

Systems Architecting

http://taylorandfrancis.com

Systems Architecting
Methods and Examples

Authored by Howard Eisner

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487–2742

© 2020 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13 978-0-367-34592-1 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors
and publishers have attempted to trace the copyright holders of all material reproduced in this
publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged, please write and let us know so we
may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides
licenses and registration for a variety of users. For organizations that have been granted a photocopy
license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data
Names: Eisner, Howard, 1935– author.
Title: Systems architecting : methods and examples / by Howard Eisner.
Description: Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019. |
Includes bibliographical references and index. | Summary: “This book
provides a new approach to systems architecting, not previously
available. The book provides a compact innovative procedure for
architecting any type of system. “Systems Architecting: Methods and
Examples” describes a method of system architecting that is believed to
be a substantial improvement over “methods” previously covered in other
systems architecting books. With the book’s relatively straightforward
approach, it shows how to architect systems in a way that both
developers and clients/customers can readily understand. It uses one of
the essential principles suggested by Rechtin and Maier, namely,
Simplify, Simplify, Simplify. Systems engineers, as well as students
taking systems engineering courses will find this book of interest”–
Provided by publisher.
Identifiers: LCCN 2019023659 (print) | LCCN 2019023660 (ebook) |
ISBN 9780367345921 (paperback) | ISBN 9780367347666 (hardback) |
ISBN 9780429327810 (ebook)
Subjects: LCSH: Systems engineering. | System design.
Classification: LCC TA168 .E3873 2019 (print) | LCC TA168 (ebook) |
DDC 620/.0042--dc23
LC record available at https://lccn.loc.gov/2019023659
LC ebook record available at https://lccn.loc.gov/2019023660

Visit the Taylor & Francis website at
www.taylorandfrancis.com

and the CRC Press website at
www.crcpress.com

https://lccn.loc.gov
https://lccn.loc.gov
www.copyright.com
www.copyright.com
www.copyright.com
www.taylorandfrancis.com
www.crcpress.com

Dedication

This book is dedicated, first, to Eberhardt Rechtin, who pioneered
the investigation of architecting systems with his book on “Systems
Architecting” and his unique way of exploring and thinking about
architecting. Second, a dedication is deserved by Andy Sage, who
contributed mightily to the overall field of systems engineering,
which contains as a subset the matter of systems architecting.

Moving to a more personal level, I dedicate the book to my hundreds
(possibly thousands) of Master’s and Doctoral students during
my 24 years of teaching at The George Washington University.
A very large percentage of them were subject to the architecting

methods devised by the author and described herein, and appeared
to happily follow the suggestions and procedures set forth.

Even more personal dedications are offered to my wife, June
Linowitz, who knows how to “architect art,” in very creative

ways. Further dedications are suggested for my children
Oren David Eisner and Susan Rachel Eisner Lee, and their

children Ben, Gabriel, Jacob, Rebecca, and Zachary.

http://taylorandfrancis.com

vii

Contents
Foreword���ix
Preface���xi
Author Biography��xiii
Other Books by the Author��xv

Chapter 1	 Background��� 1

Chapter 2	 Purpose and Features�� 7

Chapter 3	 What is an Architecture?�� 13

Chapter 4	 Evaluation of Alternatives��� 19

Chapter 5	 Architecting a House�� 25

Chapter 6	 Architecting an Automobile�� 31

Chapter 7	 Commentary: A Preferred Architecture������������������������������� 37

Chapter 8	 Descriptions, Views, and Tradeoffs��������������������������������������� 43

Chapter 9	 DoDAF and Other Frameworks�� 49

Chapter 10	 Software��� 55

Chapter 11	 Cost Estimation�� 61

Chapter 12	 Summary��� 67

Appendix A  Group Architecting��� 73
Appendix B  Functional Decomposition��� 77
Appendix C  Special Topics��� 81

Index��� 89

http://taylorandfrancis.com

ix

Foreword
Systems architecting is a quite important part of a set of activities known as
systems engineering. The International Council on Systems Engineering
(INCOSE) has several definitions of systems engineering, one of which
is [1]: “Systems engineering is an iterative process of top-down synthesis,
development, and operation of a real-world system that satisfies, in a near
optimal manner, the full range of requirements for the system”. The set of
elements of systems engineering might well be considered from the list
below [2]:

  1.	 Needs/Goals/Objectives
  2.	 Mission Engineering
  3.	 Requirements Analysis/

Allocation
  4.	 Functional Analysis/

Decomposition
  5.	 Architecture Design/

Synthesis
  6.	 Alternatives Analysis/

Evaluation
  7.	 Technical Performance

Measurement
  8.	 Life-Cycle Costing
  9.	 Risk Analysis
10.	 Concurrent Engineering
11.	 Specification Development
12.	 Hardware/Software/

Human Development
13.	 Interface Control
14.	 Computer Tool

Evaluation and Utilization
15.	 Technical Data

Management and
Documentation

16.	 Integrated Logistics Support
17.	 Reliability, Maintainability

and Availability (RMA)
18.	 Integration
19.	 Verification and Validation
20.	 Test and Evaluation
21.	 Quality Assurance and

Management
22.	 Configuration Management
23.	 Specialty Engineering
24.	 Preplanned Product

Improvement
25.	 Training
26.	 Production and Deployment
27.	 Operations and

Maintenance
28.	 Operations Evaluation
29.	 System Disposal
30.	 Systems Engineering

Management

x� Foreword

Although this is a long and formidable list, the architecture design and
synthesis stands out as particularly critical since it establishes the basic
structure of the system. It is that element that this book addresses.

References
	 1. “Systems Engineering Handbook,” INCOSE, Version 3.2.1, January 2011.
	 2. Eisner, H., Essentials of Project and Systems Engineering Management, 3rd

Edition, John Wiley, 2008.

xi

Preface

A System’s Basic Structure is its
Architecture, and its Architecture
is its Essential Framework
This book might be considered a follow-on to two breakthrough books
and a massive investment by the government. The two books are Rechtin’s
Systems Architecting, published by Prentice-Hall in 1991, and Rechtin
and Maier’s The Art of Systems Architecting, published by the CRC Press
in 1997. The massive investment was undertaken by the Department of
Defense (DOD) when they discovered the need for a system architec-
ture and set out to define an architectural framework, starting with the
C3ISR (Command, Control, Communications, Intelligence, Surveillance,
and Reconnaissance) domain and community. These books and the DoD
investment have proven to be extremely valuable, and very important in
terms of the overall field of system architecting. As suggested, they repre-
sent points of departure for this treatise, which moves forward, but per-
haps in a slightly different direction.
	 There are huge numbers of information technology (IT) systems
deployed in the industrial, defense, and academic sectors, each of which
needs to be designed, developed, and operated. A key element of the
design phase is called preliminary design or system architecting. Each
and every system needs an architecture, placing this system element in a
critical position. These systems also can be recognized by their functional
decomposition, which has the following components:

1.	 Input
2.	 Output
3.	 Processing
4.	 Storage, and
5.	 Security.

xii� Preface

Each of these systems has various sub-components that need to be chosen
for each and every implementation.
	 Back in 1995, the DoD formally recognized that it needed a common
approach to architecting these systems within its purview. This led to
the so-called DoD Architectural Framework (DoDAF ) approach, which
has been strong and constant since then and over the years. This was a
wise step despite the fact (according to this author) that the DoDAF has a
few wrinkles that need to be noted and accounted for. This book presents
a method of architecting that can be considered complementary to the
DoDAF approach and also one that provides an alternative basis in logic.
	 The four-step architecting process defined here is considered to be
another move forward in the complex domain of systems architecting.
The author hopes that it will be used and tested by the community in the
years to come.

Howard Eisner
Bethesda, Maryland

xiii

Author Biography
Howard Eisner spent 30 years in industry and 24 years in academia. In the
former, he was a working engineer, manager, executive (at ORI, Inc. and
the Atlantic Research Corporation), and president of two high-tech com-
panies (Intercon Systems and the Atlantic Research Services Company).
In academia, he was a professor of engineering management and a dis-
tinguished research professor in the engineering school at The George
Washington University (GWU). At GWU, he taught courses in systems
engineering, technical enterprises, project management, modulation and
noise, and information theory.
	 He has written nine books that relate to engineering, systems, and
management. He has also given lectures, tutorials, and presentations to
professional societies (such as INCOSE – International Council on Systems
Engineering), government agencies, and the Osher Lifelong Learning
Institute (OLLI).
	 In 1994, he was given the outstanding achievement award from the
GWU Engineering Alumni.
	 Dr. Eisner is a life fellow of the IEEE (Institute of Electrical and
Electronics Engineers) and a fellow of INCOSE and the New York Academy
of Sciences. He is a member of Tau Beta Pi, Eta Kappa Nu, Sigma Xi, and
Omega Rho, various honor/research societies. He received a Bachelor’s
degree (BEE) from the City College of New York (1957), an MS degree in
electrical engineering from Columbia University (1958), and a Doctor of
Science (DSc) degree from the GWU (1966).
	 Since 2013, he has served as professor emeritus of engineering man-
agement and a distinguished research professor at the GWU. As such, he
has continued to explore advanced topics in engineering, systems, and
management.

http://taylorandfrancis.com

xv

Other Books by the Author
Computer-Aided Systems Engineering

Reengineering Yourself and Your Company

Managing Complex Systems – Thinking Outside the Box

Essentials of Project and Systems Engineering Management

Systems Engineering – Building Successful Systems

Topics in Systems

Thinking – A Guide to Systems Engineering Problem-Solving

http://taylorandfrancis.com

1

chapter one

Background
The basic structure of a system is, by definition, its architecture. In this
book, we describe a procedure for architecting a system. This procedure
can be applied rapidly, is definitive, unambiguous, and critical to the pro-
cess of preliminary system design.
	 For purposes of this treatise, there are two types of architects and
two corresponding types of architecting processes. The first is the rel-
atively widespread field pertaining to the architecting of buildings of
various types. In this field we will see the prominent names and cre-
ations of the likes of Frank Lloyd Wright, Frank Gehry, I. M. Pei, and
Mies van der Rohe. This type of architecting is distinctly not what this
book is about.
	 The subject of this book is the other type of architecting, that which
pertains to building systems. A short list of types of these systems includes:

•	 Defense systems
•	 Health systems
•	 Information systems
•	 Transportation systems
•	 Security systems
•	 Communication systems
•	 Human resource systems, and
•	 Space systems.

The body of knowledge that relates to the design, construction, and opera-
tion of such systems is generally recognized as systems engineering. This
field has some 30 elements [1	– Chapter	7], one of which is system archi-
tecting. Some practitioners equate system architecting with preliminary
design, and we accept this notion as the focus of this book which answers
the question – what is the specific and recommended process by which
one architects a system?

The Department of Defense (DoD)
Since the DoD is “in the business” of building many of the types of sys-
tems cited above, it makes sense to take a look at what the DoD has done
by way of developing methods and procedures whereby one architects

2� Systems Architecting

these systems. Surely there is a single system architecting approach,
established by the DoD, that would apply to all types of systems.
	 Back in the 1990s, the DoD started to work on this issue, within the
C3ISR (command, control, communication, intelligence, surveillance
and reconnaissance) community [2].	 The evolved approach became
the DoDAF, the DoD Architectural Framework. The centerpiece of this
approach was the notion that there are three critical views of systems that
must be considered, i.e.,

•	 The operational view
•	 The systems view, and
•	 The technical view.

These views were defined (approximately) as:

•	 The operational view addressed how the system would perform in
an operational setting and environment.

•	 The systems view considered systems and interconnections to sup-
port warfighting functions.

•	 The technical view dealt with sets of rules with respect to the
arrangement and interactions between system elements.

As the structure of DoDAF expanded with time, the DoD basically
required those working on systems architecting to consider many	more	
essential views such as those articulated below.1

AV – 1: Overview and Summary Information
AV – 2: Integrated Dictionary
OV – 1: High-Level Operational Graphic Concept
OV – 2: Operational Node Connectivity Description
OV – 3: Operational Information Exchange Matrix
SV – 1: System Interface Description
TV – 1: Technical Architecture Profile

This made a lot of sense, in principle, and was in consonance with our
tendency to “drill down,” once we have found a top-level structure that
we find satisfactory to our needs. Since the three basic views remained
mostly unchallenged in their contribution to an architectural framework,
the more one defines and drills down from there, the better. Or so it seems.
	 There are several unanswered questions and areas of concern with
respect to the DoDAF approach. These are addressed mostly in Chapter	9
which is devoted to a more-in-depth consideration of DoDAF. For now, we
will consider it a very important building block in the system architecting
process, as formulated by the DoD.

Chapter one:  Background� 3

Eberhardt Rechtin
A prominent position in the field of system architecting was established
by the master engineer, Eberhardt Rechtin. Indeed, he wrote what this
author would consider to be the seminal work in the field [3].	Here are
some of the important points he made in his book:

•	 There are basically four approaches to the process of architecting,
namely normative, rational, argumentative, and heuristic.

•	 Heuristics are very important in terms of designing and building
new systems. One of the most important is the KISS (keep it simple,
stupid) approach, and Rechtin includes a whole Appendix on his list
of heuristics.

•	 “[T]he greatest architectures are the product of a single mind.”
•	 It is important, also, to focus especially on boundaries and interfaces.
•	 It’s also necessary to place extreme requirements under constant

challenge.
•	 “The essence of architecting is structuring, simplification, compro-

mise and balance.”
•	 Prototyping plays an important role in designing and building the

best possible system.

Beyond Rechtin’s work cited above, he later teamed with Mark Maier [4]	
to continue ground-breaking explorations of the field of architecting and
related matters. Here are three noteworthy quotes from that book:

“architecting is creating and building structures”

“the foundations of systems architecting are a systems approach, a
purpose orientation, a modeling methodology, ultraquality, certifi-
cation, and insight”

“one insight is worth a thousand analyses”

Author Information
Going back into the 1970s, this author worked on several large-scale
systems in the fields of defense, space, and transportation. Preliminary
design, equated here approximately with system architecting, was a topic
of great interest. Indeed, moving some 40 years down the road to today’s
world, interest has increased as we try to build cost-effective systems
within changing, and often confusing, system acquisition environments
and procedures.

4� Systems Architecting

	 The essence of a recommended system architecting process has
evolved over the years and has been described, in some detail, in this
author’s book in 2008 [1].	This process has been tested hundreds of times
through the efforts of this author’s graduate students in systems engineer-
ing. Later chapters in this book provide further rationale and additional
detail that is appropriate to a definitive system architecting process.

Three Special Experiences
Nimbus

One of the systems worked on by the author, going back to the 1960s, was
the Nimbus meteorological satellite. This was a follow-on to the TIROS
system, and was managed by the Goddard Space Flight Center of NASA.
Unlike TIROS, which was a “spinner,” Nimbus was a three-axis stabilized
system that “looked” down at the Earth from about 450 nautical miles in
space. Although there were many lessons learned from participating in this
program, it was first noted that Nimbus had a variety of subsystems, such
as stabilization and control, structure, thermal control, communications
and data handling, and various measurement instruments that constituted
the payload. It was noted also that these subsystems approximately corre-
sponded to the “functions” to be carried out by the satellite system.

Mallard

Also in the 1960s, this author had a role on a communications system
known as Mallard. This was a tactical communications system that was
managed by an Army facility at Fort Monmouth, New Jersey. Mallard
was a quite sophisticated battlefield communications system and this
author was a sub-contractor on the GT & E/IBM team. GT&E was the
prime contractor and took the lead in all systems engineering and archi-
tecting activities. Special attention was paid to the architecting approach.
First and foremost, the architecting team set forth a detailed “functional
decomposition” of the Mallard system. They then proceeded to design
each of the key elements of Mallard with respect to each of the decom-
posed functions. This very successful and sensible approach was not lost
on this author. It was clearly the right way to go.

Aviation Advisory Commission Design

Yet another important project for this author was serving as a consultant
to the Aviation Advisory Commission as they looked at the future of our
National Aviation System (NAS). The Commissioners and their Executive
Team designed alternative future systems, based upon a preliminary set

Chapter one:  Background� 5

of functions for such systems. They then configured specific subsystems
and carried out an overall evaluation of these subsystems. It was a “modi-
fied and tailored” systems engineering approach and was groundbreak-
ing in its scope and method. These were the names of the alternatives that
were configured and evaluated [5]:

1.	 Extension of Current Operation
2.	 High-Density Short-Haul Supplement
3.	 Remote Transfer Airport Supplement
4.	 Local Terminal and Exchange-port Supplement.

Here again, the approach was facilitated by a careful definition of func-
tions and how to instantiate these functions. This “functional” decompo-
sition idea was to become a cornerstone of how to do the part of systems
engineering known as system architecting.

A Bottom Line
With the special importance of functional analysis established as a key
element of systems architecting, we now set forth the critical top-level
steps of this process, as follows:

1.	 Functional Decomposition
2.	 Design Approaches to Instantiate All Functions and Subfunctions

(Synthesis)
3.	 Evaluation of Alternatives (Analysis)
4.	 Selection of Preferred Alternative (Cost-Effectiveness Assessment).

These then become the basic steps in architecting a system, and are dis-
cussed and illustrated in considerable detail in the remainder of this book.

Note
	 1.	 Excluding 18 Additional Supporting Views.

