and Deming 1949) is

v̂ar(τ̂ ) = Xy(X − x)(y − x)

x3
(18.4)

A simple, approximate 100(1 − α)% confidence interval is the standard

τ̂ ± z
√

v̂ar(τ̂ )

where z is the upper α/2 point of the normal distribution.
Because the number x of marked animals in the second sample may be zero,

the estimator τ̂ does not have a finite variance. Therefore, the following modified
estimator τ̃ was proposed by Chapman (cf. Seber 1982, p. 60):

τ̃ = (X + 1)(y + 1)

x + 1
− 1 (18.5)

An approximately unbiased estimator of the variance of this modified estimator
(Seber 1970, 1982, p. 60) is

v̂ar(τ̃ ) = (x + 1)(y + 1)(X − x)(y − x)

(x + 1)2(x + 2)
(18.6)

A simple, approximate 100(1 − α)% confidence interval for the Chapman estima-
tor is

τ̃ ± z
√

v̂ar(τ̃ ) (18.7)

where z is the upper α/2 point of the normal distribution.
Alternative confidence interval procedures proposed for these estimators include

exact methods under an assumed distribution, Monte Carlo or bootstrap intervals
(Buckland 1980, 1984), intervals based on the approximate distribution of the
reciprocal or other transformation of the estimator (Jensen 1989; Manly 1984; Seber
1973), and likelihood-based methods (McDonald and Palanacki 1989; see also Otis
et al. 1978, and reviews in Seber 1982, 1986, 1992). Large sample properties of
estimators in capture–recapture are reviewed in Sen (1988).

Example 1: Single Recapture. In a field study X = 300 mice are caught in traps,
tagged, and released. A few days later the researchers return to the study area and
independently capture y = 200 mice, of which they find that x = 50 have tags.
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The Petersen estimate of the number of mice in the population [from
Equation (18.3)] is

τ̂ = 200

50
(300) = 1200

The estimated variance for the Petersen estimate [from Equation (18.5)] is

v̂ar(τ̂ ) = 300(200)(300 − 50)(200 − 50)

503
= 18,000 (18.8)

giving a standard error of
√

18, 000 = 134.2. An approximate 95% confidence
interval is 1200 ± 1.96(134.2) = 1200 ± 263 = (937, 1463).

The Chapman estimate [from Equation (18.6)] is

τ̃ = 301(201)

51
− 1 = 1185.3 ≈ 1185

The estimated variance [from Equation (18.5)] is

v̂ar(τ̃ ) = 301(201)(250)(150)

512(52)
= 16,774.5

giving a standard error of
√

16,774.5 ≈ 129.5. �

18.2. MODELS FOR SIMPLE CAPTURE–RECAPTURE

In the general multinomial model for a single capture and recapture of a closed
population, the capture or detection history of any animal in the population can be
categorized into exactly one of four categories: detected on both first and second
occasions, detected on first but not on second, detected on second but not on first,
detected on neither occasion. Thus, a multinomial model, with the four probabilities
for the four cells adding to 1, applies to the capture history of each animal. If, in
addition, on each sampling occasion the detection outcomes for different individuals
are independent, the model for the numbers of individuals with each capture history
will be a product of multinomials. In the general model, the probability of detection
may be different for different individuals and for different sampling occasions.
The general model contains too many parameters in relation to the number of
observations, so that further restrictions are needed for effective estimation of τ or
detection probabilities.

One such restricted model assumes that detection probability is the same for each
individual in the population during a sampling occasion but may differ for the two
samples. Independence between the two sampling occasions is also assumed. With
this model, the maximum likelihood estimator (MLE) of the population total is the
integer part of the Petersen estimator τ̂ = Xy/x. The (MLE) of the probability p1

of capture in the first sample is p̂1 = x/y. The MLE of capture probability for the
second sample is p̂2 = x/X. Even if capture probabilities are different for different
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individuals at the first sample but equal at the second sample, the estimator is still
the Petersen estimator (Ahlo 1990).

If a single capture probability p applies to both samples and to all individuals,
with independence between samples, the maximum likelihood estimators of p and
τ are p̂ = 2x/(X + y) and τ̂ = (X + y)/2p̂.

Another of the models allows for behavioral response to capture, so that an
individual’s probability of capture at the second sampling event depends on whether
the individual was captured previously. Of the models allowing for different capture
probabilities for each individual, one model assumes that for each individual the
probability is the same on each sampling occasion. Estimation with this model
is practical only with more than two occasions or when capture probabilities are
restricted to depend on auxiliary variables.

If the numbers X and y of individuals in the two samples are fixed and the
second sample is a simple random sample (without replacement) of the individuals
in the population, the number x of marked animals in the second sample has a
hypergeometric distribution. With equal capture probabilities among individuals,
this is the conditional distribution under the multinomial model of x given X and
y. Under this model, the maximum likelihood estimator of τ is again the integer
part of the Petersen estimator. Inverse sampling refers to designs in which x is
fixed in advance, so that y is a random variable—sampling continues until the
second sample contains the prescribed number x of marked individuals.

Under the Poisson model, the numbers of individuals in the capture-history
categories are assumed to be independent random variables. It follows that under
this model, the total number τ of individuals in the population is also random.

Reviews and descriptions of models in capture–recapture surveys are found in
Cormack (1979), Otis et al. (1978), Pollock et al. (1990), Seber (1982, 1986, 1992),
and Wolter (1986). General statistical treatments of categorical count data include
Agresti (1984, 1990) and Bishop et al. (1975).

18.3. SAMPLING DESIGN IN CAPTURE–RECAPTURE: RATIO
VARIANCE ESTIMATOR

In the models above, the capture or detection of one individual is assumed inde-
pendent of the capture of other individuals, or, in the case of the hypergeometric
model, the second sample is a simple random sample without replacement of indi-
viduals. When the observations come from a sample of units such as groups of
names, plots, trap locations, paths of nets, line transects, or variable circular plots,
the sample does not consist of a simple random sample of individuals nor are indi-
viduals detected independently. For such cases, models of the foregoing types are
useful for assessing the nonsampling variability. The sampling variability, which
depends on the way the sample is obtained and is influenced by such factors as
spatial heterogeneity and between-group differences, may, however, account for
the largest part of the variance of τ̂ .

Ideally, one would like the animals in the population surveyed by
capture–recapture to behave like beans in a bowl. To estimate the number of
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beans in the bowl, take out a set number, mark them with a pen, return them to
the bowl, and stir thoroughly. That way, the marked beans will be evenly mixed
in with the unmarked beans, and the second sample can be considered a random
sample of beans from the population, each bean having the same probability of
being selected, and each combination of that number of beans having the same
probability of being selected. For an animal population in which it is possible to
select a truly simple random sample, the hypergeometric model for the number
of marked animals in the second sample may apply almost as well as to the
number of marked beans. The multinomial model may apply reasonably well to
a wildlife survey in which the samples are selected by canvassing a study region
from a helicopter, landing to mark every animal detected on the first sampling
occasion, and noting how many of those observed on the second occasion are
marked, so that neither sample size is fixed. With such a methodology, it may be
reasonable to assume that the inclusion of one animal in a sample is independent
of the inclusion of any other animals, so that the product-of-multinomials
model applies.

Now imagine a simple capture–recapture survey of an animal population in
which the original sample is obtained with traps at set locations in a study region.
Associated with each trap may be an attraction region of unknown shape and size,
depending on such factors as the trap bait and wind direction and the movements of
animals. The marked animals returned to the population may distribute themselves
very unevenly in the study region, perhaps in relation to the locations in which they
were trapped or in which they were released, with the result that the distribution
of marked animals in the population may be atypical of the population as a whole.
As a result, the proportion of animals with marks may be quite different in one
part of the study area than in another.

All would still be according to standard models if for the second sample one
could truly select a simple random sample of individuals from the population or
have the detection of one individual independent of another. But in many situations
that is not feasible. Instead, one may obtain the second sample of animals through
a sample of area units, transects, trawls, traps, plots, or other type of detectability
units. With such observational methods, individual animals are not independently
selected, even if the units are. With each transect or other unit, a batch of individuals
is obtained. With the marked animals distributed unevenly in the population, the
observations from one transect or unit in the sample may contain a very high
proportion of marked animals, while another, in a different part of the study region,
may have a low proportion.

In the following, random selection of detectability units, with and without
replacement, is applied to capture–recapture sampling. Random selection of obser-
vational units such as line transects and variable circular plots, with consideration
of problems at the boundary of a study region, were discussed in Chapter 17. The
somewhat similar problem of unknown overlap of trap attraction areas with a study
region boundary is described in Otis et al. (1978, pp. 67–69).
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Random Sampling with Replacement of Detectability Units

Suppose that a random sample (with replacements, for simplicity) of n transects,
plots, or other type of units is selected. For the ith such unit in the sample, let yi

denote the number of animals observed and xi the number of those that are marked.
The total number of animals observed in the second sample is

∑n
i=1 yi , of which∑n

i=1 xi are marked. Let y and x denote the sample means as usual. The total X of
marked individuals in the population is known, assuming a closed population—it
is the number marked and released at the first sampling occasion.

The Petersen estimate of the number of animals in the population is

τ̂ =
∑n

i=1 yi∑n
i=1 xi

X = y

x
X (18.9)

which is a classical ratio estimate.
The usual adjusted ratio estimate of variance would be

v̂ar(τ̂ ) =
(

X

x

)2 1

n(n − 1)

n∑
i=1

(yi − rxi)
2 (18.10)

where r = y/x. A variance estimate based on the reciprocal of the sample ratio is
given in Seber (1982, p. 114).

An approximate 100(1 − α)% confidence interval is given by

τ̂ ± t
√

v̂ar(τ̂ ) (18.11)

where t is the upper α/2 point of the t distribution with n − 1 degrees of freedom.
Coverage probability might be improved slightly by using the reciprocals of the
endpoints of the normal confidence interval for τ̂−1. [Under the hypergeometric
model, slight improvement in coverage probabilities was achieved with reciprocal-
based confidence intervals in capture–recapture simulations reported in Buckland
(1984).] Confidence intervals could also be obtained with the jackknife or bootstrap
methods, with the resampling done in terms of the n independently selected tran-
sects or units, not in terms of the nonindependently occurring animals (see Sections
18.6 and 18.7).

The ratio estimator has low variance when the yi tend to be proportional to
the xi , which would tend to hold if the marked animals were very evenly dis-
tributed throughout the population. Uneven distribution of the marked animals
would increase the variance. If the marked animals were so unevenly distributed
in the study region that every one of the xi-values of the n units in the sample
could simultaneously equal zero for some samples, the ratio estimator, like the
usual Petersen estimator, would not have a finite variance. The more spread out
the marked animals in the study region and the larger the units and the sample
size, the less likely it is that this possibility would arise.
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Example 2: Random Sample with Replacement of Detectability Units. In a bird
population, 382 birds in the study area were trapped with mist nets and marked
conspicuously with bands that could be spotted by observers with binoculars. The
second sample was made by observers walking along n = 8 transects selected at
random in the study area, who recorded the numbers of birds of the species they
saw and noted whether they were banded. The (y, x) data from the second sample,
with y the number of birds seen from the transect and x the number of those that
were marked, were (33, 20), (13, 2), (1, 0), (45, 15), (21, 5), (82, 39), (14, 4), and
(0, 0).

Distances were not recorded, and nothing was known about the shape of the
detectability function associated with a transect, except that with the random place-
ment of the transects, average detectability was assumed to be equal for each
individual in the population. The total number seen in the second sample was 209,
of which 85 were marked. The sample ratio is r = 0.209/85 = 2.459. The ratio
(Petersen) estimate of the population total [Equation (18.9)] is τ̂ = 2.459(382) ≈
939. The estimated variance [Equation (18.10)] is

v̂ar(τ̂ ) =
(

382

10.625

)2 1

8(7)
{[33 − (2.459)(20)]2 + · · · + [0 − (2.459)(0)]2}

= 15,698

the square root of which is 125.
The usual multinomial model variance estimate [Equation (18.8)], on the other

hand, would be v̂ar(τ̂ ) = 382(209)(382 − 85)(209 − 85)/853 = 4789, with a
square root of 69. It appears that this estimator underestimates the variance by
ignoring the spatial heterogeneity and the lack of independence among animals,
both factors in the way the second sample was obtained. �

Random Sampling without Replacement

Without-replacement sampling is possible when individuals on a list are grouped
into nonoverlapping units for selection or when a spatial study region is partitioned
into area units, with constant probability of detection applying to all individuals in
a selected unit. Capture–recapture designs in which the second sample consists of
a random sample without replacement of n units out of N in the population and
the probability of detection or capture is constant for all individuals in a sampled
unit are described in Seber (1982, pp. 111–114) and Wolter (1986). The estimator
of population total τ is the Petersen estimator. Two estimators of variance under
this design are given by Wolter, one of which has the form

v̂ar(τ̂ ) =
(

X

x

)2
N − n

Nn(n − 1)

n∑
i=1

(yi − rxi)
2 + Xy(μx − x)(y − x)

x3 (18.12)

where μx = X/N . Wolter gives in addition a finite-population central limit theorem
for the asymptotic normality of the Petersen estimator under simple random sam-
pling without replacement of units.



estimating detectability with capture–recapture methods 271

18.4. ESTIMATING DETECTABILITY WITH CAPTURE–RECAPTURE
METHODS

Capture–recapture methods for estimating population size also explicitly or implic-
itly come up with estimates or probabilities of detection or capture. For example,
the Petersen estimator has the form, in common with many other estimators of
population abundance or density in which detectability is imperfect,

τ̂ = y

p̂
(18.13)

where p̂ = x/X estimates the detection probability in the second sample.
Capture–recapture methods can also be used to estimate detectability for other,
independent surveys to be done with the sampling methods of the second sample.

With the hypergeometric distribution of x, the variance of the estimated
detectability, given X and y, is

var(p̂) = y

X2

(
X

τ

) (
1 − X

τ

)
τ − y

τ − 1
(18.14)

With random selection (with replacement) of n units—such as observation sites,
trap sites, line transects, trawls, plots, or strips—and observation of xi marked
animals at the ith unit, an estimate of the detectability per unit is p̂ = x/X, where
x = ∑n

i=1 xi . A design-based estimate of its variance is v̂ar(p̂) = s2
x/X2n, where

s2
x = ∑n

i=1(xi − x)2/(n − 1).

Example 3: Estimating Detectability. In the mouse example (Example 1), the
probability of capture in the second sample is estimated as p̂ = 50/300 = 0.17. An
estimate of the variance of the estimator of detectability, using Equation (18.14)
with τ̂ in place of τ , is

v̂ar(p̂) = 200

3002

(
300

1200

) (
1 − 300

1200

) (
1200 − 200

1200 − 1

)
= 0.00035

giving a standard error of about 0.02.
A number of authors (Ahlo 1990; Overton 1969; Pollock and Otto 1983) have

presented estimators in the form τ̂ = ∑τ
i=1 zi/π̂i , where zi is an indicator variable

equal to 1 if the ith individual in the population is included in one or more samples,
and π̂i is an estimate of the probability of inclusion (detection) of that individual in
at least one of the samples. With known inclusion probabilities, the estimator, as a
Horvitz–Thompson estimator, would be unbiased. With the probabilities estimated
explicitly or implicitly by various methods, substantial biases can arise (Burnham
and Overton 1978; Otis et al. 1978; Pollock and Otto 1983). Ahlo (1990) and
Pollock et al. (1984) used logistic regression of capture probabilities with auxiliary
variables in obtaining estimates of population size where individual probabilities
may vary. �
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18.5. MULTIPLE RELEASES

Capture–recapture methods extend to situations with more than two sampling
occasions. Suppose that a series of k independent samples containing set num-
bers y1, y2, . . . , yk of animals are captured from a closed population (cf. Schnabel
1938). With the ith sample, the number xi of marked animals is observed; then the
animals are given new marks before release. (Note that x1 = 0.) Given the numbers
of individuals in each sample, the model for the set of observed numbers marked
is a product of hypergeometric distributions:

f (x2, x3, . . . , xk) =
k∏

i=2

(
Xi

xi

) (
τ − Xi

y1 − xi

)/(
τ

yi

)
(18.15)

where Xi is the number marked in the population when (just before) the ith sample
is taken.

The value of τ that maximizes the probability above is the maximum likelihood
estimate of the population size. The solution must be obtained iteratively.

Example 4: Multiple Recaptures. To estimate the number of fish in a small lake,
y1 = 20 fish of the species are caught with barbless hooks. Before release, each is
marked with a small notch in one of the fins. The next day, y2 = 20 fish are caught
and marked with a different shape of small notch. Of these, x2 = 2 are found to
have the first mark already and so return to the water with both marks. On the third
day, y3 = 20 fish are caught and given a third mark, distinguishable from the other
two. Of these, 15 had no marks, and x3 = 4 had one or more marks as follows: 2
had only first-day marks, 1 had only second-day marks, and 1 had both first- and
second-day marks.

The likelihood or probability function for the recapture numbers [using
Equation (18.15)] is

f (x2, x3) = f (2, 4) =

(
20
2

) (
τ − 20

18

)(
38
4

)(
τ − 38

16

)
(

τ

20

) (
τ

20

)

Finding the value of τ that maximizes this likelihood is only a computational
problem. One could proceed by trial and error or with a more efficient search
procedure. (In fact, with three capture times a closed-form solution exists; see
Seber 1982, p. 132.) The value of τ that maximizes the likelihood is τ̂ = 193.

The data from the three sampling dates may also be summarized in terms of
the counts of fish with each possible catch history. The catch history of any fish in
the lake could be identified by its mark pattern. An unknown number of fish, with
catch history denoted (000), have never been caught. The catch history of a fish
caught on day 1 but not on day 2 or day 3 is denoted (100); the total number of
such fish is 16—from the 20 caught on the first day are subtracted the 2 recaught
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on the second day and the 2 recaught for the first time on the third day. The catch
history of a fish caught on the first and third days but not the second is denoted
(101), and so on.

With three sample dates, the number of possible capture histories is 23 = 8.
Assuming a closed population, the number of fish with each catch history are as
follows: Unknown (000), 16 (100), 17 (010), 1 (110), 16 (001), 2 (101), 1 (011),
and 1 (111). The number of distinct fish handled during the three sampling dates
is 54, the sum of the counts above. �

18.6. MORE ELABORATE MODELS

With a sequence of samples from a population with deaths, recruitment, immigra-
tion, and emigration, the underlying probability model involves many unknown
parameters. A general model, allowing in addition for deaths induced by the han-
dling and tagging procedure, was given by Jolly (1965) and Seber (1965) and
extended in various ways by other authors (see Seber 1986). In the Jolly–Seber
model, the probability of capture may vary from sample to sample, but is assumed
the same for all animals at each capture period. Similarly, the probability of
surviving from one sampling period varies with sampling period but not with
individuals. Accidental death due to handling in capture can be incorporated,
and the model can be generalized to allow for capture probabilities dependent
on capture history. Maximum likelihood estimates of parameters such as survival
rates may be obtained in addition to population size. The estimates are obtained
iteratively and, because of the complexity of the model, demand rather large sam-
ple sizes. The underlying models used with the Jolly–Seber method are products
of multihypergeometric or multinomial distributions. Improved methods for vari-
ance estimation and confidence intervals are given in Manly (1984) and Seber
and Manly (1985). Nonparametric bootstrap methods for variance estimates and
confidence intervals for mark–recapture are described in Buckland (1984, 1988);
comprehensive reviews of the literature and methods are found in Seber (1982,
1986, 1992).

A relatively recent approach to analyzing mark–recapture experiments, which
appears promising for open populations, uses log-linear models (Agresti 1990;
Cormack 1980, 1981, 1985, 1989). With these models, the logarithm of the expected
number of animals with a given capture history is a linear function of a set of
biologically interpretable parameters.

EXERCISE

1. In a capture–recapture survey, 10,000 salmon were released after marking by
inserting small wires. When 6000 fish from the population were subsequently
caught, 400 of the wire tags were discovered by running the fish through a
metal detection device.
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(a) Estimate the number of fish in the population.

(b) Give an approximate 95% confidence interval for the estimate.

(c) Suppose that the detection device missed some of the wire tags. Would
overestimation or underestimation of the population tend to result?

(d) If the wire tags caused significant numbers of fish to die soon after release,
would overestimation or underestimation tend to result?
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Line-Intercept Sampling

In line-intercept sampling, a sample of lines is selected in a study area, and
whenever an object of the population is intersected by one or more of the sample
lines, a variable of interest associated with that object is recorded. Consider, for
example, an ecological habitat study in which the object is to estimate the total
quantity of berries of a certain plant species in a study area. A random sample of
n lines, each of length l, is selected and drawn on a map of the study area. Field
workers walk each of the lines and, whenever the line intersects a bush of the
species, the berries of that bush are collected and their quantity yk measured.

With the design described above, a large bush has a higher probability of inclu-
sion in the sample than does a small bush. Unbiased estimation of the population
quantities depends on determining these probabilities.

19.1. RANDOM SAMPLE OF LINES: FIXED DIRECTION

In the simplest design, n transect lines are selected at random by selecting n

positions along a baseline of length b that traverses the width of the study region
and running a transect across the study area perpendicular to the baseline at each
of the selected positions.

Let K denote the number of objects in the population. Associated with the kth
object is a variable of interest yk . The object is to estimate the population total
τ = ∑K

k=1 yi or the density per unit area D = τ/A, where A is the area of the
study region.

On any given draw, the probability that the transect line selected intersects the
kth object is proportional to the width wk along the baseline of the set of points for
which the perpendicular intersects object k. Thus, wk is the width of the “shadow”
cast by object k on the baseline. The draw-by-draw selection probability is

pk = Wk

b
(19.1)

Sampling, Third Edition. Steven K. Thompson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Let Ci be the set of objects of the population that are intersected by the ith transect
line in the sample. For each of these intersected objects, divide the value of the
variable of interest yk by the selection probability pk and define the new variable
vi as the sum

vi =
∑
k∈Ci

yk

pk

(19.2)

The variable vi is itself an unbiased estimator of the population total τ . The random
sample of n transects gives v1, v2, . . . , vn, which are independent and identically
distributed. Their sample mean

τ̂p = 1

n

n∑
i=1

vi (19.3)

is thus an unbiased estimator of τ with variance var(τ̂p) = (1/n)var(vi). The esti-
mator τ̂p is akin to the Hansen–Hurwitz estimator in being based on draw-by-draw
selection probabilities. In the present design, however, objects are not selected
independently, since joint selections occur with lines that intersect more than one
object.

Let s2
v denote the sample variance of the v’s, that is,

s2
v = 1

n − 1

n∑
i=1

(vi − τ̂p)2 (19.4)

An unbiased estimate of the variance of τ̂ is

v̂ar(τ̂p) = s2
v

n
(19.5)

There is no finite-population correction factor because selection of positions along
the baseline is essentially with replacement. Even with distinct transect positions,
a given object may be intersected by more than one transect line and hence be
counted more than once in the estimator τ̂ .

An estimate that depends only on the distinct objects intersected by the sample
of transect lines may be obtained by the Horvitz–Thompson method. Let κ be
the number of distinct objects intersected. The probability that the kth object is
included in the sample is

πk = 1 − (1 − pk)
n (19.6)

The Horvitz–Thompson estimator is

τ̂π =
κ∑

k=1

Yk

πk

(19.7)
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The variance formulas for the Horvitz–Thompson estimator depend on the joint
inclusion probabilities. Let wkh denote the width along the baseline of the set of
positions from which the perpendicular line intersects both objects k and h. The
total width along the baseline from which either object k or object h or both are
intersected is wk + wh − wkh. The probability that both object k and object h are
intersected at least once by the sample transects is

πkh = πk + πh − 1 +
(

1 − wk + wh − wkh

b

)n

(19.8)

The Horvitz–Thompson variance and estimated variance formulas [Equations (19.5)
and (19.6)] may then be used for τ̂π .

From each type of estimator of population total, an estimator of population
density may be obtained as

D̂ = 1

A
τ̂ (19.9)

with

var(D̂) = 1

A2
var(τ̂ ) (19.10)

If the study region is rectangular of width b with each transect running constant
length l across it, the area A = bl. If the transect is of irregular shape, the length
li of the ith randomly selected transect is a random variable, with expected value
E(li) = A/b (Seber 1979). If the study region is farther across than the maximum
length l of a single transect, the baseline may be continued in parallel lines distance
l apart. The estimators given above are unbiased for τ or D whether the lines are
of equal length or not. Ratio and mean-of-ratios estimators based on transect length
were examined by Seber (1979). In common with other ratio-type estimators, these
estimators are slightly biased.

Example 1: The data for this example are from Becker (1991) and Becker and
Gardner (1990). To estimate the abundance of wolverines in a study region, selected
transects are flown in appropriate weather conditions with observers in the aircraft
looking for tracks in the snow. Once a set of tracks is encountered, it is followed
in each direction and mapped. For the kth set of tracks, the variable of interest yk

is the number of wolverines associated with that set.
The results from such a survey are shown in Figure 19.1, depicting a rectangular

study region 36 miles by 20 miles in the Chugach Mountains of Alaska. The
sampling designs consisted of n = 4 randomly selected positions for transects that
were systematically arranged. The four random starting positions (A1, B1, C1, and
D1 in the figure) were selected from the first 12 miles (b = 12) along the width of
the study area. From each starting position selected, a transect was flown across the
study region, with two more transect segments (e.g., A2 and A3 for starting position
A1) added systematically at 12-mile intervals from the starting positions. Note that
no complication is added by the fact that the design is a replicated systematic



278 line-intercept sampling

Figure 19.1. Wolverine tracks intersected by a systematic sample of transects with four randomly
selected starting points. (From Becker 1990, 1991.)

sample, since we have in effect a simple random sample of four transects selected
within the first 12 miles, with each transect selected continued in three segments.

The selected transects intersected κ = 4 distinct sets of tracks, containing 6
wolverines. Numbering the sets of tracks from east to west and north to south, the
numbers of wolverines were y1 = 1, y2 = 2, y3 = 2, and y4 = 1. The widths of the
projections of the tracks onto the base of the study region are w1 = 5.25 miles,
w2 = 7.50 miles, w3 = 2.40 miles, and w4 = 7.05 miles. Because of the random
selection of starting positions in the first 12 miles, the selection probabilities [using
Equation (19.1)] are pk = wk/12, giving p1 = 0.4375, p2 = 0.625, p3 = 0.2, and
p4 = 0.5875.

The first transect intersects the first, second, and fourth set of tracks, so the vari-
able v1 [using Equation (19.2)] is v1 = (1/0.4375) + (2/0.625) + (1/0.5875) =
2.2857 + 3.2 + 1.7021 = 7.1878. The second transect also intersects the first, sec-
ond, and fourth set of tracks, so v2 = 7.1878. The third transect intersects the
third and fourth set of tracks, so v3 = (2/0.2) + (1/0.5875) = 10.0 + 1.7021 =
11.7021. The fourth transect also intersects the third and fourth set of tracks, so
v4 = 11.7021.

The estimate [from Equation (19.3)] based on selection probabilities is

τ̂p = 1

4
(7.1878 + 7.1878 + 11.7021 + 11.7021) = 9.44
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or about 9 wolverines in the study region. The estimate variance [using
Equation (19.5)] is

v̂ar(τ̂p) = 6.7930

4
= 1.70

For the Horvitz–Thompson estimate, the inclusion probabilities derived from
Equation (19.6) are π1 = 1 − (1 − 0.4375)4 = 0.90, π2 = 0.98, π3 = 0.59, and
π4 = 0.98. The Horvitz–Thompson estimate [using Equation (19.7)] is

τ̂π = 1

0.90
+ 2

0.98
+ 2

0.59
+ 1

0.97
= 7.57

or about 8 wolverines in the study region.
The width along the baseline from which both track sets 1 and 2 are intersected

is w12 = 5.25. For the other combinations, w13 = 0, w14 = 3.75, w23 = 0, w24 =
3.75, and w34 = 2.4. The joint inclusion probabilities [using Equation (19.8)] are

π12 = 0.90 + 0.98 − 1 +
(

1 − 5.25 + 7.5 − 5.25

12

)4

= 0.90

π13 = 0.90 + 0.59 − 1 +
(

1 − 5.25 + 2.4 − 0

12

)4

= 0.51

π14 = 0.90 + 0.97 − 1 +
(

1 − 5.25 + 7.05 − 3.75

12

)4

= 0.88

π23 = 0.98 + 0.59 − 1 +
(

1 − 7.5 + 2.4 − 0

12

)4

= 0.57

π24 = 0.98 + 0.97 − 1 +
(

1 − 7.5 + 7.05 − 3.75

12

)4

= 0.95

π34 = 0.59 + 0.97 − 1 +
(

1 − 2.4 + 7.05 − 2.4

12

)4

= 0.59

The estimated variance for the Horvitz–Thompson estimator [Equation (19.6)] is

v̂ar(τ̂π ) =
(

1

0.902
− 1

0.90

)
12 +

(
1

0.982
− 1

0.98

)
22

+
(

1

0.592
− 1

0.59

)
22 +

(
1

0.972
− 1

0.97

)
12

+ 2

(
1

0.90(0.98)
− 1

0.90

)
(1)(2) + 2

(
1

0.90(0.59)
− 1

0.51

)
(1)(2)

+ 2

(
1

0.90(0.97)
− 1

0.88

)
(1)(1) + 2

(
1

0.98(0.59)
− 1

0.57

)
(2)(2)
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+ 2

(
1

0.98(0.97)
− 1

0.95

)
(2)(1) + 2

(
1

0.59(0.97)
− 1

0.59

)
(2)(1)

= 5.27
�

19.2. LINES OF RANDOM POSITION AND DIRECTION

Now suppose that each sample line is selected completely at random in the study
region. This may be accomplished by first selecting a location uniformly at ran-
dom from the study region to be the midpoint of a transect of length l. Then,
independently, an angle is chosen from a uniform distribution on [0, π), giving the
direction of the line. The problem of shorter lines near the boundary of the study
region, which can lead to small biases in otherwise unbiased estimators, is usually
dealt with, at least theoretically, by extending any cutoff portion of a selected line
in another part of the study region (Kaiser 1983). In practice, the bias will be small
if the study region is large in relation to the length of a transect line.

An object is completely intercepted by a sample line if extensions of the line in
either direction do not intersect additional points of the object. The object is selected
if it is completely intercepted. An object partially intercepted—as happens when an
endpoint of the transect is within the object—is selected with probability 1/2 (the
reason being to simplify computations of selection probabilities). The transect line
is assumed to be longer than the maximum length, in the direction of the transect
line, of any of the objects in the population.

Given the direction θ of the transect, the probability that the kth object is
intersected is pk(θ) = lwk(θ)/A, where wk(θ) is the width of object k in the
direction perpendicular to θ , that is, the maximum distance between lines in the
direction θ that intersect the object.

The unconditional probability of selection for object k is pk = lck/A, where
ck = E[wk(θ)], the expected value of wk(θ) over the distribution of θ .

Unbiased estimators of the population total τ may be obtained using either the
conditional or the unconditional selection probabilities (Kaiser 1983). For the ith
selected transect, define the new variables

vi(θ) =
∑
k∈Ci

yk

pk(θ)
(19.11)

vi =
∑
k∈Ci

yk

pk

(19.12)

Both vi(θ) and vi are unbiased estimators of τ .
With n transects selected independently using the design above, the sample

mean of the v’s is an unbiased estimator or τ with variance (1/n)var(vi). Thus,
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two possible unbiased estimators are

τ̂p(θ) = 1

n

n∑
i=1

vi(θ) (19.13)

τ̂p = 1

n

n∑
i=1

vi

An unbiased estimator of variance is s2
v/n, where s2

v is the sample variance based
on the corresponding v-values.

Further study is needed regarding the relative efficiency of τ̂p(θ) and τ̂p (see
Kimura and Lemberg 1981). The practical choice may depend on the relative ease
of measuring wk(θ) and ck for sampled objects. Kaiser (1983) gives the expected
width of the kth object as ck = c∗

k/π , where c∗
k is the length of the perimeter of the

smallest convex set containing object k and suggests measuring c∗
k by wrapping a

rope tightly around object k and measuring the length of rope (see also Kendall
and Moran 1963, p. 58; Solomon 1978, p. 17).

For the Horvitz–Thompson estimator, the inclusion probability for the kth object
is πk = 1 − (1 − pk)

n. The Horvitz–Thompson estimator is τ̂π = ∑κ
k=1 yk/πk .

Line-intercept estimators for coverage and number of objects were discussed
in Lucas and Seber (1977). Estimators for more general variables of interest were
given in McDonald (1980). Jolly (1979) applied similar ideas to the problem of
estimating the abundance of animals in large herds. Kaiser (1983) describes a
design in which a location and direction are chosen at random and the line is
extended across the study area, so that line length is a random variable. References
to earlier work are found in the reviews of DeVries (1979) and Eberhardt (1978a).
Line-intercept methods based on the length of interception and the number of
interceptions have also been developed. Many of the ideas of geometric probability
underlying line-intercept methods are described in Kendall and Moran (1963) and
Solomon (1978).

EXERCISES

1. Figure 19.2 shows track patterns of wolf packs, mapped in a census of a study
region in the Gulkana River area of Alaska (Becker 1990). The number yk

of wolves in each pack is given near each set of tracks. Using the baseline
(west–east), which starts along the base of the study region and continues
through the middle of the region, select a simple random sample of three
south–north transects. Estimate the total number of wolves in the region from
your sample using τ̂p. Estimate the associated variance.
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Figure 19.2. Track patterns of wolf packs. (From Becker 1990.)

2. Using the selected sample of Exercise 1, estimate the total number of wolves
using τ̂π . Estimate the associated variance.
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C H A P T E R 2 0

Spatial Prediction or Kriging

In geological studies it is frequently desired to predict the amount of ore or fossil
fuel that will be found at a site. The prediction may be based on values observed
at other sites in the region, and these other sites may be spaced in the region irreg-
ularly. It may also be desired to predict or estimate the total amount of ore in the
region. Similarly, in pollution monitoring, measurements of pollutant concentration
at a few sites may be used to predict the concentration at a new site or to estimate
the mean concentration over a larger area. In ecological studies also, observations
of animals or plants at a sample of sites can be used to predict the abundance in
the vicinity of a new site or in the entire study region.

In such situations it is useful to think of the value yt of ore, pollutant, or animal
abundance at location t as a random variable. From the observed values y1, . . . , yn

at n sites t1, . . . , tn, we wish to estimate or predict the value of a new random vari-
able y0. The variable y0 may be either the value of the variable at a new site or the
total of the variable of interest over a larger geographic region. Since y0 is viewed
as a random variable rather than a parameter or fixed population characteristic, the
inference problem is referred to as prediction rather than estimation, even though
the prediction may be over space rather than time.

The spatial prediction problem and its solution—termed kriging in
geostatistics—are essentially the same as the model-based prediction approach
to survey sampling with auxiliary information, as described in Chapters 7 and 8.
The prediction equations can be written equivalently either with covariances or
with variances of differences (the variogram). The covariance approach has been
traditional in statistics and time series, while the variogram has been traditional
in geostatistics. In this chapter the covariance form is used first to emphasize the
connection to the regression methods of survey sampling. The two approaches are
exactly equivalent provided that the covariance function—or the variogram—is
known. Slight differences can arise when the covariance function or variogram is
estimated using visual methods.

Sampling, Third Edition. Steven K. Thompson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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General references on spatial prediction, kriging, and geostatistics include
Cressie (1986, 1989, 1991), Hohn (1988), and Journel (1987, 1988, 1989).
References on spatial patterns and processes include Cox and Isham (1980),
Cressie (1991), Diggle (1983), Matérn (1960, 1986), and Ripley (1981).

20.1. SPATIAL COVARIANCE FUNCTION

In both ecological and geological surveys, the values of the variable of interest
at different sites are typically not independent of each other. Rather, the values
at sites in close proximity tend to be related to each other. One summary of the
relationship between the variables y1 and y2 associated with sites t1 and t2 is the
covariance,

cov(y1, y2) = E[y1 − E(y1)][y2 − E(y1)] (20.1)

When the covariance between two sites depends only on their relative positions, and
not their exact locations within the study area, this relationship may be summarized
with a covariance function c(h), giving the covariance of the y-values for any two
sites whose relative positions are separated by h, that is,

c(h) = cov(yt+h, yt ) (20.2)

For a two-dimensional study region, the location t = (t1, t2) gives the coordi-
nates in two dimensions of a site. The displacement h between the sites is also
vector-valued, so that the covariance function may depend on direction as well as
distance between sites. If the expected value of the variable of interest is the same
at every site and the covariance depends only on the displacement between sites,
the process is called second-order stationary . If the covariance depends only on
the distance d between the sites and does not depend on direction, the process is
said to be isotropic, and the covariance function will be written c(d).

20.2. LINEAR PREDICTION (KRIGING)

Suppose that observations have been observed at a sample of n sites and one wishes
to predict what will be found at another site. For notational simplicity, write yi for
the y-value observed at the ith site in the sample, for i = 1, . . . , n, and write cij

for cov(yi, yj ), the covariance between the y-values at the ith and j th sites. Note
that cii = var(yi). From observed y-values at sites t1, . . . , tn, it is desired to predict
the value of the random variable y0 at the site t0. For simplicity, the means E(yi)

are assumed equal; a more general formulation is given in Section 20.5.
The object is to find a function ŷ0 of the n observed y-values that is unbiased

for y0, that is,

E(ŷ0) = E(y0) (20.3)
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and which minimizes the mean square prediction error

E(y0 − ŷ0)
2 (20.4)

In general, the best estimator is the conditional expectation of y0 given the observed
values y1, . . . , yn. Determining E(y0|y1, . . . , yn) depends on the exact joint distri-
bution of the y-values and may be difficult.

