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Preface

Applications of Bayesian networks have multiplied in recent years, spanning
such different topics as systems biology, economics, social sciences and medical
informatics. Different aspects and properties of this class of models are crucial
in each field: the possibility of learning causal effects from observational data
in social sciences, where collecting experimental data is often not possible; the
intuitive graphical representation, which provides a qualitative understanding
of pathways in biological sciences; the ability to construct complex hierarchi-
cal models for phenomena that involve many interrelated components, using
the most appropriate probability distribution for each of them. However, all
these capabilities are built on the solid foundations provided by a small set
of core definitions and properties, on which we will focus for most of the
book. Handling high-dimensional data and missing values, the fine details of
causal reasoning, learning under sets of additional assumptions specific to a
particular field, and other advanced topics are beyond the scope of this book.
They are thoroughly explored in monographs such as Nagarajan et al. (2013),
Pourret et al. (2008) and Pearl (2009).

The choice of the R language is motivated, likewise, by its increasing popu-
larity across different disciplines. Its main shortcoming is that R only provides
a command-line interface, which comes with a fairly steep learning curve and is
intimidating to practitioners of disciplines in which computer programming is
not a core topic. However, once mastered, R provides a very versatile environ-
ment for both data analysis and the prototyping of new statistical methods.
The availability of several contributed packages covering various aspects of
Bayesian networks means that the reader can explore the contents of this
book without reimplementing standard approaches from literature. Among
these packages, we focus mainly on bnlearn (written by the first author, at
version 3.5 at the time of this writing) to allow the reader to concentrate on
studying Bayesian networks without having to first figure out the peculiarities
of each package. A much better treatment of their capabilities is provided in
Højsgaard et al. (2012) and in the respective documentation resources, such
as vignettes and reference papers.

Bayesian Networks: With Examples in R aims to introduce the reader to
Bayesian networks using a hands-on approach, through simple yet meaningful
examples explored with the R software for statistical computing. Indeed, being
hands-on is a key point of this book, in that the material strives to detail
each modelling step in a simple way and with supporting R code. We know
very well that a number of good books are available on this topic, and we

xiii
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referenced them in the “Further Reading” sections at the end of each chapter.
However, we feel that the way we chose to present the material is different and
that it makes this book suitable for a first introductory overview of Bayesian
networks. At the same time, it may also provide a practical way to use, thanks
to R, such a versatile class of models.

We hope that the book will also be useful to non-statisticians working in
very different fields. Obviously, it is not possible to provide worked-out exam-
ples covering every field in which Bayesian networks are relevant. Instead, we
prefer to give a clear understanding of the general approach and of the steps it
involves. Therefore, we explore a limited number of examples in great depth,
considering that experts will be able to reinterpret them in the respective
fields. We start from the simplest notions, gradually increasing complexity in
later chapters. We also distinguish the probabilistic models from their estima-
tion with data sets: when the separation is not clear, confusion is apparent
when performing inference.

Bayesian Networks: With Examples in R is suitable for teaching in a
semester or half-semester course, possibly integrating other books. More ad-
vanced theoretical material and the analysis of two real-world data sets are
included in the second half of the book for further understanding of Bayesian
networks. The book is targeted at the level of a M.Sc. or Ph.D. course, de-
pending on the background of the student. In the case of disciplines such as
mathematics, statistics and computer science the book is suitable for M.Sc.
courses, while for life and social sciences the lack of a strong grounding in
probability theory may make the book more suitable for a Ph.D. course. In
the former, the reader may prefer to first review the second half of the book, to
grasp the theoretical aspects of Bayesian networks before applying them; while
in the latter he can get a hang of what Bayesian networks are about before
investing time in studying their underpinnings. Introductory material on prob-
ability, statistics and graph theory is included in the appendixes. Furthermore,
the solutions to the exercises are included in the book for the convenience of
the reader. The real-world examples in the last chapter will motivate students
by showing current applications in the literature. Introductory examples in
earlier chapters are more varied in topic, to present simple applications in
different contexts.

The skills required to understand the material are mostly at the level of
a B.Sc. graduate. Nevertheless, a few topics are based on more specialised
concepts whose illustration is beyond the scope of this book. The basics of R

programming are not covered in the book, either, because of the availability
of accessible and thorough references such as Venables and Ripley (2002),
Spector (2009) and Crawley (2013). Basic graph and probability theory are
covered in the appendixes for easy reference. Pointers to literature are provided
at the end of each chapter, and supporting material will be available online
from www.bnlearn.com.

The book is organised as follows. Discrete Bayesian networks are described
first (Chapter 1), followed by Gaussian Bayesian networks (Chapter 2). Hybrid
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networks (which include arbitrary random variables, and typically mix contin-
uous and discrete ones) are covered in Chapter 3. These chapters explain the
whole process of Bayesian network modelling, from structure learning to pa-
rameter learning to inference. All steps are illustrated with R code. A concise
but rigorous treatment of the fundamentals of Bayesian networks is given in
Chapter 4, and includes a brief introduction to causal Bayesian networks. For
completeness, we also provide an overview of the available software in Chapter
5, both in R and other software packages. Subsequently, two real-world exam-
ples are analysed in Chapter 6. The first replicates the study in the landmark
causal protein-signalling network paper published in Science by Sachs et al.
(2005). The second investigates possible graphical modelling approaches in
predicting the contributions of fat, lean and bone to the composition of dif-
ferent body parts.

Last but not least, we are immensely grateful to friends and colleagues who
helped us in planning and writing this book, and its French version Résaux
Bayésiens avec R: élaboration, manipulation et utilisation en modélisation
appliquée. We are also grateful to John Kimmel of Taylor & Francis for his
dedication in improving this book and organising draft reviews. We hope not
to have unduly raised his stress levels, as we did our best to incorporate
the reviewers’ feedback and we even submitted the final manuscript on time.
Likewise, we thank the people at EDP Sciences for their interest in publishing
a book on this topic: they originally asked the second author to write a book in
French. He was not confident enough to write a book alone and looked for a co-
author, thus starting the collaboration with the first author and a wonderful
exchange of ideas. The latter, not being very proficient in the French language,
prepared the English draft from which this Chapman & Hall book originates.
The French version is also planned to be in print by the end of this year.

London, United Kingdom Marco Scutari
Jouy-en-Josas, France Jean-Baptiste Denis
March 2014





1

The Discrete Case: Multinomial Bayesian
Networks

In this chapter we will introduce the fundamental ideas behind Bayesian net-
works (BNs) and their basic interpretation, using a hypothetical survey on
the usage of different means of transport. We will focus on modelling discrete
data, leaving continuous data to Chapter 2 and more complex data types to
Chapter 3.

1.1 Introductory Example: Train Use Survey

Consider a simple, hypothetical survey whose aim is to investigate the usage
patterns of different means of transport, with a focus on cars and trains. Such
surveys are used to assess customer satisfaction across different social groups,
to evaluate public policies or for urban planning. Some real-world examples
can be found, for example, in Kenett et al. (2012).

In our current example we will examine, for each individual, the following
six discrete variables (labels used in computations and figures are reported in
parenthesis):

• Age (A): the age, recorded as young (young) for individuals below 30 years
old, adult (adult) for individuals between 30 and 60 years old, and old
(old) for people older than 60.

• Sex (S): the biological sex of the individual, recorded as male (M) or female
(F).

• Education (E): the highest level of education or training completed by
the individual, recorded either as up to high school (high) or university
degree (uni).

• Occupation (O): whether the individual is an employee (emp) or a self-
employed (self) worker.

• Residence (R): the size of the city the individual lives in, recorded as
either small (small) or big (big).

1



2 Bayesian Networks: With Examples in R

• Travel (T): the means of transport favoured by the individual, recorded
either as car (car), train (train) or other (other).

In the scope of this survey, each variable falls into one of three groups. Age and
Sex are demographic indicators. In other words, they are intrinsic characteris-
tics of the individual; they may result in different patterns of behaviour, but
are not influenced by the individual himself. On the other hand, the opposite
is true for Education, Occupation and Residence. These variables are socioeco-
nomic indicators, and describe the individual’s position in society. Therefore,
they provide a rough description of the individual’s expected lifestyle; for ex-
ample, they may characterise his spending habits or his work schedule. The
last variable, Travel, is the target of the survey, the quantity of interest whose
behaviour is under investigation.

1.2 Graphical Representation

The nature of the variables recorded in the survey, and more in general of the
three categories they belong to, suggests how they may be related with each
other. Some of those relationships will be direct, while others will be mediated
by one or more variables (indirect).

Both kinds of relationships can be represented effectively and intuitively
by means of a directed graph, which is one of the two fundamental entities
characterising a BN. Each node in the graph corresponds to one of the vari-
ables in the survey. In fact, they are usually referred to interchangeably in
literature. Therefore, the graph produced from this example will contain 6
nodes, labelled after the variables (A, S, E, O, R and T). Direct dependence
relationships are represented as arcs between pairs of variables (i.e., A → E

means that E depends on A). The node at the tail of the arc is called the
parent, while that at the head (where the arrow is) is called the child. Indirect
dependence relationships are not explicitly represented. However, they can be
read from the graph as sequences of arcs leading from one variable to the other
through one or more mediating variables (i.e., the combination of A → E and
E → R means that R depends on A through E). Such sequences of arcs are
said to form a path leading from one variable to the other; these two variables
must be distinct. Paths of the form A → . . .→ A, which are known as cycles,
are not allowed. For this reason, the graphs used in BNs are called directed
acyclic graphs (DAGs).

Note, however, that some caution must be exercised in interpreting both
direct and indirect dependencies. The presence of arrows or arcs seems to
imply, at an intuitive level, that for each arc one variable should be interpreted
as a cause and the other as an effect (i.e. A → E means that A causes E). This
interpretation, which is called causal, is difficult to justify in most situations;
for this reason, in general we speak about dependence relationships instead
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of causal effects. The assumptions required for causal BN modelling will be
discussed in Section 4.7.

To create and manipulate DAGs in the context of BNs, we will use mainly
the bnlearn package (short for “Bayesian network learning”).

> library(bnlearn)

As a first step, we create a DAG with one node for each variable in the survey
and no arcs.

> dag <- empty.graph(nodes = c("A", "S", "E", "O", "R", "T"))

Such a DAG is usually called an empty graph, because it has an empty arc
set. The DAG is stored in an object of class bn, which looks as follows when
printed.

> dag

Random/Generated Bayesian network

model:

[A][S][E][O][R][T]

nodes: 6

arcs: 0

undirected arcs: 0

directed arcs: 0

average markov blanket size: 0.00

average neighbourhood size: 0.00

average branching factor: 0.00

generation algorithm: Empty

Now we can start adding the arcs that encode the direct dependencies
between the variables in the survey. As we said in the previous section, Age
and Sex are not influenced by any of the other variables. Therefore, there are
no arcs pointing to either variable. On the other hand, both Age and Sex
have a direct influence on Education. It is well known, for instance, that the
number of people attending universities has increased over the years. As a
consequence, younger people are more likely to have a university degree than
older people.

> dag <- set.arc(dag, from = "A", to = "E")

Similarly, Sex also influences Education; the gender gap in university appli-
cations has been widening for many years, with women outnumbering and
outperforming men.

> dag <- set.arc(dag, from = "S", to = "E")
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In turn, Education strongly influences both Occupation and Residence.
Clearly, higher education levels help in accessing more prestigious professions.
In addition, people often move to attend a particular university or to find a
job that matches the skills they acquired in their studies.

> dag <- set.arc(dag, from = "E", to = "O")

> dag <- set.arc(dag, from = "E", to = "R")

Finally, the preferred means of transport are directly influenced by both Oc-
cupation and Residence. For the former, the reason is that a few jobs require
periodic long-distance trips, while others require more frequent trips but on
shorter distances. For the latter, the reason is that both commute time and
distance are deciding factors in choosing between travelling by car or by train.

> dag <- set.arc(dag, from = "O", to = "T")

> dag <- set.arc(dag, from = "R", to = "T")

Now that we have added all the arcs, the DAG in the dag object encodes
the desired direct dependencies. Its structure is shown in Figure 1.1, and can
be read from the model formula generated from the dag object itself.

> dag

Random/Generated Bayesian network

model:

[A][S][E|A:S][O|E][R|E][T|O:R]

nodes: 6

arcs: 6

undirected arcs: 0

directed arcs: 6

average markov blanket size: 2.67

average neighbourhood size: 2.00

average branching factor: 1.00

generation algorithm: Empty

Direct dependencies are listed for each variable, denoted by a bar (|) and
separated by semicolons (:). For example, [E|A:S] means that A → E and
S → E; while [A] means that there is no arc pointing towards A. This repre-
sentation of the graph structure is designed to recall a product of conditional
probabilities, for reasons that will be clear in the next section, and can be
produced with the modelstring function.

> modelstring(dag)

[1] "[A][S][E|A:S][O|E][R|E][T|O:R]"
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Age (A) Sex (S)

Education (E)

Residence (R)Occupation (O)

Travel (T)

Residence (R)Occupation (O)

Travel (T)

Education (E)

Occupation (O)

Age (A) Sex (S)

Age (A) Sex (S)

Education (E)

Education (E)

Residence (R)

Figure 1.1
DAG representing the dependence relationships linking the variables recorded
in the survey: Age (A), Sex (S), Education (E), Occupation (O), Residence (R)
and Travel (T). The corresponding conditional probability tables are reported
below.
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bnlearn provides many other functions to investigate and manipulate bn

objects. For a comprehensive overview, we refer the reader to the documenta-
tion included in the package. Two basic examples are nodes and arcs.

> nodes(dag)

[1] "A" "S" "E" "O" "R" "T"

> arcs(dag)

from to

[1,] "A" "E"

[2,] "S" "E"

[3,] "E" "O"

[4,] "E" "R"

[5,] "O" "T"

[6,] "R" "T"

The latter function also provides a way to add arcs to a DAG that is faster
than setting them one at a time. Obviously, the approach we used above is too
cumbersome for large DAGs. Instead, we can create a matrix with the same
structure as that returned by arcs and set the whole arc set at once.

> dag2 <- empty.graph(nodes = c("A", "S", "E", "O", "R", "T"))

> arc.set <- matrix(c("A", "E",

+ "S", "E",

+ "E", "O",

+ "E", "R",

+ "O", "T",

+ "R", "T"),

+ byrow = TRUE, ncol = 2,

+ dimnames = list(NULL, c("from", "to")))

> arcs(dag2) <- arc.set

The resulting DAG is identical to the previous one, dag.

> all.equal(dag, dag2)

[1] TRUE

Furthermore, both approaches guarantee that the DAG will indeed be acyclic;
trying to introduce a cycle in the DAG returns an error.

> try(set.arc(dag, from = "T", to = "E"))

Error in arc.operations(x = x, from = from, to = to, op = "set",

check.cycles = check.cycles, :

the resulting graph contains cycles.



The Discrete Case: Multinomial Bayesian Networks 7

1.3 Probabilistic Representation

In the previous section we represented the interactions between Age, Sex,
Education, Occupation, Residence and Travel using a DAG. To complete the
BN modelling the survey, we will now specify a joint probability distribution
over these variables. All of them are discrete and defined on a set of non-
ordered states (called levels in R).

> A.lv <- c("young", "adult", "old")

> S.lv <- c("M", "F")

> E.lv <- c("high", "uni")

> O.lv <- c("emp", "self")

> R.lv <- c("small", "big")

> T.lv <- c("car", "train", "other")

Therefore, the natural choice for the joint probability distribution is a multi-
nomial distribution, assigning a probability to each combination of states of
the variables in the survey. In the context of BNs, this joint distribution is
called the global distribution.

However, using the global distribution directly is difficult; even for small
problems, such as that we are considering, the number of its parameters is
very high. In the case of this survey, the parameter set includes the 143 prob-
abilities corresponding to the combinations of the levels of all the variables.
Fortunately, we can use the information encoded in the DAG to break down
the global distribution into a set of smaller local distributions, one for each
variable. Recall that arcs represent direct dependencies; if there is an arc from
one variable to another, the latter depends on the former. In other words,
variables that are not linked by an arc are conditionally independent. As a
result, we can factorise the global distribution as follows:

Pr(A, S, E, O, R, T) = Pr(A) Pr(S) Pr(E | A, S) Pr(O | E) Pr(R | E) Pr(T | O, R).
(1.1)

Equation (1.1) provides a formal definition of how the dependencies encoded
in the DAG map into the probability space via conditional independence re-
lationships. The absence of cycles in the DAG ensures that the factorisation
is well defined. Each variable depends only on its parents; its distribution is
univariate and has a (comparatively) small number of parameters. Even the
set of all the local distributions has, overall, fewer parameters than the global
distribution. The latter represents a more general model than the former,
because it does not make any assumption on the dependencies between the
variables. In other words, the factorisation in Equation (1.1) defines a nested
model or a submodel of the global distribution.
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In our survey, Age and Sex are modelled by simple, unidimensional prob-
ability tables (they have no parent).

> A.prob <- array(c(0.30, 0.50, 0.20), dim = 3,

+ dimnames = list(A = A.lv))

> A.prob

A

young adult old

0.3 0.5 0.2

> S.prob <- array(c(0.60, 0.40), dim = 2,

+ dimnames = list(S = S.lv))

> S.prob

S

M F

0.6 0.4

Occupation and Residence, which depend on Education, are modelled by two-
dimensional conditional probability tables. Each column corresponds to one
level of the parent, and holds the distribution of the variable conditional on
that particular level. As a result, probabilities sum up to 1 within each column.

> O.prob <- array(c(0.96, 0.04, 0.92, 0.08), dim = c(2, 2),

+ dimnames = list(O = O.lv, E = E.lv))

> O.prob

E

O high uni

emp 0.96 0.92

self 0.04 0.08

> R.prob <- array(c(0.25, 0.75, 0.20, 0.80), dim = c(2, 2),

+ dimnames = list(R = R.lv, E = E.lv))

> R.prob

E

R high uni

small 0.25 0.2

big 0.75 0.8

For these one- and two-dimensional distributions, we can also use the matrix

function to create the (conditional) probability tables. The syntax is almost
identical to that of array; the difference is that only one dimension (either
the number of rows, nrow, or the number of columns, ncol) must be specified.

> R.prob <- matrix(c(0.25, 0.75, 0.20, 0.80), ncol = 2,

+ dimnames = list(R = R.lv, E = E.lv))
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> R.prob

E

R high uni

small 0.25 0.2

big 0.75 0.8

Finally, Education and Travel are modelled as three-dimensional tables, since
they have two parents each (Age and Sex for Education, Occupation and
Residence for Travel). Each column corresponds to one combination of the
levels of the parents, and holds the distribution of the variable conditional on
that particular combination.

> E.prob <- array(c(0.75, 0.25, 0.72, 0.28, 0.88, 0.12, 0.64,

+ 0.36, 0.70, 0.30, 0.90, 0.10), dim = c(2, 3, 2),

+ dimnames = list(E = E.lv, A = A.lv, S = S.lv))

> T.prob <- array(c(0.48, 0.42, 0.10, 0.56, 0.36, 0.08, 0.58,

+ 0.24, 0.18, 0.70, 0.21, 0.09), dim = c(3, 2, 2),

+ dimnames = list(T = T.lv, O = O.lv, R = R.lv))

Overall, the local distributions we defined above have just 21 parameters, com-
pared to the 143 of the global distribution. Furthermore, local distributions
can be handled independently from each other, and have at most 8 parame-
ters each. This reduction in dimension is a fundamental property of BNs, and
makes their application feasible for high-dimensional problems.

Now that we have defined both the DAG and the local distribution corre-
sponding to each variable, we can combine them to form a fully-specified BN.
For didactic purposes, we recreate the DAG using the model formula interface
provided by modelstring, whose syntax is almost identical to Equation (1.1).
The nodes and the parents of each node can be listed in any order, thus al-
lowing us to follow the logical structure of the network in writing the formula.

> dag3 <- model2network("[A][S][E|A:S][O|E][R|E][T|O:R]")

The resulting DAG is identical to that we created in the previous section, as
shown below.

> all.equal(dag, dag3)

[1] TRUE

Then we combine the DAG we stored in dag and a list containing the local
distributions, which we will call cpt, into an object of class bn.fit called bn.

> cpt <- list(A = A.prob, S = S.prob, E = E.prob, O = O.prob,

+ R = R.prob, T = T.prob)

> bn <- custom.fit(dag, cpt)
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The number of parameters of the BN can be computed with the nparams

function and is indeed 21, as expected from the parameter sets of the local
distributions.

> nparams(bn)

[1] 21

Objects of class bn.fit are used to describe BNs in bnlearn. They include
information about both the DAG (such as the parents and the children of each
node) and the local distributions (their parameters). For most practical pur-
poses, they can be used as if they were objects of class bn when investigating
graphical properties. So, for example,

> arcs(bn)

from to

[1,] "A" "E"

[2,] "S" "E"

[3,] "E" "O"

[4,] "E" "R"

[5,] "O" "T"

[6,] "R" "T"

and the same holds for other functions such as nodes, parents, and children.
Furthermore, the conditional probability tables can either be printed from the
bn.fit object,

> bn$R

Parameters of node R (multinomial distribution)

Conditional probability table:

E

R high uni

small 0.25 0.20

big 0.75 0.80

or extracted for later use with the coef function as follows.

> R.cpt <- coef(bn$R)

Just typing

> bn

causes all the conditional probability tables in the BN to be printed.
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1.4 Estimating the Parameters: Conditional Probability

Tables

For the hypothetical survey described in this chapter, we have assumed to
know both the DAG and the parameters of the local distributions defining the
BN. In this scenario, BNs are used as expert systems, because they formalise
the knowledge possessed by one or more experts in the relevant fields. However,
in most cases the parameters of the local distributions will be estimated (or
learned) from an observed sample. Typically, the data will be stored in a text
file we can import with read.table,

> survey <- read.table("survey.txt", header = TRUE)

with one variable per column (labelled in the first row) and one observation
per line.

> head(survey)

A R E O S T

1 adult big high emp F car

2 adult small uni emp M car

3 adult big uni emp F train

4 adult big high emp M car

5 adult big high emp M car

6 adult small high emp F train

In the case of this survey, and of discrete BNs in general, the parameters
to estimate are the conditional probabilities in the local distributions. They
can be estimated, for example, with the corresponding empirical frequencies
in the data set, e.g.,

P̂r(O = emp | E = high) =
P̂r(O = emp, E = high)

P̂r(E = high)
=

=
number of observations for which O = emp and E = high

number of observations for which E = high
. (1.2)

This yields the classic frequentist and maximum likelihood estimates. In
bnlearn, we can compute them with the bn.fit function. bn.fit comple-
ments the custom.fit function we used in the previous section; the latter
constructs a BN using a set of custom parameters specified by the user, while
the former estimates the same from the data.

> bn.mle <- bn.fit(dag, data = survey, method = "mle")

Similarly to custom.fit, bn.fit returns an object of class bn.fit. The
method argument determines which estimator will be used; in this case, "mle"
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for the maximum likelihood estimator. Again, the structure of the network is
assumed to be known, and is passed to the function via the dag object. For
didactic purposes, we can also compute the same estimates manually

> prop.table(table(survey[, c("O", "E")]), margin = 2)

E

O high uni

emp 0.9808 0.9259

self 0.0192 0.0741

and verify that we get the same result as bn.fit.

> bn.mle$O

Parameters of node O (multinomial distribution)

Conditional probability table:

E

O high uni

emp 0.9808 0.9259

self 0.0192 0.0741

As an alternative, we can also estimate the same conditional probabilities in
a Bayesian setting, using their posterior distributions. An overview of the un-
derlying probability theory and the distributions relevant for BNs is provided
in Appendixes B.3, B.4 and B.5. In this case, the method argument of bn.fit

must be set to "bayes".

> bn.bayes <- bn.fit(dag, data = survey, method = "bayes",

+ iss = 10)

The estimated posterior probabilities are computed from a uniform prior over
each conditional probability table. The iss optional argument, whose name
stands for imaginary sample size (also known as equivalent sample size), de-
termines how much weight is assigned to the prior distribution compared to
the data when computing the posterior. The weight is specified as the size of
an imaginary sample supporting the prior distribution. Its value is divided by
the number of cells in the conditional probability table (because the prior is
flat) and used to compute the posterior estimate as a weighted mean with the
empirical frequencies. So, for example, suppose we have a sample of size n,
which we can compute as nrow(survey). If we let

p̂emp,high =
number of observations for which O = emp and E = high

n
(1.3)

p̂high =
number of observations for which E = high

n
(1.4)
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and we denote the corresponding prior probabilities as

πemp,high =
1

nO× nE
and πhigh =

n0

nO× nE
(1.5)

where nO = nlevels(bn.bayes$O) and nE = nlevels(bn.bayes$E), we
have that

P̂r(O = emp, E = high) =
iss

n + iss
πemp,high +

n

n + iss
p̂emp,high (1.6)

P̂r(E = high) =
iss

n + iss
πhigh +

n

n + iss
p̂high (1.7)

and therefore that

P̂r(O = emp | E = high) =
P̂r(O = emp, E = high)

P̂r(E = high)
. (1.8)

The value of iss is typically chosen to be small, usually between 1 and 15, to
allow the prior distribution to be easily dominated by the data. Such small
values result in conditional probabilities that are smoother but still close to
the empirical frequencies (i.e. p̂emp,high) they are computed from.

> bn.bayes$O

Parameters of node O (multinomial distribution)

Conditional probability table:

E

O high uni

emp 0.9743 0.9107

self 0.0257 0.0893

As we can see from the conditional probability table above, all the poste-
rior estimates are farther from both 0 and 1 than the corresponding maximum
likelihood estimates due to the influence of the prior distribution. This is desir-
able for several reasons. First of all, this ensures that the regularity conditions
of model estimation and inference methods are fulfilled. In particular, it is not
possible to obtain sparse conditional probability tables (with many zero cells)
even from small data sets. Furthermore, posterior estimates are more robust
than maximum likelihood estimates and result in BNs with better predictive
power.

Increasing the value of iss makes the posterior distribution more and more
flat, pushing it towards the uniform distribution used as the prior. As shown
in Figure 1.2, for large values of iss the conditional posterior distributions for
Pr(O | E = high) and Pr(O | E = uni) assign a probability of approximately
0.5 to both self and emp. This trend is already apparent if we compare
the conditional probabilities obtained for iss = 10 with those for iss = 20,
reported below.
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Figure 1.2
Conditional probability distributions for O given both possible values of E, that
is, Pr(O | E = high) and Pr(O | E = uni), converge to uniform distributions as
the imaginary sample size increases.

> bn.bayes <- bn.fit(dag, data = survey, method = "bayes",

+ iss = 20)

> bn.bayes$O

Parameters of node O (multinomial distribution)

Conditional probability table:

E

O high uni

emp 0.968 0.897

self 0.032 0.103

1.5 Learning the DAG Structure: Tests and Scores

In the previous sections we have assumed that the DAG underlying the BN is
known. In other words, we rely on prior knowledge on the phenomenon we are
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modelling to decide which arcs are present in the graph and which are not.
However, this is not always possible or desired; the structure of the DAG itself
may be the object of our investigation. It is common in genetics and systems
biology, for instance, to reconstruct the molecular pathways and networks
underlying complex diseases and metabolic processes. An outstanding example
of this kind of study can be found in Sachs et al. (2005) and will be explored
in Chapter 6. In the context of social sciences, the structure of the DAG may
identify which nodes are directly related to the target of the analysis and may
therefore be used to improve the process of policy making. For instance, the
DAG of the survey we are using as an example suggests that train fares should
be adjusted (to maximise profit) on the basis of Occupation and Residence
alone.

Learning the DAG of a BN is a complex task, for two reasons. First, the
space of the possible DAGs is very big; the number of DAGs increases super-
exponentially as the number of nodes grows. As a result, only a small fraction
of its elements can be investigated in a reasonable time. Furthermore, this
space is very different from real spaces (e.g., R, R2, R3, etc.) in that it is not
continuous and has a finite number of elements. Therefore, ad-hoc algorithms
are required to explore it. We will investigate the algorithms proposed for this
task and their theoretical foundations in Section 4.5. For the moment, we will
limit our attention to the two classes of statistical criteria used by those algo-
rithms to evaluate DAGs: conditional independence tests and network scores.

1.5.1 Conditional Independence Tests

Conditional independence tests focus on the presence of individual arcs. Since
each arc encodes a probabilistic dependence, conditional independence tests
can be used to assess whether that probabilistic dependence is supported by
the data. If the null hypothesis (of conditional independence) is rejected, the
arc can be considered for inclusion in the DAG. For instance, consider adding
an arc from Education to Travel (E → T) to the DAG shown in Figure 1.1.
The null hypothesis is that Travel is probabilistically independent (⊥⊥P ) from
Education conditional on its parents, i.e.,

H0 : T ⊥⊥P E | {O, R}, (1.9)

and the alternative hypothesis is that

H1 : T 6⊥⊥P E | {O, R}. (1.10)

We can test this null hypothesis by adapting either the log-likelihood ratio
G2 or Pearson’s X2 to test for conditional independence instead of marginal
independence. For G2, the test statistic assumes the form

G2(T, E | O, R) =
∑

t∈T

∑

e∈E

∑

k∈O×R

ntek

n
log

ntekn++k

nt+kn+ek

, (1.11)
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where we denote the categories of Travel with t ∈ T, the categories of Edu-
cation with e ∈ E, and the configurations of Occupation and Residence with
k ∈ O × R. Hence, ntek is the number of observations for the combination of
a category t of Travel, a category e of Education and a category k of O × R.
The use of a "+" subscript denotes the sum over an index, as in the classic
book from Agresti (2013), and is used to indicate the marginal counts for the
remaining variables. So, for example, nt+k is the number of observations for t
and k obtained by summing over all the categories of Education. For Pearson’s
X2, using the same notation we have that

X2(T, E | O, R) =
∑

t∈T

∑

e∈E

∑

k∈O×R

(ntek −mtek)
2

mtek

, where mtek =
nt+kn+ek

n++k

.

(1.12)

Both tests have an asymptotic χ2 distribution under the null hypothesis,
in this case with

> (nlevels(survey[, "T"]) - 1) * (nlevels(survey[, "E"]) - 1) *

+ (nlevels(survey[, "O"]) * nlevels(survey[, "R"]))

[1] 8

degrees of freedom. Conditional independence results in small values of G2

and X2; conversely, the null hypothesis is rejected for large values of the
test statistics, which increase with the strength of the conditional dependence
between the variables.

The ci.test function from bnlearn implements both G2 and X2, in addi-
tion to other tests which will be covered in Section 4.5.1.1. The G2 test, which
is equivalent to the mutual information test from information theory, is used
when test = "mi".

> ci.test("T", "E", c("O", "R"), test = "mi", data = survey)

Mutual Information (disc.)

data: T ~ E | O + R

mi = 9.88, df = 8, p-value = 0.2733

alternative hypothesis: true value is greater than 0

Pearson’s X2 test is used when test = "x2".

> ci.test("T", "E", c("O", "R"), test = "x2", data = survey)

Pearson's X^2

data: T ~ E | O + R

x2 = 5.74, df = 8, p-value = 0.6766

alternative hypothesis: true value is greater than 0
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Both tests return very large p-values, indicating that the dependence relation-
ship encoded by E× T is not significant given the current DAG structure.

We can test in a similar way whether one of the arcs in the DAG should
be removed because the dependence relationship it encodes is not supported
by the data. So, for example, we can remove O → T by testing

H0 : T ⊥⊥P O | R versus H1 : T 6⊥⊥P O | R (1.13)

as follows.

> ci.test("T", "O", "R", test = "x2", data = survey)

Pearson's X^2

data: T ~ O | R

x2 = 2.34, df = 4, p-value = 0.6727

alternative hypothesis: true value is greater than 0

Again, we find that O× T is not significant.
The task of testing each arc in turn for significance can be automated using

the arc.strength function, and specifying the test label with the criterion

argument.

> arc.strength(dag, data = survey, criterion = "x2")

from to strength

1 A E 0.00098

2 S E 0.00125

3 E O 0.00264

4 E R 0.00056

5 O T 0.67272

6 R T 0.00168

arc.strength is designed to measure the strength of the probabilistic de-
pendence corresponding to each arc by removing that particular arc from the
graph and quantifying the change with some probabilistic criterion. Possible
choices are a conditional independence test (in the example above) or a net-
work score (in the next section). In the case of conditional independence tests,
the value of the criterion argument is the same as that of the test argument
in ci.test, and the test is for the to node to be independent from the from

node conditional on the remaining parents of to. The reported strength is
the resulting p-value. What we see from the output above is that all arcs with
the exception of O→ T have p-values smaller than 0.05 and are well supported
by the data.

1.5.2 Network Scores

Unlike conditional independence tests, network scores focus on the DAG as a
whole; they are goodness-of-fit statistics measuring how well the DAG mirrors
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the dependence structure of the data. Again, several scores are in common use.
One of them is the Bayesian Information criterion (BIC), which for our survey
BN takes the form

BIC = log P̂r(A, S, E, O, R, T)− d

2
log n =

=

[
log P̂r(A)− dA

2
log n

]
+

[
log P̂r(S)− dS

2
log n

]
+

+

[
log P̂r(E | A, S)− dE

2
log n

]
+

[
log P̂r(O | E)− dO

2
log n

]
+

+

[
log P̂r(R | E)− dR

2
log n

]
+

[
log P̂r(T | O, R)− dT

2
log n

]
(1.14)

where n is the sample size, d is the number of parameters of the whole network
(i.e., 21) and dA, dS, dE, dO, dR and dT are the numbers of parameters associated
with each node. The decomposition in Equation (1.1) makes it easy to compute
BIC from the local distributions. Another score commonly used in literature
is the Bayesian Dirichlet equivalent uniform (BDeu) posterior probability of
the DAG associated with a uniform prior over both the space of the DAGs and
of the parameters; its general form is given in Section 4.5. It is often denoted
simply as BDe. Both BIC and BDe assign higher scores to DAGs that fit the
data better.

Both scores can be computed in bnlearn using the score function; BIC is
computed when type = "bic", and log BDe when type = "bde".

> score(dag, data = survey, type = "bic")

[1] -2012.69

> score(dag, data = survey, type = "bde", iss = 10)

[1] -1998.28

Note that the iss argument for BDe is the same imaginary sample size we
introduced when computing posterior estimates of the BN’s parameters in
Section 1.4. As before, it can be interpreted as the weight assigned to the
(flat) prior distribution in terms of the size of an imaginary sample. For small
values of iss or large observed samples, log BDe and BIC scores yield similar
values.

> score(dag, data = survey, type = "bde", iss = 1)

[1] -2015.65

Using either of these scores it is possible to compare different DAGs and
investigate which fits the data better. For instance, we can consider once more
whether the DAG from Figure 1.1 fits the survey data better before or after
adding the arc E → T.



The Discrete Case: Multinomial Bayesian Networks 19

> dag4 <- set.arc(dag, from = "E", to = "T")

> nparams(dag4, survey)

[1] 29

> score(dag4, data = survey, type = "bic")

[1] -2032.6

Again, adding E → T is not beneficial, as the increase in log P̂r(A, S, E, O, R, T)
is not sufficient to offset the heavier penalty from the additional parameters.
The score for dag4 (−2032.6) is lower than that of dag3 (−2012.69).

Scores can also be used to compare completely different networks, unlike
conditional independence tests. We can even generate a DAG at random with
random.graph and compare it to the previous DAGs through its score.

> rnd <- random.graph(nodes = c("A", "S", "E", "O", "R", "T"))

> modelstring(rnd)

[1] "[A][S|A][E|A:S][O|S:E][R|S:E][T|S:E]"

> score(rnd, data = survey, type = "bic")

[1] -2034.99

As expected, rnd is worse than dag and even dag4; after all, neither data nor
common sense are used to select its structure! Learning the DAG from survey

yields a much better network. There are several algorithms that tackle this
problem by searching for the DAG that maximises a given network score; some
will be illustrated in Section 4.5.1.2. A simple one is hill-climbing: starting
from a DAG with no arcs, it adds, removes and reverses one arc at a time and
picks the change that increases the network score the most. It is implemented
in the hc function, which in its simplest form takes the data (survey) as the
only argument and defaults to the BIC score.

> learned <- hc(survey)

> modelstring(learned)

[1] "[R][E|R][T|R][A|E][O|E][S|E]"

> score(learned, data = survey, type = "bic")

[1] -1998.43

Other scores can be specified with the score argument; for example, we can
change the default score = "bic" to score = "bde".

> learned2 <- hc(survey, score = "bde")

Unsurprisingly, removing any arc from learned decreases its BIC score. We
can confirm this conveniently using arc.strength, which reports the change
in the score caused by an arc removal as the arc’s strength when criterion

is a network score.
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> arc.strength(learned, data = survey, criterion = "bic")

from to strength

1 R E -3.390

2 E S -2.726

3 R T -1.848

4 E A -1.720

5 E O -0.827

This is not true for dag, suggesting that not all the dependencies it encodes
can be learned correctly from survey.

> arc.strength(dag, data = survey, criterion = "bic")

from to strength

1 A E 2.489

2 S E 1.482

3 E O -0.827

4 E R -3.390

5 O T 10.046

6 R T 2.973

In particular, removing O → T causes a marked increase in the BIC score,
which is consistent with the high p-value we observed for this arc when using
arc.strength in the previous section.

1.6 Using Discrete BNs

A BN can be used for inference through either its DAG or the set of local
distributions. The process of answering questions using either of these two
approaches is known in computer science as querying. If we consider a BN
as an expert system, we can imagine asking it questions (i.e., querying it)
as we would a human expert and getting answers out of it. They may take
the form of probabilities associated with an event under specific conditions,
leading to conditional probability queries; they may validate the association
between two variables after the influence of other variables is removed, leading
to conditional independence queries; or they may identify the most likely state
of one or more variables, leading to most likely explanation queries.

1.6.1 Using the DAG Structure

Using the DAG we saved in dag, we can investigate whether a variable is
associated to another, essentially asking a conditional independence query.
Both direct and indirect associations between two variables can be read from
the DAG by checking whether they are connected in some way. If the variables
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depend directly on each other, there will be a single arc connecting the nodes
corresponding to those two variables. If the dependence is indirect, there will
be two or more arcs passing through the nodes that mediate the association.
In general, two sets X and Y of variables are independent given a third set Z
of variables if there is no set of arcs connecting them that is not blocked by the
conditioning variables. Conditioning on Z is equivalent to fixing the values of
its elements, so that they are known quantities. In other words, the X and
Y are separated by Z, which we denote with X ⊥⊥G Y | Z. Given that BNs
are based on DAGs, we speak of d-separation (directed separation); a formal
treatment of its definition and properties is provided in Section 4.1. For the
moment, we will just say that graphical separation (⊥⊥G) implies probabilistic
independence (⊥⊥P ) in a BN; if all the paths between X and Y are blocked, X
and Y are (conditionally) independent. The converse is not necessarily true:
not every conditional independence relationship is reflected in the graph.

We can investigate whether two nodes in a bn object are d-separated using
the dsep function. dsep takes three arguments, x, y and z, corresponding to
X, Y and Z; the first two must be the names of two nodes being tested for
d-separation, while the latter is an optional d-separating set. So, for example,
we can see from dag that both S and O are associated with R.

> dsep(dag, x = "S", y = "R")

[1] FALSE

> dsep(dag, x = "O", y = "R")

[1] FALSE

Clearly, S is associated with R because E is influenced by S (S → E) and R is
influenced by E (E → R). In fact, the path function shows that there is a path
leading from S to R

> path(dag, from = "S", to = "R")

[1] TRUE

and, if we condition on E, that path is blocked and S and R become indepen-
dent.

> dsep(dag, x = "S", y = "R", z = "E")

[1] TRUE

From Equation (1.1), we can see that indeed the global distribution decom-
poses cleanly in a part that depends only on S and in a part that depends
only on R once E is known:

Pr(S, R | E) = Pr(S | E) Pr(R | E). (1.15)

The same holds for R and O. They both depend on E, and therefore become
independent if we condition on it.
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Figure 1.3
Some examples of d-separation covering the three fundamental connections:
the serial connection (left), the divergent connection (centre) and the con-
vergent connection (right). Nodes in the conditioning set are highlighted in
grey.

> dsep(dag, x = "O", y = "R", z = "E")

[1] TRUE

Again, from Equation (1.1) we have

Pr(O, R | E) = Pr(O | E) Pr(R | E). (1.16)

On the other hand, conditioning on a particular node can also make two
other nodes dependent when they are marginally independent. Consider the
following example involving A and S conditional on E.

> dsep(dag, x = "A", y = "S")

[1] TRUE

> dsep(dag, x = "A", y = "S", z = "E")

[1] FALSE

From Figure 1.3, we can see that the state of E is influenced by A and S at
the same time; intuitively, if we know what kind of Education one individual
has, some combinations of his Age and Sex become more likely than others
and, in turn, these two variables become dependent. Equivalently, we can see
from Equation (1.1) that E depends on the joint distribution of A and S, as
Pr(E | A, S); then using Bayes’ theorem we have

Pr(E | A, S) =
Pr(A, S, E)

Pr(A, S)
=

Pr(A, S | E) Pr(E)

Pr(A) Pr(S)
∝ Pr(A, S | E). (1.17)

Therefore, when E is known we cannot decompose the joint distribution of A
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and S in a part that depends only on A and in a part that depends only on S.
However, note that Pr(A, S) = Pr(A | S) Pr(S) = Pr(A) Pr(S): as we have seen
above using dsep, A and S are d-separated if we are not conditioning on E.

The three examples we have examined above and in Figure 1.3 cover all the
possible configurations of three nodes and two arcs. These simple structures
are known in literature as fundamental connections and are the building blocks
of the graphical and probabilistic properties of BNs.

In particular:

• structures like S → E → R (the first example) are known as serial con-
nections, since both arcs have the same direction and follow one after the
other;

• structures like R ← E → O (the second example) are known as divergent
connections, because the two arcs have divergent directions from a central
node;

• structures like A → E ← S (the third example) are known as convergent
connections, because the two arcs converge to a central node. When there is
no arc linking the two parents (i.e., neither A → S nor A ← S) convergent
connections are called v-structures. As we will see in Chapter 4, their
properties are crucial in characterising and learning BNs.

1.6.2 Using the Conditional Probability Tables

In the previous section we have seen how we can answer conditional indepen-
dence queries using only the information encoded in the DAG. More complex
queries, however, require the use of the local distributions. The DAG is still
used indirectly, as it determines the composition of the local distributions and
reduces the effective dimension of inference problems.

The two most common types of inference are conditional probability
queries, which investigate the distribution of one or more variables under
non-trivial conditioning, and most likely explanation queries, which look for
the most likely outcome of one or more variables (again under non-trivial con-
ditioning). In both contexts, the variables being conditioned on are the new
evidence or findings which force the probability of an event of interest to be
re-evaluated. These queries can be answered in two ways, using either exact
or approximate inference; we will describe the theoretical properties of both
approaches in more detail in Section 4.6.

1.6.2.1 Exact Inference

Exact inference, which is implemented in package gRain (short for “gRaphical
model inference”), relies on transforming the BN into a specially crafted tree
to speed up the computation of conditional probabilities.
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> library(gRain)

Such a tree is called a junction tree, and can be constructed as follows from the
bn object we created in the previous section (see also Algorithm 4.4, Section
4.6.2 for a description of the required steps).

