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of familiarity, either with the subject to be taught, or the tool (the software package) 
to be used in teaching the subject. This book does not fall into either trap. … the 
examples and exercises are well chosen …”
—MAA Reviews, October 2010
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of information for beginners in statistics who want to learn a computer language 
that is positioned to take the statistics world by storm.”
—Significance, September 2005
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See What’s New in the Second Edition:
• Increased emphasis on more idiomatic R provides a grounding in the 

functionality of base R
• Discussions of the use of RStudio help new R users avoid as many pitfalls as 

possible
• Use of knitr package makes code easier to read and therefore easier to 

reason about
• Additional information on computer-intensive approaches motivates the 

traditional approach
• Updated examples and data make the information current and topical

The R Series

Using R for 
Introductory 
Statistics
Second Edition

U
sing R

 for Introductory S
tatistics

John Verzani

Verzani

Second 
Edition

Statistics

K20484_cover.indd   1 5/15/14   9:24 AM

www.ebook3000.com

http://www.ebook3000.org


www.ebook3000.com

http://www.ebook3000.org


Using R for 
Introductory 

Statistics
Second Edition

www.ebook3000.com

http://www.ebook3000.org


Chapman & Hall/CRC
The R Series

John M. Chambers
Department of Statistics

Stanford University 
Stanford, California, USA

Duncan Temple Lang
Department of Statistics

University of California, Davis
Davis, California, USA

Torsten Hothorn
Division of Biostatistics

University of Zurich
Switzerland

Hadley Wickham
RStudio

Boston, Massachusetts, USA

Aims and Scope
This book series reflects the recent rapid growth in the development and application 
of R, the programming language and software environment for statistical computing 
and graphics. R is now widely used in academic research, education, and industry. 
It is constantly growing, with new versions of the core software released regularly 
and more than 5,000 packages available. It is difficult for the documentation to 
keep pace with the expansion of the software, and this vital book series provides a 
forum for the publication of books covering many aspects of the development and 
application of R.

The scope of the series is wide, covering three main threads:
• Applications of R to specific disciplines such as biology, epidemiology, 

genetics, engineering, finance, and the social sciences.
• Using R for the study of topics of statistical methodology, such as linear and 

mixed modeling, time series, Bayesian methods, and missing data.
• The development of R, including programming, building packages, and 

graphics.

The books will appeal to programmers and developers of R software, as well as 
applied statisticians and data analysts in many fields. The books will feature 
detailed worked examples and R code fully integrated into the text, ensuring their 
usefulness to researchers, practitioners and students.

Series Editors

www.ebook3000.com

http://www.ebook3000.org


Published Titles

Using R for Numerical Analysis in Science and Engineering, Victor A. Bloomfield

Event History Analysis with R, Göran Broström

Computational Actuarial Science with R, Arthur Charpentier

Statistical Computing in C++ and R, Randall L. Eubank and Ana Kupresanin

Reproducible Research with R and RStudio, Christopher Gandrud

Introduction to Scientific Programming and Simulation Using R, Second Edition, 
Owen Jones, Robert Maillardet, and Andrew Robinson 

Displaying Time Series, Spatial, and Space-Time Data with R,  
Oscar Perpiñán Lamigueiro

Programming Graphical User Interfaces with R, Michael F. Lawrence  
and John Verzani

Analyzing Baseball Data with R, Max Marchi and Jim Albert

Growth Curve Analysis and Visualization Using R, Daniel Mirman

R Graphics, Second Edition, Paul Murrell

Multiple Factor Analysis by Example Using R, Jérôme Pagès

Customer and Business Analytics: Applied Data Mining for Business Decision  
Making Using R, Daniel S. Putler and Robert E. Krider

Implementing Reproducible Research, Victoria Stodden, Friedrich Leisch,  
and Roger D. Peng 

Using R for Introductory Statistics, Second Edition, John Verzani

Dynamic Documents with R and knitr, Yihui Xie

www.ebook3000.com

http://www.ebook3000.org


www.ebook3000.com

http://www.ebook3000.org


Using R for 
Introductory 

Statistics
Second Edition

John Verzani
CUNY/College of Staten Island

New York, USA

www.ebook3000.com

http://www.ebook3000.org


CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140514

International Standard Book Number-13: 978-1-4665-9074-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable 
efforts have been made to publish reliable data and information, but the author and publisher cannot 
assume responsibility for the validity of all materials or the consequences of their use. The authors and 
publishers have attempted to trace the copyright holders of all material reproduced in this publication 
and apologize to copyright holders if permission to publish in this form has not been obtained. If any 
copyright material has not been acknowledged please write and let us know so we may rectify in any 
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are 
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.ebook3000.com

http://www.ebook3000.org


Contents

Preface xv

1 Getting started 1
1.1 What is data? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Getting started with R . . . . . . . . . . . . . . . . . . . . . . . . 3

Installing R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Installing RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . 4
R’s command line . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

The workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
External packages . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Univariate data 20
2.1 Data vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Structured data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Numeric data types . . . . . . . . . . . . . . . . . . . . . 33
Categorical data types . . . . . . . . . . . . . . . . . . . . 34
Date and time types . . . . . . . . . . . . . . . . . . . . . 39
Logical data . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3 Numeric summaries . . . . . . . . . . . . . . . . . . . . . . . . . 50

Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
The sample mean . . . . . . . . . . . . . . . . . . . . . . . 51
The sample median . . . . . . . . . . . . . . . . . . . . . 55
Measures of position . . . . . . . . . . . . . . . . . . . . . 56
Other measures of center . . . . . . . . . . . . . . . . . . 59

vii

www.ebook3000.com

http://www.ebook3000.org


viii CONTENTS

Spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
The variance and standard deviation . . . . . . . . . . . 60
The IQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Viewing the shape of a data set . . . . . . . . . . . . . . . 70

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4 Categorical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3 Bivariate data 88
3.1 Independent samples . . . . . . . . . . . . . . . . . . . . . . . . . 88

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.2 Data manipulation basics . . . . . . . . . . . . . . . . . . . . . . 94

Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Data frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Model formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3 Paired data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Alternative trend lines . . . . . . . . . . . . . . . . . . . . . . . . 123
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.4 Bivariate categorical data . . . . . . . . . . . . . . . . . . . . . . 132
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Two-way tables from summarized data . . . . . . . . . . . . . . 132
Two-way tables from unsummarized data . . . . . . . . . . . . . 134
Marginal distributions of two-way tables . . . . . . . . . . . . . 135
Conditional distributions of two-way tables . . . . . . . . . . . . 136
The xtabs function . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Graphical summaries of two-way contingency tables . . . . . . 140

Mosaic plots . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Measures of association for categorical data . . . . . . . . . . . . 143
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4 Multivariate data 150
4.1 Data structures in R . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.2 Working with data frames . . . . . . . . . . . . . . . . . . . . . . 155

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.3 Applying a function over a collection . . . . . . . . . . . . . . . 167

Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Reduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.4 Using external data . . . . . . . . . . . . . . . . . . . . . . . . . . 181

www.ebook3000.com

http://www.ebook3000.org


CONTENTS ix

Spreadsheet data . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Web-based data sets . . . . . . . . . . . . . . . . . . . . . . . . . 182

5 Multivariate graphics 189
5.1 Base graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5.2 Lattice graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5.3 The ggplot2 package . . . . . . . . . . . . . . . . . . . . . . . . . 200

Geoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Statistical transformations . . . . . . . . . . . . . . . . . . . . . . 204
Faceting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6 Populations 211
6.1 Populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Discrete random variables . . . . . . . . . . . . . . . . . . . . . . 213
Using sample to generate random values . . . . . . . . . . . . . 214

The mean and standard deviation . . . . . . . . . . . . . 215
Continuous random variables . . . . . . . . . . . . . . . . . . . . 216

The p.d.f. and c.d.f. . . . . . . . . . . . . . . . . . . . . . . 218
The mean and standard deviation . . . . . . . . . . . . . 218
Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Sampling from a population . . . . . . . . . . . . . . . . . . . . . 219
Random samples generated by sample . . . . . . . . . . 219

Sampling distributions . . . . . . . . . . . . . . . . . . . . . . . . 220
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.2 Families of distributions . . . . . . . . . . . . . . . . . . . . . . . 222
The d, p, q, and r functions . . . . . . . . . . . . . . . . . . . . . 222
Binomial, normal, and some other named distributions . . . . . 224

Bernoulli random variables . . . . . . . . . . . . . . . . . 224
Binomial random variables . . . . . . . . . . . . . . . . . 225
Normal random variables . . . . . . . . . . . . . . . . . . 227

Popular distributions to describe populations . . . . . . . . . . 231
Uniform distribution . . . . . . . . . . . . . . . . . . . . . 231
Exponential distribution . . . . . . . . . . . . . . . . . . . 232
Lognormal distribution . . . . . . . . . . . . . . . . . . . 233

Sampling distributions . . . . . . . . . . . . . . . . . . . . . . . . 233
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

6.3 The central limit theorem . . . . . . . . . . . . . . . . . . . . . . 236
Normal parent population . . . . . . . . . . . . . . . . . . . . . . 237
Nonnormal parent population . . . . . . . . . . . . . . . . . . . 238
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240



x CONTENTS

7 Statistical inference 242
7.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Repeating a simulation easily . . . . . . . . . . . . . . . . . . . . 244
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

7.2 Significance tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7.3 Estimation, confidence intervals . . . . . . . . . . . . . . . . . . 255

The basic bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . 258
7.4 Bayesian analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

8 Confidence intervals 262
8.1 Confidence intervals for a population proportion, p . . . . . . . 264

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
8.2 Confidence intervals for the population mean . . . . . . . . . . 271

One-sided confidence intervals . . . . . . . . . . . . . . . . . . . 274
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

8.3 Other confidence intervals . . . . . . . . . . . . . . . . . . . . . . 278
Confidence interval for σ2 . . . . . . . . . . . . . . . . . . . . . . 278
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

8.4 Confidence intervals for differences . . . . . . . . . . . . . . . . 281
Difference of proportions . . . . . . . . . . . . . . . . . . . . . . 282
Difference of means . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Matched samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

8.5 Confidence intervals for the median . . . . . . . . . . . . . . . . 288
Confidence intervals based on the binomial distribution . . . . 288
Confidence intervals based on signed-rank statistic . . . . . . . 289
Confidence intervals based on the rank-sum statistic . . . . . . 290
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

9 Significance tests 294
9.1 Significance test for a population proportion . . . . . . . . . . . 299

Using prop.test to compute p-values . . . . . . . . . . . . . . . 301
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

9.2 Significance test for the mean (t-tests) . . . . . . . . . . . . . . . 304
Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

9.3 Significance tests and confidence intervals . . . . . . . . . . . . 310
9.4 Significance tests for the median . . . . . . . . . . . . . . . . . . 312

The sign test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
The signed-rank test . . . . . . . . . . . . . . . . . . . . . . . . . 313
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

9.5 Two-sample tests of proportion . . . . . . . . . . . . . . . . . . . 316
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

9.6 Two-sample tests of center . . . . . . . . . . . . . . . . . . . . . . 321
Two-sample tests of center with normal populations . . . . . . 322
Matched samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 325



CONTENTS xi

The Wilcoxon rank-sum test for equality of center . . . . . . . . 328
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

10 Goodness of fit 334
10.1 The chi-squared goodness-of-fit test . . . . . . . . . . . . . . . . 334

The multinomial distribution . . . . . . . . . . . . . . . . . . . . 334
Pearson’s χ2-statistic . . . . . . . . . . . . . . . . . . . . . . . . . 336

Partially specified null hypotheses . . . . . . . . . . . . . 339
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

10.2 The chi-squared test of independence . . . . . . . . . . . . . . . 344
The chi-squared test of homogeneity . . . . . . . . . . . . . . . . 348
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

10.3 Goodness-of-fit tests for continuous distributions . . . . . . . . 352
Kolmogorov-Smirnov test . . . . . . . . . . . . . . . . . . . . . . 352
The Shapiro-Wilk test for normality . . . . . . . . . . . . . . . . 357
Finding parameter values using fitdistr . . . . . . . . . . . . . 359
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

11 Linear regression 364
11.1 The simple linear regression model . . . . . . . . . . . . . . . . 364

Estimating the parameters in simple linear regression . . . . . . 365
Using lm to find the estimates . . . . . . . . . . . . . . . . . . . . 366

Extractor functions for lm . . . . . . . . . . . . . . . . . . 367
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

11.2 Statistical inference for simple linear regression . . . . . . . . . 369
Statistical inferences . . . . . . . . . . . . . . . . . . . . . . . . . 370

Marginal t-tests . . . . . . . . . . . . . . . . . . . . . . . . 370
The F-test . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
R2—the coefficient of determination . . . . . . . . . . . . 373

Using lm to find values for a regression model . . . . . . . . . . 374
Confidence intervals . . . . . . . . . . . . . . . . . . . . . 374
Standard error . . . . . . . . . . . . . . . . . . . . . . . . 374
Significance tests . . . . . . . . . . . . . . . . . . . . . . . 376
Finding σ̂2, R2 . . . . . . . . . . . . . . . . . . . . . . . . 376
F-test for β1 = 0 . . . . . . . . . . . . . . . . . . . . . . . . 377
Predicting the response with predict . . . . . . . . . . . 377

Testing the model assumptions . . . . . . . . . . . . . . . . . . . 378
Assessing the linear model for the mean . . . . . . . . . 379
Assessing the residuals . . . . . . . . . . . . . . . . . . . 380
Influential points . . . . . . . . . . . . . . . . . . . . . . . 381
Prediction intervals . . . . . . . . . . . . . . . . . . . . . . 382
Confidence intervals for µy|x . . . . . . . . . . . . . . . . 385

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
11.3 Multiple linear regression . . . . . . . . . . . . . . . . . . . . . . 390

Types of models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Fitting the multiple regression model using lm . . . . . . . . . . 392



xii CONTENTS

Using update with model formulas . . . . . . . . . . . . 394
Interpreting the regression parameters . . . . . . . . . . . . . . . 395
Statistical inferences . . . . . . . . . . . . . . . . . . . . . . . . . 396
Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Partial F-test . . . . . . . . . . . . . . . . . . . . . . . . . . 398
The Akaike information criterion . . . . . . . . . . . . . . 400

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

12 Analysis of variance 404
12.1 One-way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Using R’s model formulas to specify ANOVA models . . . . . . 408
Using oneway.test to perform ANOVA . . . . . . . . . . . . . . 408
Using aov for ANOVA . . . . . . . . . . . . . . . . . . . . . . . . 409
The nonparametric Kruskal–Wallis test . . . . . . . . . . . . . . 411
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

12.2 Using lm for ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . 416
Treatment coding for analysis of variance . . . . . . . . . . . . . 418
Comparing multiple differences . . . . . . . . . . . . . . . . . . 421
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

12.3 ANCOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

12.4 Two-way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Interaction plots . . . . . . . . . . . . . . . . . . . . . . . 430

Fitting a two-way ANOVA . . . . . . . . . . . . . . . . . . . . . . 431
Blocking variables . . . . . . . . . . . . . . . . . . . . . . 435

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

13 Extensions of the linear model 440
13.1 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Generalized linear models . . . . . . . . . . . . . . . . . . . . . . 443
Fitting the model using glm . . . . . . . . . . . . . . . . . . . . . 443

13.2 Nonlinear models . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
Fitting nonlinear models with nls . . . . . . . . . . . . . . . . . 449
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

A Programming 458
A.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

Function names . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
Control flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
Variable scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

Closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
A.2 Generic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

S3 methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
S4 classes and methods . . . . . . . . . . . . . . . . . . . . . . . . 479



CONTENTS xiii

Reference classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

Bibliography 489

Index 494





Preface

About this book

This is a second edition of a book that introduces R alongside the introduc-
tory statistics curriculum. The first edition found its niche with individuals
looking to get started with both areas outside of a classroom environment. It
is the hope, that this second edition will be even more useful for that task.

The book was first published in 2004, when R was at version 2.0.0. Now,
as of writing, R is past version 3.0.0 (3.1.0 and climbing). In that time so much
has changed. For example:

• The number of R users has grown enormously. A recent survey ranked
R the 15th most used programming language.

• The number of add-on packages for R has grown four- or five-fold to
over 5,000. The depth and range of applications has grown consider-
ably.

• The number of books including material on R has grown at least ten-
fold.1

• The internet has developed many additional R communities beyond the
initial mailing list. Two key additions are the question and answer site
stackoverflow.com which has nearly 50,000 questions tagged with “r”
and the blog aggregator r-bloggers.com which has over 13,000 blog
entries related to R.

Basically, the amount of material out there related to learning and using
R is now enormous. This book doesn’t try to canvas even a sliver, rather it
tries to guide the reader through the learning of the basics of R so that it is
possible to take advantage of the contributions made by the R community.
Though R—like other programming languages—has a reputation of having

1For example, there are many other texts introducing R, as this one does, that can be chosen
to learn from. For example, [15], [64], [13], [14], [36], [12], [56], and http://www.openintro.org/
stat/.
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a steep learning curve, we try to break this down into small, task-oriented
steps.

In this edition we place a greater emphasis on more idiomatic R. For a
small example, despite the greater familiarity of using = for the assignment
operator, we now use the <- operator. Another example comes in Chapter 4,
where we resist the temptation to illustrate some data manipulations with
the widely used plyr package and instead utilize similar functions from base
R. For our limited demands, the corner cases that led to the desire for a plyr-
type approach are not present, and we have the belief that it is good to start
with a grounding in the functionality provided by base R.

We also try to avoid as many of the pitfalls as possible for new R users by
encouraging the use of RStudio, a feature-rich, cross-platform development
environment for interacting with R. RStudio has very good integration with
R’s help system and its administrative tools; it has an integrated debugger, a
powerful editor, and much more. Though relatively new to the R community,
the company has already made an enormous contribution.

This book was written using the excellent knitr package for R. This pack-
age allows one to embed R code into a document with ease. The formatting
of code blocks follows a convention championed by the knitr author. We
think it makes the code much easier to read, and hence, reason about. It also
encourages thinking of interacting with R using a script, rather than the com-
mand line directly. This style of usage is facilitated by RStudio.

In addition to changes with R, the teaching of introductory statistics (by
which we mean a non-calculus approach to inferential statistics) has changed
in the last decade, or so. For example, primarily due to the widespread avail-
ability of computational resources but also for pedagogical reasons, there
have been pushes to include resampling approaches, permutation methods,
and Bayesian analysis into the first-year course. The topics of this text hew
closely to the traditional ones, be we have added a bit on these computer-
intensive approaches, in particular to motivate the more traditional approach.
We continue with an emphasis on realistic data and examples (which re-
quired updating some now not-so-topical examples) and we rely on visual-
ization techniques to gather insight. Fortunately, the R language makes such
inclusion quite easy.

Organization The text has three main parts. The first five chapters intro-
duce the basics of exploratory data analysis and data manipulation in R. The
approach is a little slower than it need be. We postpone until Chapter 4 the
details of using R’s data frames. These are the primary means to store mul-
tivariate data in R, and in Chapters 4 and 5 we demonstrate many tools that
can act with data frames to make data investigation very convenient. How-
ever, most of these techniques are a bit more abstract, so in the first chapters
we emphasize a more direct, easier to learn approach, albeit sometimes more
tedious. Most all of this material was rewritten for the second edition.
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Chapters 6 through 10 cover the core of statistical inference. We added the
material in Chapter 7 to introduce the major themes of inference using com-
putation, rather than probability calculations, to give insight into questions
on inference.

Chapters 11 through 13 introduce the topic of analyzing statistical models
with R, covering the regression model and its specialization to analysis of
variance, before ending with a brief introduction to the logistic model and
non-linear models. The goal is to cover the main introduction to this topic,
and to show that the basic interface R provides extends naturally to cover a
wide variety of models.

The appendix on programming discusses some of the details of writing
programs in the R language. In the main part of the text, user-written func-
tions are fairly straightforward, so this material is just supplemental.

The UsingR package The book has an accompanying package, UsingR. This
package is available from CRAN, R’s repository of user-contributed pack-
ages. Installation should be painless. The package contains the data sets
mentioned in the text (data(package="UsingR")), answers to selected prob-
lems (answers()), a few demonstrations (demo()), the errata (errata()), and
sample code from the text.

Thanks The author would like to thank Chapman & Hall/CRC Press. Not
just the editors who have pushed for this new edition, but the company as a
whole for its work on numerous titles on R-related topics. In a similar man-
ner, the author would like to thank statistics.com. They offer a variety of
R-related courses, including one that features this text. The feedback from
the students of that course has been important guidance in the redrafting
of parts of this text. Finally and most importantly, the author would like to
warmly acknowledge the continued support he has received from his family
on this and other projects.

John Verzani
February, 2014
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1

Getting started

1.1 What is data?

Data and their statistical summaries and interpretations are ubiquitous. For
example, we found these four articles during a typical day reading the paper:

• Example 1.1: To compile evidence to establish cause and effect
In an opinion piece, Joe Nocera [46] discusses the prevalence of guns in
the movies (in anticipation of yet another “Die Hard” movie). He quotes
a spokesperson from the Motion Picture Association of America as

“There is a predominance of findings that show there is no
consistent or convincing evidence that exposure [to gun violence
in movies] causes people to be more violent.”

However, Nocera immediately refutes this quoting a professor from the
University of Wisconsin: “There is tons of research on this.”

Clearly the collection and interpretation of data is crucial when making
policy decisions. This isn’t an easy task, of course. A casual reader may think
the above differences of opinion are a matter of political motivation, but this
need not be the case. Relationships between variables can exist, even if there
is not a cause and effect relationship. Trying to find convincing evidence in
data often requires a careful collection of data in order for conclusions to be
made. ••

• Example 1.2: Price of a hip replacement
In a news piece, Elisabeth Rosenthal [51] describes the research of Jaime
Rosenthal who called more than 100 hospitals, covering every state in the
summer of 2012 seeking the price of a hip replacement for a hypothetical,
uninsured, 62-year-old female. The results were surprising:

1. Only about half the institutions could provide an estimate

2. Of those that could, the range of prices went from $11,000 to $125,798

1
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Commentary in the article urges people to place the price data in the
context of many other factors such as infection rates and unexpected deaths.
However, the article summarizes the primary researcher’s belief that there is
little consistent correlation between higher prices and better quality in Amer-
ican health care.

Even in what is perhaps the most data-driven industry, there is clear need
for data and context to place this data within. Further, this example hints at
some other difficulties in data collection: e.g., the question of what to do with
missing data, as it is often the case that some values will be unavailable. As
well, the issue that the actual mechanism for computing this value at a given
hospital may vary from that of another. ••

• Example 1.3: Safety of the airline industry
In a front page article titled “Airline Industry at Its Safest Since the Dawn of
the Jet Age,” authors Jad Mouawad and Christopher Drew [43] summarize
the data collected by the Aviation Safety Network pointing out that 2012 had
only 23 deadly accidents and 475 fatalities. This may sound high, but putting
it into a rate helps give context: this is a risk of one death per 45 million
flights. That is, a person could fly daily for an average of 123,000 years before
being in a fatal plane crash.

The improvements in safety are not limited to advanced technologies, as
the industry (regulators, pilots, and airlines) have created a culture of sharing
data about flying hazards with the goal of preventing accidents.

This example shows how a focus on understanding the many factors that
can contribute to a given statistic can help improve an area. It wasn’t enough
that the airline kept statistics, but rather that they used their findings to ad-
dress shortcomings. ••

• Example 1.4: Networking
On the business page Andrew Sorkin [53] reports on a data base containing
names of over two-million deal makers, power brokers and business exec-
utives, and in many cases the name of spouses, children, associates, politi-
cal donations, charity work, and more. This information held by a company
called Relations Science is compiled by more than 800 people.

The goal of course is to sell this information to people who plan to lever-
age the network of relationships. Of course, other companies, such as Face-
book and LinkedIn have such information on their users, and the NSA seem-
ing has all the data it could ever need, but in this case the information is
scraped from web sites—a person need not be a member of a social network
or have a security clearance.

How such large data bases get mined and what this means for personal
privacy will likely continue to be a major topic of conversation for years to
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come. Though the statistical techniques of working with so-called “big data”
are outside the scope of this text, many of the computational skills will be
developed. ••

In this sampling of articles, we see the analysis of data used in many
different ways:

• Under the name “studies,” data is used to make a case about social
policy (in two different ways!).

• To investigate variability in prices and transparency, data is collected
and summarized.

• In an industry, data demonstrates that forward looking practices can
have a substantial effect.

• Data and the information it contains is mined to establish a financial
advantage.

Data and its analysis is a very wide topic, so wide we couldn’t begin to
describe it all. In this text we narrow our focus, looking at data with an eye
towards statistical inference. This is the process of drawing conclusions about
populations based on data collected from these populations. To do this, we
will use the language of probability. This will give us the flexibility to describe
concrete things using data subject to random variation. Exactly how this will
be used will require us to make models for our data. This text is roughly
organized into three areas: the first to develop techniques for exploring data,
the second the basics of statistical inference, and the third area covers the
beginnings of modeling with data.

The rest of this chapter is focused on getting started with using R. We
save more statistically oriented examples for Chapters 2 and beyond.

1.2 Getting started with R

This section covers the basics of getting started with R, beginning with some
notes on installation and continuing with the basics of interacting with R
through the command line.

Installing R

Before beginning with R, it must be installed for usage. R is available as
source code from CRAN, http://cran.r-project.org/. However, most users
probably will install R from a distributed binary. These are also available
from CRAN. For example, the Microsoft Windows binary is distributed as
a self-extracting .exe file. Simply download the file then install it as any
other download. For Microsoft Windows users, the standard installation will
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Figure 1.1: The RStudio development environment for R. Visible are the con-
sole, the source code editor, the plot pane, and the workspace pane.

create a desktop icon and start menu item for opening R. If started this way,
R will open to its standard Microsoft Windows GUI, but we suggest using
RStudio

®, as described next.
Sometimes installation is a bit more difficult than described. For example,

user permissions can be an issue. The “R for Windows FAQ” document, also
from CRAN, can be consulted for remedies for the more common issues.

Installing RStudio

In this book we will assume the reader has installed the RStudio IDE. This
open-source, integrated desktop environment makes it possible for all R users
to have a common R interface, which is greatly enhanced over the R’s basic
command line interface. Figure 1.1 shows a sample screenshot.

Installation is straightforward in most cases. The RStudio web site http:
//www.rstudio.com has links to the necessary files to download. If there are
issues, the support forum (http://support.rstudio.org/) is available for as-
sistance. When RStudio is started, it starts R with it. Starting RStudiois done
in a manner consistent with other applications for your operating system. For
example, the Microsoft Windows installation will add an entry to the “Start
Menu” to load the program.
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Figure 1.2: RStudio’s console showing the issuing of the command “2 + 2”
and R’s response of 4.

R’s command line

There are several ways to interact with R, but for us the primary one will be
through the command line, also known as the console. The command line in
RStudio is in the console pane (Figure 1.2). The command line is common
to all of R’s interactive interfaces. The name comes from it being the place
where one types in commands.

In the figure we typed the command “2 + 2” then pressed the return key
to send the command to R’s interpreter. It responded with the answer of 4,
prefixed with a [1], which will make sense when we talk about data vectors
in Chapter 2.

In this text, rather than show screenshots of the RStudio console, we
typeset the command line. The “2 + 2” command would look like:

2 + 2

## [1] 4

Whereas, the average of five numbers might look like:

(1 + 3 + 2 + 12 + 8)/5

## [1] 5.2

The output is prefaced with R’s comment character # to distinguish it
from the input. Any text after a comment character is ignored by R’s parser.
Placing comments in front of output is not the convention with most R con-
soles, including RStudio, but is used here for the typesetting of R code used
with this text, as we prefer not to include the prompt and need a visual clue
to separate input code from output.1

R uses standard conventions for mathematical operations: +, -, *, /, and
ˆ. Here we find the distance between two points (1,3) and (2,1):

1This style also is how one would interact with the R process when typing commands into a
“script file” and executing these through R’s source function or RStudio’s “run” features. Using
a script makes it much easier to reconstruct one’s work in a subsequent session.
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( (2 - 1)^2 + (1 - 3)^2 )^(1/2)

## [1] 2.236

R uses parentheses for grouping, as is done in math texts. Parentheses are
also used when calling functions, as described shortly. Square brackets are
used to extract and assign values to objects that can contain more than one.
Examples will start in Chapter 2, where we discuss a container for a set of
data.

Combining commands We can place more than one command on the com-
mand line at once. We use a semicolon, ;, to separate them.

The prompt The command line has two states, one being it is ready for
input, the other expecting a continuation of the currently inputed line. It
marks these states with a prompt. By default this will be > for a ready state
and + for a continuation state.2 These are not typeset in the text, as they can
be distracting while reading. But be warned, the + prompt is indicating the
previous command was not complete. If you thought it was, likely you are
missing a closing parentheses.

Errors Of course, there are times where we type in a command that does
not make sense to R’s interpreter. This can happen, for example, when we
misspell a command name or make some syntax error. Here we have two ˆ
symbols, one too many for R’s taste:

2 ^^ 2

Error: unexpected ’^’ in "2 ^^"

The error messages generated by R are usually quite informative, though
may seem cryptically written to the new R user. The above one is pretty clear.
R may also generate warnings, which are similar to an error, but do not stop
the flow of a function.3

Command history After one issues a command, it is recorded in R’s history.
Most command lines allow for scrolling through the previous commands
using the up- and down-arrow keys. This can be used to edit and re-execute
a previous command.

RStudio has a history pane (Figure 1.3) showing the past commands.
One can double click on a command to send it back to the command line.
Selecting more than one and then pressing the “To Console” toolbar item will

2These can be changed through the prompt and continue options, cf. ?options.
3If “sourcing” in commands from a script in RStudio, the error message will conveniently

contain a line number.
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Figure 1.3: RStudio’s history pane showing its recording of previously issued
commands.

send the collection of commands back to the console. As the history stack can
grow quite large, the search panel in the history pane allows one to search
through past commands. When the desired one is located, it can be viewed
in its context by clicking on the small arrow on the right.

Variables

R can be used like a calculator, as above. But it really is an environment for
statistical computing and graphics. The power of R goes well beyond that
of a graphing calculator. One immediate difference is the ability to assign
names to values.4 In R this is done with an assignment operator. We use the
left arrow for assignment. In RStudio, there is a keyboard shortcut to insert
the two-character <-, which for Windows users is alt + -.5

For example, here we assign a value to x and then refer to x in the subse-
quent command:

x <- 2
y <- x^2 - 2*x + 1
y # assignment does not print output

## [1] 1

R is a dynamic language, which means we can redefine and retype values:

4Assignment basically gives an object a name in such a manner that R can look it up when
asked. This process of lookup follows a procedure that defines R’s scoping rules. The scope of
a variable is the context in which the bound variable can be found. Some knowledge of this
becomes important when programming new functions.

5Alternately, an equals sign may be used for assignment. This is more traditional with pro-
gramming languages, but we stick with the R community’s preferred convention.
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x <- "two" # x has a new value

The value of y, assigned when x=2, does not reflect the new value assigned
to x unless you reissue that command.

Variable names can be long or short. Here we define a variable some_data:

some_data <- 9.8

Case is important The case of the letters in a variable name is important.
There is a distinction between x and X, or mydata and myData. This is the case
with everyday language, so shouldn’t be surprising, but isn’t always true
when using computers.

Valid names The R documentation states that a syntactically valid name
consists of letters, numbers and the dot or underline characters and starts
with a letter or the dot not followed by a number. While longer names can
be more descriptive, shorter ones are, of course, easier to type, but harder to
remember what they represent.6

Tab completion R command lines generally have tab completion. When a
command is partially entered and the tab key is pressed, a list of possible
completions for the current token are presented, or, if there is a unique com-
pletion, this token is filled in. This can make it much easier to use longer
variable names, as one rarely needs to type the entire name. Figure 1.4 shows
the options for completion of the token boxpl.

Built-in variables R has very few built-in variables. One is pi referring to
the value π. Another is the variable T referring to the logical TRUE value.
These names may have new values bound to them.

Functions

The R language is comprised of numerous built-in functions, providing a rich
set of actions. Several of these functions are for the familiar mathematical
operations:

x <- pi
sin(x) # floating-point inaccuracy

6There are many conventions used for making longer variable names more readable. Here
are some alternatives to our use of some_data: some.data, someData, SomeData. The use of a period
to separate words is common, but we reserve that for programming S3 functions. The latter two
examples are camel case and upper camel case. Both are widely used. We use an underscore, as
it seems easier to read, but there is no consensus in the R community on this topic.
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Figure 1.4: Tab completion in RStudio presents the possible choices for com-
pletion, if there is more than one. When completion options are shown for a
function name, a summary from the help page of each possible function is
presented along with one-key access to the full page. Argument completion
also shows a description of the argument.

## [1] 1.225e-16

sqrt(x)

## [1] 1.772

Functions are called by their name followed by a pair of parentheses. If
there is more than one argument, which is often the case, these are separated
by commas. An example of this would be the logarithm function which has
an optional argument for the base:

log(x) # log base e = exp(1)

## [1] 1.145

log(x, 10) # log base 10

## [1] 0.4971

One of the more commonly used functions in R has the short name c.
This function is used to combine values together. Here we combine several
numbers and assign them to the variable x:

x <- c(74, 122, 235, 111, 292)

A typical use of this is to create a data set, of which we discuss much
more in Chapter 2. There is a range of statistical functions defined for such
objects. For example, we can take the average (or mean) value:

mean(x)

## [1] 166.8
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The mean function in this example takes several numbers and summa-
rizes them with 1. It does so by adding the numbers and dividing by the
number of values added. This can also be achieved with:

sum(x)/length(x)

## [1] 166.8

There are also many functions for manipulating container objects like x.
For example, head and tail which return the first (last) n elements, where by
default n=6.

Vectorized functions R has several functions which do not summarize a
collection of values with a single number, but rather do the same thing for
each number. Such functions are called vectorized. Some examples are the
standard mathematical functions:

x + x

## [1] 148 244 470 222 584

sqrt(x)

## [1] 8.602 11.045 15.330 10.536 17.088

This is very natural with statistical use. Here we subtract a single value
from each value of x:

x - mean(x)

## [1] -92.8 -44.8 68.2 -55.8 125.2

In this last example the sizes of x and mean(x) did not match. R will
recycle values from the smaller one to create a new matching-sized object,
then do the vectorized subtraction.

Default arguments, named arguments As mentioned, R functions can have
one or more arguments. This is a good thing, as it allows the user to cus-
tomize a call to a function without needing to remember many different
function names. To make it much easier to use functions with many argu-
ments, the author can provide reasonable defaults for as many arguments as
they see fit. This allows the user to specify relatively few values for common
cases, and adjust values as desired for other, less common cases. For exam-
ple, the mean function has an argument to trim the data before finding the
average. This is specified with a value between 0 and 0.5, with a default of 0.
With this default, we’ve seen the familiar average is found. When we specify
the other extreme value, 0.5, we actually get the median, or middle value:
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mean(x, trim=0.5)

## [1] 122

median(x)

## [1] 122

The above used a named argument, in this case trim=0.5. Additional ar-
guments can be matched by position or by keyword. In this example either
could have been used. We tend to be explicit by using keywords for addi-
tional arguments, as it is easier to see what is being specified.

Generic functions Not only can R programmers create different arguments
to give functions extra flexibility, R programmers can also create entirely dif-
ferent function definitions based on the type of these arguments. That is, the
same name may refer to different function implementations. Functions for
which this is implemented are termed generic functions. In most cases, the
exact choice of definition to dispatch depends on the class of the first argu-
ment. We will discuss this feature at more length in Chapter 2 and further
in Appendix A. For now we illustrate with an example, using R’s summary
function:

x <- c(74, 122, 235, 111, 292) # numeric
y <- c(TRUE, FALSE, TRUE, TRUE) # logical
summary(x)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 74 111 122 167 235 292

summary(y)

## Mode FALSE TRUE NA’s
## logical 1 3 0

As seen, the summary of a collection of numbers is a statistical summary.
For a collection of logical values, it is a count. The R user needs only be mind-
ful that the function summary presents a reasonable summary of an object, and
not worry about what specifically that summary will be.

Though this feature can cause confusion at first, it has a significant ad-
vantage in that far fewer function names need be remembered, as similarly
behaved functions can be given the same name.7

7In describing functions which are generic in the text, if not noted, the most typically used
implementation is described.
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Figure 1.5: The help pane in RStudiodisplaying the help page for the mean
function from base R. Along the top the selector on the left is used to select
previously displayed topics, the middle search box searches through page,
and the rightmost search box searches the help system.

Help R is comprised of a fairly small set of base functionality and is ex-
tended by adding additional packages to one’s workspace. For the most part,
the data sets and functions that are available in base R and its add-on pack-
ages are documented. R’s help system allows one to access these help pages.
The most basic access is provided by the help function, which has a shortcut
?, as in ?mean.

In RStudio, the help pane provides an interface. Figure 1.5 shows the
output from issuing the ?mean command. This command pulled up the help
page for the mean function from base R. One can see a description and various
ways it can be used. The mean function is a generic function, and the second
usage shows what is available by default, when there is no other special
implementation for the given arguments.

In Figure 1.4 we see that tab completion in RStudio for a function pro-
vides access to the help page through the f1 function key.

R provides several layers of help. Table 1.1 lists a quick summary of what
various commands produce, when issued from any R console:8

The workspace

After interacting with R one typically has created several objects and perhaps
functions. Without doing anything special, R will maintain these objects in a
global Workspace.9 When R searches for an object at the command line, this is
the first place on its path that it will look.

8There is also the add-on package SOS to search over contributed packages.
9This is kept in an environment returned by globalenv.
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Command Description

apropos("mean") List objects whose names match ’mean’.
help("mean") Find help on the mean function. Alias is ?mean.
example("mean") Run examples found in help page for mean.
help.search("mean") Search help data base for terms matching ’mean’,

searching over names, title, alias, keywords, etc.
Alias is ??mean.

help(package="MASS") List general information on the specific package.
vignette() List all vignettes, supply topic and/or package

to narrow.

Table 1.1: Example usage of various commands to access the built-in docu-
mentation.

RStudio lists most items in the global workspace along with a short sum-
mary in the Workspace pane (Figure 1.6). Clicking an item brings up an editor
or viewer, depending on the object.

From the command line, the ls function can be used to list the objects in
the global workspace (or other environments). When used at the console, it
will list the data sets and functions a user has defined.

For example, the following lists the currently defined objects in the global
workspace:

ls()

## [1] "a" "d" "out" "x" "y"

To get a short summary of an object, the summary function can be used.
The str function can give a longer, more cryptic, summary of the structure
of an object.

For example, we’ve seen the summary of the following produces a statis-
tical summary. Here we see what the structure is:

x <- c(74, 122, 235, 111, 292)
str(x)

## num [1:5] 74 122 235 111 292

You may wish to remove objects from the workspace. This can be done
through the rm function. The following shows how to remove a single object,
and how to remove all the objects in the workspace.

rm(x) # single object
rm(list=ls()) # all objects
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Figure 1.6: The Workspace pane offers a listing of the objects in a user’s global
workspace by type. Clicking an item opens an appropriate editor or viewer.

The latter, uses ls to return the names of the current objects. As these are
character data, the list argument is employed. In RStudio this last action is
initiated by the “broom” toolbar icon on the Workspace pane.

Sessions The global workspace and history file contain your currently de-
fined objects and the steps for how they were created. Both are useful to keep,
and R can do so from session to session. When one quits R, a prompt to “Save
workspace image” is given. The default choice will write the contents of the
workspace to a file to be read back in when R is started again.10 This means
that your objects are persistent from session to session.

Projects RStudio users have more options than just keeping track of a his-
tory file and global environment from session to session. The project frame-
work allows an RStudio user to specify a directory and its files and subfold-
ers as part of a project. In addition to providing a means to store the session
information, projects make it very easy to search over all accompanying files
and allows these files to easily be put under version control. Both of these are
quite useful when programming with R, though we don’t make use of them
in this text.

10R provides the functions save and load to write (and read) representations of R objects to
a file. The saved workspace is written to a file .RData in the current working directory. When R
is restarted in that directory this file is loaded in as part of the usual startup process. The help
page ?Startup documents the startup process.
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Figure 1.7: RStudio package interface allows one to easily load or unload
an installed package, as well one can install packages from CRAN and other
sources.

External packages

As mentioned, R can be extended through external packages which one can
install into a local R environment. There are literally thousands of such pack-
ages available.

Packages are primarily available through CRAN, R’s worldwide reposi-
tory of packages and R source. Several packages are also available through
the BioConductor project http://www.bioconductor.org, r-forge https://
r-forge.r-project.org/, GitHub https://github.com/languages/R, Google
Code Page https://code.google.com/, and other sites.

RStudio provides a Package pane for interacting with packages (Fig-
ure 1.7). From here one can load and unload currently installed packages
by toggling the checkboxes on the left of the package name. Once loaded the
(exported) functions and data sets of the package are available for use.

Packages can also be installed onto a user’s system. The interface for this
requires three pieces of information:

• The package name. As there are so many add-on packages, this is pro-
vided through an entry box with autocompletion.

• The repository to install the package from. The default is one of CRAN’s
repositories. It could also be used to indicate a locally downloaded file
or another repository.

• The library of packages to install the package into. When loading an
installed package, R searches over available package libraries. Often
this can be left to the default, but if there are permission issues or other
complications, this may need to be set. For details see ?.libPaths.
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Packages may have dependencies on other packages. The default settings
are to automatically install any dependent packages.

Like R, packages are versioned. The “Check for Updates” tool button will
search for new versions of currently installed packages and gives the user a
chance to update those that are out of date. This is all very similar to how a
smartphone keeps track of its installed applications and their versions.

For non-RStudio usage, the following functions perform the core func-
tionality: to load an installed package, there are require and library; to
install a package from CRAN there is install.packages; to list the packages
available through CRAN, there is available.packages; and to update any in-
stalled packages to the latest version from CRAN, there is update.packages;

For example, the UsingR package accompanies this book. To install it one
could issue the command:

install.packages("UsingR") # done once

If one is not already set, a query, as to which CRAN repository to use
for downloading files, will be made. The UsingR package has several depen-
dencies.11 The defaults for the above call will download and install those not
currently installed into the user’s package library at the same time.

Once downloaded, the function require (or alternatively, library) is used
to attach the package to the workspace:

require("UsingR") # done each session

Data sets

Many packages include accompanying data sets. The UsingR package has
several that we will see utilized in the text. This package also calls in, among
others, the HistData package that provides data sets from the history of statis-
tics and data visualization. In addition, base R has a datasets package that
is loaded automatically, unless one requests something different.

For the most part, the data sets in a package are available in the user’s
search path, though they don’t appear in the Workspace pane by default. For
example, the rivers data set is part of the datasets package. Here we show
the first 6 values:

head(rivers) # head displays first 6 only

## [1] 735 320 325 392 524 450

11The package depends on the MASS [57], ggplot [61], lubridate [27], Hmisc [34], coin [31]
[32], aplpack [63], vcd [41], LearnEDA [4], quantreg [38], and HistData [24] external packages.
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The data function The rivers object cannot be edited directly, any edits
will produce a copy in the user’s workspace. (This copy will then also display
in the Workspace pane of RStudio.) A copy will also be made if one brings
the data set into the workspace with the data function:

data(rivers) # create local copy of data

The data function can also be used to search a package for available data
sets, e.g., data(package="UsingR").

The Cavendish (HistData)12 data set contains data from a series of experi-
ments carried out by Cavendish in 1798 to estimate the gravitational constant,
G. We can look at its first 6 values with:

require("HistData") # only needs to be done once

## Loading required package: HistData

head(Cavendish)

## density density2 density3
## 1 5.50 5.50 NA
## 2 5.61 5.61 NA
## 3 4.88 5.88 NA
## 4 5.07 5.07 NA
## 5 5.26 5.26 NA
## 6 5.55 5.55 NA

Data frames The output above is different from what we have seen so far.
This data set is stored as a data frame:

str(Cavendish)

## ’data.frame’: 29 obs. of 3 variables:
## $ density : num 5.5 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65 ...
## $ density2: num 5.5 5.61 5.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65 ...
## $ density3: num NA NA NA NA NA NA 5.36 5.29 5.58 5.65 ...

A data frame is R’s way of organizing several related variables into one
object. Data frames are rectangular sets of data with each column being a
variable and each row representing a case. We discuss much more about
data frames in Chapter 4. For now, we just want to indicate how one accesses
a variable from a data frame.

12We use this typesetting convention to refer to data sets in packages that are not loaded by
base R.
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The output of str(Cavendish) shows there are three variables in this data
frame: density, density2, and density3. We can reference the values in, say,
density2 through the syntax dataframe_name$variable_name, as in:

head(Cavendish$density2)

## [1] 5.50 5.61 5.88 5.07 5.26 5.55

Later, we will see other ways to do this task and why we use a dollar sign
here, but this is perhaps the most common. For now, we see that we can treat
this data just like a data set we may have typed in:

summary(Cavendish$density2)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.07 5.34 5.47 5.48 5.62 5.88

Problems

1.1 Use R as you would a calculator to find numeric answers to the following:

1. 1 + 2(3 + 4)

2. 43 + 32+1

3.
√
(4 + 3)(2 + 1)

4.
(

1 + 2
3 + 4

)2

1.2 Rewrite these R expressions as math expressions, using parentheses to
show the order in which R performs the computations:

1. 2 + 3 - 4

2. 2 + 3 * 4

3. 2/3/4

4. 2ˆ3ˆ4

1.3 Use R to compute the following

1 + 2 · 34

5/6− 7
.
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1.4 Use R to compute the following

0.25− 0.2√
0.2 · (1− 0.2)/100

.

1.5 Assign the numbers 2 through 5 to different variables, then use the vari-
ables to multiply all the values.

1.6 The rivers data set is loaded when R is. View the data by typing its
name and then the return key. What is the last value listed?

1.7 The exec.pay (UsingR) data set is available from the command line after
loading the package UsingR. Load the package, and inspect the data set. Scan
the values to find the largest one.

1.8 For the exec.pay (UsingR) data set, apply the functions mean, min, and
max. What are the values found?

1.9 The basic mean function has an additional argument trim. When given,
the specified proportion of the data is trimmed from the sorted data be-
fore the mean is taken. Compare the difference between mean(exec.pay) and
mean(exec.pay, trim=0.10).

1.10 The Orange data set is stored as a data frame with three variables. What
are the three variables?

1.11 Compute the average age of the trees in the Orange data set using mean.

1.12 Compute the largest circumference of the trees in the Orange data set.
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Univariate data

We discuss in this chapter single variable (univariate) data sets and various
summaries for such data. Univariate data are the building blocks for multi-
variate data sets, but we resist the temptation to start there, preferring to take
our time in the development.

First, what do we mean by a data set? Let’s think about it in terms of a
data collection process. We may wish to understand measurement or charac-
teristics of several different cases.

A case is one of several different possible items of interest. A typical exam-
ple would be the individuals in some population (a classroom, likely voters).
In some texts [42] this is how cases are defined, but we prefer a more generic
term to avoid confusion with examples such as hospitals in a state or country,
or gas stations in the country.

A variable is some measurement or characteristic of a case. For example,
with students in a classroom the last test grade; for likely voters their party
affiliation, if any; and for gas stations, their current price per gallon.

A univariate data set is then a set of measurements for some variable from
a collection of cases. We use the subscript notation to represent such a data
set:

x1, x2, . . . , xn.

The subscript gives an implicit order to the data, which is basically a way
to keep track of which case the measurement is for.

Levels of measurement In 1946, Stanley Smith Stevens [54] posited an in-
fluential description of various types of data. His ordering consisted of data
being:

nominal Such data is qualitative or descriptive, but not numeric. An example
might be the name of a person or the town they are from, or the number
on a bib a runner wears in a race.

ordinal Ordinal data is data with some order, so that we can sort the data
from largest to smallest, say. An example might be the place a runner
takes in a race.

20
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interval Interval data is ordinal data where the difference between two val-
ues has some interpretation. The clock time a person finishes might be
an example. If we know runner A finishes at noon, and runner B at
1PM, then we know that runner B took longer. Since we haven’t speci-
fied when they started, we don’t know what percent longer though.

ratio Ratio data has a meaningful 0. If we record not the time of finishing,
but the time since starting, then 0 has a meaning and we can take a
ratio of the total time for runner A and B to compare the two.

Though this taxonomy has permeated many textbooks, especially in the
social sciences, we prefer to characterize data to match how we work with it
on the computer. We have:

factor data When we look at many variables, some may simply record cat-
egories used to group the data. In R we will use factors to store these
variables. An example might be the browser a user has used to view a
web site, as gleaned from a web site log. Such information is important
to web programmers.

character data Some categorical data are factors, but others are really just
identifiers, and are not used for grouping. An example might be a
user’s IP address. This is basically a unique code identifying a com-
puter, like an address. The distinction between factor and character data
can be thought of as the distinction between categorizing a case or charac-
terizing a case. While both factor and categorical data are “nominal” we
keep the distinction as we will interact with such data in R differently.

discrete data Discrete data comes from measurements where there are es-
sentially only distinct and separate possible values that can be counted.
For example, the number of visits a person makes to our web site will
always be integer data, as will other counting data.

continuous data Continuous data is that which could conceivably come
from a continuum of values. The recording of the time in milliseconds
of a vist to a web site might be such data. A useful distinction is that for
discrete data we expect that cases will share values, whereas for contin-
uous data this will be impossible, or at least very unlikely. There is no
fine line though. We can always turn continuous data into discrete data
just by truncating (e.g., recording the minute, not the millisecond of
a visit) or by binning. Rather than draw distinctions for numeric data
between ordinal, interval or ratio, it is more important for statistical
theory—in finding a model for the recorded data—to know if the data
is discrete or continuous.

date and time data Though we just saw that time data can be considered
continuous or discrete depending on resolution, for computers there
are often separate ways entirely to handle date and time data. Issues
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that complicate matters are as familiar as leap days and time zones, but
there are even more subtleties. For example, scale. People in finance
want millisecond data, but over long time ranges this recording can
literally run out of numbers on a computer. Astronomers need precise
measurements for durations down to leap seconds. R has several ways
to work with such data, that go beyond just storing the values as simple
numbers.

hierarchical data The traditional idea of a data set being several measure-
ments for different cases is widely established. Such data nicely fits
into a spreadsheet in a rectangular manner, and in tables of data bases.
However, this structure doesn’t fit well for every data set of interest. For
example, data on networks. We don’t discuss such examples in the text,
but include it here to point out that this list is far from comprehensive.

This chapter will begin with some R basics for working with data sets
and then proceed to look at various summaries—numeric and graphical—of
different types of data.

2.1 Data vectors

Our notation for a data set, x1, x2, . . . , xn suggests already a few things: there
are n items, and, by using a common name, they are all measurements of the
same type. R’s basic data structure is perfectly suited for this. The c function
can be used to bundle our data set together.

Suppose the number of whale beachings in Texas during the 1990s was

74 122 235 111 292 111 211 133 156 79

We can combine these values into a data set with R through:

whale <- c(74, 122, 235, 111, 292, 111, 211, 133, 156, 79)

We just separate values with a comma. We refer to the whale object as a
data vector.1 It has the same properties as a data set: a size and a common
type for the values.

The size of the data set is the “n”, and is retrieved in R with the length
function:2

length(whale)

## [1] 10

1Technically, what we call “data vectors” are more commonly referred to as just “vectors,”
a more common mathematical usage. They are generalized by adding dimensions to create
matrices and arrays.

2Both c and length have a much wider usage. Here we describe their specialization to data
vectors.
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The number of elements is of interest, and R shows a count when it prints
a vector. This is the [1] that appears before the output. As even single num-
bers (scalars) are treated as vectors of length 1, these too are prefixed, as
above. When the output spans more than one row, each row is prefixed by
the index of the first member of the row.

There are, of course, many other useful functions in R to extract informa-
tion from a data vector. For example, as seen, we can get the total number
using sum:

sum(whale)

## [1] 1524

The average number can be found by combining these two:

sum(whale)/length(whale)

## [1] 152.4

Or, more commonly, this is done directly through the mean function:

mean(whale)

## [1] 152.4

Vectorization As mentioned, the arithmetic operations and the mathemati-
cal functions are vectorized, in that they will be called for each element in a
data vector. Where sum, length, and mean are reductions, in that when they
are called with a vector they reduce it down to a number, vectorized functions
maintain the size of the vectors involved, possibly after recycling to reach a
consistent length. Above, the division by length(whale) used vectorization.

Here are more examples, all returning a vector of length 10:

whale - mean(whale) # mean(whale) recycled

## [1] -78.4 -30.4 82.6 -41.4 139.6 -41.4 58.6 -19.4 3.6 -73.4

whale^2 / length(whale)

## [1] 547.6 1488.4 5522.5 1232.1 8526.4 1232.1 4452.1 1768.9
## [9] 2433.6 624.1

sqrt(whale)

## [1] 8.602 11.045 15.330 10.536 17.088 10.536 14.526 11.533
## [9] 12.490 8.888
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Missing values, NA Some data sets are not complete. In the initial exam-
ples, we discussed a New York Times article on a study [33] to look at the price
of hip replacements. Simulated data from 15 hospitals is given here:

10,500 45,000 74,100 NA 83,500 86,000 38,200 NA
44,300 12,500 55,700 43,900 71,900 NA 62,000

Here we use, as the authors did, the value “NA” (not available) for data
that was not available. In this case, the surveyed hospitals could not provide
the information on the cost of a total hip replacement.

Such situations are quite common. R provides the special variable NA to
represent values that are missing. Using this, to enter the above data set into
R could be done with:

hip_cost <- c(10500, 45000, 74100, NA, 83500, 86000, 38200, NA,
44300, 12500, 55700, 43900, 71900, NA, 62000)

The value NA is interpreted as the value is missing, but could possibly
be there. As such, it would be incorrect to assume it has no value—it is just
unknown. This effects how the data is used. For example, we could try and
take the total costs, as perhaps we work for an insurer and are attempting to
estimate a total exposure:

sum(hip_cost)

## [1] NA

We see then this sum is also not available. (It can be said that NA values
poison subsequent operations.) Many R functions have an argument to spec-
ify what to do with missing data. For sum this argument is na.rm (remove
NA values). The default is on the side of caution, but we can specify TRUE to
change that:

sum(hip_cost, na.rm = TRUE)

## [1] 627600

The mean function has the same argument. A consumer may want to know
if a quoted charge is out of line. The following shows the average costs for
those hospitals that reported a value is just over $52,000:

mean(hip_cost, na.rm=TRUE)

## [1] 52300

For multivariate data sets, and the functions that interact with them, we
will see there are generally more options for dealing with NA values.
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NULL Somewhat related to NA is the value NULL. NULL is a reserved value
usually indicating that some requested action is undefined or unavailable.

NaN, Inf The value NaN looks like NA, but is different. This value arises from
arithmetic operations that are undefined, such as 0/0, or unrepresentable. The
value Inf stands for infinity, and comes from evaluations such as 1/0. Inf
can be positive or negative and can be used as expected with R’s ordering
operators, like <. (Comparisons with NaN produce NA.) These values are part
of the specification for floating point numbers implemented by R.

Attributes: names Data vectors may have attributes. The “names” attribute
allows the association of a name with each case. For example, the built-in
precip data set lists the average rainfall in inches for 70 cities in the United
States. Here we list the first 6 using the head function:3

head(precip)

## Mobile Juneau Phoenix Little Rock Los Angeles
## 67.0 54.7 7.0 48.5 14.0
## Sacramento
## 17.2

The city names are printed above the values. Clearly this is useful infor-
mation when looking at the data, as otherwise we’d need to be familiar with
how the index matches up with the city. In fact, operations may make track-
ing the index mentally quite challenging. Here we sort the data biggest to
smallest to find the top 6 rainiest cities:

head( sort(precip, decreasing=TRUE) )

## Mobile Miami San Juan New Orleans Juneau
## 67.0 59.8 59.2 56.8 54.7
## Jacksonville
## 54.5

The names function returns the names associated with a data vector. Here
we show the first 6 names—without the associated data:

head(names(precip))

## [1] "Mobile" "Juneau" "Phoenix" "Little Rock"
## [5] "Los Angeles" "Sacramento"

3The head function is used to show the first k elements, with k = 6 by default; the tail
function is used to show the last k elements, again with k = 6 by default. The headtail function
is provided by UsingR to show the first and last k elements with ellipses separating them with a
default of k = 3.
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Creating named components The setting of names is so common, that there
are several means to do so. For example, we can specify the values through
c using what is essentially a key=value syntax:

test_scores <- c(Alice = 87, Bob = 72, Shirley = 99)

Quoting the key values is optional, though necessary if a name contains
spaces.

Alternatively, the setNames function can be used to set the names. This
is more commonly used with programming, as you’ll see the syntax is a bit
more verbose:

test_scores <- setNames(c(87, 82, 99), c("Alice", "Bob", "Shirley"))

Assignment functions In R there are several functions which take on two
forms, one to “get” and one to “set” values. The names of these functions
come in pairs, for example names and names<-. The latter is used for assign-
ment. Though they look similar when used, the setting operator appears on
the left-hand side of the assignment, as below.4

test_scores <- c(87, 782, 99)
names(test_scores) <- c("Alice", "Bob", "Shirley")
test_scores

## Alice Bob Shirley
## 87 782 99

We used a character vector for the names. The assignment functions are
typically called through fun(x) <- value to set the value for x. This notation
can be a bit confusing at first, as it doesn’t fall into the typical x <- value.

Coercion As mentioned a univariate data set, being comprised of similar
measurements, should have values of the same basic type. This need not be
the case when entered into a data vector:

x <- c(1, "two", "III")
x

## [1] "1" "two" "III"

Note how x is printed: all the values are in quotes. What happened? Data
vectors too must all be of the same type when stored in R.5 Here R silently

4The assignment functions mutate the values assigned to a variable, unlike most other func-
tions in R which do not.

5In R, a list is a generalized vector where each component may have a different type.
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coerced, or converted, the numeric value 1 into the string "1". Basically, if
we try to combine different types of objects through c, R will promote each
element to a common type, which often will be a character type.

One common mistake is to use the character string "NA" instead of the NA
variable itself when specifying missing values. Such a mistake will silently
convert all values to character.

The coercion can also be done through the “as” functions. Here, we show
how to coerce back and forth between numbers and characters:

as.numeric("1")

## [1] 1

as.character(1)

## [1] "1"

There are several other specific “as” functions and one simply named as
to do general coercions.

scan There are many alternatives to c for entering data into R. We wait until
Chapter 4 to discuss most of these, as they often result in a data frame, which
are discussed therein. However, one way to read data in from the command
line or a file that returns a data vector is the scan function. This function has
many arguments, we mention just its first which allows us to indicate if the
function should scan the keyboard input or scan the contents of a file. If left
empty, it will scan the keyboard until an empty line is specified. With scan
we can separate values by spaces:

scan()
1: 74 122 235 111 292 111 211 133 156 79
11:

Read 10 items
[1] 74 122 235 111 292 111 211 133 156 79

In the above, we copied and pasted in the values and then added a new
line to indicate we were done. This output the 10 values we specified, but did
not save them, as we did not assign the values to a name.

Alternatively, we can scan values from a file. For example, suppose the
file whale.txt contained the same data. This command will read in the file
and store its scanned values in the whale variable.

whale <- scan("whale.txt") # or scan(file.choose())
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We specified a file name on the working directory. If that is not where the
data file is, it can be convenient to browse for the values. The file.choose
function will do just that.

Structured data

There are some convenient functions for generating structured data. For sim-
ple sets of contiguous integers the colon operator, :, may be used:

1:5 # 1 2 3 4 5

## [1] 1 2 3 4 5

1:length(whale) # 1 2 3 ... 10

## [1] 1 2 3 4 5 6 7 8 9 10

0:(length(whale) - 1) # 0 1 2 ... 9

## [1] 0 1 2 3 4 5 6 7 8 9

The value returned by the command a:b is a sequence from a to b with
a step size of 1 and not exceeding b. We can have b being less than a, in
which case the sequence counts down. The second example shows a com-
mon construct used when we want to reference all values of a data vector
by its indices.6 The third example illustrates that parentheses are needed to
do arithmetic on the values of a and b, as the colon operator has higher
precedence, it will be done before the subtraction unless otherwise directed
through parentheses.

Sequences increasing by 1 are arithmetic sequences, which more generally
can increase (or decrease) by a given step size, say h (which could be neg-
ative). To generate the values a, a + h, . . . , b = a + nh, the seq function is
convenient. Such a sequence is returned through seq(a, b, by=h), or using
positional arguments just seq(a, b, h). To count by 10s to 100 we could
have:

seq(0, 100, by=10) # count by 10s

## [1] 0 10 20 30 40 50 60 70 80 90 100

The value of b is a suggestion and if the argument for by does not allow
b-a to be written as a multiple of h, b won’t be included (or exceeded) in the
returned vector.

6For programming, it is suggested to use the function seq_along which is basically
1:length(x), but handles more gracefully the case where the data vector is of 0-length.
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To return a sequence of a given length between a and b can be done by
choosing the by value appropriately, but is much easier done by specifying
the desired length, through the length.out argument:

seq(0, 100, length.out=11) # counts by 10s as well

## [1] 0 10 20 30 40 50 60 70 80 90 100

The rep function The rep function can be used to repeat values. The basic
form is to repeat the first argument, the number of times specified in the
second:

rep(5, times=10) # 10 5s

## [1] 5 5 5 5 5 5 5 5 5 5

That can be convenient. The values can be vectorized, for much more
complicated patterns. To get the pattern 1, 2, 3 four times we have:

rep(1:3, times=4)

## [1] 1 2 3 1 2 3 1 2 3 1 2 3

Whereas to get the pattern 1, 1, 1, 2, 2, 3 we have:

rep(c(1,2,3), times=c(3,2,1)) # or rep(1:3, 3:1)

## [1] 1 1 1 2 2 3

When the times argument is a vector of length matching the length of x,
then it specifies how many times each corresponding value in x should be
repeated.

Indexing

The subscript in our data set notation, x1, x2, . . . , xn, indicate that data has a
notion of size and order. R’s data vectors allow us to access and assign to
parts of a data vector using indices. As in our notation, the first element is
indexed by a 1.7 There are several different ways that we can extract parts of
a data vector: by numeric index, by name, by a matching-sized logical vector
(c.f. Table 2.1). We will come back to the latter.

7Several computer languages use 0-based indices.
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Numeric indices The notation for indexing is the square bracket [ in con-
trast to how functions utilize parentheses.8 Inside the paired brackets go the
specific index. The simplest case is just a single number:

whale # all the values

## [1] 74 122 235 111 292 111 211 133 156 79

whale[1] # first element

## [1] 74

whale[2] # second element

## [1] 122

whale[11] # 11th element is not there

## [1] NA

The last command, whale[11], illustrates what happens when an attempt
to access an index beyond the length of the data vector. R does not raise an
error, but rather returns NA.

We are not limited to single indices, the index vector can be as long as
desired:

whale[c(1,3,5,7,9)]

## [1] 74 235 292 211 156

Here we see that the indexing operation is vectorized, and all the corre-
sponding values are returned.

There is a convenient convention of negative indexing which extracts all but
the specified values. This can be quite convenient. The one caveat, we cannot
use both negative and positive indices at once. This call will return all but
the first element of whale:

whale[-1]

## [1] 122 235 111 292 111 211 133 156 79

Indexing by 0 returns a 0-length data vector, as does indexing by a 0-
length vector. If no index is specified, as in whale[], the entire data vector is
returned.

8We will see that lists also use a double square bracket, [[.

www.ebook3000.com

http://www.ebook3000.org


2.1. DATA VECTORS 31

Indexing with names For data vectors with a names attribute, we can ref-
erence values by their name, instead of position. For example, the average
amount of rain in Seattle and New York is given by:

precip[c("Seattle Tacoma", "New York")] # which is rainier?

## Seattle Tacoma New York
## 38.8 40.2

The match function is used to find where a value is in a data set. To find
out the corresponding indices for these names, one could use the following
construct and then index by number:

match(c("Seattle Tacoma", "New York"), names(precip))

## [1] 65 42

This illustrates the greater ease of using the names directly. There is no
negative indexing with names.9 As well, when a name does not exist, the
value of NA is given:

precip["Seattle"] # needs "Seattle Tacoma" to match

## <NA>
## NA

Later, we will see that we can index by a logical vector in addition to
numeric indices or names.

Assignment through indexing The assignment function [<- allows us to
assign to parts of a data vector. The simplest case is when the length of the
indexing vector matches the length of the assigned values. For example, to
change the first value of a data set can be done through:

x <- c(1, 2, 3)
x[1] <- 11 # 11 is now first value
x

## [1] 11 2 3

The index can be a vector, so the following works:

9The subset function which does have some features for negative indexing with names will
be discussed in Chapter 4.
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Command Description

x[1] The first element of x.
x[] All elements of x.
x[length(x)] The last element of x.
x[c(2,3)] The second and third elements of x.
x[-c(2,3)] All but the second and third elements of x.
x[0] 0-length vector of same type as x.
x[1] <- 5 Assign a value of 5 to first element of x.
x[c(2,3)] <- c(4,5) Assign values to second and third elements of x. In

assignment, recycling of the right-hand side may oc-
cur. Assignment can grow the length of a data vec-
tor.

Table 2.1: Various uses of indexing by numeric indices.

x[2:3] <- c(12, 13)
x

## [1] 11 12 13

We can extend the size of a data vector through assignment. “Holes” will
be filled in by NAs:

x[6] <- 6
x

## [1] 11 12 13 NA NA 6

To reduce the size of a data vector we simply reassign the variable using
a subset of the data vector, e.g. x <- x[1:2].

Recycling When the right-hand side has fewer elements than the data vec-
tor referred to on the left-hand side, R will recycle the value on the right-hand
side. This makes it easy to assign many values at once. For instance to set the
last two values to 0 in x, we have:

x[2:3] <- 0
x

## [1] 11 0 0 NA NA 6

The vector 0 is recycled to c(0,0) then assigned. When the right-hand
side is a single value, recycling is easy to understand. When it is not, then
the right-hand side is repeated a sufficient number of times:
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x <- 1:10
x[] <- 1:3 # 10 on left, 3 on right

## Warning: number of items to replace is not a multiple of replacement
length

x

## [1] 1 2 3 1 2 3 1 2 3 1

R gives a warning about the 3 (the length of the right-hand side) not
being a multiple of 10 (the number of items referenced through x[], but does
as requested).

Recycling isn’t magic, just very convenient. If could be done manually
with the rep function—just repeat the vector a given number of times. For
recycling that is not a multiple of the desired length, we can use a construct
like the following. The %% operator finds the remainder after division, and
then these values are shifted by 1 to get the corresponding index:

n <- 10 # get 10 elements of x
x[1 + 0:(n-1) %% length(x)] # use remainder for indices

## [1] 1 2 3 1 2 3 1 2 3 1

Data types

So far, we have used numeric and character data in the examples. Of course,
there can be many other types of data possible. To organize this, R assigns a
class attribute to most R objects and otherwise creates an implicit class for an
object. The class of an object is used to determine how it should be printed.10

The class function will return the class of an object. For most objects, this is
a single character, but may be a character vector.

Numeric data types

The two main classes for numeric data are numeric and integer, though there
are others, e.g. complex. Most of the time numbers are numeric. For example,
to see that all of these objects are numeric:

c(class(1), class(pi), class(seq(1, 5, by=1)))

## [1] "numeric" "numeric" "numeric"

10Indeed, the class of an object decides which function definition should be used for many
different functions, not just print and show.
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To make an integer value, we need to work a bit: we can preallocate space
for an integer data set of length n with integer(n); we can use the suffix L to
force a number to be treated as an integer (e.g., 1L); we can coerce numeric
values of integer type through the as.integer function.

To the casual R user, the distinction is not important. Integers are stored
differently. They are precisely known, but have a limited range, roughly be-
tween±2 · 109. Numeric values are stored using floating point representation.
This format can store much larger integer values and has a much wider range
of numbers it can represent.11

However, floating point representation cannot store all numbers exactly.
For the data sets in this text, we won’t need to think about this. Though if
we try to be too literal, the impact can pop up. For example, the square root
of 2 is irrational and the floating point representation is an approximation. It
shows in the second of these expressions:

sqrt(2) * sqrt(2) # looks right

## [1] 2

sqrt(2) * sqrt(2) - 2 # a difference

## [1] 4.441e-16

In the last command, we see that there is a small difference between the
two numbers—out in the 16th decimal point. This difference can be an issue
when checking equality of values.

Categorical data types

R has two distinct classes for working with categorical data: factor and
character. As mentioned, to distinguish the two: factors are used to classify
values, character data is used to characterize values.

Character data Character data is created just by quoting values. Quotes
can be matching pairs of single or double quotes, though double quotes are
preferred and used to display character values. Within a quoted value a quote
symbol can be used, but it must be escaped by prefixing it with a backslash
(cf. ?Quotes for more details.)

11We can think of each floating point number as stored with three parts: a sign (±1), an
exponent (e, with k = K− e for some K), and a precision, p. Then we can use scientific notation
to represent each number through ±1 · p10k . In R—like other computer languages—scientific
notation is printed with an e to indicate the exponent, e.g., 3.141593e+13 or -3.183099e-14. The
format also allows for the representation of ±∞: Inf, -Inf; a value for “not a number:” NaN; and
plus or minus 0.
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c("Lincoln", "said", "\"Four score", "and seven years ago...\"")

## [1] "Lincoln" "said"
## [3] "\"Four score" "and seven years ago...\""

Combining strings R has some useful utilities to combine strings. Two we
mention are sprintf and paste. The sprintf function uses C-style format-
ting of strings in a vectorized manner. The details are in the help page. We
illustrate two common uses: creating labels and padding values.

To create the labels, X1, X2, . . . , X10, we could type them all in, or note they
are just X with the numbers 1 through 10. This leads us to a template "X%s"
where the %s is filled in with a string (the 1:10 is coerced into character data
via as.character):

sprintf("X%s", 1:10)

## [1] "X1" "X2" "X3" "X4" "X5" "X6" "X7" "X8" "X9" "X10"

There are format strings for numbers too. For example, to pad numbers
so as they line up in a table when printed, we might want to pad with leading
spaces. The template "%8d" indicates it will use 8 characters and expects an
integer value (d). For example:

sprintf("%8d", c(1, 12, 123, 1234, 12345))

## [1] " 1" " 12" " 123" " 1234" " 12345"

The pattern "%2.6f" would be used with numeric numbers to show 6
decimal places, and pad the integer part to at least 2 spaces.

The paste function The paste function offers similar functionality to sprintf.
For example, the label example would be done with:

paste("X", 1:10, sep="")

## [1] "X1" "X2" "X3" "X4" "X5" "X6" "X7" "X8" "X9" "X10"

However, paste has more flexibility. This function has two named argu-
ments sep and collapse, and can take an arbitrary number of variables.

The sep argument is used as a separator between variables:

paste("The", "quick", "brown", "fox", "...", sep="_")

## [1] "The_quick_brown_fox_..."
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This default value of sep is a single space. (The paste0 function is basically
paste with a fixed value of sep="".) Of course, the variables can be vectorized
(not sep):

paste(c("Four","The"), c("Score","quick"), c("and","fox"), sep="_")

## [1] "Four_Score_and" "The_quick_fox"

Recycling will be used to match vector lengths. The result of the above
is a vector. The collapse arg can be given to combine the elements of the
resulting vector with the given delimiter. This example takes a named vector
and produces a different output:

x <- c(one=1, two=2, three=3)
out <- paste(names(x), x, sep=":", collapse=", ")
sprintf("[ %s ]", out)

## [1] "[ one:1, two:2, three:3 ]"

The above is a start on writing an R object in a common string-based
format (JSON). It shows how we can compose the two functions, which is
sometimes most convenient to get a desired output.

R has many other utility functions for manipulating character data avail-
able to the programmer. We won’t have need of these in this text, but note
that the useful add-on package stringr gives them a more uniform interface
and adds some conveniences.

Factors A factor can be made from a character vector with the factor func-
tion. For example, an experiment might have twelve cases, each in one of
three categories. Here we can create a variable to indicate which:

x <- paste("X", rep(1:3, 4), sep="")
y <- factor(x)
y

## [1] X1 X2 X3 X1 X2 X3 X1 X2 X3 X1 X2 X3
## Levels: X1 X2 X3

The values in y print differently than those in x, which would be enclosed
in quotes. As well, the “levels” of y are printed.

The levels of a factor are a list of all possible categories for the data in
the factor. They need not all be represented in a particular factor, but when
we create a factor through factor the default choice is simply the collection
of unique values. (We can specify more through the levels argument.) The
current levels of a factor are returned by the levels function.
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The presence of levels makes working with factors a bit different. We can
not assign a value into a factor unless it matches a level. Trying to will raise
a warning and insert a value of NA:

y[1] <- "X4"

## Warning: invalid factor level, NA generated

y

## [1] <NA> X2 X3 X1 X2 X3 X1 X2 X3 X1 X2 X3
## Levels: X1 X2 X3

Adding a level To add a level to a factor can be done with the levels<-
function. The following would allow us to assign X4 to the first element of y:

levels(y) <- c(levels(y), "X4") # add "X4" to existing levels
y[1] <- "X4"
y

## [1] X4 X2 X3 X1 X2 X3 X1 X2 X3 X1 X2 X3
## Levels: X1 X2 X3 X4

The right-hand side of the assignment can be used to change the names
for the labels:

levels(y) <- paste("label", 1:4, sep="")
y

## [1] label4 label2 label3 label1 label2 label3 label1 label2
## [9] label3 label1 label2 label3
## Levels: label1 label2 label3 label4

Or can be used to collapse levels. Here we collapse a state factor to a
region factor (the state.region variable could also be used here):

y <- factor(state.name[1:5])
y

## [1] Alabama Alaska Arizona Arkansas California
## Levels: Alabama Alaska Arizona Arkansas California

levels(y) <- c("South", "West", "West", "South", "West")
y

## [1] South West West South West
## Levels: South West
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The above shows one way to drop a level. Another way is to specify the
factors. For example, placing the [1:5] after calling factor produces 50 levels
for our data vector of 5 states. We can specify levels by calling factor with
specific levels listed:

y <- factor(state.name)[1:5]
y # 50 levels

## [1] Alabama Alaska Arizona Arkansas California
## 50 Levels: Alabama Alaska Arizona Arkansas ... Wyoming

factor(y, levels=y) # levels are actual values

## [1] Alabama Alaska Arizona Arkansas California
## Levels: Alabama Alaska Arizona Arkansas California

Generating new factors Related to rep, but used for generating factors
which are repeated, is the gl function. Suppose our task is to create a fac-
tor with 5 copies of red, green, and blue. We could type this in:

r <- "red"; b <- "blue"; g <- "green"
factor(c(r,r,r,r,r,g,g,g,g,g,b,b,b,b,b))

## [1] red red red red red green green green green green
## [11] blue blue blue blue blue
## Levels: blue green red

Or we could have used rep(c(r, g, b), c(5,5,5)).
Either isn’t too terrible, but such repetition begs for a more automated

approach. The gl function does this, we specify the number of levels (3), how
often they are to be repeated (5 times), and optional labels:

gl(3, 5, labels=c("red", "green", "blue"))

## [1] red red red red red green green green green green
## [11] blue blue blue blue blue
## Levels: red green blue

We can also specify a length apart from the default of n · k which will
cause truncation or recycling.

Another common set of derived factor levels come from an interaction
between two variables. As a statistical concept, this is addressed later. Re-
garding the value, the interaction between a factor f1 and f2 is a new factor
(basically an ordered pair of the two) with the new levels being all possible
pairs of the levels.
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For example, consider this reduced set of data from the Cars93 (MASS) data
frame:

m <- head(Cars93)
out <- m$Origin : m$AirBags
out

## [1] non-USA:None non-USA:Driver & Passenger
## [3] non-USA:Driver only non-USA:Driver & Passenger
## [5] non-USA:Driver only USA:Driver only
## 6 Levels: USA:Driver & Passenger USA:Driver only ... non-USA:None

levels(out)

## [1] "USA:Driver & Passenger" "USA:Driver only"
## [3] "USA:None" "non-USA:Driver & Passenger"
## [5] "non-USA:Driver only" "non-USA:None"

Not all the possible pairs are represented in the new factor, out, but these
constitute the levels.

Ordered factors Factors represent categorical data of any type. For catego-
rial data which is ordered, R has the specialization of factor: ordered factors.
Passing the argument ordered=TRUE to the factor constructor will indicate
that the specified levels are ordered. The distinction is most important when
modeling with factors, but the order does indicate how the levels should be
printed.

Date and time types

Working with dates and times is made more convenient using a special data
type. While R has some built-in features to work with dates and times, the
lubridate package will be described here, as it simplifies the usage. It is
installed with the UsingR package, but will need to be loaded. This package
introduces the notion of “instants,” “durations,” and “intervals” of time. We
concern ourselves with some basics, learning how to make and manipulate
instants of time.

The following finds the current time, reports its class, then calls an acces-
sor function to extract the month:

require(lubridate)
current_time <- now() # current time
class(current_time) # cf. ?POSIXct

## [1] "POSIXct" "POSIXt"

as.numeric(current_time) # seconds since Jan 1, 1970
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## [1] 1.399e+09

month(current_time, label=TRUE) # what month?

## [1] May
## 12 Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < ... < Dec

The above shows that now works with R’s built-in classes for handling
times. The POSIXct class records a time as the number of seconds since
the start of 1970, possibly negative. The lubridate function month converts
this into a month. Other such functions are year, day, hour, minute, . . . . The
POSIXlt class stores times in a list holding these pieces.

Besides using now, we can create times other ways. The parse_date_time
function is one. Times and dates are often presented in a variety of different
formats, so R needs some help parsing them from a string to a date object.

The following time is in a common format: "15-Feb-2013 07:57:34" with
order day, month, year and then hours, minutes, and seconds being obvious
to a human mind. The only thing missing is a time zone. To read this string
in as a date, we need to give hints as to what the fields are. For that, there are
codes. The six values above are coded with: "dbYHMS". Only b is unexpected—
and necessary—as the “m” for month is used by minutes. For the list of these
codes consult ?parse_date_time.

x <- "15-Feb-2013 07:57:34"
y <- parse_date_time(x, "dbYHMS")
year(y) # can get pieces

## [1] 2013

The convenience functions ymd and ymd_hms can also do this task.

Another way to create new times is to modify existing ones. As times can
be internally thought of as just a number of seconds since some origin, it is
clear how we would do arithmetic with times. To turn back the clock one day
can be done with:

now() - days(1)

## [1] "2014-05-01 13:01:15 EDT"

now() - hours(24) # same thing

## [1] "2014-05-01 13:01:15 EDT"
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Logical data

R uses TRUE and FALSE to represent Boolean or logical data.12 Logical data is
produced by many R functions, for example the “is” functions:

is.na(1)

## [1] FALSE

is.numeric("one")

## [1] FALSE

is.logical("false") # "false" is character

## [1] FALSE

But most common, is the use of the comparison operators—<, <=, ==, !=,
>=, >—to produce logical values:

3 < pi

## [1] TRUE

"one" == 1 # 1 is first coerced to "1"

## [1] FALSE

sqrt(2) * sqrt(2) == 2 # floating point gotcha

## [1] FALSE

The last example shows that comparing floating point numbers with ==
can be problematic, as mathematically equal values will not always be equal
within R due to round-off error. R provides a function all.equal to test for
near equality. The latter would best be done in this verbose manner:

isTRUE(all.equal(sqrt(2) * sqrt(2), 2))

## [1] TRUE

The comparison operators are vectorized. Basically, the comparison ques-
tion is asked element by element, with recycling happening as needed:

12The variables T and F are possible to use for TRUE and FALSE. As these are not guaranteed
to be overwritten by some other binding, they are best to avoid.



42 CHAPTER 2. UNIVARIATE DATA

whale <- c(74, 122, 235, 111, 292, 111, 211, 133, 156, 79)
whale > 100

## [1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

whale == 111

## [1] FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE

The operators ! (for not), & (for and), and | (for or) can be used to combine
values.13 The following shows how to filter by more than one condition:

whale < 100 | whale > 200

## [1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE

whale > 100 & whale < 200

## [1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE

The functions any, all, which, and %in% There are many useful functions
for working with logical vectors. The any and all functions answer whether
any of the values are TRUE or if all the values are true. For example, are any
values more than 300?

any(whale > 300)

## [1] FALSE

Are all the values more than 50?

all(whale > 50)

## [1] TRUE

The which function returns the indices of the TRUE values in a logical vec-
tor. For example:

which(whale < 100 | whale > 200)

## [1] 1 3 5 7 10

13There are also the shortcut comparison operators && and ||. These are used in programming
to more quickly determine logical conditions and are meant to produce a single TRUE or FALSE
value.
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If there are no TRUE values, a 0-length integer vector is returned.
The %in% function tests whether an element is in a collection, returning

TRUE or FALSE if it is. It is an infix operator, used as follows:

292 %in% whale # is 292 in whale?

## [1] TRUE

This query could be asked other ways, for example using == as follows
compares 292 to each value in whale and answers if they are equal. If any are,
the following output will be TRUE:

any(292 == whale)

## [1] TRUE

However, %in% is defined in terms of the match function which allows the
first argument to be a vector. It returns the index of the first match or NA:

match(c(292, 293), whale)

## [1] 5 NA

Coercion Logical values can be coerced to numeric values by as.numeric,
where TRUE becomes 1 and FALSE becomes 0. This can be confusing, but is
commonly used. For example to add up the number of whale beachings
more than 200 can be done by counting or programmatically with:

sum(whale > 200)

## [1] 3

This is a common idiom and leverages the fact when logical values are
used with arithmetic operations the values are silently coerced to numeric.
Being explicit through sum(as.numeric(whale>200)) is less convenient.

We can also coerce numbers to logical with as.logical. Only 0 maps to
FALSE, NaN maps to NA, and others to TRUE. The characters "T", "TRUE", "True",
"true" become TRUE, corresponding values become FALSE, else the value is
coerced to NA.

Indexing In our discussion of indexing a vector, we left for now the use of
a logical vector for indexing. If vec is a logical vector with the same length as
x, then x[vec] will refer to only those variables for which vec is TRUE.

This proves remarkably useful. A typical example might to be extract
those values larger than the mean value:



44 CHAPTER 2. UNIVARIATE DATA

whale <- c(74, 122, 235, 111, 292, 111, 211, 133, 156, 79)
whale[ whale > mean(whale) ]

## [1] 235 292 211 156

This next expression returns data exceeding 1 standard deviation from
the mean, in either direction:

whale[whale < mean(whale)-sd(whale) | whale > mean(whale)+sd(whale)]

## [1] 74 235 292 79

Another common idiom is to use logical indexing to remove NA values:

hip_cost <- c(10500, 45000, 74100, NA, 83500, 86000, 38200, NA,
44300, 12500, 55700, 43900, 71900, NA, 62000)

hip_cost[ !is.na(hip_cost) ] # store as variable ...

## [1] 10500 45000 74100 83500 86000 38200 44300 12500 55700 43900
## [11] 71900 62000

• Example 2.1: Recoding values
Often, an obviously too large number, such as 999 for a weight, is used to
code NA. For example, the babies (UsingR) package does this. What is obvious
to the eye, is not to the computer, so we recode these to NA.

x <- babies$dwt # Weight of dad
x[ x == 999 ] <- NA # 999 is used for NA
range(x, na.rm=TRUE) # avoid NA values

## [1] 110 260

••

• Example 2.2: Using one variable to filter another
The kid.weights (UsingR) data set has several variables including height and
age (in months) recording height and weight for several subjects. To extract
the heights of four-year-olds, we use the age variable to subset:

age <- kid.weights$age
ht <- kid.weights$height
ht[ age >= 48 & age < 60]
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## [1] 38 24 40 36 36 41 38 24 40 41 45 37 36 36 39 40 36 43 33 39
## [21] 30

••

Problems

2.1 Enter the following data into a variable p using c

2 3 5 7 11 13 17 19

Use length to check its length.

2.2 Al recorded his car’s mileage at gust last eight fill-ups:

65311 65624 65908 66219 66499 66821 67145 67447

Enter these numbers into the variable gas. Use the function diff on the
data. What does it give? Interpret what both of these commands return:
mean(gas) and mean(diff(gas)).

2.3 Let our small data set be

2 5 4 10 8

1. Enter this data into a data vector x.

2. Find the square of each number.

3. Subtract 6 from each number.

4. Subtract 9 from each number and then square the answers.

Use the vectorization of functions to do so.

2.4 Create the following sequences:

1. "a", "a", "a", "a", "a"

2. 1, 3, . . . , 99 (the odd numbers in [1,100])

3. 1, 1, 1, 2, 2, 2, 3, 3, 3

4. 1, 1, 1, 2, 2, 3

5. 1, 2, 3, 4, 5, 4, 3, 2, 1

using :, seq, or rep as appropriate.

2.5 Store the following data sets into a variable any way you can:
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1. 2, 3, 5, 7, 11, 13, 17, 19

2. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (positive integers)

3. 1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10 (reciprocals)

4. 1, 8, 27, 64, 125, 216 (the cubes)

5. 1964, 1965, . . . , 2014 (some years)

6. 14, 18, 23, 28, 34, 42, 50, 59, 66, 72, 79, 86, 96, 103, 110 (stops on New
York’s No. 9 subway)

7. 0, 25, 50, 75, 100, . . . , 975, 1000 (0 to 1000 by 25s)

Use c only when : or seq will not work.

2.6 The average distance from the center is computed by (|x1 − x̄| + · · · +
|xn − x̄|)/n, where x̄ is the mean of the data vector. Compute this for the
rivers data set using the function sum to add the values and abs to find the
absolute value.

2.7 Precedence rules are used to decide the order of evaluating operations
when parentheses are not present. Look at the value produced by -1:3. What
is done first - or :? Now look at 1:2*3. Which is done first : or *?

2.8 The precip data set records average annual rainfall for many different
cities in the United States. It is stored as a data vector with names. Find the
average amounts for the cities starting with a “J”.

2.9 An experiment had 10 different trials. Create a character vector with 10
different names for the trials, e.g., "Trial 1", . . . .

2.10 Working with file names in R is easy, but requires the proper use of
file separators, which vary depending on the operating system. For example,
suppose you have the directory and file name of a file and want to get the
entire file.

f <- system.file("DESCRIPTION", package="UsingR")
dname <- dirname(f)
fname <- basename(f)

To combine dname and fname into a full pathname use paste with the sep
argument being .Platform$file.sep. What is the result?

2.11 The Manufacturer variable in the Cars93 (MASS) data set is stored as a
factor. How many levels are there? How many different cases are there?
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2.12 The Cylinders variable in the Cars93 (MASS) data set records the number
of cylinders in the respective car. Why can this not be stored as a numeric
value? Which cars have 5 cylinders?

2.13 The mtcars data set records information about cars from 1972. The val-
ues are coded using numbers. Recoding as factors can be more informative
for the user. Recode the am variable, with 0 being “automatic” and 1 being
“manual.”

2.14 The Arbuthnot (HistData) data set contains information on the number
of Male and Female births in London from 1629 to 1710. Using and and > de-
termine if there was ever a year with more female births.

2.15 The negation operator ! is used to reverse Boolean values. For example:

A <- c(TRUE, FALSE, TRUE, TRUE)
!A

## [1] FALSE TRUE FALSE FALSE

One of De Morgan’s laws in R code is !(A & B) = !A | !B. Verify this
with B <- c(FALSE, TRUE, FALSE, TRUE) and A as above.

2.16 In the precip data set, find all the cities with an average annual rainfall
exceeding 50 inches.

2.17 For the precip data set, we can find the mean and the 25%-trimmed
mean with mean(precip) and mean(precip, trim=0.25). Are any values in
the data set more than 1.5 times the trimmed mean above the mean?

2.18 Consider the following “inequalities.” Can you determine how the com-
parisons are being done?

"ABCDE" == "ABCDE"

## [1] TRUE

"ABCDE" < "ABCDEF"

## [1] TRUE

"ABCDE" < "abcde"

## [1] FALSE

"ZZZZZ" < "aaaaa"



48 CHAPTER 2. UNIVARIATE DATA

## [1] FALSE

"11" < "8"

## [1] TRUE

2.19 You track your commute times for two weeks (ten days), recording the
following times in minutes:

17 16 20 24 22 15 21 15 17 22

Enter these into R. Use the function max to find the longest commute time, the
function mean to find the average, and the function min to find the minimum.

Oops, the 24 was a mistake. It should have been 18. How can you fix this?
Do so, and then find the new average.

How many times was your commute 20 minutes or more? What percent
of your commutes are less than 18 minutes long?

2.20 Suppose monthly sales (in 10,000s) of CDs in 2013 were

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
79 74 161 127 133 210 99 143 249 249 368 302

Enter the data into a data vector cd. Through indexing, form two data vectors:
one containing the months with 31 days, the other the remaining months.
Compare the means of these two data vectors.

2.21 The following data records the average salary in major league baseball
for the years 1990–1999 (in millions):

0.57 0.89 1.08 1.12 1.18 1.07 1.17 1.38 1.44 1.72

Use diff to find the differences from year to year. Are there any years where
the amount dropped from the previous year?

The percentage difference is the difference divided by the previous year
times 100. This can be found by dividing the output of diff by the first nine
numbers (but not all ten). After doing this, determine which year has the
biggest percentage increase.

2.2 Functions

Another very important object type in R is the function. We have seen that
to manipulate data in R is done through the calling of various functions. For
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the most part, these functions are written themselves in R, though some are
implemented at a lower level when speed is an issue.

Writing new functions in R is not too difficult, though there are subtleties.
We discuss the subtleties in Appendix A. Here we discuss how to write basic
functions. A function in R is just another object, in this case one with the class
function.

Functions are created with the function constructor which requires a
specification of the arguments and a specification of the function’s body.

Arguments Arguments are enclosed in parentheses and specified through
a name, as in function(x, y). Arguments can have default values, which
are specified using an equals sign, as in function(x, trim=0, na.rm=FALSE).
The default value of this signature for trim would be 0 and for na.rm is
FALSE. Default values make it is easier for the user to call the function, as not
all argument values must be specified.

Body The body of a function is an expression, typically enclosed in braces
(which are optional if the expression contains only one command). Within
the body, the argument names are assigned the values passed in when the
function is called.14 For example, a function to compute the mean might be
defined through:

function(x) {
sum(x)/length(x)

}

The body of this function takes the caller’s input—a numeric variable is
expected—adds the values with sum and divides by their number found by
length. We could be more verbose, and in this case add to readability:

function(x) {
total <- sum(x)
n <- length(x)
total / n

}

A function will return the last value computed in the body unless the
body calls the return value with the specified return value. In the simple
example above, there is no return specified, so the result of the last command
is returned.

The above function definitions create a new function object. However, as
they are not assigned to a name they are created then forgotten. These are

14One of the subtleties of functions in R is how some argument names are found. Here we
have explicit values specified.
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examples of anonymous functions. Such functions can be quite convenient as
arguments to other functions, as we shall see later. More typical, though, is to
bind the new function object to a name for later reuse. Here we use our_mean
for the function’s name:

our_mean <- function(x) {
sum(x)/length(x)

}
our_mean(c(1,2,4,6,8,0)) # try it out

## [1] 3.5

Problems

2.22 Write a function to compute the average distance from the mean for
some data vector.

2.23 Write a function f which finds the average of the x values after squaring
and subtracts the square of the average of the numbers. Verify this output
will always be non-negative by computing f(1:10).

2.24 An integer is even if the remainder upon dividing it by 2 is 0. This re-
mainder is given by R with the syntax x %% 2. Use this to write a function
iseven that indicates if a number is even. How would you write isodd?

2.25 Write a function isprime that checks if a number x is prime by dividing
x by all the values in 2, . . . , x− 1 then checking to see if there is a remainder
of 0. The expression a %% b returns the remainder of a divided by b.

2.3 Numeric summaries

We turn our attention now to various summaries of numeric data. Data sets
come in many sizes and finding the proper way to summarize them for easier
understanding is important. We focus on three main areas:

Center By far the most common summary of a data set is its average value,
referred to as the mean. This is a sense of the center of a data set, but is
not the only one. One alternative is the value for which as many other
values are bigger as are smaller, basically the middle value when they
are sorted. This is the median. Other summaries are the most common
value in the data set, the so-called mode. There are other possible senses
of the middle still. We will discuss why some of these are better than
others and how to compute them for a data set with R.
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Spread The term “spread” is used here to measure the variability in a data
set. We just said the mean is the most common summary of a data
set, but how are we to interpret what the mean says about the data? If
there is no variability, then the mean is the value of all the data. That
says everything. If the variability is very large, then the mean informs
us much less. Without this sense of variability, we can’t be sure of our
interpretation. Once quantified, we can use the value of the spread to
talk about how far from center something is, as the spread gives us
a natural sense of the scale. Learning to think in terms of the spread
of the data, rather a fixed measurement like inches, or minutes is an
important step in learning how to reason with data.

Shape It is important to realize that the “shape” of a data set can influence
how much we can interpret from knowing both the center and spread.
The shape here roughly refers to various things: are values larger than
the mean equally likely as for values less? More likely? Less likely? Are
values very far from the mean really unlikely or not so unlikely? Are
there values where the measurements cluster, or are the possible values
spread out? In classical inferential statistics, a primary role is played
by a particular shape—the bell shape. For this, the answers are the two
sides are equally likely, large values are rather unlikely and values tend
to cluster near the mean. We will look to see if our sample data sets
agree with this, or not.

Center

There are numerous ideas for what is meant by the term “center,” a delib-
erately vague term. A few possible definitions could be the average, which
we know is somewhere between the endpoints, or the middle value which
always exists if there are an odd number of data points. We discuss both in
the following.