A generally more practical criterion is to find a linear function of the observed
y-values that is unbiased and minimizes the mean square prediction error. Writing
the linear estimator as

ŷ0 =
n∑

i=1

aiyi (20.5)

the problem is to find the values a1, a2, . . . , an that minimize the mean square
prediction error subject to unbiasedness.

The solution (obtained by the Lagrange multiplier method) is given in matrix
form by

f = G−1h (20.6)

where the vectors f and h are

f =

⎛
⎜⎜⎜⎜⎜⎝

a1

a2
...

an

m

⎞
⎟⎟⎟⎟⎟⎠ , h =

⎛
⎜⎜⎜⎜⎜⎝

c10

c20
...

cn0

1

⎞
⎟⎟⎟⎟⎟⎠

and the matrix G is

G =

⎛
⎜⎜⎜⎜⎜⎝

c11 c12 · · · c1n 1
c21 c22 · · · c2n 1
...

...
. . .

...
...

cn1 cn2 · · · cnn 1
1 1 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠

The constant m, which is obtained along with the coefficients ai , is the Lagrange
multiplier and is used in calculating the mean square prediction error.

The best linear predictor ŷ0 is called the kriging predictor in geology. The mean
square prediction error of ŷ0, also called the kriging variance, is

E(y0 − ŷ0)
2 = c00 −

n∑
i=1

aici0 − m (20.7)

If the stochastic process giving rise to the population is Gaussian, that is, the
joint distribution of any finite set of y-values is multivariate normal, then the best
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linear predictor ŷ0 is the best predictor, having the lowest mean square prediction
error of any function of the n observed y-values.

The optimality of the prediction results depends on the covariance function
being known. In practice, however, the covariance function is estimated from
data—either data from the present survey or a larger store of data from past
surveys. For a process that is stationary and isotropic, the covariance of sites
distance d apart can be estimated using a sample covariance based on the nd

distinct pairs of sites in the data that are distance d (or approximately distance d)
apart. A simple covariance estimator is

ĉ(d) = 1

nd

∑
(yti − y)(ytj − y) (20.8)

where the summation is over the distinct pairs of observations that are approxi-
mately distance d apart and nd is the number of such distinct pairs. A smooth
curve may then be fitted to the estimated covariances, using a method such as
nonlinear least squares, to obtain an estimated covariance function and hence an
estimate of covariance for any distance.

Example 1: Data from Alaska Department of Fish and Game shrimp surveys in
the vicinity of Kodiak Island, Alaska, were used to estimate the spatial covariance
function, which in turn will be used to predict the amount of catch at a new
location. The catch data, plotted by location on a chart of the study region, were
originally recorded in pounds (lb), with distances measured in nautical miles (nmi.).
A research vessel made tows of a trawl net approximately 1 nmi. apart in a grid
pattern. Sample covariances were computed using pairs of data lumped into distance
intervals. Then a curve of the form a exp(−bx) was fitted by nonlinear least squares
to the covariance estimates. The fitted covariance function was

c(x) = 5.1e−0.49x (20.9)

Suppose that one tow has been made with a catch of y1 = 5.526 (units are
thousands of pounds) and a second tow 6 nmi. away produced y2 = 1.417. What
would be the predicted catch y0 at a location 1 nmi. from the first tow and 5.4 nmi.
from the second?

The variance is c(0) = 5.1. The covariance for the two tows 6 nmi. apart
is c12 = 5.1{exp[−0.49(6)]} = 0.3. The covariances with the new site are c10 =
5.1{exp[−0.49(1)]} = 3.1 and c20 = 0.4. The prediction equation is⎛

⎝a1

a2

m

⎞
⎠ =

⎛
⎝5.1 0.3 1

0.3 5.1 1
1 1 0

⎞
⎠

−1 ⎛
⎝3.1

0.4
1

⎞
⎠

=
⎛
⎝ 0.104 −0.104 0.5

−0.104 0.104 0.5
0.5 0.5 −2.7

⎞
⎠

⎛
⎝3.1

0.4
1

⎞
⎠ =

⎛
⎝ 0.78

0.22
−0.95

⎞
⎠

so a1 = 0.78, a2 = 0.22, and m = −0.95.
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The predicted catch [using Equation (20.5)] is

ŷ = 0.78(5.526) + 0.22(1.1417) = 4.622

or 4622 lb at the new location.
The prediction mean square error [using Equation (20.7) is

Ê(y0 − ŷ0)
2 = 5.1 − 0.78(3.1) − 0.22(0.4) + 0.95 = 3.5

giving a root mean square error of 1.9 (i.e., 1900 lb).
The linear prediction method is scale-invariant, in that if the original data were

transformed to kilograms and kilometers, the coefficients ai would be unaffected
and the appropriate prediction in kilograms per kilometer would be obtained. Using
the equivalents 1 nautical mile ≈ 1.15 mile, 1 k ≈ 0.62 mile, and 1 k ≈ 2.2046
pounds, the predicted catch equals 2097 kilograms (= 4.622/2.2046). �

20.3. VARIOGRAM

In the geological sciences, spatial variation has traditionally been summarized using
the variogram in place of the covariance function. The variogram is defined as the
variance of the difference of y-values at separate sites:

var(yt+h − yt ) = 2γ (h) (20.10)

The function γ (h) is called the semivariogram . When the process is second-order
stationary, the covariance function and the variogram contain equivalent informa-
tion, since

γ (h) = c(0) − c(h) (20.11)

Note that c(0) = var(yt ), the variance of y at any site t . Cressie (1986, 1989,
1991) points out that the variogram exists even for some processes that are not
second-order stationary, and hence is more general than the covariance function.

Assume that the process is also stationary in the mean, that is,

E(yt ) = E(ys) (20.12)

for any sites t and s in the study region. Then var(yt+h − yt ) = E(yt+h − yt )
2, and

a simple method for estimating the semivariogram is

2γ̂ (d) = 1

nd

∑
(yti − ytj )

2 (20.13)

where the summation is over all distinct pairs of sites in the sample that are distance
d apart and nd is the number of pairs that distance apart. For irregularly spaced
data, pairs of sites that are approximately the same distance apart may be lumped
together. Finally, a smooth curve is fitted to the variogram estimates to obtain
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values of the variogram for all distances. Estimation of the semivariance function
γ rather than of the covariance function c is recommended by Cressie (1991), who
points out that γ̂ (d) is an unbiased estimator of γ (d) while ĉ(d) is not unbiased for
c(d) and that the semivariance estimates do better than the covariance estimates
in the presence of an undetected linear trend in the variable of interest. Robust
alternatives to γ̂ (d) are also described in Cressie (1991).

The prediction equations may be written in terms of the semivariogram. Suppose
again that observations have been made at a sample of n sites, and one wishes to
predict what will be found at another site. For notational simplicity, write yi for
the y-value observed at the ith site in the sample, for i = 1, . . . , n, and write γij

for γ (yi − yj ), the semivariogram value for the difference between the ith and j th
sites. From observed y-values at sites t1, . . . , tn, it is desired to predict the value
of the random variable y0 at the site t0.

The object once again is to find a function ŷ0 of the n observed y-values that
is unbiased for y0, that is,

E(ŷ0) = E(y0) (20.14)

and that minimizes the mean square prediction error

E(y0 − ŷ0)
2 (20.15)

Writing the linear estimator as

ŷ0 =
n∑

i=1

aiyi (20.16)

the problem is to find values a1, a2, . . . , an that minimize the mean square predic-
tion error subject to unbiasedness.

The solution is given in matrix form by

a = �−1γ (20.14)

where

a =

⎛
⎜⎜⎜⎜⎜⎝

a1

a2
...

an

m∗

⎞
⎟⎟⎟⎟⎟⎠ , γ =

⎛
⎜⎜⎜⎜⎜⎝

γ10

γ20
...

γn0

1

⎞
⎟⎟⎟⎟⎟⎠

� =

⎛
⎜⎜⎜⎜⎜⎝

γ11 γ12 · · · γ1n 1
γ21 γ22 · · · γ2n 1
...

...
. . .

...
...

γn1 γn2 · · · γnn 1
1 1 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠
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The mean square prediction error of ŷ0 is

E(y0 − ŷ0)
2 =

n∑
i=1

aiγi0 + m∗ (20.15)

Note that m∗ = −m, where m is the constant obtained using the covariance-
based prediction equation.

Example 2: Reworked with Semivariogram. The shrimp example (Example 1)
will be reworked using the semivariogram. The semivariogram, obtained from the
covariance function [Equation (20.9)] used in Example 1, is

γ (x) = 5.1(1 − e−0.49x)

The semivariance for the two tows 6 nmi. apart is

γ12 = 5.1(1 − e−0.49(6)) = 4.8

The semivariances with the new site are γ10 = 5.1{1 − exp[−0.49(1)]} = 2.0 and
γ20 = 4.7. The prediction equation [Equation (20.14)] with the semivariance is⎛

⎝a1

a2

m∗

⎞
⎠ =

⎛
⎝ 0 4.8 1

4.8 0 1
1 1 0

⎞
⎠

−1 ⎛
⎝2.0

4.7
1

⎞
⎠

=
⎛
⎝−0.104 0.104 0.5

0.104 −0.104 0.5
0.5 0.5 −2.4

⎞
⎠

⎛
⎝2.0

4.7
1

⎞
⎠ =

⎛
⎝0.78

0.22
0.95

⎞
⎠

so a1 = 0.78, a2 = 0.22, and m∗ = 0.95.
The predicted catch [using Equation (20.5)] is

γ̂0 = 0.78(5.526) + 0.22(1.417) = 4.622

or 4622 lb at the new location, and the prediction mean square error [using
Equation (20.15)] is

Ê(y0 − ŷ0)
2 = 0.78(2.0) + 0.22(4.7) + 0.95 = 3.5

as before. �

20.4. PREDICTING THE VALUE OVER A REGION

In previous sections, the observed values y1, . . . , yn at n sites were used to predict
the y-value at a new site. In many spatial sampling situations, however, one wishes
to predict the mean (or total) of the y-values over a region A. Denote this mean



292 spatial prediction or kriging

by y0, where

y0 = 1

N

N∑
i=1

yi

if A is a study region partitioned into N sites, or

y0 = 1

|A|
∫

A

yt dt

where |A| is the area of the study region, if samples can be taken at points t

throughout a continuous study region. The population regional mean y0 is a random
variable, since the y-value at each site is random.

Then the prediction solution [Equation (20.14)] of Section 20.3 holds, with

γi0 = 1

|N |
N∑

j=1

γij

in the discrete case, and

γi0 = 1

|A|
∫

A

γ (yi − yt ) dt

in the continuous case. In each case, γi0 is the average semivariance between site
i and sites in the region A.

The minimized mean square prediction error is

E(y0 − ŷ0)
2 =

n∑
i=1

aiγi0 + m∗ − γ00

where the average semivariance γ00 is

γ00 = 1

N2

N∑
i=1

N∑
j=1

γij

in the discrete case, and

γ00 = 1

|A|2
∫

A

∫
A

γ (t − v) dt dv

in the continuous case.

20.5. DERIVATIONS AND COMMENTS

The linear prediction equations may be derived using Lagrange’s method for finding
the minimum of a function subject to a set of constraints. Suppose that a general
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linear model with p parameters holds for the n random variables Yi associated with
the sample s and for the random variable Y0 that one wishes to predict, that is,

E(Yi) =
p∑

k=1

βkxik

cov(Yi, Yj ) = cij

for i, j = 0, 1, 2, . . . , n.
Writing the predictor as Ŷ0 = ∑n

i=1 aiYi , the linear unbiased prediction problem
is to find the values of the coefficients a1, . . . , an that minimize the mean square
prediction error E(Ŷ0 − Y0)

2 subject to the unbiasedness condition E(Ŷ0) = E(Y0).
Note that expectations are in terms of the distribution of the random variables

under the model. Implicitly, the expectation is conditional on the sample s selected,
so that model unbiasedness is required to hold for the given sample selected, no
matter what sample is selected.

The unbiasedness condition implies that

n∑
i=1

ai

p∑
k=1

βkxik =
p∑

k=1

βkx0k

no matter what the values of the parameters βk may be. Reversing the order of
summation on the left-hand side and equating coefficients of βk , one obtains the p

constraints
n∑

i=1

aixik = x0k

for k = 1, . . . , p.
The mean square prediction error is

E(Y0 − Ŷ0)
2 = var(Y0 − Ŷ0)

because of the unbiasedness condition E(Y0 − Ŷ0) = 0. This may be written

var(Y0 − Ŷ0) = var(Ŷ0) + var(Ŷ0) − 2cov(Y0, Ŷ0)

= var(Y0) + var

(
n∑

i=1

aiyi

)
− 2cov

(
Y0,

n∑
i=1

aiyi

)

= c00 +
n∑

i=1

n∑
j=1

aiaj cij − 2
n∑

i=1

aici0 (20.16)

Write

F(a1, . . . , an) = c00 +
n∑

i=1

n∑
j=1

aiaj cij − 2
n∑

i=1

aici0
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and write

Gk(a1, . . . , an) =
n∑

i=1

aixik − x0k

for k = 1, . . . , p. To minimize F subject to the p constraints Gk = 0, define the
new function

H(a1, . . . , an, λ1, . . . , λp) = F − λ1G1 − · · · − λpGp

in which the λk are the Lagrange multipliers.
The partial derivative of H with respect to ai is

∂H

∂ai

= 2
n∑

j=1

aj cij − 2ci0 − λ1xi1 − λ2xi2 − · · · − λpxip

for i = 1, . . . , n. The partial derivative of H with respect to λk is

∂H

∂λk

= −
n∑

i=1

aixik + x0k

for k = 1, . . . , p.
Setting each of the partial derivatives to zero gives (n + p) equations in (n + p)

unknowns. Defining for simplicity mk = −λk/2, these equations may be written

n∑
j=1

aj cij +
p∑

k=1

mkxik = ci0 i = 1, . . . , n

sumn
i=1aixik = x0k k = 1, . . . , p (20.17)

In matrix notation, these equations may be written

fG = h

where the vectors f and h are

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

a2
...

an

m1

m2
...

mp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c10

c20
...

cn0

x01

x02
...

x0p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and the matrix G is

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 · · · c1n x11 x12 · · · x1p

c21 c22 · · · c2n x21 x22 · · · x2p

...
...

. . .
...

...
...

. . .
...

cn1 cn2 · · · cnn xn1 xn2 · · · xnp

x11 x21 · · · xn1 0 0 · · · 0
x12 x22 · · · xn2 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

x1p x2p · · · xnp 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Assuming that the inverse of G exists, the solution is given by

f = G−1h

In partitioned form, the equation may be written(
a
m

)
=

(
V X
X′ 0

)−1 (
c0

x0

)

where a is the (n × 1) vector of coefficients, m the (p × 1) vector of Lagrange
constants, V is the (n × n) variance–covariance matrix of the n sample units, X
is the (n × p) design matrix for the sample under the linear model, 0 is a (p × p)

matrix of zeros, c0 is the (n × 1) vector of covariances of each sample unit with
Y0, and x0 is the (n × 1) vector of x’s in the linear model for the expected value
of Y0.

For computing the solution, the dimension of matrix inversion may be reduced
by using the relationship (see C. R. Rao 1973, p. 33)

G−1 =
(

V−1 − V−1X(X′V−1X)−1V−1 V−1X(X′V−1X)−1

(X′V−1X)−1X′V−1 −(X′V−1X)−1

)

The mean square prediction error, using Equations (20.16) and (20.17), is

E(Y0 − Ŷ0)
2 = c00 − 2

n∑
i=1

aici0 +
n∑

i=1

ai

(
ci0 −

p∑
k=1

mkxik

)

= c00 −
n∑

i=1

aici0 −
p∑

k=1

mk

n∑
i=1

aixik

= c00 −
n∑

i=1

aici0 −
p∑

k=1

mkx0k

If the quantity to be predicted is a linear combination of the Y -values of a finite
number N of population units, that is, Y0 = l′Y, the problem is identical to that
considered in the section on the prediction approach to regression estimation in
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sampling. Using the notation of Chapter 8, in which the subscript s refers to the
sample units and r refers to the rest of the units, the covariance of Y0 with the
vector Ys of sample variables is c0 = Vssls + Vsrlr, and the predictor Ŷ0 can be
written as in Section 8.4 as

Ŷ0 = a′Ys = 1′
sYs + 1′

r[Xrβ̂ + VrsV−1
ss (Ys − Xsβ̂)]

where

β̂ = (X′
sV

−1
ss Xs)

−1X′
sV

−1
ss Ys

Thus, the prediction problem addressed in regression estimation in survey sam-
pling and in ‘kriging’ of geostatistics are essentially the same, with a historical
difference in emphasis. In the sampling literature on the prediction approach to
regression, a typical model assumed has the y-values uncorrelated (diagonal matrix
V) but related to auxiliary variables (the columns of X), and the object is to predict
a linear combination of a finite number of units. In the geological literature, the
emphasis has been on models with covariances related to distance or relative posi-
tion of sites, whether or not auxiliary information is available, and on prediction
of an integral of the y-value over a continuous region.

20.6. COMPUTING NOTES

The following R code calculates the estimate for Example 1, the shrimp survey.
Output is shown.

# When entering this code do not type
# the initial R prompt ">", which is shown here
# to distinguish the R commands from the resulting
# data and estimates printed out.

> G <- matrix(c(5.1,0.3,1,0.3,5.1,1,1,1,0),3,3)
> G

[,1] [,2] [,3]
[1,] 5.1 0.3 1
[2,] 0.3 5.1 1
[3,] 1.0 1.0 0
> solve(G)

[,1] [,2] [,3]
[1,] 0.1041667 -0.1041667 0.5
[2,] -0.1041667 0.1041667 0.5
[3,] 0.5000000 0.5000000 -2.7
> h <- c(3.1,0.4,1)
> h
[1] 3.1 0.4 1.0
> solve(G) %*% h

[,1]
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[1,] 0.78125
[2,] 0.21875
[3,] -0.95000
>
> y <- c(5.526,1.417)
> a <- solve(G) %*% h

> a
[,1]

[1,] 0.78125
[2,] 0.21875
[3,] -0.95000
> a[1:2] %*% y

[,1]
[1,] 4.627156

The following R code produces realizations of a spatial log-Gaussian process.

nside <- 3
N <- nside * nside
N
coord1 <- rep(1:nside,times=nside)
coord2 <- rep(1:nside,each=nside)
coord1
coord2
plot(coord1,coord2)

Figure 20.1. A realization of a spatial log-Gaussian process. See the computational example.
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cbind(coord1,coord2)
dist(cbind(coord1,coord2))
distances <- dist(cbind(coord1,coord2))
distances
print(as.matrix(distances))
distance <- as.matrix(distances)
distance
covpop <- exp(-(distance/1)^2)
meanpop <- rep(0,N)
covpop
library(MASS)
# ?mvrnorm gives the help file for the multivariate
# normal random variable generator in the R package MASS
# mvrnorm(1,meanpop,covpop)

y <- mvrnorm(1,meanpop,covpop)
y
plot(coord1,coord2,type="n")
text(coord1,coord2,y)
plot(coord1,coord2,type="n")
text(coord1,coord2,round(y,digits=2))
z <- matrix(y,nside,nside)
w <- exp(z)
contour(1:nside,1:nside,z)
contour(1:nside,1:nside,w)

# To simulate many realizations of the whole population,
# repeat the following three commands many times:
y <- mvrnorm(1,meanpop,covpop)
w <- matrix(exp(y),nside,nside)
contour(1:nside,1:nside,w)

# Now try the same procedure with nside <- 10 or 20 so that
# N is 100 or 400 locations at which the lognormal spatial
# process is generated. It is # a good idea to omit the
# printing steps while doing this. For example:

nside <- 20
N <- nside * nside
coord1 <- rep(1:nside,times=nside)
coord2 <- rep(1:nside,each=nside)
distance <- as.matrix(distances)
covpop <- exp(-(distance/1)^2)
meanpop <- rep(0,N)
y <- mvrnorm(1,meanpop,covpop)
z <- matrix(y,nside,nside)
w <- exp(z)
contour(1:nside,1:nside,w,xlab=",ylab=", tcl=0,

xaxt=’n’, yaxt = ‘n’)
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# the last three options in contour remove the tick marks and
# numbers on the axes

EXERCISE

1. The shrimp survey data (Examples 1 and 2) give a covariance function c(x) =
5.1 exp(−0.49x), where x is distance in nautical miles. The catches at sites 1
and 2, which are 3 nmi. apart, are 1.200 and 2.400, respectively (units are in
thousands of pounds). Predict the catch y0 at a new site:

(a) Halfway between sites 1 and 2

(b) 5 nmi. from each of sites 1 and 2

(c) 1 nmi. from site 2 and 4 miles from site 1

(d) 4 nmi. from site 1 and 5 miles from site 2
Along with each prediction, give the prediction mean square error (MSE).
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Spatial Designs

The mean square prediction error of an unbiased linear predictor ŷ0 of a value
y0 —whether y0 is the value of the variable of interest at a particular site or the
mean value over a whole region—depends on the covariances between each sample
site and y0 and the covariances among different sites in the sample. One can thus
use the information in the covariance function or the variogram to determine what
selection of sample sites will give the best prediction, that is, what sampling design
is most effective.

Let the covariance cov(yi, yj ) between the y-values at sites i and j be denoted
cij , and let ci0 denote the covariance between yi and y0. Since E(ŷ0) = E(y0), the
mean square prediction error of ŷ0 = ∑

aiyi is

E(y0 − ŷ0)
2 = var(y0 − ŷ0) = var(ŷ0) + var(ŷ0) − 2cov(y0, ŷ0)

Thus,

E(y0 − ŷ0)
2 = c0 +

n∑

i=1

n∑

i=1

aiaj cij − 2
n∑

i=1

aici0

From the expression above, it is evident that the best predictions will result from a
sample of n sites having low covariance with each other and having high covariance
with the value to be predicted. Assume that the covariance function is radially
symmetric and decreases with distance (equivalently, the variogram is symmetric
and increases with distance). High covariance with the value to be predicted is then
achieved by locating sample sites near the site (site 0) for which the prediction is
to be made, or if the mean value for the whole study region is to be predicted,
locating sites in the interior or near the center of the study region. Low covariance
among sample sites is achieved by spacing out the sample sites in a systematic
fashion or by dividing the study region into many small strata.

Sampling, Third Edition. Steven K. Thompson.
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21.1. DESIGN FOR LOCAL PREDICTION

For predicting y-values at individual sites throughout the study region, one may
minimize the worst prediction errors by selecting the n sites to minimize the farthest
distance of any point in the study region from nearby sample sites. This problem
is examined in McBratney et al. (1981a,b) and in Yfantis et al. (1987), in which
systematic sample points on square, triangular, and hexagonal grids are compared.
For a given number of sample points per unit area, the triangular grid, in which
observations are made at the vertices of equilateral triangles, minimized the farthest
distance from sample points to nonsample points.

21.2. DESIGN FOR PREDICTION OF MEAN OF REGION

Matérn (1960, 1986) investigated the efficiency of various sampling designs for
predicting the mean over a region, motivated by problems in forestry surveys.
Radially symmetric, decreasing covariance functions were assumed. For systematic
samples, he found that the triangular grid was slightly more efficient than the square
grid. The square grid could be improved slightly with a modification moving the
sample points of every other row by one-half the side of a square. Rectangular
grids were less efficient. Boundary effects—influenced by the size and shape of
the study region—were ignored.

Matérn also considered the related problem of most efficient stratification for
stratified random sampling of such populations. The most efficient design parti-
tioned the region into small strata of compact shape. For a given stratum area,
the most efficient shapes in order of efficiency were: circular, hexagonal, square,
equilateral triangle. Note, however, that most study regions could not be parti-
tioned into circular strata. The first three of the shapes above were very close in
efficiency, while triangular strata were somewhat less efficient. Rectangular strata
were considerably less efficient—the less square in shape, the less efficient.

The advantage of a systematic sample derives from spreading the sample loca-
tions apart when nearby sample units may be positively correlated. A systematic
sample is inefficient, however, when the alignment of units coincides with a peri-
odic pattern in the population. An unaligned systematic sample may be selected
as follows (Quenouille 1949; see also Bellhouse 1988a; Cochran 1977, p. 228).
A rectangular study region is divided into m1m2 squares, in m1 rows and m2

columns. The length of the side of a square is k. A random sample of m1 uni-
form variates from the interval (0, k) gives the horizontal coordinates of sample
locations in the first column. A random sample of m2 uniform variates from (0,
k) gives vertical coordinates for the first row. The sample point in the first row
and first column is thus selected. The remaining sample points are determined by
adding multiples of the constant interval k to each chosen horizontal coordinate
and to each chosen vertical coordinate for each row and column.

For very general models of spatial covariance, Bellhouse (1977) showed the opti-
mality of systematic sampling within restricted classes of designs. With a model
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using random lines to approximate the boundaries of regions, Bellhouse (1981)
found that a stratified sample with one unit per stratum was more efficient than
a systematic grid for estimating the proportion of a study region covered by a
resource of interest. Systematic and stratified designs for geological sampling are
investigated in Olea (1982, 1984a,b). Barnes (1988) looked at sample size for esti-
mation of extreme values, rather than average values, in a region. Some aspects of
spatial sampling for environmental pollution monitoring are summarized in Gilbert
(1987). Reviews include Thompson (1997a,b) and a recent general reference to
spatial design issues is Muller (2001).

McArthur (1987) compared several kinds of sampling designs and estimators
for estimating the mean concentration of a point-source pollutant over a region.
Motivated by the problem of estimating radioactive contamination in the vicinity
of underground bomb tests, hypothetical pollutant concentration was modeled as a
bivariate Gaussian density function. Sample designs compared were simple random
sampling; stratified random sampling, with higher allocation in strata with higher
pollution concentration; systematic sampling; stratified systematic sampling, with a
finer grid of sample points in the stratum with higher pollutant concentration; and
unequal probability sampling, with selection probabilities higher in regions near
the point source. The usual design-unbiased estimators (sample mean, stratified
sample mean, Hansen–Hurwitz) were compared with kriging prediction methods.
The most efficient strategy was stratified systematic sampling, followed by unstrat-
ified systematic sampling, with the usual design-unbiased stratified estimators. The
model assumptions under which kriging estimates are best linear unbiased predic-
tors did not hold, since the pollutant concentration was a deterministic function. For
this fixed population, the kriging estimates were design-biased downward, and the
computed kriging variances underestimated the design-based sampling variances of
the predictions.
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Plot Shapes and Observational
Methods

Populations of plants and animals tend to exhibit characteristic spatial patterns. In
many cases, the patterns observed are not consistent with a random distribution,
but show evidence of aggregation tendencies caused by behavioral interactions
or environmental patchiness, or regularities in spacing caused by such factors as
territoriality or other forms of mutual inhibition. The appropriate model for such
a population is a stochastic point process (see Cox and Isham 1980; Diggle 1983;
Ripley 1981). Matérn (1960, 1986), Schweder (1977), and Thompson and Ramsey
(1987) have examined ecological sampling problems in this framework.

A stochastic point process gives rise through some probabilistic mechanism to
a pattern of point objects in space—representing, for instance, the locations of
animals or plants in a study region. The number of point objects in any region (or
subregion) is a random variable. A realization of the point process determines a
complete spatial pattern of the point objects or locations of plants or animals. For
convenience, the point objects will be referred to as animals.

Sampling methods for plant and animal populations include methods with plots,
in which every animal or plant within a sample plot is observed, and methods
such as line transects or aerial surveys, in which some of the individuals are
detected and some are missed, with detection probabilities given by a detectabil-
ity function. To understand the properties of observations made in sampling such
populations—and hence to determine efficient designs and estimation methods to
use with such populations—it is useful to work with the mean and covariance
density functions of the stochastic point process giving rise to the population.

22.1. OBSERVATIONS FROM PLOTS

For any region A, let N (A) denote the number of animals in A. The region A could
be, for example, the whole study region or it could be a sample plot of a certain

Sampling, Third Edition. Steven K. Thompson.
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shape in a given location. The number of animals N (A) is a random variable with
expected value

E[N(A)] =
∫

A

μ(x) dx

where μ(x) is the mean or density of the population at location x. If the mean
(expected number of animals per unit area) is the same everywhere in the study
region, then

E[N(A)] = μ

∫
A

dx = μ|A|

where |A| is the area of the plot or region A.
The variance of N (A) is

var[N(A)] =
∫

A

μ(x) dx +
∫

A

∫
A

c(w, v) dw dv

in which c(w, v) is the covariance density of the process between locations w and v.
For a second-order stationary process, the covariance density depends only on the
relative positions of the locations w and v. If the covariance density depends only on
the distance between locations, the process is said to be isotropic. For a population
with a random distribution (Poisson process), the covariance density function c

is zero. A positive covariance density function decreasing with distance between
locations is characteristic of populations with patchy or clumped spatial patterns.

The number of animals in one plot or region A1 may not be independent of the
number of animals in another plot or region A2, especially if the two regions are
near each other. The covariance between the number of animals in the first region
and the number of animals in the second is

cov[N(A1), N(A2)] =
∫

A1∩A2

μ(x) dx +
∫

A1

∫
A2

c(w, v) dw dv

The first integral is taken over the intersection A1 ∩ A2 between the two plots or
regions. Thus, the covariance between the number of animals observed at two plots
will—not surprisingly—be higher if the two plots overlap.

Consider a covariance density function c(w, v) which is nonnegative and sym-
metrically decreasing as a function of distance between locations w and v. Such
covariance functions were thought by Matérn and other writers to be the most com-
mon for natural populations. Then a round or square plot—in which locations are
on the average close together—will have a higher variance than a long, thin plot
of the same area in which some of the locations are far apart. Such variance com-
parisons have been observed in surveys of natural populations and were confirmed
in numerical comparisons by Thompson and Ramsey (1987). Other investigations
on the effect of plot size and shape include Matérn (1960, 1986), Starks (1986),
and Zhang et al. (1990).
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With the assumed nonnegative, symmetrically decreasing covariance density
function, the covariance of numbers of animals at two sites will be higher if the
sites are closer together (even without overlap). Thus, the spatial design conclusions
above would apply, indicating that the most efficient selections of n plots will be
systematically configured or stratified into many small strata.

22.2. OBSERVATIONS FROM DETECTABILITY UNITS

A plot is associated with a special kind of a detectability function in which
detectability is perfect over the plot and zero elsewhere. The detectability func-
tion for a plot A can be written g(x) = 1A(x), where the indicator function 1A(x)

is 1 when x is in A and zero otherwise.
Many other observational methods in ecological surveys can be described by

detectability functions. With line transects, the detectability function may equal
1 along the line, decreasing laterally with distance to either side. With variable
circular plots (see Ramsey and Scott, 1979), in which the observer stands at one
location and records distances to animals detected, the detectability function may
be symmetric and radially decreasing, centered at the observer’s location. For trawl
surveys of fish or shellfish, the detectability function may be some unknown con-
stant p over the area swept by the net and zero elsewhere. For some aerial surveys,
the detectability function may be some constant p over a plot or over the entire
study region.

Let g(x) denote whatever detectability function describes the observational
method used in a survey of an animal or plant population that is represented as a
stochastic point process with mean function μ(x) and covariance density function
c(w, v). Let y be an observation, that is, the number of animals (plants) detected
by the observer, whether in a plot, on a transect, at a site, with a trawl, from the
air, or by whatever survey method is used.

The expected number of animals seen is

E(y) =
∫

g(x)μ(x) dx

If the mean μ is constant, the expected number is

E(y) = μ

∫
g(x) dx = μa

where

a =
∫

g(x) dx

is the effective area observed.
The variance of the observed number of animals y is

var(y) =
∫

g(x)μ(x) dx +
∫∫

g(w)g(v)c(w, v) dw dv
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Let yi and yj be two distinct observations: the numbers of animals observed in two
different plots, on transects at two different sites, or with trawls at two different
locations, for example. Let gi(x) and gj (x) be the detectability functions associ-
ated with the two observations: indicator functions for the two plots, line transect
detectability functions positioned over two different lines, or functions of height p

over two rectangular trawl paths, for example. Then the covariance of yi and yj

is

cov(yi, yj ) =
∫

gi(x)gj (x)μ(x) dx +
∫∫

gi(w)gj (v)c(w, v) dw dv

The first term represents the overlap between the two detectability functions,
whether true overlap of plots or the possibility of seeing the same animals from
nearby transects. The second term depends on both the covariance density of the
population and the detectability functions associated with the survey methods used.

Thus, the means, variances, and covariances of the sample observations—and
hence the properties of estimators formed from these observations—depend both
on the characteristics of the population (μ and c) and on the observational methods
employed (the g’s). Note that the covariance of an observation yi —say, the number
of animals observed on the ith transect—with the number of animals N (A) in the
whole study region A can be obtained from the formula above by associating with
the study area the indicator detectability function g(x) = 1A(x). Thus the prediction
formulas of Chapter 20 can be computed using the covariance expression above.

22.3. COMPARISONS OF PLOT SHAPES AND DETECTABILITY
METHODS

The density of animals (or other objects) in the study region is D = N(A)/|A|.
The expected density is E(D) = μ. With a single plot or other detectability unit of
effective area a, an unbiased estimate of density (assuming that a is known) is

D̂ = y

a

where y is the number of animals detected. The variance var(D̂) and the mean
square prediction error E(D̂ − D)2 can be computed using the variance and covari-
ance expressions above to compare the effectiveness of any shape of plot or type
of detectability function.

Comparisons of the mean square prediction errors obtained with plots of different
shapes and with detectability functions associated with different survey methods
are given in Table 22.1. Each of the detectability functions compared has the same
effective area (for the plots, this is the actual area). For the comparisons, the study
region is the unit square and each plot or other detectability unit has effective area
a = 0.25.

The covariance density function assumed for the population is c(w, v) =
exp(−r2/σ 2), where r is the distance between locations w and v and the scale
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Table 22.1: Comparative Mean Squared Error and Variance of Estimates Using
Different Detectability Functions of Equal Effective Area

Detectability Functiona MSE Termb Variance Termb

Constant (no. 7): g = 0.25 0 (0.0000) 0.2091 (0.0027)
Line transect, exponential profile (no. 4) 0.0631 (0.0044) 0.3179 (0.0101)
Square doughnut plot (no. 8) 0.0744 (0.0094) 0.1624 (0.0132)
Point transect (no. 6) 0.0778 (0.0050) 0.3658 (0.0113)
Line transect, half-normal profile (no. 5) 0.1059 (0.0079) 0.3857 (0.0148)
Round doughnut plot (no. 9) 0.1060 (0.0097) 0.1706 (0.0145)
Rectangular plot (no. 3) 0.1358 (0.0135) 0.4284 (0.0212)
Square plot (no. 1) 0.1632 (0.0140) 0.4863 (0.0222)
Round plot (no. 2) 0.1700 (0.0142) 0.5010 (0.0226)

Source: Thompson and Ramsey (1987). With permission from the Biometric Society.
aDetectability function identification numbers correspond to the descriptions in the text.
bOnly the double-integral components of MSE and variance are computed. Standard errors in parentheses
refer to precision of numerical integrations.

parameter is σ = 0.1. This covariance function is characteristic of a Poisson
cluster process, representing a population with aggregation tendencies.

The nine types of plots and detectability functions compared in the table and
illustrated in Figure 22.1 are as follows:

1. A square plot

2. A round plot

3. A rectangular plot

4. A line transect of unit length and exponential profile

5. A line transect of unit length and half-normal profile

6. A variable circular plot (point transect) with half-normal shape

7. A constant detectability over the whole study region

8. A “square doughnut” plot along the perimeter of the region

9. A “round doughnut” plot—actually, a square doughnut with a round hole

The MSE term in the table indicates the relative efficiency in predicting the
density of the population in the study region. The mean square prediction error
E(D̂ − D)2 for a given detectability unit equals the MSE term in the table plus
a constant that is the same for each type of detectability unit. The variance term
in the table pertains to estimating the parameter μ, expected density, an objective
with possibly less frequent application. The variance var(D̂) equals the variance
term in the table plus a constant term which is the same for each unit.

The most efficient method spreads the detectability over the whole study area, as
in certain aerial surveys. Long, thin rectangular plots are more efficient than square
or round plots. The various line transects, variable circular plots (radial transects),
and plots with holes in them give intermediate results. The “doughnut” plots may
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Figure 22.1. Plots and other detectability units, each of equal effective area observed, compared for
effectiveness in estimating or predicting density in a study region.

be little more than a curiosity. They achieve low variance by spreading the parts
of the plot away from each other to minimize correlations between points within
the plot.

In designing a survey, one cannot at will choose every aspect of the detectability
functions involved. Much may depend on the behavior of the animals and on the
habitat. Many choices made in the observational methods do affect the detectability
functions, however. Certainly, one can choose the size and shape of plots. In line
transect and variable circular plot surveys, decisions regarding how far and how
fast to walk or how long to remain at a site affect the shape of the detectability
function. In trawl surveys of fish, such factors as net dimensions and mesh size and
distance towed determine the detectability function. When detectability or effective
area is estimated, an additional term of variability is introduced and the estimates
are not unbiased.
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The efficiencies of different sampling designs, that is, of different spatial selec-
tions of n detectability units in a study region, could also be compared using
the variance and covariance formulas above. Further research is needed in that
direction.
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Adaptive Sampling Designs

23.1. ADAPTIVE AND CONVENTIONAL DESIGNS AND ESTIMATORS

Conventionally, much of the attention in sampling theory and methodology has
been limited to sampling designs in which the selection procedure does not depend
in any way on observations made during the survey, so that the entire sample
of units may be selected prior to the survey. But in many sampling situations, a
researcher may feel inclined to make decisions during a survey, based on what has
been observed thus far, as to which sites or how many sites to observe next. For
example, in a survey of a rare, spatially clustered animal population, the researcher
may wish to add neighboring sites to the sample once high abundance of the
species has finally been encountered. Adaptive sampling refers to sampling designs
in which the procedure for selecting sites or units to be included in the sample may
depend on values of the variable of interest observed during the survey.