References
	 1.	 Eisner, H., Essentials of Project and Systems Engineering Management, 3rd

Edition, John Wiley, 2008.
	 2.	 C4ISR Architecture Framework, version 2.0 (1997), Washington, DC, DoD,

December 18.
	 3. Rechtin, E., Systems Architecting – Creating and Building Complex Systems,

Prentice-Hall, 1991.
	 4.	 Rechtin, E. and Mark Maier, The Art of Systems Architecting, CRC Press, 1997.
	 5.	 Eisner, H., Computer-Aided Systems Engineering, Prentice-Hall, 1988, p. 241.

http://taylorandfrancis.com

7

chapter two

Purpose and Features
The systems architecting process, described in later chapters, is intended to
be a fundamental skill area of the systems engineering team. Put another
way, systems architecting is a critical part of the overall systems engineer-
ing activity of the enterprise. It is also seen, in this book, as more-or-less
the same as preliminary design for the system in question, although some
may argue that the two are quite different.

Purpose
As the systems engineering team begins the design and development of a
new system, an early activity is to formulate an architecture for that sys-
tem. Thus, one essential purpose of system architecting is to come up with
the preliminary design for that system. That design is broad and inclusive,
setting the stage for a deeper and more detailed process of synthesis for
the system.
	 In many cases, the design team is in a company that is competing
for government contracts. In that context, it is very important to be able
to architect a system as part of the proposal process. This often means
that it has to be carried out within a 30–60 day time period, and that it be
transparent, clear, technically compelling, and highly competitive. This
makes it possibly the most important part of the proposal process. It is
directly connected to winning a higher percentage of proposals which is
recognized as an important goal for the overall enterprise. Indeed, it may
be the difference between success and failure for that enterprise.

Features
Some of the desired features of the architecting process can be described as:

1.	 Technically compelling and appealing
2.	 Includes a choice among alternatives
3.	 Able to be carried out within 30–60 days by existing personnel
4.	 Built upon the system’s functional decomposition
5.	 Based upon an unambiguous and definitive process
6.	 At an appropriate level of detail
7.	 Consistent with the “systems approach.”

8� Systems Architecting

The technical content, when looked at by several technical personnel,
should “ring true” and be appealing. These personnel should find it
simple and leaning toward elegance. We will also insist that the pro-
cess explicitly include the definition of several alternatives. Ultimately,
the preferred architecture will be selected from among these alterna-
tives. In the context of proposal writing, the entire architecture needs
to be formulated within a 30–60 day time period. In some cases, this time
period may need to be compressed. As suggested earlier in this treatise,
there are compelling reasons for the process to start with the functional
decomposition of the system. One needs to be careful to decompose at the
appropriate level of detail. Often, too many levels lead to poor results
and can represent a fatal error. The architecting process must be specific
enough so that its products represent the architecture itself. This means
that the steps of the process are unambiguous. The architecting proce-
dure, as suggested above, should not have too many levels of decompo-
sition. Two to three levels (at most) are recommended. Finally, the overall
process needs to follow the “systems approach.” The meaning of this
term is discussed below.

The Systems Approach
An excellent point of departure for examining the systems approach is the
definition provided by NASA [1], namely:

the systems approach is the application of a systematic, disciplined
engineering approach that is quantifiable, recursive, iterative and
repeatable for the development, operation and maintenance of sys-
tems integrated into a whole throughout the life cycle of a project or
program.

There are some 12 aspects to the systems approach, each of which is
defined and explored briefly in the following text [2].

 1.	 Systematic and Repeatable Process. The process(es) employed in build-
ing systems needs to be systematic and repeatable, in distinction to
haphazard and invented on the spot. Even though we have many
brilliant engineers and scientists working on our systems, they
must still fit into a disciplined environment in order to make the
overall system and work force operate as an efficient team.

  2.	 Interoperability and Harmonious Operation. The various parts of the
system (elements, components, subsystems) must interoperate
and exhibit harmonious behavior. They must be designed to do so
whether or not they are being built from scratch or are considered
“off-the-shelf.”

Chapter two:  Purpose and Features� 9

  3.	 Explicit Consideration of Alternatives. In effect, and especially in
terms of architecture, we must design several alternatives and pick
the best one from among these alternatives. This will remain a
principle of design at the top-level (architecting) and lower levels
(subsystem design).

  4.	 Iterations to Converge and Refine. For large-scale systems, we recog-
nize that information about the system comes to us over time, as per
the results of tests as well as the search for new design information.
We accept what we have, and use a TBD (to be determined) to be a
place holder for new and needed information. As this information
becomes available, we continue to update, refine, and converge.

  5.	 Robust and Slow-Die System. Our system must not be susceptible to
single-point failures, wherever possible. When failures do occur,
the system must continue to operate, but in a series of degraded
modes. This generally means that we must use redundancy and
back-ups in order to achieve this mode of behavior.

  6.	 Satisfaction of Requirements. This refers to the final set of agreed-
upon requirements for the system. We accept the notion that many
requirements might turn out to be negotiable during the design
process. Ultimately, though, we settle in on a set of true require-
ments that both the sponsor and developer have accepted.

  7.	 A Cost-Effective Solution. This is intuitively clear and also implies
that we must be able to measure both costs and effectiveness, even
at the architecting level. These measurements become better and
better as we move through the development cycle.

  8.	 A Sustainable System. In today’s world, we recognize that systems, in
general, need to be designed to be sustainable over their life cycles
as well as extended lifetimes. This is another fundamental prin-
ciple of design.

  9.	 Appropriate Technology and Risk. Many of our more complex systems
use advanced technologies (e.g., sensors, processors) in order to sat-
isfy the system requirements. However, as these technologies are
employed, the risk for the system tends to increase. Each system
must be designed at an appropriate point in the technology–risk
tradeoff.

10.	 Architect for System Integration. We recognize, in advance, when
and where the elements of the systems will ultimately need to be
integrated. We facilitate this part of the process by anticipating
the need.

11.	 Consider Points of View of All Stakeholders. There are usually many
different stakeholders for large-scale systems. Part of the systems
approach is to understand that these stakeholders are literally “part
of the system.” By such broad consideration, we try to come to a
better overall solution.

10� Systems Architecting

12.	 Use of Systems Thinking. We have learned the meaning of “systems
thinking” as well as how to use it in the design and development
of large-scale systems. This “fifth discipline” [3] has helped us to
puzzle our way through complex problems and improve our ways
of thinking, in general (such as “thinking outside the box”).

Systems Thinking
At this point, we look more deeply at this important notion (the last point
on our list of items on the “systems approach”), and how it has played a
role in developing this system architecting method.
	 A review of several sources dealing with “systems thinking” has led
to the following list of features of such an approach [2, p. 32]:

•	 Holistic
•	 Integrated
•	 System wide
•	 Inclusive
•	 Expansive
•	 Fusion
•	 Top level
•	 Broader
•	 Lateral

The last item on this list, namely “lateral,” has been defined and set forth
in considerable detail by Edward deBono [4], quite a few years ago. Briefly,
this means that instead of digging more deeply in one area of investiga-
tion it might be better to move over (laterally) and establish one or more
new areas of investigation. Also, it might well mean that your current
area of investigation might benefit from becoming “broader” rather than
“deeper.” Two ways in which these notions have been used in formulat-
ing the notion for system architecting in this treatise have to do with
functional decomposition and the consideration, from the beginning, of
alternative architectures. Perhaps this helps to define a new heuristic,
something like “when at an impasse, look sideways instead of down.”

Complexity
We acknowledge that systems appear to be getting more and more com-
plex. Here are some system features that support these increases in
complexity [5]:

•	 Size
•	 Modes of Operation

Chapter two:  Purpose and Features� 11

•	 Nonlinear Behavior
•	 Human/Machine Interaction
•	 Functionality
•	 Duty Cycle
•	 Degree of Integrationce
•	 Number/Type Interfaces
•	 Parallel vs. Serial Operation
•	 Real Time Operations
•	 Very High Performance

In the light of this fact, our architecting method needs to be especially
suitable to increases in size and functionality. It can become more expan-
sive, as long as it does so linearly rather than exponentially. It also needs
to be responsive to the Rechtin suggestion (heuristic) that, where possible,
“simplify, simplify, simplify” as well as “KISS” (keep it simple, stupid) [6].
And while we’re thinking along these lines, it makes sense to pay atten-
tion to Occam’s Razor. Rechtin has explained this perspective [6]	as: “The
simplest solution is usually the correct one.”

Human Judgments
As we consider how to architect a system, we spend some time here look-
ing at the human element, in particular within the context of the archi-
tecting and the fact that architecting teams are the rule rather than the
exception. The context includes proposal evaluations, often by govern-
ment evaluation teams. These teams need to follow government rules and
regulations known as the acquisition system.
	 The architecting teams need to be highly productive groups, with
leaders who know how to get the most out of their teams. They also
need to know how to account for the possible biases that various team
members might have. During this author’s work with the Aviation
Advisory Commission (AAC) some years back (see note in Chapter 1),
these biases were actually “measured” and used as part of the archi-
tecting process [7]. This was done by constructing a matrix of weights
for the individual Commissioners. These were specific estimates of
how the Commissioners would weigh the various evaluation criteria.
These estimates reflect human inputs in the evaluation process. We
must not forget that whatever the procedure, it is people that deter-
mine how that procedure is applied and provide critical inputs. To
be more specific about the AAC experience, the criteria used by the
commissioners were:

•	 Social
•	 Environmental

12� Systems Architecting

•	 Service quality
•	 System capacity
•	 Human factors
•	 International economic
•	 Investment costs
•	 Operating costs.

The weights ranged from 5 percent to 40 percent. This kind of example
illustrates how various people can look at the world and come to quite
different answers and conclusions.

References
	 1.	 NASA Systems Engineering Handbook, NASA/SP-2007-6105, Rev. 1,

Washington, DC (December 2007), p. 276.
	 2. Eisner, H., Topics in Systems, Mercury Learning and Information, 2013.
	 3. Senge, P., The Fifth Discipline, Doubleday/Currency, 1990.
	 4. deBono, E., The Use of Lateral Thinking, Pelican Books, 1971.
	 5. Eisner, H., Managing Complex Systems – Thinking Outside the Box, John

Wiley, 2005.
	 6.	 Rechtin, E., Systems Architecting, Prentice-Hall, 1991.
	 7. Eisner, H., Computer-Aided Systems Engineering, Prentice-Hall, 1988, p. 352.

13

chapter three

What is an Architecture?
Introduction
Chapter 1 closes with the top-level steps of the process of developing an
architecture, namely:

1.	 Functional Decomposition
2.	 Design Approaches to Instantiate All Functions and Subfunctions

(Synthesis)
3.	 Evaluation of Alternatives (Analysis)
4.	 Selection of Preferred Alternative (Cost-Effectiveness Assessment).

It is the second step that defines alternative architectures, and at the end
of the fourth step, one has selected a preferred architecture from among
the alternatives. In all cases, architectures are definitively built upon the
functional decomposition of the system.

A Top-Level View
We can get a better idea as to the matter of what defines an architecture
by looking at the functional decomposition of a communications system,
as illustrated in Table 3.1 [1].
	 For each of the system functions, one considers alternative design
selections, DIJ (design J for function I). All the various combinations rep-
resent alternative architectures, by definition. Therefore, the total num-
ber of possible architectures, in principle, are (2)(2)(3)(3)(2)(2)(3)(2) or 864
alternatives. This is the concept for developing and considering a set of
alternative architectures. As a practical matter, of course, this number is
too large. We soon wish to look at a limited number of architectures, of the
order of three or four. This notion is explored in more detail below along
with a formal definition of the essence of an architecture.

Definition – In Words
Based upon the above concept for developing an architecture, we now for-
mally define it as [1]: “An Architecture is an organized top-down selection
and description of design choices for all the important system functions

14� Systems Architecting

and subfunctions, placed in a context to ensure interoperability and satis-
faction of final system requirements.”

Cost-Effectiveness of Systems
When we look at a large number of systems, and in particular their costs
and effectiveness, we find that they tend to follow a curve such as that
shown in Figure 3.1.
	 For low values of cost and effectiveness, there is a mostly linear region
where both effectiveness and cost both increase together. As both increase,
there is a “knee-of-the-curve” behavior as the curve bends to the right.
From there, costs increase dramatically in order to achieve increasing lev-
els of effectiveness. These three regions suggest that it is useful to define a
set of alternative architectures that attempt to represent the regions. Thus,
the choice is made that the architect, or the architectural team, will try to
examine three potentially competing alternatives.

System Architecture – Example
The following example of alternative architectures was produced by
Richard C. Anderson in one of Professor Eisner’s classes on Systems
Engineering at the George Washington University. It is a favorite in that it
is simple and easy to understand, and illustrates the principles of develop-
ing a system architecture. The functional decomposition for the system,
known as SCAS (Severe Climate Anemometry System), is shown below [1].

Function 1 – Atmospheric Sensing
Subfunction 1.1 – Wind Speed Sensing
Subfunction 1.2 – Wind Direction Sensing
Subfunction 1.3 – Pressure Sensing

Table 3.1  Functions and Design Choices for a Communications
System

Functions
Alternative Design

Choices

1. Multiplexing/Demux D11, D12
2. Modulation/Demod D21, D22
3. Switching and Routing D31, D32, D33
4. Encryption/Decryption D41, D42, D43
5. Formatting/Signal Conversion D51, D52
6. Control and Monitoring D61, D62
7. Recording and Playback D71, D72, D73
8. Satellite/Terrestrial Communications D81, D82

Chapter three:  What is an Architecture?� 15

Function 2 – Mechanical Service
Subfunction 2.1 – Instrument Housing
Subfunction 2.2 – Orientation/Position

Function 3 – Environmental Service
Subfunction 3.1 – Ice Control

Function 4 – Power Service
Subfunction 4.1 – Main Power Supply
Subfunction 4.2 – Power Regulation
Subfunction 4.3 – Backup Power

Function 5 – Indoor/Outdoor Transmission
Subfunction 5.1 – Power Transmission
Subfunction 5.2 – Signal Transmission
Subfunction 5.3 – Physical Linkages

Figure 3.1  Cost-Effectiveness Patterns Over Many Systems.

16� Systems Architecting

Function 6 – Data Handling
Subfunction 6.1 – Data Collection
Subfunction 6.2 – Data Processing/Storage
Subfunction 6.3 – Reporting/Distribution

Based upon this functional decomposition, three architectures are devel-
oped, all three satisfying the basic requirements for the system. They are
based upon the notion of looking for a low-cost, knee-of-the-curve, and
high-effectiveness set of alternatives. They are formulated with increasing
levels of effectiveness, with whatever the resultant costs may be.

Table 3.2  Design Choices for Various Subfunctions

Functions/
Subfunctions

Low Cost “Knee-of-Curve” High Effectiveness

1.	 Atmospheric Sensing
1.1 � Wind Speed

Sensing
COTS Pitot Tube Pitot Tube With

Transducer
Add Radio
Transducer

1.2 � Wind Direction
Sensing

Simple Shaft Drive Simple Shaft Drive Simple Shaft Drive

1.3 � Pressure Sensing COTS Pitot Tube Pitot Tube w/
Xducer

Add Radio Xducer

2.	 Mechanical Service
2.1 � Instrument

Housing
Machined
Aluminum

Add Molded
Composites

Less Weight/
Compact

2.2 � Orientation/
Position

Wind-vaned
Bearing

Less Tail Boom
Length

High Precision
Bearing

3.	 Environmental Service
3.1 � Ice Control Analog Feedback

Temperature Control
Add Digitized
Control

Add Process and
Heat Pipes

4.	 Power Service
4.1 � Main Power

Supply
Commercial
220/110

Commercial
220/110

Commercial
220/110

4.2 � Power
Regulation

Conditioners/Rods Add Ground Fault
Interruptor

Add Lightning
Arrestor

4.3 � Backup Power Battery Instruments Gas Generator
With Sensor

Hi-Rel Diesel with
Switch

5.	 Indoor/Outdoor Transmission
5.1 � Power

Transmission
Stranded Wire
Harness

Stranded Wire
Harness

Custom Slip Rings

5.2 � Signal
Transmission

Foil-Shielded Wire Coax w/Slip
Rings

2-Way Radio, no
wiring

5.3 � Physical
Linkages

Shaft/Conduit Add Shielded
Xducer

Minimum Shaft

Continued

Chapter three:  What is an Architecture?� 17

	 With respect to these architectures, we make the following overall
observations:

  1.	 Looking at each architecture, we check to verify that the design
choices are interoperable by examining each item in each column,
against all other items in that column.

  2.	 We note that the “Low Cost” alternative is designed to satisfy all of
the firm requirements for the system, and that the other alternatives
represent increases in system effectiveness (higher-performing,
generally higher cost).

  3.	 We note also that in some cases, the design choices may be the
same (e.g., the “stranded wire harness” for the “Low Cost” and the
“Knee-of-Curve,” which changes to the “Custom Slip Rings” for
the “High Effectiveness” architecture; the “wind direction” is mea-
sured, in all three architectures, by a simple shaft drive).

  4.	 The given architectures are developed using the “KISS” principle
(keep it simple, stupid) [2], with considerable hidden (but implicit)
information about each alternative.

  5.	 The architectures are assumed to be formulated by a team of “archi-
tects” such that the information is produced by a group rather than
a single individual.

  6.	 The team of architects reserves the right to modify any and all
entries if the interactions between team members so indicate.

  7.	 The synthesis contains all the functions that the system is to con-
tain, and that no functions are missing. Otherwise, we have an
incomplete architecture which will likely lead to poor architectural
constructs.

  8.	 At this point in the architecting process, we have three competing
alternatives, and have not yet selected a preferred alternative.