> junction <- compile(as.grain(bn))

Once the junction tree has been built (by as.grain) and its probability tables
have been computed (by compile), we can input the evidence into junction

using the setEvidence function. The local distributions of the nodes the ev-
idence refers to are then updated, and the changes are propagated through
the junction tree. The actual query is performed by the querygrain function,
which extracts the distribution of the nodes of interest from junction.

We may be interested, for example, in the attitudes of women towards car
and train use compared to the whole survey sample.

> querygrain(junction, nodes = "T")$T

T

car train other

0.5618 0.2809 0.1573

> jsex <- setEvidence(junction, nodes = "S", states = "F")

> querygrain(jsex, nodes = "T")$T

T

car train other

0.5621 0.2806 0.1573

There are no marked differences in the probabilities derived from junction

before and after calling setEvidence. The former correspond to Pr(T), the
latter to Pr(T | S = F). This suggests that women show about the same
preferences towards car and train use as the interviewees as a whole.

Another interesting problem is how living in a small city affects car and
train use, that is, Pr(T | R = small). People working in big cities often live in
neighbouring towns and commute to their workplaces, because house prices
are lower as you move out into the countryside. This, however, forces them
to travel mostly by car or train because other means of transport (bicycles,
tube, bus lines, etc.) are either unavailable or impractical.

> jres <- setEvidence(junction, nodes = "R", states = "small")

> querygrain(jres, nodes = "T")$T

T

car train other

0.48389 0.41708 0.09903

As shown in Figure 1.4, this reasoning is supported by the BN we saved in the
bn object. The probability associated with other drops from 0.1573 to 0.099,
while the probability associated with train increases from 0.2808 to 0.4170.
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probability
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Pr(T | R = small)

Figure 1.4
Probability distribution of Travel (T) given no evidence (left panel), given
evidence that Sex (S) is equal to F (central panel) and given that Residence
(R) is equal to small (right panel).

Overall, the combined probability of car and train increases from 0.8426
(for the whole survey sample) to 0.9009 (for people living in small cities).
Extending this query to provide the most likely explanation, we conclude that
for people living in small cities the car is the preferred means of transport.

Conditional probability queries can also be used to assess conditional inde-
pendence, as we previously did with graphical separation and the dsep func-
tion. Consider again the relationship between S and T, this time conditioning
on the evidence that E is equal to high. The joint probability distribution of S

and T given E, Pr(S, T | E = high), can be computed using setEvidence and
querygrain as follows.

> jedu <- setEvidence(junction, nodes = "E", states = "high")

> SxT.cpt <- querygrain(jedu, nodes = c("S", "T"),

+ type = "joint")

> SxT.cpt

T

S car train other

M 0.3427 0.1737 0.09623

F 0.2167 0.1098 0.06087

The argument type in querygrain specifies which of the possible distributions
involving the nodes is returned. The default value is "marginal", for the
marginal distribution of each node.
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> querygrain(jedu, nodes = c("S", "T"), type = "marginal")

$S

S

M F

0.6126 0.3874

$T

T

car train other

0.5594 0.2835 0.1571

As we have seen above, another possible choice is "joint", for the joint dis-
tribution of the nodes. The last valid value is "conditional". In this case
querygrain returns the distribution of the first node in nodes conditional on
the other nodes in nodes (and, of course, on the evidence we specified with
setEvidence).

> querygrain(jedu, nodes = c("S", "T"), type = "conditional")

T

S car train other

M 0.6126 0.6126 0.6126

F 0.3874 0.3874 0.3874

Note how the probabilities in each column sum up to 1, as they are computed
conditional on the value T assumes in that particular column.

Furthermore, we can also see that all the conditional probabilities

Pr(S = M | T = t, E = high), t ∈ {car, train, other} (1.18)

are identical, regardless of the value of T we are conditioning on, and the same
holds when S is equal to F. In other words,

Pr(S = M | T = t, E = high) = Pr(S = M | E = high) (1.19)

and
Pr(S = F | T = t, E = high) = Pr(S = F | E = high) (1.20)

This suggests that S is independent from T conditional on E; knowing the
Sex of a person is not informative of his preferences if we know his Education.
This is also implied by graphical separation, since S and T are d-separated by
E.

> dsep(bn, x = "S", y = "T", z = "E")

[1] TRUE

Another way of confirming this conditional independence is to use the joint
distribution of S and T we stored in SxT.cpt and perform a Pearson’s X2 test
for independence. First, we multiply each entry of SxT.cpt by the sample size
to convert the conditional probability table into a contingency table.
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> SxT.ct = SxT.cpt * nrow(survey)

Each row in survey corresponds to one observation, so nrow(survey) is effec-
tively the size of the sample. Pearson’s X2 test is implemented in the function
chisq.test from package stats, which is included in the base R distribution.

> chisq.test(SxT.ct)

Pearson's Chi-squared test

data: SxT.ct

X-squared = 0, df = 2, p-value = 1

As expected, we accept the null hypothesis of independence, since the p-value
of the test is exactly 1.

1.6.2.2 Approximate Inference

An alternative approach to inference is to use Monte Carlo simulations to
randomly generate observations from the BN. In turn, we use these observa-
tions to compute approximate estimates of the conditional probabilities we
are interested in. While this approach is computationally expensive, it allows
for complex specifications of the evidence and scales better to BNs including
a large number of nodes.

For discrete BNs, a simple way to implement approximate inference is to
use rejection sampling. In rejection sampling, we generate random independent
observations from the BN. Then we count how many match the evidence we
are conditioning on and how many of those observations also match the event
whose probability we are computing; the estimated conditional probability is
the ratio between the latter and the former.

This approach is implemented in bnlearn in the cpquery and cpdist

functions. cpquery returns the probability of a specific event given some
evidence; so, for example, we can recompute the value of the first cell of the
SxT table as follows.

> cpquery(bn, event = (S == "M") & (T == "car"),

+ evidence = (E == "high"))

[1] 0.3448

Note that the estimated conditional probability differs slightly from the exact
value computed by querygrain, which is Pr(S = M, T = car | E = high) =
0.3427. The quality of the approximation can be improved using the argument
n to increase the number of random observations from the default 5000 *

nparams(bn) to one million.

> cpquery(bn, event = (S == "M") & (T == "car"),

+ evidence = (E == "high"), n = 10^6)

[1] 0.343
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The estimated probability is closer to its true value. However, increasing pre-
cision in this way has several drawbacks: answering the query takes much
longer, and the precision may still be low if evidence has a low probability.

A better approach is likelihood weighting, which will be explained in detail
in Section 4.6.2. Likelihood weighting generates random observations in such a
way that all of them match the evidence, and re-weights them appropriately
when computing the conditional probability for the query. It can be accessed
from cpquery by setting method = "lw".

> cpquery(bn, event = (S == "M") & (T == "car"),

+ evidence = list(E = "high"), method = "lw")

[1] 0.3421

As we can see, cpquery returned a conditional probability (0.3421) that is very
close to the exact value (0.3427) without generating 106 random observations
in the process. Unlike rejection sampling, which is the default for both cpdist

and cpquery, evidence for likelihood weighting is provided by a list of values,
one for each conditioning variable.

As an example of a more complex query, we can also compute

Pr(S = M, T = car | {A = young, E = uni} ∪ {A = adult}), (1.21)

the probability of a man travelling by car given that his Age is young and his
Education is uni or that he is an adult, regardless of his Education.

> cpquery(bn, event = (S == "M") & (T == "car"),

+ evidence = ((A == "young") & (E == "uni")) | (A == "adult"))

[1] 0.3337

The implementation of likelihood weighting in cpquery is not flexible enough
to compute a query with composite evidence like the above; in that respect it
shares the same limitations as the functions in the gRain package.

cpdist, which has a syntax similar to cpquery, returns a data frame
containing the random observations for the variables in nodes that match
evidence.

> SxT <- cpdist(bn, nodes = c("S", "T"),

+ evidence = (E == "high"))

> head(SxT)

S T

1 F car

2 M car

3 F train

4 M other

5 M other

6 M other
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The observations contained in the data frame can then be used for any kind
of inference, making this approach extremely versatile. For example, we can
produce the probability table of S and T and compare it with that produced
by querygrain on page 25. To do that, we first use table to produce a
contingency table from the SxT data frame, and then prop.table to transform
the counts into probabilities.

> prop.table(table(SxT))

T

S car train other

M 0.3413 0.1764 0.0963

F 0.2161 0.1089 0.0611

Again, we can extend conditional probability queries to produce the most
likely explanation for S and T just by looking for the combination of their states
that has the highest probability. As before, the answer is that among people
whose Education is high, the most common Sex and Travel combination is
male car drivers.

1.7 Plotting BNs

A key strength of BNs, and of graphical models in general, is the possibility of
studying them through their graphical representations. Therefore, the ability
of plotting a BN effectively is a key tool in BN inference.

1.7.1 Plotting DAGs

bnlearn uses the functionality implemented in the Rgraphviz package to
plot graph structures, through the graphviz.plot function. If we call
graphviz.plot without any argument other than the graph we want to plot,
we obtain a DAG representation similar to that in Figure 1.1.

> graphviz.plot(dag)

graphviz.plot takes care of laying out nodes and arcs so as to minimise their
overlap. By default, nodes are positioned so that parents are plotted above
their children and that most arcs point downward. This layout is called dot.
Other layouts can be specified with the layout argument; some examples are
shown in Figure 1.5.

Highlighting particular nodes and arcs in a DAG, for instance to mark a
path or the nodes involved in a particular query, can be achieved either with
the highlight argument of graphviz.plot or using Rgraphviz directly. The
former is easier to use, while the latter is more versatile.
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Figure 1.5
Some layouts implemented in Rgraphviz and available from graphviz.plot:
dot (the default, on the left), fdp (centre) and circo (right).

Consider, for example, the left panel of Figure 1.3. All nodes and arcs
with the exception of S → E → R are plotted in grey, to make the serial
connection stand out. The node E, which d-separates S and R, is filled with
a grey background to emphasise its role. To create such a plot, we need first
to change the colour of all the nodes (including their labels) and the arcs to
grey. To this end, we list all the nodes and all the arcs in a list called hlight,
and we set their col and textCol to grey.

> hlight <- list(nodes = nodes(dag), arcs = arcs(dag),

+ col = "grey", textCol = "grey")

Subsequently, we pass hlight to graphviz.plot via the highlight argument,
and save the return value to make further changes to the plot.

> pp <- graphviz.plot(dag, highlight = hlight)

The pp object is an object of class graph, and it can be manipulated with
the functions provided by the graph and Rgraphviz packages. The look of the
arcs can be customised as follows using the edgeRenderInfo function from
Rgraphviz.

> edgeRenderInfo(pp) <-

+ list(col = c("S~E" = "black", "E~R" = "black"),

+ lwd = c("S~E" = 3, "E~R" = 3))

Attributes being modified (i.e., col for the colour and lwd for the line width)
are specified again as the elements of a list. For each attribute, we specify a
list containing the arcs we want to modify and the value to use for each of
them. Arcs are identified by labels of the form parent∼child, e.g., S → E is
S~E.
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Similarly, we can highlight nodes with nodeRenderInfo. We set their
colour and the colour of the node labels to black and their background to
grey.

> nodeRenderInfo(pp) <-

+ list(col = c("S" = "black", "E" = "black", "R" = "black"),

+ textCol = c("S" = "black", "E" = "black", "R" = "black"),

+ fill = c("E" = "grey"))

Once we have made all the desired modifications, we can plot the DAG again
with the renderGraph function from Rgraphviz.

> renderGraph(pp)

More complicated plots can be created by repeated calls to edgeRenderInfo

and nodeRenderInfo. These functions can be used to set several graphical
parameters for each arc or node, and provide a fine-grained control on the
appearance of the plot. Several (possibly overlapping) groups of nodes and
arcs can be highlighted using different combinations of lwd (line width), lty

(line type) and col (colour); or they can be hidden by setting col and textCol

to a lighter colour or to transparent.

1.7.2 Plotting Conditional Probability Distributions

Plotting the conditional probabilities associated with a conditional probability
table or a query is also useful for diagnostic and exploratory purposes. Such
plots can be difficult to read when a large number of conditioning variables is
involved, but nevertheless they provide useful insights for most synthetic and
real-world data sets.

As far as conditional probability tables are concerned, bnlearn pro-
vides functions to plot barcharts (bn.fit.barchart) and dot plots
(bn.fit.dotplot) from bn.fit objects. Both functions are based on the
lattice package. So, for example, we can produce the plot in Figure 1.6 with

> bn.fit.barchart(bn.mle$T, main = "Travel",

+ xlab = "Pr(T | R,O)", ylab = "")

and the corresponding dot plot can be produced by calling bn.fit.dotplot

with the same arguments. Each panel in the plot corresponds to one configura-
tion of the levels of the parents of Travel: Occupation and Residence. There-
fore, the plot is divided in four panels: {O = self, R = big}, {O = self,
R = small}, {O = emp, R = big} and {O = emp, R = small}. The bars in
each panel represent the probabilities for car, train and other conditional
on the particular configuration of Occupation and Residence associated with
the panel.

Both bn.fit.barchart and bn.fit.dotplot use the functionality pro-
vided by the lattice package, which implements a powerful and versatile



32 Bayesian Networks: With Examples in R

Travel

Pr(T | R, O)

car

other

train

emp
big

0.0 0.2 0.4 0.6

self
big

car

other

train

0.0 0.2 0.4 0.6

emp
small

self
small

Figure 1.6
Barchart for the probability tables of Travel conditional on Residence and
Occupation.

set of functions for multivariate data visualisation. As was the case for
graphviz.plot and Rgraphviz, we can use the lattice functions directly to
produce complex plots that are beyond the capabilities of bnlearn.

Consider, for example, the comparison between the marginal distribution
of Travel and the results of the two conditional probability queries shown in
Figure 1.4. That plot can be created using the barchart function from lattice

in two simple steps. First, we need to create a data frame containing the three
probability distributions.

> Evidence <-

+ factor(c(rep("Unconditional",3), rep("Female", 3),

+ rep("Small City",3)),

+ levels = c("Unconditional", "Female", "Small City"))

> Travel <- factor(rep(c("car", "train", "other"), 3),

+ levels = c("other", "train", "car"))

> distr <- data.frame(Evidence = Evidence, Travel = Travel,

+ Prob = c(0.5618, 0.2808, 0.15730, 0.5620, 0.2806,

+ 0.1573, 0.4838, 0.4170, 0.0990))

Each row of distr contains one probability (Prob), the level of Travel it refers
to (Travel) and the evidence the query is conditioned on (Evidence).
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> head(distr)

Evidence Travel Prob

1 Unconditional car 0.562

2 Unconditional train 0.281

3 Unconditional other 0.157

4 Female car 0.562

5 Female train 0.281

6 Female other 0.157

Once the probabilities have been organised in this way, the barchart in Figure
1.4 can be created as follows.

> barchart(Travel ~ Prob | Evidence, data = distr,

+ layout = c(3, 1), xlab = "probability",

+ scales = list(alternating = 1, tck = c(1, 0)),

+ strip = strip.custom(factor.levels =

+ c(expression(Pr(T)),

+ expression(Pr({T} * " | " * {S == F})),

+ expression(Pr({T} * " | " * {R == small})))),

+ panel = function(...) {

+ panel.barchart(...)

+ panel.grid(h = 0, v = -1)

+ })

As can be seen from the formula, we are plotting Prob for each level of Travel

given the Evidence. For readability, we substitute the label of each panel with
an expression describing the probability distribution corresponding to that
panel. Furthermore, we lay the panels in a single row (with layout), move all
the axes ticks at the bottom of the plot (with scales) and draw a grid over
each panel (with the call to panel.grid in the function passed to the panel

argument).

1.8 Further Reading

Discrete BNs are the most common type of BN studied in literature; all the
books mentioned in the “Further Reading” sections of this book cover them
in detail. Pearl (1988) and Castillo et al. (1997) both explore d-separation in
depth. Koller and Friedman (2009, Chapter 17), Korb and Nicholson (2004,
Chapter 6) and Neapolitan (2003, Section 7.1) cover parameter learning; Korb
and Nicholson (2004, Chapter 9) and Murphy (2012, Section 16.4) cover struc-
ture learning.
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Exercises

Exercise 1.1 Consider the DAG for the survey studied in this chapter and
shown in Figure 1.1.

1. List the parents and the children of each node.

2. List all the fundamental connections present in the DAG, and
classify them as either serial, divergent or convergent.

3. Add an arc from Age to Occupation, and another arc from Travel
to Education. Is the resulting graph still a valid BN? If not, why?

Exercise 1.2 Consider the probability distribution from the survey in Section
1.3.

1. Compute the number of configurations of the parents of each
node.

2. Compute the number of parameters of the local distributions.

3. Compute the number of parameters of the global distribution.

4. Add an arc from Education to Travel. Recompute the factorisa-
tion into local distributions shown in Equation (1.1). How does the
number of parameters of each local distribution change?

Exercise 1.3 Consider again the DAG for the survey.

1. Create an object of class bn for the DAG.

2. Use the functions in bnlearn and the R object created in the
previous point to extract the nodes and the arcs of the DAG. Also
extract the parents and the children of each node.

3. Print the model formula from bn.

4. Fit the parameters of the network from the data stored in
survey.txt using their Bayesian estimators and save the result
into an object of class bn.fit.

5. Remove the arc from Education to Occupation.

6. Fit the parameters of the modified network. Which local distri-
butions change, and how?

Exercise 1.4 Re-create the bn.mle object used in Section 1.4.

1. Compare the distribution of Occupation conditional on Age with
the corresponding marginal distribution using querygrain.

2. How many random observations are needed for cpquery to pro-
duce estimates of the parameters of these two distributions with a
precision of ±0.01?
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3. Use the functions in bnlearn to extract the DAG from bn.mle.

4. Which nodes d-separate Age and Occupation?

Exercise 1.5 Implement an R function for BN inference via rejection sam-
pling using the description provided in Section 1.4 as a reference.

Exercise 1.6 Using the dag and bn objects from Sections 1.2 and 1.3:

1. Plot the DAG using graphviz.plot.

2. Plot the DAG again, highlighting the nodes and the arcs that are
part of one or more v-structures.

3. Plot the DAG one more time, highlighting the path leading from
Age to Occupation.

4. Plot the conditional probability table of Education.

5. Compare graphically the distributions of Education for male and
female interviewees.
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The Continuous Case: Gaussian Bayesian
Networks

In this chapter we will continue our exploration of BNs, focusing on modelling
continuous data under a multivariate Normal (Gaussian) assumption.

2.1 Introductory Example: Crop Analysis

Suppose that we are interested in the analysis of a particular plant, which we
will model in a very simplistic way by considering:

• the potential of the plant and of the environment;

• the production of vegetative mass;

• and the harvested grain mass, which is called the crop.

To be more precise, we define two synthetic variables to describe the initial
status of the plant: its genetic potential, which we will denote as G, and the
environmental potential of the location and the season it is grown in, which we
will denote as E. Both G and E are assumed to summarise in a single score all
genotypic effects and all environmental effects, respectively; their composite
nature justifies the use of continuous variables.

It is well known to farmers and plant breeders that the first step in evalu-
ating a crop is analysing the vegetative organs. Root, stems and leaves grow
and accumulate reserves which are later exploited for reproduction. In our
model, we will consider a single vegetative variable summarising all the infor-
mation available on constituted reserves. This variable will be denoted as V,
and it will be modelled again as a continuous variable. Clearly, V is directly
influenced by the values of G and E. The greater they are, the greater is the
possibility of a large vegetative mass V.

As mentioned above, the crop is a function of the vegetative mass. They are
related through various quantities, mainly the number of seeds and their mean
weight. We will denote them with N and W, respectively. These two variables
are not measured at the same time: N is determined at flowering time while W

is obtained later in the plant’s life. Finally, the crop, denoted by C, depends

37
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directly on N and W. All these three variables can again be naturally modelled
as continuous variables.

As a result, the behaviour of a plant can be described by

{G, E} → V, V→ N, V→ W, {N, W} → C; (2.1)

and we will use these relationships to model the crop with a BN.

2.2 Graphical Representation

A graphical representation of the relationships in Equation (2.1) is shown in
Figure 2.1. The figure displays the six variables used in the BN (the nodes) and
the six arcs corresponding to the direct dependencies linking them. Together
they form a DAG that is very similar to that presented in Figure 1.1, differing
only in the names of the variables. Indeed the DAG does not depend on the
nature of the variables under consideration, because the same dependence
structure can apply to many different situations.

To work on such a graph, we create an R object describing it. As shown in
Section 1.7, we can use the model2network function in bnlearn and the model
formula representation to express the relationships between the variables.

> library(bnlearn)

> dag.bnlearn <- model2network("[G][E][V|G:E][N|V][W|V][C|N:W]")

> dag.bnlearn

Random/Generated Bayesian network

model:

[E][G][V|E:G][N|V][W|V][C|N:W]

nodes: 6

arcs: 6

undirected arcs: 0

directed arcs: 6

average markov blanket size: 2.67

average neighbourhood size: 2.00

average branching factor: 1.00

generation algorithm: Empty

The structure of the DAG is defined by the string that is the argument
of model2network; each node is reported in square brackets along with its
parents. As noted in Section 1.2, the order in which the nodes and the parents
of each node are given is not important.
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Figure 2.1
DAG representing the crop (C) network, with variables environmental poten-
tial (E), genetic potential (G), vegetative organs (V), number of seeds (N) and
their mean weight (W). The local probability distributions are shown for each
node.
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Some important properties of the BN can already be deduced from the
DAG. For instance, in our example we assume that C depends on G because
there are paths leading from G to C. From a probabilistic point of view, this
means that the conditional distribution of C given G = g is a function of g, or
equivalently

f(C | G = g) 6= f(C), (2.2)

where f(X) stands for the density function of the random variable X. Even
though the relationship between C and G is motivated by causal reasoning, and
therefore makes a distinction between cause G and effect C, this distinction is
completely lost in probabilistic modelling. As a result, Equation (2.2) implies

f(G | C = c) 6= f(G), (2.3)

that is, the conditional distribution of G given C is a function of c, the value
assumed by C.

More importantly, we have that C depends on G through V. This is a con-
sequence of the fact that all paths going from G to C pass through V. In
probabilistic terms, this is equivalent to

f(C | G = g, V = v) = f(C | V = v). (2.4)

In other words, knowing the value of G adds nothing to our knowledge about
C when the value of V is known.

As was the case for discrete BNs, we can investigate conditional indepen-
dencies. Consider, for example, the pair of variables N and W. Since they share
a common parent, V, they are not independent. This is natural because they
are influenced in similar ways by the state of vegetative organs: high values of
V make high values of both N and W more likely. Nevertheless, when V is known
to be equal to v, they become independent. From the decomposition into local
distributions implied by the DAG, we can see the conditional independence:

f(N, W | V = v) = f(N | V = v) f(W | V = v). (2.5)

This kind of reasoning generalises to arbitrary sets of variables, as we will
see in Section 4.1. As underlined in Section 1.6.1, these properties do not
depend on the nature of the random variables involved, nor on their probability
distributions. We can investigate these independencies in a systematic way,
whether they are conditional or not, using the dsep function from bnlearn.

First, we can find which pairs of variables are marginally independent.

> nano <- nodes(dag.bnlearn)

> for (n1 in nano) {

+ for (n2 in nano) {

+ if (dsep(dag.bnlearn, n1, n2))

+ cat(n1, "and", n2, "are independent.\n")

+ }#FOR

+ }#FOR
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E and G are independent.

G and E are independent.

Of all possible pairs, only E and G are found to be independent, and as expected
the independence is symmetric. Note that the two nested loops imply that n2

is identical to n1 in some tests and, quite logically, dsep returns FALSE in
these cases.

> dsep(dag.bnlearn, "V", "V")

[1] FALSE

In addition, we can also find which pairs are conditionally independent
given V, taking symmetry into account to avoid redundant checks.

> for (n1 in nano[nano != "V"]) {

+ for (n2 in nano[nano != "V"]) {

+ if (n1 < n2) {

+ if (dsep(dag.bnlearn, n1, n2, "V"))

+ cat(n1, "and", n2, "are independent given V.\n")

+ }#THEN

+ }#FOR

+ }#FOR

C and E are independent given V.

C and G are independent given V.

E and N are independent given V.

E and W are independent given V.

G and N are independent given V.

G and W are independent given V.

N and W are independent given V.

From the output above we can see that, conditional on the value of V, E and
G are no longer independent. On the other hand, nodes belonging to pairs
in which one node is before V in the graph and the other is after V are now
conditionally independent. This is due to the d-separating property of V for
such pairs of nodes: it descends from the fact that every path connecting two
such variables passes through V. Furthermore, we can see that N and W are
d-separated as stated in Equation (2.5).

Note that n1 or n2 are chosen so as to never be identical to V. However,
dsep accepts such a configuration of nodes and returns TRUE in this case.
Since V | V is a degenerate random variable that can assume a single value, it
is independent from every random variable.

> dsep(dag.bnlearn, "E", "V", "V")

[1] TRUE

Many other operations involving the arcs and the nodes of a DAG may
be of interest. One example is looking for a path going from one subset of
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nodes to another, which is one way of exploring how the latter depends on the
former. For instance, we can use the path function to look for the existence
of such a path between E and C.

> bnlearn::path(dag.bnlearn, from = "E", to = "C")

[1] TRUE

Note the use of the bnlearn:: prefix to uniquely identify the path func-
tion. A function of the same name is provided by the igraph package, and it
might be called by mistake depending on the order in which the two packages
have been loaded. More operations will be considered in subsequent chapters
as the relevant theory is introduced.

2.3 Probabilistic Representation

In order to make quantitative statements about the behaviour of the variables
in the BN, we need to completely specify their joint probability distribution.
This can be an extremely difficult task. In the framework of the multivariate
normal distributions considered in this chapter, if we are modelling p variables
we must specify p means, p variances and 1

2 p (p− 1) correlation coefficients.
Furthermore, the correlation coefficients must be such that the resulting cor-
relation matrix is non-negative definite. Fortunately, in the context of BNs
we only need to specify the local distribution of each node conditional on the
values of its parents, without worrying about the positive definiteness of the
correlation matrix of the global distribution. In the case of the DAG shown
in Figure 2.1, it means specifying 18 parameters instead of 27.

Suppose for the moment that the local distributions are known and re-
ported in Table 2.1; the fundamental step of estimating the parameter values
is postponed to Section 2.4. Of course the parents implicitly proposed by the
conditional distributions are consistent with the DAG, and do not imply any
cycle. We can than create a bn object for use with bnlearn in the same way
we did in Section 1.3. First, we store the parameters of each local distribution
in a list, here called dis.list.

> disE <- list(coef = c("(Intercept)" = 50), sd = 10)

> disG <- list(coef = c("(Intercept)" = 50), sd = 10)

> disV <- list(coef = c("(Intercept)" = -10.35534,

+ E = 0.70711, G = 0.5), sd = 5)

> disN <- list(coef = c("(Intercept)" = 45, V = 0.1),

+ sd = 9.949874)
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G ∼ N
(
50, 102

)

E ∼ N
(
50, 102

)

V | G = g, E = e ∼ N
(
−10.35534 + 0.5g + 0.70711e, 52

)

N | V = v ∼ N
(
45 + 0.1v, 9.9498742

)

W | V = v ∼ N
(
15 + 07v, 7.1414282

)

C | N = n, W = w ∼ N
(
0.3n + 0.7w, 6.252

)

Table 2.1
Probability distributions proposed for the DAG shown in Figure 2.1.

> disW <- list(coef = c("(Intercept)" = 15, V = 0.7),

+ sd = 7.141428)

> disC <- list(coef = c("(Intercept)" = 0, N = 0.3, W = 0.7),

+ sd = 6.25)

> dis.list = list(E = disE, G = disG, V = disV, N = disN,

+ W = disW, C = disC)

Comparing the R definition of each distribution and the corresponding
mathematical expression in Table 2.1 elucidates the syntax used in code above.

Subsequently, we can call the custom.fit function to create an object of
class bn.fit from the graph structure stored in dag.bnlearn and the local
distributions in dis.list.

> gbn.bnlearn <- custom.fit(dag.bnlearn, dist = dis.list)

As was the case for multinomial BNs, printing gbn.bnlearn prints all
local distributions and their parameters. For brevity, we show only the local
distributions of G (a root node) and C (a node with two parents).

> gbn.bnlearn$G

Parameters of node G (Gaussian distribution)

Conditional density: G

Coefficients:

(Intercept)

50

Standard deviation of the residuals: 10
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> gbn.bnlearn$C

Parameters of node C (Gaussian distribution)

Conditional density: C | N + W

Coefficients:

(Intercept) N W

0.0 0.3 0.7

Standard deviation of the residuals: 6.25

The network we just created rests upon the following assumptions, which
characterise linear Gaussian Bayesian networks (GBNs):

• every node follows a normal distribution;

• nodes without any parent, known as root nodes, are described by the re-
spective marginal distributions;

• the conditioning effect of the parent nodes is given by an additive linear
term in the mean, and does not affect the variance. In other words, each
node has a variance that is specific to that node and does not depend on
the values of the parents;

• the local distribution of each node can be equivalently expressed as a Gaus-
sian linear model which includes an intercept and the node’s parents as
explanatory variables, without any interaction term.

The distributions shown in Table 2.1 probably would not have been an
obvious choice for an expert in crop production. Surely, a more complex spec-
ification would have been preferred. For instance, using multiplicative terms
instead of additive ones in the expectation of (C | N = n, W = w) would have
been more realistic. The use of linear dependencies is motivated by their good
mathematical properties, most importantly their tractability and the availabil-
ity of closed-form results for many inference procedures. More sophisticated
models are certainly possible, and will be presented in Chapter 3. Neverthe-
less, it is important to note that for small variations any continuous function
can be approximated by an additive function, e.g., a first-order Taylor expan-
sion. Furthermore, relatively simple models often perform better than more
sophisticated ones when few observations are available.

In the following, we will supplement bnlearn with another R package, rbmn

(short for “réseaux bayésiens multinormaux”), focusing specifically on GBNs.
rbmn provides a function to convert bn.fit objects such as gbn.bnlearn in
its own native format.

> library(rbmn)

> gbn.rbmn <- bnfit2nbn(gbn.bnlearn)

It can be shown that the properties assumed above for the local distribu-
tions imply that the joint distribution of all nodes (the global distribution) is



The Continuous Case: Gaussian Bayesian Networks 45

multivariate normal. Using the decomposition introduced in Section 1.3, we
can obtain it as the product of the local distributions:

f(G, E, V, N, W, C) = f(G) f(E) f(V | G, E) f(N | V) f(W | V) f(C | N, W). (2.6)

The parameters of that multivariate normal distribution can be derived
numerically as follows.

> gema.rbmn <- nbn2gema(gbn.rbmn)

> mn.rbmn <- gema2mn(gema.rbmn)

> print8mn(mn.rbmn)

mu s.d. C.E C.G C.V C.W C.N C.C

E 50 10 1.000 0.00 0.707 0.495 0.071 0.368

G 50 10 0.000 1.00 0.500 0.350 0.050 0.260

V 50 10 0.707 0.50 1.000 0.700 0.100 0.520

W 50 10 0.495 0.35 0.700 1.000 0.070 0.721

N 50 10 0.071 0.05 0.100 0.070 1.000 0.349

C 50 10 0.368 0.26 0.520 0.721 0.349 1.000

The first column of the resulting matrix is the vector of the marginal ex-
pectations (here all equal to 50), the second contains the marginal standard
deviations (here all equal to 10), and the remaining ones contain the correla-
tion matrix. The reason behind the choice of these particular values for the
parameters in Table 2.1 is now apparent: all marginal distributions have the
same mean and variance. This will simplify the interpretation of the relation-
ships between the variables in Section 2.6.

The mn.rbmn object is a simple list holding the expectation vector (mu)
and the covariance matrix (gamma) resulting from the correlations and the
variances printed above.

> str(mn.rbmn);

List of 2

$ mu : Named num [1:6] 50 50 50 50 50 ...

..- attr(*, "names")= chr [1:6] "E" "G" "V" "W" ...

$ gamma: num [1:6, 1:6] 100 0 70.71 49.5 7.07 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:6] "E" "G" "V" "W" ...

.. ..$ : chr [1:6] "E" "G" "V" "W" ...

Both mu and gamma have their dimensions names set to the node labels to
facilitate the extraction and manipulation of the parameters of the GBN.
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2.4 Estimating the Parameters: Correlation Coefficients

In this section we will tackle the estimation of the parameters of a GBN
assuming its structure (i.e., the DAG) is completely known. For this purpose,
we generated a sample of 200 observations from the GBN and we saved it in
a data frame called cropdata1.

> dim(cropdata1)

[1] 200 6

> round(head(cropdata1), 2)

C E G N V W

1 48.83 51.48 42.64 54.10 42.96 41.96

2 48.85 73.43 40.97 60.07 65.29 48.96

3 67.01 71.10 52.52 51.64 63.22 62.03

4 37.83 49.33 56.15 49.01 47.75 38.77

5 55.30 49.27 63.55 54.62 60.57 56.66

6 56.12 48.72 66.02 43.95 55.54 52.39

As we did in Section 1.3 for the discrete case, we can use the bn.fit

function to produce parameter estimates. bnlearn will deduce that the BN is
a GBN from the fact that the variables in cropdata1 are not factors, and it
will use the appropriate estimators for the parameters.

> est.para <- bn.fit(dag.bnlearn, data = cropdata1)

At the time of this writing, bn.fit implements only the maximum likelihood
estimator. Other estimators can be used in a bn.fit object by fitting one
model for each node with another R package, and either calling custom.fit

as we did above or replacing the parameter estimates in an existing bn.fit

object.
The latter is particularly easy for linear models fitted with the lm function;

we can just assign the return value of lm directly to the corresponding node.

> est.para$C <- lm(C ~ N + W, data = cropdata1)

From the parametric assumptions in Section 2.3, we have that each local
distribution can be expressed as a classic Gaussian linear regression model in
which the node is the response variable (C) and its parents are the explanatory
variables (N, W). The contributions of the parents are purely additive; the model
does not contain any interaction term, just the main effect of each parent (N
+ W) and the intercept. The parameter estimates produced by lm are the same
maximum likelihood estimates we obtained from bn.fit. However, it may still
be convenient to use lm due to its flexibility in dealing with missing values
and the possibility of including weights in the model.

Other common forms of regression can be handled in the same way through
the penalized package (Goeman, 2012). In our example, all the models will
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have the form C ∼ µC + NβN + WβW, where µC is the intercept and βN, βW are
the regression coefficients for N and W. Denote each observation for C, N and
W with xi,C, xi,N and xi,W, respectively, where i = 1, . . . , n and n is the sample
size. penalized implements ridge regression, which estimates βN, βW with

{β̂RIDGE
N , β̂RIDGE

W } = argmin
βN,βW

{
n∑

i=1

(xi,C − µC − xi,NβN − xi,WβW)
2

+ λ2(β2
N + β2

W )

}
;

(2.7)
the lasso, with

{β̂LASSO
N , β̂LASSO

W } =

= argmin
βN,βW

{
n∑

i=1

(xi,C − µC − xi,NβN − xi,WβW)
2

+ λ1(|βN|+ |βW|)
}

; (2.8)

and the elastic net, with

{β̂ENET
N , β̂ENET

W } = argmin
βN,βW

{
n∑

i=1

(xi,C − µC − xi,NβN − xi,WβW)
2

+

+ λ1(|βN|+ |βW|) + λ2(β2
N + β2

W )

}
, (2.9)

which includes ridge regression and the lasso as special cases when λ1 = 0
and λ2 = 0, respectively. The parameters λ1 and λ2 penalise large values of
βN, βW in different ways and shrink them towards zero, resulting in smoother
estimates and better predictive power. For instance, we can fit ridge regression
for C as follows.

> library(penalized)

> est.para$C <- penalized(C ~ N + W, lambda1 = 0, lambda2 = 1.5,

+ data = cropdata1)

The parameter set for each node of the GBN is stored in one element of
the object returned by bn.fit function. Here is the result for the root node E,
i.e., a node without any parent: it comprises the expectation and the standard
deviation of the node. For reference, the estimated values can be compared
with the true values (50, 10) from Table 2.1.

> est.para$E

Parameters of node E (Gaussian distribution)

Conditional density: E

Coefficients:

(Intercept)

50.8

Standard deviation of the residuals: 10.7
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When a node has one or more parents, the corresponding regression coefficients
are also printed.

> est.para$C

Parameters of node C (Gaussian distribution)

Conditional density: C | N + W

Coefficients:

(Intercept) N W

2.403 0.273 0.686

Standard deviation of the residuals: 6.31

The estimated regression coefficients are close to their true values from Table
2.1, which are βN = 0.3 and βW = 0.7. The residual standard deviation is
also close to its true value, σC = 6.25. The estimated intercept, however, is
µ̂C = 2.4026 and is markedly different from µC = 0. We can correct this using
lm as above and fitting a model with a null intercept.

> est.para$C <- lm(C ~ N + W - 1, data = cropdata1)

> est.para$C

Parameters of node C (Gaussian distribution)

Conditional density: C | N + W

Coefficients:

(Intercept) N W

0.000 0.296 0.711

Standard deviation of the residuals: 6.29

Now all the parameters in est.para$C are reasonably close to their true val-
ues.

As is the case for discrete BNs, parameter estimates are based only on
the subset of the original data frame spanning the considered node and its
parents, following the factorisation in Equation (2.6).

> lmC <- lm(C ~ N + W, data = cropdata1[, c("N", "W", "C")])

> coef(lmC)

(Intercept) N W

2.403 0.273 0.686

Clearly, the quality of the estimates depends strongly on the sample size.

> confint(lmC)

2.5 % 97.5 %

(Intercept) -4.381 9.186

N 0.181 0.366

W 0.589 0.782

As we can see, in the case of cropdata1 all the confidence intervals for the
parameters of C from Table 2.1 include the corresponding true values.
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2.5 Learning the DAG Structure: Tests and Scores

Often expert knowledge on the data is not detailed enough to completely spec-
ify the structure of the DAG. In such cases, if sufficient data are available, we
can hope that a statistical procedure may help us in determining a small set of
conditional dependencies to translate into a sparse BN. In this section, rather
than revisiting all the considerations we made at the beginning of Section 1.5,
we will concentrate on the tests and scores specific to GBNs.

2.5.1 Conditional Independence Tests

As was the case for discrete BNs, the two classes of criteria used to learn the
structure of the DAG are conditional independence tests and network scores.
Both are based on statistics derived within the framework of multivariate
normality. As far as tests are concerned, the most common is the exact test
for partial correlations. The usual empirical correlation coefficient, e.g.,

ρC,W = COR(C, W) =
1
n

∑n
i=1(xi,C − x̄C)(xi,W − x̄W)√

1
n

∑n
i=1(xi,C − x̄C)2

√
1
n

∑n
i=1(xi,W − x̄W)2

(2.10)

can only express marginal linear dependencies between two variables, in this
case C and W. However, in GBNs we are usually interested in conditional
dependencies. Consider the hypothesis that C may be independent from W

given N,

H0 : C ⊥⊥P W | N versus H1 : C 6⊥⊥P W | N, (2.11)

which is equivalent to setting βW = 0 in the regression model we considered in
the previous section. The correlation we need to test is the partial correlation
between C and W given N, say ρC,W|N, and C ⊥⊥P W | N if and only if ρC,W|N is
not significantly different from zero; it can be shown that βW = 0 if and
only if ρC,W|N = 0, and that holds in general for all regression coefficients in a
Gaussian linear model. Unfortunately, there is no closed form expression for
partial correlations, but they can be estimated numerically. First, we need to
compute the correlation matrix for C, W and N.

> cormat <- cor(cropdata1[, c("C", "W", "N")])

Then we compute the inverse invcor of cormat with the cor2pcor function
from package corpcor (Schäfer et al., 2013), which works even if the input
matrix is not full rank.

> library(corpcor)

> invcor <- cor2pcor(cormat)

> dimnames(invcor) <- dimnames(cormat)
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> invcor

C W N

C 1.000 0.707 0.383

W 0.707 1.000 -0.288

N 0.383 -0.288 1.000

We can find the partial correlation ρC,W|N in invcor["C", "W"]; similarly, ρC,N|W
is in invcor["C", "N"] and ρW,N|C is in invcor["W", "N"]. More in general,
the (X, Y ) element of a partial correlation matrix contains the partial corre-
lation between X and Y given all the other variables.

The same estimate for ρC,W|N is produced by ci.test in bnlearn, and used
to test the hypothesis in Equation (2.11).

> ci.test("C", "W", "N", test = "cor", data = cropdata1)

Pearson's Correlation

data: C ~ W | N

cor = 0.707, df = 197, p-value < 2.2e-16

alternative hypothesis: true value is not equal to 0

The distribution for the test under the null hypothesis is a Student’s t
distribution with n− 3 = 197 degrees of freedom for the transformation

t(ρC,W|N) = ρC,W|N

√
n− 3

1− ρ2
C,W|N

. (2.12)

The degrees of freedom are computed by subtracting the number of variables
involved in the test (three in this case) from the sample size. If the tested
variables are conditionally independent, t is close to zero; large values, either
positive or negative, are indicative of the presence and of the direction of the
conditional dependence. So, in the case of ρC,W|N above, we can say that C has
a significant positive correlation with W given N and reject the null hypothesis
of independence with an extremely small p-value.

The cropdata1 data set is not very large, and therefore it is not likely to
contain enough information to learn the true structure of the DAG. However,
if we perform a naive attempt with one of the algorithms presented in Section
4.5.1.1,

> stru1 <- iamb(cropdata1, test = "cor")

and compare stru1 (shown in Figure 2.2) with Figure 2.1, the result is en-
couraging: only the arc V → N is missing. All other arcs are present in stru1

and their directions are correctly identified.
In order to reduce the number of candidate DAGs and help the structure

learning algorithm, bnlearn gives the possibility to impose some arcs placed
in a whitelist and to forbid other ones placed in a blacklist. These lists are
two-column matrices, similar to those returned by the function arcs.
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Figure 2.2
The DAG learned from the cropdata1 data set.

So if we try the following, we obtain the DAG in Figure 2.1.

> wl <- matrix(c("V", "N"), ncol = 2)

> wl

[,1] [,2]

[1,] "V" "N"

> stru2 <- iamb(cropdata1, test = "cor", whitelist = wl)

> all.equal(dag.bnlearn, stru2)

[1] TRUE

Another way to learn a better DAG is to use a bigger sample. Suppose that
a sample containing 2 × 104 observations is available in a data frame called
cropdata2.

> dim(cropdata2)

[1] 20000 6

> stru3 <- iamb(cropdata2, test = "cor")

> all.equal(dag.bnlearn, stru3)

[1] TRUE

Unsurprisingly, we can see from the output above that the DAG has been
correctly learned; all arcs are present and in the correct direction. Note that
in general some arcs may be undirected regardless of the sample size, because
both their directions are equivalent (see Chapter 4 for more details about
equivalent DAGs). As a result, a non-causal approach is unable to conclude
which one is relevant.
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2.5.2 Network Scores

Network scores for GBNs have much in common with the scores for discrete
BNs we introduced in Section 1.5.2. For instance, BIC takes the form

BIC = log f̂(E, G, V, N, W, C)− d

2
log n =

=

[
log f̂(E)− dE

2
log n

]
+

[
log f̂(G)− dG

2
log n

]
+

+

[
log f̂(V | E, G)− dV

2
log n

]
+

[
log f̂(N | V)− dN

2
log n

]
+

+

[
log f̂(W | V)− dW

2
log n

]
+

[
log f̂(C | N, W)− dC

2
log n

]
(2.13)

where each local distribution is normally distributed with the parameters we
estimated in Section 2.4. So, for instance,

f̂(C | N, W) = N(µ̂C + Nβ̂N + Wβ̂W, σ̂2
C) (2.14)

where µ̂C = 0, β̂N = 0.3221, β̂W = 0.6737 and the residual variance σ̂2
C = 5.8983.