The primary purpose of adaptive sampling designs is to take advantage of pop-
ulation characteristics to obtain more precise estimates of population abundance or
density, for a given sample size or cost, than is possible with conventional designs.
For example, many populations of animals and plants have aggregation tendencies
due to such factors as schooling, flocking, dispersal patterns, and environmental
patchiness. Minerals, fossil fuels, and some human populations can exhibit similar
patterns. Often, the location and shape of the aggregations cannot be predicted
before a survey so that traditional means of increasing precision such as stratifi-
cation are not sufficient. For such populations, adaptive sampling strategies may
provide a way to increase dramatically the effectiveness of sampling effort. A
secondary advantage of adaptive sampling may be the increase in the yield of
interesting observations—for example, the increased number of animals observed
or amount of mineral obtained during the survey—which may result in better
estimates of other parameters of interest.

Adaptive selection procedures may introduce biases into conventional estima-
tors, so that estimators and estimators of variance that are unbiased under the
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adaptive designs are needed. Design-unbiased estimators are emphasized in the
following chapters on adaptive sampling designs; that is, the unbiasedness does
not depend on assumptions about the population.

Adaptive sampling methods offer the potential to give large increases in effi-
ciency for some populations. Even after conventional means of increasing precision
or practicality, such as stratification and systematic or cluster arrangements, have
been applied, adaptive procedures can increase precision still further. For a given
population, the ultimate choice of procedure will depend both on the known charac-
teristics of the population and on practical considerations of cost and convenience.

23.2. BRIEF SURVEY OF ADAPTIVE SAMPLING

Sampling designs in which the selection procedure depends on observed val-
ues of the variable of interest have been of theoretical interest to statisticians
for some time. In his paper establishing that the minimal sufficient statistic in
finite-population sampling is the unordered set of distinct observations together
with their unit labels, Basu (1969) expressed the view that the most efficient
designs would be ones in which the selection probabilities were conditional on
the values observed. Zacks (1969) described an optimal fixed-sample-size adaptive
design from a Bayesian perspective; while recognizing the theoretical advantage
of designs depending on the values of the variable of interest, Solomon and Zacks
(1970) observed that the optimal design as described would be impractically com-
plex to implement and advocated the development of much simpler sequential or
two-phase designs. Cassel et al. (1977) summarized the subsequent literature on
sampling designs that make use of observed values (informative designs , in their
terminology), but found little of practical interest there.

In the statistical literature on sequential statistical methods (see Chernoff 1972;
Siegmund 1985; Wald 1947; Woodroofe 1982) many results are found showing
advantages over nonsequential methods such as increased power, lower expected
sample size, and more controllable precision. Sampling designs that depend on
the variable of interest are necessarily sequential but go beyond the usual situation
considered in sequential statistics in that the unit labels in the sampling data make it
possible to choose during a survey not just how much to sample next but which units
or group of units to sample next. Although these labels are responsible for many
of the complications in the theory of finite-population sampling (see discussions
in Cassel et al. 1977; Chaudhuri and Vos 1988), estimators that use the labels are
in some cases better than estimators that do not use the labels. This is certainly
the case with the designs described in the following chapters, in which unbiased
estimators utilizing information from the labels in the data have lower variance
than the unbiased estimator that does not use the unit labels.

Sampling designs in which the allocation of effort to different strata or primary
units is based adaptively on initial observations relate to the wider statistical litera-
ture on sequential allocation or bandit problems (Barry and Fristedt 1985; Robbins,
1952). But again, the labels identifying the sampling units provide expanded oppor-
tunities and problems. Adaptive designs in which the sample size of a simple
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random sample within primary units or strata depends instead on initial obser-
vations within those primary units or strata are discussed in Francis (1984) and
Kremers (1987). Adaptive strategies in which the sample size depends instead on
observed values in neighboring primary units or strata are presented in Thompson
(1988), Thompson and Ramsey (1983), and Thompson et al. (1992).

The concept of unbiased estimation based on the design has had much influence
in survey sampling practice since Neyman (1934) and has been the topic of more
recent discussions in Cassel et al. (1979), Godambe (1982) and Särndal (1978). By
the Rao–Blackwell theorem, any unbiased estimator that is not a function of the
minimal sufficient statistic can be improved upon by taking its conditional expecta-
tion given the sufficient statistic. Blackwell’s (1947) contribution to the topic was
motivated by the problem of obtaining an unbiased estimate of the mean following
sequential stopping. The method has since been used in a sequential context by
Ferebee (1983) for estimating the drift of Brownian motion. Kremers (1987) applied
the Rao–Blackwell theorem to two-stage adaptive sampling of a finite population
with sample size depending on the values of initial observations and gave variance
and variance estimation expressions for the estimator obtained. Similar use of the
method has been made in Kremers (1986) and Kremers and Robson (1987). With
finite-population sampling, an unbiased estimator obtained by the Rao–Blackwell
method is not in general a unique minimum-variance unbiased estimator because
the sufficient statistic is not complete, and in the following chapters, more than one
distinct estimator is obtained through the Rao–Blackwell method.

Adaptive cluster sampling designs in which the initial sample is selected by
simple random sampling, with or without replacement, are described in Thompson
(1990). Adaptive cluster sampling designs in which the initial sample may be a
strip sample or systematic sample are described in Thompson (1991a). Adaptive
cluster sampling designs in which the population is initially stratified (but adaptive
follow-up may cross stratum boundaries) are described in Thompson (1991b). The
importance of adaptive sampling methods for ecological sampling was discussed
by Cormack (1988) and Seber (1986, 1992).

Recent years have seen many new developments and uses of adaptive sampling
strategies. These include two-stage adaptive cluster sampling (Salehi and Seber
1997b), adaptive cluster double sampling (Félix Medina 2000b, Félix Medina and
Thompson 1999), unequal probability adaptive cluster sampling (Pontius 1997;
Roesch 1993; Smith et al. 1995) optimal adaptive allocation (Francis 1984),
design-unbiased adaptive allocation (Thompson et al. 1992), adaptive cluster
sampling without replacement of networks (Salehi and Seber 1997a), adaptive
cluster sampling without replacement of clusters (Dryver 1999), adaptive Latin
square sampling (Borkowski 1999; Munholland and Borkowski 1993), adaptive
cluster sampling based on order statistics (Thompson 1996), multivariate aspects of
adaptive sampling (Thompson 1993), inverse adaptive cluster sampling (Christman
and Lan 2001), and restricted adaptive cluster sampling to limit sample size
(Brown and Manly 1998; Salehi and Seber 2001). Results to ease the computation
of Rao–Blackwell improved estimators are contained in Dryver (1999), Félix
Medina (2000a), and Salehi (1999). Bootstrap confidence intervals for adaptive
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cluster sampling are discussed in Christman and Pontius (2000). Dealing with
imperfect detectability with adaptive designs is addressed in Thompson and Seber
(1994). Applications of adaptive sampling to natural and human populations are
addressed in Acharyal et al. (2000), Blair (1999), Boomer et al. (2000), Brown
(1994), Clausen et al. (1999), Danaher and King (1994), Francis (1984), Khaemba
and Stein (2001), Petrucci (1998), Ramsey and Sjamsoe’oed (1994), Roesch
(1993), Seber and Thompson (1993), Smith et al. (1995), M. E. Thompson (1997),
and Werner et al. (2000). Small sample and asymptotic properties of estimators are
examined in Christman (1997, 2000) and Félix Medina (2000b, 2002). Optimal
adaptive designs under a spatial model are worked out in Chao (1999, 2003) and
Chao and Thompson (2001). A range of topics in the theory and methods of
adaptive sampling are described in a monograph by Thompson and Seber (1996).
The adaptive web sampling designs described by Thompson (2006, 2011) apply
to spatial as well as network settings.
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Adaptive Cluster Sampling

In a number of sampling situations, field researchers carrying out the survey may
feel an inclination to increase sampling effort adaptively in the vicinity of observed
values that are high or otherwise interesting. Adaptive cluster sampling refers to
designs in which an initial set of units is selected by some probability sampling
procedure, and whenever the variable of interest of a selected unit satisfies a given
criterion, additional units in the neighborhood of that unit are added to the sam-
ple. In this chapter, the simplest adaptive cluster sampling designs are considered:
namely, those in which the initial sample is selected by simple random sampling
with or without replacement.

For the sorts of situations in which field researchers feel the inclination to depart
from the preselected sample plan and add nearby or associated units to the sam-
ple, adaptive cluster sampling accommodates that inclination almost completely.
Consider a survey of a rare and endangered bird species in which observers record
the number of individuals of the species seen or heard at sites or units within a
study area. At many of the sites selected for observation, zero abundance may
be observed. But whenever substantial abundance is encountered, observation of
neighboring sites is likely to reveal additional concentrations of individuals of the
species. Such patterns of clustering or patchiness are encountered with many types
of animals from whales to insects, with vegetation types from trees to lichens,
and with mineral and fossil fuel resources. A related pattern is found in epi-
demiological studies of rare, contagious diseases. Whenever an infected individual
is encountered, addition to the sample of closely associated individuals reveals
a higher-than-expected incidence rate. The results and examples of this chapter
and the next two indicate that for some populations—particularly for rare, clus-
tered populations—the researchers’ inclinations are well justified in that manyfold
increases in precision of estimates may be obtained with the adaptive strategy, com-
pared to the precision of a conventional design of equivalent sample size. Most
results of this chapter were given in Thompson (1990).
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The basic idea of the designs in this chapter is illustrated in Figures 24.1
and 24.2, in which the problem is to estimate the mean number of point
objects—which could, for example, represent locations of animals or mineral
deposits—scattered unevenly in a study region partitioned into 400 square
sampling units. An initial random sample of 10 units is shown in Figure 24.1.
Whenever one or more of the objects is observed in a selected unit, the adjacent
neighboring units—to the left, right, top, and bottom—are added to the sample.
When this process is completed, the sample consists of 45 units, shown in
Figure 24.2. Neighborhoods of units may be defined in many ways other than the
spatial proximity system of this example. For instance, the neighborhood of a unit
could consist of a larger set of contiguous units or a systematic grid pattern of
surrounding units.

Since a conventional estimator such as the sample mean may be biased when
used with adaptive cluster sampling, estimators that are unbiased for the population
mean are given in this chapter, along with unbiased estimators of their variances.
The estimators given in this chapter are design-unbiased, that is, the unbiasedness
is based on the way the sample is selected rather than on assumptions about the
population. The estimators developed for adaptive cluster sampling are related to
the Hansen–Hurwitz and Horvitz–Thompson estimators used with unequal prob-
ability sampling designs such as network sampling and line-intercept sampling.
With adaptive cluster sampling, however, the selection and inclusion probabilities

Figure 24.1. Adaptive cluster sampling to estimate the number of point objects in a study region of
400 units. An initial random sample of 10 units is shown. Adjacent neighboring units are added to the
sample whenever one or more of the objects of the population is observed in a selected unit. [From
Thompson (1990). With permission from the American Statistical Association.]
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Figure 24.2. Sample resulting from the method illustrated in Figure 24.1. [From Thompson (1990).
With permission from the American Statistical Association.]

needed for those estimators cannot be determined for every unit in the sample, so
modified estimators are used.

24.1. DESIGNS

As in the usual finite-population sampling situation, the population consists of
N units with labels 1, 2, . . . , N and with associated variables of interest y =
{y1, y2, . . . , yn}. The sample s is a set of sequence labels identifying the units
selected for observation. The data consist of the observed y-values together with
the associated unit labels. The object of interest is to estimate the population mean

μ = N−1
N∑

i=1

yi

or total τ = N μ of the y-values. A sampling design is a function P(s | y) assigning
a probability to every possible sample s . In designs such as those described in this
chapter, these selection probabilities depend on the population y-values.

It is assumed that for every unit i in the population a neighborhood Ai is
defined, consisting of a collection of units including i . These neighborhoods do
not depend on the population y-values. In the spatial sampling examples of this
chapter, the neighborhood of each unit consists of a set of geographically nearest
neighbors, but more elaborate neighborhood patterns are also possible, including
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a larger contiguous set of units or a noncontiguous set such as a systematic grid
pattern around the initial unit. In other sampling situations, neighborhoods may
be defined by social or institutional relationships between units. The neighborhood
relation is symmetric: If unit j is in the neighborhood of unit i , unit i is in the
neighborhood of unit j .

The condition for additional selection of neighboring units is given by an interval
or set C in the range of the variable of interest. The unit i is said to satisfy the
condition if yi ∈ C . In the examples of this chapter, a unit satisfies the condition
if the variable of interest yi is greater than or equal to some constant c; that is,
C = {y : y ≥ c}.

When a selected unit satisfies the condition, all units within its neighborhood
are added to the sample and observed. Some of these units may in turn satisfy the
condition and some may not. For any of these units that does satisfy the condition,
the units in its neighborhood are also included in the sample, and so on.

Consider the collection of all the units that are observed under the design as
a result of initial selection of unit i . Such a collection, which may consist of the
union of several neighborhoods, will be termed a cluster when it appears in a
sample. Within such a cluster is a subcollection of units, termed a network , with
the property that selection of any unit within the network would lead to inclusion
in the sample of every other unit in the network. In the example of Figures 24.1
and 24.2, inside either of the obvious clusters of units in the final sample, the
subcollection of units with one or more of the point objects forms a network.

Any unit not satisfying the condition but in the neighborhood of one that does
is termed an edge unit . While selection of any unit in the network will result in
inclusion of all units in the network and all associated edge units, selection of an
edge unit will not result in the inclusion of any other units. It is convenient to
consider any unit not satisfying the condition as a network of size 1, so that given
the y-values, the population may be uniquely partitioned into networks.

Initial Simple Random Sample without Replacement

When the initial sample of n units is selected by simple random sampling without
replacement, the n units in the initial sample are distinct due to the without-
replacement sampling, but the data may nevertheless contain repeat observations
due to selection in the initial sample of more than one unit in a cluster. The unit i
will be included in the sample either if any unit of the network to which it belongs
(including itself) is selected as part of the initial sample or if any unit of a network
of which unit i is an edge unit is selected. Let mi denote the number of units in the
network to which unit i belongs, and let ai denote the total number of units in
networks of which unit i is an edge unit. Note that if unit i satisfies the criterion
C , then ai = 0, while if unit i does not satisfy the condition, then mi = 1. The
probability of selection of unit i on any one of the n draws is

pi = mi + ai

N
(24.1)
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The probability that unit i is included in the sample is

πi = 1 −
(

N − mi − ai

n

) / (
N

n

)
(24.2)

Initial Random Sample with Replacement

When the initial sample is selected by random sampling with replacement, repeat
observations in the data may occur due either to repeat selections in the initial
sample or to initial selection of more than one unit in a cluster. With this design,
the draw-by-draw selection probability is pi = (mi + ai )/N , and the inclusion
probability is π i = 1 − (1 − pi )n .

With either initial design, neither the draw-by-draw selection probability pi nor
the inclusion probability π i can be determined from the data for all units in the
sample, because some of the ai may be unknown.

24.2. ESTIMATORS

Classical estimators such as the sample mean y, which is an unbiased estimator of
the population mean under a nonadaptive design such as simple random sampling,
or the mean of the cluster means y, which is unbiased under cluster sampling with
selection probabilities proportional to cluster sizes, are biased when used with the
adaptive designs described in this chapter. In this section several estimators are
examined which are unbiased for the population mean under the adaptive designs.
Derivations of the means and variances of the estimators, as well as of the unbiased
estimators of variance, are given later in the chapter.

Initial Sample Mean

If the initial sample in the adaptive design is selected by simple random sampling,
with or without replacement, the mean μ̂0 of the n initial observations is an unbiased
estimator of the population mean. This estimator ignores all observations in the
sample other than those selected initially.

Estimation Using Draw-by-Draw Intersections

For sampling designs in which n units are selected with replacement and the proba-
bility pi of selecting unit i on any draw is known for all units, the Hansen–Hurwitz
estimator, in which each y-value is divided by the associated selection probability
and multiplied by the number of times the unit is selected, is an unbiased estimator
of the population mean.

With the adaptive cluster sampling designs of this chapter, the selection proba-
bilities are not known for every unit in the sample. An unbiased estimator can be
formed by modifying the Hansen–Hurwitz estimator to make use of observations
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not satisfying the condition only when they are selected as part of the initial sam-
ple. The modified estimator is based on draw-by-draw probabilities that a unit’s
network is intersected by the initial sample.

Let � i denote the network that includes unit i , and let mi be the number of
units in that network. (Recall that a unit not satisfying the condition is considered a
network of size 1.) Let wi represent the average of the observations in the network
that includes the i th unit of the initial sample, that is,

wi = 1

mi

∑
j∈�i

yi (24.3)

The modified estimator is

μ̂1 = 1

n

n∑
i=1

wi (24.4)

The variance of μ̂1 is

var(μ̂1) = N − n

Nn(N − 1)

N∑
i=1

(wi − μ)2 (24.5)

if the initial sample is selected without replacement, and

var(μ̂1) = 1

n

N∑
i=1

(wi − μ)2

N
(24.6)

if the initial sample is selected with replacement.
An unbiased estimator of this variance is

v̂ar(μ̂1) = N − n

Nn(n − 1)

n∑
i=1

(wi − μ̂1)
2 (24.7)

if the initial sample is selected without replacement, and

v̂ar(μ̂1) = 1

n(n − 1)

n∑
i=1

(wi − μ̂1)
2 (24.8)

if the initial sample is selected with replacement.

Example 1: Draw-by-Draw. For the sample shown in Figures 24.1 and 24.2, the
initial sample of n = 10 units was selected by simple random sampling. One of
these units, near the top of the study region, intersected a network of m1 = 6 units
containing y1 = 36 point objects. Another intersected a network of m2 = 11 units
containing y2 = 107 objects. For the other 8 units of the initial sample, yi = 0
and mi = 1.
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The estimate based on draw-by-draw intersection probabilities [see Equations
(24.3) and (24.4)] is

μ̂1 = 1

10

(
36

6
+ 107

11
+ 0

1
+ · · · + 0

1

)
= 0.1(6 + 9.727 + 0 + · · · + 0) = 1.573

objects per unit or Nμ̂1 = 400(1.573) = 629 objects in the population.
The estimated variance [using Equation (24.5)] is

v̂ar(μ̂1) = 400 − 10

400(10)(10 − 1)
[(6 − 1.573)2 + (9.727 − 1.573)2

+ (0 − 1.573)2 + · · · + (0 − 1.573)2]

= 390

400(10)
(11.765) = 1.147

For the estimate of the total, the estimated variance is v̂ar(Nμ̂1) =
4002 (1.147) = 183,520, giving a standard error of

√
183,520 = 428.4.

Note that the ordinary sample mean of the 45 units in the final sample would have
given y = 143/45 = 3.178 for an estimate of N y = 1271 objects in the study region.
The fact that the adaptive selection procedure produces a high yield of observed
objects gives the ordinary sample mean a tendency to overestimate. �

Estimation Using Initial Intersection Probabilities

For sampling designs in which the probability π i that unit i is included in the
sample is known for every unit, the Horvitz–Thompson estimator, in which each
y-value is divided by the associated inclusion probability, is an unbiased estimator
of the population mean.

With the adaptive designs of this chapter, the inclusion probabilities are not
known for all units included in the sample. An unbiased estimator can be formed
by modifying the Horvitz–Thompson estimator to make use of observations not
satisfying the condition only when they are included in the initial sample. Then the
probability that a unit is utilized in the estimator can be computed, even though
its actual probability of inclusion in the sample may be unknown. The modified
estimator is based on probabilities of the initial sample intersecting networks.

If the initial sample is selected by simple random sampling without replacement,
define

π ′
i = 1 −

(
N − mi

n

)/(
N

n

)
where mi is the number of units in the network that includes unit i . If the initial
selection is made with replacement, define π ′

i = 1 − (1 − mi /N )n . For any unit
not satisfying the condition, mi = 1. Let the indicator variable Ji be zero if the
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i th unit in the sample does not satisfy the condition and was not selected in the
initial sample; otherwise, Ji = 1. The modified estimator, written in terms of the
individual units in the sample, is

μ̂2 = 1

N

ν∑
i=1

yiJi

π ′
i

(24.9)

To obtain the variance of μ̂2, it will be most convenient to change notation
to deal with the networks into which the population is partitioned rather than
individual units. Let K denote the number of networks in the population and let
�k be the set of units comprising the k th network. Let xk be the number of units in
network k . The total of the y-values in network k will be denoted y∗

k = ∑
i∈�k

yi .
The probability π ′

i that the unit i is utilized in the estimator is the same for all
units within a given network k ; this common probability will be denoted αk . Thus,

ak = 1 −
(

N − xk

n

) / (
N

n

)
(24.10)

with simple random sampling without replacement and αk = 1 − (1 − xk /N )n

with replacement.
Let the indicator variable z k equal 1 if any unit of the k th network is in the

initial sample, and let z k equal zero otherwise. With this network notation, the
estimator can be written

μ̂2 = 1

N

K∑
k=1

y∗
k zk

αk

(24.11)

For any network not in the sample, zk will be zero; it will also be zero for any
single-unit network in the sample as an edge unit not selected initially.

The probability αkh that the initial sample contains at least one unit in each of
the networks k and h is

αkh = 1 −
[(

N − xk

n

)
+

(
N − xh

n

)
−

(
N − xk − xh

n

)]/ (
N

n

)
when the initial sample is selected without replacement and αkh = 1 − {(1 −
xk /N )n + (1 − xh /N )n − [1 − (xk + xh )/N ]n} when the initial selection is with
replacement.

With the convention that αkk = αk , the variance of the estimator can be written

var(μ̂2) = 1

N2

K∑
k=1

K∑
h=1

y∗
k y∗

h(αkh − αkαh)

αkαh
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An unbiased estimator of the variance of μ̂2 is

v̂ar(μ̂2) = 1

N2

K∑
k=1

K∑
h=1

y∗
k y∗

hzkzh(αkh − αkαh)

αkαh

= 1

N2

⎡⎣ K∑
k=1

(
1

α2
k

− 1

αk

)
y∗2

k zk +
K∑

k=1

∑
h�=k

(
1

αkαh

− 1

αkh

)
y∗

k y∗
hzkzh

⎤⎦

Example 2: Initial Intersection Probabilities.. For the sample in Figures 24.1
and 24.2, the intersection probability for the first (top) network [using Equation
(24.10)] is

α1 = 1 −

(
400 − 6

10

)
(

400
10

)
= 1 − 394!

10! 384!

10! 390!

400!

= 1 − 0.8582 = 0.1418

For the other large network intersected by the initial sample,

α2 = 1 −

(
400 − 11

10

)
(

400
10

) = 1 − 0.7542 = 0.2458

For the networks of size 1 the probability is αk = 10/400 = 0.025.
The estimate using intersection probabilities [see Equation (24.11)] is

μ̂2 = 1

400

(
36

0.1418
+ 107

0.2458
+ 0

0.025
+ · · · + 0

0.025

)
= 1.723

objects per unit or 400(1.723) = 689 total objects in the population. �

24.3. WHEN ADAPTIVE CLUSTER SAMPLING IS BETTER THAN
SIMPLE RANDOM SAMPLING

It was pointed out earlier that the unbiasedness of the adaptive designs in this
chapter does not depend on the type of population being sampled, because the
unbiasedness is design-based. Whether an adaptive design is more efficient or less
efficient than a nonadaptive design such as simple random sampling does, however,
depend on the type of population being sampled.
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Consider adaptive cluster sampling with the initial sample of n units selected by
simple random sampling without replacement and with the estimator μ̂1. With σ 2 =
(N − 1)−1 ∑N

i=1 (yi − μ)2 denoting the finite-population variance, the variance of
the sample mean of a simple random sample of fixed size n* will have variance
σ 2(N − n*)/Nn*. Comparing this quantity with the expression [Equation (24.4)]
for the variance of μ̂1 gives the following result (see Section 24.7): The adaptive
strategy will have lower variance than the sample mean of a simple random sample
of size n* if and only if(

1

n
− 1

n∗

)
σ 2 <

N − n

Nn(N − 1)

K∑
k=1

∑
i∈�k

(yi − wi)
2

where �k is the k th network in the population. The term on the right contains
the within-network variance of the population. Thus, adaptive cluster sampling
with the estimator μ̂1 will be more efficient than simple random sampling if the
within-network variance of the population is sufficiently high.

24.4. EXPECTED SAMPLE SIZE, COST, AND YIELD

In the examples in this chapter, comparisons of adaptive strategies with simple
random sampling are made on the basis of expected (effective) sample size E(ν),
which is the sum of the inclusion probabilities given in Section 24.1 [i.e., E(ν) =∑N

i=1 πi]. In classical cluster sampling, comparisons are often made on the basis
of cost, since it is often less expensive, in terms of time or money, to sample units
within a cluster than to select a new cluster. The same may be true in applications of
adaptive cluster sampling. A reasonable cost equation might then be c = c0 + c1n
+ c2n ′, where c is total cost, c0 is a fixed cost, c1 and c2 are the marginal costs per
unit in the initial and subsequent samples, and n and n ′ are the initial and subsequent
sample sizes. In addition, there may in many applications be lower costs associated
with observing a unit that does not satisfy the criterion than with observing one that
does, in which case the cost equation can be modified accordingly. (For example,
if the y-variable is biomass of a plant species on sample plots, the measurement
is easier on plots with zero.) When the foregoing conditions apply, the relative
advantage of the adaptive to the nonadaptive strategy would tend to be greater
than in comparisons based solely on sample size. In addition, adaptive cluster
sampling tends to increase the “yield” of interesting observations, for example, the
number of animals observed or amount of ore assessed.

24.5. COMPARATIVE EFFICIENCIES OF ADAPTIVE AND
CONVENTIONAL SAMPLING

In this section, adaptive cluster sampling is illustrated using, first, the clustered
population of Figures 24.1 and 24.2, and second, the same population with each
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y-value converted to a zero–one variable indicating the presence or absence of
objects in the unit. The population of each example is contained in a square region
partitioned into N = 20 × 20 = 400 units. The neighborhood of each unit consists,
in addition to itself, of all adjacent units (i.e., that share a common boundary line).
A unit satisfies the condition for additional sampling if the y-value associated with
the unit is greater than or equal to 1.

For each example, variances are computed for the estimators μ̂1 and μ̂2 under
the design adaptive cluster sampling with the initial sample of n units selected
by simple random sampling without replacement. Results are listed in Tables 24.1
and 24.2 for a selection of initial sample sizes, from n = 1 to n = 200.

For comparison, the variance is also computed for the sample mean μ̂∗
0 of a sim-

ple random sample (without replacement) with sample size equal to the expected
(effective) sample size E(ν) under the adaptive design. For each adaptive strat-
egy, the relative efficiency—the variance of the simple random sampling strategy
divided by the variance of the adaptive strategy—is also listed. The population
y-values for the two examples are listed in Table 24.4.

Population 1 The population of point objects illustrated in the figures was produced
as a realization in the unit square of a Poisson cluster process (see Diggle 1983)
with five “parent locations” from a uniform distribution and random Poisson (mean
= 40) numbers of point objects dispersed in relation to the parent locations with
a symmetric Gaussian distribution having standard deviation 0.02. The population
mean is 190/400 = 0.475.

Table 24.1 lists the expected sample sizes, variances, and relative efficiencies
for the different sampling strategies for a selection of initial sample sizes. With an

Table 24.1: Population 1: Variances of μ̂1 and μ̂2 with Adaptive Cluster Sampling
and Initial Sample Size n for the Population Illustrated in Figures 24.1 and 24.2a

n E(ν) var(μ̂1) var(μ̂2) var(μ̂∗
0) eff(μ̂1) eff(μ̂2)

1 1.92 4.29705 4.29705 4.28364 1.00 1.00
2 3.82 2.14314 2.12386 2.14420 1.00 1.01

10 18.26 0.42001 0.38655 0.43240 1.03 1.12
20 34.66 0.20462 0.17097 0.21805 1.07 1.28
30 49.56 0.13282 0.10030 0.14627 1.10 1.46
40 63.26 0.09693 0.06587 0.11012 1.14 1.67
50 76.00 0.07539 0.04593 0.08819 1.17 1.92
60 87.97 0.06103 0.03322 0.07338 1.20 2.21

100 130.80 0.03231 0.01096 0.04258 1.32 3.89
200 223.86 0.01077 0.00106 0.01628 1.51 15.36

aSource: Thompson (1990). With permission from the American Statistical Association.
bThe variance of y with simple random sampling is calculated for sample size E(ν), the sample
size expected with the adaptive design. Relative efficiencies in the last two columns are eff(μ̂1) =
var(μ̂∗

0)/var(μ̂1) and eff(μ̂2) = var(μ̂∗
0)/var(μ̂2). eff(μ̂1) compares the efficiency of adaptive cluster

sampling using the estimator μ̂1 and simple random sampling with sample size E(ν). eff(μ̂2) compares
adaptive cluster sampling using estimator μ̂2 and simple random sampling with sample size E[ν].
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Table 24.2: Population 2: Variance Comparisons with the y-Variable Indicating the
Presence or Absence of Objects in the Population of Figures 24.1 and 24.2

n E(ν) var(μ̂1) var(μ̂2) var(μ̂∗
0) eff(μ̂1) eff(μ̂2)

1 1.92 0.04974 0.04974 0.02581 0.52 0.52
2 3.82 0.02481 0.02459 0.01292 0.52 0.53

10 18.26 0.00486 0.00448 0.00261 0.54 0.58
20 34.66 0.00237 0.00198 0.00131 0.55 0.66
30 49.56 0.00154 0.00116 0.00088 0.57 0.76
40 63.26 0.00112 0.00076 0.00066 0.59 0.87
50 76.00 0.00087 0.00053 0.00053 0.61 1.00
60 87.97 0.00071 0.00038 0.00044 0.63 1.15

100 130.80 0.00037 0.00012 0.00026 0.69 2.06
200 223.86 0.00012 0.00001 0.00010 0.79 9.52

Source: Thompson (1990). With permission from the American Statistical Association.

initial sample size of 1, the variances of the adaptive strategies are about equal to
that obtained with simple random sampling. The relative advantage of the adaptive
strategies increases with increasing n . An initial sample of size 10 as illustrated in
Figure 24.1 leads to an average final sample of size about 18 units [E(ν)] and with
the estimator μ̂2, an efficiency gain of 12% over simple random sampling with
equivalent sample size. With an initial sample size of 200, the adaptive strategy
leads on average to observing a total of about 224 units and is 15.36 times as
efficient as simple random sampling.

Population 2 The y-values for this population are either zero or 1. The population
was obtained from that of Example 1, letting the y-value of each unit indicate the
presence or absence of point objects in that unit. Thus, the pattern of the “1’s”
in the population is identical to the pattern of nonzero units in Figure 24.1. For
such a population, the within-network variance is zero, since every network in the
population consists of either a single unit with yi = 0 or a group of one or more
units each with yi = 1. Therefore, by the results of Section 24.5, the adaptive
strategy with the estimator μ̂1 cannot do better than simple random sampling in
this situation. The variance computations in Table 24.2 reveal, however, that the
estimator μ̂2 used with the adaptive design does turn out to be more efficient than
simple random sampling for initial sample sizes of 50 or larger.

24.6. FURTHER IMPROVEMENT OF ESTIMATORS

Neither μ̂0, μ̂1, nor μ̂2 is a function of the minimal sufficient statistic. Therefore,
each of these unbiased estimators can be improved upon using the Rao–Blackwell
method of taking their conditional expectations given the minimal sufficient statis-
tic. The minimal sufficient statistic D in the finite-population sampling setting is
the unordered set of distinct, labeled observations; that is, D = {(k , yk ) : k ∈ s},
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where s denotes the set of distinct units included in the sample. Each of the esti-
mators μ̂0, μ̂1, and μ̂2 depends on the order of selection; μ̂1 depends in addition
on repeat selections; and when the initial sample is selected with replacement, μ̂0

also depends on repeat selections.
Letting μ̂ denote any of the three unbiased estimators above, consider the esti-

mator μ̂RB = E(μ̂ | D), the application of the Rao–Blackwell method to the initial
sample mean. Let ν denote the effective sample size, that is, the number of distinct
units included in the sample. When the initial sample is selected by simple ran-
dom sampling without replacement, define η = (

ν

n

)
, the number of combinations

of n distinct units from the ν in the sample. Let these combinations be indexed in
any arbitrary way by the label g , and let μ̂g denote the value of the estimator μ̂

obtained when the initial sample consists of combination g . Similarly, let v̂ar(μ̂g)

denote the value of the variance estimator obtained with initial sample g .
Any initial sample that gives rise through the design to the given value D of the

minimal sufficient statistic will be termed compatible with D . A sample edge unit
is a unit in the sample that does not satisfy the condition but is in the neighborhood
of one or more units in the sample that do satisfy the condition. Let κ* denote the
number of distinct networks represented in the sample exclusive of sample edge
units, that is, the number of distinct networks intersected by the initial sample.
Because of the way the sample is selected, an initial sample of n units gives rise
to the given value of D if and only if the initial sample contains at least one unit
from each of the κ* distinct networks exclusive of sample edge units in D . Letting
x j denote the number of units in the initial sample from the j th of these networks,
an initial sample of n units from the ν distinct units in D is compatible with D if
and only if x j ≥ \1 for j = 1, . . . , κ*. Define the indicator variable I g to be 1
if the g th combination of n units from the sample is compatible with D and zero
otherwise. The number of compatible combinations is ξ = ∑η

g=1 Ig .
With the notation above, the Rao–Blackwell estimator obtained from

estimator μ̂ is μ̂RB = ξ−1 ∑η

g=1 μ̂gIg . Its variance is var(μ̂RB) = var(μ̂) −
E[var(μ̂|D)]. An unbiased estimator of this variance is given by v̂ar(μ̂RB) =
ξ−1 ∑η

g=1[v̂ar(μ̂g) − (μ̂g − μ̂RB)2]Ig . If the initial sample is selected with
replacement, the formulas above hold with η = νn , the number of sequences of n
units, distinguishing order and allowing repeats, from the ν distinct units in the
sample and with the label g identifying a sequence in the collection. Although
unbiased, the estimator of variance above can, with some sets of data, take on
negative values. Computational aspects of the Rao–Blackwell estimators deserve
further study, since the numbers of terms in the expressions above are potentially
large.

The estimator obtained when the Rao–Blackwell method is applied to μ̂0 is
shown in Section 24.7 to be identical to that obtained when the Rao–Blackwell
method is applied to μ̂1. A different estimator is obtained, however, when the
Rao–Blackwell method is applied to μ̂2, as demonstrated in the small population
example (Example 3). The reason that a unique minimum variance unbiased esti-
mator is not obtained is that the minimal sufficient statistic in the finite-population
sampling setting is not complete. The incompleteness of D in the finite-population
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sampling situation is due basically to the presence of the unit labels in D . Yet the
labels cannot be regarded as just a nuisance, as good use is made of these labels
in constructing estimators for use with the adaptive designs in this chapter. Of the
five unbiased estimators in this section, all but the initial sample mean depend on
the labels in the data.

Example 3: Small Population. In this section, the sampling strategies are applied
to a very small population in order to shed light on the computations and properties
of the adaptive strategies in relation to each other and to conventional strategies.
The population consists of just five units, the y-values of which are {1, 0, 2, 10,
1000}. The neighborhood of each unit includes all adjacent units (of which there
are either one or two). The condition is defined by C = {x : x ≥ 5}. The initial
sample size is n = 2.

With the adaptive design in which the initial sample is selected by simple random
sampling without replacement, there are

(5
2

) = 10 possible samples, each having
probability 1/10. The resulting observations and the values of each estimator are
listed in Table 24.3.

In this population, the fourth and fifth units, with the y-values 10 and 1000,
respectively, form a network, while the third, fourth, and fifth units, with y-values
2, 10, and 1000, form a cluster. In the fourth row of the table, the first and fifth
units, with y-values 1 and 1000, were selected initially; since 1000 ≥ 5, the single

Table 24.3: All Possible Outcomes of Adaptive Cluster Sampling for a Population of
Five Units with y-Values 1, 0, 2, 10, 1000, in which the Neighborhood of Each Unit
Consists of Itself Plus Adjacent Unitsa

Observations μ̂0 μ̂1 μ̂RB1 μ̂2 μ̂RB2 y y

1,0 0.50 0.50 0.50 0.50 0.50 0.50 0.50
1,2 1.50 1.50 1.50 1.50 1.50 1.50 1.50
1,10;2,1000 5.50 253.00 253.00 289.07 289.07 253.25 169.67
1,1000;10,2 500.50 253.00 253.00 289.07 289.07 253.25 169.67
0,2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0,10;2,1000 5.00 252.50 252.50 288.57 288.57 253.00 168.67
0,1000;10,2 500.00 252.50 252.50 288.57 288.57 253.00 168.67
2,10;1000 6.00 253.50 337.33 289.57 289.24 337.33 337.33
2,1000;10 501.00 253.50 337.33 289.57 289.24 337.33 337.33
10,1000;2 505.00 505.00 337.33 288.57 289.24 337.33 337.33
Mean: 202.6 202.6 202.6 202.60 202.60 202.75 169.17
Bias: 0 0 0 0 0 0.15 −33.43
MSE: 59,615 22,862 18,645 17,418.4 17,418.3 18,660 18,086

aSource: Thompson (1990). With permission from the American Statistical Association.
aThe initial sample of two units is selected by simple random sampling without replacement. Whenever
an observed y-value exceeds 5, the neighboring units are added to the sample. Initial observations are
separated from subsequent observations in the table by a semicolon. For each possible sample, the value
of each estimator is given. The bottom line of the table gives the mean square error for each estimator.
The sample mean of a simple random sample of equivalent sample size has variance 24,359.
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neighbor of the fifth unit, having y-value 10, was added to the sample. Since 10
also exceeds 5, the neighboring unit with y-value 2 is also added to the sample.
The computations for the estimators [Equations (24.4) and (24.11)] are

μ̂1 = 1 + (10 + 1000)/2

2
= 253

μ̂2 = 1/0.4 + 10/0.7 + 1000/0.7

5
= 289.07

in which α1 = 1 − (4
2

)
/
(5

2

) = 0.4 and α2 = α3 = 1 − (3
2

)
/
(5

2

) = 0.7. The classical
estimator y (the sample mean) = 253.25 is obtained by averaging all four obser-
vations in the sample, while the mean of cluster means

y = 1 + (10 + 2 + 1000)/3

2
= 169.17

The six distinct values of the minimal sufficient statistic D are indicated by
the distinct values of the Rao–Blackwell estimators μ̂RB1 and μ̂RB2, which are
obtained by averaging μ̂1 and μ̂2, respectively, over all samples with the same
value of D . In the last row of Table 24.3, initial selection of the units with y-values
10 and 1000 leads to addition of the adjacent unit with value 2, which receives no
weight in the estimators μ̂1 and μ̂2 since it does not satisfy the condition and was
not included in the initial sample. But the Rao–Blackwell estimates based on this
sample do not utilize the value 2 by averaging over the last three rows of the table.