  9.	 The general name for developing the given data is to engage in a
“synthesis” procedure.

Functions/
Subfunctions

Low Cost “Knee-of-Curve” High Effectiveness

6.	 Data Handling
6.1 � Data Collection Potential and

Indoor Pneumatic
Cell

Magnetic Position
Sensor

Optical Position
Sensor

6.2 � Data Processing/
Storage

Manual Database
Entry

Automatic
Computer Control

Automatic
Computer Control

6.3 � Reporting/
Distribution

Physical Manual GUI + Modem
Access

DBMS + Packet
Network

18� Systems Architecting

10.	 The three architectures are formulated by using the collective expe-
rience, judgments, and intuition of the architecting team.

11.	 The overall architecting process is compatible with a four-week
completion time period, with increases in detail and fidelity over
longer time frames (to include many months).

In the next chapter, we move on to present a more complete procedure
that articulates the “short-form” method of analysis of the three alterna-
tives so as to proceed in the direction of a preferred alternative.

References
	 1. Eisner, H., Essentials of Project and Systems Engineering Management, 3rd

Edition, John Wiley, 2008; the architecting of the SCAS system was
originally carried out as a class assignment by Richard C. Anderson (now
Dr. Anderson).

	 2. Rechtin, E., System Architecting, Prentice-Hall, 1991.

19

chapter four

Evaluation of Alternatives
Introduction
The next step in the process of architecting is to formally evaluate the
alternatives that have been defined in the “synthesis” step. The main basis
for such an evaluation is to compute the cost and the effectiveness of these
alternatives and then compare them. The critical aspect of this calculation,
in terms of basic concept, is to confirm how effectiveness is to be mea-
sured. Once this is done, we are in a position to say that cost-effectiveness
will be the key component of the evaluation.
	 However, even after a careful cost-effectiveness evaluation, there are
still some factors that need to be considered before a preferred architec-
ture is selected. These factors have to do with the ground-rules under
which the system in question is being acquired.

System Effectiveness
In the previous chapter, three alternative architectures for an anemome-
try system were defined (synthesized). For this particular system, we will
now proceed to establish five criteria that will form the basis for measur-
ing the effectiveness of this system. These criteria are:

1.	 Performance
2.	 Human factors
3.	 Reliability
4.	 Maintainability
5.	 Risk.

We acknowledge that these criteria may have different levels of impor-
tance and so we assign a set of weights (wi) to them. Then, we will use
a classical rating scheme to perform the effectiveness calculations. Each
alternative is rated against each criterion, the ratings are weighted, and
then the sums represent the effectiveness measures.
	 This well-known weighting and rating procedure is particularly well-
suited to the demands of architecting within severe time constraints (less
than one month). We do not have time to do an in-depth analysis but do
have enough time to carry out this process in a group setting. Such a set-
ting allows for intensive group discussions and interchange of ideas and

20� Systems Architecting

viewpoints. The bottom line is that we are able to calculate meaningful
measures of effectiveness, in a team context, and move on to the next steps
that ultimately will lead to a preferred architecture.
	 Using the example from the previous chapter, we calculate the
numerics below to illustrate the procedure. This represents an “evaluation
framework” and leads to measures of effectiveness for each architecture.
The simple calculation is below, along with the framework

Effectiveness (architecture j) = ∑ wtij rij

where wtij is the weight of the ith criterion and rij is the rating against that
criterion.
	 Cost estimates are added, based upon standard cost estimating proce-
dures, as described in a later chapter (see Table 4.1).
	 The next step involves placing these numbers in a graphic format, as
shown in Figure 4.1.

Commentary on Graph of Costs and Effectiveness
First, we note that the plot of Figure 4.1 has the same general shape of
Figure 3.1 in Chapter 3. That is, each of the three architectures has increas-
ing effectiveness as well as costs in relation to the others. The shape has
the familiar “bending over” after the knee-of-the-curve solution.
	 Second, let us focus on the low-cost alternative. It has the lowest
effectiveness score and also the lowest cost, as expected. We note that if
we have only $1.2 million to spend, then we are driven to this system,
even though we may wish to go for another solution. This is known as a
cost-constrained solution, and is quite common in today’s world. Many

Table 4.1  Effectiveness and Cost Measures

Evaluation
Criteria

Weights

System Under Consideration

Low Cost Knee-of-Curve
High

Effectiveness

Score
Wtx

Rating
Score

Wtx
Rating

Score
Wtx

Rating

Performance 30% 6 1.8 7 2.1 9 2.7
Human Factors 20% 8 1.6 8 1.6 8 1.6
Reliability 15% 7 1.05 8 1.6 9 1.35
Maintainability 20% 8 1.6 8 1.6 9 1.8
Risk 15% 7 1.05 9 1.35 9 1.35
SUMS (MOEs) 100% – 7.1 – 8.25 – 8.8
COSTS – – $1.2M – $1.4M – $1.8M

Chapter four:  Evaluation of Alternatives� 21

purchasers will go for the low-cost approach as long as it satisfies the
requirements. In that sense, the alternatives are not really competitors
with respect to one another. But we need to perform the calculations in
order to make this discovery.
	 Next, we move on to the “knee-of-the-curve” architecture. We are
not really sure that this is the true knee-of-the-curve, but we do observe
a significant increase in effectiveness above the low-cost system. This
alternative is generalized to represent the “best value” system in that
we gain increasing effectiveness for modest increases in cost. In today’s
world of acquisition and procurement, this can be a quite good solution,
if the “rules” permit it as the preferred answer. “Best Value” has a definite
attraction, and for good reason. Of course, we need to be able to afford the
increased cost, which has moved from the low cost of $1.2 million to $1.4
million.
	 We then look at the third architecture, the high-effectiveness system.
We see the “bending” represented by a modest increase in effectiveness
(to 8.8) with a relatively large increase in cost (to $1.8 million, from $1.4
million). This is the best performing system, at least in terms of “paper”
design and intention. If we have the funds, we may wish to go for such
a system. However, acquisition rules tend not to support such a choice,
except under special circumstances, like certain military systems.

Figure 4.1  Effectiveness and Costs for Three Anemometry Architectures
(Effectiveness on scale of 1–10, Costs in Millions of Dollars).

22� Systems Architecting

	 So we see that the three alternatives are not “pure” competitors; there
are several other considerations when it comes to picking a preferred sys-
tem. More will be said about this notion in Chapter 8.

Additional Fidelity In Rating
The various architects might benefit from additional fidelity in the rating
scheme. For this purpose, we define further detail as illustrated below.

1.	 Performance
1.1	 Vaning Stability
1.2	 Average Power Consumption
1.3	 Impact Resistance
1.4	 Data Availability
1.5	 Useful Life

2.	 Human Factors
2.1	 Ease of Use
2.2	Operator Safety
2.3	Bystander Safety

3.	 Reliability
3.1	 Generic Failure Rate
3.2	Level of Redundancy
3.3	Basic Design Structure

4.	 Maintainability
4.1	 Frequency of Scheduled Maintenance
4.2	Ease of Maintenance
4.3	Complexity of Assembly

5.	 Risk
5.1	 Schedule Risk
5.2	 Performance Risk
5.3	Cost Risk.

This additional detail can be used formally or otherwise as an aid in
providing the “rating” estimates. A formal approach would be to assign
weights and develop ratings for each and every sub-criterion.

Other Factors
The ratings for the various criteria are shown here on a scale of 1–10.
The meaning of each numeric needs to be explained, in words, so that
the evaluations become more uniform and consistent among the evalu-
ators. This can be done at a meeting of the team of architects or by an
individual with expertise in this area. An alternative is to move to a col-
lege scoring system from A to F, with obvious and well-known numeric

Chapter four:  Evaluation of Alternatives� 23

equivalence. In any case, we are interested in obtaining the best results
among evaluators.
	 We noted as well, in Chapter 1, the presence of bias among the evalu-
ators. This was demonstrated by a matrix of weights for each criterion,
for the evaluators. This approach might well be used in order to obtain
the overall weights (averages) for these criteria. This will tend to improve
the overall process when there are several evaluators, as with a team of
architects.
	 The evaluation process is also improved by several changes in proce-
dure, otherwise known as a set of sensitivity analyses. Here we are look-
ing for variations in the results when changes are made in the weighting
factors, the rating schema, adding new evaluation criteria, and others as
suggested by members of the architecting team. Sensitivity analysis is a
well-known process used to explore variations in important variables, fac-
tors, and results.
	 The evaluation process of weighting and rating has been examined in
quite a lot of detail under the category of Multi-Attribute Decision Making
(MADM). Examples are provided in the last three references [1, 2, 3] listed
below.

Closing Thought
We also take note here of the context for developing architectures for sys-
tems. There are two over-riding considerations. The first is that we are a
doing preliminary design for a system, and a key part of that design is the
formulation of a system architecture. The second is that we are on a short
time-line, of the order of a month or two. Therefore, we must rely in good
measure on subjectivity and the collective experience of a team of system
architects. We presume that we will have time, later in the system devel-
opment cycle, to examine more detailed issues to include system behavior
(performance) and tradeoffs.

References
	 1. Hwang, C. and K. Yoon, Multi-Attribute Decision Making, Springer, 1981.
	 2.	 Greco, S., M. Ehrgott, and J. Figuiera (Eds.), Multi-Criteria Decision Analysis,

Springer, 2005.
	 3.	 Gibson, J., W. Scherer, and W. Gibson, How To Do Systems Analysis, John

Wiley, 2007.

http://taylorandfrancis.com

25

chapter five

Architecting a House
Introduction
In this chapter we develop another illustrative example of the architecting
process, in this case a standard residence. We see that the overall archi-
tecting process is applicable to the domain of a house, and explore what
that might entail.
	 We start out with the same first step, namely, a functional decomposi-
tion of the residence. Then we move on to the other well-defined steps in
the overall procedure.

Functional Decomposition
We formulate the functional decomposition, as shown below.

  1.	 Environment (Heat, AC)
  2.	 Sleeping Quarters
  3.	 Food Preparation
  4.	 Bath Areas
  5.	 Style/Design
  6.	 Recreation (Deck, Pool)
  7.	 Space/Size
  8.	 Living/Dining Space
  9.	 Security
10.	 Lawn/Garden
11.	 Car Facility
12.	 Plumbing
13.	 Electrical
14.	 Special Amenities.

Synthesis of Alternative Architectures
As with the previous example of an anemometry system, we next develop
three alternative architectures, as provided in Table 5.1 (including cost
estimates for each of the architectures).
	 We note that in one of the entries (Item 7), we cite numbers that are
representative of the function. In effect, we are specifying parameter
“targets” for space/size.

26� Systems Architecting

Evaluation Framework
We next set forth an evaluation framework, to include evaluation criteria
and a weighting and rating procedure. Perhaps the most difficult part of
this step is to decide upon the set of evaluation criteria which have been
selected as:

1.	 Performance
2.	 Maintainability
3.	 Holding Value

Table 5.1  Functions and Costs for Home Systems

Functions Low Cost Knee-of-Curve High Effectiveness

  1.  Environment Single Furnace
Low Capacity
A/C

Two Zone Furnace
Medium Capacity
A/C

Three Zone
Furnace High
Capacity A/C

  2. � Sleeping
Quarters

Three Bedrooms Four Bedrooms Five
Bedrooms + Den

  3. � Food
Preparation

Standard Kitchen Standard + Hi Xtras Islandt + Xtra
Counters

  4. � Bath Areas Standard Toilet
and Bath

Add Sinks and
Bidet

Add Closets and
Jet Bathtub

  5. � Style/Design Ranch Style Faux Farm Contemporary

  6. � Recreation Small Deck Front and Back
Decks/Porches

Wraparound
Decks + Pool

  7. � Space/Size 3,500 ft2 4,500 ft2 6,500 ft2

  8. � Living/Dining
Space

Standard Spaces Large Spaces Very Large Spaces
and High Ceilings

  9. � Security No Extra
Security

Camera/Tape Add Alarms and
Internet

10. � Lawn/Garden Small Lawn Buried Water Lines Large Lawn/
Gazebo

11. � Car/Facility One Car Garage Two Car Garage Three Car Garage

12. � Plumbing Standard Copper Multiple Flareouts Add Sprinkler
System

13. � Electrical Standard Amps Add 50% More Add 100% for
Growth

14. � Amenities Standard Closets Add Built-in Book
Cases

Add Library/
Video Room, and
Elevator

COST $700,000 $1,200,000 $2,500,000

Chapter five:  Architecting a House� 27

4.	 Risk
5.	 Feels Like Home (see Table 5.2).

	 The overall effectiveness numbers as well as the costs are shown in
the cost-effectiveness graphic Figure 5.1.

Table 5.2  Effectiveness and Costs for Home Systems

Evaluation
Criteria

Weights

System Under Consideration

Low Cost Knee-of-Curve
High

Effectiveness

Score
Wtx

Rating
Score

Wtx
Rating

Score
Wtx

Rating

Performance 30% 6 1.8 8 2.4 10 3
Maintainability 25% 5 1.25 7 1.75   9 2.25
Holds Value 10% 6 0.6 8 0.8   9 0.9
Risk 15% 6 0.9 7 1.05   8 1.25
Feels Like Home 20% 6 1.2 8 1.6   9 1.8
SUMS (MOEs) 100 – 5.75 – 7.6 – 9.2
COSTS – – $700K – $1,200K – $2,500K

Figure 5.1  Effectiveness and Costs for Three Home Architectures.

28� Systems Architecting

Commentary – Functional Decomposition
We take a hard look at the functional decomposition and notice that
there is a strong attempt at citing functions rather than more familiar
parts of a house. For example, instead of talking about a kitchen, we use
the phrase “food preparation.” In some cases, there is some ambiguity
that will be resolved when the function is instantiated. Such is the case
with “style/design” and also “special amenities.” The first listed func-
tion of environment is possibly not clear and it also might be broken
down into its subordinate functions of heating and air conditioning.
Further, it may be that there are other functions not addressed, but that
is for the architect to discover. Typically, for real large-scale systems,
there is a requirements document that defines all the functions to be
part of the system.

Commentary – Synthesis
Here we note that each of the 14 functions has been instantiated by a
design choice, at some appropriate level of detail, and for three alterna-
tives. There is considerable freedom to specify these design choices. For
example, the choices for the “environment” function stop short of speci-
fying the air conditioning capacity but make it clear that we wish to
have a multiple zone system for two of the three alternatives. For “space/
size,” we note that the number of square feet is specified. Perhaps there
is a better way to deal with this “function,” as might be the case as well
with the entries for “living/dining space.”
	 We see similar choices, for example, with the “electrical” function
(specific amperage not specified) and the special amenities function. The
differences between the three alternatives can be seen but the numeri-
cal values are left unspecified. This may be changed by the architecting
team if it wishes to be more specific. On the other hand, such specificity
may be considered to be a future step in the design process.
	 We note also that the three alternatives are based upon three styles,
namely, ranch, faux farm, and contemporary. This is one way of making
choices. However, it may be that the architecting team does not wish to
do this. Possibly it wants to consider only contemporary styles. If that is
the case, there is no need to consider the ranch and faux farm styles – all
three alternatives would be based upon a contemporary design style.
	 To complete the top-level architecting process of synthesis, the costs
of the three alternatives are either calculated or indeed are “specified.”
In this example, they are part of the process and are necessary in terms
of deciding what architecture ultimately to choose.

Chapter five:  Architecting a House� 29

Commentary – Evaluation Framework (Analysis)
This third item in the process has four steps:

1.	 Defining the evaluation criteria
2.	 Developing the weights for the criteria
3.	 Formulating the ratings for each criterion
4.	 Carrying out the effectiveness calculations (weighting and rating).

As shown earlier in this chapter, five overall criteria were established, i.e.,
(1) performance, (2) maintainability, (3) holding value, (4) risk, (5) feels like
home. After applying the weights, the overall effectiveness numbers were:

Low-Cost architecture – 5.75
Knee-of-the-Curve – 7.6
High Effectiveness – 9.2

If these values are placed on a graph, along with the costs ($700K, $1,200K,
and $2,500K) as the x-axis, we see that these “points” are consistent with
representations described earlier.
	 It would seem that cost is a major driver in thinking about a preferred
architecture, from a consumer’s point of view. Folks who have lots of
money might well choose the high-effectiveness architecture just because
they can afford it. Likewise, if cost is a problem, the low-cost alternative is
likely to be chosen. And the knee-of-the curve architecture is attractive for
those with more available assets. In all cases, individual choices depend
strongly upon what the consumer wants, including tradeoffs that are pre-
ferred by the consumer.
	 So we see here a second example of the overall process, developed
to be as simple as possible (remember KISS – keep it simple, stupid), and
designed to show comparisons between alternative architectures. The for-
mat of the “synthesis” step is itself indicative of how an architecture is to
be represented. Indeed, this step is simple, but very specific in what it is
and what it depicts. It also shows the key features and the key tradeoffs
that need to be considered.

http://taylorandfrancis.com

31

chapter six

Architecting an Automobile
Introduction
In this chapter we proceed with another illustration – that of architect-
ing an automobile. We will follow the essential steps of the previous two
chapters. This example will further demonstrate the method of architect-
ing set forth in this treatise.

Functional Decomposition
We begin by articulating a functional decomposition, as shown below.

  1.	 Speed Control
  2.	 Braking
  3.	 Carrying Capacity (Pax, Cargo)
  4.	 Styling/Appointments
  5.	 Automation
  6.	 Visibility/Human Factors
  7.	 Safety/Security
  8.	 Power Source/Supply
  9.	 Audio/Video
10.	 Emission Control
11.	 Suspension
12.	 Maintenance
13.	 Fuel Economy

Synthesis of Three Alternative Architectures
Based upon this decomposition, we next define three alternative architec-
tures for the automobile. These are shown in Table 6.1. In this case there
are some 13 functions to be considered.