The sample mean

Let’s consider data on the weights of four-year-old children, with some values
(in pounds) taken from the kid.weights (UsingR) data set.

wts <- c(38, 43, 48, 61, 47, 24, 29, 48, 59, 24, 40, 27)

The data is not sorted nor organized. Sorting data, though tedious by
hand, can help us understand the values much better. With R sorting data is
made easy with the sort function.

sort(wts)

## [1] 24 24 27 29 38 40 43 47 48 48 59 61
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Figure 2.1: A dot plot of the data on children’s weights. Such a graphic shows
the data in sorted order allowing quick visual senses of both the center and
the spread. Values are just drawn on the number line with repeated values
being stacked.

This data is also drawn on the number line in Figure 2.1, a process that
also sorts the data. From either, we can see a wide range of values.

To make more unambiguous summaries of this data set than “wide
range,” we need to define some specific numeric summaries. The sample mean
is a familiar one, where we add up all the values and divide the number of
values we added:

sample mean = x̄ =
1
n
(x1 + x2 + · · ·+ xn) =

1
n ∑

i
xi.

The sample mean is often just called “x bar” due to its standard notation.
This computation is implemented in R in the basic mean function. For nu-

meric arguments, this function has the argument na.rm to remove NA values
before computing.

The mean for our data set gives us a sense of the average weight and is:

mean(wts)

## [1] 40.67

How to interpret the mean? There are a few useful ways. Graphically the
mean is the visual balance point of the values given. Figure 2.2 shows a visual
illustration for a three-point data set.
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Figure 2.2: The mean is the value that balances the dot plot.

The fact that the mean balances the data also follows from the physics
formula for the center of mass, to which our formula for the mean is a spe-
cialization.

A consequence of this, is that if we consider the deviations from the mean,
di = xi − x̄, then these will “average out” or have mean 0:

devs <- wts - mean(wts)
mean(devs) # 0 up to rounding errors

## [1] 2.369e-15

Computing these deviations is also called “centering” the data set. It can
be very useful to consider values in relation to the mean (“10 more than the
mean”, say), as opposed to just values with some measurement (62), as the
latter may have less context.

This result follows mathematically from that fact that if we add a constant
value (possibly negative) to each data point, then the mean of this trans-
formed data set will be the mean of the original plus this value. In notation,
if yi = xi + c then ȳ = x̄ + c. When c is −x̄ we get the above.

This observation also has other uses. When trying to compute a mean by
hand, it can be very convenient to subtract off a guess for the mean value,
thereby making all the values closer to 0. This makes it easier to work with
them. We only need add back the subtracted amount later.

The trimmed mean The picture of the mean finding a balance between
the data demonstrates also a weakness of the mean when used to represent
“center.” This being that one point can greatly influence the value for the
mean. Visually, this involves just moving one of the data points far to the
right or left. The mean will have to track this movement to keep the balance.
We want a sense of center to describe the “bulk” of the data, not necessarily
a single value, so modifications are sometimes made.

The trimmed mean is one such modification. A common transformation
of a data set is to “Windsorize” the data, by trimming from both sides a cer-
tain percentage of the most extreme values. The trimmed mean is the mean
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of the data after such trimming. The trim argument for the mean function can
be specified (its default is 0) to set a trimming proportion (a value in 0 to 0.5).
So to trim the most top and bottom 10% of the wts data and then find the
mean, we have:

mean(wts, trim = 0.10) # trim 10% of both ends

## [1] 40.3

That this trimmed mean is essentially the mean without trimming is due
to the data not having a very large or small values to skew the sense of center
by the mean. This need not be the case.

• Example 2.3: Income distributions are often skewed
The exec.pay (UsingR) data set holds values on compensation for CEOs of
some American companies. For this data set, there is a large difference be-
tween the mean and the trimmed mean:

mean(exec.pay)

## [1] 59.89

mean(exec.pay, trim = 0.10)

## [1] 29.97

This difference is due to the presence of some very large compensation
packages—the largest being over 41 times the average compensation. These
large values cannot be balanced off by equally small ones, as the compen-
sation cannot be negative. When one side of the data (relative to the center)
carries much more “weight” than the other, then the data is referred to as
“skewed.” ••

Weighted averages Discrete data—where it is expected that there will be
common values—is often presented in tabulated form, and not in raw data
form. As such, our formula for the mean does not immediately apply. If value
yk occurs nk times, then we have the total sum is: n1 · y1 + · · ·+ nk · yk and
the sample mean formula becomes:

1
n ∑

k
nk · yk = ∑

k

nk
n
· yk = ∑

k
wk · yk.
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This last expression is a weighted average where the weights, wk = nk/n,
add to 1.

• Example 2.4: Computing a weighted average
The Macdonell (HistData) data set contains data on measurements of heights
and finger lengths for 3,000 criminals recorded in 1906. The data is stored in
three variables: height, finger, and frequency, where the latter records how
often in the sample of 3,000 the combination occurred. These are frequencies,
nk, not weights, but we can compute those. We do so below to compute the
average height for the individuals in the data set:

w <- Macdonell$frequency / sum(Macdonell$frequency) # n_k/n
y <- Macdonell$height
sum(w*y)

## [1] 5.42

In Chapter 4 we discuss alternatives to typing the data frame name re-
peatedly, as we do above. ••

The sample median

When the trimmed mean is pushed to its limits—trimming 50% of the data
from each end—we are left with basically a single value, that being the “mid-
dle” value of the sorted data set. This is called the median value.

The sample median, M, of x1, x2, . . . , xn is the middle value when there
are an odd number of data points, and the average of the two middle values
when there is an even number. A prescription to find the median is:

• Sort the data from smallest to largest.

• If there are n = 2k + 1 data points, the median is the k + 1st number in
the sorted list. If there are n = 2k data points, the median is the average
of the kth and k + 1th values in the sorted list.

In both cases, why the median is a center is clear: there are k other values
greater than or equal and k other values less than or equal the median.

The sample median is found using the median function, it too has the
argument na.rm to remove NA values.

For example, the median of the values in wts is:

median(wts)

## [1] 41.5
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That the mean and median for this data set are similar, says the data are
more or less symmetrically distributed about the center. Where the mean is a
balance point, the median is the center by count. Balancing takes into account
the size of the deviations, whereas the median just balances off the signs of
the deviations.

• Example 2.5: Trimming doesn’t effect the median
Since the median is just the middle value, if the same percentage of points

are taken from the top and bottom of the data then the median shouldn’t
change. To demonstrate, we manually trim our data and apply the median.

n <- length(exec.pay); trim = 0.10
lo <- 1 + floor(n * trim) # floor drops decimal values
hi <- n + 1 - lo
median(sort(exec.pay)[lo:hi]) # compare to median(exec.pay)

## [1] 27

As median(exec.pay) is also 27 there is no difference. ••

• Example 2.6: Mean and median can give different senses of center
Table 2.2 contains summaries of the household net worth of U.S. households
for various years. The striking thing is the difference between the two mea-
sures of center, with the median being much less than the mean.

Wealth distributions are characterized by some households having signif-
icantly more than the median value. There can’t be a corresponding set of
values significantly less than the median value (presumably no one can go
billions of dollars in debt). This makes the balancing point move to the right
compared to the median.

There are other such examples where the mean will be greater than the
median—income distributions, real-estate prices, waiting times for repairs,
. . . —as there are reasons one side of the median is much more spread out
than the other. ••

Measures of position

We would like to generalize the concept of the median—which basically splits
the data in half—with half the data smaller and the other half larger. The pth
quantile is basically the value in the data set for which 100 · p percent of the
data is less than the value and 100 · (1− p) is more. The median is then the
0.5 quantile.
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Year Median Mean Ratio

1989 79100 313600 4.0
1992 75100 282900 3.8
1995 81900 300400 3.7
1998 95600 377300 3.9
2001 106100 487000 4.6
2004 107200 517100 4.8
2007 126400 584600 4.6
2010 77300 498800 6.5

Table 2.2: Median and Mean household net worth in U.S. by year. Source
Federal Reserve Board, 2010 SCF Chartbook (http://www.fas.org/sgp/crs/
misc/RL33433.pdf).

The percentiles do the same thing, except that a scale of 0 to 100 is used, in-
stead of 0 to 1. The term quartiles refers to the 0, 25, 50, 75, and 100 percentiles,
and the term quintiles refers to the 0, 20, 40, 60, 80, and 100 percentiles.

The pth-quantile is at position 1+ p · (n− 1) in the sorted data. When this
is not an integer, a weighted average is used.15

The quantile function returns the quantiles. This function is called with
the data vector and a value (which can be a vector) for p. We illustrate on a
very simple data set, for which the answers are easily guessed.

x <- 0:5 # 0,1,2,3,4,5
length(x) # even.

## [1] 6

mean(sort(x)[3:4]) # median averages 3rd, 4th

## [1] 2.5

median(x) # clearly in middle

## [1] 2.5

quantile(x, 0.25) # 1 + .25(5) = 2.25.

## 25%
## 1.25

quantile(x, seq(0, 1, by=0.2)) # quintiles

15There are other definitions used for the pth quantile implemented in the quantile function.
These alternatives are specified with the type= argument. The default is type 7. See ?quantile
for the details.
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## 0% 20% 40% 60% 80% 100%
## 0 1 2 3 4 5

quantile(x) # quartiles are default

## 0% 25% 50% 75% 100%
## 0.00 1.25 2.50 3.75 5.00

Hinges Closely related to the quartiles are the “hinges.” These are found
by applying the median to the data left of the median and to the right of the
median. For example, if there are 6 data points, then the median of the first
3, the median (the average of the 3rd and 4th values), and the median of the
last 3 are the hinges. These values are easier to find by hand than the quar-
tiles, though slightly different.16 The fivenum function returns the so-called
five-number summary which includes the minimum value, the maximum
value, and these three hinges. Compare the output of the following to that of
quantile(x) above:

fivenum(x)

## [1] 0.0 1.0 2.5 4.0 5.0

• Example 2.7: Wealth distribution
Measuring income distributions by quantiles, rather than by summaries of
center like the median and mean can be enlightening. We have seen that these
two measures of center can be quite different due to large values to the right
of the median. To see how large, the following data lists percentiles for com-
bined income and capital gains amounts in 2011 (from income_percentiles
(UsingR)):

income <- c("90" = 110651, "95" = 155193, "99" = 366623,
"99.5" = 544792, "99.9" = 1557090, "99.99" = 7969900)

income

## 90 95 99 99.5 99.9 99.99
## 110651 155193 366623 544792 1557090 7969900

We see from this that 90% of U.S. families earned less than $110,651 in
income and capital gains, but the top 0.01% earned at least $7,969,900 (72
times that). ••

16The boxplot function uses the hinges, as the original designer of the graphic presumably
found the hinges easier to compute, yet equally informative at the level of detail of the graphic.
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Other measures of center

The mode of a data set is defined as the value that occurs most often. This is
taught in some circles as a measure of center, but not here and not in R where
the mode function gives the storage mode of an object. The mode, as defined
above, only applies to discrete data (continuous data rarely has ties, and then
only due to round off). As well, the mode is only reasonably expected to be
the center value if the data is symmetric.

That being said, computing the mode in R is an interesting challenge. The
basic procedure would be to tabulate the number of times each value occurs
and then search for the maximum. The table function (of which we discuss
more in Section 2.4) will do the tabulation and max will find the maximum
of the data set. But even that is not quite enough. Here is a recipe (we could
present others) for finding the mode using some of the functions we have
discussed so far.

table(wts)

## wts
## 24 27 29 38 40 43 47 48 59 61
## 2 1 1 1 1 1 1 2 1 1

table(wts) == max(table(wts))

## wts
## 24 27 29 38 40 43 47 48 59 61
## TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

which(table(wts) == max(table(wts)))

## 24 48
## 1 8

as.numeric(names( which(table(wts) == max(table(wts))) ))

## [1] 24 48

From the above, we find that both 24 and 48 share the title of most fre-
quent weight.

Spread

The spread or variability of a data set is an important characterization. A
simple measure of this could be the range of the data, which is just the dis-
tance between the smallest and largest values. In R the range is a two-value
vector, for our purposes essentially the same as c(min(x), max(x)). We can
compose the output with diff to give the distance, max(x) - min(x):
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range(wts) # minimum and maximum values

## [1] 24 61

diff(range(wts)) # the distance between

## [1] 37

While this gives some sense of spread, it is very sensitive to just one
large value. For better summaries, we look first at the most common sense of
spread—that given by considering the deviations.

The variance and standard deviation

As mentioned, the deviations of a data set are just the original data centered
by its sample mean: di = xi − x̄. The distance from the mean would the ab-
solute value of the deviation, yi =| xi − x̄ |. The average deviation was noted
to be 0, so would be a poor choice of spread. The average absolute deviation,
(1/n)∑ | xi − x̄ | is a reasonable choice, but it proved mathematically advan-
tageous to look not at the distance, but the squared distances. This leads to a
definition for the sample variance, s2:

sample variance = s2 =
1

n− 1 ∑
i
(xi − x̄)2.

This is not quite the average of the squared distances, as we have divided
by n− 1 and not n.17 But, clearly this carries the same interpretation. Values
far from the center (the mean) will have big deviations which when squared
will be even bigger. So more spread-out data sets will have larger variances.
The presence of the n allows us to compare across different size samples, as
otherwise large data sets would be expected to have large values of the sum
due to there being more terms in the sum.

The var function will compute this summary statistics for us:

var(wts)

## [1] 162.6

Doing the computation using a vectorized approach is not so much more
difficult, just overkill:

17As doing so makes this an unbiased estimate for a population variance, a point we won’t
pursue.
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sum( (wts - mean(wts))^2 ) / (length(wts) - 1)

## [1] 162.6

Sample standard deviation If your data has units, say pounds as the wts
data set does, then the sample variance will be in squared units. To avoid
this, the sample standard deviation is defined:

sample standard deviation =
√

s2 =

√
1

n− 1 ∑
i
(xi − x̄)2.

The interpretation is the same as the variance—larger values mean more
spread-out data—but now the scale is appropriate.

The sd function computes the standard deviation. It requires a data vector
with at least two values, as does var.

• Example 2.8: Hip cost variability
Recall the data set on the cost for a full hip replacement was marked by
having a wide range.

hip_cost <- c(10500, 45000, 74100, NA, 83500, 86000, 38200, NA,
44300, 12500, 55700, 43900, 71900, NA, 62000)

range(hip_cost, na.rm=TRUE)

## [1] 10500 86000

sd(hip_cost, na.rm=TRUE)

## [1] 24849

A standard deviation of nearly $25,000 dollars seems quite large, though
of course we have no indication in this data of other factors that can account
for such variability (location, what is being accounted for, . . . ). ••

The z-score The deviations, di = xi− x̄, express the data relative to its center,
rather than on an absolute scale. This allows us to focus on values that are
far less than the mean or far more. As we’ve seen, such values can have a big
impact on the value of the standard deviation. But how do we talk about a big
or large value relative to the others? One way is to use a scale that is driven
by the data. Roughly speaking, this is like saying a value is bigger than most
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others, as opposed to saying a value is big. The former carries much more
information.

The z-score of a data point is given by:

z-score =
xi − x̄

s
.

This gives the size of a data point in terms of its position relative to center,
on a scale of standard deviation units. For example, a value of 3 means that
the data point is 3 standard deviations larger than the mean value.

We can define a function to find z-scores with:

z_score <- function(x) (x - mean(x))/sd(x)
z_score(wts)

## [1] -0.20912 0.18298 0.57509 1.59456 0.49667 -1.30701
## [7] -0.91491 0.57509 1.43772 -1.30701 -0.05228 -1.07175

Alternatively, the scale function can be used to find the z-scores. This
function will return a matrix, so we append a [,1] to extract the first col-
umn.18

scale(wts)[,1]

## [1] -0.20912 0.18298 0.57509 1.59456 0.49667 -1.30701
## [7] -0.91491 0.57509 1.43772 -1.30701 -0.05228 -1.07175

• Example 2.9: Grading by z-scores
Professor H. grades by z-scores. Students having a z-score greater than 1.28
will get an “A.” In a small class the following student grades were recorded:

54 50 79 79 51 69 55 62 100 80

Did anyone get an “A”?

x <- c(54, 50, 79, 79, 51, 69, 55, 62, 100, 80)
z <- (x - mean(x))/sd(x)
x[z >= 1.28]

## [1] 100

18We will discuss this indexing notation for rectangular data types in Chapter 4.
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Just the 100 was good enough for an “A”.

Now, given these values for the mean and standard deviation, what score
would be just good enough for an “A”?

mean(x) + 1.28 * sd(x)

## [1] 88.91

This formula, which reverses the z-score formula, should be read as the
value which is exactly 1.28 standard deviations more than the mean. ••

Facts about z-scores At first this may seem to just make the problem more
abstract, but there are real advantages. After shifting by the center and scal-
ing by spread the data set becomes standardized, which allows data sets on
different scales to be compared.

Also, there are two key facts about how unusual a large z-score can be.
The first applies to “bell-shaped” data (normally distributed) which has the
68-95-99.7 rules of thumb that approximately 68% of the data will have a z-
score between −1 and 1 (no more than 1 standard deviation from the mean),
95% will be within −2 and 2 and 99.7% will be within −3 to 3.

Further, for any data set (not just “bell-shaped”) Chebyshev’s theorem
tells us that the proportion of values with an absolute z-score more than k
is no more than 1/k2. For example, for any data set, no more than 1/9th of
the data can be more than 3 standard deviations from the mean. (For “bell-
shaped” data this is roughly 0.3% of the data, so much less.)

• Example 2.10: Computing a proportion
Empirically checking that Chebyshev’s theorem is satisfied for a given data
set requires that we compute the proportion of values that satisfy some cri-
teria. This is a fairly common question. Let’s see how it would be done in
R.

For the exec.pay (UsingR) data set there are 199 values. What proportion
are more than 3 standard deviations from the mean? Translating, this means
the absolute value of the z-scores should be more than 3:

z <- (exec.pay - mean(exec.pay)) / sd(exec.pay)
out <- abs(z) > 3 # 199 TRUE or FALSE values
sum(out) / length(z) # sum of logical

## [1] 0.01508

That is 1.5% if the z-scores are larger than 3. This is much more than
would be expected for bell shaped data (we would expect 0.3%) but less than
theoretically possible, which is 11.1% (1/9).
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Figure 2.3: Plot of absolute z-scores for the wts data set and a subset of the
exec.pay data set. There are no values larger than 2 in the wts data set, in
agreement with the rule of thumb for bell-shaped data. For the executive pay
data, we see a z-score nearly as large as 5, virtually impossible for bell-shaped
data.

The above construct uses the sum of a logical vector as a convenient way
to count the number of TRUE cases. ••

Coefficient of variation The standard deviation is sometimes normalized
by the mean, to produce the coefficient of variation. This is suited for positive
data, as otherwise the mean can be negative or 0, which will cause problems
with the definition.

What is the advantage of this scaling? Let’s look at pay. For the bulk of
middle class America with roughly a $60,000 average pay, a standard devia-
tion of $50,000 would indicate a rather large range. However, this would not
be so for the executives in the exec.pay data set, as their average pay is nearly
$600,000. This added context makes a difference. However, the actual stan-
dard deviation of the executives is much higher. The coefficient of variation
is:

sd(exec.pay)/mean(exec.pay) # coefficient of variation

## [1] 3.457

For this measure, values bigger than 1 indicate more relative variability
than a standard “exponential” distribution, a common model for describing
the lifetime of light bulbs and many other phenomenon.
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The IQR

We mentioned how the range is an obvious measure of spread, but that it
suffers from being effected by just one large or small value. Similarly, the
standard deviation can be very sensitive to a single large or small value xi, as
the contribution from (xi − x̄)2 is then quite large.

Another common measure, not so effected, is the interquartile range, or
IQR. This is the range of the middle 50% of the data. It can be seen infor-
mally through trimming the top and bottom 25% of the data, then taking the
distance of the range, or more directly as the difference between Q3 and Q1
(the first and third quartiles).

The function IQR will compute this value for us. For example, the rivers
data set has the lengths of 141 “major” rivers in North America. The median
and IQR are given by:

median(rivers) # center

## [1] 425

IQR(rivers) # spread

## [1] 370

Comparison of the IQR and standard deviation is difficult, though for
bell-shaped data the ratio of the IQR to the standard deviation is roughly
1.35. For the rivers data, this is not the case:

IQR(rivers)/sd(rivers)

## [1] 0.7492

This is due to some values in the data which are much larger than the
rest, which heavily influences the standard deviation.

• Example 2.11: SAT rankings
Many college-bound students in the United States are familiar with the IQR,
even if not by name. The ubiquitous college rankings almost always list the
25th and 75th percentiles for SAT scores. For example, Table 2.3 reproduces
a table showing the first and third quartiles for accepted students at Ivy-
League colleges. The IQR is Q3−Q1. “Writing” has the smallest average IQR
of 85, with “reading” the highest with 98.75. Does the data imply that nearly
25% of Yale students have perfect scores (800 on each category)? ••

The median absolute deviation, mad The median absolute deviation (mad)
is another measure of variability that avoids an influence from a few very
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Reading Math Writing

Institution 25% 75% 25% 75% 25% 75%

Brown 630 740 650 760 640 750
Columbia 690 780 700 790 690 780
Cornell 630 730 670 770 - -
Dartmouth 670 780 690 790 690 790
Harvard 690 790 700 800 690 790
Princeton 700 790 710 800 700 790
U Penn 660 750 690 780 670 770
Yale 700 800 710 790 710 800

Table 2.3: SAT ranges for the "Ivy League Colleges". Data from the National
Center for Educational Statistics, as found on http://collegeapps.about.
com/od/sat/a/sat_side_x_side.htm.

large or small values, relative to the rest of the data. The standard deviation
looked at the squared deviations, (xi − x̄)2; the mad considers the absolute
deviations from the median, | xi − M |. The median is used to gauge the
center of this transformation of the data. To make the values comparable to
the standard deviation for bell-shaped data, the default implementation of
the median absolute deviation in R, mad, then multiplies by 1.4826.

We can compare the values for the rivers data set, where a few lengthy
rivers skew the standard deviation:

mad(rivers)/sd(rivers) # 213/496

## [1] 0.4353

We see that the standard deviation is much larger for this variable.
Whereas, for the height variable in the kid.weights (UsingR) data set, the
values are comparable:

ht <- kid.weights$height
mad(ht)/sd(ht) # 11.68/10.7

## [1] 1.108

Shape

We’ve seen that different measures of center can yield similar values or very
different values based on the presence of unusually large or small values. In
this section we talk about the “shape” of a data set with the aim of building
a vocabulary that makes it easier to understand when we should expect such
differences.



2.3. NUMERIC SUMMARIES 67

The shape is also more important to understand in the context of statisti-
cal inference. When we try to understand a parent population from sample
data, the tools we discuss almost always have some assumptions on the exact
shape of a distribution. The most typical assumption is that the data is not
only bell-shaped, but that the “bell” in theory has a precise mathematical
description, this being explained later when we mention the normal distri-
bution.

Symmetry and skew Figure 2.4 shows two different data sets. The left one
is imbalanced, the right one much less so. The left one is a sample from our
exec.pay data set. That data set is characterized by some CEOs receiving very
substantial payment plans, even when compared to the already substantial
average. As such, there are values on the right side, that are not balanced off
on the left side. Such data is said to be skewed right.

In contrast the data on the heights of four-year-olds is mostly symmetric.
Some children are taller than average, some shorter than average of course,
with the distribution of those bigger and smaller being roughly the same.

For symmetric data the mean and median measure center in basically the
same manner. This is not so for data that is skewed right. In that case, the
mean tends to be pulled to the right and is generally larger than the median.
Skewed-left data tends to pull the average down.

For example, this is of importance to students as test scores over a
semester are often skewed left—it is easy to have one really bad exam, but
can be impossible to have an exam much better than typical, as there aren’t
enough points available. For a student the average test score is typically lower
than the median test score. Perhaps instructors should use medians and not
averages in assigning grades.

The sample skewness of a data set is a numeric measure of skew. There is
no built-in R function, though some functions exist in add-on packages. A
definition is given by the following:

sample skewness =
√

n ∑(xi − x̄)3

(∑(xi − x̄)2)3/2 =
1
n ∑ z3

i .

Here zi = (xi − x̄)/s is the z-score for xi. The presence of z-scores in de-
termining the skew points out that it is a measure of shape and not center or
scale.

A function to compute the sample skewness follows:

skew <- function(x) {
n <- length(x)
z <- (x - mean(x)) / sd(x)
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Figure 2.4: Dot plots of two data sets with different shapes. The left data set,
a sample of the executive pay data set, is skewed right, the right data set, on
the heights of four-year-old children, is mostly symmetric. For the symmetric
data, the mean and median measure the center in a similar manner (36.7 to
38). For the skewed data this is not so (42.5 to 24).

sum(z^3) / n
}

Applying this to the exec.pay data set shows a large positive skew and to
the four-year-old heights a negative skew:

skew(exec.pay)

## [1] 9.579

four_year_hts <- kid.weights[kid.weights$age %in% 48:59, "height"]
skew(four_year_hts)

## [1] -1.06

Tails A more subtle measure than symmetry and skew is the question of
“tails.” Tails characterize how much data is far from the bulk of the data. We
mentioned how z-scores can quantify this by looking at size relative to the
center on the scale provided by the standard deviation. The left graphic in
Figure 2.5 shows z-scores of two simulated data sets on a dot plot. The lower
data is long tailed, as evidenced by the larger values. Long-tailed data, even
when symmetric, can cause issues with the mean and standard deviation,
though trimming can prove useful.
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The sample excess kurtosis is a measure of the tails in a data set. The fol-
lowing compares the deviations to the fourth power to the deviations to the
second power. Longer tails will lead to larger values. The following formula
subtracts 3 so that “normal” data will have kurtosis that is roughly 0.

sample excess kurtosis = n ∑(xi − x̄)4

(∑(xi − x̄)2)2 − 3 =
1
n ∑ z4

i − 3.

The simplification shows that this depends just on the z-scores, so again
is a measure of shape.

Here we compute the excess kurtosis for the height variable in the galton
(UsingR) data set. This is a famous data set comparing the heights of children
with that of their parent. Here we look at just the parental heights. Height
measurements are usually close to “normal” so a value around 0 is expected:

kurtosis <- function(x) {
n <- length(x)
z <- (x - mean(x)) / sd(x)
sum(z^4)/n - 3

}
kurtosis(galton$parent) # height of parents in data set

## [1] 0.05104

Modes We mentioned that the most likely value of a discrete data set is
sometimes called the mode. For continuous data, it is unlikely any two values
are the same, so this concept of a mode does not apply. Rather, we informally
define a mode as an area where parts of the data tend to cluster.19 The right
graphic of Figure 2.5 shows at least three modes present in the galaxies
(MASS) data set. Sometimes data sets are classified as unimodal, bimodal, or
multimodal depending if there is one, two, or two or more modes present.

“Normal,” bell-shaped data in addition to being symmetric and regular
tailed, is unimodal.

Some univariate data sets may reflect the presence of underlying factors.
For example, a data set on heights might best be split in two based on the
gender of those measured, as on average females are shorter than males.
Height data is generally symmetric and clustered around a central value,
however when both females and males are mixed in, the data might show
clusters around two distinct centers. As such, the presence of modes can
suggest that the data should be split into groups before an analysis is done.

19In Chapter 6 where probability models are introduced for continuous data, we can define
a mode more precisely as the position of a local maxima of the density function.
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Figure 2.5: The left graphic shows stacked dot plots of z-scores of two data
sets. The lower one has long tails, the top one “normal” tails. The right
graphic shows the galaxies data set. The overlapping dots in the data show
the presence of at least 3 clusters, corresponding to modes.

Viewing the shape of a data set

We have various graphical tools to view the shape of a distribution. While the
choice of one over the other is not automatic—each generally has differing
strengths and weakness—for all we should be able to glean quickly estimates
of the center, spread, and shape.

Dot plots In previous graphical summaries of the data we have used dot
plots to represent the data. These have been rendered as though hand drawn
to emphasize they can be created without any special fuss—just make a num-
ber line containing the entire range of data and place dots for each data point.
If values are repeated, we can either create stacks or jitter the data to essen-
tially make it continuous. (Jittering adds a small random amount to each
value and can be done through the jitter function.)

If each dot is imagined to have a uniform weight, then the mean is the
balancing point for these weights and the median the middle point (or aver-
age of the two middle points). Both these are easy to eyeball if the dots can be
distinctly identified. As well the IQR is not too hard to eyeball, just mentally
split the values into four parts and then lop off the top and bottom quarter
of the points. Dot plots are also helpful in identifying the shape of a data set,
in particular if it is skewed or multimodal.

The main issues with dot plots are the trouble with repeated values and
more importantly the fact that they can only be used for relatively small data
sets.
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The R function stripchart can make dot plots, but it makes such a visu-
ally poor graphic we won’t illustrate. In Chapter 4 we will introduce other
packages for making dot plots.

Stem-and-leaf plot Related to a dot plot is the stem-and-leaf plot. Rather
than represent each data value with a point on a graphic, the stem-and-leaf
plot records a number (the leaf) for each point. By placing these with the
proper stem the data set can be represented in an organized compact manner.

To illustrate, we have the following data for the number of points scored
in a game by each member of a basketball team:

2 3 16 23 14 12 4 13 2 0 0 0 6 28 31 14 4 8 2 5

We can think of each number in terms of a 1s-digit and a 10s-digit. So 16
is a 1 and a 6. The 1 is the stem and the 6 the leaf. This allows us to reorganize
the data as follows:

0 | 000222344568
1 | 23446
2 | 38
3 | 1

For example, the data value 2 becomes a 0 and a 2, and is represented by
one of the 2s in the first row. We place the stems in a vertical column, and
then sort the leaves. To read this then requires us to put the numbers back
together. For example, the 8 in the row for a stem of 2 is the value 28 in the
data set.

The presentation does many things at once: it sorts the data for us (though
if doing this by hand, you may choose not to), it shows the range (in this case
0 to 31), gives us a sense of the median (just find the middle which is between
5 and 6), and shows us a rough shape (skewed right, as seen by mentally
rotating the chart 90 degrees counterclockwise). Like the dot plot, a stem and
leaf chart is an excellent choice for analyzing a data set by hand.

As with the dot plot the graphic suffers when there are too many data
points. As well, the display does poorly when the values are too spread
out or too tightly clustered. These can be addressed somewhat by adjust-
ing the stem. Finally, each data point is represented by just two digits, so
some rounding may be unavoidable.

The R function stem will produce a stem-and-leaf plot.20 It has an argu-
ment scale to adjust the meaning of the stem. If there are too many leaves in
a stem, adjusting this upwards from 1 can be helpful. For example, a stem-
and-leaf plot can be made for the bumpers (UsingR) data set quite easily with:

20The stem.leaf function in the aplpack package, loaded with UsingR, enhances the basic
display to provide a cumulative count from the top and bottom to assist in identifying the
middle value.
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stem(bumpers)

##
## The decimal point is 3 digit(s) to the right of the |
##
## 0 | 68
## 1 | 333556
## 2 | 000123445
## 3 | 011233

From this we can see this data is mostly symmetric and not long tailed.
We can also count that there are 23 values in the data set so by counting can
find that the median has a stem of 2 and leaf of 1. But what is it as a number?
The line “The decimal point is 3 digit(s) to the right of the |” needs
to be interpreted. Mathematically it is saying the value is 2.1e3, or 2,100. (It
in fact is 2,129 which gets truncated to 2,100 in the making of the summary.)

Histogram A histogram is closely related to the stem-and-leaf graphic. If
we squint and look past the numbers in the stem-and-leaf plot and just note
the lengths of each row and turn this 90 degrees counterclockwise we have a
rough histogram.

Histograms group individual data points, then represent them with a bar
of a given area. The basic idea is to break up an interval on the number line
that covers the entire set of data point into several subintervals, or “bins.”
For each subinterval the number of data points inside are counted and then
a bar is drawn to represent these. The area of the bar is proportional to the
proportion of points represented. That is, if we have 10% of the data points
in some subinterval, then that bar should have 10% of the total area of the
graphic.

Figure 2.6 shows two histograms of the waiting variable of the faithful
(MASS) data set. The command to produce the left graphic was simply:

hist(faithful$waiting)

The histogram shows two modes. The bin size in the figure seems to be
5. With this, we can illustrate how to get the counts in each bin using some
lower level R commands that can be useful in other contexts. (We could do
this more directly using the invisible values output by hist.)

We first need to create the bins before we can count them. This is done
with the seq command as follows:

bins <- seq(40, 100, by=5)

Then we want to count the number of values in each bin. The cut com-
mand will categorize each value in a data set by the breaks (bins) specified
by a second vector:
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Histogram of faithful$waiting
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Figure 2.6: Two histograms of times between eruptions at the Old Faithful
geyser in Yellowstone National Park shows two modes. The left graphic rep-
resents frequencies, the right graphic is scaled to have total area equal to
1.

x <- faithful$waiting
out <- cut(x, breaks=bins)
head(out)

## [1] (75,80] (50,55] (70,75] (60,65] (80,85] (50,55]
## 12 Levels: (40,45] (45,50] (50,55] (55,60] (60,65] ... (95,100]

We just need to tabulate these to get the counts:

table(out)

## out
## (40,45] (45,50] (50,55] (55,60] (60,65] (65,70] (70,75]
## 4 22 33 24 14 10 27
## (75,80] (80,85] (85,90] (90,95] (95,100]
## 54 55 23 5 1

We see that the sub-intervals were taken to be open on the left and closed
on the right. So a value of 80, say, would be in (75,80] and not (80,85]. This is
also the default for hist, though the right argument can be used to change
the setting. In this data set the smallest value of 43 is clearly in the bin (40,45].
If we had a smallest value of 40, then something would need to be done,
either another bin or just adding it to the leftmost one.

The histogram then just represents these counts with bars. There are two
standard ways. For the right graphic in the figure, the frequency is repre-
sented. The leftmost bar has height 4 in agreement with the count for (40,45].
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Figure 2.7: A histogram of a random sample of n = 10,000 data points and
a corresponding density plot of the data. The vertical lines of the histogram
are de-emphasized. From either, we can see the data is symmetric, unimodal
with a mean of 0.

An alternative which is useful when using the histogram to estimate the un-
derlying theoretical density (Chapter 6) is to scale the y-axis so the entire area
is simply 1. This is the “probability” scaling, and for hist is done through
the argument probability=TRUE.

The center, spread, and shape are all identifiable from a histogram. The
mean value is still essentially a balancing point (as though we were to cut the
histogram out of some material and tried to balance it). The median splits the
area in half. The IQR is found by splitting the area into four equal-area pieces
and ignoring the left and right ones. From the shape we can easily identify
symmetry or skew, the modes, and in some cases, long tails.

The histogram that gets drawn depends on the choice of bin size. If the
bins are too small, then the graphic becomes spiky; if too large then the
graphic becomes blocky. The hist function allows the user to adjust the
choice of bin selection through the breaks argument. The default is to use
the Sturges algorithm to select a number of bins based on the number of data
points (basically the range divided by 1 + log(n)). Other named alternatives
are "Scott" and "FD" (cf. ?nclass.sturges or [59] for details). Alternatively,
a vector of break points or number of bins can be specified, though some are
taken as a suggestion only.

Density plots Imagine we have a sample and a histogram and asked a
question: If we pick a data point from the sample at random what is the chance
we pick a value in a given bin? Well, intuitively we know that this should be
the number of data points in that bin divided by the total number of data
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Figure 2.8: Histogram of bumpers data with a density plot layered on top.

points. It turns out that this is precisely the area of the bar representing that
bin when the histogram is drawn with probability=TRUE.

So, the area of a bar above a bin represents the probability that a data
point selected at random will be from this bin.

The relationship between probability and area will be described more
fully in Chapter 6, as this will be how probability is defined for certain types
of data. For now, we introduce a graphic that is similar to the histogram.

Imagine a scenario where we tried to graph more and more data with a
histogram while taking an increasing number of bins. If the two choices are
balanced out, then the resulting histogram will look something like the left
graphic of Figure 2.7. In that graphic, the vertical lines of the bars are de-
emphasized, as they just clutter the graphic. The relationship between area
and probabilities still holds, assuming the scale is chosen so the total area is
1.

The graphic on the right is a density plot of the data. In some sense this
is a limiting value. We have drawn the density plot in a stylized version to
emphasize the graphics value as an immediate summary of a possibly large
univariate data set. See Figure 2.8 for a formally rendered density plot. As
with histograms, the following can be found from a density plot:

• The mean of the data is still related to the balancing point.

• The median is found by mentally dividing the figure into a left and
right equal-area parts.

• The IQR is found by further dividing the areas into 4 equal-area parts
and dropping the leftmost and rightmost.

• Symmetry and skew are clearly shown, as are modes which are now
basically the “bumps” in the figure.
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Argument Description

xlim Set x coordinate range.
ylim Set y coordinate range.
xlab Set label for x axis.
ylab Set label for y axis.
main Set main title.
pch Adjust plot symbols (?pch).
cex Adjust size of text and symbols on a graphic.
col Adjust color of objects drawn (?colors).
lwd Adjust width of lines drawn.
lty Adjust how line is drawn. Can be "blank",

"solid", "dashed", "dotted", "dotdash", etc.
bty Adjust box type, if drawn. One of "o", "l", "7",

"c", "u", or "]".

Table 2.4: Standard plotting arguments to modify a graphic.

The density function is used to create density plots in base graphics. This
function does the computations, we use the plot function to graph them. The
following shows how, though we don’t display the output.

plot( density(bumpers) )

We will see the plot function used in many different guises throughout
these first few chapters. For density data it produces a density plot with
some defaults for the labeling and titling that can be modified through the
arguments xlab, ylab, and main.

• Example 2.12: A histogram and density plot
A common graphic is to show both a histogram and a density plot at the
same time. Constructing this graphic illustrates some subtleties of using R’s
base graphics. We consider again the bumpers (UsingR) data set.

The main issue we work to avoid is clipping. The initial graphic must be
told to accommodate the width and height of both graphics, as by default
only the first drawn graphic will determine this. As well, we need to layer the
second graphic on the first. We do this below with the lines command.

The first task is do identify the proper size for the viewing window. Each
function can return this information. For the histogram, we call hist passing
in plot=FALSE to suppress its rendering:

b_hist <- hist(bumpers, plot=FALSE)
b_dens <- density(bumpers)
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Functions Description

points Add points to a graphic.
lines Add points connected by lines to a graphic.
abline Add a line of the form a + bx, y = h, or x = v.
text Add text to a graphic.
mtext Add text to margins of a graphic.

Table 2.5: Functions to add layers to a graphic.

The heights of the histogram bars are stored in b_hist$density, whereas
b_hist$breaks records the break points. For the density plot, the heights are
available in b_dens$y, and b_dens$x holds the x values.21

Now when we draw the histogram, we specify the size of the viewing
window directly using the xlim and ylim arguments, with each value com-
puted from the objects just found:

hist(bumpers, probability=TRUE,
xlim = range(c(b_hist$breaks, b_dens$x)),
ylim = range(c(b_hist$density, b_dens$y)))

lines(b_dens, lwd=2)

The last command lines(b_dens, lwd=2) calls the lines function to add
a layer with the density estimate. The argument lwd=2 instructs R to draw the
density line with twice the default line width. (Figure 2.8).

There are more arguments that can be specified to modify the drawing
of a basic graphic. Table 2.4 shows several such options. Most of these are
common to all the graphic-drawing functions. ••

The construction of the density plot uses a function (called a density)
and a window size (referred to as the bandwidth). Different choices produce
different graphics. The bandwidth is similar to the choice of bin size in the
histogram: larger values smooth out the graphic, smaller ones make it more
spiky. R provides algorithms for automatic selection. The default is "nrd0".
We can specify other names to the bw argument: "nrd", "ucv", "bcv", or "SJ".

Boxplots The five-number summary of a univariate data set is basically
the minimum value, the maximum value, the quartiles Q1 and Q3, and the
median. The five numbers provide a good summary of even very large data
sets.

21The $ is employed as it is for data frames, even though the objects are lists.
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The boxplot is a graphical device based on the five-number summary.22

The basic plot looks like the left graphic in Figure 2.9:

• A box is drawn from the first quartile to the third. This represents the
middle 50% of the data.

• The median is drawn indicating the center of the data and splits the
box into areas, each representing 25% of the data.

• The top and bottom 25% of the data is represented by “whiskers” which
stretch to the minimum and maximum values.

The right graphic in Figure 2.9 shows the conventional modification to
cover outliers. These are defined as values more than 1.5× IQR below Q1 or
above Q3. The whiskers are drawn to cover all points in these areas that are
not outliers, leaving the outliers to be marked by points.

With this, it is easy to identify:

center The median clearly marks the center.

spread The IQR is the length of the box and a measure of spread.

shape The regions of the boxplot pair off. If one area is much longer than
its corresponding pair, then the data is skewed. The right graphic on
the weight variable of the kid.weights (UsingR) data set shows skew, as
the upper 25% of the data represents much more of the range than the
lower 25% of the data.

In addition, the reader of the graphic can clearly see outlier values. As
these can have an important impact on the assumptions made for statistical
inference, this information is very valuable.

What the boxplot lacks, as compared to a density plot, is the ability to
identify modes.23 However, the boxplot graphic is so useful for summarizing
data, especially when comparing multiple samples, as it naturally lends itself
to side-by-side comparisons.

The basic R function to draw a boxplot is boxplot. The left graphic of
Figure 2.9 was created with:

boxplot(bumpers, horizontal=TRUE, main="Bumpers")

22The boxplot function uses the hinge-version of the quartiles, instead of those given by
quantile, following the original design of J. W. Tukey.

23If this is important, consider the violin plot, as found in the vioplot package, which replaces
the box with a density estimate.
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Figure 2.9: Boxplots of various data sets. The left one shows the bumpers data
set, a mostly symmetric data set with no outliers. The right one, of the weight
variable in the kid.weights data, shows a right skew and some outliers.

Quantile graphs The quantile plot is a graphic that allows us to compare
two distributions. In the next chapter we discuss its use to compare two
arbitrary distributions, for now we discuss comparing a distribution to the
“normal” distribution, our previously mentioned symmetric, bell-shaped dis-
tribution.

For “normally” distributed data the 68-95-99.7 rule of thumb applies, de-
scribing how much of the data is expected to be within 1, 2, and 3 standard
deviations of the mean. These imply that a z-score of −2 would be the 2.5
percentile, −1 the 16th percentile and so on. In fact, we will mention in Chap-
ter 6 how to find any quantile of this distribution, not just these special ones.

The quantile-normal plot takes these theoretical quantiles and compares
them to the quantiles of a sample data set. Corresponding quantiles are plot-
ted as pairs. The cover graphic shows the process for two theoretical distri-
butions. If the distributions have the same shape, then the points will more
or less be on a straight line. If the two shapes are not similar, the points will
not be collinear. Of course, samples have sampling variability, so the points
would not be expected to lie exactly on a line. The key to appreciating the
graphic is to understand what is more or less straight.

Figure 2.10 shows three such graphs. The first one shows data on finger
lengths of criminals. This data was used by Gosset to demonstrate his work
on the t-distribution, which we become familiar with in later chapters. The
assumption on normality is important and this graphic shows a straight line.
The others have differences.

The graphic was produced with qqnorm. In the case of the finger data set,
the values are stored in tabulated format with finger recording a value and
frequency the number of such measurements. This allows a more compact
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Figure 2.10: Three quantile-normal plots produced by qnorm. The leftmost
graphic shows data on finger lengths of several prisoners from the finger
variable in the Macdonell (HistData) data set. It shows data more or less on a
straight line, indicating a normal distribution. The grouping is due to the data
being discretized. The second graphic uses data on the height of children in
Galton’s classic study of heights. This data has slight bends on the edges, like
an "S". This being due to the tails being slightly less long than the normal.
The final data shows what a decidedly non-normal distribution appears like
in this graphic. The executive pay data is used which is skewed right and
long tailed. Such data shows a clear curve.

storage for the data, but isn’t helpful for creating the desired plot. To manip-
ulate the data into a format for qqnorm requires creating a vector with each
data point recording a score.

x <- rep(Macdonell$finger, Macdonell$frequency)
qqnorm(x)

The middle graphic of Figure 2.10 is also a plot of discretized data, in
this case the child heights in the Galton (HistData) data set. To produce the
graphic, the data was jittered. That is, random noise was added to each value
to break up similar values. The jitter function does this. We specified a
value of 5 for factor, which indicates how much noise to add:

x <- jitter(HistData::Galton$child, factor=5) # add noise
qqnorm(x)

This graphic shows slight flattening out at the left and right side. This is
indicative of shorter tails than the normal distribution.

The rightmost plot of Figure 2.10 demonstrates both how skewed and
long-tailed data look when viewed through this transformation. The skew
is represented by graphics which do not have symmetry through the central
point. The long tail on the right side leads to the right-hand portion of the
graphic moving upwards. The left side of this graphic flattens out, indicating
that the left tail is shorter than the normal.
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Problems

2.26 The beatles (LearnEDA) data set records the length of songs (in seconds)
by the Beatles in the time variable. Find the mean length, median length,
longest length, and shortest length in minutes.

2.27 The ChestSizes (HistData) data set contains Quetelet’s data on chest
measurements of 5,738 Scottish Militiamen. The data is tabulated. Find the
mean.

2.28 Read this stem-and-leaf plot. First find the median by hand. Then enter
in the data and find the median using median.

The decimal point is 1 digit(s) to the right of the |

8 | 028
9 | 115578

10 | 1669
11 | 01

2.29 The farms (LearnEDA) data set records in the count variable the number
of farms in the United States per state (in 1,000s) in 1999. Make a stem-and-
leaf chart. Try to guess the mean, then verify. Which state would you guess
is the outlier?

2.30 A stem and leaf chart has a stem of 2 a leaf of 3 and the message “The
decimal point is 4 digit(s) to the left of the |”. What is the number?

2.31 For the data sets bumpers (UsingR), firstchi (UsingR), and math (UsingR),
make histograms. Try to predict the mean, median, and standard deviation
from the graphic. Check your guesses with the appropriate R commands.

2.32 Fit a density estimate to the data set pi2000 (UsingR). Compare with the
appropriate histogram. Why might you want to add an argument like breaks
= 0:10-.5 to hist?

2.33 The data set normtemp (UsingR) contains body measurements for 130
healthy, randomly selected individuals. The variable temperature contains
normal body temperature. Make a histogram. Estimate the sample mean
body temperature, and then check using mean.

2.34 The data set DDT (MASS) contains independent measurements of the pes-
ticide DDT on kale. Make a histogram and a boxplot of the data. From these,
estimate the mean and standard deviation. Check your answers with the ap-
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propriate functions.

2.35 The ChestSize (HistData) data set is tabulated data showing the chest
sizes of 5,738 Scottish males. Make a histogram of this data.

2.36 The paradise (UsingR) data set contains snowfall measurements (in
inches) at Mt. Rainier for several years. Make a histogram of the data and
comment on the shape. The data is in a time series with NA values. To get this
as a numeric data set, use:

x <- as.numeric(paradise) # as numbers
x <- x[!is.na(x)] # strip NA values

2.37 There are several built-in data sets on the 50 United States. For instance,
state.area, showing the area of each U.S. state, and state.abb, showing a
common abbreviation. First, use state.abb to give names to the state.area
variable, then find the percent of states with area less than New Jersey (NJ).
What percent have area less than New York (NY)? Make a histogram of all the
data. Can you identify the outlier?

2.38 The lawsuits (UsingR) data set contains simulated data on the settle-
ment amounts of 250 common fund class actions in $10,000s. Look at the
differences between the mean and the median. Explain why some would say
the average is too high and others would say the average is the wrong way
to summarize the data.

2.39 Can you copyedit this paragraph from the August 16, 2003 New York
Times?

The median sales price, which increased to $575,000, almost 12
percent more than the median for the previous quarter and almost
13 percent more than the median for the period a year ago, was at
its highest level since the first market overview report was issued
in 1989. (The median price is midway between the highest and
lowest prices.)

2.40 In real estate articles the median is often used to describe the center, as
opposed to the mean. To see why, consider this example from the August 16,
2003 New York Times on apartment prices:

The average and the median sales prices of cooperative apart-
ments were at record highs, with the average up almost 9 percent
to $775,052 from the first quarter this year, and the median price
at $479,000, also an increase of almost 9 percent.
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Explain how using the median might affect the reader’s sense of the center.
2.41 The data set pi2000 (UsingR) contains the first 2,000 digits of π. What is
the percentage of digits that are 3 or less? What percentage of the digits are
5 or more?

2.42 The data set rivers contains the lengths (in miles) of 141 major rivers
in North America.

1. What proportion are less than 500 miles long?

2. What proportion are less than the mean length?

3. What is the 0.75 quantile?

2.43 The time variable in the nym.2002 data set contains the time to finish the
2002 New York City Marathon for a random sample of the finishers.

1. What percent ran the race in under 3 hours?

2. What is the time cutoff for the top 10%? The top 25%?

3. What time cuts off the bottom 10%?

Do you expect this data set to be symmetrically distributed?

2.44 Compare values of the mean, median, and 25%-trimmed mean on the
built-in rivers data set. Is there a big difference among the three?

2.45 The built-in data set islands contains the size of the world’s land masses
that exceed 10,000 square miles. Make a stem-and-leaf plot, then compare the
mean, median, and 25% trimmed mean. Are they similar?

2.46 The data set OBP contains the on-base percentages for the 2002 Major
League Baseball season. The value labeled bondsba01 contains this value for
Barry Bonds. What is his z-score?

2.47 For the rivers data set, use the scale function to find the z-scores. Ver-
ify that the z-scores have sample mean 0 and sample standard deviation 1.

2.48 Compare the three measures of spread (sd, IQR, mad) for the exec.pay
(UsingR) data set. Are the values comparable?

2.49 The data set npdb (UsingR) contains malpractice-award information. The
variable amount is the size of malpractice awards in dollars. Find the mean
and median award amount. What percentile is the mean? Can you explain
why this might be the case?
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2.50 Find the coefficient of variation (standard deviation scaled by the mean)
for the rivers data set.

2.51 The data set babyboom (UsingR) contains data on the births of 44 chil-
dren in a one-day period at a Brisbane, Australia, hospital. The variable
running.time records the time after midnight of each birth. The command
diff(running.time) records the differences or inter-arrival times. Such times
are often exponentially distributed. Is the coefficient of variation close to 1?

2.52 The data set babyboom (UsingR) contains data on the births of 44 children
in a one-day period at a Brisbane, Australia, hospital. Compute the skew
of the wt variable, which records birth weight. Is this variable reasonably
symmetric or skewed?

The variable running.time records the time after midnight of each birth.
The command diff(running.time) records the differences or inter-arrival
times. Is this variable skewed?

2.53 The data set hall.fame (UsingR) contains baseball statistics for several
baseball players. Make histograms of the following variables and describe
their shapes: HR, BA, and OBP.

2.54 Sometimes a data set is so skewed that it can help if we transform the
data prior to looking at it. A common transformation for long-tailed data sets
is to take the logarithm of the data. For example, the exec.pay (UsingR) data
set is highly skewed. Look at histograms before and after taking a logarithmic
transform. Which is better at showing the data and why? (You can transform
with the command log(1 + exec.pay, 10).) Find the median and the mean
for the transformed data. How do they correspond to the median and mean
of the untransformed data?

2.55 Create a quantile-normal plot for the chest-size measurements in
ChestSizes (HistData). Do the plotted points appear to lie very close to a
straight line?

2.56 The Michelson (HistData) data set records 100 measurements by Michel-
son of the speed of light (in the variable velocity). Make a quantile-normal
graph and discuss if the graphic shows the points falling on a straight line.

2.57 The data set cfb (UsingR) contains a sampling of the data from a survey
of consumer finances. For the variables AGE, EDUC, NETWORTH, and log(SAVING
+ 1), describe their distribution using the concepts of modes, symmetry, and
tails. Can you convince yourself that these distributions should have the
shape they do? Why?

2.58 The brightness (UsingR) data set contains the brightness for 966 stars in
a sector of the sky. It comes from the Hipparcos Catalogue. Make a histogram



2.4. CATEGORICAL DATA 85

of the data. Describe the shape of the distribution.

2.59 In the Cars93 (MASS) data set, which is more skewed, the Price or
MPG.highway variable?

2.60 Write a function to find the most common value of a data vector, e.g.,
the “mode.”

2.4 Categorical data

Summarizing univariate categorial data is fairly straightforward. The basic
tool is to tabulate the values and to present that information either in print
or graphic form.

Tabulating data For example, the smoke in the babies (UsingR) data set
records the smoking status of a mother. The data is coded with the codes
listed in the help page. We use these codes to create a factor and then tabu-
late:

x <- babies$smoke
x <- factor(x, labels=c("never", "now", "until current",

"once, quit", "unknown"))
table(x)

## x
## never now until current once, quit
## 544 484 95 103
## unknown
## 10

As is seen, the table command computes the frequency of each category
and returns the values in some order, in this case the order of the levels.

A related question is: what percentage of mothers smoked in the data set?
(These were mothers in the United States in the 1960s.) For that we need to
divide the counts by the total sum. This can be done directly by computing
the sum with sum(table(x)), or using the helper function prop.table. We
create a percentage by multiplying the proportion by 100:

out <- table(x)
prop <- 100 * out / sum(out) # or prop.table(out)
round(prop, digits = 2) # format output

## x
## never now until current once, quit
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Figure 2.11: A horizontal bar chart and dot chart of the smoking data.

## 44.01 39.16 7.69 8.33
## unknown
## 0.81

The above used the round function to print just two digits after the decimal
point.

Bar charts Tabulated data is often visualized through bar charts. Each count
is represented by a bar with a proportional height. The result is similar to
a histogram, though fundamentally different in that the x-axis (for vertical
displays) is used to display categories, not numeric values.

The barplot function produces a simple bar chart. We pass in the tabu-
lated data for representation. In Figure 2.11 we present both a vertical and
horizontal bar chart of the smoking data. The argument horiz=TRUE will cre-
ate a plot like the rightmost one in the figure. We used the following to
produce the leftmost graphic:

barplot(table(x), horiz=TRUE, main="Smoking data")

Dot charts A Cleveland dot chart is a good alternative to a bar chart. It
shows the exact same information, but in a sparer manner that is easier
to read. The dotchart function produces the right graphic in Figure 2.11
through:

dotchart(table(x))
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Pie charts A pie chart is a common graphic to represent proportions. The
proportion of each category is represented by a similar proportion of a circle
through a wedge. Unlike a bar chart it is very hard to actually compare values
when they are similar. To quote the help page of pie:

Pie charts are a very bad way of displaying information. The
eye is good at judging linear measures and bad at judging relative
areas. A bar chart or dot chart is a preferable way of displaying
this type of data.

Should a pie chart still be desired, the pie function can do so, with the
command pie(table(x)).

Problems

2.61 Numeric data can be discretized through the cut function. For example,
the command cut(bumpers, c(0, 1000, 2000, 3000, 4000)) will categorize
the repair cost of a bumper by its rough amount. Make a table of this. Which
range has the largest number of data points?

2.62 The Cylinders variable Cars93 (MASS) data set records the number of
cylinders in a factor. What kind of summary does R compute for factors?
Look at summary(Cars93$Cylinders) to see.

2.63 The lorem variable in UsingR contains 5 paragraphs of dummy typeset-
ting text that has been in use for centuries. What is the most common letter
used? To answer this, you can break a character value into letters by the id-
iom unlist(strsplit(x,"")) where x is character data.

2.64 Make a dot chart of the Cylinders variable in the Cars93 (MASS) data set.

2.65 Find an example of a table in the media summarizing a univariate vari-
able. Could you construct a potential data set that would have this table?

2.66 Try to find an example in the media of a misleading barplot. Why is it
misleading? Do you think it was meant to be?

2.67 Find an example in the media of a pie chart. Does it do a good job of
presenting the data?

2.68 The data set central.park (UsingR) holds the coded variable WX rep-
resenting bad weather (e.g., 1 for “fog”, 3 for “thunder”, 8 for “smoke” or
“haze”). NA is used when none of the types occurred. Make a table of the
data, then make a table with the extra argument exclude=FALSE. Why is the
second table better?



3

Bivariate data

This chapter looks at bivariate data—data involving two data variables. When
looking at two variables at once, we can ask questions about the relationships
between them. In Figure 3.1 we have two graphs. The left graph shows a
scatter plot of the data in the faithful data set which has recordings on the
Old Faithful Geyser in Yellowstone National Park. The data records the time
between eruptions and the corresponding duration of the following eruption.
We’ve added marginal histograms of the two variables.1 In Figure 2.6 we
commented that the marginal histogram of the waiting time was bimodal.
From the clustering in the scatter plot we see more—there are basically two
types of eruptions: smaller ones with shorter waiting times and longer ones
with longer waiting times.

The right graphic of Figure 3.1 uses the same data, but randomly shuffles
the y values. This does not effect the marginal distributions, but the effect
is pronounced in the scatter plot. There is now no relationship between the
x and y values. The presence of a relationship can not be seen from the
marginal distributions. It either is clear from the context of the problem, or
will show up graphically.

With bivariate data we have a few additional questions. For paired-off
data we can ask about relationships, their presence or absence, and in their
presence try to characterize the relationships. The scatter plot is useful with
numeric data, for categorial data we can look at contingency tables or some
related graphics.

For unpaired data we can ask if various measures are similar or different:
e.g., do they seem to have the same center, spread, or shape?

3.1 Independent samples

A common experimental setup involves separating a cohort into a control and
a treatment group. (We return to this example with more detail in Chapter 9.)
The treatment group receives some treatment, the control group does not.
Afterwards, measurements for each group are taken. To control for biasing
due to the separation of the cohort, random assignment is often used. This

1Following an example from the help page of layout.

88
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Figure 3.1: The left graphic shows a scatter plot of the waiting time be-
tween eruptions versus eruption duration for events at the Old Faithful
Geyser in Yellowstone National Park. Marginal histograms are added. The
right graphic is similar, but the durations were shuffled. For the two figures,
the univariate marginal distributions are identical, but the left scatter plot
demonstrates a strong relationship between the two variables: longer waiting
times tend to be followed by longer eruptions.

leads to independence—where knowledge of one participant’s performance
does not hint at another’s. To control for the “placebo effect”, the control
group often receives some treatment, but one that is not expected to have an
actual effect.

For example, suppose that to investigate the question of what foods can
have an impact on sports performance, a study was done with a group of
subjects.2 The treatment group was fed 3/2 cups of beets 75 minutes prior
to an activity, the control group was not. The activity was a timed run. The
researcher’s thinking was that the nitrates found in beets would widen the
subjects’ blood vessels, increase blood flow to the working muscles, hence
lower the time duration of the activity. Suppose the data measured (in min-
utes) are given by:

Beets eaten: 41 40 41 42 44 35 41 36 47 45
No Beets eaten: 51 51 50 42 40 31 43 45

What can be said about this data? The three longest times were in the “no-
beets-eaten” group, but that group also had the shortest time. In this initial
exploration of the data, we might ask a few questions:

• Does the data seem to come from similar populations, that is do the
two have the same shape?

2Such a study was reported in [35], though this example uses simulated data.
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• Does the data seem to have similar center, similar spread?

The researchers would presumably love to know that the centers are dif-
ferent with the beets-eaten group having shorter times on average. When we
talk about statistical inference in later chapters, we will discuss a framework
for discussing such a question given the randomness involved. For now, we
discuss some tools to investigate if the two samples are similar or clearly
quite different, leaving the subtle questions behind.

For this example, we can compare means and standard deviations easily
enough:

beets <- c(41, 40, 41, 42, 44, 35, 41, 36, 47, 45)
no_beets <- c(51, 51, 50, 42, 40, 31, 43, 45)
c(xbar1=mean(beets), xbar2=mean(no_beets),
sd1=sd(beets), sd2=sd(no_beets))

## xbar1 xbar2 sd1 sd2
## 41.200 44.125 3.706 6.813

We can see that the beet group was about 3 minutes faster and had less
spread. Whether this difference is due to the assignment of faster runners to
the beets group, or due to the eating of the beets is not answered.

As with univariate data, it is also helpful to visualize data sets. Many of
the previously discussed graphics carry over.

Stem-and-leaf chart The basic stem-and-leaf chart can be modified to dis-
play two data sets in a back-to-back manner. The built-in stem function does
not do this; stem.leaf.backback from the aplpack package does:

stem.leaf.backback(beets, no_beets, rule.line="Sturges")

## ________________________________
## 1 | 2: represents 12, leaf unit: 1
## beets no_beets
## ________________________________
## | 3* |1 1
## 2 65| 3. |
## (6) 421110| 4* |023 4
## 2 75| 4. |5 (1)
## | 5* |011 3
## | 5. |
## | 6* |
## ________________________________
## n: 10 8
## ________________________________
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Figure 3.2: Using a dot chart (left graphic) and parallel box plots to display
the simulated data on performance related to beet eating. Both graphics allow
for easy comparisons of center and spread.

The chart contains much more information than the basic chart produced
by stem. The left- and rightmost columns record position of the data in the
data set, the stems are recorded in the middle. After focusing on the middle,
it can be seen that no_beets has more spread, but the difference in centers is
not so obvious.

Dot plots The left graphic in Figure 3.2 shows a dot plot of the two vari-
ables. The extension to displaying two (or more) variables is straightforward—
new variables are just added as additional rows. This graphic is very useful
for comparing data sets. We see similar things as we did with the back-to-
back stem-and-leaf chart, but the graphic has less “chart junk” and can dis-
play larger data sets and more variables at a time.

As with the univariate case, we put off until Chapter 5 the discussion on
how to create this graphic.

Boxplots The right graphic of Figure 3.2 shows the two data sets using
parallel boxplots. Like a dot plot, a boxplot shows center and spread quite
well, but unlike the dot plot, can be used to show larger data sets. In the
figure, we can see medians differ, but both fall within the spread of the other.
This concept of looking at differences in center on a scale determined by the
spread is the key to statistical inference.

These boxplots were drawn with the command:

boxplot(no_beets, beets, names=c("no beets", "beets"),horizontal=TRUE)
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The boxplot, like the dot plot, generalizes to more than two variables
quite readily. With many variables, we would clearly want some alternative
interface, as the above command required us to type both the variable and
the name of the variable.

Density plots We use histograms to summarize a data set in such a way
that the center, spread, and shape are apparent even when there are many
data points to consider. Unfortunately, this graphic does not lend itself so
readily to more than one data set. In Chapter 5 we will see how to make
panels of histograms for comparison.

For now, we will show how to make multiple density plots. The density
plot is similar to the histogram in what it shows, but allows for the display
of two or more data sets. The only trick is we need to pre-allocate the space
needed for both the x and y ranges.

Let’s consider a different data set. The michelson (MASS) data set contains
measurement of the speed of light in air made by Michelson in 1879. The data
set consists of five experiments. We compare the fourth and fifth below. The
data is stored in a data frame with one variable Speed recording the speed
and one Expt recording the experiment number. We use indexing to get our
two variables:

speed <- michelson$Speed; expt <- michelson$Expt
fourth <- speed[expt == 4]
fifth <- speed[expt == 5]

With this, we now pre-compute the densities so that we can find their
respective ranges:

d_4 <- density(fourth)
d_5 <- density(fifth)
xrange <- range(c(d_4$x, d_5$x))
yrange <- range(c(d_4$y, d_5$y))

Now we plot. The first density plot is drawn using plot, the second
layer added with lines. As the default labels come from the initial density
plotted—and don’t apply to both—we modify both the xlab and main argu-
ments. As well, we use the lty=2 argument for the lines command, to have
that line added with a different line type:

plot(d_4, xlim=xrange, ylim=yrange, xlab="densities", main="")
lines(d_5, lty=2)

The left graphic in Figure 3.3 shows the result. We see that the centers
seem similar, the spread of the fourth might be slightly larger and the shape
of the fourth more peaked. The important comparison here would be the
center.
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The figure drawn would benefit from a legend indicting which line repre-
sents which variable. The legend function will add a legend in base graphics.
The position of the legend, the text, and the defining feature needs to be
specified. The following would place the legend in the upper left with the
line type marking which part of the graph corresponds to which variables:

legend(650, 0.008, legend=c("Fourth", "Fifth"), lty=c(1,2))

Quantile comparisons The quantile-normal plot of Figure 2.10 is a graphic
used to compare a distribution to the benchmark normal distribution. The
quantile-quantile plot generalizes this to compare one distribution to another.
The graphic computes matching quantiles and then plots them.

The right graphic in Figure 3.3 illustrates with the Michelson data just
considered. The data more or less tracks a straight line, though the observed
difference in the shape of the peak causes it to flatten out in the middle. The
small size of the data sets involved make such irregularities hard to gauge if
they are due to sampling or some systematic difference. Either way, the most
important question to answer with this from a statistical inference viewpoint
is whether the tails seem comparable, as they do in this case.

The graphic was produced using qqplot, as follows:

qqplot(fourth, fifth)

To clarify the concept, a similar graphic could have been created using the
quantile function (though approx is actually used):

ps <- seq(0.05, 0.95, by=0.05)
x <- quantile(fourth, ps)
y <- quantile(fifth, ps)
plot(x, y) # makes a scatter plot

Problems

3.1 The ToothGrowth data set contains measurements of tooth length (len)
for different treatments of supplement type (supp). Break the data up by the
two types and compare the two resulting variables. Use boxplots.

3.2 For the michelson (MASS) data set, produce a graphic with a density plot
of Experiments 1 and 2.

3.3 Use a qqplot to answer if the rivers and the islands data sets have a
similar shape (both are skewed right).
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Figure 3.3: Density plots and a quantile-quantile plot of data from the fourth
and fifth experiments of Michelson.

3.2 Data manipulation basics

R has two containers for data that can simplify working with bivariate (and
multivariate) data. These are the list and the data frame. We will discuss these
data types at greater length in Chapter 4, for now we focus just on how these
objects can simplify working with multiple samples.

Lists

As previously mentioned, a data vector in R is a container to hold values, all
of which are the same type. These values are stored in an order that can be
referenced by index, and R provides many flexible means to index. A list is a
generalized vector, in that it is a linearly indexed collection of elements like
a vector, but generalized in that each element need not be of the same atomic
type.

R provides the list constructor. Here we create a list to store the beets
data.

beets <- c(41, 40, 41, 42, 44, 35, 41, 36, 47, 45)
no_beets <- c(51, 51, 50, 42, 40, 31, 43, 45)
b <- list(beets = beets, "no beets" = no_beets)

The above could have been shortened to just list(beets, no_beets), but,
as with c, names can be added at construction using keyword arguments. As
with data vectors, the names attributes of an object can also be referenced or
assigned later through the names function.

Lists will print with their names, when present:
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b # print the list b

## $beets
## [1] 41 40 41 42 44 35 41 36 47 45
##
## $‘no beets‘
## [1] 51 51 50 42 40 31 43 45

The dollar sign (e.g., $beets) is there to indicate the names. The choice
of the dollar sign is related to the use of the dollar sign operator to access a
component of a list by name. For example:

b$beets

## [1] 41 40 41 42 44 35 41 36 47 45

This is identical to how we have been accessing variables in a data frame.
Indexing can also be done by number (or name or logical vector of match-

ing length). The main issue is there are two results we may want when in-
dexing: a list including the component or just the component. As such, there
are two indexing notations: [ to return a list and [[ to return the component:

b[1] # a list with just the first component

## $beets
## [1] 41 40 41 42 44 35 41 36 47 45

b[[1]] # just the first component

## [1] 41 40 41 42 44 35 41 36 47 45

In the following chapter, we will give more details about indexing. Here
the goal is to see how lists of vectors can make working with multiple sam-
ples easier.

The boxplot command has a list interface, which will use the named com-
ponents of the list to label the boxplots, when present. For example, the box-
plot in Figure 3.2 could have been produced with just:

boxplot(b)

• Example 3.1: Multiple comparisons
Several of the graphics listed generalize nicely for comparing more than two
independent samples, the boxplot being one of them.

We demonstrate in a tedious manner with the michelson (MASS) data set:
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Figure 3.4: Side-by-side boxplots of the five experiments run by Michelson to
measure the speed of light.

speed <- michelson$Speed; expt <- michelson$Expt
speeds <- list(speed[expt == 1], speed[expt == 2], speed[expt == 3],

speed[expt == 4], speed[expt == 5])
names(speeds) <- paste("Expt", 1:5)
boxplot(speeds)

Figure 3.4 shows the five boxplots. We can observe that experiment one
seems slightly different than the others, perhaps adjustments were made to
experimental procedures between experiments. ••

Data frames

We have mentioned that data frames are a preferred way to store many vari-
ables in rectangular manner with each variable being a different column and
observations for similar cases in rows.

R provides the data.frame constructor for creating data frames, among
other ways—they can be produced column-by-column with cbind and row-
by-row with rbind. The usage is similar to list. For example, here we create
a data frame to hold some student data:

student <- c("Alice", "Bob")
grade <- c("A", "B")
attendance <- c("awesome", "bad")
data.frame(student, grade, attendance)

## student grade attendance
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## 1 Alice A awesome
## 2 Bob B bad

Note how R performed some magic and added column names derived
from the variable names. As with c and list, keyword arguments could have
been specified to customize these names. Not obvious in the way the above
prints, is that by default data.frame will convert character data to factors. If
for some reason this is not desirable (e.g., the student name is really a charac-
teristic and not a category), then the argument stringsAsFactors=FALSE can
be specified.

Model formulas

For a data frame, the data must be rectangular and each column must contain
data of the same type. To store data of differing lengths (like the data on beet
eating) requires some coding. The common way to do this is similar to how
the michelson data frame holds its values: it has one column recording the
measurement (Speed) and another recording the experiment number (Expt).

Example 3.1 showed a cumbersome way—subsetting—to force this stor-
age type into a list. However, as this is a common storage mechanism, many
R functions have an interface that makes the format easy to work with, R’s
model formula interface. Formulas are used to express relationships between
variables for many different functions, and the interpretation of a formula
can vary depending on its use.

The basic form of a model formula is

response(s) ~ predictor(s)

One or more variables can be specified for both the response or the pre-
dictor. This is done with a syntax that is mostly consistent across its many
different uses in R. The language is consistent with the usage, as typically
we have one or more variables used to predict a value in response. Another
common term for the predictor variables is covariates.

For now, we stick to the basic case where the response is a numeric vari-
able and the predictor is a factor (the form x ~ f). Later in this chapter, we
look at numeric versus numeric (y ~ x) and extensions to two factors.

The typical interpretation of x ~ f is the data in x is split into groups
determined by the factor f. The calling function is then applied to each group.

For example, in the michelson data set, the Expt variable is a factor, and
Speed a numeric value. The boxplot function does exactly what we would
like with this: split the data into groups and summarize each group with
a boxplot. Except for the labeling, Figure 3.4 could have been made more
simply with:

boxplot(Speed ~ Expt, data=michelson)
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The data argument In several previous examples, we have commented how
it can be tedious to type in the data frame name to access one of its variables.
The data argument allows this specification to happen just once. Within the
model formula, variable names will be searched first within the data frame,
and then the enclosing environment. In the command above, values bound
to Speed and Expt will be found within the data frame michelson.

The subset argument There is an additional subset argument common to
the modeling interface that can be used to filter out which cases are to be
displayed. Again, variables will be looked up within the data frame specified
to data first.

For example, to restrict just to the last 10 (of the 20) runs per experiment,
we could create boxplots with:

boxplot(Speed ~ Expt, data=michelson, subset=Run %in% 11:20)

Rather than testing by Run > 10, we test for inclusion in the values 11:20,
as Run is kept as a factor in the data frame and is not numeric.3

The model formula template Many of R’s function have a model formula
interface, each following this basic template:4�� ��action (

�� ��response ~
�� ��predictor(s) , data=

�� ��dataset )

Also, subset is a standard argument.
The add-on mosaic package extends the formula interface to many of

the functions providing numeric summaries, such as mean and sd. The Hmisc
package also extends the summary function to produce many of these values
when called on a model formula.

The plot generic The plot function is a generic function, with methods that
provide a good graphical summary of an object. When the object is a formula
of the type x ~ f side-by-side boxplots of the x values are drawn with groups
decided by the factor f, as in this case the x ~ f model formula represents
the question of asking how x varies across the groups formed by f.

As such, except for labeling, Figure 3.4 could have been produced with
just:

3R is relaxed in how it decides when a factor matches a value. Factors (e.g., Run) are coerced
to character data and then these and the values to match against (e.g., 11:20) are promoted to a
common type for comparison purposes (e.g., character in the example).

4This template idea is borrowed from a presentation by R. Pruim, a coauthor of the mosaic
package.
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Figure 3.5: Plot of output of summary call on a basic formula. This graphic
highlights the comparison of the means for each group with the overall grand
mean for all the data.

plot(Speed ~ Expt, data=michelson) # boxplots: Expt is a factor

Compare this output to the dot charts (Figure 3.5) produced by

out <- summary(Speed ~ Expt, data=michelson)
plot(out)

Stacking data R has several facilities for reshaping of data. The functions
stack and split are two of the simplest to use.

The stack function is used to concatenate, or combine, variables with a
similar measurement into one vector along with a matching factor indicating
where the original variable came from.

It is easily used with a named list to produce the desired output:

b <- list("beets" = beets, "no beets" = no_beets)
stacked <- stack(b)
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str(stacked) # two-variable data frame

## ’data.frame’: 18 obs. of 2 variables:
## $ values: num 41 40 41 42 44 35 41 36 47 45 ...
## $ ind : Factor w/ 2 levels "beets","no beets": 1 1 1 1 1 1 1 1 1 1 ...

headtail(stacked) # visual of data frame

## values ind
## 1 41 beets
## 2 40 beets
## 3 41 beets
## ...
## 15 40 no beets
## 16 31 no beets
## 17 43 no beets
## 18 45 no beets

With the data in this format, we can again easily create the boxplots of
Figure 3.2 with the following syntax:

plot(values ~ ind, data=stacked)

Splitting data While R provides numerous functions that employ the model
interface, it can be easier to implement a new function using lists than using
formulas. In Chapter 4 we mention many methods for iterating over the ele-
ments of a list that simplify the task of applying some summary to different
groups. R has an easy way to split data up by a grouping variable into a
named list, where the components are used to store the groups.

The split function does this task. For example, in a previous example we
did the following:

speed <- michelson$Speed; expt <- michelson$Expt
speeds <- list(speed[expt == 1], speed[expt == 2], speed[expt == 3],

speed[expt == 4], speed[expt == 5])
names(speeds) <- paste("Expt", 1:5, sep=" ")

The split function does the same with a less redundant approach:

speeds <- split(michelson$Speed, michelson$Expt)
names(speeds) <- paste("Expt", 1:5, sep=" ")

As above, the split function essentially undoes the stack operation. How-
ever, the split function can be used more generally. The first argument, x,
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can be a vector, as used above, or a data frame. In the latter case the com-
ponents of the split object are individual data frames. Further, the second
argument, f, can be a factor, as above, or a list of factor names. In the latter
case all present interactions of the factors are used to split the data.

We will return to this topic when we describe the split-apply-combine
paradigm in Chapter 4.

Problems

3.4 Three students record the time spent on homework per class. Their data
is

Marsha 25 0 45 90 0
Bill 30 30 30 30
Holly 15 0 90 0

Use a list to store these values. Then create a boxplot to compare.

3.5 A group of nursing students take turns measuring some basic assess-
ments. Their data is:

Temp Pulse Systolic Diastolic
----------------------------------------
Jackie 98.2 96 134 90
Florence 98.6 56 120 80
Mildred 98.2 76 150 95

Create a data frame of these values. Will plot and boxplot produce same
graphic?

3.6 After loading Hmisc, what kind of summary is produced for a model
formula of the type x ~ f? To see, investigate the output of

require(Hmisc) # loaded by UsingR
library(MASS)
summary(Speed ~ Expt, michelson)

3.7 The split function will coerce its second argument to a factor then split.
This is useful if the grouping variable is stored as a numeric value. Verify this
by splitting the mpg variable in the mtcars data set by the cyl variable.

3.8 The second argument to split can be a list of factors. The result is
that all interactions (possible combinations) are used for the groups. In the
ToothGrowth data set, growth (len) is measured for two types of supplements
(sup) and three doses (dose). Split this len value into 6 groups.
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3.9 The use of a cell phone while driving is often thought to increase the
chance of an accident. The data set reaction.time (UsingR) is simulated data
on the time it takes to react to an external event while driving. Subjects with
control == "C" are not using a cell phone, and those with control == "T"
are. Their time to respond to some external event is recorded in seconds.

Create side-by-side boxplots of the variable reaction.time for the two
values of control. Compare the centers and spreads.

3.10 For the data set twins (UsingR) make a boxplot of the Foster and
Biological variables. Do they appear to have the same spread? The same
center?

3.11 The data set stud.recs (UsingR) contains 160 SAT scores for incoming
college students stored in the variables sat.v and sat.m. Produce layered
density plots of the data. Do the two data sets appear to have the same cen-
ter? Then make a quantile-quantile plot. Do the data sets appear to have the
same shape?

3.12 The data set normtemp (UsingR) contains normal body temperature mea-
surements for 130 healthy individuals recorded in the variable temperature.
The variable gender is 1 for a male subject and 2 for a female subject. Break
the data up by gender and create side-by-side boxplots. Does it appear that
males and females have similar normal body temperatures?

3.3 Paired data

The proportions of the human body have long been of interest to humankind.
For example, Leonardo da Vinci’s famous drawing Vitruvian Man (Figure 3.6)
of a man with outstretched arms and legs within a square and circle is based
on the ideal of human proportions described by the ancient Roman architect
Vitruvius.

Another example is in Gulliver’s Travels by Jonathan Swift (1726) where
this passage is found:

Then they measured my right Thumb, and desired no more;
for by a mathematical Computation, that twice round the Thumb
is once round the Wrist, and so on to the Neck and the Waist,
and by the help of my old Shirt, which I displayed on the Ground
before them for a Pattern, they fitted me exactly.

In da Vinci’s drawing we see that the height of a person is theorized to
be precisely the length of the arm span. For Swift, the assumption is that
for a given person, the relationship between thumb and wrist circumference
should be roughly the same (twice) for all men, similarly for wrist and neck,
and so on.
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Figure 3.6: Leonardo’s Vitruvian Man demonstrating the proportions of the
human body. (Original image from the Wikipedia Commons.)

Both examples are based on the “idealized” body type. Of course, bod-
ies show a wide range of variation so to explore such a relationship would
require us to look at many different subjects. We can then summarize this
data about a relationship between two numeric variables either numerically
or graphically.

In addition to the arguments that accompany the model formula interface,
there are many extra arguments that can be passed to the plot function, as
well as other plotting functions. We list some in Table 3.1.

Let’s consider the fat (UsingR) data set which contains measurements
of different body dimensions for a cohort of 252 males. The goal of that
data collection was to see if some prediction of a body fat index could be
made from variables which can be measured with a tape measure. (Body fat
measurements require some special equipment otherwise.) For this example,
we are just interested in relationships.

A listing of the variables in the data set shows:

names(fat)

## [1] "case" "body.fat" "body.fat.siri"
## [4] "density" "age" "weight"
## [7] "height" "BMI" "ffweight"
## [10] "neck" "chest" "abdomen"
## [13] "hip" "thigh" "knee"
## [16] "ankle" "bicep" "forearm"
## [19] "wrist"
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Command Description

main Title to put on the graphic.
xlab Label for the x-axis. Similarly for ylab.
xlim Specify the x-limits, as in xlim=c(0,10), for the interval

[0,10]. Similarly for ylim.
type Type of plot to make. Use "p" for points (the default), "l"

(ell not one) for lines, and "h" for vertical lines.
bty Type of box to draw. Use "l" for “L”-shaped, default is

"o", which is “O”-shaped. Details in ?par.
pch Plot character used. This can be a number or a sin-

gle character. Numbers 0 – 18 are similar to those of S,
though there are more available beyond that range.

lty When lines are plotted, specifies the type of line to be
drawn. Details in ?par.

lwd The thickness of lines. Numbers bigger than 1 increase
the default.

cex Magnification factor. Default is 1.
col Specifies the color to use for the points or lines.

Table 3.1: Useful arguments for various plotting commands.

The neck and wrist variables present us the opportunity to make a simple
test of the assumption of Swift’s Lilliputians.

First, we compare mean neck size to the mean wrist size two different
ways:

mean(fat$neck) / mean(fat$wrist) # ratio of means

## [1] 2.084

mean(fat$neck/fat$wrist) # mean of ratios

## [1] 2.084

For the sample data these ratios are roughly twice.5 The question of
whether the difference from exactly twice can reasonably be attributed to
the inherent randomness involved in selecting a cohort, or to a systematic
difference is left to our discussion of statistical inference.

The data under consideration is naturally paired off. We may write the
data set as (x1,y1), (x2,y2), . . . , (x252,y252). This suggests plotting the data as
point on a Cartesian plot with a scatter plot. The plot function will do so (the
left graphic in Figure 3.7):

5It is a coincidence that the two ratios appear equal, in general this isn’t true and in this
specific case, they actually differ in fourth decimal point.
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Function Description

points Add points to a graphic.
lines Add line segments to a graphic.
abline Add a line to a graphic.
text Locate text in body of a graphic.
mtext Locate text in margins of a graphic.
title Add main title, x label or y label to a graphic.
legend Locate legend in body of a graphic.

Table 3.2: Plotting functions to add to an existing graphic.

plot(fat$wrist, fat$neck)

The plots shows a relationship. Certainly, the value of exactly twice can’t
be expected to hold for each individual, as the points do not fall on a line
with slope 2. It may be the case that on average this is so.

As mentioned, the plot function is a generic function and can be called
many different ways. When called this way (plot(x,y)) the first variable is
plotted on the x axis, the second on the y. When called with a model formula
of the type y ~ x (numeric modeled by numeric) then the y variable is a
response (dependent) variable and the x the predictor (independent) variable.
The same graphic could be produced with:

plot(neck ~ wrist, data=fat)

The words “response” and “predictor” are similar to common usage. For
example, the Lilliputians knew the thumb size and predicted the rest of the
measurements based on that (getting a bit lucky in the process).

Again, the subset argument may be used to restrict which cases are used
in creating the plot. The following command will only consider those subjects
in their twenties when drawing the scatter plot:

plot(neck ~ wrist, data=fat, subset = 20 <= age & age < 30)

Whereas, the following command excludes the erroneous height mea-
surement (29.5 is likely meant to be 69.5) in a comparison of wrist circumfer-
ence to height (the right graphic of Figure 3.7):

plot(height ~ wrist, data=fat, subset=height > 50)

Correlation

The left graphic in Figure 3.7 shows the data falling around a straight line,
which is to be expected intuitively as the measurement of wrist and neck cir-
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Figure 3.7: Scatter plots showing a relationship between wrist and neck cir-
cumference (left graphic) and wrist circumference and height (right graphic).

cumferences are related. The right graphic shows something similar, larger
wrists tend to correspond to taller people. However, the data is more scat-
tered, as might be expected. (Even the Lilliputian’s of Swift might have
guessed that if you double enough times where there is some error in mea-
surement your errors will propagate on average, though how exactly they
propagate would likely have been unknown to them in 1726.)

The correlation is a numeric summary for how closely related are the mea-
surements of two numeric variables when they are in a linear relationship.
Perfect correlation would mean the data fall precisely on a straight line. No
correlation roughly says the values are scattered.

To investigate the definition of correlation, it is useful to shift the center
of the scatter plot to the point specified by the mean of the x variable and the
mean of the y variable. We can graphically add crosshairs centered on such
a point and a marker with the abline and points functions. The left graphic
of Figure 3.8 shows the results.

x <- fat$wrist[1:20]; y <- fat$neck[1:20] # some data
plot(x, y, main="Neck by wrist")
abline(v = mean(x), lty=2) # dashed vertical line
abline(h = mean(y), lty=2) # dashed horizontal line
points(mean(x), mean(y), pch=16, cex=4, col=rgb(0,0,0, .25))

As with the other functions in Table 3.2, a call to abline adds a layer to an
existing graphic. In particular, abline function is used to draw a line across a
graphic. A vertical line is specified using "v", a horizontal line with "h", and
a line with intercept through "a" and slope "b". The lines function can be
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Figure 3.8: Scatter plots with their center framed by cross hairs. The data in
the left graphic is correlated, as seen by the clustering of the points into two
of the four regions, the data on the right is uncorrelated, as the points are
scattered throughout the four regions.

used to similar effect, but abline has a more direct interface for this specific
task.

The points command is used with 16 specifying a solid circle for the plot
character, a size of 4 times the usual, and color specified with RGB values and
a 25% alpha transparency (so that any overlapping points bleed through).

The point of this graphical display is to isolate the data into four regions
determined by those with x values above and below the mean of all the x
values and those with y values above and below the mean of all the y values.
For the correlated data shown, most of the data appear in two opposing
quadrants of the four, in this case the values are primarily both lower than
average or both greater than average, with just a few mixing that pattern up.

The right graphic of Figure 3.8 plots the age of the subject against their
ankle circumference. Whereas we might expect a certain widening in the mid-
dle as a person ages (waist circumference), ankles generally don’t show the
effects of a person gaining weight. Hence, the graphic would not be expected
to show much of a relationship, and it doesn’t. In this graphic, the points
don’t seem to cluster in just two of the four regions.

The covariance and correlation between two values quantifies the differ-
ence between points scattered in the four regions versus points scattered in
two opposite regions. The covariance between two data sets x and y is given
by:
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cov(x,y) =
1

n− 1 ∑(xi − x̄)(yi − ȳ).

For correlated data, the cross terms (xi − x̄)(yi − ȳ) will tend to have the
same sign, as correlated data appears primarily in opposite regions. If in the
lower left and upper right, then this sign will be positive; if in the upper left
and lower right negative. Thus the values in the covariance will not cancel
out if the data is correlated, so the covariance will be large in absolute value.
Wheres, if the data is uncorrelated, the values will cancel each other out.

The Pearson correlation coefficient is similar, only z-scores are used in place
of the deviations:

cor(x,y) =
1

n− 1 ∑
(

xi − x̄
sx

)(
yi − ȳ

sy

)
= cov(x,y)/(sxsy).

Dividing by n − 1 ensures that the value is between −1 and 1, values
which occur only when the data fall on a straight line with negative or posi-
tive slope. When data is perfectly uncorrelated, the correlation is 0.6

We can see from the formula that the correlation is symmetric, in that
we could switch the order of the x and y variable. Further, the fact that the
correlation is based on z-scores—which remove the effects of both center and
spread by standardizing—makes the correlation intrinsic to the shape of the
data.

The cov and cor functions compute the covariance and correlation. They
do not have a formula interface. We can use them as follows:

cor(fat$wrist, fat$neck) # strongly correlated

## [1] 0.7448

cor(fat$wrist, fat$height) # mildly correlated

## [1] 0.3221

cor(fat$age, fat$ankle) # basically uncorrelated

## [1] -0.1051

6This is in a linear sense, data can be related and have 0 correlation, such as would happen
by symmetrically placing points on the unit circle.
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When these functions are called with a data frame (or matrix) the pairwise
correlations of each pair of columns is given. This is returned in a symmetric
grid with the ith row and jth column holding the correlation between the ith
and jth column.

Spearman correlation coefficient The Pearson correlation coefficient mea-
sures the strength of a linear relationship. For monotonic relationships, there
are other, similar measures, such as the Spearman correlation coefficient.

Consider the Animals (MASS) data set that records average body weight
(body) and brain size (brain) for several species, some quite extinct. We would
expect that larger bodies would be paired off with larger brains, leading to a
positive correlation closer to 1 than 0. A quick check shows our assumption
is way off:

cor(Animals$body, Animals$brain)

## [1] -0.005341

The issue is the presence of Brachiosaurus, a rather large, dumb dinosaur.
A scatter plot shows this point as an outlier. The lone outlier has a large “x”
value and small “y” value, so the product (xi − x̄)(yi − ȳ) is a large negative
number, large enough to cancel the rest of the contributions which are mostly
positive.

To see all of those with negative cross terms we compute:

body <- Animals$body; brain <- Animals$brain
cross_prods <- (body - mean(body)) * (brain - mean(brain))
Animals[cross_prods < 0, ]

## body brain
## Dipliodocus 11700 50.0
## Asian elephant 2547 4603.0
## Horse 521 655.0
## Giraffe 529 680.0
## Human 62 1320.0
## Triceratops 9400 70.0
## Brachiosaurus 87000 154.5

(Why are humans in this list?)
We could remove the dinosaur species and recompute. They are clearly

outliers and died off, perhaps, as a species because of this imbalance. Instead
we transform the data. Transforming can make large values not have such a
big impact on our numeric measures.

A common transform, historically dating back to at least Fechner in 1800s
is to rank the data, that is placing the data in order and assigning a rank,
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first, second, . . . . The rank function7 will do this task. It has various methods
to assign ranks when the data is tied. Here we rank the data (with the default
ties.method="average" to break ties) and then take the correlation:

cor(rank(body), rank(brain))

## [1] 0.7163

This approach is common enough, that R’s cor function has an argument
method to specify it:

cor(body, brain, method="spearman")

## [1] 0.7163

The Spearman correlation coefficient is then a measure of association.
Data which is monotonically related (increasing or decreasing relationship)
will have perfect Spearman correlation. The application of this measure is not
restricted to just linear relationships, as the Pearson correlation interpretation
is. (There is also the Kendall correlation coefficient (method="kendall") which
also uses the ranked data. We illustrate this in Section 3.4.)

• Example 3.2: Correlated averages with replication
The data set ToothGrowth contains measurements on the effects on tooth
length (len) based on varying dosages of vitamin C for a cohort of guinea
pigs. The idea being that more vitamin C in the diet would promote tooth
growth. We can check this numerically by observing that the correlation is
indeed positive:

cor(ToothGrowth$dose, ToothGrowth$len)

## [1] 0.8027

For each level of dosage, there are several experimental units, as the ex-
periment was replicated. This is a common design. It is also common for
researchers to average then take the correlation of the averaged data. (In-
deed, the data in the last example on animal brain weights was averaged
over species.) This could change the correlation significantly. In the following
we split the data into the three dosage groups and then compute the cor-
relation for these dosage values and the group averages (again, in the next
chapter we introduce idioms that make this sort of computation over groups
much easier):

7The xtfrm function is also used to rank values in R.
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l <- split(ToothGrowth$len, ToothGrowth$dose)
group_means <- c(mean(l[[1]]), mean(l[[2]]), mean(l[[3]]))
cor(c(0.5, 1, 2), group_means)

## [1] 0.9574

The value of 0.95 for the aggregated data is higher than the value 0.80 for
the individual data. In general correlations formed from averages are typi-
cally closer to 1 or −1 than when all the data is considered individually. It is
important to keep this in mind when evaluating a reported correlation. ••

• Example 3.3: Correlation is not causation
The terms correlation and causation are often confused, but it is important to
keep in mind they are not the same. As early as 1950, articles were appearing
linking smoking with cancer, but establishing actual causation was an issue
that took much time. Industry forces worked very hard for many years trying
to de-couple the two terms.

One problem with trying to establish that a correlation between two vari-
ables is due to causation is the presence of lurking variables, a confounding
variable that correlates with both the response and predictor. We use a data
set on SAT scores from the 1990s to illustrate how taking into account a lurk-
ing variable can completely change an interpretation.

The question here is the relationship between average teacher pay and
student SAT scores. The data set SAT (UsingR) contains measurements by U.S.
state from the 1990s.8 We would expect that states that offer higher pay have
an increased chance of attracting more effective teachers who would gener-
ally have students with higher SAT scores. So a priori we might expect there
to be a positive correlation between the salary variable and the total vari-
able (which records average SAT scores per state). A quick check shows this
is not the case:

cor(SAT$salary, SAT$total)

## [1] -0.4399

The negative correlation can be seen from the overall shape of the scatter
plot in Figure 3.9.

This unexpected result demands a closer look. The data set also includes
a variable perc recording the percentage of students who took the SAT. If we
make a scatter plot and use different symbols for states with a percentage less
than 10, and for states with a percentage greater than 40 we see something
else.

8This data is discussed in an example by Kleinman and Horton at http://sas-and-r.
blogspot.com/ and attributed to [28] therein.
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Figure 3.9: Total SAT scores by average teacher pay for each of the fifty United
States. The pattern for all the points shows a negative correlation. Different
plot characters are used to indicate the statewide percentage of test takers,
with low percentage states marked with boxes and a high percentage of states
marked with filled-in circles. When each of the three subgroups is considered
individually the correlation is positive.

plot( total ~ salary, SAT)
points(total ~ salary, SAT, subset = perc < 10, pch=15) ## square
points(total ~ salary, SAT, subset = perc > 40, pch=16) ## solid

Figure 3.9 shows that the correlation for each subgroup will be positive,
in line with our intuition. To numerically compute these correlations we use
a somewhat cumbersome approach.

total <- SAT$total; salary <- SAT$salary; perc <- SAT$perc
less_10 <- perc < 10
more_40 <- perc > 40
between <- !less_10 & !more_40
c(less = cor(total[less_10], salary[less_10]),
between = cor(total[between], salary[between]),
more = cor(total[more_40], salary[more_40]))
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Figure 3.10: Moore and McCabe’s figure showing various explanations for
an observed association. The dashed arrows show an association, the solid
arrow a cause-and-effect-link. Here x is explanatory, y a response, and z a
lurking variable.

## less between more
## 0.2588 0.2225 0.3673

We see, counterintuitively, that all the correlations for the subgroups are
positive, yet the overall correlation is negative. This is an example of a phe-
nomenon called Simpson’s paradox where some trend that exists for subgroups
changes when the data is aggregated. ••

Association: correlation is not causation Figure 3.10 shows a canonical fig-
ure of introductory statistics from [42]. This graphic helps anchor the concept
that there are many ways to describe an association between a response vari-
able y and an explanatory variable x.