The population mean is 202.6, and the population variance (defined with N − 1
in the denominator) is 198,718. One sees from Table 24.3 that the unbiased adaptive
strategies indeed have expectation 202.6, while the estimators y and y, used with
the adaptive design, are biased.

With the adaptive design, the effective sample size ν varies from sample to
sample, with expected sample size 3.1. For comparison, the sample mean with a
simple random sampling design (without replacement) and a sample size of 3.1 has
(inserting the noninteger value 3.1 into the standard formula) variance [(198, 718)
(5 − 3.1)]/[5(3.1)] = 24,359.

From the variances and mean square error given in the last row of Table 24.3,
one sees that for this population, the adaptive design with the estimator μ̂RB2 has
the lowest variance among the unbiased strategies [note, however, the extra digit
of reporting precision necessary in the table to show that var(μ̂RB2) is slightly less
than var(μ̂2)], and that all of the adaptive strategies are more efficient than simple
random sampling. Among the five unbiased adaptive strategies, the four that make
use of labels in the data have lower variance than the one (μ̂0) that does not. �

24.7. DERIVATIONS

The expected value of an estimator μ̂ is defined in the design sense, that is, E(μ̂) =∑
μ̂sP(s|y), where μ̂s is the value of the estimate computed when sample s is
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selected, P(s|y) is the probability under the design of selecting the sample s given
the population values y = {y1, . . . , yN }, and the summation is over all possible
samples s . The sampling strategy—the estimator together with the design—is
design-unbiased for the population mean if E(μ̂) = N−1 ∑N

i=1 yi for all population
vectors y.

Mean and Variance of μ̂. To see that μ̂1 is unbiased, let r i indicate the number
of times the i th unit of the population appears in the estimator, which is exactly
the number of units in the initial sample that intersect the network including unit
i . Note that r i may be less than the number of times that unit i appears in the
sample, which includes selections of unit i as an edge unit. The random variable
r i has a hypergeometric distribution when the initial sample is selected by simple
random sampling without replacement and a binomial distribution when the initial
sample is selected by simple random sampling with replacement. With either design,
r i has expected value E(r i ) = nmi /N . Writing the estimator in the form μ̂1 =
n−1 ∑N

i=1 riyi/mi , it follows that E(μ̂1) = N−1 ∑N
i=1 yi , so that μ̂1 is a design-

unbiased estimator of the population mean. The estimator μ̂1 = n−1 ∑n
k=1 wi can

be viewed as a sample mean, based on a simple random sample, in which the
variable of interest associated with the i th unit in the population is wi , the mean of
the y-values in the network that includes unit i . The expressions for the variance
and estimator of variance then follow from classical results on the sample mean of
a simple random sample. �

Mean and Variance of μ̂2. To see that μ̂2 is unbiased, let J i = 1 if unit i is
utilized in the estimator and J i = 0 otherwise. For any i , J i is a Bernoulli random
variable with expected value π ′

i . Writing the estimator as μ̂2 = N−1 ∑N
i=1 Jiyi/π ′i

it follows that E(μ̂2) = N−1 ∑N
i=1 yi , the population mean.

Define the indicator variable z k to be 1 if the initial sample contains one or more
units from the k th network and zero otherwise, so that μ̂2 = N−1 ∑N

k=1 zky
∗
k /αk .

For any network k , z k is a Bernoulli random variable with expected value E(z k ) =
αk

and var(z k ) = αk (1 − αk ). For k �= h , the covariance of the indicator
variables is (z k , z h ) = E(z k z h ) − E(z k )E(z h ) = αkh − αkαh . Thus,

var(μ̂2) = N−2
N∑

k=1

N∑
h=1

y∗
k y∗

hcov(zj , zh)

αkαh

= N−2
N∑

k=1

N∑
h=1

y∗
k y∗

h(αkh − αkαh)

αkαh

To see that v̂ar(μ̂2) is unbiased, let z kh be 1 if units from both networks k and
h are selected in the initial sample and zero otherwise. Then v̂ar(μ̂2) = N−2∑K

k=1

∑K
h=1 y∗

k y∗
hzkh(αkh − αkαh)/αkαhαkh, and unbiasedness follows since E(z kh )

= αkh . �
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Variances of Rao–Blackwell Estimators . When the initial sample is selected by
simple random sampling without replacement, each of the

(
M

n

)
possible combina-

tions of n distinct units from the N units in the population has equal probability
of being selected as the initial sample. When the initial sample is selected by sim-
ple random sampling with replacement, each of the N n possible sequences, which
distinguish order and can include repeat selections, of n units chosen from the N
units in the population is equally probable. Conditional on the minimal sufficient
statistic D , all initial samples of n units that give rise through the design to the
given value of D have equal selection probability; all other initial samples have
conditional probability zero. Since the units of the initial sample are included in the
ν distinct units in D , only

(
ν

n

)
combinations or νn sequences need be considered

conditional on D .
The conditional expectation of μ̂, given D , is therefore the average of the values

of μ̂ over all initial samples that are compatible with D . Since μ̂RB = E(μ̂|D),
where D is the minimal sufficient statistic, the variance of μ̂ can be decom-
posed as var(μ̂) = E[var(μ̂|D)] + var[E(μ̂|D)], so that the variance of μ̂RB can
be written var(μ̂RB) = var(μ̂) − E[var(μ̂|D)]. An unbiased estimator of var(μ̂) is
v̂ar(μ̂). But by the Rao–Blackwell theorem, a better unbiased estimator of var(μ̂) is
E[v̂ar(μ̂)|D], which is the average, over all compatible selections of n observations
from D , of the variance estimates v̂ar(μ̂g). An unbiased estimator of the variance of
μ̂RB is thus provided by v̂ar(μ̂RB) = E[v̂ar(μ̂)|D] − var(μ̂|D). The second term on
the right is computed from the sample as var(μ̂|D) = ξ−1 ∑

(μ̂g − μ̂RB)2, where
μ̂g denotes the value of μ̂ obtained from the g th compatible selection, and the
summation is over the ξ compatible selections of n observations from D . �

Equivalence of Rao–Blackwell Estimators from μ̂0 and μ̂1. To establish that
E(μ̂0|D) = E(μ̂1|D), it is helpful to consider the statistic D* consisting of the
unordered set of labeled observations together with information about the number
of times the network of each unit is intersected by the sample; that is, D* = {(i ,
yi , f i ), i ∈ s}, where s is the set of distinct units included in the sample and f i

is the number of times the network of unit i was intersected by the sample. The
statistic D* is sufficient but not minimally sufficient.

An initial selection of n units giving rise to the statistic D* determines n net-
works, some of which may be repeats, contained in D*. Let κ be the number of
distinct networks among these. (Note that a sample edge unit forms one of these
groups only if it was included in the initial selection.) Because of the way the sam-
ple is selected, the same value of the statistic D* will arise from any initial sample
of n units having exactly the given numbers of units in each of the κ groups.

Let � i denote the network that includes unit i , mi the number of units in it,
and wi the average of the observations in it. Let r i be the number of times � i is
represented in the initial sample. (If the unit i in the sample is not a sample edge
unit, r i = f i . If unit i is a sample edge unit, r i equals f i less the number of times
the networks of which it is an edge unit are included in the sample.) Let ui be the
number of times unit i is in the initial sample.
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Conditional on D* (which fixes r i ), the distribution of ui for any unit i included
in the κ networks above is Bernoulli with expected value r i /mi if the initial sample
is selected by simple random sampling without replacement. If the sampling is with
replacement, the distribution is binomial with expectation r i /mi . For any unit i not
included in the κ networks with initial representation in D*, ui = 0.

Writing μ̂0 = n−1 ∑N
i=1 uiyi , the conditional expectation is E(μ̂0|D∗) =

n−1 ∑κ
k=1

∑
j∈�k

rj yj /mj = n−1 ∑n
i=1 wi , since r j is constant for j ∈ �k .

Thus, E(μ̂0|D∗) = μ̂1. Since D is a function of D*, E(μ̂0|D∗) = E(μ̂0|D∗,D).
Therefore, E(μ̂1|D) = E[E(μ̂0|D∗,D)|D] = E(μ̂0|D). �

When Adaptive Cluster Sampling is Better . Consider adaptive cluster sampling
with the initial sample of n units selected by simple random sampling without
replacement and with the estimator μ̂1. Since μ̂1 = E(μ̂0|D∗), where D* is the
unordered collection of labeled observations with repeat frequencies, the variance
of μ̂1 can be written var(μ̂1) = var(μ̂0) − E[var(μ̂0|D∗)]. Thus, the variance of μ̂1

will always be less than or equal to the variance of μ̂0, which is σ 2(N − n)/(Nn).
The variance of the sample mean of a simple random sample of fixed size n* will,
by comparison, have variance σ 2(N − n*)/(Nn*). Comparing this quantity with
the expression above for the variance of μ̂1 gives the result: The adaptive strategy
will have lower variance than the sample mean of a simple random sample of size
n if and only if (n−1 − n∗−1)σ 2 < E[var(μ̂0|D∗)].

The expression for the variance of μ̂1 given in Section 24.2 can be rewrit-
ten in terms of the K distinct networks in the population as follows: var(μ̂1) =
b

∑N
i=1 (wi − μ)2 = b

∑K
k=1

∑
i∈�k

(wi − μ)2, where b is the constant term (N
− n)/[Nn (N − 1)] and �k is the k th network in the population. Similarly,
the variance of μ̂0 can be written var(μ̂0) = b

∑K
k=1

∑
i∈�k

(yi − μ)2. Decompo-
sition of the total sum of squares into terms between and within networks then
shows that E[var(μ̂0|D∗)] is the within-network variance, that is, E[var(μ̂0|D∗)] =
(N − n)/(Nn)−1 ∑K

k=1

∑
i∈�k

(yi − wi)
2/(N − 1).

With adaptive cluster sampling, the improved estimator μ̂RB1, obtained from μ̂1

by the Rao–Blackwell method, is more efficient than μ̂1. Since μ̂RB1 = E(μ̂0|D),
the variance of μ̂RB1 can be written var(μ̂RB1) = var(μ̂0) − E[var(μ̂0|D)] and a
corresponding result obtained: The adaptive strategy with μ̂RB1 will have lower
variance than simple random sampling with y if and only if (n−1 − n∗−1)σ 2 <

E[var(μ̂0|D)]. �

24.8. DATA FOR EXAMPLES AND FIGURES

The 20 × 20 matrix of y-values for population 1 and for the figures and examples
is listed in Table 24.4. The data for population 2 are obtained by replacing all
positive entries with 1’s.
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Table 24.4: 20 × 20 Matrix of Values for Population 1⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 5 13 3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 11 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 5 39 10 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 5 13 4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 22 3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 10 8 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 7 22 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

EXERCISES

1. In a survey to estimate the abundance of a rare animal species in a study
region divided into N = 1000 units, an initial simple random sample of n
= 100 units is selected. An adaptive cluster sampling design is used with
adjacent units added to the sample whenever one or more of the animals is
encountered. One of the units in the initial sample intersected a network of
two units containing three of the animals, and another intersected a network
of three units containing six animals. The other 98 units of the initial sample
contained none of the animals. Estimate the total number of the animals in
the population using draw-by-draw intersection probabilities and estimate the
variance of the estimator.

2. For the survey in Exercise 1, estimate the population total using overall inter-
section probabilities.
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Systematic and Strip Adaptive Cluster
Sampling

In this chapter, adaptive cluster sampling designs are considered in which the initial
sample is selected in terms of primary units and subsequent additions to the sample
are in terms of secondary units. For example, in an aerial survey of walruses or polar
bears or in a ship survey of whales sighted by their spouts, the strip observed in each
selected transect forms a primary unit. If, whenever animals are sighted, the area to
the side of the transect is searched—with still further searching if additional animals
are sighted while on this search—the searching pattern defines neighborhoods
of secondary units added to the sample. In surveys of bird and fish species, the
selection of sites at which to make observations is often done systematically and a
single systematic selection forms a primary unit. If additional observations are made
in the neighborhood of any site at which abundance is observed, the subsequent
observations would not in general follow the initial systematic pattern. With such
survey situations, one can think of the study region as partitioned into secondary
units representing all possible sites at which observations may be made, while the
primary units from which the initial sample is selected consist of clusters—such
as long, thin strips or systematic arrangements—of the secondary units.

Examples of the types of designs described in this chapter are illustrated in
Figures 25.1 and 25.2, in which the object is to estimate the mean number of point
objects—representing the locations of animals (or plants, mineral deposits, or other
objects) in a clumped population—in the study region. In Figure 25.1, the initial
sample consists of five randomly selected strips (primary units). The secondary
units are small, square plots. Whenever a plot in the sample contains one or more
of the animals, adjacent plots are added to the sample. If, in turn, any of the new
plots in the sample contain any animals, additional adjacent plots—to the left,
right, top, or bottom—are added. The final sample resulting from this procedure
is shown in the figure.

Sampling, Third Edition. Steven K. Thompson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Figure 25.1. Adaptive cluster sample with initial random selection of five strip plots. The final sample
obtained is outlined. [From Thompson (1991a). With permission from the Biometric Society.]

Figure 25.2. Adaptive cluster sample with initial random selection of two systematic samples. The
final sample obtained is outlined. [From Thompson. With permission from the Biometric Society.]
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In Figure 25.2, the initial sample is a spatial systematic sample with two ran-
domly selected starting points. Whenever animals of the species are observed in
any plot of the sample, adjacent plots are added to the sample. The final sample
is illustrated in the figure. Most results of this chapter were given in Thompson
(1991a).

25.1. DESIGNS

For the adaptive cluster sampling designs considered in this chapter, the population
is composed of N primary units. Each primary unit contains M secondary units
(which may be referred to simply as units). The MN units of the population are
denoted uij , for i = 1, . . . , N and j = 1, . . . ,M . Associated with the j th secondary
unit of the ith primary unit is a variable of interest yij . The object of inference is
estimation of the population mean μ = (MN)−1 ∑N

j=1

∑M
j=1 yij or, equivalently,

of the population total τ = MNμ.
For every (secondary) unit of the population, a collection of units called the

neighborhood of that unit is defined. The neighborhood of unit uij includes unit
uij , and if unit uij belongs to the neighborhood of unit ui′j ′ , then unit ui′j ′ belongs
to the neighborhood of unit uij . In applications, the neighborhood of a unit will
typically be defined as a contiguous set of surrounding units or a systematic pattern
of surrounding units. In the examples of Figures 25.1 and 25.2, the secondary
units are square plots. The neighborhood of one of these plots consists of itself
plus its adjacent units to the left, right, top, and bottom, so that for a plot not
on the boundary of the study area, the neighborhood consists of five plots in a
cross shape. Many other neighborhood configurations are possible. For example,
only the units to the right and left (but not top and bottom) might be included,
or the neighborhood could be defined to include a larger set of contiguous units
than the five in the examples. A neighborhood could, in fact, consist of a set of
noncontiguous units, spread out, for example, in a systematic grid pattern about
the original unit.

The unit uij is said to satisfy the condition of interest if the associated value
yij is in a specified set C. For problems in the estimation of animal abundance,
the condition may commonly be defined so that a unit satisfies the condition if its
y-value equals or exceeds some constant c. In the examples of Figures 25.1 and
25.2, 25.2a plot satisfies the condition if the number of animals in it equals 1 or
more. It would also be possible to set the criterion c at a higher level, so that only
units with y-values of, say, 50 or more would satisfy the condition.

In the adaptive cluster sampling designs of this chapter, an initial sample of n

primary units is selected by simple random sampling without replacement. When-
ever the observed value of a (secondary) unit in the sample satisfies the condition
of interest, all units in its neighborhood are added to the sample. If, in turn, any of
these subsequently added units satisfies the condition, the units of its neighborhood
are also added to the sample, so that finally the sample contains every unit in the
neighborhood of any sample unit satisfying the condition.
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A population with a given set of y-values can be uniquely partitioned into K

sets called networks so that whenever a unit uij satisfying the condition is in the
neighborhood of unit ui′j ′ , also satisfying the condition, units uij and ui′j ′ belong
to the same network. Thus, if an initially selected primary unit intersects a given
network, every unit in that network will be included in the sample. A unit that
does not satisfy the condition belongs to a network consisting just of itself. The
population of Figures 25.1 and 25.2 has three networks that are larger than single-
plot size. Every plot within one of these large networks contains at least one animal.

A unit uij which does not satisfy the condition will be included in the sample
if either the primary unit that includes it is initially selected or if any primary unit
of the initial selection intersects the network of one or more units satisfying the
condition in the neighborhood of unit uij . A unit not satisfying the condition but
in the neighborhood of one or more units that do satisfy the condition is called an
edge unit . In Figures 25.1 and 25.2a number of such plots containing no animals
have been added to the sample at the edges of the large networks. Thus, a unit
will be included in the sample if the initial sample intersects either the network to
which it belongs or a network of which it is an edge unit.

Note that while neighborhoods are defined by such relationships as physical
proximity and do not depend on the y-values of the population, networks do depend
on the population y-values, corresponding roughly to the natural aggregations of
animals, plants, or other individuals in the population.

If each initial primary unit consists of a set of units evenly spaced in some
arrangement throughout the population, the initial sample will be termed a sys-
tematic initial sample (Figure 25.2). The initial primary units will be called strips
if each initial primary unit consists of a row of units arranged in a straight line
(Figure 25.1). Many other arrangements of primary units are, of course, possible.

The draw-by-draw selection probability pij for unit uij is the probability in any
initial draw of selecting any one of the primary units that intersects the network
containing unit uij , or if unit uij does not satisfy the condition, selecting a pri-
mary unit that intersects the network of any unit satisfying the condition in the
neighborhood of unit uij . That is,

pij = mij + aij

N

where mij is the number of primary units that intersect the network containing unit
uij , and aij is the number of primary units that do not intersect the network of
unit uij but intersect the network of one or more units satisfying the condition in
the neighborhood of unit uij . For a unit satisfying the condition, aij = 0, and for
a unit not satisfying the condition, mij = 1.

The probability πij that unit uij is included in the sample is the probability that
one or more primary units of the initial sample either intersects the network that
includes unit uij or intersects the network of any unit satisfying the condition in
the neighborhood of unit uij . That is,

πij = 1 −
(

N − mij − aij

n

)
/

(
N

n

)
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The expected sample size, that is, the expected number of distinct secondary
units in the final sample, is the sum of the inclusion probabilities (Godambe 1955;
see also Cassel et al. 1977, p. 11), so that the expected sample size ν expressed in
terms of the equivalent number of primary units in the final sample is

E(ν) = 1

M

N∑
i=1

M∑
j=1

πij

25.2. ESTIMATORS

With the adaptive cluster sampling designs described in this chapter, standard esti-
mators of the population mean and total are biased. With spatially aggregated
populations, for example, if additional units are added to the sample whenever
high abundance is observed, the final sample tends to contain units with higher-
than-average abundance, and the sample mean will overestimate the population
mean. If, on the other hand, the estimator is formed by averaging first all y-values
associated with the selection of a primary unit—that is, the units of the primary unit
together with all units adaptively added to the sample as a result of initial selection
of that primary unit—the mean of these averages may tend to underestimate the
population mean, due to the fact that whenever units with higher-than-average y-
values are selected, additional sampling begins until low values are obtained, while
when units with low values are selected, no such compensatory procedure begins.

In this section, therefore, estimators are given which are unbiased with the adap-
tive cluster sampling designs. Since these estimators are, in fact, design-unbiased,
the unbiasedness does not depend on any assumptions about the population itself.

Initial Sample Mean

One way to obtain an unbiased estimator of the population mean μ is to ignore
all units adaptively added to the sample and use the sample mean of the initial
sample. For notational simplicity let Yi denote the total of the y-values in the ith
primary unit, that is, Yi = ∑M

j=1 yij . The estimator of μ based on the initial sample
mean is

μ̂0 = 1

Mn

n∑
i=1

Yi

This estimator does not make use of the observations adaptively added to the
sample. It is of interest in this chapter because it offers the basis for nonadaptive
alternatives with which the adaptive strategies may be compared.

From classical results on simple random sampling without replacement, μ̂0 is
unbiased for μ and has variance

var(μ̂0) = N − n

M2Nn
σ 2

0
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where

σ 2
0 = 1

N − 1

N∑
i=1

(Yi − Mμ)2

An unbiased estimator of variance is

v̂ar(μ̂0) = N − n

M2Nn
s2

0

where

s2
0 = 1

n − 1

n∑
i=1

(Yi − Mμ̂0)
2

An unbiased estimate of variance is, of course, not available for systematic
samples with only one starting point [but see Wolter (1984) for methods useful in
practice].

Estimator Based on Partial Selection Probabilities

It is also possible to obtain unbiased estimators that do make use of observations
in addition to those selected initially. Estimators such as the Hansen–Hurwitz
estimator, the multiplicity estimator of network sampling, and related estimators
used in line-intercept sampling achieve unbiasedness by dividing each observation
by its selection probability and multiplying by the number of times the unit was
selected. Jolly (1979) gives an estimator of this form for aerial surveys of animals
in large herds. With the adaptive cluster sampling designs, however, not all of the
selection probabilities as given in Section 25.1 can be determined from the sample
data. When a unit not satisfying the condition appears in the sample, one may not
know whether its selection probability is influenced by the presence of units in its
neighborhood that do satisfy the condition. Thus, the constants aij on which the
selection probabilities of Section 25.1 depend may not be known.

The unbiased estimator of this section therefore depends only on aspects of
the selection probabilities that are known. While the Hansen–Hurwitz estimator
would achieve unbiasedness by dividing each observed y-value by the selection
probability pij as given in Section 25.1, the estimator of this section will effectively
divide instead by mij/N , the “known part” of the selection probability.

For the estimator of this section and the next, it will be convenient to relabel
the variables in terms of the networks of the population rather than in terms of the
individual units. Let the K networks of the population be labeled 1, . . . , K , and let
yk denote the total of the y-values in the kth network. Define the indicator variable
Iik to be 1 if the ith primary unit intersects the kth network and zero otherwise.
Let xk be the number of primary units in the population that intersect the kth
network, that is, xk = ∑N

i=1 Iik . (For any unit uij in the kth network, mij = xk ,
where mij was defined in Section 25.1.) The draw-by-draw probability that the
selected primary unit will intersect the kth network is xk/N .
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For the ith primary unit, define the new variable wi as

wi = 1

M

K∑
k=1

ykIik

xk

(25.1)

The estimator based on partial selection probabilities is

μ̂1 = 1

n

n∑
i=1

wi (25.2)

Note that variables only for those networks that are intersected by selected
primary units enter into the estimator.

A network y-value is utilized in the estimator as many times as there are
primary units in the initial sample that intersect it. Some observations in the
data—associated with units not satisfying the condition and not included in the
initial sample—are not utilized at all in the estimator. The actual selection proba-
bility for network k is related to xk but may also depend, in a manner not known
from the data at hand, on other networks.

It is shown in the derivations that μ̂1 is an unbiased estimator of the population
mean with variance

var(μ̂1) = N − n

Nn
σ 2

w (25.3)

where

σ 2
w = 1

N − 1

N∑
i=1

(wi − μ)2

An unbiased estimator of the variance of y2 is given by

v̂ar(μ̂1) = N − n

Nn
s2
w (25.4)

where

s2
w = 1

n − 1

n∑
i=1

(wi − μ̂1)
2

Estimator Based on Partial Inclusion Probabilities

The Horvitz–Thompson estimator achieves unbiasedness by dividing the y-value
for each unit in the sample by the probability that the unit is included in the sample.
With the adaptive cluster sampling designs, not all of these inclusion probabilities,
as given in Section 25.1, are known from the sample data. In particular, the con-
stants aij as defined in Section 25.1 may not be known because the sample may
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not reveal units that satisfy the condition in the neighborhoods of sample units that
do not satisfy the condition. In this section, an unbiased estimator is given based
on the partial knowledge of inclusion probabilities obtainable from the data.

Let αk denote the probability that one or more of the primary units which
intersects network k is included in the initial sample. With the adaptive cluster
sampling designs, this probability is given by

αk = 1 −
(

N − xk

n

)/(
N

n

)
(25.5)

Let αkj denote the probability that one or more of the primary units which
intersect both networks k and j is included in the initial sample. With the designs
of this chapter,

αkj = 1 −
[(

N − xk

n

)
+

(
N − xj

n

)
−

(
N − xk − xj + xkj

n

)] / (
N

n

)
(25.6)

where xk is the number of primary units that intersect network k and xkj is the
number of primary units that intersect both networks k and j . It is emphasized that
the α’s are not the actual network inclusion probabilities, but unlike the inclusion
probabilities, are computable from the sample data.

Define the indicator variable zk to be 1 if one or more of the primary units that
intersect network k are included in the initial sample and zero otherwise. Consider
the estimator μ̂2 given by

μ̂2 = 1

MN

K∑
k=1

ykzk

αk

(25.7)

so that the summation is over the distinct networks in the sample that intersect one
or more primary units of the initial sample. The weight an observation receives in
the estimator does not depend, as it does with μ̂1, on the number of intersecting
primary units selected, as long as at least one of them is included in the initial
sample. Also, some observations in the data may receive zero weight.

The estimator μ̂2 is unbiased for the population mean (see Derivations) and has
variance

var(μ̂2) = 1

M2N2

K∑
k=1

K∑
j=1

ykyj

(
αkj

αkαj

− 1

)
(25.8)

with the convention that αkk = αk .
An unbiased estimator of this variance is given by

v̂ar(μ̂2) = 1

N2N2

K∑
k=1

K∑
j=1

ykyj zkzj

αkj

(
αkj

αkαj

− 1

)
(25.9)

provided that none of the joint probabilities αkj is zero. For any design involving
an initial simple random sample of at least two primary units, all of these joint
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inclusion probabilities would be greater than zero. For an initial systematic sample
with only one starting point (i.e., only one primary unit is selected), some of
the joint inclusion probabilities are zero, underscoring the fact that an unbiased
estimator of variance is not available for such a design. Small-sample coverage
probabilities of confidence limits based on the variance estimators v̂ar(μ̂1) and
v̂ar(μ̂2) require further investigation.

The estimator μ̂2 differs from the Horvitz–Thompson estimator in that it is based
on intersection probabilities rather than inclusion probabilities. The actual inclusion
probabilities, although not known completely from the data, do determine relevant
properties of the adaptive designs, such as the expected sample size as given in
Section 25.1.

Just as the Horvitz–Thompson estimator has small variance when the y-values
are approximately proportional to the inclusion probabilities, the estimator μ̂2

should have low variance when the network totals yk are approximately proportional
to the intersection probabilities αk . With an animal population with aggregation ten-
dencies, if the largest concentrations of animals occurred in sizable clusters, each
intersecting several primary units, high yk-values would be associated with high
intersection probabilities. For cases in which the y-values are approximately pro-
portional to some other variable b, Hájek (1971) suggested a ratio weighting of the
Horvitz–Thompson estimator. The corresponding ratio modification of μ̂2 would
be μ̂2

∑
bk/

(∑
bkzk/αk

)
, where the summations are over the K networks in the

population. An estimator of this form would not, however, be unbiased.

25.3. CALCULATIONS FOR ADAPTIVE CLUSTER SAMPLING
STRATEGIES

Sample calculations for the adaptive cluster sampling strategies of this chapter will
be illustrated with two types of designs. In one, the primary units consists of long,
thin strips. The other has an initial systematic sampling design, with starting points
chosen at random in a 4 × 4 square and the positions repeated throughout the study
area. The neighborhood of a unit is defined to consist of itself together with all
adjacent units (those sharing a full edge). Thus, for a unit not on the boundary of
the study region, the neighborhood consists of five units in a cross shape.

The square study region of 400 units is depicted in Figures 25.1 and 25.2.
The locations of individuals or objects in the study region were produced with a
realization of a Poisson cluster process (cf. Diggle 1983), with three parent locations
selected at random and Poisson (mean = 100) numbers of offspring distributed
about each parent with a bivariate Gaussian distribution (with standard deviation
0.03 in the unit square). The object of sampling is to estimate the number of objects
in the study region (the correct answer: 326) or, equivalently, the mean number
per unit (0.815). The 400 population y-values for the example are listed at the end
of this chapter (Table 25.3).

A unit is considered to satisfy the condition if it contains at least one individual of
the population, so that any time a selected unit contains one or more individuals, the
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remaining units in its neighborhood are added to the sample. Figure 25.1 shows the
sample obtained as the result of the initial selection of five of the strips. Figure 25.2
shows the sample obtained with an initial selection of two systematic starting points.
Sample calculations will be carried out for the samples illustrated.

Example 1: Initial Strip Plots. In the initial strip plot sample (Figure 25.1), the
first (leftmost) of the primary units in the sample intersects two collections of
units that satisfy the condition, leading to the additional clusters of units added
to the sample. The network of units satisfying the condition within the uppermost
of these clusters has total y-value 106; it can be determined from the sample that
this network intersects four of the primary units. The lower cluster has total y-
value 105 and also intersects four primary units. All other observations in the data
are zero. The variable wi associated with the first sample primary unit is w1 =
(1/120)[(106/4) + (105/4)] = 2.6375. For the second sample primary unit, the
term is w2 = (1/20)(105/4) = 1.3125, and for the other three primary units in the
sample, wi = 0. The estimate μ̂1 [Equation (25.2)] is (1/5)(2.6375 + 1.3125 +
0 + 0 + 0) = 0.79. The variance estimate [Equation (25.4)] is v̂ar(μ̂1) = (20 −
5)/[(20)(5)](1.38964) = 0.2084, in which 1.38964 is the sample variance of the
w-values 2.6375, 1.3125, 0, 0, and 0.

The intersection probability [Equation (25.5)] for each of the two nonzero net-
works in the sample is 1 − (20−4

5

)
g/

(20
5

) = 0.7183, and the estimator μ̂2 [Equation
(25.7)] is (1/20)(1/20)[(106/0.7183) + (105/0.7183)] = 0.7344. Since two pri-
mary units intersect both networks, the joint intersection probability [Equation
(25.6)] for the two sample networks is

1 −
[(

20 − 4
5

)
+

(
20 − 4

5

)
−

(
20 − 4 − 4 + 2

5

)] / (
20
5

)
= 0.5657

The sample estimate of variance [Equation (25.1)] is

v̂ar(μ̂2) = (1/202)(1/202){(1062/0.7183)[(1/0.7183) − 1]

+ (1052/0.7183)[(1/0.7183) − 1]

+ 2(106)(105/0.5676)[(0.5676/0.71832) − 1]} = 0.09963
�

Example 2: Systematic Initial Sample. For the sample with the initial systematic
design (Figure 25.2), the first primary unit (based on the starting position in the
third column of the second row) intersects the central left network, with y-total
106, while the second primary unit (starting position in fourth column of third
row) intersects both that network and the top right network, which has total y-
value 115. By dividing the study area into 4 × 4 squares, it can be determined that
10 primary units (i.e., 10 of the 16 possible systematic samples) intersect the top
right network and 13 intersect the central left network, while nine intersect both.
For this sample, μ̂1 = (1/2)(0.3262 + 0.7862) = 0.5562, and v̂ar(μ̂1) = [(16 −
2)/(16)(2)](0.1058) = 0.0463. The intersection probability for the top network is
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0.875 and for the left network is 0.975, and their joint intersection probability is
0.8583. For this sample, μ̂2 = (1/25)(1/16)(115/0.875 + 106/0.975) = 0.6004,
and

v̂ar(μ̂2) = (1/252)(1/162){(1152/0.875)[(1/0.875) − 1] + (1062/0.975)

× [(1/0.975) − 1] + 2(115)(106/0.8583)

× [(0.8583/((0.875)(0.975)) − 1]}
= 0.01684

�

25.4. COMPARISONS WITH CONVENTIONAL SYSTEMATIC
AND CLUSTER SAMPLING

The actual variances for each of the unbiased estimators are given in Table 25.1 for
the design with the initial strips and in Table 25.2 for the initially systematic design.
In addition to the estimators μ̂0, μ̂1, and μ̂2, the variance has been computed for
the sample mean μ̂∗

0 of a simple random sample of primary units with sample
size equal to the expected sample size under the adaptive designs. The variance of
μ̂∗

0 is computed using the formula of Section 25.2 with sample size E(ν), even if
fractional, in place of n. Thus, μ̂∗

0 offers one way to compare the adaptive strategies
with nonadaptive counterparts of equivalent sample size. Sample sizes in the tables
are expressed in terms of primary units. One primary unit consists of 20 secondary
units in the strip design and 25 secondary units in the systematic design. The tables
give variances obtained with initial sample sizes ranging from 1 up to a sampling
fraction of 1/2.

Table 25.1: Variance with Initial Long, Thin Strip Plotsa

n E(ν) var(μ̂0) var(μ̂∗
0) var(μ̂1) var(μ̂2)

1 1.57 1.30628 0.80706 0.79253 0.79253
2 3.01 0.61876 0.38751 0.37541 0.34713
3 4.35 0.38959 0.24758 0.23637 0.19944
4 5.58 0.27501 0.17749 0.16685 0.12651
5 6.74 0.20625 0.13530 0.12514 0.08378
6 7.82 0.16042 0.10702 0.09733 0.05636
7 8.85 0.12768 0.08666 0.07746 0.03788
8 9.82 0.10313 0.07123 0.06257 0.02510
9 10.76 0.08403 0.05907 0.05098 0.01621

10 11.66 0.06875 0.04917 0.04171 0.01008

Source: Thompson (1991a). With permission from the Biometric Society.
an is the initial sample size and E(ν) is the expected sample size with the adaptive design. Nonadaptive
strategies are represented by μ̂0 and μ̂∗

0, with sample sizes n and E(ν), respectively. Adaptive strategies
are represented by μ̂1 and μ̂2.
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Table 25.2: Variances with Initial Systematic Samples

n E(ν) var(μ̂0) var(μ̂∗
0) var(μ̂1) var(μ̂2)

1 2.98 0.44078 0.12825 0.08441 0.08441
2 4.36 0.20570 0.07846 0.03939 0.01684
3 5.31 0.12734 0.05919 0.02439 0.00363
4 6.15 0.08816 0.04701 0.01688 0.00072
5 6.98 0.06465 0.03798 0.01238 0.00011
6 7.80 0.04898 0.03089 0.00938 0.00001
7 8.62 0.03778 0.02516 0.00724 0.00000
8 9.44 0.02939 0.02042 0.00563 0.00000

Source: Thompson (1991a). With permission from the Biometric Society.

With the initial strip design, the adaptive strategies with an initial sample size of
one primary unit are slightly more efficient than the comparable nonadaptive strat-
egy for the example population. The relative advantage of the adaptive strategies
increases with increasing initial sample size, and also the efficiency of μ̂2 relative
to μ̂1 increases. With an initial sample size of 10 (initial sampling fraction of 1/2),
the adaptive cluster sampling strategy increases the expected sample size by 16.6%
[E(ν) = 11.66], but is almost five times as efficient as the equivalent nonadaptive
strategy [var(μ̂∗

0)/var(μ̂2) = 0.04917/0.01008 = 4.88].
With the initial systematic sampling design, the adaptive strategies are dramati-

cally more efficient than their nonadaptive counterparts for the example population.
Also, comparing Tables 25.1 and 25.2, one sees that even with conventional sys-
tematic strategies (μ̂0 and μ̂∗

0), variances are considerably lower than with the
conventional strategies using strips. [This result would be expected due to the pos-
itive, monotonically decreasing covariance density function of the Poisson cluster
process (see, e.g., Matérn 1986; Thompson and Ramsey, 1987).] The efficiency
of the adaptive strategy with μ̂2 relative to the comparable nonadaptive system-
atic strategy with μ̂∗

0 ranges from 152% for a single initial systematic sample
(0.12852/0.08441 = 1.52) to infinity—the adaptive strategy has zero variance for
initial selections of more than six, as the intersection probability for each of the
three networks in the population becomes one with such a design.