Evaluation Framework
The next step is to define a set of evaluation criteria, which will be taken
to be:

1.	 Performance
2.	 Maintainability

32� Systems Architecting

3.	 Holds Value
4.	 Reliability
5.	 Human Factors
6.	 Overall Aesthetic.

We note the persistence of “performance” and “maintainability” as crite-
ria for several of the systems we are considering. This is not unusual for
many types of systems. Sub-criteria help to establish the factors that go
into the meaning of these notions. Such sub-criteria were given as exam-
ples in the architecting of the anemometry system in Chapter 4.
	 We next proceed with evaluating the three alternatives, with the
weighting and rating procedure that we have been using. The framework
is provided in Table 6.2.

Table 6.1  Functions for Alternative Automobile Systems

Functions Low Cost Knee-of-Curve
High
Effectiveness

  1. � Speed Control
(0–60)

6 Second
Standard

5 Second
Additional Beeps

3 Second
Beeps + Visual

  2. � Braking (from
60 mph)

200 ft 160 ft 120 ft

  3. � Carrying
Capacity

5 pax 30 cubft 5 pax 34 cubft 5 pax 37 cubft

  4. � Styling Vinyl Vinyl + Leather Leather

  5. � Automation None Driver Assist No Hands
Driving

  6. � Visibility/
Human

Standard Add Special
Mirrors

Add Video Assist

  7. � Safety/Security Standard Standard + Special
Mirrors

Add Hi-
Performance
Airbags

  8. � Power Source 4 Cylinder/Gas 4 Cylinder/Gas 6 Cylinder/Gas

  9. � Audio/Video Beeps Sound + Video Sound + Video

10. � Emission
Control

Standard Standard Hi-Performance
Control

11. � Suspension Standard Standard Hi-Performance

12. � Maintenance Dash Display
Special Codes

Augmented Dash
Special Codes

Augmented Dash
AI Special Codes

13. � Fuel Economy 20 mpg 22 mpg 26 mpg

Chapter six:  Architecting an Automobile� 33

	 We proceed by looking at these numbers on a graph, as shown in
Figure 6.1

Table 6.2  Effectiveness and Cost Measures for Automobile Systems

Evaluation
Criteria

Weights

System Under Consideration

Low Cost Knee-of-Curve
High

Effectiveness

Score
Wtx

Rating
Score

Wtx
Rating

Score
Wtx

Rating

Performance 30% 6 1.8 8 2.4 9 2.7
Maintainability 20% 8 1.6 9 1.8 9 1.8
Holds Value 15% 6 0.9 8 1.2 9 1.35
Reliability 15% 8 1.2 9 1.35 10 1.5
Human Factors 10% 7 0.7 9 0.9 10 1.0
Overall Aesthetic 10% 7 0.7 8 0.8 9 0.9
SUMS (MOEs) 100% – 6.9 – 8.45 – 9.25
COSTS – – $35K – $50K – $85K

Figure 6.1  Effectiveness and Costs for Three Anemometry Architectures
(Effectiveness on scale of 1–10, Costs in Millions of Dollars).

34� Systems Architecting

Commentary – Functional Decomposition
As with the architecting of a house in the previous chapter, some of the
functions are represented by a set of numbers, a set of specifications. Such
is the case with speed control (time to go from zero to 60 mph), braking
distance (feet), and fuel economy (miles per gallon). There are a total of
some 13 functions, and the reader may challenge this selection by adding
functions or being more precise about what the function is, as for example
with “automation” and possibly “safety/security.” If the architecting is
carried out in a group or team setting, it is expected that a set of functions
will ultimately be agreed upon. One can imagine that a team of architects
might be assembled in an automobile company to consider a “line” of
vehicles within an overall category of vehicles.

Commentary – Synthesis
The synthesis step is, of course, the critical part of the architecting process.
We see the typical breakdown into three architectures – low cost, knee-of-
the curve, and high effectiveness. As indicated in previous chapters, this
is the “heart” of the process and Figure 6.1 represents and defines what
an architecture is, in very concrete terms. As suggested above, some of the
functions are specified by numbers, and do not suggest a specific way in
which to achieve those numbers. Where possible, the architect might well
consider how this challenge could be met. For example, with the brak-
ing function, alternative design approaches might be considered which
will meet the specifications shown for each alternative. In some cases, the
approach to the low-cost and the knee-of-the curve architectures is the
same. This is true for “carrying capacity, safety/security, emission control
and suspension.” This does not mean that such an approach cannot be
challenged and changed. The architecting team, of course, can modify
this approach for good and sufficient reasons. In general, however, we see
improvements in performance in moving from left to right on the synthe-
sis chart. This is why we expect the evaluations to reflect this improve-
ment in the next step (analysis) of the overall process.

Commentary – Evaluation Framework (Analysis)
As is the case for architecting a house in the previous chapter, the evalua-
tion framework involves four important steps: (1) defining the evaluation
criteria, (2) establishing the weights for each of the criteria, (3) providing
the ratings, and (4) performing the calculation of weights and ratings
(products and sums) to obtain the overall effectiveness measures. Here
again, we maintain the separation of the alternatives as an integral part of
the evaluation process.

Chapter six:  Architecting an Automobile� 35

	 The bottom line numbers reveal the pattern that we thought we might
see – a significant increase in effectiveness at little extra cost in going from
the low cost to the knee-of-the curve, and a significant increase in cost,
with not much increase in effectiveness in moving from the knee-of-the
curve to the high-effectiveness architecture. There is no guarantee that
such would be the case, but we tend to appreciate that we are likely to
have a knee-of-the curve alternative when we see this type of pattern.
	 If the architect or the architecting team is not pleased with the results
of this step in the process, it should be repeated and specific sensitivi-
ties should be explored. For example, what changes occur in response to
changes in the weighting factors? What changes occur in response to a
shift from a zero to ten rating system to a change to a college scoring sys-
tem (A, B, C, …)? What changes occur in response to a change in the evalu-
ation criteria? What changes occur when there is a procedural change in
the personnel that are carrying out the evaluation step? Do we get a dif-
ferent “answer” when the team composition is modified, or is there quite
a lot of agreement even as this team is changed?
	 If we place this architecting process into a setting inside an automo-
bile company, or a “consumer reports” type of company, we might well
obtain some additional insight into what the additional features cost, and
what a consumer (customer) might be willing to pay for such features. In
other words, what might the prices be as we move from the low-cost to the
high-effectiveness alternatives?
	 Above all, as expressed previously, the suggested architecting process
is simple and specific. It relies upon these features in order to develop
specific results in a relatively short period of time. It depends upon the
explicit consideration of alternatives in distinction to early definition of a
preferred architecture which might be wrong. Rather than emphasizing
the process of creating more and more data (drilling down) regarding a
single alternative, it relies on a process of “lateral thinking” as we bring
alternatives into consideration. It relies on a procedure that has gained
some traction in the Department of Defense known as “analysis of alterna-
tives (AoA)” [1]. But entering that world involves at least one other treatise.

Reference
1. “Analysis of Alternatives (AoA) Handbook,” see www.prim.osd.mil.

www.prim.osd.mil

http://taylorandfrancis.com

37

chapter seven

Commentary
A Preferred Architecture

Introduction
The last several chapters have dealt with the matter of architecting sets
of alternatives. These have been low-cost, knee-of-the-curve, and high-
effectiveness architectures. That is, we have attempted to construct alter-
natives in these regions or domains. Readers may look at these and react
by selecting the one architecture they appear to prefer. Or they may wish
to explore the matter in greater detail to find a preferred alternative. In
general, additional data as well as thought will be part of selecting a pre-
ferred architecture. Some of those considerations are examined in this
chapter.

Top Level Considerations
We start with the notion that we have representations of a low-cost, knee-
of-the-curve, and high-effectiveness architectures.
	 The low-cost alternative will become the preferred selection if we do
not have the funding that will allow us to move beyond this choice. A
low-cost system is highly attractive for many procurements, for obvious
reasons. Indeed, given that the system meets all the requirements, some
acquisition agents will insist that this is the proper choice. Therefore, there
is great pressure to elevate the low-cost system to “preferred” status.
	 The knee-of-the-curve alternative is also very attractive and is often
referred to as the “best value” selection. We are achieving large increases
in effectiveness for modest increases in cost. This is happening just as
the curve bends and requires quite substantial increases in cost. System
acquisition agents will tend to support the notion that the “best value”
approach is preferred. Of course, one needs to be able to support that
choice by putting up the appropriate funding.
	 The high-effectiveness alternative tends to be best for those who have
the funds to support such a choice. They wish to have the benefit of very
high effectiveness and performance. They generally are willing to pay for
“extras.” They wish to have special amenities and find that cost is not an
obstacle to getting what they want.

38� Systems Architecting

	 Another context for having the high effectiveness alternative
become the preferred architecture is that of military procurements. The
notion here is that those ordering military systems do not wish to have
our country go into battle with less than the best performing systems.
We will not have an F-35 joint strike fighter that is other than the abso-
lute best we are able to conceive of and build. This, of course, makes
sense and accounts for some of the high costs that have been part of
such programs.
	 Finally, if we are to select a preferred architecture, we need to
understand all of the procurement and acquisition “rules” that will
be used to award contracts. Industry responds to these rules, and
makes decisions based upon strong motivations to win. For example,
if one knows that there is a strong preference for lowest-cost proposals,
such may be the basis for making that the preferred architecture and
system.

Requirements
In the previous examples of the architecting process, we see little to no
mention of requirements. This does not mean they are absent from this
process. The ground rule is that all three alternatives absolutely satisfy all
of the agreed upon requirements. The architecting team knows this, and
adheres to this practice. It is implicit rather than explicit.

Specifications
If there are any extraordinary specifications for the system, they too have
been taken into account in carrying out the architecting procedure.

Minimal Explicit Information
The synthesis tables list the design choices for each of the system
functions and subfunctions. This is the absolute essence of the archi-
tecting process. Indeed, these are descriptions of what is meant by
an architecture. As represented in these tables, they convey a mini-
mum of information. However, each and every entry is supported by
back-up data that describe that design choice in detail. The minimal
information approach is considered to be in consonance with Rechtin’s
[1] KISS (keep it simple, stupid) principle. Keeping it simple means that
it is better understood by those that are part of and using the archi-
tecting procedure. These people have been referred to as the architect-
ing team. More about the operation of a team and the team leader in
Appendix A.

Chapter seven:  Commentary� 39

Are These Architectures Optimal?
There is no claim that developing architectures with this procedure is
optimal. First, we have a short time frame for the overall process (about
a month or two). This is not conducive to optimizing anything. Second,
the design choices are made by the architecting team so that one might
say it is the best that such a team is able to produce within the given time
constraint. A senior team that has worked together in the past, several
times, is likely to produce a very good set of architectures. In any case, we
are saying that the “goodness” of the architectures is clearly related to the
team and its degree of experience and competence.

Several (Not One) Architecture
Implicit in the above is the fact that this approach to architecting focuses
on alternatives from the beginning. This has the benefit of enlarging the
space in which solutions may be found. It increases the likelihood that an
appropriate solution will be found.

Assuring Interoperability
The “synthesis” table provides a list of design choices for the various
functions and subfunctions. This facilitates a check of interoperability
by moving down each vertical column and verifying that these design
choices will interoperate with one another. If there is some incompat-
ibility, then one or more design choices need to be changed. Typically,
but by no means always, the functions can be instantiated indepen-
dently of one another.

Views
It is noted that the architecting process is more-or-less independent of
the notion of “views.” That is to say, architecture views play essentially
no part in developing and analyzing the alternative architectures. This is
significant since, for example, the Department of Defense Architectural
Framework (DoDAF ) approach [2] starts out with “views” and somehow
that leads to developing a system architecture. Thus we have a fundamen-
tal change from the DoDAF approach. To generalize, the notion is that if
one starts in the wrong place, it is difficult (if not impossible) to come to
the proper solution. The approach here, of course, is clear on the starting
point for developing architectures – it is the functional decomposition of
the system. Additional discussion on the matter of “views” is provided in
Chapter 8.

40� Systems Architecting

Architectural Descriptions (ADs)
Another source of “views” is the so-called standard IEEE P1471. We will
take some space here (see Chapter 8) to look at what this document says
that might be compared with the suggested approach as well as the out-
puts that this approach produces.

Other Evaluation Criteria
We have set forth a series of evaluation criteria for the three illustrative
architectures. These may be expanded in order to have more choices
and thus possibly enhance the evaluation process. A more complete list
of evaluation criteria [3] that may be used for specific transportation and
communications systems is provided below.

Transportation Systems

Availability
Capacity
Capacity-to-Demand Ratio
Comfort and Convenience
Environmental Effects
Frequency of Service
Fuel Consumption
Growth Capability
Maintainability
Quality of Service
Reliability of Service
Resilience
Risk
Safety
Security
Speed
Sustainability
Trip Time

Communications Systems

Availability
Bandwidth
Capacity
Connectivity
Expandability
Grade of Service

Chapter seven:  Commentary� 41

Number of Channels (by type of channel)
Quality of Service
Reliability
Response Time
Risk
Security
Speed of Service
Survivability

The shape of the cost-effectiveness curve is, of course, an integral part
of selecting a preferred architecture. If, moving from architecture A to
architecture B, one is moving from right to left close to vertically, then
one has the anomaly that increases in effectiveness are being achieved
at little cost. Nonetheless, this may be the case and it points to architec-
ture B being a strong candidate for preferred status. The mature archi-
tecting team will go beyond curves and ask many questions about how
this anomalous situation came to be. Usually, this also involves a detailed
discussion about each architecture in relation to each evaluation criterion.
It also likely involves digging more deeply into the question – what is it
about alternative B that allows for the strong increase in effectiveness at
such a low expenditure?
	 Other ideas regarding the selection of a preferred architecture can be
found in books dealing with decision-making under uncertainty. Special
attention should be paid to “Multi-Attribute Decision-Making” (MADM)
[4, 5, 6) and similar titles. The reader is advised to stay close to practical
real-world considerations and away from purely mathematical constructs.

References
	 1. Rechtin, E., System Architecting, Prentice-Hall, 1991.
	 2. DoDAF Version 2.02, see dodcio.defense.gov.
 3. Eisner, H., Essentials of Project and Systems Engineering Management, 3rd

Edition, John Wiley, 2008.
	 4.	 Hwang, C. and K. Yoon, Multi-Attribute Decision Making, Springer, 1981.
	 5.	 Greco, S., M. Ehrgott, and J. Figuiera (Eds.), Multi-Criteria Decision Analysis,

Springer, 2005.
	 6.	 Gibson, J., W. Scherer, and W. Gibson, How To Do Systems Analysis, John

Wiley, 2007.

http://dodcio.defense.gov

http://taylorandfrancis.com

43

chapter eight

Descriptions, Views,
and Tradeoffs
Introduction
This chapter briefly explores the topics of architecture descriptions, views,
and tradeoffs. All are important, with “views” taking a special position
due to the initiatives of the Department of Defense in relation to DoD
Architectural Framework (DoDAF ). This is a surprisingly dense subject
that needs to be examined from several “angles.” Finally, tradeoffs are an
important part of designing any large-scale system and will be addressed
mostly by example.

Descriptions
The notion of “architectural descriptions” (ADs) has been part of the scene
and has helped in clarifying the issue of “what is an architecture?” Two
standards have played an important role, each of which is briefly cited
below.
	 The standard known as P1471 [1] deals with a recommended practice
for AD. In that standard, a clear distinction is made between “architec-
tures” and “architectural descriptions.” The practice itself deals with the
creation, analysis, and sustainment of architectures of software intensive
systems. The value and use of ADs are cited explicitly as is the matter of
who are the intended users. Here are four interesting quotes from this
standard:

•	 “there has not yet emerged any reliable consensus on a precise defi-
nition of a system’s ‘architecture’, how it should be described, what
uses such descriptions may serve, or where and when it should be
defined”

•	 “this standard codifies those elements on which there is consen-
sus; specifically the use of multiple views, reusable specifications
for models within views, and the relation of architecture to system
context”

•	 “architecture: the fundamental organization of a system embodied
in its components, their relationship to each other and to the envi-
ronment and the principles guiding its design and evolution”

44� Systems Architecting

•	 “the term ‘view’ is used to refer to the expression of a system’s archi-
tecture with respect to a particular viewpoint.”

This author’s bottom line with respect to this useful standard is that it still
is not precise in its description of a system’s architecture.
	 Another standard, following the above P1471, is the so-called ISO/IEC
42010 [2]. This standard deals with both systems and software engineer-
ing with respect to ADs. It also applies to enterprise architectures. It tends
to focus on ADs, architecture frameworks, and description languages. It
defines several terms, including:

•	 Architecting
•	 Architectures
•	 Architecture Descriptions
•	 Architecture Frameworks
•	 Architecture Views
•	 Architecture Viewpoints
•	 Architecture Models
•	 Architecture Languages
•	 Roles of Stakeholders.

Here again, despite the specificity of this standard, we do not see a pre-
cise definition of an architecture that is commensurate with that set forth
in this treatise. Therefore, with respect to this standard, there remains
a missing link in what might be the formulation of a method of system
architecting. So – in this case – the generality of its approach appears to
not work in its favor. That is, the generality does not give us a precise
method of architecting a system at the level of detail presented here.