Likewise, the posterior probability score in common use is that arising from a
uniform prior over the space of DAGs and of the parameters; it is called the
Bayesian Gaussian equivalent score (BGe, see Section 4.5 for details). Both
scores can be computed by calling the score function from bnlearn; the first
is obtained with type = "bic-g", the second with type = "bge".

> score(dag.bnlearn, data = cropdata2, type = "bic-g")

[1] -416391.45

> score(dag.bnlearn, data = cropdata2, type = "bge")

[1] -416426.13

BGe, similarly to BDe, accepts the imaginary sample size iss as an additional
parameter controlling the relative weight of the uniform prior relative to the
observed sample.

2.6 Using Gaussian Bayesian Networks

As explained in Section 1.6, BNs can be investigated from two different points
of view: either limiting ourselves to the DAG or using the associated local dis-
tributions. DAG properties are independent from the distributional assump-
tions of the BN. Therefore, nothing has to be added to Section 1.6.1 since
the two examples in Figures 1.1 and 2.1 are based on DAGs with the same
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structure. In this section, we will work only on the local distributions, assum-
ing that the GBN is perfectly known and defined by the gbn.bnlearn object
created in Section 2.3. We are interested in the probability of an event or in
the distribution of some random variables, usually conditional on the values
of other variables. Again, such probabilities can be computed either exactly
or approximately, as was the case for discrete BNs.

2.6.1 Exact Inference

Some exact inference procedures can be performed with the use of the package
rbmn, which we used to compute the global distribution of gbn.bnlearn in
Section 2.3. It relies on three mathematically equivalent classes: nbn, gema and
mn. In an nbn object, the GBN is described by the local distributions, which
is natural considering how BNs are defined.

> print8nbn(gbn.rbmn)

=====Nodes===[parents] = Exp. (sd.dev)

-----------------------------------------------

---------E---[-] = 50 (10)

---------G---[-] = 50 (10)

---------V---[E,G] = -10.355 + 0.707*E + 0.5*G (5)

---------W---[V] = 15 + 0.7*V (7.141)

---------N---[V] = 45 + 0.1*V (9.95)

---------C---[N,W] = 0.3*N + 0.7*W (6.25)

The interpretation of the output is straightforward; the structure of the object
can easily be discovered by typing str(gbn.rbmn).

In a gema object, the GBN is described by two generating matrices: a
vector of expectations and a matrix to be multiplied by a N(0, 1) white noise.

> print8gema(gema.rbmn)

mu E1 E2 E3 E4 E5 E6

E 50 10.000 0.0 0.0 0.00 0.00 0.00

G 50 0.000 10.0 0.0 0.00 0.00 0.00

V 50 7.071 5.0 5.0 0.00 0.00 0.00

W 50 4.950 3.5 3.5 7.14 0.00 0.00

N 50 0.707 0.5 0.5 0.00 9.95 0.00

C 50 3.677 2.6 2.6 5.00 2.98 6.25

So for example, if we consider the row for V in the output above, we can read
that

V = 50 + 7.071E1 + 5E2 + 5E3 (2.15)

where E1, E2, . . . , E6 are independent and identically distributed N(0, 1) Gaus-
sian variables. We already used the mn form in Section 2.3. Note that for gema
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and mn objects the order of the nodes is assumed to be topological, e.g., parent
nodes are listed before their children. Note also that no print functions are as-
sociated to these classes and that the print8nbn, print8gema and print8mn

must be used instead.
The function condi4joint in rbmn can be used to obtain the conditional

joint distribution of one or more nodes when the values of the others are fixed.
For instance, we can compute the distribution of C when V is fixed to 80 and
that of V when C is fixed to 80.

> print8mn(condi4joint(mn.rbmn, par = "C", pour = "V", x2 = 80))

mu s.d.

C 65.6 8.54

> print8mn(condi4joint(mn.rbmn, par = "V", pour = "C", x2 = 80))

mu s.d.

V 65.6 8.54

The results are symmetric because of the normalised distributions we chose.
In addition, we can use condi4joint to obtain the conditional distribution of
C given an arbitrary value of V simply not fixing V.

> unlist(condi4joint(mn.rbmn, par = "C", pour = "V", x2 = NULL))

mu.C rho gamma

24.00 0.52 72.96

This means that
C | V ∼ N(24 + 0.52V, 72.9625). (2.16)

2.6.2 Approximate Inference

Due to the increasing power of computers, investigating the properties of a
given system by simulating it under different conditions and observing its
behaviour is becoming increasingly common. When working with probability
distributions, simulation means the production of a sample of realisations of
random variables. The size of the sample and the approach used to generate
it must be in accordance with the magnitude of the probability of the events
we want to consider. Clearly, it is much easier to investigate the mean or the
median than extreme quantiles in the tails of the distribution; we will see an
example of this problem in Section 4.6.2. As shown in the previous section,
much can be said about a GBN without any simulation. However, for difficult
queries simulation is sometimes the only possible approach.

Depending on the query, the simulation can be either direct or constrained.
Function rbn implements the former, while cpquery and cpdist provide an
easy access to both options. All three functions are in bnlearn.

Simulating from a BN, that is, getting a sample of random values from
the joint distribution of the nodes, can always be done by sampling from one
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node at a time using its local distribution, following the order implied by the
arcs of the DAG so that we sample from parent nodes before their children.
For instance, we can simulate from the nodes following the order of Table
2.1, using the values simulated in previous steps for conditioning. In such a
simulation, the values generated for each node are a sample from its marginal
distribution. This is true regardless of the natures and distributions of the
nodes. In addition, the same global simulation can be used for a pair of nodes,
such as (V, N), as well as for any other subset of nodes. For instance, we can
generate nbs = 4 observations from (V, N) using our crop GBN as follows,

> nbs <- 4

> VG <- rnorm(nbs, mean = 50, sd = 10)

> VE <- rnorm(nbs, mean = 50, sd = 10)

> VV <- rnorm(nbs, mean = -10.355 + 0.5 * VG + 0.707 * VE,

+ sd = 5)

> VN <- rnorm(nbs, mean = 45 + 0.1 * VV, sd = 9.95)

> cbind(VV, VN)

VV VN

[1,] 44.2 41.7

[2,] 50.5 50.7

[3,] 49.0 59.4

[4,] 29.4 46.8

Of course in the case of GBNs a quicker and easier way is to use bnlearn:

> sim <- rbn(gbn.bnlearn, n = 4)

> sim[, c("V", "N")]

V N

1 44.2 41.7

2 50.5 50.7

3 49.0 59.4

4 29.4 46.8

In fact the two data sets we used to introduce the statistical procedures in
Section 2.4 and Section 2.5 were obtained in this way, more precisely with the
following R code:

> set.seed(4567)

> cropdata1 <- rbn(gbn.bnlearn, n = 200)

> set.seed(1234)

> cropdata2 <- rbn(gbn.bnlearn, n = 20000)

For the moment, we have not introduced any restriction on the simula-
tion, even though this is common in practice. For instance, we may discuss
with an agronomist about our choices in modelling the vegetative mass V.
Therefore, we may be interested in simulating V in such extreme scenarios as
V | G = 10, E = 90 to see what happens for particularly bad genotypes grown
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in very favourable environments. In this case, by construction, we know the
conditional distribution we need to answer this question: it is given in the
third line of Table 2.1. It is also possible to get the distribution of a pair of
conditioned variables, e.g., N, W | V = 35. This can be achieved by transforming
(or building) the corresponding GBN. In addition, when the conditioning is
not given directly but we can write it in closed form as in Equation (2.16), it
is possible to simulate directly from the conditional distribution.

But this is not always the case. For instance, suppose that we are interested
in the conditional distribution N, W | C > 80 associated with the following
question: what are the values of N and W associated with a very good crop? To
answer such a question we need to condition not on a single value, but on an
interval.

A naive but correct approach is: just make a simulation with a high number
of draws, and retain only those satisfying the condition, here C > 80. The
most important limitation of this approach is that it is not feasible when the
probability of generating observations satisfying the condition is very small.
Anyway, we can try that way with cpquery and cpdist.

> head(cpdist(gbn.bnlearn, nodes = c("C", "N", "W"),

+ evidence = (C > 80)))

C N W

1 84.2 56.6 80.7

2 80.1 53.5 80.2

3 83.5 64.0 67.2

4 81.2 52.5 73.0

5 85.1 63.9 76.1

6 85.6 70.0 76.6

Such an approach is clearly not possible when we are conditioning on a single
value for one or more variables, as in the case of V | G = 10, E = 90. In
continuous distributions, a single value always has probability 0, and only
intervals may have a non-zero probability. As a result, we would discard all
the samples we generated! More advanced simulation approaches are needed
to handle this case. A simple one is likelihood weighting from Section 1.6.2.2
(detailed in Section 4.6.2), which can be accessed from cpdist by setting
method = "lw".

> head(cpdist(gbn.bnlearn, nodes = c("V"),

+ evidence = list(G = 10, E = 90), method = "lw"))

V

1 54.1

2 65.6

3 55.5

4 63.1

5 57.5

6 56.1
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As we can see from the code above, the evidence for this method is provided
by a list of values, one for each conditioning variable. Similarly, the probability
of a specific event can be computed using likelihood weighting via cpquery.
So, for example, we may be interested in the probability of having a vegetative
mass above 70 in the conditions specified by G and E.

> cpquery(gbn.bnlearn, event = (V > 70),

+ evidence = list(G = 10, E = 90), method = "lw")

[1] 0.00935

The probability we obtain is very low despite the favourable environments, as
expected from such bad genotypes.

2.7 Plotting Gaussian Bayesian Networks

2.7.1 Plotting DAGs

Plots displaying DAGs can be easily produced using several different R pack-
ages such as bnlearn, Rgraphviz, igraph and others. In this chapter, we will
concentrate on igraph since bnlearn and Rgraphviz have already been pre-
sented in Chapter 1. Nevertheless we think that the most convenient way for
bnlearn users is the function graphviz.plot which provides an interface with
the R package Rgraphviz as shown in Section 1.7.1.

First, we introduce how to define a DAG via its arc set with igraph.

> library(igraph)

> igraph.options(print.full = TRUE)

> dag0.igraph <- graph.formula(G-+V, E-+V, V-+N, V-+W,

+ N-+C, W-+C)

> dag0.igraph

IGRAPH DN-- 6 6 --

+ attr: name (v/c)

+ edges (vertex names):

[1] G->V V->N V->W E->V N->C W->C

The arguments provided to the graph.formula function identify the nodes at
the tail and at the head of each arc in the graph. For instance, E-+V indicates
there is an arc going from node E to node V. The “-” sign means that E is at
the tail of the arc, while the “+” means that V is at the head. Therefore, E-+V

and V+-E identify the same arc.
Starting from the objects we generated with bnlearn, it is convenient to

convert a bn or bn.fit object into an igraph graph object.

> dag.igraph <- igraph.from.graphNEL(as.graphNEL(dag.bnlearn))
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Even though igraph implements a large number of functions for handling
graphs (not only DAGs), only a very small part will be shown here. We refer
the interested reader to the extensive documentation included in the package.
Among these functions, V and E display the vertices and edges of a graph,
which are synonymous with nodes and arcs when working with DAGs.

> V(dag.igraph)

Vertex sequence:

[1] "C" "E" "G" "N" "V" "W"

> E(dag.igraph)

Edge sequence:

[1] E -> V

[2] G -> V

[3] N -> C

[4] V -> N

[5] V -> W

[6] W -> C

We can now plot our DAG in different ways just applying some of the
layout algorithms available in igraph. Here is the R code which produces Figure
2.3.

> par(mfrow = c(2, 2), mar = rep(3, 4), cex.main = 2)

> plot(dag.igraph, main = "\n1: defaults")

> dag2 <- dag.igraph

> V(dag2)$label <- V(dag2)$name

> plot(dag2, main = "\n2: with labels")

> ly <- matrix(c(2, 3, 1, 1, 2, 3,

+ 1, 4, 4, 2, 3, 2), 6)

> plot(dag2, layout = ly, main = "\n3: positioning")

> colo <- c("black", "darkgrey", "darkgrey", rep(NA, 3))

> lcolo <- c(rep("white", 3), rep(NA, 3))

> par(mar = rep(0, 4), lwd = 1.5)

> plot(dag2, layout = ly, frame = TRUE,

+ main = "\n4: final",

+ vertex.color = colo, vertex.label.color = lcolo,

+ vertex.label.cex = 3, vertex.size = 50,

+ edge.arrow.size = 0.8, edge.color = "black")

Indeed, a difficult task in drawing DAGs is to position the nodes to high-
light the structure, the logic and the purpose of the BN. Packages such as
graph and Rgraphviz provide several automatic graph drawing algorithms,
but for small graphs the best solution is for the user to place each node himself.
With igraph, a convenient way to plot graphs is to call tkplot first, hand-tune
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Figure 2.3
Four plots of the crop DAG obtained by specifying more and more arguments
with the igraph package.

the placement of the nodes, query the coordinates with the tkplot.getcoords

function and use them to plot the graph.
We illustrate how to customise a plot step by step in Figure 2.3. In the

first panel, plotting is performed with the default arguments: the position is
interesting but arcs are directed upward and the labels identifying the nodes
are numbers, not their names. In the second panel, we introduced the correct
node labels. In the third panel, the position of the nodes has been fixed with
a two-columns matrix. Finally, we added some formatting in the fourth panel.
Examining the code used above shows how arguments can be specified globally,
as the colours of the arcs, or individually, as the colour of the nodes (NA means
no colour).

2.7.2 Plotting Conditional Probability Distributions

bnlearn does not provide any function to plot local probability distributions
in GBNs, unlike the bn.fit.barchart function available for discrete BNs.
The reason is that while the parents of a node in a discrete BN have a finite
number of configurations, which are trivial to enumerate and plot, the parents
of a node in a GBN are defined over R and the corresponding local distribution
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is very difficult to plot effectively. However, some of common diagnostic plots
for linear regression models are available:

• bn.fit.qqplot: a quantile-quantile plot of the residuals;

• bn.fit.histogram: a histogram of the residuals, with their theoretical nor-
mal density superimposed;

• bn.fit.xyplot: a plot of the residuals against the fitted values.

All these functions are based on the lattice functions of the same name and
can be applied to a bn.fit object, thus producing a plot with one panel for
each node,

> gbn.fit <- bn.fit(dag.bnlearn, cropdata2)

> bn.fit.qqplot(gbn.fit)

or to a single node in a bn.fit object.

> bn.fit.qqplot(gbn.fit$V)

It is important to note that such plots require the residuals and the fit-
ted values to be stored in the bn.fit object. Therefore, GBNs created with
custom.fit produce an error unless both quantities have been provided by
the user.

> try(bn.fit.qqplot(gbn.bnlearn))

Loading required package: lattice

Error in lattice.gaussian.backend(fitted = fitted,:

no residuals present in the bn.fit object.

As far as other conditional distributions are concerned, it is not difficult
to produce some interesting plots. Here we will give an example with rbmn.
Suppose that we are interested in how C changes in response to variations in
E and V, that is, in C | E, V. In fact, due to the good properties of GBNs, we
can derive the closed form of the associated distribution using:

> C.EV <- condi4joint(mn.rbmn, par = "C", pour = c("E", "V"),

+ x2 = NULL)

> C.EV$rho

E V

C 0 0.52

The zero regression coefficient obtained for E when V is introduced underscores
how no additional information is added by E once V is already known. This is
because V d-separates E and C:

> dsep(gbn.bnlearn, "E", "C", "V")

[1] TRUE
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But imagine that we are in a more complicated case (see Chapter 3 for
some examples) in which such an approach is not possible. Our aim is to
produce a plot providing insight on the distribution of C when both E and V

vary. Since creating a three-dimensional plot is difficult and error-prone, we
will replace the third dimension with the size of the points representing each
simulated observation. This can be done with the R commands below.

> set.seed(5678)

> cropdata3 <- cpdist(gbn.bnlearn, nodes = c("E", "V", "C"),

+ evidence = TRUE, n = 1000)

> plot(cropdata3$V, cropdata3$C, type = "n",

+ main = "C | V, E; E is the point size")

> cexlim <- c(0.1, 2.4)

> cexE <- cexlim[1] + diff(cexlim) / diff(range(cropdata3$E)) *

+ (cropdata3$E - min(cropdata3$E))

> points(cropdata3$V, cropdata3$C, cex = cexE)

> cqa <- quantile(cropdata3$C, seq(0, 1, 0.1))

> abline(h = cqa, lty = 3)

The result is shown in Figure 2.4. We can see a strong relationship between
V and C, the variables in the x and y axes. No additional effect from E to V

is apparent: for any given level of C, the variation of both variables is about
the same. Changing their roles (Figure 2.5) highlights the additional effect of
V with respect to E.

2.8 More Properties

Much more could be said about the interesting properties of GBNs. Those that
arise from graphical modelling theory can be found in Chapter 4. General
properties of multivariate normal distributions, and thus of the global and
local distributions in a GBN, can be found in classic multivariate statistics
books such as Mardia et al. (1979) and Anderson (2003).

In this last section, we would like to recall some of the most remarkable.

1. The precision matrix is the inverse of the covariance matrix of the
global distribution. When the DAG is moralised (see Section 4.4),
the absence of an arc between two nodes implies a zero entry in the
precision matrix and vice versa. This is because the (i, j) entry of
the precision matrix is the partial correlation between the ith and
the jth variables given the rest, e.g.,

ρXi,Xj |X\{Xi,Xj} = COR(Xi, Xj | X \ {Xi, Xj}),
and ρXi,Xj |X\{Xi,Xj} is equal to zero if and only if the regression
coefficient of Xj against Xi is zero as well.
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Figure 2.4
Simulated distribution of C given E and V. Horizontal lines correspond to the
deciles of C (e.g., the 0%, 10%, 20%, . . ., 100% quantiles), so there is the same
number of points in each horizontal slice.
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Figure 2.5
Simulated distribution of C given E and V. Horizontal lines correspond to the
deciles of C (e.g., the 0%, 10%, 20%, . . ., 100% quantiles), so there is the same
number of points in each horizontal slice.
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2. If some nodes are just linear combinations of their parents, their
conditional standard deviation is zero, and the global distribution
is degenerate because its covariance matrix is not full rank. In that
case, such nodes must be removed before computing the precision
matrix; their children can be made to depend on the removed nodes’
parents to preserve the original dependencies in a transitive way. In
fact, these deterministic nodes do not have any influence on the
GBN’s behaviour and they can be safely disregarded.

3. Furthermore, the global distribution can be singular or numeri-
cally ill-behaved if the GBN is learned from a sample whose size is
smaller than the number of parameters (n≪ p) or not large enough
(n ≈ p). Since all the optimality properties of the covariance matrix
are asymptotic, they hold only approximately even for very large
(n ≫ p) samples. The need for n ≫ p can be obviated by the use
of penalised, shrinkage or Bayesian estimation techniques that sup-
plement the lack of information in the data and enforce sparsity
and regularity in the GBN. More on this topic will be covered in
Chapter 4.

2.9 Further Reading

For a broader overview of GBNs, basic definitions and properties are in
Koller and Friedman (2009, Chapter 7). Constraint-based structure learning
is explored in Korb and Nicholson (2004, Chapter 8), parameter learning in
Neapolitan (2003, Section 7.2) and inference in Neapolitan (2003, Section 4.1).

Exercises

Exercise 2.1 Prove that Equation (2.2) implies Equation (2.3).

Exercise 2.2 Within the context of the DAG shown in Figure 2.1, prove that
Equation (2.5) is true using Equation (2.6).

Exercise 2.3 Compute the marginal variance of the two nodes with two par-
ents from the local distributions proposed in Table 2.1. Why is it much more
complicated for C than for V?

Exercise 2.4 Write an R script using only the rnorm and cbind functions to
create a 100× 6 matrix of 100 observations simulated from the BN defined in
Table 2.1. Compare the result with those produced by a call to cpdist function.
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Exercise 2.5 Imagine two ways other than changing the size of the points
(as in Section 2.7.2) to introduce a third variable in the plot.

Exercise 2.6 Can GBNs be extended to log-normal distributions? If so how,
if not, why?

Exercise 2.7 How can we generalise GBNs as defined in Section 2.3 in order
to make each node’s variance depend on the node’s parents?

Exercise 2.8 From the first three lines of Table 2.1, prove that the joint dis-
tribution of E, G and V is trivariate normal.



3

More Complex Cases: Hybrid Bayesian
Networks

In Chapters 1 and 2 we considered BNs with either discrete or continuous
variables. Moreover, in each BN all variables followed probability distributions
belonging to the same family: multinomial or multivariate normal. In the
following, we would like to show that there are no theoretical reasons for such
restrictions and that, according to the phenomenon under investigation:

1. we can mix discrete and continuous variables and

2. we can use any kind of distribution.

Unfortunately, this increase in flexibility means BNs become more compli-
cated, and no dedicated R package exists to handle them. Therefore, both
learning and inference require some programming effort from the user. One
option is to use rejection sampling to perform inference, but as previously
underlined (Sections 1.6.2.2 and 2.6.2) it is very inefficient when the condi-
tional probabilities we are interested in are small. As an alternative, we will
introduce the use of Markov chain Monte Carlo (MCMC) techniques through
different implementations of BUGS, especially JAGS (Just Another Gibbs
Sampler; Plummer, 2003). These software packages were developed to per-
form Bayesian inference in a more general setting, but we will see that they
are very convenient to describe complicated BNs. Furthermore, they provide
a way to sample from the empirical marginal and conditional distributions of
BN nodes.

To illustrate and examine in depth the use of JAGS in the context of BNs,
we will first consider one very small and simple example. Afterwards, we will
work with a second, more complex example based on the same DAG we used
in the previous two chapters. Further considerations about BUGS software
packages will be developed in Section 5.2.

3.1 Introductory Example: Reinforcing Steel Rods

A building contractor is planning the construction of a business centre. In
the process of securing the building materials required for reinforced concrete,

65
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S ∼ Mu (1, p = (0.5, 0.5))

D | S = s ∼ N
(
µs, 0.052

)

Table 3.1
Probability distributions proposed for the supplier (S) and the diameter (D)
of the steel rods. S can assume two values, s1 and s2. µs1 = 6.1mm and
µs2 = 6.25mm.

he is now considering which of two suppliers he should buy reinforcing steel
rods from to satisfy the project’s specifications. The steel rods from the two
suppliers are produced with different industrial processes, and therefore have
different physical characteristics. For example, while the nominal diameter of
the rods (6mm) is the same for both suppliers, there are differences in the
positions and the size of the ribs that bind them mechanically to the concrete.

In order to investigate which supplier would be the best choice, we need
to combine a continuous variable (the actual diameter of the rods including
the ribs, D) with a discrete one (the supplier, S, with values s1 and s2). The
most natural way to build such a model is to start with the supplier and
make the distribution of the diameter depend on it. A simple formulation is
proposed in Table 3.1. The probabilistic model is just a mixture of two normal
distributions having a common variance.

An interesting question is whether we can identify which supplier provided
a particular steel rod knowing only its diameter, that is, getting the conditional
distribution of S | D. In other words, are the rods so different we can identify
them in a blind test? The density of D | S and its relationship with S | D are
shown in Figure 3.1: D | S is the combination of the two densities for the two
suppliers s1 and s2. This kind of problem can be handled numerically by
JAGS even in much more complex settings.

3.1.1 Mixing Discrete and Continuous Variables

First we have to define the model. JAGS follows the BUGS syntax, which
is similar to that of R. However, it has a very different logic and this is, at
first, quite confusing. When programming in R, the variables and the values
they store can be assigned, removed and manipulated at run-time. This is not
true in BUGS; the assignment operators <- and ~ define the values and the
distributions of each node in the BN, which cannot be modified afterwards. In
other words, BUGS is a declarative language and not a programming language.
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Figure 3.1
Diameter of the reinforcing steel rods according to their supplier, Pr(D | S),
as specified in Table 3.1. The conditional probability Pr(S | D) can be read
from the figure as the ratio of the two densities for any particular value of D.
For instance, Pr(S = s1 | D = 6.2) = Pr(S = s1 | D = 6.2)/[Pr(S = s1 | D =
6.2) + Pr(S = s2 | D = 6.2)] since Pr(S = s1) = Pr(S = s2).

Here is the BUGS code for the model proposed in Table 3.1.

model {

csup ~ dcat(sp);

cdiam ~ dnorm(mu[csup], 1/sigma^2);

}

As we can see, the syntax is very concise: one line of code for each node.
Two nodes are defined: csup and cdiam. The first node follows a categorical
distribution (dcat) assuming values s1 (coded as 1) and s2 (coded as 2).
The sp argument is a vector of length two providing the probabilities of the
two categories. The second node follows a normal distribution (dnorm); the
first parameter specifies the mean (here mu[csup], which depends on the first
node), the second one the precision, i.e., the inverse of the variance. The
dependence between the two nodes is introduced by the presence of csup in
the arguments defining the distribution of cdiam, exactly as it would be in a
mathematical formula. This similarity is one of the main features of BUGS
coding.

While there is no automatic translator from BUGS code to R, we can use
this model in R by accessing JAGS through the rjags package. We can generate
random observations from the global distribution and from the conditional
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distribution of a subset of nodes for fixed values of the others. MCMC is
performed transparently to the user with Gibbs sampling, which approximates
an arbitrary distribution by sampling from each variable in turn conditional
on the rest. Note that each generated sample is used to initialise the following
one, so the random observations returned by JAGS are not independent. This
is not important when computing conditional means, but the estimates of
other summary statistics may be biased unless some care is taken as we will
do below.

We can illustrate how this is done in practice by computing the probability
that a steel rod with a diameter of 6.2mm has been produced by supplier s1.
First, we create the R objects for the parameters of the distributions; we call
them sp, mu and sigma to match the names of the corresponding arguments
in the JAGS code. Subsequently, we store all these objects in a list and we
call jags.model to load the model we specified above from a text file named
inclu.sc.jam into JAGS.

> library(rjags)

> sp <- c(0.5, 0.5)

> mu <- c(6.1, 6.25)

> sigma <- 0.05

> jags.data <- list(sp = sp, mu = mu, sigma = sigma,

+ cdiam = 6.20)

> model1 <- jags.model(file = "inclu.sc.jam", data = jags.data)

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 13

Initializing model

Constants like sigma and quantities that are assumed to be known (such as
cdiam) are handled by JAGS in the same way, and must be specified in a list
whose elements are named the same as in the model file.

After defining the model, we can generate the random samples. Note that
JAGS requires a burn-in phase for the MCMC to reach its stationary distribu-
tion. Intuitively, the iterative updating in Gibbs sampling must be initialised
using a starting value for each variable. The first random samples will have
a distribution that is strongly influenced by the choice of that starting value.
This influence becomes weaker with each new sample; therefore, we discard
a number of samples at the beginning (i.e., during the burn-in) and assume
that the Gibbs sampler has converged to the probability distribution we want
to sample from.

> update(model1, n.iter = 10000)

> simu1 <- coda.samples(model = model1, variable.names = "csup",

+ n.iter = 20000, thin = 20)

> sim1 <- simu1[[1]]
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The function update in rjags performs the burn-in, while coda.samples gen-
erates random observations from the stationary distribution. coda.samples

requires the following arguments: the model (model), the variables whose val-
ues will be returned (variable.names), the desired number of simulations
(n.iter) and the thinning interval (thin) that specifies the fraction of simu-
lations that will be returned. We set the latter to 1 out of each successive 20
simulations, to minimise the correlation between successive observations. The
function coda.samples returns the observations generated in parallel by one
or more chains, each stored as an element of a list. In the example above we
used a single chain and we saved it in the variable sim1. We can use it to es-
timate the probability that a steel rod of diameter 6.2mm has been produced
by supplier s1 with the frequency of s1 in the chain.

> sum(sim1 == 1) / length(sim1)

[1] 0.172

The estimated probability is close to 0.1824, its exact theoretical value com-
puted by the ratio of the densities of the two suppliers shown in Figure 3.1.

> d.s1 <- dnorm(6.2, mean = mu[1], sd = sigma)

> d.s2 <- dnorm(6.2, mean = mu[2], sd = sigma)

> d.s1 / (d.s1 + d.s2)

[1] 0.1824

In conclusion, if a steel rod has a diameter of 6.2mm, it is apparent which
supplier produced it: s2, with a probability of 0.8176.

3.1.2 Discretising Continuous Variables

When it is not feasible to include continuous nodes in the BN, a common trick
is to discretise them and revert to the multinomial BNs described in Chapter
1. A real-world example of this approach is illustrated in Section 6.1.2.

Consider this possibility for the steel rods example. Figure 3.1 shows that
the critical zone to discriminate between the two suppliers is around 6.175.
Therefore, we define three categories of diameter with boundaries 6.16 and
6.19: thin (less than 6.16), average (between 6.16 and 6.19) and thick (greater
than 6.19). We can then compute the conditional probability table of D given
S as well as the probability table of S given D. First, we create a matrix with
the probability of each diameter category conditional on the supplier, giving
appropriate names to its rows and columns.

> limits <- c(6.16, 6.19)

> dsd <- matrix(c(diff(c(0, pnorm(limits, mu[1], sigma), 1)),

+ diff(c(0, pnorm(limits, mu[2], sigma), 1))),

+ 3, 2)
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> dimnames(dsd) <- list(D = c("thin", "average", "thick"),

+ S = c("s1", "s2"))

> dsd

S

D s1 s2

thin 0.88493 0.03593

average 0.07914 0.07914

thick 0.03593 0.88493

Subsequently, we compute the joint distribution of D and S by multiplying dsd

by the probability of each S, which we stored in sp when we loaded the JAGS
model.

> jointd <- dsd * sp

Finally, we compute the conditional probability of S given D by dividing each
row by its total, which we compute using rowSums, and by transposing the
resulting matrix with the t function.

> dds <- t(jointd / rowSums(jointd))

> dds

D

S thin average thick

s1 0.96098 0.5 0.03902

s2 0.03902 0.5 0.96098

Using rjags, we can assess the probability of each supplier using either
the continuous or the discretised distribution, for any diameter. The result is
shown in Figure 3.2. The reason for the discrepancies we observe is intuitively
obvious: as expected, discretisation may imply losing accuracy when using the
BN. And we have used convenient limits to do it: how different would the BNs
be if we used, say, (6.17, 6.18) instead of (6.16, 6.19)?

It is important to note, however, that discretisation may actually result in
better BNs when it is not clear which distributions should be chosen for the
nodes or when the decomposition into local distributions is computationally
intractable. In such situations, the information that is lost compared to the
original data has a much smaller impact than using misspecified distributions
or coarse approximations of the conditional probabilities.

3.1.3 Using Different Probability Distributions

A further extension of the BNs proposed in Chapters 1 and 2 is not to limit
ourselves to multinomial and multivariate normal distributions. Indeed, the
choice of probability distributions for either discrete or continuous variables
is quite large; a comprehensive reference is the series of books by Johnson,
Kotz and others (Kotz et al., 2000; Johnson et al., 1994, 1995, 1997, 2005).
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Figure 3.2
Comparison of the continuous (solid line) and discretised (dashed line) ap-
proaches to estimate the probability of a steel rod to have been produced by
supplier s1 knowing its diameter.

For instance, BUGS implements 27 different distributions (see Section 5.2.1).
Here, we will just sketch how to use them by re-analysing the reinforcing steel
rods example with the following BUGS model.

model {

lambda ~ dchisqr(kd);

xx ~ dpois(lambda);

sup <- 1 + step(xx - kt);

diam ~ dgamma(kr[sup], kl[sup]);

}

As was the case in the previous section, the model is defined by the marginal
distribution of the supplier (sup) and by the conditional distribution of the
diameter (diam) when the supplier is fixed. But instead of a multinomial
distribution, the probability that a particular steel rod is produced by s1 or
s2 is based on a Poisson distribution, whose parameter has a χ2 distribution.
The diameter follows a gamma distribution whose parameters depend on sup.
Such a model, given the values below for the arguments kd, kt, kr and kl,
can be processed in the same way as in Section 3.1.1.

kd <- 10

kt <- 10

kr <- c(12200, 31000)

kl <- c(2000, 5000)
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Figure 3.3
Conditional distributions for the steel rod BN based on the Poisson and
gamma distributions. The left panel is similar to Figure 3.1. The right panel
shows the probability for a steel rod of a given diameter to have been produced
by a particular supplier.

Obtaining the marginal and conditional distributions from the model is
straightforward, as shown above with coda.samples. The conditional proba-
bilities that a steel rod from a given supplier has a certain diameter, Pr(D | S),
and that a steel rod of a given diameter has been produced by supplier s1,
Pr(S = s1 | D), are shown in Figure 3.3; the corresponding plots for the
previous model are in Figures 3.1 and 3.2.

It is important to note that Pr(S | D) does not necessarily take all the
values between 0 and 1 any longer, because any particular diameter can be
found in the rods from both supplier. For diameter values less than 6.1, we are
convinced that the steel rod was produced by supplier s1; between 6.1 and
6.2, both are possible; between 6.2 and 6.3, supplier s2 is the most probable
but s1 cannot be discarded; above 6.3, both are possible again. This is the
consequence of the different variances of the suppliers. In fact, the standard
deviation depends on the supplier, which is not possible for GBNs as defined
in Section 2.3.
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3.2 Pest Example with JAGS

Suppose that we are interested in the weight loss caused by some pest in
a crop. We would like to explain the behaviour of this target variable with
the help of a BN modelling crop plots across a range of conditions for the
climate and the soil. Pests can damage the crop in two occasions: when the
first generation awakes from the soil at the end of winter, and then when their
direct descendants are born at a later time. Denote with G1 and G2 the size
of the pest population at the first and second generations, respectively. G1 is
influenced mainly by the preceding crop in the plot, PR, if only because of
the number of larvae of the pest surviving in the soil. The climate conditions
during winter, CL, are also important because intense frost can kill some of the
larvae. The magnitude of the loss, LO, is related only to G2 because the second
generation population is larger than the first and eats the reproductive organs
of the plants. Finally, another factor has to be considered, TR: the farmer can
treat his plot against the pest if he believes on the basis of G1 that the losses
due to the pest would be higher than the cost of the treatment. In conclusion,
we have the relationships

{CL, PR} → G1, G1→ G2, G1→ TR, {G2, TR} → LO, (3.1)

which result in a DAG similar to those in Chapters 1 and 2.

3.2.1 Modelling

The most important difference from the previous BNs is that the probability
distributions used in the following are more sophisticated than multinomial
and multivariate normal, as can be observed in Figure 3.4 and in Table 3.2.

Nevertheless, this model is very simple to code in BUGS.

model {

PR ~ dcat(p.PR);

CL ~ dbeta(a.CL, b.CL);

G1 ~ dpois(CL * g.G1[PR]);

G2 ~ dpois(G1 * k.G2);

TR ~ dbern(ilogit((G1 - m.TR)/s.TR));

x.LO <- G2 * (1 - (1 - r.LO) * TR);

LO ~ dnchisqr(d.LO, x.LO);

}

As in the steel rods example, one node is described in each line, except for LO

where an intermediate deterministic variable (x.LO) has been introduced for
the sake of the example (we could have included the formula into the function
call as we do for TR). To make the model more general, the values of the
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Figure 3.4
The DAG and the local probability distributions for the pest BN. The g(PR)
function is defined in the legend of Table 3.2.
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PR ∼ Mu (1, p = (0.7, 0.2, 0.1))

CL ∼ Beta (3, 1)

G1 | PR = p, CL = c ∼ Pois (c× g (p)))

G2 | G1 = g1 ∼ Pois (10g1)

TR | G1 = g1 ∼ Ber

(
logit−1

[
g1 − 5

2.5

])

LO | G2 = g2, TR = t ∼ ncχ2

(
1,

[
g2 ×

{
1− 2t

3

}]2
)

Table 3.2
Probability distributions proposed for the DAG shown in Figure 3.4. g is
a known function giving the potential of G1 for a given class of the last
crop: g(1) = 1, g(2) = 3, g(3) = 10. Ber denotes a Bernoulli distribution, Pois
denotes a Poisson distribution and ncχ2 denotes a non-central Chi-square
distribution (see Appendix B for their definitions and fundamental properties).

parameters of the distributions have been replaced by constants which are
given in the following R list.

> dat0 <- list(p.PR = c(0.7, 0.2, 0.1),

+ a.CL = 3, b.CL = 1,

+ g.G1 = c(1, 3, 10),

+ k.G2 = 10,

+ m.TR = 5, s.TR = 2.5,

+ r.LO = 1/3, d.LO = 1)

By modifying dat0 we can perform a sensitivity analysis and study the effect
of different parameter values on the BN with the help of some loops.

3.2.2 Exploring

Several aspects of this BN are interesting to investigate, either from a theo-
retical or a practical point of view. In the following, we will focus on a few
key questions to illustrate how to interpret the BN and how to use JAGS to
that end.

The first question is how to quantify the effect of the last crop on the loss
caused by the pest. A simple answer could be the expected loss when PR is fixed
to 1, 2 or 3. After saving the BUGS model in a file called inclu.pest.jam,
this could be obtained as follows.

> exp.loss <- rep(NA, 3)
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> names(exp.loss) <- paste("PR=", 1:3, sep = "")

> qua.loss <- exp.loss

> for (PR in 1:3) {

+ dat1 <- dat0

+ dat1$PR <- PR

+ mopest <- jags.model(file = "inclu.pest.jam", data = dat1,

+ quiet = TRUE)

+ update(mopest, 3000)

+ sipest <-

+ coda.samples(model = mopest, variable.names = "LO",

+ n.iter = 50000)

+ summa <- summary(sipest)

+ exp.loss[PR] <- summa$statistics["Mean"]

+ qua.loss[PR] <- summa$quantiles["75%"]

+ }#FOR

> mean3 <- mean(sipest[[1]][, "LO"])

> round(c(exp.loss, MEAN = mean(exp.loss)), 1)

PR=1 PR=2 PR=3 MEAN

7.4 18.1 37.6 21.0

Note that we do not really need to use JAGS since the evidence is given on
the root nodes; such a simple simulation is straightforward to write in R. For
instance, we can implement it as follows for PR=1.

> set.seed(567)

> nbs <- 50000

> PR <- 1

> g <- function(pr) c(1, 3, 10)[pr]

> CL <- rbeta(nbs, 3, 1)

> G1 <- rpois(nbs, CL * g(PR))

> G2 <- rpois(nbs, G1 * 10)

> il <- function(x) {

+ exp((x - 5) / 2.5)/(1 + exp((x - 5) / 2.5))

+ }#IL

> TR <- rbinom(nbs, 1, il(G1))

> x.lo <- G2 * (1 - (1-1/3)*TR)

> LO <- rchisq(nbs, 1, ncp = x.lo)

> round(mean(LO), 1)

[1] 7.4

However, JAGS gives us the ability to condition on every possible combination
of the nodes in our BN, greatly increasing our ability to answer complex
questions.

Just by looking at the expectation of LO, it is obvious that the last crop has
a strong influence on the loss in the current one. On the other hand, we can
argue that this is not very informative because very different distributions can
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Figure 3.5
Marginal distributions of the nodes when conditioning on PR=1. For the sake
of simplicity, discrete nodes are represented as continuous variables, the gaps
between integer values being smoothed or not depending on the scale. In
particular, note the effect of the smoothing onto the 0/1 variable TR.

have the same expectation. Therefore, it is more effective to use an MCMC
simulation to plot the empirical density of the LO node. This can be achieved
simply by replacing mean(sipest[[1]][, "LO"]) with plot(sipest[[1]][,

"LO"]) in the first R code snippet we used in this section. Figures 3.5, 3.6 and
3.7 show the marginal distributions of all nodes (except PR of course) when
conditioning on each of the three possible values of PR.

The empirical densities obtained for node LO are consistent with the ex-
pectations we obtained above, but reveal that these distributions are far from
being symmetric. As a result, in this case expectations are misleading sum-
mary statistics because they are be located in the tails of the distributions.
Clearly, some quantiles or the corresponding tail probabilities (i.e., the prob-
ability of obtaining a value more extreme than that we are considering) would
be better choices. Here are the 75% quantiles that we computed previously
with summary.

> round(qua.loss)

PR=1 PR=2 PR=3

11 26 49

They strongly support our belief that the last crop has a marked effect on the
loss in the current crop. Examining distributions of the other nodes provides
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Marginal distributions of the nodes when conditioning on PR=2.
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Marginal distributions of the nodes when conditioning on PR=3.
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Figure 3.8
Marginal distributions of the nodes when conditioning on TR=0.

additional insight on this phenomenon. In a few words: if the climate remains
identical, G1 and G2 increase in proportion to the last crop as well as the
amount of pest treatment, but obviously not enough to offset the loss.

Now that we have established the influence of the last crop, we may be
interested in studying the effect of treatment by conditioning on its values,
TR = 0 and TR = 1. Figures 3.8 and 3.9 show the resulting marginal distri-
butions for the remaining nodes. In this case, we are using the BN instead
of an ad-hoc simulation because the required calculations are too complex to
perform in a few lines of R code. To do that would require to reimplement
the MCMC algorithms used by JAGS; or to derive in closed form the updated
distribution of the BN for each treatment and write the corresponding R code.
The latter is problematic because it requires the inversion of many dependence
relationships in the BN, and the local distributions of the nodes become much
more complicated as a result.

Surprisingly, the loss is higher when the treatment is applied than other-
wise; the expected loss is 12.3 for TR = 1 and 4.5 for TR = 0! Likewise, the
75% quantiles are 18.3 and 6.5, respectively. The reason for this unexpected
behaviour is that we are not conditioning only the loss in the current crop on
the treatment; that distribution can be read directly from the last equation of
Table 3.2 for any value of the second parent, G2. We are indirectly condition-
ing all the remaining variables as well, thus modifying their distributions. For
instance, this is clearly the case for PR, as more preceding crops of type 3 are
present when the treatment is performed. G2 is much larger as a result but,
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Marginal distributions of the nodes when conditioning on TR=1.

although the frequency of treated crops is greater, the loss is greater than for
the cases where treatment was not applied.

For the moment, we based our inference just on the marginal distributions
of the nodes conditional on a single node. In fact, many other configurations
are possible, such as fixing several nodes and considering simultaneously the
marginal or joint distributions of the rest.

An example of the latter is shown in Figure 3.10. Variables G2 and LO are
used to draw a scatter plot of the simulations with different symbols to mark
treated and untreated crops. Even though the scatter plot is very cluttered
around the origin, making it impossible to distinguish treated and untreated
crops, a distinct trend is evident for the other points. Their distribution can
be split into two almost non-overlapping clusters defined by the treatment
values. This is a logical consequence of the local distribution of LO | G2, PR.
Surely, when planning next year’s harvest it would be very useful to plot the
loss for each treatment. In more complex settings, such multivariate diagrams
can give interesting insights about the system under consideration.