25.5. DERIVATIONS

Estimator μ̂1. The estimator μ̂1 can be written

μ̂1 = 1

Mn

K∑
k=1

ykrk

xk

where the random variable rk denotes the number of primary units in the initial
sample that intersect the kth network of the population. Under the design, rk has
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a hypergeometric distribution with expected value nxk/N . The expected value of
μ̂1 is thus

E(μ̂1) = 1

Mn

K∑
k=1

yknxk

xkN
= 1

MN

K∑
k=1

yk = μ

so μ̂1 is an unbiased estimator of the population mean. Since μ̂1 is the sample mean
of the wi for a simple random sample of size n, the formulas for the variance and
the estimator of variance for μ̂1 follow from the usual results on simple random
sampling. �

Estimator μ̂2. In the expression for the estimator μ̂2, the random variable zk

equals 1 if one or more primary units of the initial sample intersect network k, and
zk equals zero otherwise. Under the design, zk is a Bernoulli random variable with
expected value αk . Also, var(zi) = αi(1 − αi) = αi − α2

i , and cov(zi, zj ) = αij −
αiαj for i �= j . The unbiasedness of μ̂2 for μ and the expression in Section 25.2 for
var(μ̂2) then follow according to the usual derivations for the Horvitz–Thompson
estimator, although the αk give intersection probabilities, not inclusion probabili-
ties. The expression in Section 25.2 for v̂ar(μ̂2) is unbiased for var(μ̂2) because
E(zizj ) = αij . �

Table 25.3: y-Values for the Population Used in Examples and Figures⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 25 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 38 3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 6 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 11 26 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 22 19 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 17 26 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 10 26 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 5 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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25.6. EXAMPLE DATA

The 400 y-values for the population in the examples and figures are listed in
Table 25.3.

EXERCISES

1. An adaptive cluster sample initially selects a random sample of n = 4 strips
from the N = 25 in the study region. Each strip contains M = 12 secondary
units. Neighborhoods are defined to include adjacent secondary units as in the
example in the text. The first sample unit intersects a network that intersects
m1 = 3 strips in the population and has y1 = 50 animals. Another network,
with y2 = 30 animals, intersects both the first and second sample strips, and
intersects m2 = 5 strips altogether; m12 = 2 strips in the population intersect
both these networks. No other animals are observed. Estimate the number of
animals in the study area using draw-by-draw initial probabilities. Estimate the
variance of the estimator.

2. For Exercise 1, use the estimator based on overall intersection probabilities.
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Stratified Adaptive Cluster Sampling

In stratified adaptive cluster sampling, an initial stratified sample is selected from
a population, and whenever the value of the variable of interest for any unit is
observed to satisfy a specified condition, additional units from the neighborhood
of that unit are added to the sample. Still more units may be added to the sample
if in turn any of the units added subsequently satisfies the condition.

Stratified adaptive cluster sampling designs are important from a practical point
of view because for many populations prior information exists on which an initial
stratification can be based and yet the exact distribution or patterns of concentration
of the population cannot be predicted. In conventional stratified sampling, units that
are thought to be similar are grouped a priori into strata, based on prior information
about the population or simple proximity of the units. Adaptive cluster sampling,
on the other hand, provides a means of taking advantage of clustering tendencies
in a population, when the locations and shapes of the clusters cannot be predicted
prior to the survey. The sampling designs described in this chapter combine the
two methods.

Conventional estimators such as the stratified sample mean are not unbiased with
the adaptive designs, so estimators that are unbiased under the designs are given
in this chapter. A complication that arises in stratified adaptive cluster sampling
is that a selection in one stratum may result in the addition of units from other
strata to the sample, so that observations in separate strata are not independent as
in conventional stratified sampling. The different unbiased estimators given in this
chapter handle such crossing of stratum boundaries in slightly different ways. Most
results of this chapter were given in Thompson (1991b).

26.1. DESIGNS

For the adaptive cluster sampling designs of this chapter, the population is parti-
tioned into L strata, of which stratum h is composed of Nh units, and the total

Sampling, Third Edition. Steven K. Thompson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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number of units in the population is denoted N . Associated with unit uhi , the ith
unit of stratum h, is a variable of interest yhi . For any unit uhi of the population,
the neighborhood of unit uhi is defined as a collection of units that includes uhi

and with the property that if unit uh′i′ is in the neighborhood of unit uhi , then unit
uhi is in the neighborhood of unit uh′i′ . The neighborhood of a unit may include
units from more than one stratum. A unit uhi is said to satisfy the condition of
interest if the y-value associated with that unit is in a specified set C.

In the designs considered in this chapter, an initial sample of units is selected
from a population using stratified random sampling; that is, within stratum h, a
simple random sample of nh units is selected without replacement, the selections
for separate strata being made independently. Whenever a selected unit satisfies
the condition, all units in its neighborhood not already in the sample are added
to the sample. Still more units may be added to the sample whenever any of the
additionally added units satisfies the condition, so that the final sample contains
every unit in the neighborhood of any sample unit satisfying the condition.

An example is illustrated in Figure 26.1, in which the object is to estimate
the abundance of a clustered population, that is, the total across-area units of the
numbers y of point objects within each unit. The point object could, for example,
represent the location of a plant or animal. A unit satisfies the condition here if it
contains one or more point objects; that is, y ≥ 1. The population is divided into
two strata, and a simple random sample of five units selected from each stratum
is shown in Figure 26.1. The neighborhood of a unit consists of that unit together

Figure 26.1. Initial stratified random sample of five units in each of two strata. Whenever a unit in the
sample contains one or more of the point objects, the adjacent units are added to the sample. [From
Thompson (1991b). With permission from the Biometrika Trustees.]
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with all the adjacent units to the north, south, east, and west. Applying the stratified
adaptive cluster sampling design gives the final sample shown in Figure 26.2.

The population may be partitioned into K sets of units, termed networks , such
that selection in the initial sample of any unit in a network will result in inclusion
in the final sample of all units in that network. A unit not satisfying the condition
belongs to a network consisting just of itself. Initial selection of a unit satisfying the
condition will typically result in the addition to the sample not only of all the other
units in its network, but also of units not in its network, that is, units not satisfying
the condition but in the neighborhood of one or more members of the network.
In Figure 26.3, the networks intersected by the initial sample are outlined in thick
lines. The other units in the sample, the edge units, do not satisfy the condition
and were not in the initial sample but are each in the neighborhood of one or more
units satisfying the condition in the networks intersecting the initial sample.

The number of times a unit is selected equals the number of units from its
network or from a network intersecting its neighborhood that are selected in the
initial sample. Let rhi represent the number of times that unit uhi is selected. Let
mkhi denote the number of units in the intersection of stratum k with the network
that contains unit uhi . For a unit uhi not satisfying the condition, let akhi be the
total number of units in the intersection of stratum k with the collection of distinct
networks, exclusive of uhi itself, which intersect the neighborhood of unit uhi .
Initial selection of any of these akhi units will result in the addition of unit uhi to
the sample. Define akhi to be zero for any unit uhi satisfying the condition. The

Figure 26.2. Final sample resulting from the initial sample of Figure 26.1. Note that some units in
stratum 2 (right) were included in the sample as a result of an initial selection in stratum 1. [From
Thompson (1991b). With permission from the Biometrika Trustees.]
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Figure 26.3. Distinct networks intersected by the initial sample are outlined with bold lines.

expected number of times unit uhi is selected is

E(rhi) =
L∑

k=1

nk

mkhi + akhi

Nk

The unit uhi will be included in the sample if one or more units from the network
to which uhi belongs is included in the initial selection or, for a unit uhi not
satisfying the condition, if one or more units from any network that intersects the
neighborhood of unit uhi is included in the initial sample. Because of the initial
stratified random sampling, the inclusion probability πhi for unit uhi is

πhi = 1 −
L∏

k=1

(
Nk − mkhi − akhi

nk

)/(
Nk

nk

)
The expected sample size ν, that is, the expected number of distinct units in the
final sample, is the sum of the N inclusion probabilities in the population (see
Cassel et al. 1977, pp. 11; Godambe 1955).

26.2. ESTIMATORS

Conventional estimators such as the stratified sample mean, although unbiased for
the population mean with classical stratified random sampling, are not unbiased with
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the adaptive designs (see Example 1 below). An unbiased, if inefficient estimator μ̂0

of the population mean can be obtained, however, simply by using the conventional
stratified estimator of the mean based on the initial sample, ignoring all subsequent
observations.

Estimators Using Expected Numbers of Initial Intersections

For sampling with replacement with known selection probabilities, the
Hansen–Hurwitz estimator achieves unbiasedness by dividing the y-value of each
unit by the draw-by-draw selection probability of that unit. More precisely, each
observation is divided by the expected number of times that it is selected in
the sample and multiplied by the number of times it is selected. With stratified
adaptive cluster sampling, the selection probabilities and hence the expected
number of times selected are not known for every unit in the sample, so that an
unbiased estimator must be based only on the aspects of the expected selection
numbers that can be determined from the data.

For the unit uhi , define the new variable whi to be the total of the y-values of
the network to which uhi belongs, weighted by the stratum sampling fraction and
divided by a weighted sum of the network–stratum intersection sizes as follows:

whi = nh

Nh

L∑
k=1

ξkhi

/ L∑
k=1

nk

Nk

mkhi

where ξkhi is the total of the y-values in the intersection of stratum k with the
network that includes unit uhi and mkhi is the number of units in this intersection.
The estimator of the population mean is

μ̂1 = 1

N

L∑
h=1

Nh

nh

nh∑
i=1

whi (26.1)

Letting the random variable rkhi represent the number of units in the initial sample
that are in the intersection of stratum k with the network to which unit uhi belongs,
the estimator can be written in the alternative form

μ̂1 = 1

N

L∑
h=1

Nh∑
i=1

(
yhi

L∑
k=1

rkhi

/ L∑
k=1

Nk

nk

mkhi

)

Since E(rkhi) = nkmkhi/Nk , it follows that μ̂1 is an unbiased estimator of the
population mean.

With whi as the variable of interest for unit uhi for each unit in the population, μ̂1

is the stratified sample mean of a stratified random sample and hence has variance

var(μ̂1) = 1

N2

L∑
h=1

Nh(Nh − nh)
σ 2

h

nh

(26.2)
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in which the stratum population variance term is

σ 2
h = 1

Nh − 1

Nh∑
i=1

(whi − Wh)
2 (26.3)

and the stratum population mean is Wh = (1/nh)
∑

whi .
An unbiased estimator ν(μ̂1) of the variance μ̂1 is obtained by replacing σ 2

h in
formula (3) with the sample variance

s2
h = 1

nh − 1

nh∑
i=1

(whi − wh)
2 (26.4)

using the sample mean wh = (1/nh)
∑

whi .
A variation μ̂′

1 on the estimator μ̂1 may be constructed that is related to the
stratified “multiplicity” estimator of network sampling (Birnbaum and Sirken 1965;
Levy 1977; Sirken 1972a), in which the weight an observation receives depends
on the stratum in which the initial sample intersects the network of that unit. For
unit uhi , define the new variable w′

hi to be the total of the y-values in the entire
network to which unit uhi belongs, divided by the total number of units in that
network; that is,

w′
hi =

L∑
k=1

ξkhi/

L∑
k=1

mkhi (26.5)

The modified stratified multiplicity estimator is given by Equation (26.1) with w′
replacing w.

For every time any unit of a network is selected in the initial sample, the
estimator includes a term with the total of the y-values for that network, divided
by the network size and weighted by Nk/nk for the stratum from which the unit
was selected. Thus, each individual y-value occurs in the estimator every time any
unit from the network to which it belongs is selected in the initial sample, but with
weightings depending on the strata from which the initial selections came. Thus,
the estimator μ̂′

1 can be written in the alternative form

μ̂′
1 = 1

N

L∑
h=1

Nh∑
i=1

(
yhi

L∑
k=1

Nk

nk

rkhi/

L∑
k=1

mkhi

)
(26.6)

Unbiasedness of μ̂′
1 for the population mean follows from the fact that E(rkhi) =

nkmkhi/Nk .
Associating the variable w′

hi with unit uhi , the estimator μ̂′
1 is a stratified sample

mean of a stratified random sample. Hence, the variance and estimated variance of
μ̂′

1 are given by Equations (26.2), (26.3), and (26.4) with w′ replacing w.
It is also possible to use an estimator μ̂′′

1 which ignores all units added through
crossing stratum boundaries. For this estimator, let w′′

hi be the total of the y-values
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in the intersection of the stratum and network of unit uhi , divided by the number of
units in that intersection. The estimator and its variance expressions are then given
by Equations (26.1) through (26.4) with w′′ replacing w. Unbiasedness and other
properties follow from the unstratified case, since components in different strata
are independent.

Estimator Using Initial Intersection Probabilities

For any design in which inclusion probabilities are known, the Horvitz–Thompson
estimator achieves unbiasedness by dividing the y-value for each unit in the sample
by the probability that unit is included in the sample. With adaptive cluster sam-
pling, these inclusion probabilities cannot be determined from the data for every
unit in the sample. However, an estimator can be formed using for each unit the
probability that the initial sample intersects the network to which that unit belongs,
and giving zero weight to any observation not satisfying the condition that was not
included in the initial sample.

Let the K distinct networks of the population be labeled 1, 2, . . . , K , without
regard to stratum boundaries. Let yi denote the total of the y-values in the ith
network of the population. Let xhi be the number of units in stratum h that intersect
network i. The probability αi that the initial sample intersects network i is

αi = 1 −
L∏

k=1

(
Nk − xki

nk

)/(
Nk

nk

)
(26.7)

Letting qi = 1 − αi , the probability αij that the initial sample intersects both net-
works i and j is

αij = 1 − qi − qj +
L∏

k=1

(
Nk − xki − xkj

nk

)/(
Nk

nk

)
(26.8)

Let the indicator variable zi be 1 if the initial sample intersects network i and zero
otherwise. The stratified estimator of modified Horvitz–Thompson type is

μ̂2 = 1

N

K∑
i=1

yizi

αi

(26.9)

For i = 1, . . . , K, zi is a Bernoulli random variable with E(zi) = αi, var(zi) =
αi(1 − αi), and cov(zi, zj ) = αij − αiαj , for i �= j . It follows that μ̂2 is an unbi-
ased estimator of the population mean, and with the convention that αii = αi ,

var(μ̂2) = 1

N2

K∑
i=1

K∑
j=1

yiyj

(
αij

αiαj

− 1

)
(26.10)
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An unbiased estimator of this variance, since E(zizj ) = αij , is

v̂ar(μ̂2) = 1

N2

K∑
i=1

K∑
j=1

yiyj zizj

αij

(
αij

αiαj

− 1

)
(26.11)

provided that the joint intersection probability αij is not zero for any pair of net-
works.

The estimator μ̂2 is not a true Horvitz–Thompson estimator because the inter-
section probabilities αi are not identical to the inclusion probabilities under the
adaptive cluster sampling design. Expected sample size and other properties of the
sampling strategy depend on the actual inclusion probabilities given in Section 26.1.

Example 1: Stratified Adaptive Cluster Sampling of a Clumped Population. The
spatially clumped population of Figures 26.1, 26.2, and 26.3 was produced as a
realization of a Poisson cluster process (cf. Diggle 1983). Four “parent” locations
were randomly located in the study region, and “offspring” locations were dis-
tributed about each parent location according to a symmetric Gaussian distribution
with dispersion parameter σ = 0.02. The numbers of offspring were Poisson ran-
dom variables, each with mean 100. The y-values for each of the 400 units (plots)
in the population are listed in Section 26.5. The actual number of point objects in
the region is 397, so that the true population mean is μ = 397/400 = 0.9925.

For the design, the study region is divided into two strata, and initial samples
are selected by stratified random sampling with equal sample sizes in each stratum.
A unit satisfies the condition if it contains one or more of the point objects. The
neighborhood of a unit includes all adjacent units, so that a typical neighborhood
away from the boundary consists of five plots in a cross shape.

Consider the design with initial sample sizes of five units in each stratum. An
outcome of the initial sample selection is shown in Figure 26.1, and Figure 26.2
shows the final sample that results. Sample computations are illustrated using the
illustrated sample (Figure 26.2). In stratum 1 (on the left), the initial sample has
intersected two networks of larger than single-unit size. The first network (on the
left) consists of six units, the total y-value of which is 96. The second network has
five units within the first stratum and six units within the second stratum. The total
of the y-values in the intersection of this network with the first stratum is 78, while
the total of the y-values in the intersection of the network with the second stratum
is 114. Thus, the second network has a total of 11 units and a total y-value of 192.
In the second stratum, none of the five units of the initial sample (Figure 26.1)
satisfied the condition.

Using the data of this sample (Figure 26.2), the value of the variable w′′
hi for the

estimator μ̂′′
1, which ignores crossover between strata, is zero for all units not satis-

fying the condition. In the first network intersected in stratum 1, the value is w′′
11 =

96/6 = 16. For the second network intersected, the value is w′′
12 = 78/5 = 15.6,

based only on units within stratum 1. The estimate of the population mean is μ̂′′
1 =

(1/400)[(200/5)(16 + 15.6 + 0 + 0 + 0) + (200/5)(0 + 0 + 0 + 0 + 0)] = 3.16.
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The estimated variance is v̂ar(μ̂′′
1) = (1/4002)[200(200 − 5)(74.9)/5 + 0] = 3.65,

in which 74.9 is the sample variance of the five numbers 16, 15.6, 0, 0, and 0.
For the estimator μ̂1, the variable whi for the first network of the

sample is w11 = 96/6 = 16. For the second network intersected by
the sample, the value is w12 = 192/11 = 17.45. The estimate is [using
Equation (26.1)] μ̂1 = (1/400)[(200/5)(16 + 17.45 + 0 + 0 + 0) + 0] = 3.35.
The variance estimate [using Equation (26.2) with Equation (26.4)] is
v̂ar(μ̂1) = (1/4002)[200(200 − 5)(84.2)/5 + 0] = 4.10, in which 84.2 is the
sample variance of the five sample values of w1i in the first stratum. The estimator
μ̂′

1 and its estimated variance assume the same values as μ̂1 because of the equal
stratum and sample sizes.

For the estimator μ̂2, the intersection probabilities must first be calculated. For
every unit in the initial sample not satisfying the condition, the intersection probabil-
ity is α0 = nh/Nh = 5/200 = 0.025 and is the same in each stratum, because of the
equal sample and stratum sizes. For the first of the large networks intersected (the
one on the left in Figure 26.3), the inclusion probability [using Equation (26.7)] is
α1 = 1 − (200−6

5

)
/
(200

5

) = 0.14261. For the second network, since it intersects both
strata, the intersection probability is α2 = 1 − (200−5

5

)(200−6
5

)
/
(200

5

)(200
5

) = 0.24554.
The joint inclusion probability for both networks [using Equation (26.8)] is

α12 = 1 − (1 − 0.14261) − (1 − 0.24554) +
(

200 − 6 − 5
5

)(
200 − 0 − 6

5

)/
(

200
5

) (
200

5

)
= 0.03240

The stratified estimator [using Equation (26.9)] is μ̂2 = (1/400)[(96/0.14261) +
(192/0.24554) + (0/0.025) + · · · + (0/0.025)] = 3.64. The estimated variance
[using Equation (26.11)] is

v̂ar = (1/4002){(962/0.14261)[(1/0.14261) − 1] + (1922/0.24554)

× [(1/0.24554) − 1] + 2(96)(192)(0.0324−1)[0.0324/(0.14261)

× (0.24554) − 1] + 0 + · · · + 0} = 4.78
�

Example 2: When Stratum Sizes and Initial Sample Sizes are Unequal. The
estimators μ̂1 and μ̂′

1 are identical when stratum sizes and initial sample sizes are
equal. To illustrate the computations when they are not equal, consider an initial
sample of five units in the first stratum, as illustrated in Figure 26.1 but with an
initial sample of only three units in the second stratum, and suppose again that none
of the sample units in the second stratum contains any point objects. For the esti-
mator μ̂1 [Equation (26.1)] the values are w11 = [(5/200)(96)]/[(5/200)(6)] =
16 and w12 = [(5/200)(192)]/[(5/200)(5) + (3/200)(6)] = 22.33. The estimate
is μ̂1 = (1/400)[(200/5)(16 + 22.33 + 0 + 0 + 0) + 0] = 3.83. For the estimator
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μ̂′
1, w

′
11 = 96/6 = 16 and w′

12 = 192/11 = 17.45 as in Example 1, and the estimate
is μ̂′

1 = 3.35 with v̂ar(μ̂′
1) = 4.10, as in that example. �

26.3. COMPARISONS WITH CONVENTIONAL STRATIFIED
SAMPLING

The actual variances of the estimators for the population shown in Figures
26.1–26.4 with the design with equal initial sample sizes in each of the two strata
are given in Table 26.1 for a selection of initial sample sizes, from samples of
size 1 in each stratum to initial samples of 100 units in each stratum—an initial
sampling fraction of 1/2. The first column of the table gives the total initial sample
size. The second column gives E(ν), the total expected number of distinct units
in the final sample. The third column gives the variance of the initial stratified
sample mean μ̂0. For comparisons with adaptive strategies, the fourth column
gives the variance of the stratified sample mean μ̂∗

0 of the stratified mean of a
conventional stratified random sample with total sample size equal to E(ν), the
expected sample size under the adaptive design. The last four columns of the
table give the variances of the basic four types of unbiased estimators used with
stratified adaptive cluster sampling.

For this population, efficiency increases from left to right across Table 26.1. In
addition, there is a tendency for the relative advantage of the adaptive strategies,

Table 26.1: Two Strata, Equal Sample Sizesa

n E(ν) var(μ̂0) var(μ̂∗
0) var(μ̂′′

1) var(μ̂′
1) var(μ̂1) var(μ̂2)

2 3.99 19.28371 9.61712 8.63371 8.58974 8.58974 8.53095
4 7.89 9.59340 4.81846 4.29516 4.27329 4.27329 4.17070
6 11.69 6.36330 3.21874 2.84898 2.83447 2.83477 2.71809
8 15.41 4.74825 2.41875 2.12589 2.11506 2.11506 1.99240
10 19.04 3.77922 1.93866 1.69203 1.68342 1.68342 1.55748
20 36.08 1.84116 0.97749 0.82432 0.82013 0.82013 0.69143
40 65.59 0.87213 0.49402 0.39047 0.38848 0.38848 0.26809
50 78.64 0.67832 0.39598 0.30370 0.30215 0.30215 0.18734
60 90.84 0.54912 0.32979 0.24585 0.24460 0.24460 0.13564
80 113.31 0.38761 0.24517 0.17354 0.17266 0.17266 0.07564
100 133.99 0.29071 0.19239 0.13016 0.12949 0.12949 0.04413
200 226.06 0.09690 0.07456 0.04339 0.04316 0.04316 0.00322

Source: Thompson (1991b). With permission from the Biometrika Trustees.
aThe first column gives the total initial sample size. The second column gives E(ν), the total expected
number of distinct units in the final sample. The third column gives the variance of the initial stratified
sample mean μ̂0. For comparisons with adaptive strategies, the fourth column gives the variance of the
stratified sample mean μ̂∗

0 of the stratified mean of a conventional stratified random sample with total
sample size equal to E(ν), the expected sample size under the adaptive design. The last four columns of
the table give the variances of the basic four types of unbiased estimators used with stratified adaptive
cluster sampling.
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Figure 26.4. Sixteen strata for adaptive cluster sampling.

compared to the nonadaptive strategies μ̂0 and μ̂∗
0, to increase with increasing

sample size. For example, with the design depicted in Figures 26.1 and 26.2, having
initial sample sizes of 5 in each stratum and total initial sample size n = 10, the
relative efficiency of the adaptive design with the estimator μ̂2 compared to the
nonadaptive strategy μ̂∗

0 with equivalent sample size is 1.93866/1.55748 = 1.24,
so that the adaptive strategy is 24% more efficient than the comparable nonadaptive
one. For the comparison, the fractional sample size of 19.04 is used in the variance
formula for the variance of the conventional stratified random sample mean μ̂∗

0,
with exactly 19.04/2 = 9.52 units allocated to each stratum, although in practice
integer sample sizes would be necessary. With initial sample sizes of 100 (total
sample size 200), the relative efficiency is 0.07456/0.00322 = 23.16, so that the
adaptive strategy is about 23 times more efficient; that is, conventional stratified
sampling with initial sample sizes of 113 in each stratum (total sample size 226)
would have a variance 23 times as large.

Table 26.2 summarizes variances for the strategies with initial sample sizes in
the ratio 2:1 (but rounded to whole numbers) in the two strata, so that the initial
sample size in the first stratum is as near as possible to twice the sample size in
the second. For example, when the total initial sample size n is 6, the two stratum
initial sample sizes are n1 = 4 and n2 = 2. When n = 8, rounding gives initial
sample sizes of n1 = 5 and n2 = 3, as in Example 2. When n = 200, n1 = 133
and n2 = 67. With the unequal sample sizes, the estimator μ̂1 performs slightly
better than μ̂′

1 for this population.
With more than two strata, networks may intersect more than two strata—an

initial sample unit in any of these strata may then result in units of the others being
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Table 26.2: Two Strata, Sample Sizes in Ratio 2:1a

n E(ν) var(μ̂0) var(μ̂∗
0) var(μ̂′′

1) var(μ̂′
1) var(μ̂1) var(μ̂2)

4 7.86 12.90630 6.52072 6.44492 6.16427 5.51233 5.41609
6 11.67 7.20188 3.65693 3.47436 3.36374 3.20237 3.09003
8 15.39 5.08782 2.59904 2.41122 2.34938 2.28465 2.16485
10 18.98 4.54119 2.34637 2.22361 2.14148 1.99178 1.86911
20 35.98 2.04102 1.09135 0.97973 0.95023 0.91060 0.78354
40 65.25 1.01236 0.58305 0.49313 0.47579 0.44640 0.32721
50 78.24 0.77030 0.45726 0.37339 0.36089 0.34123 0.22723
60 190.28 10.63297 0.38816 0.30839 0.29753 0.27916 0.17094
80 112.55 0.44709 0.28977 0.21834 0.21047 0.19687 0.10031
100 132.95 0.34328 0.23418 0.16907 0.16249 0.14994 0.06498
200 225.27 0.12151 0.09701 0.06181 0.05874 0.05166 0.01092

Source: Thompson (1991b). With permission from the Biometrika Trustees.
aThe first column gives the total initial sample size. The second column gives E(ν), the total expected
number of distinct units in the final sample. The third column gives the variance of the initial stratified
sample mean μ̂0. For comparisons with adaptive strategies, the fourth column gives the variance of the
stratified sample mean μ̂∗

0 of the stratified mean of a conventional stratified random sample with total
sample size equal to E(ν), the expected sample size under the adaptive design. The last four columns of
the table give the variances of the basic four types of unbiased estimators used with stratified adaptive
cluster sampling.

added to the sample. Figure 26.4 shows the study area with the clumped popula-
tion divided into 16 strata, with 4 of these strata intersecting the middle network.
Table 26.3 summarizes the variances obtained for the various strategies with equal
sample sizes in each of the 16 strata. With this stratification, the efficiency of the
strategies again shows a tendency to increase from left to right in the table. The
relative efficiency of the most efficient adaptive strategy μ̂2 compared to the non-
adaptive strategy μ̂∗

0 ranges from 1.25567/0.86451 = 1.45 with initial samples of
size 1 in each stratum (a total sample size of 16) to 0.07360/0.00147 = 50.07 with
sample sizes of 13 in each stratum (total sample size 208). Thus, with an initial
sampling fraction of just over 1/2, the adaptive strategy has 50 times the precision
of conventional stratified random sampling for estimating the mean of the clumped
population illustrated.

26.4. FURTHER IMPROVEMENT OF ESTIMATORS

None of the five unbiased estimators above is a function of the minimal sufficient
statistic, so each may be improved by the Rao–Blackwell method of taking its
conditional expectation, given the minimal sufficient statistic. The minimal suffi-
cient statistic D in the finite-population setting is the unordered set of distinct,
labeled observations (Basu 1969). Starting with any of the unbiased estimators
μ̂, one may obtain the Rao–Blackwell version μ̂RB = E(μ̂|D). With the stratified
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Table 26.3: Sixteen Strata, Equal Sample Sizesa

n E(ν) var(μ̂0) var(μ̂∗
0) var(μ̂′′

1) var(μ̂′
1) var(μ̂1) var(μ̂2)

16 30.31 2.47109 1.25567 1.25161 1.13492 1.13492 0.86451
32 55.65 1.18407 0.63716 0.59973 0.54381 0.54381 0.34784
48 77.48 0.75506 0.42859 0.38244 0.34678 0.34678 0.18356
64 96.87 0.54055 0.32220 0.27379 0.24826 0.24826 0.10721
80 114.55 0.41185 0.25658 0.20860 0.18915 0.18915 0.06573
96 131.04 0.32605 0.21133 0.16514 0.14975 0.14975 0.04131
112 146.70 0.26476 0.17777 0.13410 0.12160 0.12160 0.02628
128 161.80 0.21879 0.15158 0.11082 0.10049 0.10049 0.01678
144 176.49 0.18304 0.13039 0.09271 0.08407 0.08407 0.01068
160 190.91 0.15444 0.11277 0.07823 0.07093 0.07093 0.00673
176 205.14 0.13104 0.09780 0.06637 0.06019 0.06019 0.00417
192 219.25 0.11154 0.08488 0.05650 0.05123 0.05123 0.00252
208 233.27 0.09504 0.07360 0.04814 0.04365 0.04365 0.00147

Source: Thompson (1991b). With permission from the Biometrika Trustees.
aThe first column gives the total initial sample size. The second column gives E(ν), the total expected
number of distinct units in the final sample. The third column gives the variance of the initial stratified
sample mean μ̂0. For comparisons with adaptive strategies, the fourth column gives the variance of the
stratified sample mean μ̂∗

0 of the stratified mean of a conventional stratified random sample with total
sample size equal to E(ν), the expected sample size under the adaptive design. The last four columns of
the table give the variances of the basic four types of unbiased estimators used with stratified adaptive
cluster sampling.

adaptive cluster sampling design, the estimator μ̂RB is the average of the values of
μ̂ obtained over all samples with the same value of the minimal sufficient statistic.

The Rao–Blackwell version μ̂RB0 of the initial stratified sample mean μ̂0 is
identical, based on the result for the unstratified case, with the Rao–Blackwell
version μ̂′′

RB1 of μ̂′′
1. The Rao–Blackwell versions μ̂RB1, μ̂

′
RB1, μ̂

′′
RB1, and μ̂RB2

are, however, distinct estimators, as demonstrated in the small example of the
following section.

Example 3: A Small Population. In the first example, the computational differ-
ences between the estimators of Section 26.2 are illustrated with a very small
stratified population. In addition, the example demonstrates the bias of the con-
ventional stratified mean with adaptive cluster sampling and shows that the four
Rao–Blackwell estimators are distinct, even though each is a function of the min-
imal sufficient statistic.

Consider a population of 5 units with y-values {1, 2, 10, 1000, 3} divided into
two strata so that the first stratum contains the units with the values {1, 2, 10} and
the second stratum contains the units with the values {100, 3}. Let the condition of
interest be specified by C = {y : y ≥ 5}, so that whenever a value greater than or
equal to 5 is observed, the units in the neighborhood of that observation are added
to the sample. The neighborhood of each unit is defined to include its immediately
adjacent units. Thus, for example, if the unit with value 10 is observed, the adjacent
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units, having values 2 and 1000, are added to the sample; then since 1000 also
exceeds 5, the adjacent unit with value 3 is also added to the sample. The two units
with values {10, 1000}, the only units in the population that satisfy the condition,
form a network that crosses the boundary between strata.

Consider a stratified adaptive cluster sampling design with an initial sample size
of 1 in each stratum (i.e., n1 = n2 = 1). The six possible samples obtainable under
this design, each with equal probability, are listed in Table 26.4. In column 1,
the initial observations for each of the six possible samples is followed, after the
semicolon, by the observations subsequently added to the sample with the adaptive
procedure. For each possible sample, the value of each of the unbiased estimators,
other than the initial stratified sample mean, is computed. At the bottom of the
table are given the means (equal in each case to 203.2, the population mean) and
variances of the estimators under the adaptive design.

In the third row of Table 26.4, for illustration, the initial sample selected
the unit with value 2 from the first stratum and the unit with value 1000 from
the second stratum, resulting in the addition to the sample of the units with
values 10 and 3. The computations for each of the estimators are as follows:
The intersections of the network of {10, 1000} with each stratum have only one
unit each, so μ̂′′

1 = (1/5)[3(2) + 2(1000)] = 401.2. The sample unit with value 3
does not satisfy the condition and was not intersected by the initial sample, so
μ̂′

1 = (1/5)[3(2) + 2(10 + 1000)/2] = 203.2. The expected number of times the
unit with value 2 is intersected by an initial sample is 1/3. The expected number
for the unit with value 10, as well as for the unit with value 1000, is 1/3 + 1/2 =
5/6. Thus, μ̂1 = (1/5)[2/(1/3) + 10/(5/6) + 1000/(5/6)] = 243.6. The intersec-
tion probability αi for the unit with value 2 is 1/3. For the units with values 10
and 1000, the intersection probability [Equation (26.3)] is 1 − (2/3)(1/2) = 2/3.
Thus, μ̂2 = (1/5)[2/(1/3) + 10/(2/3) + 1000/(2/3)] = 304.2.

The conventional stratified sample mean for the sample of the third row would be
(1/5)[3(2 + 10)/2 + 2(1000 + 3)/2] = 204.2. The mean of these estimates, over

Table 26.4: Values of Estimators for the Six Possible Samples in the Examplea

Observations μ̂′′
1 μ̂′

1 μ̂1 μ̂2

1,1000; 10,2,3 400.6 202.6 243.0 303.6
1,3 1.8 1.8 1.8 1.8
2,1000; 10,3 401.2 203.2 243.6 304.2
2,3 2.4 2.4 2.4 2.4
10,1000; 2,3 406.0 505.0 484.8 303.0
10,3; 2,1000 7.2 304.2 243.6 304.2
Mean 203.2 203.2 203.2 203.2
Variance 39,766.2 30,361.2 27,504.9 20,220.8

Source: Thompson (1991b). With permission from the Biometrika Trustees.
aValues of estimators with the small population of 5 units. Any unit with y ≥ 5 satisfies the condition,
and the neighborhood of a unit contains the adjacent units. The observations (col. 1) obtained in the
initial sample are followed, after the semicolon, by observations obtained subsequently.
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Table 26.5: Values of Estimators Improved by the Rao–Blackwell Methoda

Observations μ̂′′
RB2 μ̂′

RB2 μ̂RB2 μ̂RB3

1,1000; 10,2,3 400.6 202.6 243.0 303.6
1,3 1.8 1.8 1.8 1.8
2,1000; 10,3 271.47 337.47 324.0 303.8
2,3 2.4 2.4 2.4 2.4
10,1000; 2,3 271.47 337.47 324.0 303.8
10,3; 2,1000 271.47 337.47 324.0 303.8
Mean 203.2 203.2 203.2 203.2
Variance 22,305.1 22,494.3 21,040.8 20,220.6

Source: Thompson (1991b). With permission from the Biometrika Trustees.
aValues of estimators with the small population of 5 units. Any unit with y ≥ 5 satisfies the condition,
and the neighborhood of a unit contains the adjacent units. The observations (col. 1) obtained in the
initial sample are followed, after the semicolon, by observations obtained subsequently.

the six possible samples, is 136.67. Hence, the conventional stratified sample mean
is biased when used with the adaptive design.

Three of the possible samples in Table 26.4—those in the third, fifth, and sixth
rows—have the same set of four distinct observations, and hence have the same
value of the minimal sufficient statistic. The Rao–Blackwell version of any of the
estimators for each of these samples is obtained by averaging the value of the
corresponding estimator over the three samples. The values of the Rao–Blackwell
versions of each of these estimators is listed in Table 26.5 for each of the six
possible samples, and the variances of these improved unbiased estimators are
given at the bottom of the table. �

26.5. EXAMPLE DATA

The array of y-values for the clumped population example and the figures is given
in Table 26.6 for each of the 400 units in the study region.

EXERCISES

1. In a survey of a rare clumped species, the study area is divided into two strata,
with N1 = 60 units in the first stratum and N2 = 50 units in the other. Initial
simple random samples of sizes n1 = 3 and n2 = 2 are used. Whenever one or
more of the animals are found, adjacent units are added as in text examples. In
stratum 1, the first initial sample unit had one animal in it; no further animals
were found in adjacent units. The second sample unit had no animals. The
third sample unit had two animals; of the adjacent units added within that
stratum, the only one with animals had three. That unit was adjacent to the
stratum boundary, so adding its adjacent units resulted in crossing the stratum
boundary and discovering three more units, with two, one, and one animals,
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Table 26.6: Array of y-Values for Figures and Examples⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 14 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 34 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 3 63 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 16 3 0 0 0 2 12 12 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 57 65 17 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 5 14 5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

respectively. The two initial units selected in stratum 2 each had no animals.
Estimate the number of animals in the study region using μ̂0 and μ̂1. Estimate
the variance of the estimator.

2. For the data in Exercise 1, use μ̂2.



Answers to Selected Exercises

CHAPTER 2

2. .(a) Ny = 310.s2 = 1.88.v̂ar(Ny) = 1690.

(b) y = 3.1.v̂ar(y) = 0.169.

3. .(a) μ = 2, τ = 10, σ 2 = 4.P(s) = 1/10 for each sample.

(b) E(y) = (1.33 + 1.67 + 3 + 1.33 + 2.67 + 3 + 0.67 + 2 + 2.33 +
2)/10 = 2.
E(median) = (1 + 1 + 3 + 1 + 3 + 3 + 1 + 1 + 1 + 1)/10 = 1.6, while
the population median is 1, so the sample median is not unbiased.

CHAPTER 3

2. t9(0.05) = 1.833.

(a) 310 ± 75 = (235, 385).

(b) 3.10 ± 0.75 = (2.35, 3.85).