To elaborate, let’s consider the complicated case of gun ownership and
violence through a natural experiment. In 1996 the Australian government
passed the National Firearms Agreement (NFA) in response to a tragic mas-
sacre in Tasmania the same year. Part of this agreement was the implementa-
tion of a gun buyback program. Per-state data read from a graphic is:9

buyback <- c(ACT=1500, NSW=2500, WA=2700, Qld=3700, Vic=4250,
SA=4200, NT=5000, Tas=7500)

change <- -c(.2, 1,.9, 2.5, 1.0, 1.6, 2.5, 3.4)
m <- data.frame(buyback, change)
m

9This comes from Did gun control work in Australia? by Dylan Matthews posted on August 2,
2012 at http://www.washingtonpost.com. The data is attributed to [45], but originated in [50].
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## buyback change
## ACT 1500 -0.2
## NSW 2500 -1.0
## WA 2700 -0.9
## Qld 3700 -2.5
## Vic 4250 -1.0
## SA 4200 -1.6
## NT 5000 -2.5
## Tas 7500 -3.4

The buyback variable records the number of guns bought back per 100,000
residents in a state, the change variable is the change in suicide rate per
100,000 residents over the years 1990 – 95 and 1998 – 2003. This data has a
strong negative correlation:

cor(buyback, change)

## [1] -0.881

Clearly, there is some association between these variables, but is there a
causal relationship? A causal relationship would be represented by (a) of Fig-
ure 3.10. There the association is directly due to the change in the x variable,
in this case fewer guns directly leads to fewer firearm suicides. The assump-
tion being “By making the most lethal weapons (firearms) less available, the
number of violent crimes will fall and the average lethality of those crimes
will also decline” [50].

However, other factors can be at play. Perhaps the Australian public sim-
ply was in shock over the tragedy of the event and this made some value
their life more than they did prior to the massacre event. If so, the buyback
program would then make no difference in the suicide rate, but the numbers
of guns bought back would be in response to the tragedy and the reduction
of suicides could be attributed to a national response to the tragedy. That
is, a third variable could have an effect on the other two. This would be an
example of two associated variables being associated as they are in a common
response to a third lurking variable.

Often a more nuanced set of factors are involved. In [5] a question is raised
of whether interventions lead to displacement and method substitution. In
this case, does the suicide rate by other means compensate for that lost to
self-inflicted firearm wounds taking into account the current cultural trends?

In Figure 3.10 (c) represents confounding where the effects on the response
by two or more variables cannot be distinguished from each other. In this
example, the variable of method substitution may account for the decline
in y, the cultural trends may account for the drop in y, or it could be the
intervention x or some combination.

Baker and McPhedran write in their abstract “When compared with ob-
served values, firearm suicide was the only parameter the NFA may have
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Figure 3.11: Plot of tooth length versus vitamin C dosage for measured guinea
pigs in the ToothGrowth data set. The group means are connected with line
segments. The slope of each line can be interpreted as the expected mean
increase per unit increase in vitamin C dosage.

influenced, although societal factors could also have influenced observed
changes.” This leaves open the issue of confounding. It is worth pointing
out that this analysis was cited by [30] in an article titled How to find nothing
as an example of difficulties of comparing actual occurrences with counter-
factual assumptions, in this case the assumption that death rate trends would
continue indefinitely in a linear manner.

Trends

Let’s pick up with the discussion on the ToothGrowth data set, where we
found the correlation of the group averages. Rather than do that again, we
plot line segments connecting the group averages:

plot(len ~ dose, data=ToothGrowth, pch=16, col=rgb(0,0,0,.25))
points(c(0.5, 1, 2), group_means, cex=1.5, pch=18)
lines(c(0.5, 1, 2), group_means)

Figure 3.11 shows the graphic. If the means of each group represent the
expected tooth length for a given dosage, then the slope of the line segments
connecting the different groups can be interpreted as the change in expected
length for a unit change in vitamin C dosage.

If the underlying relationship were truly linear, then the same slope would
hold across all changes in dosage and we could summarize the relationship
quite succinctly in terms of a single rate of change in the expected mean
response.
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In this section we look at trends that summarize a relationship between
two numeric variables. The primary example is a linear trend.

A model for a linear trend can be specified as follows:

The mean response value depends linearly on the predictor value.

Mathematically we may write µy|x = β0 + β1x, where the notation µy|x
means the mean of the response variable for a specified value of the predictor
x. For individual data points, this becomes:

yi = β0 + β1xi + εi,

where the εi are the error terms. In the model we can’t actually observe the
errors, as we don’t know the values of the β coefficients. Rather we make
assumptions about them. Were the errors always 0, then for a given value of
x, all the y values would be the same so the average would depend just on
x. In a statistical model, a common assumption is that on average the values
of the εi are 0. This is interpreted to mean if there were many such errors
averaged it would be really close to 0, and in the long run exactly 0. The
language “mean response value” then is in this sense where we assume we
could take arbitrarily many error terms. Whereas, in any data set, we just
have a finite-sized sample.

The method of least squares Let (xi,yi) denote our data and suppose we
have a line y = b0 + b1x summarizing the relationship µy|x. Then if x and y are
in a linear relationship, we can define the value ŷi = b0 + b1xi to be the value
with (xi, ŷi) lying on the line. The residual or residual error (cf. Figure 3.12) is
given by

residual = yi − ŷi.

If we think in some sense of the line describing the trend between x and
y then the line predicts the y values in some way, so this could be seen in the
following canonical format of

residual = observed− expected.

This is one of many examples in this text of centering—that is, looking at
values relative to our sense of what is expected.

The least squares regression line is defined in terms of the residuals: it is the
line which minimizes the squared residuals.10 The choice doesn’t try to fit

10R does not actually compute the values involved in this manner, as there is an underlying
geometric interpretation that lends itself to faster, more numerically stable solutions.
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Figure 3.12: Least squares regression line superimposed on a data set. The
residual is the signed vertical distance from a point to the line. For the illus-
trated point, this is negative.

exactly the most possible points, but rather shares the errors amongst points
to create the smallest sum.

We denote the least squares regression line as ŷ = β̂0 + β̂1x. The “hat” is
widely used to indicate an estimate for an unknown parameter. Solving the
minimization problem yields these values for β̂0 and β̂1:

β̂1 =
∑(xi − x̄)(yi − ȳ)

∑(xi − x̄)2 = cor(x,y)
sy

sx
,

β̂0 = ȳ− β̂1 x̄.

These two formulas reveal some interesting facts:

• The slope of the regression line, β̂1, is related to the correlation, though
scaled to fit the scale of the problem. That is, a change of 1 standard
deviation in the x direction corresponds to a change in the expected
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mean of the y value by 1 standard deviation of the y variable times the
correlation coefficient.

• The role of the predictor x and response variable y is not interchange-
able. Trying to switch the two would basically be a different optimiza-
tion problem—horizontal distances of a point to a line, not the vertical
distances.

• The intercept is derived from the more central fact that (x̄, ȳ)—the cen-
ter of the scatter plot—is a point on the regression line.

Less obvious, but still true, is the fact that the sum of the residuals will
always be 0.

Historically there have been many ways to choose a line (estimate the βs)
that describes a data set. According to Stigler [55], in 1750 Mayer was con-
fronted with a wealth of observational data on measurements of the moon.
To fit a linear model with three parameters to the data, he simply averaged
out arbitrarily chosen groups to get three equations in three unknowns that
he solved. Boscovich in 1757 proposed a method involving a minimization
problem but not in terms of the squared residuals, but rather the sum of
the absolute value of the residuals. Legendre in 1805 introduced the idea of
minimizing the squared residuals.

The lm function In Chapter 11 we discuss statistical inference for the sim-
ple linear regression model. This model is specified in R’s model formula
notation as response ~ predictor. The lm function is used to fit linear models,
in particular it covers this simple case of a single predictor. The basic interface
is common to the model interfaces we’ve seen so far:

res <- lm(response ~ predictor, dataset, subset=...).

To see how lm is used, we look at the data set heartrate (UsingR). This
data set records an age (age) and maximum heart rate (maxrate) for a hypo-
thetical cohort of people. The rule of thumb in many gyms is that the maxi-
mum heart rate is related linearly to a person’s age by the formula 220− age.
Mathematically, this is a line with slope of −1 and intercept of 220.11

For this data, we can find the least squares coefficients with R:

res <- lm(maxrate ~ age, data=heartrate)
res

11According to the citation in the heartrate help page, the simple formula was determined
“arbitrarily” by looking at ten studies and graphically estimating the values for a slope and
intercept.
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##
## Call:
## lm(formula = maxrate ~ age, data = heartrate)
##
## Coefficients:
## (Intercept) age
## 210.048 -0.798

We see from the output the estimated intercept is less than 220 and the
estimated slope not quite −1, though both estimates are within the ballpark
of the oft-used rule of thumb.

The interpretation of the slope in this case is the change is the predicted
mean maximum heart rate declines by 0.798 beats per minute for a unit (one
year) change in age.

The res object only prints a small portion of the information contained in
it. To tease out more, R provides various extractor functions. These are generic
functions with implementations for many different modeling functions be-
sides lm. Table 11.1 has a listing. We discuss just a few here, putting off the
others for Chapter 11.

Visualizing the regression line We can easily add the regression line to a
scatter plot with the abline function:

plot(maxrate ~ age, data=heartrate)
abline(res) # add line to graphic

Residuals, fitted values, and predictions The residuals are computed for
each point and returned by the resid function (an abbreviation for residuals).
We mentioned that the residuals sum to 0, as can be empirically verified up
to round-off error through:

sum(resid(res))

## [1] -1.776e-15

The residuals are related to the fitted values through residual = actual
- fitted. R also provides a fitted function. We can check that this defining
relationship holds:

actual <- heartrate$maxrate
diffs <- resid(res) - (actual - fitted(res))
max(diffs) # 0 save for round-off

## [1] 1.199e-14
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The fitted value gives the predicted mean value of the response variable
for the specific value of x in the data. For other values of x where a prediction
for the mean response is desired, the predict function can be used. Before
illustrating, we show that predict is simply a convenience in this case, as it
isn’t hard to do the work directly.

To estimate the expected mean maximum heart rate for 30- and 40-year
olds simultaneously we have:

age <- c(30, 40)
coef(res)[1] + coef(res)[2] * age # beta_0 + beta_1 x

## [1] 186.1 178.1

This approach can get tedious in the case with many predictor variables.
The predict method simplifies it. To use this function, a data frame with
named variables matching those in the model formula is needed. This al-
lows predict to disambiguate values when there are multiple covariates or
predictor variables.

predict(res, data.frame(age=c(30, 40)))

## 1 2
## 186.1 178.1

Diagnostic plots The plot method for linear models (e.g., plot(res)) will
show diagnostic plots that make it possible to assess the assumptions needed
for statistical inference. This topic will be discussed in Chapter 11.

Transformations

In talking about the correlation for the data set comparing the body weight
and brain weight of various animals, we presented an example where it was
best to transform the data before applying a statistical summary, in that case
the correlation. With linear models this can often be the case.

Common transforms are based on powers, such as squaring or taking a
square root, or logarithms, if the variables are positive.

For example, rather than rank the data on body and brain weights, we
look instead at their transformation by taking logs. Figure 3.13 shows the
graphic produced by these commands:

plot(log(brain) ~ log(body), data=Animals)
## label the outliers
idx <- log(Animals$body) > 6 & log(Animals$brain) < 6 # select
text(log(Animals$body[idx]), log(Animals$brain[idx]), # label

labels=rownames(Animals)[idx], pos=2)
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Three values fall outside the otherwise strong linear relationship in the
data, as labeled in the figure. Fitting the linear model with these values ex-
cluded could be done with:

lm(log(brain) ~ log(body), data=Animals, subset=!idx)

##
## Call:
## lm(formula = log(brain) ~ log(body), data = Animals, subset = !idx)
##
## Coefficients:
## (Intercept) log(body)
## 2.150 0.752

Interpreting these values is a bit different. The basic model has become

log(yi) = b0 + b1 log(xi) + errori

or in the original scale:

yi = eerrori · eb0 xb1
i .

This is roughly saying that the mean response in the brain is a multi-
ple of the body weight squared (e0.752) and the errors are multiplicative, not
additive.

Mathematical operators and model formulas The model formula interface
overloads the usual arithmetic operators, +, -, *, and /. That is, these oper-
ators are given different interpretations when used in the formula context.
These interpretations are useful when the models have more than one ex-
planatory variable. To have the operators assume their familiar mathematical
meanings, we must wrap the call within the I function, R’s “as is” operator.

• Example 3.4: Body mass index
The body mass index (BMI) is a measure of an individual’s fitness designed
by Quetelet in the 1800s, but still very much part of the everyday vernacular.
BMI is a simple measure computed by taking an individual’s weight and
dividing by their height squared using units of kilograms and meters. This
comparison allows the same scale to be used for people of varying heights.
It also implies that we should expect weight and height squared to exhibit a
linear relationship. For that we can investigate. We use the weight and height
data in the kid.weights (UsingR) data set, after restricting the data to five-
year-olds.

idx <- 60 <= kid.weights$age & kid.weights$age < 72

The data is in pounds and inches, so we want to convert by dividing
weight by 2.2 and height by 2.54/100. Our first attempt won’t work:
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Figure 3.13: The brain weight of animals plotted as a function of the body
weight after taking logarithms. There are three prominent outliers from the
otherwise well-defined linear relationship labeled by their row name.

plot(weight/2.2 ~ (height*2.54/100)^2, data=kid.weights, subset=idx)

## Error: invalid model formula in ExtractVars

The left-hand side of the formula is fine, the complaint is about the right-
hand side. As both * and ˆ have different meanings from their mathematical
usage in the model syntax, we need to wrap the result within I:

fm <- weight/2.2 ~ I(height*2.54/100^2)

With the formula assigned to a variable, we can use it to plot both the
data and the regression line:

plot(fm, data=kid.weights, subset=idx)
res <- lm(fm, data=kid.weights, subset=idx)
abline(res)
res

##
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## Call:
## lm(formula = fm, data = kid.weights, subset = idx)
##
## Coefficients:
## (Intercept) I(height * 2.54/100^2)
## 10.6 927.8

The large slope to the regression line is a bit surprising, as the values
should be similar. Whether it is an artifact of sampling variability or some-
thing more is of interest. ••

Alternative trend lines

There are different trend lines that could be substituted for the least squares
regression line.

Standard deviation line Figure 3.14 shows data used by Pearson in his
pioneering studies of correlation and regression.

The regression line is drawn in a solid line. In addition, the line with
slope sy/sx going through the point (x̄, ȳ) is drawn. This is called the SD
line by Freedman et. al. [23] (a similar graphic graces the text’s cover). The
standard deviation line allows us to easily compare values by their z-score:
points whose components have equivalent z-scores will appear on the line,
whereas if a point is above this line, say, then the z-score of the y value is
more than the z-score of the x value.

The slope of the regression line is the correlation coefficient (r = 0.50)
times sy/sx, so the slopes will differ by r. If the regression line is used for
prediction (say to predict a son’s adult height by the father’s height) then
this fact implies for the taller-than-average fathers their sons are predicted to
be taller than average, but their predicted z-score will be less by a factor of r.
In this sense, there is a regression towards the mean.

Minimizing vertical distance to the line The least squares regression line
finds the values of b0 and b1 that minimize the sum ∑i(yi − (bo + b1xi))

2.
Similarly, we can ask, as Boscovich did, to find b0 and b1 that minimize
∑i|yi − (b0 + b1xi)|. This is a special case of quantile regression related to
the median.

The quantreg package implements this procedure through its rq function.
We illustrate by following an example from that package using their engel
(quantreg) data set. This has a variable foodexp for annual food expenditure
and income for annual income for a data set collected in Belgium. The special
case of quantile regression we seek is found with the rq function using the
parameter tau=0.5. We see below how different R modeling functions employ
a similar interface:
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Figure 3.14: Plot of son’s height by father’s height for data used by Pearson.
In overlay are a regression line (solid) and a standard deviation line. The
regression line predicts the son’s height based on the father’s, the standard
deviation line marks values with equal z-scores. The regression effect is the
predicted z-score for the son will be closer to 0 than the father’s z-score.

require(quantreg) # also loaded with UsingR
data(engel) # not loaded by default
f <- foodexp ~ income
res.lm <- lm(f, data=engel)
res.rq <- rq(f, tau=0.5, data=engel)
plot(f, data=engel)
abline(res.lm, lty=1)
abline(res.rq, lty=2)
legend(4000, 1500, c("lm", "rq"), lty=1:2)

In the right graphic of Figure 3.15 the data has been split into 250-franc
ranges and a boxplot is drawn for each subset. Layered on top is the quantile
regression line, in some sense, it tracks the medians for each group.

Minimizing distance to the line An alternate minimization would be to
minimize the distance to the line (not the vertical distance or vertical distance
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Figure 3.15: Left graphic shows two trend lines drawn fitting the relationship
between food expenses and income for the data in the engel data set. The
lines are similar, but the least squares regression line (solid one) is more at-
tracted to the outlier than the median regression line (dashed one). The right
graphic shows the same data split into 250-franc groups that are presented
in boxplots (using ggplot2). The quantile regression line in overlay tracks the
median for the groups.

squared). This problem is related to principal component analysis, a statis-
tical technique used for data reduction. Figure 3.16 shows the first principal
component along with the regression line. The first principal component is
chosen to account for as much of the variability as possible. In 1901, Pear-
son [47] described the importance of this line for problems when both x and
y are subject to randomness and neither a natural predictor. This is unlike
the regression line, where the terminology of dependent and independent
variables suggests the independent variable is known and the dependent de-
pends on the value.

Robust regression lines Like other statistics we’ve seen so far—such as the
mean, the standard deviation, and the Pearson correlation—the regression
estimates are sensitive to one or two “large” values. In this case, large is in the
sense of far from the pattern. An example would be points for the dinosaurs
in the Animals data set. The MASS package introduces several alternatives to
lm that are robust to one or more large values. The rlm function is one such.
It basically replaces the function to be optimized: ∑(yi − (b0 + b1xi)

2) with
one not so sensitive to large values: ∑ ρ(yi − (b0 + b1xi)

2). The default ρ is
“Huber’s M-estimator”, which is like x2 for small values and |x| for large.
The mathematical details are handled by the authors of MASS, who provide
an interface similar to that of lm.

We compare model fits for lm and rlm as follows (Figure 3.17):
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Figure 3.16: Regression line with first principal component direction drawn.
The principal component direction minimizes the total perpendicular dis-
tance to the line and is in the direction explaining maximum variability.

f <- log(brain) ~ log(body)
res.lm <- lm(f, data=Animals)
res.rlm <- rlm(f, data=Animals)
plot(f, data=Animals)
abline(res.lm, lty=1)
abline(res.rlm, lty=2)
legend(-2, 8, legend=c("lm", "rlm"), lty=1:2)

The figure shows the influence of the three points representing the di-
nosaur species, which we can get with:

which(resid(res.lm) < -2)

## Dipliodocus Triceratops Brachiosaurus
## 6 16 26

The regression line is pulled towards that cluster of values, the robust
regression line is not so much.
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Figure 3.17: Log-log plot of brain size based on body mass for several species
of animals. The simple regression line is pulled towards the three outliers,
whereas the robust regression line fit by rlm is not.

Smoothers The regression line is computed by taking into account all the
data at once. A local fit is one where the predicted value depends only on
nearby values. The loess function will fit a polynomial function locally, the
default is a second degree polynomial. Like other modeling functions, it is
employed in a manner similar to lm.

Here we follow [58] and investigate the original Galton data on heights of
children and their parents. The data is in the Galton (HistData) data set.

f <- child ~ parent
plot(f, data=Galton, col=rgb(0,0,0, alpha=0.25))
res.lm <- lm(f, data=Galton)
abline(res.lm, lty=1, lwd=2)
##
res.loess <- loess(f, data=Galton, degree=1) # line, not quadratic
rng <- seq(64, 73, length=20)
newdata <- data.frame(parent=rng)
predicted <- predict(res.loess, newdata) # predicted by loess
lines(predicted ~ rng, lty=2, lwd=2)
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Figure 3.18: Plot of Galton data with regression line and loess line (dashed).
The loess line shows a slight curve. The data is overplotted with transparency,
as an alternative to jittering.

Figure 3.18 shows the fitted curve, which was computed using predict
in an identical manner as could be done for an object created by lm. The
authors in the cited article comment on the bend in the figure, pointing out
that it may be attributed to the mixing of genders in the data.

Problems

3.13 For the homedata (UsingR) data set, make a histogram and density es-
timate of the multiplicative change in values (the variable y2000/y1970). De-
scribe the shape, and explain why it is shaped thus. (Hint: There are two
sides to the tracks.)

3.14 The data set normtemp (UsingR) contains body measurements for 130
healthy, randomly selected individuals. The variable temperature measures
normal body temperature, and the variable hr measures resting heart rate.
Make a scatter plot of the two variables and find the Pearson correlation co-
efficient.
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3.15 The data set fat (UsingR) contains several circumference measurements
for 252 men. The variable body.fat contains body fat percentage, and the
variable BMI records the body mass index. Make a scatter plot of the two
variables and then find the correlation coefficient.

3.16 The data set twins (UsingR) contains IQ scores for pairs of identical twins
who were separated at birth. Make a scatter plot of the variables Foster and
Biological. Based on the scatter plot, predict what the Pearson correlation
coefficient will be and whether the Pearson and Spearman coefficients will
be similar. Check your guesses.

3.17 The state.x77 data set contains various information for each of the fifty
United States. We wish to explore possible relationships among the variables.
First, we make the data set easier to work with by turning it into a data frame.

x77 <- data.frame(state.x77);

Now, make scatter plots of Population and Frost; Population and Murder;
Population and Area; and Income and HS.Grad. Do any relationships appear
linear? Are there any surprising correlations?

3.18 The data set nym.2002 (UsingR) contains information about the 2002
New York City Marathon. What do you expect the correlation between age
and finishing time to be? Find it and see whether you were close.

3.19 For the data set state.center do this plot:

plot(y ~ x, data=state.center)

Can you tell from the shape of the points what the data set is?

3.20 The batting (UsingR) data set contains baseball statistics for the 2002
Major League Baseball season. What is the correlation between the number
of strikeouts (SO) and the number of home runs (HR)? Make a scatter plot to
see whether there is any trend. Does the data suggest that in order to hit a
lot of home runs one should strike out a lot?

3.21 Try to establish the relationship that twice around the thumb is once
around the wrist. Measure some volunteers’ thumbs and wrists and fit a
regression line. What should the slope be? While you are at it, try to find
relationships between the thumb and neck size, or thumb and waist. What
do you think: Did Gulliver’s shirt fit well?

3.22 The data set fat (UsingR) contains ten body circumference measure-
ments. Fit a linear model modeling the circumference of the abdomen by the
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circumference of the wrist. A 17-cm wrist size has what predicted abdomen
size?

3.23 The data set wtloss (MASS) contains measurements of a patient’s weight
in kilograms during a weight-rehabilitation program. Make a scatter plot
showing how the variable Weight decays as a function of Days.

1. What is the Pearson correlation coefficient of the two variables?

2. Does the data appear appropriate for a linear model? (A linear model
says that for two comparable time periods the same amount of weight
is expected to be lost.)

3. Fit a linear model. Store the results in res. Add the regression line to
your scatter plot. Does the regression line fit the data well?

4. Make a plot of the residuals, residuals(res), against the Days variable.
Comment on the shape of the points.

3.24 The data frame x77 contains data from each of the fifty United States.
First coerce the state.x77 variable into a data frame with

x77 <- data.frame(state.x77)

For the following, make a scatter plot with regression line:

1. The model of illiteracy rate (Illiteracy) modeled by high school grad-
uation rate (HS.Grad).

2. The model of life expectancy (Life.Exp) modeled by the murder rate
(Murder).

3. The model of income (Income) modeled by the illiteracy rate (Illiteracy).

Write a sentence or two describing any relationship. In particular, do you
find it as expected or is it surprising?

3.25 The data set batting (UsingR) contains baseball statistics for the year
2002. Fit a linear model to runs batted in (RBI) modeled by number of home
runs (HR). Make a scatter plot and add a regression line. In 2002, Mike Piazza
had 33 home runs and 98 runs batted in. What is his predicted number of
RBIs based on his number of home runs? What is his residual?

3.26 In the American culture, it is not considered unusual or inappropriate
for a man to date a younger woman. But it is viewed as inappropriate for
a man to date a much younger woman. Just what is too young? Some say
anything less than half the man’s age plus seven. This is tested with a survey
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of ten people, each indicating what the cutoff is for various ages. The results
are in the data set too.young (UsingR). Fit the regression model and compare
it with the rule of thumb by also plotting the line y = 7 + (1/2)x. How do
they compare?

3.27 The data set diamond (UsingR) contains data about the price of 48 dia-
mond rings. The variable price records the price in Singapore dollars and the
variable carat records the size of the diamond. Make a scatter plot of carat
versus price. Use pch=5 to plot with diamonds. Add the regression line and
predict the amount a one-third carat diamond ring would cost.

3.28 To gain an understanding of the variability present in a measurement,
a researcher may repeat or replicate a measurement several times. The data
set breakdown (UsingR) includes measurements in minutes of the time it takes
an insulating fluid to break down as a function of an applied voltage. The
relationship calls for a log-transform.

Plot the voltage against the logarithm of time. Find the coefficients for
simple linear regression and discuss the amount of variance for each level of
the voltage.

3.29 The motors (MASS) data set contains measurements on how long, in
hours, it takes a motor to fail. For a range of temperatures, in degrees Celsius,
a number of motors were run in an accelerated manner until they failed, or
until time was cut off. (When time is cut off the data is said to have been
censored.) The data shows a relationship between increased temperature and
shortened life span.

The commands

data(motors, package="MASS")
plot(time ~ temp, pch=cens, data=motors)

produce a scatter plot of the variable time modeled by temp. The pch=cens
argument marks points that were censored with a square; otherwise a circle
is used. Make the scatter plot and answer the following:

1. How many different temperatures were used in the experiment?

2. Does the data look to be a candidate for a linear model? (You might
want to consider why the data point (150,800) is marked with a square.)

3. Fit a linear model. What are the coefficients?

4. Use the linear model to make a prediction for the accelerated lifetime
of a motor run at a temperature of 210°C.
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Child

buckled unbuckled

Parent buckled 56 8
unbuckled 2 16

Table 3.3: Seatbelt usage for parent and child in California.

3.4 Bivariate categorical data

Paired bivariate data that involves categorical data is summarized in a dif-
ferent manner than numeric data. Still the basic question remains: is there a
relationship between the variables?

Tables

Bivariate categorical data is often presented in the form of a (two-way) con-
tingency table. The table is found by counting the occurrences of each possible
pair of levels and placing the frequencies in a rectangular grid. Such tables
allow us to focus on the relationships by comparing the rows or columns.
Later, statistical tests will be discussed to analyze whether the distribution
for a given variable depends on the other variable.

Two-way tables from summarized data

Our data may come in a summarized or unsummarized format. The data
entry is different for each. If the data already appears in tabular format and
we wish to analyze it inside R, how is the data keyed in? To illustrate: an
informal survey of seat-belt usage in California examined the relationship
between a parent’s use of a seat belt and a child’s. The data appears in Ta-
ble 3.3. A quick glance at the table shows a definite relationship between the
two variables: the child’s belt being buckled is greatly determined by the par-
ent’s.

We can enter these numbers into R in a variety of ways, as illustrated next.
Data vectors were created using the c function. One simple way to make a
table is to combine data vectors together as rows (with rbind) or as columns
(with cbind).

rbind(c(56,8), c(2,16)) # combine rows

## [,1] [,2]
## [1,] 56 8
## [2,] 2 16

cbind(c(56,2), c(8,16)) # bind as columns
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## [,1] [,2]
## [1,] 56 8
## [2,] 2 16

Combining rows (or columns) of numeric vectors results in a matrix—a
rectangular collection of numbers. We can also make a matrix directly using
the matrix function. To enter in the numbers we need only specify the correct
size. In this case we have two rows. The data entry would look like this:

seatbelts <- matrix(c(56, 2, 8, 16), nrow=2)

The data is filled in column by column, though the setting the argument
byrow=TRUE will instruct matrix to create a matrix in a row-by-row manner.

Alternately, we may enter in the data using the edit function (or fix).
This will open a spreadsheet (if available) when called on a matrix.

Thus the commands

x <- matrix(1) # need to initialize x
x <- edit(x) # will edit matrix with spreadsheet

will open the spreadsheet and store the answer into x when done. The 1 will
be the first entry. We can edit this as needed.

It is also possible to enter the data into a text file and import it as a matrix
from there.

Adding names to a matrix It isn’t necessary, but a matrix with row and
column names conveys more information when printed. The rownames and
colnames functions will do so. As we are using these functions to modify the
attributes of the matrix, the functions appear on the left side of the assign-
ment.

rownames(seatbelts) <- c("buckled","unbuckled")
colnames(seatbelts) <- c("buckled","unbuckled")
seatbelts

## buckled unbuckled
## buckled 56 8
## unbuckled 2 16

More generally, the dimnames function can set both row and column names
at once and additionally allows the specification of variable names. A list is
used to specify these. For this usage, the variable names and values are given
in name=value format. The row variable is the first dimension, the column the
second:
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dimnames(seatbelts) <- list(parent=c("buckled","unbuckled"),
child=c("buckled","unbuckled"))

As a convenience, if the matrix is constructed with rbind, then names for
the row vectors can be specified in name=value format. Furthermore, column
names will come from the vectors if present.

x <- c(56,8); names(x) = c("buckled","unbuckled")
y <- c(2,16)
rbind(buckled=x, unbuckled=y) # names rows, columns come from x

## buckled unbuckled
## buckled 56 8
## unbuckled 2 16

Two-way tables from unsummarized data

With unsummarized data, two-way tables can be made with the table func-
tion, as in the univariate case. If the two data vectors are x and y, then the
command table(x,y) will create the table.

• Example 3.5: Is past performance an indicator of future performance?
A common belief is that an “A” student in one class will be an “A” student in
the next. Is this so? The data set grades contains the grades students received
in a math class and their grades in a previous math class.

headtail(grades)

## prev grade
## 1 B+ B+
## 2 A- A-
## 3 B+ A-
## ...
## 119 F D
## 120 A A-
## 121 A A
## 122 B B

table(grades$prev, grades$grade) # also: table(grades)

##
## A A- B+ B B- C+ C D F
## A 15 3 1 4 0 0 3 2 0
## A- 3 1 1 0 0 0 0 0 0
## B+ 0 2 2 1 2 0 0 1 1
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## B 0 1 1 4 3 1 3 0 2
## B- 0 1 0 2 0 0 1 0 0
## C+ 1 1 0 0 0 0 1 0 0
## C 1 0 0 1 1 3 5 9 7
## D 0 0 0 1 0 0 4 3 1
## F 1 0 0 1 1 1 3 4 11

A quick glance at the structure of the table indicates that the current grade
relates quite a bit to the previous grade (most entries are on or above the di-
agonal). Of those students whose previous grade was an A, fifteen got an A
in the next class; only three of the students whose previous grade was a B or
worse received an A in the next class. ••

Marginal distributions of two-way tables

A two-way table involves two variables. The distribution of each variable
separately is called the marginal distribution. The marginal distributions can
be found from the table by summing down the rows or columns. The sum
function won’t just work, as it will add all the values. Rather, we need to
apply the sum function to just the rows or just the columns. In Chapter 4 we
discuss how the apply function that can do this. For now, the margin.table
function conveniently performs the task. Just remember that the margin value
1 is for rows and 2 is for columns.

For the seat-belt data stored in seatbelts we have:

seatbelts

## child
## parent buckled unbuckled
## buckled 56 8
## unbuckled 2 16

margin.table(seatbelts, margin=1) # row sum is for parents

## parent
## buckled unbuckled
## 64 18

margin.table(seatbelts, margin=2) # column sum for kids

## child
## buckled unbuckled
## 58 24
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The two marginal distributions are similar: the majority in each case wore
seat belts.

Alternatively, the function addmargins will return the marginal distribu-
tions by extending the table. For example:

addmargins(seatbelts)

## child
## parent buckled unbuckled Sum
## buckled 56 8 64
## unbuckled 2 16 18
## Sum 58 24 82

Looking at the marginal distributions of the grade data also shows two
similar distributions:

tbl <- with(grades, table(prev, grade))
margin.table(tbl, 1)

## prev
## A A- B+ B B- C+ C D F
## 28 5 9 15 4 3 27 9 22

margin.table(tbl, 2)

## grade
## A A- B+ B B- C+ C D F
## 21 9 5 14 7 5 20 19 22

The grade distributions, surprisingly, are somewhat “well-shaped.”

Conditional distributions of two-way tables

We may be interested in comparing the various rows of a two-way table.
For example, is there a difference in the grade a student gets if her previous
grade is a B or a C? Or does the fact that a parent wears a seat belt affect the
chance a child does? These questions are answered by comparing the rows or
columns in a two-way table. It is usually much easier to compare proportions
or percentages and not the absolute counts.

For example, to answer the question of whether a parent wearing a seat
belt changes the chance a child does, we might want to consider Table 3.4.

From this table, the proportions clearly show that 88% of children wear
seat belts when their parents do, but only 11% do when their parents don’t.
In this example, the rows add to 1 but the columns need not, as the rows
were divided by the row sums.

For a given row or column, calculating these proportions is done with a
command such as x/sum(x). But this needs to be applied to each row or col-
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Child

buckled unbuckled

Parent buckled 0.88 0.12
unbuckled 0.11 0.89

Table 3.4: Proportions of children with seat belt on.

umn. The convenient prop.table function does so. Again, we specify whether
we want the conditional rows or columns with a 1 or a 2.

For example, to find out how a previous grade affects a current one, we
want to look at the proportions of the rows.12

prop.table(table(grades$prev, grades$grade), margin=1) * 100

##
## A A- B+ B B- C+ C D F
## A 54 11 4 14 0 0 11 7 0
## A- 60 20 20 0 0 0 0 0 0
## B+ 0 22 22 11 22 0 0 11 11
## B 0 7 7 27 20 7 20 0 13
## B- 0 25 0 50 0 0 25 0 0
## C+ 33 33 0 0 0 0 33 0 0
## C 4 0 0 4 4 11 19 33 26
## D 0 0 0 11 0 0 44 33 11
## F 5 0 0 5 5 5 14 18 50

Comparing the rows, we see that the grade distributions are quite differ-
ent. It is apparent that the previous grade has a big influence on the current
grade.

The xtabs function

The xtabs function provides an alternative to table, where the structure of
the table is specified with a model formula.

We look at the Fingerprints (HistData) data set containing data collected
in 1915 by Waite. For many different hands, he counted whether a fingerprint
had a whorl, a small loop, or neither. For each hand, there can be no more
than 5 whorls and loops in total. This is why many combinations return NA:

headtail(Fingerprints)

## Whorls Loops count

12We set the digits options to 1 to change the output.
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## 1 0 0 78
## 2 1 0 106
## 3 2 0 130
## ...
## 33 2 5 NA
## 34 3 5 NA
## 35 4 5 NA
## 36 5 5 NA

To display this data set in a contingency table would require some data
manipulation. One way would be to use rep to create vectors for Whorls and
loops for each case:

idx <- !is.na(Fingerprints$count) # issue with NA in rep
whorls <- rep(Fingerprints$Whorls[idx], Fingerprints$count[idx])
loops <- rep(Fingerprints$Loops[idx], Fingerprints$count[idx])
table(whorls, loops)

## loops
## whorls 0 1 2 3 4 5
## 0 78 144 204 211 179 45
## 1 106 153 126 80 32 0
## 2 130 92 55 15 0 0
## 3 125 38 7 0 0 0
## 4 104 26 0 0 0 0
## 5 50 0 0 0 0 0

But something so fundamental should have a simpler interface. As we saw
in Chapter 3 the table function can do basic tabulations. Here we discuss the
xtabs function, which provides a formula interface for tabulating data.

xtabs(count ~ Whorls + Loops, Fingerprints)

## Loops
## Whorls 0 1 2 3 4 5
## 0 78 144 204 211 179 45
## 1 106 153 126 80 32 0
## 2 130 92 55 15 0 0
## 3 125 38 7 0 0 0
## 4 104 26 0 0 0 0
## 5 50 0 0 0 0 0

This particular data set was used in a discussion about whether two vari-
ables depend on each other outside of a restriction, such as in this case Whorls
+ Loops <= 5.

The left-hand side of the formula is needed when the data is already
tabulated. If this is not the case, it can be left blank. For example, to look
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at the distribution of type of car by origin in the Cars93 (MASS) data set we
would specify the formula as:

xtabs( ~ Origin + Type, Cars93) # no LHS, so tallies

## Type
## Origin Compact Large Midsize Small Sporty Van
## USA 7 11 10 7 8 5
## non-USA 9 0 12 14 6 4

The xtabs function maps a data frame into a contingency table. The
as.data.frame function reverses this mapping.

The right-hand side specifies the cross-classifying variables to be used
separated by +. The symbol . is a shorthand notation for all variables in the
data set not specified on the left-hand side.

ftable The number of cross-classifying variables determines the dimen-
sions of the table. If one, the data is displayed in a row; if two, the data
is displayed in a grid with derived names. For three or more, the data will be
presented in slices. The order of the variables in the formula determines the
slicing. The first two are used to display slices in a two-way table, with the
slices determined by the remainders.

These slices can be hard to read. The ftable function can “flatten” contin-
gency tables. The flattened table creates rows and columns for each combina-
tion of the row.vars and col.vars (which usually have reasonable defaults,
so aren’t specified). In the call below, the order of the col.vars specifica-
tion indicates how the data is nested. Here the third variable (Passengers) is
nested with the first (Origin):

tbl <- xtabs( ~ Origin + Type + Passengers, Cars93)
ftable(tbl, row.vars=2, col.vars=c(1,3))

## Origin USA non-USA
## Passengers 2 4 5 6 7 8 2 4 5 6 7 8
## Type
## Compact 0 0 5 2 0 0 0 1 8 0 0 0
## Large 0 0 0 11 0 0 0 0 0 0 0 0
## Midsize 0 0 6 4 0 0 0 2 9 1 0 0
## Small 0 2 5 0 0 0 0 6 8 0 0 0
## Sporty 1 7 0 0 0 0 1 5 0 0 0 0
## Van 0 0 0 0 4 1 0 0 0 0 4 0

The output of xtabs shows counts. If a comparison of proportions is de-
sired, the prop.table function can be used. Below we compare rows (by spec-
ifying margin=1) for a three-way contingency table that has been flattened
through the default choice or row variables.
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price.range <- cut(Cars93$Price, c(0, 20, 70))
tbl <- xtabs( ~ price.range + Origin + Cylinders, data=Cars93)
out <- ftable(tbl, row.vars=3)
100 * prop.table(out, margin=1)

## price.range (0,20] (20,70]
## Origin USA non-USA USA non-USA
## Cylinders
## 3 0.000 100.000 0.000 0.000
## 4 44.898 44.898 0.000 10.204
## 5 0.000 50.000 0.000 50.000
## 6 35.484 6.452 29.032 29.032
## 8 14.286 0.000 71.429 14.286
## rotary 0.000 0.000 0.000 100.000

The above created a new categorical variable price.range with the cut
command. This allows us to look at the differences between the number of
cylinders US and non-US made cars had based on price range. In this old
data, the US cars had engines with more cylinders.

Graphical summaries of two-way contingency tables

As with univariate data, barplots can be used effectively to show the data in
a two-way table. To do this, one variable is chosen to form the categories for
the barplot. Then, either the bars for each level of the category are segmented,
to indicate the proportions of the other variable, or separate bars are plotted
side by side (cf. Figure 3.19).

The barplot function will plot segmented barplots when its first argu-
ment is a two-way table (specify beside=TRUE to get side-by-side bars). Levels
of the columns will form the categories, and the sub-bars or segments will be
proportioned by the values in each column.

To illustrate, the two graphics in Figure 3.19 are created with the following
code, where the seatbelts variable holds the data as a table object:

barplot(seatbelts, xlab="Parent", main="Child seat-belt usage")
barplot(seatbelts, xlab="Parent", main="Child seat-belt usage",

beside=TRUE)

A legend can be added to the barplot with the argument legend.text=TRUE,
or by specifying a vector of names for legend.text.

For the seat-belt data, if we wanted the parents’ distribution (the rows)
to be the primary distribution, then we need to flip the table around. This is
done with the transpose function, t, as in barplot(t(seatbelts)).

Sometimes a relationship is better presented as proportions than counts
(this will only modify the scale of the y axis). To do this, we apply prop.table
prior to the barplot.
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Figure 3.19: Segmented and side-by-side barplots showing distribution of
child’s seat-belt usage depending on whether parent is buckled or unbuckled.

Mosaic plots

A mosaic plot is an extension of the ideas of a barplot that makes it suitable
for viewing relationships between two or more categorical variables.

For a single variable, the mosaic plot is nothing more than a segmented
bar plot, where the area associated with each segment is proportional to the
count for that category. The left graphic of Figure 3.20 shows a mosaic plot
for a single variable, in this case the gender (Sex) of the passengers on the
Titanic. The larger number of males is readily apparent.

Of more interest, is when two variables are represented in a mosaic plot,
as in the right graphic of Figure 3.20, where the additional variable of survival
is added. The areas for each gender are in turn segmented by survival. We
see that the adage “women and children first” seems to have held, as clearly
more than half the women survived, yet less than half the men.

The mosaic plot can also represent additional variables. The graphic in
Figure 3.21 adds the passenger class information. In first class, nearly all the
females survived, as indicated by the sliver of area for females in first class
that did not survive (the upper left part of the graphic). This was not quite
the case for the female passengers in third class. The width of those third-
class females that did not survive is narrower than those who did, but the
area is larger. Area is the proper comparison, as this is the table for women:

titanic <- as.data.frame(Titanic)
xtabs(Freq ~ Survived + Class, data=titanic, subset=Sex=="Female")

## Class
## Survived 1st 2nd 3rd Crew
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Figure 3.20: Mosaic plots of one and two variables. The first variable is used
to segment a unit square, the second segments each rectangle so that the area
for each cell is proportional to the frequency of the corresponding cell in the
contingency table.

## No 4 13 106 3
## Yes 141 93 90 20

The commands above took the data set Titanic, which is a contingency
table and coverts it to a data frame so that we can apply xtabs, without
having to work directly with the table object. This is useful, as the function to
generate mosaic plots, mosaicplot, displays tabular output. The commands
to make the figures in Figure 3.20 were as follows:

tbl <- xtabs(Freq ~ Sex, titanic)
mosaicplot(tbl)
tbl <- xtabs(Freq ~ Sex + Survived, titanic)
mosaicplot(tbl)

Adding a third variable is done in a similar manner.

tbl <- xtabs(Freq ~ Sex + Survived + Class, titanic)
mosaicplot(tbl)

Figure 3.21 shows the resulting graphic. Here we note how the variables
are assigned: The first variable (Sex) again splits the x axis, the second vari-
able (Survived) again splits the y axis. The third (Class) then splits each of
the four blocks. We can compare the proportion of each block at the second
level by how the class variable splits it up. For example, looking at the fe-
male variable (far right) and comparing how the first-class segment for both
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Figure 3.21: Mosaic plot of Titanic data showing gender and survival distri-
bution split by passenger class. This view shows differences in survival by
class for female passengers.

not survived (top) and survived, we see that a much larger proportion for
first-class passengers in the survived, and a much larger proportion of the
third-class passengers in not survived.

Different orderings give different insights. Putting Class first (not shown)
makes it easier to focus on the classes. This makes it easy to see how the
survival rate changed based on class and gender, especially for the female
passengers.

mosaicplot( xtabs(Freq ~ Class + Sex + Survived, data=titanic))

Measures of association for categorical data

Consider the mosaic plot of passenger class/crew and survival generated by
(Figure 3.22):
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Figure 3.22: Mosaic plot showing survival and class for people on the Titanic.
The proportion of those surviving seems “correlated” to the class.

The segmentation of the Survived variable by Class is quite different.
This indicates that the variables are “correlated”—the value of one depends
on another.

Correlation is in quotes, as the Pearson correlation is a summary of two
numeric variables, and this data is categorical. Measures of numeric data
may not translate to categorical data, but many ideas do. We mention a few
measures contained in the books [1] and [2].

The variables Class and Survival are not numeric, but they are naturally
ordered, with class being in the order Crew, 3rd, 2nd, then 1st; and survival
being in order no and yes.

We can make ordered factors out of the data as follows:

Survived <- rep(titanic$Survived, titanic$Freq)
Survived <- ordered(Survived)
Class <- rep(titanic$Class, titanic$Freq)
Class <- ordered(Class)
head(Class)

## [1] 3rd 3rd 3rd 3rd 3rd 3rd
## Levels: 1st < 2nd < 3rd < Crew
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The above expands the tabulated data into a record for each passenger,
then orders the factor using the default ordering.13 The last line shows the
first few elements of Class and the levels, which are separated by <, as this is
an ordered factor.

Ordered factors can be coerced into numeric data through as.numeric
with the order intact. This allows the taking of the correlation:

cor(as.numeric(Survived), as.numeric(Class), method="kendall")

## [1] -0.2245

The negative correlation is due to the ordering of the class, with 1st being
a 1 and crew a 4, so indeed this is consistent with the observation from the
graphic: the survival rate is associated with the class.

Kendall τ The method="kendall" argument was used with cor, as the
Kendall τ statistic is computed. This statistic is a measure of association be-
tween data that can be ranked, such as ordered factors. The basic statistic
is:14

τ =
Number of concordant pairs−Number of discordant pairs

n(n− 1)/2
.

A pair of observations (xi,yi) and (xj,yj) is concordant if the ranks are
in agreement (both xi and yi are higher ranked than their counterpart of
both lower ranked). Figure 3.23 shows a small 5 point data set with one
point highlighted. For that point, their are 2 concordant points (the two in
the lower left) and 2 discordant point (the upper left and lower right). If the
same picture were repeated for all 5 points, we would have the following
count:

(0 + 1 + 1 + 2 + 0)− (4 + 3 + 3 + 2 + 4)
5 · 4 = −0.6.

(Here we double count each pair of points, so the 1/2 in the formula is
not used.)

As with the Pearson correlation, the value is between −1 and 1 with 0
being a perfect non-association.

13The default order depends on the locale of the machine, so may not match that here.
14This formula is referred to as τA. There are also modifications referred to by τB and τC

which account for ties in the ranked data.
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Figure 3.23: Scatter Plot of ranked data with focus on one point. For this
value, there are 2 points in the third quadrant (concordant) and one each in
the second and fourth quadrant (discordant), a difference of 0. Moving the
crosshairs over all n points and adding the differences gives the numerator
in the Kendall correlation.

The chi-squared statistic The chi-squared statistic is a common summary of
a table, in fact it is computed by the summary function when called on a table
object:

f <- Freq ~ Survived + Class
tbl <- xtabs(f, data=titanic, subset=Sex=="Female")
summary(tbl)

## Call: xtabs(formula = f, data = titanic, subset = Sex == "Female")
## Number of cases in table: 470
## Number of factors: 2
## Test for independence of all factors:
## Chisq = 131, df = 3, p-value = 4e-28

This yields a value of Chisq of 131 (a rounding of 130.7). What is this
number? It is related to the residuals for the table. As usual the residuals
are the observed frequencies fo (the actual table values) minus the expected
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frequencies fe. The expected values are found from the marginal values. In
the table above, the expected value for the upper-left cell is the proportion
of times a value is in the upper row times the proportion of times a value is
in the left-most column times the total number of observations. This can be
found with:

margin.table(tbl,1)

## Survived
## No Yes
## 126 344

ptop <- 126/sum(margin.table(tbl,1))
margin.table(tbl, 2)

## Class
## 1st 2nd 3rd Crew
## 145 106 196 23

pleft <- 145/sum(margin.table(tbl,2))
fe <- ptop * pleft * sum(tbl)
fo <- tbl[1,1]
c(fo=fo, fe=fe, residual=fo - fe) # print

## fo fe residual
## 4.00 38.87 -34.87

That is a large residual, as far fewer people in first class perished than
would have been expected given the totals. The computation of the expected
would be tedious to do this way. Using the chisq.test function (which we
return to when we consider statistical inference on contingency tables), the
above can be done at once with:

chisq.test(tbl)$expected

## Class
## Survived 1st 2nd 3rd Crew
## No 38.87 28.42 52.54 6.166
## Yes 106.13 77.58 143.46 16.834

As with other residuals, their total sum is 0. The chi-squared statitistic, is
performed by the following:

chi-squared statistic = ∑
( fo − fe)2

fe
.
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The “o” refers to observed and the “e” to expected, so the term in the
numerator is a residual squared. Returning to our data, this formula can be
computed with the following:

fo <- tbl
fe <- chisq.test(tbl)$expected
(fo - fe)^2 / fe

## Class
## Survived 1st 2nd 3rd Crew
## No 31.2839 8.3642 54.3817 1.6256
## Yes 11.4587 3.0636 19.9189 0.5954

sum((fo - fe)^2 / fe)

## [1] 130.7

The expected values are found by the marginal distributions, though we
use an expedient above to get them. The marginals do not consider the in-
terplay, or association, between the two variables. If the residuals are small,
then there is little association. Whereas if the sum above is large, then the
variables are associated. Exactly what is meant by “small” and “large” will
have to wait until Chapter 10. (Though in this case the value is very large.)

The deviance Related to the chi-squared statistic, in that it is computed
from similar inputs is the deviance, G2, found by G2 = 2∑ fo ln( fo/ fe), which
for this data is:

2 * sum(fo * log(fo/fe)) # no fe can be 0

## [1] 142.7

Similar to the chi-squared interpretation, large values are indicative of an
association.

Association between 2 by 2 tables, odds ratio For 2 by 2 tables, a different
measure of association can be formed, the odds ratio. Consider, the table

xtabs(Freq ~ Sex + Survived, titanic)

## Survived
## Sex No Yes
## Male 1364 367
## Female 126 344
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The probability of a male surviving was 367/(1364 + 367) = 0.21. The
odds of a male surviving is the ratio of the probabilities of survival di-
vided by the probability of not surviving: (367/(1364+ 367))/(1364/(1364+
367)) = 367/1364 = 0.27. The odds of a female surviving were higher:
344/126= 2.73. To compare odds, a ratio proves convenient. The odds ratio of
a female surviving compared to a male would be: (344/126)/(367/1364) =
10.15. This is interpreted as a randomly chosen female passenger or crew
member was more than 10 times as likely to have survived than a randomly
chosen male on board the ship.

That this is large, naturally leads us to think that survival and gender were
related, or associated. Had this value been near 1 we might think differently.

Problems

3.30 Find an example of a two-way contingency table in the media. Identify
the two variables and summarize the data that is presented.

3.31 The data set coins (UsingR) contains the number of coins in a change
bin and the years they were minted. Do the following:

1. How much money is in the change bin?

2. Make a barplot of the years. Is there a trend?

3. Use cut to construct a barplot by decade.

4. Make a contingency table of the year and the value. Does it look like
the two variables are associated? Why?

3.32 The data set UScereal (MASS) contains information about cereals on a
shelf of a United States grocery store. Make a table showing the relationship
between manufacturer, mfr, and shelf placement, shelf. Are there any obvi-
ous differences between manufacturers?

3.33 The help page for mosaicplot demonstrates the data set HeadEyeColor,
which records sex, Hair color, and Eye color for 592 statistics students.
The data set comes as a flattened table, so simply passing the object to
mosaicplot will create the plot. (Or, as demonstrated, passing shade=TRUE,
as in mosaicplot(HairEyeColor, shade = TRUE), will produce a colored ver-
sion.)

Make the plot, Why does the help page note “there are more blue-eyed,
blonde females than expected?”
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Multivariate data

A typical data analysis process consists of several steps: data cleaning,
data transformations, exploratory visualizations, numerical summaries, ini-
tial modeling, and perhaps follow-up modeling. Learning how to efficiently
work with R’s data frames makes these tasks much more direct and man-
ageable. In this chapter, we look briefly at some different structures for stor-
ing data, before a longer discussion on data frames. We then look at several
means to implement the “split-apply-combine” process to summarize a data
set. We finish with a discussion about some basics of importing and exporting
data. In the next chapter we discuss some of R’s functionality for graphically
presenting multivariate data.

4.1 Data structures in R

In the first three chapters we have discussed various data structures for R: a
data vector, a list, a matrix, and a data frame. In this section, we elaborate
more on data frames first by describing more on matrices and then showing
that data frames benefit from having an interface that allows for their usage
in a manner similar to both matrices and lists.

Vectors As mentioned in Chapter 1, a data vector is a container for a col-
lection of values of the same type, such as numeric, integer, or character.
The items in a data vector are indexed in a 1-based manner, and access to
these values is done with [, which can be used to get and set values. Further,
data vectors can have attributes, in particular names. Names can offer a more
convenient access.

To symbolically represent a data vector we will use [a1 a2 ... an].

Lists In Section 3.2 we mentioned that lists are generalized vectors. They
are like vectors in that their elements are ordered and indexable, but unlike
vectors each element need not be of the same type. For lists we have both [
and [[ defined. The former returning a list, the latter referencing the com-
ponent. We’ve seen the use of $ as a convenience for [[ when working with
lists that have a names attribute.

150
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We will refer to lists symbolically with notation like [[ a1 b2 ... cn ]]
to indicate they are ordered, but need not have the same type.

Matrices A rectangular collection of values of the same type can be stored
in a matrix. The built-in data set state.x77 holds 8 numeric facts for each of
the 50 United States from the 1970s. As all the values are numeric, the data
can be stored in a matrix. The first 3 rows are seen through:

head(state.x77, n=3)

## Population Income Illiteracy Life Exp Murder HS Grad
## Alabama 3615 3624 2.1 69.05 15.1 41.3
## Alaska 365 6315 1.5 69.31 11.3 66.7
## Arizona 2212 4530 1.8 70.55 7.8 58.1
## Frost Area
## Alabama 20 50708
## Alaska 152 566432
## Arizona 15 113417

As can be seen from above, matrices can have row and column name
attributes. Access to a cell or block of cells can again be achieved with [. The
notation is extended to [i, j] where i references the row(s) and j references
the column(s) of interest:

state.x77[1,2] # first row, second column

## [1] 3624

state.x77[1, 3:4] # first row, third and fourth columns

## Illiteracy Life Exp
## 2.10 69.05

As with vectors, an index can be a single numeric index, a range of num-
bers, a vector of numbers, empty (for all numbers), a vector of row or column
names, or a logical vector of the appropriate size. The latter makes it easy to
subset data in a matrix. For example, the following restricts the data set to
the first 6 columns and to states with small populations:

state.x77[state.x77[,"Population"] < 500, 1:6]

## Population Income Illiteracy Life Exp Murder HS Grad
## Alaska 365 6315 1.5 69.31 11.3 66.7
## Vermont 472 3907 0.6 71.64 5.5 57.1
## Wyoming 376 4566 0.6 70.29 6.9 62.9
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The row and column names of a matrix are accessed with the functions
rownames and colnames. There are also assignment versions. For example,
here we see the column names of the state.x77 data set:

colnames(state.x77)

## [1] "Population" "Income" "Illiteracy" "Life Exp"
## [5] "Murder" "HS Grad" "Frost" "Area"

There are various ways to create matrices. We discussed some in Section
3.4, where a matrix was used to hold a contingency table. Some of this is a
repeat of that discussion.

The rectangular structure of a matrix and the uniformity of type lends it-
self to thinking about them in terms of either their rows or their columns. The
rbind function can be used to bind rows together to make a matrix. We just
need to ensure that the rows we specify have the same lengths. For example:

rbind(1:5, c(1, 1, 2, 3, 5)) # 2 by 5 matrix without names

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 2 3 4 5
## [2,] 1 1 2 3 5

The cbind function does the binding along columns; again we need the
vectors that we bind together to have a common length:

m <- cbind(1:3, c(1.1, 1.2, 1.3), c(1, 1, 2)) # a 3 by 3 matrix
colnames(m) <- c("x", "y", "z") # or cbind(x=..., ...)
m

## x y z
## [1,] 1 1.1 1
## [2,] 2 1.2 1
## [3,] 3 1.3 2

Internally, R stores matrices as vectors along with dimension information.
This storage mechanism can make it convenient to use a single (linear) index.
The following illustrates how the values are stored column by column:

m[1:6] # first 6 entries of m

## [1] 1.0 2.0 3.0 1.1 1.2 1.3

We can also just give a vector a dimension attribute to create a matrix,
which is what the matrix function will do. Here we reshape the numbers
1:10 into a matrix with two rows and five columns, first by column, then by
row:
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matrix(1:10, nrow=2)

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 3 5 7 9
## [2,] 2 4 6 8 10

matrix(1:10, nrow=2, byrow=TRUE)

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 2 3 4 5
## [2,] 6 7 8 9 10

Vectors can be given more than 2 dimensions, resulting in an array. Arrays
have the array constructor.

Object size The size of a matrix (or array) is returned by the dim function.
(There is also an assignment function that allows for the reshaping of a vector,
matrix, or array.) The length function will treat the matrix as a vector and
return the number of elements. For matrices, the special functions nrow and
ncol give the number of rows and columns.

Data frames We have worked with data frames so far using their list-like
notation $ to access individual variables. Internally, data frames are stored as
a list of variables, all of the same length (possibly 0) with row and column
name attributes. The row names must be unique, though duplicate column
names are possible with some work, we suggest using unique names.

The fact that the rows are all of the same length, allows the values to be
arranged in a rectangular manner; each column is a separate variable. This is
similar to a matrix, though the type of each variable need only be consistent
along any given column and not necessarily along the rows.

This allows the matrix notation to extract and refer to elements in a data
frame. Here we extract out the first three rows and the first five columns of
the data set Cars93 (UsingR):

DF <- Cars93[1:3, 1:5]
DF

## Manufacturer Model Type Min.Price Price
## 1 Acura Integra Small 12.9 15.9
## 2 Acura Legend Midsize 29.2 33.9
## 3 Audi 90 Compact 25.9 29.1

As with matrices, we can reference rows or columns by name. For exam-
ple:
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DF[ , "Price"]

## [1] 15.9 33.9 29.1

This notation asks for all the rows and the columns which match by name
Price. The result is similar to what DF$Price returns—a data vector.

The fact that indexing a data frame can return a data vector is a design
decision. It is the behavior that in most interactive cases is desired. If a 1-
column data frame is desired, the argument drop=FALSE can be specified:

DF[ , "Price", drop=FALSE]

## Price
## 1 15.9
## 2 33.9
## 3 29.1

This is the same as if we had used the list notation for accessing a list with
the Price variable:

DF["Price"]

## Price
## 1 15.9
## 2 33.9
## 3 29.1

Of all of these, the notation DF$Price is most used in the sequel, though
we will see different alternatives to avoid typing the data frame name more
than once per command.

Problems

4.1 The data set UScereal (MASS) contains data on cereals sold in the United
States in 1993. For this data set, answer the following questions:

1. How many rows does the data frame have? Columns?

2. How many different manufacturers are included?

3. How many vitamin categories are included?

4. How many cereals had a sugar level above 10?

5. What is the mean calorie value for cereals with more than 5 grams of
fat? Less than or equal to 5?

6. What is the mean calorie value for cereals on the middle shelf (2)?
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4.2 R uses lists for many purposes behind the scenes. For example, the output
of lm(mpg ~ wt, data=mtcars) returns a list. Create this object, then answer
the following:

1. How many components does this list have?

2. What are the names of the components?

3. What kind of data is held in the residuals variable?

4.3 There are many ways to get at a variable within a data frame. Which of
these return the same object: mtcars$cyl, mtcars["car"], mtcars[["car""]],
mtcars[,"car"], and mtcars[,"car", drop=FALSE]?

4.4 List access by name can sometimes utilize partial matching, where if
there is no ambiguity if only the first part of a name is specified, then R will
allow access. Which of these will match the cyl variable of the mtcars data
set: mtcars$c, mtcars$cy, mtcars["cy"], mtcars["cy", exact=TRUE],
mtcars[["cy"]], and mtcars[["cy", exact=FALSE]]?

4.5 There are many ways to set the variable names in R: names<-, dimnames<-,
colnames<-, and setNames. Which of these will work with a data frame? You
can answer by experimenting.

4.2 Working with data frames

Data frames sit between matrices and lists so we have two interfaces in which
to work with them. As if that is not enough, there are also some special
purpose functions that give even more convenience. Here we organize the
discussion around several common tasks:

Data frame construction Data frames are lists of variables. To construct one
from the variables themselves can be done with the data.frame constructor,
called as:

data.frame(nm1=vec1, nm2=vec2, ...)

The above key=value style assigns column names during the construction;
the row names are automatically generated. This function requires variables
of the same length or variables whose length divides the longest length (in
which case the variable’s values are recycled).
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If the data is in a matrix format and a data frame is desired, then the
coercion function as.data.frame1 can be used:

d <- as.data.frame(state.x77)
class(d)

## [1] "data.frame"

(We give an example of why this would be useful later in this chapter.)
Data frames provide convenience for many things, but at times a matrix

is more desirable (matrices make some computations much faster and make
some mathematical computations easier). To convert a data frame into a ma-
trix (with coercion of variables to numeric mode), the data.matrix function
is used:

d1 <- data.matrix(d)
class(d1)

## [1] "matrix"

Data lookup We’ve recommended accessing variables by name within a
data frame using the $ notation, as opposed to the matrix notation, as it is
more direct. This is often the best approach, but it can be tedious if a task
requires the typing of the data frame name several times.

For example, to find out which values in a variable are within one stan-
dard deviation of the mean, an expression like the following is needed:

d <- mtcars[1:5,] # first 5 rows
mean(d$mpg) - sd(d$mpg) <= d$mpg & d$mpg <= mean(d$mpg) + sd(d$mpg)

## [1] TRUE TRUE FALSE TRUE FALSE

Having to type the data frame name 6 times is a bit too much, even if
it was shortened from mtcars. Some typing could be saved by using inter-
mediate variables, but there is a conceptual clarity in expressing this task
all at once which can have value. The with function can be used to create
an enclosing environment from the specified data frame, which is searched
when there are unbound variables within an expression. With this function,
the above becomes more manageable:

with(d, mean(mpg) - sd(mpg) <= mpg & mpg <= mean(mpg) + sd(mpg))

## [1] TRUE TRUE FALSE TRUE FALSE

1We have also used this same-named function to coerce a flattened table object back into a
data frame.
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This usage is similar to how R’s modeling interface allows for the specifica-
tion of a data set for variable lookup.

The data specified to the with function can be more general than a data
frame, for example a list could be used.

Modifying cells, columns, names The matrix notation is useful for access-
ing and modifying blocks of cells in a data frame. For example

d <- Cars93[1:3, 1:4] # first 3 rows, 4 columns
d[1,1] <- d[3,4] <- NA # set two values to NA
d

## Manufacturer Model Type Min.Price
## 1 <NA> Integra Small 12.9
## 2 Acura Legend Midsize 29.2
## 3 Audi 90 Compact NA

The assignment of NA to a factor prints differently than assigning NA to a
numeric variable. We can assign more than one value at once:

d[1:2, 4] <- round(d[1:2, 4]) # round numeric values

We don’t always need to replace values with the same-sized values, as
recycling will be done.

Assigning across a row must be done with some care, as the columns
need not be of the same type. A list can be used. Here we try to update the
older Audi 90 with a newer A3:

d[3,c(2,4)] <- list("A3", 30) # warning

## Warning: invalid factor level, NA generated

We were careful to use a list, but weren’t so careful with the fact that the
second column is a factor, and “A3” is not one of the levels. Let’s try again
after adding a few new levels.

levels(d$Model) <- c(levels(d$Model), c("A3", "A4", "A6"))
d[3,c(2,4)] <- list("A3", 30)

New rows can be added in a few ways. Here we add another Audi using
matrix notation:

d[4, ] <- list("Audi", "A4", "Midsize", 35)

The 4 is easily seen to be the correct row number for adding a new row. (It
is nrow(d) + 1.) If we didn’t want to do such bookkeeping, we could append
a new row with rbind:
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d <- rbind(d, list("Audi", "A6", "Large", 45))

Adding columns can also be done using matrix notation:

d[, 5] <- d$Min.Price * 1.3 # price in Euros

Unlike assigning new rows, we cannot specify a column index that will
leave holes (empty columns) in the data frame, as it would be unclear how to
fill them (there is no default column type). Specifying the column index with
ncol(d) + 1 or using cbind will avoid this issue.

However, it is usually more convenient to use the $ notation for assign-
ment, as this can also set the column name at the same time:

d$Min.Price.Euro <- d$Min.Price * 1.3

The case (row) names of data frames (and matrices) can be accessed and
set with the rownames function. Variable (column) names can be accessed or
set through the matrix style function colnames or the list style names.

For example, to standardize the variable names to lowercase can be
achieved with this construct:

names(d) <- tolower(names(d))

To change an individual name can be done with indexing, taking advan-
tage of R’s evaluation order. To update just the third column we can do:

names(d)[3] <- "car type"

It is permissible to use names with spaces, though there are some restric-
tions on valid names. However, using spaces makes variable reference with
the $ a bit more work, at the variable name must be quoted.

The subset function Extracting blocks from a data frame can be done by
specifying numeric values for the desired row and column indices. However,
at times it can be more convenient to generate a specification in a different
manner. A simple example, is to use the row and/or column names of the de-
sired variables. Other examples are to generate logical expressions to indicate
which row or column.

The subset function, has a few conveniences for these tasks that make it
worth learning:

• For the subsetting of rows, expressions are evaluated within the data
frame, as with with. Subsetting is done with logical expressions, not
numeric indices.
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• For the selection of columns, nonstandard evaluations allows us to
avoid quoting variable names, to use names for ranges, and to use neg-
ative indexing with variable names to drop specific columns.

The following examples are derived from the function’s help page:

aq <- airquality[1:5, ] # shorten
aq

## Ozone Solar.R Wind Temp Month Day
## 1 41 190 7.4 67 5 1
## 2 36 118 8.0 72 5 2
## 3 12 149 12.6 74 5 3
## 4 18 313 11.5 62 5 4
## 5 NA NA 14.3 56 5 5

subset(aq, select = Ozone:Wind) # range of names

## Ozone Solar.R Wind
## 1 41 190 7.4
## 2 36 118 8.0
## 3 12 149 12.6
## 4 18 313 11.5
## 5 NA NA 14.3

subset(aq, select = -c(Month, Day)) # same result

## Ozone Solar.R Wind Temp
## 1 41 190 7.4 67
## 2 36 118 8.0 72
## 3 12 149 12.6 74
## 4 18 313 11.5 62
## 5 NA NA 14.3 56

subset(aq, subset = !is.na(Ozone), select=Ozone:Wind) # drop a row

## Ozone Solar.R Wind
## 1 41 190 7.4
## 2 36 118 8.0
## 3 12 149 12.6
## 4 18 313 11.5

is.na, complete.cases When subsetting a data frame, it can be convenient to
drop cases where there are NA values. To drop those values for a single vari-
able can be achieved with the is.na function. To drop the cases where any of
the variables have a missing value is best done through the complete.cases.



160 CHAPTER 4. MULTIVARIATE DATA

This function returns TRUE for cases where all the variables have non-NA val-
ues, and other FALSE. For example,

DF <- data.frame(a=c(NA, 1, 2), b=c("one", NA, "three"))
subset(DF, !is.na(a)) # drop first, keep second

## a b
## 2 1 <NA>
## 3 2 three

subset(DF, complete.cases(DF)) # drop first, second

## a b
## 3 2 three

Transforming values In general, most R functions are pure functions, in that
they don’t modify the arguments passed to them or depend on external
state. R’s design places an emphasis on integrity of the data, and unexpected
modifications are avoided. However, in-place modification (or mutating) of
passed-in objects can be convenient, so there are some functions that return
a modified copy. The basic assignment functions, e.g., [<- are an example.

For example, suppose in our example with the Cars93 data set, the euro
exchange rate went from 1.3 to 1.5, then we can update our variable with:

d$min.price.euro <- d$min.price * 1.5

Alternatively, we can use within to do this:

d <- within(d, {min.price.euro = min.price * 1.5})

Like with, within evaluates an expression (the part enclosed in braces
above) in an environment formed from the data that allows for variable
lookup within the data set. In addition, it examines the modifications to this
environment and tries to place them into the data frame. In this case updat-
ing the variable min.price.euro. The result is the modified data frame, which
needs to be assigned for the changes are to be kept.

The transform function is similar, but is more explicit with the variable
transforms listed in tag=value form:

d <- transform(d, min.price.euro = min.price * 1.5)

Reshaping Data can be presented in “wide” format. For example, we might
have a data set stored as:
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speed

## Speed.1 Speed.2 Speed.3 Speed.4 Speed.5
## 1 850 960 880 890 890
## 2 740 940 880 810 840
## 3 900 960 880 810 780
## 4 1070 940 860 820 810
## 5 930 880 720 800 760
## 6 850 800 720 770 810

This is some of the data from the morley data set, which in that case is
stored with three variables: Speed, Expt, and Run. Here the run is a row name,
and the experiment number given in the name of the columns. Wide data,
where the different measurements for some value are recorded as separate
variables, is commonly used for data display. However, “long” formatted data
where the different values are recorded with factors is more useful when used
with R’s functions. Converting from one to the other is known as reshaping
the data, and R provides the reshape function for this task. (The add-on
package reshape2 is an extension.)

To convert from “wide” data to “long” data using reshape requires a
specification of which variables are to be combined into a single variable. In
this case, all the variables are. We specify them below by name along with
the desired direction:

m <- reshape(speed, varying=names(speed)[1:5], direction="long")
head(m) # first 6 rows only

## time Speed id
## 1.1 1 850 1
## 2.1 1 740 2
## 3.1 1 900 3
## 4.1 1 1070 4
## 5.1 1 930 5
## 6.1 1 850 6

The names of our data set are time which corresponds to the original
Expt variable and whose values come from the varying values, Speed, and id
which came from the row numbers. This could also have come from a value
in the data frame. For example:

speed$Run <- LETTERS[1:6]
m <- reshape(speed, varying=names(speed)[1:5], direction="long")
head(m)

## Run time Speed id
## 1.1 A 1 850 1
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## 2.1 B 1 740 2
## 3.1 C 1 900 3
## 4.1 D 1 1070 4
## 5.1 E 1 930 5
## 6.1 F 1 850 6

Going from long data to wide data requires a specification of the vari-
able(s) that will be broken over several columns (Speed), the variable that
varies in time (the experiment, that is coded as time), and the variable(s) that
identify multiple records for the same group (Run). Here is how the call to
reshape puts these together:

reshape(m, v.names="Speed", timevar="time", idvar="Run",
direction="wide")

## Run id Speed.1 Speed.2 Speed.3 Speed.4 Speed.5
## 1.1 A 1 850 960 880 890 890
## 2.1 B 2 740 940 880 810 840
## 3.1 C 3 900 960 880 810 780
## 4.1 D 4 1070 940 860 820 810
## 5.1 E 5 930 880 720 800 760
## 6.1 F 6 850 800 720 770 810

For this particular task, a combination of stack and split could achieve
something similar, but for more complicated data sets reshape can be quite
useful.

Merging A data frame stores data in a tabular format, similar to how ta-
bles in data bases store data. In data base usage a join is used to combine
two tables into one. For data frames, the merge function provides a similar
functionality.

With some searching of the Internet, the following tables were generated.
The first lists the budget and gross receipts in the United States of the five
top-grossing movies in 2013. The second lists the gross receipts in millions
from sales outside the U.S. The data comes from different web sites. The
two tables are kept separate. However, we may wish to merge them to do
comparisons.

domestic <- "
The Avengers, 623357910
The Dark Knight Rises, 448139099
The Hunger Games, 408010692
Skyfall, 304360277
The Hobbit, 303003568
"
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foreign <- "
The Avengers, 1511.8
Skyfall, 1108.6
The Dark Knight Rises, 1084.4
The Hobbit, 1017.0
Ice Age, 877.2
"

First, we need to read in the data into a data frame format. We discuss
read.csv at the end of the chapter. For now, we note it reads comma sep-
arated data into a data frame. The textConnection function takes the data
in string format and produces a “connection” that read.csv can read from.
Though it is a technical command, this is useful when copying data from web
sites.

df.domestic <- read.csv(textConnection(domestic), header=FALSE)
names(df.domestic) <- c("Name", "Domestic")
df.foreign <- read.csv(textConnection(foreign), header=FALSE)
names(df.foreign) <- c("name", "foreign")

An inner merge is the intersection of the values. In this small example,
we can see there are 4 titles in common, and the output of the following
command confirms this:

merge(df.domestic, df.foreign, by.x="Name", by.y="name", all=FALSE)

## Name Domestic foreign
## 1 Skyfall 304360277 1109
## 2 The Avengers 623357910 1512
## 3 The Dark Knight Rises 448139099 1084
## 4 The Hobbit 303003568 1017

An outer join is a union over all the values matching by:

merge(df.domestic, df.foreign, by.x="Name", by.y="name", all=TRUE)

## Name Domestic foreign
## 1 Skyfall 304360277 1108.6
## 2 The Avengers 623357910 1511.8
## 3 The Dark Knight Rises 448139099 1084.4
## 4 The Hobbit 303003568 1017.0
## 5 The Hunger Games 408010692 NA
## 6 Ice Age NA 877.2

The last two movies are not in both data sets, and have NA values where
there are missing values. Specifying all.x=TRUE (or all.y=TRUE) is used to
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add to the intersection only those values in the left (or right) data frame that
are not in both. For example, this call adds a value for The Hunger Games,
as it appears in df.domestic but not Ice Age, as it does not:

merge(df.domestic, df.foreign, by.x="Name", by.y="name", all.x=TRUE)

## Name Domestic foreign
## 1 Skyfall 304360277 1109
## 2 The Avengers 623357910 1512
## 3 The Dark Knight Rises 448139099 1084
## 4 The Hobbit 303003568 1017
## 5 The Hunger Games 408010692 NA

• Example 4.1: Data cleaning
The babies (UsingR) data set comes from a study where missing values were
coded with large numeric values, and factors coded with numbers. The task
here is to clean the data up with NA values for missing values, and human
readable levels for the factors. We begin doing so one variable at a time.

The id variable is a unique id. This is not numeric data, nor is it useful
for grouping, so we convert it to character. Here is one way to do so:

babies$id <- as.character(babies$id) # change type of variable

The gestation variable measures the gestation period in days, as recorded
by the hospital. A typical gestation period is 9 months, more precisely 38 –
42 weeks. This data set has several values more than 45 weeks:

with(babies, gestation[gestation > 45 * 7])

## [1] 999 351 999 999 999 336 999 318 320 318 329 999 328 319 323
## [16] 999 316 999 999 330 318 999 999 330 999 324 323 316 318 353
## [31] 999 338 319 321

The value 999 clearly is for missing data. We might be tempted to consider
values more than 45 weeks to contain erroneous data, but we don’t make that
assumption without knowing more about the data.

We can assign an NA value to the 999 values in the data set. We do so for
several variables measuring numeric values below which have a code of 999
or 99 for missing values:

babies <- within(babies, {
gestation[gestation == 999] <- NA
wt[wt == 999] <- NA
wt1[wt1 == 999] <- NA
dwt[dwt == 999] <- NA



4.2. WORKING WITH DATA FRAMES 165

ht[ht == 99] <- NA
dht[dht == 99] <- NA

})

There are several variables that should be recorded as factors, for example
the smokes variable with 0=never, 1=smokes now, 2=until current pregnancy,
3=once did, not now, 9=unknown. Here we convert this data into a factor
with descriptive levels:

babies$smoke <- factor(babies$smoke)
levels(babies$smoke) <- list("never"=0, "smokes now"=1,

"Until current pregnancy"=2,
"once did, not now"=3)

The values coded by 9 are converted to NA, as 9 is left out of the specifica-
tion of the levels.

Similarly, we do the same for number which records the number of
cigarettes smoked per day. The value of 98 is unknown, the value of 99 is
unasked. We make 99 have NA:

babies$number <- factor(babies$number)
levels(babies$number) <- list("never"=0, "1-4"=1, "5-9"=2,

"10-14"=3, "15-19"=4, "20-29"=5,
"30-39"=6, "40-60"=7, "60+"=8,
"smoke, don’t know"=9, "unknown"=98)

The date variable is the birth date where 1096=January 1, 1961. To convert
into a day, we do so with the lubridate package and date arithmetic.

First, to create a variable for the start date:

require(lubridate)
(x <- ymd("1961-01-01"))

## [1] "1961-01-01 UTC"

To add 10 days to each value of x, say, we can do the following:

x + 10 * days(1)

## [1] "1961-01-11 UTC"

So to update our variable, we have

babies$date <- x + (babies$date - 1096) * days(1)
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We could do more, but instead derive BMI variables for both the mom
and the dad. This task is conveniently done with transform:

bmi <- function(wt, ht) (wt/2.2) / (ht*2.54/100)^2
babies <- transform(babies, bmi = bmi(wt1, ht),

dbmi = bmi(dwt, dht))

At this point, we have pretty much cleaned up this data set. We can ask
some questions relating variables at this point. Here is a silly one where we
look at all cases where the difference in BMI is large:

subset(babies, abs(dbmi - bmi) > 14,
select=c(date, gestation, wt, race))

## date gestation wt race
## 33 1962-02-07 268 130 0
## 200 1962-08-01 291 137 3
## 532 1961-10-16 271 108 5
## 748 1962-08-13 288 174 0
## 1163 1962-05-14 291 160 0

••

Problems

4.6 Simplify the following commands, where the fat data set is in the UsingR
package:

mean(fat$neck) / mean(fat$wrist)

## [1] 2.084

mean(fat$neck/fat$wrist)

## [1] 2.084

4.7 Use the subset function to return a data frame made from the Cars93
(MASS) data frame consisting only of non-USA cars in origin, with 4 cylinders
and a maximum price of $15,000 or less.
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4.3 Applying a function over a collection

We turn our attention now to constructs in R which are used to apply a
function to groups formed from some splitting process.

We have seen that many R functions are vectorized. For example, the
mathematical functions are. This allow us to easily subtract 3, say, from each
value in some data set:

x <- 1:5
x - 3

## [1] -2 -1 0 1 2

We can visualize vectorization through this symbolic pattern

[x1 x2 ... xn] -> [f(x1) f(x2) ... f(xn)]

where the function f takes a single value and returns a single value, which
in our example is function(x) x - 3.

Vectorization can often be much faster than alternatives, as the computa-
tion is done in C code, and not at the R level. Even when not true, vector-
ization and its counterparts have the benefit—once learned—that tasks are
made conceptually cleaner.

The simple example of x - 3 would often be written in other languages
using a for loop. In R this would take the following form:

x <- 1:5
res <- integer(length(x)) # allocate temporary storage
for(i in 1:length(x)) { # iterate over indices
res[i] <- x[i] - 3 # compute f, do bookkeeping

}
res

## [1] -2 -1 0 1 2

The above code iterates over a set of numbers which are the indices for
x and uses that index to look up the corresponding x value so that 3 can be
subtracted from it.

This imperative style of iterating over a set, or collection, of elements
using a for loop is sometimes desirable, but most R idioms work to avoid
it. It would be hard to argue that the above expression is conceptually easier
to parse than the declarative style of x-3. (The difference between declaring
what is to be done, rather than spelling out how to do it case by case.)

If a function is not vectorized, then the Vectorize function will make it
so. The Vectorize function takes a function as its input and returns a modi-
fication of the function for its output.
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For example, the median function cannot be applied across the columns
of a data frame directly, but the function can be vectorized to do so. Here we
apply the new function Vectorize(median) to the homedata data set which
lists assessed home values for two different eras:

vmedian <- Vectorize(median) # returns a function
vmedian(homedata)

## y1970 y2000
## 68900 251700

The Vectorize function is an example of a higher order function, one that
takes or returns a function, in this case both. This is possible in R as func-
tions are first-class objects. We shall see next, that there are alternate ways to
vectorize a function call that are of more general usage than Vectorize.

Map

Vectorization is an example of a map. In the abstract, a map takes a function,
f, and applies it to each element of a collection, returning a new collection.
Symbolically, it might be viewed with

[a1 a2 a3 ... an] -> [[ f(a1) f(a2) f(a3) ... f(an) ]]

or using a list as the collection:

[[a1 a2 a3 ... an]] -> [[ f(a1) f(a2) f(a3) ... f(an) ]]

The function f could possibly return one of many types of objects, so we
use our list notation above for a general purpose container.

In R, the Map function will map a function over a collection. In our exam-
ples, a collection is either a vector, or generalized vector and the elements are
those indexed by [i] or [[i]]. For a list or vector this is natural. For matrices
the elements come from the vector notation, and for a data frame from the
list notation. This means each element for the matrix, but each column for
the data frame (as happened in the Vectorize(median) example).

In this example, we bypass R’s usual vectorization of the sqrt function.

collection <- c(4, 9, 16)
Map(sqrt, collection)

## [[1]]
## [1] 2
##
## [[2]]
## [1] 3
##
## [[3]]
## [1] 4
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The return value of Map is a list, as the output of f can be rather general.
For the sqrt function we would get a numeric vector:

sqrt(collection)

## [1] 2 3 4

Simplified output is usually preferable, and R has many variants of the
Map construct that will also try to reshape the output, or combine into a sim-
pler structure, than a list.

The sapply function The sapply function is one such example, calling
simplify2array to do the work of combining the output in a pleasing man-
ner.2 The calling order of sapply is reversed from that of Map with the collec-
tion specified first:

sapply(collection, sqrt)

## [1] 2 3 4

Next, we split a data set by a factor to get a list, then apply the mean
function to each:

lst <- with(ToothGrowth, split(len, supp))
sapply(lst, mean)

## OJ VC
## 20.66 16.96

This is an example of the split-apply-combine paradigm (c.f. [62]) that is
very common in data analysis.3

The tapply function This particular construct is common enough that it
has its own function, tapply:

with(ToothGrowth,
tapply(len, supp, mean) # (X, INDEX, FUN)
)

## OJ VC
## 20.66 16.96

2The sapply function is a special case of lapply, or list apply, which applies a function to
a collection and returns a list. The main difference is by default sapply will try to simplify the
output into an array form.

3The popular add-on package plyr is designed to bring more order to the collection of
functions used for splitting, applying, and combining data. In particular, there are different
functions used to specify the type of input and the type of output.
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For tapply, as with split, the grouping variable is a factor or list of fac-
tors. In the latter case, all combinations are computed before splitting:

with(ToothGrowth,
tapply(len, list(supp, dose), mean) # (X, INDEX, FUN)
)

## 0.5 1 2
## OJ 13.23 22.70 26.06
## VC 7.98 16.77 26.14

If we were to try this using split and sapply directly, we would discover
that tapply does a nicer job of reshaping the data, in this case returning
a matrix of values which displays more compactly than the named vector
returned by combining split and sapply.

The aggregate function The aggregate function is an alternative function
that provides a formula interface. This affords a more convenient syntax than
that shown previously employing with. The output from aggregate is differ-
ent than that of tapply, though similar. The formula below puts the numeric
variable on the left-hand side of the formula and the grouping variable on
the right:

aggregate(len ~ supp, data=ToothGrowth, mean)

## supp len
## 1 OJ 20.66
## 2 VC 16.96

More than one grouping variable can be used, they may be combined
with +, as in len ~ supp + dose.

We can combine aggregate with our table making commands to create a
function that can extend the interface for the mean to formulas:

mean_formula <- function(formula, data) {
out <- aggregate(formula, data=data, mean)
xtabs(formula, out)

}

To see it work, we can then do:

mean_formula(len ~ supp, data=ToothGrowth)

## supp
## OJ VC
## 20.66 16.96
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In Appendix A we revisit this example, to show what to do so that we
can call an augmentation of the above as just:

mean(len ~ supp, data=ToothGrowth)

## supp
## OJ VC
## 20.66 16.96

The mean function is a “reduction”, as it takes a vector and reduces the
dimensionality to a single number (though in R it is still a vector). This need
not be the case for the functions used. The summary function provides a nice
summary of different types of variables. Here we apply it to the split values
of ToothGrowth:

lst <- with(ToothGrowth, split(len, supp))
sapply(lst, summary)

## OJ VC
## Min. 8.2 4.2
## 1st Qu. 15.5 11.2
## Median 22.7 16.5
## Mean 20.7 17.0
## 3rd Qu. 25.7 23.1
## Max. 30.9 33.9

We see that sapply can simplify this output into a nice tabular format.
The sapply function is often used with data frames to apply a function to

each variable. For example, to find the mean of each variable in a data frame,
this pattern can be used:

sapply(mtcars, mean)

## mpg cyl disp hp drat wt qsec
## 20.0906 6.1875 230.7219 146.6875 3.5966 3.2172 17.8487
## vs am gear carb
## 0.4375 0.4062 3.6875 2.8125

(Earlier, we used the specialized Vectorize to do a similar task.)
If the data frame has NA values, the argument na.rm for mean can be spec-

ified. This is done by adding an additional argument to sapply after the
function specification:

m <- mtcars[1:4, 1:3]
m[1,1] <- m[2,2] <- NA
sapply(m, mean)
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## mpg cyl disp
## NA NA 171.5

sapply(m, mean, na.rm=TRUE)

## mpg cyl disp
## 21.733 5.333 171.500

Symbolically, the expression sapply(collection, f, args...) can be viewed
as performing:

[x1 x2 ... xn] -> [[f(x1, args...) f(x2, args...) ... f(xn, args...)]]

with simplification to an array, as possible. The additional arguments are not
vectorized.

The apply function For matrices (and more generally arrays), vectorized
functions are applied to each element, treating the matrix as a vector with
some shape attributes. For example,

m <- rbind(c(1,2), c(3,4))
sqrt(m)

## [,1] [,2]
## [1,] 1.000 1.414
## [2,] 1.732 2.000

However, it may be desirable to apply a function to each column, as with
data frames. Or, since rows of a matrix are also all of the same type, it may
be of interest to apply a function to each row.

For summations, these tasks are common enough that there are special-
ized functions colSums and rowSums that do this quickly.

To illustrate, we use the following pattern which creates a matrix with
five columns and three rows:

(m <- replicate(5, rnorm(3)))

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.4177 -1.040 0.87860 0.4323 1.589638
## [2,] 0.9818 1.782 0.03581 2.0908 1.954652
## [3,] -0.3927 -2.311 1.01283 -1.1999 0.004938

This is a common pattern to generate random data for simulations (cf.
Chapter 7). The replicate function is a convenience for this map

[1 2 ... n] -> [f() f() ... f()]
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where the implied function is really just a block of commands that does
not depend on the index. That is, it repeats an expression, which often has
randomness involved. In this example, the expression generates 3 randomly
chosen numbers from a named distribution.

For a matrix, like m, to add along the rows or columns we can use rowSums
or colSums:

rowSums(m) # add along rows

## [1] 2.278 6.845 -2.886

colSums(m) # add down columns

## [1] 1.007 -1.569 1.927 1.323 3.549

As a matrix, m, is treated as a vector when viewed as a collection, the
sapply function does not directly work for this task:

sapply(m, sum)

## [1] 0.417651 0.981753 -0.392695 -1.039669 1.782229 -2.311069
## [7] 0.878605 0.035807 1.012829 0.432265 2.090819 -1.199926
## [13] 1.589638 1.954652 0.004938

Rather we want to apply the function to a specified dimension of the ma-
trix. The apply function will do so, with the margin(s) to apply the function
specified in the second position (there are no named arguments, so order is
crucial).

apply(m, 1, mean) # rowMeans alternative

## [1] 0.4557 1.3691 -0.5772

apply(m, 2, mean) # colMeans alternative

## [1] 0.3356 -0.5228 0.6424 0.4411 1.1831

The first is similar to all of this:

c(sum(m[1,]), sum(m[2,]), sum(m[3,]))

## [1] 2.278 6.845 -2.886

The function applied need not be a reduction. For example, to find sum-
maries along each column, we have
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apply(m, 2, summary)

## [,1] [,2] [,3] [,4] [,5]
## Min. -0.3930 -2.310 0.0358 -1.200 0.00494
## 1st Qu. 0.0125 -1.680 0.4570 -0.384 0.79700
## Median 0.4180 -1.040 0.8790 0.432 1.59000
## Mean 0.3360 -0.523 0.6420 0.441 1.18000
## 3rd Qu. 0.7000 0.371 0.9460 1.260 1.77000
## Max. 0.9820 1.780 1.0100 2.090 1.95000

As with sapply, we can pass in non-vectorized, named arguments to each
function call by adding them to the apply call after the function specification

The special-purpose sweep function can be used in combination with
apply to center or scale values. For example, this code will compute the
means for each column, then subtract from each column the corresponding
value:

xbars <- apply(m, 2, mean)
centers <- sweep(m, 2, xbars, FUN="-") # "-" is default
centers

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.08208 -0.5168 0.2362 -0.008788 0.4066
## [2,] 0.64618 2.3051 -0.6066 1.649766 0.7716
## [3,] -0.72826 -1.7882 0.3704 -1.640979 -1.1781

Going further, we can find the z-scores by dividing by the standard devi-
ations. Here we need to specify the value FUN="/":

sds <- apply(m, 2, sd)
z_scores <- sweep(centers, 2, sds, FUN="/")
z_scores

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.1188 -0.2467 0.4460 -0.005341 0.3922
## [2,] 0.9353 1.1003 -1.1454 1.002660 0.7444
## [3,] -1.0541 -0.8536 0.6994 -0.997319 -1.1367

This is a common enough pattern, that the function scale will perform it.

mapply We have done illustrations with functions that take a single variable
and produce some output. There are functions that take two or more values
and we may wish to map these.

For example, the min function finds the minimum of its arguments. It is
written to combine its arguments then find the minimum:
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min(3, 4) # 3

## [1] 3

min(c(1,4), c(2,3)) # not c(1,3) as maybe desired

## [1] 1

How can we get the output where the corresponding pairs are compared
to see which is smaller?

Symbolically, we want to compute the following with f being our min
function:

([a1 a2 ... an],[x1 x2 ... xn]) -> [ f(a1, x1) f(a2, x2) ... f(an, xn)]

The Map function can be used to do this:

Map(min, c(1,4), c(2,3))

## [[1]]
## [1] 1
##
## [[2]]
## [1] 3

The output of Map will return a list, but in this case a vector is more
appropriate. The mapply function is similar to Map (in fact Map uses mapply
in its definition) but, like sapply, it also attempts simplification of its output
(unless it requested not to through SIMPLIFY=FALSE).

mapply(min, c(1,4), c(2,3))

## [1] 1 3

This particular usage is common enough that there is a special function,
pmin to do it faster and in a safer manner.

Unlike sapply, with mapply the function goes first. This allows for an ar-
bitrary number of collections to follow. (For example, if we had f(x,y,z)
then we could have mapply(f, xcollection, ycollection, zcollection).
The collections will be recycled to a common length.

The example above using sweep can be done with mapply. In that example,
the column mean is subtracted from each column. To do this with mapply we
use the function function(col, center) col - center and arrange to pass
in the entire column and the column mean. Here is one way:
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our_sweep <- function(col, center) col - center
mapply(our_sweep, as.data.frame(m), apply(m, 2, mean))

## V1 V2 V3 V4 V5
## [1,] 0.08208 -0.5168 0.2362 -0.008788 0.4066
## [2,] 0.64618 2.3051 -0.6066 1.649766 0.7716
## [3,] -0.72826 -1.7882 0.3704 -1.640979 -1.1781

We convert the matrix to a data frame, so that the columns are the ele-
ments of the collection, not each individual cell. While special purpose func-
tions such as sweep may have their purpose, it is suggested that one learns
the more general idioms of R when starting out, and picking up the more
specific ones should the need arise. For applying a function to a collection,
the following are usually sufficient: sapply, mapply, and apply.

The do.call function We saw in Chapter 3 the Spearman correlation coef-
ficient can be computed for variables x and y from cor(rank(x), rank(y)).
This fits the pattern of finding

f(g(x1), g(x2), ..., g(xn))

Doing this elegantly with many variables is a bit tricky. The following
map is by now easy:

[x1 x2 x3 ... xn] -> [[ g(x1) g(x2) g(x3) ... g(xn) ]]

What we desire is a means to call a function, f say, with arguments spec-
ified by a list, not individually. The do.call function does this, replacing a
function call like

f(key1=x1, key2=x2, key2=x3, ..., keyn = xn)

with the following:

do.call(f, list(key1=x1, key2=x2, ..., keyn=xn))

Symbolically, this becomes

[[ g(x1) g(x2) g(x3) ... g(xn) ]] -> f(g(x1), g(x2), ..., g(xn))

With this, the construct cor(rank(body), rank(brain)) becomes:

body <- Animals$body; brain <- Animals$brain
do.call(cor, Map(rank, list(body, brain)))

## [1] 0.7163
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This usage is no shorter than doing it directly, but the pattern with Map
can be used with functions that take more arguments than two.

As an aside, the last call was a bit cumbersome, as when using do.call
the names attribute of the list is used to name the arguments passed into
the function. While this is often convenient, in this example it is not, as the
names of Animals don’t match the argument names of cor. However, when a
component has no name, it matches by position. To strip the names from an
object, they can be assigned as NULL. For example, the above could have been
done with:

do.call(cor, Map(rank, setNames(Animals, NULL)))

## [1] 0.7163

Filter

Another useful concept is filtering or subsetting a collection. We have seen
that R allows us to subset a vector by a logical vector. The Filter function
does something similar, though with different syntax. The basic pattern is
Filter(predicate, collection) which applies the predicate function to each
member of the collection and returns only those elements in the collection for
which the predicate is TRUE. (A predicate function is one that returns a logical
variable.)

This can be used to filter out a data frame. For example, here we filter a
data frame by which columns hold factors:

m <- Cars93[1:2, 1:15] # 15 columns
Filter(is.factor, m) # 6 are factors

## Manufacturer Model Type AirBags DriveTrain
## 1 Acura Integra Small None Front
## 2 Acura Legend Midsize Driver & Passenger Front
## Cylinders
## 1 4
## 2 6

While this provides identical results as m[sapply(m, is.factor)], the im-
perative style of Filter is conceptually more direct.

Reduce

The Reduce pattern formalizes many functions that are reductions, like sum
or max.

Because of associativity, we can think of sum completing its task in many
different ways. Here are two ways to add the numbers 1 through 4:
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1 + 2 + 3 + 4 = ((1 + 2) + 3) + 4 = 1 + (2 + (3 + 4)).