3.3 About BUGS

Since we used JAGS to manipulate BNs, one could wonder whether we could
use JAGS and rjags exclusively and thus avoid the limitations of other R
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Figure 3.10
Global joint distribution of nodes LO (ordinates), G2 (abscissas) and TR (grey
“o” for the untreated crops and black “x” for the treated ones).

packages. This is not desirable, for two reasons. First, working with a limited
class of BNs is more computationally efficient, both in terms of speed and in
the number of nodes that can be handled. Second, JAGS does not implement
structure learning.

Furthermore, JAGS is a general Bayesian statistics tool; in that context
BNs are just used as a convenient way of defining priors and likelihood func-
tions. It is a credit to the authors of the original BUGS program that the
possibilities offered by the software architecture they conceived are far be-
yond their original expectations.

Note that WinBUGS and OpenBUGS, which have no Linux graphical in-
terface, include a complete set of tools to interpret MCMC simulations. How-
ever, it is often preferable to use both programs through their R interfaces, the
R2WinBUGS (Sturtz et al., 2005) and BRugs (Thomas et al., 2006) packages,
in combination with the coda package (Plummer et al., 2006) to handle the
objects returned by the MCMC calculations. This solution provides a more
versatile set of tools for inference, and makes it easier to perform complex anal-
yses. A short introduction to the capabilities of BUGS packages is provided
in Section 5.2.
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3.4 Further Reading

Hybrid BNs are rarely covered in books on graphical models, due to their
complexity compared to discrete BNs and GBNs. The particular case of con-
ditional linear Gaussian networks, which combine discrete and continuous vari-
ables using a mixture of normal distributions, is explored in Koller and Fried-
man (2009, Section 5.5.1 and Chapter 14), Koski and Noble (2009, Section
8.9) and Kjærluff and Madsen (2008, Sections 4.1.2 and 5.1.2).

Furthermore, we suggest Lunn et al. (2012) as a most useful book on mod-
elling complex distributions with graphical models and MCMC using BUGS.

Exercises

Exercise 3.1 Explain why it is logical to get a three-step function for the
discretised approach in Figure 3.2.

Exercise 3.2 Starting from the BUGS model in Section 3.1.1, write another
BUGS model for the discretised model proposed in Section 3.1.2. The functions
required for this task are described in the JAGS manual.

Exercise 3.3 Let d = 6.0, 6.1, 6.2, 6.4.

1. Using the BUGS model proposed in Section 3.1.1, write the R

script to estimate P (S = s2 | D = d) for the continuous approach
demonstrated in the same section.

2. Using the BUGS model obtained in Exercise 3.2, write the R

script to estimate P (S = s2 | D = d) for the discretised approach
suggested in Section 3.1.2.

And check the results with Figure 3.2.

Exercise 3.4 In Section 3.1.1, the probability that the supplier is s1 knowing
that the diameter is 6.2 was estimated to be 0.1824 which is not identical to
the value obtained with JAGS.

1. Explain why the calculation with the R function dnorm is right
and why the value 0.1824 is correct. Can you explain why the JAGS
result is not exact? Propose a way to improve it.

2. Would this value be different if we modify the marginal distribu-
tion for the two suppliers?
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Exercise 3.5 Revisiting the discretisation in Section 3.1.2, compute the con-
ditional probability tables for D | S and S | D when the interval boundaries are
set to (6.10, 6.18) instead of (6.16, 6.19).

Compared to the results presented in Section 3.1.2, what is your conclu-
sion?





4

Theory and Algorithms for Bayesian Networks

In this chapter we will provide the theoretical foundations underpinning the
classes of BNs we explored in Chapter 1 (discrete BNs), Chapter 2 (GBNs)
and Chapter 3 (hybrid BNs). In particular, we will introduce the formal defi-
nition of a BN and its fundamental properties. We will then show how these
properties are at the base of BN learning and inference.

4.1 Conditional Independence and Graphical Separation

BNs are a class of graphical models, which allow an intuitive representation of
the probabilistic structure of multivariate data using graphs. We have intro-
duced them in Chapter 1 as the combination of:

• a set of random variables X = {X1, X2, . . . , Xp} describing the quantities of
interest. The multivariate probability distribution of X is called the global
distribution of the data, while the univariate ones associated with each Xi ∈
X are called local distributions;

• a directed acyclic graph (DAG), denoted G = (V, A). Each node v ∈ V is
associated with one variable Xi. The directed arcs a ∈ A that connect them
represent direct probabilistic dependencies; so if there is no arc connecting
two nodes the corresponding variables are either independent or condition-
ally independent given a subset of the remaining variables.

The link between the graphical separation (denoted ⊥⊥G) induced by the ab-
sence of a particular arc and probabilistic independence (denoted ⊥⊥P ) pro-
vides a direct and easily interpretable way to express the relationships between
the variables. Following the seminal work of Pearl (1988), we distinguish three
possible ways in which the former maps to the latter.

Definition 4.1 (Maps) Let M be the dependence structure of the probability
distribution P of X, that is, the set of conditional independence relationships
linking any triplet A, B, C of subsets of X. A graph G is a dependency map
(or D-map) of M if there is a one-to-one correspondence between the random
variables in X and the nodes V of G such that for all disjoint subsets A, B,

85
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C of X we have
A ⊥⊥P B | C =⇒ A ⊥⊥G B | C. (4.1)

Similarly, G is an independency map (or I-map) of M if

A ⊥⊥P B | C⇐= A ⊥⊥G B | C. (4.2)

G is said to be a perfect map of M if it is both a D-map and an I-map, that is

A ⊥⊥P B | C⇐⇒ A ⊥⊥G B | C, (4.3)

and in this case G is said to be faithful or isomorphic to M .

In the case of a D-map, the probability distribution of X determines which
arcs are present in the DAG G. Nodes that are connected (i.e., not separated)
in G correspond to dependent variables in X; however, nodes that are sepa-
rated in G do not necessarily correspond to conditionally independent vari-
ables in X. On the other hand, in the case of an I-map we have that the arcs
present in the DAG G determine which variables are conditionally indepen-
dent in X. Therefore, nodes that are found to be separated in G correspond to
conditionally independent variables in X, but nodes that are connected in G
do not necessarily correspond to dependent variables in X. In the case of a per-
fect map, there is a one-to-one correspondence between graphical separation
in G and conditional independence in X.

The graphical separation in Definition 4.1 is established using d-separation,
which we first introduced in Section 1.6.1. It is formally defined as follows.

Definition 4.2 (d-separation) If A, B and C are three disjoint subsets of
nodes in a DAG G, then C is said to d-separate A from B, denoted A ⊥⊥G

B | C, if along every path between a node in A and a node in B there is a
node v satisfying one of the following two conditions:

1. v has converging arcs (i.e., there are two arcs pointing to v
from the adjacent nodes in the path) and neither v nor any of its
descendants (i.e., the nodes that can be reached from v) are in C.

2. v is in C and does not have converging arcs.

As an example, consider again the three fundamental connections shown in
Figure 1.3, Section 1.6.1. The first was a serial connection from Sex to Ed-
ucation to Residence (S → E → R), and we were investigating S ⊥⊥G R | E.
The node E, which plays the role of v ∈ C in Definition 4.2, matches the
second condition and d-separates S and R. As a result, we can conclude that
S ⊥⊥G R | E holds and, in turn, we can determine that S and R are conditionally
independent (S ⊥⊥P R | E) using Definition 4.1. An identical reasoning leads
to the conclusion that O ⊥⊥G R | E and O ⊥⊥P R | E holds for the divergent
connection formed by Education, Occupation and Residence (O ← E → R).
On the other hand, in the convergent connection formed by Age, Sex and Ed-
ucation (A → E ← S) we have that A 6⊥⊥G S | E. Unlike the serial and divergent
connections, the node in the middle of the connection does not d-separate the
other two since E does not match any of the two conditions in Definition 4.2.
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4.2 Bayesian Networks

Having defined a criterion to determine whether two nodes are connected or
not, and how to map those connections (or the lack thereof) to the probability
distribution of X, we are now ready to introduce the formal definition of a
BN.

Definition 4.3 (BNs) Given a probability distribution P on a set of vari-
ables X, a DAG G = (X, A) is called a BN and denoted B = (G, X) if and
only if G is a minimal I-map of P , so that none of its arcs can be removed
without destroying its I-mapness.

This definition highlights two fundamental properties of BNs. First, assuming
that the DAG is an I-map leads to the general formulation of the decomposi-
tion of the global distribution Pr(X) introduced in Equation (1.1) on page 7:

Pr(X) =

p∏

i=1

Pr(Xi | ΠXi
) (4.4)

where ΠXi
is the set of the parents of Xi. If Xi has two or more parents it

depends on their joint distribution, because each pair of parents forms a con-
vergent connection centred on Xi and we cannot establish their independence.
This decomposition is preferable to that obtained from the chain rule,

Pr(X) =

p∏

i=1

Pr(Xi | Xi+1, . . . , Xp) (4.5)

because the conditioning sets are typically smaller. Only when the ordering
of the variables is topological, the chain rule simplifies to the decomposition
in Equation (1.1). In the general case the chain rule is more difficult to write,
even for the simple multinomial and Gaussian cases presented in Chapters 1
and 2.

Another result along the same lines is called the local Markov property,
which can be combined with the chain rule above to get the decomposition in
Equation (4.4).

Definition 4.4 (Local Markov property) Each node Xi is conditionally
independent of its non-descendants (e.g., nodes Xj for which there is no path
from Xi to Xj) given its parents.

Compared to the previous decomposition, it highlights the fact that parents
are not completely independent from their children in the BN; a trivial ap-
plication of Bayes’ theorem to invert the direction of the conditioning shows
how information on a child can change the distribution of the parent.
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Second, assuming the DAG is an I-map also means that serial and divergent
connections result in equivalent factorisations of the variables involved. It is
easy to show that

Pr(Xi) Pr(Xj | Xi) Pr(Xk | Xj)︸ ︷︷ ︸
serial connection

= Pr(Xj , Xi) Pr(Xk | Xj) =

= Pr(Xi | Xj) Pr(Xj) Pr(Xk | Xj)︸ ︷︷ ︸
divergent connection

. (4.6)

Then Xi → Xj → Xk and Xi ← Xj → Xk are equivalent. As a result, we
can have BNs with different arc sets that encode the same conditional inde-
pendence relationships and represent the same global distribution in different
(but probabilistically equivalent) ways. Such DAGs are said to belong to the
same equivalence class.

Theorem 4.1 (Equivalence classes) Two DAGs defined over the same set
of variables are equivalent if and only if they have the same skeleton (i.e., the
same underlying undirected graph) and the same v-structures.

In other words, the only arcs whose directions are important are those that
are part of one or more v-structures.

Definition 4.5 (V-structures) A convergent connection Xi → Xk ← Xj

is called a v-structure if there is no arc connecting Xi and Xj. In addition,
Xk is often called the collider node and the connection is then called an un-
shielded collider, as opposed to a shielded collider in which either Xi → Xj or
Xi ← Xj.

As underlined both in Section 1.6.1 and in Section 4.1, convergent connec-
tions that are also v-structures have different characteristics than serial and
divergent connections for both graphical separation and probabilistic inde-
pendence. Therefore, the directions of their arcs cannot be changed without
altering the global distribution.

Consider, for example, the graphs in Figure 4.1. Using bnlearn, we can
create the DAG in the top left panel,

> X <- paste("[X1][X3][X5][X6|X8][X2|X1][X7|X5][X4|X1:X2]",

+ "[X8|X3:X7][X9|X2:X7][X10|X1:X9]", sep = "")

> dag <- model2network(X)

and get its skeleton (top right panel) and v-structures as follows.

> skel <- skeleton(dag)

> vstructs(dag)

X Z Y

[1,] "X1" "X10" "X9"

[2,] "X3" "X8" "X7"

[3,] "X2" "X9" "X7"
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Figure 4.1
A DAG (top left), its underlying undirected graph (the skeleton, top right),
its CPDAG (bottom left) and another DAG in the same equivalence class
(bottom right). Arcs that belong to a v-structure are drawn with a thicker
line width.

Those two quantities identify the equivalence class dag belongs to, which is
represented by the completed partially directed graph (CPDAG) shown in the
bottom left panel. We can obtain it from dag with cpdag function.

> cp1 <- cpdag(dag)

Following Theorem 4.1, not all arcs in this graph are directed; therefore,
it is not a DAG because it is only partially directed.

Arcs that were part of one or more v-structures in dag, highlighted with a
thicker line width, are still directed. Of the remaining arcs, some are directed
and some are not. The arc X8 → X6 is still directed because its other possible
direction (X6 → X8) would introduce additional v-structures in the CPDAG,
e.g., X7 → X8 ← X6 and X3 → X8 ← X6. Since these v-structures are not
present in dag, any CPDAG including them would not be a valid representa-
tion of dag’s equivalence class. Therefore, the partially directed acyclic graph
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(PDAG) obtained from dag’s skeleton and its v-structures must be completed
into a CPDAG by compelling the direction of X8 → X6, which is then called
a compelled arc. Similarly, if disregarding the direction of an arc would result
in one of its possible direction introducing cycles, such an arc is considered
compelled and its original direction preserved.

On the other hand, the direction of the arc X5 → X7 is not preserved in
the CPDAG. Neither X5 → X7 nor X7 → X5 introduce any v-structure in the
graph, as they are part only of serial (the former) or divergent connections
(the latter). The same holds for the arcs connecting X1, X2 and X4. We can
easily verify with set.arc and cpdag that changing the direction of any of
those arcs in a way that does not introduce cycles or v-structures results in
another DAG (bottom right panel) belonging to the same equivalence class.

> dag2 <- dag

> dag2 <- set.arc(dag2, "X7", "X5")

> dag2 <- set.arc(dag2, "X4", "X2")

> dag2 <- set.arc(dag2, "X1", "X2")

> dag2 <- set.arc(dag2, "X1", "X4")

> cp2 <- cpdag(dag2)

> all.equal(cp1, cp2)

[1] "Different arc sets"

It is important to note that even though X1 → X4 ← X2 is a convergent
connection, it is not a v-structure because X1 and X2 are connected by X1 →
X2. As a result, we are no longer able to identify which nodes are the parents
in the connection. For example, we can show that {X1, X2, X4} have exactly
the same probability distribution in the two DAGs in Figure 4.1:

Pr(X1) Pr(X2 | X1) Pr(X4 | X1, X2)︸ ︷︷ ︸
X1→X4←X2, X1→X2

= Pr(X1)
Pr(X2, X1)

Pr(X1)

Pr(X4, X1, X2)

Pr(X1, X2)
=

= Pr(X1) Pr(X4, X2 | X1) = Pr(X1) Pr(X2 | X4, X1) Pr(X4 | X1)︸ ︷︷ ︸
X4→X2←X1, X1→X4

. (4.7)

Therefore, the fact that the two parents in a convergent connection are not
connected by an arc is crucial in the identification of the correct CPDAG.

4.3 Markov Blankets

The decomposition of the global distribution in Equation (4.4) provides a con-
venient way to split X into manageable parts, and identifies in the parents
of each node the set of conditioning variables of each local distribution. This
is indeed very useful in manually defining a BN or for learning it from data.
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However, for the purpose of inference it may be preferable to use Bayes’ the-
orem as suggested by Definition 4.4 and consider also the children of a node
to increase the amount of information extracted from the BN.

Going back to the first DAG in Figure 4.1, if we want to perform a query
on X9 instead of using

X9 ∼ Pr(X9 | X2, X7) (4.8)

which incorporates only the information provided by X2 and X7, we may prefer
to include more nodes to use the information encoded in the BN to a greater
extent, and make inference more powerful as a consequence.

In the limit case, we could decide to condition on all the other nodes in
the BN,

X9 ∼ Pr(X9 | X1, X2, X3, X4, X5, X6, X7, X8, X10), (4.9)

to prevent any bias or loss of power. However, this is unfeasible for most real-
world problems, and in fact it would not be much different from using the
global distribution. Instead, we can use d-separation to reduce the set of condi-
tioning nodes we need to consider. For example, adding X5 to the conditioning
variables in the example Equation (4.8) is pointless, because it is d-separated
(and therefore conditionally independent) from X9 by {X2, X7, X10}:
> dsep(dag, x = "X9", y = "X5", z = c("X2", "X7", "X10"))

[1] TRUE

The minimal subset of nodes we need to condition upon is called the Markov
blanket, and is defined as follows.

Definition 4.6 (Markov blanket) The Markov blanket of a node A ∈ V is
the minimal subset S of V such that

A ⊥⊥G V− S−A | S. (4.10)

Corollary 4.1 (Markov blankets and faithfulness) Assuming faithfulness,
Definition 4.6 implies S is the minimal subset of V such that

A ⊥⊥P V− S−A | S. (4.11)

Corollary 4.1 provides a formal definition of the set we are looking for: it is
the subset of nodes that makes the rest redundant when performing inference
on a given node. In other words, it casts Markov blanket identification as a
general feature selection or variable selection problem. Assuming faithfulness
makes sure that the set is indeed minimal. Assuming the BN is just an I-
map, as in the standard definition, does not guarantee that all the nodes in
the Markov blanket are really required to get complete probabilistic indepen-
dence because not all nodes that are shown to be connected in G are in fact
probabilistically dependent.

Theorem 4.2 (Composition of the Markov blanket) The Markov blan-
ket of a node A is the set consisting of the parents of A, the children of A and
all the other nodes sharing a child with A.
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Figure 4.2
The Markov blanket of node X9 (on the left) and that of node X7 (on the
right).

Theorem 4.2 identifies which nodes should be included in the Markov blan-
ket to d-separate the target node from the rest of the DAG. Parents and
children are required to block the paths that satisfy the first condition in Def-
inition 4.2. Nodes that share a child with the target node, sometimes called
spouses, are required to block the paths that satisfy the second condition. The
target node itself is not part of its Markov blanket.

As an example, the Markov blankets of nodes X9 and X7 are shown in
Figure 4.2. We can identify the nodes that belong to each with the mb function
from bnlearn.

> mb(dag, node = "X9")

[1] "X1" "X10" "X2" "X7"

> mb(dag, node = "X7")

[1] "X2" "X3" "X5" "X8" "X9"

Using the functions parents and children we can also check that the Markov
blanket of X9 is composed by the nodes identified by Definition 4.6. First, we
identify the parents and the children of X9.

> par.X9 <- parents(dag, node = "X9")

> ch.X9 <- children(dag, node = "X9")

Then we identify all the parents of the children of X9 by calling the parents

function for each child through sapply.

> sp.X9 <- sapply(ch.X9, parents, x = dag)

We must remove X9 itself from sp.X9, because a node by definition is not part
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of its own Markov blanket. Finally, we merge parX9, ch.X9 and sp.X9 to form
the Markov blanket.

> sp.X9 <- sp.X9[sp.X9 != "X9"]

> unique(c(par.X9, ch.X9, sp.X9))

[1] "X2" "X7" "X10" "X1"

Equivalently, we might have used nbr to identify both parents and children in
a single function call, as they are the neighbours of X9. The Markov blanket
of X7 can be similarly investigated.

We can also test whether the Markov blanket of X9 d-separates X9 from
all the other nodes in dag.

> V <- setdiff(nodes(dag), "X9")

> S <- mb(dag, "X9")

> sapply(setdiff(V, S), dsep, bn = dag, y = "X9", z = S)

X3 X4 X5 X6 X8

TRUE TRUE TRUE TRUE TRUE

Similarly, for X7 we have

> V <- setdiff(nodes(dag), "X7")

> S <- mb(dag, "X7")

> sapply(setdiff(V, S), dsep, bn = dag, y = "X7", z = S)

X1 X10 X4 X6

TRUE TRUE TRUE TRUE

as expected.
Furthermore, it can be shown as a corollary of Theorem 4.2 that Markov

blankets are symmetric.

Corollary 4.2 (Symmetry of Markov blankets) Theorem 4.2 defines a
symmetric relationship: if node A is in the Markov blanket of B, then B is in
the Markov blanket of A.

So, for example, if we take each node in the Markov blanket S of X7 in turn
and identify its Markov blanket, we have that X7 belongs to each of those
Markov blankets.

> belongs <- logical(0)

> for (node in S)

+ belongs[node] <- "X7" %in% mb(dag, node)

> belongs

X2 X3 X5 X8 X9

TRUE TRUE TRUE TRUE TRUE
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Figure 4.3
The DAG from Figures 4.1 and 4.2 (left) and its moral graph (right). Some
nodes have been moved to give a clearer view of the relationships.

4.4 Moral Graphs

In Section 4.2 we introduced an alternative graphical representation of the
DAG underlying a BN: the CPDAG of the equivalence class the BN belongs
to. Another graphical representation that can be derived from the DAG is the
moral graph.

The moral graph is an undirected graph that is constructed as follows:

1. connecting the non-adjacent nodes in each v-structure with an undi-
rected arc;

2. ignoring the direction of the other arcs, effectively replacing them
with undirected arcs.

This transformation is called moralisation because it “marries” non-adjacent
parents sharing a common child. In the case of our example dag, we can
create the moral graph with the moral function as follows; the result is shown
in Figure 4.3.

> mg1 <- moral(dag)

It is important to note that different DAGs may result in identical moral
graphs because of the nature of the transformations above; for instance, adding
an arc from X7 to X3 to dag does not alter its moral graph.

> all.equal(moral(dag),

+ moral(set.arc(dag, from = "X7", to = "X3")))

[1] TRUE
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It is also easy, for the sake of the example, to perform moralisation man-
ually. First, we identify the v-structures in the DAG and we link the parents
within each v-structure with an undirected arc (e.g., an edge).

> mg2 <- dag

> vs <- vstructs(dag)

> for (i in seq(nrow(vs)))

+ mg2 <- set.edge(mg2, from = vs[i, "X"], to = vs[i, "Y"],

+ check.cycles = FALSE)

This step appears to introduce potential cycles in the resulting PDAG. How-
ever, we can safely ignore them since we are going to construct the undirected
graph underlying mg2, thus replacing each directed arc with an undirected
one.

> mg2 <- skeleton(mg2)

> all.equal(mg1, mg2)

[1] TRUE

Moralisation has several uses. First, it provides a simple way to transform
a BN into the corresponding Markov network, a graphical model using undi-
rected graphs instead of DAGs to represent dependencies. These models have
a long history in statistics, and have been studied in such classic monographs
as Whittaker (1990) and Lauritzen (1996). On the one hand, all dependencies
are explicitly represented in a Markov network, even those that would be im-
plicitly implied by v-structures in a BN. On the other hand, the addition of
undirected arcs makes the graph structure less informative, because we cannot
tell that nodes that were parents in a v-structure are marginally independent
when we are not conditioning on their common child. Second, moral graphs
provide the foundation for exact inference on BNs through the junction tree
algorithm, which will be introduced in Section 4.6.2.

4.5 Bayesian Network Learning

In the field of BNs, model selection and estimation are collectively known as
learning, a name borrowed from artificial intelligence and machine learning.
BN learning is usually performed as a two-step process:

1. structure learning, learning the structure of the DAG;

2. parameter learning, learning the local distributions implied by the
structure of the DAG learned in the previous step.

Both steps can be performed either as unsupervised learning, using the in-
formation provided by a data set, or as supervised learning, by interviewing
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experts in the fields relevant for the phenomenon being modelled. Combin-
ing both approaches is common. Often the prior information available on the
phenomenon is not enough for an expert to completely specify a BN. Even
specifying the DAG structure is often impossible, especially when a large num-
ber of variables are involved. This is the case, for example, for gene network
analysis.

This workflow is inherently Bayesian. Consider a data set D and a BN
B = (G, X). If we denote the parameters of the global distribution of X with
Θ, we can assume without loss of generality that Θ uniquely identifies X
in the parametric family of distributions chosen for modelling D and write
B = (G, Θ). BN learning can then be formalised as

Pr(B | D) = Pr(G, Θ | D)︸ ︷︷ ︸
learning

= Pr(G | D)︸ ︷︷ ︸
structure learning

· Pr(Θ | G,D)︸ ︷︷ ︸
parameter learning

.

(4.12)

The decomposition of Pr(G, Θ | D) reflects the two steps described above, and
underlies the logic of the learning process.

Structure learning can be done in practice by finding the DAG G that
maximises

Pr(G | D) ∝ Pr(G) Pr(D | G) = Pr(G)

∫
Pr(D | G, Θ) Pr(Θ | G)dΘ, (4.13)

using Bayes’ theorem to decompose the posterior probability of the DAG (i.e.,
Pr(G | D)) into the product of the prior distribution over the possible DAGs
(i.e., Pr(G)) and the probability of the data (i.e., Pr(D | G)). Clearly, it is not
possible to compute the latter without also estimating the parameters Θ of
G; therefore, Θ has to be integrated out of Equation (4.13) to make Pr(G | D)
independent of any specific choice of Θ.

The prior distribution Pr(G) provides an ideal way to introduce any prior
information available on the conditional independence relationships between
the variables in X. We may, for example, require that one or more arcs should
be present in or absent from the DAG, to account for the insights gained in
previous studies. We may also require that some arcs, if present in the DAG,
must be oriented in a specific direction when that direction is the only one
that makes sense in the light of the logic underlying the phenomenon being
modelled. This was the case in the examples presented in Chapter 1 and
Chapter 2. In Chapter 1, Age (A) and Sex (S) cannot be the head of any arcs
because they are demographic indicators. It also makes little sense to allow
either A → S or S → A to be present in the DAG. Similar considerations can
be made for the genetic potential (G) and the environmental potential (E) in
Chapter 2.

The most common choice for Pr(G) is a non-informative prior over the
space of the possible DAGs, assigning the same probability to every DAG.
Some DAGs may be excluded outright due to prior information, as we dis-
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cussed above. More complex priors (known as structural priors) are also possi-
ble, but rarely used in practice for two reasons. First, using a uniform probabil-
ity distribution makes Pr(G) irrelevant in maximising Pr(G | D). This makes
it convenient for both computational and algebraic reasons. Second, the num-
ber of possible DAGs increases super-exponentially in the number of nodes.
In a DAG with p nodes we have 1

2 p(p− 1) possible arcs, given by the pairs of
different nodes in V. Even disregarding the arcs’ directions, this means that
there are 2O(p2) possible DAGs. Specifying a prior distribution over such a
large number of DAGs is a challenging task for even small problems.

Computing Pr(D | G) is also problematic from both a computational and
an algebraic point of view. Starting from the decomposition into local distri-
butions, we can further factorise Pr(D | G) in a similar way:

Pr(D | G) =

∫ p∏

i=1

[Pr(Xi | ΠXi
, ΘXi

) Pr(ΘXi
| ΠXi

)] dΘ =

=

p∏

i=1

[∫
Pr(Xi | ΠXi

, ΘXi
) Pr(ΘXi

| ΠXi
)dΘXi

]
=

=

p∏

i=1

EΘXi
[Pr(Xi | ΠXi

)] . (4.14)

Functions that can be factorised in this way are called decomposable. If
all expectations can be computed in close form, Pr(D | G) can be computed
in a reasonable time even for large data sets. This is possible both for the
multinomial distribution assumed for discrete BNs (via its conjugate Dirichlet
posterior) and for the multivariate Gaussian distribution assumed for contin-
uous BNs (via its conjugate Inverse Wishart distribution). For discrete BNs,
Pr(D | G) can be estimated with the Bayesian Dirichlet equivalent uniform
(BDeu) score from Heckerman et al. (1995). Since it is the only member of
the BDe family of scores in common use, it is often referred to simply as BDe.
As we have seen in Chapter 1, BDe assumes a flat prior over both the space
of the DAGs and the parameter space of each node:

Pr(G) ∝ 1 and Pr(ΘXi
| ΠXi

) = αij =
α

|ΘXi
| . (4.15)

The only parameter of BDe is the imaginary sample size α associated with
the Dirichlet prior, which determines how much weight is assigned to the prior
as the size of an imaginary sample supporting it.

Under these assumptions, BDe takes the form

BDe(G,D) =

p∏

i=1

BDe(Xi, ΠXi
) =

=

p∏

i=1

qi∏

j=1

{
Γ(αij)

Γ(αij + nij)

ri∏

k=1

Γ(αij + nijk))

Γ(αijk)

}
(4.16)
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where:

• p is the number of nodes in G;

• ri is the number of categories for the node Xi;

• qi is the number of configurations of the categories of the parents of Xi;

• nijk is the number of samples which have the jth category for node Xi and
the kth configuration for its parents.

The corresponding posterior probability for GBNs is called Bayesian Gaus-
sian equivalent uniform (BGeu) from Geiger and Heckerman (1994), which is
again commonly referred to as BGe. Similarly to BDe, it assumes a non-
informative prior over both the space of the DAGs and the parameter space
of each node; and its only parameter is the imaginary sample size α. Its ex-
pression is very complicated, and will not be reported here.

As a result of the difficulties outlined above, two alternatives to the use of
Pr(D | G) in structure learning have been developed. The first one is the use of
the Bayesian Information criterion (BIC) as an approximation of Pr(D | G),
as

BIC(G,D)→ log BDe(G,D) as the sample size n→∞. (4.17)

BIC is decomposable and only depends on the likelihood function,

BIC(G,D) =

p∑

i=1

[
log Pr(Xi | ΠXi

)− |ΘXi
|

2
log n

]
(4.18)

which makes it very easy to compute (see Equation (1.14) for discrete BNs
and Equation (2.13) for GBNs). The second alternative is to avoid the need
to define a measure of goodness-of-fit for the DAG and to use conditional
independence tests to learn the DAG structure one arc at a time. All these
approaches to structure learning will be covered in Section 4.5.1.

Once we have learned the DAG structure we can move to parameter learn-
ing, that is, we can estimate the parameters of X. Assuming that parameters
belonging to different local distributions are independent, we actually need
to estimate only the parameters of one local distribution at a time. Follow-
ing the Bayesian approach outlined in Equation (4.12), this would require to
find the value of the Θ that maximises Pr(Θ | G,D) through its components
Pr(ΘXi

| Xi, ΠXi
). Other approaches to parameter estimation, such as max-

imum likelihood regularised estimation, are also common; their advantages
and disadvantages will be covered in Section 4.5.2.

Local distributions in practice involve only a small number of nodes, i.e.,
Xi and it parents ΠXi

. Furthermore, their dimension usually does not scale
with the number of nodes in the BN (and is often assumed to be bounded
by a constant when computing the computational complexity of algorithms),
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thus avoiding the so called curse of dimensionality. This means that each
local distribution has a comparatively small number of parameters to estimate
from the sample, and that estimates are more accurate due to the better ratio
between the size of ΘXi

and the sample size.

4.5.1 Structure Learning

Several algorithms have been presented in literature for this problem, thanks
to the application of results arising from probability, information and op-
timisation theory. Despite the (sometimes confusing) variety of theoretical
backgrounds and terminology they can all be traced to only three approaches:
constraint-based, score-based and hybrid.

All these structure learning algorithms operate under a set of common
assumptions:

• There must be a one-to-one correspondence between the nodes in the DAG
and the random variables in X; this means in particular that there must not
be multiple nodes which are deterministic functions of a single variable.

• All the relationships between the variables in X must be conditional inde-
pendencies, because they are by definition the only kind of relationships that
can be expressed by a BN.

• Every combination of the possible values of the variables in X must repre-
sent a valid, observable (even if really unlikely) event. This assumption im-
plies a strictly positive global distribution, which is needed to have uniquely
determined Markov blankets and, therefore, a uniquely identifiable model.
Constraint-based algorithms work even when this is not true, because the
existence of a perfect map is also a sufficient condition for the uniqueness of
the Markov blankets (Pearl, 1988).

• Observations are treated as independent realisations of the set of nodes. If
some form of temporal or spatial dependence is present, it must be specifi-
cally accounted for in the definition of the network, as in dynamic Bayesian
networks.

4.5.1.1 Constraint-based Algorithms

Constraint-based algorithms are based on the seminal work of Pearl on maps
and its application to causal graphical models. His Inductive Causation (IC)
algorithm (Verma and Pearl, 1991) provides a framework for learning the DAG
structure of BNs using conditional independence tests.

The details of the IC algorithm are described in Algorithm 4.1. The first
step identifies which pairs of variables are connected by an arc, regardless of
its direction. These variables cannot be independent given any other subset
of variables, because they cannot be d-separated. This step can also be seen
as a backward selection procedure starting from the saturated model with
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Algorithm 4.1 Inductive Causation Algorithm

1. For each pair of nodes A and B in V search for set SAB ⊂ V such
that A and B are independent given SAB and A, B /∈ SAB . If there
is no such a set, place an undirected arc between A and B.

2. For each pair of non-adjacent nodes A and B with a common neigh-
bour C, check whether C ∈ SAB . If this is not true, set the direction
of the arcs A− C and C −B to A→ C and C ← B.

3. Set the direction of arcs which are still undirected by applying re-
cursively the following two rules:

(a) if A is adjacent to B and there is a strictly directed path from
A to B then set the direction of A−B to A→ B;

(b) if A and B are not adjacent but A→ C and C−B, then change
the latter to C → B.

4. Return the resulting CPDAG.

a complete graph and pruning it based on statistical tests for conditional
independence. The second step deals with the identification of the v-structures
among all the pairs of non-adjacent nodes A and B with a common neighbour
C. By definition, v-structures are the only fundamental connection in which
the two non-adjacent nodes are not independent conditional on the third one.
Therefore, if there is a subset of nodes that contains C and d-separates A
and B, the three nodes are part of a v-structure centred on C. This condition
can be verified by performing a conditional independence test for A and B
against every possible subset of their common neighbours that includes C.
At the end of the second step, both the skeleton and the v-structures of the
network are known, so the equivalence class the BN belongs to is uniquely
identified. The third and last step of the IC algorithm identifies compelled arcs
and orients them recursively to obtain the CPDAG describing the equivalence
class identified by the previous steps.

A major problem of the IC algorithm is that the first two steps cannot be
applied in the form described in Algorithm 4.1 to any real-world problem due
to the exponential number of possible conditional independence relationships.
This has led to the development of improved algorithms such as:

• PC : the first practical application of the IC algorithm (Spirtes et al., 2000);

• Grow-Shrink (GS): based on the Grow-Shrink Markov blanket algorithm
(Margaritis, 2003), a simple forward selection Markov blanket detection ap-
proach;

• Incremental Association (IAMB): based on the Incremental Association
Markov blanket algorithm (Tsamardinos et al., 2003), a two-phase selection
scheme;
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• Fast Incremental Association (Fast-IAMB): a variant of IAMB which uses
speculative stepwise forward selection to reduce the number of conditional
independence tests (Yaramakala and Margaritis, 2005);

• Interleaved Incremental Association (Inter-IAMB): another variant of IAMB
which uses forward stepwise selection (Tsamardinos et al., 2003) to avoid
false positives in the Markov blanket detection phase.

All these algorithms, with the exception of PC, first learn the Markov blan-
ket of each node. This preliminary step greatly simplifies the identification
of neighbours. This in turn results in a significant reduction in the number
of conditional independence tests, and therefore of the overall computational
complexity of the learning algorithm. Further improvements are possible by
leveraging the symmetry of Markov blankets (Corollary 4.2). As far as the
quality of the learned CPDAGs is concerned, on average Inter-IAMB produces
fewer false positives than GS, IAMB or Fast-IAMB while having a compara-
ble number of false negatives. The PC algorithm as extended in Kalisch and
Bühlmann (2007), Kalisch and Bühlmann (2008) and Bühlmann et al. (2010)
is also competitive. In the case of high-dimensional data sets, the best choice
is probably the Semi-Interleaved Hiton-PC from Aliferis et al. (2010), which
can scale well up to thousands of variables.

Conditional independence tests used to learn discrete BNs are functions
of the observed frequencies {nijk, i = 1, . . . , R, j = 1, . . . , C, k = 1, . . . , L} for
the random variables X and Y and all the configurations of the conditioning
variables Z. We introduced two such tests in Section 1.5.1:

• the mutual information test, an information-theoretic distance measure de-
fined as

MI(X, Y | Z) =

R∑

i=1

C∑

j=1

L∑

k=1

nijk

n
log

nijkn++k

ni+kn+jk

(4.19)

and equivalent to the log-likelihood ratio test G2 (they differ by a 2n factor,
where n is the sample size);

• the classic Pearson’s X2 test for contingency tables,

X2(X, Y | Z) =

R∑

i=1

C∑

j=1

L∑

k=1

(nijk −mijk)
2

mijk

, where mijk =
ni+kn+jk

n++k

.

(4.20)

Another possibility is the shrinkage estimator for the mutual information de-
fined by Hausser and Strimmer (2009) and studied in the context of BNs in
Scutari and Brogini (2012).
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Test
Asymptotic
χ2

Monte
Carlo

Sequential
Monte Carlo

Semiparametric
χ2

mutual
information
(G2)

"mi" "mc-mi" "smc-mi" "sp-mi"

Pearson’s X2 "x2" "mc-x2" "smc-x2" "sp-x2"

mutual
information
(shrinkage)

"mi-sh" – – –

Table 4.1
Labels of the conditional independence tests for discrete BNs implemented in
bnlearn.

For all the tests above, the null hypothesis of independence can be tested
using:

• the asymptotic χ2
(R−1)(C−1)L distribution, which is very fast to compute but

requires an adequate sample size to be accurate;

• the Monte Carlo permutation approach or the faster, sequential Monte Carlo
permutation approaches described in Edwards (2000). Both approaches en-
sure that the tests are unbiased, and that they are valid even for small
sample sizes. However, they are computationally expensive;

• the semiparametric χ2 distribution described in Tsamardinos and Bor-
boudakis (2010), which represents a compromise between the previous two
approaches.

Several of these combinations of tests statistics and distributions are imple-
mented in bnlearn, for use both in structure learning and as standalone tests
in ci.test (for some examples of the latter, see Section 1.5.1). The labels
used to identify them throughout the package are reported in Table 4.1.

In the case of GBNs, conditional independence tests are functions of the
partial correlation coefficients ρXY |Z of X and Y given Z. Two common con-
ditional independence tests are:

• the exact t test for Pearson’s correlation coefficient, defined as

t(X, Y | Z) = ρXY |Z

√
n− |Z| − 2

1− ρ2
XY |Z

(4.21)

and distributed as a Student’s t with n− |Z| − 2 degrees of freedom;
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Test
Exact dis-
tribution

Asymptotic
distribution

Monte Carlo
Sequential
Monte Carlo

t test "cor" – "mc-cor" "smc-xcor"

Fisher’s Z test – "zf" "mc-zf" "smc-zf"

mutual
information

– "mi-g" "mc-mi-g" "smc-mi-g"

mutual
information
(shrinkage)

– "mi-g-sh" – –

Table 4.2
Labels of the conditional independence tests for GBNs implemented in
bnlearn.

• Fisher’s Z test, a transformation of ρXY |Z with an asymptotic normal dis-
tribution and defined as

Z(X, Y | Z) = log

(
1 + ρXY |Z
1− ρXY |Z

) √
n− |Z| − 3

2
(4.22)

where n is the number of observations and |Z| is the number of nodes be-
longing to Z.

Another possible choice is the mutual information test defined in Kullback
(1968), which is again proportional to the corresponding log-likelihood ratio
test and has an asymptotic χ2

1 distribution. The shrinkage estimator for the
covariance matrix developed by Shäfer and Strimmer (2005) can also be used
to construct a regularised mutual information test, again with a χ2

1 asymptotic
distribution. The labels used to identify these tests and their Monte Carlo
variants in bnlearn are reported in Table 4.2.

Constraint-based structure learning algorithms are implemented in
bnlearn in the gs, iamb, fast.iamb and inter.iamb functions. All these
functions accept the following arguments:

• x, the data the network will be learned from;

• whitelist and blacklist, to force the inclusion or the exclusion of specific
arcs from the network;

• test, the label of the conditional independence test to be used. It defaults
to "mi" for discrete BNs and "cor" for GBNs;

• alpha, the type I error threshold for the test. It defaults to α = 0.05, as is
common in literature. Note that, regardless of the dimension of the BN, there
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is no need to apply any multiple testing adjustment to α, because constraint-
based learning algorithms are largely self-adjusting in that respect;

• B, the number of permutations for Monte Carlo tests;

• debug, which prints the sequence of tests performed by the learning algo-
rithm. Setting it to TRUE may be useful both for understanding how structure
learning works in practice, for debugging, and also to assess the swiftness of
the learning algorithm.

Consider one more time the example of structure learning presented in
Section 2.5 for the cropdata1 data set, which contains 200 observations. By
default, Grow-Shrink uses the exact t test for partial correlations with α =
0.05.

> bn.cor <- gs(cropdata1, test = "cor", alpha = 0.05)

> modelstring(bn.cor)

[1] "[E][G][N][V|E:G][W|V][C|N:W]"

The small sample size seems to reduce the power of the tests, and the arc
V → N is missing from the DAG as a result. Therefore, we may wonder whether
changing the conditional independence test to Fisher’s Z test or to a Monte
Carlo test may help in learning the correct structure.

> bn.zf <- gs(cropdata1, test = "zf", alpha = 0.05)

> bn.mc <- gs(cropdata1, test = "mc-cor", B = 1000)

> all.equal(bn.cor, bn.zf)

[1] TRUE

> all.equal(bn.cor, bn.mc)

[1] TRUE

As we can see for the output above, both tests result in the same DAG as the
exact t test. Likewise, using IAMB instead of Grow-Shrink does not result in
the correct structure.

> bn.iamb <- iamb(cropdata1, test = "cor", alpha = 0.05)

> all.equal(bn.cor, bn.iamb)

[1] TRUE

Therefore, we may presume that the problems in learning V → N lie more in
the small sample size than in the limitations of a particular algorithm or a
particular test. If we set the debug argument to TRUE, we can identify exactly
which tests fail to detect the dependence between N and V.
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> gs(cropdata1, test = "cor", alpha = 0.05, debug = TRUE)

[...]

----------------------------------------------------------------

* learning the markov blanket of N .

[...]

* checking node V for inclusion.

> N indep. V given ' C ' (p-value: 0.3048644).

* checking node W for inclusion.

> node W included in the markov blanket (p-value: 7.89e-07).

> markov blanket ( 2 nodes ) now is ' C W '.

> restarting grow loop.

* checking node V for inclusion.

> N indep. V given ' C W ' (p-value: 0.1416876).

* checking node W for exclusion (shrinking phase).

> node W remains in the markov blanket. (p-value: 7.89e-07)

[...]

When learning the Markov blanket of N, we have that node C is included
before V. Apparently, the dependence between C and N is much stronger than
the dependence between V and N; the latter is not statistically significant when
the former is taken into account. As a result, the marginal dependence test
between V and N is significant at α = 0.05 while the same test conditional on
C is not.

> ci.test("N", "V", test = "cor", data = cropdata1)

Pearson's Correlation

data: N ~ V

cor = -0.0589, df = 198, p-value = 0.4074

alternative hypothesis: true value is not equal to 0

> ci.test("N", "V", "C", test = "cor", data = cropdata1)

Pearson's Correlation

data: N ~ V | C

cor = -0.216, df = 197, p-value = 0.002187

alternative hypothesis: true value is not equal to 0

Now that we have diagnosed the problem behind the missing V → N arc, we
can include it using the whitelist argument and thus obtain the correct DAG
(stru2 in Section 2.5).

> bn.cor <- gs(cropdata1, test = "cor", alpha = 0.05,

+ whitelist = c("V", "N"))

> all.equal(bn.cor, dag.bnlearn)

[1] TRUE
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Algorithm 4.2 Hill-Climbing Algorithm

1. Choose a network structure G over V, usually (but not necessarily)
empty.

2. Compute the score of G, denoted as ScoreG = Score(G).

3. Set maxscore = ScoreG.

4. Repeat the following steps as long as maxscore increases:

(a) for every possible arc addition, deletion or reversal not resulting
in a cyclic network:

i. compute the score of the modified network G∗,
ScoreG∗ = Score(G∗):

ii. if ScoreG∗ > ScoreG, set G = G∗ and ScoreG = ScoreG∗ .