Views
Views of systems and their architectures were cited as important when
they were the leading edge of the DoDAF approach to the architecting
issue. We recall the three architecture views [3],	as cited in Chapter 1:

•	 The operational architecture view
•	 The systems architecture view
•	 The technical architecture view.

The essential products as well as the supporting products for these views
were defined as shown below [4]:

Essential Products
AV-1 – Overview and Summary Information
AV-2 – Integrated Dictionary

Chapter eight:  Descriptions, Views, and Tradeoffs� 45

OV-1 – High Level Operational Graphic Concept
OV-2 – Operational Node Connectivity Description
OV-3 – Operational Information Exchange Matrix
SV-1 – System Interface Description
TV-1 – Technical Architecture Profile (Standards That Apply)

Supporting Views
OV-4 – Command Relationships Chart
OV-5 – Activity Model
OV6a – Operational Rules Model
OV6b – Operational State Transition Description
OV-7 – Logical Data Model
SV-2 – Systems Communication Description
SV-3 – Systems Matrix
SV-4 – System Functionality Description
SV-5 – Operational Activity to System Function Traceability Matrix
SV-6 – System Information Exchange Matrix
SV-7 – System Performance Parameters Matrix
SV-8 – System Evolution Description
SV-9 – System Technology Forecast
SV-10a – Systems Rules Model
SV-10b – Systems State Transition Description
SV-10c – System Event/Trace Description
SV-11 – Physical Data Model
TV-2 – Standards Technology Forecast

Clearly, a great deal of thought went into the definition of these views.
However, it is noteworthy that a specific definition of the system architec-
ture is still missing.

Propositions

There appear to be three propositions with respect to “views,” and as
defined by this author, that are especially relevant to cite at this time:

1.	 Accurate and relevant views of an architecture cannot be set forth
until the architecture itself has been well-defined.

2.	 Once an architecture has been well-defined, many useful (and inter-
esting) views may be developed that are pertinent to fine-tuning
and detailing the architecture.

3.	 In general, an accurate architecture cannot be reliably inferred from
three views of the system/architecture or a representation of the
system/architecture.

46� Systems Architecting

The first of these propositions suggests that the entire “views” notion
from DoDAF may be questionable. There are, after all, certain logical
precepts with respect to architecting. If an architecture, or a system,
is X, then views of the architecture or system require that X be well
defined. In other words, in order to properly derive views of an archi-
tecture, or system, that architecture, or system, needs to be defined in
some appropriate detail.
	 The second proposition continues on and places a great deal of impor-
tance on the notion of defining, with some precision, the content of an
architecture. Given that, then one may proceed with improving and pro-
viding additional detail about that architecture.
	 The third proposition suggests that the three views of DoDAF gener-
ally will not define, or allow one to infer, the system architecture. Let’s
look at an example in that regard. Suppose we wish to find out the archi-
tecture of a human being. Suppose further that we take three pictures
(views) of a human being – front, side, and top. Are we then able to infer
the human architecture? Or – suppose we construct the three views of
operational, system, and technical. Are we then able to infer the human
architecture? From the notions in this book, it is claimed that the human
architecture has a lot to do with understanding and specifying the follow-
ing human functions/subsystems [5]:

 1.	 Immune
  2.	 Circulatory
  3.	 Nervous
  4.	 Respiratory
  5.	 Reproductive
  6.	 Digestive
  7.	 Endocrine
  8.	 Urinary
  9.	 Lymphatic
10.	 Musculoskeletal.

Thus we are brought back to the central idea and theme of functional
decomposition. If one were charged with the responsibility of re-
architecting the human body, the above list would certainly be the place
to start.

Additional Quantitative Views

We note that the evaluation framework for this architecting procedure
yields quantitative estimates of effectiveness. These are composed, in turn,
of estimates for the individual evaluation criteria (e.g., maintainability,

Chapter eight:  Descriptions, Views, and Tradeoffs� 47

risk). This means that there is an opportunity to create quantitative views
that are not otherwise available. Examples of such views are shown
below [4].

1.	 Risk vs. Requirements
2.	 Cost by Function
3.	 Effectiveness vs. Risk
4.	 Effectiveness vs. Availability
5.	 Cost vs. Requirements
6.	 Risk vs. Human Factors
7.	 Effectiveness vs. Human Factors
8.	 Aesthetics vs. Risk.

Tradeoffs
Tradeoffs are detailed examinations and comparisons between the fea-
tures of a system to determine which features are better, and under what
conditions. They can be carried out at the architecting level, and also at
the detailed (subsystem) level, in an attempt to bring the system design
closer to optimal. This so-called optimality may refer to improvements in
effectiveness or improvements (decreases) in cost, or both. They are well
known to system designers and often require at least several weeks, and
possibly months, to execute.
	 Some examples of tradeoffs are examined below, based upon the
architecting processes in previous chapters.

The Anemometry System

We see several cases for which a more detailed tradeoff investigation
might be called for. Referring to Table	3.2, we might look more carefully,
and do a tradeoff study of:

•	 Might the radio transducer be part of the “knee-of-the-curve”
solution?

•	 Might the custom slip rings be preferable to the stranded wire har-
ness in the “knee-of-the-curve” architecture?

•	 Might the optical position sensor be a better choice than the mag-
netic position sensor in the “knee-of-the-curve” construct?

The generality here is that a design choice that is part of the high effec-
tiveness solution might also be a better choice for the “knee-of-the-curve”
architecture.

48� Systems Architecting

Architecting a House

As with the above, here are a few areas that might call for a tradeoff
investigation:

•	 Might the den in the high effectiveness solution also be part of the
“knee-of-the-curve” architecture?

•	 An alarm system might be added to the solution for the “knee-of-
the-curve” system, and

•	 A sprinkler system might be part of the “knee-of-the-curve” solution.

Architecting an Automobile

•	 Possibly it is cost effective to add a third row with two to three seats
for the high effectiveness architecture.

•	 Might the video assist be part of the “knee-of-the-curve” solution?
•	 Does a hybrid (adding electric capability) fit into the “knee-of-the-

curve” and the high effectiveness solutions?

Certainly, many other tradeoff possibilities are evident by a drilling down
into the synthesis tables for these three examples. These types of tradeoffs
help to fine tune and improve the alternative architectures. And they have
been part of classical systems engineering from its beginning.

References
	 1.	 IEEE P1471, “Recommended Practice for Architectural Descriptions,”

December 1999.
	 2. ISO/IEC/IEEE 42010, “Systems and Software Engineering – Architecture

Description,” November 24, 2011.
	 3.	 DoDAF Version 2.02, see dodcio.defense.gov.
 4. Eisner, H., Essentials of Project and Systems Engineering Management, 3rd

Edition, John Wiley, 2008.
	 5.	 Gray, H. and H. V. Carter, Gray’s Anatomy, Churchill-Livingstone, Elsevier,

2008.

http://dodcio.defense.gov

49

chapter nine

DoDAF and Other Frameworks
Department of Defense Architectural
Framework (DoDAF )
The first chapter of this treatise introduced the fundamental approach
set forth by DoDAF, namely, the three views of a system/architecture.
These were:

1.	 The operational view
2.	 The systems view, and
3.	 The technical view.

This basic choice set the stage for much of what was to follow. In that
sense, further advances could be characterized as “drilling down” with
additional artifacts related to these three views. This was a quite reason-
able approach, and in many ways a predictable one. Once a basic approach
is agreed upon, we tend to look more and more deeply into the possible
implications and details of that approach. The remainder of this section
summarizes some of the more important aspects of this DoDAF approach,
and other frameworks.
	 The Chief Information Officer (CIO) of the DoD had this to say about
DoDAF [1]:

DodAF is the overarching comprehensive framework and concep-
tual model enabling the development of architectures to facilitate
the ability of DoD managers at all levels to make decisions more
effectively through organized information sharing across the
Department, Joint Capability Areas (JCAs), Mission, Component,
and Program boundaries.

This, of course, sees DoDAF in terms of providing “information,” which is
largely generic, and assisting in terms of decision-making. This approach,
as of Version 2 of DoDAF, emphasizes “data” in distinction to “products.”
The earlier product emphasis had its day and gave way to the next per-
spective and set of artifacts.
	 Part of the next perspective had to do with Models and Fit-for-Purpose
Views. These are described by the CIO as follows [1]:

50� Systems Architecting

•	 Models are created from the subset of data for a particular purpose.
Once the models are populated with data, these “views” are useful
as examples for presentation purposes, and can be used as described,
modified, or tailored as needed.

•	 Fit-for-Purpose Views are user-defined views of a subset of architec-
tural data created for some specific purpose.

The DoD CIO further continues to describe the concept of an integrated
architecture which is:

•	 An architecture consisting of multiple views or perspectives facili-
tating integration and promoting interoperability across capabilities
and among integrated architectures.

The DoD has recognized that systems integration and interoperability
are continuing issues within the DoD and that they’re not likely to be
“solved” any time soon.
	 In terms of the notion of a specific method of architecting, the CIO,
in version 2.0, says that the approach “provides, but does not require, a
particular methodology in architecture development.” Version 2.0 also
presents the notion of viewpoints, in the following dimensions:

1.	 All Viewpoint (AV)
2.	 Capability Viewpoint (CV)
3.	 Data and Information Viewpoint (DIV)
4.	 Operational Viewpoint (OV)
5.	 Project Viewpoint (PV)
6.	 Services Viewpoint (SvcV)
7.	 Standards Viewpoint (StdV)
8.	 Systems Viewpoint (SV).

All of this, as well as other artifacts, provides information for the six core
processes that DoD supports. These key processes are the [1]:

1.	 Joint Capability Integration and Development System (JCIDS)
2.	 Planning, Programming, Budgeting and Execution (PPBE)
3.	 Acquisition System (DAS)
4.	 Systems Engineering (SE)
5.	 Operations Planning (OPLAN)
6.	 Capabilities Portfolio Management (CPM).

Version 2.0 of DoDAF introduced a data model known as the DoDAF Meta
Model (DM2). The goal represented by this model was to provide the

Chapter nine:  DoDAF and Other Frameworks� 51

capability to integrate, analyze, and evaluate the systems’ architectures
“with more precision.”
	 So, a bottom line with respect to DoDAF is simply that work on the
architectural framework continues, and also that this work has the poten-
tial for influencing important capabilities within the DoD.

MoDAF
MoDAF is the British Ministry of Defence Architecture Framework, and it
pertains to the “Enterprise” and not to systems. So it is applicable to any
and all businesses. Despite this fact, it has several elements that are simi-
lar to that of the DoDAF.
	 The website for MoDAF provides an overview saying that the
Framework is “an internationally recognized enterprise architecture
framework developed by the Ministry of Defence to support defence
planning and change management activities” [2].
 One might say that the centerpiece of MoDAF is its M3 Model, where
M3 stands for MoDAF Meta-Model. This model is based upon seven
“viewpoints,” namely the [2]:

1.	 Strategic Viewpoint (StV)
2.	 Operational Viewpoint (OV)
3.	 Service Oriented Viewpoint (SOV)
4.	 Systems Viewpoint (SV)
5.	 Acquisition Viewpoint (AcV)
6.	 Technical Viewpoint (TV)
7.	 All Viewpoint (AV).

So, if we think of any business, we see that these viewpoints represent
important perspectives (views) with respect to that business.
	 MoDAF states that there is no specific and “official” architectural pro-
cess that they endorse or require. Apparently, this is a matter of policy and
the desire to leave this matter to the ingenuity of the provider. It makes
sense, and this author appreciates the position that is taken. In this con-
nection, though, MoDAF architectures “are developed as coherent, con-
tiguous models that when viewed as a whole present a complete picture
of the enterprise” [2].

TOGAF [3]
TOGAF, “The Open Group Architecture Framework,” is an Open Group
Standard. Its roots are in a DoD document called TAFIM, “The Architecture
Framework for Information Management.” The claim is that TOGAF has
and maintains the de facto standard for enterprise architectures.

52� Systems Architecting

	 TOGAF 9.1 is a 700-page document that provides essential information
about the TOGAF standard. This standard has three main parts: (1) the
Enterprise Continuum, (2) the TOGAF Resource Base, and (3) the TOGAF
Architecture Development Method (ADM). The latter is composed of key
information about:

1.	 Architecture Vision
2.	 Business Architecture
3.	 Information Systems Architecture
4.	 Technology
5.	 Opportunities and Solutions
6.	 Migration Planning
7.	 Implementation Governance
8.	 Architecture Change Management.

The TOGAF provides guidance regarding how to structure and develop
an enterprise architecture. It is elaborate and comprehensive. Its Forum
keeps the activities of TOGAF moving forward and staying current.

The ZACHMAN Framework
John Zachman apparently developed this Framework when he was work-
ing for IBM in the 1980s. The Framework is distinctly an Enterprise model,
and purports to apply to the overall business or enterprise. Thus it is sup-
posed to explore and explain what an enterprise is all about, i.e., one can
find essentially all activities of the enterprise as part of the Framework.
	 The core of the Zachman Framework is a matrix (two-way table) that
maps the basic query questions against various activities of the enterprise
[4]. The query questions are the well-known:

1.	 Who
2.	 What
3.	 When
4.	 Where
5.	 Why, and
6.	 How.

The rows of the matrix are:

1.	 Contextual
2.	 Conceptual
3.	 Logical
4.	 Physical, and
5.	 Detailed.

Chapter nine:  DoDAF and Other Frameworks� 53

It is also claimed that a basis for the Framework lies in transforming
an idea or concept into instantiations. As far as this author can tell, the
Zachman approach is “alive and well” despite the apparent fact that it is
not obvious as to how it “covers” the essentials of the enterprise.

Strategic View of the Enterprise
It would appear that there is considerable interest in an Enterprise
Architecture, which is quite different from a Systems Architecture. For
this author, an Enterprise Architecture presents areas of special impor-
tance to the enterprise. Indeed, such an architecture should depict a stra-
tegic or generalized view of the enterprise.
	 In that context, this author, some years ago, provided such a view [5],
with the following structure:

a.	 Internal Perspectives
	 a.1	 Vision
	 a.2	Culture
b.	 People
	 b.1	 High Performance Teams
	 b.2	Accountability and Rewards
c.	 Systems
	 c.1	 Continuous Improvement and Reengineering
	 c.2	 The Learning Organization
d.	Differentiation and Leverage
	 d.1	Innovation
	 d.2	Responsiveness
e.	 External Perspectives
	 e.1	 Customer
	 e.2	 Competitors

So we see several perspectives with respect to the activities of an enter-
prise, the sum of which might well be called the enterprise architecture.

Other Frameworks and Architectures
We note, in this section, the fact that many other frameworks and architec-
tures have appeared in practice and the literature. For example, Sillitto has
explored system architecting in his informative and leading-edge book [6].
Dickerson, along with other authors, has used architectures for research,
development, and acquisition (RDA) [7]. Steven Spewak was well known
for his development of Enterprise Architecture Planning (EAP) [8]. At
the federal government level, there came to be a federal enterprise archi-
tecture framework (FEAF ) as an initiative of the Office of Management

54� Systems Architecting

and Budget [9]. Another relevant approach was formulated by NIST as
an Enterprise Architecture Model [10]. MITRE documented its approach
to dealing with architecture frameworks in its exposition of architectural
frameworks, models, and views [11]. The well-known service-oriented
architecture was described in a Wiley series [12], and yet another Wiley
book [13], well worth examining, documented “system architectures.”
	 In the next chapter, we explore the rather complex topic of software
architecting. The reader is urged to move on, and to consider a reference
[14] or two on this somewhat obscure subject.
	 And, of course, let’s not forget where it all began – with Eberhardt
Rechtin [15].

References
	  1.	 See website at dodcio.defense.gov/Library.
 2.	 See website at www.mod.uk.
 3.	 See TOGAF website at www.opengroup.org/togaf.
 4.	 See Zachman website at www.zachman.com.
 5.	 Eisner, H., Reengineering Yourself and Your Company – From Engineer to

Manager to Leader, Artech House, 2000.
	  6.	 Sillitto, Hillary, Architecting Systems, College Publications (UK), 2014.
	  7.	 Dickerson, C. E., S. M. Soules, M. R. Sabins, and P. H. Charles, “Using

Architectures for Research, Development and Acquisition,” Department of
Defense (DoD).

	  8.	 Spewak, S., Enterprise Architecture Planning, QED Pub. Group, 1993.
	  9.	 “Common Approach to Federal Enterprise Architecture,” Office of

Management and Budget (OMB), U.S. Government.
	 10.	 “NIST Enterprise Architecture Model,” National Institute of Standards and

Technology (NIST), U.S. Government.
	 11.	 “Architectural Frameworks, Models and Views,” MITRE Corporation, see

www.mitre.org, systems engineering guide.
	 12.	 Hurwitz, J., R. Bloor, M. Kaufman, and F. Halper, Service-Oriented Architecture

for Dummies, Wiley Publishing, 2009.
	 13.	 Sage, A. and W. B. Rouse, Handbook of Systems Engineering and Management,

John Wiley, 1999; see A. Levis, ch. 12, p. 427.
	 14.	 Taylor, R., N. Medvidovic, and E. Dashofy, Software Architecture, John

Wiley, 2010.
	 15.	 Rechtin, E., Systems Architecting, Prentice-Hall, 1991.

http://dodcio.defense.gov
www.mod.uk
www.opengroup.org
www.zachman.com
www.mitre.org

55

chapter ten

Software
A natural question that follows from the previous chapters is – does the
same architecting procedure apply as well to software? The answer, basi-
cally, is “yes.” However, design at the subsystem level must take into account
the software-unique constructs and methods. The nature of these constructs
and how software fits into the overall method are explored in this chapter.