Let’s consider the first. It can be generalized to the following pattern,
assuming f (a,b) = a + b:

f ( f ( f (1,2),3),4).

Repeatedly applying the output of binary function to a new element in a
collection is called a fold or an accumulation. In this case, a left fold. Summing
values is just one example.

Folds in R are implemented in the Reduce function. The default is a left
fold.

To illustrate, here is a slower way than sum to add the numbers 1 through
4:

Reduce("+", 1:4)

## [1] 10

Finding a maximum of a set of numbers can be presented as a fold. We
simply compare two values, keeping the largest:

Reduce(function(x,y) ifelse(x > y, x, y), c(6, 4, 7, 9, 10, 3))

## [1] 10

For an example that isn’t implemented in base R (though still contrived
from a statistics viewpoint), we extend a function that finds the least common
multiple of two numbers, to one that finds the same for an arbitrary vector of
numbers. The smallest (least) common multiple of two integers is the product
of the two divided by the largest common factor. The scm function below will
find the value.

## gcd by Euclidean algorithm, a, b integers
gcd <- function(a, b) {while (b != 0) {t = b; b = a %% b; a = t}; a}
## scm (lcm is R function name in graphics package)
scm <- function(a, b) (a * b) / gcd(a, b)

Here we see the function at work:

scm(3, 5) # no common primes

## [1] 15

scm(6, 9) # common prime

## [1] 18
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There is no function to compute scm(2,4,7) or scm(c(2,4,7)), but this
could be found from scm(scm(2,4), 7). This suggests using Reduce to extend
the range of applicability:

Reduce(scm, 1:20) # smallest number divisible by 1, 2, ..., 20

## [1] 232792560

Problems

4.8 Run the following command for the wellbeing (UsingR) data set. Which
variables are negatively correlated with well being?

sapply(wellbeing[,-(1:2)], function(y) {
cor(wellbeing[,2], y, use="complete.obs")

})

4.9 After splitting by a factor, the different groups may have differing lengths.
For example, the beatles (LearnEDA) data set contains the time for each song
on various albums by the Beatles. Split the data by the album variable then
count the number of songs per album.

4.10 Find the standard deviation of each variable in the mtcars data set.

4.11 Find the standard deviation for each numeric variable in Cars93 (MASS).

4.12 A stackoverflow.com question was:

I need to subset data frame based on column type—for exam-
ple from data frame with 100 columns. I need to keep only those
columns with type factor or integer.

How can this be done?

4.13 The batting (UsingR) data set has baseball statistics from 2002. Can
you compute the team batting average (total number of hits divided by total
number of at bats)?

4.14 The batting (UsingR) data set has baseball statistics from 2002. Can you
identify which players played for more than one team?

4.15 A stackoverflow.com question was:

When I have a vector of vectors in R, how do I select a vector
that contains one element from each outer vector?
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For example, for this data, the output would be "1", "3", "5".

d <- c("1,2","3,4","5,6")
strsplit(d,",")

## [[1]]
## [1] "1" "2"
##
## [[2]]
## [1] "3" "4"
##
## [[3]]
## [1] "5" "6"

4.16 How could one remove all columns that contain one or more NA values
from a data frame?

4.17 Write a function that summarizes the variables in a data frame with
their name and their class (returned by class). (There are many ways to do
so.)

4.18 A stackoverflow.com user asked for a shorter alternative to the follow-
ing. (The use of which(fruits==x) to get the index being considered ugly.)
Provide an alternative.

fruits <- c("Bananas", "Oranges", "Avocados", "Celeries?")
sapply(fruits, function(x)

paste(x, "are fruit number", which(fruits==x)))

## Bananas Oranges
## "Bananas are fruit number 1" "Oranges are fruit number 2"
## Avocados Celeries?
## "Avocados are fruit number 3" "Celeries? are fruit number 4"

4.19 Reduce and associativity Left and right folds are indifferent if the op-
eration is associative. Operations like - and ^ are not though. By comparing
the outputs of 2− 3− 4 and 234, with, for example, Reduce("-", c(2,3,4)),
Reduce("-", c(2,3,4), right=TRUE) determine the order in which - and ^
are performed.
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4.4 Using external data

We discuss next how to use data sets within an R session that are not built-
in data sets or data sets that have been typed in. Of course, there is a wide
range of possibilities for storing data. In this section we touch on some of the
common ones. The R Data Import/Export manual accompanying R has more
details than we present.

Spreadsheet data

Perhaps the most common source of data are spreadsheets, such as Mi-
crosoft’s Excel. R has some add-on packages for interacting directly with
Excel: the xlsx package can read and write to Excel 2007 (xlsx) files; the
gdata package provides the function read.xls for reading older xls files; the
RExcel framework (http://rcom.univie.ac.at/) can integrate R with several
versions of Excel for Microsoft Windows; and the XLConnect package offers
similar features as xlsx. We send the interested reader to the documentation
of those packages.

For a simple data exchange from a spreadsheet into an R session, we can
use a text-file exchange. The basic idea being the spreadsheet program writes
a table out to a file which is then read into R. Common formats for such
data exchange are csv (comma-separated values), tsv (tab-separated values),
or fwf (fixed-width format). Generally, most spreadsheets can import and
export such files.

RStudio has a dialog to read in these formats (Figure 4.1). Additionally,
base R provides various read.* functions for processing such data. For the
types just listed, there are read.csv, read.table, and read.fwf. The read.csv
function is just a front end to the read.table function with certain parameters
set. The “Import Dataset” feature of RStudio, found on the Workspace tab, is
a front end that shows the results of adjusting the parameters.

For read.table, the key arguments, among others, are header to indicate if
there is any header data in the file; sep to indicate the data separator (comma,
space, tab, ...); stringsAsFactors to determine if character data is read in as
a factor (the default); and comment.char to specify any lines that should be
treated as comments.

When using read.table directly, the file to read is typically specified by
name. This can be typed in, or if more convenient, browsed for by specifying
file.choose(). The name can even be a url for a web-based resource. In a
previous example, we used textConnection(domestic) to create a readable
text connection from a character string.

Though often used, there can be issues with exchanging data between
R and spreadsheets this way: the exchange through text can lose attributes
(such as dates) on the variables; the two separate data sets must be manually
synchronized; and the exchange is limited to a single sheet of a spreadsheet
notebook.



182 CHAPTER 4. MULTIVARIATE DATA

Figure 4.1: RStudio’s import data set dialog. The left side controls are used
to adjust the arguments to read.table.

To send tabular data from R to a spreadsheet, R provides the functions
write.table or write.csv. For example, write.csv(object, file=file_name).
The R Data Import/Export manual lists several issues to be aware of including
the loss of precision, due to formatting of floating point numbers; the treat-
ment of NA and NaN values; encoding issues; and issues with internal quotes.

Other programs The foreign package is a recommended package, bundled
with most all R installations. It allows data generated from other statistical
programs to be read into R. There are readers for formats from S (version 3),
SAS, Stata, Epi, MINITAB, SPSS, and Systat.

Web-based data sets

Data sets of all varieties are to be found on the Internet. Many sites provide
data in some regular format, though these formats can vary widely. Other
sites have data embedded in tables in a web page. We see in this section,
various ways to access different types of data sets online. Some of the func-
tionality is provided through base R, but much other is based on add-on
packages, primarily contributed by Duncan Temple Lang, that extend R to
work with different internet standards.

First, some examples of nicely presented data. The CDC (Centers for
Disease Control and Prevention) frequently conducts the NHANES sur-
vey (http://www.cdc.gov/nchs/nhanes.htm) and provides the data in an
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SAS format that can be read in with read.xport from the foreign pack-
age. The U.S. Energy Information Adminstration has gasoline price data
(http://www.eia.gov/petroleum/gasdiesel/) that can be downloaded in Ex-
cel format.

To illustrate reading from an online Excel file, the following commands
will read the second sheet from the spreadsheet that lists historical gas prices
from the ongoing survey performed by the USEIA.4 Through some prepara-
tory work, it was noted that the desired data is the second sheet and has two
extra lines of information at the top of the sheet. This requires the additional
arguments sheet=2 and skip=2.

require("gdata") # must be installed
f <- "http://www.eia.gov/petroleum/gasdiesel/xls/pswrgvwall.xls"
gas_prices <- read.xls(f, sheet=2, skip=2)
gas_prices <- setNames(gas_prices[,1:2], c("Date", "Weekly_US"))

This will unfortunately leave the first column with dates that are not quite
right. (The first value is "Aug 201990 1990".) As the dates are padded to use
two characters, the positions of the dates are consistent. This following com-
mand uses substr to extract the date and as.Date to convert them to Date
format. The resulting plot (Figure 4.2) makes use of the fact that plot will
utilize this class information to make the axis labels prettier.

gas_prices$Date <- as.Date(substr(gas_prices$Date, 1, 10),
format="%b %d%Y")

plot(Weekly_US ~ Date, gas_prices, type="l")

Google Sheets Google Sheets is an online spreadsheet app that allows for the
creation, editing, and sharing of spreadsheets. This is one of several available
collaborative online tools. The sharing of Google Sheets can be done as a csv
file, which allows for easy inclusion into R. The only catch is the urls use
secure http which is not (currently) supported by download.file, which does
the work of getting the file from the internet. The add-on package RCurl,
a very useful wrapper for the curl library (http://curl.haxx.se), provides
the function getURL which will, by default, return the page’s text for page’s
exposed to the internet by many different protocols, including https.

As the value returned is a string containing the text, the result can be
passed to read.csv by wrapping it within textConnection. Here is an exam-
ple, with a silly spreadsheet.

4Of course, web sites come and go faster than books, so the web site resources referenced
herein may not exist at the time the commands are tried. In that case, the commands should fail
with an informative error message.
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Figure 4.2: Plot of average gas prices in the United States over time.

key <- "0AoaQTPQhRgkqdEthU0ZZeThtcWtvcWpZUThiX2JUMGc"
f <- paste("https://docs.google.com/spreadsheet/pub?key=",

key,
"&single=true&gid=0&output=csv", sep="")

require(RCurl)
read.csv(textConnection(getURL(f)), header=TRUE)

## number english spanish
## 1 1 one uno
## 2 2 two dos
## 3 3 three tres
## 4 4 four cuatro
## 5 5 five cinco

The quandl package Quandl.com is a web site that indexes time-series data
from numerous sources. It has millions of data sets, and even better, an open
interface for downloading (and uploading) data. The Quandl package pro-
vides an interface to R users. To download a file is as easy as browsing the
site to the data of interest, and noticing the code Quandl assigns.
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In this example there are three codes used. The codes refer to data on the
demographics of the Chinese population by broad age group. The following
downloads three data sets, then calls merge twice (using Reduce) to combine
the three data sets into one.

require(Quandl)
ch_0014 <- Quandl("WORLDBANK/CHN_SP_POP_0014_TO_ZS")
ch_1564 <- Quandl("WORLDBANK/CHN_SP_POP_1564_TO_ZS")
ch_65up <- Quandl("WORLDBANK/CHN_SP_POP_65UP_TO_ZS")
ch_all <- Reduce(function(x,y) merge(x, y, by="Date"),

list(ch_0014, ch_1564, ch_65up))
names(ch_all) <- c("Date", "[0,14]", "[15,64]", "[65,)")

After the data has been combined, there are columns with proportions for
each age group. A good visualization for any given year is a segmented bar,
and placing these next to each other can clearly show demographic trends.
The barplot function will make segmented bar plots. To do them all at once,
we need to flip the numbers in ch_all from 3 columns to 3 rows. This is
achieved by the t function, but we first remove the column of dates which
are subsequently formatted as column names for the resulting data set.

heights <- t(ch_all[,-1])
colnames(heights) <- format(ch_all[,"Date"], format="%Y")
barplot(heights, main="Proportion of [0-14], [15-64], [65,)")

Working with JSON data A common format to transfer data over the inter-
net is JSON or JavaScript Object Notation. Many sites have data that can be
retrieved in this format, including Quandl.com, which is used in our example.
The JSON format can be quickly parsed into R with the RJSONIO package,
through its fromJSON function.

The following illustrates the usage. The JSON returned by the Quandl site
is not simply tabular data, but has metadata attached. The value returned
from fromJSON is a list with named elements corresponding to the tagged
element of the original JSON file, for example column_names. In this case, the
data is in the data component:

require(RJSONIO)
f <- "http://www.quandl.com/api/v1/datasets/PRAGUESE/PX.json"
out <- fromJSON(f)
out$column_names # names

## [1] "Date" "Index" "% Change"

out$data[1] # one from 1000s of values
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Figure 4.3: Plots of data downloaded from Quandl.com. The left graphic shows
the change in time of population demographics in China. The darker shaded
segment represents the proportion of the population 14 and younger. The
right graphic shows a Portuguese stock index over time, including two pre-
cipitous drops in the early 1990s and 2008.

## [[1]]
## [[1]][[1]]
## [1] "2014-05-02"
##
## [[1]][[2]]
## [1] 1011
##
## [[1]][[3]]
## [1] 0.05

As can be seen, the data is not in tabular format, rather each row is repre-
sented by a list. The following convenience function (pluck) takes one com-
ponent at a time, allowing us to treat the data variable by variable, which is
useful for coercing the first column into a date. This makes the plot (right
graphic in Figure 4.3) have nicer labels for the x axis.

pluck <- function(l, key) l[[key]] # pluck from a list
px <- data.frame(Date = as.Date(sapply(out$data, pluck, key=1)),

index = sapply(out$data, pluck, key=2),
perc_change = sapply(out$data, pluck, key=3))

plot(index ~ Date, data=px, type="l", main="Portuguese stock index")
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Parsing HTML files Not all data is so nicely presented. Many times, the
data of interest is a table within an HTML page. For such data there are
a variety of web-scraping techniques available to R users. The XML package
provides an interface to the libxml2 (http://www.xmlsoft.org/) parser. This
breaks the structure of a web page into pieces that can be traversed. Though
working directly with those pieces can be daunting, the readHTMLTable func-
tion from that package does the hard work for us.

In our example, there is more than one table per page. In the second case,
the desired table is the second one on the page. Here we look at two lists
from wikipedia.org, one with the 40 highest grossing films in China and one
for the 100 highest grossing films in Canada and the United States. We can
grab both with the following:5

require(XML)
## fit in 80 characters
url_base = "http://en.wikipedia.org/wiki/"
ch <- "List_of_highest-grossing_films_in_China"
us_can <-

"List_of_highest-grossing_films_in_Canada_and_the_United_States"
china_all <- readHTMLTable(paste(url_base, ch, sep=""))[[1]]
us_can_all <- readHTMLTable(paste(url_base, us_can, sep=""))[[2]]

A natural question is what is the overlap between the two lists? There
could be as many as 40 in common. A merge, where we take the titles that
are common, is given by the following command.

in_common <- merge(china_all, us_can_all, by="Title")
## tidy up
elide <- function(x, n=20)
ifelse(nchar(x) < n, x, sprintf("%s...", substr(x,0,n)))

rownames(in_common) <- sapply(as.character(in_common[,1]), elide)
##
in_common[, c(2,6,7)]

## Rank.x Rank.y Initial gross(unadjusted)
## Avatar 1 1 $749,766,139
## Fast & Furious 6 40 92 $238,673,370
## Gravity 36 65 $274,052,110
## Harry Potter and the... 39 20 $381,011,219
## Inception 32 52 $292,576,195
## Iron Man 3 8 14 $409,013,994
## Pirates of the Carib... 31 90 $241,071,802

5This code depends on an ordering of tables that may not be consistent as time progresses.
If there are errors, consult the web pages and see which table is the one desired and adjust the
indexing accordingly.
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## The Avengers 21 3 $623,357,910
## The Hobbit: The Deso... 34 73 $258,366,855
## Titanic 6 2 $600,788,188
## Transformers: Dark o... 4 27 $352,390,543
## Transformers: Reveng... 37 18 $402,111,870



5

Multivariate graphics

This chapter covers various standard graphics for presenting multivariate
data. Up until now we have been illustrating R’s base graphics for producing
graphical representations. Over the years there have been additions to the
base graphics interface that enhance the abilities to represent multivariate
data. We discuss briefly the lattice package, a recommended package that
comes bundled with R; and ggplot2, an add-on package of relatively recent
origins.1

5.1 Base graphics

We begin with an example from Murrell [44] creating a graphic for the iris
data set.2 This famous data set of Andersen records measurements of sepal
length and width and petal length and width for 50 flowers from each of 3
species. The following creates a scatter plot comparing length of width of the
sepal (left graphic of Figure 5.1):

with(iris,
plot(Sepal.Length, Sepal.Width,

pch=as.numeric(Species), cex=1.2))
legend(6.1, 4.4, c("setosa", "versicolor", "virginica"),

cex=1.5, pch=1:3)

In addition to plotting (x,y) pairs, the code above uses the argument
pch=as.numeric(Species) to force different plot characters for each of the 3
species. In the legend call, the argument pch=1:3 is employed. For the first,
the species names are mapped into values from 1:3, as this is how the factors
are stored internally. For the legend call, only the values are required, not the
entire mapping.

Technical differences aside, the reason for using different plot characters
is the desire to represent a third variable in the graphic, in this case the cate-
gorical variable recording the species factor. There are other ways to represent

1We do not discuss various packages that are useful for interactive multivariate graphics.
Among these are rggobi, iplots (and its progeny), and cranvas.

2Chapter 3 of Murrell’s text does a very thorough job of explaining R’s base graphics.
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Figure 5.1: A scatterplot of sepal width by length for samples of size 50 from
each of 3 species of irises. The left graphic uses different plot characters to
represent the species, the right graphic employs different line types to differ-
entiate the per-species regression lines.

categorical variables: different line types (lty) and different colors (col) are
both widely used.

For example, here we add to the basic graphic a regression line computed
for each of the 3 different species using different line types to indicate the
species (right graphic of Figure 5.1):

fm <- Sepal.Width ~ Sepal.Length
plot(fm, iris, pch=as.numeric(Species))
out <- mapply(function(i, x) abline(lm(fm, data=x), lty=i),

i=1:3, x = split(iris, iris$Species))
legend(6.5, 4.4, levels(iris$Species), cex=1.5, lty=1:3)

This graphic makes it apparent that the relationship is different for the
“setosa” species than the others, as the slope seems quite different.

Numeric variables can be turned into categorical variables for grouping
purposes. Here we use the Cars93 data set to look at the relationship between
highway mileage and weight for classes of cars aggregated by their price
(Figure 5.2).

Cars93 <- transform(Cars93, price=cut(Price, c(0, 15, 30, 75),
labels=c("cheap", "affordable", "expensive")))

plot(MPG.highway ~ Weight, Cars93, pch=as.numeric(price))
legend(3500, 50, levels(Cars93$price), pch=1:3)
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Figure 5.2: Scatterplot of highway mileage by weight for different categories
of cars. The category is derived from a numeric variable using cut.

In Figure 5.2 it is difficult to identify the trend for the different groups.
Figure 5.3 remedies this. Instead of three overlapping layers, we use three
graphics.

The following code splits the data by the derived price variable and then
creates graphics for each. To display them together, we use the mfrow setting
for the par function. The specification of xlim and ylim is based on values for
the entire data set, not just those in the subset. This facilitates a comparison
amongst the graphs. To put this altogether, we use mapply, as it makes it
convenient to pass in both the split-off piece of the data frame and the factor
level, which is used in the title.

l <- split(Cars93, Cars93$price)
## 3 graphics in one
par(mfrow=c(1,length(l)))
## common to each graphic
fm <- MPG.highway ~ Weight
xlim <- range(Cars93$Weight)
ylim <- range(Cars93$MPG.highway)
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Figure 5.3: Highway mileage by weight for different prices of cars. The use
of three graphics, as opposed to layers in one graphic, allows for easy com-
parisons. By ensuring a common scale for the x and y axis, regression-line
slopes can be compared across the panels. In this example, the slope of the
regression line appears to depend on the price category.

mapply(function(x, nm) {
plot(fm, data=x, main=nm, xlim=xlim, ylim=ylim)
abline(lm(fm, data=x))

}, l, names(l))

While the above shows that repeating graphics for different levels of
a classifying factor is not terribly difficult to do, the lattice and ggplot2
graphics frameworks have facilities to make this task much easier.

Bubble charts We mention one more common way to introduce a third
numeric variable into a graphic.

In Example 3.3 we looked at SAT total scores by average state-wide salary
for each of fifty states, as recorded in the SAT data set. It was noted that
the negative correlation did not agree with intuition due to the presence of a
lurking variable. This variable can easily be seen through a bubble chart, where
instead of different plot characters, the size of the character depends on the
value. This naturally represents a third numeric variable into the graphic.
The sizing should relate the area of the plotting symbol with the value of the
variable, so in the following we take a square root as the cex value stretches
the radius of the circle symbol. For variety, we fill the circles by using pch=16.
To show overlapping circles, an alpha level is specified to the color we set for
the points.

plot(total ~ salary, data=SAT, cex=sqrt(perc/10),
pch=16, # filled circles
col=rgb(red=0, green=0, blue=0, alpha=0.250)) # use alpha
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Figure 5.4: Bubble chart of total SAT scores by average teacher salary per
state. The area of each bubble is proportional to the percentage of students
taking the test in that state. As can be seen, similar-sized bubbles tend to
cluster in an increasing pattern.

From the graphic (Figure 5.4) we can see that similarly sized bubbles form
into 3 clusters, each of which can be seen to have positive correlation, despite
the overall negative correlation for data as a whole.

Pairs plots A pairs plot (or scatterplot matrix) displays scatterplots for each
pair from a list of numeric variables. The pairs function produces this
graphic. In Figure 5.5 the four numeric variables of the iris data set are
plotted in this manner. The diagram puts the variable name on the diagonal,
as there is no sense in plotting a variable against itself. To read this diagram,
the ith row and jth column has a scatter plot consisting of the ith and jth vari-
ables. (The jth row and ith column has the same plot with the order of the
variables switched.) For example, in the graphic the third row, first column
is a graph of Sepal.Length on the x axis and Petal.Length on the y axis.

From this graphic, we can observe correlations between many variables at
once. In the figure we also colored the points by their species. The plots also
demonstrate the clustering by species that is in this data set. To produce the
graphic, we dropped the Species factor from the data to be plotted with the
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Figure 5.5: Pairs plot of the four numeric variables in the iris data set. The
clustering by species is evident with the additional coloring.

aid of Filter (or alternatively iris[, -5]) and used those values instead for
coloring the points:

species <- iris$Species
values <- Filter(is.numeric, iris)
pairs(values, col=species)

Parallel coordinate plots A parallel coordinate plot is a way to compare
many variables, perhaps on totally different scales, for many different cases.
Each variable is laid out along the x axis, as is typical of a barplot for categor-
ical data. For each variable, the cases are ranked and then scaled to fit on the
entire range of the y axis. For each case, the different points are connected
together by a line. In our example, there are 50 cases, so 50 possibly overlap-
ping lines are drawn. This graphic can be overwhelming, but how it is used
is to then highlight certain cases so that their relative ranks can be compared.

For example, Figure 5.6 uses the state.x77 data matrix which lists 8 mea-
surements for each of the 50 United States. The state of New York is high-
lighted, which shows a relatively large population and a relatively small area,
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Population Income Illiteracy Life Exp Murder HS Grad Frost Area

Figure 5.6: A parallel coordinates graph for the state.x77 data set. The state
of New York is set off with a darker line. This graphic allows us to track the
relative ranks of the case over several different variables.

among others. The graphic was produced with the parcoord function of the
MASS package. A basic graphic is easy to produce, the extra arguments in-
volved are there to set off the specified case. To do so, we employed logical
indexing, and then utilized its implicit conversion to 0 or 1 when used in a
numeric context (adding 1 to get the right indexing).

x <- state.x77
case <- "New York"
ind <- rownames(x) == case
parcoord(state.x77,

col=gray(c(0.8, 0.2))[ind + 1], # light/dark gray
lwd=(1:2)[ind + 1], las = 2)

Heatmap matrix A common graphical trick is to use variations in color
to represent a numeric variable. For the choice of a color range, R has
many functions. Below we use gray.colors to create a grayscale range. The
RColorBrewer package defines many other color ranges.

The heatmap function3 uses color variation in a heatmap, representing
each value in a matrix with a color and arranges the colors in a grid labeled by
the row and column names. The default graphic will also layer a dendrogram
(a representation of clustering), which we avoid by a choice of argument
below.

3A nice tutorial of this topic can be found at http://flowingdata.com/2010/01/21/
how-to-make-a-heatmap-a-quick-and-easy-solution/.
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The basic heatmap function uses all the data in the matrix to assign a
color. We will look at the state.x77 data which though defined as a matrix,
should really be a data frame, as each column represents a measurement on
different scales. As such, we first rank each column to produce measurements
on common scales:

x <- sapply(as.data.frame(state.x77), rank)
rownames(x) <- rownames(state.x77)

The above does a lot, though quickly: it converts the values to a data
frame, then applies rank to each column, then converts back to a matrix,
as sapply will try to convert its output to an array. What got lost—the row
names—are added back in manually, as they are utilized by the heatmap func-
tion.

The following call produces the heatmap, the specification Rowv=NA and
Colv=NA turns off the addition of dendrograms:

heatmap(x, Rowv=NA, Colv=NA,
scale="column", # scale columns
margins=c(8, 6), # leave room for labels
col=rev(gray.colors(50))) # darker -> larger

Figure 5.7 shows the graphic. The data presented is similar to the paral-
lel coordinates plot above, but this graphic makes it easier to track individ-
ual cases without highlighting, whereas the parallel coordinates plot makes
known individual cases stand out. Here we can observe that New York is on
the large side for population and income (darker colors), and the low side for
most other measures.

Problems

5.1 For the UScereal (MASS) data set, create a scatter plot of calories modeled
by sugars using the shelf variable to create different plot characters. Add a
legend to indicate the shelf number. Is there any pattern?

5.2 For the iris data set create a parallel coordinate plot for the 4 categorical
variables, with each species having a different color. Does one species seem
to have different properties?

5.3 For the data set UScereal (MASS) make a pairs plot of the numeric vari-
ables. Which correlation looks larger: fat and calories or fat and sugars?

5.4 For the data set batting (UsingR) make a bubble plot of home runs hit
(HR) modeled by hits (H) where the scale factor for each point is given by
sqrt(50)/10. Is there any story to be told by the size of the points?
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Figure 5.7: Heatmap of state.x77 data set. The ranks of each column are
represented through a color with darker meaning bigger.

5.2 Lattice graphics

The lattice package is a recommended package that comes standard with
most R distributions. The package author [52] has a book describing its possi-
bilities in detail. The package builds on the underlying grid framework [44].
The design of lattice is inspired by Cleveland’s work [10] on the trellis pack-
age for S-Plus. The lattice package can be complicated, we only mention
a few of its features. The playwith add-on package provides a user interface
for playing with the many features.

The package describes itself with (cf. ?Lattice):

It is a powerful and elegant high-level data visualization sys-
tem with an emphasis on multivariate data.

The elegance comes from its use of R’s formula interface to specify the
splitting of data. The basic formula is extended to include conditioning vari-
ables and takes the form

y ~ x | g1 + g2 + ...

The conditioning variables (g1, g2, ...) are used to split the data. Graphs
for different sets of values are presented in different panels, with common
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scales for comparison. The conditioning variables are often factors (categor-
ical variables) but may also be numeric variables, in which case shingles are
formed which subset the data using slightly overlapping intervals. (Similar
to what can be done with cut, but different, as the same case can appear in
more than one shingle.)

To replicate Figure 5.3, we first try the most straightforward usage:

xyplot(MPG.highway ~ Weight | Price, data=Cars93)

In place of plot, we use lattice’s xyplot. Lattice has a different, though
similar, naming scheme for various standard graphics, including dotplot,
histogram, densityplot, bwplot, qqmath, and barchart. Similar to plot, the
xyplot function has arguments pch, cex, lty, lwd for controlling the basic
plotting parameters. Themes can be used to create a consistent look to differ-
ent plots.

The above command creates a poor graphic, as the automatic creation of
shingles for the Price variable creates too many shingle levels. Instead, we
use the derived price variable as before:

Cars93 = transform(Cars93, price=cut(Price, c(0, 15, 30, 75),
labels=c("cheap", "affordable", "expensive")))

xyplot(MPG.highway ~ Weight | price, data=Cars93)

This produces a nicer graphic. An alternative to using cut is to use the
shingle function or the equal.count function. The latter, might be used to
derive a variable such as

prices <- equal.count(Cars93$Price, number=3, overlap=0)

where prices would have three groups of equal size.
Before finishing, we wish to modify two things: the layout to use 3

columns (not 2 rows and 2 columns) and add regression lines for each. The
argument layout=c(3,1) does the first task (columns, rows is the order).

The second task can be done using the default panel function. A panel
function is what is called to draw each panel. A specification such as the fol-
lowing plots the points (panel.xyplot) and the regression line (panel.lmline):

panel=function(x, y) {
panel.xyplot(x, y)
panel.lmline(x, y)

}

As this is a common task, there is a more convenient way. The type argu-
ment takes arguments describing what to plot, similar to the type argument
of plot. In addition to "p" for points, there is "r" for a regression line, and
"smooth" to add a loess smoother. The following then produces the graphic
shown in Figure 5.8:
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Figure 5.8: Three scatterplots of highway model by vehicle weight. The data
is split into groups by a derived price variable. The lattice package uses
panels to display the data by group. The use of consistent x- and y-limits
affords easy comparison between the groups.

xyplot(MPG.highway ~ Weight | price, data=Cars93,
layout=c(3,1),
type=c("p", "r")

)

Examples of the other common plots (figures not shown) using the babies
data set follow.

Dot charts Dot charts are produced by dotplot. If the response variable is
a factor then a panel will compare responses within that factor. For example,
here we look at the weight variable for babies whose dads had a certain
education level:

dotplot(factor(smoke) ~ wt, data=babies, subset=wt < 999 & ded==3)

Boxplots Boxplots, like dot charts lend themselves to comparing values
within a panel. Again, a factor for the response variable will place multiple
boxplots within a panel, one for each level of the factor:

bwplot(factor(smoke) ~ wt, data=babies, subset=wt < 999)

Adding a conditioning variable allows three variables to be considered in
one graphic. This graphic shows no obvious influence from dad’s education
level on the relationship between mother’s smoking and birth weight.
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dotplot(factor(smoke) ~ wt | factor(ded),
data=babies, subset=wt < 999)

Histograms Histograms do not lend themselves to more than one per panel.
For these, we leave the left-hand side of the formula empty:

histogram(~ wt | factor(smoke), data=babies, subset=wt < 999)

Density plots Density plots in lattice graphics add in the jittered data:

densityplot( ~ wt | factor(smoke), data=babies, subset=wt < 999)

Problems

5.5 For the michelson (MASS) data set create a dot plot of Speed by Expt.
Which experiment shows more spread?

5.6 For the batting (UsingR) data set, make parallel boxplots of the batting
average (H/AB) for each team. Which team had the greatest median average?

5.3 The ggplot2 package

The ggplot2 add-on package provides another system for plotting within R
that has proven very popular. The package is discussed at length by its de-
signer [61] and illustrated with numerous examples in [9]. Additionally, the
web site http://ggplot2.org/ hosts the documentation in an easy to access
format. Like lattice, ggplot2 utilizes the underlying grid graphics engine
of R. However, its interface is derived from Wilkinson’s grammar of graphics.
This grammar is comprised of independent components which are combined
together to produce a graphic. Though the permutations are endless, we will
see in this section that creating the basic charts we discuss is fairly straight-
forward.

There are many benefits to making graphics with ggplot2, but perhaps
the biggest is the visual appeal of the graphics produced. It is clear that
considerable attention was given to all aspects of the rendering. As well, the
use of a declarative style gives a level of abstraction to graphic production,
that once learned simplifies the conceptual thinking.

Though there is a function qplot that wraps many common patterns
within a single function, we focus on building graphics in layers.
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Aesthetics We begin by defining a ggplot object for a data set:

p <- ggplot(Cars93)

At this point just an object is created, nothing is drawn to the screen,
indeed there isn’t anything to draw. To construct a graphic, we discuss two
of the component blocks: aesthetics and geometries.

Aesthetics map variables in a data set into properties that can be perceived
on a graph. For example, size, shape, and color are aesthetics. Additionally,
values for x and y are aesthetics. Aesthetics are declared through the aes
function. We will make a scatterplot of highway mileage by weight, with col-
ors derived from the Origin variable. For this task we specify the following:

p <- p + aes(x=Weight, y = MPG.highway, color=Origin)

A few comments are in order. The + symbol is overloaded to add to a
ggplot object. In the above, we add to p, then assign this new object to
the same variable name. Within the aes function, the variable names are
not quoted. This function creates unevaluated expressions that are evaluated
when rendered. Transformations of the variables are permitted, e.g.,

aes(x=sqrt(Weight/1000), y=MPG.highway, color=Origin)

## List of 3
## $ x : language sqrt(Weight/1000)
## $ y : symbol MPG.highway
## $ colour: symbol Origin

Aesthetics can also be set per layer when defining the layer.
Aesthetics are tightly bound to the data set, though they can be adjusted.

For that reason, we use an alternative syntax in the following that allows the
definition of the core aesthetic properties to be assigned within the ggplot
call.

Geoms

The term geoms is short for geometric objects and refers to the functions
that do the actual rendering of the data. In short these declare what should
be drawn in the figure. The familiar tasks of placing points and lines on a
graphic are requested by the function geom_line and geom_point.

To illustrate, we make a scatter plot of highway mileage versus weight:

p <- ggplot(Cars93, aes(x=sqrt(Weight/1000), y=MPG.highway,
color=Origin)) + geom_point(cex=3)

p # show the plot
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Figure 5.9: Two basic graphics produced by ggplot2. The left one uses
geom_point to draw a scatterplot, the right one combines two geoms to layer
points and lines.

The commands build up the plot, but the plot is produced only when the
ggplot object is shown (the left graphic of Figure 5.9). This can happen at the
command line by typing p, as above, or explicitly through print(p), which
may be necessary inside of a function call.

A plot of f (x) = x2 demonstrates the use of geom_line:

f <- function(x) x^2
x <- seq(-2, 2, length=100)
p <- ggplot(data.frame(x=x, y=f(x)), aes(x=x, y=y))
p + geom_line() # not shown

R’s convenience function curve makes this task much easier (e.g., curve(f,
-2, 2)), but the above approach is much more flexible. For geom_line it is im-
portant to note that the order the lines are connected depends on the order
of the data in the pairs (x[1], y[1]), (x[2],y[2]), . . . , as the rendering does
nothing more than connect the dots. (As does the lines function, used with
base graphics.)

Two geoms may be used at once. The following makes a simplified graph
of f (x) = x2 emphasizing the points used (the right graphic of Figure 5.9):

f <- function(x) x^2
x <- -2:2; y <- f(x)
p <- ggplot(data.frame(x=x, y=y), aes(x=x, y=y)) +
geom_line(color="black", alpha=0.25) + # set color attribute
geom_point(pch=16, cex=5) # set plot character and size

p
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Figure 5.10: Boxplots rendered by ggplot2. The overlay of jittered points in
the right graphic gives useful information as to group size that is otherwise
hidden in the left graphic.

We also illustrated how aesthetic properties can be set per geom (as op-
posed to being mapped from the data with aes). For geom_line the color is
specified by name with a transparency level specified by an alpha value be-
tween 0 and 1. Alternatively, this could have been specified through rgb(0,
0, 0, alpha=0.25), as has been done with base graphics. Though not so im-
portant in this example, setting a transparency level offers some help when
over-plotting occurs due to too much data in one location.

For geom_point, we illustrated how the plot character can be set, similar
to base graphics. The more commonly seen style is to use the names shape
and size for these aesthetics.

Grouping

The geom_point geom maps each data point to a graphical representation.
This isn’t the case for graphics that reduce the data displayed, such as a
histogram or boxplot. For these rendered objects correspond to groups of the
data.

For example, to make a parallel boxplot of highway mileage for different
cylinder types, the data must be grouped by the cylinder. We saw in Chap-
ter 3 that we can explicitly do this by splitting, but we should expect a more
convenient approach and ggplot2 delivers. By default, the grouping is done
by the interaction of all discrete variables in the plot. The group aesthetic can
specified for more complicated grouping needs. For a boxplot, the defaults
mean we can specify the x aesthetic with a factor and the y aesthetic with a
numeric variable. With this, we then use geom_boxplot to render each group:
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p <- ggplot(Cars93, aes(x=Cylinders, y=MPG.highway))
p + geom_boxplot()

A common graphic is to overlay the actual data points, suitably jittered
to avoid overlap. The geom_jitter function will do so. Below we call it with
a small value specifying the amount to jitter in a given direction. The use of
transparency distinguishes the jittered points from the marked outliers. In
the right graphic of Figure 5.10 we can see the addition of the jittered points
gives valuable information on the group sizes.

p + geom_boxplot() +
geom_jitter(position=position_jitter(w = 0.1), alpha=.25)

Longitudinal data can provide a situation where the default grouping
might not be sufficient. The morley data set recorded 100 different measure-
ments of the speed of light. There were 20 runs for each of the 5 experiments.
We can track the recordings over each run by plotting a line graph with Run
on the x axis and Speed on the y axis. We can then layer this graph by different
groups of the Expt variable. This task can be done by other means, but be-
comes very direct with ggplot2: Here we reduce the number of experiments
first for clarity:

m <- subset(morley, Expt %in% 1:2) # just first two experiments
p <- ggplot(m, aes(x=Run, y=Speed, group=Expt, color=Expt))
p + geom_line() # connect x and y with lines

From the graphic (Figure 5.11) we can see more variability in the mea-
surement experiment 1 and a downward trend in the measurements of ex-
periment 2.

Statistical transformations

Statistics summarize the data, usually reducing the dimension. For example,
the mean summarizes a data set with n values with a single number. Whereas
a histogram summarizes a data set with k numbers, the k being the counts
within k different bins that span the range of the data.

stat_bin In ggplot2’s grammer, statistical transformations (stats) summa-
rize the data before it is rendered. The histogram is a good example. For
histograms, ggplot2 provides the stat_bin function for tallying the number
of values in each bin. The number of bins can be specified in many ways, the
most direct is to specify a value for binwidth, which defaults to the length of
the range divided by 30. A simple histogram can then be made by specifying
an x aesthetic as follows:
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Figure 5.11: Speed by run for the first two experiments in the morley data set.
To construct this graphic, the grouping was set by the Expt variable.

p <- ggplot(Cars93, aes(x = MPG.highway))
p + stat_bin(binwidth=5)

This produces the left graphic of Figure 5.12. The y label is count repre-
senting the number of values in each bin. To replace this scale with a propor-
tion is possible. The y aesthetic needs to be mapped to the appropriate value.
This value is not in the data, as it is derived from the statistic. Indeed, when
stat_bin computes its work, it derives variables ..count.. and ..density..
which may be specified as aesthetics, as in:

p <- ggplot(Cars93, aes(x = MPG.highway, y=..density..)) +
stat_bin(binwidth=5)

p

The explicit use of stat_bin is not necessary. The easier-to-remember
geom_histogram function combines stat_bin and geom_bar (for drawing bars,
such as bar charts) to draw histograms.
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Figure 5.12: Histograms of the same data with different y scales. The left one
displays counts per bin, the right one is on a probability scale, with total area
adding to 1.

stat_density Density plots are done similarly. There is a statistic that is
called by the geom geom_density (stat_density). For example, a density es-
timate can be added to a histogram with this pattern:

p <- ggplot(Cars93, aes(x=MPG.highway, y=..density..)) # scale y
p + geom_histogram(alpha=0.5) + geom_density()

stat_smooth A trend line is a statistical summary of a bivariate relation-
ship. As discussed in Chapter 3, there are many different trend lines that
can be added to scatterplot, including a least-squares regression line. The
stat_smooth function can compute this, along with many other trend lines.

The basic usage just requires the addition of the geom_smooth, which uses
stat_smooth as its default statistic:

p <- ggplot(Cars93, aes(x=Weight, y=MPG.highway)) + geom_point()
p + geom_smooth()

The leftmost graphic in Figure 5.13 shows the resulting graphic. The trend
line is drawn along with an estimate on the standard error. As this concept
is discussed later (Chapter 11), we suppress its rendering in the following by
specifying se=FALSE.

The method argument determines which trend lines to use. Options are
"lm", "glm", "gam", "loess", and "rlm". The default depends on the size of
the data, with "loess" being used for smaller values of n. In the following
we fit a regression line instead (middle graphic of Figure 5.13).
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Figure 5.13: For the same scatterplot, three different trend lines are added.
The first the default computed by loess and showing an estimated confi-
dence band, the second a linear regression line, and the third a quadratic
polynomial fit.

p + geom_smooth(method="lm", se=FALSE)

The formula argument allows for different specification of the formula
used to compute the trend line. This is specified in terms of the aesthetic
variables, x and y. The default is simply y ~ x. The trend in the data of
Figure 5.13 looks less linear, and more like a polynomial. The specification
poly(x, 2) will force a second-degree polynomial to be fit. Other transforma-
tions of the x data are possible, but recall the typical mathematical operations
are overloaded, so they must be wrapped with I.

The following command produces the rightmost graphic in Figure 5.13.
The resulting curve appears to do a better job of tracking the relationship
implied by the data than the straight line of the middle graphic.

p + geom_smooth(method="lm", formula=y ~ poly(x,2), se=FALSE)

Faceting

The use of different panels in lattice makes comparisons across groups
much easier. This feature is introduced into ggplot2 through facets. There
are two faceting functions: facet_grid and facet_wrap. The former, like a
matrix, has rows and columns representing something; the latter is more like
a vector with new facets wrapping around to utilize horizontal and vertical
space.

The faceting specification is done using R’s model formula syntax. To get
faceting by a single variable, say f, the formula . ~ f or f ~ . can be used.
The difference being the left-hand specification facets the rows, the right-
hand specification the columns, so the latter will display the data grouped by
f in rows. For a two-dimensional grid, the specification is f ~ g.
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Figure 5.14: Plots of highway mileage by weight for ranges of car prices using
ggplot2.

The following command revisits the bend found in Galton’s data by [58].
The loess line for a fit of child’s height by parent’s height suggested two
distinct regression lines, likely due to differences in gender. The PearsonLee
(HistData) works with disaggregated data, whereas Galton worked with ag-
gregated data. Using PearsonLee, we can facet by the gender of the parent
and the child to see if the relationships differ.

p <- ggplot(PearsonLee, aes(y=child,x=parent))
p + geom_point(alpha=0.5) + geom_smooth(method="loess") +
facet_grid(par ~ chl)

The left graphic in Figure 5.15 shows a bend for the Mother level.

• Example 5.1: Redoing Figure 5.3
We redo the example of plotting highway mileage modeled by car weight
based on the price range of the car using ggplot2 commands.

Cars93 <- transform(Cars93, price=cut(Price, c(0, 15, 30, 75),
labels=c("cheap", "affordable", "expensive")))

p <- ggplot(Cars93) + aes(x=Weight, y = MPG.highway) +
geom_point(cex=3) + geom_smooth(method="lm", se=FALSE) +
facet_grid( ~ price)

p

The result can be seen in Figure 5.14. ••
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Figure 5.15: Samples of facet_grid. The right-hand graphic adds marginal
information through margins=TRUE.

Margins A grid display is like a contingency table, and, as with contin-
gency tables, the margins may be of secondary interest. Adding margins is
done by specifying a value to the margins argument of facet_grid. In the
following, we want to take margins over the children. This can be specified
by the variable name for which the faceting is achieved through:

p <- ggplot(PearsonLee, aes(y=child,x=parent))
p + geom_point(alpha=0.5) +
geom_smooth(method="loess") +
facet_grid(par ~ chl, margins="chl") # or margins=TRUE for both

The right graphic of Figure 5.15 shows the result. The measurements
based on fathers show a slight bend for taller fathers, the measurements
based on mothers show a kink in the middle, suggestive of two different
regimes.

Wrap The facet_wrap function is useful to organize the layout when faceting
by a factor (or interaction of factors). The use is similar to how facet_grid is
employed with one-dimensional faceting, where a one-sided formula is spec-
ified. There are arguments to adjust how the values are laid out, but we do
not illustrate. The following code will produce five histograms—one for each
experiment—arranged in a grid (Figure 5.16):

p <- ggplot(morley, aes(x=Speed)) + geom_histogram(binwidth=50)
p + facet_wrap( ~ Expt)



210 CHAPTER 5. MULTIVARIATE GRAPHICS

1 2 3

4 5

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

600 800 1000 600 800 1000
Speed

co
un
t

Figure 5.16: Scatterplots of speed versus run for the morley data. The
facet_wrap function is applied to wrap the one-dimensional display into two
dimensions.

As with lattice graphics, the panels have the same scales. This makes
cross-panel comparisons easier. However, there may be occasions where this
is not desirable. In that case, the facet_wrap has the scales option where we
can specify "free", "free_x", or "free_y" to allow those scales to depend just
on the panel data.

Problems

5.7 For the mtcars data set, produce graphics of the following using ggplot2:

1. Boxplots of miles per gallon (mpg) for groups defined by the number of
gears (gear).

2. A scatterplot of mpg modeled by weight (wt) with a trend line added.

3. A scatterplot of mpg modeled by horsepower (hp). Create facets by the
number of cylinders (cyl) and gear.
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Populations

Statistical inference is the process of forming judgments about a population
based on a sample from the population. In this chapter we describe popula-
tions and samples from a population (our data sets) using the language of
probability.

6.1 Populations

To make statistical inferences based on data we use a probability model for
the data. Consider a univariate data set consisting of measurements of some
variable. A single data point is just one of a possible range of values. We call
the population of the variable a description of the range of possible values.
We use the term random variable to be a random number drawn from a pop-
ulation. A data point then will be a realization of some random variable. We
make a distinction between whether or not we have observed or realized a
random variable. Once observed, the value of the random variable is known.
Prior to being observed, it is full of potential—it can be any value in the pop-
ulation it comes from. For most cases, not all values or ranges of values of
a population are equally likely, so to fully describe a random variable prior
to observing it, we need to indicate the probability that the random variable
is some value or in a range of values. We refer to a description of the range
and the probabilities as the distribution of a random variable, though we may
call this a population as well.

By probability we mean some number between 0 and 1 that describes
the likelihood of our random variable having some value. Our intuition for
probabilities may come from a physical understanding of how the numbers
are generated. For example, when tossing a fair coin we would think that the
probability of heads would be one-half. Similarly, when a die is rolled the
probability of rolling a four would be one-sixth. These are both examples in
which all outcomes are equally likely and finite in number. Let an event be
a set of outcomes.1 For a situation where all outcomes are equally likely and
the total number of outcomes is finite, the definition of probability is:

P(E) = # events in E
# events in total . (equally likely outcomes)

1For non-finite collections of outcomes, there are technical details needed.

211
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For this defintion, the following rules will be satisfied:

• P(E) ≥ 0 for all events.

• The event of all possible outcomes has probability 1.

• If A and B are two disjoint events, then P(A or B) = P(A) + P(B).

A mathematical consequence of the above is that for any two events
P(A or B) = P(A) + P(B)− P(A and B).

• Example 6.1: A randomly selected person
The following contingency table shows the relationship between gender and
smoking status for a cohort in the data set survey (MASS):

tbl <- xtabs(~ Sex + Smoke, data=survey)
tbl

## Smoke
## Sex Heavy Never Occas Regul
## Female 5 99 9 5
## Male 6 89 10 12

There are 237 participants in the survey, but only 235 represented above
(sum(tbl)). If we select one at random—that is each participant is equally likely
to be selected—then the probability we select a female would be the number
of females divided by the total number of people represented:

margin.table(tbl, margin=1)

## Sex
## Female Male
## 118 117

118 / (118 + 117) # sum(tbl[1,]) / sum(tbl)

## [1] 0.5021

Whereas the probability of selecting a heavy smoker would be (5 +
6)/235 = 0.046.

To illustrate the last rule above, the probability of selecting a female or
a heavy smoker would be ((5 + 99 + 9 + 5) + 6)/235. We could rewrite this
in the form P(female) + P(heavy smoker)− P(female and heavy smoker) as
(5 + 99 + 9 + 5)/235 + (5 + 6)/235− 5/235. ••

For situations where our intuition comes about by performing the same
action over and over again, our idea of the probability of some event comes
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from a proportion of times that event occurs. For example, the batting average
of a baseball player is a running proportion of a player’s success at bat. Over
the course of a season, we expect this number to get closer to the probability
that an official at bat will be a success. This is an example in which a long-term
frequency is used to give a probability.

For other populations, the probabilities are simply assigned or postulated,
and our model is accurate as far as it matches the reality of the data collected.
An example of this may be our assumption that the distribution of heights
of adult males follows a bell-shaped distribution. This may not be precisely
true, but is a very good approximation for most uses.

For all these cases, the rules above2 serve to define a probability.
We indicate probabilities using a P() and random variables with letters

such as X.3 For example, P(X ≤ 5) would mean the probability, the random
variable X, is less than or equal to 5.

Discrete random variables

We have seen that numeric data can be discrete or continuous. Our language
of probability will also come in these two flavors.

Let X be a discrete random variable. That is, a random variable whose
possible outcomes are some discrete set such as {yes, no} or {0,1,2, . . .}.
The range of X is the set of all k where P(X = k) > 0. The distribution of X
is a specification of these probabilities. The rules of probability imply that
distributions are not arbitrary, as for each k in the range, P(X = k) > 0 and
P(X = k) ≤ 1. Furthermore, as X has some value, we have ∑k P(X = k) = 1.

Here are a few examples for which the distribution can be calculated.

• Example 6.2: Number of heads in two coin tosses
If a coin is tossed two times we can keep track of the outcome as a pair. For
example, (H, T) could denote “heads” then “tails.” The set of all possible
outcomes is {(H, H), (H, T), (T, H), (T, T)}. If X is the number of heads, then
X is either 0, 1, or 2. Intuitively, we know that for a fair coin all the outcomes
have the same probability, so we have P(X = 0) = 1/4, P(X = 1) = 1/2, and
P(X = 2) = 1/4. ••

• Example 6.3: Picking balls from a bag
Imagine a bag with N balls, of which R are red and N− R are green. We pick
a ball, note its color, replace the ball, and repeat. Let X be the number of red
balls chosen. As in the previous example, X is 0, 1, or 2. The probability that

2With a generalization of the last rule to the probability of countably many disjoint events is
the sum of the individual probabilities.

3When referring to a single random variable, to emphasize the distinction, we use a capital
letter for the random variable and a lowercase letter for the possible outcome. In later chapters,
we utilize lower case letters for each.
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X = 2 is intuitively (R/N) · (R/N) as R/N is the probability of picking a red
ball on any one pick. The probability that X = 0 is ((N− R)/N)2 by the same
reasoning, and as all probabilities add to 1, P(X = 1) = 2(R/N)((N− R)/N).
This specifies the distribution of X.

The binomial distribution describes in general the result of selecting n
balls in this manner, not simply two. ••

The intuition that leads us to multiply two probabilities together is due to
the two events being independent. Two events are independent if knowledge
that one occurs doesn’t change the probability of the other occurring.4 Two
events are disjoint if they can’t both occur for a given outcome, as they share
no outcome in common. Probabilities add with disjoint events.

• Example 6.4: Specifying a distribution
We can specify the distribution of a discrete random variable by first specify-
ing the range of values and then assigning to each k a number pk = P(X = k)
such that ∑ pk = 1 and pk ≥ 0. To visualize a physical model where this can
be realized, imagine making a pie chart with areas proportional to pk, placing
a spinner in the middle, and spinning. The ending position determines the
value of the random variable. ••

Figure 6.1 shows a spike plot of a distribution and a spinner model to re-
alize values of X. (The chance a well-spun spinner will end in a numbered
region is proportional to the number’s area.) A spike plot shows the probabil-
ities for each value in the range of X as spikes, emphasizing the discreteness
of the distribution. The spike plot is made with the following commands:

k <- 0:4
p <- c(1, 2, 3, 2, 1); p <- p/sum(p)
plot(k, p, type="h", xlab="k", ylab="probability", ylim=c(0,max(p)))
points(k, p, pch=16, cex=2) # add the balls to top of spike

The argument type="h" plots the vertical lines of the spike plot.

Using sample to generate random values

R does not have a “spinner” function, but it does have the sample function
to generate observations of a discrete random variable with a specific distri-
bution. If the data vector k contains the values we are sampling from, and
p contains the probabilities of each value being selected, then the command
sample(ks, size=1, prob=p) will select one of the values of ks with proba-
bilities specified by p.

4Technically, two events are independent if P(A and B) = P(A) · P(B).
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Figure 6.1: Spike plot of distribution of X and a spinner model to realize
values of X with the specified probabilities.

For example, the number of heads for two coin tosses can be simulated as
follows:

k <- 0:2
p <- c(1, 2, 1); p <- p/sum(p) # add to 1
sample(k, size=1, prob=p)

## [1] 2

sample(k, size=1, prob=p) # likely different

## [1] 1

The default probabilities for prob make each value of k equally likely. We
can use this to simulate rolling a pair of dice and adding their values:

sample(1:6, size=1) + sample(1:6, size=1)

## [1] 4

The mean and standard deviation

For a data set, the mean and standard deviation are summaries of center and
spread. For random variables these concepts carry over, though the defini-
tions are different.

The population mean is denoted by µ (the Greek letter mu). If X is a random
variable with this population, then the mean is also called the “the expected
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value of X” and is often written E(X). A formula for the expected value of a
discrete random variable is

mean of random variable µ = E(X) = ∑ kP(X = k).

This is a weighted average of the values in the range of X with weights
pk = P(X = k).

On the spike plot, the mean is viewed as a balancing point if there is a
weight assigned to each value in the range of X proportional to the probabil-
ity.

The population standard deviation is denoted by σ (the Greek letter sigma).
The standard deviation is the square root of the variance. If X is a discrete
random variable, then its variance is defined by σ2 = VAR(X) = E((X− µ)2).
This is the expected value of the random variable (X− µ)2. That is, the pop-
ulation variance measures spread in terms of the expected squared distance
from the mean.

• Example 6.5: Picking balls from a bag
Again consider the experiment with a bag with N balls, of which R are red

and N − R are green. Let X be the number of red balls chosen when we pick
two balls with replacement. Then

P(X = 0) =
(N − R)2

N2 ,P(X = 1) = 2
R(N − R)

N2 ,P(X = 2) =
R2

N2 .

More succinctly, if we set p = R/N,q = 1− p, then these values are q2,
2pq, and p2. The mean then becomes:

E(X) = 0 · q2 + 1 · 2pq + 2 · p2 = 2p(1− p) + 2p2 = 2p,

and

VAR(X) = E((X− 2p)2) = (0− 2p)2 · q2 +(1− 2p)2 · 2pq+(2− 2p)2 · p2 = 2pq.

That these formulas for more than one selection can be written so simply
in terms of p and q—values which summarize a single selection—is no coin-
cidence. ••

Continuous random variables

Continuous data is modeled by continuous random variables. Due to the
continuum of possible values, a new means of defining probabilities must
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≤

Figure 6.2: P(X ≤ b) is defined by the area to left of b under the density of X.

be used. Rather than try the impossible task of specifying P(X = k) for all
possible k, instead the probability of ranges, P(a < X ≤ b) are specified. This
can be done through a function, F(b) = P(X ≤ b) or through a related func-
tion f (x) which has P(a < X ≤ b) equalling the area under the graph of f (x)
between a and b.

For a given random variable X, the function f (x) is referred to as the
density of X. The relation between f (x) and F(b) above is defined through
calculus. However, we shall see that in most cases f (x) helps us visualize the
value and we shall use a suitable R function for computing F(b).

Figure 6.2 shows an illustration of some f (x) and the computation of F(b)
for that f . The shaded area represents F(b). The rules of probability put some
restriction on potential densities: they must be non-negative and have total
area equal to 1.

Areas can also be broken up into pieces, as Figure 6.3 illustrates, showing
P(a < X≤ b) = P(X≤ b)−P(X≤ a). Rearranging, this says P(X≤ a)+P(a <
X ≤ b) = P(X ≤ b), a special case of the rule of probability for disjoint sets. A
similar reasoning yields the useful complement rule: for any b, P(X ≤ b) =
1− P(X > b).

For example, the uniform distribution on [0,1] has density f (x) = 1 on
the interval [0,1] and is 0 otherwise. Let X be a random variable with this



218 CHAPTER 6. POPULATIONS

a b a b a b

= −

Figure 6.3: Shaded areas can be broken into pieces and manipulated. This
illustrates P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a).

density. Then P(X ≤ b) = b if 0 ≤ b ≤ 1, as the specified area is a rectangle
with length b and height 1. As well, P(X > b) = 1− b for the same reason.
Clearly, we have P(X ≤ b) = 1− P(X > b).

The p.d.f. and c.d.f.

For a discrete random variable it is common to define a function f (k) by
f (k) = P(X = k). Similarly, for a continuous random variable X, it is com-
mon to denote the density of X by f (x). Both usages are called p.d.f.’s. For
the discrete case, p.d.f. stands for probability distribution function, and for
the continuous case, probability density function. The cumulative distribu-
tion function, c.d.f., is F(b) = P(X ≤ b). In the discrete case this is given by
∑k≤bP(X = k), and in the continuous case it is the area to the left of b under
the density f (x).

The mean and standard deviation

The concepts of the mean and standard deviation also apply for continuous
random variables, although their definitions require calculus. The intuitive
notion for the mean of X is that it is the balancing point for the density of X.
The notation µ or E(X) is used for the mean, and σ or SD(X) is used for the
standard deviation.

If X has a uniform distribution on [0,1], then the mean is 1/2. This is
clearly the balancing point of the graph of the density, which is constant on
the interval. The variance can be calculated to be 1/12, so σ is about .289.

Quantiles

The quantiles of a data set roughly split the data by proportions. Let X be a
continuous random variable with positive density. Referring to Figure 6.2, we
see that for any given area between 0 and 1, there is a b for which the area to
the right of b under f is the desired amount. That is, for each p in [0,1] there
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is a b such that P(X≤ b) = p.5 This defines the p-quantile or 100 · p percentile
of X. The quantile function is inverse to the c.d.f., as it returns the x value for
a given area, whereas the c.d.f. returns the area for a given x value.

Sampling from a population

Our probability model for a data point is that it is an observation of a ran-
dom variable whose distribution is described by the parent population. To
perform statistical inference about a parent population, we desire a sample
from the population. That is, a sequence of random variables X1, X2, . . . , Xn.
A sequence is identically distributed if each random variable has the same
distribution. A sequence is independent if knowing the value of some of the
random variables does not give additional information about the distribution
of the others. A sequence that is both independent and identically distributed
(i.i.d.) is called a random sample.

Toss a coin n times. If we let Xi be 1 for a heads on the ith coin toss and
0 otherwise, then clearly X1, X2, . . . , Xn is an i.i.d. sequence. For the spinner
analogy of generating discrete random variables, the different numbers will
be i.i.d. if the spinner is spun so hard each time that it forgets where it started
and is equally likely to stop at any angle.

If we get our random numbers by randomly selecting from a finite pop-
ulation, then the values will be independent if the sampling is done with
replacement. This might seem counterintuitive, as there is a chance a mem-
ber is selected more than once, so the values seem dependent. However, the
distribution of a future observation is not changed by knowing a previous
observation. Whereas, when sampling without replacement from n items,
the random variables X1, X2, . . . , Xn will have the same distribution but will
be dependent: e.g., when there are n things to choose, if you know the first
n− 1 values, then Xn must be the value that has not been chosen.

Random samples generated by sample

The sample function will take samples of size n from a discrete distribution by
specifying size=n. The sample will be taken with replacement if we specify
replace=TRUE. As just mentioned, this is important if we want to produce an
i.i.d. sample. The default is to sample without replacement.

sample(0:1,size=10,replace=TRUE) # toss a coin 10 times.

## [1] 1 0 1 1 1 0 1 0 0 1

sample(1:6,size=10,replace=TRUE) # roll a die 10 times

5In general, a distribution can be specified by F(b) alone, and F(b) need not be continuous,
as it is when there is a density. In that case, the quantile is defined by the smallest b with
P(X ≤ b) ≥ p.
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## [1] 3 3 6 4 6 5 5 6 4 3

## sum of roll of a pair of dice roll 10 times
sample(1:6,size=10,replace=TRUE) + sample(1:6,size=10,replace=TRUE)

## [1] 7 11 6 10 7 5 10 4 10 6

• Example 6.6: Public-opinion polls as random samples
The goal of a public-opinion poll is to find the proportion of a target popula-
tion that shares a given attitude. This is achieved by selecting a sample from
the target population and finding the sample proportion who have the given
attitude. A public-opinion poll can be thought of as a random sample from
a target population if each person polled is randomly chosen from the entire
population with replacement. Assume we know that the target population
of 10,000 people has 6,800 that would answer “yes” to our survey question.
Then a sample of size 10 could be generated by

sample(rep(0:1, c(3200,6800)), size=10, replace=TRUE)

## [1] 1 0 1 1 1 1 1 1 1 1

(The rep function produces 10,000 values: 3,200 0’s and 6,800 1’s.)
The target population is different from the “population,” or distribution,

of the random variables. For the responses, the possible values are coded with
a 0 or 1 with respective probabilities 1− p and p. Using this distribution, a
random sample can also be produced by specifying the probabilities using
prob:

p <- 0.68
sample(0:1, size=10, replace=TRUE, prob=c(1-p, p))

## [1] 0 1 1 1 0 0 1 1 0 0

••

Sampling distributions

A statistic is a numeric value summarizing a random sample. Examples are
the sample mean (X̄ = (X1 +X2 + · · ·+Xn)/n) and the sample median. When
a statistic depends on a random sample, it, too, is a random variable. As this
is our typical usage, to emphasize this, we use a capital X̄. The distribution
of a statistic is known as its sampling distribution.
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The sampling distribution of a statistic can be quite complicated. How-
ever, for many common statistics, properties of the sampling distribution are
known and are related to the corresponding population values.

For example, the sample mean of a random sample has

E(X̄) = µX̄ = µ and SD(X̄) = σX̄ =
σ√
n

.

That is, the mean of X̄ is the same as the mean of the parent population,
and the standard deviation of X̄ is related to the standard deviation of the
parent population, but it differs as it is smaller by the factor of 1/

√
n. These

facts make it possible to use X̄ to make inferences about the population mean.

Problems

6.1 Toss two coins. Let X be the resulting number of heads and Y be the
number of tails. Find the distribution of each.

6.2 Roll a pair of dice. Let X be the largest value shown on the two dice. Use
sample to simulate five values of X.

6.3 The National Basketball Association lottery to award the first pick in
the draft is held by putting 1,000 balls into a hopper and selecting one. The
teams with the worst records the previous year have a greater proportion of
the balls. The data set nba.draft contains the ball allocation for the year 2002.
Use sample with Team as the data vector and prob=Balls to simulate the draft.
What team do you select? Repeat until Golden State is chosen. How long did
it take?

6.4 Let f (x) = x for 0≤ x ≤
√

2 be the p.d.f. of a triangular random variable
X. Using geometry, find P(X ≤ b) for 0≤ b ≤

√
2.

6.5 Let X have the uniform distribution on [0,1]. That is, it has density
f (x) = 1 for 0 ≤ x ≤ 1, and is otherwise 0. For 0 ≤ p ≤ 1 find the quantile
function that returns b, where P(X ≤ b) = p.

6.6 Repeat the previous problem for the triangular distribution with density
f (x) = x for 0≤ x ≤

√
2.

6.7 Toss two coins. Let X be the number of heads and Y the number of tails.
Are X and Y independent?
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6.2 Families of distributions

In statistics there are a number of distributions that come in families. Each
family is described by a function that has a number of parameters character-
izing the distribution. For example, the uniform distribution is a continuous
distribution on the interval [a,b] that assigns equal probability to equal-sized
areas in the interval. The parameters are a and b, the endpoints of the inter-
vals.

The density and population summaries of a family of distributions are
often represented in terms of these parameters. For the uniform, if f (x) is the
function which is 1 on the interval [0,1] and 0 otherwise, then the density of
the general uniform is (1/(b− a)) · f ((x− a)/(b− a)); the mean is (b + a)/2
and the variance is (b− a)2/12.

The d, p, q, and r functions

R has four types of functions for getting information about a family of distri-
butions:

• The “d” functions return the p.d.f. of the distribution.

• The “p” functions return the c.d.f. of the distribution.

• The “q” functions return the quantiles.

• The “r” functions return random samples from a distribution.

These functions are all used similarly. Each family has a name and some
parameters. The function name is found by combining either d, p, q, or r with
the name for the family. The parameter names vary from family to family but
are consistent within a family.

For example, the uniform distribution on [a,b] has two parameters. The
family name is unif. In R the parameters are named min and max.

dunif(x=1, min=0, max=3) # 1/3 of area is to left of 1

## [1] 0.3333

punif(q=2, min=0, max=3) # 1/(b-a) is 2/3

## [1] 0.6667

qunif(p=1/2, min=0, max=3) # half way between 0 and 3

## [1] 1.5

runif(n=1, min=0, max=3) # a random value in [0,3]

## [1] 2.416
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The above commands are for the uniform distribution on [0,3]. They show
that the density is 1/3 at x = 1 (as it is for all 0≤ x≤ 3); the area to the left of 2
is 2/3; the median or .5-quantile is 1.5; and a realization of a random variable
is some randomly chosen value in [0,1]. This last command will vary each
time it is run.

It is useful to know that the arguments to these functions are vectorized.
For example, multiple quantiles can be found at once. These commands will
find the quintiles:

ps <- seq(0, 1, by=.2) # probabilities
names(ps) <- as.character(seq(0, 100, by=20)) # give names
qunif(ps, min=0, max=1)

## 0 20 40 60 80 100
## 0.0 0.2 0.4 0.6 0.8 1.0

This command, on the other hand, will find five uniform samples from
five different distributions (Uniform(0,1), Uniform(0,2), . . . , Uniform(0,5)):

runif(5, min=0, max=1:5) # recycles min

## [1] 0.9718 0.6858 1.8941 1.6402 1.7285

• Example 6.7: Relating the d and r functions
For continuous distributions, the d function describes the theoretical density.
We have seen the density function which estimates a density from a sample.
The two are not the same, though related. Figure 6.4 shows both the d func-
tion for the uniform and the density function for a random sample produced
by the r function.

x <- runif(100) # large sample, 1000 points
d <- density(x)
curve(dunif, -0.1, 1.1,

ylim=c(0, max(d$y, 1))) # plots function
lines(d, lty=2) # add density estimate
rug(x) # indicates sample

For the uniform distribution, the discontinuities at 0 and 1 make this ba-
sic approach a bit less successful, but the relationship can be seen: a large
sample from a distribution can be used to approximate that distribution. ••
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Figure 6.4: Graphic showing d function for the uniform distribution and den-
sity estimate from a random sample produced by the r function.

Binomial, normal, and some other named distributions

There are a few basic distributions that are used in many different probability
models: among them are the Bernoulli, binomial, and normal distributions.

Bernoulli random variables

A Bernoulli random variable X is one that has only two values: 0 or 1. The
distribution of X is characterized by p = P(X = 1). We use Bernoulli(p) to
refer to this distribution. (Jakob Bernoulli was an early figure in probability
known for his “law of large numbers” which relates the frequentist’s notion
of a probability with that of the rules of probability.)

Often the term “success” is given to the event when X = 1 and “failure”
to the event when X = 0. If we toss a coin and let X be 1 if a heads occurs,
then X is a Bernoulli random variable where the value of p would be 1/2
if the coin is fair. A sequence of coin tosses would be an i.i.d. sequence of
Bernoulli random variables, also known as a sequence of Bernoulli trials. A
Bernoulli random variable has a mean µ = p and variance σ2 = p(1− p).
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In R, the sample command can be used to generate random samples from
this distribution. For example, to generate ten random samples when p = 1/4
can be done with

n <- 10; p <- 1/4
sample(0:1, size=n, replace=TRUE, prob=c(1-p, p))

## [1] 0 0 0 1 0 1 0 0 0 0

Binomial random variables

A binomial random variable X counts the number of successes in n Bernoulli
trials. There are two parameters that describe the distribution of X: the num-
ber of trials, n, and the success probability, p. Let Binomial(n, p) denote this
distribution. The possible range of values for X is 0,1, . . . ,n.

The distribution of X is known to be

P(X = k) =
(

n
k

)
pk(1− p)n−k.

The term (n
k) is called the binomial coefficient and is defined by(

n
k

)
=

n!
(n− k)!k!

.

The standard notation n! is for the factorial of n, or n · (n − 1) · · ·2 · 1. By
convention, 0! = 1.

The binomial coefficient counts the number of ways k objects can be cho-
sen from n distinct objects and is read “n choose k.” The choose function
finds the binomial coefficients. (The binomial coefficients are part of Pascal’s
triangle and the expansion of (a + b)n = ∑k (

n
k)akbn−k.)

The mean of a Binomial(n, p) random variable is µ = np, and the standard
deviation is σ =

√
np(1− p).

In R the family name for the binomial is binom, and the parameters are
labeled size for n and prob for p.

• Example 6.8: Tossing ten coins
Toss a coin ten times. Let X be the number of heads. If the coin is fair, X has
a Binomial(10,1/2) distribution.

The probability that X = 5 can be found directly from the distribution
with the choose function:

choose(10,5) * (1/2)^5 * (1/2)^(10-5)

## [1] 0.2461

This work is better done using the “d” function, dbinom:
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dbinom(5, size=10, prob=1/2)

## [1] 0.2461

The probability that there are six or fewer heads, P(X ≤ 6) = ∑k≤6P(X =
k), can be given either of these two ways:

sum(dbinom(0:6, size=10, prob=1/2))

## [1] 0.8281

pbinom(6, size=10, p=1/2)

## [1] 0.8281

If we wanted the probability of seven or more heads, we could answer us-
ing P(X ≥ 7) = 1−P(X ≤ 6), or using the extra argument lower.tail=FALSE.
This returns P(X > k) rather than P(X ≤ k):

sum(dbinom(7:10,size=10,prob=1/2))

## [1] 0.1719

1 - pbinom(6,size=10,p=1/2)

## [1] 0.1719

pbinom(6,size=10,p=1/2, lower.tail=FALSE) # k = 6 not 7!

## [1] 0.1719

A spike plot (Figure 6.5) of the distribution can be produced using dbinom:

n <- 10; p <- 1/2
heights <- dbinom(0:10, size=n, prob=p)
plot(0:10, heights, type="h",

main="Spike plot of X", xlab="k", ylab="p.d.f.")
points(0:10, heights, pch=16, cex=2)

••

• Example 6.9: Binomial model for a public-opinion poll
In a public-opinion poll, the proportion of “yes” respondents is used to make
inferences about the population proportion. If the respondents are chosen by
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Figure 6.5: Spike plot of Binomial(10,1/2) distribution, and plot of its cumu-
lative distribution function.

sampling with replacement from the population, and the “yes” responses are
coded by a 1 and the “no” responses by a 0, then the sequence of responses is
an i.i.d. Bernoulli sequence with parameter p, the population proportion. The
number of “yes” respondents is then a Binomial(n, p) random variable where
n is the size of the sample. (Of course, in practice it is very difficult to sample
a population at random. Non-response, or even misleading responses, can
further complicate the matter.)

For instance, if it is known that 62% of the population would respond
favorably to the question were they asked, and a sample of size 100 is asked,
what is the probability that 60% or less of the sample responded favorably?

pbinom(60, size=100, prob=0.62)

## [1] 0.3759

••

Normal random variables

The normal distribution is a continuous distribution giving concrete meaning
to the term “bell-shaped.” It is used to describe many different populations
in nature, such as a distribution of heights, and additionally describes the
sampling distribution of many different statistics.

The normal distribution is a family of distributions with density given by:
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f (x|µ,σ) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

.

The two parameters are the mean, µ, and the standard deviation, σ. We
use Normal(µ,σ) to denote this distribution, although many books use the
variance, σ2, for the second parameter.

The R family name is norm and the parameters are labeled mean and sd.
Figure 6.6 shows graphs of two normal densities, f (x|µ = 0,σ = 1) and

f (x|µ = 4,σ = 1/2). The curves are symmetric and bell-shaped. The mean, µ,
is a point of symmetry for the density. The standard deviation controls the
spread of the curve. The distance between the inflection points, where the
curves change from opening down to opening up, is two standard deviations.
This is marked with the dashed, horizontal lines.

The figure also shows two shaded areas. Let Z have Normal(0,1) distribu-
tion and X have Normal(4,1/2) distribution. Then the left shaded region is
P(Z ≤ 1) and the right one is P(X ≤ 4.5). The random variable Z is called a
standard normal, as it has mean 0 and variance 1. A key property of the normal
distribution is that for any normal random variable the z-score, (X − µ)/σ,
is a standard normal. This implies that areas are determined by z-scores. In
Figure 6.6 the two shaded areas are the same, as each represents the area to
the left of 1 standard deviation above the mean.

We can verify this with the “p” function:

pnorm(1, mean=0, sd=1)

## [1] 0.8413

pnorm(4.5, mean=4, sd=1/2) # same z-score as above

## [1] 0.8413

It is useful to know some areas for the normal distribution based on z-
scores. For example, the IQR is the range of the middle 50%. We can find this
for the standard normal by breaking the total area into quarters:

qnorm(c(0.25, 0.5, 0.75))

## [1] -0.6745 0.0000 0.6745

We use qnorm to specify the area we want. The mean and standard devia-
tion are taken from the defaults of 0 and 1. For any normal random variable,
this says the IQR is about 1.35σ.

To answer how much area is no more than one standard deviation from
the mean, we use pnorm:
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Figure 6.6: Two normal densities: the standard normal, f (x;0,1), and
f (x;4,1/2). For each, the shaded area is the same, and amounts to area to
left of a z-score of 1.

pnorm(1) - pnorm(-1)

## [1] 0.6827

which shows that roughly 68% of the area is in this range. For two and three
standard deviations the numbers are 95% and 99.7%. We illustrate two ways
to find these:

1 - 2*pnorm(-2) # subtract area of two tails

## [1] 0.9545

diff(pnorm(c(-3, 3))) # use diff to subtract

## [1] 0.9973

This says that 95% of the time a normal random variable is within two
standard deviations of the mean, and 99.7% of the time it is within three
standard deviations of its mean. These three values, 68%, 95%, and 99.7%,
are the rules of thumb mentioned in Chapter 2.

• Example 6.10: What percent of men are at least 6 feet tall?
Many distributions in nature are well approximated by the normal distribu-
tion. For example, the population of heights for adult males within an ethnic
class. Assume for some group the mean is 70.2 inches, and the standard de-
viation is 2.89 inches. What percentage of adult males are taller than 6 feet?
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What percentage are taller than 2 meters? Assuming the model applies for
all males, what does it predict for the tallest male on the planet?

We convert 6 feet into 72 inches and use pnorm to see that 73% are 6 feet
or shorter:

mu <- 70.2; sigma <- 2.89
pnorm(72, mean=mu, sd=sigma)

## [1] 0.7333

To answer the question for meters we convert to metric. Each inch is 2.54
centimeters, or 0.0254 meters.

conv <- 0.0254
pnorm(2/conv, mean=mu, sd=sigma)

## [1] 0.9984

That is, this model predicts that fewer than 1% of men will be 2 meters or
taller.

Finally, the tallest man could be found using quantiles. There are roughly
3.5 billion males, so the tallest man would be in the top 1/(3.5 billion) quan-
tile:

p = 1 - 1 / (3.5e9)
qnorm(p, mu, sigma)/12

## [1] 7.343

This predicts a bit over 7 feet 4 inches, maybe not even the tallest in the
NBA. Expecting a probability model with just two parameters to describe a
distribution like this is completely asking too much, but for most computa-
tions it is appropriate to use. ••

• Example 6.11: Testing the rules of thumb
We can test the rules of thumb using random samples from the normal dis-
tribution as provided by rnorm.

First we create 1,000 random samples and assign them to res:

mu <- 100; sigma <- 10
res <- rnorm(1000, mean=mu, sd=sigma)
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k <- 1; sum(res > mu - k*sigma & res < mu + k*sigma)

## [1] 673

k <- 2; sum(res > mu - k*sigma & res < mu + k*sigma)

## [1] 953

k <- 3; sum(res > mu - k*sigma & res < mu + k*sigma)

## [1] 996

Our simulation has 67.3%, 95.3%, and 99.6% of the data within 1, 2, and
3 standard deviations of the mean. If we repeat this simulation, the answers
will likely differ slightly. ••

Popular distributions to describe populations

Many populations are well described by the normal distribution; others are
not. For example, a population may be multimodal, not symmetric, or have
longer tails than the normal distribution. Many other families of distributions
have been defined to describe different populations. We highlight a few.

Uniform distribution

The uniform distribution on [a,b] is useful to describe populations that have
no preferred values over their range. For a finite range of values, the sample
function can choose one with equal probabilities. The uniform distribution
would be used when there is a range of values that is continuous.

The density is a constant on [a,b]. As the total area is 1, the height is
1/(b − a). The mean is in the middle of the interval, µ = (a + b)/2. The
variance is (b− a)2/12. The distribution has short tails.

As mentioned, the family name in R is unif, and the parameters are min
and max with defaults 0 and 1. We use Uniform(a,b) to denote this distri-
bution. The left graphic in Figure 6.7 shows a histogram and boxplot of 50%
random samples from Uniform(0,10). On the histogram are superimposed the
empirical density and the population density. The random sample is shown
using the rug function.

res = runif(50, min=0, max=10)
## fig= setting uses bottom 35% of diagram
par(fig=c(0,1,0,.35))
boxplot(res,horizontal=TRUE, bty="n", xlab="uniform sample")
## fig= setting uses top 75% of figure
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par(fig=c(0,1,.25,1), new=TRUE)
hist(res, prob=TRUE, main="", col=gray(.9))
lines(density(res),lty=2)
curve(dunif(x, min=0, max=10), lwd=2, add=TRUE)
rug(res)

(We overlaid two graphics by using the fig argument to par. This param-
eter sets the portion of the graphic device to draw on. You may manually
specify the range on the x-axis in the histogram using xlim to get the axes to
match. Other layouts are possible, as detailed in the help page ?layout.)
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Figure 6.7: Histogram and boxplot of 50 samples from the Uniform(0,10) dis-
tribution and the Exponential(1/5) distribution. Both empirical densities and
population densities are drawn.

Exponential distribution

The exponential distribution is an example of a skewed distribution. It is a
popular model for populations such as the length of time a light bulb lasts.
The density is f (x|λ) = λe−λx, x ≥ 0. The parameter λ is related to the mean
by µ = 1/λ and to the standard deviation by σ = 1/λ.

In R the family name is exp and the parameter is labeled rate. We refer
to this distribution as Exponential(λ).

The right graphic of Figure 6.7 shows a random sample of size 50 from
the Exponential(1/5) distribution.

Weibull distribution The exponential distribution is a special case of the
Weibull distribution which has two parameters: one, scale, to control the
rate of decay of the density (like the exponential, but in a reciprocal relation-
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ship) and one, shape, to control an initial growth from 0. When shape=1 the
distribution is identical to an exponential distribution.

Lognormal distribution

The lognormal distribution is a heavily skewed continuous distribution on
the positive numbers. A lognormal random variable, X, has its name as
log(X) is normally distributed. Lognormal distributions describe populations
such as income distribution.

In R the family name is lnorm. The two parameters are labeled meanlog
and sdlog. These are the mean and standard deviation of log(X), not of X.

Figure 6.8 shows a sample of size 50 from the lognormal distribution,
with parameters meanlog=0 and sdlog=1.
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Figure 6.8: Histogram and boxplot of 50 samples from lognormal distribution
with meanlog=0 and sdlog=1.

Sampling distributions

The following three distributions we will encounter in subsequent chapters as
they are used to describe sampling distributions. These are the t-distribution,
the F-distribution, and the chi-squared distribution (sometimes written using
the Greek symbol χ).
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The family names in R are t, f, and chisq. Their parameters are termed
“degrees of freedom” and are related to the sample size when used as sam-
pling distributions. For the t and chi-squared distributions, the degrees-of-
freedom argument is df. For the F-distribution, as two degrees of freedom
are specified, the arguments are df1 and df2.

For example, values l and r for each distribution containing 95% of the
area can be found as follows:

qt(c(0.025, 0.975), df=10) # 10 degrees of freedom

## [1] -2.228 2.228

qf(c(0.025, 0.975), df1=10, df2=5) # 10 and 5 degrees of freedom

## [1] 0.2361 6.6192

qchisq(c(0.025, 0.975), df=10) # 10 degrees of freedom

## [1] 3.247 20.483

Problems

6.8 A die is rolled five times. What is the probability of three or more rolls
of four?

6.9 Suppose a decent bowler can get a strike with probability p = .3. What is
the chance he gets 12 strikes in a row (assuming independence)?

6.10 A fair coin is tossed 100,000 times. The number of heads is recorded.
What is the probability that there are between 49,800 and 50,200 heads?

6.11 Suppose that, on average, a baseball player gets a hit once every three
times she bats. What is the probability that she gets four hits in four at bats?

6.12 Use the binomial distribution to decide which is more likely: rolling two
dice twenty-four times and getting at least one double sixes, or rolling one
die four times and getting at least one six?

6.13 In 1526 Cardano discussed the question of how many rolls of a pair of
dice are needed so that it is even money that a pair of sixes will appear. What
should he have got (he figured 18)?

6.14 A sample of 100 people is drawn from a population of 600,000. If it is
known that 40% of the population has a specific attribute, what is the proba-
bility that 35 or fewer in the sample have that attribute?
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6.15 If Z is Normal(0,1), find the following:

1. P(Z ≤ 2.2).

2. P(−1 < Z ≤ 2).

3. P(Z > 2.5).

4. b such that P(−b < Z ≤ b) = 0.90.

6.16 Suppose that the population of adult, male black bears has weights that
are approximately distributed as Normal(350,75). What is the probability that
a randomly observed male bear weighs more than 450 pounds?

6.17 The maximum score on the math ACT test is 36. If the average score for
all high school seniors who took the exam was 20.6 with a standard deviation
of 5.5, what percent received the passing mark of 22 or better? If 1,000,000
students took the test, how many more would be expected to fail if the pass-
ing mark were moved to 23 or better? Assume a normal distribution of scores.

6.18 A study found that foot lengths for Japanese women are normally dis-
tributed with mean 24.9 centimeters and standard deviation 1.05 centimeters.
For this population, find the probability that a randomly chosen foot is less
than 26 centimeters long. What is the 95th percentile?

6.19 Assume that the average finger length for females is 3.20 inches, with
a standard deviation of 0.35 inches, and that the distribution of lengths is
normal. If a glove manufacturer makes a glove that fits fingers with lengths
between 3.5 and 4 inches, what percent of the population will the glove fit?

6.20 The term “six sigma” refers to an attempt to reduce errors to the point
that the chance of their happening is less than the area more than six standard
deviations from the mean. What is this area if the distribution is normal?

6.21 As any avid box reader knows, cereal is sold by weight not volume.
This introduces variability in the volume due to settling. As such, the height
to which a cereal box is filled is random. If the heights for a certain type of
cereal and box have a Normal(12,0.5) distribution in units of inches, what is
the chance that a randomly chosen cereal box has cereal height of 10.7 inches
or less?

6.22 For the fheight variable in the father.son data set, compute what per-
cent of the data is within 1, 2, and 3 standard deviations from the mean.
Compare to the percentages 68%, 95%, and 99.7%.

6.23 Find the quintiles of the standard normal distribution.
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6.24 For a Uniform(0,1) random variable, the mean and variance are 1/2 and
1/12. Find the area within 1, 2, and 3 standard deviations from the mean
and compare to 68%, 95%, and 99.7%. Do the same for the Exponential(1/5)
distribution with mean and standard deviation of 5.

6.25 A q-q plot is an excellent way to investigate whether a distribu-
tion is approximately normal. For the symmetric distributions Uniform(0,1),
Normal(0,1), and t with 3 degrees of freedom, take a random sample of size
100 and plot a quantile-normal plot using qqnorm. Compare the three and
comment on the curve of the plot as it relates to the tail length. (The uniform
is short-tailed; the t-distribution with 3 degrees of freedom is long-tailed.)

6.26 For the t-distribution, we can see that as the degrees of freedom get
large the density approaches the normal. To investigate, plot the standard
normal density with the command

curve(dnorm(x), -4, 4)

and add densities for the t-distribution with k = 5, 10, 25, 50, and 100 degrees
of freedom. These can be added as follows:

k <- 5; curve(dt(x, df=k), lty=k, add=TRUE)

6.27 The mean of a chi-squared random variable with k degrees of freedom is
k. Can you guess the variance? Plot the density of the chi-squared distribution
for k = 2, 8, 18, 32, 50, and 72, and then try to guess. The first plot can be done
with curve, as in

curve(dchisq(x,df=2), 0, 100)

Subsequent ones can be added with

k <- 8; curve(dchisq(x,df=k), add=TRUE)

6.3 The central limit theorem

It was remarked that for an i.i.d. sample from a population, the distribution
of the sample mean had expected value µ and standard deviation σ/

√
n,

where µ and σ are the population parameters. For large enough n, we see in
this section that the sampling distribution of X̄ is normal or approximately
normal.
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Figure 6.9: Density of X̄ for n = 5 and n = 25 along with parent population
Normal(0,1). As n increases, the density concentrates on µ.

Normal parent population

When the sample X1, X2, . . . , Xn is drawn from a Normal(µ,σ) population, the
distribution of X̄ is precisely the normal distribution.

Figure 6.9 draws densities for the population, and the sampling distribu-
tion of X̄ for n = 5 and 25 when µ = 0 and σ = 1.

n <- 25; curve(dnorm(x, mean=0, sd=1/sqrt(n)), -3, 3,
xlab="x", ylab="Densities of sample mean", bty="l")

n <- 5; curve(dnorm(x, mean=0, sd=1/sqrt(n)), add=TRUE)
n <- 1; curve(dnorm(x, mean=0, sd=1/sqrt(n)), add=TRUE)

The center stays the same, but as n gets bigger, the spread of X̄ gets
smaller and smaller. If the sample size increases by a factor of 4, the standard
deviation is 1/2 that population’s. The density concentrates on the mean.
That is, with greater and greater probability, the random value of X̄ is close
to the mean, µ, of the parent population. This phenomenon of the sample
average concentrating on the mean is known as the law of large numbers.

For example, if adult male heights are normally distributed with mean
70.2 inches and standard deviation 2.89 inches, the average height of 25 ran-
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domly chosen males is again normal with mean 70.2 but standard deviation
1/5 as large. The probability that the sample average is between 70 and 71
compared to that for an individual is:

mu <- 70.2; sigma <- 2.89; n <- 25
pnorm(71, mu, sigma/sqrt(n)) - pnorm(70, mu, sigma/sqrt(n)) # average

## [1] 0.5522

pnorm(71, mu, sigma) - pnorm(70, mu, sigma) # person

## [1] 0.1366

Nonnormal parent population

The central limit theorem states that for any parent population with mean µ
and standard deviation σ, the sampling distribution of X̄ for large n satisfies

P(
X̄− µ

σ/
√

n
≤ b) ≈ P(Z ≤ b),

where Z is a standard normal random variable. That is, for n big enough, the
standardized distribution of X̄ is approximately a standard normal.

Figure 6.10 illustrates the central limit theorem for Exponential(1) data.
This parent population and simulations of the distribution of X̄ for n = 5, 25,
and 100 are drawn. As n gets bigger, the sampling distribution of X̄ becomes
more and more bell shaped.

Figure 6.10 was produced by simulating the sampling distribution of X̄.
Simulations will be discussed in the next chapter.

• Example 6.12: Average service time
The time it takes to check out at a grocery store can vary widely. A certain
checker has a historic average of one-minute service time per customer, with
a one-minute standard deviation. If she sees 20 customers, what is the prob-
ability that her check-out times average 0.9 minutes or less?

We assume that each service time has the unspecified parent population
with µ = 1 and σ = 1, and the sequence of service times is i.i.d. As well, we
assume that n is large enough that the distribution of X̄ is approximately
Normal(µ,σ/

√
20). Then P(X̄ ≤ 0.9) is given by

pnorm(0.9, mean=1, sd = 1/sqrt(20))

## [1] 0.3274

••
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Figure 6.10: Density estimates for X̄ when n = 5, 25, 100 for an Exponential(1)
population. As n increases, the density becomes bell shaped and concentrates
on µ = 1.

There are other consequences of the central limit theorem. For example, if
we replace σ with the sample standard deviation s when we standardize X̄,
we still have

P(
X̄− µ

s/
√

n
≤ b) ≈ P(Z ≤ b).

This fact will be behind many of the statements of statistical inference.
This does not tell us what the sampling distribution is when n is not large;
that will be discussed later.

In this next example, we show how the central limit theorem applies to
the binomial distribution for large n.6

• Example 6.13: The normal approximation to the binomial distribution
For an i.i.d. sequence of Bernoulli trials X1, X2, . . . , Xn with success probability
p, the sample mean, X̄, is simply the number of successes divided by n, or the

6Historically, the ideas of the central limit theorem were first discussed for a case of the
binomial by de Moivre in the early 1700s. Laplace, in 1812, demonstrated it for the binomial in
general.
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proportion of successes. We will use the notation p̂ instead of X̄ in this case.
The central limit theorem says that p̂ is asymptotically normal with mean p
and standard deviation

√
p(1− p)/n.

If X is the number of successes, then X is Binomial(n, p). Since X = np̂, we
know that X is approximately normal with mean np and standard deviation√

np(1− p). That is, a binomial random variable is approximately normal if
n is large enough.

Let X have a Binomial(30,2/3) distribution. Figure 6.11 shows a plot of the
distribution over [10,30]. The shaded boxes above each integer k have base
1 and height P(X = k), so their area is equal to P(X = k). The normal curve
that is added to the figure has mean and standard deviation equal to that of
X: µ = 30 · 2/3 = 20 and σ =

√
30 · 2/3 · 1/3.

From the figure, we can see that the area of the shaded boxes, P(k ≤ 22),
is well approximated by the area to the left of 22.5 under the normal curve.
This says P(X ≤ 22) ≈ P(Z ≤ (22.5− µ)/σ) for a standard normal Z. For a
general binomial random variable with mean µ and standard deviation σ, the
approximation P(a≤ X ≤ b)≈ P((a− 1/2− µ)/σ ≤ Z ≤ (b + 1/2− µ)/σ) is
an improvement to the central limit theorem often seen in statistics text. ••

Problems

6.28 Compare the exact probability of getting 42 or fewer heads in 100 coin
tosses to the probability given by the normal approximation.

6.29 Historically, a certain baseball player has averaged three hits every ten
official at bats (he’s a 300 hitter). Assume a binomial model for the number
of hits in a 600-at-bat season. What is the probability the player has a batting
average higher than 0.350? Use the normal approximation to answer.

6.30 Assume that a population is evenly divided on an issue (p = 1/2). A
random sample of size 1,000 is taken. What is the probability the random
sample will have 550 or more in favor of the issue? Answer using a normal
approximation.

6.31 An elevator can safely hold 3,500 pounds. A sign in the elevator limits
the passenger count to 15. If the adult population has a mean weight of 180
pounds with a 25-pound standard deviation, how unusual would it be, if the
central limit theorem applied, that an elevator holding 15 people would be
carrying more than 3,500 pounds?

6.32 A restaurant sells an average of 25 bottles of wine per night, with a vari-
ance of 4. Assuming the central limit theorem applies, what is the probability
that the restaurant will sell more than 775 bottles in the next 30 days?
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Figure 6.11: Plot of Binomial(30,2/3) distribution marked by dots. The area
of the rectangle covering k is the same as the probability of k successes. The
drawn density is the normal distribution with the same population mean and
standard deviation as the binomial.

6.33 A traffic officer writes an average of four tickets per day, with a variance
of one ticket. Assume the central limit theorem applies. What is the probabil-
ity that she will write fewer than 75 tickets in a 21-day cycle?
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Statistical inference

This chapter looks at the basics of statistical inference using computation—
to avoid probability calculations—to produce answers. Statistical inference is
the process of drawing inferences about a population based on data sampled
from the population. Figure 7.1 is a bit complicated, but attempts to show the
fundamental relationship between the four key concepts involved:

populations Our populations are modeled by distributions describing the
randomness of each sampled data point.

parameters A parameter is a number that describe the population, such as
the mean (µ) or the standard deviation (σ). Parameters are typically
denoted by Greek letters and typically are related to the description of
the population as a family of related functions.

samples A sample is a collection of observations from the population, where
an observation is a realization of a random variable with the popula-
tion’s distribution. For our purposes, a sample is usually assumed to
be a random sample from the population (implying independence). A
sample has a certain size, n.

statistics A numeric summary of a sample. For example, the sample mean x̄
or the sample standard deviation s.

The figure shows a population, the normal distribution, summarized by
the parameters µ and σ. The population is drawn with asolid line, the pa-
rameters represented with dashed lines. From this population the graphic
shows 10 samples, each of size 16. The values in a given sample appear along
a horizontal line as gray dots. For each sample, the sample mean, x̄, is in-
dicated with a square. The population is described by the parameters, and
is represented by the samples. As the statistic(s) summarize the sample, the
key statistical question is how can we infer information about the parameters
from the statistic?

Comparing the inset density estimate for the distribution of x̄ with the
theoretical distribution for a single value, we would be led to say that the
distribution of x̄ is centered in the same place as the population—that is ran-
domness of the statistic is centered at the randomness of the population, and

242
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Figure 7.1: A population from which 10 samples of size 16 are chosen. Each
sample is summarized by its mean (the boxes). These 10 means are sum-
marized with the scaled, inset density estimate. This density is bell shaped,
centered on the population mean, but has smaller spread.

the distribution is bell shaped. However, it is apparent that the distribution
of x̄ has smaller variability than the population.

In general, for a simulation of x̄ these observations can be made explicit:

• For any random sample, the sampling distribution of x̄ is centered at
the population mean, µ.