(b) update maxscore with the new value of ScoreG.

5. Return the DAG G.

4.5.1.2 Score-based Algorithms

Score-based learning algorithms represent the application of heuristic opti-
misation techniques to the problem of learning the structure of a BN. Each
candidate BN is assigned a network score reflecting its goodness of fit, which
the algorithm then attempts to maximise. Some examples from this class of
algorithms are:

• greedy search algorithms such as hill-climbing with random restarts or tabu
search (Bouckaert, 1995). These algorithms explore the search space starting
from a network structure (usually without any arc) and adding, deleting or
reversing one arc at a time until the score can no longer be improved (see
Algorithm 4.2);

• genetic algorithms, which mimic natural evolution through the iterative se-
lection of the “fittest” models and the hybridisation of their characteristics
(Larrañaga et al., 1997). In this case the search space is explored through
the crossover (which combines the structure of two networks) and mutation
(which introduces random alterations) stochastic operators;

• simulated annealing (Bouckaert, 1995). This algorithm performs a stochastic
local search by accepting changes that increase the network score and, at
the same time, allowing changes that decrease it with a probability inversely
proportional to the score decrease.

A comprehensive review of these heuristics, as well as related approaches from
the field of artificial intelligence, are provided in Russell and Norvig (2009).

As far as network scores are concerned, the only two options in common
use are those we introduced in Section 4.5: posterior probabilities arising from
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flat priors such as BDe (for discrete BNs) and BGe (for GBNs), and the BIC
score. In bnlearn, they are labelled "bde", "bge", "bic" (for discrete BNs)
and "bic-g" (for GBNs). This lack of options, compared to the number of
conditional independence tests we considered in the previous section, can be
attributed to the difficulty of specifying a tractable likelihood or posterior
distribution for the DAG.

As an example of score-based structure learning, consider once again the
structure learning example from Section 1.5. After considering some man-
ual arc additions and removal, we called the hill-climbing implementation in
bnlearn and obtained a DAG with a better BIC score.

> learned <- hc(survey, score = "bic")

> modelstring(learned)

[1] "[R][E|R][T|R][A|E][O|E][S|E]"

> score(learned, data = survey, type = "bic")

[1] -1998.432

The tabu function, which implements tabu search, returns the same DAG.
Both hc and tabu have argument sets similar to those of the functions pre-
sented in the previous section; the main difference is the presence of a score

argument instead of test, alpha and B. In particular, we can investigate the
workings of hc by setting the debug argument to TRUE, just in the same way
we did for gs in the previous section.

> learned <- hc(survey, score = "bic", debug = TRUE)

----------------------------------------------------------------

* starting from the following network:

Random/Generated Bayesian network

model:

[A][R][E][O][S][T]

nodes: 6

arcs: 0

undirected arcs: 0

directed arcs: 0

average markov blanket size: 0.00

average neighbourhood size: 0.00

average branching factor: 0.00

generation algorithm: Empty

* current score: -2008.943

[...]

----------------------------------------------------------------

* best operation was: adding R -> E .
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* current network is :

[...]

----------------------------------------------------------------

* best operation was: adding E -> S .

[...]

----------------------------------------------------------------

* best operation was: adding R -> T .

[...]

----------------------------------------------------------------

* best operation was: adding E -> A .

[...]

----------------------------------------------------------------

* best operation was: adding E -> O .

[...]

The search for the network that optimises the BIC score starts, by default,
from the empty DAG. The operation that increases the BIC score the most
is, at each step, the addition of one of the arcs that will be present in final
DAG (see Figure 4.4).

Neither hc nor tabu are able to learn the true DAG. There are many
reasons for such a behaviour. For instance, it is possible for both algorithms
to get stuck at a local maximum because of an unfavourable choice for the
starting point of the search. This does not appear to be the case for the survey

data, because even when starting from the true DAG (survey.dag) the final
DAG is not the true one.

> survey.dag <- model2network("[A][S][E|A:S][O|E][R|E][T|O:R]")

> learned.start <- hc(survey, score = "bic", start = survey.dag)

> modelstring(learned.start)

[1] "[S][E|S][A|E][O|E][R|E][T|R]"

> all.equal(cpdag(learned), cpdag(learned.start))

[1] TRUE

As an alternative, we could also start the search from a randomly generated
graph.

> hc(survey, score = "bic", start = random.graph(names(survey)))

Furthermore, it is interesting to note that the networks returned for the dif-
ferent starting DAGs fall in the same equivalence class. This suggests that the
dependencies specified by survey.dag are not completely supported by the
survey data, and that hc and tabu do not seem to be affected by convergence
or numerical problems.

4.5.1.3 Hybrid Algorithms

Hybrid learning algorithms combine constraint-based and score-based algo-
rithms to offset the respective weaknesses and produce reliable network struc-
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Initial BIC score: −2008.943
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Figure 4.4
Steps performed by hill-climbing when learning the DAG with optimal BIC
score from the survey data. The DAG in the bottom right panel is the original
DAG from Chapter 1.
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Algorithm 4.3 Sparse Candidate Algorithm

1. Choose a network structure G over V, usually (but not necessarily)
empty.

2. Repeat the following steps until convergence:

(a) restrict: select a set Ci of candidate parents for each node
Xi ∈ V, which must include the parents of Xi in G;

(b) maximise: find the network structure G∗ that maximises
Score(G∗) among the networks in which the parents of each
node Xi are included in the corresponding set Ci;

(c) set G = G∗.

3. Return the DAG G.

tures in a wide variety of situations. The two best-known members of this
family are the Sparse Candidate algorithm (SC) by Friedman et al. (1999)
and the Max-Min Hill-Climbing algorithm (MMHC) by Tsamardinos et al.
(2006). The former is illustrated in Algorithm 4.3.

Both these algorithms are based on two steps, called restrict and maximise.
In the first one, the candidate set for the parents of each node Xi is reduced
from the whole node set V to a smaller set Ci ⊂ V of nodes whose behaviour
has been shown to be related in some way to that of Xi. This in turn results
in a smaller and more regular search space. The second step seeks the network
that maximises a given score function, subject to the constraints imposed by
the Ci sets.

In the Sparse Candidate algorithm these two steps are applied iteratively
until there is no change in the network or no network improves the network
score; the choice of the heuristics used to perform them is left to the implemen-
tation. On the other hand, in the Max-Min Hill-Climbing algorithm Restrict
and Maximise are performed only once; the Max-Min Parents and Children
(MMPC) heuristic is used to learn the candidate sets Ci and a hill-climbing
greedy search to find the optimal network.

MMHC is implemented in bnlearn in the mmhc function,

> mmhc(survey)

which is equivalent to the more general rsmax2 function when the restrict

argument is set to "mmpc" and the maximize argument is set to "hc".

> rsmax2(survey, restrict = "mmpc", maximize = "hc")

rsmax2 implements a single-iteration variant of the Sparse Candidate algo-
rithm; the algorithms used in each step can be specified independently. Sup-
pose, for example, we want to use Hiton-PC with Pearson’s X2 test in the
restrict step and tabu search with the BDe score and imaginary sample size
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5 in the maximise step. They are, after all, among the best algorithms in the
respective groups. We can do that as follows.

> rsmax2(survey, restrict = "si.hiton.pc", test = "x2",

+ maximize = "tabu", score = "bde",

+ maximize.args = list(iss = 5))

Clearly, even though any combination of constraint-based algorithms (for the
restrict step), score-based algorithms (for the maximise step), conditional in-
dependence tests and network scores will work, some make more sense than
others.

4.5.2 Parameter Learning

Once the structure of the BN has been learned from the data, the task of
estimating and updating the parameters of the global distribution is greatly
simplified by the decomposition into local distributions. Two approaches are
common in literature: maximum likelihood estimation, and Bayesian estima-
tion. Examples of both were covered in Section 1.4 (for discrete BNs) and
Section 2.4 (for GBNs). Other choices, such as the shrinkage estimators pre-
sented in Hausser and Strimmer (2009) and Shäfer and Strimmer (2005) are
certainly possible. It is important to note that the approach used to learn the
structure of the BNs does necessarily determine which approaches can be used
in parameter learning. For instance, using posterior densities in both structure
and parameter learning makes the interpretation of the BN and its inference
straightforward. However, using a Monte Carlo permutation test for structure
learning and posterior estimates for parameter learning is also common, as is
using shrinkage approaches and maximum likelihood parameter estimates.

Even though local distributions in practice involve only a small number of
variables, and their dimension usually does not scale with the size of the BN,
parameter estimation is still problematic in some situations. For example, it
is increasingly common to have sample sizes much smaller than the number of
variables included in the model. This is typical of high-throughput biological
data sets, such as microarrays, that have a few ten or hundred observations and
thousands of genes. In this setting, which is called “small n, large p”, estimates
have a high variability unless particular care is taken in both structure and
parameter learning.

4.6 Bayesian Network Inference

Learning the structure and the parameters of a BN provides significant in-
sights into the nature of the data. For instance, it highlights the dependence
structure of the data and, under the right conditions, the causal structure as
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well. Furthermore, the parameters associated with each node provide a concise
description of that node’s behaviour relative to its parents. However, there are
many questions that can only be answered by incorporating new evidence in
the BN or by investigating the probability of complex events. Several exam-
ples of such questions can be found in Sections 1.6 (for discrete BNs) and 2.6
(for GBNs).

4.6.1 Probabilistic Reasoning and Evidence

BNs, like other statistical models, can be used to answer questions about the
nature of the data that go beyond the mere description of the behaviour of
the observed sample. The techniques used to obtain those answers are known
in general as inference. For BNs, the process of answering these questions is
also known as probabilistic reasoning or belief updating, while the questions
themselves are called queries. Both names were introduced by Pearl (1988)
and borrowed from expert systems theory (e.g., you would submit a query to
an expert to get an opinion, and update your beliefs accordingly), and have
completely replaced traditional statistical terminology in recent texts such as
Koller and Friedman (2009).

In practice, probabilistic reasoning on BNs works in the framework of
Bayesian statistics and focuses on the computation of posterior probabilities
or densities. For example, suppose we have learned a BN B with structure G
and parameters Θ, under one of the distributional assumptions we explored in
Chapters 1, 2 and 3. Subsequently, we want to use B to investigate the effects
of a new piece of evidence E using the knowledge encoded in B, that is, to
investigate the posterior distribution Pr(X | E,B) = Pr(X | E, G, Θ).

The approaches used for this kind of analysis vary depending on the nature
of E and on the nature of information we are interested in. The two most
common kinds of evidence are:

• hard evidence, an instantiation of one or more variables in the network. In
other words,

E = {Xi1
= e1, Xi2

= e2, . . . , Xik
= ek} , i1 6= . . . 6= ik ∈ {1, . . . n},

(4.23)

which ranges from the value of a single variable Xi to a complete specification
for X. Such an instantiation may come, for instance, from a new (partial or
complete) observation recorded after B was learned;

• soft evidence, a new distribution for one or more variables in the network.
Since both the network structure and the distributional assumptions are
treated as fixed, soft evidence is usually specified as a new set of parameters,

E =
{

Xi1 ∼ (ΘXi1
), Xi2 ∼ (ΘXi2

), . . . , Xik
∼ (ΘXik

)
}

. (4.24)

This new distribution may be, for instance, the null distribution in a hy-
pothesis testing problem: the use of a specific conditional probability table
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in case of discrete BNs or a zero value for some regression coefficients in case
of GBNs.

As far as queries are concerned, we will focus on conditional probability (CPQ)
and maximum a posteriori (MAP) queries, also known as most probable ex-
planation (MPE) queries. Both apply mainly to hard evidence, even though
they can be used in combination with soft evidence.

Conditional probability queries are concerned with the distribution of a
subset of variables Q = {Xj1 , . . . , Xjl

} given some hard evidence E on another
set Xi1 , . . . , Xik

of variables in X. The two sets of variables can be assumed
to be disjoint. The distribution we are interested in is

CPQ(Q | E,B) = Pr(Q | E, G, Θ) = Pr(Xj1
, . . . , Xjl

| E, G, Θ), (4.25)

which is the marginal posterior probability distribution of Q, i.e.,

Pr(Q | E, G, Θ) =

∫
Pr(X | E, G, Θ) d(X \Q). (4.26)

This class of queries has many useful applications due to their versatility. For
instance, it can be used to assess the interaction between two sets of experi-
mental design factors for a trait of interest; the latter would be considered as
the hard evidence E, while the former would play the role of the set of query
variables Q. As another example, the odds of an unfavourable outcome Q can
be assessed for different sets of hard evidence E1, E2, . . . , Em.

Maximum a posteriori queries are concerned with finding the configuration
q∗ of the variables in Q that has the highest posterior probability (for discrete
BNs) or the maximum posterior density (for GBNs and hybrid BNs),

MAP(Q | E,B) = q∗ = argmax
q

Pr(Q = q | E, G, Θ). (4.27)

Applications of this kind of query fall into two categories: imputing missing
data from partially observed hard evidence, where the variables in Q are not
observed and are to be imputed from those in E, or comparing q∗ with the
observed values for the variables in Q for completely observed hard evidence.

Both conditional probability queries and maximum a posteriori queries
can also be used with soft evidence, albeit with different interpretations. On
one hand, when E encodes hard evidence it is not stochastic; it is an ob-
served value. In this case, Pr(Q = q | E, G, Θ) is not stochastic. On the
other hand, when E encodes soft evidence it is still a random variable, and in
turn Pr(Q = q | E, G, Θ) is stochastic. Therefore, the answers provided by the
queries described in this section must be manipulated and evaluated according
to the nature of the evidence they are based on.

It must be underlined that all techniques presented in this section are
applications of the same basic principle: we modify the joint probability dis-
tribution of the nodes to incorporate a new piece of information. In the case
of hard evidence, the distribution is conditioned on the values of some nodes;
in the case of soft evidence some local distributions are modified.



114 Bayesian Networks: With Examples in R

Algorithm 4.4 Junction Tree Clustering Algorithm

1. Moralise: create the moral graph of the BN B as explained in
Section 4.4.

2. Triangulate: break every cycle spanning 4 or more nodes into sub-
cycles of exactly 3 nodes by adding arcs to the moral graph, thus
obtaining a triangulated graph.

3. Cliques: identify the cliques C1, . . . , Ck of the triangulated graph,
i.e., maximal subsets of nodes in which each element is adjacent to
all the others.

4. Junction Tree: create a tree in which each clique is a node, and
adjacent cliques are linked by arcs. The tree must satisfy the running
intersection property: if a node belongs to two cliques Ci and Cj , it
must be also included in all the cliques in the (unique) path that
connects Ci and Cj .

5. Parameters: use the parameters of the local distributions of B to
compute the parameter sets of the compound nodes of the junction
tree.

4.6.2 Algorithms for Belief Updating

The estimation of the posterior probabilities and densities in the previous sec-
tion is a fundamental problem in the evaluation of queries. Queries involving
very small probabilities or large networks are particularly problematic even
with the best algorithms available in literature, because they present both
computational and probabilistic challenges.

Algorithms for belief updating can be classified either as exact or ap-
proximate. Both build upon the fundamental properties of BNs introduced
in Section 4.2 to avoid the curse of dimensionality through the use of local
computations, that is, by only using local distributions. So, for instance, the
marginalisation in Equation (4.26) can be rewritten as

Pr(Q | E, G, Θ) =

∫
Pr(X | E, G, Θ) d(X \Q)

=

∫ [ p∏

i=1

Pr(Xi | E, ΠXi
, ΘXi

)

]
d(X \Q)

=
∏

i:Xi∈Q

∫
Pr(Xi | E, ΠXi

, ΘXi
) dXi. (4.28)

The correspondence between d-separation and conditional independence can
also be used to further reduce the dimension of the problem. From Definition
4.2, variables that are d-separated from Q by E cannot influence the outcome
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Algorithm 4.5 Logic Sampling Algorithm

1. Order the variables in X according to the topological partial order-
ing implied by G, say X(1) ≺ X(2) ≺ . . . ≺ X(p).

2. Set nE = 0 and nE,q = 0.

3. For a suitably large number of samples x = (x1, . . . , xp):

(a) generate x(i), i = 1, . . . , p from X(i) | ΠX(i)
taking advantage of

the fact that, thanks to the topological ordering, by the time
we are considering Xi we have already generated the values of
all its parents ΠX(i)

;

(b) if x includes E, set nE = nE + 1;

(c) if x includes both Q = q and E, set nE,q = nE,q + 1.

4. Estimate Pr(Q | E, G, Θ) with nE,q/nE.

of the query. Therefore, they may be completely disregarded in computing
posterior probabilities.

Exact inference algorithms combine repeated applications of Bayes’ the-
orem with local computations to obtain exact values Pr(Q | E, G, Θ). Due
to their nature, such algorithms are feasible only for small or very simple
networks, such as trees and polytrees. In the worst case, their computational
complexity is exponential in the number of variables.

The two best-known exact inference algorithms are variable elimination
and belief updates based on junction trees. Both were originally derived for
discrete networks, and have been later extended to the continuous and hybrid
cases. Variable elimination uses the structure of the BN directly, specifying
the optimal sequence of operations on the local distributions and how to cache
intermediate results to avoid unnecessary computations. On the other hand,
belief updates can also be performed by transforming the BN into a junction
tree first. As illustrated in Algorithm 4.4, a junction tree is a transformation
of the moral graph of B in which the original nodes are clustered to reduce any
network structure into a tree. Subsequently, belief updates can be performed
efficiently using Kim and Pearl’s Message Passing algorithm. The derivation
and the details of the major steps of this algorithm are beyond the scope of
this book; for an exhaustive explanation and step-by-step examples, we refer
the reader to Korb and Nicholson (2004) and Koller and Friedman (2009).

Approximate inference algorithms use Monte Carlo simulations to sam-
ple from the global distribution of X and thus estimate Pr(Q | E, G, Θ). In
particular, they generate a large number of samples from B and estimate the
relevant conditional probabilities by weighting the samples that include both
E and Q = q against those that include only E. In computer science, these
random samples are often called particles, and the algorithms that make use
of them are known as particle filters or particle-based methods.
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The approaches used for both random sampling and weighting vary greatly,
and their combination has resulted in several approximate algorithms being
proposed in literature. Random sampling ranges from the generation of inde-
pendent samples to more complex MCMC schemes, such as those we explored
in Chapter 3. Common choices are either rejection sampling or importance
sampling. Furthermore, weights range from uniform to likelihood functions to
various estimates of posterior probability. The simplest combination of these
two classes of approaches is known as either forward or logic sampling; it is de-
scribed in Algorithm 4.5 and illustrated in detail in both Korb and Nicholson
(2004) and Koller and Friedman (2009). Logic sampling combines rejection
sampling and uniform weights, essentially counting the proportion of gener-
ated samples including E that also include Q = q.

Consider again, as an example, one of the queries we explored in Section
1.6.2.2: assessing from our survey the probability to find a man driving a car
given he has high school education.

> cpquery(bn, event = (S == "M") & (T == "car"),

+ evidence = (E == "high"), n = 10^6)

[1] 0.34345

The first part of Algorithm 4.5 concerns the creation of the particles. In
bnlearn, the sampling of random observations from a BN is implemented in
the rbn function, which takes a bn.fit object and the number of samples to
generate as arguments.

> particles <- rbn(bn, 10^6)

> head(particles, n = 5)

A E O R S T

1 adult high emp big M other

2 adult high emp big F train

3 adult high emp big M other

4 joung high emp small F train

5 joung high emp big M car

Calling rbn corresponds to steps 1 and 3(a). Step 3(b) requires finding the
particles that match the evidence, E == "high", and counting them to obtain
nE.

> partE <- particles[(particles[, "E"] == "high"), ]

> nE <- nrow(partE)

Similarly, step 3(c) requires finding in partE those particles that also match
the event we are investigating, (S == "M") & (T == "car"), and counting
them to obtain nE,q.

> partEq <-

+ partE[(partE[, "S"] == "M") & (partE[, "T"] == "car"), ]

> nEq <- nrow(partEq)
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Algorithm 4.6 Likelihood Weighting Algorithm

1. Order the variables in X according to the topological ordering im-
plied by G, say X(1) ≺ X(2) ≺ . . . ≺ X(p).

2. Set wE = 0 and wE,q = 0.

3. For a suitably large number of samples x = (x1, . . . , xp):

(a) generate x(i), i = 1, . . . , p from X(i) | ΠX(i)
using the values

e1, . . . , ek specified by the hard evidence E for Xi1
, . . . , Xik

.

(b) compute the weight wx =
∏

Pr(Xi∗ = e∗ | ΠXi∗
)

(c) set wE = wE + wx;

(d) if x includes Q = q , set wE,q = wE,q + wx.

4. Estimate Pr(Q | E, G, Θ) with wE,q/wE.

Finally, in step 4 we compute the conditional probability for the query as
nE,q/nE.

> nEq/nE

[1] 0.34366

The discrepancy in the last digits is the natural consequence of a stochastic
simulation. Clearly, such an algorithm can be very inefficient if Pr(E) is small,
because most particles will be discarded without contributing to the estima-
tion of Pr(Q | E, G, Θ). However, its simplicity makes it easy to implement
and very general in its application; it allows for very complex specifications of
E and Q for both MAP(Q | E,B) and CPQ(Q | E,B).

An improvement over logic sampling, designed to solve this problem, is an
application of importance sampling called likelihood weighting and illustrated
in Algorithm 4.6. Unlike logic sampling, all the particles generated by likeli-
hood weighting include the evidence E by design. However, this means that
we are not sampling from the original BN any more, but we are sampling from
a second BN in which all the nodes Xi1

, . . . , Xik
in E are fixed. This network

is called the mutilated network.

> mutbn <- mutilated(bn, list(E = "high"))

> mutbn$E

Parameters of node E (multinomial distribution)

Conditional probability table:

high uni

1 0

As a result, simply sampling from mutbn is not a valid approach. If we do so,
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the probability we obtain is Pr(Q, E | G, Θ), not the conditional probability
Pr(Q | E, G, Θ).

> particles <- rbn(bn, 10^6)

> partQ <- particles[(particles[, "S"] == "M") &

+ (particles[, "T"] == "car"), ]

> nQ <- nrow(partQ)

> nQ/10^6

[1] 0.33741

The role of the weights is precisely to adjust for the fact that we are sampling
from mutbn instead of the original bn. As we can see from step 3(b), the
weights are just the likelihood components associated with the nodes of bn we
are conditioning on (E in this case) for the particles.

> w <- logLik(bn, particles, nodes = "E", by.sample = TRUE)

Having estimated the weights, we can now perform steps 3(c), 3(d) and 4 and
obtain the estimated conditional probability for the query.

> wEq <- sum(exp(w[(particles[, "S"] == "M") &

+ (particles[, "T"] == "car")]))

> wE <- sum(exp(w))

> wEq/wE

[1] 0.34275

The value of wEq/wE ratio is the same as the exact conditional probability we
obtained using gRain in Section 1.6.2.1. It is a more precise estimate than
that obtained above from logic sampling using the same number of particles.

More conveniently, we can perform likelihood weighting with cpquery by
setting method = "lw" and specifying the evidence as a named list with one
element for each node we are conditioning on.

> cpquery(bn, event = (S == "M") & (T == "car"),

+ evidence = list(E = "high"), method = "lw")

[1] 0.34267

The estimate we obtain is still very precise despite the fact that we are not
increasing the number of particles to 106 as we did for logic sampling.

At the other end of the spectrum, there are in literature more complex
approximate algorithms that can estimate even very small probabilities with
high precision. Two examples are the adaptive importance sampling (AIS-
BN) scheme by Cheng and Druzdzel (2000) and the evidence pre-propagation
importance sampling (EPIS-BN) by Yuan and Druzdzel (2003). Both can esti-
mate conditional probabilities as small as 10−41, and they also perform better
on large networks. However, their assumptions often restrict them to discrete
data and may require the specification of nontrivial tuning parameters.
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4.7 Causal Bayesian Networks

Throughout this book, we have defined BNs in terms of conditional indepen-
dence relationships and probabilistic properties, without any implication that
arcs should represent cause-and-effect relationships. The existence of equiva-
lence classes of networks indistinguishable from a probabilistic point of view
provides a simple proof that arc directions are not indicative of causal effects.

However, from an intuitive point of view it can be argued that a “good”
BN should represent the causal structure of the data it is describing. Such
BNs are usually fairly sparse, and their interpretation is at the same time
clear and meaningful, as explained by Pearl (2009) in his book on causality:

It seems that if conditional independence judgments are byproducts of
stored causal relationships, then tapping and representing those relation-
ships directly would be a more natural and more reliable way of expressing
what we know or believe about the world. This is indeed the philosophy
behind causal BNs.

This is the reason why building a BN from expert knowledge in practice
codifies known and expected causal relationships for a given phenomenon.

Learning such causal models, especially from observational data, presents
significant challenges. In particular, three additional assumptions are needed:

• each variable Xi ∈ X is conditionally independent of its non-effects, both
direct and indirect, given its direct causes. This assumption is called the
causal Markov assumption, and represents the causal interpretation of the
local Markov property in Definition 4.4;

• there must exist a DAG which is faithful to the probability distribution P
of X, so that the only dependencies in P are those arising from d-separation
in the DAG;

• there must be no latent variables (unobserved variables influencing the vari-
ables in the network) acting as confounding factors. Such variables may in-
duce spurious correlations between the observed variables, thus introducing
bias in the causal network. Even though this is often listed as a separate as-
sumption, it is really a corollary of the first two: the presence of unobserved
variables violates the faithfulness assumption (because the network struc-
ture does not include them) and possibly the causal Markov property (if an
arc is wrongly added between the observed variables due to the influence of
the latent one).

These assumptions are difficult to verify in real-world settings, as the set of
the potential confounding factors is not usually known. At best, we can ad-
dress this issue, along with selection bias, by implementing a carefully planned
experimental design.
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Furthermore, even when dealing with interventional data collected from a
scientific experiment (where we can control at least some variables and ob-
serve the resulting changes), there are usually multiple equivalent BNs that
represent reasonable causal models. Many arcs may not have a definite direc-
tion, resulting in substantially different DAGs. When the sample size is small
there may also be several non-equivalent BNs fitting the data equally well.
Therefore, in general we are not able to identify a single, “best”, causal BN
but rather a small set of likely causal BNs that fit our knowledge of the data.

An example of the bias introduced by the presence of a latent variable
was illustrated by Edwards (2000, page 113) using the marks data. marks,
which is included in the bnlearn package, consists of the exam scores of 88
students across 5 different topics, namely: mechanics (MECH), vectors (VECT),
algebra (ALG), analysis (ANL) and statistics (STAT). The scores are bounded
in the interval [0, 100]. This data set was originally investigated by Mardia
et al. (1979) and subsequently in classical books on graphical models such as
Whittaker (1990).

> data(marks)

> head(marks)

MECH VECT ALG ANL STAT

1 77 82 67 67 81

2 63 78 80 70 81

3 75 73 71 66 81

4 55 72 63 70 68

5 63 63 65 70 63

6 53 61 72 64 73

Edwards noted that the students apparently belonged to two groups (which
we will call A and B) with substantially different academic profiles. He then
assigned each student to one of those two groups using the EM algorithm
to impute group membership as a latent variable (LAT). The EM algorithm
assigned the first 52 students (with the exception of number 45) to belong to
group A, and the remainder to group B.

> latent <- factor(c(rep("A", 44), "B",

+ rep("A", 7), rep("B", 36)))

> modelstring(hc(marks[latent == "A", ]))

[1] "[MECH][ALG|MECH][VECT|ALG][ANL|ALG][STAT|ALG:ANL]"

> modelstring(hc(marks[latent == "B", ]))

[1] "[MECH][ALG][ANL][STAT][VECT|MECH]"

> modelstring(hc(marks))

[1] "[MECH][VECT|MECH][ALG|MECH:VECT][ANL|ALG][STAT|ALG:ANL]"

As we can see from Figure 4.5 (top left and top right panels) and from
the modelstring calls above, the BNs learned from group A and group B are
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Group A

MECH

VECT

ALG

ANL STAT

Group B

MECH

VECT

ALG

ANL STAT

BN without Latent Grouping

MECH

VECT

ALG

ANL STAT

BN with Latent Grouping

MECH

VECT

ALG

ANL

STAT

LAT

Figure 4.5
BNs learned from the marks data set when considering only group A (top left),
when considering only group B (top right), when considering both (bottom
left) and from discretised data set after the inclusion of the latent variable
LAT (bottom right).

completely different. Furthermore, they are both different from the BN learned
from the whole data set (bottom left panel).

If we want to learn a single BN while taking LAT into account, we can
discretise the marks data and include the latent variable when learning the
structure of the (now multinomial) BN. Again, we obtain a BN whose DAG
(bottom right panel) is completely different from those above.

> dmarks <- discretize(marks, breaks = 2, method = "interval")

> modelstring(hc(cbind(dmarks, LAT = latent)))

[1] "[MECH][ANL][LAT|MECH:ANL][VECT|LAT][ALG|LAT][STAT|LAT]"

This BN provides a simple interpretation of the relationships between the
topics: the grades in mechanics and analysis can be used to infer which group
a student belongs to, and that in turn influences the grades in the remaining
topics. We can clearly see that any causal relationship we would have inferred
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from a DAG learned without taking LAT into account would be potentially
spurious. In fact, we could even question the assumption that the data are a
random sample from a single population and have not been manipulated in
some way.

4.8 Further Reading

Basic definitions and properties of BNs are detailed in many books, each
with its own different perspective; but perhaps the most clear and concise
are still the seminal works Pearl (1988) and Pearl (2009). We would also like
to suggest Castillo et al. (1997) for a formal introduction to the theory of
graphical models; and the tome from Koller and Friedman (2009), which is a
very comprehensive if lengthy reference. Different aspects are also covered in
Murphy (2012).

Various inference approaches are covered in different books: from variable
elimination in Koller and Friedman (2009, Chapter 9) and Russell and Norvig
(2009, Section 14.4); to junction trees in Koller and Friedman (2009, Chapter
10), Korb and Nicholson (2004, Chapter 3), Castillo et al. (1997, Chapter 8)
and Koski and Noble (2009, Chapter 10); to logic sampling and likelihood
weighting in Koller and Friedman (2009, Chapter 12), Korb and Nicholson
(2004, Chapter 3) and Castillo et al. (1997, Chapter 9). Pearl (1988, Chapters
4 and 5) is also an interesting read about exact inference. In addition, Koller
and Friedman (2009, Chapter 13) describes more inference algorithms specific
to MAP queries.

Learning has fewer references compared to inference, and structure learn-
ing even fewer still. Parameter learning for discrete BNs is covered in most
books, including Koller and Friedman (2009, Chapter 17) and Neapolitan
(2003, Section 7.1); GBNs are covered in Neapolitan (2003, Section 7.2) and in
Koller and Friedman (2009, Section 17.2.4). Constraint-based structure learn-
ing is introduced in Korb and Nicholson (2004, Chapter 8) and Neapolitan
(2003, Chapter 10); Edwards (2000, Chapter 5) provides an exhaustive list of
conditional independence tests to use in this context. Score-based structure
learning is introduced in Korb and Nicholson (2004, Chapter 9) and Castillo
et al. (1997, Chapter 11), and a more general take on the algorithms that
can be used for this task is in Russell and Norvig (2009, Chapter 4). Hybrid
structure learning is mentioned in Koski and Noble (2009, Section 6.3).

Finally, for the interested reader, we suggest Spirtes et al. (2000) as a very
thorough reference to causal BNs and using constraint-based algorithms such
as PC to learn them.
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Exercises

Exercise 4.1 Consider the survey data set from Chapter 1.

1. Learn a BN with the IAMB algorithm and the asymptotic mutual
information test.

2. Learn a second BN with IAMB but using only the first 100 ob-
servations of the data set. Is there a significant loss of information
in the resulting BN compared to the BN learned from the whole data
set?

3. Repeat the structure learning in the previous point with IAMB
and the Monte Carlo and sequential Monte Carlo mutual infor-
mation tests. How do the resulting networks compare with the BN
learned with the asymptotic test? Is the increased execution time
justified?

Exercise 4.2 Consider again the survey data set from Chapter 1.

1. Learn a BN using Bayesian posteriors for both structure and
parameter learning, in both cases with iss = 5.

2. Repeat structure learning with hc and 3 random restarts and
with tabu. How do the BNs differ? Is there any evidence of numer-
ical or convergence problems?

3. Use increasingly large subsets of the survey data to check em-
pirically that BIC and BDe are asymptotically equivalent.

Exercise 4.3 Consider the marks data set from Section 4.7.

1. Create a bn object describing the graph in the bottom right panel
of Figure 4.5 and call it mdag.

2. Construct the skeleton, the CPDAG and the moral graph of
mdag.

3. Discretise the marks data using "interval" discretisation with
2, 3 and 4 intervals.

4. Perform structure learning with hc on each of the discretised
data sets; how do the resulting DAGs differ?
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Software for Bayesian Networks

The difficulty of implementing versatile software for general classes of graphi-
cal models and the varying focus in different disciplines limit the applications
of BNs compared to the state of the art in the literature. Nevertheless, the
number of R packages for BNs has been slowly increasing in recent years.
In this chapter we will provide an overview of available software packages,
without pretending to be exhaustive, and we will introduce some classic R

packages dealing with different aspects of BN learning and inference.

5.1 An Overview of R Packages

There are several packages on CRAN dealing with BNs; the versions used in
writing this book are reported in parentheses below. They can be divided in
two categories: those that implement structure and parameter learning and
those that focus only on parameter learning and inference (see Table 5.1).

Packages bnlearn (version 3.5; Scutari, 2010), deal (version 1.2-37;
Bøttcher and Dethlefsen, 2003), pcalg (version 1.1-6; Kalisch et al., 2012) and
catnet (version 1.14.2; Balov and Salzman, 2013) fall into the first category.

bnlearn offers a wide variety of structure learning algorithms (spanning all
the three classes covered in this book, with several tests and network scores),
parameter learning approaches (maximum likelihood for discrete and contin-
uous data, Bayesian estimation for discrete data) and inference techniques
(cross-validation, bootstrap, conditional probability queries and prediction).
It is also the only package that keeps a clear separation between the structure
of a BN and the associated local probability distributions; they are imple-
mented as two different classes of R objects.

deal implements structure and parameter learning using a Bayesian ap-
proach. It is one of the few R packages that handles BNs combining discrete
and continuous nodes with a conditional Gaussian distribution. The variances
of continuous nodes depend on their discrete parents, and continuous nodes
are not allowed to be parents of discrete ones. The network structure is learned
with the hill-climbing greedy search described in Algorithm 4.2, with the pos-
terior density of the network as a score function and random restarts to avoid
local maxima.

125
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bnlearn catnet deal pcalg

discrete data Yes Yes Yes Yes

continuous data Yes No Yes Yes

mixed data No No Yes No

constraint-based learning Yes No No Yes

score-based learning Yes Yes Yes No

hybrid learning Yes No No No

structure manipulation Yes Yes No No

parameter estimation Yes Yes Yes Yes

prediction Yes Yes No No

approximate inference Yes No No No

gRbase gRain rbmn

discrete data Yes Yes No

continuous data Yes No Yes

mixed data No No No

constraint-based learning No No No

score-based learning No No No

hybrid learning No No No

structure manipulation Yes No No

parameter estimation No No Yes

prediction No Yes Yes

approximate inference No Yes No

Table 5.1
Feature matrix for the R packages covered in Section 5.1.
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pcalg provides a free software implementation of the PC algorithm, and it
is specifically designed to estimate and measure causal effects. It handles both
discrete and continuous data, and can account for the effects of latent variables
on the network. The latter is achieved through a modified PC algorithm known
as Fast Causal Inference (FCI), first proposed by Spirtes et al. (2000).

catnet models discrete BNs using frequentist techniques. Structure learn-
ing is performed in two steps. First, the node ordering of the DAG is learned
from the data using simulated annealing; alternatively, a custom node ordering
can be specified by the user. An exhaustive search is then performed among
the network structures with the given node ordering and the exact maximum
likelihood solution is returned. Parameter learning and prediction are also
implemented. Furthermore, an extension of this approach for mixed data (as-
suming a Gaussian mixture distribution) has been made available from CRAN
in package mugnet (version 1.01.3; Balov, 2013).

Packages gRbase (version 1.6-12; Højsgaard et al., 2013) and gRain (ver-
sion 1.2-2; Højsgaard, 2013) fall into the second category. They focus on ma-
nipulating the parameters of the network, on prediction, and on inference, un-
der the assumption that all variables are discrete. Neither gRbase nor gRain

implement any structure or parameter learning algorithm, so the BN must be
completely specified by the user.

rbmn (version 0.9-2; Denis, 2013) is devoted to linear GBNs and more
specifically on deriving closed form expressions for the joint and conditional
distributions of subsets of nodes. Conversion functions to and from bnlearn

objects are available. No structure learning is implemented.

5.1.1 The deal Package

The deal package implements structure learning following step-by-step a clas-
sic Bayesian workflow, which we will illustrate using the marks data set from
Section 4.7. First of all, we load the marks data set from bnlearn and we add
the latent grouping, so that we have both discrete and continuous variables
in the data.

> library(bnlearn)

> data(marks)

> latent <- factor(c(rep("A", 44), "B",

+ rep("A", 7), rep("B", 36)))

> marks$LAT <- latent

The first step consists in defining an object of class network which identifies
the variables in the BN and whether they are continuous or discrete.

> library(deal)

> net <- network(marks)
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> net

## 6 ( 1 discrete+ 5 ) nodes;score= ;relscore=

1 MECH continuous()

2 VECT continuous()

3 ALG continuous()

4 ANL continuous()

5 STAT continuous()

6 LAT discrete(2)

Subsequently, we define an uninformative prior distribution on net with
jointprior and we set the imaginary sample size to 5.

> prior <- jointprior(net, N = 5)

Imaginary sample size: 5

Once we have defined the prior, we can perform a hill-climbing search for the
DAG with the highest posterior probability using autosearch.

> net <- learn(net, marks, prior)$nw

> best <- autosearch(net, marks, prior)

The resulting posterior probability is a combination of BDe and BGe, since the
data are assumed to follow a conditional Gaussian distribution. In particular:

• Discrete nodes can only have other discrete nodes as their parents, and in
this case the local distribution looks like a local distribution for the BDe
score.

• Continuous nodes can have both continuous and discrete parents. The part
of the local distribution that derives from continuous parents has the same
form as a local distribution for the BGe score, while the part that derives
from discrete parents is constructed like a mixture.

It is important to note that deal has a modelstring function which produces
a compact string representation of a DAG in the same format as bnlearn’s
modelstring. This is very convenient to import and export DAGs between
the two packages.

> mstring <- deal::modelstring(best$nw)

> mstring

[1] "[MECH|VECT:ALG][VECT|LAT][ALG|VECT:LAT][ANL|ALG:LAT]

[STAT|ALG:ANL][LAT]"

As we can see in the output above, LAT is a root node, because it is the
only discrete node and other nodes can only be its descendants. It is also
important to note that since deal and bnlearn provide many functions with
identical names, using the explicit :: notation is advisable.

Using compare we can see that the DAG we just learned (dag.deal) is
completely different from that in Section 4.7 (here dag.bnlearn).
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dag.deal

ALG

ANL

LAT

MECH

STAT

VECT

dag.bnlearn

ALG

ANL

LAT

MECH

STAT VECT

Figure 5.1
DAGs learned from the marks data with deal (left) and bnlearn (right) after
adding latent grouping.

> dag.bnlearn <- model2network(

+ "[ANL][MECH][LAT|ANL:MECH][VECT|LAT][ALG|LAT][STAT|LAT]")

> dag.deal <- model2network(mstring)

> unlist(bnlearn::compare(cpdag(dag.deal), cpdag(dag.bnlearn)))

tp fp fn

1 4 8

The two DAGs, which are shown in Figure 5.1, have CPDAGs that do not
share any arc! In fact, dag.deal is quite similar to the GBN in the bottom
left panel of Figure 4.5, which was learned before introducing LAT. This is,
once more, an example of how different parametric assumptions and data
transformation can deeply affect the results of BN learning.

5.1.2 The catnet Package

The catnet package also divides structure learning in discrete steps, but from a
frequentist perspective: it learns the DAG that maximises BIC instead of pos-
terior probability. Following Friedman and Koller (2003), catnet starts from
the consideration that finding the optimal DAG given a topological ordering
is a much simpler task than doing the same in the general case. Therefore, it
implements the following workflow:

1. learn the optimal topological ordering from the data, or let the user
specify one; and then

2. learn the optimal structure of the DAG conditional on the topolog-
ical ordering.
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The first step is implemented in the cnSearchSA function using simu-
lated annealing, which we apply below to the discretised marks data from
bnlearn. Learning can be customised with several optional arguments such as
the maximum number of parents allowed for each node (maxParentSet and
parentSizes), the maximum complexity of the network (maxComplexity) and
the prior probability of inclusion of each arc (edgeProb).

> library(catnet)

> dmarks <- discretize(marks, breaks = 2, method = "interval")

> ord <- cnSearchSA(dmarks, maxParentSet = 2)

> ord

Number of nodes = 6,

Sample size = 88,

Number of networks = 14

Processing time = 0.122

ord is an object of class catNetworkEvaluate, which contains a set of net-
works with the learned topological ordering, along with other useful quanti-
ties. We can access them as follows, and we can explore their properties with
various catnet functions.

> nets <- ord@nets

> nets[[1]]

A catNetwork object with 6 nodes, 0 parents, 2 categories,

Likelihood = -3.889193 , Complexity = 6 .

The second step is implemented in cnFindBIC, which finds the network with
the best BIC score among those stored in ord.

> best <- cnFindBIC(ord, nrow(dmarks))

> best

A catNetwork object with 6 nodes, 2 parents, 2 categories,

Likelihood = -3.046226 , Complexity = 12 .

Unlike deal, catnet provides functions to explore the learning process and
the resulting networks and to make use of the latter. For instance, we can
use cnSamples to generate numsamples random samples from best, which is
useful to implement approximate inference. They are returned in a data frame
with the same structure as that used to learn best.

> cnSamples(best, numsamples = 4)

MECH VECT ALG ANL STAT LAT

1 (38.5,77.1] (45.5,82.1] (47.5,80.1] [8.94,39.5] [8.93,45] B

2 (38.5,77.1] (45.5,82.1] [14.9,47.5] [8.94,39.5] [8.93,45] B

3 [-0.077,38.5] [8.93,45.5] [14.9,47.5] [8.94,39.5] [8.93,45] B

4 (38.5,77.1] (45.5,82.1] [14.9,47.5] [8.94,39.5] [8.93,45] B
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Another possibility is to extract the arc set from best using cnMatEdges, and
import the DAG in bnlearn.

> em <- empty.graph(names(dmarks))

> arcs(em) <- cnMatEdges(best)

This makes it possible to use other functions in bnlearn, such as bn.fit

to learn the parameters, and to export the BN to gRain to perform exact
inference.