3. .(a) var(y) = [(1.33 − 2)2 + (1.67 − 2)2 + · · · + ((2 − 2)2]/10 = 0.533.
var(median) = [(1 − 1.6)2 + (1 − 1.6)2 + · · · + (1 − 1.6)2]/10 = 0.84.

(b) The 10 values of the sample variance are 2.33, 2.33, 4, 2.33, 6.33, 4,
0.33, 7, 5.33, 7. The 10 values of v̂ar(y) are 0.31, 0.18, 0.53, 0.31, 0.84,
0.53, 0.04, 0.93, 0.71, 0.93.

Sampling, Third Edition. Steven K. Thompson.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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(c) The t-value for the confidence intervals is 4.303. Of the 10 confidence
intervals corresponding to the 10 possible samples, only the one with
y-values 1, 0, 1, giving confidence interval 0.67 ± 0.86, misses the true
mean of 2, so the actual coverage probability is 0.90.

CHAPTER 4

1. To within 500: n = 409. To within 1000: n = 148. To within 2000: n = 42.
2. To within 500: n = 692. To within 1000: n = 173. To within 2000: n = 44.

CHAPTER 5

1. p̂ = 0.46. v̂ar(p̂) = 0.000207. 95% confidence interval is 0.46 ± 1.96
(0.01439) = 0.46 ± 0.028 or approximately (0.43, 0.49).

3. n = 924. Ignoring the finite-population correction factor gives n = 2401.
4. n∗ = 1020, using n = 3184.

CHAPTER 6

1. .(a) τ̂p = 56.57.
(b) v̂ar(τ̂p) = 44.44.

2. .(a) πi = 1 − (1 − pi)
3. π1 = 0.1694, π2 = 0.4880, π3 = 0.2710.τ̂π =

64.03.
(b) πij = πi + πj − [1 − (1 − pi − pj )

3]. π12 = 0.0626, π13 = 0.0331,
π23 = 0.1020. vâr(τ̂π ) = 62.46.

3. .(a) PPS (with replacement).
(b) p1 = 1.2/80 = 0.015, p2 = 0.0025, p3 = 0.00625.μ̂p = 3.02 (one term

repeats).
(c) v̂ar(μ̂p) = 2.3.

CHAPTER 7

1. .(a) r = 6.μ̂r = 30.
(b) v̂ar(μ̂r ) = 75.
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2. .(a) Units are households, the variable of interest is cost of food, the auxiliary
variable is number of people in the household.

(b) y is unbiased, μ̂r is biased.

(c) y = 147.5.s2 = 1691.7.v̂ar(y) = 422.9.

(d) r = 45.48, μx = 2.9, μ̂r = 131.6. v̂ar(μ̂r ) = 119.6.

(e) μ̂r is better based on the estimated variance or on a scatterplot of the
data.

3. .(a) There are six possible samples, each with probability 1/6. The six values
of Ny are 10, 4, 6, 6, 8, 2. The six values of τ̂r are 6.67, 6, 5.14, 7.2, 6,
4.

(b) E(Ny) = 6, var(Ny) = 6.67.

(c) E(τ̂r ) = (6.67 + 6 + · · · + 4)/6 = 5.8.
E(τ̂r − τ)2 = [(6.67 − 6)2 + · · · + (4 − 6)2]/6 = 1.1.

CHAPTER 8

1. .(a) b = −2, a = 22, μ̂L = 12.

(b) v̂ar(μ̂L) = 0.218.

(c) When xi = 4, ŷi = 14.

CHAPTER 11

1. .(a) μ̂st = 24.44.

(b) v̂ar(μ̂st) = 5.827. 95% confidence interval is 24.44 ± 4.73 =
(19.71, 29.17).

2. .(a) n1 = 40, n2 = 60.

(b) n1 = 60, n2 = 40.

CHAPTER 12

1. .(a) τ̂ = 76.7.

(b) s2
u = 16.33, v̂ar(τ̂ ) = 381.1.

2. .(a) r = 0.657, τ̂r = 65.7.

(b) s2
r = 1.00, v̂ar(τ̂r ) = 23.33.
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3. .(a) τ̂pps = 70.
(b) v̂ar(τ̂pps) = 33.33.

5. .(a) r̂ = (10/1)(1 + 0 + 2 + 3 + 0 + 1) = 70; simple random sample of one
primary unit.

(b) Ratio (or PPS) estimator. Not unbiased.
(c) A design-unbiased estimator of variance is not available with a sample

size of one primary unit.

CHAPTER 13

1. .(a) μ̂ = 4.
(b) s2

u = 72, s2
1 = 4, s2

2 = 1, v̂ar(μ̂) = 0.84.

CHAPTER 14

1. .(a) r = 1.29, r̂x = 297.5, r̂r = 384.3. s2 = 1250, s2
r = 1.3889, v̂ar(r̂r ) =

18784.7.
(b) n/n′ = 0.024.

CHAPTER 16

2. The estimated abundance is τ̂ = 60/0.25 = 240 animals in the region. The
estimated density is D̂ = 240/100 = 2.4 animals per square kilometer. The
variance estimates are v̂ar(τ̂ ) = 240(1 − 0.25)/(0.25) = 720 and v̂ar(D̂) =
720/1002 = 0.072.

4. The sample mean of the four observations is y = 4.4, and their sample
variance is s2 = 19.3. The estimate of the total number of animals in the
study region is τ̂ = 100(4.4/0.80) = 550. The estimated variance is v̂ar(τ̂ ) =
1002{(95/100)(19.3)/[0.802(5)] + 0.20(4.4)/[0.802(100)](4.4)]} = 57,434.

CHAPTER 17

1. .(a) Using a 5-m-wide strip, D̂ = 0.014 bird/m2 or 140 birds/ha.
(b) With f̂ (0) = 0.12 by eye, D̂ = 156 birds/ha.
(c) x = 5.538, D̂ = 235 birds/ha.
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CHAPTER 18

1. .(a) τ̂ = 150,000.

(b) v̂ar(τ̂ ) = 50,400,000. 95% confidence interval is 150, 000 ± 13, 915 =
(136,085, 163,915).

(c) Overestimation.

(d) Overestimation.

CHAPTER 20

1. .(a) γ01 = γ02 = 2.64. a1 = a2 = 0.5. ŷ0 = 1.800. m∗ = 0.685. Ê(ŷ0 −
y0)

2 = 3.325.

(b) γ01 = γ02 = 4.62. a1 = a2 = 0.5. ŷ0 = 1.800. m∗ = 2.665. Ê(ŷ0 −
y0)

2 = 7.285.

(c) γ01 = 4.37, γ02 = 1.98. a1 = 0.1943, a2 = 0.8057.ŷ0 = 2.167.m∗ =
1.22.Ê(ŷ0 − y0)

2 = 3.664.

(d) γ01 = 4.37, γ02 = 4.62.a1 = 0.5320, a2 = 0.4680.ŷ0 = 1.762.m∗ =
2.54.Ê(ŷ0 − y0)

2 = 7.027.

CHAPTER 24

1. τ̂1 = 35. v̂ar(τ̂1) = 557.

2. α1 = 0.19, α2 = 0.27. τ̂2 = 38. α12 = 0.0511.v̂ar(τ̂2) = 552.

CHAPTER 26

1. τ̂0 = Nμ̂0 = 60. Nμ̂1 = 1/[(3/60)(1)] + (2 + 3 + 2 + 1 + 1)/[(3/60)(2) +
(2/50)(3)] + 0 + 0 + 0 = 61.

2. α1 = 0.05, α2 = 0.20. τ̂2 = Nμ̂2 = (1/0.05) + (9/0.20) + 0 + 0 + 0 = 65.
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Link-tracing designs

Chains, in snowball sampling, 211
Chapman estimator

in simple capture–recapture surveys, 265

in single recapture example, 266
Circus elephant example, 103–104
City disease example, 205–207
Clumped population, stratified adaptive cluster

sampling of, 360–361
Clumped population example, 360–361

y-values for, 367, 368
Clustered populations, xix

in stratified adaptive cluster sampling,
354–355

surveys of, 6
Clusters

in adaptive cluster sampling designs, 322
adaptive cluster sampling without replacement

of, 317
in initial strip plots example, 348
in stratified adaptive cluster sampling, 353

Cluster sampling, 157–159. See also Adaptive
cluster sampling

advantages of, 166
basic principle of, 162
historical development of, 8
multistage designs vs., 171
R computer code usable for, 166–169
variance and cost in, 163–166

Coefficient of variation, sample size for relative
precision and, 56

Commercial catch, model-based approach and,
132

Compact clusters, sampling variance and cost
and, 166

Compatible minimal sufficient statistic
in estimator improvement, 331
Rao–Blackwell estimators and, 335

Complete interception, in line-intercept sampling,
280

Completeness, minimal sufficient statistic and,
128

Composite estimators, for estimating
subpopulation total, 65

Compromise approaches, in ratio model design,
110

Computation, of Rao–Blackwell improved
estimators, 317

Computers. See also Internet entries; R language;
Software; Web entries

calculating confidence intervals with, 44–50
in estimator improvement, 331
random number generators on, 11, 13, 14–15
R code for double sampling, 195–197
R code for network sampling, 212–213
R code for ratio estimators, 110–112
R code for spatial prediction, 296–299
R code for stratified sampling, 151–155
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R code for systematic sampling, 166–169
for sample selection with unequal probability

replacement, 78–88
sampling strategies using, xv
use in sampling, 26–35

Conditional expectation
average detectability and, 249
for detectability estimator, 226
in double sampling, 188
in estimator improvement, 330
in household expenditure models, 24
in improving estimators, 364
in multistage designs, 179
Rao–Blackwell estimators and, 335, 336
Rao–Blackwell theorem and, 317, 330
in selecting transects with probability

proportional to length, 245
stratification and, 189, 190
in two-stage designs, 179, 180, 181

Conditional expectation of the estimator, in
random sampling with replacement, 126

Conditional mean square error, design-based vs.
model-based approach and, 133

Conditional probability of detection
with line transect detectability function,

248–249
probability density function of an observed

distance and, 253
Conditional response probability, in response

modeling and nonresponse adjustments, 194
Conditional sampling

in adaptive cluster sampling designs, 322
estimator variance and, 222–223
in response modeling and nonresponse

adjustments, 194
Conditional variance

design-based vs. model-based approach and,
133

in double sampling, 188, 193
in estimating subpopulation mean, 63, 64
in multistage designs, 179, 181–182
poststratification and, 148
in two-stage designs, 180, 181

Condition of interest
in stratified adaptive cluster sampling, 354
in systematic/strip adaptive cluster sampling,

341
Confidence coefficient, 39
Confidence intervals, 39–51

for adaptive cluster sampling, 317–318
with black cherry tree example, 110–112
in capture–recapture sampling, 273
computations for, 44–50
in estimating population proportions, 57

in estimating subpopulation mean, 64
estimation accuracy and, 39
finite population central limit theorem and,

41–43
for population mean/total, 39–40, 95
for a proportion, 58–59
in random sampling of line transects, 243
in random sampling with replacement of

detectability units, 269
with regression estimator, 116–117
sampling distributions and, 43–44
for simple capture–recapture survey

estimators, 265
in stratified sampling, 145–146
in survey data with auxiliary information

example, 96–97, 108
Confidence limits

estimators based on partial inclusion
probabilities and, 347

in population-proportion confidence-interval
estimation, 58–59

Conservative sample sizes, for estimating several
proportions simultaneously, 62

Conservative variance estimator,
Horvitz–Thompson estimator as, 70

Constant detectability
over a region, 215–217
over the whole study region, 309, 310

Continuous case, in spacial prediction over a
region, 292

Conventional stratified sample mean, in small
population example, 366–367

Correlation patterns, in sampling models, 6
Cost function, 166
Cost of sampling

in adaptive cluster sampling, 328
in allocation in double sampling with ratio

estimation, 186
in cluster and systematic sampling, 163–166
in multistage designs, 177–178
stratified random sampling and, 147

Covariance(s)
adaptive cluster sampling estimators and, 334
in comparing plot shapes and detectability

methods, 309–310, 311
detectability function and, 308
estimated detectability and, 224
Horvitz–Thompson estimator and, 76–77
in linear prediction, 286
mean square prediction error and, 301
in multiple regression models, 122–123
in random sampling, 22
of random variables, 99, 101

Covariance approach, in spatial prediction, 285
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Covariance-based prediction equation,
semivariogram and, 291

Covariance density function
in comparing plot shapes and detectability

methods, 308–309
in conventional systematic vs. cluster

sampling, 350
and observations from plots, 306–307

Covariance estimator, in linear prediction, 288
Covariance function [c(h)], 286. See also Spatial

covariance function
in linear prediction, 288
for shrimp survey example, 288–289, 291
in spatial designs, 301
spatial patterns and, 305
variogram vs., 289–290

Covariance matrix, predictive sufficiency and,
129

Covariance vector, for mean square prediction
error, 295

Crop yield example, 117–118
Cumulative distribution function, 48

Daily precipitation example, 46–50
Data. See also Information; Missing data entries

in adaptive cluster sampling designs, 323
for adaptive cluster sampling examples,

336–337
for bald eagle nests survey, 163
in double sampling, 183
entering in R language, 26–27
estimators based on partial inclusion

probabilities and, 347
likelihood functions and, 135, 136, 137
sampling variance and cost and, 164, 165
for shrimp survey example, 288
for smooth-by-eye method, 233
for stratified adaptive cluster sampling, 367,

368
with stratified sampling code, 151–155
for systematic adaptive cluster sampling, 351,

352
Data selection, sampling as, 2
Decomposition, in multistage designs, 181–182
Degrees of freedom

approximate confidence intervals and, 58, 64,
68

stratified sampling confidence intervals and,
145–146

Demographic surveys, model-based approach
and, 132

Density
in comparing plot shapes and detectability

methods, 308

narrow-strip method and, 231
in narrow-strip method example, 232
of populations, 216, 217

Density estimation methods
for line transects, 230, 231
narrow-strip method, 230–232
parametric, 234–237
random sampling of line transects for,

241–244
with single transects, 249
smooth-by-eye method, 233–234
transects in, 229–230

Density functions, 48
in model-based approach to sampling, 22–23
in nonparametric methods, 237
point transects and, 260

Design-based approaches
history of, 131
likelihood functions in, 135–137
model-based approaches vs., 8, 132–134,

134–135
multistage, 171–182
to random sampling, 22
to ratio models, 109–110
regression estimation in, 115
uses in sampling, 131–132

Design-based estimators, in link-tracing designs,
211–212

Design probability, likelihood functions and,
136

Design-unbiased estimator, 17, 132–133
in adaptive cluster sampling, 320–321, 334
in adaptive sampling designs, 315–316
systematic/strip adaptive cluster sampling

estimators as, 343
Design-unbiased methods, 131
Design unbiasedness, 133, 134–135
Design-unbiased predictor, 132–133
Design-unbiased ratio estimators, 105
Design-unbiased regression estimators, 116
Detectability, xix, 151. See also Individual

detectabilities
in aerial moose survey, 186
average, 249–250
constant over a region, 215–217
defined, 215
derivations for, 222–224, 225–226
effect of estimated, 218–219
estimated, 217–218, 220–221, 224
estimating with capture–recapture methods,

271
kernel method and, 247
line transect estimation using individual,

255–257
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with narrow-strip method, 230–231
nonsampling errors and double sampling and,

191
point transects/variable circular plots and,

259
with random transects, 250–251
sampling and, 215–227
sampling errors and, 5
sampling units and, 4
sampling with replacement and, 222
with simple random sampling, 219–220,

220–221
transects and, 230
unequal probability sampling and, 224–225

Detectability estimator
derivations for, 225–226
effect of, 252
in trapped mice survey example, 271

Detectability functions, 4
in bird banding example, 270
in comparing plot shapes and detectability

methods, 308, 309
line transects and, 247–249
in nonparametric methods, 237
other than line transects, 257–259
in parametric methods, 234–235
plots associated with, 307–308, 309
probability density function of an observed

distance and, 253, 254
radially symmetric, 259–260
in selecting line transects, 240
with single transects, 249
with transects, 229, 230

Detectability methods, xix, xx
plot shapes and, 308–311

Detectability units
observations from, 307–308, 309
random sampling with replacement of,

269–270
in simple capture–recapture sampling, 268
transects and, 230

Detection, in simple capture–recapture sampling,
267–268

Detection history, in simple capture–recapture
sampling, 266

Detection probability
in random sampling of line transects, 240–241
with single transects, 249
spatial patterns and, 305
transects and, 229
unequal, 224–225

Direct likelihood methods, 136
Direct random selection, 13

Discrete case, in spacial prediction over a region,
292

Disease patterns, adaptive cluster sampling and,
319

Distance-based methods, estimating detectability
via, 217

Domain sample mean, in estimating
subpopulation mean, 63

doublefun.R file, 196–197
Double sampling, 183–198

adaptive cluster, 317
allocation in, 186, 189
applications of, 183–184
callbacks as, 192–193
defined, 183
derivations for, 188–190
estimating detectability via, 217
historical development of, 8
nonresponse adjustments via, 193–195
nonsampling errors and, 190–195
ratio estimation with, 184–186
R computer code usable for, 195–197
response modeling via, 193–195
for stratification, 186–187

Double-sampling ratio estimation methods,
estimating detectability via, 217–218

Draw-by-draw example, 324–325
Draw-by-draw intersection, estimation via,

323–325
Draw-by-draw selection probabilities

in adaptive cluster sampling designs, 323
estimators based on partial selection

probabilities and, 344
for line-intercept sampling, 275, 276
for multistage design with replacement, 177
for network sampling, 202–203
stratified adaptive cluster sampling estimators

and, 357
in systematic/strip adaptive cluster sampling,

342
Drug use studies, link-tracing designs in, 210

Ecological sampling problems, spatial patterns
and, 305

Ecological surveys, observational methods in,
307

Ecology, sampling methods for, xx
Edges, in graphs, 211
Edge units, 342

in adaptive cluster sampling designs, 322
in estimator improvement, 331
in stratified adaptive cluster sampling, 355
in systematic/strip adaptive cluster sampling,

342
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Effective area, 251
average detectability and, 251–252
detectability functions and, 258–259
point transects/variable circular plots and, 259,

260
sampling units and, 4

Effective half-width, 251
in estimating detectability, 252
of a line transect, 235
in selecting transects with probability

proportional to length, 245
Effective sample size

in random sampling with replacement, 20
in small population example, 333

Effective width, of transects, 241
Efficiency

of adaptive cluster sampling vs. conventional
sampling, 328–330

in adaptive cluster sampling vs.simple random
sampling, 328

of adaptive sampling designs, 316
in comparing plot shapes and detectability

methods, 309–310, 311
in conventional vs. adaptive stratified

sampling, 362–363, 364, 365
design-based vs. model-based approach and,

134–135
in line-intercept sampling, 281
network sampling and, 202
sampling variance and cost and, 164, 165
in spatial design for prediction of mean of

region, 302
Epidemiological surveys, xx
Errors

confidence intervals and, 39
sampling and nonsampling, 5

Estimated detectability, 224
simple random sampling and, 220–221

Estimated mean square error, for ratio estimator,
176

Estimated standard error
in city disease example, 207
in population total estimation, 16–17
in two-stage design, 175

Estimated variance, 15
in bird banding example, 270
in city disease example, 207
constant detectability and, 216
in draw-by-draw example, 325
of estimators, 223–224
in estimating detectability with simple random

sampling, 221
in estimating subpopulation mean, 64
in large mammals example, 104–105

in line-intercept sampling, 277
in multistage design with replacement, 177
in population total estimation, 16–17
in sampling very small populations, 17–18
in single recapture example, 266
in survey data with auxiliary information

example, 96–97
in two-stage design, 175, 176, 177
in wolverine abundance example, 279–280

Estimates, sampling and, xv
Estimating approach, to inference in survey

sampling, 78
Estimation, xvii, xix, xx

accuracy of, 39
adaptive cluster sampling and, 320
in aerial moose survey, 185, 186
auxiliary information in, 93
basic ideas of, 2–4
with capture–recapture sampling, 263
comments on improved, 128–129
in comparing plot shapes and detectability

methods, 308–309
of detectability, 217–218
in double sampling, 183
in draw-by-draw example, 325
effect of detectability, 252
finite population central limit theorem and, 41
with Fourier series method, 239
with kernel methods, 237–238
with narrow-strip method, 230–232
of population mean, 13–15, 23
of population mean/total in network sampling,

202–207
of a population proportion, 58, 59–60, 60–61
of population total, 16–17
poststratification and, 148
in probability-proportional-to-size sampling,

127–128
of a proportion for a subpopulation, 57, 64
of proportions, ratios, and subpopulation

means, 57–66
in random sampling with replacement,

126–127
in R language, 27–28
sample size and, 3
sampling errors and, 5
sampling for, 1
of semivariogram, 289–290
with stratified sampling, 142–143, 144–145,

151–155
of subpopulation mean, 57, 63–64
of subpopulation total, 57, 64–65
with transects, 229–230
via draw-by-draw intersection, 323–325
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Estimation methods, xix
historical, 7–8

Estimation procedures, selecting, xv
Estimator(s). See also Hansen–Hurwitz

estimator; Horvitz–Thompson estimator;
Raj estimator; Ratio estimator(s); Stratum
estimators; Unbiased estimator(s)

for adaptive cluster sampling, 323–327,
330–333, 334–336

in adaptive cluster sampling vs.simple random
sampling, 328, 330

in adaptive sampling designs, 315–316
in aerial moose survey, 186
asymptotic properties of, 318
average detectability and, 252
in bird banding example, 270
in capture–recapture sampling, 273
in cluster and systematic sampling, 157, 160
confidence intervals and, 40
in conventional vs. adaptive stratified

sampling, 362, 363
derivations for, 350–351
in design-based vs. model-based approach,

132–134
design-unbiased, 17
of detectability, 218, 219, 220, 221
in detectability estimation with

capture–recapture methods, 271
detectability functions and, 258–259
in double sampling, 183, 188, 193
in double sampling for stratification, 187
for draw-by-draw intersection estimation,

323–324
estimated variance of, 223–224
in estimating detectability with random

sampling with replacement, 222
improvement of, 330–333, 364–367
in improving adaptive cluster sampling

estimation, 336
generalized unequal-probability, 72–73
kernel method and, 246–247
likelihood functions and, 136
in linear prediction, 287
in multistage designs, 171, 179
in multistage design with replacement, 177
in network sampling, 202–207
optimum allocation and, 149–150
point transects/variable circular plots and, 260
of population mean, 54
in population-proportion estimation, 59–60
of population total, 54–55
in random sampling of line transects, 241–244
in random sampling without replacement, 270
in random sampling with replacement, 19–20

with random transects, 251, 255
ratio estimator vs., 94, 95
R code for, 195–197
in response modeling and nonresponse

adjustments, 194
sample mean as, 13
sample sizes and, 53
sampling distributions of, 43–44
in sampling very small populations, 17–18
for sea otter survey example, 167–168, 169
in selecting line transects, 240
in selecting transects with probability

proportional to length, 245
for simple capture–recapture sampling,

266–267, 267–270
in simple capture–recapture surveys, 265
in single recapture example, 266
in small population example, 73–75, 333,

365–367
in spatial design for prediction of mean of

region, 303
stratification and, 189
stratification principle and, 146
for stratified adaptive cluster sampling, 353,

356–362
with stratified populations, 149
in stratified sampling, 141
for subpopulation total, 64–65
in survey sampling, 125
for systematic/strip adaptive cluster sampling,

343–347
in systematic transect selection, 244
that are functions of minimal sufficient

statistic, 125–126
in two-stage designs, 179–180
unbiasedness of, 222, 223–224, 225–226
unequal stratum sizes example and, 361–362
using expected numbers of initial intersections,

357–359
using individual detectabilities, 255–256
using initial intersection probabilities,

325–327, 359–362
variances of, 15, 222–223

Excel, R language and, 26
Expansion estimator

R code for, 195–196
for sea otter survey example, 167, 169

Expected density, in comparing plot shapes and
detectability methods, 308

Expected number observed
constant detectability and, 216
detectability function and, 307
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Expected numbers of initial intersections,
stratified adaptive cluster sampling
estimators using, 357–359

Expected sample size, in systematic/strip
adaptive cluster sampling, 343

Expected value, stratification and, 189–190
Expected value of the estimator, 99

in adaptive cluster sampling, 333–334
in derivations for estimators, 351
design-based approaches and, 131
in double sampling for stratification, 187
in multistage designs, 179, 181–182
in ratio estimation models, 106
in selecting transects with probability

proportional to length, 245
in small population example, 75

Expected value of the sample mean
in household expenditure models, 24
in population models, 23
in random sampling, 21, 22

Expected value of the sample variance, in
random sampling, 22

Experimental design, sampling vs., 1–2
Exponential detectability functions, 235–236
Exponential line transects, 309, 310
Exponential profile, for line transect detectability

function, 247–248

Finite-population central limit theorem, 41–43
for the ratio estimator, 101–102
for the regression estimator, 117

Finite-population correction factor, 15, 60
in estimating detectability with random

sampling with replacement, 222
in line-intercept sampling, 276
multiplicity estimator and, 208

Finite-population sampling, 125
for adaptive cluster sampling designs, 321
in estimator improvement, 330, 331–332
in improving estimators, 364
minimal sufficient statistic in, 316
Rao–Blackwell theorem and, 317
unit labels and, 316

Finite-population variance (σ 2)

in adaptive cluster sampling vs.simple random
sampling, 328

with cluster and systematic sampling, 159–160
design-unbiased estimator and, 17
in estimating detectability with simple random

sampling, 220
in household expenditure models, 25
of a population proportion, 58
in random sampling with replacement of

detectability units, 269

in ratio estimation with double sampling, 185
in response modeling and nonresponse

adjustments, 194
sample variance as estimator of, 13–15
sampling variance and cost and, 164, 166
stratification and, 190
stratification in network sampling and, 208
in stratified designs, 143

Fir seedling example, 32–35
Fish number estimation example, 272–273
Fit, in ratio model design, 109
Fixed-population approach

to random sampling, 22
regression estimation in, 115

Flushing distance, in animal surveys, 256–257
Fourier series method, for line transects, 239
Frame errors, in sampling, 191
Frames

in sampling, 190–191
in snowball sampling, 211

Frequentist-based inference, 137

Gaussian density function, in spatial design for
prediction of mean of region, 303

Gaussian process, in linear prediction, 287–288
Generalized ratio estimator

in regression estimation with unequal
probability designs, 118

in unequal probability designs, 102, 103, 104
Generalized regression estimator

in multiple regression models, 122–123
in regression estimation with unequal

probability designs, 118, 119
Generalized unequal-probability estimator,

72–73, 102
Horvitz–Thompson estimator and, 77–78

General linear regression models
minimizing mean square error under, 123–124
predictive sufficiency and, 129

Geographical regions
in spatial prediction, 285
in stratified sampling, 141

Geographic units, 4
Geological studies, spatial prediction for, 285
Geology, sampling methods for, xx
Geostatistics, xx
Graphs, link-tracing designs and, 211–212
Graph sampling, 211
Graph theory, 211
Grid patterns, in systematic/strip adaptive cluster

sampling, 341
Grids

in adaptive cluster sampling, 320
in spatial design for local prediction, 302
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in spatial design for prediction of mean of
region, 302, 303

Groups, with unequal detection probabilities,
224–225. See also Response homogeneity
group model

Group size, detectability dependent on, 255

Half-normal detectability functions, 235,
236–237

Half-normal line transects, 309, 310
Half-normal profile, for line transect detectability

function, 247–248
Half-normal shape, 309, 310
Half-width (w), 251
Hansen–Hurwitz estimator

in adaptive cluster sampling, 320–321
with cluster and systematic sampling, 161
for draw-by-draw intersection estimation,

323–324
estimators based on partial selection

probabilities and, 344
improving, 127–128
in line-intercept sampling, 276
multiplicity estimator vs., 202, 207
for one-unit sample, 76
in probability-proportional-to-size sampling,

127–128
random sampling with replacement and, 67–69
R computer code usable for, 78–88
for sea otter survey example, 167–168
in small population example, 74
stratification in network sampling and, 209
stratified adaptive cluster sampling estimators

and, 357
for two-stage designs, 181
in unequal probability sampling without

replacement, 125
Hayne estimator, in estimation using individual

detectabilities, 256–257
Health sciences, sampling methods for, xx
Hexagonal grids, in spatial design for local

prediction, 302
High covariance, in spatial designs, 301
Histograms

for black cherry tree example, 30–31, 45–46,
111, 112

for daily precipitation example, 48–50
with half-normal detectability functions,

236–237
for fir seedling example, 34
narrow-strip method and, 231, 232
with sampling strategy simulation, 81–82, 84,

86
with smooth-by-eye method, 233–234

for stochastic simulation example, 28, 29,
30–31

Histories, The (Herodotus), 7
History, of sampling, xvii, 7–8
HIV infection studies, link-tracing designs in,

210
Horvitz–Thompson estimator, 69–72

in adaptive cluster sampling, 320–321
in city disease example, 206–207
with cluster and systematic sampling, 161–162
for detectability estimator, 226
in estimation using initial intersection

probabilities, 325
estimators based on partial inclusion

probabilities and, 345, 347
generalized unequal-probability estimator vs.,

72
with large mammals example, 104–105
in line-intercept sampling, 276–277, 281
minimal sufficient statistic and, 128
in multiple regression models, 123
multiplicity estimator vs., 202
in network sampling, 204–207
in probability-proportional-to-size sampling,

127
in random sampling with replacement,

126–127
in ratio model design, 110
R computer code usable for, 78–88
in regression estimation with unequal

probability designs, 118–119
for sea otter survey example, 167, 168
in small population example, 74–75
stratification in network sampling and, 209
stratified adaptive cluster sampling estimators

and, 359, 360
in trapped mice survey example, 271
in unequal probability designs, 102–103,

103–104
in unequal probability sampling, 224–225
variance of, 76–77
in wolverine abundance example, 279–280

Household expenditure models, 23–24
Human populations, sampling theory and, 8
Human selection biases, model-based approach

and, 132
Hypergeometric distribution

adaptive cluster sampling estimators and, 334
in capture–recapture sampling, 273
in capture–recapture sampling with multiple

releases, 272
in derivations for estimators, 351
in detectability estimation with

capture–recapture methods, 271
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Hypergeometric distribution (Continued )
multiplicity estimator and, 207
in population-proportion confidence-interval

estimation, 58–59
poststratification variance and, 150
in simple capture–recapture sampling, 267,

268
stratification in network sampling and, 209

Identically distributed random variables,
sequences of, 41

Ignorable designs, likelihood functions and, 136,
137

Imperfect detectability, 255
with adaptive designs, 318

Inclusion indicator variable (z), 101
Inclusion probability

in adaptive cluster sampling designs, 323, 325,
328, 343, 345–346, 347

in black cherry tree example, 80–81
clumped population example and, 361
with Horvitz–Thompson estimator, 70–71,

161, 204, 206–207
with large mammals example, 104
in line-intercept sampling, 277
link-tracing designs and, 210
multiplicity estimator and, 208
in network sampling, 201–202
in regression estimation with unequal

probability designs, 118
in small population example, 73–74
stratification in network sampling and,

209–210
in stratified adaptive cluster sampling, 356,

359
in trapped mice survey example, 271
in two-stage designs, 180
in unequal probability designs, 103–104
in unequal probability sampling without

replacement, 125
in without-replacement designs, 78
in wolverine abundance example, 279

Independent detections, 215–216
in bird banding example, 270
and observations from plots, 306
in simple capture–recapture sampling, 268
spatial covariance function and, 286

Independent, identically distributed (i.i.d.)
models, 25–26, 76

average detectability and, 252
kernel method and, 246–247
line-intercept sampling as, 276
predictive sufficiency and, 129

in selecting transects with probability
proportional to length, 245

Independent random variables, sequences of, 41
Independent sample selection, 75–76

in stratified adaptive cluster sampling, 354
Independent terms, in household expenditure

models, 24–25
Indicator detectability function, 308
Indicator variable(s)

adaptive cluster sampling estimators and, 334
detectability estimator and, 225
in estimation using initial intersection

probabilities, 325–326
estimators based on partial inclusion

probabilities and, 346
estimators based on partial selection

probabilities and, 344
with Horvitz–Thompson estimator, 76
in network sampling, 202
in selecting transects with probability

proportional to length, 245
stratified adaptive cluster sampling estimators

and, 359–360
in two-stage designs, 180

Individual detectabilities, 256–257
estimation and, 255–257

Inefficiency, in ratio model design, 109
Inference

frequentist-based, 137
likelihood-based, 136–137

Information, in stratified adaptive cluster
sampling, 353

Informative designs, 316
Initial designs, for adaptive cluster sampling,

322–323
Initial intersection probabilities

clumped population example and, 361
estimation via, 325–327
in initial strip plots example, 348
in small population example, 366
stratified adaptive cluster sampling estimators

and, 357, 359–362
in systematic initial sample example, 348–349

Initial intersection probabilities example, 327
Initial intersections, stratified adaptive cluster

sampling estimators using, 357–359
Initial sample mean

as adaptive cluster sampling estimator, 323
systematic/strip adaptive cluster sampling

estimators based on, 343–344
Initial samples

clumped population example and, 360, 361
in conventional vs. adaptive stratified

sampling, 362, 363
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in estimator improvement, 331
in improving adaptive cluster sampling

estimation, 336
Rao–Blackwell estimators and, 335
in stratified adaptive cluster sampling, 354
in systematic/strip adaptive cluster sampling,

342
unequal stratum sizes example and, 361

Initial sample size, in adaptive cluster sampling
vs. conventional sampling, 329–330

Initial selection
in adaptive cluster sampling vs.simple random

sampling, 328
in draw-by-draw example, 324
in draw-by-draw intersection estimation, 324
in estimation using initial intersection

probabilities, 325
Rao–Blackwell estimators and, 335

Initial strip design, in conventional systematic vs.
cluster sampling, 350

Initial strip plots example, 348
Initial systematic sample design, in conventional

systematic vs. cluster sampling, 350
Interception, in line-intercept sampling, 280, 281
Internet Classics Archive, The, 7
Internet searches, link-tracing designs in, 210.