• For any random sample, the sampling distribution of x̄ has a standard
deviation given by σ/

√
n where σ is the standard deviation of the pop-

ulation.

• Further, if the population is normally distributed (as in the figure) the
distribution of x̄ is normally distributed.

The point is, the simulated data can be used to investigate relationships
producing answers that while not always as precise, can give excellent in-
sight.
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This chapter covers the basics of performing simulations in R and then
applies this to introduce the two main approaches to statistical inference that
are used throughout the remainder of the text.

7.1 Simulation

For our simulations, the first step is to specify a probability model for the
data. In Figure 7.1 this was the normal distribution. Other families of distri-
butions are possible too. R has its “r” functions to produce random samples
from the popular distributions. For other distributions, we may need to work
harder.

Our simulations often involve summarizing a random sample with a
statistic. For example, to find one realization of the sample mean of a ran-
dom sample of size 16 from a normal population we might have:

mu <- 100; sigma <- 16 # population parameters
x <- rnorm(16, mean=mu, sd=sigma) # our sample
mean(x) # xbar

## [1] 98.85

The model is specified in this example by a choice of distributional family
(rnorm) and a choice of parameters (µ = 100, σ = 16). With this, R can be used
to produce a random sample of a given size. The value mean(x) is the one
produced. Running this again would produce a different value each time.1

In real life, creating a random sample can be very expensive either in time,
resources, or both. This is not so with the computer, where running a simula-
tion again is just a matter of re-executing a line above. Though one informal
description of insanity is “repeating the same action while expecting a dif-
ferent result,” in simulation, due to the randomness, repeating a simulation
can give us great insight into the distribution’s shape, its tails, its mean and
variance, related probabilities, etc.

Repeating a simulation easily

Repeating a simulation is the key to gaining insight from a simulation, as we
can easily use graphical summaries of the simulated numbers to read into
the mechanism that produces them, in the same way the inset of Figure 7.1
informed us about the nature of the sampling distribution of x̄. The are many
other alternatives. Figure 7.2 shows boxplots for many different simulations
from a normal population with 50, 250, and 1,000 samples taken, respectively.
By layering the boxplots, one can see the underlying variability.2

1In theory anyways, there is the very remote chance that due to approximations and round
off, the same value could be achieved.

2This idea is a modification of one by Chris Wild who introduced animated boxplots to
indicate variability due to sampling.
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Figure 7.2: Boxplots showing different simulated data. For each sample size,
several random samples from a normal population are taken and summa-
rized with boxplots. For smaller samples, there is more variability in the
estimates for the median, Q1, Q3, . . . , than for the large sample. The heavier
line summarizes just one of the several samples.

There are several ways to repeat an expression in R. In Section 4.3 we
mentioned briefly for loops to repeat a process, the method used below:

mu <- 100; sigma <- 16
M <- 4; n <- 16 # change M for more
res <- numeric(M)
for (i in 1:M) {
res[i] <- mean(rnorm(n, mean=mu, sd=sigma))

}
res

## [1] 102.12 96.93 95.21 101.74

This is fairly direct, but has some bookkeeping details (e.g., creating a
container for the output, res) that are best left to the computer. We also saw
in Section 4.3 some alternatives. Here are a few. First we create a function to
call our expression to create a single x̄ to use with sapply:
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xbar <- function(i) mean(rnorm(n, mean=mu, sd=sigma)) # function
sapply(1:M, xbar)

## [1] 99.25 89.83 109.48 103.69

Alternately, we could vectorize this function:

Xbar <- Vectorize(xbar)
Xbar(1:M)

## [1] 98.16 104.84 105.93 102.08

Both of these approaches are possible, but are still a bit more verbose than
desired. We don’t really need a function, as the parameter i is there just to
work with the functions sapply and Vectorize. Rather, we simply need to
repeat an expression.

For this task the replicate function is provided:

replicate(M, mean(rnorm(n, mean=mu, sd=sigma))) # replicate(n, expr)

## [1] 100.3 100.2 105.2 103.9

Without random number generation, replicate would simply produce
M identical outputs, but with the expression above it produces M different
realizations of x̄ for a normal population.

The expression above is a single command. As with other R functions,
multi-step expressions can be used if enclosed in matching braces.

Using apply For some simulations it can be faster to first generate all the
numbers, then take the statistic. For this task, apply is useful. The basic ex-
ample could be done through:

x <- matrix(rnorm(M*n, mean=mu, sd=sigma), nrow=n)
dim(x) # M columns, n rows

## [1] 16 4

apply(x, 2, mean)

## [1] 102.50 103.15 100.99 97.84

• Example 7.1: The central limit theorem through approximation
For a normal population, the sampling distribution of x̄ is also normal dis-
tributed. We will verify this through a simulation.
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We begin by making a function to find the z-score of a sample from x̄
where we center by the population mean and scale by the population stan-
dard deviation:

zstat <- function(x, mu, sigma) {
(mean(x) - mu) / (sigma/sqrt(length(x)))

}

Simulating the sampling distribution of this statistic is no different from
before. In the leftmost graphic of Figure 7.3 we summarize the graphic with
a qqnorm plot, which indicates normality of the sample.

M <- 2000; n <- 7
mu <- 100; sigma <- 16
res <- replicate(M, {
x <- rnorm(n, mean=mu, sd=sigma)
zstat(x, mu, sigma)

})
qqnorm(res, main="Normal, n=7")

If we use a different population, the sampling distribution of x̄ is no
longer normal, though the central limit theorem says that as n gets large
it will become normal.

A natural question is: what n is large enough? The answer depends on the
population—populations which are either skewed or long-tailed will need
larger values of n.

Let’s look at the right-skewed exponential distribution. We need to know
that it has population mean and population standard deviation are both
given by 1/rate:

M <- 2000; n <- 7
rate <- 2; mu <- sigma <- 1/rate
res <- replicate(M, {
x <- rexp(n, rate=rate)
zstat(x, mu, sigma)

})
qqnorm(res, main="Exponential, n=7")

The middle graphic of Figure 7.3 shows an upward curve in the quantile-
normal plot. This is indicative of a right-tailed distribution. The central limit
phenomenon has not removed the initial population asymmetry when n = 7.

Now we repeat with n = 150. The right graphic in Figure 7.3 shows that
the sampling distribution is now approximately normal.
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Figure 7.3: The left graphic shows a simulated sampling distribution of x̄ for
a normal population. This is known to be normally distributed, as supported
by the graphic. The other two graphics show the sampling distribution of x̄
for an exponential population with rate 2 for samples of size 7 and 150. The
middle graphic shows that for n = 7 the central limit effect has not domi-
nated, as it does for the n = 150 case.

n <- 150
res <- replicate(M, {
x <- rexp(n, rate=rate)
zstat(x, mu, sigma)

})
qqnorm(res, main="Exponential, n=150")

••

• Example 7.2: The t-statistic
The z-statistic defined above standardizes by the standard deviation of x̄,
known to be σ/

√
n. In applications, the knowledge of σ is not generally

known, so is estimated by the sample standard deviation s. This gives the
t-statistic:

tstat <- function(x, mu) (mean(x) - mu) / (sd(x) / sqrt(length(x)))

As s is random, the distribution of the t-statistic should differ from that
of the z-statistic: we would expect it to have longer tails as larger values are
produced when s < σ, but also that this difference decreases for larger values
of n.

Gosset [26] simulated the distribution of the above statistic using data
published in 1902 on the finger lengths of 3,000 male criminals. The popula-
tion of the finger lengths was approximately normal, and Gosset took sam-
ples of size 4 to simulate the t-statistic. We are more fortunate than having to
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Figure 7.4: Simulations of the sampling distribution of the t-statistic for differ-
ent values of n. As n gets bigger the boxplots show the sampling distribution
becomes more like the normal distribution on the right.

compute 750 sample standard deviations by hand. To perform a simulation
with n = 4 and M = 750 we have:3

mu <- 0; sigma <- 1 # use defaults
M <- 750; n <- 4
res <- replicate(M, tstat(rnorm(n, mu, sigma), mu))
boxplot(res)

Figure 7.4 shows several such simulations for differing values of n. The
boxplots show that the sampling distribution is symmetric and centered at 0
(as expected because the mean is subtracted). For smaller n the values of s
less than σ influence the length of the tails and the variability. As n increases,
it appears the sampling distribution of the t-statistic becomes normal (the
reference boxplot on the right side of the graphic). ••

3If we knew the distribution was the t-distribution with n− 1 degrees of freedom, we could
just do the simulation with rt(n, df=4-1).
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• Example 7.3: The median
For the normal distribution both the median and the mean describe the cen-
ter, as the distribution is symmetric. Why is one statistic (the sampling mean)
preferred to the other? Looking at the sampling distributions can be infor-
mative:

M <- 1000; n <- 35
res_mean <- replicate(M, mean(rnorm(n)))
res_median <- replicate(M, median(rnorm(n)))
boxplot(list("sample mean"=res_mean, "sample median"=res_median),

main="Normal population")

The left graphic of Figure 7.5 shows the two boxplots. Both are centered at
0 as expected, but more importantly the sample median has more variability
than the sample mean for the same size n with a normal population.

This relationship depends on the parent population. Let’s look at the ex-
ponential population with rate 1. This has mean 1 and median log(2) = 0.693.
Here we subtract these from our sample statistics to center the values:

M <- 1000; n <- 35
res_mean <- replicate(M, mean(rexp(n))) - 1
res_median <- replicate(M, median(rexp(n))) - log(2)
boxplot(list("sample mean"=res_mean, "sample median"=res_median),

main="Exponential population")

The right graphic shows the sample mean and median having comparable
spreads when the population has an exponential distribution. ••

• Example 7.4: Estimating probabilities
There are many different types of lotteries, but a common one is when there
are N distinct numbers of which a player selects k. From the N numbers, j are
chosen at random without replacement. A player wins if 1 or more numbers
are matched. (Of course, they generally win more for matching more balls.)
While often k = j, this is not always the case. Take for example, the case where
N = 80, k = 20, and j = 10. Which is more likely: matching 1 ball or matching
0 balls?

This is a fun problem to compute by hand with the basic rules of probabil-
ity, but here we will simulate the answer. Without any loss of generality, we
can assume the numbers are 1 through N and the player chooses the num-
bers 1 through k. Here the simulation would be done using sample. A single
sample is:
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Figure 7.5: Illustration that the ratio of the variability of the sample mean and
sample median depend on the population. In this graphic, the exponential
distribution is the population and the ratio appears to be about 1 (the actual
value by theory).

N <- 80; k <- 20; j <- 10
x <- sample(1:N, j, replace=FALSE)
x

## [1] 26 70 59 80 2 14 17 4 9 69

Here is how we can count the number of matches:

sum(x %in% 1:k)

## [1] 5

Now we can simulate this, say M = 10,000 times:

res <- replicate(10000, {
x <- sample(1:N, j, replace=FALSE)
sum(x %in% 1:k)

})

The proportion of values gives an estimate to the underlying probabilities:

c("zero matches"= sum(res == 0)/length(res), # prop.table to see all
"one match" = sum(res == 1)/length(res))

## zero matches one match
## 0.0474 0.1835
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From this, it appears more likely that 1 ball is matched than none.
Similarly we could ask questions like, what is the probability of 5 or more

matches? Again a sample proportion is used to estimate this, but in this case
the condition would be:

sum(res >= 5) / length(res) # 5 or more matches

## [1] 0.0643

••

Problems

7.1 Simulate 1,000 rolls of a pair of die. Which is more common, a roll of 7
or 8?

7.2 For the rivers data set, take a 1,000 random samples of size 10. Compare
the mean of the sample means, with the sample mean of the data in rivers.

7.2 Significance tests

Imagine a study of some new treatment to improve performance. For exam-
ple, does consuming an amount of honey during exercise increase perfor-
mance? To test such a treatment, a cohort of 7 conveniently selected people
is gathered. The investigator randomly assigns these 7 into a control group
of 3 and a treatment group of 4. The control group should give a baseline to
compare the treatment group with. The data collected is some measurement
where smaller values are better:4

Control: 23, 33, 40
Treatment: 19, 22, 25, 26

ctrl <- c(23, 33, 40)
treatment <- c(19, 22, 25, 26)
the_data <- stack(list(ctrl=ctrl, treatment=treatment))
aggregate(values ~ ind, the_data, mean)

## ind values
## 1 ctrl 32
## 2 treatment 23

4This data comes from an influential article of Cobb [11] who attributes Ernst [19]. There is
a slight difference, as Ernst has a value of 23, not 22.
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A difference of 9 is noted. The researcher is thrilled. It seems something
as simple as a bit of honey can improve performance.

The skeptic might be a bit more cautious. Perhaps the difference is simply
due to the randomization chosen. Maybe the selected cohort put the better
performers into the treatment group and the honey made no difference at all.

Well, with simulation this can be investigated. In this case we can enu-
merate all the possible different randomizations. The combn function will list
them through their indices:

cmbs <- combn(7, 3) # 35 possibilities
cmbs[, 1:6] # first 6 columns

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 1 1 1 1 1
## [2,] 2 2 2 2 2 3
## [3,] 3 4 5 6 7 4

The first would just be the observed randomization. To see, we have

i <- 1
ind <- cmbs[,1] # in columns
obs <- mean(the_data$value[ind]) - mean(the_data$value[-ind])
obs

## [1] 9

The use of negative indexing is very convenient in this case, as we are
partitioning our set of 7 scores into groups of 3 and 4.

To compute the above for all 35 randomizations can be done efficiently
with apply:

res <- apply(cmbs, 2, function(ind) {
mean(the_data$value[ind]) - mean(the_data$value[-ind])

})

The values in res represent the randomization distribution for the differ-
ence of the group means. Okay, we have the 35 different values. To see how
unusual, or extreme, 9 is we can count how many of the values are larger:

sum(res >= obs)

## [1] 3

sum(res >= obs) / length(res)

## [1] 0.08571
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So 3 of 35 random assignments or about 8.57% will produce a difference
this large or larger. This value seems unlikely, somewhere between 1 in 10
and 1 in 20, but not “impossibly” small.

Whether this is a true difference or not is ambiguous, but what the above
illustrates is a process for investigating differences from random samples.
Had the process produced a less ambiguous answer then an answer on
whether honey intake improved performance (all other things being con-
trolled for) could be made.

What is not possible from this data scenario would be to try and general-
ize to a wider population. This is due to the 7 recruits not being representative
of some larger population. For that, random sampling is often employed to
select a sample likely to be representative.

• Example 7.5: Simulating the randomization distribution
Does caffeine make you jittery? The popular impression of caffeine consump-
tion is that it makes the consumer more jittery. Is that really so?5

A student decides to test the impression. She recruits 20 classmates to par-
ticipate and randomly divides them into two cohorts of size 10. She serves all
a large cup of coffee, but one cohort has decaffeinated and one caffeinated.
The number of finger taps the students made is then secretly counted with
the aid of videotape. The data is then entered into R through these com-
mands:

caf <- c(245, 246, 246, 248, 248, 248, 250, 250, 250, 252)
no_caf <- c(242, 242, 242, 244, 244, 245, 246, 247, 248, 248)
the_data <- stack(list(caffeine=caf, no_caffeine=no_caf))

Is there a difference in the mean number of taps? Well, the sample means
have this difference:

obs <- mean(caf) - mean(no_caf)
obs

## [1] 3.5

So, there is a difference of 3.5 taps between the groups. The natural ques-
tion is: does this indicate coffee makes students more jittery? Of course, as in
the last example, one could say the difference is attributable to the random
allocation. In that example, the presence of a difference was left for debate
and there the difference was more than twice as large (9).

If we assume the skeptical approach to be the case, then we can ask how
unusual this difference would be in the distribution of all possible random
assignments of the 20 into two groups of 10. There are choose(20, 10) =

5This data comes from http://lock5stat.com/statkey/ where a set of applets is hosted to
illustrate randomization techniques discussed in the text [39].
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184,756 different randomizations. Clearly looking at each is not doable by
hand, though still possible by R. However, numbers like 40 and 20 would not
be. So if this approach is to be widely useful, a different means is needed.

We follow Dwass [17] who noted that a shortcoming of this line of investi-
gation was the issue of computing a statistic for all the possible permutations
and suggested taking random samples (simulating) from the randomization
distribution instead.

To find a single random assignment is simple with the sample function,
this command produces one taking 10 numbers at random from the values 1
through 20 without replacement:

sample(1:20, 10, replace=FALSE)

## [1] 12 15 10 19 8 20 2 9 5 1

A simulation then can be done by repetition:

res <- replicate(2000, {
ind <- sample(1:20, 10, replace=FALSE)
mean(the_data$value[ind]) - mean(the_data$value[-ind])

})

The probability of a randomization producing a value as or more extreme
than the observed one is found with:

sum(res > obs) / length(res)

## [1] 0.0025

This value is very small. In this case, there is not much ambiguity imply-
ing that caffeine increases tapping with this group of 20 students.

So, on one hand a difference of 9 was debatable, and here a smaller dif-
ference of 3.5 is pretty conclusive. How can that be? We will see the key to
this seeming paradox is understanding that differences must be measured on
scales suitable for the data. ••

7.3 Estimation, confidence intervals

The last section looked at two questions where we were curious if some treat-
ment induced a notable effect. This section has a different question. How well
does a sample statistic estimate a parameter?

A common news item is a report on a proportion in a sample. For ex-
ample, in mid-2013, following a U.S. Supreme Court decision on the defense
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against marriage act, a poll was taken by Princeton Survey Research Asso-
ciates asking a random sample of 1,003 Americans whether marriages be-
tween same-sex couples should be recognized by law as valid, with the same
rights of traditional marriage. It was reported that 55% said yes, a reported
high.

The value 55% represents the sample, so is a statistic. The implication is
it somehow represents a parameter—the proportion of all Americans who
would answer yes. How does a statistic estimate an unknown parameter?

Again, we start with some probability model for the data. In the scenario
above, a simple model would be that each randomly chosen person has the
same probability, p, of responding yes. That is the random variables have the
Bernoulli(p) distribution. Other scenarios might assume a normal distribution
for the random variables producing the sample. The models we consider
mostly are defined through a family and one or more parameters (e.g., p or
both µ and σ).

The question of a statistic estimating a parameter is then akin to looking
at values such as x̄ in relation to µ, or p̂ (the sample proportion from a survey)
in relation to p. There are various ways to compare a relation, a simple one
is to look at their difference (e.g., x̄− µ or p̂− p) or their ratio (e.g., s2/σ2).

Let’s focus for now on the difference. How much can we say? If we have
a large sample, intuition should tell us that the sample mean is a better es-
timate for µ than a single value. Why? Both have some expected value—µ.
The key is variability. For a random sample of size n, VAR(x̄) = σ2/n, where
σ2 is the variance of the population, or a single one of the random variables.

Let θ be some parameter and θ̂ be some statistic to estimate θ. (It is very
common to use a “hat” to indicate an estimator for a parameter, as we did
with p̂ above.) Looking at the variability, or E((θ̂ − θ)2) is reasonable. For a
random sample, this can be written in two terms:

E((θ̂ − θ)2) = VAR(θ̂) + [E(θ̂ − θ)]2 = variance + bias2.

The bias is simply the difference between the expected value of the esti-
mator and the parameter. Most statistics we encounter are unbiased meaning
this difference is 0. Examples are E(x̄) = µ, E( p̂) = p, and E(s2) = σ2. (It is
this last equality that drives the division by n − 1, as opposed to n, in the
formula for the variance.) Not all are unbiased, for example E(s) 6= σ, though
the difference gets negligible as n gets larger. The left-hand side of the above
formula is the key, the right-hand side can manipulated to exchange biasness
for reduced variability and an overall smaller sum.

A finer question than an expectation looks at the sampling distribution—
as this contains more information. For the normal-population model we’ve
seen that we can simulate the distribution of x̄− µ:

mu <- 100; sigma <- 16
M <- 1000; n <- 4
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res <- replicate(4, mean(rnorm(n, mu, sigma)) - mu)

In previous examples we have standardized this by σ/
√

n and by s/
√

n.
The former is the standard deviation of x̄, the latter the so-called standard
error, where estimators replace unknown parameters.

The distribution depends on n, but with a large enough sample we can
ask questions like: where is most of the data? Being precise, we might ask
what range about 0 contains 95% of the data?

Here we simulate the t-statistic again:

mu <- 100; sigma <- 16
M <- 1000; n <- 4

res <- replicate(M, {
x <- rnorm(n, mu, sigma)
SE <- sd(x)/sqrt(n) # standard error
(mean(x) - mu) / SE

})

To find a range, we use the quantile function:

quantile(res, c(0.025, 0.975))

## 2.5% 97.5%
## -3.192 3.329

So basically we have with probability roughly 0.95 that

−3.19 · SE< x̄− µ < 3.33 · SE.

Or in other words, the value of x̄ is not too many standard errors away
for the mean, µ, with high probability. The key to the statement is to compare
distance using a scale defined by a standard error.

When we run a simulation, we know the parameters like µ as part of our
specification of the model, and generate repeated values of some statistic like
x̄. In real life, there is a different perspective: we have a single value of the
statistic and don’t know the parameter (though we will usually assume a
family for the population). So what can we say about a parameter based on
a single value of x̄?

We can simply invert the algebra and solve for µ above to say that with
probability 0.95:

x̄− 3.33 · SE< µ < x̄ + 3.19 · SE.

This formula is describing the relationship as random variables. We have a
single realization. For that we have to be careful with the word “probability,”
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so the phrasing becomes we are 95% confident that the interval (x̄ − 3.33 ·
SE, x̄ + 3.19 · SE) contains the unknown µ.

So, if we know the sampling distribution of x̄ − µ, then from a single
value we can produce an interval describing µ. It isn’t a guarantee, but you
can have confidence in the process to be correct roughly 95% of the time.

The basic bootstrap

The rub is we need to know µ to actually simulate the sampling distribution.
For this particular question and others we will encounter in the upcoming
chapters we will know the sampling distribution from theoretical means. So
this issue will not be an impediment.

This section briefly touches on a computer-intensive means to work
around the absence of a known sampling distribution, the bootstrap method
[18], [16]. In its most basic application, we will see how the bootstrap method
can be used to estimate the sampling distribution.

How? A basic assumption in simulation is that if we have enough ran-
dom samples from a population, that the random samples can describe that
population very well. This is the starting point for the bootstrap.

First a random sample x1, x2, . . . , xn is used to produce an empirical cumula-
tive distribution function F̂(a) = #{i : xi ≤ a}/n. The assumption is that this ap-
proximates well the actual cumulative distribution function F(a) = P(X ≤ a).
As such, we assume we know a reasonable proxy for the population and use
that as our model.

Next, the parameter µ describing the population is replaced by the mean
of the empirical c.d.f. which turns out to be just the sample mean, x̄.

We have sample data on the difference between the charge and the Medi-
care payment for a diabetes diagnosis in the Medicare (UsingR) data set:

diabetes <- subset(Medicare,
subset= DRG.Definition =="638 - DIABETES W CC")

gap <- with(diabetes, Average.Covered.Charges-Average.Total.Payments)

There is an enormous range in this data:

range(gap)

## [1] -465.4 119472.4

Our goal is to find an interval for which we are reasonably confident the
unknown mean resides.

Using the data in gap we have the value of x̄ is:

xbar <- mean(gap)
xbar
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## [1] 15446

A single random sample from our “population” is produced with sample:

xstar <- sample(gap, length(gap), replace=TRUE)
head(xstar)

## [1] 10297 26219 4805 4033 3785 11600

We took a random sample the same size as our original sample from the
empirical cumulative distribution. This just means sampling at random from
the original sample. The key to the basic bootstrap method is to treat these
new samples as simulated random samples from the actual population. That
means, finding repeated values of

mean(xstar) - xbar

## [1] 841.3

This is done as before through replicate:6

M <- 2000
res <- replicate(M, {
xstar <- sample(gap, length(gap), replace=TRUE)
mean(xstar) - xbar

})

From this simulation we can get the basic bootstrap confidence interval
for µ using the quantile function:

alpha <- 0.05
xbar + quantile(res, c(alpha/2, 1-alpha/2))

## 2.5% 97.5%
## 13093 18119

7.4 Bayesian analysis

One common mistake made when describing a confidence interval is to say
with probability 0.95, say, the unknown parameter resides in the produced in-
terval. This is incorrect, as neither the interval (once produced) or parameter
is presumed random, so the probabilistic terms don’t apply.

6The proper R framework for bootstrapping is provided by the boot package [7].
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There is another approach where this statement can make sense, the
Bayesian approach. In this section we look briefly at only the simplest of
cases.

Suppose we have a sequence of n Bernoulli trials. These are characterized
by a success probability p. The goal is to estimate p after looking at the
data. One estimator is the sample proportion p̂ defined to be the number of
successes divided by the number of trials. With this estimate, we can look at
the sampling distribution of p̂− p and proceed in a similar manner as before.

The Bayesian approach is different. Bayes’ formula makes explicit the re-
lationship between two conditional probabilities, P(B|A) and P(A|B). That
is what is the probability of some event B given event A occurred, and
the similar-sounding, but fundamentally different, probability of an event
A given event B occurred. Bayesian analysis uses this formula and a different
starting point to approach estimation.

Rather than assume the parameter p is some unknown number, the
Bayesian approach starts with the assumption that p is random and prior
to looking at the data can be described by some probability distribution. Af-
ter looking at the data, the distribution is updated to reflect the additional
information. That is, there is a prior distribution and a posterior distribution.
The Bayes’ formula gets operationalized into the following updating rule:

posterior distribution ∝ likelihood · prior distribution.

The likelihood describes how likely the data is given a specific value for
the parameter, and in many cases can be computed from the model. In this
case, it takes a simple form. If the parameter value is given to be p and the
data has s success in n trials, then each success contributes a factor of p and
each failure a factor of 1− p leaving:

likelihood = ps(1− p)n−s.

The likelihood above is not a probability distribution as it does not add
to 1, so when using it below we will normalize our answer.

To use this, we follow an example from Albert [3] where we send the
interested reader for much more on the topic. Let p be the proportion of col-
lege students getting less than 8 hours of sleep. A researcher wants to know
more about p. Prior to collecting any data she believes p is likely around 0.3
but may realistically be other values. She ascribes a distribution of values as
realistic prior to any data collection:

p <- seq(0.05, 0.95, by=0.1) # possible values
prior <- c(2, 4, 8, 8, 4, 2, 1, 1, 1, 1) # how likely
prior <- prior / sum(prior) # as a probability
prior

## [1] 0.06250 0.12500 0.25000 0.25000 0.12500 0.06250 0.03125
## [8] 0.03125 0.03125 0.03125



7.4. BAYESIAN ANALYSIS 261

0.2 0.4 0.6 0.8

0.
05

0.
10

0.
15

0.
20

0.
25

p

P
rio

r 
di

st
rib

ut
io

n

●

●

● ●

●

●

● ● ● ●

0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p

P
os

te
rio

r 
di

st
rib

ut
io

n

● ●

●

●

●

●

● ● ● ●

Figure 7.6: Spike graphs of prior and posterior distributions. The posterior is
more concentrated due to the inclusion of the sample data.

Figure 7.6 shows a graphic of the prior distribution in the left panel.
The collected data consisted of 27 students of which 11 record that they

sleep 8 or more hours.
The likelihood function is then easily computed given this data:

like <- p^11 * (1-p)^(27 - 11)

Bayes’ theorem then allows us to update the prior probability simply by
multiplying and normalizing:

posterior <- like * prior
posterior <- posterior / sum(posterior)

The right panel of Figure 7.6 shows the posterior distribution. We can see
it is more concentrated. In particular, the initial prior only has p in [0,0.5]
with an 81% chance:

ind <- 0 <= p & p <= 0.5
sum(prior[ind])

## [1] 0.8125

Whereas, the posterior distribution gives a 94.4% chance of this event:

sum(posterior[ind])

## [1] 0.9441
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Confidence intervals

• Example 8.1: Age of the universe
How old is the universe? As a modern question, it is now pretty well settled,
roughly 13.772 billion years old with a margin of error of 55.9 million years.
From a historical perspective, this level of certainty has not been the case. The
age.universe data set contains estimates for the age of the universe, dating
back to some early estimates based on the age of the earth.

The current best estimate is computed by the Wilkinson microwave
anisotropy probe (http://map.gsfc.nasa.gov). The reported answer is not
a single number, rather an interval, in this case 13.772± 0.059 Gyr. The pre-
cision of any measurement is limited due to measurement errors, for this
delicate task effects as small as thermal distortions need to be accounted for.
As well, errors can be induced by inexact models, such as a linear model
being used when a curvilinear one may be more appropriate. The precision
in this estimate is truly incredible.

Figure 8.1 shows other such intervals given by various people over time.
Most, but not all, of the modern estimates contain the value of 13.7 billion
years. Were those experiments “wrong?” Not necessarily. In this chapter we
look at the process of estimating unknown values using random data and will
see that a process can be “right,” yet still produce values that are “wrong,” in
the way these are. This will be a subtlety in the framework. In this particular
example though, the errors may be due to an incorrect model specification
for the data—certainly in 1852 the big bang model was not used. ••

• Example 8.2: Age of universe (redux)
In 2012, a Gallup poll1 is summarized by “Forty-six percent of Americans
believe in the creationist view that God created humans in their present form
at one time within the last 10,000 years.” (Clearly not all Americans believe
in the science of the U.S.-funded Wilkinson probe.)

Reading further, we find that not all Americans were asked, but rather:

1http://www.gallup.com/poll/155003/Hold-Creationist-View-Human-Origins.aspx.
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Figure 8.1: Various estimates for the age of universe, some historic, some
modern. Ranges are represented by dotted lines. When the estimate is a lower
bound, only a bottom bar is drawn. The current best estimate of 13.772 billion
years old is drawn with a horizontal line. This estimate has a margin of error
of about 0.1%.

Results for this USA Today/Gallup poll are based on tele-
phone interviews conducted May 10–13, 2012, with a random
sample of 1,012 adults, aged 18 and older, living in all 50 U.S.
states and the District of Columbia.

Of these 1,012, 46% responded as above, and only 15% indicated their
belief that humans evolved without a God playing a part in the process. ••

How does a sample of size 1,012 get used to generalize to the entire popu-
lation of Americans? This is the focus of this chapter. The key is that random
samples are not “random” in a casual sense, but rather obey laws of prob-
ability. This introduces a language to make statements such as confidence
intervals mentioned in the previous chapter. In this chapter we will see that
if certain assumptions on the population that a random sample is drawn from
are valid, then a certain precision can be made as to how a sample statistic
can be used to estimate or make inferences about a population parameter.
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8.1 Confidence intervals for a population proportion, p

Let’s look more closely at the Gallup poll on creationism. Suppose, that in-
stead of three possible answers, we had just two. We could then label one a
“success” and the other a “failure.” The probability a person chosen from the
population would produce a success is a parameter of the population, and
traditionally called p. In theory p is known – just round up all Americans and
get them to answer the question. The proportion of successes is p. Of course
the task of querying an entire population is enormous. The U.S. Census only
tries it only once every 10 years. Trying to infer values about p by cheaper,
more feasible means, then is done through statistical inference.

Imagine the random sample produced by asking 1,012 Americans the
question on mankind’s origins. A model for the number of successes would
be the binomial model, Binomial(1012, p). This model would be most appro-
priate if the sampling was done with replacement, as then the results would
be truly independent, but even if that is not the case this is an excellent ap-
proximation. Let p̂ denote the proportion of successes in the random sample.
This is 0.46, or basically 466 out of 1,012. Any random sample for the bino-
mial distribution above produces random numbers according to the proba-
bility rules of the binomial, each particular sample yields one value of p̂ and
this choice yielded 0.46.

As in the last chapter, it is natural to estimate the unknown p by the
value p̂, as is done in the Gallup report. But what is the accuracy? Let p̂
denote a random variable with the Binomial(1012, p) distribution. Then p̂ has
a distribution depending on p, and so would the error p̂− p.

In the last chapter we simulated values from an assumed p to get the
sampling distribution of the error. Here we do something different. The rules
of probability tell us that

SD( p̂) =

√
p(1− p)

n
,

and the central limit theorem for binomial random variables tells us that for
large enough n the distribution of ( p̂− p)/SD( p̂) is a standard normal.

With this information, we could use qnorm(0.025) to inform us that with
probability 0.95 we have

−1.96 · SD( p̂) < p̂− p < 1.96 · SD( p̂).

The above applies to the random variable p̂, but we have a realization
of that random variable, p̂ = 0.46. We are only 95% confident in our process
that the above is the case, as once we observe our random variable p̂, our
probability language isn’t appropriate.

With that small but important result made, the next task would be to solve
for pair of inequalities involving p. The above can be solved to produce that,
but in this case we choose to first make one more approximation.
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Recall, we assume n is large enough for the central limit theorem to hold.
For large enough n a different version applies as well. The standard error for
p̂ is the standard deviation with unknown parameters replaced by sample
estimates. In this case it becomes:

SE( p̂) =

√
p̂(1− p̂)

n
.

Then the following random variable also has a standard normal distribu-
tion for sufficiently large n:

p̂− p
SE( p̂)

=
observed− expected

SE
.

From this, we can say with 95% confidence that:

−1.96 · SE( p̂) < p̂− p < 1.96 · SE( p̂).

This can now be inverted for p to produce an interval containing p based
on the sample value of p̂

p̂− 1.96 · SE( p̂) < p < p̂ + 1.96 · SE( p̂),

or p̂± 1.96 · SE.
For our Gallup example, p̂ = 0.46 and n = 1,012. This gives

phat <- 0.46
n <- 1012
SE <- sqrt(phat*(1-phat)/n)
c(lower = phat - 1.96 * SE, upper = phat + 1.96 * SE)

## lower upper
## 0.4293 0.4907

(The values from the last command can also be produced with phat +
c(-1,1) * 1.96 * SE.)

Margin of error The value 1.96 · SE is known as the margin of error. The
multiplying factor 1.96 is related to the confidence level. In the above, we
used 95%. Let α = 1− 0.95 measure the level of confidence. (The 0.95 could
be replaced by other values.) Here is how we can find our multiplying factor
from α (cf. Figure 8.2):

conf.level <- c(0.80, 0.90, 0.95, 0.99)
alpha <- 1 - conf.level
multipliers <- qnorm(1 - alpha/2)
setNames(multipliers, conf.level) # give some names

## 0.8 0.9 0.95 0.99
## 1.282 1.645 1.960 2.576
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The margin of error is composed from two factors. The multiplier de-
pends on the level of confidence—the more confidence, the bigger the multi-
plier, hence the bigger the margin of error. This should make sense, if there
were more room for error then there should be more confidence. When us-
ing a symbol for a multiplier, we will use z∗ (where z refers to the normal
distribution).

The other factor is the standard error. This depends on p̂ to some degree.
(It is smaller if p̂ is close to 0 or 1.) More importantly, is the presence of

√
n

in the denominator. If n is larger, the standard error will be smaller, hence
the margin of error is smaller. This too should make sense—larger samples
give more confidence in their results. The square root can cause frustration.
To halve the margin of error for the same p̂ requires four times the sample
size.

Surprisingly, what isn’t involved is the size of the population. That means
a random sample of size 1,000 from a population of 300, 300 thousand, or
300 million would have the same margin of error, depending only on p̂, n,
and α. This is great when sampling at random from a population like the
United States—just 1,012 people can be used to make an inference about all
Americans with a margin of error of just over 3%.

For reference, we have the following.

Confidence interval for a proportion

Let p̂ be the sample proportion from a random sample and
suppose n is so large that the random variable ( p̂ − p)/SE is
approximately normal. Then a (1− α) · 100% confidence inter-
val for p based on p̂ is given by

p̂± z∗
√

p(1− p)
n

.

The function prop.test will compute a confidence interval based on val-
ues x and n, though through a slightly different formula. The basic call is
prop.test(x, n, conf.level = 0.95) where x is the number of success, n
the number of trials, and conf.level the confidence level, with default of
0.95. The similarly used function binom.test employs the binomial distribu-
tion to compute an exact confidence interval.

• Example 8.3: Physical activity for college students
A biology student reads that moderate physical activity is defined as an ac-
tivity that burns about 150 calories of energy per day. She wants to know
what percent of her college’s 1,812 students achieve this level at least 5 times
per week. To do so, with the aid of some friends, she finds a random sample
of 125 students of which 80 said they engaged in moderate exercise 5 or more
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Figure 8.2: Relationship between multiplying factor z∗ and confidence level
(1− α) · 100%. Similar pictures could be made for distributions other than
the normal.

times per week. What is a 90% confidence level for the proportion of all 1,812
students?

This can be answered many ways. We begin with the basic R commands:

x <- 80; n <- 125
phat <- x/n
alpha <- 1 - 0.90
zstar <- qnorm(1 - alpha/2)
SE <- sqrt(phat * (1 - phat) / n)
MOE <- zstar * SE
phat + c(-1, 1) * MOE

## [1] 0.5694 0.7106

We can compare to the value returned by prop.test:

prop.test(x, n)

##
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## 1-sample proportions test with continuity correction
##
## data: x out of n, null probability 0.5
## X-squared = 9.248, df = 1, p-value = 0.002358
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.5488 0.7225
## sample estimates:
## p
## 0.64

The output of prop.test is more verbose than needed. Unfortunately
there is no base function to get just the confidence level. This function, like
binom.test, actually returns a list that gets displayed in the manner above.
One can work with just the return value though.

In the following, using binom.test, we see how to pull out the component
of the list related to the confidence interval:

binom.test(x, n)$conf.int

## [1] 0.5493 0.7239
## attr(,"conf.level")
## [1] 0.95

The UsingR package provides a confint convenience method: 2

confint(binom.test(x, n))

## (0.55, 0.72) with 95 percent confidence

••

• Example 8.4: The missing confidence level
In United States’ newspapers the results of a survey are often printed with
the sample proportion, the sample size, and a margin of error. The confidence
level is almost always missing but can be inferred from the three pieces of
information. If a survey has p̂ = .57, n = 1,000, and a margin of error of 3
percentage points, what is α?

Assuming the survey is done with a random sample, we are given that
z∗SE( p̂) = .03 and SE=

√
.57 · (1− .57)/1000. Solve for z∗ and then 1− α as

follows:

2The confint function is typically used with R’s model formula. It is added to the UsingR
package just to streamline the exposition.
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zstar <- 0.03 / sqrt(.57*(1-.57)/1000)
alpha <- 2* pnorm(-zstar)
(1-alpha) * 100

## [1] 94.47

There is an implied 95% confidence level. ••

Problems

8.1 Find an example in the media in which the results of a poll are presented.
Identify the population, the size of the sample, the confidence interval, the
margin of error, and the confidence level.

8.2 A random sample from the United States population is taken by using
listed residential phone numbers. Which segments of the population would
be missed by this sampling method?

8.3 The web site http://www.cnn.com conducts daily polls. Explain why this
disclaimer is needed:

This QuickVote is not scientific and reflects the opinions of
only those Internet users who have chosen to participate. The
results cannot be assumed to represent the opinions of Internet
users in general, nor the public as a whole.

8.4 Suppose a Zogby poll with 1,013 randomly selected participants and the
http://www.cnn.com poll (see the previous problem) with 80,000 respondents
ask the same question. If there is a discrepancy in the sample proportion,
which would you believe is closer to the unknown population parameter?

8.5 Find 80% and 90% confidence intervals for a survey with n = 100 and
p̂ = 0.45.

8.6 A student wishes to find the proportion of left-handed people at her col-
lege. She surveys 100 fellow students and finds that only 5 are left-handed.
If she computed a 95% confidence interval would it contain the value of
p = 1/10?

8.7 Of the last ten times you’ve dropped your toast, it has landed sticky-side
down nine times. If these are a random sample from the Bernoulli(p) distri-
bution, find an 80% confidence interval for p, the probability of the sticky
side landing down.
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8.8 A New York Times article from October 9, 2003, contains this explanation
about an exit survey for a California recall election:

In theory, in 19 cases out of 20, the results from such polls
should differ by no more than plus or minus two percentage
points from what would have been obtained by seeking to in-
terview everyone who cast a ballot in the recall election.

Assume a simple random sample and p̂ = .54. How big was n?

8.9 An erstwhile commercial claimed that “Four out of five dentists surveyed
would recommend Trident for their patients who chew gum.”

Assume the results were based on a random sample from the population
of all dentists. Find a 90% confidence interval for the true proportion if the
sample size was n = 5. Repeat with n = 100 and n = 1,000.

8.10 A survey is taken of 250 students, and a p̂ of 0.45 is found. The same
survey is repeated with 1,000 students, and the same p̂ value is found. Com-
pare the two 95% confidence intervals. What is the relationship? Is the margin
of error for the second one four times smaller? If not, how much smaller is it?

8.11 How big a survey is needed to be certain that a 95% confidence interval
has a margin of error no bigger than 0.01? How does this change if you are
asked for an 80% confidence interval?

8.12 The phrasing, “The true value, p, is in the confidence interval with 95%
probability” requires some care. Either p is or isn’t in a given interval. What
it means is that if we repeated the sampling, there is a 95% chance the true
value is in the random interval. We can investigate this with a simulation.
The commands below will find several confidence intervals at once.

M <- 50; n <- 20; p <- .5; # toss 20 coins 50 times,
alpha <- 0.10;
zstar <- qnorm(1-alpha/2)
phat <- rbinom(M, n, p)/n # divide by n for proportions
SE <- sqrt(phat*(1-phat)/n) # compute SE

We can find the proportion that contains p using

sum(phat - zstar*SE < p & p < phat + zstar * SE)/n

## [1] 2.25

and draw a nice graphic with
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matplot(rbind(phat - zstar*SE, phat + zstar*SE),
rbind(1:m,1:m),type="l",lty=1)

abline(v=p) # indicate parameter value

Do the simulation above. What percentage of the 50 confidence intervals
contain p = 0.5?

8.2 Confidence intervals for the population mean

In this section, we follow the pattern of the last section to show how to create
a confidence interval based on x̄ to make statistical inference about a popu-
lation mean, µ.

Let x1, x2, . . . , xn be a random sample from a normal population with mean
µ and standard deviation σ. Then this statistic

Z =
x̄− µ

σ/
√

n
=

x̄− µ

SD(x̄)

will have a standard normal distribution. This implies, for example, that
roughly 95% of the time Z is no larger than 2 in absolute value. Were σ
known, we could use this to create a confidence interval for µ based on x̄.

Unfortunately, it is a rare example where the standard deviation is known,
but the mean is not.

As in the last section, we replace the standard deviation in the above
with the standard error, simply by estimating σ with the sample standard
deviation s. (SE(x̄) = s/

√
n.) This gives:

T =
x̄− µ

s/
√

n
=

x̄− µ

SE(x̄)
=

observed− expected
SE

.

In the past section, when encountering a similar statistic, it was assumed
that n was large enough so that the central limit theorem implies the sam-
pling distribution was approximately the standard normal. For this statistic,
this will also be the case for large values of n, as can be seen empirically in
Figure 7.4. This will also be the case for populations which are non-normal,
though “large enough” will depend on the population’s characteristics.

However, for small values of n the distribution of T is not normal. It
was Gosset [26] who computed the distribution of the above statistic for a
normally distributed population. It has the t-distribution with n− 1 degrees
of freedom.

The t-distribution is a symmetric, bell-shaped distribution that asymptot-
ically approaches the standard normal distribution but for small n has fatter
tails. The degrees of freedom is a parameter for this distribution the way the
mean and standard deviation are for the normal distribution.

As with the normal distribution, the t-distribution allows us to solve for
either t∗ or α in the following equation, assuming one or the other is known:
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P(−t∗ <
x̄− µ

SE(x̄)
< t∗) = 1− α.

This can be rewritten algebraically as

P(x̄− t∗ · SE< µ < x̄ + t∗ · SE) = 1− α,

a form which leads easily to a confidence interval.

Confidence intervals for the mean

Let x1, x2, . . . , xn be a random sample from a normal popula-
tion with mean µ and variance σ2. A (1− α)100% confidence
interval for µ is given by

x̄± t∗SE(x̄),

where the multiplier t∗ is related to α through the t-distribution
with n− 1 degrees of freedom.

For unsummarized data, the function t.test will compute confidence
intervals. A template for its usage is

t.test(x, conf.level=0.95)

The data is stored in a data vector (named x above) and the confidence level
is specified with conf.level.

Finding t∗ with R Computing the value of t∗ for a given α and vice versa
is done in a manner similar to finding z∗, except that a different density
is used. Changing to a new density requires nothing more than using the
proper family name—t, for the t-distribution, and norm for the normal—and
specifying the parameter values. In particular, if n is the sample size, then the
two are related as follows:

tstar <- qt(1 - alpha / 2, df=n - 1)
alpha <- 2 * pt(-tstar, df=n - 1)

By way of contrast, for z∗ the corresponding commands are

zstar <- qnorm(1 - alpha / 2)
alpha <- 2 * pnorm(-zstar)

• Example 8.5: Average height
Students in a class of 30 have an average height of 66 inches, with a standard
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deviation of 4 inches. Assume that these heights are normally distributed,
and that the class can be considered a random sample from the entire college
population. What is an 80% confidence interval for the mean height of all the
college students?

Our assumptions allow us to apply the confidence interval for the mean,
so the answer is x̄± t∗SE. Computing gives

xbar <- 66; s <- 4; n <- 30
alpha <- 1 - 0.80
tstar <- qt(1 - alpha/2, df = n-1) # 1.311
SE <- s/sqrt(n)
MOE <- tstar * SE
xbar + c(-1,1) * MOE

## [1] 65.04 66.96

••

• Example 8.6: Making coffee
A barista at “t-test espresso” has been trained to set the bean grinder so
that a 25-second espresso shot results in 2 ounces of espresso. Knowing that
variations are the norm, he pours eight shots and measures the amounts to be
1.95, 1.80, 2.10, 1.82, 1.75, 2.01, 1.83, and 1.90 ounces. Find a 90% confidence
interval for the mean shot size. Does it include 2.0?

As we have the data, we can use t.test directly. We enter in the data,
verify normality (with a quantile-quantile plot that is not shown), and then
call t.test:

ozs <- c(1.95, 1.80, 2.10, 1.82, 1.75, 2.01, 1.83, 1.90)
qqnorm(ozs) # approximately linear
confint(t.test(ozs, conf.level=0.80))

## (1.84, 1.95) with 80 percent confidence

Finding the confidence interval to be (1.84,1.95), the barista sees that 2.0
is not in the interval. The barista adjusts the grind to be less fine and switches
to decaf. ••

The T-statistic is robust The confidence interval for the mean relies on the
fact that the sampling distribution of T = (x̄ − µ)/SE is the t-distribution
with n− 1 degrees of freedom. This is true when the xi are a random sample
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from a normal population. What if that assumption in our model for the data
is not appropriate?

If n is small, we can do simulations to see that the distribution of T is still
approximately the t-distribution if the parent distribution of the xi is not too
far from normal. That is, the tails can’t be too long, or the skew can’t be too
great. When n is large, the central limit theorem applies.

A statistic whose sampling distribution doesn’t change dramatically for
moderate changes in the population distribution is called a robust statistic.

• Example 8.7: Likert data
Many questionnaires are based on a 5-point scale, often called a Likert scale.
If these values are numeric (e.g., one through five) can a t-test be used? Let’s
look at a simulation. where there are n = 10 questions.

k <- 5 # answers per question
n <- 10 # number of questions
tstat <- function(x, mu=0) (mean(x) - mu)/(sd(x)/sqrt(length(x)))
res <- replicate(2000, {
xs <- sample(1:k, n, replace=TRUE)
tstat(xs, (k+1)/2)

})
## look at one quantile
sum(res > qt(0.05, df=n-1, lower.tail=FALSE)) / length(res)

## [1] 0.049

The value of 0.049 is very close to the value 0.05, as would be the case if
the sampling distribution were the t-distribution. Figure 8.3 shows quantile-
quantile plots against the t-distribution for simulations with k = 2, 5, and
15. Clearly, when there are just two choices the distribution is not the t-
distribution. Unfortunately even with 5 choices, the answers are often con-
centrated on just one or two. A common strategy to avoid this is to create
subscores by summing related questions. ••

One-sided confidence intervals

When finding a confidence interval for the mean for a given α, we found t∗ so
that P(−t∗ ≤ Tn−1 ≤ t∗) = 1− α. This method returns symmetric confidence
intervals. The basic idea is that the area under the density of the sampling
distribution that lies outside the confidence interval is evenly split on each
side. This leaves α/2 area in each tail. This approach is not the only one.
This extra area can be allocated in any proportion to the left or right of the
confidence interval. One-sided confidence intervals put the area all on one
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Figure 8.3: Simulations of the T-statistic for Likert data with k = 2, 5, and 15.

side or the other. For confidence intervals for the mean, based on the T-
statistic, these would be found for a given α by finding t∗ such that P(t∗ ≤
T) = 1− α or P(T ≤ t∗) = 1− α.

In R, the prop.test, binom.test, and t.test functions can return one-
sided confidence intervals. When the argument alt="less" is used, an inter-
val of the type (−∞,b] is printed. Similarly, when alt="greater" is used, an
interval of the type [b,∞) is printed.

• Example 8.8: Serving coffee
The barista at “t-test espresso” is told that the optimal serving temperature
for coffee is 180°F. Five temperatures are taken of the served coffee: 175, 185,
170, 184, and 175 degrees. Find a 90% confidence interval of the form (−∞,b]
for the mean temperature.

Using t.test with alt="less" will give this type of one-sided confidence
interval:

x <- c(175, 185, 170, 184, 175)
t.test(x,conf.level = 0.90, alt="less")

##
## One Sample t-test
##
## data: x
## t = 61.57, df = 4, p-value = 1
## alternative hypothesis: true mean is less than 0
## 90 percent confidence interval:
## -Inf 182.2
## sample estimates:
## mean of x
## 177.8

The confidence interval contains the value of 180 degrees. ••
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Problems

8.13 A hard-drive manufacturer would like to ensure that the mean time be-
tween failures (MTBF) for its new hard drive is 1 million hours. A stress test
is designed that can simulate the workload at a much faster pace. The testers
assume that a test lasting 10 days correlates with the failure time exceeding
the 1-million-hour mark. In stress tests of 15 hard drives they found an av-
erage of 9.5 days, with a standard deviation of 1 day. Does a 90% confidence
level include 10 days?

8.14 The stud.recs (UsingR) data set contains a sample of math SAT scores
from some population in the variable sat.m. Find a 90% confidence interval
for the mean math SAT score for this data.

8.15 For the homedata (UsingR) data set find 90% confidence intervals for both
variables y1970 and y2000, assuming the sample represents some population.
Use t.test, but first discuss whether the model assumptions are appropriate.

8.16 The variable weight in the kid.weights data set contains the weights of
a random sample of children. Find a 90% confidence interval for the weight
of 5-year-olds. You’ll need to isolate just the 5-year-olds’ data first. Here’s one
way:

yr5 <- subset(kid.weights, subset= 5*12 <= age & age < 6*12)

8.17 The brightness data set contains information on the brightness of stars
in a sector of the sky. Find a 90% confidence interval for the mean, assuming
this data is a sample from the population of all visible stars.

8.18 The data set normtemp contains measurements of 130 healthy, randomly
selected individuals. The variable temperature contains normal body tem-
perature. Does the data appear to come from a normal distribution? Is so,
find a 90% confidence interval for the mean normal body temperature of the
population that was sampled. Does it include 98.6°F?

8.19 The t-distribution is also called the Student t-distribution. A Guinness
Brewery employee, William Gosset, derived the distribution of T to handle
small samples. (Large samples of beer presumably led to less publishable
science.) As Guinness did not allow publication of research results at the
time, Gosset chose to publish under the pseudonym Student. The journal
chosen was Pearson’s journal, a colleague of Gosset and pioneer of statistics.

Gosset applied his research to a data set containing height and left-
middle-finger measurements of 3,000 criminals. These values were written
on cards and randomly sorted into 750 samples, each containing four crimi-
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nals. (This is how simulations were done previously.) The data is available in
the Macdonell (HistData) data set.

Run a simulation using 750 samples of size 4. Use quantile to find a 95%
confidence interval. Compare to that found with t.test for a single sample
of size 4.

As the data is tabulated, you’ll need to expand it:

finger <- with(Macdonell, rep(finger, frequency))

8.20 We can investigate how robust the T-statistic is to changes in the un-
derlying parent population from normality. In particular, we can verify that
if the parent population is not too skewed or is symmetric without too heavy
a tail then the T-statistic will still have the t-distribution for its sampling dis-
tribution. (This is for small samples where n is not so large that the central
limit theorem is applicable.)

A simulation of the T-statistic when xi are Normal(0,1) may be done as
follows:

n <- 10; M <- 2000
res <- replicate(M, {
x <- rnorm(n)
(mean(x) - 0)/(sd(x)/sqrt(n))

})
qqplot(res, rt(M, df=n-1)) # compare to t-distribution

The quantile-quantile plot compares the distribution of the sample with
a sample from the t-distribution. If the above is executed, it should produce
a graphic with points that are close to linear, as the sampling distribution is
the t-distribution.

To test different parent populations you can change the line x <- rnorm(n)
to some other distributions with mean 0. For example, try a short-tailed dis-
tribution with x <- runif(n)-1/2; a symmetric, long-tailed distribution with
x <- rt(n, 3); a not so long-tailed, symmetric distribution with x <- rt(n,
30); and a skewed distribution with x <- rexp(n) - 1.

8.21 We can compare the relationship of the t-distribution with n− 1 degrees
of freedom with the normal distribution in several ways. As n gets large, the
t-distribution converges to the standard normal. But what happens when n
is “small,” and what do we mean by “large?”

A few comparative graphs can give us an idea. For n = 10 we can use
boxplots of simulated data to examine the tails, or we can compare plots of
theoretical quantiles or densities. These plots are created as follows:
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n <- 10
## simulated data
boxplot(rt(1000, df=n - 1), rnorm(1000))
## theoretical qqplots
x <- seq(0, 1, length=150)
plot(qt(x, df=n - 1), qnorm(x))
abline(0, 1)
## compare densities
curve(dnorm(x), -3.5, 3.5)
curve(dt(x, df=n - 1), lty=2, add=TRUE)

Repeat the above for n = 3, 25, 50, and 100. What value of n seems “large”
enough to say that the two distributions are essentially the same?

8.22 When the parent population is Normal(µ,σ) with known σ, then confi-
dence intervals of the type

x̄± z∗SD(x̄) and x̄± t∗SE(x̄)

are both applicable. We have that far enough in the tail, z∗ < t∗, but some-
times s < σ, so there is no clear winner as to which confidence interval will
be smaller for a given sample.

Run a simulation 200 times in which the margin of error is calculated both
ways for a sample of size 10 with σ = 2 and µ = 0. Use a 90% confidence level.
What percent of the time was the confidence interval using SD(x̄) smaller?

8.3 Other confidence intervals

To form confidence intervals, we have used the key fact that certain statistics,

p̂− p
SE

and
x̄− µ

SE
,

have known sampling distributions that do not involve any population pa-
rameters. From this, we could then solve for confidence intervals for the pa-
rameter in terms of known quantities.

In general, such a statistic is called a pivotal quantity and can be used to
generate a number of confidence intervals in various situations.

Confidence interval for σ2

For example, if the xi are i.i.d. normals, then the distribution of

(n− 1)s2

σ2
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was shown by Helmert in 1876 to be the χ2-distribution (chi-squared) with
n− 1 degrees of freedom. This fact allows us to solve for confidence intervals
for σ2 in terms of the sample variance s2.

In particular, a (1− α) · 100% confidence interval can be found as follows.
For a given α, let l∗ and r∗ solve

P(l∗ ≤ χ2
n−1 ≤ r∗) = 1− α.

If we choose l∗ and r∗ to yield equal areas in the tails, we can find them
with

n <- 10; alpha <- 1 - 0.90 # say
lstar <- qchisq( alpha/2, df=n-1)
rstar <- qchisq(1-alpha/2, df=n-1)

Then

P(l∗ ≤ (n− 1)s2

σ2 ≤ r∗) = 1− α

can be rewritten as

P(
(n− 1)s2

r∗
≤ σ2 ≤ (n− 1)s2

l∗
) = 1− α.

In other words, the interval ((n− 1)s2/r∗, (n− 1)s2/l∗) gives a (1− α) · 100%
confidence interval for σ2.

• Example 8.9: How long is a commute?
A commuter believes her commuting times are independent and vary accord-
ing to a normal distribution, with unknown mean and variance. She would
like to estimate the variance to get an idea of the spread of times, knowing
then it is unlikely that a commute would be two or more standard deviations
longer than the average commute.

To compute the variance, she records her commute time on a daily basis.
Over 10 commutes she reports a mean commute time of 25 minutes, with
a sample variance of 12 minutes. What is a 95% confidence interval for the
population variance?

We are given s2 = 12 and n = 10, and we assume each xi is normal and
i.i.d. From this we find

s2 <- 12; n <- 10
alpha <- 1 - 0.95
lstar = qchisq(alpha/2, df=n - 1)
rstar = qchisq(1 - alpha/2, df=n - 1)
(n-1) * s2 * c(1/rstar, 1/lstar) # CI for sigma squared

## [1] 5.677 39.994
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After taking square roots, we get a 95% confidence interval for σ, which is
(2.383,6.324). ••

Problems

8.23 Let x1, x2, . . . , xn and y1,y2, . . . ,ym be two i.i.d. samples with sample vari-
ances sx and sy respectively. A confidence interval for the equivalence of
sample variances can be given from the following statistic:

F =
(s2

x/σ2
x)

(s2
y/σ2

y )
.

If the underlying xi and yi are normally distributed, then the distribution
of F is known to be the F-distribution with n − 1 and m − 1 degrees of
freedom. That is, F is a pivotal quantity, so probability statements such as
P(a ≤ (s2

x/σ2
x)/(s2

y/σ2
y ) ≤ b) can be answered with the known quantiles of

the F-distribution. For example,

n <- 11; m <- 16
alpha <- 1 - 0.90
qf(c(alpha/2, 1- alpha/2), df1=n-1, df2=m-1)

## [1] 0.3515 2.5437

says that P(0.3515 ≤ (s2
x/s2

y)/(σ2
x /σ2

y ) ≤ 2.5437) = 0.9 when n = 11 and m =
16. That is,

1
2.5437

s2
x

s2
y
<

σ2
x

σ2
y
<

1
0.3515

s2
x

s2
y

with 90% confidence.
Suppose n = 10,m = 20, sx = 2.3, and sy = 2.8. Find an 80% confidence

interval for the ratio of σx/σy.

8.24 Assume our data, x1, x2, . . . , xn, is uniform on the interval [0,θ] (θ is an
unknown parameter). Set max to be the maximum value in the data set. Then
the quantity max/θ is pivotal with distribution

P(
max

θ
< x) = xn, 0≤ x ≤ 1.

Thus P(max/x < θ) = xn. As θ is always bigger than max(X), we can solve for
xn = α and get that θ is in the interval [max,max/x] with probability 1− α.

Use this fact to find a 90% confidence interval for the number of entries
in the 2002 New York City Marathon. The place variable from the data set
nyc.2002 contains the place of the runner in the sample and is randomly
sampled from all the possible places.



8.4. CONFIDENCE INTERVALS FOR DIFFERENCES 281

2011 2012 2013

40
45

50
55

60

date

ap
pr
ov
e

Figure 8.4: Fluctuating presidential approval ratings in United States from
early 2010 through spring 2013.

8.4 Confidence intervals for differences

When we have two samples, we might ask whether the two came from the
same population. For example, Figure 8.4 shows results for several polls on
presidential approval rating from early 2010 to early 2013.3 It is clear that the
rating varies over time, but for any given time period the polls are all pretty
much in agreement. This is to be expected, as the polls are tracking the same
population proportion for a given time period. However, how can we tell if
the differences between polls for different time periods are due to a change
in the underlying population proportion or merely an artifact of sampling
variation? One method is to estimate the difference between the population
parameters computing confidence intervals to assess how confident we are
about the estimate.

3A similar figure appeared in a February 9, 2004, edition of Salon (http://www.salon.com)
for then President Bush. The data for this figure is in ObamaApproval, for the Bush numbers one
has BushApproval.
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Difference of proportions

We compare two proportions when assessing the results of surveys, as with
the approval ratings, but we could do the same to compare other proportions,
such as market shares.

To see if a difference in the proportions is explainable by sampling error,
we look at p̂1 − p̂2 and find a confidence interval for p1 − p2. This can be
done, as the statistic

Z =
( p̂1 − p̂2)− (p1 − p2)

SE( p̂1 − p̂2)
=

observed− expected
SE

,

is a pivotal quantity with standard normal distribution when n1 and n2 are
large enough. The standard error is known to be:

SE( p̂1 − p̂2) =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
.

Z has an asymptotic normal distribution, as the central limit theorem will
apply for large enough values of n1 and n2.

The function prop.test can do the calculations for us. We call it as

prop.test(x, n, conf.level=0.95)

The data is specified in terms of counts, x, and sample sizes, n, using data
vectors containing two entries. The results will differ slightly from the above
description, as prop.test uses a continuity correction.

• Example 8.10: Comparing poll results
In a span of two weeks the same poll is taken. The first time, 1,000 people
are interviewed, and 560 agree; the second time, 1,200 are interviewed, and
570 agree. Find a 95% confidence interval for the difference of proportions.

Rather than do the work by hand, we let prop.test find a confidence
interval.

prop.test(x=c(560,570), n=c(1000,1200), conf.level=0.95)

##
## 2-sample test for equality of proportions with
## continuity correction
##
## data: c(560, 570) out of c(1000, 1200)
## X-squared = 15.44, df = 1, p-value = 8.53e-05
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.04231 0.12769
## sample estimates:
## prop 1 prop 2
## 0.560 0.475
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We see that a 95% confidence interval is (0.04231,0.12769), which misses
including 0. We conclude that there appears to be a real difference in the
population parameters. ••

Difference of means

Many problems involve comparing independent samples to see whether they
come from identical parent populations. A teacher could compare two sec-
tions of the same class to look for differences; a pharmaceutical company
could compare the effects of two drugs; or a manufacturer could compare
two samples taken at different times to monitor quality control.

Let x1, x2, . . . , xnx and y1,y2, . . . ,yny be the two samples with sample means
x̄ and ȳ and sample variances s2

x and s2
y. Assume the populations for each

sample are normally distributed. The sampling distribution of x̄ − ȳ is
asymptotically normal, as each is asymptotically normal. As with the one-
sample T-statistic, if we normalize by the standard error:

T =
(x̄− ȳ)− (µx − µy)

SE(x̄− ȳ)
(8.1)

the result will have an (approximate) t-distribution and for large values of nx
and ny be approximately a standard normal.

The standard error of x̄− ȳ is computed differently depending on the as-
sumptions. First, for independent random variables, the variance of a sum is
the sum of a variance. This is used to show that VAR(x̄− ȳ) = σ2

x /nx + σ2
y /ny.

Taking a square root yields the standard deviation. It depends on two un-
known population parameters—the two standard deviations. The standard
error is found by replacing these by an appropriate estimate:

• When the two population variances are equal, the data can be pooled
to give an estimate of the common variance σ2. Pooling then uses more
data to make an estimate, so is intuitively more accurate. Let s2

p be the
pooled estimate. It is defined by

s2
p =

(nx − 1)s2
x + (ny − 1)s2

y

nx + ny − 2
. (8.2)

• When the population variances are not equal, the two sample standard
deviations are used to estimate the respective population standard de-
viations.

The standard error is then

SE(x̄− ȳ) =


√

s2
p(1/nx + 1/ny) if σx = σy,√

s2
x/nx + s2

y/ny if σx 6= σy.
(8.3)



284 CHAPTER 8. CONFIDENCE INTERVALS

The statistic T will have a sampling distribution given by the t-distribution.
When the variances are equal, the sampling variation of sp is smaller, as all
the data is used to estimate σ. This is reflected in a larger value of the degrees
of freedom. The values used are

degrees of freedom =


nx + ny − 2 if σx = σy,

(
s2

x
nx

+
s2

y
ny

)2
·
(

(s2
x/nx)2

nx−1 +
(s2

y/ny)2

ny−1

)−1
if σx 6= σy.

(8.4)
(The latter value is the Welch approximation.)

Given this, the T-statistic is pivotal, allowing for the following confidence
intervals.

Confidence intervals for difference of means for two
independent samples

Let x1, x2, . . . , xnx and y1,y2, . . . ,yny be two independent sam-
ples with distribution Normal(µi,σi), i = x or y. A (1− α) · 100%
confidence interval of the form

(x̄− ȳ)± t∗SE(x̄− ȳ)

can be found where t∗ is given by the t-distribution. This is
based on the sampling distribution of T given in Equation 8.1.
This distribution is the t-distribution. The standard error and
degrees of freedom differ depending on whether or not the
variances are assumed equal in the model for the data. The
standard error is given by Equation 8.3 and the degrees of free-
dom by Equation 8.4.

If the unsummarized data is available, the t.test function can be used to
compute the confidence interval for the difference of means. It is used as

t.test(x, y, var.equal=FALSE, conf.level=0.95)

The data is contained in two data vectors, x and y. The assumption on the
equality of variances is specified by the argument var.equal= with default of
FALSE.

• Example 8.11: Comparing independent samples
In a clinical trial, a weight-loss drug is tested against a placebo to see whether
the drug is effective. The amount of weight loss for each group is given by
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x <- c(0, 0, 0, 2, 4, 5, 13, 14, 14, 14, 15, 17, 17)
y <- c(0, 6, 7, 8, 11, 13, 16, 16, 16, 17, 18)
boxplot(list(placebo=x, ephedra=y), col="gray") # compare spreads

Find a 90% confidence interval for the difference in mean weight loss.
As there is no expectation that the variability should be changed by the

treatment, we inspect boxplots of the data (not shown). The assumption of
equal variances appears reasonable prompting the use of t.test with the
argument var.equal=TRUE.

confint(t.test(x,y, var.equal=TRUE))

## (-8.28, 2.70) with 95 percent confidence

By comparison, if we did not assume equal variances, then the computa-
tion yields:

confint(t.test(x,y))

## (-8.19, 2.61) with 95 percent confidence

With var.equal=TRUE, we have 13 + 11− 2 = 22 degrees of freedom. In
this example, the approximate degrees of freedom in the unequal variance
case is found to be 21.99—essentially identical. The default 95% confidence
interval is (−8.279,2.699), so the difference of 0 is still in the confidence in-
terval, even though the sample means differ quite a bit at first glance (8.846
versus 11.636). ••

Formula interface The t.test function has a formula interface. The speci-
fication is y ~ f, where f is a two-level factor. This can be convenient when
the data is stored in the long format.

For example, the GaltonFamilies (HistData) data set lists the height and
gender of 934 children. A 95% confidence interval for the difference in height
by gender based on this sample (which is assumed to be a random sample
from a population of interest) could be found with:

out <- t.test(childHeight ~ gender, GaltonFamilies, conf.level=0.95)
confint(out)

## (-5.45, -4.81) with 95 percent confidence
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Matched samples

Sometimes we have two samples that are not independent. They may be
paired or matched up in some way. A classic example in statistics involves
the measurement of shoe wear. If we wish to measure shoe wear, we might
give five kids one type of sneaker and five others another type and let them
play for a while. Afterward, we could measure shoe wear and compare. The
only problem is that variation in the way the kids play could mask small
variations in the wear due to shoe differences. One way around this is to put
mismatched pairs of shoes on all ten kids and let them play. Then, for each
kid, the amount of wear on each shoe is related, but the difference should be
solely attributable to the differences in the shoes.

If the two samples are x1, x2, . . . , xn and y1,y2, . . . ,yn, then the statistic

T =
(x̄− ȳ)− (µx − µy)

SE(x̄− ȳ)

is pivotal with a t-distribution. What is the standard error? As the samples
are not independent, the standard error for the two-sample T-statistic is not
applicable. Rather, it is just the standard error for the single sample xi − yi.

Comparison of means for paired samples

Let x1, x2, . . . , xn and y1,y2, . . . ,yn be two samples. If the
sequence of differences, xi − yi, is an i.i.d. sample from a
Normal(µ,σ) distribution, then a (1− α) · 100% confidence in-
terval for the difference of means, µx − µy, is given by

(x̄− ȳ)± t∗s/
√

n,

where s is the sample standard deviation of the derived sam-
ple xi − yi and t∗ is found from the t-distribution with n − 1
degrees of freedom.

The t.test function can compute the confidence interval. If x and y store
the data, the function may be called as either

t.test(x, y, paired=TRUE) or t.test(x - y)

We use the argument conf.level=... to specify the confidence level.

• Example 8.12: Comparing shoes
The shoes (MASS) data set contains shoe wear for ten children each wearing
two different shoes. By comparing the differences, we can tell whether the
two types of shoes have different mean wear amounts.



8.4. CONFIDENCE INTERVALS FOR DIFFERENCES 287

library(MASS)
names(shoes)

## [1] "A" "B"

### Alternately: with(shoes, t.test(A,B,conf.level=0.9,paired=TRUE))
with(shoes, {
out <- t.test(A-B, conf.level=0.9)
confint(out)

})

## (-0.63, -0.19) with 90 percent confidence

The 90% confidence interval does not include 0, indicating a certain confi-
dence in the two population means differing. ••

Problems

8.25 Two different AIDS-treatment “cocktails” are compared. For each, the
time it takes (in years) to fail is measured for seven randomly assigned pa-
tients. The data is:

Type 1 2 3 4 5 6 7 x̄ s

Cocktail 1: 3.1 3.3 1.7 1.2 0.7 2.3 2.9 2.24 0.99
Cocktail 2: 1.8 2.3 2.2 3.5 1.7 1.6 1.4 2.13 0.69

Find an 80% confidence interval for the difference of means. What as-
sumptions are you making on the data?

8.26 In determining the recommended dosage of AZT for AIDS patients,
tests were done comparing efficacy for various dosages. If a low dosage is
effective, then that would be recommended, as it would be less expensive
and would have fewer potential side effects.

A test to decide whether a dosage of 1,200 mg is similar to one of 400 mg
is performed on two random samples of AIDS patients. A numeric measure-
ment of a patient’s health is made, and the before-and-after differences are
recorded after treatment:

400 mg group 7 0 8 1 10 12 2 9 5 2
1200 mg group 2 1 5 1 5 7 −1 8 7 3

Find a 90% confidence interval for the differences of the means. What do
you assume about the data?
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8.27 The following data is from IQ tests for pairs of twins that were separated
at birth. One twin was raised by the biological parents, the other by adoptive
parents.

Foster 80 88 75 113 95 82 97 94 132 108
Biological 90 91 79 97 97 82 87 94 131 115

Find a 90% confidence interval for the differences of mean. What do you
assume about the data? In particular, are the two samples independent?

8.28 For the babies data set, the variable age contains the mother’s age and
the variable dage contains the father’s age for several babies. Find a 95% con-
fidence interval for the difference in mean age. Does it contain 0? What do
you assume about the data?

8.5 Confidence intervals for the median

The confidence intervals for the mean are based on the fact that the distribu-
tion of the statistic

T =
x̄− µ

SE(x̄)

is known. This is true when the sample is an i.i.d. sample from a normal
population or one close to normal. However, many data sets, especially long-
tailed skewed ones, are not like this. For these situations, nonparametric meth-
ods are preferred. That is, no parametric assumptions on the population dis-
tribution for the sample are made, although assumptions on its shape may
apply.

Confidence intervals based on the binomial distribution

The binomial distribution can be used to find a confidence interval for the
median for any continuous parent population. The key is to look at whether
a data point is more or less than the median. As the median splits the area
in half, the probability that a data point is more than the median is exactly
1/2. (We need a continuous distribution with positive density over its range
to say “exactly” here.) Let T count the number of data points more than the
median in a sample of size n. Then T is a Binomial(n,1/2) random variable.

Let x(1), x(2), . . . , x(n) be the sample after sorting from smallest to largest.
A (1− α) · 100% confidence interval is constructed by finding the largest j≥ 1
so that P(x(j) ≤M≤ x(n+1−j))≥ 1− α. In terms of T, this becomes the largest
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j so that P(j ≤ T ≤ n − j) ≥ 1− α, which in turn becomes a search for the
largest j with P(T < j) < α/2. We can find this in the data after sorting.

• Example 8.13: CEO compensation in 2013
The data set ceo2013 contains compensation for CEOs at 200 companies. A
random sample of size 10 is taken:

ceos <- ceo2013[sample(1:200, 10),
c("company_name_ticker", "cash_compensation")]

Based on this, find a 90% confidence interval for the median of the full 200.
As compensation is far from normally distributed, we will use the sign

test. First, let’s cut down to a reasonable scale:

ceos <- round(ceos[,2]/1e6, 2) # in millions
n <- length(ceos)
pbinom(0:n,n,1/2)

## [1] 0.0009766 0.0107422 0.0546875 0.1718750 0.3769531 0.6230469
## [7] 0.8281250 0.9453125 0.9892578 0.9990234 1.0000000

For a 90% confidence interval, α/2 = 0.05. Thus, j is 2, as P(T < 2) =
0.0107422, but P(T < 3) = 0.0546875. Sorting the data we get:

sort(ceos)

## [1] 2.58 3.25 3.40 3.51 3.85 5.00 6.07 6.99 7.53 20.45

This gives a confidence interval of (3.25,7.53). (The actual answer is 5.31.)
This process can be parameterized by α with:

alpha <- 1 - 0.90
n <- length(ceos)
j <- qbinom(alpha/2, n, 1/2)
sort(ceos)[c(j, n+1-j)]

## [1] 3.25 7.53

••

Confidence intervals based on signed-rank statistic

The Wilcoxon signed-rank statistic allows for an improvement on the confi-
dence interval given by counting the number of data points above the me-
dian. Its usage is valid when the Xi are assumed to be symmetric about their
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median. If this is so, then a data point is equally likely to be on the left or right
of the median, and the distance from the median is independent of what side
of the median the data point is on. If we know the median then we can rank
the data by distance to the median. Add up the ranks for the values where
the data is more than the median. The distribution of this statistic, under
the assumption, can be computed and used to give confidence intervals. It is
available in R under the family name signrank. In particular, qsignrank will
return the quantiles.

This procedure is implemented in the wilcox.test function. Unlike with
prop.test and t.test, to return a confidence interval when using wilcox.test
we need to specify that a confidence interval is desired with the argument
conf.int=TRUE.

• Example 8.14: CEO confidence interval
The data on CEOs is too skewed to apply this test, but after taking a log
transform we will see a symmetric data set.

Thus we can apply the Wilcoxon method to the log-transformed data, and
then transform back.

ans <- wilcox.test(log(ceos), conf.int=TRUE, conf.level=0.9)
confint(ans)

## (1.26, 1.98) with 90 percent confidence

confint(ans, transform=exp) # inverse of log.

## (3.51, 7.26) with 90 percent confidence

This produces a smaller confidence interval at the same level, which
should not be surprising—a stronger assumption about the shape of the data
gives more confidence in the answer. ••

Confidence intervals based on the rank-sum statistic

The t-test to compare samples is robust to nonnormality in the parent dis-
tribution but is still not appropriate when the underlying distributions are
decidedly nonnormal. However, if the two distributions are the same up to a
possible shift of center, then a confidence interval based on a nonparametric
statistic can be given.

Let f (x) be a density for a mean-zero distribution, and suppose we have
two independent random samples: the first, x1, x2, . . . , xnx , from a population
with density f (x− µx), and the second, y1,y2, . . . ,yny , from a population with
density f (x− µy). The basic statistic, called the rank-sum statistic, looks at all
possible pairs of the data and counts the number of times the x value is
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greater than or equal to the y value. If the population mean for the x values
is larger than the population mean for the y values, this statistic will likely
be large. If the mean is smaller, then the statistic will likely be small. The
distribution of this statistic is given by R with the wilcox family and is used
to give a confidence interval for the difference of the means.

The command wilcox.test(x, y, conf.int=TRUE) is used to find a con-
fidence interval for the difference in medians of the two data sets.

• Example 8.15: CEO pay in 2012
In the last example we considered compensation for a random sample of
CEOs in 2013. That data set also has past compensation. We take a sample
from that and see if there is a change in the median.

ceos_past <- ceo2013[sample(1:200, 10), "cash_compensation_past"]
ceos_past <- round(ceos_past / 1e6, 2) # in millions
ceos_past

## [1] 23.50 6.39 11.05 3.81 8.90 4.81 23.76 3.04 2.95 3.19

ceos # 2013 data

## [1] 3.25 3.85 2.58 3.51 6.99 20.45 7.53 3.40 5.00 6.07

Figure 8.5 shows two data sets that are quite skewed, so confidence in-
tervals based on the T-statistic would be inappropriate. Rather, as the two
data sets have a similar shape, we find the confidence interval returned by
wilcox.test. As before, we need to specify that a confidence interval is de-
sired. To answer our question, we’ll look at a 90% confidence interval and see
if it contains 0.

wilcox.test(ceos, ceos_past, conf.int=TRUE, conf.level=0.9)

##
## Wilcoxon rank sum test
##
## data: ceos and ceos_past
## W = 43, p-value = 0.6305
## alternative hypothesis: true location shift is not equal to 0
## 90 percent confidence interval:
## -5.39 1.14
## sample estimates:
## difference in location
## -0.785

The 90% confidence interval contains a value of 0.
This example would be improved if we had matched or paired data—

that is, the salaries for the same set of CEOs in the years 2012 and 2013—as
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Figure 8.5: Densities of 2012 and 2013 CEO compensations indicating simi-
larly shaped distributions with possible shift.

then differences in the sampling would be minimized. If that case is appro-
priate, then adding the argument paired=TRUE to wilcox.test computes a
confidence interval based on the signed-rank statistic. ••

Problems

8.29 The commuter revisited: the commuter records 20 commute times to
gauge her median travel time. The data has a sample median of 24 and is
summarized in this stem-and-leaf diagram:

> stem(commutes)
2 | 1112233444444
2 | 5569
3 | 113

If the data is appropriate for t.test, use that to give a 90% confidence in-
terval for the mean. Otherwise use wilcox.test (perhaps after a transform)
to give a confidence interval for the median.
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8.30 The data set u2 contains song lengths for several albums by the band U2.
How might you interpret the lengths as a sample from a larger population?
Use wilcox.test to construct a 95% confidence interval for the difference of
population means between the album October and the album The Joshua Tree.

8.31 The data set cfb contains a sampling of the data contained in the Survey
of Consumer Finances. For the variables AGE and INCOME find 95% confidence
intervals for the median.

8.32 We can simulate the signed-rank distribution and see that it applies
for any symmetric distribution regardless of tail length. The following will
simulate the distribution for n = 20 using normal data.

n <- 20
M <- 250
res <- replicate(M, {
x <- rnorm(n)
sum(rank(abs(x))[x>0]) # only add positive values

})

This can be plotted with

hist(res, probability=TRUE)
x <- 40:140
lines(x, dsignrank(x,n)) # density-like, but discrete

If you change the line x <- rnorm(x) to x <- rt(n,df=2), the underly-
ing distribution will be long tailed, and short tailed if you change it to x
<- runif(n,-1,1). Do both, and then compare all three samples. Are they
different or the same? What happens if you use skewed data, such as x <-
rexp(n)-1?
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Significance tests

Finding a confidence interval for a parameter is one form of statistical infer-
ence. A significance test, or test of hypothesis, is another. Rather than specify
a range of values for a population parameter, a significance test assumes a
value for the population parameter and then computes a probability based
on a sample given that assumption.

In Section 7.2 of Chapter 7 we discussed a hypothetical experiment to test
if consuming honey during exercise could increase performance. To look at
that question, two cohorts were formed by randomizing the available sub-
jects and for one of the cohorts a treatment was applied and results mea-
sured. The question of whether the treatment had an effect was asked. The
investigation assumed the role of the skeptic—all differences were due to the
random assignment and not the treatment. From this assumption and the
randomization in the experiment, a distribution of possible values was com-
puted that allowed us to quantify the question in terms of a probability, in
particular there was about an 8.57% chance of seeing the observed difference
or something more extreme.

That example showed a plausible means of turning a simple question into
one that lends itself to analysis. Namely, we assume some model for how the
data is produced and weigh how likely it is to produce the observed data.
The approach in that example is a prototype for a significance test. Before
formalizing a vocabulary surrounding significance tests, we next discuss a
familiar framework that highlights the approach.

• Example 9.1: A criminal trial
The ideas behind a significance test can be illustrated by analogy to a criminal
trial in the United States—as seen on TV. Imagine the following simplified
scenario: a defendant is charged with a crime and must stand trial. During
the trial, a prosecutor and defense lawyer respectively try to convince the
jury that the defendant is either guilty or innocent. The jury is supposed to
be unbiased. When deciding the defendant’s fate, the jurors are instructed to
assume that the defendant is innocent unless proven guilty beyond a shadow
of a doubt. At the end of the trial the jurors decide the guilt or innocence
of the defendant based on the strength of their belief in the assumption of
his innocence given the evidence. If the jurors believe it very unlikely that

294
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an innocent person could have evidence to the contrary, they will find the
defendant “guilty.” If it is not so unlikely, they will rule “not guilty.”

The system is not foolproof. A guilty man can go free if he is found not
guilty, and an innocent man can be erroneously convicted. The frequency
with which these errors occur depends on the threshold used to find guilt.
In a criminal trial, to decrease the chance of an erroneous guilty verdict, the
stringent shadow of a doubt criterion is used. In a civil trial, this phrasing is
relaxed to a preponderance of the evidence. The latter makes it easier to err with
a truly innocent person but harder to err with a truly guilty one. ••

Let’s rephrase the above example in terms of significance tests. The as-
sumption of innocence is replaced with the null hypothesis, H0. This stands
in contrast to the alternative hypothesis, HA. This would be an assumption
of guilt in the trial analogy. In a trial, this alternative is not used as an as-
sumption; it only gives a direction to the interpretation of the evidence. The
determination of guilt by a jury is not proof of the alternative, only a failure
of the assumption of innocence to explain the evidence well enough. A guilty
verdict is more accurately called a verdict of “not plausibly innocent.”

The performer of a significance test seeks to determine whether the null
hypothesis is reasonable given the available data. The evidence is replaced
by an experiment that produces a test statistic. The probability that the test
statistic is the observed value or is more extreme as implied by the alternative
hypothesis is calculated using the assumptions of the null hypothesis. This prob-
ability is called the p-svalue. This is like the weighing of the evidence—the
jury calculating the likelihood that the evidence agrees with the assumption
of innocence.

The calculation of the p-value is called a significance test. The p-value is
based on both the sampling distribution of the test statistic under H0 and the
single observed value of it during the trial. In words, we have

p-value = P(test statistic is the observed value or is more extreme |H0).

The p-value helps us decide whether differences in the test statistic from
the null hypothesis are attributable to chance or sampling variation, or to a
failure of the null hypothesis. If a p-value is small, the test is called statistically
significant, as it indicates that the null hypothesis is unlikely to produce more
extreme values than the observed one. Small p-values cast doubt on the null
hypothesis; large ones do not.

What is “large” or “small” depends on the area of application, but there
are some standard levels that are used. Some R functions will mark p-values
with significance stars, as described in Table 9.1. Although these are useful
for quickly identifying significance, the cutoffs are arbitrary, settled on more
for ease of calculation than actual relevance.
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p-value range significance stars common description

[0,0.001] *** extremely significant
(0.001,0.01] ** highly significant
(0.01,0.05] * statistically significant
(0.05,0.1] . could be significant
(0.1,1] not significant

Table 9.1: Level of significance for range of p-values.

In some instances, as with a criminal trial, a decision is made based on
the p-value. A juror is instructed that a defendant, to be found guilty, must
be thought guilty beyond a shadow of a doubt. A significance test is less
vague, as a significance level is specified that the p-value is measured against.
A typical significance level is 0.05 or one in twenty. If the p-value is less than
the significance level, then the null hypothesis is sometimes said to be rejected,
or viewed as false. If the p-value is larger than the significance level, then the
null hypothesis is accepted.

The words “reject” and “accept” are perhaps more absolute than they
should be. When rejecting the null, we don’t actually prove the null to be
false or the alternative to be true. All that is shown is that the null hypothesis
is unlikely to produce values more extreme than the observed value. When
accepting the null we don’t prove it is true, we just find that the evidence is
not too unlikely if the null hypothesis is true.

By specifying a significance level, we indirectly find values of the test
statistic that will lead to rejection. This allows us to specify a rejection region
consisting of all values for the observed test statistic that produce p-values
smaller than the significance level. The boundaries between the acceptance
and rejection regions are called critical values. The use of a rejection region
avoids the computation of a p-value: reject if the observed value is in the
rejection region and accept otherwise. We prefer, though, to find and report
the p-value rather than issue a simple verdict of “accept” or “reject.”

This decision framework has been used historically in scientific endeav-
ors. Researchers may be investigating whether a specific treatment has an
effect. They might construct a significance test with a null hypothesis of the
treatment having no effect, against the alternative hypothesis of some effect.
(In this case, the alternative hypothesis is commonly known as the research
hypothesis.) The significance test then determines the reasonableness of the
assumption of no effect. If this is rejected, there has been no proof of the
research hypothesis, only that the null hypothesis is not supported by the
data.

In the example of honey intake and exercise performance, the null hy-
pothesis, or the skeptic’s approach, is there is no effect. The alternative is that
there is a positive effect. The p-value is computed using the randomization
distribution, which is found assuming the null hypothesis is true. The p-value
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of 0.0857 is small, especially considering the size of the data set, but not below
the common 0.05 significance level. If you were asked if the null hypothesis
is accepted or rejected, the answer in this case would be “accepted.”

As with a juried trial, the system is not foolproof. When a decision is
made based on the p-value, mistakes can happen. If the null hypothesis is
falsely rejected, it is a Type-I error (innocent man is found guilty). If the null
hypothesis is false, it may be falsely accepted (guilty man found not guilty).
This is a Type-II error.

Here is another example to illustrate the process.

• Example 9.2: Which mean?
Imagine we have a widget-producing machine that sometimes goes out of
calibration. The calibration is measured in terms of a mean for the widgets.
How can we tell if the machine is out of calibration by looking at the output
of a single widget?

Assume, for simplicity, that the widgets produced are random numbers
that usually come from a normal distribution with mean 0 and variance 1.
When the machine slips out of calibration, the random numbers come from
normal distribution with mean 1 and variance 1. Based on the value of a sin-
gle one of these random numbers, how can we decide whether the machine
is in calibration or not?

This question can be approached as a significance test. We might assume
that the machine is in calibration (has mean 0), unless we see otherwise based
on the value of the observed number.

Let x be the random number. The model for the data is that x comes from
a normal distribution with unknown mean. The null hypothesis is that this
is 0, the alternative is that this is 1.

We usually write this as

H0 : µ = 0, HA : µ = 1,

where the assumption that the observed data is drawn from a normal distri-
bution with variance 1 is implicit.

Now, suppose we observe a value 0.7 from the machine. Is this evidence
that the machine is out of calibration?

The p-value in this case is the probability that a Normal(0,1) random vari-
able produces a value of 0.7 or more. This is 1 - pnorm(0.7,0,1), or 0.2420.
Why this probability? The calculation is done under the null hypothesis, so a
normal distribution with mean 0 and variance 1 is used. The observed value
of the test statistic is 0.7. Larger values than this are more extreme, given the
alternative hypothesis. This p-value is not very small, and there is no evi-
dence that the null hypothesis is false. It may be, if the alternative were true,
that a value of 0.7 or less is pnorm(.7,1,1), or 0.3821, so it, too, is not unlikely.
(See Figure 9.1.)
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Figure 9.1: The two figures show the area to the right of 0.7 for a mean-0
normal with standard deviation 1 and 1/

√
10 and the area to the left for

a mean-1 normal with similar spread. The left graphic points out that it is
hard to determine which of the two distributions a value of 0.7 would have
come from, as the spreads overlap quite a bit. This is not the case, when the
standard deviations are smaller, as illustrated on the right.

Even though 0.7 is closer to the mean of 1 than the mean of 0, it is really
not conclusive evidence that the null hypothesis (the assumption of calibra-
tion) is incorrect. The problem is that the two distributions are so “close”
together. It would be much easier to decide between the two if the means
were 10 units apart instead of just 1 (with the same variance). Alternatively,
if the standard deviations were smaller, the same would be true. This can be
achieved by taking averages, as we know that the standard deviation of an
average is σ/

√
n, or smaller than the population standard deviation by the

factor 1/
√

n.
With this in mind, suppose our test statistic is now the sample mean of a

random sample of ten widgets. How does our thinking change if the sample
mean is now 0.7?

The p-value looks similar, P(x̄ ≥ 0.7 |H0), but when we compute, we use
the sampling distribution of x̄ under H0, or Normal(0,1/

√
10). The p-value

is now 0.0134, as found by 1 - pnorm(0.7,0,1/sqrt(10)). This is illustrated
in the right graphic of Figure 9.1. Now the evidence is convincing that the
machine is out of calibration. ••

The above example illustrates the steps involved in finding a p-value:
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1. Specify some model for the underlying data. Our typical assumptions
will involve a parameterized family for the population, such as the nor-
mal distribution.

2. Identify H0 and HA, the null and alternative hypotheses.

3. Specify a test statistic that discriminates between the two hypotheses.
The sampling distribution of this statistic needs to be knowable under
the assumptions of the null hypothesis.

4. Collect the data, then find the observed value of the test statistic.

5. Using HA, specify values of the test statistic that are “extreme” under
H0 in the direction of HA. The p-value will be the probability of the
event that the test statistic is the observed value or more extreme.

6. Calculate the p-value under the null hypothesis. The smaller the p-
value, the stronger the evidence is against the null hypothesis.

9.1 Significance test for a population proportion

A researcher may wish to know whether a politician’s approval ratings are
falling, or whether unemployment rate is rising, or whether the poverty rate
is changing. In many cases, a known proportion exists. What is asked for is a
comparison against this known proportion. A test of proportion can be used
to help answer these questions.

Assume p0 reflects the historically true proportion of some variable of
interest. A researcher may wish to test whether the current unknown propor-
tion, p, is different from p0. The hypothesis are

H0 : p = p0,

versus an alternative hypothesis on p. Possible alternatives are

HA : p > p0, HA : p < p0, or HA : p 6= p0.

If the survey is a random sample from the target population, the number
of successes, x, is binomially distributed, p̂ = x/n, and p̂ will be approxi-
mately normal for large enough values of n. We might use p̂ directly as a test
statistic, but it is more common to standardize p̂, yielding the following:

Z =
p̂− E( p̂ |H0)

SD( p̂ |H0)
=

p̂− p0√
p0(1− p0)/n

.

We use the notation E( p̂ |H0) to remind ourselves that we use the null hy-
pothesis when calculating this expected value. In this case, if we assume H0
is true, then p0 is the expected value of p̂ and is assumed to be known. Thus,
we can use SD( p̂ |H0) =

√
(p0(1− p0))/n in our test statistic (as compared

to the use of SE( p̂) when we found confidence intervals for p).
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Figure 9.2: The computation of the p-value depends on the alternative hy-
pothesis, which determines what is meant by “more extreme.” The three
common alternatives are illustrated in the figure.

The p-value varies based on the alternative hypothesis. This is because
what is meant by “more extreme” for the value of the test statistic depends
on HA. In this instance there are three cases:

p-value =


P( p̂ ≤ observed value |H0) if HA : p < p0,
P( p̂ ≥ observed value |H0) if HA : p > p0,
P(| p̂− p0| ≥ |observed value− p0| |H0) if HA : p 6= p0.

(9.1)

The first two cases are “one-sided” or “one-tailed,” the last “two-sided” or
“two-tailed.” The absolute values in the third case can be confusing but are
there to say that large differences in either direction of p0 are “more extreme.”
Figure 9.2 illustrates the areas.

Significance test for a population proportion

A significance test for an unknown proportion between

H0 : p = p0, HA : p < p0, p > p0, or p 6= p0

can be performed with test statistic

Z =
p̂− p0√

p0(1− p0)/n
.

If p̂ is based on a simple random sample and n is large
enough, Z has a standard normal distribution under the null
hypothesis. The p-values can be computed from (9.1) or with
prop.test.



9.1. SIGNIFICANCE TEST FOR A POPULATION PROPORTION 301

• Example 9.3: Poverty-rate increase
In the year 2000, the poverty rate in the United States was around 11.7 per-
cent. By 2010, this rate had risen to 15.00 percent. Does it continue to rise?
In 2011 the rate was measured at 15.13 percent, as reported by the United
States Census Bureau. A national census takes place every decade. Suppose
the different rates for 2000 and 2010 came from a census, so would essentially
be population parameters. For the Census Bureau to decide the 2011 rate, a
random sampling scheme is employed. Assume that the numbers come from
a simple random sample (they don’t, the Census Bureau needs more sophis-
ticated strategies), so that we can use the binomial model for our analysis,
and that the sample size for 2011 was 150,000.1

We investigate whether the 15.13% figure for the year 2011 shows an in-
crease from the year-2010 figure. The null hypothesis is that it is the same as
the 15.00% amount of 2010; the alternative is that the new figure is greater
than the old:

H0 : p = 0.1500, HA : p > 0.1500.

A test statistic is based on the proportion living in poverty of a random
sample of size 150,000. In the sample, 22,695, or a proportion of .1513, were
found to be in poverty. Is this difference significant?

We are interested in rising rates, so the direction of the alternative would
be that the rate is .1500 or higher, as larger values support this one-sided
alternative. The p-value is P( p̂ ≥ .1500 |H0), which is found in R with

phat <- 22695 / 150000 # 0.1513
p0 <- 0.1500; n <- 150000
SD <- sqrt(p0 * (1-p0)/n)
pnorm(phat, mean=p0, sd=SD, lower.tail=FALSE) # p-value

## [1] 0.07926

Thus the p-value is 0.08. Some papers reported this as “not statistically
significant,” presumably using the α = 0.05 standard for this assessment. ••

Using prop.test to compute p-values

The calculation above is done by hand. The pre-loaded stats package in
R has many built-in functions to do significance tests more directly. The R
function for the above test of proportions is prop.test. This same function
was also used to find confidence intervals under similar assumptions.