5.1.3 The pcalg Package

The pcalg package is unique in its focus on causal inference, and provides the
only R implementation of the PC algorithm. Unlike other packages, it allows
the user to provide a custom function to perform conditional independence
tests. This means that, in principle, we can model any kind of data as long
as we can define a suitable test function. gaussCItest (Student’s t test for
correlation), condIndFisherZ (Fisher’s Z test), gSquareDis (G2 test) and
disCItest (Pearson’s X2 test) implement commonly used tests, and make
the analysis of discrete BNs and GBNs possible out of the box.

However, this flexibility requires more effort in setting up structure learn-
ing: the user must produce the sufficient statistics for the conditional inde-
pendence tests from the data as a preliminary step. In the case of the marks

data (minus the latent grouping), this means computing the sample size and
the correlation matrix of the variables.

> library(pcalg)

> marks <- marks[, colnames(marks) != "LAT"]

> suffStat <- list(C = cor(marks), n = nrow(marks))

We can then use pc with the specified test (indepTest) and type I error
threshold (alpha) to learn the DAG.

> pc.fit <- pc(suffStat, indepTest = gaussCItest,

+ p = ncol(marks), alpha = 0.05)

Note that the data are never used directly, but only through the sufficient
statistics in suffStat. The pc.fit object stores the DAG in an object of
class graphNEL, which is defined in the graph package.

> pc.fit@graph

A graphNEL graph with directed edges

Number of Nodes = 5

Number of Edges = 7

As a result, it is easy to import the DAG in bnlearn with the as.bn function,
or to manipulate and explore it directly with graph and Rgraphviz.
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Figure 5.2
DAGs learned from the marks data with the PC (left) and FCI (right) algo-
rithms without considering latent grouping.

The FCI algorithm, however, is more appropriate for the marks data be-
cause of the influence of the latent variable LAT. The syntax of the fci function
is the same as that of pc, differing only in some optional arguments which are
not used here.

> fci.fit <- fci(suffStat, indepTest = gaussCItest,

+ p = ncol(marks), alpha = 0.05)

A visual comparison of pc.fit and fci.fit, shown in Figure 5.2, makes it
clear the two graphs should be interpreted differently even though they look
very similar. fci.fit has several types of arrowheads, which are not present
in pc.fit, to distinguish between the causal effects originating for observed
variables as opposed to latent ones. A detailed treatment of their meaning,
which would be quite involved, is beyond the scope of this overview; we refer
the interested reader to pcalg’s documentation and the literature referenced
therein.
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5.2 BUGS Software Packages

In Chapter 3 we focused on JAGS, because it is well suited to run under
the Linux systems that are common in modern computational facilities and
because it has a convenient R interface in rjags. In addition, it has a very
good numerical precision since it is based on R’s math library. Other BUGS
implementations exist that are even more popular than JAGS, but they are
largely equivalent in terms of features, differing only in very minor details;
two examples are OpenBUGS (Lunn et al., 2009) and WinBUGS (Lunn et al.,
2000).

It is also worth mentioning a newcomer in the field of MCMC implementa-
tions using BNs to describe the data model: Stan (http://mc-stan.org; Stan
Development Team, 2013). The documentation and the project look promis-
ing in terms of features and performance, but we have no direct experience in
using it for applied research.

5.2.1 Probability Distributions

JAGS implements a large number of probability distributions, which can be
used for the local distributions of nodes of a BN. Unfortunately, their parame-
terisation is sometimes subtly different from that used in R; we saw in Section
3.1 that precision is used to describe the spread of a normal distribution in-
stead of the standard deviation. The reader is advised to be very careful;
parameters may be valid even when they are misspecified and subsequent
simulations will be incorrect, without generating any warning or error.

The following distributions are available:

• 15 real-valued distributions: Beta, Chi-square, Double exponential, Expo-
nential, F, Gamma, Generalised gamma, Logistic, Log-normal, Non-central
Chi-square, Normal, Pareto, Student’s t, Uniform and Weibull.

• 7 discrete distributions: Beta-binomial, Bernoulli, Binomial, Categorical,
Non-central hypergeometric, Negative binomial and Poisson.

• 5 multivariate distributions, either continuous: Dirichlet, Normal, Wishart,
Student’s t; or discrete: Multinomial.

See the JAGS manual (Plummer, 2012) for the complete details.

5.2.2 Complex Dependencies

The models we used in Chapter 3 are quite simple. BUGS allows random vari-
ables to be related via arbitrary mathematical expressions, including trigono-
metric functions, gamma and log-gamma functions, vector and matrix func-
tions (such as the log-determinant of a square matrix or the inverse of a pos-
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itive definite matrix). A complete reference is included in the JAGS manual
(Plummer, 2012).

Mathematical expressions can be used to define the parameters of both
mathematical functions and statistical distributions, as we saw for TR in the
pest model:

TR ~ dbern(logit((G1 - m.TR)/s.TR));

Nodes with common characteristics can be defined in a single statement
using loops, possibly nested. However, the number of iterations must be known
and set when compiling the model. It must be an integer, a fixed parameter or
a data value; not the current value of a node. This constraint is a consequence
of the declarative nature of BUGS: statements are not parsed during the
execution of the program, only at compile time. To clarify,

for (ii in 3:5) { node[ii] ~ dnorm(ii,1); }

is strictly equivalent to:

node[3] ~ dnorm(3,1);

node[4] ~ dnorm(4,1);

node[5] ~ dnorm(5,1);

5.2.3 Inference Based on MCMC Sampling

MCMC algorithms are not straightforward to use and analyse, and as is writ-
ten in red in the first page of the WinBUGS help: “Beware: MCMC sampling
can be dangerous!” The danger is that often we obtain numerical results but
we have no way to check whether they are valid or not. It is beyond the scope
of this book to cover this topic in much detail; we refer interested readers to
Robert and Casella (2009). A few, important points are sketched below.

MCMC samples are drawn from the joint posterior distribution of the
parameters or variables of interest. They are obtained with complicated (and
self-calibrated, in BUGS software packages) iterative algorithms in which the
values drawn at the ith iteration depend on those drawn at the (i − 1)th
iteration. Therefore:

• Successive draws are not independent, especially when the algorithm is said
to be not mixing well. In that case many iterations are needed for some
nodes to move across their support and generate markedly different values.
In other words, samples are autocorrelated. Fortunately, autocorrelation can
be easily checked and weakened by keeping one sample every k for a suitably
large k. This process is called thinning.

• It can be shown that MCMC algorithms sample from the desired posterior
distribution when the number of iterations tends to infinity. For this reason,
we always perform a burn-in phase whose draws are discarded from the
results. However, there is no systematic way of deciding when to stop the
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burn-in and start collecting MCMC samples. Not knowing the shape of the
posterior distribution, we are not able to assess whether convergence has
been attained or not. Only rough diagnostics are available. In some cases,
several weeks of computations are needed to obtain similar results in JAGS
and OpenBUGS!

• MCMC algorithms are iterative, so they need some initial values from which
to start; this is called the initialisation of the algorithm. BUGS can generate
them automatically; but sometimes this process fails with an error message
like the following.

Erreur dans jags.model(file = "pest.jam", data = dat1) :

Error in node G2 Observed node inconsistent with

unobserved parents at initialisation

For this reason, we included a statement such as the following to define the
model in our R code.

ini <- list(G1 = 2);

momar <- jags.model(file = "inclu.pest.jam", inits = ini,

data = dat1)

In other words, we use 2 as the initial value for G1, while letting JAGS
initialise other nodes automatically. In this particular case, we can easily
debug the error. Indeed, in Table 3.2, the distribution of G2 is defined as
a Poisson whose parameter is proportional to G1. When G2 is positive and
G1, which is again Poisson, is initialised to zero the values of the two nodes
are inconsistent: the proposed pair (G1 = 0, G2 > 0) is invalid. The custom
initialisation does not have this flaw.

In the case of complicated models with a large number of nodes, deciding
how to initialise them is far from trivial; a simple solution is to use their
empirical estimates.

• MCMC algorithms are pseudo-random algorithms in the sense that they are
based on the generation of pseudo-random numbers. As usual, it is strongly
advised to save the seed which initialises the generator to be able to repro-
duce and investigate the results of the simulation.

5.3 Other Software Packages

5.3.1 BayesiaLab

BayesiaLab is produced by Bayesia (Laval, France) and provides an integrated
workspace to handle BNs. Its main feature is a user-friendly and powerful
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graphical interface, which is essential to make BNs accessible to people without
programming skills. Numerous types of plots and convenient reports can be
generated. It can also import BN objects from other software and export
Markov blankets to external programming languages.

The main goals of BayesiaLab are the translation of expert knowledge
into a BN, the discovery of structure from data sets, and combining both to
make the best possible use of available information. Temporal aspects can
also be incorporated in the BN, and causal modelling for decision making can
be performed by including specialised nodes. Even if some standard continu-
ous distributions can be used to define the categories of the nodes, BNs are
basically restricted to discrete variables.

In addition, BayesiaLab implements several algorithms to optimise the
layout of the nodes for better visualising DAGs, and supports interactive ma-
nipulation of the proposed layouts.

Written in Java, it can be installed on all main platforms. An evaluation
version limited to 10 nodes and 1, 000 database observations can be freely
downloaded from

http://library.bayesia.com/display/BlabC/Evaluation+License.

5.3.2 Hugin

Hugin is a software package commercialised by Hugin Expert A/S and devel-
oped in collaboration with researchers from Aalborg University (Denmark).
Its first release was a command-line tool created in the context of an ESPRIT
project (Andersen et al., 1989) whose final outcome was the MUNIN expert
system (Andreassen et al., 1989).

Modern versions of Hugin provide a graphical interface that allows users
to perform BN learning and inference without the need of learning a program-
ming language. It supports decision trees, discrete BNs, GBNs and hybrid BNs
assuming a conditional Gaussian distribution. Exact inference is implemented
using junction trees (Algorithm 4.4), and is complemented by a sensitivity
analysis of the resulting posterior probabilities. Furthermore, missing values
are supported both in learning and inference using the EM algorithm.

A demo version of Hugin can be freely downloaded from

http://www.hugin.com/productsservices/demo/hugin-lite,

but is limited to handle at most 50 states and learn BNs from samples of at
most 500 cases. An interface to R is provided by package RHugin, which can
be downloaded from:

http://rhugin.r-forge.r-project.org.
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5.3.3 GeNIe

GeNIe and its underlying library SMILE (Structural Modelling, Inference, and
Learning Engine) are developed by Druzdzel’s Decision Systems Laboratory.
The former provides an intuitive graphical interface to the latter. SMILE is
cross-platform and very powerful, but requires working knowledge of either
C++, .NET or Java. On the other hand, GeNIe only runs on Windows.

GeNIe focuses on inference, and implements several exact and approximate
algorithms such as the Adaptive Importance Sampling (AIS-BN) from Cheng
and Druzdzel (2000). Both discrete BNs and GBNs are supported. As far as
structure learning is concerned, GeNIe implements naive Bayes classifiers, the
PC algorithm and two greedy search heuristics using BDe as a network score.

Binaries for both GeNIe and SMILE can be freely downloaded from

http://genie.sis.pitt.edu/index.php/downloads;

note though that both are proprietary software, so sources are not available.

Exercises

Exercise 5.1 One essential task in any analysis is to import and export the R

objects describing models from different packages. This is all the more true in
the case of BN modelling, as no package implements all of structure learning,
parameter learning and inference.

1. Create the dag.bnlearn object from Section 5.1.1.

2. Export it to deal.

3. Import the result back into bnlearn.

4. Export dag.bnlearn to catnet and import it back in bnlearn.

5. Perform parameter learning using the discretised dmarks and
dag.bnlearn and export it to a DSC file, which can be read in
Hugin and GeNIe.

Exercise 5.2 Learn a GBN from the marks data (without the LAT variable)
using pcalg and a custom test that defines dependence as significant if the
corresponding partial correlation is greater than 0.50.

Exercise 5.3 Reproduce the example of structure learning from Section 5.1.1
using deal, but set the imaginary sample size to 20. How does the resulting
network change?
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Real-World Applications of Bayesian Networks

We will now apply the concepts we introduced in the previous chapters to the
analysis of two real-world data sets from life sciences: a protein-signalling data
set from which we want to discover interactions and pathways characterising
some biological processes in human cells, and a medical diagnostic data set
which we will use as a basis to predict a human’s body composition.

6.1 Learning Protein-Signalling Networks

BNs provide a versatile tool for the analysis of many kinds of biological data,
such as single-nucleotide polymorphism (SNP) data and gene expression pro-
files. Following the work of Friedman et al. (2000), the expression level or
the allele frequency of each gene is associated with one node. In addition, we
can include additional nodes denoting other attributes that affect the system,
such as experimental conditions, temporal indicators, and exogenous cellular
conditions. As a result, we can model in a single, comprehensive BN both the
biological mechanisms we are interested in and the external conditions influ-
encing them at the same time. Some interesting applications along these lines
are studied, among others, in Yu et al. (2004); Zou and Conzen (2005); Morota
et al. (2012); Villa-Vialaneix et al. (2013); Hartley and Sebastiani (2013).

An outstanding example of how such data can be analysed effectively is
presented in Sachs et al. (2005) using protein-signalling data. BNs were used to
represent complex direct and indirect relationships among multiple interact-
ing molecules while accommodating biological noise. The data consist in the
simultaneous measurements of 11 phosphorylated proteins and phospholipids
derived from thousands of individual primary immune system cells, subjected
to both general and specific molecular interventions. The former ensure that
the relevant signalling pathways are active, while the latter make causal in-
ference possible by elucidating arc directions through stimulatory cues and
inhibitory interventions.

139
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Figure 6.1
Protein-signalling network from Sachs et al. (2005). Signalling pathways that
are known from literature but were not captured by the BN are shown with
a dashed line.

The analysis described in Sachs et al. (2005) can be summarised as follows.

1. Outliers were removed and the data were discretised using the ap-
proach described in Hartemink (2001), because the distributional
assumptions required by GBNs did not hold.

2. Structure learning was performed multiple times. In this way, a
larger number of DAGs were explored in an effort to reduce the
impact of locally optimal (but globally suboptimal) networks on
learning and subsequent inference.

3. The DAGs learned in the previous step were averaged to produce
a more robust model. This practice, known as model averaging, is
known to result in a better predictive performance than choosing a
single, high-scoring BN. The averaged DAG was created using the
arcs present in at least 85% of the DAGs. This proportion measures
the strength of each arc and provides the means to establish its
significance given a threshold (85% in this case).

4. The validity of the averaged BN was evaluated against well-
established signalling pathways from literature.

The final BN is shown in Figure 6.1. It includes 11 nodes, one for each protein
and phospholipid: PKC, PKA, Raf, Mek, Erk, Akt, Jnk, P38, Plcg (standing for
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Plcγ), PIP2 and PIP3. Every arc in that BN has been successfully validated,
with very few exceptions:

• the arc between Pclg and PIP3 should be oriented in the other direction;

• there is a missing arc from PIP3 to Akt;

• there are two missing arcs from Plcg and PIP2 to PKC.

We will reproduce these steps in the remainder of this section, using bnlearn

and other packages covered in Section 5.1 to integrate missing functionality.

6.1.1 A Gaussian Bayesian Network

For the moment, we will consider only the 853 data manipulated with general
interventions (i.e., the observational data); we will investigate the complete
data set (i.e., both the observational and the interventional data) in Section
6.1.5.

> library(bnlearn)

> sachs <- read.table("sachs.data.txt", header = TRUE)

> head(sachs)

Raf Mek Plcg PIP2 PIP3 Erk Akt PKA PKC P38 Jnk

1 26.4 13.20 8.82 18.30 58.80 6.61 17.0 414 17.00 44.9 40.0

2 35.9 16.50 12.30 16.80 8.13 18.60 32.5 352 3.37 16.5 61.5

3 59.4 44.10 14.60 10.20 13.00 14.90 32.5 403 11.40 31.9 19.5

4 73.0 82.80 23.10 13.50 1.29 5.83 11.8 528 13.70 28.6 23.1

5 33.7 19.80 5.19 9.73 24.80 21.10 46.1 305 4.66 25.7 81.3

6 18.8 3.75 17.60 22.10 10.90 11.90 25.7 610 13.70 49.1 57.8

The data are continuous, as they represent the concentration of the molecules
under investigation. Therefore, the standard approach in literature is to as-
sume the concentrations follow a Gaussian distribution and to use a GBN to
build the protein-signalling network.

However, the DAGs learned under this parametric assumption are not
satisfactory. For example, using Inter-IAMB we obtain a DAG with only 8
arcs (compared to the 17 in Figure 6.1) and only 2 of them are directed.

> dag.iamb <- inter.iamb(sachs, test = "cor")

> narcs(dag.iamb)

[1] 8

> directed.arcs(dag.iamb)

from to

[1,] "P38" "PKC"

[2,] "Jnk" "PKC"
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Other combinations of constraint-based algorithms and conditional indepen-
dence tests, such as gs with test = "mc-cor", return the same DAG. The
same is true for score-based and hybrid algorithms. If we compare dag.iamb

with the DAG from Figure 6.1 (minus the arcs that were missed in the original
paper), we can see that they have completely different structures.

> sachs.modelstring <-

+ paste("[PKC][PKA|PKC][Raf|PKC:PKA][Mek|PKC:PKA:Raf]",

+ "[Erk|Mek:PKA][Akt|Erk:PKA][P38|PKC:PKA]",

+ "[Jnk|PKC:PKA][Plcg][PIP3|Plcg][PIP2|Plcg:PIP3]")

> dag.sachs <- model2network(sachs.modelstring)

> unlist(compare(dag.sachs, dag.iamb))

tp fp fn

0 8 17

Comparing the two DAGs again, but disregarding arc directions, reveals that
some of the dependencies are correctly identified by inter.iamb but their
directions are not.

> unlist(compare(skeleton(dag.sachs), skeleton(dag.iamb)))

tp fp fn

8 0 9

The reason for the discrepancy between dag.sachs and dag.iamb is ap-
parent from a graphical exploratory analysis of the data. Firstly, the empirical
distributions of the molecules’ concentrations are markedly different from a
normal distribution. As an example, we plotted the distributions of Mek, P38,
PIP2 and PIP3 in Figure 6.2. All are strongly skewed, because concentra-
tions are positive numbers but a lot of them are small, and therefore cluster
around zero. As a result, the variables are not symmetric and clearly violate
the distributional assumptions underlying GBNs. Secondly, the dependence
relationships in the data are not always linear; this is the case, as shown in
Figure 6.3, for PKA and PKC. Most conditional independence tests and network
scores designed to capture linear relationships have very low power in detect-
ing nonlinear ones. In turn, structure learning algorithms using such statistics
are not able to correctly learn the arcs in the DAG.

6.1.2 Discretising Gene Expressions

Since we have concluded that GBNs are not appropriate for the Sachs et al.
(2005) data, we must now consider some alternative parametric assumptions.
One possibility could be to explore monotone transformations like the log-
arithm. Another possibility would be to specify an appropriate conditional
distribution for each variable, thus obtaining a hybrid network like those
we explored in Chapter 3. However, this approach requires substantial prior
knowledge on the signalling pathways, which may or may not be available.
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Figure 6.2
Densities of Mek, P38, PIP2 and PIP3. Histograms represent the empirical
densities computed from the sachs data, while the curves are normal density
functions with the appropriate means and variances. Note that on the right
side of each histogram there are almost imperceptible bars, justifying the range
of the abscissas and making the normal distribution completely irrelevant.
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Figure 6.3
The (nonlinear) relationship between PKA and PKC; the dashed line is the fitted
regression line for PKA against PKC.
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Algorithm 6.1 Hartemink’s Information-Preserving Discretisation

1. Discretise each variable independently using quantile discretisation
and a large number k1 of intervals, e.g., k1 = 50 or even k1 = 100.

2. Repeat the following steps until each variable has k2 ≪ k1 intervals,
iterating over each variable Xi, i = 1, . . . , p in turn:

(a) compute

MXi
=
∑

j 6=i

MI(Xi, Xj);

(b) for each pair l of adjacent intervals of Xi, collapse them in a
single interval, and with the resulting variable X∗i (l) compute

MX∗

i
(l) =

∑

j 6=i

MI(X∗i (l), Xj);

(c) set Xi = argmaxXi(l) MX∗

i
(l).

In the case of Sachs et al. (2005), such information was indeed available from
literature. However, the aim of the analysis was to use BNs as an automated
probabilistic method to verify such information, not to build a BN with prior
information and use it as an expert system.

Consequently, Sachs et al. (2005) decided to discretise the data and to
model them with a discrete BN, which can accommodate skewness and non-
linear relationships at the cost of losing the ordering information. Since the
variables in the BN represent concentration levels, it is intuitively appealing
to discretise them into three levels corresponding to low, average and high
concentrations.

To that end, we can use the discretize function in bnlearn, which im-
plements three common discretisation methods:

• quantile discretisation: each variable is discretised independently into k in-

tervals delimited by its 0, 1
k

, 2
k

, . . . , (k−1)
k

, 1 empirical quantiles;

• interval discretisation: each variable is discretised independently into k
equally-spaced intervals;

• information-preserving discretisation: variables are jointly discretised while
preserving as much of the pairwise mutual information between the variables
as possible.

The last approach has been introduced by Hartemink (2001), and is de-
scribed in detail in Algorithm 6.1. The key idea is to initially discretise each
variable into a large number k1 of intervals, thus losing as little information
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as possible. Subsequently, the algorithm iterates over the variables and col-
lapses, for each of them, the pair of adjacent intervals that minimises the loss
of pairwise mutual information. The algorithm stops when all variables have
k2 ≪ k1 intervals left. The resulting set of discretised variables reflects the
dependence structure of the original data much better than either quantile or
interval discretisation would allow, because the discretisation takes pairwise
dependencies into account. Clearly some information is always lost in the pro-
cess; for instance, higher-level dependencies are completely disregarded and
therefore are not likely to be preserved.

Algorithm 6.1 is implemented in the discretize function (method =

"hartemink") along with quantile (method = "quantile") and interval dis-
cretisation (method = "interval").

> dsachs <- discretize(sachs, method = "hartemink",

+ breaks = 3, ibreaks = 60, idisc = "quantile")

The relevant arguments are idisc and ibreaks, which control how the data
are initially discretised, and breaks, which specifies the number of levels of
each discretised variable. ibreaks corresponds to k1 in Algorithm 6.1, while
breaks corresponds to k2. Choosing good values for these arguments is a trade-
off between quality and speed; high values of ibreaks preserve the character-
istics of the original data to a greater extent, whereas smaller values result in
much smaller memory usage and shorter running times.

6.1.3 Model Averaging

Following the analysis in Sachs et al. (2005), we can improve the quality of the
structure learned from the data by averaging multiple CPDAGs. One possible
approach to that end is to apply bootstrap resampling to dsachs and learn a
set of 500 network structures.

> boot <- boot.strength(dsachs, R = 500, algorithm = "hc",

+ algorithm.args = list(score = "bde", iss = 10))

In the code above we learn a CPDAG with hill-climbing from each of the R

bootstrap samples. Each variable in dsachs is now a factor with three levels,
so we use the BDe score with a very low imaginary sample size.

The boot object returned by boot.strength is a data frame containing
the strength of all possible arcs (in the strength column) and the probability
of their direction (in the direction column) conditional on the fact that the
from and to nodes are connected by an arc. This structure makes it easy to
select the most significant arcs, as below.

> boot[(boot$strength > 0.85) & (boot$direction >= 0.5), ]

from to strength direction

1 Raf Mek 1.000 0.520000

23 Plcg PIP2 1.000 0.517000
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24 Plcg PIP3 1.000 0.531000

34 PIP2 PIP3 1.000 0.511000

56 Erk Akt 1.000 0.568000

57 Erk PKA 0.994 0.588531

67 Akt PKA 1.000 0.586000

89 PKC P38 1.000 0.512000

90 PKC Jnk 1.000 0.511000

100 P38 Jnk 0.958 0.506263

Arcs are considered significant if they appear in at least 85% of the networks,
and in the direction that appears most frequently. Arcs that are score equiv-
alent in all the CPDAGs are considered to appear 50% of the time in each
direction. Since all the values in the direction column above are close to 0.5,
we can infer that the direction of the arcs is not well established and that
they are probably all score equivalent. Interestingly, lowering the threshold
from 85% to 50% does not change the results of the analysis, which seems to
indicate that in this case the results are not sensitive to its value.

Having computed the significance for all possible arcs, we can now build
the averaged network using averaged.network and the 85% threshold.

> avg.boot <- averaged.network(boot, threshold = 0.85)

The averaged network avg.boot contains the same arcs as the network learned
from the observational data in Sachs et al. (2005), which is shown in Figure
6.4. Even though the probability of the presence of each arc and of its pos-
sible directions are computed separately in boot.strength, we are not able
to determine with any confidence which direction has better support from
the discretised data. Therefore, we remove the directions from the arcs in
avg.boot, which amounts to constructing its skeleton.

> avg.boot <- skeleton(avg.boot)

As an alternative, we can average the results of several hill-climbing
searches, each starting from a different DAG. Such DAGs can be generated
randomly from a uniform distribution over the space of connected graphs with
the MCMC algorithm proposed by Ide and Cozman (2002) and implemented
in random.graph as method = "ic-dag". This ensures that no systematic bias
is introduced in the learned DAGs. In addition, keeping only one randomly
generated DAG every 50 ensures that the DAGs are different from each other
so that the search space is covered as thoroughly as possible.

> nodes <- names(dsachs)

> start <- random.graph(nodes = nodes, method = "ic-dag",

+ num = 500, every = 50)

> netlist <- lapply(start, function(net) {

+ hc(dsachs, score = "bde", iss = 10, start = net)

+ })
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Figure 6.4
The undirected graph learned from the observational data in Sachs et al.
(2005). Missing arcs from the DAG in Figure 6.1 are plotted in grey.

After using lapply to iterate easily over the DAGs in the start list and pass
each of them to hc with the start argument, we obtain a list of bn objects,
which we call netlist. We can pass such a list to the custom.strength

function to obtain a data frame with the same structure as those returned by
boot.strength.

> rnd <- custom.strength(netlist, nodes = nodes)

> rnd[(rnd$strength > 0.85) & (rnd$direction >= 0.5), ]

> avg.start <- averaged.network(rnd, threshold = 0.85)

from to strength direction

11 Mek Raf 1 0.509

33 PIP2 Plcg 1 0.509

34 PIP2 PIP3 1 0.508

43 PIP3 Plcg 1 0.501

56 Erk Akt 1 0.504

57 Erk PKA 1 0.503

67 Akt PKA 1 0.500

77 PKA Akt 1 0.500

90 PKC Jnk 1 0.502

99 P38 PKC 1 0.505

100 P38 Jnk 1 0.507
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The arcs identified as significant with this approach are the same as in
avg.boot (even though some are reversed), thus confirming the stability of
the averaged network obtained from bootstrap resampling. Arc directions are
again very close to 0.5, to the point we can safely disregard them. A compari-
son of the equivalence classes of avg.boot and avg.start shows that the two
networks are equivalent.

> all.equal(cpdag(avg.boot), cpdag(avg.start))

[1] "Different number of directed/undirected arcs"

Furthermore, note how averaged networks, like the networks they are com-
puted from, are not necessarily completely directed. In that case, it is not
possible to compute their score directly. However, we can identify the equiv-
alence class the averaged network belongs to (with cpdag) and then select a
DAG within that equivalence class (with cextend).

> score(cextend(cpdag(avg.start)), dsachs, type = "bde",

+ iss = 10)

[1] -8498.88

Since all networks in the same equivalence class have the same score (for score-
equivalent functions), the value returned by score is a correct estimate for
the original, partially directed network.

We can also compute averaged network structures from bootstrap samples
using the algorithms implemented in catnet, deal and pcalg. For this purpose,
and to facilitate interoperability, we can again use the custom.strength func-
tion. In addition to a list of bn objects, custom.strength also accepts a list of
arc sets, which can be created using functions from other packages, and returns
a data frame with the same columns as that returned by boot.strength. For
example, we can replace the hill-climbing search used above with the simulated
annealing search implemented in catnet as follows.

> library(catnet)

> netlist <- vector(500, mode = "list")

> ndata <- nrow(dsachs)

> nodes <- names(dsachs)

> netlist <- lapply(netlist, function(net) {

+ boot <- dsachs[sample(ndata, replace = TRUE), ]

+ top.ord <- cnSearchOrder(boot)

+ best <- cnFindBIC(top.ord, ndata)

+ cnMatEdges(best)

+ })

> sann <- custom.strength(netlist, nodes = nodes)

The code above is similar to that used to create avg.start. After creating an
empty list with 500 slots to hold the arc sets, we iterate over it using lapply.
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At each iteration:

1. we create the bootstrap sample boot by subsetting the original data
frame dsachs with the sample function and replace = TRUE;

2. we learn the topological ordering top.ord of the nodes from the
bootstrap sample using cnSearchOrder from catnet;

3. we learn (again from the data) the DAG with the best BIC score
given top.ord using cnFindBIC from catnet;

4. we extract the arcs from best using cnMatEdges from catnet.

Finally, we perform model averaging with custom.strength from bnlearn.
The result is stored in the sann object, which we can investigate as before.

> sann[(sann$strength > 0.85) & (sann$direction >= 0.5), ]

from to strength direction

1 Raf Mek 1.00 0.5

11 Mek Raf 1.00 0.5

23 Plcg PIP2 0.99 0.5

33 PIP2 Plcg 0.99 0.5

34 PIP2 PIP3 1.00 0.5

44 PIP3 PIP2 1.00 0.5

56 Erk Akt 1.00 0.5

66 Akt Erk 1.00 0.5

67 Akt PKA 1.00 0.5

77 PKA Akt 1.00 0.5

89 PKC P38 1.00 0.5

90 PKC Jnk 1.00 0.5

99 P38 PKC 1.00 0.5

109 Jnk PKC 1.00 0.5

> avg.catnet <- averaged.network(sann, threshold = 0.85)

Unlike avg.boot and avg.start, avg.catnet is clearly an undirected
graph; both directions have probability of exactly 0.5 for every arc, because the
500 DAGs learned from the bootstrap samples do not contain any v-structure.
Furthermore, we can see with narcs that avg.catnet only has 7 arcs com-
pared to the 10 of avg.start.

> narcs(avg.catnet)

[1] 7

> narcs(avg.start)

[1] 10

It seems also not to fit the data very well; the BDe score returned by score

for the same iss we used in structure learning is higher for avg.start than
for avg.catnet.
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> score(cextend(cpdag(avg.catnet)), dsachs, type = "bde",

+ iss = 10)

[1] -8548.34

> score(cextend(cpdag(avg.start)), dsachs, type = "bde",

+ iss = 10)

[1] -8498.88

Such differences can be attributed to the different scores and structure learning
algorithms used to build the sets of high-scoring networks. In particular, it is
very common for arc directions to differ between learning algorithms.

6.1.4 Choosing the Significance Threshold

The value of the threshold beyond which an arc is considered significant, which
is called the significance threshold, does not seem to have a huge influence on
the analysis in Sachs et al. (2005). In fact, any value between 0.5 and 0.85
yields exactly the same results. So, for instance:

> all.equal(averaged.network(boot, threshold = 0.50),

+ averaged.network(boot, threshold = 0.70))

[1] TRUE

The same holds for avg.catnet and avg.start. However, this is often not
the case. Therefore, it is important to use a statistically motivated algorithm
for choosing a suitable threshold instead of relying on ad-hoc values.

A solution to this problem is presented in Scutari and Nagarajan (2013),
and implemented in bnlearn as the default value for the threshold argument
in averaged.network. It is used when we do not specify threshold ourselves
as in the code below.

> averaged.network(boot)

Random/Generated Bayesian network

model:

[Raf][Plcg][Erk][PKC][Mek|Raf][PIP2|Plcg][Akt|Erk]

[P38|PKC][Jnk|PKC][PIP3|Plcg:PIP2][PKA|Erk:Akt]

nodes: 11

arcs: 9

undirected arcs: 0

directed arcs: 9

average markov blanket size: 1.64

average neighbourhood size: 1.64

average branching factor: 0.82

generation algorithm: Model Averaging

significance threshold: 0.958
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The value of the threshold is computed as follows. If we denote the arc
strengths stored in boot as p̂ = {p̂i, i = 1, . . . , k}, and p̂(·) is

p̂(·) = {0 6 p̂(1) 6 p̂(2) 6 . . . 6 p̂(k) 6 1}, (6.1)

then we can define the corresponding arc strength in the (unknown) averaged
network G = (V, A0) as

p̃(i) =

{
1 if a(i) ∈ A0

0 otherwise
, (6.2)

that is, the set of strengths that characterises any arc as either significant or
non-significant without any uncertainty. In other words,

p̃(·) = {0, . . . , 0, 1, . . . , 1}. (6.3)

The proportion t of elements of p̃(·) that are equal to 1 determines the number
of arcs in the averaged network, and is a function of the significance threshold
we want to estimate. One way to do that is to find the value t̂ that minimises
the L1 norm

L1

(
t; p̂(·)

)
=

∫ ∣∣Fp̂(·)
(x)− Fp̃(·)

(x; t)
∣∣ dx (6.4)

between the cumulative distribution functions of p̃(·) and p̂(·), and then to
include every arc that satisfies

a(i) ∈ A0 ⇐⇒ p̂(i) > F−1
p̂(·)

(t̂) (6.5)

in the average network. This amounts to finding the averaged network whose
arc set is “closest” to the arc strength computed from the data, with F−1

p̂(·)
(t̂)

acting as the significance threshold.
For the dsachs data, the estimated value for the threshold is 0.958; so,

any arc with a strength value strictly greater than that is considered sig-
nificant. The resulting averaged network is similar to that obtained with the
85% threshold from Sachs et al. (2005). Compared to avg.boot, only the arc
P38 → Jnk is missing, which is an improvement because it was a false positive
not present in the validated DAG shown in Figure 6.1.

> unlist(compare(cpdag(dag.sachs), cpdag(avg.boot)))

tp fp fn

1 9 16

> unlist(compare(cpdag(dag.sachs),

+ cpdag(averaged.network(boot))))

tp fp fn

0 9 17
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Figure 6.5
Cumulative distribution function of the arc strength values computed with
bootstrap resampling from dsachs. The vertical dashed lines correspond to
the estimated (black) and ad-hoc (grey) significance thresholds.

The reason for the insensitivity of the averaged network to the value of the
threshold is apparent from the plot of Fp̂(·)

in Figure 6.5: arcs that are well
supported by the data are clearly separated from those that are not, with
the exception of P38 → Jnk (which has strength 0.958, i.e., the estimated
threshold). The arc with highest strength after P38 → Jnk is Plcg → Akt

with strength 0.328, so any threshold that falls between 0.958 and 0.328
results in the same averaged network.

6.1.5 Handling Interventional Data

Usually, all the observations in a sample are collected under the same general
conditions. This is true both for observational data, in which treatment al-
location is outside the control of the investigator, and for experimental data,
which are collected from randomised controlled trials. As a result, the sample
can be easily modelled with a single BN, because all the observations follow
the same probability distribution.

However, this is not the case when several samples resulting from different
experiments are analysed together with a single, encompassing model. Such
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an approach is called meta analysis (see Kulinskaya et al., 2008, for a gentle
introduction). First, environmental conditions and other exogenous factors
may differ between those experiments. Furthermore, the experiments may be
different in themselves; for example, they may explore different treatment
regimes or target different populations.

This is the case with the protein-signalling data analysed in Sachs et al.
(2005). In addition to the data set we have analysed so far, which is subject
only to general stimuli meant to activate the desired paths, 9 other data sets
subject to different stimulatory cues and inhibitory interventions were used to
elucidate the direction of the causal relationships in the network. Such data
are often called interventional, because the values of specific variables in the
model are set by an external intervention of the investigator.

Overall, the 10 data sets contain 5, 400 observations; in addition to the 11
signalling levels analysed above, the protein which is activated or inhibited
(INT) is recorded for each sample.

> isachs <- read.table("sachs.interventional.txt",

+ header = TRUE, colClasses = "factor")

One intuitive way to model these data sets with a single, encompassing BN
is to include the intervention INT in the network and to make all variables
depend on it. This can be achieved with a whitelist containing all possible
arcs from INT to the other nodes, thus forcing these arcs to be present in the
learned DAG.

> wh <- matrix(c(rep("INT", 11), names(isachs)[1:11]), ncol = 2)

> dag.wh <- tabu(isachs, whitelist = wh, score = "bde",

+ iss = 10, tabu = 50)

Using tabu search instead of hill-climbing improves the stability of the score-
based search; once a locally optimum DAG is found, tabu search performs an
additional 50 iterations (as specified by the tabu argument) to ensure that no
other (and potentially better) local optimum is found.

We can also let the structure learning algorithm decide which arcs con-
necting INT to the other nodes should be included in the DAG. To this end,
we can use the tiers2blacklist function to blacklist all arcs toward INT,
thus ensuring that only outgoing arcs may be included in the DAG. In the
general case, tiers2blacklist builds a blacklist such that all arcs going from
a node in a particular element of the nodes argument to a node in one of the
previous elements are blacklisted.

> tiers <- list("INT", names(isachs)[1:11])

> bl <- tiers2blacklist(nodes = tiers)

> dag.tiers <- tabu(isachs, blacklist = bl,

+ score = "bde", iss = 1, tabu = 50)
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The BNs learned with these two approaches are shown in Figure 6.6. Some
of the structural features detected in Sachs et al. (2005) are present in both
dag.wh and dag.tiers. For example, the interplay between Plcg, PIP2 and
PIP3 and between PKC, P38 and Jnk are both modelled correctly. The lack of
any direct intervention on PIP2 is also correctly modelled in dag.tiers. The
most noticeable feature missing from both DAGs is the pathway linking Raf

to Akt through Mek and Erk.
The approach used in Sachs et al. (2005) yields much better results. In-

stead of including the interventions in the network as an additional node,
they used a modified BDe score (labelled "mbde" in bnlearn) incorporating
the effects of the interventions into the score components associated with each
node (Cooper and Yoo, 1999). When we are controlling the value of a node
experimentally, its value is not determined by the other nodes in the BN, but
by the experimenter’s intervention. Accordingly, mbde disregards the effects
of the parents on a controlled node for those observations that are subject to
interventions (on that node) while otherwise behaving as the standard bde for
other observations.

Since the value of INT identifies which node is subject to either a stim-
ulatory cue or an inhibitory intervention for each observation, we can easily
construct a named list of which observations are manipulated for each node.

> INT <- sapply(1:11, function(x) {

+ which(isachs$INT == x) })

> nodes <- names(isachs)[1:11]

> names(INT) <- nodes

We can then pass this list to tabu as an additional argument for mbde. In
addition, we can combine the use of mbde with model averaging and random
starting points as discussed in Section 6.1.3. To improve the stability of the
averaged network, we generate the set of the starting networks for the tabu
searches using the algorithm from Melançon et al. (2001), which is not limited
to connected networks as is that from Ide and Cozman (2002). In addition, we
actually use only one generated network every 100 to obtain a more diverse
set.

> start <- random.graph(nodes = nodes, method = "melancon",

+ num = 500, burn.in = 10^5, every = 100)

> netlist <- lapply(start, function(net) {

+ tabu(isachs[, 1:11], score = "mbde", exp = INT,

+ iss = 1, start = net, tabu = 50)

+ })

> intscore <- custom.strength(netlist, nodes = nodes,

+ cpdag = FALSE)

Note that we have set cpdag = FALSE in custom.strength, so that the
DAGs being averaged are not transformed into CPDAGs before computing
arc strengths and direction probabilities. The reason is that, unlike the BDe
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Figure 6.6
DAGs learned from isachs. The first two networks (dag.wh on the top left,
dag.tiers on the top right) have been learned by including INT and adding
arcs to model stimulatory cues and inhibitory interventions. The third BN
(dag.mbde, on the bottom left) has been learned with model averaging and
the mbde score; arcs plotted with a thicker line width make up the validated
BN (bottom right) from Sachs et al. (2005).
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score we used in Section 6.1.3, mbde is not score equivalent as a consequence of
incorporating the interventions. In fact, information about the interventions
is a form of prior information, and makes it possible to identify arc directions
even when the arc would be score equivalent from the data alone.

Averaging the DAGs with averaged.network and the threshold from Sec-
tion 6.1.4, we are finally able to correctly identify all the arcs in the network
from Sachs et al. (2005).

> dag.mbde <- averaged.network(intscore)

> unlist(compare(dag.sachs, dag.mbde))

tp fp fn

17 7 0

As we can see from Figure 6.6, dag.mbde is much closer to the validated
network from Sachs et al. (2005) than any of the other BNs learned in this
section. All the arcs from the validated network are correctly learned; in the
output above we have 17 true positives and 0 false negatives, and the original
network contains 17 arcs. The three arcs that were missing in Sachs et al.
(2005) are missing in dag.mbde as well. The arcs from dag.mbde that are not
present in the validated network were identified in Sachs et al. (2005) and
discarded due to their comparatively low strength; this may imply that the
simulated annealing algorithm used in Sachs et al. (2005) performs better on
this data set than tabu search.

6.1.6 Querying the Network

In their paper, Sachs et al. (2005) used the validated BN to substantiate two
claims:

1. a direct perturbation of Erk should influence Akt;

2. a direct perturbation of Erk should not influence PKA.

The probability distributions of Erk, Akt and PKA were then compared with
the results of two ad-hoc experiments to confirm the validity and the direction
of the inferred causal influences.

Given the size of the BN, we can perform the queries corresponding to the
two claims above using any of the exact and approximate inference algorithms
introduced in Section 4.6.2. First, we need to create a bn.fit object for the
validated network structure from Sachs et al. (2005).

> isachs <- isachs[, 1:11]

> for (i in names(isachs))

+ levels(isachs[, i]) = c("LOW", "AVG", "HIGH")

> fitted <- bn.fit(dag.sachs, isachs, method = "bayes")

The INT variable, which codifies the intervention applied to each observation,
is not needed for inference and is therefore dropped from the data set. Fur-
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thermore, we rename the expression levels of each protein to make both the
subsequent R code and its output more readable.

Subsequently, we can perform the two queries using the junction tree al-
gorithm provided by the gRain package, which we have previously explored
in Section 1.6.2.1. The results are shown in Figure 6.7.

> library(gRain)

> jtree <- compile(as.grain(fitted))

We can introduce the direct perturbation of Erk required by both queries
by calling setEvidence as follows. In causal terms, this would be an ideal
intervention.

> jlow <- setEvidence(jtree, nodes = "Erk", states = "LOW")

As we can see from the code below, the marginal distribution of Akt changes
depending on whether we take the evidence (intervention) into account or not.

> querygrain(jtree, nodes = "Akt")$Akt

Akt

LOW AVG HIGH

0.6089 0.3104 0.0807

> querygrain(jlow, nodes = "Akt")$Akt

Akt

LOW AVG HIGH

0.6652 0.3333 0.0015

The slight inhibition of Akt induced by the inhibition of Erk agrees with both
the direction of the arc linking the two nodes and the additional experiments
performed by Sachs et al. (2005). In causal terms, the fact that changes in
Erk affect Akt supports the existence of a causal link from the former to the
latter.

As far as PKA is concerned, both the validated network and the additional
experimental evidence support the existence of a causal link from PKA to Erk.
Therefore, interventions to Erk cannot affect PKA. In a causal setting, interven-
tions on Erk would block all biological influences from other proteins, which
amounts to removing all the parents of Erk from the DAG.