See also Web entries
Intersection probability. See Initial intersection

probabilities
Intervals, in unequal probability sampling, 67
Inverse adaptive cluster sampling, 317
Inverse sampling, in simple capture–recapture

sampling, 267
Isotropic process

in linear prediction, 288
and observations from plots, 306
spatial covariance function and, 286

Jackknife estimate of variance
kernel method and, 247
in random sampling of line transects,

242–243, 243–244
Jackknife estimator, in ratio estimation models,

108
Jackknife sample, in random sampling of line

transects, 242
Jensen’s inequality, in estimating subpopulation

mean, 63
Joint inclusion probability

clumped population example and, 361
estimators based on partial inclusion

probabilities and, 346–347
with Horvitz–Thompson estimator, 70–71,

161, 206

in initial strip plots example, 348
with large mammals example, 104
in line-intercept sampling, 277
in response modeling and nonresponse

adjustments, 194
stratified adaptive cluster sampling estimators

and, 360
in systematic initial sample example, 349
in wolverine abundance example, 279

Jolly–Seber model, for capture–recapture
sampling, 273

Kernel estimator, 238, 246–247
Kernel function [K(x)], 237
Kernel methods

for line transects, 237–238, 246–247
for point transects, 260

Kriging, 285, 286–289
defined, 285
history of, 296
in spatial design for prediction of mean of

region, 303
spatial prediction problem and, 296

Kriging methods, xix
Kriging predictor, in linear prediction, 287
Kriging variance, in linear prediction, 287

Labeling, of population units, 2, 13
Lagrange constants, for mean square prediction

error, 295
Lagrange multiplier (λ)

optimum allocation and, 150, 189
in spatial prediction derivation, 294

Lagrange multiplier method. See also Lagrange’s
method

in linear prediction, 287
optimum allocation and, 150

Lagrange’s method. See also Lagrange multiplier
method

cost and sample size and,178
in optimum allocation for ratio estimation, 189
for spatial prediction, 292–293

Large mammals example, 68–69, 71, 73, 127
ratio estimation in, 104–105

Likelihood-based inference, 136–137
Likelihood function. See also Maximum

likelihood entries
in fish number estimation example, 272
in sampling, 135–137

Linear estimator(s)
in linear prediction, 287
semivariogram and, 290–291

Linear functions, in linear prediction, 287
Linear models, 109
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Linear model theory, multiple regression models
in, 121–122

Linear prediction, 286–289
Linear prediction equations, for spatial

prediction, 292–293
Linear prediction problem, multiple regression

models and, 121
Linear predictors

in linear prediction, 287–288
in ratio estimation models, 106–107

Linear regression estimator, 115, 116–118
Linear unbiased estimators, best, 109
Linear unbiased predictor problem, 293
Line-intercept estimators, 281

estimators based on partial selection
probabilities and, 344

Line-intercept sampling, 67, 275–282
adaptive cluster sampling and, 320–321
applications of, 275
with lines of random positions/directions,

280–281
with random sample of lines in fixed direction,

275–280
Line transects, 229–230

density estimation methods for, 230, 231
designs for selecting, 240
detectability dependent on size, 255
detectability functions and, 247–249
detectability functions other than, 257–259
detectability imperfect on the line of, 255
in ecological surveys, 307, 308
effective half-width of, 235
estimating detectability via, 217, 219
estimation using individual detectabilities,

255–257
Fourier series method for, 239
kernel methods for, 237–238, 246–247
narrow-strip method for, 230–232
nonparametric methods for, 237–239
parametric methods for, 234–237
probability density function of an observed

distance in, 253–255
randomly selected, 250–251
random sample of, 240–244
selecting with probability proportional to

length, 244–245
smooth-by-eye method for, 233–234
systematic selection of, 244
underlying ideas about, 247–255
of unit length and exponential profile, 309, 310
of unit length and half-normal profile, 309, 310
variable circular plots vs., 230, 259–260

Linkage patterns, in networks, 201
Links, in snowball sampling, 213

Link-tracing designs, 201, 202, 210–212
described, 210

Local prediction, spatial design for, 302
Logistic regression of capture probabilities, in

trapped mice survey example, 271
Log-linear models, for capture–recapture

sampling, 273
Long transects, in selecting transects with

probability proportional to length,
244–245

Low covariance, in spatial designs, 301

Marking
in capture–recapture sampling, 264, 265,

267–268, 272
in fish number estimation example, 272

Mark–recapture experiments, 273
Mark–releases, in capture–recapture sampling,

264
Matrix inversion, in spatial prediction derivation,

295
Matrix notation. See also Covariance matrix

for mean square prediction error, 290–291,
294–295

for multiple regression models, 121
Maximum detectability distance, with Fourier

series method, 239
Maximum likelihood estimators (MLEs)

in capture–recapture sampling, 273
in capture–recapture sampling with multiple

releases, 272
in fish number estimation example, 272
likelihood functions and, 136, 137
for simple capture–recapture sampling,

266–267
Maximum likelihood estimation

with line transects, 235, 236
in link-tracing designs, 211

Mean(s)
for adaptive cluster sampling estimators, 334
in conventional vs. adaptive stratified

sampling, 362
cost and sample size and,178
detectability function and, 307, 308
in double sampling, 188
estimated detectability and, 224
estimating subpopulation, 57, 63–64
independent and identically distributed random

variables and, 41
in linear prediction, 286
sampling variance and cost and, 165
in small population example, 333
spatial patterns and, 305
in two-stage design, 174, 175
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Mean function
detectability function and, 307
in stochastic simulation example, 28

Mean of region, spatial design for prediction of,
302–303

Mean-of-the-ratios estimator, 109
in line-intercept sampling, 277

Mean per unit, in large mammals example, 104
Mean square error (mse, MSE)

with black cherry tree example, 110–112
with cluster and systematic sampling, 160
in comparing plot shapes and detectability

methods, 309
design-based vs. model-based approach and,

133–134, 135
for fir seedling example, 35
of generalized unequal-probability estimator,

72–73
in linear regression estimation models, 116
minimizing, 123–124
in multiple regression models, 121, 122, 123
in ratio estimation with double sampling,

185
of ratio estimator, 94, 95, 99–100, 175, 176
in regression estimation with unequal

probability designs, 118
in regression models, 120
in small population example, 333
in small population example illustrating bias,

97, 98–99
in stochastic simulation example, 30, 31
Taylor series expansion to approximate, 101
of variance, 103

Mean square error estimator
in ratio estimation models, 107–108
in survey data with auxiliary information

example, 108
Mean square prediction error(s)

in comparing plot shapes and detectability
methods, 308, 309

covariances and, 301
in household expenditure models, 24–25
in linear prediction, 287
in multiple regression models, 121, 122
in ratio estimation models, 106–107, 107–108
in regression models, 120
semivariogram and, 290–291
in shrimp survey example, 289, 291
in spacial prediction over a region, 292,

293–294, 294–296
with stratified populations, 149

Measurement errors, in sampling, 191
Medical surveys, network sampling in, 201, 202
Minimal sufficient statistic, 125

compatible, 331
estimators that are functions of, 125–126
in estimator improvement, 330, 331–332, 364
in finite-population sampling, 316
not complete, 128
predictive sufficiency and, 129
in probability-proportional-to-size sampling,

128
in random sampling with replacement, 126
Rao–Blackwell estimators and, 335
Rao–Blackwell method and, 128
Rao–Blackwell theorem and, 317, 330
in small population example, 367

Minimum variance unbiased estimator, in
estimator improvement, 331–332

Missing data, in response modeling and
nonresponse adjustments, 195

Missing data analysis, recent developments in, 8
Missing data mechanism, likelihood functions

and, 137
Model-assisted strategies, 135
Model-based approach(es)

design-based approaches vs., 8, 132–134,
134–135

history of, 131–132
likelihood functions in, 135–137
to link-tracing designs, 212
in random sampling of line transects, 243–244
to simple random sampling, 22–26
in spatial prediction, 285
uses in sampling, 131–132

Model-based ideas, xvii
Model-based predictive sampling methods,

predictive sufficiency for, 128–129
Model-based ratio variance estimator, in random

sampling of line transects, 243–244
Models

for capture–recapture sampling, 273
in sampling, 5–6
for simple capture–recapture sampling,

266–267
transects and, 229–230

Model-unbiased estimators. See also Unbiased
entries

design-based vs. model-based approach and,
133

in random sampling of line transects, 243
with stratified populations, 149

Model unbiasedness, 133, 134–135. See also
Unbiasedness

with stratified populations, 149
Model-unbiased predictors

design-based vs. model-based approach and,
133
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Model-unbiased predictors (Continued )

in household expenditure models, 24–26
Model-unbiased ratio estimators, 105
Multihypergeometric distributions, in

capture–recapture sampling, 273
Multinomial models

bird banding example vs., 270
for capture–recapture sampling, 273
for simple capture–recapture sampling,

266–267, 268
Multinomial proportions, sample size for

estimating, 61–62
Multiphase sampling, historical development of,

8
Multiple regression methods, estimating

detectability via, 218
Multiple regression models, 115, 120–123
Multiple releases, capture–recapture sampling

with, 272–273
Multiplicity

in city disease example, 205
in network sampling, 202

Multiplicity estimators
in city disease example, 205
estimators based on partial selection

probabilities and, 344
Horvitz–Thompson estimator vs., 204
in network sampling, 202–204
simplified notation for, 203
stratified, 208
stratified adaptive cluster sampling estimators

and, 358
as unbiased estimators, 203–204, 207

Multiplicity sampling, 201
Multistage designs, 171–182

applications of, 171
cost and sample sizes in, 177–178
derivations for, 179–182
described, 171
probability-proportional-to-size primary-unit

selection for, 176–177
ratio estimator in, 175–176
with replacement, 177
sampling for, 171–172
simple random sampling at each stage of,

173–176
Multistage sampling, historical development of, 8
Multivariate aspects, of adaptive sampling, 317

Narrow-strip method, 230–232
Narrow-strip method example, 231–232
Natural populations

in adaptive and nonadaptive sampling design,
7

sampling theory and, 8
Neighborhoods, 341, 354

in adaptive cluster sampling, 319, 320,
321–322

in adaptive cluster sampling vs. conventional
sampling, 329

for adaptive cluster strategy calculations, 347,
348

clumped population example and, 360
estimators based on partial inclusion

probabilities and, 346
in small population example, 332, 365–366
in stratified adaptive cluster sampling,

354–355
in systematic/strip adaptive cluster sampling,

339–341, 342
Net mesh size, estimating detectability via, 217
Networks, 342, 355

in adaptive cluster sampling designs, 322
adaptive cluster sampling estimators and, 334
in adaptive cluster sampling vs. conventional

sampling, 330
in adaptive cluster sampling vs.simple random

sampling, 328
adaptive cluster sampling, without

replacement, of, 317
clumped population example and, 361
defined, 201
in derivations for estimators, 350–351
in draw-by-draw example, 324–325
draw-by-draw intersection estimation in, 324
in estimation using initial intersection

probabilities, 326
in estimator improvement, 331
estimators based on partial inclusion

probabilities and, 346, 347
estimators based on partial selection

probabilities and, 344, 345
Horvitz–Thompson estimator and, 204
in improving adaptive cluster sampling

estimation, 336
in initial intersection probabilities example,

327
in initial strip plots example, 348
Rao–Blackwell estimators and, 335, 336
in stratified adaptive cluster sampling,

355–356
stratified adaptive cluster sampling estimators

and, 357, 358, 359
in systematic initial sample example, 348–349
in systematic/strip adaptive cluster sampling,

342
Network sampling, xix, xx, 201

adaptive cluster sampling and, 320–321
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in city disease example, 205, 206
derivations for, 207–208
R code usable for, 212–213
snowball sampling as, 211
stratification in, 208–210

Network sampling designs, 201–213
history of, 202

Network sampling estimators, estimators based
on partial selection probabilities and, 344

Nodes, in graphs, 211–212
Nonadaptive sampling design, 6–7
Nonparametric bootstrap methods, in

capture–recapture sampling, 273
Nonparametric methods, for line transects,

237–239
Nonparametric models, 236
Nonresponse adjustments, via double sampling,

193–195
Nonresponse bias, 191–192
Nonresponse to surveys, 5

callbacks to adjust for, 192–193
double sampling and, 183–184
nonsampling errors and double sampling and,

191
Nonsampling errors, xvii, 5

described, 190
double sampling and, 190–195
methods to deal with, 191

Nonsampling error sources, model-based
approach and, 132

Nonsampling variability, in simple
capture–recapture sampling, 267

Nonsequential statistical methods, in sampling
design, 316

Normal approximation, for stratified sampling
confidence intervals, 145

Normal distribution. See also Approximate
normality

confidence intervals and, 40
independent and identically distributed random

variables and, 41, 42–43
in population-proportion confidence-interval

estimation, 58–59
sample sizes and, 53
simple capture–recapture survey estimators

and, 265
Normal kernel, 238

Observational methods, 305–311
in ecological surveys, 307
in selecting line transects, 240

Observational studies, sampling vs., 2
Observational units

in city disease example, 205

detectability functions and, 258, 259
Horvitz–Thompson estimator and, 204
with multiplicity estimator, 202–203, 207
in network sampling, 201, 202
stratification in network sampling and,

208–209
Observations

from detectability units, 307–308, 309
in estimator improvement, 330–331
in finite-population survey sampling, 125
in improving estimators, 364
mean function and, 307
from plots, 305–307
Rao–Blackwell estimators and, 335
in small population example, 365, 367
stratified adaptive cluster sampling estimators

and, 357, 358
in systematic/strip adaptive cluster sampling,

339
Observed distance, probability density function

of, 253–255
Offspring locations, clumped population example

and, 360
100(1 − α)% confidence intervals, 39–40

in estimating subpopulation mean, 64
with Horvitz–Thompson estimator, 70
in random sampling of line transects, 243
with ratio estimator, 95, 108
with regression estimator, 116–117
for simple capture–recapture survey

estimators, 265
in stratified sampling, 145

One-in-three systematic sample, for bald eagle
nests survey, 163

Operating systems, for statistical programming
and sampling software, xv

Optimal sampling design, 316, 318
Optimum allocation

derivations for, 149–150, 189
in double sampling, 189
poststratification and, 148
for ratio estimation, 189
in stratified random sampling, 147–148

Optimum subsample-size choice, cost and
sample size and,178

Ordered samples, in small population example,
73, 74

Overestimation, in draw-by-draw example, 325

Parameters, in capture–recapture sampling, 273
Parametric methods, for line transects, 234–237
Parent locations, clumped population example

and, 360
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Partial derivatives, in spatial prediction
derivation, 294

Partial inclusion probabilities, systematic/strip
adaptive cluster sampling estimators based
on, 345–347

Partial interception, in line-intercept sampling,
280

Partial selection probabilities, systematic/strip
adaptive cluster sampling estimators based
on, 344–345

Partitioned form, for mean square prediction
error, 295

Partitions, in stratified sampling, 141
Persian army, estimating size of, 7
Petersen estimator

in bird banding example, 270
in detectability estimation with

capture–recapture methods, 271
in random sampling without replacement, 270
in random sampling with replacement of

detectability units, 269
in simple capture–recapture surveys, 265,

266–267, 269, 270
in single recapture example, 266

Plant populations
adaptive sampling designs for, 315
spatial patterns of, 305

Plots. See also Square plots
clumped population example and, 360
in comparing plot shapes and detectability

methods, 308
in conventional systematic vs. cluster

sampling, 349
detectability units and, 307–308, 309
in initial strip plots example, 348
observations from, 305–307
as sampling units, 4, 257–258
in systematic/strip adaptive cluster sampling,

339–341, 342
types of, 309, 310

Plot shapes, xix, 305–311
detectability methods and, 308–311

Pocket change survey example, 96–97, 108
Point objects

clumped population example and, 3601
spatial patterns and, 305
in stratified adaptive cluster sampling, 354
in systematic/strip adaptive cluster sampling,

339–34
Point processes, stochastic, 305, 307
Point transects, 229, 230, 259–260, 309, 310.

See also Variable circular plots
Poisson model, in simple capture–recapture

sampling, 267

Poisson process
in adaptive cluster sampling vs. conventional

sampling, 329
adaptive cluster strategy calculations and, 347
clumped population example and, 354, 355,

356, 360
in conventional systematic vs. cluster

sampling, 350
and observations from plots, 306

Pooled data, in random sampling of line
transects, 242

Pooled estimators, in selecting transects with
probability proportional to length, 245

Population(s). See also Finite-population central
limit theorem

adaptive cluster sampling and, 319, 320, 334
in adaptive cluster sampling designs, 321
in adaptive cluster sampling vs. conventional

sampling, 320, 321, 328–330
in adaptive cluster sampling vs.simple random

sampling, 327–328
for adaptive cluster strategy calculations,

347–348
in adaptive sampling designs, 315, 316
auxiliary variables and, 93, 102
average detectability and, 249–250
for bald eagle nests survey, 163
basic systematic and clustering principle and,

162
in bird banding example, 270
in capture–recapture sampling, 263–264, 273
in capture–recapture sampling with multiple

releases, 272
in cluster and systematic sampling, 157–159
in comparing plot shapes and detectability

methods, 308–309
constant detectability within, 215–217
constructing realistic, xv
in conventional systematic vs. cluster

sampling, 350
in conventional vs. adaptive stratified

sampling, 362, 363
density of, 216
design-based approaches and, 131
in design-based vs. model-based approach,

132, 133, 134–135
design-unbiased estimator for, 17
detectability estimator and, 225
difficult to sample, xix
in double sampling for stratification, 186–187
double sampling of, 183
for estimating detectability with simple

random sampling, 219–220
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estimating several proportions simultaneously
for, 60–62

in estimation using individual detectabilities,
256

in estimation using initial intersection
probabilities, 326

finite-population correction factor for, 15
in fish number estimation example, 272–273
Horvitz–Thompson estimator and, 204
in improving adaptive cluster sampling

estimation, 336
in initial intersection probabilities example,

327
kernel method and, 246
likelihood functions and, 135, 136
linear regression estimators and, 116
in line-intercept sampling, 275–276
with line transect detectability function, 249
in multiple regression models, 120–121
multiplicity estimators and, 203
in multistage designs, 171
in network sampling, 201–202
nonsampling errors and double sampling and,

190
and observations from plots, 305–306,

307–308
poststratification and, 148
probability density function of an observed

distance and, 253
in random sampling, 20–21
in random sampling without replacement, 270
in random sampling with replacement, 19–20,

126
in random sampling, with replacement, of

detectability units, 269
in ratio estimation with double sampling, 184
ratio estimators of, 94, 95
represented in graphs, 211
responders and nonresponders in, 191–192
in response modeling and nonresponse

adjustments, 193
sample sizes and, 53
sampling distributions and, 43–44
sampling of, 1–2
sampling units in, 4, 5–6
sampling variance and cost and, 163–166
sampling very small, 17–19
in selecting transects with probability

proportional to length, 245
selection with probabilities proportional to size

from, 161
in simple capture–recapture surveys,

264–265, 266–267
in simple random sampling, 11–13

single transects and, 249
in small population example, 73, 332–333,

365–366
in smooth-by-eye method example, 233–234
in snowball sampling, 211
spatial patterns of, 305
in spatial prediction, 285, 292, 302
in stochastic simulation example, 28
stratification in network sampling and, 208
stratification principle and, 146
stratified, 149, 151–155
in stratified adaptive cluster sampling,

353–355
stratified adaptive cluster sampling estimators

and, 358, 359
in stratified random sampling allocation, 147
stratified sampling of, 141–142
survey callbacks and, 192–193
in survey data with auxiliary information

example, 96
in survey sampling strategy simulations,

32–35
in systematic/strip adaptive cluster sampling,

341, 342
systematic/strip adaptive cluster sampling

estimators and, 343
in systematic transect selection, 244
transects through, 229, 230
units and y-values of, 105
in wolverine abundance example, 277

Population characteristic, 3
Population density

in line-intercept sampling, 277
in narrow-strip method example, 232
and observations from plots, 306
in parametric methods, 236
point transects/variable circular plots and,

259–260
probability density function of an observed

distance and, 254
Population density estimators, 229–230

in Fourier series method, 239
in kernel method, 238, 246
with line transects, 235, 236
in random sampling of line transects, 241–244

Population estimation equation, 77–78
Population mean (μ)

in adaptive cluster sampling designs, 321
in adaptive cluster sampling estimation, 323
adaptive cluster sampling estimators and, 334
clumped population example and, 360
in cluster and systematic sampling, 159, 160
confidence intervals for, 39–40
defined, 57
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Population mean (μ) (Continued )
in design-based vs. model-based approach, 132
in double sampling, 192
in double sampling for stratification, 187
estimating, 13–15, 57–66
in estimating detectability with simple random

sampling, 220
estimating in network sampling, 202–207
estimating with stratified sampling, 144–145
estimators based on initial sample mean and,

343
estimators based on partial inclusion

probabilities and, 346
estimators based on partial selection

probabilities and, 345
for fir seedling example, 34–35
Hansen–Hurwitz estimator and, 68
in household expenditure models, 24
linear regression estimator for, 116
minimal sufficient statistic and, 128
model-based approaches to estimating, 23
in multiple regression models, 120–121, 123
multiplicity estimator and, 207
in multistage designs, 171
in network sampling, 201–202
in random sampling, 21
in ratio estimation models, 107–108
ratio estimators of, 94
in regression estimation with unequal

probability designs, 118
in regression models, 119
sample mean vs., 192
sample size for relative precision and, 55–56
sample sizes for estimating, 54
sampling variance and cost and, 165
with single systematic samples, 162
in small population example, 333
in stochastic simulation example, 28, 29
stratification principle and, 146
stratified adaptive cluster sampling estimators

and, 356–357, 358, 359
in stratified sampling, 141
in survey data with auxiliary information

example, 97
systematic/strip adaptive cluster sampling

estimators and, 343
in two-stage designs, 174, 175
in unequal probability designs, 104

Population models
in model-based approach to sampling, 22–23
for stratified populations, 149

Population proportion, estimating, 58, 59–60,
60–61

Population ratio (R), 94

with cluster and systematic sampling, 160
estimating, 57, 62
ratio estimator and, 95, 99

Population size, finite-population correction
factor and, 15

Population total (τ )
in adaptive cluster sampling designs, 321
in aerial moose survey, 186
in bird banding example, 270
in capture–recapture sampling with multiple

releases, 272
in cluster and systematic sampling, 159
confidence intervals for, 39–40
defined, 57
in design-based vs. model-based approach, 132
with detectability estimator, 226
in draw-by-draw example, 325
estimating, 16–17, 57–66
in estimating detectability, 217, 218, 219, 221
estimating in network sampling, 202–207
estimating with narrow-strip method, 230–231
estimating with stratified sampling, 142–143,

145
in fish number estimation example, 272
generalized unequal-probability estimator and,

73
Hansen–Hurwitz estimator and, 68, 76
Horvitz–Thompson estimator and, 69–70, 162
linear regression estimator for, 116, 117
in line-intercept sampling, 276, 277, 280
with line transect detectability function, 249
minimal sufficient statistic and, 128
in multiple regression models, 120–121, 122
in multistage designs, 171, 179
predictive sufficiency and, 129
in random sampling without replacement, 270
in ratio estimation models, 105–108
in ratio estimation with double sampling, 185
ratio estimator of, 95, 175–176
in response modeling and nonresponse

adjustments, 194
sample size for relative precision and, 55–56
sample sizes for estimating, 54–55
sampling variance and cost and, 164, 165
in sampling very small populations, 17–18
for sea otter survey example, 167
in simple capture–recapture surveys,

264–265, 266, 268, 269, 270
with single systematic samples, 162
in small population example, 333
in small population example illustrating bias,

98
stratification in network sampling and,

208–209
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in stratified adaptive cluster sampling,
353–354

with stratified populations, 149
in stratified sampling, 141
systematic/strip adaptive cluster sampling

estimators and, 343
in two-stage design, 173, 176–177
in unequal probability designs, 102
in unequal probability sampling, 224–225

Population units, 2–3. See also Primary units;
Secondary units; Units

in adaptive sampling designs, 6–7
selecting cluster samples for, 166, 167
in simple random sampling, 11–13

Population variables, in population models, 23
Population variance (σ 2). See also

Finite-population variance (σ 2)

design-unbiased estimator and, 17
in double sampling, 192–193
in double sampling for stratification, 187
in estimating detectability with simple random

sampling, 219–220
in estimating subpopulation mean, 63–64
in ratio estimation with double sampling, 185
sample sizes and, 54–55
in small population example, 333
in two-stage design, 173–174

Poststratification, 148
in double sampling for stratification, 186–187

Poststratification estimator, 151
Poststratification variance, 148

derivations for, 150–151
Precision, of adaptive sampling designs, 316. See

also Accuracy; Relative precision
Prediction approach

in ratio estimation models, 105
spatial designs and, 301, 302–303

Prediction equations
semivariogram and, 290–291
for shrimp survey example, 288–289, 291
in spatial prediction, 285

Prediction mean square error. See Mean square
prediction error

Predictive sufficiency, for model-based predictive
sampling methods, 128–129

Predictors
in design-based vs. model-based approach,

132–134
in household expenditure models, 24–26
likelihood functions and, 136
in ratio estimation models, 106–107
in regression estimation models, 115
in regression models, 120
for spatial prediction derivation, 293

with stratified populations, 149
Primary units

for adaptive cluster strategy calculations, 347
for bald eagle nests survey, 163
in adaptive sampling design, 317
basic systematic and clustering principle and,

162
in cluster and systematic sampling, 157, 158,

159
in conventional systematic vs. cluster

sampling, 349
cost and sample size and,178
in derivations for estimators, 350
estimators based on partial inclusion

probabilities and, 346–347
estimators based on partial selection

probabilities and, 344–345
in multistage designs, 171, 172, 179
in multistage design with replacement, 177
probability-proportional-to-size selection of,

176–177
sampling variance and cost and, 163–166
selected by simple random sampling, 159–160
selected with probabilities proportional to size,

161–162
selecting cluster samples for, 166, 167, 168
in single systematic samples, 162–163
in systematic initial sample example, 348
in systematic/strip adaptive cluster sampling,

339–341, 342
in two-stage design, 173, 174–175, 179–180,

181
Primary unit totals, in two-stage design, 174
Principle of stratification, 141. See also

Stratification principle
Prior information, in stratified adaptive cluster

sampling, 353
Probability. See also Initial intersection

probabilities; Unequal detection
probabilities; Unequal probability entries

in adaptive and nonadaptive sampling design,
6–7

in adaptive cluster sampling, 319, 334
in adaptive cluster sampling designs, 322–323
adaptive cluster sampling estimator and, 323
in aerial moose survey, 186
in capture–recapture sampling, 263–264,

266–267
in capture–recapture sampling models, 273
in capture–recapture sampling with multiple

releases, 272
confidence intervals and, 39, 44–45
constant detectability and, 215, 216
in design-based approach to sampling, 22
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Probability (Continued )
in design-based vs. model-based approach,

132
detectability and, 215, 217, 218, 220–221
in detectability estimation with

capture–recapture methods, 271
detectability estimator and, 225
detectability functions and, 247–249, 258
in draw-by-draw example, 325
finite population central limit theorem and, 41
Hansen–Hurwitz estimator and, 67–68, 68–69
Hayne estimator and, 256–257
Horvitz–Thompson estimator and, 69–70, 71,

204
in independent sample selection, 75–76
in initial intersection probabilities example,

327
in large mammals example, 104–105
likelihood functions and, 135–136
in line-intercept sampling, 275–276, 277, 280
multiplicity estimator and, 207–208
in multistage design with replacement, 177
in network sampling, 201–202, 202–203
nonsampling errors and double sampling and,

191
point transects/variable circular plots and,

259
in population-proportion estimation, 59–60,

60–61, 61–62
in probability-proportional-to-size sampling,

127
in random sampling, 20–21
in random sampling of line transects, 240
in random sampling without replacement, 270
in random sampling with replacement, 126
in random sampling, with replacement, of

detectability units, 269
in response modeling and nonresponse

adjustments, 193, 194
sample sizes and, 53
in sampling design, 2, 3
in sampling very small populations, 18
in selecting primary units, 161–162
in simple random sampling, 11
in small population example, 73–74, 332,

366
in small population example illustrating bias,

98–99
smooth-by-eye method and, 233
stratification in network sampling and, 209
stratified adaptive cluster sampling estimators

and, 357, 359
in systematic/strip adaptive cluster sampling,

342, 343–344, 344–345, 345–347

transects and, 229, 230, 255
in unequal probability sampling, 67
in without-replacement designs, 78

Probability density
in nonparametric methods, 237–239
in parametric methods, 235
with random transects, 250

Probability density functions (PDFs)
in nonparametric methods, 237, 238, 239
of an observed distance, 253–255
in parametric methods, 235
point transects/variable circular plots and,

259–260
in selecting transects with probability

proportional to length, 245
Probability design, 3, 4

in stratified sampling, 141
Probability distribution

in household expenditure models, 24
in model-based approach to sampling, 22–23

Probability function, in fish number estimation
example, 272

Probability models, 5
Probability proportional to length, line transect

selection with, 244–245
Probability-proportional-to-size (PPS) estimator,

69, 71. See also Hansen–Hurwitz estimator
for bald eagle nests survey, 163

Probability-proportional-to-size sampling
estimation in, 127–128
for two-stage designs, 181

Probability-proportional-to-size unit selection
for multistage design with replacement, 177
for two-stage design, 176–177

Probability-proportional-to-size with replacement
estimation in, 127–128
unbiased estimator for, 161

Probability sampling
average detectability via, 249–250
historical development of, 8

Probable error, bounds on, 39
Proportional allocation

in capture–recapture sampling, 263
in double sampling for stratification, 186–187
in simple capture–recapture surveys,

264–265, 268
in stratified random sampling, 147
poststratification and, 148

Proportions, 57–66
confidence intervals for, 58–59
estimating, 57, 58–59, 59–60, 60–62
estimating subpopulation, 57, 64
multinomial, 61–62
sample size for estimating, 60–62
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QQ plots, 48, 49–50
Quality control, sampling errors and, 5

R. See R language
Radial distance, in animal surveys, 256–257
Radially symmetric detectability functions,

259–260
Radio collars, estimating detectability via, 217
Raj estimator, in unequal probability sampling

without replacement, 125
Random digits, in sampling very small

populations, 17
Random distribution, spatial patterns and, 305
Randomly selected transects, 250–251
Randomness

in design-based approach to sampling, 22
probability density function of an observed

distance and, 253
in wolverine abundance example, 277–278

Random number generator, 11, 13, 14–15
basic, on computers, 13

Random numbers
table of, 11–13, 14–15
in unequal probability sampling, 67

Random positions/directions, line-intercept
sampling with lines of, 280–281

Random sampling. See also Random sampling
without replacement; Random sampling
with replacement; Simple random sampling;
Stratified random sampling

adaptive cluster sampling and, 319, 320
clumped population example and, 360
in conventional vs. adaptive stratified

sampling, 362
in estimating detectability, 217, 219–220,

220–221
finite population central limit theorem and,

41–43
kernel method and, 246
line-intercept sampling as, 275, 276
of line transects, 240–244
point transects/variable circular plots and, 259
predictive sufficiency and, 129
in ratio model design, 109, 110
in simple capture–recapture sampling, 267,

268
in spatial design for prediction of mean of

region, 302
stratified adaptive cluster sampling estimators

and, 356–357, 357–358
systematic selection vs., 244

Random sampling design, 2, 3
Random sampling without replacement, 11. See

also Simple random sampling

in adaptive cluster sampling designs, 322–323
adaptive cluster sampling estimators and, 334
in draw-by-draw intersection estimation, 324
estimating detectability with, 219
in estimation using initial intersection

probabilities, 325, 326
in estimator improvement, 331
estimators based on initial sample mean and,

343–344
in improving adaptive cluster sampling

estimation, 336
multiplicity estimator and, 207–208
in network sampling, 202
Rao–Blackwell estimators and, 335, 336
in ratio estimation with double sampling, 184
in simple capture–recapture sampling, 268,

270
in stratified adaptive cluster sampling, 354
in stratified sampling, 141–142, 143
in systematic/strip adaptive cluster sampling,

341
units in, 78

Random sampling with replacement, 19–20. See
also Simple random sampling with
replacement

in adaptive cluster sampling designs, 323
auxiliary information in, 93
with cluster and systematic sampling, 161
detectability and, 222
in detectability estimation with

capture–recapture methods, 271
in draw-by-draw intersection estimation, 324
estimation in, 126–127
in estimation using initial intersection

probabilities, 325–326
in estimator improvement, 331
examples of, 20, 126–127
Hansen–Hurwitz estimator and, 67–69
R computer code usable for, 78–88
in simple capture–recapture sampling, 268,

269–270
Random site selection, detectability and, 258
Random variables, 17

adaptive cluster sampling estimators and, 334
clumped population example and, 360
covariance of, 99
in derivations for estimators, 350
in design-based approach to sampling, 22
in design-based vs. model-based approach, 133
estimated detectability and, 224, 252
in estimating detectability with random

sampling with replacement, 222
in estimating subpopulation means, totals, or

proportions, 63
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Random variables (Continued )
Horvitz–Thompson estimator and, 76–77
in household expenditure models, 23–24,

24–25
independent and identically distributed, 41
in model-based approach to sampling, 22–23
multiplicity estimator and, 207
and observations from plots, 306
in population models, 23
in random sampling, 21
in random sampling of line transects, 241
ratio estimation and, 62, 105–108
in regression models, 119–120
in selecting transects with probability

proportional to length, 245
semivariogram and, 290
in spatial prediction derivation, 293
stratification in network sampling and, 209

Random walks, 210. See also Link-tracing
designs

Rao–Blackwell improved estimators, 330–331,
333, 335–336, 364–367

computation of, 317
Rao–Blackwell method

improving estimators via, 330–331, 336,
364–365

in probability-proportional-to-size sampling,
127

in random sampling with replacement, 126
in small population example, 365–367
in unequal probability sampling without

replacement, 126
minimal sufficient statistic and, 128

Rao–Blackwell theorem, 335
adaptive sampling design and, 317

Ratio estimate, 94
Ratio estimation, xvii, xix, 93

allocation in double sampling with, 186, 189
double sampling in, 183, 184–186, 188, 189
in estimating detectability, 217–218
in large mammals example, 104–105
model-based approach and, 131
models in, 105–109, 109–110
in network sampling, 202
optimum allocation for, 189
in response modeling and nonresponse

adjustments, 194–195
with unequal probability designs, 102–105

Ratio estimation models, example with survey
change, 108

Ratio estimator(s), 62, 93–94, 94–97
approximate mean square error of, 99–100
for bald eagle nests survey, 163
with cluster and systematic sampling, 160

derivations and approximations for, 99–101
in double sampling, 188
finite-population central limit theorem for,

101–102
in line-intercept sampling, 277
model-unbiased and design-unbiased, 105
of population mean, 94
in random sampling of line transects, 243–244
R computer code usable for, 110–112
regression estimator vs., 115
for sea otter survey example, 167, 169
in simple capture–recapture sampling,

267–270
in small population example illustrating bias,

97–99
Taylor series expansion to approximate, 101
in two-stage designs, 175–176, 181
types of, 109

Ratio models
design implications of, 109–110
multiple regression models vs., 120

Ratios, estimating, 57, 62
Ratio variance estimator, for simple

capture–recapture sampling, 267–270
read.csv command, 26
read.table command, 26
Realizations, of point processes, 305
Recaptures, 263
Rectangles

in line-intercept sampling, 277
with random transects, 250, 251
as sampling units, 258
in selecting transects with probability

proportional to length, 244
Rectangular grids, in spatial design for prediction

of mean of region, 302
Rectangular plot, 309–310
Refusers, 191–192
Regions

for adaptive cluster strategy calculations, 347
clumped population example and, 360
in draw-by-draw example, 324–325
observations from plots in, 305–307
spatial prediction over, 285, 291–292,

302–303
Regression estimation, xvii, xix, xx, 93, 115–124

in crop yield example, 117–118
design implications of models with, 123–124
double sampling in, 183
linear, 115, 116–118
model-based approach and, 131
for multiple regression models, 115, 120–123
for regression models, 119–120
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in response modeling and nonresponse
adjustments, 194–195

with unequal probability designs, 115,
118–119, 122

Regression estimators
balanced samples and, 123–124
ratio estimators vs., 115

Regression methods, estimating detectability via,
217, 218

Regression models, 5–6, 119–120
design implications of, 123–124
multiple, 120–123

Regression theory, in ratio model design, 109
Regression-through-the-origin estimator, 109
Regression-through-the-origin model, 93–94
Relationships, in snowball sampling, 211
Relative efficiency, sampling variance and cost

and, 164, 165
Relative precision, sample size for, 55–56
Representative models, 110
Representative samples, 3
Responders (respondents), 191–192

in response modeling and nonresponse
adjustments, 193

Response homogeneity group model, in response
modeling and nonresponse adjustments, 194

Response modeling, via double sampling,
193–195

Response probability, in response modeling and
nonresponse adjustments, 193–194

Response propensity score, in response modeling
and nonresponse adjustments, 193

Restricted adaptive cluster sampling, 317
R functions

for sampling strategy comparison, 86–88
for sampling strategy simulation, 82–84

R language. See also Computers
advantages and applications of, xv
data entry in, 26–27
sample estimates in, 27–28
stochastic simulation with, 28–31, 32–35

Robust approach, in sampling models, 6
Robustness, in ratio model design, 110
Rock-sectioning example, 60
Round doughnut plot, 309, 310
Round plots, 309, 310

covariance density function with, 306
R Project Web page, 26
R statistical system, random selection in, 13

Sample covariances, in shrimp survey example,
288

Sample edge units, in estimator improvement,
331

Sample estimates, in R language, 27–28
Sample estimation function, 78
Sample function, in stochastic simulation

example, 28
Sample independence, in capture–recapture

sampling with multiple releases, 272
Sample lines

in line-intercept sampling, 275–276, 277
in random positions/directions, 280–281
in wolverine abundance example, 277–278

Sample mean(s)
in adaptive cluster sampling, 320
as adaptive cluster sampling estimator, 323
with black cherry tree example, 110–112
in city disease example, 206
with cluster and systematic sampling, 159–160
in conventional vs. adaptive stratified

sampling, 362
in crop yield example, 117
in double sampling for stratification, 187
in draw-by-draw example, 325
in estimating detectability with random

sampling with replacement, 222
estimators based on initial sample mean and,

343
for fir seedling example, 33–34
in household expenditure models, 24–25
in improving adaptive cluster sampling

estimation, 336
multiplicity estimators and, 203
in network sampling, 201–202
in population mean estimation, 13
population mean vs., 192
in population models, 23
in population total estimation, 16–17
in R language, 27–28
in random sampling, 20–21
in random sampling with replacement, 19
in random sampling, with replacement, of

detectability units, 269
ratio estimator vs., 95
in ratio model design, 110
in response modeling and nonresponse

adjustments, 193
sample ratio and, 99
in sampling very small populations, 17–18
in selecting transects with probability

proportional to length, 245
in small population example, 333, 366–367
in stochastic simulation example, 28, 29–30
stratification in network sampling and, 208,

209
stratification principle and, 146
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Sample mean(s) (Continued )
stratified adaptive cluster sampling estimators

and, 358
in survey data with auxiliary information

example, 96
systematic/strip adaptive cluster sampling

estimators and, 343
in two-stage design, 174, 175, 176, 181

Sample points, in spatial design for prediction of
mean of region, 302

Sample proportion, 58
Sample ratio (r), 94

in aerial moose survey, 185
in ratio estimation with double sampling, 184
ratio estimator and, 95, 99, 100–101

Samples
in adaptive cluster sampling designs, 321
in simple random sampling, 11–13, 14–15
in small population example, 365–367
in small population example illustrating bias,

97–99
in stratified adaptive cluster sampling, 353
units in, 331

Sample selection, xv, 1
Sample size, 3, 53–56

adaptive cluster sampling and, 319, 328
in adaptive cluster sampling vs. conventional

sampling, 329–330
in adaptive sampling designs, 315, 316–317,

318
central limit theorem and, 102
clumped population example and, 361
in conventional systematic vs. cluster

sampling, 349–350
in conventional vs. adaptive stratified

sampling, 362–363, 364, 365
determining, 1
in estimating detectability, 217–218
for estimating several proportions

simultaneously, 60–62
finite-population correction factor and, 15
in multistage designs, 177–178
optimum allocation and, 149–150
in population mean estimation, 54
in population-proportion estimation, 59–60
in population total estimation, 54–55
for relative precision, 55–56
in response modeling and nonresponse

adjustments, 194
sampling variance and cost and, 164
in small population example, 366
in stratified adaptive cluster sampling, 356
in stratified random sampling allocation,

146–147

in stratified sampling, 141–142
in systematic/strip adaptive cluster sampling,

343
unequal stratum sizes example and, 361

Sample size formulas, 60
Sample standard deviation, in population models,

23
Sample variance (s2), 13–15

in city disease example, 206
with cluster and systematic sampling, 159–160
in double sampling, 193
in estimating detectability, 217
in estimating subpopulation mean, 64
in estimating subpopulation total, 65
in initial strip plots example, 348
in line-intercept sampling, 276
in multistage design with replacement, 177
of a population proportion, 58
in population total estimation, 16–17
in ratio estimation with double sampling, 185
in response modeling and nonresponse

adjustments, 194
in R language, 27–28
in sampling very small populations, 17–18
stratification in network sampling and, 208
stratified adaptive cluster sampling estimators

and, 358
with stratified populations, 149
in two-stage design, 174, 175, 177
as unbiased estimator, 76