The prop.test function needs a few arguments. A template for usage to
perform a significance test is

prop.test(x, n, p=..., alternative="two.sided")

1The Census Bureau reported a 90% C.I. with a margin of error 0.002.
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The value for x is the sample frequency; in our case, 22,695. The value of n
is the sample size 150,000. These are the same as when we used this function
to find confidence intervals.

To perform a significance test, the null and alternative hypotheses must be
specified. The null is done with the p argument; for our example p = 0.1500.
The alternative hypothesis is specified with the argument alternative, which
we abbreviate to alt. This argument has one of these values: "less", "greater",
or "two.sided". The default is two.sided. As HA : p > 0.1500, we will use
"greater". This argument is common to many of the functions in R that per-
form significance tests.

To illustrate, the above calculation is done with

prop.test(x=22695, n=150000, p=.1500, alternative="greater")

##
## 1-sample proportions test with continuity correction
##
## data: 22695 out of 150000, null probability 0.15
## X-squared = 1.978, df = 1, p-value = 0.0798
## alternative hypothesis: true p is greater than 0.15
## 95 percent confidence interval:
## 0.1498 1.0000
## sample estimates:
## p
## 0.1513

The p-value, and the null and alternative hypotheses are repeated in the
output. In addition, a confidence interval is given, as is a sample estimate that
we labeled phat. The p-value is slightly different from our hand calculation,
as a continuity correction is used by R.

It isn’t any more difficult to test the alternative hypothesis, that the rate
has changed, or HA : p 6= p0. This is done by specifying the alternative as
two.sided:

out <- prop.test(x=22695, n=150000, p=0.1500, alternative="two.sided")
out$p.value # just the p-value

## [1] 0.1596

The p-value is different—it is twice as big—as we would guess by looking
at the symmetry in Figure 9.2.

Problems

9.1 United States federal law on dietary supplements requires that the Food
and Drug Administration (FDA) prove a supplement harmful in order to ban
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its sale. In contrast, for a new prescription drug, a pharmaceutical company
must prove the product is safe.

Write null and alternative hypotheses for a hypothetical significance test
by the FDA when testing a dietary supplement. Do you think the same
standard should be used for both dietary supplement and new prescription
drugs?

9.2 The samhda (UsingR) data set contains information on marijuana usage
among children as collected at the Substance Abuse and Mental Health Data
Archive. The variable marijuana indicates whether the individual has ever
tried marijuana. A 1 means yes, a 2 no. If it used to be that 50% of the target
population had tried marijuana, does this data indicate an increase in mari-
juana usage? Do a significance test of proportions to decide.

9.3 A new drug therapy is tested. Of 50 patients in the study, 40 had no re-
currence in their illness after 18 months. With no drug therapy, the expected
percentage of no recurrence would have been 75%. Does the data support the
hypothesis that this percentage has increased? What is the p-value?

9.4 In the United States in 2007, the proportion of adults age 21–24 who had
no medical insurance was 28.1 percent. A survey of 75 recent college gradu-
ates in this age range finds that 40 percent are without insurance. Does this
support a difference from the nationwide proportion? Perform a test of sig-
nificance and report the p-value. Is it significant?

9.5 On a number of highways a toll is collected for permission to travel on
the roadway. To lessen the burden on drivers, electronic toll-collection sys-
tems are often used. An engineer wishes to check the validity of one such
system. She arranges to survey a collection unit for single day, finding that
of 5,760 transactions, the system accurately read 5,731. Perform a one-sided
significance test to see if this is consistent with a 99.9% accuracy rating at the
0.05 significance level. (Do you have any doubts that the normal approxima-
tion to the binomial distribution should apply here?)

9.6 In an example on the poverty rate a count of 22,695 in a survey of 150,000
produced a p-value of 0.079. For the same size sample, what range of counts
would have produced a p-value less than 0.05? (Start by asking what ob-
served proportions in the survey would have such a p-value.)

9.7 Historically, a car from a given company has a 10% chance of having a
significant mechanical problem during its warranty period. A new model of
the car is being sold. Of the first 25,000 sold, 2,700 have had an issue. Per-
form a test of significance to see whether the proportion of all of these new
cars that will have a problem is more than 10%. What is the p-value?
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9.2 Significance test for the mean (t-tests)

Significance tests can also be constructed for the unknown mean of a parent
population. The hypotheses take the form

H0 : µ = µ0, HA : µ < µ0, µ > µ0, or µ 6= µ0.

For certain populations, a useful test statistic is

T =
x̄− E(x̄ |H0)

SE(x̄ |H0)
=

x̄− µ0

s/
√

n
=

observed− expected
SE

.

T takes a common form where the expected value and the standard error
are found under the null hypothesis.

In the case of normally distributed initial data, the sampling distribution
of T under the null hypothesis is known to be the t-distribution with n− 1
degrees of freedom. If n is large enough, the sampling distribution of T is
a standard normal by the central limit theorem. As both the t-distribution
and normal distribution are similar for large n, the following applies to both
assumptions.

Test of significance for the population mean

If the data x1, x2, . . . , xn are a random sample from a
Normal(µ,σ) distribution, or n is large enough for the central
limit theorem to apply, a test of significance for

H0 : µ = µ0, HA : µ < µ0, µ > µ0, or µ 6= µ0

can be performed with test statistic

T =
x̄− µ0

s/
√

n
.

Let t = (x̄ − µ0)/(s/
√

n) be the observed value of the test
statistic. The p-value is computed by

p-value =


P(T ≤ t |H0) HA : µ < µ0,
P(T ≥ t |H0) HA : µ > µ0,
P(|T − µ0| ≥ |t− µ0| |H0) HA : µ 6= µ0.

In R, the function t.test can be used to compute the p-value with un-
summarized data, as in

t.test(x, mu=..., alternative="two.sided")
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The null hypothesis is specified by a value for the argument mu. The
alternative is specified as appropriate by alt="less", alt="greater", or
alt="two.sided" (the default).

• Example 9.4: SUV gas mileage
A consumer group wishes to see whether the actual mileage of a new SUV
matches the advertised 17 miles per gallon. The group suspects it is lower. To
test the claim, the group fills the SUV’s tank and records the mileage. This is
repeated ten times. The results are presented in a stem-and-leaf diagram:

##
## The decimal point is at the |
##
## 11 | 4
## 12 |
## 13 | 1
## 14 | 77
## 15 | 0569
## 16 | 08

Does this data support the null hypothesis that the miles per gallon rating
is 17 or the alternative, that it is less?

The data is assumed to be normal, and the stem-and-leaf plot shows no
reason to doubt this. The null and alternative hypotheses are

H0 : µ = 17, HA : µ < 17.

This is a one-sided test. The p-value will be computed from those values
of the test statistic less than the observed value, as these are more extreme
given the alternative hypothesis.

mpg <- c(11.4, 13.1, 14.7, 14.7, 15.0, 15.5, 15.6, 15.9, 16.0, 16.8)
xbar <- mean(mpg); s <- sd(mpg); n <- length(mpg)
c(xbar=xbar, s=s, n-n) # summaries

## xbar s
## 14.870 1.572 0.000

SE <- s/sqrt(n)
obs <- (xbar - 17)/SE
pt(obs, df = 9, lower.tail = T)

## [1] 0.001018

The p-value is very small and discredits the claim of 17 miles per gallon
(assuming our observations are a representative sample), as the difference of
x̄ from 17 is not well explained simply by sampling variation.
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The above calculations could be done using t.test as follows:

t.test(mpg, mu = 17, alternative="less")

##
## One Sample t-test
##
## data: mpg
## t = -4.285, df = 9, p-value = 0.001018
## alternative hypothesis: true mean is less than 17
## 95 percent confidence interval:
## -Inf 15.78
## sample estimates:
## mean of x
## 14.87

The output contains the same p-value (up to rounding), plus a bit more
information, including the observed value of the test statistic, a one-sided
confidence interval, and x̄ (the estimate for µ). ••

It is easy to overlook the entire null hypothesis. We explicitly write the
assumption that µ = µ0. However, we have also assumed a model for our
data (a normal distribution) and that our data comes from a random sample.
With these assumptions, the test statistic has a known sampling distribution.
The t-statistic is robust to small differences in the assumed normality of the
population, but a really skewed population distribution (e.g., non-normal)
would still be a poor candidate for this significance test unless n is large. To
identify such situations, it is recommended that you plot the data prior to
doing any analysis, to ensure that it is appropriate.

• Example 9.5: Rising textbook costs?
A college bookstore claims that, on average, a college student will pay $500
per semester for textbooks and supplies. A student group investigates this
claim by randomly selecting and interviewing ten students and finding the
amount spent on textbooks and supplies for each. (A job made easier in the
U.S. since the passing of the Higher Education Opportunity Act in 2008.)

The data collected is

Costs 304, 431, 385, 987, 303, 480, 455, 724, 642, 506

Do a test of significance of H0 : µ = 500 against the alternative hypothesis
HA : µ > 500.

We enter the data with:
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costs <- c(304, 431, 385, 987, 303, 480, 455, 724, 642, 506)

We will assume a random sample was used, though in practice that may
not have been the case. Since n is small, we assess the shape of the sample
with a stem-and-leaf plot:

stem(costs)

##
## The decimal point is 2 digit(s) to the right of the |
##
## 2 | 009
## 4 | 3681
## 6 | 42
## 8 | 9

We see no compelling reason to doubt a normality assumption, though
expenses often carry a skew, as it is easier to spend too much, but hard to
spend too little (and still buy the books).

We then use t.test, with "greater" for the alternative giving:

t.test(costs, mu=500, alternative="greater")

##
## One Sample t-test
##
## data: costs
## t = 0.3253, df = 9, p-value = 0.3762
## alternative hypothesis: true mean is greater than 500
## 95 percent confidence interval:
## 399.4 Inf
## sample estimates:
## mean of x
## 521.7

The p-value is not small. The data gives us little reason to doubt that the
null hypothesis applies to this data. ••

Power

The language of “accept” or “reject” after a significance test is performed is
based on a comparison of the p-value with α, a predetermined significance
level. The value of α is chosen to give a desired probability of “rejecting” the
null hypothesis when it is a true description of the data. Rejecting in this
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P(Type−II error) = 0.74

n=1
−2.0 −1.0 0.0 0.7 2.0 3.0

P(Type−II error) = 0.28

n=5
−2.0 −1.0 0.0 0.7 2.0 3.0

P(Type−II error) = 0.06

n=10
−2.0 −1.0 0.0 0.7 2.0 3.0

Figure 9.3: The probability of a Type-II error depends on the sample size. In
the figure, this probability is represented by the area to the left of z∗ for the
probability distribution centered at 1. For n = 1, this error is likely, for n = 10
it is unlikely.

case is known as a Type-I error. There is a Type-II error which is made when
the null hypothesis is “accepted,” even though it is not the case. Of course,
one would like both Type-I and Type-II errors to not be made, or at least be
uncommon. By choosing α, the likelihood of Type-I errors is known. What
about Type-II errors?

We return to the comparison of Figure 9.1. In that figure the null hypoth-
esis (µ = 0) is represented by a probability distribution centered at 0. The
alternative is a simple alternative (µ = 1—not µ > 0), and so can also be rep-
resented by a probability distribution, in this case centered at 1. The scale of
this distribution is determined by n, the sample size—larger samples make
the distributions narrower.

In Figure 9.3 for different n we let z∗ represent the critical value un-
der the null for which if the observed value is more than z∗, then one-
sided test will be rejected when α = 0.05 (found with qnorm(1-alpha, mu=0,
sd=1/sqrt(n))). The area to the right under the null, α, is the probability
of a Type-I error. The shaded area to the left of z∗ under the alternative is
the probability of accepting the null, when the alternative is true, that is the
probability of a Type-II error.

A natural approach is to specify an acceptable probability for a Type-II
error (often called β). A typical value is β = 0.20. The power of a test, for a
given specific value of the alternative, is 1− β. With both α and β specified,
n is chosen large enough that the probability of the errors are so bounded.
Power computations are generally made prior to data collection, so that a
minimal sample size is taken to ensure the desired characteristics.

The computational details are performed by the power.t.test func-
tion. There are several arguments that need specifying: the single value
of the alternative is specified through delta which is the difference from
the mean specified in the null (1 in our figure), the number of tails used
(alternative="one.sided"), the population standard deviation (1 in our fig-
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ure), the value for α (sig.level), the value for 1− β (power), the type of test
(type="one.sample"):

alpha <- 0.05; beta <- 0.20
power.t.test(delta=1, sd=1,

sig.level=alpha, power=1-beta,
type="one.sample", alternative="one.sided")

##
## One-sample t test power calculation
##
## n = 7.728
## delta = 1
## sd = 1
## sig.level = 0.05
## power = 0.8
## alternative = one.sided

The value of n reported is 7.7. As such, it would take a sample of size 8 to
have a test where delta=1 with a power of 0.80. Smaller deltas require larger
sample sizes.

The above required a value for the population standard deviation. In gen-
eral this isn’t known, especially before any data is collected. One needs to
replace this with a reasonable estimate.

Problems

9.8 A study of the average salaries of New York City residents was con-
ducted for 770 different jobs. It was found that massage therapists average
$58,260 in yearly income. Suppose the study surveyed 25 massage therapists
and had a standard deviation of $3,250. Perform a significance test of the
null hypothesis that the average massage therapist makes $55,000 per year
against the one-sided alternative that it is more. Assume the data is normally
distributed.

9.9 The United States Department of Energy conducts weekly phone sur-
veys on the price of gasoline sold in the United States. Suppose one week the
sample average was $4.03, the sample standard deviation was $0.42, and the
sample size was 800. Perform a one-sided significance test of H0 : µ = 4.00
against the alternative HA : µ > 4.00.

9.10 The variable sat.m in the data set stud.recs (UsingR) contains math
SAT scores for a group of students sampled from a larger population. Test
the null hypothesis that the population mean score is 500 against a two-sided
alternative. Would you “accept” or “reject” at a 0.05 significance level?
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9.11 In the babies (UsingR) data set, the variable dht records the father’s
height for the sampled cases. Do a significance test of the null hypothesis
that the population mean height is 68 inches against an alternative that it is
taller. Remove the values of 99 from the data, as these indicate missing data.

9.12 A consumer-reports group is testing whether a gasoline additive
changes a car’s gas mileage. A test of seven cars finds an average improve-
ment of 0.5 miles per gallon with a standard deviation of 3.77. Is this differ-
ence significantly greater than 0? Assume the values are normally distributed.

9.13 The data set OBP (UsingR) contains on-base percentages for the 2002 Ma-
jor League Baseball season. Do a significance test to see whether the mean
on-base percentage is 0.330 against a two-sided alternative.

9.14 The data set normtemp (UsingR) contains measurements of 130 healthy,
randomly selected individuals. The variable temperature contains normal
body temperature. Does the data appear to come from a normal distribu-
tion? If so, perform a t-test to see if the commonly assumed value of 98.6°F
is correct. (Studies have suggested that 98.2°F is actually more accurate.)

9.15 A PBS report was done on a study which looked if doctors who received
free samples were more likely to prescribe more expensive drug treatments.
It was reported that the average cost of a first visit for acne or rosacea was
over $450 for medication for the physicians that use samples compared to
a clinic where we there are no samples and the average cost was only 200-
hundred dollars. Suppose the number of physicians surveyed was 8 and the
variance was $100 dollars. Is the difference statistically significant?

9.16 A one-sided, one-sample t-test will be performed. What sample size is
needed to have a power of 0.80 for a significance level of 0.05 if delta=0.05
and the population standard deviation is assumed to be 5?

9.3 Significance tests and confidence intervals

You may have noticed that the R functions for performing a significance test
for a population proportion or mean are the same functions used to compute
confidence intervals. This is no coincidence, as performing a significance test
and constructing a confidence interval both make use of the same test statis-
tic, although in different ways.

Suppose we have a random sample from a normally distributed popula-
tion with mean µ and variance σ2. We can use the sample to find a confidence
interval for µ, or we could use the sample to do a significance test of

H0 : µ = µ0, HA : µ 6= µ0.
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µ µ

−
●

Figure 9.4: If x̄ is in the two-sided rejection region, then a confidence interval
around x̄ does not contain µ

In either case, the T statistic

T =
x̄− µ

SE(x̄)

is used to make the statistical inference. The two approaches are related by
the following:

a two-sided significance test with significance level α will be re-
jected if and only if the (1− α) · 100% confidence interval around
x̄ does not contain µ0.

To see why, suppose α is given. The confidence interval uses t∗ found
from

P(−t∗ ≤ T ≤ t∗) = 1− α.

From this, the confidence interval will not contain µ0 if the value of T is
more than t∗ or less than −t∗. This same relationship is used to find the
critical values defining the boundaries of the rejection region. If the observed
value of T is more than t∗ or less than −t∗, then the observed value is in
the rejection region, and the null hypothesis is rejected. This is illustrated in
Figure 9.4.
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Many people prefer the confidence interval to the p-value of the signifi-
cance test for good reasons. If the null hypothesis is that the mean is 16, but
the true mean is just a bit different, then the probability that a significance
test will fail can be made arbitrarily close to 1 just by making n large enough.
The confidence interval, on the other hand, would show much better that
the value of the mean is likely close to 16. The language of significance tests,
however, is more flexible and allows us to consider more types of problems.
Both approaches are useful to have.

R is agnostic: it can return both the confidence interval and the p-value
when asked, although the defaults for the functions usually return just the
confidence interval.

9.4 Significance tests for the median

The significance test for the mean relies on a large sample, or on an assump-
tion that the parent distribution is normally (or nearly normally) distributed.
In the situation where this isn’t the case, we can use test statistics similar to
the ones used to find confidence intervals for the median. Significance tests
based on these test statistics are referred to as nonparametric tests, as they do
not make assumptions about the population parameters to calculate the test
statistic (though there may be assumptions about the shape of the distribu-
tion).

The sign test

The sign test is a simple test for the median of a distribution that has no
assumptions on the parent distribution except that it is continuous with pos-
itive density. Let H0 suppose that the median is m. If we count the number
of data points higher than the median, we get a number that will have a
Binomial(n,1/2) distribution, as under H0, a data point is equally likely to be
more or less than the median. This leads to the following test.

Sign test for the median

Assume x1, x2, · · · xn are from a continuous distribution with
positive density. A significance test of the hypotheses

H0 : median = m, HA : median < m,> m,or 6= m,

can be performed with test statistic

T = the number of Xi with Xi > m.

If the data has values equal to m, then delete those values from
the data set. Under H0, T has a Binomial(n,1/2) distribution.
Large values of T support the alternative that the median is
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greater than M; small values of T support the alternative that
the median is smaller than M. For two-sided alternatives, large
or small values of T support HA.

The p-value is calculated by

p-value =


P(T ≥ obs |H0) HA : median > m
P(T ≥ n− obs |H0) HA : median < m
P(T ≥max(obs,n− obs) |H0) HA : median 6= m.

In R, the test statistic can be computed using sum. The p-values are found
using pbinom(k). However, as P(T ≥ k) = 1 − P(T ≤ k − 1), the p-value is
found with 1 - pbinom(k - 1, n, 1/2).

• Example 9.6: Length of cell-phone calls
Suppose a cell-phone bill contains data for the number of minutes per call:

Length (mins) 2, 1, 3, 3, 3, 3, 1, 3, 16, 2, 2, 12, 20, 3, 1

Is this data consistent with an assumption that the population median call
length is 5 minutes with an alternative that the median length is less than 54?

The hypothesis test is

H0 : the median = 5, HA : the median < 5.

The data is clearly nonnormal, so a t-test is inappropriate. A sign test can be
used. Here, small values of T support the alternative.

calls <- c(2, 1, 3, 3, 3, 3, 1, 3, 16, 2, 2, 12, 20, 3, 1)
obs <- sum(calls > 5) # find observed value of T
n <- length(calls)
1 - pbinom(n-obs - 1, n, 1/2) # we want P(T >= 12) = 1 - P(T <= 11)

## [1] 0.01758

We get a p-value of 0.0176, which indicates the data is not consistent with
the null hypothesis. ••

The signed-rank test

The signed-rank test is an improvement to the sign test when the population
is symmetric, but not close enough to normal to use a t-test. Assume H0 :
median = m. If Xi are from a continuous distribution with density f () that
is symmetric about m, then not only is Xi equally likely to be on either side
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of m, but the distance from m is independent of the side. Thus, if we rank all
the data by its distance to m, the sum corresponding to the values larger than
m may be viewed as a random sample of a certain size from the numbers 1
through n. The distribution of this sum can be characterized, so the sum of
the ranks can be an effective test statistic.

The Wilcoxon signed-rank test for the median

If the data, x1, x2, . . . , xn, form an i.i.d. sample from a contin-
uous, symmetric distribution, then a significance test of the
hypotheses

H0 : the median = m, HA : median < m, > m, or 6= m

can be performed with test statistic

T = ∑
i:xi>m

rank(|xi −m|).

Under H0, the distribution of T can be calculated. Large values
of T support the alternative hypothesis HA : median > m.

In R, the function wilcox.test performs the test as

wilcox.test(x, mu=..., alternative="two.sided")

The data is contained in x, the null hypothesis is specified by the argument
mu, and the alternative is specified with the argument alternative. This argu-
ment takes a value of "less", "greater", or "two.sided" (the default value).
If desired, the distribution of T is given by the function psignrank.

A typical application of the signed-rank test is to use it after transforming
the data to make it look like the parent distribution is symmetric. Transfor-
mations which don’t affect the order of the data, such as a logarithm, have
the median transform in a direct way.

The assumption of a density f , implies that the data should not have
any ties, though this is common in practice. The wilcox.test will make a
complaint about inexact p-values when the data has ties. The wilcox_test
function from the coin package (which implements a general framework for
such tests) adjusts for tied data.

• Example 9.7: Number of recruits
In salmon populations, there is a relationship between the number of spawn-
ers and the subsequent number of “recruits” that they produce. A common
model involves two parameters, which describe how many recruits there are
when there are few spawners and how many there are when there are many
spawners. The data set salmon.rate (UsingR) contains simulated data on one
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of the parameters. A plot of the data shows that a normal population as-
sumption is not correct; rather, the population appears to be lognormal.

Perform a significance test of

H0 : median = 0.005, HA : median > 0.005.

After taking logs, we can see that the data is symmetric, so the signed-
rank test can apply to the log-transformed data. The significance test of this
data is

H0 : median = log(0.005), HA : median > log(0.005).

wilcox.test(log(salmon.rate), mu=log(0.005), alt="greater")

##
## Wilcoxon signed rank test with continuity correction
##
## data: log(salmon.rate)
## V = 2077, p-value = 0.065
## alternative hypothesis: true location is greater than -5.298

A somewhat small p-value is found.
To contrast, the p-value for the sign test is found with these commands:

T <- sum(salmon.rate > .005); n <- length(salmon.rate)
1 - pbinom(T - 1, n, 1/2)

## [1] 0.1361

This p-value is larger. This may seem surprising, but the Wilcox test has
an additional assumption, which generally yields less conservative p-values.
Conservative here implies larger p-values, so harder to “reject” (make a Type-
I error). ••

Problems

9.17 The exec.pay (UsingR) data set contains data on the salaries of CEOs
at 199 top companies in the United States. The amounts are in $10,000s. The
data is not symmetric. Do a sign test to determine whether the median pay
is more than $220,000.

9.18 Repeat the previous exercise, using the signed-rank test on the log-
transformed data. Do you reach the same conclusion?
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9.19 The babies (UsingR) data set contains data covering many births. In-
formation included is the gestation period, and a factor indicating whether
the mother was a smoker. Extracting the gestation times for mothers who
smoked during pregnancy can be done with this command:

smokers <- subset(babies, smoke == 1 & gestation != 999)

Perform a significance test of the null hypothesis that the average gesta-
tion period is 40 weeks against a two-sided alternative. Explain what test you
used, and why you chose that one.

9.20 If the sign test has fewer assumptions on the population, why wouldn’t
we always use that instead of a t-test? The answer lies in the power of the
sign test to detect when the null hypothesis is false. The sign test will not
reject a false null as often as the t-test. The following commands will per-
form a simulation comparing the two tests on data that has a Normal(1,2)
distribution. The significance tests performed are both

H0 : µ = 0, HA : µ > 0.

Run the simulation. Is there a big difference between the two tests?

m <- 200; n <- 10

out <- replicate(m, {
x <- rnorm(n, mean=1, sd=2)
ttest <- t.test(x, mu=0, alt = "greater")$p.value
sgntest <- 1 - pbinom(sum(x > 0) - 1, n, 1/2)
c(t.test = ifelse(ttest < 0.05, 1, 0),
sign.test= ifelse(sgntest < 0.05, 1, 0))

})

res.t <- out["t.test",]
res.sign <- out["sign.test",]
results <- c(t = sum(res.t)/m, sign=sum(res.sign)/m)

9.5 Two-sample tests of proportion

In the previous sections our tests of significance compared a sample to some
assumed value of the population and determined whether the sample sup-
ported the null hypothesis. This assumes some specific knowledge about the
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population parameters. In many situations, we’d like to compare two param-
eters. In this section we consider how. This can be useful in many differ-
ent contexts: comparing polling results taken over different periods of time,
surveying results after an intervention such as an advertising campaign, or
comparing attitudes among different ethnic groups.

In a previous example, we compared the 2011 poverty rate, which was
found by a sample, with the 2010 poverty rate which was assumed known
from a census. In reality, the 2010 data was not derived from a national cen-
sus, but from a sample of similar size, say 160,000. To compare the 2011 rate
to the 2010 rate, we would compare two samples. How do we handle this
with a significance test?

Let p̂1 be the estimated 2010 poverty rate and p̂2 be the estimated 2011
poverty rate. We wish to perform a significance test of

H0 : p1 = p2, HA : p1 < p2

using the values of p̂1 and p̂2 in the test statistic. If we think of the test as one
of differences, we can rephrase it as

H0 : p1 − p2 = 0, HA : p1 − p2 < 0.

A natural test statistic would follow the form observed minus expected
over the SE:

Z =
( p̂1 − p̂2)− E( p̂1 − p̂2 |H0)

SE( p̂1 − p̂2 |H0)
.

We assume that the surveys were a simple random sample from the pop-
ulation, so that the number responding favorably, xi, has a binomial distribu-
tion with n = ni and p = pi for i = 1,2. (So p̂i = xi/ni.) Thus, the expectation
in Z is simply p1 − p2 = 0 under the null hypothesis. The standard error is
found from the standard deviation under the null hypothesis

SD( p̂1 − p̂2 |H0) =

√
p1(1− p1)

n1
+

p2(1− p2)

n2
=

√
p(1− p)(

1
n1

+
1
n2

) ,

where p = p1 = p2 under the null hypothesis. The value of p is not assumed
in H0, so we estimate it and use the standard error instead. To estimate p—
under the null hypotheses—it makes sense to use the entire sample as we are
assuming both come from a population with parameter p:

p̂ =
total who are favorable

total size of both samples
=

x1 + x2

n1 + n2
=

n1 p̂1 + n2 p̂2

n1 + n2
.

This leaves

Z =
p̂1 − p̂2√

p̂(1− p̂)( 1
n1

+ 1
n2
)

. (9.2)
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Two-sample test of proportions

If we have sample proportions for two random samples, a
significance test of

H0 : p1 = p2, HA : p1 < p2, p1 > p2, or p1 6= p2

can be carried out with test statistic Z given by (9.2). Under
H0, Z has a standard normal distribution if n1 and n2 are suffi-
ciently large. Large values of Z support the alternative p1 > p2;
small values support p1 < p2.

In R, the function prop.test will perform a two-sample test of propor-
tions:

prop.test(x, n, alternative="two.sided")

The data is specified by a vector of values with x storing the counts and
n the sample size. There is no need to specify a null hypothesis, as it is
always the same. The alternative hypothesis is specified by one of alt="less",
alt="greater", or alt="two.sided" (the default).

• Example 9.8: Poverty rate, continued
Assume the 2010 poverty rate of 15.00% was derived from a random sample
of 160,000 people, and the 2011 poverty rate of 15.13% was derived from a
random sample of 150,000. Is the difference between the proportions statisti-
cally significant?

Let p̂1 = 0.1500 and p̂2 = 0.1513 be the given sample proportions. Our null
and alternative hypotheses are

H0 : p1 = p2, HA : p1 < p2.

We can use prop.test using np̂ to give the frequencies of those in the
sample

phat <- c(0.1500, 0.1513) # the sample proportions
n <- c(160000, 150000) # the sample sizes
n * phat # the counts

## [1] 24000 22695

prop.test(n * phat, n, alternative="less")

##
## 2-sample test for equality of proportions with
## continuity correction
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##
## data: n * phat out of n
## X-squared = 1.012, df = 1, p-value = 0.1571
## alternative hypothesis: less
## 95 percent confidence interval:
## -1.0000000 0.0008212
## sample estimates:
## prop 1 prop 2
## 0.1500 0.1513

The p-value agrees with the statement made earlier that the difference is
not statistically significant.

If we were to do this computation “by hand,” rather than by using
prop.test, we would find:

p <- sum(n * phat)/sum(n) # (n_1p_1 + n_2p_2)/(n_1 + n_2)
obs <- (phat[1]-phat[2]) / sqrt(p*(1-p)*sum(1/n))
obs

## [1] -1.011

pnorm(obs)

## [1] 0.1559

This also gives a small p-value, though not the same. The difference is
due to a continuity correction used by prop.test. ••

Problems

9.21 A cell-phone store has sold 150 phones of Brand A and had 14 returned
as defective. Additionally, it has sold 125 phones of Brand B and had 15
phones returned as defective. Is there statistical evidence that Brand A has a
smaller chance of being returned than Brand B?

9.22 In the year 2001, a poll of 600 people found that 250 supported gay mar-
riage. A 2013 poll of 1,050 found 52% in support. Do a test of significance to
see whether the difference in proportions is statistically significant.

9.23 There were two advance screenings of a new movie. The first audience
was composed of a classical music radio station’s listeners, the second a rock-
and-roll music station’s listeners. Suppose the audience size was 350 for each
screening. If 82% of the audience at the first screening rated the movie fa-
vorably, but only 70% of second audience did, is this difference statistically
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Group n AMS sufferers

placebo 22 18
ginkgo biloba 22 3

Table 9.2: Data on acute mountain sickness. Source: Aviation, Space, and Envi-
ronmental Medicine 67, 445–452, 1996.

significant? Can you assume that each audience is a random sample from the
population of the respective radio station listeners?

9.24 The HIP mammography study was one of the first and largest studies
of the value of mammograms. The study began in New York in the 1960s and
involved 60,000 women randomly assigned to two groups—one that received
mammograms, and one that did not. The women were then observed for the
next 18 years. Of the 30,000 who had mammograms, 153 died of breast can-
cer; of the 30,000 who did not, 196 died of breast cancer. Compare the two
sample proportions to see whether there is a statistically significant differ-
ence between the death rates of the two groups. (There is debate about the
validity of the experimental protocol.)

9.25 Ginkgo biloba extract is widely touted as a miracle cure for several ail-
ments, including acute mountain sickness (AMS), which is common in moun-
taineering. A randomized study took 44 healthy subjects to the Himalayas;
half received the extract (80 mg twice/day) and half received placebos. Each
group was measured for AMS. The results of the study are given in Table 9.2.
Compute a p-value for a two-sided alternative.

9.26 Immediately after a ban on using of hand-held cell phones while driv-
ing was implemented, compliance with the law was measured. A random
sample of 1,250 found that 98.9% were in compliance. A year after the imple-
mentation, compliance was again measured. A sample of 1,100 drivers found
96.9% in compliance. Is the difference in proportions statistically significant?

9.27 In 2011, the Centers for Disease Control and Prevention studied dis-
tracted driving habits, as an additional, 387,000 people were injured in
motor vehicle crashes involving a distracted driver in 2011, compared to
416,000 people injured in 2010 (http://www.cdc.gov/motorvehiclesafety/
distracted_driving/). They found that 31% of those surveyed between 18
and 64 had read or sent a text message while driving in the past 30 days.

Suppose the 2011 survey involved 1,000 subjects. A student in 2013 does a
follow-up study of 100 students at her college and finds the 41% read or sent
messages. Is there statistical evidence that the rate for the college is higher
than the national rate in 2011?
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9.28 The start of a May 5, 2004, New York Times article reads

In the wake of huge tobacco tax increases and a ban on smok-
ing in bars, the number of adult smokers in New York City fell 11
percent from 2002 to 2003, one of the steepest short-term declines
ever measured, according to surveys commissioned by the city.

The article continues, saying that the surveys were conducted using
methods—the questions and a random dialing approach—identical to those
done annually by the federal Centers for Disease Control and Prevention.
Each survey used a large sample of 10,000 people, giving a stated margin of
error of 1 percentage point.

The estimated portion of the population that smoked in 2002 was 21.6%;
the estimated proportion in 2003 was 19.3%. Are these differences significant
at the 0.01 level? (By 2010, the rate had fallen to 14%.)

9.6 Two-sample tests of center

A physician may be interested in knowing whether the time to recover for
one surgery is shorter than that for another surgery. A taxicab driver might
wish to know whether the time to travel one route is faster than the time
to travel another. A consumer group might wish to know whether gasoline
prices are similar in two different cities. Or a government agency might want
to know whether consumer spending is similar in two different states. All
of these questions could be approached by taking random samples from the
respective populations and comparing. We consider the situation when the
question of issue can be boiled down to a comparison of the centers of the
two populations. We can use a significance test to compare centers in the
same manner as we compare two population proportions.

However, as there are more possibilities for types of populations consid-
ered, there are more test statistics to consider.

Suppose xi, i = 1, . . . ,nx and yj, j = 1, . . . ,ny are random samples from the
two populations of interest. A significance test to compare the centers of their
parent distributions would use the hypotheses

H0 : µx = µy, HA : µx < µy, µx > µy, or µx 6= µy. (9.3)

A reasonable test statistic depends on the assumptions placed on the par-
ent populations. If the populations are normally distributed or nearly so, and
the samples are independent of each other, then a t-test can be used. If the
populations are not normally distributed, then a nonparametric Wilcoxon
test may be appropriate. If the samples are not independent but paired off in
some way, then a paired test might be called for.
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Two-sample tests of center with normal populations

Suppose the two samples are independent with normally distributed pop-
ulations. As x̄ and ȳ estimate µx and µy respectively, the observed value of
x̄− ȳ should be a good estimate for the expected difference µx − µy. We use
this to form a test statistic. As both sample means have normally distributed
sampling distributions, a natural test statistic is then

T =
(x̄− ȳ)− E(x̄− ȳ |H0)

SE(x̄− ȳ |H0)
=

observed− expected
SE

.

Under H0, the expected value of the difference is 0. The standard error
is found from the formula for the standard deviation, which is based on the
independence of the samples:

SD(x̄− ȳ |H0) =

√
σ2

x
nx

+
σ2

y

ny
.

As with confidence intervals, the estimate used for the population vari-
ances depends on an assumption of equal variances.

If the two variances are assumed equal, the all the data is pooled to esti-
mate σ = σx = σy using

sp =

√
(nx − 1)s2

x + (ny − 1)s2
y

nx + ny − 2
. (9.4)

The standard error used is

SE(x̄− ȳ) = sp

√
1

nx
+

1
ny

. (9.5)

With this, T has a t-distribution with n− 2 degrees of freedom.
If the population variances are not assumed to be equal, then we estimate

σx with sx and σy with sy to get

SE(µx − µy) =

√
s2

x
nx

+
s2

y

ny
. (9.6)

Additionally, we use the Welch approximation for the degrees of freedom
as described in Chapter 8. This again yields a test statistic that is described
by the t-distribution under the null hypothesis, though with a degrees of
freedom between n− 2 and the smaller of n1 − 1 and n2 − 1, the latter value
being useful to give a conservative estimate for the degrees of freedom.

t-tests for comparison of means of independent samples

Assume x1, x2, . . . , xnx and y1,y2, . . . ,yny are independent ran-
dom samples from Normal(µi,σi) distributions, where i = x or
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y. A significance test of

H0 : µx = µy, HA : µx < µy, µx > µy, or µx 6= µy

can be done with test statistic T. T will have the t-distribution
with a specified number of degrees of freedom under H0.
Larger values of T support HA : µx > µy.

The function t.test will perform the significance test. It is used with the
arguments

t.test(x, y, alternative="two.sided", var.equal=FALSE)

The data is specified in two data vectors, x and y. There is no need
to specify the null hypothesis, as it is always the same. The alternative is
specified by "less", "greater", or "two.sided" (the default). The argument
var.equal=TRUE is given to specify the equal-variance case. The default is to
assume unequal variances.

Formula interface For the two-sample t-test, the t.test function also has
a model formula interface for cases where the data is stored in long format
with the values in a variable, say x, and a two-level factor, say f. In this case,
the call is t.test(x ~ f, data=dataset, alternative="...").

• Example 9.9: Differing dosages of AZT
AZT was the first FDA-approved antiretroviral drug used in the care of HIV-
infected individuals. The common dosage is 300 mg twice daily. Higher
dosages cause more side effects. But are they more effective? A study
done in 1990 compared dosages of 300 mg, 600 mg, and 1,500 mg (source
http://www.aids.org). The study found higher toxicity with greater dosages,
and, more importantly, that the lower dosage may be equally effective.

The p24 antigen can stimulate immune responses. The measurement of
p24 levels for the 300 mg and 600 mg groups is given in Table 9.3. Perform
a t-test to determine whether there is a difference in means, assuming the
dosage does not change the variance.

Let µx be the mean of the 300 mg group, and µy the mean of the 600 mg
group. We can test the hypotheses

H0 : µx = µy, HA : µx 6= µy

with a t-test. First, we check to see whether the assumption of a common
variance and normality seems appropriate by looking at two density plots:

m300 <- c(284, 279, 289, 292, 287, 295, 285, 279, 306, 298)
m600 <- c(298, 307, 297, 279, 291, 335, 299, 300, 306, 291)
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Amount p24 level

300 mg 284 279 289 292 287 295 285 279 306 298
600 mg 298 307 297 279 291 335 299 300 306 291

Table 9.3: Levels of p24 in mg for two treatment groups.

plot(density(m300))
lines(density(m600), lty=2)

The graph (Figure 9.5) shows two density estimates that indicate nor-
mally distributed populations with similar spreads. As such, the t-test looks
appropriate.

t.test(m300, m600, var.equal=TRUE)

##
## Two Sample t-test
##
## data: m300 and m600
## t = -2.034, df = 18, p-value = 0.05696
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -22.1584 0.3584
## sample estimates:
## mean of x mean of y
## 289.4 300.3

The p-value is 0.05696 for the two-sided test. This suggests a difference in
the mean values, but it is not statistically significant at the 0.05 significance
level. A look at the reported confidence interval for the difference of the
means shows a wide range of possible value for µx − µy. We conclude that
this data is consistent with the assumption of no mean difference.

How would this have been different if we did not assume equal variances?

t.test(m300, m600)

##
## Welch Two Sample t-test
##
## data: m300 and m600
## t = -2.034, df = 14.51, p-value = 0.06065
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
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## -22.3557 0.5557
## sample estimates:
## mean of x mean of y
## 289.4 300.3

In this example, the same observed value of the test statistic (marked t) is
found as in the equal-variance case, as (9.5) and (9.6) yield identical standard
errors when the two sample sizes are the same. We get a larger p-value,
though, as the degrees of freedom differ.

The t.test function has no assumption of equal variance as the default.
Though making this assumption can produce smaller p-values, it should only
be done if applicable and before considering the data. ••
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Figure 9.5: Density plots to compare variances and shapes of the 300 mg
dosage (solid) and the 600 mg dosage (dashed).

Matched samples

There are times when two samples depend on each other in some way, for
example, samples from twin studies, where identical or fraternal twins are
used as pairs, so that genetic or environmental factors can be controlled. For
this, the usual two-sample t-test is not applicable. We mention two examples.

• Example 9.10: Twin studies
Suppose, an industry-sponsored clinical trial “demonstrated” that Finas-
teride inhibits male-pattern hair loss. Their approach used involved two treat-
ment groups: one received a Finasteride treatment, the other a placebo. A
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randomized, double-blind study was performed. Hair loss was measured by
photographs, hair counts, and questionnaires.

What was different about this study was the use of identical twins for
the treatment groups. For each pair of twins, one was randomly assigned
to the treatment group and the other to the control group. This allowed the
researchers to “control” for genetic differences—differences that might be so
great that the true effect of the Finasteride treatment could be hidden. The
researchers stated

As identical twins share the same genetic makeup, compari-
son between the responses of each subject in a twin pair, when
one receives drug and the other receives placebo, allows for rigor-
ous examination of the effects due to drug treatment in a limited
number of subjects.

••

• Example 9.11: Pre- and post-tests
Outcomes assessment is an attempt to measure whether a certain action ac-
tually does what it is intended to do. For example, does a statistics book
actually work for teaching R? Or, does a statistics class make you understand
the difference between mere sampling variation and a true effect? One way to
assess the effectiveness of something is with a pre-test and a post-test. If the
scores are markedly better on the post-test, then we may be able to attribute
the change to the teaching.

Imagine a class takes a pre-test and a post-test. Each student has two test
scores, xi for the first test and the matching yi for the second. How can we
test whether there is a difference in the means? We might be tempted to use
the t-test, but we should be careful, as the two samples are not independent.
This assumption of independence was used implicitly when computing the
standard error in the test statistic. Besides, what is really important is the
change in the scores xi − yi. ••

For paired data, even if there are large variations within the samples, we
can still test a difference in the means by using a one-sample test applied to
the data, xi − yi.

Significance tests for paired samples If the two samples x1, x2, . . . , xn and
y1,y2, . . . ,yn are matched so that the differences xi − yi are an i.i.d. sample,
then the significance test of hypotheses

H0 : µx = µy, HA : µx < µy, µx 6= µy, or µx > µy
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Group Score

Finasteride treatment 5 3 5 7 4 4 7 4 3
Placebo 2 3 2 4 2 2 3 4 2

Table 9.4: Assessment for hair loss on 1–7 scale for twin study.

becomes a significance test of

H0 : µ = 0, HA : µ < 0, µ > 0, or µ 6= 0.

If the differences have a normally distributed population, a t-test can
be used. If the differences are from a symmetric distribution, the Wilcoxon
signed-rank test can be used. Otherwise, the sign test can be used, where µ
is interpreted as the difference of medians.

In R, both the t.test and wilcox.test functions have an argument to
indicate paired tests should be performed.

• Example 9.12: Twin studies continued
For the Finasteride study, photographs are taken of each head. They are as-
sessed using a standard methodology. This results in a score between 1 and 7:
1 indicating greatly decreased hair growth and 7 greatly increased. Simulated
data, presented as pairs, is in Table 9.4.

We can assess the differences with a paired t-test as follows:

Finasteride <- c(5, 3, 5, 6, 4, 4, 7, 4, 3)
placebo <- c(2, 3, 2, 4, 2, 2, 3, 4, 2)
t.test(Finasteride, placebo, paired=TRUE, alternative="two.sided")

##
## Paired t-test
##
## data: Finasteride and placebo
## t = 4.154, df = 8, p-value = 0.003192
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.8403 2.9375
## sample estimates:
## mean of the differences
## 1.889

We see a very small p-value, indicating that the result is significant. The
null hypothesis of no effect is in doubt. ••
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Test Score

Pre-test 77 56 64 60 57 53 72 62 65 66
Post-test 88 74 83 68 58 50 67 64 74 60

Table 9.5: Pre- and post-test scores.

• Example 9.13: Pre- and post-tests, continued
To test whether a college course is working, a pre- and post-test is arranged
for the students. The results are given in Table 9.5. Compare the scores with a
t-test. First, assume that the scores are randomly selected from the two tests.
Next, assume that they are pairs of scores for ten students.

For each, we test the hypotheses that

H0 : µ1 = µ2, HA : µ1 < µ2,

and we assume that the data is normally distributed.
If we assume that the scores are random samples from the two test pop-

ulations, then the usual t-test is used. We first make a boxplot, to decide
whether the variances are equal (not shown), and then we apply the test.

pre <- c(77, 56, 64, 60, 57, 53, 72, 62, 65, 66)
post <- c(88, 74, 83, 68, 58, 50, 67, 64, 74, 60)
boxplot(pre, post)
out <- t.test(pre, post, var.equal=TRUE, alternative="less")
out$p.value

## [1] 0.1139

The p-value is small but not significant.
If we assume these scores are paired off, then we focus on the differences.

This gives a much smaller p-value:

out <- t.test(pre, post, paired=TRUE, alternative="less")
out$p.value

## [1] 0.04564

This time, the difference is significant at the 0.05 level.
If small samples are to be used, it can often be advantageous to use paired

samples, rather than independent samples. ••

The Wilcoxon rank-sum test for equality of center

The two-sample t-test tests whether two independent samples have the same
center when both samples are drawn from a normal distribution. However,
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Figure 9.6: Two random samples from similar distributions indicated by
points with different shades. The lower ranked ones come primarily from
the distribution shifted to the left.

there are many situations in which the parent populations may be heavily
skewed or have heavy tails. Then the t-test is not appropriate. However, if
it is assumed that our two samples come from two distributions that are
identical up to a shift of center, then the Wilcoxon rank-sum test can be used
to perform a significance test to test whether the centers are identical.

Suppose f (x) is a density of a continuous distribution with mean 0. Fur-
ther, assume that the xi are a random sample from a population with density
f (x − µ1) (so it has mean µ1), and that the yj are a random sample from a
population with density f (x− µ2). Figure 9.6 shows two samples where the
µ’s are different. The darker distribution is shifted to the left, and its sam-
ple, indicated with darker dots, has most of its values to the left of the other
sample. This would not be expected if the two populations were identical.

The rank-sum statistic quantifies this, allowing for a significance test.
First, rank all the data from smallest to largest. Then, let W be the sum of
the ranks corresponding to the xi. Large values of W support the alternative
hypothesis that µx > µy, small values the alternative that µx < µy. What large
and small mean is given by the distribution of W under the null hypothe-
sis. This is called the rank-sum distribution and is returned by the R family
wilcox.
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Wilcoxon rank-sum test for two independent samples

Assume that the random sample, y1,y2, . . . ,ynx , comes from
a distribution with density f (· − µx), and that y1,y2, . . . ,yny

from a distribution with density f (· − µy) (same-shaped den-
sity, but perhaps different centers). A test of significance of the
hypotheses

H0 : µ1 = µ2, HA : µ1 < µ2, µ1 > µ2, or µ1 6= µ2

can be performed with the rank-sum statistic.

To perform the significance test in R, the wilcox.test function is used as

wilcox.test(x, y, alternative="two.sided")

The variables x and y store the two data sets, and the alternative is specified,
as usual, with one of "less", "greater", or "two.sided" (the default). The
wilcox.test function will also work in the case when there are ties in the
data.

• Example 9.14: Comparing grocery checkers
A grocery store’s management wishes to compare checkout personnel to see
if there is a difference in their checkout times. A small sample of data com-
paring two checkers’ times (in minutes) is given by:

Checker Checkout times

Checker A 5.8 1.0 1.1 2.1 2.5 1.1 1.0 1.2 3.2 2.7
Checker B 1.5 2.7 6.6 4.6 1.1 1.2 5.7 3.2 1.2 1.3

Compare the mean checkout times.
We use the wilcox.test function after verifying that the model assump-

tions are met.

A <- c(5.8, 1.0, 1.1, 2.1, 2.5, 1.1, 1.0, 1.2, 3.2, 2.7)
B <- c(1.5, 2.7, 6.6, 4.6, 1.1, 1.2, 5.7, 3.2, 1.2, 1.3)
plot(density(A))
lines(density(B))

The graph (not shown) suggests that the populations are skewed with
long tails. As such, the t-test assumptions are not met. However, we also
see that the samples appear to have densities with the same shape, so the
rank-sum test is available. A two-sided test can be performed with
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wilcox.test(A,B)

## Warning: cannot compute exact p-value with ties

##
## Wilcoxon rank sum test with continuity correction
##
## data: A and B
## W = 34, p-value = 0.2394
## alternative hypothesis: true location shift is not equal to 0

The p-value is not significant. ••

Problems

9.29 A 2003 study at the Cleveland Clinic compared the effects of two choles-
terol drugs, atorvastatin and pravastatin, on middle-aged heart-disease pa-
tients. It was found that the atorvastatin treatment group had an average
LDL level of 79 after treatment, whereas the pravastatin group had an aver-
age LDL level of 110. Suppose the two groups contained 250 patients each,
and the sample standard deviations were 25 for the atorvastatin group and 20
for the pravastatin. If the populations are assumed to be normally distributed,
perform a two-sample test to compare whether the mean LDL levels for ator-
vastatin are lower than those for pravastatin, or whether the differences are
explainable by chance variation.

9.30 A test to determine whether echinacea is beneficial in treating the com-
mon cold was set up as follows. If a child reported cold symptoms, then he
was randomly assigned to be given either echinacea or a placebo. Recovery
time was measured and is summarized with:

group n x̄ s

echinacea 200 5.3 2.5
placebo 207 5.4 2.5

Is this statistical evidence that children in the echinacea group had a
quicker recovery?

9.31 For the babies (UsingR) data set, the variable age contains the recorded
mom’s age and dage contains the dad’s age for several different cases in the
sample. Do a significance test of the null hypothesis of equal ages against a
one-sided alternative that the dads are older in the sampled population.
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9.32 The data set normtemp (UsingR) contains body measurements for 130
healthy, randomly selected individuals from some parent population. The
variable temperature contains normal body temperature data and the vari-
able gender contains gender information, with male coded as 1 and female
as 2. Is the sample difference across the two groups statistically significant?

9.33 Students wishing to graduate must achieve a specific score on a stan-
dardized test. Those failing must take a course and then attempt the test
again. Suppose 12 students are enrolled in the extra course and their two test
scores are given by

Student scores

Pre-test 17 12 20 12 20 21 23 10 15 17 18 18
Post-test 19 25 18 18 26 19 27 14 20 22 16 18

Assuming these students represent a random sample from some larger
population, perform a t-test to see if there would be any improvement in the
population mean scores following such a class. If you assume equal variances
or a paired test, explain why.

9.34 Water-quality researchers wish to measure biomass/chlorophyll ratio
for phytoplankton (in milligrams per liter of water). There are two possible
tests, one less expensive than the other. To see whether the two tests give
the same results, ten water samples were taken and each was measured both
ways, providing the data below.

Method measurement

method 1 45.9 57.6 54.9 38.7 35.7 39.2 45.9 43.2 45.4 54.8
method 2 48.2 64.2 56.8 47.2 43.7 45.7 53.0 52.0 45.1 57.5

Do a t-test to see if there is a difference in the means of the measured
amounts. If you assume equal variances or a paired test, explain why.

9.35 The shoes (MASS) data set contains a famous data set on shoe wear. Ten
boys wore two different shoes each, then measurements were taken on shoe
wear. The wear amounts are stored in variables A and B. First make a scat-
terplot of the data, then compare the mean wear for the two types of shoes
using the appropriate t-test.

9.36 The Galton (HistData) data set contains data used by Francis Galton in
1885. Each data point contains a child’s height and an average of his or her
parents’ heights. Assuming the data is a random sample for a population of
interest, perform a t-test to see if there is a difference in the population mean
height. Assume the paired t-test is appropriate. What problems are there with
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this assumption?

9.37 The question of equal variances comes up when we perform a two-
sample t-test. We’ve answered this based on a graphical exploration. The
F-test for equal variances of two normal populations can be used to test
formally for equality. The test statistic is the ratio of the sample variances,
which under the null hypothesis of equal variances has an F-distribution.
This test is carried out by the function var.test. A two-sided test (HA : σ2

1 6=
σ2

2 ) is performed with the command var.test(x,y).
Do a two-sided test for equality of variance on the data in Table 9.3.



10

Goodness of fit

In this chapter we return to problems involving categorical data. We previ-
ously summarized such data using tables. Here we discuss a significance test
for the distribution of the values in a table. The test statistic will be based on
how well the actual counts for each category fit the expected counts.

Such tests are called goodness-of-fit tests, as they measure how well the
distribution of the data fits a probability model. In this chapter we will also
discuss goodness-of-fit tests for continuous data. For example, we will learn a
significance test for investigating whether a data set is normally distributed.

10.1 The chi-squared goodness-of-fit test

In a public-opinion poll, there are often more than two possible opinions. For
example, suppose a survey of registered voters is taken to see which candi-
date is likely to be elected in an upcoming election. For simplicity, we assume
there are two candidates, a Republican and a Democrat. A prospective voter
may choose one of these or may be undecided. If 100 people are surveyed,
and the results are 35 for the Republican, 40 for the Democrat, and 25 un-
decided, is the difference between the Republican and Democratic candidate
significant?

The multinomial distribution

Before answering a question about significance, we need a probability model,
so that p-value calculations can be made. The above example is a bit different
from the familiar polling model. When there are just two categories to choose
from we use the binomial model as our probability model; in this case, with
more categories, we generalize and use the multinomial model.

Assume we have k categories to choose from, labeled 1 through k.
We pick one of the categories at random, with probabilities specified by
p1, p2, . . . , pk; pi gives the probability of selecting category i. We must have
p1 + p2 + · · ·+ pk = 1. If all the pi equal 1/k, then each category is equally
likely (like rolling a die). Picking a category with these probabilities produces
a single random value; repeat this selection n times, with each pick being in-
dependent, to get n values. A table of values will report the frequencies. Call

334
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these table entries y1,y2, . . . ,yk. These k numbers sum to n. The joint distribu-
tion of these random variables is called the multinomial distribution.

• Example 10.1: Using sample to simulate multinomial data
We can create multinomial data in R with the sample function. For example,
an M&M’s bag is filled using colors drawn from a fixed ratio. A bag of 30
can be filled as follows:1

cols <- c("blue", "brown", "green", "orange", "red", "yellow",
"purple")

prob <- c(1, 1, 1, 1, 2, 2, 2) # ratio of colors
prob <- prob / sum(prob)
n <- 30
bagful <- sample(cols, n, replace=TRUE, prob=prob)
table(bagful)

## bagful
## blue brown green orange purple red yellow
## 3 3 4 4 3 8 5

••

A formula for the multinomial distribution is similar to that for the bi-
nomial distribution except that more factors are involved, as there are more
categories to choose from. The distribution can be specified as follows:

P(y1 = y1, . . . ,yk = yk) =

(
n
y1

)(
n− y1

y2

)
· · ·
(

n− y1 − y2 − · · · − yk−1
yk

)
pyi

1 · · · p
yk
k .

As an example, consider the voter survey. Suppose we expected the per-
centages to be 35% Republican, 35% Democrat, and 30% undecided. What
is the probability in a survey of 100 likely voters that we see 35, 40, and 25,
respectively? It is

P(y1 = 35,y2 = 40,y3 = 25) =
(

100
35

)(
65
40

)(
25
25

)
(0.35)35(0.35)40(0.3)25.

This value can be found directly with

choose(100,35)*choose(65,40)*choose(25,25) * .35^35 * .35^40 * .30^25

## [1] 0.00386

1The sample function needs to be called with replace=TRUE to sample with replacement. The
mosaic package provides a convenience wrapper resample which uses this default.
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(We could skip the last choose factor, as (j
j) = 1 for any j.) The dmultinom

function can also be used for the above computation. This small value is
the probability of the observed value, but it is not a p-value. A p-value also
includes the probability of seeing more extreme values than the observed
one. We would still need to specify what that means to compute a p-value.

Pearson’s χ2-statistic

Trying to use the multinomial distribution directly to answer a problem about
the p-value is difficult, as the variables yi are correlated—they add to n. If one
value is large the others are more likely to be small, so the meaning of “ex-
treme” in calculating a p-value is not immediately clear. As an alternative,
the problem of testing whether a given set of probabilities could have pro-
duced the data is done as before: by comparing the observed value with the
expected value and then normalizing to get something with a known distri-
bution.

Each yi is a random variable telling us how many of the n choices were in
category i. If we focus on a single i, then yi is seen to be Binomial(n, pi) with
an expected value of npi. Based on this, a good statistic might be

k

∑
i=1

(yi − npi)
2.

This gives the total discrepancy between the observed and the expected.
We use the square as ∑(yi− npi) = 0. This sum gets larger when a category is
larger or smaller than expected. So a larger-than-expected value contributes,
and any correlated smaller-than-expected values do, too. As usual, we scale
this by the right amount to yield a test statistic with a known distribution. In
this case, each term is divided by the expected amount, producing Pearson’s
chi-squared statistic (written using the Greek letter “chi”):

χ2 =
k

∑
i=1

(yi − npi)
2

npi
= ∑

(observed− expected)2

expected
. (10.1)

If the multinomial model is correct, then the asymptotic distribution of yi
is known to be the chi-squared distribution with k − 1 degrees of freedom.
The number of degrees of freedom coincides with the number of free ways
we can specify the values for pi in the null hypothesis. Here we are free to
choose k− 1 of the values but not k, as the values must sum to 1.

The chi-squared distribution is a good fit to the sampling distribution of
the statistic if the expected cell counts are all five or more. Figure 10.1 shows
a simulation and a histogram of the corresponding χ2-statistic, along with a
theoretical density, when n = 20 and np is 5 or more for all the p’s.
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Figure 10.1: Simulation of χ2-statistic with n = 20 and probabilities 3/12,
4/12, and 5/12. The chi-squared density with 2 = k− 1 degrees of freedom
is added.

Using this statistic as a test statistic allows us to construct a significance
test. Larger values are now considered more extreme, as they imply more
discrepancy from the predicted amount.

The chi-squared significance test for goodness of fit

Let y1,y2, . . . ,yk be the observed cell counts in a table that arise
from random sampling. Suppose their joint distribution is de-
scribed by the multinomial model with probabilities p1, p2, . . . ,
pk. A significance test of

H0 : p1 = π1, · · · , pk = πk, HA : pi 6= πi for at least one i
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can be performed with the χ2-statistic. The πi are specified
probabilities. Under H0 the sampling distribution is asymptot-
ically the chi-squared distribution with k − 1 degrees of free-
dom. This is a good approximation, provided that the expected
cell counts are all five or more. Large values of the statistic sup-
port the alternative.

This test is implemented by the chisq.test function. The function is
called with

chisq.test(x, p=...)

The data is given in tabulated form in x; the null hypothesis is specified
with the argument p as a vector of probabilities. The default is a uniform
probability assumption. This should be given as a named argument, as it is
not the second position in the list of arguments. The alternative hypothesis is
not specified, as it does not change. A warning message will be returned if
any category has fewer than five expected counts.

For example, suppose we wanted to know whether the voter data was
generated according to the probabilities p1 = .35, p2 = .35, and p3 = .30. To
investigate, we can perform a significance test. This can be done directly
with the chisq.test function or “by hand.” We illustrate both approaches, as
we’ll see soon that knowing how to do it the long way allows us to do more
problems.

To do this by hand, we specify the counts in y and the probabilities in p,
then form the test statistic:

y <- c(35, 40, 25)
p <- c(35, 35, 30) # ratios
p <- p/sum(p) # proportions
n <- sum(y)
chi2 <- sum( (y - n*p)^2 / (n*p) )
chi2

## [1] 1.548

pchisq(chi2, df=3 - 1, lower.tail=FALSE)

## [1] 0.4613

In contrast, the above could have been done with

chisq.test(y, p=p)

##
## Chi-squared test for given probabilities
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##
## data: y
## X-squared = 1.548, df = 2, p-value = 0.4613

The function returns the value of the test statistic (after X-squared), the
degrees of freedom, and the p-value.

• Example 10.2: Teen smoking
The samhda (UsingR) data set contains information about health behavior for
school-age children. For example, the variable amt.smoke measures how often
a child smoked in the previous month. There are seven levels: a 1 means he
smoked every day and a 7 means not at all. Values 98 and 99 indicate miss-
ing data. See ?samhda for a description. We investigate whether the sample
proportions are statistically different from the probabilities:

p1 = 0.15, p2 = 0.05, p3 = 0.05, p4 = 0.05, p5 = 0.10, p6 = 0.20, p7 = 0.40.

A test of significance can be constructed as follows:

library(UsingR)
amt <- with(samhda, amt.smoke[amt.smoke < 98])
y <- table(amt)
y

## amt
## 1 2 3 4 5 6 7
## 32 7 13 10 14 43 105

ps <- c(0.15, 0.05, 0.05, 0.05, 0.10, 0.20, 0.40)
chisq.test(y, p=ps)

##
## Chi-squared test for given probabilities
##
## data: y
## X-squared = 7.938, df = 6, p-value = 0.2427

The p-value of 0.2427 is not significant. There is no evidence that the pop-
ulation proportions differ from those specified by the null hypothesis. ••

Partially specified null hypotheses

In the example with voting data, we might be interested in assessing whether
the Republican candidate differences from the Democrat can be attributed to
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sampling variation. That is, we would want to test the hypotheses

H0 : p1 = p2, HA : p1 6= p2.

These, too, can be tested with the χ2-statistic, but we need to specify what
we mean by “expected,” as under H0 this is not fully specified. (The value of
p1 and p2 depends on p3, which isn’t specified.)

To do so, we will use any values completely specified by the null hy-
pothesis; for those values that aren’t (e.g., p3 above), we estimate using the
null hypothesis to pool our data as appropriate. For this problem, none of
the pi values are fully specified. To estimate p̂1 = p̂2, we use both of the cell
counts through (y1 + y2)/(2n). This leaves p̂3 = y3/n = 1− p̂1− p̂2. Then the
χ2-statistic in this case becomes

χ2 =
k

∑
i=1

(yi − np̂i)
2

np̂i
.

Again, if all the expected counts are large enough, this will have an
approximately chi-squared distribution. There is only one degree of free-
dom in this problem, as only one thing is left to estimate, namely the value
p = p1 = p2. Once we specify a value of p, then, by the assumptions in the
null hypothesis, all the pi are decided.

We get the p-value in our example as follows:

y <- c(35, 40, 25)
n <- sum(y)
phat1 <- phat2 <- sum(y[1:2])/(2*n)
phat3 <- 1 - phat1 - phat2
phat <- c(phat1, phat2, phat3)
#
obs <- sum((y - n*phat)^2/(n*phat))
obs

## [1] 0.3333

pchisq(obs, df =1 , lower.tail=FALSE)

## [1] 0.5637

The difference is not statistically significant.

In general, the χ2-statistic can be used in significance tests where the null
specifies some relationship among the multinomial probabilities. The asymp-
totic distribution of the test statistic under the null hypothesis will be chi-
squared. The degrees of freedom will depend on the number of values that
we are free to specify.
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Candidate party poll amount actual

Schwarzenegger Republican 315 48.6
Bustamante Democrat 197 31.5
McClintock Republican 141 12.5
Camejo Green 39 2.8
Huffington Independent 16 0.6
Other − 79 4.0

Table 10.1: California gubernatorial recall election.

Problems

10.1 A die is rolled 100 times and yields these frequencies

1 2 3 4 5 6

count 13 17 9 17 18 26

Is this a fair die? Answer using a significance test with H0 : pi = 1/6 for
each i, and HA : pi 6= 1/6 for at least one i.

10.2 Table 10.1 contains the results of a poll of 787 registered voters and the
actual race results (in percentages of total votes) in the 2003 gubernatorial
recall election in California.

Is the sample data consistent with the actual results? Answer this using a
test of significance.

10.3 A package of M&M’s candies is filled from batches that contain a spec-
ified percentage of each of six colors. These percentages are given in the
mandms (UsingR) data frame. Assume a package of candies contains the fol-
lowing color distribution: 15 blue, 34 brown, 7 green, 19 orange, 29 red, and
24 yellow. Perform a chi-squared test with the null hypothesis that the can-
dies are from a milk chocolate package. Repeat assuming the candies are
from a Peanut package. Based on the p-values, which would you suspect is
the true source of the candies?

10.4 The pi2000 (UsingR) data set contains the first 2,000 digits of π. Perform
a chi-squared significance test to see if the digits appear with equal probabil-
ity.

10.5 A simple trick for determining what language a document is written in
is to compare the letter distributions (e.g., the number of z’s) to the known
proportions for a language. For these proportions, we use the familiar letter
frequencies given in the frequencies variable of the scrabble (UsingR) data
set. These are an okay approximation to those in the English language.
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a e i o u

Count 28 39 23 22 11
Scrabble frequency 9 12 9 8 4

Table 10.2: Vowel distribution and Scrabble frequency.

For simplicity (see ?scrabble for more details), we focus on the vowel
distribution of a paragraph from R’s webpage appearing below. The counts
and Scrabble frequencies are given in Table 10.2.

R is a language and environment for statistical computing and
graphics. It is a GNU project which is similar to the S language
and environment which was developed at Bell Laboratories (for-
merly AT&T, now Lucent Technologies) by John Chambers and
colleagues. R can be considered as a different implementation of
S. There are some important differences, but much code written
for S runs unaltered under R.

Perform a chi-squared goodness-of-fit test to see whether the distribution
of vowels appears to be from English.

10.6 The names of common stars are typically Greek or Arab in derivation.
The bright.stars (UsingR) data set contains 96 names of common stars. Per-
form a significance test on the letter distribution to see whether they could
be mistaken for English words.

The letter distribution can be found with:

all.names <- paste(bright.stars$name, sep="", collapse="")
x <- unlist(strsplit(tolower(all.names), ""))
letter.dist <- sapply(letters, function(i) sum(x == i))

The English-letter frequency is found using the scrabble (UsingR) data set
with:

ps <- scrabble$frequency[1:26]
ps <- ps/sum(ps)

10.7 The number of murders by day of week in New Jersey during 2011 and
2003 is shown in Table 10.3.

1. For the 2011 data, perform a significance test to test the null hypothesis
that a murder is equally likely to occur on any given day.
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Year Sun Mon Tues Wed Thurs Fri Sat

2003 53 42 51 45 36 37 65
2011 63 53 50 51 55 52 56

Table 10.3: Number of murders by day of week in New Jersey in 2003 and
2011. (Source: http://www.njsp.org.)

2. Again, for the 2011 data perform a significance test of the null hypothe-
sis that murders happen on each weekday with equal probability; sim-
ilarly on the weekends, but not necessarily with the same probability.

For each test, write down explicitly the null and alternative hypotheses.

10.8 A large bag of M&M’s is opened and some of the colors are counted: 41
brown, 48 orange, 105 yellow, and 58 green. Test the partially specified null
hypothesis that the probability of brown is equal to the probability of orange.
What do you conclude?

10.9 The data for Figure 10.1 was simulated using the following commands:

M <- 2000; n <- 20
p <- c(3,4,5)/12

res <- replicate(M, {
x <- sample(1:3, n, replace=TRUE, prob=p)
y <- sapply(1:3, function(i) sum(x==i))
expected <- n * p
chi <- sum( (y - expected)^2/expected )
chi

})

col <- rgb(.7,.7,.7,.75)
hist(res, prob=TRUE, breaks=50,

col=col, ylab="Probability", xlab="res",
main="Chi-squared simulation")

curve(dchisq(x, df=length(p)-1), add=TRUE, lwd=2)

The sampling distribution of χ2 is well approximated by the chi-squared
distribution, with k− 1 degrees if the expected cell counts are all five or more.
Do a simulation like the above, only with n = 5. Does the fit seem right? Re-
peat with n = 20 using the different probabilities p=c(1,19,20)/40. Does the
fit seem right?
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10.10 When k = 2 you can algebraically simplify the χ2-statistic. Show that it
simplifies to

χ2 =

(
p̂1 − p1√

p1(1− p1)/n

)2

.

This is the square of the statistic used in the one-sample test of proportion
and is asymptotically a single-squared normal or a chi-squared random vari-
able with 1 degree of freedom. Thus, in this case, the chi-squared test is
equivalent to the test of proportions.

10.2 The chi-squared test of independence

In a two-way contingency table we are interested in the relationship between
the variables. In particular, we ask whether the levels of one variable effect
the distribution of the other variable. That is, are they independent random
variables in the same sense that we defined an independent sequence of ran-
dom variables?

For example, in the seat-belt-usage data from Table 3.3, does the fact that
a parent has her seat belt buckled effect the chance that the child’s seat belt
will be buckled?

The differences appear so dramatic that the answer seems to be obvious.
We can set up a significance test to help make the decision formal, using a
method that can be used when the data does not tell such a clear story.

To approach this question with a significance test, we need to state the
null and alternative hypotheses, a test statistic, and a probability model.

First, our model for the sampling is that each observed car follows some
specified probability that is recorded in any given cell. These probabilities
don’t change from observation to observation, and the outcome of one does
not effect the distribution of another. That is, we have an i.i.d. sequence. Then
a multinomial model applies. Fix some notation. Let nr be the number of
rows in the table (the number of levels of the row variable), nc be the number
of columns, and yij record the frequency of the (i, j) cell. Let pij be the cell
probability for the ith row and jth column from a model for the data. The
marginal probabilities are denoted pr

i and pc
j where, for example, pr

i = pi1 +
pi2 + · · ·+ pinj .

Our null hypothesis is that the column variable should be independent
of the row variable. When stated in terms of the cell probabilities, this says
that pij = pr

i pc
j . This is consistent with the notion that independence means

multiply.
Our hypotheses can be stated informally as:

H0 : the variables are independent, HA : the variables are not independent.

In terms of our notation, we can rewrite the null hypothesis as H0 : pij = pr
i pc

j .
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Child

Parent buckled unbuckled marginal

buckled 56 8 64
unbuckled 2 16 18

marginal 58 24 82

Table 10.4: Seat-belt usage in California with marginal distributions

The χ2-statistic,

χ2 = ∑
(observed− expected)2

expected
,

can still be used as a test statistic after we have estimated each pij in order to
compute the “expected” counts. Again we use the data and the assumptions
to estimate the pij. Basically, the data is used to estimate the marginal prob-
abilities, and the assumption of independence allows us to estimate the pij
from there.

The marginal probabilities are estimated by the marginal distributions of
the data. For our example these are added to Table 3.3 to give Table 10.4.

The estimate for pr
1 = P(parent is buckled) is p̂r

1 = 64/82, and for pr
2 =

P(parent is unbuckled) it is p̂r
2 = 18/82. Similarly, for pc

j we have p̂c
1 = 58/82

and p̂c
2 = 24/82. As usual, we’ve used a “hat” for estimated values.

With these estimates, we can use the relationship pij = pr
i pc

j to find the
estimate p̂ij = p̂r

i p̂c
j . For our seat-belt data we have the estimates in Table 10.5.

In order to show where the values come from, the values have not been
simplified.

With this table we can compute the expected amounts in the ijth cell with
np̂ij. This is often written RiCj/n, where Ri is the row sum and Cj the column
sum, as this simplifies computations by hand.

With the expected amounts now known, we form the χ2-statistic as:

χ2 =
nr

∑
i=1

nc

∑
j=1

(yij − np̂ij)
2

np̂ij
. (10.2)

Under the hypothesis of multinomial data and the independence of the
variables, the sampling distribution of χ2 will be the chi-squared distribu-
tion with (nr − 1) · (nc − 1) degrees of freedom. Why this many? In general,
we subtract one degree of freedom from nr · nc − 1 for each estimated pa-
rameter. As there are nr − 1 + nc + 1 estimated parameters, the value for the
degrees of freedom is nr · nc − 1− (nr − 1 + nc + 1) = nr · nc − nr − nc + 1 =
(nr − 1) · (nc − 1).
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Child

Parent buckled unbuckled marginal

buckled 64
82 ·

58
82

64
82 ·

24
82

64
82

unbuckled 18
82 ·

58
82

18
82 ·

24
82

18
82

marginal 58
82

24
82 1

Table 10.5: Seat-belt usage in California with estimates p̂ij for the correspond-
ing pij.

We now have all the pieces to formulate the problem in the language of a
significance test.

The chi-squared test of independence

Let yij, i = 1, . . . ,nr, j = 1, . . . ,nc be the cell frequencies in a two-
way contingency table for which the multinomial model ap-
plies. A significance test of

H0 : the two variables are independent
HA : the two variables are not independent

can be performed using the chi-squared test statistic (10.2). Un-
der the null hypothesis, this statistic has a sampling distribu-
tion that is approximated by the chi-squared distribution with
(nr − 1)(nc − 1) degrees of freedom. The p-value is computed
using P(χ2 ≥ observed value |H0).

In R this test is performed by the chisq.test function. If the data is sum-
marized in a table or a matrix in the variable x the usage is

chisq.test(x).

If the data is unsummarized and is stored in two variables x and y where
the ith entries match up, then the function can be used as

chisq.test(x, y).

Alternatively, the data could be summarized first using table. (For table and
xtabs objects, the summary method for these objects will also report this test.)

For each usage, the null and alternative hypotheses are not specified, as
they are the same each time the test is used.
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The argument simulate.p.value=TRUE will return a p-value estimated us-
ing a Monte Carlo simulation. This is used if the expected counts in some
cells are too small to use the chi-squared distribution to approximate the
sampling distribution of χ2.

To illustrate, the following will do the chi-squared test on the seat-belt
data. This data is summarized, so we first need to make a table. We use
rbind to combine rows.

seatbelt <- rbind(c(56,8), c(2,16))
seatbelt

## [,1] [,2]
## [1,] 56 8
## [2,] 2 16

chisq.test(seatbelt)

##
## Pearson’s Chi-squared test with Yates’ continuity
## correction
##
## data: seatbelt
## X-squared = 36, df = 1, p-value = 1.978e-09

The minuscule p-value is consistent with our observation that the two
variables are not independent.

• Example 10.3: Teen smoking and gender
The samhda (UsingR) data set contains survey data on 590 children. The vari-
ables gender and amt.smoke contain information about the gender of the par-
ticipant and how often the participant smoked in the last month. Are the two
variables independent?

We compute a p-value for the hypotheses

H0 : the two variables are independent,
HA : the two variables are not independent

using the χ2-statistic.
In this example we use xtabs to make a table, then apply chisq.test. The

xtabs function allows us to use the convenient subset argument to eliminate
the data for which the values are not applicable.

tbl <- xtabs( ~ gender + amt.smoke, # no left side in formula
subset = amt.smoke < 98 & gender !=7,
data=samhda)

tbl
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## amt.smoke
## gender 1 2 3 4 5 6 7
## 1 16 3 5 6 7 24 64
## 2 16 4 8 4 7 19 40

chisq.test(tbl)

## Warning: Chi-squared approximation may be incorrect

##
## Pearson’s Chi-squared test
##
## data: tbl
## X-squared = 4.147, df = 6, p-value = 0.6568

The significance test shows no reason to doubt the hypothesis that the
two variables are independent.

The warning message is due to some expected counts being small. Could
this significantly change the p-value reported? A p-value based on a simula-
tion may be computed.

chisq.test(tbl,simulate.p.value=TRUE)

##
## Pearson’s Chi-squared test with simulated p-value (based
## on 2000 replicates)
##
## data: tbl
## X-squared = 4.147, df = NA, p-value = 0.6707

The p-value is not changed significantly. ••

The chi-squared test of homogeneity

How can we assess the effectiveness of a drug treatment? Typically, there
is a clinical trial, with each participant randomly allocated to either a treat-
ment group or a placebo group. If the results are measured numerically, a
t-test may be appropriate to investigate whether any differences in means
are significant. When the results are categorical, we see next how to use the
χ2-statistic to test whether the distributions of the results are the same.

Stanford University Medical Center conducted a study to determine
whether the antidepressant Celexa can help stop compulsive shopping.
Twenty-four compulsive shoppers participated in the study: twelve were
given a placebo and twelve a dosage of Celexa daily for seven weeks. After
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Much worse Worse Same Much improved Very much so

Celexa 0 2 3 5 2
placebo 0 2 8 2 0

Table 10.6: Does Celexa treatment cut down on compulsive shopping?

this time the individuals were surveyed to determine whether their desires to
shop had been curtailed. Data simulated from a preliminary report is given
in Table 10.6.

Does this indicate that the two samples have different distributions?

We formulate this as a significance test using hypotheses:

H0 : the two distributions are the same
HA : the two distributions are different.

We use the χ2-statistic. Again we need to determine the expected amounts,
as they are not fully specified by H0.

Let the random variable be the column variable, and the category that
breaks up the data be the row variable in our table of data. For row i of the
table, let pij be the probability that the random variable (the survey result)
will be in the jth level of the random variable. We can rephrase the hypothe-
ses as

H0 : pij = pj for all rows i, HA : pij 6= pj for some i, j.

If we let ni be the number of counts in each row (Ri before), then the
expected amount in the (i, j) cell under H0 should be ni pj. We don’t specify
the value of pj in the null hypothesis, so it is estimated. Under H0 all the data
in the jth column of our table is binomial with n and pj, so an estimator for
pj would be the column sum divided by n: Cj/n. Based on this, the expected
number in the (i, j)-cell would be

eij = ni p̂j =
RiCj

n
.

This is the same formula as the chi-squared test of independence.
As the test statistic and its sampling distribution under H0 are the same

as with the test of independence, the chi-squared significance tests of homo-
geneity and independence are identical in implementation despite the differ-
ences in the hypotheses.

Before proceeding, let’s combine the data so that there are three outcomes:
“worse,” “same,” and “better.”
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celexa <- c(2, 3, 7)
placebo <- c(2, 8, 2)
x <- rbind(celexa, placebo)
colnames(x) <- c("worse", "same", "better")
x

## worse same better
## celexa 2 3 7
## placebo 2 8 2

chisq.test(x)

## Warning: Chi-squared approximation may be incorrect

##
## Pearson’s Chi-squared test
##
## data: x
## X-squared = 5.051, df = 2, p-value = 0.08004

The warning notes that one or more of the expected cell counts is less
than five, indicating a possible discrepancy with the asymptotic distribution
used to find the p-value. We can use a simulation to find the p-value, instead
of using the chi-squared distribution approximation, as follows:

chisq.test(x, simulate.p.value=TRUE)

##
## Pearson’s Chi-squared test with simulated p-value (based
## on 2000 replicates)
##
## data: x
## X-squared = 5.051, df = NA, p-value = 0.1014

In both cases, the p-value is small but not tiny.

Problems

10.11 A number of drivers were surveyed to see whether they had been in
an accident during the previous year, and, if so, whether it was a minor or
major accident. The results are tabulated by age group in Table 10.7. Do a
chi-squared hypothesis test of independence for the two variables.

10.12 The airquality data set contains measurements of air quality in New
York City. We wish to see if ozone levels are independent of temperature.
First we gather the data, using complete.cases to remove missing data from
our data set.
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Accident type

Age
none minor major

under 18 67 10 5
18–25 42 6 5
26–40 75 8 4
41–65 56 4 6

over 65 57 15 1

Table 10.7: Type of accident by age.

aq <- airquality[complete.cases(airquality),]
aq <- transform(aq,
te = cut(Temp, quantile(Temp)),
oz = cut(Ozone,quantile(Ozone))

)
xtabs(~ te + oz, data=aq)

## oz
## te (1,18] (18,31] (31,62] (62,168]
## (57,71] 15 9 3 0
## (71,79] 10 10 7 1
## (79,84.5] 4 6 11 5
## (84.5,97] 0 0 6 22

Perform a chi-squared test of independence on the two variables te and
oz. Does the data support an assumption of independence?

10.13 The following table contains data on the severity of injuries sustained
during car crashes.

Injury level

none minimal minor major

Seat belt yes 12,813 647 359 42
no 65,963 4,000 2,642 303

The data is tabulated by whether or not the passenger wore a seat belt. Are
the two variables independent?

10.14 The data set oral.lesion (UsingR) contains data on location of an oral
lesion for three geographic locations. This data set appears in an article by
Mehta and Patel about differences in p-values in tests for independence when
the exact or asymptotic distributions are used. Compare the p-values found
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by chisq.test when the asymptotic distribution of the sampling distribution
is used to find the p-value and when a simulated value is used. Are the p-
values similar? If not, which do you think is more accurate? Why?

10.15 In an effort to increase student retention, many colleges have tried
“block programs.” Assume that 100 students are broken into two groups of
“50” at random. Fifty are in a block program; the others are not. The number
of years each student attends the college is then measured. The following
records the data:

Program 1 year 2 year 3 year 4 year 5+ years

nonblock 18 15 5 8 4
block 10 5 7 18 10

We wish to test whether a block program makes a difference in reten-
tion, assuming this sample is representative of a future population. Perform
a chi-squared test of significance to investigate whether the distributions are
homogeneous.

10.16 Table 10.3 lists the number of murders in New Jersey by day of week
for the years 2003 and 2011. Is there a statistically significant difference in the
distributions?

10.3 Goodness-of-fit tests for continuous distributions

When finding confidence intervals for a sample we were concerned about
whether or not the data was sampled from a normal distribution. To investi-
gate, we made a quantile plot or histogram and eyeballed the result. In this
section, we see how to compare a continuous distribution with a theoretical
one using a significance test.

The chi-squared test is used for categorical data. We can try to make it
work for continuous data by “binning.” That is, as in a construction of a
histogram, we can choose some bins and count the number of data points in
each. Now the data can be thought of as categorical, and the test can be used
for goodness of fit.

This is fine in theory but works poorly in practice. The Kolmogorov-
Smirnov test will be a better alternative in the continuous distribution case.

Kolmogorov-Smirnov test

Suppose we have a random sample x1, x2, . . . , xn from some continuous dis-
tribution. (There should be no ties in the data.) Let f (x) be the density and
X some other random variable with this density. The cumulative distribution
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Figure 10.2: For a sample of size 20 from a normally distributed population,
both sample and theoretical densities and cumulative distribution functions
are drawn.

function for X is F(x) = P(X≤ x), or the area to the left of x under the density
of X.

The c.d.f. can be defined the same way when X is discrete. In that case it
is computed from the p.d.f. by summing: P(X ≤ x) = ∑y≤x f (y).

For a sample, x1, x2, . . . , xn, the empirical distribution is the distribution
generated by sampling from the data points. This becomes:

Fn(x) =
#{i : xi ≤ x}

n
.

The function Fn(x) can easily be plotted in R (e.g, Figure 10.2) using the
ecdf function in the stats package. This function is used in a manner similar
to the density function: the return value is plotted in a new figure using plot
or may be added to the existing plot using lines.

If the data is from the population with c.d.f. F, then we would expect that
Fn is close to F is some way. But what does “close” mean? In this context, we
have two different functions of x. Define the distance between them as the
largest difference they have:

D = maximum in x of |Fn(x)− F(x)|.

The surprising thing is that with only the assumption that F is continu-
ous, D has a known sampling distribution called the Kolmogorov-Smirnov
distribution. This is illustrated in Figure 10.3, where the sampling distribu-
tion of the statistic for n = 25 is simulated for several families of random data.
In each case, we see the same distribution. This fact allows us to construct a
significance test using the test statistic D. In addition, a similar test can be
done to compare two independent samples.
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Figure 10.3: Density estimates for sampling distribution of the Kolmogorov-
Smirnov statistic with n = 25 for normal, exponential, t, and log-normal data.

The Kolmogorov-Smirnov goodness-of-fit test

Assume x1, x2, . . . , xn is an i.i.d. sample from a continuous dis-
tribution with c.d.f. F(x). Let Fn(x) be the empirical c.d.f. A
significance test of

H0 : F(x) = F0(x), HA : F(x) 6= F0(x)

can be constructed with test statistic D. Large values of D sup-
port the alternative hypothesis.

In R, this test is implemented in the function ks.test. Its usage follows
this pattern:

ks.test(x, y="name", ...)

The variable x stores the data. The argument y is used to set the family name
of the distribution in H0. It has a character value of "name" containing the “p”
function that returns the c.d.f. for the family (e.g., "pnorm" or "pt"). The ...
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argument allows the specification of the assumed parameter values. These
depend on the family name and are specified as named arguments, as in
mean=1, sd=1. The parameter values should not be estimated from the data,
as this effects the sampling distribution of D.

If we have two i.i.d. independent samples, x1, . . . , xn and y1, . . . ,ym, from
two continuous distributions FX and FY, then a significance test of

H0 : FX = FY, HA : FX 6= FY

can be constructed with a similar test statistic:

D = maximum in x of |FX
n (x)− FY

m(x)|.

In this case, the ks.test can be used as

ks.test(x, y)

where x and y store the data.

We illustrate with some simulated data.

x <- rnorm(100, mean=5, sd=2)
ks.test(x, "pnorm", mean=0, sd=2) # "wrong" parameters

##
## One-sample Kolmogorov-Smirnov test
##
## data: x
## D = 0.7991, p-value < 2.2e-16
## alternative hypothesis: two-sided

ks.test(x, "pnorm", mean=5, sd=2)$p.value # correct parameters

## [1] 0.02613

x = runif(100, min=0, max=5)
ks.test(x, "punif", min=0, max=6)$p.value # "wrong" parameters

## [1] 0.0014

ks.test(x, "punif", min=0, max=5)$p.value # correct parameters

## [1] 0.4299

The p-values are significant only when the parameters do not match the
known population ones.

• Example 10.4: Difference in SAT scores
The data set stud.recs (UsingR) contains math and verbal SAT scores for
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Figure 10.4: Three plots comparing the distribution of math and verbal SAT
scores in the stud.recs (UsingR) data set.

some students (sat.m and sat.v). Assuming naively that the two samples are
independent, are the samples from the same population of scores?

First, we make a q-q plot, a side-by-side boxplot, and a plot of the e.c.d.f.’s
for the data, to see whether there is any merit to the question.

library(UsingR)
sat.m <- stud.recs$sat.m; sat.v <- stud.recs$sat.v

boxplot(list(math=sat.m, verbal=sat.v), main="SAT scores")
qqplot(sat.m, sat.v, main="Math and verbal SAT scores")
plot(ecdf(sat.m), main="Math and verbal SAT scores")
lines(ecdf(sat.v), lty=2)

The graphics are in Figure 10.4. The q-q plot shows similarly shaped dis-
tributions, but boxplots show that the centers appear to be different. Conse-
quently, the cumulative distribution functions do not look that similar. The
Kolmogorov-Smirnov test detects this and returns a small p-value.

ks.test(sat.m, sat.v)

## Warning: p-value will be approximate in the presence of ties

##
## Two-sample Kolmogorov-Smirnov test
##
## data: sat.m and sat.v
## D = 0.2125, p-value = 0.001456
## alternative hypothesis: two-sided

••
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The Shapiro-Wilk test for normality

The Kolmogorov-Smirnov test for a univariate data set works when the dis-
tribution in the null hypothesis is fully specified prior to our looking at the
data. In particular, any assumptions on the values for the parameters should
not depend on the data, as this can change the sampling distribution. Fig-
ure 10.5 shows the sampling distribution of the Kolmogorov-Smirnov statis-
tic for Normal(0,1) data and the sampling distribution of the Kolmogorov-
Smirnov statistic for the same data when the sample values of x̄ and s are
used for the parameters of the normal distribution (instead of 0 and 1). The
figure was generated with this simulation:

res <- replicate(2000, {
x <- rnorm(25, mean=0, sd=1)
c(ks.test(x, pnorm, mean=mean(x), sd=sd(x))$statistic,

ks.test(x, pnorm, mean=0, sd=1)$statistic)
})
plot(density(res[1,]), main="K-S sampling distribution", ylab="")
lines(density(res[2,]), lty=2)
legend(0.2, 12, legend=c("estimated", "exact"), lty=1:2)

(To retrieve just the value of the test statistic from the output of ks.test
we take advantage of the fact that its return value is a list with one compo-
nent named statistic containing the desired value. This is why the syntax
ks.test(...)$statistic is used.)

A consequence is that we can’t use the Kolmogorov-Smirnov test to test
for normality of a data set unless we know the parameters of the underlying
distribution.2 The Shapiro-Wilk test allows us to perform that analysis. This
test statistic is based on the ideas behind the quantile-quantile plot, which
we’ve used to gauge normality. Its definition is a bit involved, but its usage
in R is not.

The Shapiro-Wilk test for normality

If x1, x2, . . . , xn is an i.i.d. sample from a continuous distribu-
tion, a significance test of

H0 : parent distribution is normal,
HA : the parent distribution is not normal

can be carried out with the Shapiro-Wilk test statistic.

2The Lilliefors test, implemented by lillie.test in the contributed package nortest, will
make the necessary adjustments to use this test statistic. As well, the nortest package imple-
ments other tests of normality.
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Figure 10.5: The sampling distribution for the Kolmogorov-Smirnov statistic
when the parameters are estimated (solid line) and when not.

In R, the function shapiro.test will perform the test. The usage is simply

shapiro.test(x)

where the data vector x contains the sample data.

• Example 10.5: Normality of SAT scores
For the SAT data in the stud.recs (UsingR) data set, we saw in Example 10.3

that the two distributions are different. Are they normally distributed? We
can answer with the Shapiro-Wilk test:

shapiro.test(stud.recs$sat.m)

##
## Shapiro-Wilk normality test
##
## data: stud.recs$sat.m
## W = 0.9898, p-value = 0.3055

shapiro.test(stud.recs$sat.v)
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##
## Shapiro-Wilk normality test
##
## data: stud.recs$sat.v
## W = 0.994, p-value = 0.752

In each case, the p-value is not statistically significant. There is no evi-
dence in the data that the assumption of it being a random sample from a
normal population should be doubted. ••

• Example 10.6: Is on-base percentage normally distributed?
The data set OBP (UsingR) records the on-base percentage for all players in
the 2002 Major League Baseball season. It appears bell shaped except for one
outlier. Does the data come from a normally distributed population?

Using the Shapiro-Wilk test gives us

shapiro.test(OBP)$p.value

## [1] 1.206e-07

The difference from normality is statistically significant. Perhaps this is
due to the one outlier. We investigate:

shapiro.test(OBP[OBP<.5])$p.value

## [1] 0.006404

The conclusion is the same. However, note the dramatic difference in the
p-value that just one outlier makes. The statistic is not very resistant. ••

In defining the t-test, it was assumed that the data is sampled from a
normal population. This is because the sampling distribution of the t-statistic
is known under this assumption. However, this would not preclude us from
using the t-test to perform statistical inference on data that has failed a formal
test for normality. For small samples the t-test may apply, as the distribution
of the t-statistic is robust to small changes in the assumptions on the parent
distribution. If the parent distribution is not normal but also not too skewed,
then a t-test can be appropriate. For large samples, the central limit theorem
may apply, making a t-test valid.

Finding parameter values using fitdistr

If we know a data set comes from a known distribution and would like to
estimate the parameter values, we can use the convenient fitdistr function
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from the MASS library. This function estimates the parameters for a wide fam-
ily of distributions. The function is called with these arguments:

fitdistr(x, densfun=family.name, start=list(...))

We specify the data as a data vector, x; the family is specified by its full name
(unlike that used in ks.test); and, for many of the distributions, reason-
able starting values are specified using a named list. The fitdistr function
fits the parameters by a method called maximum-likelihood. Often this co-
incides with using the sample mean or standard deviation to estimate the
parameters, but in general it allows for a uniform approach to this estima-
tion problem and associated inferential problems.

• Example 10.7: Exploring fitdistr
The data set babyboom (UsingR) contains data on the births of 44 children in
a one-day period at a hospital in Brisbane, Australia. The variable wt records
the weights of each newborn. A histogram suggests that the data comes from
a normally distributed population. We can use fitdistr to find estimates for
the parameters µ and σ, which for the normal distribution are the population
mean and standard deviation.

library(MASS)
fitdistr(babyboom$wt,"normal")

## mean sd
## 3275.95 522.00
## ( 78.69) ( 55.65)

These estimates include standard errors in parentheses computed using a
normal approximation. These can be employed to give confidence intervals
for the estimates.

This estimate for the mean and standard deviation could also be done
directly, as it coincides with the sample mean and sample standard deviation.
However, the standard errors are new. To give a different usage, we look at
the variable running.time, which records the time of day of each birth. The
time differences between successive births are called the inter-arrival times.
We first find the inter-arrival times using diff:

inter = diff(babyboom$running.time)

We fit the gamma distribution to the data. The gamma distribution gener-
alizes the exponential distribution. It has two parameters, a shape and a rate.
A value of 1 for the shape coincides with the exponential distribution. The
fitdistr function does not need starting values for the gamma distribution.
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Figure 10.6: Empirical and theoretical densities and cumulative distribution
functions for the inter-arrival times in the babyboom data set.

out <- fitdistr(inter, "gamma")
out

## shape rate
## 1.208846 0.036350
## (0.233207) (0.008632)

Finally, we look at density estimates and cumulative distribution func-
tions with the following commands (Figure 10.6):

plot(density(inter), ylim=c(0, 0.025),
main="Compare estimated densities", xlab="inter")

curve(dgamma(x, shape=out$estimate["shape"],
rate=out$estimate["rate"]), add=TRUE, lty=2)

legend(100, 0.020, legend=c("density()", "fitdistr()"),lty=1:2)
#
plot(ecdf(inter),
main="Compare ecdf with estimated cdf", xlab="inter")
curve(pgamma(x, shape=1.208593, rate=0.036350), add=TRUE)
legend(70, 0.8, legend=c("ecdf", "estimated cdf"), lty=1:2)

••
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Problems

10.17 Carry out a Shapiro-Wilk test for the mother’s height, ht, and weight,
wt, in the babies (UsingR) data set. Remember to exclude the cases when
ht==99 and wt==999. Does the sample data appear to come from a normal
population in each case?

10.18 The brightness (UsingR) data set contains brightness measurements
for 966 stars from the Hipparcos catalog. Is the data normal? Compare the
result of a significance test with the graphical investigation done by

hist(brightness, prob=TRUE)
lines(density(brightness))
curve(dnorm(x, mean(brightness), sd(brightness)), add=TRUE)

10.19 The variable temperature in the data set normtemp (UsingR) contains
normal body temperature measurements for 130 healthy, randomly selected
individuals. Test the assumption that the sample data of normal body tem-
perature comes from a normal distribution?

10.20 The rivers data set contains the length of 141 major rivers in North
America. Fit this distribution using the gamma distribution and fitdistr.
How well does the gamma distribution fit the data? Answer by graphing the
empirical and estimated densities.

10.21 Find parameter estimates for µ and σ for the variables sat.m and sat.v
in the stud.recs (UsingR) data set. Assume the respective populations are
normally distributed.