> causal.sachs <- drop.arc(dag.sachs, "PKA", "Erk")

> causal.sachs <- drop.arc(causal.sachs, "Mek", "Erk")

> cfitted <- bn.fit(causal.sachs, isachs, method = "bayes")

> cjtree <- compile(as.grain(cfitted))

> cjlow <- setEvidence(cjtree, nodes = "Erk", states = "LOW")

After building the junction tree for this new DAG, called causal.sachs, we
can perform the same query on both cjtree and cjlow as we did above.
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Figure 6.7
Probability distributions of Akt and PKA before and after inhibiting Erk, con-
sidered in a non-causal setting.

> querygrain(cjtree, nodes = "PKA")$PKA

PKA

LOW AVG HIGH

0.194 0.696 0.110

> querygrain(cjlow, nodes = "PKA")$PKA

PKA

LOW AVG HIGH

0.194 0.696 0.110

Indeed, PKA has exactly the same distribution in both cases. However, knowl-
edge of the expression level of Erk may still alter our expectations on PKA if
we treat it as evidence instead of an ideal intervention. In practice this im-
plies the use of the original junction trees jtree and jlow, as opposed to the
modified cjtree and cjlow we used for the previous query.

> querygrain(jtree, nodes = "PKA")$PKA

PKA

LOW AVG HIGH

0.194 0.696 0.110

> querygrain(jlow, nodes = "PKA")$PKA

PKA

LOW AVG HIGH

0.4891 0.4512 0.0597
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All the queries illustrated above can be easily changed to maximum a posteri-
ori queries by finding the largest element (with which.max) in the distribution
of the target node.

> names(which.max(querygrain(jlow, nodes = c("PKA"))$PKA))

[1] "LOW"

Clearly, such a simple approach is possible because of the nature of the
evidence and the small number of nodes we are exploring. When many nodes
are explored simultaneously, inference on their joint conditional distribution
quickly becomes very difficult and computationally expensive. In these high-
dimensional settings, algorithms specifically designed for MAP queries and
ad-hoc approaches are preferable.

6.2 Predicting the Body Composition1

The human body composition is the distribution of the three components that
form body weight: bone, fat and lean. They identify, respectively, the mineral
content, the fat and the remaining mass of the body (mainly muscles). In a
detailed analysis, body composition is measured separately across trunk, legs,
and arms, and it is an important diagnostic tool since ratios of these masses
can reveal regional physiological disorders. One of the most common ways to
measure these masses is the dual-energy x-ray absorptiometry (DXA; Cen-
ters for Disease Control and Prevention, 2010), which unfortunately is time-
consuming and very expensive. Therefore, there is an interest in alternative
protocols that can be used to the same effect.

In the following we will try, in a very simple way, to predict body compo-
sition from related quantities that are much cheaper and easier to measure:
age, height, weight and waist circumference. To that end, we will use a sample
of 100 white men collected from the NHANES project (Centers for Disease
Control and Prevention, 2004) which includes simultaneous measurements for
the variables above. This data set is available in the rbmn package under the
name boco.

> library(rbmn)

> data(boco)

> round(head(boco), 1)

A H W C TF LF AF TL LL AL TB LB AB

1 83 182 92.6 117 17.1 8.9 3.0 31.2 18.5 6.6 0.6 1.1 0.5

2 68 169 74.7 93 8.3 5.4 2.0 28.0 16.2 7.5 0.7 1.0 0.5

1This section was written with the help of Simiao Tian (MIAJ, INRA, 78352 Jouy-en-
Josas, France).
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label definition unit

TB Trunk Bone kg
TF Trunk Fat kg
TL Trunk Lean kg
LB Leg Bone kg
LF Leg Fat kg
LL Leg Lean kg
AB Arm Bone kg
AF Arm Fat kg
AL Arm Lean kg

A Age year
W Weight kg
H Height cm
C Waist Circumference cm
B Body Mass Index kg/m2

Table 6.1
The nine variables we are interested in predicting along with the possible
covariates, their labels and their units of measurement.

3 28 182 112.2 112 17.7 11.3 3.1 36.7 24.5 10.1 0.8 1.1 0.5

4 41 171 82.6 96 10.6 6.5 1.8 29.2 19.6 7.8 0.8 1.1 0.5

5 85 169 71.1 102 10.9 4.7 1.9 26.2 14.5 5.8 0.6 1.1 0.4

6 29 176 88.4 96 11.2 7.5 2.7 31.4 19.8 8.3 0.7 1.0 0.4

> boco$B <- boco$W / boco$H^2 * 10^4

> dim(boco)

[1] 100 14

> n <- nrow(boco)

> vr <- colnames(boco)[5:13]

> co <- c("A", "H", "W", "C", "B")

First, we computed the body mass index (B) for each individual and added
it to boco. It is a very popular score, normalising the weight by the height;
intuitively, a weight of 100kg has very different health implications for a person
160cm tall than for another person 185cm tall. Therefore, we now have a set
of 5 covariates and 9 variables of interest for a sample size of n = 100. Their
labels and definitions are given in Table 6.1.

6.2.1 Aim of the Study

A standard statistical approach used for prediction is the multivariate multiple
linear regression. Denoting the (response) variables of interest by Y and the
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covariates (the explanatory variables) by X, the model has the following form:

Y = XΘ + E (6.6)

V (vec (E)) = In ⊗Σ (6.7)

where:

• Y is an n× p matrix;

• X is an n × (q + 1) matrix (including a 1 column for the intercept as well
as the covariates);

• Θ is a (q + 1)× p matrix for the regression coefficients;

• E is an n× p matrix for the error terms;

• Σ is a p× p covariance matrix for the error terms;

• n is the number of observations;

• p is the number of variables; and

• q is the number of covariates.

The number of parameters is p(q + 1) for the regression coefficients and
p(p + 1)/2 for the covariance matrix of the error terms. When p and q are
large, n must be larger still to provide enough predictive power. Of course,
it is well known that covariances are more difficult to estimate from the data
than mean values. Using BNs can be an effective way to dramatically reduce
the number of parameters in the model and thus the required sample size.
More precisely, a GBN defined over p variables and q covariates, with nc arcs
from the covariates to the variables and nv arcs between the variables, will
have only 2p + nc + nv parameters, and a formulation that is consistent with
Equations (6.6) and (6.7).

Indeed, Equation (6.7) can be interpreted as a saturated GBN model (e.g.,
all possible arcs are present in the DAG) in which the roles of variables and
covariates are emphasised. Therefore, we can reasonably expect better pre-
dictions from a sparse GBN when the sample size is too small for a standard
multivariate multiple regression approach.

With the aim of predicting the nine variables with the five covariates in
Table 6.1, we will show an example of how we can learn such a GBN. It could
be argued that W and H make B redundant, but their relationship is not linear
and therefore they convey different information in a linear model.

6.2.2 Designing the Predictive Approach

6.2.2.1 Assessing the Quality of a Predictor

First we will split the data into a training set (dtr) and a validation set (dva).
The training set will be used to learn or estimate the models; the validation
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set will be used to select those models that perform the prediction of new
individuals well, thus reducing the risk of overfitting (Hastie et al., 2009). Here
we will use a randomly generated split into sets of equal size, each comprising
50 individuals.

> str <- sort(sample(n, round(n/2)))

> dtr <- boco[str, ]

> dva <- boco[-str, ]

We also have to deal with the bias-variance trade-off of a prediction. The
discrepancy between the observed value and the predicted mean will capture
the bias; the standard deviation will be given by that of the predictor. For
each variable, the standard error of prediction (SEP) will be obtained by the
classic formula

SEP =
√

bias2 + standard deviation2. (6.8)

Another important consideration when choosing a model for prediction is its
interpretability by experts in the field. When their statistical properties are
comparable, models which elucidate the phenomenon under investigation are
usually preferable to empirical, black-box ones. In the context of BNs, models
with not too many arcs, and arcs with a physiological interpretation for body
composition will be more appealing than the saturated model in Equations
(6.6) and (6.7). In this respect, we hope that complex relationships between
the variables will disappear after the incorporation of good covariates. In other
words: complex marginal dependencies but simple conditional dependencies,
and in the best case conditional independence.

6.2.2.2 The Saturated BN

In order to have a term of comparison for the models we will fit in the following,
we now consider the multiple regression equivalent of a saturated BN (with
all possible arcs between variables and/or covariates).

> satua <- lm(cbind(TF, LF, AF, TL, LL, AL, TB, LB, AB) ~

+ A + H + W + C + B, data = dtr)

> r.dof <- anova(satua)["Residuals", "Df"]

> satup <- predict(satua, newdata = dva)

> satabias <- abs(dva[, vr] - satup)

> satstdev <- outer(rep(1, nrow(dtr)),

+ sqrt(colSums(residuals(satua)^2)/r.dof), "*")

> satsep <- sqrt(satabias^2 + satstdev^2)

> satgsco <- cbind(colMeans(satabias), colMeans(satstdev),

+ colMeans(satsep))

> colnames(satgsco) <- c("|Bias|", "Sd.Dev", "SEP")
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> round(satgsco, 2)

|Bias| Sd.Dev SEP

TF 1.34 1.67 2.29

LF 1.17 1.56 2.04

AF 0.41 0.42 0.63

TL 1.28 1.60 2.19

LL 0.98 1.30 1.73

AL 0.54 0.70 0.94

TB 0.09 0.10 0.14

LB 0.11 0.12 0.17

AB 0.05 0.05 0.07

> satsupe <- colSums(satgsco)

> round(satsupe, 2)

|Bias| Sd.Dev SEP

5.97 7.51 10.19

The output above shows a cumulated SEP of 10.19 over the 9 variables, with a
bias of 5.97 and a standard deviation of 7.51. These three values do not satisfy
Equation (6.8), because we are summing SEPs for all predicted individuals and
variables, and the definition of SEP is not additive. The saturated GBN has
36 arcs between the variables and 45 arcs from the covariates to the variables.

6.2.2.3 Convenient BNs

The training set dtr can also be used to learn a GBN with one of the algo-
rithms available in bnlearn, as below.

> library(bnlearn)

> dag1 <- hc(dtr)

> paste(substr(modelstring(dag1), 1, 40), "...", sep = "")

[1] "[A][TB][LB|TB][AB|TB:LB][H|AB][W|AB][B|H..."

However, this first attempt at learning a GBN does not produce a DAG that
is convenient to use for prediction. We would prefer to have covariates as
ancestors of the response variables, to be able to immediately find their con-
ditional probability distribution. This is not the case here since the variable
AB is the parent of the covariate H. As we have seen in Chapter 4, we can
certainly use conditioning other than that implied by the topological order;
the simple structure of the BN would still help in prediction. But this would
require complex computations and we will not proceed in this way, preferring
BNs where all covariates are ancestors of all the variables we are trying to
predict.

Blacklists and whitelists provide a simple way to enforce these constraints
on the network structure when learning the GBN. The strongest constraint
is to force every covariate to be the parent of every response variable; that
means to include 5× 9 arcs in the DAG.
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> wl1 <- cbind(from = rep(co, each = 9), to = rep(vr, 5))

> dag2 <- hc(dtr, whitelist = wl1)

> paste(substr(modelstring(dag2), 1, 40), "...", sep = "")

[1] "[A][H][W|H][B|H:W][C|A:H:B][LB|A:H:W:C:B..."

As expected, the covariates are in the first positions in the topological
ordering of the DAG. To relax the constraints on the search, we can switch
from the whitelist wl1 to a blacklist preventing only unwanted arcs. In other
words, variables cannot be the parents of covariates but covariates are not
necessarily the parents of all the variables.

> bl1 <- wl1[, 2:1]

> dag3 <- hc(dtr, blacklist = bl1)

> paste(substr(modelstring(dag3), 1, 40), "...", sep = "")

[1] "[A][H][W|H][B|H:W][C|A:H:B][TF|C][AF|TF:..."

> all.equal(dag2, dag3)

[1] "Different number of directed/undirected arcs"

The resulting DAG is similar for the covariates but different for the re-
sponse variables. In fact, every combination of the two lists is possible, and
any overlap between the whitelist and the blacklist is handled properly by hc.

> iwl <- 1:15

> wl2 <- wl1[iwl, ]

> bl2 <- bl1[-iwl, ]

> dag4 <- hc(dtr, whitelist = wl2, blacklist = bl2)

> paste(substr(modelstring(dag4), 1, 40), "...", sep = "")

[1] "[A][H][W|H][B|H:W][C|A:H:B][TF|A:H:C][TL..."

It is important to note that we are not much interested in the distribution
of the covariates since they will be assumed known for the purposes of predic-
tion. Clearly, interactions between covariates should be allowed to some extent
for the GBN to be correctly specified and to limit the bias in the regression co-
efficients associated with the covariates in the response variables’ conditional
distributions. However, such interactions do not directly affect predictions.
We are just interested in an efficient and simple form of the conditional dis-
tribution

Y1, Y2, . . . , Yp | X1, X2, . . . , Xq.

6.2.3 Looking for Candidate BNs

With these considerations in mind, we can implement a search strategy for
good predictive BNs. We will use the SEP score from Equation (6.8) and
its two components (bias and standard deviation) as measures of the BN’s
performance on the test set dva. As a first step, we estimate the parameters



Real-World Applications of Bayesian Networks 165

of the model from the training set dtr using the dag2 object we created in
the previous section.

> bn2 <- bn.fit(dag2, data = dtr)

Then we obtain the conditional distribution for each individual in the test set
with rbmn, and we use them to compute bias and standard deviation. We
store them in two data frames, bias and stde.

> library(rbmn)

> mn2 <- gema2mn(nbn2gema(bnfit2nbn(bn2)))

> bias <- stde <- dva[, vr]

> for (ind in 1:nrow(dva)) {

+ mni <- condi4joint(mn2, par = vr, pour = co,

+ unlist(dva[ind, co]))

+ bias[ind, vr] <- dva[ind, vr] - mni$mu[vr]

+ stde[ind, vr] <- sqrt(diag(mni$gamma)[vr])

+ }#FOR

> sep <- sqrt(bias^2 + stde^2)

A global score can be obtained summing over all the observations in the vali-
dation data set.

> gscores <- cbind(colMeans(abs(bias)), colMeans(stde),

+ colMeans(sep))

> colnames(gscores) <- c("|Bias|", "Sd.Dev", "SEP")

> round(gscores, 2)

|Bias| Sd.Dev SEP

TF 1.34 1.70 2.32

LF 1.17 1.57 2.06

AF 0.41 0.42 0.63

TL 1.28 1.83 2.37

LL 0.98 1.34 1.77

AL 0.54 0.79 1.00

TB 0.09 0.10 0.14

LB 0.11 0.12 0.17

AB 0.05 0.05 0.07

> superf <- colSums(gscores)

> round(superf, 2)

|Bias| Sd.Dev SEP

5.97 7.92 10.52

These results are encouraging compared to those arising from the saturated
GBN (5.97, 7.51, 10.19) if we consider we are using far fewer parameters (84
instead of 105). But as previously mentioned, it is also important to check
whether dag2 is easy to interpret. For this purpose, we can plot dag2 with a
convenient layout for the nodes corresponding to the 3× 3 variables and the
5 covariates.
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Figure 6.8
Network structure of dag2. Only the arcs we are interested in, those between
two variables, are drawn in black; all the others are shown in grey. Nodes
corresponding to covariates have a grey background.

> library(graph)

> library(igraph)

> load("bc.poco.rda")

> cbind(posi, colo)[c(1:3, 10:11), ]

x y colo

TF "95" "25" "white"

LF "90" "10" "white"

AF "85" "50" "white"

A "70" "65" "lightgrey"

H "30" "65" "lightgrey"

> idag2 <- igraph.from.graphNEL(as.graphNEL(dag2))

> nad <- V(idag2)$label <- V(idag2)$name

> edcol <- rep("lightgrey", nrow(arcs(dag2)))

> aa <- which((arcs(dag2)[, 1] %in% vr) &

+ (arcs(dag2)[, 2] %in% vr))

> va <- as.numeric(E(idag2, P = t(arcs(dag2)[aa, ])))

> edcol[va] <- "black"

> plot(idag2, layout = posi[nad, ], main = "DAG 2",

+ edge.color = edcol, vertex.color = colo[nad])
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Figure 6.9
DAGs found when combining either mmhc (top left and top right) or rsmax2

(bottom left and bottom right) of bnlearn with either the whitelist wl1 (top
left and bottom left) or the blacklist bl1 (top right and bottom right). The
two functions are called with their default options.

The plot produced by the code above is shown in Figure 6.8. No system-
atic structure is apparent, and a sparser DAG with a comparable SEP score
would surely be preferable. Unfortunately, using the blacklist bl1 instead of
the whitelist wl1 does not improve things significantly. On the other hand,
changing structure learning from a score-based to a hybrid algorithm has a
dramatic effect, as can be seen in Figure 6.9.

First of all, there are fewer arcs between the variables. In addition, the two-
way structure of the regions (trunk, legs, arms) × (lean, fat, bone) is clearly
recognisable. The GBN learned with rsmax2 and the whitelist looks quite
promising since only one arc is left between the variables, and it is linking the
less physiologically interesting ones (bone mass is not as varied as fat mass).
Nevertheless all variables depend on all covariates due to the whitelist, which
is not so desirable when aiming at a parsimonious model.
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Figure 6.10
Arcs included in the whitelist and in the blacklist used to look for a minimal
subset of covariates. The whitelist (iwl, in black, on the left) includes arcs that
are interpretable under the current set of assumptions. The blacklist (ibl, in
grey, on the right) includes all arcs between two variables which are not in the
skeleton of the whitelist.

Therefore, we wonder whether we need to use all the covariates to obtain
good predictions. To investigate this further we introduce some restrictions
on the arcs linking the variables, either with a whitelist (to see if more arcs
are necessary) or with a blacklist (to prevent some arc from appearing); and
we still forbid arcs from a variable to a covariate. As the underlying theory,
we assume that conditionally to the covariates:

• The lean and the fat remain correlated (arcs between TL, LL, AL and
TF, LF, AF).

• The lean and the bone remain correlated (arcs between TL, LL, AL and
TB, LB, AB).

• Fat and bone are conditionally independent from the lean (no arcs between
TF, LF, AF and TB, LB, AB).

• The trunk weight influences the leg weight since legs carry the body of which
the trunk is the most important part (arcs between TB, TF, TL and LB, LF, LL).

• Other appendixes are also related to the trunk (arcs between TB, TF, TL and
AB, AF, AL).

• There is no direct arc between LB, LF, LL and AB, AF, AL.

The arcs corresponding to these assumptions and included in the whitelist
iwl or in the blacklist ibl are shown in Figure 6.10. The whitelist forces all
the arcs with a clear interpretation to be present in the DAG, while allowing
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Figure 6.11
Each of the 32 models in Table 6.2 is displayed using the total number of arcs
excluding those linking two covariates and the SEP score. The four models
selected for a small SEP and a small number of arcs are surrounded with a
triangle (in fact three are superimposed).

additional arcs. The blacklist prevents all the arcs that do not have a clear
interpretation from being included in the DAG, regardless of their directions,
and is designed to complement the whitelist.

Table 6.2 summarises the BNs we created previously and those resulting
from a systematic search with 6 subsets of covariates (including the complete
set) and with two algorithms (mmhc and rsmax2, called with their default
arguments), using either the whitelist or the blacklist above. rsmax2 is imple-
mented using Grow-Shrink (gs) in the restrict phase and hill-climbing (hc)
in the maximise phase. The quality of each of these BNs is assessed with the
three scores and the number of arcs either between a covariate and a variable
or between two variables.

The correlation between the bias and the standard deviation over all the
BNs, with the exception of the saturated one, is very high (0.993) and suggests
that both criteria are equivalent to each other and to the global SEP.

To get a synthetic view of the quality of the different models, we plotted
their SEP scores against the total number of arcs in Figure 6.11. Four of them
are denoted with triangles and appear particularly interesting; they are shown
in bold in Table 6.2. Three of them have the same SEP. Perhaps a sensible
choice is to retain the GBN with the smallest number of covariates, i.e., <10>,
displayed in Figure 6.12. The saturated BN provides a good predictive power
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Figure 6.12
DAG of the chosen BN, labelled <10> in Table 6.2. Only three covariates are
included, with three arcs pointing towards the variables.

but it is the worst for interpretation, and it is unsurprising to note that it was
outperformed by three BNs for the SEP criterion.

The interpretation of the chosen BN is straightforward. Height and weight
have a direct influence on the lean mass of the trunk (TL), and in turn that
influences the two other lean segments (LL and AL) which are all adjacent to
each other. The same is true for the other two components: TF, LF and AF; and
TB, LB and AB. Component-regions are directly linked within the component,
the trunk being the pivot. Finally, an important correction is provided by the
waist circumference (C) on the fat of the trunk (TF), which has a knock-on
effect on the two other fat nodes.

The proportion of variance explained for each variable by its parents pro-
vides a local quantitative assessment of the BN’s quality. To compute it we can
use the sum of squares of the corresponding analysis of variance, for instance
on the variable TL:

> av.tl <- anova(lm(TL ~ H + W, data = dva))

> 1 - av.tl["Residuals", "Sum Sq"] / sum(av.tl[, "Sum Sq"])

[1] 0.904

Table 6.3 reports these proportions for all variables. They are quite good,
except for TB (0.59) and LF (0.69). Note however that there is some arbitrari-
ness in the choice of the parents because different equivalent DAGs could have
been used; we rely on an expert’s choice. Furthermore, it is worth underlining
that these proportions do not measure the quality of predictions, they only
assess the strength of the arcs included in the BN. They coincide only when
all parents of the node are covariates, as is the case for TL.
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Algo. Cova. BL WL |Bias| SD SEP c2v v2v

dag2 hc A-H-W-C-B - wl1 6.0 7.9 10.5 45 18
dag3 hc A-H-W-C-B bl1 - 6.1 8.3 10.9 8 16
dag4 hc A-H-W-C-B bl2 wl2 5.9 8.0 10.5 20 19
(1) mmhc A-H-W-C-B - wl1 6.0 7.5 10.2 45 3
(2) mmhc A-H-W-C-B bl1 - 7.0 9.4 12.4 3 7
(3) rsmax2 A-H-W-C-B - wl1 6.0 7.5 10.2 45 1
(4) rsmax2 A-H-W-C-B bl1 - 13.2 15.7 21.7 1 2
<1> mmhc W-H-B-A-C ibl+rbl - 9.2 11.2 15.4 3 4
<2> mmhc W-H-B-A-C rbl iwl 6.8 9.1 12.0 3 15
<3> rsmax2 W-H-B-A-C ibl+rbl - 9.9 11.9 16.4 3 4
<4> rsmax2 W-H-B-A-C rbl iwl 8.1 10.3 14.0 3 14
<5> mmhc W-H-A-C ibl+rbl - 9.2 11.1 15.3 4 4
<6> mmhc W-H-A-C rbl iwl 6.8 9.1 12.0 3 15
<7> rsmax2 W-H-A-C ibl+rbl - 8.7 10.3 14.4 3 3
<8> rsmax2 W-H-A-C rbl iwl 8.1 10.3 14.0 3 14
<9> mmhc W-H-C ibl+rbl - 9.2 11.1 15.3 4 4
<10>* mmhc W-H-C rbl iwl 6.8 9.1 12.0 3 15
<11> rsmax2 W-H-C ibl+rbl - 9.6 11.5 15.9 2 3
<12> rsmax2 W-H-C rbl iwl 8.1 10.3 14.0 3 14
<13> mmhc B-A-C ibl+rbl - 12.5 14.2 20.0 3 5
<14> mmhc B-A-C rbl iwl 12.0 13.6 19.3 1 15
<15> rsmax2 B-A-C ibl+rbl - 10.0 11.9 16.6 2 4
<16> rsmax2 B-A-C rbl iwl 12.0 13.6 19.3 1 14
<17> mmhc B-C ibl+rbl - 12.7 14.4 20.4 2 5
<18> mmhc B-C rbl iwl 12.0 13.6 19.3 1 15
<19> rsmax2 B-C ibl+rbl - 11.7 13.9 19.3 2 4
<20> rsmax2 B-C rbl iwl 12.0 13.6 19.3 1 15
<21> mmhc W-H-A ibl+rbl - 10.2 12.5 17.1 3 4
<22> mmhc W-H-A rbl iwl 8.2 12.4 15.7 2 15
<23> rsmax2 W-H-A ibl+rbl - 10.2 13.4 17.8 3 3
<24> rsmax2 W-H-A rbl iwl 8.1 10.3 13.9 4 14
saturated - A-H-W-C-B - - 6.0 7.5 10.2 45 36

Table 6.2
The 32 BNs we explored, including the learning algorithm (Algo.), the set of
covariates (Cova.), the blacklist if any (BL), the whitelist if any (WL). Their
performance has been assessed with the bias (|Bias|), the standard deviation
(SD), the SEP score, the number of arcs going from a covariate to a response
variable (c2v) and the number of arcs going from a response variable to an-
other response variable (v2v). “rbl” is the list of arcs from a variable to a
covariate. The four selected models are shown in bold and the model chosen
for interpretation is marked with a “*”.
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Parent(s) Variance Explained

TF TL + C 0.88
LF TF + LL 0.69
AF TF + LF + AL 0.85
TL W + H 0.90
LL TL 0.84
AL TL + LL 0.81
TB TL 0.59
LB LL + TB + AB 0.88
AB AL + TB 0.74

Table 6.3
The proportion of variance explained for each of the nine response variables
by the respective parents within the chosen BN.

6.3 Further Reading

There are few books in literature that describe real-world applications of BNs,
as we did in this chapter. For the interested reader, we suggest Pourret et al.
(2008) and Nagarajan et al. (2013); Chapters 5 and 11 in Korb and Nicholson
(2004); and Chapters 6, 7, 8 in Holmes and Jaim (2008). The data analysed
therein span several different fields, including medical diagnosis, genetics, ed-
ucation, forensic, finance and industrial systems.



A

Graph Theory

A.1 Graphs, Nodes and Arcs

A graph G = (V, A) consists of a non-empty set V of nodes or vertices and a
finite (but possibly empty) set A of pairs of vertices called arcs, links or edges.

Each arc a = (u, v) can be defined either as an ordered or an unordered
pair of nodes, which are said to be connected by and incident on the arc and
to be adjacent to each other. Here we will restrict ourselves to graphs having
zero or one connection between any pair of nodes. Since they are adjacent, u
and v are also said to be neighbours. If (u, v) is an ordered pair, u is said to
be the tail of the arc and v the head; then the arc is said to be directed from
u to v, and is usually represented with an arrowhead in v (u → v). It is also
said that the arc leaves or is outgoing for u, and that it enters or is incoming
for v. If (u, v) is unordered, u and v are simply said to be incident on the arc
without any further distinction. In this case, they are commonly referred to
as undirected arcs or edges, denoted with e ∈ E and represented with a simple
line (u− v).

The characterisation of arcs as directed or undirected induces an equivalent
characterisation of the graphs themselves, which are said to be directed graphs
(denoted with G = (V, A)) if all arcs are directed, undirected graphs (denoted
with G = (V, E)) if all arcs are undirected and partially directed or mixed
graphs (denoted with G = (V, A, E)) if they contain both arcs and edges.

An example of each class of graphs is shown in Figure A.1. The first graph
(on the left) is an undirected graph, in which:

• the node set is V = {A, B, C, D, E} and the edge set is E = { (A − B),
(A − C), (A − D), (B − D), (C − E), (D − E) };

• arcs are undirected, so i.e., A − B and B − A are equivalent and identify
the same edge;

• likewise, A is connected to B, B is connected to A, and A and B are adjacent.

The second graph (centre) is a directed graph. Unlike the undirected graph
we just considered:

• the directed graph is characterised by the arc set A = {(A → B), (C → A),
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Figure A.1
An undirected graph (left), a directed graph (centre) and a partially directed
graph (right).

(D → B), (C → D), (C → E)} instead of an edge set E, even though the
node set V is the same as before;

• arcs are directed, so i.e., A → B and B → A identify different arcs; A → B
∈ A while B → A 6∈ A. Furthermore, it is not possible for both arcs to be
present in the graph because there can be at most one arc between each pair
of nodes;

• again, A and B are adjacent, as there is an arc (A → B) from A to B. A → B
is an outgoing arc for A (the tail), an incoming arc for B (the head) and an
incident arc for both A and B.

The third graph (on the right) is a mixed graph, which is characterised by the
combination of an edge set E = {(A − C), (A − D), (C − D)} and an arc set
A = {(D → E), (D → B), (E → B)}.

An undirected graph can always be constructed from a directed or partially
directed one by substituting all the directed arcs with undirected ones; such a
graph is called the skeleton or the underlying undirected graph of the original
graph.

A.2 The Structure of a Graph

The pattern with which the arcs appear in a graph is referred to as either
the structure of the graph or the configuration of the arcs. In the context of
this book it is assumed that the vertices u and v incident on each arc are
distinct (if u = v the arc is called a loop) and that there is at most one arc
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between them (so that (u, v) uniquely identifies an arc). The simplest structure
is the empty graph, that is the graph with no arcs; at the other end of the
spectrum are saturated graphs, in which each node is connected to every other
node. Graphs between these two extremes are said to be sparse if they have
few arcs compared to the number of nodes, and dense otherwise. While the
distinction between these two classes of graphs is rather vague, a graph is
usually considered sparse if O(|E|+ |A|) = O(|V|).

The structure of a graph determines its properties. Some of the most im-
portant deal with paths, sequences of arcs or edges connecting two nodes,
called end-vertices or end-nodes. Paths are directed for directed graphs and
undirected for undirected graphs, and are denoted with the sequence of ver-
tices (v1, v2, . . . , vn) incident on those arcs. The arcs connecting the vertices
v1, v2, . . . , vn are assumed to be unique, so that a path passes through each
arc only once. In directed graphs it is also assumed that all the arcs in a path
follow the same direction, and we say that a path leads from v1 (the tail of
the first arc in the path) to vn (the head of the last arc in the path). In undi-
rected and mixed graphs (and in general when referring to a graph regardless
of which class it belongs to), arcs in a path can point in either direction or
be undirected. Paths in which v1 = vn are called cycles, and are treated with
particular care in BN theory.

The structure of a directed graph defines a partial ordering of the nodes if
the graph is acyclic, that is, if it does not contain any cycle or loop. In that
case the graph is called a directed acyclic graph (DAG). This ordering is called
an acyclic or topological ordering and is induced by the direction of the arcs.
It must satisfy the following property:

{∃ a path from vi to vj} ⇒ {vi ≺ vj} (A.1)

so when a node vi precedes vj there can be no path from vj to vi. According to
this definition the first nodes are the root nodes, which have no incoming arcs,
and the last are the leaf nodes, which have no outgoing arcs. Furthermore, if
there is a path leading from vi to vj , vi precedes vj in the sequence of the
ordered nodes. In this case vi is called an ancestor of vj and vj is called a
descendant of vi. If the path is composed by a single arc by analogy xi is a
parent of vj and vj is a child of vi.

Consider, for instance, node A in the DAG shown in Figure A.2. Its neigh-
bourhood is the union of the parents and children; adjacent nodes necessarily
fall into one of these two categories. Its parents are also ancestors, as they
necessarily precede A in the topological ordering. Likewise, children are also
descendants. Two examples of topological ordering induced by the graph struc-
ture are

({F, G, H}, {C, B}, {A}, {D, E}, {L, K}) (A.2)

and
({F}, {B}, {G}, {C}, {A, H}, {E}, {L}, {D}, {K}) . (A.3)

Indeed, the nodes are only partially ordered; for example, no ordering can be
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Figure A.2
Parents, children, ancestors, descendants and neighbours of node A in a di-
rected graph.

established among root nodes or leaf nodes. In the examples above, the nodes
enclosed in each set of curly brackets can be permuted in any possible way
and still satisfy Equation (A.1) for the DAG in Figure A.2. As a result, in
practice the topological ordering of a DAG is defined over a set of unordered
sets of nodes, denoted with Vi = {vi1

, . . . , vik
}, defining a partition of V.

A.3 Further Reading

For a broader coverage of the properties of directed and mixed graphs, we
refer the reader to the monograph by Bang-Jensen and Gutin (2009), which
at the time of this writing is the most complete reference on the subject. For
undirected graphs, we refer to the classic book of Diestel (2005).



B

Probability Distributions

B.1 General Features

A probability distribution is a function that assigns a probability to each mea-
surable subset of a set of events. It is associated with a random variable, here
denoted as X.

A discrete probability distribution can assume only a finite or countably
infinite number of values U, such as

{A, B, C, D} or {[0, 5], (5, 7], (8, 10]} or n ∈ N, (B.1)

and is characterised by a probability function Pr(·) that satisfies

∑

u∈U

Pr(X = u) = 1 and Pr(X = u) ∈ [0, 1] for all u. (B.2)

A continuous probability distribution must assume an infinite number of values
U, typically R or an interval of real numbers, and is characterised by a density
function f(·) that satisfies

∫

U

f(X = u)du = 1 and f(X = u) > 0 for all u. (B.3)

Pr(u) and f(u) are often used as shorthand notations when it is clear which
variable we are referring to, along with more precise notations such as PrX(u)
and fX(u). In addition, sometimes the distinction between discrete and con-
tinuous distributions is unimportant and we use Pr(·) instead of f(·). Note that
Pr(u) 6 1, but f(u) has no such restriction and can be an arbitrarily large
positive number. Furthermore, note that points have null measure, and thus
zero probability, for all continuous distributions; intervals can have positive
probability. We say that X follows or is distributed as a certain probability
distribution, and we denote it with X ∼ Pr(·) or X ∼ f(·).

Summing Pr(·) over U or some subset of it produces many quantities that
are extremely useful to study distributions when U admits an ordering. For
instance, this is the case for discrete random variables defined over N and
continuous ones. Some examples are:
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• The cumulative distribution function (CDF),

F (u∗) =
∑

u6u∗

Pr(u) or F (u∗) =

∫ u∗

−∞
Pr(u)du, (B.4)

which is the probability of getting value no greater than u∗. The quantile
function is just the inverse of F (·):

Q(p) = u⇐⇒ F (u) = p. (B.5)

F (·) is usually estimated from an observed sample x1, . . . , xn with the em-
pirical cumulative distribution function (ECDF),

F̂ (u∗) =
1

n

n∑

i=1

1l(xi <= u∗), (B.6)

the proportion of the observations that have a value no greater than u∗.

• The mean, expected value or expectation,

E(X) =
∑

u∈U

u Pr(u) or E(X) =

∫

U

u Pr(u)du, (B.7)

usually estimated with the empirical mean x = 1
n

∑n
i=1 xi. Note that for

some distributions E(X) may not be finite.

• The variance,

VAR(X) = E
[
(X − E(X))2

]
= E(X2)− E(X)2 (B.8)

which measures how much the distribution of X is spread around E(X). Its
positive square root is called the standard deviation of X. The variance is
often estimated as 1

n

∑n
i=1(xi − x)2. Again, for some distributions VAR(X)

may not be finite.

Both mean and variance are easy to compute for linear transformations of
X, that is, when adding and multiplying by some constants a, b ∈ R:

E(aX + b) = a E(X) + b and VAR(aX + b) = a2 VAR(X). (B.9)

B.2 Marginal and Conditional Distributions

All the definitions above implicitly assume that X takes values in a one-
dimensional space U such as N or R; in that case X is called a univariate
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random variable. On the other hand, a multivariate random variable X takes
values in a multi-dimensional space such as R

k, k > 2. It is also called a
random vector because it can be characterised by the joint distribution of a
vector of univariate variables,

X = [X1 X2 · · · Xk], (B.10)

one for each dimension of X. Therefore, integrals and summations can be used
as before but have to be defined over all the k dimensions. For example, the
mean of X is a vector of length k,

E(X) = [E(X1) E(X2) · · · E(Xk)], (B.11)

and the variance is replaced by a k × k covariance matrix

COV(X) =




VAR(X1) COV(X1, X2) · · · COV(X1, Xk)
COV(X2, X1) VAR(X2) · · · COV(X2, Xk)

...
...

. . .
...

COV(Xk, X1) COV(Xk, X2) · · · VAR(Xk)


 (B.12)

where COV(Xi, Xj) = E(XiXj) − E(Xi) E(Xj) is the covariance between
Xi and Xj ; note that COV(Xi, Xi) = VAR(Xi) and that COV(Xi, Xj) =
COV(Xj , Xi). The empirical estimate of COV(Xi, Xj) is 1

n

∑n
l=1(xli −

xi)(xlj − xj), where xli is the lth observation for Xi and xlj is the lth obser-
vation for Xj . A related quantity which is easier to interpret is correlation,
defined as

COR(Xi, Xj) =
COV(Xi, Xj)√

VAR(Xi)
√

VAR(Xj)
(B.13)

and estimated using the empirical estimates of variance and covariance.
The univariate linear transformation in Equation (B.9) can be reformu-

lated using a h× 1 vector b and a h× k matrix A:

E(AX + b) = A E(X) + b and COV(AX + b) = A COV(X)AT . (B.14)

The distribution of each Xi in X can be considered without taking into ac-
count its relationship with other variables; in this case it is called the marginal
distribution of Xi. We can derive it from the distribution of X by summing
or integrating over all the possible values Uj, j 6= i of all Xj , j 6= i:

Pr(Xi) =
∑

u1∈U1

· · ·
∑

ui−1∈Ui−1

∑

ui+1∈Ui+1

· · ·
∑

uk∈Uk

Pr(X), (B.15)

Pr(Xi) =

∫

U1

· · ·
∫

Ui−1

∫

Ui+1

· · ·
∫

Uk

Pr(X)dX. (B.16)

Extending these definitions to obtain the marginal distribution of more than
one variable is trivial; summation (or integration) is carried out as above, just
on all the other variables in X.
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Another distribution of interest for Xi is its conditional distribution, that
is, the distribution of Xi when the values of some other variables Xj1

, . . . , Xjm

in X are fixed to specific values. It can be derived as follows:

Pr(Xi = ui | Xj1 = uj1 , . . . , Xjm
= ujm

) =

Pr(Xi = ui, Xj1
= uj1

, . . . , Xjm
= ujm

)

Pr(Xj1
= uj1

, . . . , Xjm
= ujm

)
(B.17)

Again, extending this definition to include more than one variable just requires
adding the corresponding terms in the probability and density functions.

B.3 Discrete Distributions

Discrete distributions in common use for BNs are the binomial and the multi-
nomial distributions and we will focus on them. Nevertheless, as shown in
Chapter 3, any distribution can be used in the general case so we will also
mention others that are important in practical situations.

B.3.1 Binomial Distribution

The binomial distribution models the number of successes in a sequence of n
independent experiments with two possible outcomes; each experiment yields
a positive outcome (often called a success) with identical probability p. It is
usually denoted with Bi(n, p) and has probability function

Pr(X = x) =

(
n

x

)
px(1− p)(n−x), n ∈ N, x ∈ {0, . . . n}, p ∈ [0, 1]. (B.18)

When p = 0 (or p = 1) the distribution is degenerate in the sense that X
can take only the value 0 (or n). Expectation and variance are easily calcu-
lated:

E(X) = np and VAR(X) = np(1− p). (B.19)

So, for n fixed, the variance is maximal when p = 1
2 and tends to zero when

p tends to 0 or 1.
The maximum likelihood estimate of p is simply p̂ = r

n
, the number r of

successes over the number n of experiments. Such an estimate is problematic
when r = 0 or r = n, as discussed in Section 1.4.

B.3.2 Multinomial Distribution

The multinomial distribution is the multivariate extension of the binomial,
which is required when there are three or more possible outcomes instead of
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two. Strictly speaking, the binomial is the multivariate distribution of the fre-
quencies of the two outcomes; but as the frequency of one outcome is uniquely
determined from the other as (n −X), it is redundant to make it explicit in
the notation. Along with the binomial, it’s called a categorical distribution if
the outcomes do not have any explicit ordering.

Given a sequence of n independent trials each having identical probabilities
p = (p1, . . . , pk) for k possible outcomes, the vector of the associated counts
X = (X1, . . . , Xk) is said to follow a multinomial distribution and it is denoted
as Mu(n, p). The probability function is

Pr(X = x) =
n!

x1!x2! · · ·xk!
px1

1 px2
2 · · · pxk

k , n ∈ N,
∑

i

xi = n,
∑

i

pi = 1.

(B.20)

It is important to note that even though each Xi is a random variable fol-
lowing a Bi(n, pi), X1, . . . , Xk are linked by the simple fact to sum to n. As
a consequence, they are negatively correlated (COR(Xi, Xj) < 0) and the
covariance matrix is not full rank since VAR(

∑
i Xi) = 0. Furthermore,

E(X) = np and VAR(X) = n
(
diag(p)− ppT

)
, (B.21)

where diag(p) denotes the diagonal matrix with vector p on its diagonal.

B.3.3 Other Common Distributions

B.3.3.1 Bernoulli Distribution

The Bernoulli distribution, Ber(p) is a particular case of Bi(n, p) when n = 1.

B.3.3.2 Poisson Distribution

The Poisson distribution can be derived from the binomial distribution. Con-
sider a rare animal living in a particular region. If we partition that region
into N land plots, when N is large enough the probability that two or more
animals are present in any plot is negligible. While the number of animals can
be modelled as a Bi(N, p) where the probability p depends on the size of the
plots, it is logical to assume that in fact p = λ

N
.

It occurs that when N →∞,

Bi

(
N,

λ

N

)
→ Pois(λ), (B.22)

where Pois(λ) is a Poisson distribution, and λ is in fact the density of presence
in the region. The probability function of Pois(λ) is

Pr(X = x) =
λxe−λ

x!
, x ∈ N, λ > 0, (B.23)

and both mean and variance are equal to λ:

E(X) = λ and VAR(X) = λ. (B.24)
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B.4 Continuous Distributions

The normal or Gaussian distribution plays a central role among continuous
distributions. Like the binomial distribution, it can be conveniently extended
into a multivariate distribution. Some indications about the estimation of the
parameters of the normal distribution are provided in Section B.2. In addition,
we also consider the beta distribution (and its multivariate version) for its close
relationship with the binomial (multinomial) discrete distribution.

B.4.1 Normal Distribution

A normal or Gaussian distribution has density

Pr(x; µ, σ2) =
1√

2πσ2
exp

{
− 1

2σ2
(x− µ)2

}
, x, µ ∈ R, σ2 > 0. (B.25)

It is denoted with N(µ, σ2). Some simple calculations show that the two pa-
rameters µ and σ2 have a very direct interpretation, since

E(X) = µ and VAR(X) = σ2. (B.26)

When µ = 0 and σ2 = 1, the associated random variable follows a standard
normal distribution, and it is straightforward to check that X−µ

σ
∼ N(0, 1). It

is also worth noting that even if X is defined over the whole R and any value
between −∞ and +∞ has a strictly positive density,

Pr (X 6∈ [µ− 4σ, µ + 4σ]) < 5.10−5. (B.27)

B.4.2 Multivariate Normal Distribution

The multivariate extension of the normal distribution is called multivariate
normal, multinormal or multivariate Gaussian distribution. Its density func-
tion is

Pr(x; µ, Σ) =
1√

2π det(Σ)
exp

{
−1

2
(x− µ)T Σ−1(x− µ)

}
, x, µ ∈ R

k,

(B.28)

where µ is a k×1 mean vector and Σ is a k×k positive-semidefinite covariance
matrix. The distribution is denoted with Nk(µ, Σ).