Sampling, 1–2. See also Adaptive sampling
entries; Double sampling; Spatial sampling;
Stratified sampling; Systematic sampling

basic ideas of, 2–4
chain-referred, 210, 211
cluster, 157–159, 162, 163–166
defined, 1
derivations for, 20–22
design-based and model-based approaches to,

131–132
detectability and, 215–227
estimator variance and, 222–223
experimental design vs., 1–2
finite population central limit theorem and,

41–43
history of, xvii, 7–8
likelihood function in, 135–137
line-intercept, 275–282
models in, 5–6
for multistage designs, 171–172
in ratio model design, 110
regression estimation and, 115–124
with replacement, 19–20
single systematic, 162–163
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in small population example, 332–333
software for, xv
spatial designs for, 301–303
for spatial prediction, 285–299
sufficient statistic in, 125–129
theory of, 8
this book and, xv–xvi
with transects, 229–230
unbiasedness and, 222
unequal probability, 67–89, 224–225
of very small populations, 17–19

Sampling design(s), xv. See also Adaptive
cluster sampling designs; Adaptive sampling
designs

auxiliary information in, 93
defined, 2, 321
for estimating detectability with simple

random sampling, 219
historical, 7–8
network, 201–213
nonadaptive, 6–7
nonsequential statistical methods in, 316
ratio estimators and, 93–94
sampling distributions and, 43–44
selecting line transects for, 240
selecting population units in, 2–3
sequential statistical methods in, 316
for unequal probability sampling, 224

Sampling design methods, xix
Sampling distributions

confidence intervals and, 43–44
for daily precipitation example, 48–50
with small n and N , 45–46

Sampling errors, 5
nonsampling errors vs., 191

Sampling strategies, xv, 3
comparing, 84–88
sampling distributions and, 43–44, 45–46
simulation of survey, 32–35

Sampling theory, xx
adaptive sampling designs and, 315, 318
basic one-semester course in, xx
this book and, xx

Sampling units, 4. See also Units
in sampling models, 5–6

Sampling variability, in simple capture–recapture
sampling, 267

Satisfying a condition
in adaptive cluster sampling designs, 322, 342
in stratified adaptive cluster sampling, 354,

355–356
Satterthwaite approximation, for stratified

sampling confidence intervals, 145

Scale invariance, of linear prediction method,
289

Sea otter survey example, R computer code
usable for, 167–169

Search engines, link-tracing designs in, 210
Secondary units

for bald eagle nests survey, 163
basic systematic and clustering principle and,

162
in cluster and systematic sampling, 157, 158,

159, 160
cost and sample size and,178
in multistage designs, 171, 172, 179, 182
probability-proportional-to-size selection of,

176–177
sampling variance and cost and, 163–166
selected with probabilities proportional to size,

161
selecting cluster samples for, 166, 167
for single systematic samples, 162–163
in systematic/strip adaptive cluster sampling,

339–341
in two-stage designs, 173, 174, 175–176

Second-order stationary process
in linear prediction, 288
and observations from plots, 306
spatial covariance function and, 286
variogram and, 289

Segments, as sampling units, 4
Selection bias, 191–192
Selection probabilities

for draw-by-draw intersection estimation,
323–324

estimators based on partial selection
probabilities and, 344

Hansen–Hurwitz estimator and, 67–68,
68–69

Horvitz–Thompson estimator for, 161
in line-intercept sampling, 280
multiplicity estimator and, 207, 208
in network sampling, 201–202
in response modeling and nonresponse

adjustments, 193
in small population example, 73
in spatial design for prediction of mean of

region, 303
in wolverine abundance example, 278–279

Selection procedure
for adaptive cluster strategy calculations, 347
in adaptive sampling designs, 315
in estimator improvement, 331
for line transects, 240
for minimizing mean square error, 123–124
in wolverine abundance example, 277–278
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Selection units
in city disease example, 205
Horvitz–Thompson estimator and, 204, 205
multiplicity estimator and, 202–204, 207–208
in network sampling, 201, 202
stratification in network sampling and,

208–209
Self-selection, of volunteers, 191–192
Semivariance, in spacial prediction over a region,

292
Semivariance function (γ ), 290

with shrimp survey example, 291
Semivariogram, 289–290, 291

with shrimp survey example, 291
Sen–Yates–Grundy estimator, 72
Sequence labels, in adaptive cluster sampling

designs, 321
Sequences, of identically distributed random

variables, 41
Sequences of populations, finite population

central limit theorem and, 42–43
Sequential allocation, 6

in sampling design, 316–317
Sequential analysis, 6
Sequential statistical methods, in sampling

design, 316
Sequential stopping rules, 6
Shapes, in spatial design for prediction of mean

of region, 302, 303. See also Plot shapes;
Strata shapes; Unit shapes

Shoulder, of a detectability function, 236
Shrimp survey example, 288–289

R code usable for, 296–299
semivariogram and, 291

Sightability, 151
Silverman’s rule, 238
Simple capture–recapture models, 266–267
Simple capture–recapture sampling, sampling

design in ratio variance estimator for,
267–270

Simple capture–recapture surveys, 264
Simple linear regression models

minimizing mean square error under, 123–124
multiple regression models vs., 120

Simple random sample, for estimating
subpopulation total, 65

Simple random sampling, xvii, 3, 4, 11–37
adaptive cluster sampling and, 319, 327–328,

328–330
in adaptive cluster sampling designs, 322–323
in adaptive sampling design, 316–317
approximate mean square error in, 99–100
with black cherry tree example, 110–112
in city disease example, 205

cluster and systematic sampling and, 157
computing for, 26–35
confidence interval under, 39–40
cost and sample size and, 177–178
defined, 11
derivations for, 20–22
in derivations for estimators, 351
double sampling and, 183–184, 188
in double sampling for stratification, 187
in draw-by-draw example, 324
estimating detectability with, 219–220,

220–221
estimating population mean via, 13–15
estimating population proportions via, 57
estimating population total via, 16–17
in estimating subpopulation mean, 63–64
in estimating subpopulation means, totals, or

proportions, 62–63
estimator variance and, 222–223
expected value of sample ratio under, 100–101
for fir seedling example, 32–35
historical development of, 8
in improving adaptive cluster sampling

estimation, 336
for initial sample mean, 323
model-based approach to, 22–26
multiplicity estimators and, 203
in multistage designs, 173–176
in network sampling, 201, 202
poststratification variance and, 150–151
poststratification vs., 148
primary units selected by, 159–160
ratio estimation and, 62
ratio estimators and, 93–94, 181
in ratio model design, 110
R computer code usable for stratified, 151–155
in regression models, 119
sampling variance and cost and, 163–166
for sea otter survey example, 167
selecting samples in, 11–13, 14–15
in simple capture–recapture sampling, 267,

268
in small population example illustrating bias,

97–99
in snowball sampling, 212
stratification and, 189–190
stratification principle and, 146
in stratified adaptive cluster sampling, 354
in systematic/strip adaptive cluster sampling,

341
two-stage sampling and, 171–172, 181
unbiased estimator and, 179–180
unbiasedness and, 222
underlying ideas of, 17–19
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of very small populations, 17–19
Simple random sampling with replacement,

19–20, 126–127
with cluster and systematic sampling, 161

Simulation(s)
computer, xv
with R language, 28–31, 32–35
of sampling distributions, 43–44, 45–46,

48–50
stratified sampling code and data for, 151–155
of survey sampling strategies, 32–35

Single recapture, capture–recapture with,
264–266

Single recapture example, 265–266
Single-stage sampling, multistage designs vs.,

171
Single systematic sample, 162–163

for bald eagle nests survey, 163
Single transects, detection probability with, 249
Sites

in spacial prediction over a region, 292
in spatial design for local prediction, 302

Size. See also Sample size
detectability dependent on, 255
in sampling variance and cost, 166
in selecting primary units, 161–162

Size-based line transect studies, 255
Small population example, 73–75, 331,

332–333, 365–367. See also Very small
population example

Hansen–Hurwitz estimator in, 74
Horvitz–Thompson estimator in, 74–75
illustrating bias, 97–99

Small-sample coverage probabilities, estimators
based on partial inclusion probabilities and,
347

Smooth-by-eye method, 233–234
Smooth-by-eye method example, 233–234
Smoothing techniques, in nonparametric

methods, 236, 237
Snowball designs, 211
Snowball sampling, 210. See also Link-tracing

designs
described, 211
R code for, 212–213

Software, for statistical programming and
sampling, xv. See also Computers; S-PLUS
statistical system; Spreadsheet programs

Spatial arrangements
in cluster and systematic sampling, 157–159
in link-tracing designs, 211–212

Spatial covariance function, 286
Spatial covariance models, in spatial design for

prediction of mean of region, 302–303

Spatial designs, 301–303
adaptive sampling and, 318
applications of, 301
for local prediction, 302
for prediction of mean of region, 302–303
systematic/strip adaptive cluster sampling

estimators and, 343
Spatial log-Gaussian process, R code usable for,

297–299
Spatially clumped population, 354, 355, 356,

360–361
Spatial prediction, 285–299

applications of, 285–286
derivations for, 292–296
linear prediction and, 286–289
R code usable for, 296–299
over a region, 285, 291–292, 302–303
spatial covariance function in, 286
variogram in, 285, 289–291

Spatial prediction problem, 285–286
kriging and, 296

Spatial sampling, 6
in spacial prediction over a region, 291–292

S-PLUS statistical system, random selection in,
13

Spreadsheet programs, R language and, 26
Square clusters, sampling variance and cost and,

166
Square doughnut plot, 309, 310
Square grids

in spatial design for local prediction, 302
in spatial design for prediction of mean of

region, 302
Square plots, 309, 310

covariance density function with, 306
in systematic/strip adaptive cluster sampling,

339–341
Square study region, for adaptive cluster strategy

calculations, 347
Standard deviation

covariance of random variables and, 99
in linear models, 109
in population models, 23
in stochastic simulation example, 30, 31
in stratified random sampling allocation, 147
window width and, 238

Standard error, 15. See also Mean square error
(mse, MSE)

in brant nests survey example, 217
in city disease example, 207
in estimating detectability with simple random

sampling, 220
Hansen–Hurwitz estimator and, 69
Horvitz–Thompson estimator and, 72
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Standard error (Continued )
in population total estimation, 16–17
in R language, 28
in single recapture example, 266
in trapped mice survey example, 271
in two-stage design, 175

Standardized ratio estimators, central limit
theorem and, 101–102

Standard normal distribution, Hansen–Hurwitz
estimator and, 68

Starting units, 162
Statistical methods, in sampling design, 316
Statistical models, 5

for estimating population mean, 23
Statistical programming software, xv
Statistical sampling theory, xx
Statistics, Rao–Blackwell estimators and, 335
Stochastic network model, 212
Stochastic point processes, spatial patterns and,

305, 307
Stochastic-population approach, to random

sampling, 22–23. See also Model-based
approach

Stochastic processes, in linear prediction,
287–288

Stochastic relationships, between variable of
interest and auxiliary variables, 115

Stochastic simulation, with R language, 28–31,
32–35

Strata, 6, 141
clumped population example and, 360–361
in conventional vs. adaptive stratified

sampling, 362, 363–364, 365
with single systematic samples, 162
in small population example, 365–367
in stratified adaptive cluster sampling,

353–355
stratified adaptive cluster sampling estimators

and, 357, 359
unequal stratum sizes example and, 361–362

Strata shapes, in spatial design for prediction of
mean of region, 302, 303

Stratification
in adaptive sampling designs, 316
callbacks and, 192–193
double sampling for, 183–184, 186–187
expected value and variance and, 189–190
in network sampling, 208–210
in spatial design for prediction of mean of

region, 302, 303
Stratification principle, 146. See also Principle of

stratification
Stratified adaptive cluster sampling, 353–368

applications of, 353

conventional stratified sampling vs., 362–354,
365

in estimator improvement, 364–367
estimators for, 353, 356–362
example data for, 367, 368
in small population example, 365–367

Stratified adaptive cluster sampling designs,
353–356

Stratified Bernoulli sampling, in response
modeling and nonresponse adjustments, 194

Stratified designs
estimating population mean for, 144
estimating population total for, 142–143

Stratified multiplicity estimator, 208
Stratified population models, 149
Stratified random sampling, 141–142
Stratified random sampling

allocation in, 146–148
estimating population mean with, 144–145
estimating population total with, 143
in network sampling, 201
with single systematic samples, 162
in stratified adaptive cluster sampling, 354,

356
stratified adaptive cluster sampling estimators

and, 356–357, 358
Stratified sample mean, 144, 356–357, 358
Stratified sampling, xvii, 141–156. See also

Stratified random sampling
allocation in random, 146–148
confidence intervals in, 145–146
conventional vs. adaptive, 362–354, 365
derivations for, 149–151
estimating population mean with, 144–145
estimating population total with, 142–143
historical development of, 8
model for stratified population in, 149
poststratification vs., 148
R computer code usable for, 151–155
stratification principle and, 146

Stratified sampling estimator, 149
Stratified variance estimator, 149
Stratum estimators, 142, 143, 144, 145
Stratum population mean, stratified adaptive

cluster sampling estimators and, 358
Stratum size, poststratification and, 148
Stratum variance population term, stratified

adaptive cluster sampling estimators and,
358

Stratum variances, 142–143
Strip adaptive cluster sampling, 339–352

applications of, 339
Strip plots, 234, 235
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in conventional systematic vs. cluster
sampling, 349

Strips, 342
for adaptive cluster strategy calculations, 348
in conventional systematic vs. cluster

sampling, 349
in systematic/strip adaptive cluster sampling,

339–341, 342
Student’s t distribution, 40, 45

with ratio estimator, 95
Subpopulation mean

estimating, 57, 63–64
subpopulation proportion vs., 64

Subpopulation proportions, estimating, 57, 64
Subpopulations, estimating means, totals, or

proportions of, 57, 62–65
Subpopulation total, estimating, 57, 64–65
Subsamples

in aerial moose survey, 185
cost and sample size and,178
in double sampling, 183–184
in estimating detectability, 217–218
in multistage designs, 179
nonresponders as, 192
nonsampling errors and double sampling and,

191
in ratio estimation with double sampling, 184,

185
in response modeling and nonresponse

adjustments, 194
in snowball sampling, 211

Sufficient statistic. See also Minimal sufficient
statistic (t)

defined, 128
in sampling, 125–129

Summary table, for fir seedling example, 33
Sum of squares, sampling variance and cost and,

164–165
Sum-of-squares equality, sampling variance and

cost and, 165
Survey cost, stratified random sampling and, 147
Survey data, estimating population total from,

16–17
Survey data with auxiliary information example,

96–97, 108
Survey design, finite population central limit

theorem and, 41
Surveys

adaptive sampling designs for, 315–318
of bald eagle nests, 163
callbacks in, 192–193
with capture–recapture sampling, 263, 264
of clustered populations, 6
constant detectability within, 215–217

cost and sample size in,178
detectability and, 215
detectability functions in, 257
double sampling for, 183
for estimating detectability with simple

random sampling, 219, 220
in estimating subpopulation means, totals, or

proportions, 62–63
estimating subpopulation total via, 65
flushing distance in, 256–257
information obtained from, 125
model-based approach and, 131–132
network sampling in, 201–202
nonresponse to, 5
nonsampling errors and double sampling in,

190–191
observational methods in, 307
point transects/variable circular plots in,

259–260
poststratification and, 148
quality control in, 5
radial distance in, 256–257
random sampling with replacement in, 19–20
R code usable for stratification in, 151–155
sample sizes for, 53
sampling strategy simulation for, 32–35
sampling via, 2
simple capture–recapture, 264
spatial covariance function for, 286
spatial patterns in, 305
spatial prediction for, 285
starting units in, 162
stratification principle and, 146
transects in, 229–230
unequal probability sampling and, 67
of wolverine abundance, 277–280

Survey sampling, in ratio estimation models, 105
Symmetric Gaussian distribution

in adaptive cluster sampling vs. conventional
sampling, 329

clumped population example and, 360
Symmetric kernel, 238
Symmetric links, link-tracing designs and, 210
Synthetic estimation, for estimating

subpopulation total, 65
Systematic adaptive cluster sampling, 339–352

adaptive cluster sampling strategies and,
347–349

applications of, 339
conventional systematic and cluster sampling

vs., 349–350
derivations for, 350–351
designs for, 341–343
estimators for, 343–347
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Systematic adaptive cluster sampling (Continued )
example data for, 351, 352

Systematic and clustering principle, 162
Systematic initial sample example, 348–349
Systematic initial samples, 342

in systematic/strip adaptive cluster sampling,
342

Systematic sampling, 157–159, 162–163,
163–166, 168–169

in adaptive sampling designs, 316
for bald eagle nests survey, 163
basic principle of, 162
historical development of, 8
R computer code usable for, 166–169
single, 162–163
in spatial design for prediction of mean of

region, 302–303
variance and cost in, 163–166

Systematic selection
of line transects, 244
in wolverine abundance example, 277–278

Taylor series approximations, 100–101
of Horvitz–Thompson estimator, 78
of ratio estimator approximate mean square

error, 99–100
Taylor series expansion, 100

in approximations, 100–101
in estimating detectability, 218, 224, 252
poststratification variance and, 151
in unequal probability designs, 102–103, 104

Taylor’s theorem, in estimating detectability with
simple random sampling, 221

Telephone surveys, frame errors in, 191
Test population mean, for fir seedling example,

34–35
Test populations, in survey sampling strategy

simulations, 32–35
Three-stage sampling, 171
Torus, as sampling unit, 258
Total cost, stratified random sampling and, 147
Transect length, probability density function of

an observed distance and, 254, 255
Transect line, for smooth-by-eye method, 233
Transects, 229–261. See also Line transects;

Point transects
in bird banding example, 270
described, 229–230
in ecological surveys, 307, 308
for line-intercept sampling, 275–276, 277
randomly selected, 250–251
in wolverine abundance example, 277–278

Trapped mice survey example, 265–266, 271

Trawl surveys, observational methods in, 307,
308, 310

Triangular grids
in spatial design for local prediction, 302
in spatial design for prediction of mean of

region, 302
20th century, sampling designs developed during,

8
Two-dimensional study region, spatial covariance

function for, 286
Two-phase sampling, 183–198. See also Double

sampling
defined, 183
stratification and, 189–190

Two-stage adaptive cluster sampling, 317
Two-stage design

in response modeling and nonresponse
adjustments, 193–195

probability-proportional-to-size primary-unit
selection for, 176–177

simple random sampling at each stage of,
173–175, 175–176

simple random sampling and,177–178
unbiased estimator for, 179–180

Two-stage sampling, 171
multistage designs vs., 171–172

Unaligned systematic sampling, in spatial design
for prediction of mean of region, 302

Unbiased estimates, 3–4
estimators based on initial sample mean and,

343–344
ratio estimator and, 99

Unbiased estimation
in adaptive sampling design, 317
in line-intercept sampling, 275, 276
using individual detectabilities, 255–256

Unbiased estimator(s), 17, 222, 223–224,
225–226

in adaptive cluster sampling, 320–321, 323
in adaptive sampling designs, 315–316
average detectability and, 250, 252
for bald eagle nests survey, 163
with cluster and systematic sampling,

159–160, 161
in comparing plot shapes and detectability

methods, 308
constant detectability and, 216
in conventional vs. adaptive stratified

sampling, 362
cost and sample size and,177–178
in derivations for estimators, 351
in design-based vs. model-based approach,

132–133, 134–135
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detectability estimator as, 225, 226
in double sampling, 188, 192–193
in double sampling for stratification, 187
for draw-by-draw intersection estimation,

323–324
in estimating detectability, 218, 219, 220–221,

252
in estimating detectability with random

sampling with replacement, 222
in estimating subpopulation mean, 63, 64
in estimation using initial intersection

probabilities, 325, 327
in estimator improvement, 331
Hansen–Hurwitz estimator as, 67–68, 76
Horvitz–Thompson estimator as, 69–70, 204,

205
in improving estimators, 364
kernel method and, 246–247
for linear models, 109
in line-intercept sampling, 276, 280–281
in multiple regression models, 122
multiplicity estimator as, 203–204, 207–208,

208–209
in multistage designs, 173–174
in multistage design with replacement, 177
in network sampling, 202
of population mean, 54
of population proportion variance, 58
probability density function of an observed

distance and, 254, 255
in random sampling, 21
in random sampling of line transects, 241–243
in random sampling with replacement, 19–20,

126–127
random site selection and, 258–259
Rao–Blackwell estimators and, 335
in ratio estimation models, 105, 106–107
ratio estimator vs., 94
regression estimators as, 115, 116
in regression models, 120
sample mean as, 13
sample variance as, 13–15
sampling variance and cost and, 164, 165
in simple capture–recapture surveys, 265
with single systematic samples, 162
in small population example illustrating bias,

99
in spatial design for prediction of mean of

region, 303
stratification and, 190
stratification principle and, 146
in stratified adaptive cluster sampling, 353
stratified adaptive cluster sampling estimators

and, 356–357, 358, 359–360

in stratified designs, 142, 143, 144
for subpopulation total, 64–65
in systematic transect selection, 244
in trapped mice survey example, 271
in two-stage design, 176–177, 179–180
in unequal probability designs, 102
in unequal probability sampling, 224–225
using individual detectabilities, 255–256

Unbiased expansion estimator, for sea otter
survey example, 167, 169

Unbiased functions
in linear prediction, 286–287
semivariogram and, 290–291

Unbiased linear functions, in linear prediction,
287

Unbiased linear predictors
in multiple regression models, 121, 122
in ratio estimation models, 106–107
in regression models, 120

Unbiased mean square error estimator, in ratio
estimation models, 107–108

Unbiasedness. See also Model unbiasedness
in adaptive cluster sampling, 320–321
of adaptive cluster sampling estimators, 334
in adaptive cluster sampling vs.simple random

sampling, 327–328
in adaptive sampling designs, 316
in estimation using individual detectabilities,

256
of estimators, 222, 223–224, 225–226
selecting line transects for, 240, 241–243
in selecting transects with probability

proportional to length, 245
in small population example, 333
in spatial prediction derivation, 293
stratified adaptive cluster sampling estimators

and, 359
of systematic/strip adaptive cluster sampling

estimators, 343–347
in systematic transect selection, 244

Unbiased poststratification estimator, 151
Unbiased predictors

in design-based vs. model-based approach,
132–133, 134–135

in household expenditure models, 24–26
in regression models, 120
with stratified populations, 149
in survey data with auxiliary information

example, 108
Unbiased samples, 17
Unbiased sampling distributions, 43
Unbiased variance estimator, Horvitz–Thompson

estimator and, 70, 76–77
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Uncertainty
in household expenditure models, 24
in independent, identically distributed models,

26
in sampling, 3

Unconditional expectation
average detectability and, 250
in double sampling, 188
in estimating subpopulation mean, 63
for multistage designs, 179
in selecting transects with probability

proportional to length, 245
in two-stage designs, 179
stratification and, 190

Unconditional inclusion probability, in unequal
probability sampling without replacement,
125

Unconditionally unbiased estimators,
design-based vs. model-based approach and,
133, 134–135

Unconditionally unbiased predictors,
design-based vs. model-based approach and,
133, 134–135

Unconditional mean square error, design-based
vs. model-based approach and, 134

Unconditional probability of selection, in
line-intercept sampling, 280

Unconditional variance
in estimating subpopulation mean, 63–64
estimator variance and, 222, 223
for multistage designs, 179
poststratification and, 148

Uncorrelated estimates, detectability and,
220–221

Unequal detection probabilities, unequal
probability sampling of groups with,
224–225

Unequal probability designs, 3, 4
ratio estimation with, 102–105
regression estimation with, 115, 118–119, 122

Unequal probability sampling, 67–89
computer code for, 78–88
derivations for, 75–78
generalized estimator for, 72–73, 102
of groups with unequal detection probabilities,

224–225
Hansen–Hurwitz estimator for, 67–69
Horvitz–Thompson estimator for, 69–72
for small populations, 73–75

Unequal probability sampling estimators, xx
Unequal probability sampling without

replacement, 125
Unequal stratum sizes example, 361–362
Uniform distribution, detectability and, 258

Uniform random numbers, table of, 11–13,
14–15

Unit labels, 2, 13
in sampling design, 316

Units, 341. See also Population units; Sampling
units

in adaptive cluster sampling, 319, 320,
321–322

in adaptive cluster sampling designs,
321–322, 322–323, 328

in adaptive cluster sampling vs.simple random
sampling, 328, 329, 330

for adaptive cluster strategy calculations,
347–348

in adaptive sampling designs, 315
in aerial moose survey, 186
auxiliary variables and, 93
for bald eagle nests survey, 163
basic systematic and clustering principle and,

162
in city disease example, 205
clumped population example and, 360
in crop yield example, 117
in design-based vs. model-based approach, 132
in detectability estimation with

capture–recapture methods, 271
detectability estimator and, 225, 226
in double sampling, 183–184
in double sampling for stratification, 186–187
in draw-by-draw example, 324–325
for draw-by-draw intersection estimation, 323,

324
estimated variance and, 223
for estimating detectability with simple

random sampling, 219
estimating proportions of, 57
in estimating subpopulation mean, 63
in estimation using initial intersection

probabilities, 325, 328
estimators based on partial inclusion

probabilities and, 346–347
estimators based on partial selection

probabilities and, 344, 345
in finite-population survey sampling, 125
with Hansen–Hurwitz estimator, 68, 76
with Horvitz–Thompson estimator, 69–70,

71–72, 76–77, 204
in improving adaptive cluster sampling

estimation, 336
in improving estimators, 331
in initial strip plots example, 348
in large mammals example, 68–69, 104
likelihood functions and, 135, 136–137
linear regression estimators and, 116
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in multiple regression models, 120, 121, 122
with multiplicity estimator, 202–203, 207–208
in multistage design with replacement, 177
in multistage designs, 171, 172
in network sampling, 201, 202
nonresponders as, 192
nonsampling errors and double sampling and,

190–191
in population models, 23
in population-proportion confidence-interval

estimation, 58–59
in populations, 2–3
populations as collections of, 105
poststratification and, 148
primary, 157, 158, 159
in probability-proportional-to-size sampling,

127
in random sampling, 20–21
in random sampling without replacement, 270
in random sampling with replacement, 19–20,

126
random sampling with replacement of

detectability, 269–270
Rao–Blackwell estimators and, 335
in ratio estimation with double sampling, 184
ratio estimators and, 94
in regression estimation with unequal

probability designs, 118
in response modeling and nonresponse

adjustments, 193–194
sampling variance and cost and, 163–166
in sampling very small populations, 17–18
secondary, 157, 158, 159, 160
in selection with probabilities proportional to

size, 161
in simple capture–recapture sampling, 267,

268
in simple random sampling, 11–13
in single systematic samples, 162–163
in small population example, 73, 332–333,

365–366
in spatial design for prediction of mean of

region, 302
in stochastic simulation example, 28, 29
stratification and, 189, 190
stratification in network sampling and,

208–209
stratification principle and, 146
in stratified adaptive cluster sampling,

353–356, 357–359
stratified adaptive cluster sampling estimators

and, 359
in stratified sampling, 141
sufficient statistic and, 128

in systematic/strip adaptive cluster sampling,
339–341

in systematic/strip adaptive cluster sampling,
341, 342

transects and, 230
in two-stage designs, 173, 174–175, 175–176
unbiasedness and, 222
in unequal probability sampling, 67, 224
in without-replacement designs, 78
in wolverine abundance example, 277–278

Unit shapes, in sampling variance and cost,
166

Unknown parameters, predictive sufficiency and,
129

Unrepresentative data, 2
U. S. Census, in historical development of

sampling design, 8. See also Census

Variable circular plots, 309, 310
detectability functions associated with, 307
line transects vs., 230, 259–260
as sampling units, 257–258

Variable of interest
in adaptive cluster sampling designs, 322
adaptive cluster sampling estimators and,

334
in adaptive sampling designs, 315, 316
in aerial moose survey, 185
in allocation in double sampling with ratio

estimation, 186
auxiliary variables and, 93, 102
callbacks and, 192
in city disease example, 205
in design-based approach to sampling, 22
detectability of, 215
in double sampling, 183, 184
in estimating subpopulation mean, 63
for fir seedling example, 32–35
likelihood functions and, 135, 136
in line-intercept sampling, 281
in link-tracing designs, 212
model-based approach and, 131
in model-based approach to sampling, 22–23
multiplicity estimators and, 203, 207
in network sampling, 202
nonsampling errors and double sampling and,

191
in ratio estimation with double sampling, 184
regression estimation and, 115
in sampling, 2, 4
sampling distributions and, 43
sampling errors and, 5
in sampling models, 6
semivariance function and, 290
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Variable of interest (Continued )
spatial covariance function and, 286
in spatial designs, 301
in spatial prediction, 285
stratified adaptive cluster sampling estimators

and, 357
in unequal probability designs, 102–103
in wolverine abundance example, 277

Variables
clumped population example and, 360, 361
estimators based on partial selection

probabilities and, 344, 345
in household expenditure models, 24–25
in initial strip plots example, 348
in kriging, 296
nonsampling errors and double sampling and,

191
in sampling, 2, 4
in sampling models, 6
spatial covariance function and, 286
stratified adaptive cluster sampling estimators

and, 357
Variance(s)

adaptive cluster sampling estimators and, 323,
334

in adaptive cluster sampling vs. conventional
sampling, 329–330

in adaptive cluster sampling vs.simple random
sampling, 328

in adaptive sampling designs, 315–316
in allocation in double sampling with ratio

estimation, 186
approximating, 100–101
for bald eagle nests survey, 163
in brant nests survey example, 217
in city disease example, 206–207
clumped population example and, 361
in cluster and systematic sampling, 160, 161,

163–166
in comparing plot shapes and detectability

methods, 308, 309, 310, 311
confidence intervals and, 40
constant detectability and, 216
in conventional systematic vs. cluster

sampling, 349–350
in conventional vs. adaptive stratified

sampling, 362, 363, 364, 365
cost and sample size and,178
in crop yield example, 117
design-based approaches and, 131
design-based vs. model-based approach and,

133–134
detectability estimator and, 225–226
detectability function and, 307, 308

in double sampling, 188, 192–193
in double sampling for stratification, 187
in draw-by-draw example, 325
in draw-by-draw intersection estimation, 324
in estimating detectability, 217, 218, 219–220,

221, 224, 252
in estimating detectability with random

sampling with replacement, 222
in estimating subpopulation mean, 63–64
in estimation using initial intersection

probabilities, 326–327
in estimator improvement, 331
of estimators, 15, 222–223
estimators based on initial sample mean and,

343–344
estimators based on partial inclusion

probabilities and, 346–347
estimators based on partial selection

probabilities and, 345
of generalized unequal-probability estimator,

72
with Hansen–Hurwitz estimator, 68, 69, 76
with Horvitz–Thompson estimator, 70, 71–72,

204–205
in improving adaptive cluster sampling

estimation, 336
independent and identically distributed random

variables and, 41, 42
in large mammals example, 104–105
in linear models, 109
in linear regression estimation models, 116,

117
in line-intercept sampling, 276, 277, 280–281
multiplicity estimator and, 207
in multistage designs, 179
in multistage design with replacement, 177
and observations from plots, 306
optimum allocation and, 149–150
in optimum allocation for ratio estimation, 189
of a population proportion, 58
in population total estimation, 16–17
poststratification and, 148, 150–151
in random sampling of line transects,

242–243, 243–244
in random sampling with replacement, 19–20
in random sampling with replacement of

detectability units, 269
Rao–Blackwell estimators and, 335
in ratio estimation models, 106
in ratio estimation with double sampling, 185
of ratio estimator, 94, 95–96
in regression estimation with unequal

probability designs, 118–119
in regression models, 119
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in response modeling and nonresponse
adjustments, 194

sample sizes and, 53
sampling distributions and, 43
in sampling very small populations, 17–19
in selecting line transects, 240
in selecting transects with probability

proportional to length, 245
in shrimp survey example, 288
in simple capture–recapture surveys, 265
in single recapture example, 266
with single systematic samples, 162
in small population example, 333, 366, 367
in stochastic simulation example, 28, 29–30
stratification and, 189–190
stratification in network sampling and, 208
stratification principle and, 146
stratified adaptive cluster sampling estimators

and, 357–358, 359–360
in stratified designs, 142–143, 144, 145
in stratified random sampling allocation, 147
in stratified sampling, 141
stratified sampling confidence intervals and,

145–146
in survey data with auxiliary information

example, 96
in systematic transect selection, 244
transects and, 229–230
in two-stage designs, 173–174, 175, 176–177,

180, 181
unbiased estimates of, 3
in unequal probability designs, 102–103
in unequal probability sampling, 225
using individual detectabilities, 255–256
variogram and, 289
in wolverine abundance example, 279

Variance coefficients, stratified sampling
confidence intervals and, 145–146

Variance–covariance matrix, for multiple
regression models, 121

Variance estimation
in capture–recapture sampling, 273
in estimator improvement, 331
finite population central limit theorem and, 41
in initial strip plots example, 348
in network sampling, 202
in random sampling of line transects, 243
in selecting line transects, 240

Variance estimation formula, in unequal
probability designs, 103

Variance estimator
for bald eagle nests survey, 163
in bird banding example, 270

design-based vs. model-based approach and,
134

for detectability estimator, 225–226
in double sampling, 188
in estimation using individual detectabilities,

256
generalized unequal-probability estimator and,

73
Horvitz–Thompson estimator and, 70, 71–72,

76–77, 78
kernel method and, 246–247
in random sampling of line transects, 243
in random sampling without replacement, 270
in random sampling with replacement of

detectability units, 269
in simple capture–recapture surveys, 265,

267–270
with single systematic samples, 162
in trapped mice survey example, 271

Variance formulas
for multiple regression models, 123
for ratio estimator, 175

Variance function, 166
optimum allocation and, 150

Variance of the sample mean, under random
sampling, 21–22

Variogram, 301
in spatial prediction, 285, 289–291

Vector of coefficients, for multiple regression
models, 121

Vector of residuals, in multiple regression
models, 122

Very small population example, 17–19. See also
Small population example

Visibility, xix
Volunteer bias, 191–192
Volunteers, 191–192

in response modeling and nonresponse
adjustments, 193

Web crawls, 210. See also Internet entries
Web pages, R language, 26
Web sites, link-tracing designs for searching, 210
Weighted expression slope estimator, in

regression estimation with unequal
probability designs, 118

Weighted regression intercept estimator, in
regression estimation with unequal
probability designs, 119

Whole numbers, in population-proportion
confidence-interval estimation, 59

Window width, in kernel method, 238, 246–247
Within-primary-unit correlation coefficient,

sampling variance and cost and, 165
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Within-primary-unit variance
cost and sample size and,178
in multistage designs, 179
sampling variance and cost and, 165

Wolter estimator, in random sampling without
replacement, 270

Wolverine abundance example, 277–280

Xerxes, 7
x-values, 93

in allocation in double sampling with ratio
estimation, 186

central limit theorem and, 102
in double sampling, 188
in linear regression estimation models, 116
in ratio estimation models, 105–106,

106–107, 108
in ratio estimation with double sampling,

184–185
in ratio model design, 109, 110
in regression estimation with unequal

probability designs, 118
in regression models, 119
in survey data with auxiliary information

example, 108
in unequal probability designs, 102–103

Yield, from adaptive cluster sampling, 328
y-values, 2–3, 93–94

in adaptive cluster sampling designs, 321, 322
adaptive cluster sampling estimators and, 334
in adaptive cluster sampling vs. conventional

sampling, 329, 330
adaptive cluster strategy calculations and, 347
in allocation in double sampling with ratio

estimation, 186
central limit theorem and, 102
in city disease example, 205
clumped population example and, 360, 367,

368
in cluster and systematic sampling, 157, 159
confidence intervals and, 40
in crop yield example, 117
in design-based vs. model-based approach,

132, 133
in double sampling, 188
in double sampling for stratification, 187
for draw-by-draw intersection estimation, 323
in estimating detectability with simple random

sampling, 220
estimators based on partial inclusion

probabilities and, 345, 347

estimators based on partial selection
probabilities and, 344, 345

in finite-population survey sampling, 125
for fir seedling example, 33–35
Hansen–Hurwitz estimator and, 68
in initial strip plots example, 348
in kriging, 296
in large mammals example, 104
likelihood functions and, 136
in linear prediction, 286, 287–288
in linear regression estimation models, 116
model-based approach and, 131–132
in multiple regression models, 120, 122
multiplicity estimators and, 203, 207
populations and, 105
predicting, 291–292
in random sampling, 20–21
in random sampling with replacement, 19,

126
in ratio estimation with double sampling,

184–185
in regression estimation, 115
in regression estimation with unequal

probability designs, 118
in regression models, 119, 123
in response modeling and nonresponse

adjustments, 193
sample mean as average of, 13
in small population example, 332, 365, 366
in small population example illustrating bias,

99
spatial covariance function and, 286
in spatial designs, 301, 302
in spatial prediction, 285
in stochastic simulation example, 28, 29, 30,

31
stratification and, 189
stratification in network sampling and, 209
stratified adaptive cluster sampling estimators

and, 357, 358–359
in systematic/strip adaptive cluster sampling,

342
in two-stage design, 173, 174–175
in unequal probability designs, 102–103
used in examples, 351
in variogram, 289, 290

Y -values
for mean square prediction error, 295–296
populations and, 105, 106–107, 108
in regression models, 119–120, 123
in survey data with auxiliary information

example, 108






