10.22 How good is the Kolmogorov-Smirnov test at rejecting the null when
it is false? The following command will do 1000 simulations of the test when
the data is not normal, but long-tailed and symmetric.

res <- replicate(1000, ks.test(rt(25, df=3),"pnorm")$p.value)

(The syntax above is using the fact that ks.test returns a list of values
with one component named p.value.) What percentage of the trials have a
p-value less than 0.05?

Try this with the exponential distribution (that is, replace rt(25,df=3)
with rexp(25)-1). Is it better when the data is skewed?

10.23 A key to understanding why the Kolmogorov-Smirnov statistic has a
sampling distribution that does not depend on the underlying parent pop-
ulation (as long as it is continuous) is the fact that if F(x) is the c.d.f. for a
random variable X, then F(X) is uniformly distributed on [0,1].
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This can be proved algebraically using inverse functions, but instead we
see how to simulate the problem to gain insight. The following line will il-
lustrate this for the normal distribution:

qqplot(pnorm(rnorm(100)), runif(100))

The qqplot should be nearly straight if the distribution is uniform.
Change the distribution to some others and see that you get a nearly straight
line in each case. For example, the t-distribution with 5 degrees of freedom
would be investigated with

qqplot(pt(rt(100,df=5),df=5),runif(100))

Try the uniform distribution, the exponential distribution, and the lognor-
mal distribution (lnorm).

10.24 Is the Shapiro-Wilk test resistant to outliers? Run the following com-
mands and decide whether the presence of a single large outlier (the 5)
changes the ability of the test to detect normality.

shapiro.test(c(rnorm( 100), 5))
shapiro.test(c(rnorm(1000), 5))
shapiro.test(c(rnorm(4000), 5))
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Linear regression

In Chapter 3 we looked at the simple linear regression model,

yi = β0 + β1xi + εi,

as a way to summarize a linear relationship between pairs of data (xi,yi).
In this chapter we return to this model. We begin with a review and then
further the discussion using the tools of statistical inference. Additionally,
we will see that the methods developed for this model extend readily to the
multiple linear regression model where there is more than one predictor.1

11.1 The simple linear regression model

Many times we assume that an increase in a predictor variable will corre-
spond to an increase (or decrease) in the response variable. A basic model for
this is the simple linear regression model:

yi = β0 + β1xi + εi.

The y variable is called the response variable and the x variable the pre-
dictor variable, covariate, or regressor.

As a statistical model, this says that the value of yi depends on three
things: that of xi, the function β0 + β1x, and the value of the random variable
εi. The model says that for a given value of x, the corresponding value of y
can be found by first applying the function to x and then adding the random
error term εi.

To be able to make statistical inference, we assume that the error terms,
εi, are i.i.d. and have a Normal(0,σ) distribution. This assumption can be
rephrased as an assumption on the randomness of the response variable.
If the x values are fixed, then the distribution of yi is normal with mean
µy|x = β0 + β1xi (depending of the values of x) and variance σ2 (not depend-
ing on the values of x). This can be expressed as yi has a Normal(β0 + β1xi,σ)

1There is a large literature on using R for modeling such as described here and related
extensions. For example, all of these books are quite informative: [57], [29], [22], [25], [20], [21],
and [48]. The text [36] introduces R through a modeling approach.

364
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distribution. If the x values are random, the model assumes that, condition-
ally on knowing these random values, the same is true about the distribution
of the yi.

Estimating the parameters in simple linear regression

One goal when modeling is to “fit” the model by estimating the parameters
based on the sample. For the regression model the method of least squares
is used. With an eye toward a more general usage, suppose we have several
predictors, x1, x2, . . . , xk; several parameters, β0, β1, . . . , βp; and some function,
f , which gives the mean for the variables yi. That is, the statistical model

yi = f (x1i, x2i, . . . , xki |β1, β2, . . . , βp) + εi.

The method of least squares finds values for the β’s that minimize the
squared difference between the actual values, yi, and those predicted by the
function f . That is, the following sum is minimized:

∑
i

[
yi − f (x1i, x2i, . . . , xki |β0, β1, . . . , βp)

]2 .

For the simple linear regression model, the formulas are not difficult to
write (they are given below). For the more general model, even if explicit
formulas are known, we don’t present them.

The simple linear regression model for yi has three parameters, β0, β1,
and σ2. The least-squares estimators for these are

β̂1 =
∑(xi − x̄)(yi − ȳ)

∑(xi − x̄)2 , (11.1)

β̂0 = ȳ− β̂1 x̄, and (11.2)

σ̂2 =
1

n− 2 ∑[yi − (β̂0 + β̂1xi)]
2. (11.3)

We call ŷ = β̂0 + β̂1x the prediction line; a value ŷi = β̂0 + β̂1xi the pre-
dicted value for xi; and the difference between the actual and predicted val-
ues, ei = yi − ŷi, the residual. The residual sum of squares is denoted RSS and is
equal to ∑i e2

i .

Quickly put, the regression line is chosen to minimize the residual sum of
squares, RSS; it has slope β̂1, intercept β̂0, and goes through the point (x̄, ȳ).
Furthermore, the estimate for σ2 is σ̂2 = RSS/(n− 2).

Figure 11.1 shows a data set simulated from the equation yi = 1+ 2xi + εi,
where β0 = 1, β1 = 2, and σ2 = 3. Both the line y = 1 + 2x and the regression
line ŷ = 0.329+ 2.158 · x, predicted by the data, are drawn. They are different,
of course, as one of them depends on the random sample. Keep in mind
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Figure 11.1: Simulation of model yi = 1 + 2xi + εi. The regression line based
on the data is drawn with dashes. The big square marks the value (x̄, ȳ).

that the data is related by the true model, but if all we have is the data, the
estimated model is given by the regression line. Our task of inference is to
decide how much the regression line can tell us about the underlying true
model.

Using lm to find the estimates

In Chapter 3 we learned how to fit the simple linear regression model using
lm. The basic usage is of the form

lm(formula, data=..., subset=...)

Linear models are fit using R’s model formulas, of which we have already
seen a few examples.

The basic format for a formula is

response ~ predictor

The ~ (tilde) is read “is modeled by” and is used to separate the response
from the predictor(s). The response variable can have regular mathematical
expressions applied to it, but for the predictor variables the regular notations
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+, -, *, /, and ˆ have different meanings. A + means to add another term to
the model, - means to drop a term, more or less coinciding with the symbols’
common usage. But *, /, and ˆ are used differently. If we want to use regular
mathematical notation for the predictor we must insulate the symbols’ usage
with the I function, as in I(xˆ2).

As is usual with functions using model formulas, the data argument al-
lows the variable names to reference those in the specified data frame, and
the subset argument can be used to restrict the indices of the variables used
by the modeling function.

By default, the lm function will print out the estimates for the coefficients.
Much more is returned, but needs to be explicitly asked for. Usually, we store
the results of the model in a variable, so that it can subsequently be queried
for more information.

In Chapter 3 we fit a regression model to maximum heart rate by age
with:

res.mhr <- lm(maxrate ~ age, data=heartrate)
res.mhr

##
## Call:
## lm(formula = maxrate ~ age, data = heartrate)
##
## Coefficients:
## (Intercept) age
## 210.048 -0.798

These coefficients can be used directly for predictions. For example, a 50-
year-old male would have a predicted maximum heart rate of:

208.36 - 0.76 * 50

## [1] 170.4

Extractor functions for lm

The lm function is reticent, but we can coax out more information as needed.
This is done using extractor functions. Useful ones are summarized in Ta-
ble 11.1.

These functions are passed an object returned by a modeling function,
such as lm. These are “generic functions” which may have slightly different
implementations depending on what type of model object is passed as the
first object.

To illustrate, the estimate for σ2 can be found using the resid function to
retrieve the residuals from the model fitting:
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Function Description

summary returns summary information about the regression
plot makes diagnostic plots
coef returns the coefficients
confint returns confidence intervals for the coefficients
vcov estimated covariance between parameter estimates
residuals returns the residuals (can be abbreviated resid)
fitted returns fitted values, ŷi
deviance returns RSS
predict performs predictions
anova finds various sums of squares
AIC is used for model selection
model.matrix matrix used to fit model mathematically

Table 11.1: Generic extractor functions for many of R’s modeling functions,
including lm.

n <- length(heartrate$age)
sum( resid(res)^2 ) / (n-2)

## [1] 31.05

Or, the RSS part can be found directly through deviance:

deviance(res)/ (n - 2)

## [1] 31.05

Problems

11.1 For the Cars93 (MASS) data set, answer the following:

1. For MPG.highway modeled by Horsepower, find the simple regression co-
efficients. What is the predicted mileage for a car with 225 horsepower?

2. Fit the linear model with MPG.highway modeled by Weight. Find the
predicted highway mileage of a 6,400 pound HUMMER H2 and a 2,524
pound MINI Cooper.

3. Fit the linear model Max.Price modeled by Min.Price. Why might you
expect the slope to be around 1?

Can you think of any other linear relationships among the variables?
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Age 2 (in.) 39 30 32 34 35 36 36 30

Adult (in.) 71 63 63 67 68 68 70 64

Table 11.2: Height as two-year-old and as an adult.

11.2 For the data set MLBattend (UsingR) concerning Major League Baseball
attendance, fit a linear model of attendance modeled by wins. What is the
predicted increase in attendance if a team that won 80 games last year wins
90 this year?

11.3 People often predict children’s future height by using their 2-year-old
height. A common rule is to double the height. Table 11.2 contains data for
eight people’s heights as 2-year-olds and as adults. Using the data, what is
the predicted adult height for a 2-year-old who is 33 inches tall?

11.4 The galton (UsingR) data set contains data collected by Francis Galton
in 1885 concerning the influence a parent’s height has on a child’s height. Fit
a linear model for a child’s height modeled by his parent’s height. Make a
scatterplot with a regression line. (Is this data set a good candidate for using
jitter?) What is the value of β̂1, and why is this of interest?

11.5 Formulas (11.1), (11.2), and the prediction line equation can be rewritten
in terms of the correlation coefficient, r, as

ŷi − ȳ
sy

= r
xi − x̄

sx
.

Thus the five summary numbers: the two means, the standard deviations,
and the correlation coefficient are fundamental for regression analysis.

This is interpreted as follows. Scaled differences of ŷi from the mean ȳ are
less than the scaled differences of xi from x̄, as |r| ≤ 1. That is, “regression”
toward the mean, as unusually large differences from the mean are lessened
in their prediction for y.

For the data set galton (UsingR) use scale on the variables parent and
child, and then model the height of the child by the height of the parent.
What are the estimates for r and β1?

11.2 Statistical inference for simple linear regression

If the simple regression model is appropriate for our data, then statistical
inferences can be made about the unknown parameters.
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Statistical inferences

If the linear model seems appropriate for the data, statistical inference is
possible. What is needed is an understanding of the sampling distribution of
the estimators.

To investigate these sampling distributions, we performed simulations of
the model yi = xi + εi, using x <- rep(1:10,10) and y <- rnorm(100, x, 5).
Figure 11.2 shows the resulting regression lines for the different simulations.
For reference, a single result of the simulation is plotted using a scatterplot.
There is wide variation among the regression lines. In addition, histograms
of the simulated values of β̂0 and β̂1 are shown.

We see from the figure that the estimators are random but not arbitrary.
Both β̂0 and β̂1 are normally distributed, with respective means β0 and β1.
Furthermore, (n− 2) σ̂2/σ2 has a χ2-distribution with n− 2 degrees of free-
dom.

We will use the fact that the following statistics have a t-distribution with
n− 2 degrees of freedom:

β̂0 − β0

SE(β̂0)
,

β̂1 − β1

SE(β̂1)
. (11.4)

The standard errors are found from the known formulas for the variances
of the β̂i:

SE(β̂0) = σ̂

(
∑

x2
i

∑(xi − x̄)2

)1/2

, SE(β̂1) =
σ̂√

∑(xi − x̄)2
. (11.5)

(Recall that, σ̂2 = RSS/(n− 2).)

Marginal t-tests

We can find confidence intervals and construct significance tests from the
statistics in (11.4) and (11.5). For example, a significance test for

H0 : β1 = b, HA : β1 6= b

is carried out with the test statistic

T =
β̂1 − β1

SE(β̂1)
.

Under H0, T has the t-distribution with n− 2 degrees of freedom.
A similar test for β0 would use the test statistic (β̂0 − β0)/SE(β̂0).
When the null hypothesis is β1 = 0 or β0 = 0 we call these tests marginal

t-tests, as they test whether the parameter is necessary for the model without
consideration of the other parameters involved.
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Figure 11.2: Four plots produced from a simulation finding the least squares
regression coefficients from a known model. The upper left plot regression
lines for 100 simulations from the model yi = xi + εi. The plotted points show
a single realization of the paired data during the simulation. The upper right
plot shows a scatterplot of the points (β̂0, β̂1). The lower left and right plots
are histograms of β̂0 and β̂1.

The F-test

An alternate test for the null hypothesis β1 = 0 can be done using a different
but related approach that generalizes to the multiple-regression problem.

One goal of modeling is the attempt to explain the variation in the re-
sponse variable using one or more predictor variables. The total variation in
the y values about the mean is

SST= total sum of squares = ∑(yi − ȳ)2.
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Algebraically (or geometrically), this can be shown to be the sum of two
easily interpreted terms:

∑(yi − ȳ)2 = ∑(yi − ŷi)
2 + ∑(ŷi − ȳ)2. (11.6)

The first term is the residual sum of squares, or RSS. The second is the
total variation for the fitted model about the mean and is called the regression
sum of squares, SSReg. Equation 11.6 becomes

SST= RSS+ SSReg.

For each term, a number—called the degrees of freedom—is assigned that
depends on the sample size and the number of estimated values in the term.
For the SST there are n data points and one estimated value, ȳ, leaving n− 1
degrees of freedom. For RSS there are again n data points but two estimated
values, β̂0 and β̂1, so n− 2 degrees of freedom. This leaves 1 degree of free-
dom for the SSReg, as the degrees of freedom are additive in this case. When
a sum of squares is divided by its degrees of freedom it is referred to as a
mean sum of squares.

We rewrite the form of the prediction line to:

ŷi = ȳ + β̂1(xi − x̄).

If β̂1 is close to 0, ŷi and ȳ are similar in size, so we would have SST ≈ RSS.
In this case SSReg would be small. Whereas, if β̂1 is not close to 0, then SSReg
is not small. So, SSReg would be a reasonable test statistic for the hypothesis
H0 : β1 = 0. What do small and big mean? As usual, we need to scale the value
by the appropriate factor. The F-statistic is the ratio of the mean regression
sum of squares divided by the mean residual sum of squares.

F =
SSReg/1

RSS/(n− 2)
=

SSReg

σ̂2 . (11.7)

Under the null hypothesis H0 : β1 = 0, the sampling distribution of F is
known to be the F-distribution with 1 and n− 2 degrees of freedom.

This allows us to make the following significance test.

F-test for β1 = 0

A significance test for the hypotheses

H0 : β1 = 0, HA : β1 6= 0

can be made with the the test statistic

F =
SSReg

σ̂2 .
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Under the null hypothesis, the statistic F has the F-distribution
with 1 and n − 2 degrees of freedom. Larger values of F are
more extreme, so the p-value for this test is computed from
P(F ≥ observed value |H0).

The F-statistic can be rewritten as

F =

(
β̂1

SE(β̂1)

)2

.

Under the assumption β1 = 0, this is the square of one of the t-distributed
random variables of Equation 11.4. For simple linear regression the two tests
of H0 : β1 = 0, the marginal t-test and the F-test, are equivalent. However, we
will see that with more predictors, the two tests are different.

R2—the coefficient of determination

The decomposition of the total sum of squares into the residual sum of
squares and the regression sum of squares in Equation 11.6 allows us to in-
terpret how well the regression line fits the data. If the regression line fits the
data well, then the residual sum of squares, ∑(yi− ŷi)

2, will be small. If there
is a lot of scatter about the regression line, then RSS will be big. To quantify
this, we can divide by the total sum of squares, leading to the definition of
the coefficient of determination:

R2 = 1− RSS

SST
= 1− ∑(yi − ŷi)

2

∑(yi − ȳi)2 =
∑(ŷi − ȳ)2

∑(yi − ȳ)2 . (11.8)

This is close to 1 when the linear regression fit is good and close to 0 when it
is not.

When the simple linear regression model is appropriate this value is in-
terpreted as the proportion of the total response variation explained by the
regression. That is, R2 · 100% of the variation is explained by the regression
line. When R2 is close to 1, most of the variation is explained by the regression
line, and when R2 is close to 0, not much is.

This interpretation is similar to that given for the Pearson correlation coef-
ficient, r, in Chapter 3. This is no coincidence: for the simple linear regression
model r2 = R2.

The adjusted R2 divides the sums of squares by their degrees of freedom.
For the simple regression model, these are n− 2 for RSS and n− 1 for SST.
This is done to penalize models that get better values of R2 by using more
predictors. This is of interest when multiple predictors are used.
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Using lm to find values for a regression model

Here we illustrate how R can be used to directly compute these values and,
alternatively, how these values are returned by the lm object and its extractor
methods.

Confidence intervals

For example, based on the distribution of β̂0, a 95% confidence interval for
β0 can be found with:

β̂0 ± t∗SE(β̂0).

Using the values in our example, this could be found with

res.mhr <- lm(maxrate ~ age, data=heartrate)

betahat0 <- coef(res.mhr)[1] # first coefficient
n <- nrow(heartrate)
sigmahat <- sqrt( sum(resid(res.mhr)^2) / (n - 2))
SE <- with(heartrate,

sigmahat*sqrt(sum(age^2) / (n*sum((age - mean(age))^2)))
)

SE

## [1] 2.867

tstar <- qt(1 - 0.05/2, df=n - 2)

betahat0 + c(-1, 1) * tstar * SE

## [1] 203.9 216.2

Standard error

The summary method for lm objects provides most of the values related to the
model, including, for example, the standard error just computed. Find SE in
the Coefficients: part of the output under the column labeled Std. Error.

summary(res.mhr)

##
## Call:
## lm(formula = maxrate ~ age, data = heartrate)
##
## Residuals:
## Min 1Q Median 3Q Max
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## -8.926 -2.538 0.388 3.187 6.624
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 210.048 2.867 73.3 < 2e-16 ***
## age -0.798 0.070 -11.4 3.8e-08 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 4.58 on 13 degrees of freedom
## Multiple R-squared: 0.909,Adjusted R-squared: 0.902
## F-statistic: 130 on 1 and 13 DF, p-value: 3.85e-08

By reading the standard error from this output, a 95% confidence interval
for β1 may be more easily found than the one for β0 above:

betahat1 <- coef(res.mhr)[2] # second coefficient
SE <- 0.06996281 # read from summary
tstar <- qt(1 - 0.05/2, df=n - 2)
betahat1 + c(-1, 1) * tstar * SE

## [1] -0.9489 -0.6466

The two coefficients in this model are returned by the coef method:

coef(res.mhr)

## (Intercept) age
## 210.0485 -0.7977

The coef method called on the summary of the model returns a matrix
with the standard errors included:

coef(summary(res.mhr))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 210.0485 2.86694 73.27 2.124e-18
## age -0.7977 0.06996 -11.40 3.848e-08

which can be used to programmatically extract the standard errors, as with:

coef(summary(res.mhr))["age", "Std. Error"]

## [1] 0.06996

The above shows how to do the work piece-by-piece. If that isn’t of inter-
est, the confint method can do both of these computations directly:
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confint(res.mhr)

## 2.5 % 97.5 %
## (Intercept) 203.8548 216.2421
## age -0.9489 -0.6466

Significance tests

The summary function for lm objects displays more than the standard errors.
For each coefficient a marginal t-test is performed. This is a two-sided hy-
pothesis test of the null hypothesis that βi = 0 against the alternative that
βi 6= 0. We see in this case that both are rejected with very low p-values (as
to be expected as we expect an intercept around 220 and slope around −1).
These small p-values are flagged in the output of summary with significance
stars.

Other t-tests are possible. For example, we can test the null hypothesis
that the slope is −1 with the commands

mu0 <- -1
T.obs <- (betahat1 - mu0)/SE
T.obs

## age
## 2.891

2*pt(abs(T.obs), df=n-2, lower.tail=FALSE)

## age
## 0.01262

This is a small p-value, indicating that the model with slope −1 is unlikely
to have produced this data or anything more extreme than it.

Finding σ̂2, R2

The estimate for σ̂ is marked Residual standard error and is labeled with
13 = 15 − 2 degrees of freedom. The degrees of freedom are contained in
the df.residual component of the model object. The estimate for σ̂ can be
computed directly with:

sigma2 <- sum(resid(res.mhr)^2) / res.mhr$df.residual
sqrt(sigma2) # sigma hat

## [1] 4.578

The value of R2 = cor(age,mhr)ˆ2 is given in the output along with an
adjusted value.
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F-test for β1 = 0

Finally, the F-statistic is calculated. As this is given by (β̂1/SE(β̂1))
2, it can

be found directly with:

(-0.7595 / 0.0561)^2

## [1] 183.3

The significance test H0 : β1 = 0 with two-sided alternative is performed
and again returns a tiny p-value.

The sum of squares to compute F are also given as the output of the anova
extractor function.

anova(res.mhr)

## Analysis of Variance Table
##
## Response: maxrate
## Df Sum Sq Mean Sq F value Pr(>F)
## age 1 2725 2725 130 3.8e-08 ***
## Residuals 13 272 21
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

These values in the column headed Sum Sq are SSReg and RSS. The total
sum of squares, SST, would be the sum of the two.

A short summary The summary function can feel a bit verbose at times. The
following function will be used in the sequel to tighten the display up to
show just the coefficient information:

short_summary <- function(x) {
x <- summary(x)
cmat <- coef(x)
printCoefmat(cmat)

}

Predicting the response with predict

The function predict is used to make different types of predictions.
A template for its usage with lm objects is

predict(res, newdata=..., interval=..., level = ...)
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The value of res is the output of an lm model. We call this res below, but
we can use any valid name. Any changes to the values of the predictor are
given to the argument newdata in the form of a data frame with names that
match those used in the model formula. The arguments interval and level
are set when prediction or confidence intervals are desired.

The simplest usage, predict(res), returns the predicted values (the ŷi’s)
for the data. Predictions for other values of the predictor are specified using
a data frame whose variable names match the variables used in the predictor
side of the model, as this example illustrates:

res.mhr <- lm(maxrate ~ age, data=heartrate)
predict(res.mhr, newdata=data.frame(age=42))

## 1
## 176.5

This finds the predicted maximum heart rate for a 42-year-old. The age
part of the data frame call is important. Variable names in the data frame
supplied to the newdata argument must exactly match the variable names
used when the model object was produced.

To assess whether the simple regression model is appropriate for the data
we use a graphical approach.

Testing the model assumptions

The simple linear regression model, yi = β̂0 + β̂1xi + εi = µy|x + εi, places
assumptions on the data set that we should verify before proceeding with
any statistical inference. In particular, the linear model should be appropriate
for the mean value of the yi, and the error distribution should be normally
distributed and independent.

Just as we looked at graphical evidence when investigating assumptions
about normally distributed populations when performing a t-test, we will
consider graphical evidence to assess the appropriateness of a regression
model for the data. The plot method for lm (?plot.lm) objects can be used to
plot 6 different diagnostic plots. We consider the four that are produced by
default.2

The biggest key to assessing the aptness of the model is found in the
residuals. The residuals are not an i.i.d. sample, as they sum to 0 and they do
not have the same variance. The standardized residuals rescale the residuals to
have unit variance.

2In using plot to produce the diagnostic plots it is convenient to first issue the command
par(mfrow=c(2,2)). This sets up the plot device to have four panes for graphics added row by
row.
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Figure 11.3: Four graphs showing problematic linear models. Scatterplot in
upper left shows linear model is incorrect. Fitted versus residual plot in upper
right shows a nonlinear trend. Fitted versus residual plot in lower left shows
non-constant variance. Lag plot in lower right shows correlations in error
terms.

Assessing the linear model for the mean

A scatterplot of the data with the regression line can show quickly whether
the linear model seems appropriate for the data. If the general trend is not
linear, either a transformation or a different model is called for. An example
of a cyclical trend (which calls for a transformation of the data) is the upper-
left plot in Figure 11.3 and is made with these commands:

x <- rep(1:10,4)
y <- rnorm(40, mean=5*sin(x), sd=1)
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plot(y ~ x)
abline(lm(y ~ x))

When there is more than one predictor variable, a scatterplot will not be
as useful.

A residual plot can also show whether the linear model is appropriate
and can be made with more than one predictor. As well, it can detect small
deviations from the model that may not show up in a scatterplot. The upper-
right plot in Figure 11.3 shows a residual plot that finds a sinusoidal trend
that will not show up in a scatterplot. It was simulated with these commands:

x <- rep(1:10, 4)
y <- rnorm(40, mean=x + 0.05 * sin(x), sd=0.01) # small trend
res <- lm(y ~ x)
plot(fitted(res), resid(res))

The residual plot is one of the four diagnostic plots produced by plot.

Assessing the residuals

The residuals are used to assess whether the error terms in the model are
normally distributed. As mentioned, the residuals are correlated as they add
to 0, we treat them as if they are the actual error terms in the model. For
example, we use either a histogram or, preferably, a quantile-normal plot to
investigate if a normal assumption is appropriate. For the quantile-normal
plot, deviations from a straight line indicate non-normality. One of the diag-
nostic plots produced by plot is a quantile-normal plot of the standardized
residuals. Though normality is not essential for prediction, the sampling dis-
tributions of the coefficients depend on the error terms not being too skewed
or long-tailed.

In addition to normality, an assumption of the model is also that the error
terms have a common variance. A residual plot can show whether this is
the case. When it is, the residuals show scatter about a horizontal line. In
many data sets, the variance increases for larger values of the predictor. The
commands below create a simulation of this. The graph showing the effect is
in the lower-left of Figure 11.3. The absence of equal variance can sometimes
be addressed by transformations or weighted least squares, though we don’t
pursue that here.

x <- rep(1:10, 4)
y <- rnorm(40, mean=1 + 1/2*x, sd=x/10)
res <- lm(y ~ x)
plot(fitted(res), resid(res))

The scale-location plot is one of the four diagnostic plots produced by the
defaults of the plot method. This graphic also shows the residuals, but in
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terms of the square root of the absolute value of the standardized residuals.
The graph should show points scattered along the y-axis, as we scan across
the x-axis, but the spread of the scattered points should not get larger or
smaller.

In some data sets, there is a lack of independence in the residuals. For
example, the errors may accumulate. A lag plot, where the data is plotted
against previous values of the data, may be able to show this effect. For
an independent sequence, the lag plot should be scattered, whereas many
dependent sequences will show some pattern. This is illustrated in the lower-
right plot in Figure 11.3, which was made as follows:

x <- rep(1:10, 4)
epsilon <- rnorm(40, mean=0, sd=1)
y <- 1 + 2*x + cumsum(epsilon) # cumsum() correlates errors
res <- lm(y ~ x)
tmp <- resid(res)
n <- length(tmp)
plot(tmp[-n], tmp[-1]) # lag plot

Influential points

As we observed in Chapter 3, the regression line can be greatly influenced by
a single observation that is far from the trend set by the data. The difference
in slopes between the regression line with all the data and the regression line
with the ith point missing will mostly be small, except for influential points.
The Cook’s distance is based on the difference of the predicted values of yi
for a given xi when the point (xi,yi) is and isn’t included in the calculation
of the regression coefficients. Comparing predicted amounts, as opposed to
change in slope, allows the method to generalize to more than one predictor.
The Cook’s distance is computed by the extractor function cooks.distance.

One of the diagnostic plots produced by the default plot method for lm
objects will show the Cook’s distance for the data points plotted using spikes.
Another way to display this information graphically is to make the size of
the points in the scatterplot depend on this distance using the cex argument.
This type of plot is referred to as a bubble plot and is illustrated using the
emissions (UsingR) data set in Figure 11.4. The graphic is made with the
following commands:

res <- lm(CO2 ~ perCapita, emissions)
plot(CO2 ~ perCapita, emissions,

cex=10*sqrt(cooks.distance(res)),
main=expression( # make subscript on C02
paste("bubble plot of ",CO[2],

" emissions by per capita GDP")
))
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Figure 11.4: Bubble plot of CO2 emissions by per capita GDP with area of
points proportional to Cook’s distance.

The square root of the distances is used, so the area of the points is pro-
portional to Cook’s distance rather than to the radius.3

For the maximum-heart-rate data, the four diagnostic plots produced by
R with the command plot(res.mhr) are in Figure 11.5.

Prediction intervals

The value of ŷ can be used to predict two different things: the value of a
single estimate of y for a given x or the average value of many values of y for
a given x. If we think of a model with replication (repeated y’s for a given x,
such as in Figure 11.2), then the difference is clear: one is a prediction for a
given point, the other a prediction for the average of the points.

Statistical inference about the predicted value of y based on the sample is
done with a prediction interval. As y is not a parameter, we don’t call this a
confidence interval. The form of the prediction interval is similar to that of a
confidence interval:

3The argument to main illustrates how to use mathematical notation in the title of a graphic.
See the help page ?plotmath for details.
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Figure 11.5: Four diagnostic plots for the maximum-heart-rate data produced
by the extractor function plot.

ŷ± t∗SE.

For the prediction interval, the standard error depends on x and is given
by

SE= σ̂

√
1 +

1
n
+

(x− x̄)2

sxx
. (11.9)

The value of t∗ comes from the t-distribution with n− 2 degrees of free-
dom.

The prediction interval holds for all x simultaneously. Meaning, there is
a (1− α)100% chance that a new data point chosen from the model will be
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within these bounds. These values are usually plotted using two lines on the
scatterplot to show the upper and lower limits.

The predict function will return the lower and upper endpoints for each
value of the predictor. We specify interval="prediction" (which can be
shortened) and a confidence level with level. (The default is 0.95.)

For the heart-rate example we have:

pred.res <- predict(res.mhr, int = "pred")

## Warning: predictions on current data refer to _future_ responses

head(pred.res, n=3)

## fit lwr upr
## 1 195.7 185.1 206.3
## 2 191.7 181.3 202.1
## 3 190.1 179.7 200.5

A matrix is returned with columns giving the data we want. We can-
not access these with the data frame notation pred.res$lwr, as the return
value is not a data frame. Rather we can access the columns by name, like
pred.res[,’lwr’], or by column number, as in

head(pred.res[, 2]) # the ’lwr’ column

## 1 2 3 4 5 6
## 185.1 181.3 179.7 171.9 147.2 156.5

We want to plot both the lower and upper limits. In our example, we have
the predicted values for the given values of age. As the age variable is not
sorted, simply plotting will make a real mess. To remedy this, we specify the
values of the age variable for which we make a prediction. We use the values
sort(unique(age)), which gives just the x values in increasing order.

age.sort <- sort(unique(heartrate$age))
pred.res <- predict(res.mhr, newdata = data.frame(age = age.sort),

int="pred")
pred.res[,2]

## 1 2 3 4 5 6 7 8 9 10
## 185.1 184.3 181.3 179.7 172.7 171.9 170.3 168.7 166.3 156.5
## 11 12 13
## 154.8 147.2 141.1

Now we can add the prediction intervals to the scatterplot with the lines
function (matlines offers a one-step alternative). The result is Figure 11.6.
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plot(maxrate ~ age, data=heartrate)
abline(res.mhr)
lines(age.sort, pred.res[,2], lty=2) # lower curve
lines(age.sort, pred.res[,3], lty=2) # upper curve
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Figure 11.6: Regression line with 95% prediction intervals drawn for age ver-
sus maximum heart rate.

There is a slight curve in the lines drawn, which is hinted at in Equa-
tion 11.9. This implies that estimates near the value (x̄, ȳ) have a smaller
variance. This is expected: there is generally more data near this value, so the
variances should be smaller.

Confidence intervals for µy|x

A confidence interval for the mean value of y for a given x is given by

ŷ± t∗SE(ŷ).

Again, t∗ is from the t-distribution with n − 2 degrees of freedom. The
standard error used is now
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SE(ŷ) = σ̂

√
1
n
+

(x− x̄)2

sxx
.

The standard error for the prediction interval differs by an extra term of
plus 1 inside the square root. This may appear minor, but is not. If we had
so much data (large n) that the estimates for the β’s have small variance, we
would not have much uncertainty in predicting the mean amount, but we
would still have uncertainty in predicting a single deviation from the mean
due to the error term in the model.

The values for this confidence interval are also returned by predict. In
this case, we use the argument interval="confidence".

Problems

11.6 The cost of a home is related to the number of bedrooms it has. Suppose
the following table contains data recorded for homes in a given town.

price $300 $250 $400 $550 $317 $389 $425 $289 $389

bedrooms 3 3 4 5 4 3 6 3 4

Make a scatterplot, and fit the data with a regression line. On the same
graph, test the hypothesis that an extra bedroom is worth $60,000 versus the
alternative that it is worth more.

11.7 The more beer you drink, the more your blood alcohol level (BAL) rises.
The following table contains a data set on beer consumption.

beers 5 2 9 8 3 7 3 5 3 5

BAL 0.10 0.03 0.19 0.12 0.04 0.095 0.07 0.06 0.02 0.05

Make a scatterplot with a regression line and 95% prediction intervals
drawn. Test the hypothesis that one beer raises your BAL by 0.02% against
the alternative that it raises it less. (A formula from wikipedia.org specifies
a model for the mean with

0.906 · d · 1.2
(0.49 + 0.09 · 1a male) · w

− 0.017 · t

where d is the number of drinks, w the weight in kilograms, and t the time
since drinking.)

11.8 For the same blood-alcohol data as the previous exercise perform a
significance test that the intercept is 0 with a two-sided alternative.
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11.9 The lapse rate is the rate at which temperature drops as you increase ele-
vation. Some hardy students were interested in checking empirically whether
the lapse rate of 9.8°C/km was accurate. To investigate, they grabbed their
thermometers and their Suunto® wrist altimeters and recorded the data from
their hike in this table:

elevation (ft) 600 1000 1250 1600 1800 2100 2500 2900

temperature (°F) 56 54 56 50 47 49 47 45

Draw a scatterplot with regression line and investigate whether the lapse
rate is 9.8°C/km. (It helps to convert to the rate of change °F per feet, which
is 5.34 degrees per 1,000 feet.) Test the hypothesis that the lapse rate is 5.34
degrees per 1,000 feet against a two-sided alternative.

11.10 For the homedata (UsingR) data set, find the regression equation to
predict the year-2000 value of a home from its year-1970 value. Make a pre-
diction for an $80,000 home in 1970. Comment on the appropriateness of the
regression model by investigating the residuals.

11.11 A seal population is counted over a ten-year period. The counts are
reported in this table:

year pop. year pop. year pop year pop

1952 724 1955 1,392 1958 1,212 1961 1,980
1953 176 1956 1,392 1959 1,672 1962 2,116
1954 920 1957 1,448 1960 2,068

Make a scatterplot with population on the y-axis and year on the x-axis.
Find the regression line. What is the predicted value for 1963? Would you
use this to predict the population in 2014? Why or why not?

11.12 The deflection (UsingR) data set contains deflection measurements for
various loads. Fit a linear model to Deflection as a function of load. Plot the
data and the regression line. How well does the line fit? Investigate with a
residual plot.

11.13 The alaska.pipeline (UsingR) data set contains measurements of de-
fects on the Alaska pipeline that are taken first in the field and then in the
laboratory. The measurements are done in six batches. Fit a linear model for
the lab-defect size as modeled by the field-defect size. Find the coefficients.
Discuss the appropriateness of the model.

11.14 In athletic events in which people of various ages participate, perfor-
mance is sometimes related to age. Multiplying factors are used to compare
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the performance of a person of a given age to another person of a differ-
ent age. The data set best.times (UsingR) features world records by age and
distance in track and field.

We split the records by distance, allowing us to compare the factors for
several distances.

by.dist <- split(best.times, as.factor(best.times$Dist))

This returns a list of data frames, one for each distance. We can plot the
times in the 800-meter run:

plot(Time ~ age, by.dist[["800"]])

It is actually better to apply scale first, so that we can compare times.
Through age 70, a linear regression model seems to fit. It can be found

with

lm(scale(Time) ~ age, by.dist[["800"]], subset = age < 70)

##
## Call:
## lm(formula = scale(Time) ~ age, data = by.dist[["800"]], subset = age <
## 70)
##
## Coefficients:
## (Intercept) age
## -1.2933 0.0136

Using the above technique, compare the data for the 100-meter dash, the
400-meter dash, and the 10,000-meter run. Are the slopes similar?

11.15 The galton (UsingR) data set contains data collected by Francis Galton
in 1885 concerning the influence a parent’s height has on a child’s height. Fit
a linear model modeling a child’s height by his parents’. Do a test of signifi-
cance to see whether β1 equals 1 against a two-sided alternative.

11.16 Find and plot both the prediction and the confidence intervals for the
heart-rate model: res.mhr <- lm(maxrate ~ age, data=heartrate).

11.17 The alaska.pipeline (UsingR) data set appears appropriate for a linear
model, but the assumption of equal variances does not seem appropriate. A
log-transformation of each variable does seem to have equal variances. Fit
the model

log(lab.defect) = β0 + β1 · log(field.defect) + ε.
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Investigate the residuals and determine whether the assumption of equal
variance seems appropriate.

11.18 The following commands will simulate the regression model yi = 1 +
2xi + εi:

m <- 200
x <- rep(1:10, 4)
res <- replicate(m, {
y <- rnorm(40, 1 + 2*x, 3)
coef(lm(y ~ x))

})
plot(res[1,], res[2,])

Run the simulation and comment on the shape of the scatterplot. What
does it say about the correlation between β̂0 and β̂1?

11.19 In a simple linear regression, confidence intervals for β0 and β1 are
given separately in terms of the t-distribution as β̂i ± t∗SE(β̂i). They can also
be found jointly, giving a confidence ellipse for the parameters as a pair. This
can be found easily in R with the ellipse package.4

If res is the result of the lm function, then plot(ellipse(res), type="l")
will draw the confidence ellipse.

For the deflection (UsingR) data set, find the confidence ellipse for
Deflection modeled by Load.

11.20 The linear regression model yi = µy|xi
+ εi is flexible enough to ac-

commodate some of the other models already encountered. The basic t-test
is modeled by y ~ 1. The paired t-test becomes yi = µ + xi + εi which can be
modeled with y ~ offset(x). The two-sample t-test can be modeled with a
predictor which is 1 for one population and 0 for the other via y ~ x.

Let’s see the latter. The normtemp (UsingR) data set has normal body tem-
perature measurements for both men and women. A two-sample t-test can
be employed to perform a significance test of difference between gender, via:

t.test(temperature ~ factor(gender), data=normtemp)

Find the corresponding p-value in the output of this model:

lm(temperature ~ factor(gender), data=normtemp)

4The ellipse package is not part of the standard R installation, but it is on CRAN. You can
install it with the command install.packages("ellipse").
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11.3 Multiple linear regression

Multiple linear regression allows for more than one regressor to predict the
value of y. Lots of possibilities exist. These regressors may be separate vari-
ables, products of separate variables, powers of the same variable, or func-
tions of the same variable. In the next chapter, we will consider regressors
that are not numeric but categorical. They all fit together in the same model,
but there are additional details. We see, though, that much of the background
for the simple linear regression model carries over to the multiple regression
model.

Types of models

Let y be a response variable and let x1, x2, . . . , xp be p variables that we will
use for predictors. For each variable we have n values recorded. The multiple
regression model we discuss here is

yi = β0 + β1x1i + · · ·+ βpxpi + εi.

There are p + 1 parameters in the model labeled β0, β1, . . . , βp. They ap-
pear in a linear manner, just like a slope or intercept in the equation of a line.
The xi’s are predictor variables, or covariates. They may be random; they
may be related, such as powers of each other; or they may be correlated. As
before, it is assumed that the εi values are an i.i.d. sample from a normal dis-
tribution with mean 0 and unknown variance σ2. In terms of the y variable,
the values yi are an independent sample from a normal distribution with
mean β0 + β1x1i + · · ·+ βpxpi and common variance σ2. If the x variables are
random, this is true after conditioning on their values.

Interpretation For the simple linear regression model, the slope parameter,
β1, is easily interpreted, as one-unit change in the predictor variable will cor-
respond to a predicted change in the mean response by β1 units. For the mul-
tiple regression model, a similar interpretation is possible: a one-unit change
in the ith predictor corresponds to a βi-unit change in the predicted mean
response if the other predictors are held constant. This is not always possible in
practice.

• Example 11.1: What influences a baby’s birth weight?
A child’s birth weight depends on many things, among them the parents’
genetic makeup, gestation period, and mother’s activities during pregnancy.
The babies (UsingR) data set lets us investigate some of these relationships.

This data set contains many variables to consider. We first look at the
quantitative variables as predictors. These are gestation period; mother’s age,
height, and weight; and father’s age, height, and weight.

A first linear model might incorporate all of these at once:
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wt = β0 + β1 · gestation + β2 ·mother’s age + · · ·+ β7 · father’s weight + εi.

Why should this have a linear model? It seems intuitive that birth weight
would vary monotonically with the variables, so a linear model might be a
fairly good approximation. We’ll want to look at some plots to make sure our
model seems appropriate. ••

• Example 11.2: Polynomial regression
In 1609, Galileo proved mathematically that the horizontal distance traveled
by an object with an initial horizontal velocity is a parabola. He based his
insight on an experimental setup consisting of a ball placed at a certain height
on a ramp and then released. The distance traveled was then measured. This
experiment was chosen to reduce the effects of friction.5 The data consists of
two variables. Let’s call them y for distance traveled and x for initial height.
Galileo may have considered any of these polynomial models:

yi = β0 + β1xi + εi,

yi = β0 + β1xi + β2x2
i + εi, or

yi = β0 + β1xi + β2x2
i + β3x3

i + εi.

The εi would cover error terms that are presumably independent and nor-
mally distributed. The quadratic model (the second model) is correct under
perfect conditions, as Galileo demonstrated, but the data may suggest a dif-
ferent model if the conditions are not perfect. ••

• Example 11.3: Predicting classroom performance
College admissions offices are faced with the problem of predicting future
performance based on a collection of measures, such as grade-point average
and standardized test scores. These values may be correlated. There may also
be other variables that describe why a student does well, such as type of high
school attended or student’s work ethic.

Initial student placement is also a big issue. If a student does not place
into the right class, he may become bored and leave the school. Successful
placement is key to retention. For New York City high school graduates,
available at time of placement are SAT scores and Regents Exam scores. High
school grade-point average may be unreliable or unavailable.

The data set stud.recs (UsingR) contains test scores and initial grades in
a math class for several randomly selected students. What can we predict
about the initial grade based on the standardized scores?

5This example appears in Ramsey and Schafer [49], where a schematic of the experimental
apparatus is drawn.
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An initial model might be to fit a linear model for grade with all the other
terms included. Other restricted models might be appropriate. For example,
are the verbal SAT scores useful in predicting grade performance in a future
math class? ••

Fitting the multiple regression model using lm

As seen previously, the method of least squares is used to estimate the param-
eters in the multiple regression model. We don’t give formulas for computing
the β̂’s but note that, since there are p + 1 estimated parameters, the estimate
for the variance changes to

σ̂2 =
RSS

n− (p + 1)
.

To find these estimates in R, again the lm function is used. The syntax for
the model formula varies depending on the type of terms in the model. For
these problems, we use + to add terms to a model, - to drop terms, and I to
insulate terms so that the usual math notations apply.

For example, if x, y, and z are variables, then the following statistical
models have the given R counterparts:

zi = β0 + β1xi + β2yi + εi is expressed as z ~ x + y

zi = β0 + β1xi + β2x2
i + εi is expressed as z ~ x + I(xˆ2)

Once the model is specified, the lm function follows this familiar format:

lm(formula, data=..., subset=...)

To illustrate with an artificial example, we simulate the relationship zi =
β0 + β1xi + β2yi + εi and then find the estimated coefficients:

x <- 1:10
y <- rchisq(10,3)
z <- 1 + x + y + rnorm(10)
lm(z ~ x + y)

##
## Call:
## lm(formula = z ~ x + y)
##
## Coefficients:
## (Intercept) x y
## -0.367 1.179 0.990
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The output of lm stores much more than is seen initially (which is just
the formula and the estimates for the coefficients). It is recommended that
the return value be stored. Afterward, the different extractor functions can
be used to view the results.

• Example 11.4: Finding the regression estimates for baby’s birth weight
Fitting the birth-weight model is straightforward. The basic model formula
is

wt ~ gestation + age + ht + wt1 + dage + dht + dwt

We’ve seen with this data set that the variables have some missing values that
are coded not with NA but with very large values that are obvious when plot-
ted, but not when we blindly use the functions. In particular, gestation should
be less than 350 days, mother’s age and height less than 99, and weight less
than 999, etc. We can avoid these cases by using the subset argument as il-
lustrated. Recall that we combine logical expressions with & for “and” and |
for “or.”

res.lm <- lm(wt ~ gestation + age + ht + wt1 + dage + dht + dwt,
data=babies,
subset=gestation < 350 & age < 99 & ht < 99 & wt1 < 999 &

dage < 99 & dht < 99 & dwt < 999)
res.lm

##
## Call:
## lm(formula = wt ~ gestation + age + ht + wt1 + dage + dht + dwt,
## data = babies, subset = gestation < 350 & age < 99 & ht <
## 99 & wt1 < 999 & dage < 99 & dht < 99 & dwt < 999)
##
## Coefficients:
## (Intercept) gestation age ht wt1
## -105.4576 0.4625 0.1384 1.2161 0.0289
## dage dht dwt
## 0.0590 -0.0663 0.0782

A residual plot (not shown) shows nothing too unusual:

plot(fitted(res.lm), resid(res.lm))

The diagnostic plots found with plot(res.lm) indicate that observation
261 might be a problem. Looking at babies[261,], it appears that this case is
an outlier, as it has a very short gestation period. ••
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Using update with model formulas

When comparing models, we may be interested in adding or subtracting a
term and refitting. Rather than typing in the entire model formula again, R
provides a way to add or drop terms from a model and have the new model
fit. This process is called updating and is done with the update function. The
usage is

update(model.object, formula = . ~ . + new.terms - old.terms)

The model.object is the output of some modeling command, such as lm.
The formula argument uses a . to represent the previous value. In the tem-
plate above, the . to the left of the ~ indicates that the previous left side of the
model formula should be reused. The right-hand-side . refers to the previ-
ous right-hand side. In the template, the +new.terms means to add term and
-old.terms is used to drop terms.

• Example 11.5: Discovery of the parabolic trajectory
The data set galileo (UsingR) contains two variables measured by Galileo
(described previously). One is the initial height and one the horizontal dis-
tance traveled.

A plot of the data illustrates why Galileo may have thought to prove that
the correct shape is described by a parabola. Clearly a straight line does not fit
the data well. However, with modern computers, we can investigate whether
a cubic term is warranted for this data.

To do so we fit three polynomial models. The update function is used to
add terms to the previous model to give the next model. To avoid a different
interpretation of ˆ, the powers are insulated with I.

init.h <- c(600,700,800,950,1100,1300,1500)
h.d <- c(253, 337, 395, 451, 495, 534, 573)
res.lm <- lm(h.d ~ init.h)
res.lm2 <- update(res.lm, . ~ . + I(init.h^2))
res.lm3 <- update(res.lm2, . ~ . + I(init.h^3))

To plot these, we will use curve, but first we define a function which
evaluates a polynomial given its coefficients:

polynomial <- Vectorize(function(x, ps) {
n <- length(ps)
sum(ps*x^(1:n-1))

}, "x")

Then we can plot as follows (Figure 11.7).



11.3. MULTIPLE LINEAR REGRESSION 395

plot(h.d ~ init.h)
curve(polynomial(x, coef(res.lm )), add=TRUE, lty=1)
curve(polynomial(x, coef(res.lm2)), add=TRUE, lty=2)
curve(polynomial(x, coef(res.lm3)), add=TRUE, lty=3)
legend(1200, 400, legend=c("linear", "quadratic", "cubic"), lty=1:3)

The linear model is a poor fit, but both the quadratic and cubic fits seem
reasonable. ••
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Figure 11.7: Three polynomial models fit to the Galileo data.

Interpreting the regression parameters

As mentioned, interpretation in simple regression is usually straightforward.
Changes in the predictor variable correspond to changes in the response vari-
able in a linear manner: a unit change in the predictor corresponds to a β̂1-
unit change in the response.

However, in multiple regression this picture may not be applicable, as
we may not be able to change just a single variable. As well, when more
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variables are added to a model, if the variables are correlated then the sign
of the coefficients can change, leading to a different interpretation.

The language often used is that we “control” the other variables while
seeking a primary predictor variable.

• Example 11.6: Does taller mean higher paid?
A University of Florida press release from October 16, 2003, read:

“Height matters for career success. . . ”
The reported study, which controlled for gender, weight, and

age, found that mere inches cost thousands of dollars. Each inch
in height amounted to about $789 more a year in pay, the study
found.

The mathematical model mentioned would be

pay = β0 + β1 height + β2 gender + β3 weight + β4 age + ε.

(In the next chapter we see how to interpret the term involving the categorical
variable gender.) The data gives rise to the estimate β̂1 = 789. The authors
interpret this to mean that each extra inch of height corresponds to a $789
increase in expected pay. So someone who is 4 inches taller, say 6 feet versus
5 feet 8 inches, would be expected to earn $3,156 more annually. (ŷ is used
to predict expected values.) The word “controlled” means that they included
these variables in the model.

There are few caveats to this interpretation. First, unlike in a science ex-
periment, where we may be able to specify the value of a variable, a person
cannot simply grow an inch to see if his salary goes up. As well, it isn’t re-
alistic to imagine a person growing an inch without some change in their
weight, say. So it is hard to hold all other variables equal when interpreting
the coefficient. Further, as this is an observational study, causal interpreta-
tions are not necessarily valid. ••

Statistical inferences

As in the simple linear regression case, if the model is correct, statistical
inference can be made about the coefficients. In general, the estimators for
a linear model are unbiased and normally distributed; from this, t-tests and
confidence intervals can be constructed for the estimators, once we learn the
standard errors. As before, these are output by the summary function.

• Example 11.7: Galileo, continued
For the Galileo data example, the summary of the quadratic fit contains
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short_summary(res.lm2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.40e+02 6.90e+01 -3.48 0.0253 *
## init.h 1.05e+00 1.41e-01 7.48 0.0017 **
## I(init.h^2) -3.44e-04 6.68e-05 -5.15 0.0068 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

For each β̂, the standard errors are given, as is the marginal t-test, which
tests for the null hypothesis that the β̂ is 0. All three have small p-values and
are flagged as such with significance stars.

Finding a confidence interval for the parameters is straightforward, as
the values (β̂i − βi)/SE(β̂i) have a t-distribution with n− (p + 1) degrees of
freedom if the linear model applies.

For example, a 95% confidence interval for β1 would be

alpha <- 0.05
tstar <- qt(1 - alpha/2, df=4) # n=7; p=2; df=n-(p+1)
beta1 <- 1.05
SE <- 0.141
beta1 + c(-1,1 ) * tstar * SE

## [1] 0.6585 1.4415

••

Model selection

Modeling is done for many reasons. One is to shine the focus on the impor-
tant predictors to explain as much variation in the response as possible while
avoiding the noise of unimportant factors. Doing this requires some means
for determining when a predictor variable contributes sufficiently to the de-
scription of the response as to be warranted. For this we discuss a few criteria
below that are easily used within R.

Before proceeding with methods to remove variables from considera-
tion, we paraphrase some practical, general principles on building regression
models for prediction provided in Section 4.6 of [25]:

• Include all input variables that might be expected to be important in
predicting the response.

• Sometimes, predictors can be combined into other variables. For exam-
ple, using BMI instead of both height and weight.



398 CHAPTER 11. LINEAR REGRESSION

• For decisions on which variables to exclude:

– If a predictor is not statistically significant and has the expected
sign it is generally fine to leave it in (though the methods below
will exclude it).

– Consider removing predictors which are not statistically signifi-
cant and do not have the expected sign.

– If a predictor is statistically significant and has the expected sign,
leave it in.

– If a predictor is statistically significant and does not have the ex-
pected sign, then think hard about its inclusion. It might point to
lurking variables, or underlying correlations with other predictors.

Partial F-test

The partial F-test is used to discriminate between two models with one being
nested in the other. For example,

yi = β0 + β1x1i + · · ·+ βkxki + εi (11.10)
yi = β0 + β1x1i + · · ·+ βkxki + βk+1x(k+1)i + · · ·+ βpxpi + εi.

The first model has k + 1 parameters, and the second has p + 1 with p > k
(not counting σ). Recall that the residual sum of squares, RSS, measures the
variation between the data and the model. For the model with p predictors,
RSS(p) can be no more than RSS(k) for the model with k predictors. Call the
difference the extra sum of squares.

If the new parameters are not really important, then there should be little
difference between the sums of squares when computed with or without the
new parameters. If they are important, then there should be a big difference.
To measure big or small, we can divide by the residual sum of squares for
the full model. That is,

RSS(k)− RSS(p)
RSS(p)

should measure the influence of the extra parameters. If we divide the extra
sum of squares by p− k and the residual sum of squares by n− (p + 1) (the
respective degrees of freedom), then the statistic becomes

F =
(RSS(k)− RSS(p))/(p− k)

RSS(p)/(n− (p + 1)))
=

(RSS(k)− RSS(p))/(p− k)
σ̂2 . (11.11)

This statistic is actually a more general example of that in Equation 11.7
and has a similar sampling distribution. Under the null hypothesis that the
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extra β’s are 0 (βk+1 = · · · = βp = 0), and the εi are i.i.d. with a Normal(0,σ2)
distribution, F will have the F-distribution with p− k and n− (p+ 1) degrees
of freedom.

This leads to the following significance test.

Partial F-test for null hypothesis of no effect

For the nested models of Equation 11.10, a significance test
for the hypotheses

H0 : βk+1 = βk+2 = · · ·= βp = 0 and HA : at least one β j 6= 0 for j> k

can be performed with the test statistic (11.11):

F =
extra sum of squares/(p− k)

σ̂2 .

Under H0, F has the F-distribution with p− k and n− (p + 1)
degrees of freedom. Large values of F are in the direction of
the alternative. This test is called the partial F-test.

The anova function will perform the partial F-test. If res.lm1 and res.lm2
are the return values of two nested models, then

anova(res.lm1, res.lm2)

will perform the test and produce an analysis of variance table.

• Example 11.8: Discovery of the parabolic trajectory revisited
In Example 11.3 we fit the data with three polynomials, graphing each. Re-
ferring to Figure 11.7, we see that the parabola and cubic clearly fit better
than the linear. But which of those two fits better? We use the partial F-test
to determine whether the extra cubic term is significant.

To do this, we use the anova function on the two results res.lm2 and
res.lm3. This yields

anova(res.lm2,res.lm3)

## Analysis of Variance Table
##
## Model 1: h.d ~ init.h + I(init.h^2)
## Model 2: h.d ~ init.h + I(init.h^2) + I(init.h^3)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 4 744
## 2 3 48 1 696 43.3 0.0072 **
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## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The F-test is significant (p = 0.0072), indicating that the null hypothesis
(β3 = 0) does not describe the data well. This suggests that the underlying
relationship from Galileo’s data is cubic and not quadratic. Perhaps the ap-
paratus introduced drag. ••

The Akaike information criterion

In the partial F-test, the trade-off between adding more parameters to im-
prove the model fit and making a more complex model appears in the
n− (p + 1) divisor. Another common criterion with this trade-off is Akaike’s
information criterion (AIC). The AIC is computed in R with the AIC extractor
function. The details of the statistic involve the likelihood function, a more
advanced concept, but the usage is straightforward: models with lower AICs
are preferred. An advantage to the AIC is that it can be used to compare
models that are not nested, a restriction of the partial F-test.

The extractor function AIC will compute the value for a given model, but
the convenient stepAIC function from the MASS package will step through the
submodels and do the comparisons for us.

• Example 11.9: Predicting grades based on standardized tests
The data set stud.recs (UsingR) contains five standardized test scores and a
numeric value for the initial grade in a subsequent math course. The goal is
to use the test-score data to predict the grade that a student will get. If the
grade is predicted to be low, perhaps an easier class should be recommended.

First, we view the data using paired scatterplots

pairs(stud.recs)

The figure (not shown) indicates strong correlations among the variables.
We begin by fitting the entire model. In this case, the convenient . syntax

on the right-hand side is used to indicate all the remaining variables.

d <- subset(stud.recs, select=-letter.grade)
res.lm <- lm(num.grade ~ ., data = d)
res.lm

##
## Call:
## lm(formula = num.grade ~ ., data = d)
##
## Coefficients:
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## (Intercept) seq.1 seq.2 seq.3 sat.v
## -0.73953 -0.00394 -0.00272 0.01565 -0.00125
## sat.m
## 0.00590

Some terms are negative, which seems odd. (Why?) Looking at the sum-
mary of the regression model we have

short_summary(res.lm)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.73953 1.21128 -0.61 0.543
## seq.1 -0.00394 0.01457 -0.27 0.787
## seq.2 -0.00272 0.01503 -0.18 0.857
## seq.3 0.01565 0.00941 1.66 0.099 .
## sat.v -0.00125 0.00163 -0.77 0.443
## sat.m 0.00590 0.00267 2.21 0.029 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The marginal t-tests for whether the given parameter is 0 or not are “re-
jected” only for the seq.3 (for this sample of students, sequential 3 was the
last high school test taken) and sat.m (the math SAT score). It is important
to remember that these are tests concerning whether the value is 0 given the
other predictors. They can change if correlated predictors are removed.

The stepAIC function can step through the various submodels and rank
them by AIC. This gives

library(MASS) # load in MASS package for stepAIC
stepAIC(res.lm, trace=0) # trace=0 suppresses intermediate output

##
## Call:
## lm(formula = num.grade ~ seq.3 + sat.m, data = d)
##
## Coefficients:
## (Intercept) seq.3 sat.m
## -1.14078 0.01371 0.00479

The submodel with just two predictors is selected. As expected, the verbal
scores on the SAT are not a useful indicator of performance. ••
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Problems

11.21 Following the example with Galileo’s data, fit a fourth-degree polyno-
mial to the galileo (UsingR) data and compare to the cubic polynomial using
a partial F-test. Is the new coefficient significant?

11.22 For the data set trees, model the Volume by the Girth and Height vari-
ables. Does the model fit the data well?

11.23 The data set MLBattend (UsingR) contains attendance data for Major
League Baseball for the years 1969 to 2000. Fit a linear model of attendance
modeled by year, runs.scored, wins, and games.behind. Which variables are
flagged as significant? Look at the diagnostic plots and comment on the va-
lidity of the model.

11.24 For the deflection (UsingR) data set, fit the quadratic model

Deflection= β0 + β1Load+ β2Load
2 + ε.

How well does this model fit the data? Compare to the linear model.

11.25 The data set kid.weights contains age, weight, and height measure-
ments for several children. Fit the linear model

weight= β0 + β1age+ β2height+ β3height
2 + β4height

3 + β5height
4

Use the partial F-test to select between this model and the nested models
found by using only first-, second-, and third-degree polynomials for height.

11.26 The data set fat (UsingR) contains several body measurements that
can be done using a scale and a tape measure. These can be used to predict
the body-fat percentage (body.fat). Measuring body fat requires a special
apparatus; if our resulting model fits well, we have a low-cost alternative.

Fit the variable body.fat using each of the variables age, weight, height,
BMI, neck, chest, abdomen, hip, thigh, knee, ankle, bicep, forearm, and wrist.
Use the stepAIC function to select a submodel. For this submodel, what is
the adjusted R2?

11.27 The data set Cars93 (MASS) contains data on cars sold in the United
States in the year 1993. Fit a regression model with MPG.city modeled by the
numeric variables EngineSize, Weight, Passengers, and price. Which vari-
ables are marked as statistically significant by the marginal t-tests? Which
model is selected by the AIC?

11.28 We can simulate the data to see how often the partial F-test or AIC
works. For example, a single simulation can be done with the commands
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x <- 1:10
y <- rnorm(10, 1 + 2*x + 3*x^2, 4)
require(MASS)
stepAIC(lm(y ~ x + I(x^2)), trace=0)

##
## Call:
## lm(formula = y ~ x + I(x^2))
##
## Coefficients:
## (Intercept) x I(x^2)
## -0.583 3.494 2.846

Do a few simulations to see how often the correct model is selected.

11.29 The data set baycheck (UsingR) contains estimated populations for a
variety of Bay Checkerspot butterflies near California. A common model for
population dynamics is the Ricker model, for which t is time in years:

Nt+1 = aNtebNt Wt,

where a and b are parameters and Wt is a lognormal multiplicative error. This
can be turned into a regression model by dividing by Nt and then taking logs
of both sides to give

log(
Nt+1

Nt
) = log(a) + bNt + εt.

Let yt be the left-hand side. This may be written as

yt = r(1− Nt

K
) + εt,

because r can be interpreted as an unconstrained growth rate and K as a
carrying capacity.

Fit the model to the baycheck data set and find values for r and K. To find
yt you can do the following:

d <- with(baycheck, {
n <- length(year)
yt <- log(Nt[-1]/Nt[-n])
nt <- Nt[-n]
data.frame(yt, nt)

})

Recall that a negative index means all but that index.
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Analysis of variance

Analysis of variance, ANOVA, is a method of comparing means across sam-
ples based on variations from the mean. We begin by illustrating an ANOVA
carried out in the traditional way, but we will see that the ANOVA model is
just a special form of the linear model discussed in the previous chapter and
R provides a common interface.

12.1 One-way ANOVA

A one-way analysis of variance is a generalization of the t-test for two in-
dependent samples, allowing us to compare population means for several
independent samples. Suppose we have k populations of interest. From each
we take a random sample. These samples are independent if the knowledge
of one sample does not effect the distribution of another. Notationally, for the
ith sample, let xi1, xi2, . . . , xini designate the sample values.

The one-way analysis of variance applies to normally distributed popula-
tions. Suppose the mean of the ith population is µi and its standard deviation
is σi. We use a σ if these are equivalent across the groups. A statistical model
for the data with a common standard deviation is

xij = µi + εij,

where the error terms, εij, are independent with Normal(0,σ) distribution.

• Example 12.1: Number of calories consumed by month
Consider 15 subjects split at random into three groups. Each group is as-
signed a month. For each group we record the number of calories consumed
on a randomly chosen day. Figure 12.1 shows the data. We assume that the
amounts consumed are normally distributed with common variance but per-
haps different means. From the figure, we see that there appears to be more
clustering around the means for each month than around the grand mean or
mean for all the data. Perhaps more calories are consumed in the winter?

The goal of one-way analysis of variance is to decide whether the dif-
ference in the sample means is indicative of a difference in the population
means or is attributable to sampling variation. ••

404
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Figure 12.1: Amount of calories consumed by subjects for different months.
Sample means are marked, as is the grand mean. Are the differences in the
monthly means due to sampling variation or seasonal differences?

This problem is approached as a significance test. Let the hypotheses be

H0 : µ1 = µ2 = · · · = µk, HA : µi 6= µj for at least one pair i and j.

A test statistic is formulated that compares the variations within a single
group to those among the groups.

Let x̄ be the grand mean, or mean of all the data, and x̄i the mean for the
ith sample. Then the total sum of squares is given by

SST= ∑
i

∑
j
(xij − x̄)2.

This measures the amount of variation from the center of all the data.
An analysis of variance breaks SST up into two sums:

SST= ∑
i

∑
j
(xij − x̄i)

2 + ∑
i

ni(x̄i − x̄)2. (12.1)
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The first sum is called the error sum of squares, or SSE. The interior sum,
∑j(xij − x̄i)

2, measures the variation within the ith group. The SSE is then a
measure of the within-group variability. The second term in (12.1) is called
the treatment sum of squares (SSTr). The word treatment comes from medical
experiments where the population mean models the effect of some treatment.
The SSTr compares the means for each group, x̄i, with the grand mean, x̄. It
measures the variability among the means of the samples. We can re-express
Equation 12.1 as

SST= SSE+ SSTr.

From looking at the data in Figure 12.1 we expect that the SSE is smaller
than the SST, as there appears to be more variation among groups than
within groups. If the data came from a common mean, then we would expect
SSE and SST to be roughly the same. If SSE and SST are much different, it
would be evidence against the null hypothesis. How can we tell whether the
differences are due to the null hypothesis being false or merely to sampling
variation? As usual, we tell by finding a test statistic that can discriminate.

Based on the above observation, a natural test statistic to test whether
µ1 = µ2 = · · ·= µk would be to consider the value SST− SSE= SSTr. “Large”
values would be in the direction of the alternative. The F-statistic this com-
parison, but divides by the error sum of squares.

F =
SSTr/(k− 1)
SSE/(n− k)

, (12.2)

Large values are still consistent with a difference in the means. To get
the proper scale, each term is divided by its respective degrees of freedom,
yielding the mean sum of squares. The degrees of freedom for the total sum
of squares are n − 1. For the SSE the degrees of freedom are n − k, so the
degrees of freedom for SSTr are k− 1.

Under the assumption that the data is normally distributed with com-
mon mean and variance, this statistic will have a known distribution: the F-
distribution with k− 1 and n− k degrees of freedom. This is a consequence
of the partial F-test discussed in Chapter 11.1

The one-way analysis-of-variance significance test

Suppose we have k independent, i.i.d. samples from popula-
tions with Normal(µi,σ) distributions, i = 1,2, . . . ,k. A signifi-
cance test of

H0 : µ1 = µ2 = · · ·= µk, HA : µi 6= µj for at least one pair, i and j,

1This can be shown by identifying RSS(k) with the total sum of squares and RSS(p) with
SSE in (11.11) and simplifying.
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can be performed with test statistic

F =
SST/(k− 1)
SSE/(n− k)

.

Under H0, F has the F-distribution with k − 1 and n − k
degrees of freedom. The p-value is calculated from P(F ≥
observed value |H0).

The R function oneway.test will perform this significance test.

• Example 12.2: Number of calories consumed by month, continued
The one-way test can be applied to the example on caloric intake. The two
sums can be calculated directly as follows:

may <- c(2166, 1568, 2233, 1882, 2019)
sep <- c(2279, 2075, 2131, 2009, 1793)
dec <- c(2226, 2154, 2583, 2010, 2190)
#
xbar <- mean(c(may, sep, dec))
SST <- (15-1) * var(c(may, sep, dec)) # (n-1) * var(.) is SST
SSE <- (5-1) * var(may) + (5-1) * var(sep) + (5-1) * var(dec)
SSTr <- 5 * ((mean(may) - xbar)^2 + (mean(sep) - xbar)^2 +

(mean(dec) - xbar)^2)
#
c(SST=SST, SSTr=SSTr, SSE=SSE)

## SST SSTr SSE
## 761384 174664 586720

#
n <- 15; k <- 3
F.obs = (SSTr/(k-1)) / (SSE/(n-k))
F.obs

## [1] 1.786

pf(F.obs, df1=k-1, df2=n-k, lower.tail=FALSE)

## [1] 0.2094

We get a p-value that is not significant. Despite the graphical evidence,
the differences can reasonably be explained by sampling variation. ••
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Using R’s model formulas to specify ANOVA models

The calculations to perform an analysis of variance need not be so compli-
cated, as R has functions to compute the values desired. These functions use
model formulas. If x stores all the data and f is a factor indicating which
group the data value belongs to, then

x ~ f

represents the statistical model

xij = µi + εij.

The default behavior for plot of the model formula x ~ f was to make a
boxplot. This is because this graphic easily allows for comparison of centers
for multiple samples. The dot plot in Figure 12.1 is good for a small data set,
but the boxplot is preferred for larger data sets.

Using oneway.test to perform ANOVA

The function oneway.test is used as

oneway.test(x ~ f, data=..., var.equal=FALSE)

As with the t.test function, the argument var.equal is set to TRUE if appro-
priate. By default it is FALSE.

Before using oneway.test with our example of caloric intake, we put the
data into the appropriate form: a data vector containing the values and a
factor indicating the sample the corresponding value is from. This can be
achieved with stack.

d <- stack(list(may=may, sep=sep, dec=dec)) # need names for list
names(d) # two variables

## [1] "values" "ind"

oneway.test(values ~ ind, data=d, var.equal=TRUE)

##
## One-way analysis of means
##
## data: values and ind
## F = 1.786, num df = 2, denom df = 12, p-value = 0.2094

We get the same p-value as in our previous calculation, but with much
less effort.
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Using aov for ANOVA

The alternative aov function will also perform an analysis of variance. It re-
turns a model object similar to lm but has different-looking outputs for the
print and summary extractor functions. These are analysis-of-variance tables
that are typical of other computer software and statistics books.

Again, it is called with a model formula.

res <- aov(values ~ ind, data = d)
res

## Call:
## aov(formula = values ~ ind, data = d)
##
## Terms:
## ind Residuals
## Sum of Squares 174664 586720
## Deg. of Freedom 2 12
##
## Residual standard error: 221.1
## Estimated effects may be unbalanced

The function returns the two sums of squares calculated in Example 12.1
with their degrees of freedom. The Residual standard error, σ̂, is found by
the square root of RSS/(n− k), which in this example is

sqrt(586720/12)

## [1] 221.1

The result of aov has more information than shown, just as the result of
lm does. For example, the summary function returns

summary(res)

## Df Sum Sq Mean Sq F value Pr(>F)
## ind 2 174664 87332 1.79 0.21
## Residuals 12 586720 48893

These are the values needed to perform the one-way test. This tabular
layout is typical of an analysis of variance.

• Example 12.3: Effect of grip on cross-country skiing
Researchers at Montana State University performed a study on how various
ski-pole grips affect cross-country skiing performance. There are three basic
grip types: classic, modern, and integrated. Suppose 9 skiers are assigned at
random to the three grip-types and for each the skier has upper-body power
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Grip type classic integrated modern

168.2 166.7 160.1
161.4 173.0 161.2
163.2 173.3 166.8

Table 12.1: Upper-body power output (watts) by ski-pole grip type.

output measured. The data is summarized in Table 12.1. Does there appear
to be a difference in power output due to grip type?

We can investigate the null hypothesis that the three grips will produce
equal means with an analysis of variance. We assume that the errors are all
independent and that the data is sampled from normally distributed popu-
lations with common variance but perhaps different means.

First we enter in the data. Instead of using stack, we enter in all the data
at once and create a factor using gl to indicate grip type.2

UBP <- c(168.2, 161.4, 163.2, 166.7, 173.0, 173.3,
160.1, 161.2, 166.8)

grip.type <- gl(3, 3, 9, labels=c("classic", "integrated", "modern"))
boxplot(UBP ~ grip.type, ylab="Power (watts)",

main="Effect of cross country grip")

The boxplot in Figure 12.2 indicates that the integrated grip has a signif-
icant advantage. But is this due to sampling error? We use aov to carry out
the analysis of variance.

res <- aov(UBP ~ grip.type)
summary(res)

## Df Sum Sq Mean Sq F value Pr(>F)
## grip.type 2 116.7 58.3 4.46 0.065 .
## Residuals 6 78.4 13.1
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We see that there is a small p-value that is significant at the 10% level. ••

2We could also use rep with vectorized arguments to create the factor, but gl is designed for
just this task.
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Figure 12.2: Effects of cross-country ski-pole grip on measured power output.

The nonparametric Kruskal–Wallis test

The Wilcoxon rank-sum test was discussed as a nonparametric alternative
to the two-sample t-test for independent samples. Although the populations
had no parametric assumption, they were assumed to have densities with a
common shape but perhaps different centers.

The Kruskal–Wallis test, a nonparametric test, is analogous to the rank-
sum test for comparing the population means of k independent samples.

In particular, if f (x) is a density of a continuous random variable with
mean 0, the assumption on the data is that xij is drawn independently of the
others from a population with density f (x− µi). The hypotheses tested are

H0 : µ1 = µ2 = · · · = µk, HA : µi 6= µj for at least one pair i and j.

The test statistic involves the ranks of all the data. Let rij be the respective
rank of a data point when all the data is ranked from smallest to largest, r̄i be
the mean of the ranks for each group, and r̄ the grand mean. The test statistic
is:

T =
12

n(n + 1) ∑
i

ni(r̄i − r̄)2. (12.3)

Statistical inference is based on the fact that T has an asymptotic χ2-
distribution with k− 1 degrees of freedom.
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Kruskal–Wallis test for equivalence of means

Assume k populations, the ith one with density f (x− µi). Let
xij, i = 1, . . . ,k, j = 1, . . . ,ni denote k independent, i.i.d. random
samples from these populations. A significance test of

H0 : µ1 = µ2 = · · ·= µk, HA : µi 6= µj for at least one pair i and j,

can be performed with the test statistic T given by (12.3). The
asymptotic distribution of T under H0 is the χ2-distribution
with k− 1 degrees. This is used as the approximate distribution
for T when there are at least five observations in each category.
Large values of T support the alternative hypothesis.

The kruskal.test function will perform the test. The syntax is

kruskal.test(x ~ f, data=..., subset=...)

• Example 12.4: Are all movies the same?
The movie_data_2011 (UsingR) data set has data for movies playing domesti-
cally in the United States during 2011. An interesting question is what can be
said about the predicted total gross based on the opening weekend amount?
Here we look at a related question, does this ratio depend on the type of
movie?

The data set is structured to have a record for each movie playing during
a given week. We will need to do some data massaging to create a suitable
data frame.

First we split the data by the movie variable, to get separate data frames
for each:

x <- split(movie_data_2011, movie_data_2011$Movie)

Not all movies in the data base opened in 2011. We filter these out by the
Previous column, as this will contain an initial NA if the movie came out in
2011.

x <- Filter(function(d) is.na(d$Previous[1]), x)

For each data frame in x, we will compute a simple summary with the
following function:

open_to_gross <- function(d) {
## return Genre and open to gross ratio
list(movie = as.character(d$Movie[1]),
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genre=as.character(d$Genre[1]), open=d$Gross[1],
total=max(d$TotalGross))

}
l <- sapply(x, open_to_gross, simplify=FALSE)

This produces a list, where each component summarizes a movie. It is
easier to work with this as a data frame. There are different ways to pro-
duce such, here is one where we create an initial data frame from the first
component, then use Reduce to add each subsequent one:

d <- data.frame(l[[1]], stringsAsFactors=FALSE)
d <- Reduce(rbind, l[-1], d)

Not all movies are so big, to compare similar movies we only look at those
with an opening weekend of $500,000 or more:

d <- d[d$open > 5e5,]

Now we compute the ratio and find a summary

d$ratio <- d$total / d$open
summary(d$ratio)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.51 2.34 2.83 3.98 3.57 94.10

As should be expected, the summary shows tremendous skew. Some
movies can take off and generate gross revenues week after week. We wish
to look at the different genres. A simple subset of popular genres is found
with:

genres <- c("Comedy", "Action", "Adventure", "Horror")
d1 <- subset(d, subset=genre %in% genres)

We can make an exploratory boxplot (Figure 12.3) through:

boxplot(ratio ~ genre, data=d1)

From the figure, it appears that perhaps not all genres have similar cen-
ters. Further the shapes are similarly skewed, so tests based on assumptions
of normality would require reasonable samples sizes. Here, we perform a
significance test to produce a p-value for comparison:

kruskal.test(ratio ~ factor(genre), d1)
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Figure 12.3: Boxplots by movie genre of the ratio of total gross earnings and
opening weekend gross. Which type of movie would require more of an
advertising blitz to maximize revenue?

##
## Kruskal-Wallis rank sum test
##
## data: ratio by factor(genre)
## Kruskal-Wallis chi-squared = 15.86, df = 3, p-value =
## 0.001209

The lack of a clear set of samples from a large population makes the in-
terpretation of this p-value more an intuition, but the small p-value suggests
a difference in this ratio amongst these genres. ••

Problems

12.1 The morley data set contains speed-of-light measurements by Michelson
and Morley. There were five experiments, each consisting of multiple runs.
Perform a one-way analysis of variance to see if each of the five experiments
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Lab 1 4.13 4.07 4.04 4.07 4.05
Lab 2 3.86 3.85 4.08 4.11 4.08
Lab 3 4.00 4.02 4.01 4.01 4.04
Lab 4 3.88 3.89 3.91 3.96 3.92

Table 12.2: Production of a chemical.

has the same population mean.

12.2 For the data set Cars93 (MASS) perform a one-way analysis of variance
of MPG.highway for each level of DriveTrain. Does the data support the null
hypothesis of equal population means?

12.3 The data set female.inc contains income data for females age 15 or over
in the United States for the year 2001, broken down by race. Perform a one-
way analysis of variance of income by race. Is there a difference in the mean
amount earned? What is the p-value? What test did you use and why?

12.4 The data set carsafety contains car-crash data. For several makes of
cars the number of drivers killed per million is recorded in Drivers.deaths.
The number of drivers of other cars killed in accidents with these cars, per
million, is recorded in Other.deaths. The variable type is a factor indicating
the type of car.

Perform a one-way analysis of variance of the model Drivers.deaths ~
type. Is there a difference in population means? Did you assume equal vari-
ances? Normally distributed populations?

Repeat with an analysis of variance of the model Other.deaths ~ type. Is
there a difference in population means?

12.5 The data set hall.fame contains statistics for several Major League Base-
ball players. Perform a one-way test to see whether the mean batting average,
BA, is the same for Hall of Fame members (Hall.Fame.Membership) as for other
players.

12.6 A manufacturer needs to outsource the production of a chemical. Before
deciding on a laboratory, the manufacturer asks four laboratories to manu-
facture five batches each. A numeric measurement is assigned to each batch.
The data is given in Table 12.2. Perform a one-way analysis of variance to see
if there is a difference in the population means. Is the data appropriate for
oneway.test? kruskal.test?

12.7 A manufacturer of point-of-sale merchandise tests three types of enter-
button markings. They wish to minimize wear, as customers get annoyed
when the markings on this button wear off. They construct a test of the three
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test 1 63 64 95 64 60 85
test 2 58 56 51 84 77
test 3 85 79 59 89 80 71 43

Table 12.3: Test scores for three separate exams.

types, and conduct several trials for each. The results, in unspecified units,
are recorded in the following table

Type 1 303 293 296 299 298
Type 2 322 326 315 318 320 320
Type 3 309 327 317 315

Is there a difference in wear time among the three types? Answer this using
a one-way ANOVA.

12.8 Perform a Kruskal–Wallis test on the data in the data set PlantGrowth,
where weight is modeled by the factor group. Is there a significant difference
in the means?

12.9 Compare the results of a a one-way analysis of variance and the Kruskal
test on the data in Table 12.3. Do they produce different p-values? Based on
boxplots of the data, would you expect them to?

12.10 An instructor wishing to cut down on cheating makes three different
exams and distributes them randomly to her students. After collecting the
exams, she grades them. The instructor would like to know whether the three
exams are equally difficult. She will decide this by investigating whether the
scores have equal population means. That is, if she could give each exam to
the entire class, would the means be similar? The test scores are in Table 12.3.
Is there a difference in the means?

12.2 Using lm for ANOVA

The mathematics behind analysis of variance is the same as that behind linear
regression. Namely, it uses least-squares estimates based on a linear model.
As such, it makes sense to unify the approaches. To do so requires a new idea
in the linear model.

To illustrate, we begin with an example comprising just two samples, to
see how t-tests are handled with the lm function.

• Example 12.5: ANOVA for two independent samples
Suppose we have two independent samples from normally distributed pop-
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ulations. Let x11, x12, . . . , x1n record the first and x21, x22, . . . , x2n the second.
Assume the population means are µ1 and µ2 and the two samples have a
common variance. We may perform a two-sided significance test of µ1 = µ2
with a t-test. We illustrate with simulated data:

mu1 <- 0; mu2 <- 1
x <- rnorm(15, mu1); y <- rnorm(15, mu2)
t.test(x, y, var.equal=TRUE)

##
## Two Sample t-test
##
## data: x and y
## t = -3.042, df = 28, p-value = 0.005066
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.5308 -0.2987
## sample estimates:
## mean of x mean of y
## -0.1906 0.7242

We see that the p-value is small, as expected.
We can approach this test differently, in a manner that generalizes to the

case when there are more than two independent samples. Combine the data
into a single data vector, y, and a factor keeping track of which sample, 1 or
2, the data is from. This presumes some ordering on the data after it is stored
in y. For example, we can let the first n1 values be from the first sample and
the second n2 from the last. This is what stack does. Using this order, let
11(i) be an indicator function that is 1 if the level of the factor for the ith data
value is 1. Similarly, define 12(i). Then we can rewrite our model as

yi = µ111(i) + µ212(i) + εi.

When the data for the first sample is considered, 12(i) = 0, and this model
is simply yi = µ1 + εi. When the second sample is considered, the other
dummy variable is 0, and the model considered is yi = µ2 + εi.

We can rewrite the model to use just the second indicator variable. We
use different names for the coefficients:

yi = β1 + β212(i) + εi.

Now when the data for the first sample is considered the model is yi =
β1 + εi, so β1 is still µ1. However, when the second sample is considered, we
have yi = β1 + β2 + εi, so µ2 = β1 + β2. That is, β2 = µ2 − µ1. We say that
level 1 is a reference level, as the mean of the second level is represented in
reference to the first.

It turns out that statistical inference is a little more natural when we pick
one of the means to serve as a reference. The resulting model looks just like a
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linear-regression model where xi is 12(i). We can fit it that way and interpret
the coefficients accordingly. The model is specified the same way, as with
oneway.test, y ~ f, where y holds the data and f is a factor indicating which
group the data is for.

To model, first we stack, then we fit with lm.

d <- stack(list(x=x, y=y)) # need named list.
res <- lm(values ~ ind, data=d)
short_summary(res)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.191 0.213 -0.90 0.3778
## indy 0.915 0.301 3.04 0.0051 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Look at the variable indy, which means the y part of ind. The marginal
t-test tests the null hypothesis that β2 = 0, which is equivalent to the test
that µ1 = µ2. This is why the t-value of −3.042 coincides (up to a sign and
rounding) with t = −3.04 from the output of t.test(x,y).

The F-statistic also tests the hypothesis that β2 = 0. In this example, it is
identical to the marginal t-test, as there are only two samples.

Alternatively, we can try to fit the model using two indicator functions,
yi = µ111(i) + µ212(i) + εi.

This model is specified in R by dropping the implicit intercept term with
a - 1 in the model formula.

res <- lm(values ~ ind - 1, data = d)
short_summary(res)

## Estimate Std. Error t value Pr(>|t|)
## indx -0.191 0.213 -0.90 0.378
## indy 0.724 0.213 3.41 0.002 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Now the estimates have a clear interpretation in terms of the means, but
the marginal t-tests are less useful, as they are testing simply whether the
respective means are 0, rather than whether their difference is 0. ••

Treatment coding for analysis of variance

The point of the above example is to use indicator variables to represent
different levels of a factor in the linear model. When there are k levels, k− 1
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indicator variables are used. For example, if the model is

xij = µi + εij, i = 1, . . . ,k, (12.4)

then this can be fit using

yi = β1 + β212(i) + · · ·+ βk1k(i) + εi. (12.5)

The mean of the reference level, µ1, is coded by β1, and the other β’s are
differences from that. That is, βi = µi − µ1 for i = 2, . . . ,k.

This method of coding is called treatment coding and is used by default in
R with unordered factors. It is not the only type of coding, but it is the only
one we will discuss.3

Treatment coding uses a reference level to make comparisons. This is cho-
sen to be the first level of the factor coding the group. To change the reference
level we can use the relevel function in the following manner:

f <- relevel(f, ref=...)

The argument ref specifies the level we wish to be the reference level.

• Example 12.6: Child’s birth weight and mother’s smoking history
The sampled values in the babies data set contain information on birth
weight of a child and whether the mother smoked. The birth weight, wt,
is coded in ounces, and smoke is a numeric value: 0 for never, 1 for smokes
now, 2 for smoked until current pregnancy, 3 for smoked previously but not
now, and 9 if unknown.

To perform an analysis of variance on this data set, we use subset to grab
just the desired data and then work as before, only we use factor to ensure
that smoking is treated as a factor. First, we see whether there appears to be
a difference in the means with a boxplot (Figure 12.4).

library(UsingR)
d <- subset(babies, select=c("wt", "smoke"))
plot(wt ~ factor(smoke), data=d, # notice factor() for boxplot

main="Birth weight by smoking level")

Perhaps the assumption of normality isn’t correct, but we ignore that. If
the test is valid, it looks like level 1 (smokes now) has a smaller mean. Is this
due to sampling? We fit the model as follows:

res <- lm(wt ~ factor(smoke), data=d)
summary(res)

3For more detail see ?contrasts and the section on contrasts in the manual An Introduction
to R that accompanies R.
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Figure 12.4: Birth weight by smoking history.

##
## Call:
## lm(formula = wt ~ factor(smoke), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -67.78 -11.11 0.89 11.22 53.22
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 122.778 0.760 161.60 < 2e-16 ***
## factor(smoke)1 -8.668 1.107 -7.83 1.1e-14 ***
## factor(smoke)2 0.307 1.970 0.16 0.88
## factor(smoke)3 1.659 1.904 0.87 0.38
## factor(smoke)9 3.922 5.655 0.69 0.49
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 17.7 on 1231 degrees of freedom
## Multiple R-squared: 0.0588,Adjusted R-squared: 0.0557
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## F-statistic: 19.2 on 4 and 1231 DF, p-value: 2.36e-15

The marginal t-tests indicate that the level 1 of the smoke factor is impor-
tant, whereas the others may not contribute. That is, this is strong evidence
that a mother’s smoking during pregnancy decreases a baby’s birth weight.
The treatment coding quantifies this in terms of differences from the refer-
ence level of never smoked. The estimate, −8.668, says that the birth weight
of a baby whose mother smoked during her pregnancy is predicted to be
8.688 grams less than that of a baby whose mother never smoked. ••

Comparing multiple differences

When analysis of variance is performed with lm, the output of summary dis-
plays numerous statistical tests. The F-test that is performed has for the null
hypothesis that β2 = β3 = · · · = βk = 0 against an alternative that one or
more differ from 0. That is, that one or more of the treatments has an ef-
fect compared to the reference level. The marginal t-tests that are performed
are two-sided tests with a null hypothesis that βi = β1, one each is done for
i = 2, . . . ,k. These test whether any of the additional treatments have a dif-
ferent effect from the reference one when controlled by the other variables.
However, we may wish to ask other questions about the various parameters.
For example, comparisons not covered by the standard output are “Do the β2
and β3 differ?” and “Are β1 and β2 half of β3?” We show next how to han-
dle simultaneous pairwise comparisons of the parameters, such as the first
comparison.

If we know ahead of time that we are looking for a pairwise difference,
then a simple t-test is appropriate (as in the case where we are considering
just two independent samples). However, if we look at the data and then de-
cide to test whether the second and third parameters differ, then our t-test is
shaky. Why? Remember that any test is correct only with some probability—
even if the models are correct. This means that sometimes they fail, and the
more tests we perform, the more likely one or more will fail. When we look
at the data, we are essentially performing lots of tests, so there is more chance
of failing.

In this case, to be certain that our t-test has the correct significance level,
we adjust it to include all the tests we can possibly consider. This adjustment
can be done by hand with the simple, yet often overly conservative Bonfer-
roni adjustment. This method uses a simple probability bound to ensure the
proper significance level.

However, with R it is straightforward to perform Tukey’s generally more
useful and powerful “honest significant difference” test. This test covers all
pairwise comparisons at one time by simultaneously constructing confidence
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intervals of the type

(ȳi − ȳj)± q∗

√√√√1
2

s2

(
1
ni

+
1
nj

)
. (12.6)

The values ȳi are the sample means for the ith level and q∗ is the quantile for
a distribution known as the studentized range distribution. This choice of q∗

means that all these confidence intervals hold simultaneously with probabil-
ity 1− α.

This procedure is implemented in the TukeyHSD function as illustrated in
the next example.

• Example 12.7: Difference in takeoff times at the airport
We investigate the takeoff times for various airlines at Newark Liberty Inter-
national Airport. As with other busy airports, Newark’s is characterized by
long delays on the runway due to requirements that plane departures be stag-
gered. Does this effect all the airlines equally? Without suspecting that any
one airline is favored, we can perform a simultaneous pairwise comparison
to investigate.

First, we massage the data in ewr (UsingR) so that we have two variables:
one to keep track of the time and the other a factor indicating the airline.

ewr.out <- subset(ewr, subset=inorout=="out", select=3:10)
out <- stack(ewr.out)
names(out) <- c("time","airline")
levels(out$airline)

## [1] "AA" "CO" "DL" "HP" "NW" "TW" "UA" "US"

In modeling, the reference level comes from the first level reported by the
levels function. This is AA, or American Airlines.

Now plot (the boxplots in Figure 12.5) and fit the linear model as follows:

plot(time ~ airline, data=out)
res <- lm(time ~ airline, data=out)
short_summary(res)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 27.0565 0.7204 37.56 < 2e-16 ***
## airlineCO 3.8348 1.0188 3.76 0.00023 ***
## airlineDL -2.0522 1.0188 -2.01 0.04550 *
## airlineHP 1.5261 1.0188 1.50 0.13595
## airlineNW -4.0609 1.0188 -3.99 9.8e-05 ***
## airlineTW -1.6522 1.0188 -1.62 0.10667
## airlineUA -0.0391 1.0188 -0.04 0.96941
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## airlineUS -3.8304 1.0188 -3.76 0.00023 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The boxplots show many differences. Are these differences statistically
significant? For now we treat the data as a collection of independent samples
(rather than the monthly averages of varying sizes it is) and proceed using
the TukeyHSD function.

The TukeyHSD function is a method of aov objects, not lm objects. Some
redoing of past work is needed, though the commands are the similar:

## trim airlines for display
out.trimmed <- subset(out, subset=airline %in% c("CO", "AA", "NW"))
res.aov.trimmed <- aov(time ~ airline, data=out.trimmed)
TukeyHSD(res.aov.trimmed)

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = time ~ airline, data = out.trimmed)
##
## $airline
## diff lwr upr p adj
## CO-AA 3.835 1.456 6.213 7e-04
## NW-AA -4.061 -6.440 -1.682 3e-04
## NW-CO -7.896 -10.274 -5.517 0e+00

##
res.aov <- aov(time ~ airline, data=out)
plot(TukeyHSD(res.aov), las=2)

The output of TukeyHSD is best viewed with the plot of the confidence
intervals (Figure 12.5). This is created by calling plot on the output. The
argument las=2 turns the tick-mark labels perpendicular to the axes.

Recall the duality between confidence intervals and tests of hypothesis
discussed in Chapter 9. For a given confidence level and sample, if the con-
fidence interval excludes a population parameter, then the two-sided sig-
nificance test of the same parameter will be rejected. Applying this to the
Newark airport example, we see several statistically significant differences at
the α = .05 level, the first few being CO-AA and NW-AA (just visible on the graph
shown). ••
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Figure 12.5: Boxplots and plots of confidence intervals given by the Tukey
procedure for time it takes to takeoff at Newark Liberty International Airport
by airline.

Problems

12.11 The data set MLBAttend (UsingR) contains attendance data for Major
League Baseball between the years 1969 and 2000. Use lm to perform a t-test
on attendance for the two levels of league. Is the difference in mean atten-
dance significant? Compare your results to those provided by t.test.

12.12 The Traffic (MASS) data set contains data on road deaths in Sweden
during 1961 and 1962. An investigation into the effect of an enforced speed
limit on the number of traffic fatalities was conducted. The y variable contains
the number of deaths for a given day, the year variable is the year of the data,
and limit is a factor indicating when the speed limit was enforced.

Use lm to perform a t-test to investigate whether the year has an effect on
the number of deaths. Repeat to test whether the variable limit has an effect.

12.13 For the data in Exercise 12.4, perform the one-way ANOVA using lm.
Compare to the results of oneway.test.

12.14 For the mtcars data set, perform a one-way analysis of variance of the
response variable mpg modeled by cyl, the number of cylinders. Use factor,
as cyl is stored as a numeric variable.

12.15 For the mtcars data set, perform a one-way analysis of variance of the
response variable mpg modeled by am, which is 0 for automatic and 1 for man-
ual. Use factor, as am is stored as a numeric variable.
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12.16 The data set npdb (UsingR) contains malpractice award information. The
variable amount contains the amount of a settlement, and the variable year
contains the year of the award. We wish to investigate whether the dollar
amount awarded was steady during the years 2000, 2001, and 2002.

1. Make boxplots of amount broken up by year. Why is the data not suit-
able for a one-way analysis of variance?

2. Make boxplots of log(amount) broken up by year. Is this data suitable
for a one-way analysis of variance?

3. Perform an analysis of variance of log(amount) by factor(year) for the
years 2000, 2001, and 2002. Is the null hypothesis of no difference in
mean award amount reasonable given this data?

12.17 Perform the Tukey procedure on the data set morley after modeling
Speed by expt. Which differences are significant? Do they include all the ones
flagged by the marginal t-tests returned by lm on the same model?

12.18 The carsafety (UsingR) data set shows a difference in means through
an analysis of variance when the variable Other.deaths is modeled by type.
Perform the Tukey HSD method to see what pairwise differences are flagged
at a 95% confidence level. What do you conclude?

12.19 The InsectSprays data set contains a variable count, which counts the
number of insects and a factor spray, which indicates the treatment given.

First perform an analysis of variance to see whether the treatments make
a difference. If so, perform the Tukey HSD procedure to see which pairwise
treatments differ.

12.3 ANCOVA

An analysis of covariance (ANCOVA) is the term given to models where
both categorical and numeric variables are used as predictors. Performing an
ANCOVA in R is also done through lm.