Software Engineering Architecting [1]1

Much of the remainder of this chapter is taken from paper written by the
author of this book. This paper presents a straightforward definition of a
software system architecture, which can be found in the interesting trea-
tise on agility and discipline [2] as:

a software system architecture defines a collection of software sys-
tem components, connectors and constraints; a collection of system
stakeholders’ need statements; and a rationale which demonstrates
that the components, connectors and constraints define a system
that, if implemented, would satisfy the collection of system stake-
holders’ need statements.

This definition clearly emphasizes components, connectors, constraints,
and stakeholder needs.
	 Garlan and Shaw set the stage for a better understanding of software
architecting as early as 1994 [3] with their overview of this important topic.
At that time, it was an “emerging” field, and they articulated a number of
common architectural “styles.” They asserted that a number of heteroge-
neous styles could be combined into a single design. Examples of styles
included:

•	 The pipe and filter style
•	 The data abstraction and object-oriented style
•	 The event-based, implicit invocation style
•	 The layered system style.

The software system architect has these styles at his or her disposal, and
the results of the style selections, in effect, constitute an architecture. If we

56� Systems Architecting

move to yet another source [4], we see a pointer toward software system
structure, which

includes the organization of a system as a composition of compo-
nents; global control structures, the protocols for communication,
synchronization and data access; the assignment of functionality to
design elements; the composition of design elements; physical distri-
bution; scaling and performance; and dimensions of evolution. This
is the software architecture level of design.

Perhaps the most relevant paper in terms of the overall topic of this explo-
ration is that produced by Mark Maier [5]. First, he gives us a definition of
an architecture as “the fundamental organization of a system, embodied
in its components, their relationship to each other and the environment,
and the principles governing its design and evolution.” He also cites that
an architecture is the “embodiment of the set of design decisions that
define essential characteristics of the system.” Moving explicitly to soft-
ware, he suggests that such an architecture is

the embodiment of the earliest set of design decisions about a
(software) system, and these early bindings carry weight far out
of proportion to their individual gravity with respect to the sys-
tem’s remaining development, its service in deployment, and its
maintenance life.

	 With respect to the importance of a coherent architecture, Maier prop-
erly asserts that “if a system has not achieved a system architecture,
including its rationale, the project should not proceed to full-scale devel-
opment.” Further, Maier basically does not support the notion that sys-
tems and software architecting should be based upon the same or similar
methods. His reasons are traceable to his observations as to the differ-
ences between system and software developments and especially their
structures.
	 As part of his case, Maier also points to a comment by one of our most
capable engineers, Frederick Brooks. In Brooks’ notable treatise on soft-
ware engineering [6], he points out the need for conceptual integrity in
our software systems. This is typically embodied in the software architec-
ture. A good software architect will thereby assure this integrity, i.e., it is
the job of the software engineer to make sure the system has the required
integrity.
	 Finally, with respect to the matter of software architectures, we take
a brief look at the IEEE recommended practice for architectural descrip-
tions [7]. In this “standard,” a formal architectural description (AD) is

Chapter ten:  Software� 57

introduced. Further, at that time, it was acknowledged that there was not
“any reliable consensus on a precise definition of a system’s architecture.”
However, it is still possible, and desirable, to record an architecture by its
description (AD). A system’s AD can also be directly related to a set of
“views” of the architecture of that system. In effect, what they were saying
is: we don’t have consensus on what an architecture is, but we can still pro-
vide descriptions (and views) for practitioners of software engineering.

A Unified Approach
A conclusion that may be drawn may be expressed by the following:

•	 The current evidence is that systems architecting and software
architecting appear to be on divergent paths, unless an approach is
suggested that demonstrates the possibility of bringing these two
notions together.

This part of this chapter suggests that systems and software architecting
approaches can be “unified,” at the appropriate level of what is meant by
an architecture.
	 The overall procedure is the cost-effectiveness architecting method as
described in earlier chapters. A basic notion is to accept the idea that sys-
tems (hardware, software, both, etc.) can and should be broken down into
functions and subfunctions. Thus, functional decomposition becomes a
critical aspect of the unified architecting procedure. The next step, of pri-
mary importance in this approach, is to construct the “synthesis matrix”
which defines alternative design approaches for each and every subfunc-
tion, for (at least) three systems architectures. The design approaches
explicitly cover the systems domain and also the software domain. The
overall notion is depicted in Table 10.1.
 	 After the synthesis matrix has been developed, the (three) alternative
architectures are evaluated using a standard weighting and rating proce-
dure, as presented in previous chapters. This is the “analysis” step which
produces measures of the cost and effectiveness of the alternatives.
	 We note that in this approach we are explicitly defining and evaluating
alternative architectures, with the ultimate goal of finding a cost-effective
architecture (solution) for the customer(s) (stakeholders). The steps of this
procedure are the same as the critical “views” in that each step is defined
by an unambiguous view. Some might call this a “one-to-one” relation-
ship such that when the step is taken, the view is automatically generated.
	 Above all, the functional decomposition of the system becomes the
unifying element of this architecting approach. As such, it brings the sys-
tem design and the software design together under a common “umbrella,”
the subfunction. This also assures that both system and software

58� Systems Architecting

considerations will be brought to bear for each and every subfunction,
and with an understanding of the relationship between the system and
the software, at that level of design.
	 We also note that this approach gives the software design engineer the
freedom to use several different approaches (e.g., layered, object-oriented,
pipe and filter) as applied to the various subfunctions. There is not (neces-
sarily) one overall software approach for the entire system. Rather, there
may be several different approaches for design at the subfunction level.

Summary, Future Actions, and Research
Suggested future actions depend upon understanding the possible implica-
tions of a unified architectural approach that works, from a practical point
of view. The top-level features of that approach may be summarized as:

•	 A common framework that facilitates and incorporates both systems
and software architecting.

•	 A key element of that framework is functional decomposition of
the system, which typically is instantiated by both hardware and
software.

•	 An overarching method that seeks to formulate a provably cost-
effective system for the customer and stakeholders.

•	 Synthesis and analysis of alternative architectures, leading to the
selection of a preferred architecture.

Table 10.1  Synthesis Matrix for Systems and Software Architecting

Functions
Sub-

functions
Architecture 1 Architecture 2 Architecture 3

1 1.1 System DA1.1-1
Software DA1.1-1

System DA1.1-2
Software DA1.1-2

System DA1.1-3
Software DA1.1-3

1 1.2 System DA1.2-1
Software DA1.2-1

System DA1.2-2
Software DA1.2-2

System DA1.2-3
Software DA1.2-3

1 1.3 System DA1.3-1
Software DA1.3-1

System DA1.3-2
Software DA1.3-2

System DA1.3-3
Software DA1.3-3

2 2.1
2 2.2
—
—
—

—
—
—

N N.1
N N.2
N N.3
N N.4 System DAN 4-1

Software DAN 4-1
System DAN 4-2
Software DAN 4-2

System DAN 4-3
Software DAN 4-3

Chapter ten:  Software� 59

•	 Tested through the development of hundreds of architectures, con-
taining both systems and software elements.

•	 The steps of the architecting process provide outputs that are them-
selves the critical views, i.e., a one-to-one correspondence between
the steps and the most important views.

•	 The critical views are: (1) functional decomposition, (2) synthesis of
alternative architectures, (3) analysis of alternative architectures,
and (4) graphical representation of the cost and effectiveness of each
alternative.

In terms of actions, this author suggests:

•	 Widespread use of the architecting method across the board within
industry, academia and government

•	 Further research with the main focus and purpose to improve and
expand the methodology

•	 Use of the method for real systems of both hardware and software,
filling a specific need

•	 Systematic construction of new views, above and beyond those
already considered

•	 Formalizing the method with respect to moving from analyses of
alternative architectures to the selection of a preferred architecture.

Basically, new methods are accepted as more and more people experiment
with them and find successful outcomes.

Research Areas
Back in 2006, Barry Boehm highlighted a trend that he called “the increas-
ing integration of software and systems engineering” [8]. Given the key
issue of this chapter, we would see the matter of unifying systems archi-
tecting and software architecting as a major challenge under this overall
trend. More specific areas of research for bringing systems and software
architecting together include the following:

1.	 Constructing test cases that use the unifying approach suggested here
2.	 Looking at interoperability issues
3.	 Exploring inter-relationships between the system and software

design approaches at the subfunction level
4.	 Looking at cases for which there is significant interaction between

subfunctions that are not part of the same functions
5.	 Defining and formalizing the processes that lead to a preferred

architecture from a series of alternative architectures.

60� Systems Architecting

Note
	 1. © 2013 American Society for Engineering Education, ASEE Annual

Conference Proceedings, June 23–26, Atlanta, Georgia.

References
	 1.	 Eisner, H., “Systems and Software Architecting – On Separate or Convergent

Paths,” ASEE Annual Conference Proceedings, June 23–26, 2013, Atlanta, GA.
	 2.	 Boehm, B. and R. Turner, Balancing Agility and Discipline, Addison-Wesley, 2004.
	 3.	 Garlan, D. and M. Shaw, “An Introduction to Software Architecting,” CMU

Software Engineering Institute, Technical Report CMU/SEI-94-TR-21,
ESC-TR-94–21 (1994), SEI, Pittsburgh, PA.

	 4.	 Garlan, D., “Software Architecture,” Encyclopedia of Software Engineering,
2nd Edition, John Marciniak (E-I-C), John Wiley, 2002, p. 1318.

	 5.	 Maier, M., “System and Software Architecture Reconciliation,” Systems
Engineering, Volume 9, Issue 2, Summer 2006.

	 6.	 Brooks, Jr., Frederick, The Mythical Man-Month, Addison-Wesley, 1995.
	 7.	 “Draft Recommended Practice for Ads,” Software Engineering

Standards Committee for Architecture Working Group, IEEE P1471/D5.2,
December 1999.

	 8. Boehm, B., “Some Future Trends and Implications for Systems and Software
Engineering Processes,” Systems Engineering, Volume 9, Issue 1, Spring 2006.

61

chapter eleven

Cost Estimation
It is clear that an important part of any cost-effectiveness assessment is the
accurate estimation of the costs of the alternatives. In this short chapter,
we explore how one might approach this topic. In particular, we comment
here on two methods, both of which have some complexities but are rela-
tively straightforward.

Method One: Top-Level Design
With this method, we carry out a top-level design of the various alterna-
tives and proceed with a standard costing of the various elements of the
design. At that point we estimate the direct labor, hardware costs, soft-
ware costs, indirect labor, overhead, G & A (General and Administrative),
and profit – otherwise known as the “standard” cost model. This is also
called a “standard” engineering cost approach, and usually works out
well unless there are some new and advanced technologies that have to
be considered. If there are, one gathers up as much information on those
technologies as possible and accepts that as about as well as can be done.
	 Given the alternatives, it is usually the case that they have some num-
ber of common elements. This simplifies the process and very likely leads
to a more accurate set of overall results. All of this depends upon how
similar the alternatives are to current practices and systems. Examples are
shown in Chapters 4, 5, and 6, especially the former.
	 The “standard” cost elements of a life cycle cost model contain the fol-
lowing top-level categories of cost [1, p. 268]:

•	 R, D, T & E (Research, Development, Test, and Evaluation)
•	 Procurement, and
•	 O & M (Operations and Maintenance).

Method Two: Cost Estimating Relationships (CERs)
This method can be rather complex as we are constructing CERs, typically
based upon data that we have from existing systems. We use such data,
and a statistical analysis, to formulate the cost estimates. The analysis can
be linear or non-linear, with the latter usually somewhat more difficult.
The former is often based upon what is called linear regression analysis.
The following few lines provide the basic formulae for such an analysis [1].

62� Systems Architecting

	 If the basic linear equation is what we expect as Y = m X + b, we may
calculate the values of “m” (slope) and “b” (y intercept) ∑ as:

m = (n∑ × y – ∑ × ∑y)/(n∑x2 – (∑x)2) and

b = (∑y∑x2 – ∑ × ∑ × y)/(n∑x2 – (∑x)2)

Note that the denominators are the same for both “m” and “b.”
	 To reinforce the point, we look at a simple example. This illustration
has the following six points:

X	 Y	 From these points we calculate these values –
 1	  2		 ∑x = 21; ∑y = 27; ∑x2 = 91; ∑xy = 112
 2	  3
 3	  4	� We then substitute these numbers and find the slope and y

intercept as:
 4	  5		 m = 1 and b = 1
 5	  6		 and the line is Y = mX + b = X + 1
 6	  7

There are numerous CERs that have been catalogued for immediate use,
such as those listed in Table 11.1.

COCOMO I
This is the name for “Constructive Cost Model One,” and it dealt with the
costs of software. Going back to 1981 [2], it represented a way for engineers
to estimate the costs of software, with a few simple equations [3], as below:

PM = C (KDSI)x

TDEV = D (PM)y

PROD = DSI/PM

FTES = PM/TDEV

Where KDSI = thousands of delivered source instructions
PM = person-months needed to complete the software
TDEV = required development time
PROD = overall productivity
FTES = full-time equivalent staff required
C, D, x, and y = empirically derived constants.

Chapter eleven:  Cost Estimation� 63

For a software development situation characterized by a small team, con-
siderable experience and a stable environment (Boehm’s organic mode
[2]), the above equations can be re-written as:

PM = 2.4 (KDSI)1.05

TDEV = 2.5 (PM)0.38

So, we “input” the estimated KDSI and are able to immediately develop
estimated values for person-months (PM) and development time (TDEV).
This can be illustrated by taking the value of KDSI to be 80. We then have:

PM = 2.4 (80)1.05 = 2.4 (99.6) = 239 person-months, and

TDEV = 2.5 (239)0.38 = 2.5 (8.01) = 20.03 months

PROD = 80,000/239 = 334.7 DSI/PM, and for 20 days per month,
PROD = 16.7 DSI/day

Table 11.1  Cost Estimating Variables for Various Equipment

Type of Equipment Cost Estimating Variables

Radar Systems Output Power
Frequency
Bandwidth
Weight

Aircraft Engine Thrust
Bypass Ratio

Satellite Terminal Antenna Size
Output Power
Frequency
Receiver Sensitivity

General Radio Power
Frequency
Number of Channels

Software (effort) Source Instructions

Coaxial Cable 15.75 L where L = length of cable

SHF Earth Terminal 0.0835D + 0.157P + 0.679 where D = antenna diameter;
P = power (KW)

64� Systems Architecting

The latter number can be examined to see if it is reasonable from one’s
own experience. Also,

FTES = PM/TDEV = 239/20.03 = 11.93 or about 12 people, equivalent.

COCOMO II [4]
This is an extension of COCOMO I, again led by one of our most extraor-
dinary software engineers, Barry Boehm. The basic formula for calculat-
ing person-months is the same as for COCOMO I, namely:

Effort Required = PM = A (size)B

where A is a function of EMs, or effort multipliers, and B is related to a
set of scale factors. There are seven or 17 EMs that relate to A, and several
scale factors that are spelled out in the basic COCOMO II text and repre-
sented by such “variables” as risk resolution, team cohesion, and others.

Changing Costs
In the context of comparing costs in a cost-effectiveness evaluation, we
are most interested in relative costs, rather than absolute costs. In this real
world of ours, we often see quite large increases in cost estimates as the
years pass and as the original assumptions for our systems change. This
is to be expected, together with the headlines that reveal the timing and
magnitudes of these changes.
	 In recent times, we can look back upon the history of the Joint Strike
Fighter and find major increases in cost that have been experienced
and reported in the various journals. There are many reasons for these
increases, a large number of them entirely understandable as well as justi-
fiable. One needs to keep in mind that choosing the best system, or archi-
tecture for that system, is quite different from assuring accurate estimates
of costs for these systems. Both are also different from being able to con-
trol costs and the variables that might lead to cost increases over time.

Cost Information Sources
The architecting team usually has considerable technical information
available, but often lacks cost information. However, several government
agencies have tried to “fill the gap” by providing handbooks of cost infor-
mation of various types, such as design, operating costs, and maintenance
costs. Two such agencies are NASA [5]	and the GAO [6].	 It is usually a
good idea for some members of the system architecting team to retrieve
this type of information rather than attempt to construct it from scratch.

Chapter eleven:  Cost Estimation� 65

	 During the days of Secretary Robert McNamara in the DoD many
person-years went into the task of finding and making available cost data
for analyzing military systems and their cost effectiveness. The Rand
Corporation, it can be remembered, had steady contracts to support the
DoD’s work in this area. It is also remembered that Alain Einthoven, an
economist, had a key role to play to try to assure that all cost information
was treated appropriately.

References
	 1.	 Eisner, H., Computer-Aided Systems Engineering, Prentice-Hall, 1988.
	 2.	 Boehm, B., Software Engineering Economics, Prentice-Hall, 1981.
	 3.	 Eisner, H., Essentials of Project and Systems Engineering Management, 3rd

Edition, John Wiley, 2008, p. 320.
	 4.	 Boehm, B., C. Abts, A. Winsor Brown, S. Chulani, B. K. Clark, E. Horowitz,

R. Madachy, D. Reifer, and B. Steece, Software Cost Estimation with COCOMO
II, Prentice-Hall, 2000.

	 5.	NASA Cost Estimating Handbook, v. 4.0.
	 6.	 GAO Cost Estimating and Assessment.

http://taylorandfrancis.com

67

chapter twelve

Summary
This last chapter summarizes many of the key points that are made in this
treatise.

I  Basic Elements of the System Architecting Process
Although much has been written about how to architect a system, there
remains considerable lack of clarity in the literature about the specifics of
such a process. This monograph is quite specific about how to develop a
system architecture. Four elements are set forth:

1.	 Functional Decomposition
2.	 Design Approaches to Instantiate All Functions and Subfunctions

(Synthesis)
3.	 Evaluation of Alternatives (Analysis)
4.	 Selection of Preferred Alternative (Cost-Effectiveness Assessment).

We further note that some important aspects of systems engineering
appear to not be included in the above list, such as “requirements anal-
ysis.” This is deliberate and part of the philosophy of the process (see
“Rechtin” citation below).

II  The Importance of a Cost-Effectiveness Evaluation
We note that the overall systems architecting procedure delineated in this
book is a “cost-effectiveness” evaluation. This means that the procedure
has a strong body of literature to rely and depend upon. It also is intui-
tively appealing in terms of the various features of such an evaluation
(such as a choice from among a set of alternatives, how to develop and use
measures of effectiveness, and others). It also means that we are looking
for a “cost-effective” solution to the system design problem.

III  Functional Decomposition
We further note that the first step in the process of architecting is “func-
tional decomposition.” This is a crucial first step as it sets the stage for
both synthesis and analysis by being precise about the functions and

68� Systems Architecting

subfunctions that are part of the system. The listed functions represent
the minimum set that are part of the system. All alternatives must have
these functions, but some of the alternatives may have increased function-
ality that increase performance and require additional funds.
	 There is some question about how many levels the functional decom-
position should contain. If the name of the system is at level “zero,” then
two additional levels are recommended for purposes of system architect-
ing. This suggestion may not apply when one is considering a “system of
systems.”

IV  The Synthesis Step Reveals and
Defines the Architecture
The second step, synthesis, is indeed the definition of the architecture. It
shows, for each system function and subfunction, the design approach
that is selected by the system architects. This step makes it quite clear as to
what the design choices are. Further, these choices are explicit for at least
three system approaches: (1) the low-cost, low-effectiveness system, (2) the
high-cost, high-effectiveness system, and (3) the knee-of-the-curve, best
value system. Often, we are in search of the latter system as the preferred
system. The important point here is that we are not leaping to the conclu-
sion that we go directly to the selected alternative; rather we define and
ultimately evaluate a set of alternatives.

V  Rechtin’s “Kiss” Notion
Eberhardt Rechtin wrote a seminal book on the subject of “system archi-
tecting” [1]. In that treatise he articulated many “heuristics,” including that
of the “KISS” (keep it simple, stupid) approach. This was based upon his
many years and experiences as a master engineer and builder of systems.
This principle is accepted as the preferred approach to systems architect-
ing. Yet another observation he made was to keep in mind Occam’s Razor,
which said that “the simplest solution is usually the correct one.”
	 Another aspect of “keeping it simple” is that the four architecting
steps can be displayed on one, and only one, page each. This too is delib-
erate and assists in lending clarity to the process, especially in a group
setting.

VI  Problems with “Views”
The approach to systems architecture selected by the Department of
Defense, otherwise known as DoD Architectural Framework (DoDAF ) [2],
was based upon three views of an architecture, namely:

Chapter twelve:  Summary� 69

1.	 The operational view
2.	 The systems view, and
3.	 The technical view.

For this author, this approach has several problems. First, one is not able,
in general, to develop a view of an architecture without first having an
architecture in hand. Second, one cannot infer an architecture, necessar-
ily, from these three views. As an example, if one wishes to develop an
architecture for the human body, how do you get there from the above
three views, or indeed from the “standard” three views of any system?
At the same time, the architecting procedure suggested here provides a
framework for developing new and relevant views that assist in the over-
all evaluation process. Some of these views are defined in Chapter 8.

VII  Centrality of Defining Alternatives
As noted above, the overall approach to system architecting in this book is
based upon the notion that it is important to define alternatives as part of
the process. This is critical and in concert with approaches generally taken
by the DoD [3] in the design of systems.

VIII  Lateral vs. Drilling Down Approach
The above approach, in terms of defining alternatives, is considered “lat-
eral” in distinction to “vertical” or “drilling down.” In the lateral proce-
dure, we specifically define and look at alternatives. In the drill down
approach, we leap to one alternative and develop lots of data about that
alternative. This is not a recommended procedure for design, and often
leads to huge amounts of irrelevant information.

IX  A Framework for Tradeoffs and Sensitivities
It is well known that an important part of any design process is to carry
out a variety of “tradeoff ” analyses and investigations in order to seek the
best solutions at the system and well as subsystem level. The relatively
simple structure, especially of the “synthesis,” facilitates these tradeoffs.
Areas for tradeoffs can be seen directly by examining the design choices
for the various functions and subfunctions. We look down the columns to
explore compatibilities and interoperability matters. Then we look across
the alternative columns to discover tradeoff areas. In all cases, we are
looking to define fruitful tradeoffs, and set the stage for a deeper investi-
gation of how system features and parameters inter-relate.
	 This framework for architecting also facilitates what many call a
“sensitivity analysis” in addition to the tradeoffs suggested above. For

70� Systems Architecting

example, modifications in the ratings as well as the weights for the evalu-
ation criteria reveal how sensitive the overall results are to these changes.

X  Software System Architecting
An important aspect of system architecting is that of architecting soft-
ware systems. For the approach in this monograph, it is suggested that
the “functional decomposition” step is the integrating element that brings
together both hardware and software system architecting. This is based
upon many years of exploring and defining how this may be executed.
The way that this may be achieved is cited in the text and the graphic
in the chapter on “software.” The specifics of the complex topic of soft-
ware architecting are presented in several texts available to the software
designer and engineer.

X1  A Time Constrained
Preliminary Design Process
The overall context for this exploration of system architecting has two
main aspects, namely:

1.	 The limited time frame
2.	 More-or-less equating system architecting with preliminary design.

The limited time frame, of the order of a month or two, suggests a limited
set of analyses. It also means that the procedure is especially suited to the
proposal-writing process. We are constantly in search of ways and means
of improving our proposals.
	 Beyond this time constraint, we are equating system architecting with
preliminary system design. There is really no need to try to differentiate
between these two notions.

X11  System Architecting as a Group Process
System architecting is so important in terms of building new systems
that it must be carried out by a group. The recommended size of the
group is eight to 12 people (depending upon the size of the system) hold-
ing highly interactive design sessions on a regular and rapid basis. Each
person that is a member of the team must be senior and highly experi-
enced with the type of system under consideration. The members must
also have proven records as “team players,” i.e., they must understand
how a high-powered team is supposed to operate and have signed on to
that proposition.

Chapter twelve:  Summary� 71

	 Of particular importance is the selection of the team leader. Such a per-
son must have extraordinary design experience and know how to “man-
age” a group of very senior personnel. Such a person will have gained the
respect of several teams as part of his or her background. Such a person
will have demonstrated that he or she is a true leader in both technical
and management areas. There is quite a lot of literature on this matter of
group operation and leadership that can be helpful in this domain.

References
	 1. Rechtin, Eberhardt, Systems Architecting, Prentice-Hall, 1991.
	 2. DoDAF Version 2.02, see dodcio.defense.gov.
 3. “Analysis of Alternatives (AoA) Handbook,” see www.prim.osd.mil.

www.prim.osd.mil
http://dodcio.defense.gov

http://taylorandfrancis.com

73

appendix a

Group Architecting
There has been some mention of group processes in this book. Here we
focus upon various ways that a group might carry out the suggested
architecting procedure, and some ways that are likely to be counter-
productive. The procedure itself can, of course, be executed by a single
person, an individual. For improved results, it’s best to explore the pro-
cess in the hands of a group, and, especially, a group leader. Having
mentioned a group leader, we reiterate that a crucial part of the process
is to assure a most capable group leader. In the view of this author,
“it’s all about effective leadership” to move a group process from
potentially dysfunctional to high performance. That’s the ultimate goal
– to have an outstanding, high performing group process that deals
with this most important aspect of building systems – developing the
architecture.
	 It all starts with designating a most effective team leader to be in
charge of the group architecting process. The general characteristics of
a strong leader are discussed in some detail in a previous book [1] by the
author. Assuming that this is achieved, we ask ourselves what it is that
this leader starts with. And the answer seems to be to set up the first
group architecting session, with an agenda that:

1.	 Calls for a complete commitment to the process (i.e., forms the
architecting team)

2.	 Explains the overall four-step architecting process (see Chapter 1)
3.	 Emphasizes the “synthesis” step
4.	 Requires that all participants have a specific assignment dealing

with that synthesis step
5.	 Insists upon appropriate participant behavior in terms of following

the leader’s ground rules, and accepting the agenda.

It is quite important to recognize that a critical part of “synthesis” is the
proper instantiation of each and every function, with a design approach.
So – if there are six functions, we need a “synthesizer” for each. If there
are 12 functions, we need a synthesizer for each, as well. In the latter case,
therefore, we need about 17 people to form the initial architecting team
– 12 for the 12 functions, three more of your best systems engineers, and
another two with specific skills in “cost” analysis. That’s a large team,

74� Systems Architecting

and it needs to be disciplined in order to succeed. A strong leader, as sug-
gested above, has the job of keeping this team working effectively and
with appropriate focus.
	 The pace of progress and the dates for follow-up meetings, are
entirely in the hands of the leader, as is the overall schedule for the proj-
ect. The high priority for this activity should ensure that all team mem-
bers are present for follow-up meetings, and also that they have made
the required “technical” progress (i.e., have defined, in some detail, the
design approach for each function). Full-scale review and discussion of
these results are part of the next meeting’s agenda. It’s obvious that this
can take a lot of time. All members of the team need to clear the deck
and provide their best efforts in this endeavor. This is not a “pushover”
assignment – it’s one that is challenging right from the beginning. The
system architecting sets the stage for much of the engineering design
that follows – both in concept and in detail. And as we approach the
first team meeting, we briefly cite what we expect from the leader as we
navigate these meetings:

1.	 Respectful listening to each and every member of the team
2.	 Summary as to “where we are” at appropriate points in the meeting
3.	 Reminders as to the progress that we need to make in order to meet

the goal of the project and the overall goals of the enterprise
4.	 Keeping certain members of the team in check when it’s appropriate

to do so
5.	 Showing “group” displays that can be seen at the same time by all

participants
6.	 Making sure that “architecture costs” are not neglected, which may

happen with a purely technical group
7.	 Keeping administrative costs relatively low.

The First Team Meeting
The first overall meeting of the team should be about one to two weeks
after establishing the team. The primary focus of that meeting, as sug-
gested above, is a preliminary overall architecture, formed as a one-page
synthesis chart. A required input is needed for that meeting from each
functional area, in terms of a design approach. Also, on the other axis, the
same is true for a “cost” for each architecture. All of this is very prelimi-
nary since the participants have had only one to two weeks to analyze the
problem and prepare their material. At the meeting, scheduled for two to
three hours (depending upon the number of functional areas), there is a
free-wheeling discussion of the results, their rationale, supporting data,
criticism, alternatives, new data from new sources, the cost dimension, the

Appendix a:  Group Architecting� 75

need (or not) for some sensitivity analysis, and whatever the team leader
accepts as relevant new inputs or data. The overall goal of the results of
that meeting is to develop a very preliminary “best” set of architectures
along with a series of steps upon which to focus for the next and follow-
up meetings. Although it’s important to try to plan for these meetings,
we keep in mind that a strong and effective leader has it all in his or her
hands; they are able to shift direction instantly when they see a need for
it. Leaders know how to do this.
	 We close here with a few comments about effective group interaction
and problem-solving, as well as behavior to avoid.

Group Problem-Solving

Here are a half-dozen pointers pertaining to group interaction and
problem-solving:

1.	 Assure that all participants are attentive and listening to all group
interactions.

2.	 In view of the above, don’t allow separate discussions that tend to
subvert the group process.

3.	 Insist that all participants “do their homework.”
4.	 Insist that all participants be respectful of one another.
5.	 Go around the room and explicitly ask for responses and inputs on

the matter at hand.
6.	 Start and end each meeting with very brief summaries of the past

and anticipated meetings, with an emphasis on goals approached
and achieved.

Behavior to Avoid

Here are some six suggestions for behavior to keep away from:

1.	 Do not allow any one participant to dominate the discussion, even if
the points made are useful and coherent.

2.	 Don’t allow side discussions that are likely to draw away from strong
group behavior and participation.

3.	 Quickly stop team “busters” that attempt to subvert the leader’s
direction and control.

4.	 Don’t allow the discussion to get “off course” in terms of the meet-
ing’s agenda.

5.	 Keep away from combining group participation and a grand “lunch.”
6.	 Respect the timetables that have been set for the topics and the over-

all meetings.

76� Systems Architecting

GroupThink

We especially need to avoid “groupthink,” which is “the tendency in
groups for a convergence of ideas and a sanctioning of aberrant ones” [2].
Experienced group leaders are well tuned to this type of group behavior
and know how to keep it from happening.

References
	 1. Eisner, H., Reengineering Yourself and Your Company, Artech House, 2000, ch. 6.
	 2. Sage, A. and W. Rouse, Handbook of Systems Engineering and Management,

John Wiley, 1999, p. 663.

77

appendix b

Functional Decomposition
Functional decomposition plays such a central role in architecting sys-
tems that it deserves a special place and discussion; hence this Appendix.
Examples are provided here, in the four fields of (a) information technol-
ogy (IT), (b) communications, (c) space systems, and (d) transportation.

Information Technology (IT)
There are many types of IT systems and so the functional decomposition
may be considered somewhat generic, as below:

1.	 Input
2.	 Output
3.	 Processing
4.	 Storage
5.	 Security
6.	 Database management
7.	 Power supply
8.	 Operating System (OS)
9.	 Applications.

The first two of the above are directly recognizable, with subfunctions like
mouse, keyboard, screen, and printer. The “critical” part of the adventure,
as far as most users are concerned, is the “processing” function as they are
looking for speed. Storage is relatively simple to come by these days, and
“security” is a necessity with the intrusions of various types that we might
anticipate. We include database management as a generic function and we
may suppose that this function will ultimately be instantiated with a com-
mercial DBMS such as Oracle or Access. There is very little point in building
one’s own and new DBMS when excellent commercial products are avail-
able off-the-shelf. Of course, all systems of this type need a power supply
and incorporate a number (usually several) of applications.
	 There are nine functions cited above, but the work that will ultimately be
done on such a system is not equally divided between these functions. The
so-called “degree of difficulty” depends strongly upon the requirements for
each function and also the extent to which a commercial product is available

78� Systems Architecting

to satisfy the requirements. And we also need to take into account the num-
ber and degree of difficulty of the individual applications.

Communications
Communication systems are a special type of IT, with specialized func-
tions, as enumerated in Chapter 3, and repeated here:

1.	 Multiplex/Demux
2.	 Modulation/Demod
3.	 Switching and Routing
4.	 Encryption/Decryption
5.	 Formatting/Signal Conversion
6.	 Control and Monitoring
7.	 Recording and Playback
8.	 Satellite/Terrestrial Communications.

Of course, there are other forms and types of communications system,
with the above being only one illustrative set. To cite just one, in certain
situations, we see troposcatter communications systems as well as others
that distinguish between analog and digital, even though such a distinc-
tion may not be appropriate at this level of design and specification. Yet
another specialized communications system was mentioned in Chapter
1, namely, the Mallard system. That was distinctly a “battlefield” com-
munications system, with subfunctions attendant to that location and
environment.

Space Systems
If we are dealing with a satellite that we are putting into orbit, we typically
see the following top-level functions:

1.	 Power Supply
2.	 Stabilization and Control
3.	 Thermal Control
4.	 Communications and Data Handling
5.	 Telemetry (may also be part of (4) above)
6.	 Payload Functions (several, such as cameras and a variety of sensors).

This is, of course, just the space segment, and does not include the ground
segment. Depending upon the nature and purpose of the satellite, the
ground segment can be massive and extensive. Given that the satel-
lites that are part of the 1980s SDI program were plentiful, one can only
imagine what the ground stations looked like.

Appendix b:  Functional Decomposition� 79

	 Another example of the functional decomposition of a “space” system
pertains to the Earth Observing Data and Information System (EOSDIS)
[1]. In this case, there are three Segments, namely:

1.	 The Flight Operations Segment
2.	 The Science Data Processing Segment, and
3.	 The Communications and System Management Segment.

For the sake of completeness, we include here the functions for each of
these segments:

Flight Operations Segment
1.1	 Mission Control
1.2	 Mission Planning and Scheduling
1.3	 Instrument Command Support
1.4	 Mission Operations

Science Data Processing Segment
2.1	 Data Processing
2.2	 Data Archiving
2.3	 Data Distribution
2.4	 Data Information Management
2.5	 User Support for Data Information
2.6	 User Support for Data Requests
2.7	 User Support for Data Acquisition and Processing Requests

Communications and System Management Segment
3.1	 Distribution of EOS Data and Information to EOSDIS Nodes
3.2	 Distribution of Data Among Active Archives
3.3	 Interface With External Networks
3.4	 Network/Communications Management and Services
3.5	 System Configuration Management
3.6	 System/Site/Elements Processing Assignment and Scheduling
3.7	 System Performance, Fault, and Security Management
3.8	 Accounting and Billing

We note how detailed the functions are at the subfunction level. However,
they are usually well conceived, far-ranging, and thoroughly necessary.