• Example 12.8: Birth weight by mother’s weight and smoking history
In Example 12.2 we performed an analysis of variance of a baby’s birth weight
modeled by whether the mother smoked. In this example, we also regress
on the numeric measurement of the mother’s weight. First we make a plot,
marking the points with different characters depending on the value of smoke.
As smoke is stored as a numeric variable, the different plot symbols for those
numbers are used.
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babes <- subset(babies, subset = wt1 < 800)
plot(wt ~ wt1, data = babes, pch=as.numeric(smoke))

The plotted data in Figure 12.6 indicates a possible linear relationship.
The analysis of covariance model, fit next, is essentially the model

birth weight = β1 + β2 mom’s weight + β31mom smokes now

This model is a parallel-lines model. For those mothers who don’t smoke,
the intercept is given by β1; for those who do, the intercept is β1 + β3. The
slope is given by β2. The actual model we fit is different, as there are four
levels to the smoke variable, so there would be three indicator variables, each
indicating a difference in the intercept.

In R, we fit the model as follows, using factor to coerce smoke to be a
factor:

res <- lm(wt ~ wt1 + factor(smoke), data = babes)
summary(res)

##
## Call:
## lm(formula = wt ~ wt1 + factor(smoke), data = babes)
##
## Residuals:
## Min 1Q Median 3Q Max
## -68.93 -10.90 0.44 11.01 52.68
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 107.0674 3.2642 32.80 < 2e-16 ***
## wt1 0.1204 0.0245 4.93 9.6e-07 ***
## factor(smoke)1 -8.3971 1.1246 -7.47 1.6e-13 ***
## factor(smoke)2 0.7944 1.9974 0.40 0.69
## factor(smoke)3 1.2550 1.9112 0.66 0.51
## factor(smoke)9 2.8683 5.6452 0.51 0.61
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 17.7 on 1194 degrees of freedom
## Multiple R-squared: 0.0775,Adjusted R-squared: 0.0736
## F-statistic: 20.1 on 5 and 1194 DF, p-value: <2e-16

We read this output the same way we read the output of any linear regres-
sion. For each coefficient, the marginal t-test of βi = 0 against a two-sided al-
ternative is performed. Three variables are flagged as highly significant. The
third one for the variable factor(smoke)1 says that the value of this coeffi-
cient, −8.3971, is statistically different from 0. This value is an estimate of the
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Figure 12.6: Parallel-lines model showing reference slope and slope for smok-
ers (dashed line).

difference between the intercept for the data of nonsmoking mothers (level
0) and the data of mothers who answered “smokes now” (level 1).

We plot the data with two different but parallel regression lines in Fig-
ure 12.6.

plot(wt ~ wt1, pch=as.numeric(smoke), data=babes)
abline(107.0674, 0.1204)
abline(107.0674 - 8.3971, 0.1204, lty=2)

The last line of the output of summary(res) shows that the F-test is re-
jected. This is a test of whether all the coefficients except the intercept are 0.
A better test would be to see whether the additional smoke variable is signif-
icant once we control for the mother’s weight. This is done using anova to
compare the two models.

res.1 <- lm(wt ~ wt1, data = babes)
anova(res.1, res)

## Analysis of Variance Table
##
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## Model 1: wt ~ wt1
## Model 2: wt ~ wt1 + factor(smoke)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 1198 394572
## 2 1194 372847 4 21725 17.4 7e-14 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The small p-value indicates that the additional term is warranted. ••

Problems

12.20 The nym.2002 (UsingR) data set contains data on the finishers of the
2002 New York City Marathon. Perform an ANCOVA of time on the numeric
variable age and the factor gender. How much difference is there between the
genders?

12.21 For the mtcars data set, perform an ANCOVA of mpg on the weight, wt,
and the transmission type, am. You should use factor(am) in your model to
ensure that this variable is treated as a factor. Is the transmission type signif-
icant?

12.22 Perform an ANCOVA for the babies (UsingR) data set modeling birth
weight (wt) by gestation (gestation), mother’s weight (wt1), mother’s height
(ht), and mother’s smoking status (smoke).

12.23 From the kid.weights (UsingR) data set, the body mass index (BMI) can
be computed by dividing the weight by the height squared in metric units.
The following will add a BMI variable:

kid.weights$BMI <- with(kid.weights, (weight/2.2)/(height*2.54/100)^2)

Model the BMI by the age and gender variables. This is a parallel-lines
model. Which variables are significant? Use the partial F-test to find the pre-
ferred model. Does this agree with the output of stepAIC?

12.24 The cfb (UsingR) data set contains information on consumer expenses.
In particular, INCOME contains income figures, EDUC is the number of years of
education, and AGE is the age of the participant. Perform an ANCOVA mod-
eling log(INCOME + 1) by AGE and EDUC. You will need to force EDUC to be a
factor. Are both variables significant?

12.25 The data set normtemp (UsingR) contains body temperature and heart
rate (hr) for 65 randomly chosen males and 65 randomly chosen females
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(marked by gender with 1 for males and 2 for females). Perform an AN-
COVA modeling temperature by heart rate with gender treated as a factor.

12.4 Two-way ANOVA

Like the regression model, the ANOVA method generalizes to more than one
predictor variable. Two-way ANOVA is the case when there are two. Higher
order ANOVA models are possible, but we focus on the two-way case in the
following.

• Example 12.9: The perfect snack
It seems that many Americans always have room in their diets for snack
food. Designing the perfect snack food is a science that the major snack-food
makers have perfected, but they are unlikely to share their secrets. Instead,
people need to reverse engineer. For example, an infographic in the New York
Times4 shows an analysis by Steven A. Witherly of what makes the Dorito
so appealing. One major key is to produce an item with “vanishing caloric
density,” which means the food tricks the brain into thinking the calories
have disappeared and hence satiation is delayed. Fat-laden snacks have this
effect and it is known that the percentage of fat is important. Additionally,
combinations of sweet, salty, and umami (the latter provided by the additive
MSG or garlic) are used to provide “flavor burst.”

Without the benefit of research, an experimental sort could try various
combinations to see which is preferred. For example, suppose a new snack is
made which has the magical 50% fat content, what would be a good amount
of salt and a good amount of sugar to use? ••

The addition of an extra factor in the two-way model introduces the pos-
sibility of interactions between the two factors. In the absence of interactions,
the two-way additive model for the response can be expressed as:

xijk = αi + β j + εijk,

where i indicates the level of the first factor, j indicates the level of the sec-
ond factor, and k allows for more than one observation for the combination
of level i and level j. When there is more than one, the data is said to be
replicated.

The coefficients above are termed the main effects and have a direct inter-
pretation. For example, the difference β j − β j′ is interpreted as the difference
in the predicted mean response from changing from level j′ to level j for the
second factor assuming the first factor doesn’t change.

Interactions are modeled with terms that take into account both i and j
simultaneously:

4http://www.nytimes.com/interactive/2013/10/01/dining/nacho-graphic.html.
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xijk = αi + β j + γij + εijk.

The interaction term, γij, makes interpretation of the main effects difficult
by themselves, as the change in mean response predicted by the model when
one factor is held steady and another manipulated depends on the level of
the factor being held steady.

Interaction plots

Though we will soon see a formal statistical test for the possible presence
of an interaction, it is often best to first look graphically for interactions. For
this, the interaction plot is widely used.

For a two-way analysis of variance there are three variables: a numeric re-
sponse and two categorical predictors. To squeeze all three onto one graphic,
one of the factors is selected as the trace factor. Different lines will be drawn
for each level of this factor. Fix a level, for now, of the trace factor. For each
level of the main factor, the mean of the data where both levels occur is plot-
ted as a point. These points are then connected with a line segment. Repeat
for the other levels of the trace factor. If the line segments for each level of
the trace factor are roughly parallel—indicating a similar response regardless
of the level of the trace factor—then no interaction is indicated. If the lines
differ dramatically, then an interaction is indicated.

This graphic is made with the function interaction.plot. The template
is

interaction.plot(f, trace.factor, response, legend=TRUE)

The response variable is the third positional argument, the first specifies
the main factor, and the second is the trace.factor. By default, a legend will
be drawn indicating the levels of the trace factor.

In the snacks (UsingR) data set, there is data on snack food taken from a
large survey performed by the USDA. Is there an interaction between sugary
amount and saturated fat (a bad fat) when using both to model the energy
content (calories) of each snack in the survey?

Figure 12.7 shows the interaction plot. To some broad degree the three
lines are parallel, though clearly they are not precisely parallel. A formal
test will indicate if such deviations are consistent with an assumption of
random variation. The interaction suggested by graph is interpreted as for
medium sugary foods, the effect of going from low fat to medium fat is more
pronounced than for high-sugar foods, where the effect is pronounced when
comparing medium fat to high fat.

The plot was generated with the following commands:
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Figure 12.7: Interaction plot where snack food calories are modeled by
amount of saturated fat and the sugar amount (the trace factor). An inter-
action is suggested, though the appearance of being not-parallel may be due
to sampling variation.

snacks$sugary <- cut(snacks$sugar, c(0, 20, 50, 100))
snacks$saturated <- cut(snacks$fat_sat, c(0, 7, 15, 25))
with(snacks, interaction.plot(saturated, sugary, response=calories))

Fitting a two-way ANOVA

Before analyzing this model, we incorporate it into our linear-model picture
using dummy variables. We follow the same coding (treatment coding) in
terms of indicators as the one-way case. First, the data should be in long
format with one variable (say x) holding the response values and two fac-
tors (say f1 and f2) to indicate which level of the two predictor variables
correspond to a given response. For each factor, a reference level is chosen.

For example, Table 12.4 is simulated data inspired by a cross-sectional
study on whether the family food environment exerts influences on the
young children’s eating. The actual study [37] used a fifty-six question sur-
vey, our data has a dramatically reduced set of factors: “satisfied with how
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Satisfied
TV Yes No

0–1 0, 0 16, 15, 14
1–5 11 26, 27
5+ 23, 23 36, 43

Table 12.4: Amount of high-energy drink consumed per wek by amount of
television watched and whether parent is satisfied with the number of shared
evening meals.

often my family eats the evening meal together” and “TV viewing” amount.
The response variable is the number of ounces per week the 5 – 6 year-old
child consumes of high-energy drinks.

We can enter this data (somewhat cryptically) into a data frame with:

d <- data.frame(
x =c(0, 0, 16, 15, 14, 11, 26, 27, 23, 23, 36, 43),
satisfied=c("yes", "no")[c(1,1,2,2,2,1,2,2,1,1,2,2)],
tv=rep(c("0-1", "1-5", "5+"), c(5,3,4))
)

The basic representation of the ANOVA model uses a reference level (the
first by default) and includes a term of 1leveli(x) for each of the other levels of
the first factor and corresponding ones for the second. In the above then there
are two indicator values for the tv variable and one for the satisfied vari-
able. This means there are four estimated coefficients in the additive model,
taking into account the grand mean (or intercept term).

In the model with an interaction there are an additional 2 = (m− 1) · (n−
1) coefficients for the interaction terms, each one multiplying a term of the
type 1leveli(x) · 1levelj(x).

In this example, as there is replication, there are enough degrees of free-
dom to estimate the terms and the error. For data without replication, one can
estimate the interactions, but cannot perform any inference on the estimates.

Fitting the two-way ANOVA model in R involves specifying the model
using the formula notation. The additive model can be specified with +, the
additive model with interaction can be specified with * (or tv+satisfied +
tv:satisfied, where : is just the interaction). For our data above, we have:

res.add <- lm(x ~ tv + satisfied, data=d)
res.int <- lm(x ~ tv * satisfied, data=d)

The various coefficients are estimated. Looking at the summary of the
model with interaction we see:
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summary(res.int)

##
## Call:
## lm(formula = x ~ tv * satisfied, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.500 -0.125 0.000 0.125 3.500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.00 1.23 12.25 1.8e-05 ***
## tv1-5 11.50 1.94 5.94 0.00102 **
## tv5+ 24.50 1.94 12.65 1.5e-05 ***
## satisfiedyes -15.00 1.94 -7.75 0.00024 ***
## tv1-5:satisfiedyes -0.50 3.24 -0.15 0.88243
## tv5+:satisfiedyes -1.50 2.87 -0.52 0.62022
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 2.12 on 6 degrees of freedom
## Multiple R-squared: 0.985,Adjusted R-squared: 0.973
## F-statistic: 80.7 on 5 and 6 DF, p-value: 2.03e-05

The term tv1-5:satisfiedyes is an interaction term. Both are not marked
with significance stars. This begs the question, is an interaction present? The
interaction plot (not shown) indicates this is the case:

with(d, interaction.plot( tv, satisfied, x))

As the two models above are nested models, the partial F-test can be used,
as implemented by anova:

anova(res.int, res.add)

## Analysis of Variance Table
##
## Model 1: x ~ tv * satisfied
## Model 2: x ~ tv + satisfied
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 6 27.0
## 2 8 28.2 -2 -1.24 0.14 0.87

The null hypothesis is that all coefficients related to the interaction are 0,
and the large p-value gives no reason to doubt this.
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It makes sense to look at the additive model. We can interpret the main
effects in terms of the estimated coefficients:

short_summary(res.add)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.26 0.95 16.05 2.3e-07 ***
## tv1-5 11.29 1.37 8.22 3.6e-05 ***
## tv5+ 23.81 1.26 18.82 6.6e-08 ***
## satisfiedyes -15.64 1.11 -14.09 6.2e-07 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Here we see all coefficients are significant. Of more interest is interpreting
the coefficients. The grand mean is approximately 15. This is the predicted
mean for the reference levels which with our encoding are 0− 1 hours of TV
and not satisfied with shared evening meals. The coefficient for satisfiedyes
has a negative sign, as the difference in predicted mean consumption for
those satisfied with their shared meals is 15 ounces less per week.

• Example 12.10: Snack food
Returning to the snack food data, snacks, we look to see if the interaction
suggested in Figure 12.7 is statistically significant.

res.int <- lm(calories ~ saturated * sugary, snacks)
res.add <- lm(calories ~ saturated + sugary, snacks)
anova(res.int, res.add)

## Analysis of Variance Table
##
## Model 1: calories ~ saturated * sugary
## Model 2: calories ~ saturated + sugary
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 103 253984
## 2 106 274339 -3 -20355 2.75 0.046 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The small p-value is just significant at the α = 0.05 level. The interaction
makes the coefficients found for the main effects harder to interpret, but over-
all, they support that intuition that more fat and/or more sugar tends to be
found in products with higher calories. ••
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Blocking variables

A blocking variable is one which is believed to influence the response vari-
able, but how it does so is not the main question of interest. Sometimes, this
may be called a nuisance variable. We have seen the use of a blocking variable
already with the paired t-test. For example, the data set (shoes (MASS)) con-
tains data on shoe wear. As the variability on shoe wear depends a lot on the
person, a simple examination of shoe wear between two different sole types
can be masked due to other factors. For this data, the experimental design
accounted for the variation due to individuals by assigning at random one
sole type to a foot of one person, and left the other foot to the second sole
type. This allowed the comparison of shoe wear by looking at the differences
between paired feet:

library(MASS)
out <- t.test(shoes$A, shoes$B, paired=TRUE)
out$p.value

## [1] 0.008539

The same p-value is returned by considering this as a two-way ANOVA
model, where the second variable records the person:

d <- stack(shoes)
names(d) <- c("value", "sole_type")
d$person <- gl(10, 1, 20, labels=paste("P",1:10, sep=""))
xtabs(value ~ sole_type + person, data=d)

## person
## sole_type P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
## A 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3
## B 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6

res <- aov(value ~ sole_type + person, data=d)
summary(res)

## Df Sum Sq Mean Sq F value Pr(>F)
## sole_type 1 0.8 0.84 11.2 0.0085 **
## person 9 110.5 12.28 163.8 6.9e-09 ***
## Residuals 9 0.7 0.07
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The question of interest here is there a difference in wear between the
different sole types. The small p-value might lead one to simply say "yes." The
person variable is not of interest, we just want to account for the variability
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due to different people. If we had not, then the data would have been found
to be not statistically significant:

summary(aov(value ~ sole_type, data=d))

## Df Sum Sq Mean Sq F value Pr(>F)
## sole_type 1 0.8 0.84 0.14 0.72
## Residuals 18 111.2 6.18

• Example 12.11: Blocking
A student experimenter wishes to see if soft drink consumption leads to poor
health measures. They understand that there are many possible confounding
variables involved: prior consumption habits, current health measures, gen-
der, . . . . As such, they limit their cohort to male candidates with a BMI less
than 25 that currently drink soft drinks rarely or never.

They are also aware of some studies that indicate there may be ethnic
differences. In their recruitment processes, it was felt this would be impolitic
to screen by this. As such, they include this variable as a blocking variable.

The student selects three treatments: 24 ounces per day of additional bot-
tled water consumption, 24 ounces per day of additional consumption of soft
drinks, 24 ounces per day of additional consumption of vitamin-enriched
drinks. The latter two having similar caloric content, though the last one
promises health benefits.

There were 12 persons recruited from 4 ethnicities. For each ethnic group,
the assignment of treatment to case was randomized. The measure was per-
centage change in BMI during a two-week test.

The collected data is entered into R with the following commands:

d <- data.frame(
percent_change = c(1.3, -0.7, 0.3, -1.4, 0.5 ,0.9 ,1.6, 1.2,
0.3, 1.8, 1.7, 1.3),

ethnicity = gl(4, 1, 12, labels=paste("Ethnic", 1:4)),
trt = gl(3, 4, 12, labels=c("Ctrl", "Soda", "Vitamin"))
)

xtabs(percent_change ~ trt + ethnicity, data=d)

## ethnicity
## trt Ethnic 1 Ethnic 2 Ethnic 3 Ethnic 4
## Ctrl 1.3 -0.7 0.3 -1.4
## Soda 0.5 0.9 1.6 1.2
## Vitamin 0.3 1.8 1.7 1.3
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There is insufficient data to consider a model with interactions, as there
is no replication.5

The additive model is fit with

res <- aov(percent_change ~ trt + ethnicity, data=d)
coef(res)[1:3] # only intercept, trt

## (Intercept) trtSoda trtVitamin
## -0.1583 1.1750 1.4000

The coefficients for ethnicity are ignored (and not shown) but the main
effects for the treatments indicate at first glance that both the soda group and
vitamin group had an increase in their BMI, with the vitamin group being
the largest. In contrast, the control group appears to have dropped a bit. The
question of whether these differences are statistically significant is answered
with this command:

summary(res)

## Df Sum Sq Mean Sq F value Pr(>F)
## trt 2 4.52 2.261 2.63 0.15
## ethnicity 3 1.07 0.358 0.42 0.75
## Residuals 6 5.15 0.859

The p-value of 0.15 indicates that controlling for ethic differences, the dif-
ferences in treatment groups for this small trial are not statistically significant.
Looking at the output of plot(TukeyHSD(res, "trt")) will demonstrate the
same, with all intervals straddling 0. ••

Problems

12.26 A politician’s campaign manager is interested in the effects of televi-
sion and Internet advertising. She surveys 18 people and records changes in
likability after a small advertising campaign. Additionally, she records the
amount of exposure her subjects have to the ad campaigns. The data is in
Table 12.5.

Use an analysis of variance to investigate the following questions:

1. Is there any indication that web advertising alone is effective?

2. After controlling for television exposure, is there any indication that
web advertising is effective?

5The model with replication has 1 + (3− 1) + (4− 1) + (3− 1)(4− 1) = 12 parameters to
estimate with only 12 data points to do so. As such, there is insufficient data to estimate the
error terms.
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TV ad exposure (viewings) 0 1–2 3+

Web exposure N −1 −4 0 −1 4 1 6 2 7
Y 1 2 2 7 5 2 3 6 1

Table 12.5: Change in likability of politician.

12.27 The grip (UsingR) data set contains more data than is used in Exam-
ple 12.1. The data is from four skiers instead of one. You can view the data
in a convenient manner with the command

ftable(xtabs(UBP ~ person + replicate + grip.type, data=grip))

Perform a two-way analysis of variance on the data. Check first to see
whether there are any interactions, then see whether the difference in skier
or grip has an effect.

12.28 In the data set mtcars the variables mpg, cyl, and am indicate the miles
per gallon, the number of cylinders, and the type of transmission, respec-
tively. Perform a two-way ANOVA modeling mpg by the cyl and am, each
treated as categorical data.

Is there an indication of an interaction? Do both the number of cylinders
and the type of transmission make a difference?

12.29 The data set ToothGrowth has measurements of tooth growth (len)
of guinea pigs for different dosages of Vitamin C (dose) and two different
delivery methods (supp).

Perform a two-way analysis of variance of tooth growth modeled by
dosage and delivery method. First, fit the full model including interactions
and use the F-test to compare this with the additive model.

12.30 The data set OrchardSprays contains measurements on the effectiveness
of various sprays on repelling honeybees. The variable decrease measures
effectiveness of the spray, treatment records the type of treatment, and rowpos
records the row in the field the measurement comes from.

Make an interaction plot of the mean of decrease with treatment as a
trace factor. Then fit the additive analysis-of-variance model and the model
with interaction. Compare the two models using anova. Is the interaction
model suggested by the results of the modeling?

12.31 What does R output when there is not enough data to estimate the
parameters and an error term? We check with a simple example. In checking
a comment that everything is better with butter on it, a student asks four
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people to rate the four combinations of bread and corn with and without
butter. The data collected is:

d <- data.frame(
rating=c(8, 6, 8, 4),
food=gl(2, 2, 4, labels=c("bread", "corn")),
butter=gl(2, 1, 4, labels=c("yes", "no")))

xtabs(rating ~ butter + food, d)

## food
## butter bread corn
## yes 8 8
## no 6 4

with(d, interaction.plot(butter, food, rating)) # not shown

Look at the summary of the multiplicative model

summary(lm(rating ~ butter * food, d))

Do the coefficients get estimated? What is the issue then?



13

Extensions of the linear model

The linear-regression ideas are building blocks for many other statistical
models. The R project’s archive (CRAN, http://cran.r-project.org) ware-
houses over 5,000 add-on packages to R, many of which implement exten-
sions to the linear-regression model covered in the last two chapters. In this
chapter, we look at two extensions: logistic-regression models and nonlinear
models. Our goal is to illustrate that most of the techniques used for linear
models carry over to these (and other) models.

The logistic-regression model covers the situation where the response
variable is a binary variable. Logistic regression, which is a particular case
of a generalized linear model, arises in several areas, including, for example,
analyzing survey data. The nonlinear models we use a function to describe
the mean response that is not linear in the parameters.

13.1 Logistic regression

A binary variable is one that can have only two values, “success” or “failure,”
often coded as 1 or 0. In the ANOVA model we saw that we can use binary
variables as predictors in a linear-regression model by using factors. But what
if we want to use a binary variable as a response variable?

• Example 13.1: Spam
Junk e-mail, or spam, is a real nuisance, but it must make some business
sense, as the Internet is flooded with it. Let’s look at the situation from the
spammer’s perspective.

The spammer’s problem is that very few people will open spam. How to
entice someone to do so? Is it worth the expense of buying an e-mail list that
includes names? Does the subject line make a difference? Imagine a test is
done in which 5,000 e-mails are sent out in four different ways. The subject
heading on some includes a first name, on some an offer, on some both, and
on some neither. The number that are opened by the recipient is measured by
an embedded image in the e-mail body that can be tracked via a web server.

If Table 13.1 contains sample data, what can we say about the importance
of including a name or an offer in the subject heading? ••

440
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Offer in subject

yes no

First name yes 20 of 1,250 15 of 1,250
in subject no 17 of 1,250 8 of 1,250

Table 13.1: Number of spam e-mails opened.

For simplicity, assume that we have two variables, x and y, where y is a
binary variable coded as a 0 or 1. For example, 1 could mean a spam message
was opened. If we try to model the response with yi = β0 + εi or yi = β0 +
β1xi + εi, then, as yi is either 0 or 1, the εi can’t be an i.i.d. sample from a
normal population. Consequently, the linear model won’t apply. As having
only two answers puts a severe restriction on the error term, instead the
probability of success is modeled.

Let πi = P(yi = 1). Then πi is in the range 0 to 1. We might try to fit
the model πi = β0 + β1xi + εi, but again the range on the left side is limited,
whereas that on the right isn’t. Even if we restrict our values of the xi, the
variation of the εi can lead to probabilities outside of [0,1].

Let’s change tack. For a binary random variable, the probability is also
an expected value. That is, after conditioning on the value of xi, we have
E(yi|xi) = πi. In the simple linear model we called this µy|x, and we had
the model yi = µy|x + εi. Interpreting this differently will let us continue. We
mentioned that the assumption on the error can be viewed two ways. Either
assuming the error terms, the εi values, are a random sample from a mean
0 normally distributed population, or, equivalently that each data point yi is
randomly selected from a Normal(µy|x,σ) distribution independently of the
others. Thus, we have the following ingredients in simple linear regression:

• The predictors enter in a linear manner through β0 + β1x1.

• The distribution of each yi is determined by the mean, µy|x, and some
scale parameter σ.

• There is a relationship between the mean and the linear predictors
(µy|x = β0 + β1x1).

The last point needs to be changed to continue with the binary regression
model. Let η = β0 + β1x1. Then the change we make is to assume that η can
be transformed to give the mean by some function m() via µy|x = m(η), which
can be inverted to yield back η = m−1(µy|x). The function m() is called a link
function, as it links the predictor with the mean.

The logistic function m(x) = ex/(1 + ex) is often used (see Figure 13.1),
and the corresponding model is called logistic regression. For this, we have
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Figure 13.1: Graph of logistic function, m(x) = ex/(1 + ex). The inflection
point is marked with a square.

πi = m(β0 + β1xi) =
eβ0+β1xi

1 + eβ0+β1xi
.

The logistic function turns values between −∞ and ∞ into values between
0 and 1, so the numbers specifying the probabilities will be between 0 and 1.
When m() is inverted we have

log(
πi

1− πi
) = β0 + β1xi. (13.1)

This log term is called the log-odds ratio. The odds associated to some
probability are p/(1− p), which is evident if we understand that an event
having odds a to b means that in a + b i.i.d. trials we expect a wins. Thus
the probability of success should be a/(a + b). Reversing, if the probability
of success is a/(a + b), then the ratio becomes (a/(a + b))/(1− a/(a + b)) or
a/b, which is the ratio of the odds. The expression elog-odds ratio will give the
odds.
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To finish the model, we need to specify the distribution of yi. It is Bernoulli
with success probability πi, or more compactly, Bernoulli(m(β0 + β1xi)).1

Generalized linear models

Logistic regression is an example of a generalized linear model. The key in-
gredients are as above: a response variable y and some predictor variables
x1, x2, . . . , xp. The predictors enter into the model via a single linear function:

η = β0 + β1x1 + · · ·+ βpxp.

The mean of y given the x values is related to η by an invertible link function
m() as µ = m(η) or m−1(µ) = η. Finally, the distribution of y is given in terms
of its mean and, perhaps, a scale parameter such as σ.

Thus, the model is specified by the coefficients βi, a link function m(), and
a probability distribution that may have an additional scale parameter.

Fitting the model using glm

Generalized linear models are fit in R using the glm function. Its usage is sim-
ilar to that of lm, except that we need to specify the probability distribution
and the link function. A template for usage is

res <- glm(formula, family=..., data=...)

The formula is specified as though it were a linear model. The argument
family allows us to specify the distribution and the link. Details are in the
help page ?family and in the section “Generalized linear models” in the man-
ual An Introduction to R accompanying R. We will use only two: the one for
logistic regression and one to compare the results with simple linear regres-
sion.

For logistic regression the argument is specified by family="binomial", as
the default link function is what we want. For comparison to simple linear
regression, the link function is just an identity, and the family is specified as
family="gaussian".2

As an illustration, let’s compare using glm and lm to analyze a linear
model. We will use simulated data so we already “know” the answer.

• Example 13.2: Comparing glm and lm
We first simulate data from the model that yi has a Normal(x1i + 2x2i,σ) dis-
tribution and fit using lm:

1This should be compared to the description of the simple regression model through
Normal(β0 + βaxi ,σ).

2Gaussian is a mathematical term named for Carl Gauss that describes the normal distribu-
tion.
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x1 <- rep(1:10, 2)
x2 <- rchisq(20, df=2)
y <- rnorm(20, mean=x1 + 2*x2, sd=2)
res.lm <- lm(y ~ x1 + x2)
short_summary(res.lm)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.490 1.074 -0.46 0.65
## x1 1.065 0.146 7.30 1.2e-06 ***
## x2 1.990 0.199 10.00 1.6e-08 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Both the coefficients for x1 and x2 are flagged as significantly different
from 0 in the marginal t-tests.

The above can all be done using glm. The only difference in the function
call is that the modeling involves specifying the family argument. We show
all the output below.

res.glm <- glm(y ~ x1 + x2, family="gaussian")
summary(res.glm)

##
## Call:
## glm(formula = y ~ x1 + x2, family = "gaussian")
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.29 -1.65 0.24 1.23 2.30
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.490 1.074 -0.46 0.65
## x1 1.065 0.146 7.30 1.2e-06 ***
## x2 1.990 0.199 10.00 1.6e-08 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for gaussian family taken to be 3.295)
##
## Null deviance: 465.965 on 19 degrees of freedom
## Residual deviance: 56.014 on 17 degrees of freedom
## AIC: 85.36
##
## Number of Fisher Scoring iterations: 2
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The same coefficients are found. This is not surprising, but technically a
different method is used. For each coefficient, a two-sided significance test
is done with null hypothesis that the value is 0. For this model, the results
are identical, as with lm. No information about the F-statistic is given, as the
theory does not apply here in general. Rather, the AIC is given. Recall that
this could be used for model selection with models having lower values be-
ing preferred. ••

Now we fit a logistic model.

• Example 13.3: Premature babies
It is well known that risk factors associated with premature births include
smoking and maternal malnutrition. Do we find this to be the case with the
data in the babies (UsingR) data set?

We’ll need to manipulate the data first. First we extract just the variables
of interest, using the subset argument to eliminate the missing values.

babies.prem = subset(babies,
subset= gestation < 999 & wt1 < 999 & ht < 99 & smoke < 9,
select=c("gestation","smoke","wt1","ht"))

A birth is considered premature if the gestation period is less than 37 full
weeks.

babies.prem$preemie = with(babies.prem, as.numeric(gestation < 7*37))
table(babies.prem$preemie)

##
## 0 1
## 1079 96

For glm with binomial models the response variable can be numeric, as
just defined, or a factor (the first level is “failure,” the others are “success”).

We will use the body mass index (BMI) as a measure of malnutrition,
though expect that this might be a poor proxy. The BMI is the weight in kilo-
grams divided by the height in meters squared. If there is some dependence,
we will investigate further.

babies.prem$BMI = with(babies.prem, (wt1/2.2) / (ht*2.54/100)^2)
hist(babies.prem$BMI) # looks okay

We can now model the variable preemie by the levels of smoke and the
variable BMI. This is similar to an ANCOVA, except that the response variable
is binary.
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res <- glm(preemie ~ factor(smoke) + BMI, family=binomial,
data=babies.prem)

short_summary(res)

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.4246 0.7116 -4.81 1.5e-06 ***
## factor(smoke)1 0.1935 0.2357 0.82 0.41
## factor(smoke)2 0.3137 0.3890 0.81 0.42
## factor(smoke)3 0.1011 0.4050 0.25 0.80
## BMI 0.0401 0.0304 1.32 0.19
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

None of the variables are flagged as significant. This indicates that the
model with no effects is, perhaps, preferred. (The sampling distribution un-
der the null hypothesis is different from the previous example, so the col-
umn gets marked with “z value” as opposed to “t value.”) We check which
model is preferred by the AIC using stepAIC from the MASS package.

library(MASS)
stepAIC(res, trace=0)

##
## Call: glm(formula = preemie ~ 1, family = binomial, data = babies.prem)
##
## Coefficients:
## (Intercept)
## -2.42
##
## Degrees of Freedom: 1174 Total (i.e. Null); 1174 Residual
## Null Deviance: 665
## Residual Deviance: 665 AIC: 667

The model of constant mean is chosen by this criteria, indicating that these
risk factors do not show up in this data set. ••

• Example 13.4: The spam data
Let’s apply logistic regression to the data on spam in Table 13.1. Set yi to be
1 if the e-mail is opened, and 0 otherwise. Likewise, let x1i be 1 if the e-mail
has a name in the subject, and x2i be 1 if the e-mail has an offer in the subject.
Then we want to model yi by x1i and x2i. To use logistic regression, we first
turn the summarized data into 5,000 samples.
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first.name <- gl(2, 2500, 5000, labels=c("yes", "no"))
offer <- gl(2, 1250, 5000, labels=c("yes", "no"))
opened <- c(rep(1:0, c(20, 1250-20)), rep(1:0, c(15, 1250-15)),

rep(1:0, c(17, 1250-17)), rep(1:0, c( 8, 1250-8)))
xtabs(opened ~ first.name + offer)

## offer
## first.name yes no
## yes 20 15
## no 17 8

We remark that the value of opened could have been defined a bit more
quickly using a function and sapply:

f <- function(x) rep(1:0, c(x, 1250-x))
opened <- c(sapply(c(20, 15, 17, 8), f))

Now to fit the logistic regression model.

res.glm <- glm(opened ~ first.name + offer, family="binomial")
short_summary(res.glm)

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.042 0.199 -20.32 <2e-16 ***
## first.nameno -0.341 0.263 -1.29 0.196
## offerno -0.481 0.267 -1.80 0.072 .
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Although only the intercept is flagged as significant at the 0.05 level,
suppose the estimates are correct. How can we interpret them? The coding
is such that when no first name or offer is included, the log-odds ratio is
−4.864 =−4.0419− 0.3407− 0.4813. When the first name is included but not
the offer, the log-odds ratio is −4.5232 = −4.0419− 0.4813. When both are
included, it’s −4.0419. Let o0 be the odds ratio when neither a name nor an
offer is included:

o0 = odds ratio =
π

1− π
= e−4.864.

If we include the first name, the odds ratio goes up to e−4.864+0.341 = o0 · e0.341,
which is an additional factor of e0.341 = 1.406. So, if the original odds were 2
to 100, they go up to 2(1.406) to 100. ••
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Avoiding replication In the previous example the data was replicated to
produce variables first.name, offer, and opened with 5,000 values, so that
all the recorded data was present. The interface for glm conveniently allows
for tabulated data when the binomial family is used.

A two-column matrix is used, with its first column recording the number
of successes and its second column the number of failures. In our example,
we can construct this matrix using cbind as follows:

opened <- c(8,15,17,20)
opened.mat <- cbind(opened=opened, not.opened=1250 - opened)
opened.mat

## opened not.opened
## [1,] 8 1242
## [2,] 15 1235
## [3,] 17 1233
## [4,] 20 1230

The predictor variables match the levels for the rows. For example, for
the values of 8 and 15 for opened, offer was 0 and first.name was 0 then 1.
Continuing gives these values:

offer <- c(0, 0, 1, 1)
first.name <- c(0, 1, 0, 1)

Finally, the model is fit as before, using opened.mat in place of opened:

glm(opened.mat ~ first.name + offer, family="binomial")

##
## Call: glm(formula = opened.mat ~ first.name + offer, family = "binomial")
##
## Coefficients:
## (Intercept) first.name offer
## -4.864 0.341 0.481
##
## Degrees of Freedom: 3 Total (i.e. Null); 1 Residual
## Null Deviance: 5.77
## Residual Deviance: 0.736 AIC: 24.7

(The reference levels are different than previously, so the coefficients don’t
match without some work.)

13.2 Nonlinear models

The linear model is called “linear” because of the way the coefficients βi enter
into the formula for the mean. These coefficients simply multiply some term.
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A nonlinear model allows for more complicated relationships. For example,
an exponential model might have the response modeled as

yi = β0e−β1xi + εi.

Here, µy|x = β0e−β1x is not linear in the parameters due to the position of β1.
Variations on the exponential model are

yi = β0xie−β1xi + εi and yi = β0(e−β1xi (1− β2) + β2) + εi.

The exponential model, with β1 > 0, may be used when the response vari-
able decays as the predictor increases. The second model has a growth-then-
decay phase, and the third a decay, not to 0 but to some threshold amount
β0 · β2.

In general, a single-response, nonlinear model can be written as follows:

yi = f (xi|β0, β1, . . . , βr) + εi.

We have r+ 1 parameters and only one predictor with an additive error. More
general models could have more predictors and other types of errors, such
as multiplicative.

The possibilities seem endless but in fact are constrained by the problem
we are modeling. When using nonlinear models we typically have some idea
of which types of models are appropriate for the data and then fit just those.
If the model has i.i.d. errors that are normally distributed, then using the
method of least squares allows us to find parameter estimates and use AIC
to compare models.

Fitting nonlinear models with nls

Nonlinear models can be fit in R using nls. The nls function computes non-
linear least squares. Its usage appears similar to that of lm, but there are
differences. A basic template is

res <- nls(formula, data=..., start=c(...), trace=FALSE)

The formula notation used to specify nonlinear models is interpreted dif-
ferently than for lm. The formula again looks like response ~ mean, but the
mean is specified using ordinary math notations. For example, the exponential
model for the mean could be written with y ~ N * exp(-r*(t-t0)), where N,
r, and t0 are parameters. It is often convenient to use a function to return the
mean, such as y ~ f(x, beta0, beta1, ...). That is, a function that speci-
fies the parameter values by name.

Starting points The method of nonlinear least squares uses an algorithm
that usually needs to start with parameter values that are close to the actual
ones. The argument start=c(...) is where we put the initial guesses for
the parameters. This can be a vector or list using named values, such as
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start=c(beta0=1, beta1=2). Finally, the optional argument trace=TRUE can
be used if we want to see what is happening during the execution of the
algorithm. This can be useful information if the algorithm does not converge.
By default it is FALSE.

The initial parameter guesses are often found by doing some experimental
plots. These can be done quickly using the curve function with the argument
add=TRUE, as illustrated in the examples. When we model with a given func-
tion, it helps to have a general understanding of how the parameters change
the graph of the function. For example, the parameters in the exponential
model, written f (t|N,r, to) = Ne−r(t−t0), may be interpreted by t0 being the
place where we want time to begin counting, N the initial amount at this
time, and r the rate of decay. For this model, the mean of the data decays by
1/e, or roughly 1/3 in 1/r units of time.

Some models have self-starting functions programmed for them, which
means specifying a starting point is unnecessary. The help page for selfStart
lists the pre-defined ones.

• Example 13.5: Yellowfin tuna catch rate
The data set yellowfin (UsingR) contains data on the average number of yel-
lowfin tuna caught per 100 hooks in the tropical Indian Ocean for various
years. This data comes from a paper by Myers and Worm (see ?yellowfin)
that uses such numbers to estimate the decline of fish stocks (biomass) since
the advent of large-scale commercial fishing. The authors fit the exponential
decay model with some threshold to the data.

We can repeat the analysis using R. First, we plot (Figure 13.2).

plot(count ~ year, data=yellowfin)

A scatterplot is made, as the data frame contains two numeric variables.
The count variable does seem to decline exponentially to some threshold. We
try to fit the model

Y = N
(

e−r(t−1952)(1− d) + d
)
+ ε.

(Instead of βi we give the parameters letter names.)
To fit this in R, we define a function for the mean

f <- function(t, N, r, d) N*(exp(-r*(t-1952))*(1-d) + d)

We need to find some good starting points for nls. The value of N = 7
seems about right, as this is the starting value when t = 1952. The value r is
a decay rate. It can be estimated by how long it takes for the data to decay by
roughly 1/3. We guess about 10, so we start with r = 1/10. Finally, d is the
percent of decay, which seems to be .6/6 = .10.

We plot the function with these values to see how well they fit.
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curve(f(x, N=6, r=1/10, d=0.1), add=TRUE)

The fit is good (the solid line in Figure 13.2), so we expect nls to converge
with these starting values.

res.yf <- nls(count ~ f(year, N, r, d), start=c(N=6, r=1/10, d=0.1),
data=yellowfin)

res.yf

## Nonlinear regression model
## model: count ~ f(year, N, r, d)
## data: yellowfin
## N r d
## 6.0202 0.0938 0.0536
## residual sum-of-squares: 15.5
##
## Number of iterations to convergence: 8
## Achieved convergence tolerance: 3.06e-06

The numbers below the coefficients are the estimates. Using these, we add
the estimated line using curve again. This time it is drawn with dashes, and
it visually seems to fit all the data a little better.

curve(f(x, N=6.02, r=0.0939, d=0.0539), add=TRUE, lty=2, lwd=2)
legend(1980, 6, legend=c("exploratory", "exponential"), lty=1:2)

The estimate for d has only 5.36% of the initial amount remaining. ••

Using predict to plot the prediction line The output of nls has many of
the same extractor functions as lm. In particular, the predict function can be
used to make predictions for the model. You can use this in place of curve to
draw the predicted line for the mean response. For example, to draw the line
for the yellowfin tuna data, we create a range of values for the year variable,
and then call predict with a named data frame.

tmp <- 1952:2000
lines(tmp, predict(res.yf, data.frame(year = tmp)))

• Example 13.6: Sea urchin growth
The urchin.growth (UsingR) data set contains growth data of reared sea
urchins over time. Typical growth starts at 0 and progresses to some limiting
size. Some models for growth include logistic growth

g(t|y∞,k, t0) = y∞ · (1 + e−k(t−t0))−1
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Figure 13.2: Mean catch per 100 hooks of yellowfin tuna in the tropical Indian
Ocean. An exponential decay model with threshold is given by the dashed
line.

and a Richards growth model

f (t|y∞,k, t0) = y∞ · (1− e−k(t−t0))m.

The logistic-growth function is identical to that used in logistic regression,
although it is written differently. Our goal here is to fit both of these models
to the data, assuming i.i.d., additive error terms, and decide between the two
based on AIC. As the Richards model has more parameters, its fit should be
much better to be considered a superior model for the data.

We follow the same outline as the previous example: define functions,
find initial guesses by plotting some candidates, and then use nlm to get the
estimates.

We define two functions and plot the jittered scatterplot (Figure 13.3).

logistic <- function(t, Y, k, t0, m) Y * (1 + exp(-k * (t-t0)))^(-1)
richards <- function(t, Y, k, t0, m) Y * (1 - exp(-k * (t-t0)))^m

plot(jitter(size) ~ jitter(age,3), data=urchin.growth,
xlab="age", ylab="size", main="Urchin growth by age")
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Next, we try to fit the logistic model. The parameters can be interpreted
from the scatterplot of the data. The value of Y corresponds to the maximum
growth of the urchins, which appears to be around 60. The value of t0 is
where the inflection point of the graph occurs. The inflection point is when
the curve stops growing faster. A guess is that it happens around 2 for the
data. Finally, k is a growth rate around this point. It should correspond to
roughly 1 over the time it takes to grow one-third again after the value at t0.
We guess 1 from the data. With these guesses, we do an exploratory graph
with curve (not shown but looks okay).

curve(logistic(x, Y=60, k=1, t0=2), add=TRUE)

We fit the model with nls

res.logistic <- nls(size ~ logistic(age, Y, k, t0),
start = c(Y=60, k=1, t0=2),
data = urchin.growth)

res.logistic

## Nonlinear regression model
## model: size ~ logistic(age, Y, k, t0)
## data: urchin.growth
## Y k t0
## 53.90 1.39 1.96
## residual sum-of-squares: 7299
##
## Number of iterations to convergence: 5
## Achieved convergence tolerance: 6.89e-06

curve(logistic(x, Y=53.903, k=1.393, t0=1.958), add=TRUE)

Finally, so we can compare, we find the AIC:

AIC(res.logistic)

## [1] 1561

Next, we fit the Richards model. First, we try to use the same values, to
see if that will work (not shown).

curve(richards(x, Y=53.903, k=1.393, t0=1.958, m = 1), add=TRUE)
legend(4, 20, legend=c("logistic growth", "Richards"), lty=1:2)

It is not a great fit, but we try these as starting points for the algorithm
anyway:
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res.logistic <- nls(size ~ logistic(age,Y,k,t0,m),
data = urchin.growth,
start = c(Y=53, k=1.393, t0=1.958, m=1))

## Error: singular gradient matrix at initial parameter estimates

This is one of the error messages that can occur when the initial guess
isn’t good or the model doesn’t fit well.

Using a little hindsight, we think that the problem might be t0 and k. For
this model, a few exploratory graphs indicate that we should have t ≥ t0 for
a growth model, as the graphs decay until t0. So, we should start with t0 < 0.
As well, we slow the rate of growth.

res.richards <- nls(size ~ richards(age, Y, k, t0, m),
data = urchin.growth,
start = c(Y=53, k=0.5, t0=0, m=1))

res.richards

## Nonlinear regression model
## model: size ~ richards(age, Y, k, t0, m)
## data: urchin.growth
## Y k t0 m
## 57.265 0.784 -0.859 6.064
## residual sum-of-squares: 6922
##
## Number of iterations to convergence: 9
## Achieved convergence tolerance: 1.83e-06

curve(richards(x, Y=57.26, k=0.78, t0=-0.8587, m = 6.0636),
add=TRUE, lty=2)

Now we have convergence. The residual sum-of-squares, 6,922, is less
than the 7,922 for the logistic model. This is a good thing, but if we add
parameters this is often the case.3 We compare models here with AIC.

AIC(res.richards)

## [1] 1550

This is a reduction from the other model. As such, we would select the
Richards model as a better fit by this criteria. ••

3We do not have nested models, for which this would always be the case.
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Figure 13.3: Sea urchin growth data, with logistic model fit in solid and
Richards model fit in dashed line.

Problems

13.1 The data set tastesgreat (UsingR) is data from a taste test for New Goo,
a fictional sports-enhancement product. Perform a logistic regression to in-
vestigate whether the two covariates, age and gender, have a significant effect
on the enjoyment variable, enjoyed.
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13.2 The data set healthy (UsingR) contains information on whether a per-
son is healthy or not (healthy uses 0 for healthy and 1 for not healthy) and
measurements for two unspecified covariates, p and g.

Use stepAIC to determine which submodel is preferred for the logistic
model of healthy, modeled by the two covariates p and g.

13.3 The data set birthwt (MASS) contains data on risk factors associated with
low infant birth weight. The variable low is coded as 0 or 1 to indicate whether
the birth weight is low (less than 250 grams). Perform a logistic regression
modeling low by the variables age, lwt (mother’s weight), smoke (smoking
status), ht (hypertension), and ui (uterine irritability). Which variables are
flagged as significant? Run stepAIC. Which model is selected?

13.4 The data set hall.fame (UsingR) contains statistics for several Major
League Baseball players over the years. We wish to see which factors con-
tribute to acceptance into the Hall of Fame. To do so, we will look at a lo-
gistic regression model for acceptance modeled by the batting average (BA),
the number of lifetime home runs (HR), the number of hits (hits), and the
number of games played (games).

First, we make binary variable for Hall of Fame membership.

hfm = hall.fame$Hall.Fame.Membership != "not a member"

Now, fit a logistic regression model of hfm modeled by the variables above.
Which are chosen by stepAIC?

13.5 The esoph data set contains data from a study on esophageal cancer. The
data records the number of patients with cancer in ncases and the number
of patients in the control group with ncontrols. The higher the ratio of these
two variables, the worse the cancer risk. Three factors are recorded: the age of
the patient (agegp), alcohol consumption (alcgp), and tobacco consumption
(tobgp).

We can fit an age-adjusted model of the effects of alcohol and tobacco
consumption with an interaction as follows:

res.full <- glm(cbind(ncases, ncontrols) ~ agegp + tobgp * alcgp,
data = esoph, family = binomial())

A model without interaction is fit with

res.add <- glm(cbind(ncases, ncontrols) ~ agegp + tobgp + alcgp,
data = esoph, family = binomial())

Use AIC to compare the two models to determine whether an interaction
term between alcohol and tobacco is hinted at by the data.
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13.6 The data set Orange contains circumference measurements for several
trees (Tree) based on their age. Use a logistic growth model to fit the data for
tree 1. What are the estimates?

13.7 The data set ChickWeight contains measurements of weight and age
(Time) for several different chicks (coded with Chick). For chick number 1, fit
a logistic model for weight modeled by Time. What are the coefficients?

13.8 The data set wtloss (MASS) contains weight measurements of an obese
patient recorded during a weight-rehabilitation program. The variable Weight
records the patient’s weight in kilograms, and the variable Days records the
number of days since the start of the program. A linear model is not a good
model for the data, as it becomes increasingly harder to lose the same amount
of weight each week. A more realistic goal is to lose a certain percentage of
weight each week. Fit the nonlinear model

Weight= a + b2−Days/c.

The estimated value of c would be the time it takes to lose b times half the
excess weight.

What is the estimated weight for the patient if he stays on this program
for the long run? Suppose the model held for 365 days. How much would
the patient be expected to weigh?

13.9 The reddrum (UsingR) data set contains length-at-age data for the red
drum fish. Try to fit both the models

l = b0(1− e−k(t−t0)) and l = (b0 + b1t)(1− e−k(t−t0)).

(These are the von Bertalanffy and “linear” von Bertalanffy curves.) Use the
AIC to determine which is preferred.

Good starting values for the “linear” curve are 32, 1/4, 1/2, and 0.

13.10 The data set midsize (UsingR) contains values of three popular mid-
size cars for the years 1990 to 2004. The 2004 price is the new-car price, the
others values of used cars. For each car, fit the exponential model with decay.
Compare the decay rates to see which car depreciates faster. (Use the variable
year=2004-Year and the model for the mean µy|x = Ne−rt.)
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Programming

This appendix touches briefly on programming in R. Though the basics can
be learned quickly, there are many little details to learn for mastery. For that,
we defer to the much more authoritative resources including [8] by a primary
architect of R; [6]; [40], a more recent addition; and [60] for a very promising
work in progress. Our goal here is to cover some of the basics, leaving the
grittier details to the already very good alternatives.

A.1 Functions

Programming at its core involves the writing and organization of functions.
We cover here the basics of functions and the basics of how R chooses a
function to call.

The basic template for defining a new function in R is

function_name <- function(argument_list...) {
function_body

}

At first glance, this gives at least three things to discuss—the name, the
arguments, and the body. We begin with some R-specific conventions related
to naming a function.

Function names

First, as previously discussed, a function object created by function need
not have a name to be useful. In Chapter 4 we saw that using anonymous
functions for arguments to functions like sapply (in small doses) can lead to
more readable code. In this section we discuss valid names for R functions
and some naming conventions employed that allow functions to be called in
R-specific manners.

Syntactically valid names When functions are named, there are a few con-
ventions that are R-specific. The R documentation (?quote) discusses syntactic

458
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names consisting of a sequence of letters, digits, the period (“.”) and the un-
derscore, with the convention that they must not start with a digit nor under-
score, nor with a period followed by a digit. For example, mean, mean.default
are syntactic names, as is .mean (a coding convention is to use a leading pe-
riod for private functions), but not _mean.

Non-syntactically valid names However, non-syntactic function names are
possible. To define such a function requires the quoting of the function name.
The convention is to use back quotes, but most times standard quotes work
well. Quoting is always an option, but required for using two special naming
conventions discussed next.

Infix notation In R functions are typically called by name followed by
parentheses (e.g., sd(x)). However, there are other function calls that hap-
pen, that at first glance may not seem like function calls at all. A common
example is when we add two numbers: 2 + 2. This gets carried out by call-
ing the function name +:

‘+‘

## function (e1, e2) .Primitive("+")

The above command actually wraps the function + in backquotes so that
its value will be displayed. We see that the “plus” function has two arguments
and then does something with a “primitive” function.1 So, though rarely
done, it is possible to to use the “plus” function in this manner:

‘+‘(1, 2)

## [1] 3

This style where the function name is first, then the arguments, is termed
prefix notation. The more conventional style for binary operations is called
infix notation.2

Infix notation is certainly desirable for addition, and other familiar math-
ematical symbols. R allows the user to define other functions that can be
used in this manner, following a naming convention: the name is wrapped in
percent symbols, as in %text%.

Base R uses this notation to define an infix version for match:

‘%in%‘

## function (x, table)
## match(x, table, nomatch = 0L) > 0L

1In base R, many functions are dispatched to “primitive functions” written in C.
2There is also postfix notation, which was adopted by some calculator manufacturers.
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## <bytecode: 0x1009cb380>
## <environment: namespace:base>

Which allows for a more natural looking query of existence in a container:

evens <- seq(0, 20, by=2)
2 %in% evens

## [1] TRUE

A sometimes useful trick in programming is to have a lookup return a
default value if something is “falsy” (this term comes from JavaScript con-
ventions). For R, falsy might include a value is FALSE, NA, NULL, NaN, or "".
Here is how this could be coded:

‘%||%‘ <- function(val, default) {
if(is.null(val) || is.na(val) || (is.character(val) && val == "")

|| (is.numeric(val) && is.nan(val)))
default

else
val

}

The first bit does many checks. We use the shortcut operators discussed
in the following section. These allow the construction of logical checks that
might fail if NA values were involved, as any NA values are caught first.

To see this function work, imagine we have the following list and want to
query it, while imagining it is such a big list you can’t check just by looking:

l <- list(a=1, b="two", c="III")
l$a %||% "a" # there so returns l$a

## [1] 1

l$bee %||% "b" # not there, so returns "b"

## [1] "b"

Here is another useful function to allow expressions to be read left to
right. We will use it in the sequel when we want the focus to be on the first
function call:

‘%|%‘ <- function(x, FUN) FUN(x)
3 %|% sin %|% cos # finds cos(sin(3))

## [1] 0.9901
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Replacement functions In computer programming, pure function is a term
from functional programming that, roughly, refers to functions that do not
have any noticeable side effects after evaluation, and for which the return
value is only dependent on the values of the inputs.

R is designed for statistical programming where tradition has it that mod-
ifications to data should be done only deliberately by the user. For the most
part, this makes a functional programming style consistent with most of R’s
idioms. For example, in the design of R, function arguments are copied on
modification.3 Further, in the body of a function, a programmer needs to go
out of their way to modify an object outside of the function.

Of course, users want to modify data. For example, in data cleaning, it
might be desirable to convert coded values to NA. To illustrate, in a previous
example we discussed the cost of a hip-replacement procedure at various
hospitals. Suppose the hospitals that couldn’t report were coded with a −1,
a clearly impossible value. These missing values could be converted to R’s NA
convention as follows:

hip_cost <- c(10500, 45000, 74100, -1, 83500, 86000, 38200, -1,
44300, 12500, 55700, 43900, 71900, -1, 62000)

hip_cost[hip_cost == -1] <- NA

This last command does modify a data set, and the user initiates it by
putting the indexing on the left-hand side of an assignment.4 But how does
R know to modify values?

Perhaps, it is simpler to consider the function to change names of an
object:

x <- c("a"=1, "b"=2)
names(x) <- c("A", "B")

This last expression has a side effect—it modifies the names attribute of x.
In the section “Subset assignment” of the R Language Manual, it is explained
that the above is essentially translated into the following code:

tmp <- x # a temporary copy of x
x <- "names<-"(tmp, value=c("A", "B")) # call a different function
rm(tmp) # clean up

This utilizes a copy of x called tmp (actually it uses ‘*tmp*‘, suitably
quoted). More importantly, what seems like a usage of the names function
actually employs a different function, names<-. More subtly, the use of the

3They are sent as references to save memory, but when modified a copy is created to avoid
modifying the object that was passed in.

4Sure it could be the right-hand side if for some unusual reason the -> operator was used
for assignment. Chambers [8] says this operator is a historic leftover from the days before inline
editing.
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named argument value places a restriction on the argument names for a re-
placement function: conventionally the first is x and the last must be value.
(Named arguments are discussed in the next section.)

In the definition of names<- it is important that the function returns the
value that x should become, due to the assignment in the second line above.

Summarizing, these are the necessary rules: The name ends in <-, x is
customarily the first argument, value is the name of the last argument, and
the function should return the modified value of x. Following these few rules,
a replacement operator is fairly simple to define. Here is a function to recode
values:

"re_code<-" <- function(x, old, value) {
x[x == old] <- value
x

}

hip_cost <- c(10500, 45000, 74100, -1, 83500, 86000, 38200, -1,
44300, 12500, 55700, 43900, 71900, -1, 62000)

re_code(hip_cost, -1) <- NA # re_code(x, old_value) <- value
hip_cost # it has been modified

## [1] 10500 45000 74100 NA 83500 86000 38200 NA 44300 12500
## [11] 55700 43900 71900 NA 62000

Arguments

The arguments of a function allow a user to parameterize a function call,
making single function calls able to do a wider variety of tasks. A simple
example might be to write a function to compute points on a line:

f <- function(x, m, b) m * x + b

This takes three arguments: an x to find a matching y for, and two other
arguments to specify the slope and intercept parameters. By using additional
arguments, one function can handle many cases.

The args function will return a description of the arguments of a func-
tion.5 For example, here is the argument list for the sapply function:

args(sapply)

## function (X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
## NULL

5For programming purposes, formals gives a more useful description.
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From the output we can see a few features that make programming in R
a bit more convenient:

• Functions are first-class objects and can be passed as arguments to other
functions (the FUN argument).

• Function arguments can be given default values (e.g., simplify=TRUE)
which makes interactive usage more convenient.

• There is the ability to pass in a variable number of arguments (the
special argument ...).

First, sapply is typically called as follows:

sapply(mtcars, mean) # mean of each variable

## mpg cyl disp hp drat wt qsec
## 20.0906 6.1875 230.7219 146.6875 3.5966 3.2172 17.8487
## vs am gear carb
## 0.4375 0.4062 3.6875 2.8125

From the above output of args, it is clear that mtcars matches the X argu-
ment and mean the FUN argument. This is done by position in the argument
list.

Had we wanted to avoid the simplification step (returning a list instead
of an array), we could have called the function with:

sapply(mtcars[,1:2], mean, simplify=FALSE) # two columns only

## $mpg
## [1] 20.09
##
## $cyl
## [1] 6.188

The argument simplify=FALSE would match by name, not position. Us-
ing keyword arguments is achieved by placing the construct name= before the
argument value.6 The name part need not be a total match of the argument
name, as R will attempt to resolve it by partial matching. If the actual argu-
ment can be uniquely identified—and the argument is before any ... in the
definition—then the partial name will match.

The value for USE.NAMES is taken from the default value specified by the
programmer of sapply. Default values are specified when defining the func-
tion with the pattern name=default, similar to how a value is specified by
name when a function is called.

6This is not name<-default, which would assign the value to the name and then match this
argument by position. This is one area where a distinction is made between the use of = and <-,
as in this context = is not used for assignment.
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The basic matching algorithm employed by R is: exact name match, partial
matching by name prefix (though never after ..., when present), positional
match.

Variadic arguments The ... in the arguments of sapply is an R convention
to handle a variable number of arguments. This allows us to call sapply as
follows:

sapply(mtcars, mean, na.rm=TRUE)

## mpg cyl disp hp drat wt qsec
## 20.0906 6.1875 230.7219 146.6875 3.5966 3.2172 17.8487
## vs am gear carb
## 0.4375 0.4062 3.6875 2.8125

The argument na.rm=TRUE is not for sapply, but is passed to the mean
function when it is called for each variable in mtcars. The following code
would be a simplified version of sapply:

simple_sapply <- function(X, FUN, ...) {
out <- list()
for( i in 1:ncol(X)) {
out[[i]] <- FUN(X[[i]], ...)

}
simplify2array(out)

}
simple_sapply(mtcars, mean, na.rm=TRUE)

## [1] 20.0906 6.1875 230.7219 146.6875 3.5966 3.2172
## [7] 17.8487 0.4375 0.4062 3.6875 2.8125

The command FUN(X[[i]], ...) would pass along any additional named
arguments given to simple_sapply not matched by exact name or position to
the function passed in through fun. In the example, this is na.rm=TRUE.7

One can work with the ... example directly. It can be converted into a list
with named components through list(...). What can’t be done is to strip
out some of the arguments before passing it along, other tricks are used.
(This would be useful if passing the values to two different functions would
be desired, but only part of the values to one, and part to another.)

• Example A.1: Our own histogram function
The default hist function in R is a bit lacking. First, as a histogram reminds
us of the underlying density, an argument can be made that the default his-
togram should be on the density scale. That is, it should be normalized so

7Partial matching by name is not a good habit, and with a good editor—like RStudio’s—
unnecessary.
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the area is 1. With that convention, it is helpful to automatically estimate the
density and add it to the graphic. Finally, the default choice of bins can be
improved. Our choice below follows the truehist function of the MASS.

We walk through some of the above to get what we want. Here is a first
attempt:

ourhist <- function(x) {
hist(x, breaks="Scott", probability=TRUE)
lines(density(x))

}

If we were to try it out, say ourhist(rivers), we would see that tt works
fine. But what if we wanted to use a different rule for breaks=? It would be
nice to be able to override our settings. One way would be to define a breaks=
argument:

ourhist <- function(x, breaks) {
hist(x, breaks=breaks, probability=TRUE)
lines(density(x))

}

Though we could call ourhist(rivers, breaks="Scott"), our typical us-
age, ourhist(rivers), would yield an error with a complaint Argument
"breaks" is missing, with no default. We remedy that by setting a default
value.

ourhist <- function(x, breaks="Scott") {
hist(x, breaks=breaks, probability=TRUE)
lines(density(x))

}

Both ourhist(rivers) and ourhist(rivers, breaks="Sturges") will now
work. The two commands show a difference in the number of bins, the second
using the “Sturges” rule to compute the number instead of the default.

Still, the histogram drawn looks bland. Let’s add some color to it—the
color purple. The hist function—like other plotting functions—has a col
argument to set the color of the boxes. We can make the color be purple by
default with this modification:

ourhist <- function(x, breaks="Scott", col="purple") {
hist(x, breaks=breaks, probability=TRUE, col=col)
lines(density(x))

}

Trying it out gives
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ourhist(rivers)
ourhist(rivers, "Sturges") # use different bin rule
ourhist(rivers, "Sturges","green") # green before purple
ourhist(rivers, "green") # Oops

## Error: ’arg’ should be one of "sturges", "fd", "freedman-diaconis",
"scott"

We see that we can make changes to the defaults quite easily. The third
line uses the Sturges’ rule and green as the color.

However, we also see that we can make an error. Look at the last com-
mand. We tried to change the color to green but keep the default for the
breaks rule. This didn’t work. That is because R was expecting a breaks rule
as the second argument to the function. To override the positional matching
of arguments we should use named arguments in the function call:

ourhist(rivers, col="green")

Of course, partial matching will also work:

ourhist(rivers, c="green")

But not if we just get the name wrong:

ourhist(rivers, color="green") # col -- not color

## Error: unused argument (color = "green")

There are many other things we might want to modify about our his-
togram function, but mostly these are already there in the hist function. For
example, changing the x-axis label. It would be nice to be able to pass along
arguments to our function ourhist to the underlying hist function. R does
so with the ... argument. When our function contains three periods in a row
(...) in the argument and in the body of the function, all extra arguments to
our function are passed along. You may notice if you read the help page for
hist that it too has a ... in its argument list.

Again, modify the function, this time to

ourhist <- function(x,breaks="Scott",col="purple",...) {
hist(x,breaks=breaks,probability=TRUE,col=col,...)
lines(density(x))

}

Then we can do these things
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ourhist(rivers, xlab="histogram of river lengths") # change the x label
ourhist(rivers, xlab="histogram of river lengths", col="green")

But, there are issues! We can’t pass in probability as an argument, it will
be sent twice to hist: once through the specification probability=TRUE and
through ... To avoid that, R programmers sometimes define a local function
to mask arguments, as is done here (where we also fix the y-limit to avoid
truncation):

ourhist <- function(x, breaks="Scott", col="purple",...) {
lhist <- function(x, breaks, col, probability, xlim, ylim, ...) {

h <- hist(x, breaks=breaks, plot=FALSE)
d <- density(x)
hist(x, breaks=breaks, col=col, probability=TRUE,

xlim = range(c(h$breaks, d$x)),
ylim = range(c(h$density, d$y)), ...)

}
lhist(x, breaks=breaks, col=col,...)
lines(density(x), lwd=2)

}

••

Body

The body of a function is comprised of one or more expressions which R steps
through as it evaluates a function. Which expressions get evaluated can be
controlled through various control flow constructs. Which variable bindings
are in force during the evaluation of a function is the issue of scoping. As
previously mentioned, the return value is the result of the last expression
evaluated. This is often the last expression in the block of code but may be
forced through a return call.

Control flow

The if statement is one of the basic statements in R to ensure conditional
evaluation of an expression. The basic template is:

if (condition) {
expression

} else {
expression

}
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where condition is evaluated and coerced to a logical value. If TRUE the first
expression is evaluated, if FALSE the second. The evaluated condition should
be coercible to a length 1 logical value, if it is a vector with length greater
than 1 the first value is used and a warning is issued, and if coercion returns
NA, an error is thrown.8

The else is optional. For “else-if” expressions, one can use another if
statement in an expression. As with functions, if the expression is not a com-
pound expression, the braces can be omitted. A few examples follow.

This code will print out if a value is “odd” or “even:”

x <- 2
if(x %% 2 == 0) "even" else "odd"

## [1] "even"

The condition there returns the remainder after division by 2. This is nu-
meric, but is implicitly coerced to logical (only 0 is coerced to FALSE). In the
above, each expression is a single statement, so the braces may be omitted.9

This function determines the sign of a number using a nested if statement
to consider the three cases.

x <- 42
if(x < 0) {
print("negative")

} else if(x > 0) {
print("positive")

} else {
print("zero")

}

## [1] "positive"

Related to if is the ifelse construct. This has the form

ifelse(condition, if_true, if_false)

This can be used as an alternative to an expression like

if(condition) if_true else if_false

but is more useful, as the condition here can be a logical vector. This can be
used directly with vectorized code. Returning to the even-odd problem, we
could have done:

8It is a common programming gotcha to have conditions that evaluate to a length 0 expres-
sion (when NULL is present, say) or evaluate to vectors of longer length through vectorization.

9This example will have problems if x is NULL or if x is longer than length 1.
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x <- 1:8
ifelse( x %% 2 == 0, "even", "odd")

## [1] "odd" "even" "odd" "even" "odd" "even" "odd" "even"

Short-circuit evaluations The logical operators & and | perform element-
wise “and” and “or” operations on vectors. The similar looking && and ||
binary operators have a different role. They are used for short-circuit logical
evaluations—only evaluating an expression on the right if after evaluating
the one on the left the answer is not clear. (If the left value is FALSE and &&
then the answer must be FALSE or if the left value is TRUE and || then the
answer must be TRUE, so the right evaluation need not happen.)

We saw this just used to test for NULL and NA before testing the value to
match "". (Neither NULL=="" or NA=="" will evaluate to a TRUE or FALSE.)

These operators are typically employed in the conditional expression of
an if statement, as was done in a previous example.

A less typical use might be the following construct as an avoidance of
nested if statements:

centre <- function(x, type) {
type == "mean" && return(mean(x))
type == "median" && return(median(x))
type == "trimmed" && return(mean(x, trim=.1))
which(max(table(x)) == table(x)) # mode like

}
centre(mtcars$mpg, type="median")

## [1] 19.2

The above evaluates the return statement only if the first condition is true,
so it effectively uses type to switch between the choice of center.

switch The above example—along with its British spelling of center—comes
from the help page for switch. This is the more R-like idiom for switching
between which expression to evaluate based on the value of some variable.
The above would be more naturally written as:

centre <- function(x, type) {
switch(type,

mean = mean(x),
median = median(x),
trimmed = mean(x, trim=0.1),
which(max(table(x)) == table(x))
)

}
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As above, when the first argument to switch is evaluated and returns a
character, then the rest of the arguments are basically combined as a list and
matching is done by name (no partial matching). The last value is the catch
all if no match is present.

When the expression evaluates to a number then that value is used to
select a case. For example, this function could convert between the ordering
of the pos argument of text from an integer to verbal description:

par_convert <- function(x) {
switch(x,

"bottom",
"left side",
"top",
"right side")

}

Values not in 1:4 have a NULL return value.

Repeated evaluation In Chapter 4 for loops were discussed briefly before
a lengthier discussion on alternatives often employed when working with R.

To recap, a for loop loops like:

for(var in collection) {
expression

}

where the collection can be a range (e.g., 1:10 or seq_along(x)), vector, or
a list (such as a data frame). The expression is evaluated as many times as
elements in the collection with var looping over the values of each element
in the collection. The looping can be broken through the keyword break.

A simple example is this implementation of “bizz-buzz” where for multi-
ples of three we print bizz and for multiples of five, buzz. For values where
both three and five are multiples, we print bizz-buzz.

res <- character(100)
for (i in 1:100) {
out <- character(0)
if (i %% 3 == 0) out <- c(out, "bizz")
if (i %% 5 == 0) out <- c(out, "buzz")
res[i] <- if(length(out) > 0) paste(out, collapse="-") else i

}
res %|% head

## [1] "1" "2" "bizz" "4" "buzz" "bizz"
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While loops Another looping construct is the while loop which will repeat
an expression until a condition is met or the expression executes a break
command. While loops are useful in statistical programming of iterative al-
gorithms.

Base R uses the following to find the quantiles of the birthday distribu-
tion. This is related to an interesting question from probability:

In a classroom of n students, what is the probability of there
being two or more (non-twins) sharing the same birthday? As-
sume all birthdays are equally likely.

We won’t answer this, it is too fun to work out by oneself. For the impa-
tient, it is computed by pbirthday(n).

A related question, might be how large would the class need to be so that
there is a 95% chance of this event occurring? This is a quantile problem, so
should be given by qbirthday(0.95) (and is). Here we compute it directly by
inverting pbirthday using a while loop:

n <- 2
while( pbirthday(n) < 0.95) n <- n + 1
n

## [1] 47

That is a class of 47 students has a 95% chance or better of having two
students sharing a birthday.

This solves for the smallest n with pbirthday(n) >= 0.95, by increasing n
if the value of pbirthday(n) is less than 0.95. If this event could never happen,
then this loop would go on without termination.

Exception handling The tryCatch function is one of R’s constructs for han-
dling unusual conditions. It is useful for programming when something may
not work. For example, programmatically downloading files may be prob-
lematic: the remote service may be down, the URL may have changed, . . . .
R will often throw an error if such things occurs. The tryCatch tries an ex-
pression, and if an error is thrown the “Catch” part is called to handle the
exceptional case.

Here is the basic pattern:

f <- "http://flaky.webresource.com"
tmp <- tempfile()
tryCatch(download.file(f, destfile=tmp),

error = function(e) message("Download of ", f, " failed:", e))

A final expression can be specified to run on conclusion, but that isn’t so
appropriate here. The above will gracefully print out a message, instead of a
script-stopping error should the resource pointed to by f not be available.
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Variable scope

For simple functions, the body is just a set of expressions that get evaluated
in an order from first to last unless directed otherwise by some control-flow
expression. The subtleties involved have to do with the simple question: what
is a variable referring to inside the body of a function? This is the issue of
scope.

In many cases, the subtleties do not arise. For example, let’s look at the
sd function:

stats::sd

## function (x, na.rm = FALSE)
## sqrt(var(if (is.vector(x)) x else as.double(x), na.rm = na.rm))
## <bytecode: 0x10acf33c0>
## <environment: namespace:stats>

We can see the body involves the following functions and constructs: sqrt,
var, if/else, is.vector, as.double; and the following variables: x, na.rm.

The functions referenced in sd are found by following a sequence of en-
vironments listed by the function search.

The variables, x and na.rm, are found within an environment constructed
when the function is called. That is, when sd(rivers) is executed, the ar-
gument matching results in a environment that has the argument x bound
to the rivers data set (matched by position and found by searching in
package:datasets) and the argument na.rm bound to FALSE, as this is the
default value. This evaluation environment references the environment of sd
and so through some search process, all the variables and function names in
the body of sd are defined. It may be complicated to think about, but this is
basically what should be expected—values are found where you expect them
to be.

What makes this tricky, are the following: default arguments are expres-
sions that can depend on other variables; the arguments are not actually eval-
uated until needed (lazy evaluation); and not all variables within a function
body need be passed into the function through its arguments.

Following Chambers [8], we look at the function mad:

mad

## function (x, center = median(x), constant = 1.4826, na.rm = FALSE,
## low = FALSE, high = FALSE)
## {
## if (na.rm)
## x <- x[!is.na(x)]
## n <- length(x)
## constant * if ((low || high) && n%%2 == 0) {
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## if (low && high)
## stop("’low’ and ’high’ cannot be both TRUE")
## n2 <- n%/%2 + as.integer(high)
## sort(abs(x - center), partial = n2)[n2]
## }
## else median(abs(x - center))
## }
## <bytecode: 0x10eb0cd50>
## <environment: namespace:stats>

The arguments are:

formals(mad) %|% function(x) head(x, n=4)

## $x
##
##
## $center
## median(x)
##
## $constant
## [1] 1.483
##
## $na.rm
## [1] FALSE

Here the formal arguments contain an argument with no default (x), argu-
ments with specific defaults (e.g., constant=1.4826), and an argument with
a reference to another argument center=median(x). The latter may cause
confusion—how can it know x when the function is defined, as it isn’t known
until the function is actually called?

When R creates the environment for evaluation within a function, the ar-
guments are not evaluated immediately. Instead a promise is created with the
unevaluated expression. When the variable is needed, the promise is evalu-
ated: promises corresponding to actual arguments are evaluated in the envi-
ronment the function is called from, but promises corresponding to default
arguments are evaluated in the environment created for the call. So, when
mad calls center it looks for the binding of x within the environment of the
call. The value of center is called after x has possibly been stripped of NA val-
ues. This change would be reflected in the call to center, as this is the binding
for x at the time the promise is evaluated.

So to understand how a function is evaluated, it is important to know
about its enclosing environment, as this can determine some values. This
environment is returned by the environment function.10

10As such, functions in R are not “pure functions,” in that they aren’t necessarily determined
solely by their inputs.
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Closures

What happens when a function returns a function? This returned function
would have its enclosing environment be the environment made in the call
to the outer function. For example, this simple function:

expand <- function(rate=2) function(x) x * rate

returns a function that by default will double its argument, but if a different
value is passed in for rate, will have a different factor:

tripler <- expand(3)
tripler(4)

## [1] 12

Here rate in the tripler function is looked for in the environment made
for the function call. It isn’t found, so the search extends to the enclosing
environment—the environment made for the call to expand. Here rate comes
not from a default argument, but is passed in so is resolved in the enclosing
environment of expand. Somewhat complicated to think about, but functions
that return functions can be very powerful.

We’ve seen the Vectorize function which takes a function and “vector-
izes” it, returning a new, related function which will apply itself to each
element of the container, in the example below the variables in a data frame:

m <- mtcars[, 1:3]
median(m) # fails

## Error: need numeric data

vmedian <- Vectorize(median)
vmedian(m) # works now

## mpg cyl disp
## 19.2 6.0 196.3

• Example A.2: Function composition
Mathematically, there are two familiar notations for the composition of two
functions: f (g(x)) and ( f ◦ g)(x). The former mirrors typical R usage—g(x)
is a new value which is evaluated by the function f . The latter works at the
function object level, combining functions to make a new function f ◦ g which
is then evaluated at x. To make an R function that composes two functions
(of a single variable) can be done as follows:
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compose <- function(f, g) {
function(...) f(g(...))

}

We can add an infix operator as follows:

‘%.%‘ <- function(f, g) compose(f, g)

To call this we have:

h <- sqrt %.% var # another sd function
h(1:10)

## [1] 3.028

(Due to evaluation precedence, (sqrt %.% var) (1:10) would also work, but
not without the first pair of parentheses.) ••

A.2 Generic functions

R employs the concept of a generic function that allows different functions to
be dispatched depending on the manner in which the function is called. This
is a very useful feature. For example, it allows many different types of plots
to be made from the same function call, plot(x): if x is numeric, a simple
plot against the index is produced; if a factor, a bar chart after tabulation is
produced; if a fitted model object, a collection of diagnostic plots is produced;
or if a formula, a scatterplot or boxplot is produced depending on the model
and variables employed. With generic functions, a function name reflects a
general idea, the various implementations the specific details. This is a very
useful level of abstraction.

R has a few different ways to implement this behavior, which is more
formally called polymorphism. We describe the S3 implementation. As well,
there is a newer style called S4 and a different style called Reference Classes.

S3 methods

S3 methods are part of the base R language. The basic idea is simple:

• A function is registered as a generic function.

• When a generic function is called, there is a means to resolve which
implementation (method) of the generic function should be dispatched.
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We begin with the notion of dispatch. An R object is an object with a
class attribute.11 A class attribute is a character vector listing the classes from
which an object inherits. These may be explicitly defined or implicitly. Some
common classes for data objects are integer for integer data (such data is also
numeric) and double for floating point numbers (which are also numeric). A
matrix is of class “matrix” and of class given by the underlying data. A data
frame is of class data.frame and also class list.

The class function will list the class of an object. The following lists many
at once:

c(class(1L), class(1.0), class(matrix(1)), class(data.frame(1)),
class(list(1)))

## [1] "integer" "numeric" "matrix" "data.frame"
## [5] "list"

There are also “is” functions for checking if an object is of a certain class.
For example:

is.integer(1)

## [1] FALSE

is.integer(1L) # 1L forces an integer

## [1] TRUE

is.double(1.0)

## [1] TRUE

There is an alternate form for this is(x, "class") (though not exactly):

is(mtcars, "data.frame")

## [1] TRUE

is(1.0, "double") # not exactly the same

## [1] FALSE

Coercion from one class to another can be implicit:

x <- 1
class(x)

11The ?UseMethod help page has much detail on this.
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## [1] "numeric"

x <- c(1, "two")
class(x)

## [1] "character"

Or can be explicit through an “as” function:

as.character(1)

## [1] "1"

The class attribute can also be manipulated through the class<- method.
For example, here we add a class to a numeric value:

x <- 1
class(x) <- c("Newclass", class(x))
class(x)

## [1] "Newclass" "numeric"

Class-based dispatch S3 dispatch happens through the class of the first
argument of a generic function. Suppose an R object x has classes "classA"
and then "classB". Then a call generic(x) will search first for a function
generic.classA, if not found it will continue to look for generic.classB, if
that fails, then a search for generic.default is made.12 For a successful search
that function will be called with the given arguments.

Knowing this allows one to create new methods for dispatch.13 For exam-
ple, in Chapter 3 we mentioned that the UsingR package, following an idea
in the mosaic package, extends the mean function to have a formula interface.

To do this is not hard. The actual function definition was mentioned in
Chapter 4. What we didn’t know then is that we just need to name the func-
tion mean.formula, as formula is the name of the class for formula objects:

mean.formula <- function(formula, data, ..., na.action=na.omit) {
out <- aggregate(formula, data, mean, ..., na.action=na.action)
xtabs(formula, out)

}

12For this reason, it is best to not use . in the name of a function, unless S3 dispatch is
intended.

13S3 is a form of object-oriented programming, in that functions are dispatched based on the
class of an object. In many object-oriented languages, a function is bound to a class and termed
a method of the class. This isn’t exactly what happens in R, as generic functions are not bound
to a class. Therefore, the term “method” for functions that are dispatched to can be seen as a
slight abuse of the vocabulary of object-oriented programming.
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We can check how this works by taking group means of miles per gallon
by the cyl and am variables:

mean(mpg ~ am + cyl, data=mtcars)

## cyl
## am 4 6 8
## 0 22.90 19.12 15.05
## 1 28.07 20.57 15.40

We get the expected output. To be clear, we don’t call mean.formula
(though we could), rather we let R find it through dispatch on the first argu-
ment, the formula mpg ~ am + cyl.

Registering a generic function To create a new S3 generic function requires
a call to UseMethod. To illustrate, we create a generic function size for giving
a quick sense of the size of a data object, this being a mixture of length and
dim for rectangular data.

To define the generic function is done simply as follows:

size <- function(x, ...) UseMethod("size")

A default method is optional, but a good idea. In this catchall we just use
the length of the object, which is suitable for data vectors:

size.default <- function(x) length(x)

For a rectangular array, we want the number of rows and columns, not
the length. For a matrix, the length would be the product of the two values,
not the pair. To adjust that for our size method we have:

size.matrix <- function(x) dim(x)

For a list, we can recursively define the size method:

size.list <- function(x) sapply(x, size, simplify=FALSE)

The sapply function will try to simplify to an array, which is likely not
what we want, so we use the argument simplify=FALSE.

Recall a data frame has a list and a matrix interface. Internally it is created
from a list of variables, but for purposes of S3 dispatch, it is not treated as
a list. So like a matrix, without a separate method, the size method would
dispatch to size.default, which would return the number of columns of a
data frame.

To get the number of rows and columns could be done with dim, as with
a matrix, but here we sneak in a call to NextMethod:
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size.data.frame <- function(x, ...) c(nrow(x), NextMethod())

The NextMethod function will continue the search for a matching size
method. In this case, ending up at size.default and returning the number
of columns. Though unnecessary here, this functionality allows a subclass
to modify a method of a superclass without needing to recopy the entire
method definition of the superclass.14

To see this work, we have:

size(list(numeric = rnorm(10),
matrix = matrix(rnorm(10), nrow=2),
dataframe = data.frame(x=rnorm(10), y=rnorm(10))))

## $numeric
## [1] 10
##
## $matrix
## [1] 2 5
##
## $dataframe
## [1] 10 2

S4 classes and methods

The ease and power of programming with generic functions makes S3 an
enticing style to use. For many uses, it is an appropriate choice. For larger
projects, or projects that will be shared amongst many different users, a more
flexible and robust system is available, this being the S4 style. We don’t try
and discuss S4 programming here, instead we direct the curious reader to
the book by Chambers [8].

Reference classes

Reference classes are a relatively new edition to R. The style of refer-
ence classes more closely follows that of other object-oriented programming
paradigms: classes are more rigorously defined and methods are attached to
classes and their subclasses. In addition, the term “reference” refers to the
fact that values may be accessed by reference—and not by copy—so values
may be updated within a function call. Some refer to these objects as muta-
ble, or able to be modified. Reference classes are well suited to programming
graphical user interfaces, for example the shiny packages employs them in
its design.

14A subclass is a class that inherits from a superclass. In S3, this simply means that in the
output of class, the subclass comes first.
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We will discuss the main details through an example. The manual page
?ReferenceClasses has much more detail. In the following we define a class
for polygons and specializations to hold rectangles, squares, and triangles.

New classes and fields The creation of a class is done through setRefClass.
Unlike S3 programming, a class can have defined fields with required types.
In S3 programming, anything can be made a class of some type simply by re-
defining the class attributes—nothing enforces a class to have any structure.
This makes it very easy in complicated programs for misassumptions about
objects to be made.

For reference classes (like the S4 system they are written in), fields are
specified by name and optionally class. In our example below, field names
and types are defined through the fields argument. We recommend the style
of specifying the field names and types with a list, though one can just use
a character vector to specify the names, The lone field of our Polygon class
is pts, a matrix with two columns holding the x and y coordinate pairs. The
specification of the class for pts ensures us that only a matrix can be present
for that value. This rigor is a good thing, as when we use this subsequently
we can be assured of the type of object without needing to do any type
checking.

Methods The methods argument is a named list allowing the definition of
one or more methods for the class. In reference classes, a method is a property
of the class that holds a function (not a data object like pts) which has some
extra features for evaluation attached to it.

Some methods have reserved names with special meanings. For exam-
ple, we specify an initialize function below. This method, when defined, is
called when a new instance is created. In our definition, we pass along values
we don’t use to any superclass through the callSuper(...) call. The default
function just takes any named arguments and tries to set them as property
values. In our method we wish to change the more convenient x and y spec-
ification of a polygon into a more convenient-to-program matrix with two
columns. We replicate the first point to ensure a closed polygon and save the
user from having to do so.

The following logic is employed. A check is made to test if a value for
pts is passed in. If so, then the pts fields is initialized. The use of the double
arrow assignment is important. Inside a reference class method, assignment
with <- or = is local to the body of the method. In this case, we want to modify
the pts property of the class—not a pts object in the environment defined for
the function call, hence the use of the double arrow which will search and
find the appropriate environment to bind pts.15 An alternate to assignment
in this way, is the initFields methods which is used for field initialization.

15R will produce a warning when a named field is not assigned through the double arrow
assignment.
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Polygon <- setRefClass("Polygon",
fields=list(
pts="matrix"
),

methods=list(
initialize = function(pts, ...) {
if(!missing(pts))

pts <<- pts
callSuper(...)

}
))

The pts field must be a matrix, but not all matrices specify valid poly-
gons. Best to do some validation before a user gets too far. Reference
classes are primarily an extension of S4 classes. In S4 programming, the
method validObject is used to check an object’s validity. Below, we add a
validObject methods which throws an error if the polygon entered is not
convex. The check of this is from a mathematical characterization whose de-
tails are not important here.

Polygon <- setRefClass("Polygon",
fields=list(
pts="matrix"
),

methods=list(
initialize = function(pts, ...) {
if(!missing(pts)) {
initFields(pts=pts)
validObject()

}
callSuper(...)

},
validObject=function() {
is_convex() || stop("Not a convex polygon")

},
is_convex=function() {
"Is this a convex polygon?"
if (nrow(pts) < 3)
stop("Our polygons have 3 or more vertices")

q <- rbind(pts, pts[1:2]) # needed for last check
cp <- function(x, y) x[1]*y[2] - x[2]*y[1]
signs <- sapply(1:(nrow(q)-1),

function(i) cp(q[i,], q[i+1,]))
all(signs >= 0) || all(signs <= 0)
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}
))

The above will throw an error if a user tries to specify a non-convex poly-
gon. Generally speaking, defensive programming against invalid user input
is a good thing.

At this point, we have a new class, Polygon, and a constructor with the
same name, as we assigned it that way. To create a new instance of the class,
we call the classes’ new method (which always exists, and in this case will
consult the just-defined initialize method).

Calling a reference class method is done using R’s object-oriented notation
for calling a method:

theta <- seq(0, 2*pi, length=6)
theta <- theta[-length(theta)] # drop last one
pts <- cbind(cos(theta), sin(theta))

p <- Polygon$new(pts=pts) # a pentagon

We assume—like the base polygon function—that we don’t need to repeat
the first and last vertex. This is much more convenient in general, but in this
example has us trim off the last value of theta.

The last line shows the style to call a class method class$class_method.
Another class method is help, which when called will list the other available
methods.

To see that we need to specify a convex polynomial, we try to set a bow
tie with a crossing pair of lines:

pts <- cbind( c(0,1,1,0), c(0,1,0,1) )
Polygon$new(pts=pts)

## Error: Not a convex polygon

Adding methods to a class can be done simply by adding more named
components to the methods list above, or through the methods class method, as
illustrated here where an area method is added. This uses a formula from
http://www.mathopenref.com/coordpolygonarea.html for the area of a poly-
gon specified by its vertices.

Polygon$methods(
area = function() {
"Compute area of a polygon, cf.
http://www.mathopenref.com/coordpolygonarea.html"
q <- rbind(pts, pts[1,])
m <- nrow(q)
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i <- 1:m; j <- c(2:m,1)
sum(q[i,1] * q[j,2] - q[j,1] * q[i, 2]) /2

})

The first string documents the method. This documentation is available
through:

Polygon$help("area")

## Call:
## $area()
##
##
## Compute area of a polygon, cf.
## http://www.mathopenref.com/coordpolygonarea.html

More importantly, is the calling of a method on an instance of a class. The
syntax is instance$method_name, where the instance is sometimes known as
the receiver. The following calls the area method on the instance p of the
Polygon class:

p$area()

## [1] 2.378

Within the body of the method, the pts object is found in the fields, and
the functions like sum are found through a regular search. Methods can also
be used without reference to the class, and will be searched for before search-
ing in the usual placed.

Continuing, we can add a method to compute the perimeter. We do this
by finding the lengths between each successive pair of points.

Polygon$methods(
perimeter = function() {
"Compute perimeter by adding length of pieces"
q <- rbind(pts, pts[1,])
m <- nrow(q)
lens <- sapply(1:m, function(i)

stats::dist(q[if(i < m) i:(i+1) else c(1,m),])[1])
sum(lens)

}
)

We stop to see that this all works. The following creates a regular n-gon
that is inscribed in the unit circle and compares its perimeter to the circum-
ference of a circle:
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ngon <- function(n) {
theta <- seq(0, 2*pi, length=n+1)
theta <- theta[-(n+1)] # Don’t add closing one
pts <- cbind(cos(theta), sin(theta))
Polygon$new(pts)

}
p <- ngon(17)
p$perimeter() / (2 * pi)

## [1] 0.9943

Next we add in a few methods for convenience.
The dist method shows how we can override a binding, in this case the

dist function from the stats package, and still use the original function by
referencing its package. (The dist function computes distances of a matrix,
our dist method is a convenience function for the distance between two
points.) If dist is called within a reference class method, this method will be
used which subsequently calls the dist function from stats after some data
mangling.

Polygon$methods(
dist=function(x,y) stats::dist(cbind(x,y))[1]

)

Now we do a visualization method, a simple plot. Again, we need to ref-
erence a plot function in the base graphics package. As polygons are vertices
connected by edges, we don’t allow the user to modify the type argument.
The rotate method employs a mathematical trick to rotate coordinates (ma-
trix multiplication). The last two lines are different. The use of the double
assignment shows that this method will modify the value of pts. Reference
classes are mutable, and calling this function will update the points without
any assignment.

The last line returns the magic .self object which refers to the class in-
stance when the method is called. This allows the chaining of calls, a style
that is popular in JavaScript programming, though perhaps in this applica-
tion causes more confusion than it is worth.

Polygon$methods(
plot=function(type, xlab="", ylab="", ...) {
graphics::plot(pts, type="l", xlab=xlab, ylab=ylab, ...)

},
rotate=function(alpha) {
a <- rbind(
c( cos(alpha), sin(alpha)),
c(-sin(alpha), cos(alpha))
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)
pts <<- pts %*% a
invisible(.self)

}
)

Here we show how the plotting may proceed. The asp argument for plot
is passed on via the ... argument and just sets the aspect ratio to be 1-1. The
second bit of code, shows how we can chain method calls when we return
the reference .self.

p$plot(asp=1)
## rotate by pi/10 and then plot repeatedly
for(i in 1:10) {
Sys.sleep(.05)
p$rotate(pi/10)$plot(xlim=c(-1,1), ylim=c(-1,1), asp=1)

}

Subclasses Now we define specialized subclasses of our Polygon class.
First a rectangle class. A rectangle is a convex polygon with four vertices,
and whose diagonals are of equal length. This latter part is codified in the
is_rectangle method, convexity is checked in the callSuper call.

Rectangles have a much simpler pair of formulas for the area and perime-
ter, assuming we can find their width and height. We do this through get_wh
and store these values as additional properties. The contains argument to
setRefClass indicates that this new class is a subclass of Polygon and so
inherits its methods and fields. To these we add the w and h fields.

Rectangle <- setRefClass("Rectangle",
contains="Polygon",
fields = list(
w="numeric",
h="numeric"
),

methods=list(
initialize=function(pts, ...) {
if(!missing(pts)) {
wh = get_wh(pts)
initFields(pts=pts, w = wh[1], h=wh[2])
validObject()

}
callSuper(pts, ...)

},
validObject=function() {
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is_rectangle() || stop("Not a rectangle")
callSuper()

},
is_rectangle=function() {
"are these points of a rectangle?"
x <- pts[,1]; y <- pts[,2]
((length(x) == length(y)) && (length(y) == 4)) &&
isTRUE(all.equal(dist(x[c(1,3)], y[c(1,3)]),

dist(x[c(2,4)], y[c(2,4)])))
},
get_wh=function(pts) {
"get width, height from points"
x <- pts[,1]; y <- pts[,2]
c(dist(x[1:2], y[1:2]), dist(x[2:3], y[2:3]))

},
area=function() w * h,
perimeter = function() 2*w + 2*h
))

By redefining area for this class, instances of it will use this definition,
not that inherited from Polygon.

Here we provide a constructor for this class, making it easier for the user:

rectangle <- function(x,y) Rectangle$new(pts=cbind(x,y))

The rectangle class requires four points. Here, our first attempt fails, as
we try to specify the replicated point to close the polygon:

r <- rectangle(c(0,2,2,0,0), c(0,0,1,1,0)) # fails! (5 vertices)

## Error: Not a rectangle

Rather, we just specify the coordinates in some clockwise or counter-
clockwise order:

r <- rectangle(c(0,2,2,0), c(0,0,1,1))
c(r$w, r$h)

## [1] 2 1

r$area()

## [1] 2

The validity checks are defined with callSuper. This passes on the call to
the superclass so all the inherited checks are in place. This specification will
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fail as the polygon is not convex, not because the diagonals are a different
length:

rectangle(c(0,1,1,0), c(0,1,0,1) ) # a bow tie

## Error: Not a convex polygon

A square is a rectangle with four equal-length sides. This further subclass
shows how to subclass Rectangle:

Square <- setRefClass("Square",
contains="Rectangle",
methods=list(
initialize=function(pts, ...) {
if(!missing(pts)) {

initFields(pts=pts)
validObject()

}
callSuper(pts, ...)

},
validObject=function() {
is_square() || stop("Not a square")
callSuper()

},
is_square=function() {
wh <- get_wh(pts)
isTRUE(all.equal(wh[1], wh[2]))

}
))

Again, a simplified constructor

square <- function(x, y) Square$new(pts=cbind(x,y))

Here are some examples, the first fails as we try to specify a rectangle:

s <- square(c(0,2,2,0), c(0,0,1,1)) # fails

## Error: Not a square

s <- square(c(0,1,1,0), c(0,0,1,1))
s$perimeter() # uses that of Rectangle

## [1] 4

A triangle is not a specialization of a rectangle, so our class here is a
subclass of the Polygon class. The only additional method is one to check
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that the polygon specifies a triangle, in this case defined by just 3 vertices
(though this allows for the case of degenerate triangles).

Triangle <- setRefClass("Triangle",
contains="Polygon",
methods=list(
initialize=function(pts, ...) {

if(!missing(pts)) {
initFields(pts=pts)
validObject()

}
callSuper(pts, ...)

},
validObject=function() {

is_triangle() || stop("Not a triangle")
callSuper()

},
is_triangle = function() {

x <- pts[,1]; y <- pts[,2]
length(x) == length(y) && length(y) == 3

}
))

triangle <- function(x, y) Triangle$new(pts=cbind(x,y))

This shows the area method is inherited from the Polygon superclass.

t <- triangle(c(0,2,1), c(0,0,1))
t$area()

## [1] 1
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