Transportation Systems
Functional decomposition in this domain can depend strongly upon
what type of transportation system we are considering. However, we will
attempt here to be as generic as possible. Here are some functions to be
explored and cited in this type of system:

80� Systems Architecting

1.	 Overall Motive Power
2.	 Distributed Motive Power and Network
3.	 Freight Compartment Features
4.	 PAX Compartment Features
5.	 Compartment Coupling, Movement, and Control
6.	 Intermodal Interfaces and Control
7.	 Safety
8.	 Security.

References
	 1. Phase C/D Requirements Specification for the EOSDIS, (1990), Greenbelt,

MD, Goddard Space Flight Center.

81

appendix c

Special Topics
This appendix briefly discusses a variety of topics that are related to the
matter of architecting and implementing large-scale systems. They fur-
ther illuminate the overall architecting procedure and also provide some
context for the use of such a procedure.

Rechtin’s Heuristics
We return to the wise words of Eberhardt Rechtin, an original architect
of systems, and take a brief look at some of his suggestions in the form of
his “heuristics list” [1].

Keep It Simple, Stupid

There is considerable emphasis on the “KISS” principle since it has proven
to be wise advice. The more complicated a design, the more likely that
something will go wrong. The more complex a process, the more likely
we will see some form of human error. This procedure, in its best form,
involves a group process. These can be problematic, as we know. Even
though a group may reach consensus, it does not mean that this con-
sensus is the “right” answer. On this same point, Rechtin lists “Occam’s
Razor” as one of his heuristics. His statement is “The simplest solution is
usually the correct one.”

Serious Mistakes

Rechtin’s heuristic is that in architecting a new (software) program, all the
serious mistakes are made on the first day. We can interpret this sugges-
tion in terms of getting the overall architecture right since architecting is
more-or-less the pivotal point in preliminary design.

Small Number of Documents

Rechtin points to a small number of documents as critical on a project.
The suggested architecting procedure can be described, literally, in four
sheets of paper.

82� Systems Architecting

Choice Between Architectures

This heuristic, first and foremost, declares that it is necessary to look at sev-
eral architectures and then pick the one that has a set of drawbacks that the
client can handle best. Another related heuristic has to do with maintaining
open options as long as possible in the design of complex systems.

Levels of Decomposition
The suggested architecting procedure depends heavily on functional
decomposition as the first step. So the question arises: how many levels
of functional decomposition are appropriate for this architecting proce-
dure? If we call level zero the name of the system, then the recommended
number of levels, for most (not all) systems, is two. This means that we are
architecting at the subfunction level, i.e., each function is broken down
into one or more subfunctions. For quite large systems (e.g., systems-of-
systems), a further breakdown is necessary. An example of a quite large
system is the National Aviation System.
	 A quick anecdote about this matter of levels of decomposition. This
author was talking to an executive in a “systems” company and that
executive offered some reasons why an important project had major
troubles. His answer was that his company approach involved too many
levels of decomposition, which led his design engineers down too many
diverse paths. “They were deep down in the details before they had prop-
erly architected the system,” he said. That led to too much unproductive
spending, which put the project in jeopardy.

Drilling Down
Our reliance on “analysis” as a tool for design over the years has led us
to overemphasize the process of “drilling down” in search of more detail.
We note that there is not a lot of drilling down in the recommended pro-
cedure. This is deliberate, and part of the notion of “keeping it simple” at
the appropriate level of design. If anything, the recommended procedure
relies more on getting the functional decomposition correct and complete,
which is more like a process of lateral thinking, as suggested by de Bono
[2]. Try to confirm and verify that the functional decomposition is the best
representation it can be, so as to avoid unnecessary searches for more
detail in the downward (sub-subsystem) direction.

Dependencies and Interactions
Since the functional decomposition separates the functions from one
another, the initial cut does not focus upon the possible dependencies

Appendix c:  Special Topics� 83

and interactions between functional and subfunctions. These should not
be neglected. Keep a running list of such dependencies and account for
them as the “synthesis” part of the process is undertaken. This should be
a simple matter of starting and keeping a list of each dependency and a
note on the nature of that dependency. This could have a major influence
on the design alternatives that are considered for each subfunction. This
is also related to the ultimate matter of interoperability between systems
and subsystems.

Costing
Not much attention is paid to the issue of cost estimation as an impor-
tant part of the suggested architecting procedure. This is deliberate in the
sense that we already know a lot about how to estimate costs for all types
of systems. In general, we are not creating new ways of costing systems;
we are mainly using existing procedures (Chapter 11). Such procedures
often lean upon cost estimating relationships (CERs) [3]. These are short-
hand methods that lead to cost estimates based upon existing systems and
technologies. So, if we are pushing the state-of-the-art in these areas, there
may be a weakness in our cost estimating capabilities and knowledge.
If this is the case, multiple estimates may be called for, trying to bracket
the range of costs for the various alternative architectures under consid-
eration. Special quick studies of specialized areas may also be called for
(e.g., advanced sensors, new concepts).

Requirements and Function Creep
For the architecting procedure suggested here, the requirements for the
three architectures are the same. That is, all three architectures are to sat-
isfy a given, and the same, set of requirements. In the real world, if one
has been party to a system development for more than two years, as an
example, requirements tend to creep. The program manager for the devel-
oper needs to be aware of such a tendency, and either resist this type of
change or accept it and account for it.
	 In the world of preliminary design, or system architecting, as
described here, there might be a tendency to have “function creep.” That
is, in moving from system A to system B to system C, there might be a
tendency to add functionality (i.e., System B carries out more functions
than does system A and system C has more functions than system B). This
may be illustrated by looking more deeply at the architecting example in
Chapter 5 (the house example). The high effectiveness house has alarms,
internet service, a sprinkler system, and a library/video room. Thus, sys-
tem C provides additional functionality for which an increase in price is
expected. If one wishes to be more rigorous in one’s approach, the func-
tionality should remain the same for all three alternatives. In that way, the

84� Systems Architecting

comparison between the three alternatives would also be more rigorous
(i.e., using a so-called “apples” to “apples” comparison).

Proposals and Acquisition Ground Rules
Formulating an architecture, in a short period of time, is a critical part
of many proposals to develop systems. Week after week, proposals are
submitted to the federal government all of which have first-order architec-
tures for systems in response to an RFP (request for proposal). Therefore,
being able to set forth one or more architectures in these proposals is an
extremely important aspect of competing for business in that (as well as
other) marketplaces. What follows are some considerations with respect
to developing proposals for the U.S. government.
	 The proposed architecture for the system is likely to be a critical sec-
tion of the proposal. It may well be the most important “discriminator,”
i.e., the part of your proposal that positively discriminates your proposal
from those of your competitors. Consider a process with the following
elements:

  1.	 Designation of your best systems engineers as your architecting
group (team).

  2.	 The above team will have at least six members, and possibly more
than a dozen.

  3.	 The above team will have a leader who has demonstrated an ability
to lead a group and establish positive team behavior.

  4.	 Each member of the active team has one or more people who serve
as back-ups.

  5.	 Lay out a master schedule for meetings and milestones for team
meetings; the schedule must be consistent with the overall pro-
posal development and completion schedule.

  6.	 Team meetings can last all day if necessary, in order to develop the
required architectures.

  7.	 At least one member of the team will be designated as the lead
writer of text in the proposal document itself; this person will be a
proven excellent writer (no novices).

  8.	 Management will spend some time sitting in on the meetings of
the teams; the company cannot afford to have a bad architecting
explanation and process.

  9.	 The proposed architectures shall be clearly cost effective, reflecting
minimum risk for the customer and all stakeholders.

10.	 Consider the classical use of a “Red Team” and allow time for this
review to be accomplished.

11.	 The ultimate architecting result will be excellent and complete for
both the team leader and management.

Appendix c:  Special Topics� 85

The proposal shall be clearly responsive to the acquisition ground rules
set forth by the acquisition agent. The RFP evaluation criteria must be con-
sidered, in detail. The sections of the proposal must reflect these criteria
in both form and substance. If the RFP allows it, consider submitting a
proposal that contains both a low-cost approach as well as a “best value”
approach in terms of the system architecture. Consider the list of “Ten Key
Points” cited by this author in terms of developing and writing a winning
proposal [3, p. 179].

Group Processes
The above proposal activities involve a group process in order to carry out
the system architecting. As indicated, a strong and proven team leader is
essential to a productive and successful group process. However, despite
a strong leader, there may be forces at work that could threaten the result.
One such force is the possible presence of a team “buster.” Such a person
basically has a hidden agenda that amounts to trying to sabotage the team
and thereby threaten the results. The designated team leader needs to
know how to deal with such a person. For a true team buster, advice from
this author is to remove such a person from the team as soon as possible.
	 There are many other factors that relate to how a group might behave.
These factors will not be examined in the main body of this treatise.
The literature contains many excellent papers and books on this subject.
Suffice it to say that since the system architectures are a key product and
are developed in a group context, it is essential that productive group
behavior is assured to the maximum extent possible. Here is a short list of
items to be considered as set forth by the group leader.

1.	 Make sure that everyone knows everyone else on the team; use sev-
eral team gatherings if necessary to get acquainted.

2.	 Establish and distribute a list of dos and don’ts in terms of group
behavior as part of the team.

3.	 Such a list should include (but not be limited to) courteous interper-
sonal behavior, with no interruptions and in definitive listening.

4.	 Everyone agrees to abide by the final decisions of the team leader.

Stakeholders
It must be recognized that the ultimate test of whether or not a particular
architecture is viable is acceptance by the community of stakeholders. This
community tends to have many and varied constituents, which may be
changing with time and what the project status happens to be. During
the proposal phase, the assumption is that the key stakeholders are the
members of the formal proposal evaluation team. This team decides which

86� Systems Architecting

proposal is best and acts as a surrogate for yet another team, the ultimate
system customer. The proposal evaluation team may believe that you have
determined the best system architectures. But after the contract is let, the
ultimate customer is to be listened to and changes may have to be accepted
as new stakeholders have come upon the scene. These include changes in
the architectures themselves. If you agree with such changes, all is well. If
you don’t agree, then one needs to be persuasive regarding the costs and
effectiveness of the architectures and the benefits of your preferred selec-
tion. The bottom line is that there may be many stakeholders that have
their opinions about the system architecture (as well as other project fac-
tors) and their views need to be addressed to the maximum extent pos-
sible and practical. Your internal team may believe that you have the best
solution(s), but external folks may have different points of view.

What this Method (of Architecting) Is, and Is Not
To conclude this appendix, this is not a book about:

  1.	 The deficiencies of DoDAF (or MoDAF …)
  2.	 The wisdom of the fundamental “views” approach
  3.	 Extending and expanding the three basic and early views of DoDAF
  4.	 How to develop an architecture from the above three views
  5.	 Why and how enterprise architecting is not the same as systems

architecting
  6.	 Drilling down to obtain more and more detail
  7.	 Why digging more deeply is the preferred approach to better

architectures
  8.	 Fighting lack of knowledge with additional complexity
  9.	 Additional data structures and needs for purposes of architecting
10.	 The benefits of group architecting.

but is a book about:

  1.	 The very early activity known as preliminary design, or first-order
systems architecting

  2.	 How to do rapid system architecting, useful especially during the
proposal phase of a project or program

  3.	 Using the KISS principle to one’s serious practical advantage
  4.	 A new and compact procedure for front-end system architecting
  5.	 Defining alternative architectures, all on one sheet of paper
  6.	 Using lateral thinking, instead of digging deeper, to solve an

important problem
  7.	 Using cost-effectiveness considerations to develop and evaluate

alternative architectures

Appendix c:  Special Topics� 87

  8.	 Systems architecting in a group/team setting
  9.	 Developing “views” that are the same as the outputs of the steps of

the architecting process
10.	 A definitive four-step process of system architecting that has been

demonstrated in both industry and academia, over more than two
decades.

References
	 1. Rechtin, E., Systems Architecting, Prentice-Hall, 1991.
	 2. deBono, E., The Use of Lateral Thinking, Pelican Books, 1971.
	 3. Eisner, H., Essentials of Project and Systems Engineering Management, 3rd

Edition, John Wiley, 2008.

http://taylorandfrancis.com

89

A

alternatives 69
evaluation of 19

anemometry system 47
architecting

an automobile 31–32, 48
functional decomposition, 25
a house 25–26, 48
process, features 7

architectural, descriptions 40
architecture

definition 13
descriptions 43–44
human 46
preferred 37
top-level steps 13
top-level view 13
tradeoffs 47
views 44–45

architectures
observations 17–18
optimal 39

aviation 4

B

background 1
behavior to avoid 75

C

CERs (Cost Estimating Relationships)
61–62

changing costs 64
COCOMO I 62–63
COCOMO II 64
communications 78
complexity 10–11

cost-effectiveness 14–15, 20–21, 27, 67
automobile 33
house 27

cost information sources 64–65
costing 83

D

Department of Defense (DoD) 1–2
dependencies and interactions 82–83
DoDAF (Department of Defense

Architectural Framework) 2,
49–50

drilling down 69, 82

E

Earth Observing and Information System
79

evaluation criteria
communications 40–41
transportation 40

F

fidelity, in rating 22
first team meeting 74–75
functional decomposition 67–68, 77
future actions 59

G

group architecting 73–74
group problem solving 75
group process 70–71
group processes 85
GroupThink 76

H

human judgments 11–12

Index

90� Index

I

information technology 76–77
interoperability 39

J

levels of decomposition 82

M

Mallard 4
minimal explicit information 38
MODAF 51

N

Nimbus 4

P

preliminary design 70
proposals and acquisition ground-rules

84–85
propositions 45

Q

quantitative views 47

R

Rechtin, Eberhardt 3, 81–82
requirements 38

and function creep 83–84
research 59-60

S

Severe Climate Anemometry System
(SCAS) 14–16

software engineering architecture 55–56

software system architecting 70
space systems 78–79
special topics 81
specifications 38
stakeholders 85–86
strategic view

of the enterprise 53
summary 58–59
synthesis 68

of alternative architectures 25
system architecting process 67
system effectiveness 19–20
systems 1
systems approach 8–9
systems architecting process 5
systems engineering team 7
systems thinking 10

T

time constraints 70
TOGAF 51–52
tradeoffs 69–70
transportation systems 79–80

U

unified approach 57–58

V

views 2, 39, 68–69

W

what this method is not 86
what this book is all about 86–87

Z

Zachman Framework 52–53

	Cover
	Half Title
	Title Page
	Copyright Psge
	Dedication
	Table of Contents
	Foreword
	References

	Preface
	Author Biography
	Other Books by the Author
	Chapter 1: Background
	The Department of Defense (DoD)
	Eberhardt Rechtin
	Author Information
	Three Special Experiences
	A Bottom Line
	Note
	References

	Chapter 2: Purpose and Features
	Purpose
	Features
	The Systems Approach
	Systems Thinking
	Complexity
	Human Judgments
	References

	Chapter 3: What is an Architecture?
	Introduction
	A Top-Level View
	Definition – In Words
	Cost-Effectiveness of Systems
	System Architecture – Example
	References

	Chapter 4: Evaluation of Alternatives
	Introduction
	System Effectiveness
	Commentary on Graph of Costs and Effectiveness
	Additional Fidelity In Rating
	Other Factors
	Closing Thought
	References

	Chapter 5: Architecting a House
	Introduction
	Functional Decomposition
	Synthesis of Alternative Architectures
	Evaluation Framework
	Commentary – Functional Decomposition
	Commentary – Synthesis
	Commentary – Evaluation Framework (Analysis)

	Chapter 6: Architecting an Automobile
	Introduction
	Functional Decomposition
	Synthesis of Three Alternative Architectures
	Evaluation Framework
	Commentary – Functional Decomposition
	Commentary – Synthesis
	Commentary – Evaluation Framework (Analysis)
	Reference

	Chapter 7: Commentary: A Preferred Architecture
	Introduction
	Top Level Considerations
	Requirements
	Specifications
	Minimal Explicit Information
	Are These Architectures Optimal?
	Several (Not One) Architecture
	Assuring Interoperability
	Views
	Architectural Descriptions (ADs)
	Other Evaluation Criteria
	References

	Chapter 8: Descriptions, Views, and Tradeoffs
	Introduction
	Descriptions
	Views
	Tradeoffs
	References

	Chapter 9: DoDAF and Other Frameworks
	Department of Defense Architectural Framework (DoDAF)
	MoDAF
	TOGAF
	The ZACHMAN Framework
	Strategic View of the Enterprise
	Other Frameworks and Architectures
	References

	Chapter 10: Software
	Software Engineering Architecting
	A Unified Approach
	Summary, Future Actions, and Research
	Research Areas
	Note
	References

	Chapter 11: Cost Estimation
	Method One: Top-Level Design
	Method Two: Cost Estimating Relationships (CERs)
	COCOMO I
	COCOMO II
	Changing Costs
	Cost Information Sources
	References

	Chapter 12: Summary
	I: Basic Elements of the System Architecting Process
	II: The Importance of a Cost-Effectiveness Evaluation
	III: Functional Decomposition
	IV: The Synthesis Step Reveals and Defines the Architecture
	V: Rechtin’s “Kiss” Notion
	VI: Problems with “Views”
	VII: Centrality of Defining Alternatives
	VIII: Lateral vs. Drilling Down Approach
	IX: A Framework for Tradeoffs and Sensitivities
	X: Software System Architecting
	X1: A Time Constrained Preliminary Design Process
	X11: System Architecting as a Group Process
	References

	Appendix A: Group Architecting
	The First Team Meeting
	Group Problem-Solving
	Behavior to Avoid
	GroupThink
	References

	Appendix B: Functional Decomposition
	Information Technology (IT)
	Communications
	Space Systems
	Transportation Systems
	References

	Appendix C: Special Topics
	Index