A multivariate normal random variable has two very convenient properties:

1. An affine transformation of a normal vector is still a normal vector.
More precisely, supposing that b is a vector of size h and A an h×k
matrix:

X ∼ Nk (µ, Σ) =⇒ AX + b ∼ Nh

(
b + Aµ, AΣAT

)
(B.29)
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2. The conditional distribution for a subset A of components of X
given the other components B of a multivariate normal is again a
multivariate normal distribution with

µA|B = µA + ΣABΣ−1
BB(xb − µB)

ΣA|B = ΣAA − ΣABΣ−1
BBΣBA (B.30)

where

µ =

[
µA

µB

]
and Σ =

[
ΣAA ΣAB

ΣBA ΣBB

]
. (B.31)

Note that Equation (B.30) implicitly assumes that ΣBB is full rank;
that is, no redundancy occurs in the conditioning variables which
are linearly independent. Theoretically, this is not an insurmount-
able problem since redundant variables can be removed without
changing the nature of the problem. However, from a practical point
of view it is often a difficult task since the assessment of the rank
of a matrix (even a non-negative one) is a non-trivial numerical
problem.

B.4.3 Other Common Distributions

Two important distributions related to the univariate normal distribution are
Student’s t and the Chi-square (χ2) distribution. Beta and Dirichlet distribu-
tions have been included, because they are conjugate distributions (see Section
B.5) of the binomial and the multinomial.

B.4.3.1 Chi-square Distribution

The χ2 distribution can be viewed as the sum of the squares of ν independent
standard normal random variables. ν is then the only parameter, called its
degrees of freedom; the distribution is denoted with χ2

ν . Accordingly, the sum
of two independent χ2 random variables with ν1 and ν2 degrees of freedom
follows a χ2 distribution with ν1 +ν2 degrees of freedom. The expectation and
variance are :

E(X) = ν and VAR(X) = 2ν. (B.32)

This distribution can be generalised by introducing a non-centrality pa-
rameter induced by non-centred generative normal variables of unit variance.
More precisely, let

X =

ν∑

i=1

U2
i where the Ui are independent N(µi, 1); (B.33)
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then X ∼ ncχ2 (λ) with λ =
∑ν

i=1

(
µ2

i

)
. Equation (B.32) generalises with

E(X) = ν + λ, (B.34)

VAR(X) = 2(ν + 2λ), (B.35)

E
(
[X − E(X)]3

)
= 8(ν + 3λ). (B.36)

It can also be shown that the χ2 distribution is a particular case of the gamma
distribution, allowing the ν parameter to take non-integer but positive values.

B.4.3.2 Student’s t Distribution

The need for the Student’s t distribution arises when standardising a normal
random variable with an estimate of its variance. It can be introduced as the
ratio of a standard normal variable with the square root of an independent χ2

ν

variable. Then, it has only one parameter, the degrees of freedom of the χ2

variable, ν ∈ N
+. Its density function is bell-shaped and symmetric like the

normal’s, and differs mainly in the thickness of the tails. For high values of ν
Student’s t is well approximated by a N(0, 1) distribution, while low values
result in fatter tails and assign more probability to extreme values. When
ν > 2, the expectation and variance are:

E(X) = 0 and VAR(X) =
ν

ν − 2
. (B.37)

As for the χ2 distribution, a second non-centrality parameter can be consid-
ered to generalise the distribution.

B.4.3.3 Beta Distribution

The beta distribution, denoted with Beta(a, b), is a common choice for a ran-
dom variable restricted to the [0, 1] interval. Its density function is

Pr(x; a, b) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1− x)b−1, a, b > 0, x ∈ [0, 1], (B.38)

which simplifies to a binomial if a, b ∈ N because Γ(n) = (n−1)! for n ∈ N. In
that case, a plays the role of x, b plays the role of n−x and x plays the role of
p in Equation (B.18). This is why it is the conjugate distribution (see Section
B.5) in the beta-binomial model in Bayesian statistics. The expectation and
variance are:

E(X) =
a

a + b
and VAR(X) =

ab

(a + b)2(a + b + 1)
. (B.39)

This distribution is quite flexible when varying the parameters. It can
easily be transposed to any finite non point interval [a, b] by an affine trans-
formation of the form

a + (b− a)X where a, b ∈ R. (B.40)
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B.4.3.4 Dirichlet Distribution

The Dirichlet distribution is a multivariate generalisation of the beta distri-
bution in the same way as the multinomial is a generalisation of the binomial.
For instance, a Dirichlet with two components is just a beta distribution, the
two components summing to one. The distribution is often denoted by Dir(a),
a = (a1, a2, . . . , ak), and its density function is

Pr(X = x) =
Γ(
∑

i ai)

Γ(a1)Γ(a2) · · ·Γ(ak)
xa1

1 xa2
2 · · ·xak

k ,

∑

i

xi = 1, xi ∈ [0, 1], a1, . . . , ak > 0. (B.41)

As was the case for the beta with the binomial, the similarity with the multi-
nomial distribution is apparent: xi plays the role of the pi and ai plays the
role of the xi in Equation (B.20). Denoting with A the sum of the parameters∑

i ai, the expectation and variance are:

E(X) =
1

A
a and VAR(X) =

1

A(1 + A)

(
diag(a− 1

A
aa

T

)
. (B.42)

From a Bayesian point of view, the Dirichlet is the conjugate distribution (see
Section B.5) for the parameter p of a multinomial distribution.

B.5 Conjugate Distributions

Several times in the above, we have mentioned that two distributions are
conjugate. Here we will try to convey the fundamental idea of conjugacy in a
few words. The concept originates in the framework of Bayesian statistics.

Consider two random variables A and B whose joint probability is defined
by the marginal and conditional distributions,

Pr(A, B) = Pr(A) Pr(B | A). (B.43)

When the conditional distribution Pr(A | B) belongs to the same family as
Pr(A), then we say that Pr(A) is the conjugate of Pr(B | A). A simple example
is the beta-binomial pair:

• let p ∼ Beta(a, b),

• and let (r | p) ∼ Bi(n, p),

• then (p | r) ∼ Beta(a + r, b + n− r).

The main advantage of conjugacy is to simplify to the extreme the computa-
tion of conditional distributions.
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B.6 Further Reading

Literature contains many books on probability theory with varying levels of
complexity. An introductory book focusing on commonly used distributions
and their fundamental properties is Ross (2012). More advanced books, which
cover probability theory from a more theoretical perspective, are DeGroot and
Scherivsh (2012); Ash (2000); Feller (1968). A thorough derivation of the basis
of probability theory as an off-shoot of measure theory is provided in Loève
(1977). Furthermore, an encyclopedia about probability distributions is the
series of Johnson’s and Kotz’s books (Kotz et al., 2000; Johnson et al., 1994,
1995, 1997, 2005).



C

A Note about Bayesian Networks

The relationship between Bayesian networks and Bayesian statistics is often
unclear because of how similar their names are and the common qualifier of
Bayesian. Even though they are connected in many ways, it is important to
underline the differences between the two.

C.1 Bayesian Networks and Bayesian Statistics

The basic difference originates in the term statistics. A statistical procedure
consists in summarising the information comprised in a data set, or more gen-
erally in performing some inference within the framework of some probabilistic
model. A Bayesian network is just a complex, principled way of proposing a
probabilistic model on a set of variables, without necessarily involving data.

The confusion originates by the following points:

• It is very convenient to present the Bayesian statistics as a BN of this kind:
(Parameters) 7→ (Data). The marginal distribution of the multivariate
node (Parameters) is the prior; the conditional distribution of the mul-
tivariate node (Data) is the likelihood; then the posterior distribution is
just the conditional distribution of the multivariate node (Parameters) for
the observed (Data). In essence, a Bayesian statistical procedure can be
described as a BN.

• When querying a BN as in Section 4.6.1, by fixing some nodes of the BN
and updating the local probability distributions in this new context, we are
in fact applying a Bayesian statistical approach, if we accept to assimilate
the fixed node(s) to observation(s).

• The probabilistic model used in a statistical approach (whether Bayesian or
not) can be defined through a BN. That is apparent when using JAGS in
Chapter 3 and Section 5.2.

• A BN is not always known in advance and many learning algorithms have
been proposed to estimate them from data. This has been detailed in various
parts of the book (Sections 1.5, 2.5 and 4.5).
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But it is important to be clear in the fact that the probabilistic model
used in a statistical approach can be defined without the help of BNs; and
also that the learning of a BN from a data set can be in a Bayesian context
or not.
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Here we have collected some of the technical terms used within the book.
For those terms referring to graph theory, Appendix A provides a short but
comprehensive introduction to the field.

acyclic graph: An acyclic graph is a graph without any cycle.

adjacent nodes: Two nodes are said to be adjacent when they are linked by
an arc or an edge.

ancestor: An ancestor of a node is a node that precedes it within a directed
path and therefore in the topological ordering of the graph.

arc: An arc is a directed link between two nodes, usually assumed to be
distinct. Nodes linked by an arc have a direct parent-child relationship: the
node on the tail of the arc is the parent node, the node on the head of the
arc is the child node. A node can have no, one or several parents; a node
can have no, one or several children. Sometimes the expression “undirected
arcs” is used to refer to edges, i.e., undirected links.

Bayes, Thomas: Bayes was an English Presbyterian minister (1701-1761).
He wrote some notes about deducing causes from effects, published after
his death by a friend of his under the title “An Essay towards solving a
Problem in the Doctrine of Chances”. They contain the original formulation
of the conditional probability theorem, which is known as Bayes’ theorem.
This important result was independently published in a better mathematical
form by Pierre Simon Laplace.

Bayesian networks (BNs): A Bayesian network defines a joint probability
distribution over a set of variables and the corresponding local univariate
distributions. The DAG associated to the BN determines whether each of
them is marginal or conditional on other variables. Each node is associated to
one variable in the BN. Root nodes are given marginal distributions; other
nodes have distributions conditional only on the values of the respective
parents. A formal link between the conditional independencies in the BN and
a DAG is given in Definition 4.1. The term Bayesian network comes from
the recursive use of Bayes’ theorem to decompose the joint distribution into
the individual distributions of the nodes and other distributions of interest,
following the dependence structure given by the DAG.

child node: See the definition for arc.
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clique: In an undirected graph, a clique is a subset of nodes such that every
two nodes in the subset are adjacent. A clique is said to be maximal when
including another node in the clique means it is no longer a clique.

conditional distribution: The conditional probability distribution of a ran-
dom variable A with respect to another random variable B is its probability
distribution when B is known or restricted, particularly to a given value b.
Generally, this distribution depends on b and it is denoted by Pr(A | B = b).
When A and B are independent, Pr(A | B = b) = Pr(A) for any b, that is,
the conditional distribution is identical to the marginal distribution and it
does not depend on b.

configuration: The configuration of the arcs or edges of a graph is synony-
mous with the structure of a graph.

connected: Two nodes are said to be connected when there exists a path
linking them; when the path is of length one (e.g., a single arc or edge) they
are adjacent.

connected graph: A connected graph is an undirected graph in which every
pair of nodes is connected by a path; or a directed graph whose skeleton is
connected (i.e., disregarding the direction of the arcs and substituting them
with edges).

convergent connection: A convergent connection is one of the three fun-
damental connections between three nodes (see Figure 1.3 on page 22). Two
nodes are parents of the third: A→ B ← C.

CPDAG: Acronym for Completed Partially Directed Acyclic Graph. The
CPDAG of a (partially) directed acyclic graph is the partially directed graph
built on the same set of nodes, keeping the same v-structures and the same
skeleton, completed with the compelled arcs. Two DAGs having the same
CPDAG are equivalent in the sense that they result in BNs describing the
same probability distribution.

cycle: A cycle is a path having identical end-nodes, that is, starting from
and ending on the same node. Note that it is possible to have cycles in both
directed and undirected graphs.

DAGs: Acronym for Directed Acyclic Graph. It is a directed graph with no
cycles. Sometimes, there is some confusion between BNs and DAGs; a DAG
expresses only the conditional independence structure of a BN. Nevertheless,
the DAG representation is very useful to discuss the construction or the
interpretation of a BN.

d-separation: Two subsets of variables, say A and B, are said to be
d-separated in a BN with respect to a third, say C, when they are graphically
separated according to the conditions in Definition 4.2. Following Definition
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4.3, this also means that any variable in A is independent from any variable
in B conditional on the variables in C.

descendant: A descendant of a node is a second node following it in a di-
rected path.

directed edge: Synonymous with arc.

directed graph: A directed graph is a graph where all links are arcs (i.e.,
have a direction).

divergent connection: A divergent connection is one of the three funda-
mental connections between three nodes (see Figure 1.3 on page 22). A
parent with two children: A← B → C.

edge: An edge is an undirected link between two nodes. Sometimes the ex-
pression “directed edge” is used to refer to arcs.

empty graph: An empty graph is a graph with no edges or arcs at all, the
node set is commonly assumed to be non-empty.

end-node: An end-node is either the first or the last node of a given path.

graph: A graph consists in a non-empty set of nodes where each pair of nodes
is linked by zero or one link. Links can be arcs or edges; and then the graph is
said to be directed (only arcs), undirected (only edges) or partially directed
(both arcs and edges).

independence: In a probabilistic framework two random variables are said
to be independent if and only if the conditional probability distribution of
each of them with respect to the other is identical to the marginal distri-
bution. It is a symmetric property. At an intuitive level, this means that
knowing the value of one variable does not modify our knowledge about the
distribution of the other.

joint distribution: The joint probability distribution of a set of random
variables provides the probability of any combination of events over them.
If the variables are independent the joint distribution simplifies into the
product of the marginal distributions.

leaf node: A leaf node is a node in a DAG without any child.

link: An arc or an edge connecting two nodes.

marginal distribution: The marginal probability distribution of a random
variable is its probability distribution, defined without taking into account
other random variables that may be related. The knowledge of the marginal
distributions of two variables is not sufficient to deduce their joint distri-
bution without further assumptions, such as that they are independent. On
the contrary, it is always possible to deduce marginal distributions from the
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joint distribution. Marginal distributions can also be derived for subsets of
random variables.

mixed graphs: Synonymous with partially directed graphs.

neighbour-nodes: The neighbours of a node are all the nodes that are ad-
jacent to it.

nodes: The nodes, together with the arcs, are the fundamental components
of DAGs; and in the context of BNs they also refer to the random variables
in the model.

parent node: See the definition for arc.

partially directed: See the definition of graph.

path: A path is a set of successive links. It is usually described by an ordered
sequence of linked nodes. When the path comprises some arcs, all of them
must follow the same direction; then it is a directed path.

probability distribution: The probability distribution of a random vari-
able is a function defining the probability of each possible event described
by the random variable. A probability is a real number in [0, 1]. A probabil-
ity of zero means that the event is impossible; a probability of one means
that the event is certain. Even though probability distributions have differ-
ent mathematical forms for discrete and continuous variables, they interact
in similar ways. When the random variable involves several components, the
joint distribution refers to events describing all the components; a marginal
distribution refers to events describing a subset (usually of size one) of com-
ponents; a conditional distribution refers to events describing a subset of
components when a second, disjoint subset is fixed to some conditioning
event.

random variable: A random variable is a variable whose value follows a
probability distribution. Random variables can take very different forms,
such as discrete and continuous, or univariate and multivariate.

root node: A root node is a node in a DAG without any parent.

saturated graphs: A graph in which all nodes are adjacent to each others.

serial connection: A serial connection is one of the three fundamental con-
nections between three nodes (see Figure 1.3 on page 22). Grandparent,
parent, child: A→ B → C.

skeleton: The skeleton of a (partially) directed graph is its underlying undi-
rected graph, i.e., the undirected graph obtained by disregarding all arc
directions.
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structure: The structure of a BN is the set of its conditional independencies;
they are represented by its DAG.

topological order: An ordering on the nodes of a DAG is said to be topo-
logical when it is consistent with every directed path of the DAG. Often
a topological order is not unique, and a DAG may admit more than one
ordering.

tree: A tree is an undirected graph in which every pair of nodes is connected
with exactly one path, or a directed path in which all nodes have exactly
one parent except a single root node.

undirected graph: A graph comprising only undirected links.

v-structure: A v-structure is a convergent connection in which the two par-
ents are not linked. Note that several v-structures can be centred on the
same node (i.e., have the same child node).

vertex/vertices: Synonymous for node(s).
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Exercises of Chapter 1

1.1 Consider the DAG for the survey studied in this chapter and
shown in Figure 1.1.

1. List the parents and the children of each node.

2. List all the fundamental connections present in the DAG,
and classify them as either serial, divergent or convergent.

3. Add an arc from Age to Occupation, and another arc from
Travel to Education. Is the resulting graph still a valid BN?
If not, why?

1. Parents and children of each node are as follows.

•Age (A) has no parent, and Education (E) is its only child.

•Sex (S) has no parent, and Education (E) is its only child.

•Education (E) has two parents, Age (A) and Sex (S), and two
children, Occupation (O) and Residence (R).

•Occupation (O) has one parent, Education (E), and one child,
Travel (T).

•Residence (R) has one parent, Education (E), and one child,
Travel (T).

•Travel (T) has two parents, Occupation (O) and Residence (R),
and no child.

2. The fundamental connections in the DAG are as follows.

•A→ E← S (convergent).

•A→ E→ O (serial).

•A→ E→ R (serial).

•S→ E→ O (serial).

•S→ E→ R (serial).

•O← E→ R (divergent).
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•E→ O→ T (serial).

•E→ R→ T (serial).

•O→ T← R (convergent).

3. Adding A → O does not introduce any cycles; the graph is still a
DAG and a valid BN. On the other hand, adding T→ E introduces
the following cycles: T → E → R → T and T → E → O → T.
Therefore, the resulting graph is not acyclic and cannot be part of
a valid BN.

1.2 Consider the probability distribution from the survey in Section
1.3.

1. Compute the number of configurations of the parents of
each node.

2. Compute the number of parameters of the local distribu-
tions.

3. Compute the number of parameters of the global distribu-
tion.

4. Add an arc from Education to Travel. Recompute the fac-
torisation into local distributions shown in Equation (1.1).
How does the number of parameters of each local distri-
bution change?

1. The number of parents’ configurations is 2 × 3 for E, 2 for R, 2 for
O and 4 for T. A and S have no parent.

2. The numbers of free parameters is 2 for A, 1 for S, 6× 1 for E, 2× 1
for O, 2× 1 for R and 4× 2 for T. Indeed, 1 must be removed from
the number of probabilities since their sum is known to be one.

3. The number of free parameters of the global distribution is the sum
of the numbers of free parameters of the conditional probability
tables, that is, 21 parameters.

4. After adding E→ T, Equation (1.1) reads

Pr(A, S, E, O, R, T) =

Pr(A) Pr(S) Pr(E | A, S) Pr(O | E) Pr(R | E) Pr(T | E, O, R).

The number of free parameters of the local distribution of T in-
creases to 2 × 8 due to the additional parents’ configurations; all
the other local distributions are unchanged.

1.3 Consider again the DAG for the survey.

1. Create an object of class bn for the DAG.
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2. Use the functions in bnlearn and the R object created in
the previous point to extract the nodes and the arcs of the
DAG. Also extract the parents and the children of each
node.

3. Print the model formula from bn.

4. Fit the parameters of the network from the data stored
in survey.txt using their Bayesian estimators and save the
result into an object of class bn.fit.

5. Remove the arc from Education to Occupation.

6. Fit the parameters of the modified network. Which local
distributions change, and how?

1. The easiest way is to use Equation (1.1) and model2network as
follows.

> dag <- model2network("[A][S][E|A:S][O|E][R|E][T|O:R]")

2. > nodes(dag)

[1] "A" "E" "O" "R" "S" "T"

> arcs(dag)

from to

[1,] "A" "E"

[2,] "S" "E"

[3,] "E" "O"

[4,] "E" "R"

[5,] "O" "T"

[6,] "R" "T"

> par <- sapply(nodes(dag), parents, x = dag)

> chld <- sapply(nodes(dag), children, x = dag)

3. > modelstring(dag)

[1] "[A][S][E|A:S][O|E][R|E][T|O:R]"

4. > survey <- read.table("../chap1/survey.txt",

+ header = TRUE)

> fitted <- bn.fit(dag, survey, method = "bayes")

5. > dag2 <- drop.arc(dag, from = "E", to = "O")
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6. The conditional probability table of O now has only two cells and
one dimension, because O has no parent in dag2.

> fitted2 <- bn.fit(dag2, survey, method = "bayes")

> dim(coef(fitted$O))

[1] 2 2

> dim(coef(fitted2$O))

[1] 2

1.4 Re-create the bn.mle object used in Section 1.4.

1. Compare the distribution of Occupation conditional on
Age with the corresponding marginal distribution using
querygrain.

2. How many random observations are needed for cpquery to
produce estimates of the parameters of these two distribu-
tions with a precision of ±0.01?

3. Use the functions in bnlearn to extract the DAG from
bn.mle.

4. Which nodes d-separate Age and Occupation?

1. Conditioning does not have a big effect on the distribution of O.

> library(gRain)

> junction <- compile(as.grain(bn.mle))

> querygrain(junction, nodes = "O")$O

O

emp self

0.966 0.034

> jage <- setEvidence(junction, "A", states = "young")

> querygrain(jage, nodes = "O")$O

O

emp self

0.9644 0.0356

> jage <- setEvidence(junction, "A", states = "adult")

> querygrain(jage, nodes = "O")$O

O

emp self

0.9636 0.0364

> jage <- setEvidence(junction, "A", states = "old")

> querygrain(jage, nodes = "O")$O
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O

emp self

0.9739 0.0261

2. 103 simulations are enough for likelihood weighting, 104 for logic
sampling.

> set.seed(123)

> cpquery(bn.mle, event = (O == "emp"),

+ evidence = list(A = "young"), method = "lw",

+ n = 10^3)

[1] 0.96

> cpquery(bn.mle, event = (O == "emp"),

+ evidence = (A == "young"), method = "ls",

+ n = 10^4)

[1] 0.969

3. > dag <- bn.net(bn.mle)

4. > sapply(nodes(dag), function(z) dsep(dag, "A", "O", z))

A E O R S T

TRUE TRUE TRUE FALSE FALSE FALSE

1.5 Implement an R function for BN inference via rejection sampling
using the description provided in Section 1.4 as a reference.

> rejection.sampling <- function(bn, nsim, event.node,

+ event.value, evidence.node, evidence.value) {

+

+ sims <- rbn(bn, nsim)

+ m1 <- sims[sims[, evidence.node] == evidence.value, ]

+ m2 <- m1[m1[, event.node] == event.value, ]

+ return(nrow(m2)/nrow(m1))

+

+ }#REJECTION.SAMPLING

> rejection.sampling(bn.mle, nsim = 10^4, event.node = "O",

+ event.value = "emp", evidence.node = "A",

+ evidence.value = "young")

[1] 0.966

1.6 Using the dag and bn objects from Sections 1.2 and 1.3:

1. Plot the DAG using graphviz.plot.
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2. Plot the DAG again, highlighting the nodes and the arcs
that are part of one or more v-structures.

3. Plot the DAG one more time, highlighting the path leading
from Age to Occupation.

4. Plot the conditional probability table of Education.

5. Compare graphically the distributions of Education for
male and female interviewees.

1. > graphviz.plot(dag)

2. > vs <- vstructs(dag, arcs = TRUE)

> hl <- list(nodes = unique(as.character(vs)), arcs = vs)

> graphviz.plot(dag, highlight = hl)

3. > hl <- matrix(c("A", "E", "E", "O"), nc = 2,

+ byrow = TRUE)

> graphviz.plot(dag, highlight = list(arcs = hl))

4. > bn.fit.barchart(bn$E)

5. > library(gRain)

> junction <- compile(as.grain(bn))

> jmale <- setEvidence(junction, "S", states = "M")

> jfemale <- setEvidence(junction, "S", states = "F")

> library(lattice)

> library(gridExtra)

> p1 <- barchart(querygrain(jmale, nodes = "E")$E,

+ main = "Male", xlim = c(0, 1))

> p2 <- barchart(querygrain(jfemale, nodes = "E")$E,

+ main = "Female", xlim = c(0, 1))

> grid.arrange(p1, p2, ncol = 2)

Exercises of Chapter 2

2.1 Prove that Equation (2.2) implies Equation (2.3).
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Using Bayes’ theorem twice, we obtain that

f (G = g | C = c) =
f (G = g, C = c)

f (C = c)

=
f (C = c | G = g)

f (C = c)
f (G = g) .

If f (G = g | C = c) = f (G = g) it would imply that f (C = c | G = g) = f (C = c)
which contradicts the first step in the proof.

2.2 Within the context of the DAG shown in Figure 2.1, prove that
Equation (2.5) is true using Equation (2.6).

From Equation (2.6), we can obtain f (V, W, N) integrating out the other
variables:

f (V, W, N) =

∫

G

∫

E

∫

C

f (G, E, V, N, W, C)

= f (V) f (N | V) f (W | V)×(∫

G

∫

E

f (G) f (E) f (V | G, E)

)(∫

C

f (C | N, W)

)

= f (V) f (N | V) f (W | V)

and from f (V, W, N) we can obtain the joint distribution of W and N conditional
to V

f (W, N | V) =
f (V, W, N)

f (V)

= f (N | V) f (W | V)

characteristic of the conditional independence.

2.3 Compute the marginal variance of the two nodes with two
parents from the local distributions proposed in Table 2.1. Why is
it much more complicated for C than for V?

V and C are the two nodes for which we have to compute the variance. For
the sake of clarity, we will first replace the numeric values of the coefficient
with arbitrary constants k0, k1, k2 and k3. From the first three equations of
Table 2.1, V can be written as

V = k0 + k1G + k2E + k3ǫV

where G, E and ǫV are independent random variables with variances 102, 102

and 52, respectively, so we can easily find that

VAR (V) = k2
1 VAR (G) + k2

2 VAR (E) + k2
3 VAR (ǫV )

=

(
1

2

)2

102 +

(√
1

2

)2

102 + 52

= 10.
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For C, things are a little more complicated because

C = k1N + k2W + k3ǫC

and the variables N and W are not independent, as they share V as a common
ancestor. Therefore we have to first compute COV (N, V):

COV (N, V) = COV (h1V, h2V)

= h1h2 VAR (V)

= 0.1× 0.7× 102

and finally

VAR(C) = k2
1 VAR (N) + k2

2 VAR (W) + k2
3 VAR (ǫC) + 2k1k2 COV (N, W)

=
(
0.32 + 0.72 + 0.3× 0.7× 0.14

)
102 + 6.252

= (10.00012)
2

.

2.4 Write an R script using only the rnorm and cbind functions to
create a 100 × 6 matrix of 100 observations simulated from the BN
defined in Table 2.1. Compare the result with those produced by a
call to cpdist function.

First, it is sensible to initialise the pseudo-random generator and parame-
terise the desired number of simulations.

> set.seed(12345)

> ns <- 100

Then the following seven commands answer the first question.

> sG <- rnorm(ns, 50, 10)

> sE <- rnorm(ns, 50, 10)

> sV <- rnorm(ns, -10.35534 + 0.5 * sG + 0.70711 * sE, 5)

> sN <- rnorm(ns, 45 + 0.1 * sV, 9.949874)

> sW <- rnorm(ns, 15 + 0.7 * sV, 7.141428)

> sC <- rnorm(ns, 0.3 * sN + 0.7 * sW, 6.25)

> simu1 <- cbind(sG, sE, sV, sN, sW, sC)

To perform the equivalent simulation with cpdist, we first have to define
the BN:

> library(bnlearn)

> dag.bnlearn <- model2network("[G][E][V|G:E][N|V][W|V][C|N:W]")

> disE <- list(coef = c("(Intercept)" = 50), sd = 10)

> disG <- list(coef = c("(Intercept)" = 50), sd = 10)

> disV <- list(coef = c("(Intercept)" = -10.35534,

+ E = 0.70711, G = 0.5), sd = 5)

> disN <- list(coef = c("(Intercept)" = 45, V = 0.1),
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+ sd = 9.949874)

> disW <- list(coef = c("(Intercept)" = 15, V = 0.7),

+ sd = 7.141428)

> disC <- list(coef = c("(Intercept)" = 0, N = 0.3, W = 0.7),

+ sd = 6.25)

> dis.list <- list(E = disE, G = disG, V = disV, N = disN,

+ W = disW, C = disC)

> gbn.bnlearn <- custom.fit(dag.bnlearn, dist = dis.list)

> simu2 <- cpdist(gbn.bnlearn, nodes = nodes(gbn.bnlearn),

+ evidence = TRUE)

The comparison can be made in different ways; here we will just extract
the medians for all nodes.

> su1 <- summary(simu1)

> su2 <- summary(simu2)

> cbind(simu1 = su1[3, ], simu2 = su2[3, ])

simu1 simu2

sG "Median :54.8 " "Median :49.3 "

sE "Median :50.3 " "Median :49.4 "

sV "Median :49.9 " "Median :49.9 "

sN "Median :53.6 " "Median :49.2 "

sW "Median :49.3 " "Median :49.0 "

sC "Median :50.7 " "Median :49.1 "

Indeed even if all results are around the expected value of 50, there are
differences; but they are comparable within each column and between different
columns. They are the consequence of the small size of the simulation, making
the same calculation with ns = 104 gives a more precise result, even if still
approximate.

2.5 Imagine two ways other than changing the size of the points
(as in Section 2.7.2) to introduce a third variable in the plot.

This is not an easy question. Many approaches have been proposed and the
user has to choose that best suited to the data. Here, denoting with (A, B, C)
the three variables we want to explore, we illustrate three possible choices.

• The simplest choice is perhaps to make three scatter plots of two variables
each, dividing the plot into four quarters.

1. Making plot(A, B) into the top right quarter,

2. making plot(A, C) into the bottom right quarter (A on the same
scale as in the previous plot),

3. making plot(B, C) into the bottom left quarter (C on the same
scale as in the previous plot).

The top left quarter is left empty.
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• Another choice is to associate a different symbol or shape to each point
depending on the values of the three variables. A possible example is the
figure shown in Hartigan (1975, page 39), in which each point is associated
to a rectangular box having the values of the three variables (assumed to
be positive) as dimensions. Some points will be represented with tall boxes,
others with flat boxes; the depth is also important.

• Finally, we can create a true 3D plot and rotate it interactively to assess
the distance between the points. Suitable functions are available in R, for
instance in the rgl package.

2.6 Can GBNs be extended to log-normal distributions? If so how,
if not, why?

Of course this is possible and very easy! Just take the logarithm of the
initial variables and apply a GBN to the transformed variables. There is no
need to do that for all variables; we can transform only some of them. Note
that it is necessary that all possible values of the variables to transform are
positive. From a practical point of view, a constant can be added to satisfy
this constraint, giving access to a third parameter for

A→ log (A + k) ∼ N
(
µ, σ2

)
. (C.1)

In general any univariate or multivariate transformation can be applied to
a set of variables before attempting a model based on a GBN.

2.7 How can we generalise GBNs as defined in Section 2.3 in order
to make each node’s variance depend on the node’s parents?

Indeed a strong restriction of GBNs is that the conditional variance of a
node with respect to its parents must be a constant. There is no difficulty
in proposing a generalisation. For instance, if A is the unique parent of B, we
could assume that

VAR(B | A) = (A− E(A))2 × σ2
B .

This is not usually done because most of BN’s methodological developments
are very general and do not discuss specific, limited cases of ad-hoc node
parameterisations such as most instances of hybrid BNs.

2.8 From the first three lines of Table 2.1, prove that the joint
distribution of E, G and V is trivariate normal.

To prove it, we will use the following result: the logarithm of the density
of a multivariate normal distribution is, up to an additive constant:

f(x) ∝ −1

2
(x− µ)

T
Σ−2 (x− µ)

where x stands for the value of the random vector, µ is its expectation and Σ
its covariance matrix.
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To simplify the notation, we will first transform the three variables to give
them a zero marginal expectation and a unity marginal variance.

G̃ =
G− E(G)√

VAR(G)
=

G− 50

10

Ẽ =
E− E(E)√

VAR(E)
=

E− 50

10

Ṽ =
V− E(V)√

VAR(V)
=

V− 50

10

The resulting normalised variables are

G̃ ∼ N (0, 1) ,

Ẽ ∼ N (0, 1) ,

Ṽ | G̃, Ẽ ∼ N

(
1

2
G̃ +

√
1

2
Ẽ,

(
1

2

)2
)

.

We are now able to compute the joint density of the three transformed vari-
ables

f
(
G̃ = g, Ẽ = e, Ṽ = v

)
∝ f

(
G̃ = g

)
+ f
(
Ẽ = e

)
+ f
(
Ṽ = v | G̃ = g, Ẽ = e

)

= −g2

2
− e2

2
− 2

(
v − 1

2
g −

√
1

2
e

)2

= −




g
e
v




T



1
√

2
2 −1√

2
2

3
2 −

√
2

−1 −
√

2 2







g
e
v




= −1

2




g
e
v




T



1 0 1
2

0 1
√

1
2

1
2

√
1
2 1




−1 


g
e
v


 .

Now

VAR






G̃

Ẽ

Ṽ




 =




1 0 1
2

0 1
√

1
2

1
2

√
1
2 1




which completes the proof.
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Exercises of Chapter 3

3.1 Explain why it is logical to get a three-step function for the
discretised approach in Figure 3.2.

For those observations for which the diameter is less than 6.16, the value
of the discretised transform of D is always the lower interval, and the proba-
bility of predicting a particular supplier is constant on this interval. The same
argument applies to the second and third intervals. The result is the step func-
tion shown in Figure 3.2. The level of the steps fits well with the continuous
function with respect to the interval limits. More intervals would produce a
better fit but the resulting variable would be more difficult to interpret.

3.2 Starting from the BUGS model in Section 3.1.1, write another
BUGS model for the discretised model proposed in Section 3.1.2.
The functions required for this task are described in the JAGS
manual.

Here is such a model:

model {

csup ~ dcat(sp);

ddiam ~ dcat(dsk[, csup]);

}

Compared to the continuous version illustrated in Chapter 3, we just replaced
the normal distribution with a categorical distribution. The probability vector
associated to each supplier is in a column of matrix dsk. By the way, this shows
that matrices can be used when defining BUGS models, and arrays as well.

3.3 Let d = 6.0, 6.1, 6.2, 6.4.

1. Using the BUGS model proposed in Section 3.1.1, write
the R script to estimate P (S = s2 | D = d) for the continuous
approach demonstrated in the same section.

2. Using the BUGS model obtained in Exercise 3.2, write
the R script to estimate P (S = s2 | D = d) for the discretised
approach suggested in Section 3.1.2.

And check the results with Figure 3.2.

1. We just have to use the proposed R commands of Section 3.1.1
wrapping them in a loop for the four values of d.

> library(rjags)

> sp <- c(0.5, 0.5)

> mu <- c(6.1, 6.25)

> sigma <- 0.05
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> set.seed(98765)

> diameters <- c(6.0, 6.1, 6.2, 6.4)

> probas <- rep(NA, length(diameters))

> names(probas) <- diameters

> for (ii in seq(length(diameters))) {

+ jags.data <- list(sp = sp, mu = mu, sigma = sigma,

+ cdiam = diameters[ii])

+ model1 <- jags.model(file = "../chap3/inclu.sc.jam",

+ data = jags.data, quiet = TRUE)

+ update(model1, n.iter = 10000)

+ simu <- coda.samples(model = model1,

+ variable.names = "csup", n.iter = 20000,

+ thin = 20)[[1]]

+ probas[ii] <- sum(simu == 1)/length(simu)

+ }#FOR

> probas

6 6.1 6.2 6.4

1.000 0.989 0.176 0.000

2. Almost the same script can be used for the discretised case, but we
can simplify the calculation since the values of d are only in the first
and third intervals.

> library(rjags)

> sp <- c(0.5, 0.5)

> dsk <- matrix(c(0.88493, 0.07914, 0.03593,

+ 0.03593, 0.07914, 0.88493), 3)

> set.seed(98765)

> diameters <- c(6.0, 6.1, 6.2, 6.4)

> ddiam <- c(1, 3)

> probas <- rep(NA, length(diameters))

> names(probas) <- diameters

> for (ii in seq(length(ddiam))) {

+ jags.data <- list(sp = sp, dsk = dsk,

+ ddiam = ddiam[ii])

+ model2 <- jags.model(file = "exo3.2.jam",

+ data = jags.data, quiet = TRUE)

+ update(model2, n.iter = 10000)

+ simu <- coda.samples(model = model2,

+ variable.names = "csup", n.iter = 20000,

+ thin = 20)[[1]]

+ probas[(1:2) + 2 * (ii - 1)] <-

+ sum(simu == 1)/length(simu)

+ }#FOR

> probas
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6 6.1 6.2 6.4

0.956 0.956 0.033 0.033

Indeed the estimated probabilities are the same as in Figure 3.2.

3.4 In Section 3.1.1, the probability that the supplier is s1 knowing
that the diameter is 6.2 was estimated to be 0.1824 which is not
identical to the value obtained with JAGS.

1. Explain why the calculation with the R function dnorm is
right and why the value 0.1824 is correct. Can you explain
why the JAGS result is not exact? Propose a way to im-
prove it.

2. Would this value be different if we modify the marginal
distribution for the two suppliers?

1. dnorm is based on closed form formulas while JAGS calculations
are produced by simulations, and are always approximations; just
changing the seed of the pseudo-random generator changes the re-
sult. Simulations obtained with JAGS can give arbitrarily precise
results by increasing the number of iterations. . . but the required
number of iterations can be very large.

2. The result will be different since the marginal distributions are
part of the calculation of the conditional probability resulting from
Bayes’ formula. This is underlined in the caption of Figure 3.1.

3.5 Revisiting the discretisation in Section 3.1.2, compute the con-
ditional probability tables for D | S and S | D when the interval bound-
aries are set to (6.10, 6.18) instead of (6.16, 6.19).

Compared to the results presented in Section 3.1.2, what is your
conclusion?

To get D | S, you just have to use the following R code.

> limits <- c(6.10, 6.18)

> dsd <- matrix(c(diff(c(0, pnorm(limits, mu[1], sigma), 1)),

+ diff(c(0, pnorm(limits, mu[2], sigma), 1))),

+ 3, 2)

> dimnames(dsd) <- list(D = c("thin", "average", "thick"),

+ S = c("s1", "s2"))

> dsd

S

D s1 s2

thin 0.5000 0.00135

average 0.4452 0.07941

thick 0.0548 0.91924
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To get S | D, we can apply Bayes’ theorem.

> jointd <- dsd/2

> mardd <- rowSums(jointd)

> dds <- t(jointd / mardd)

> dds

D

S thin average thick

s1 0.99731 0.849 0.0563

s2 0.00269 0.151 0.9437

It seems that the average category of diameters is not very useful because
it behaves the same as the lower category, giving a high probability to supplier
s1. This could be illustrated with a plot similar to Figure 3.1.

Exercises of Chapter 4

4.1 Consider the survey data set from Chapter 1.

1. Learn a BN with the IAMB algorithm and the asymptotic
mutual information test.

2. Learn a second BN with IAMB but using only the first
100 observations of the data set. Is there a significant loss
of information in the resulting BN compared to the BN
learned from the whole data set?

3. Repeat the structure learning in the previous point with
IAMB and the Monte Carlo and sequential Monte Carlo
mutual information tests. How do the resulting networks
compare with the BN learned with the asymptotic test? Is
the increased execution time justified?

1. > survey <- read.table("../chap1/survey.txt",

+ header = TRUE)

> dag <- iamb(survey, test = "mi")

2. > dag100 <- iamb(survey[1:100, ], test = "mi")

> nrow(directed.arcs(dag))

[1] 0

> nrow(undirected.arcs(dag))

[1] 8
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> nrow(directed.arcs(dag100))

[1] 0

> nrow(undirected.arcs(dag100))

[1] 2

While both DAGs are very different from that in Figure 1.1, dag100

has only a single arc; not enough information is present in the first
100 observations to learn the correct structure. In both cases all arcs
are undirected. After assigning directions with cextend, we can see
that dag100 has a much lower score than dag, which confirms that
dag100 is not as good a fit for the data as dag.

> score(cextend(dag), survey, type = "bic")

[1] -1999.259

> score(cextend(dag100), survey, type = "bic")

[1] -2008.116

3. The BIC score computed from the first 100 observations does not
increase when using Monte Carlo tests, and the DAGs we learn
still have just a single arc. There is no apparent benefit over the
corresponding asymptotic test.

> dag100.mc <- iamb(survey[1:100, ], test = "mc-mi")

> narcs(dag100.mc)

[1] 1

> dag100.smc <- iamb(survey[1:100, ], test = "smc-mi")

> narcs(dag100.smc)

[1] 1

> score(cextend(dag100.mc), survey, type = "bic")

[1] -2008.116

> score(cextend(dag100.smc), survey, type = "bic")

[1] -2008.116

4.2 Consider again the survey data set from Chapter 1.

1. Learn a BN using Bayesian posteriors for both structure
and parameter learning, in both cases with iss = 5.

2. Repeat structure learning with hc and 3 random restarts
and with tabu. How do the BNs differ? Is there any evi-
dence of numerical or convergence problems?
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3. Use increasingly large subsets of the survey data to check
empirically that BIC and BDe are asymptotically equiva-
lent.

1. > dag <- hc(survey, score = "bde", iss = 5)

> bn <- bn.fit(dag, survey, method = "bayes", iss = 5)

2. > dag.hc3 <- hc(survey, score = "bde", iss = 5,

+ restart = 3)

> dag.tabu <- tabu(survey, score = "bde", iss = 5)

> modelstring(dag.hc3)

[1] "[R][E|R][T|R][A|E][O|E][S|E]"

> modelstring(dag.tabu)

[1] "[O][S][E|O:S][A|E][R|E][T|R]"

The two DAGs are quite different; from the model strings above, hc

seems to learn a structure that is closer to that in Figure 1.1. The
BIC scores of dag.hc3 and dag.tabu support the conclusion that
hc with random restarts is a better fit for the data.

> score(dag.hc3, survey)

[1] -1998.432

> score(dag.tabu, survey)

[1] -1999.733

Using the debug option to explore the learning process we can con-
firm that no numerical problem is apparent, because all the DAGs
learned from the random restarts fit the data reasonably well.

4.3 Consider the marks data set from Section 4.7.

1. Create a bn object describing the graph in the bottom right
panel of Figure 4.5 and call it mdag.

2. Construct the skeleton, the CPDAG and the moral graph
of mdag.

3. Discretise the marks data using "interval" discretisation
with 2, 3 and 4 intervals.

4. Perform structure learning with hc on each of the discre-
tised data sets; how do the resulting DAGs differ?
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1. > mdag <-

+ model2network(paste("[ANL][MECH][LAT|ANL:MECH]",

+ "[VECT|LAT][ALG|LAT][STAT|LAT]", sep = ""))

2. > mdag.sk <- skeleton(mdag)

> mdag.cpdag <- cpdag(mdag)

> mdag.moral <- moral(mdag)

3. > data(marks)

> dmarks2 <- discretize(marks, "interval", breaks = 2)

> dmarks3 <- discretize(marks, "interval", breaks = 3)

> dmarks4 <- discretize(marks, "interval", breaks = 4)

4. > dag2 <- hc(dmarks2)

> dag3 <- hc(dmarks3)

> dag4 <- hc(dmarks4)

> modelstring(dag2)

[1] "[MECH][VECT|MECH][ALG|VECT][ANL|ALG][STAT|ALG]"

> modelstring(dag3)

[1] "[MECH][ALG|MECH][ANL|ALG][STAT|ALG][VECT|ANL]"

> modelstring(dag4)

[1] "[MECH][VECT][ALG][ANL|ALG][STAT|ANL]"

From the output above, we can deduce that using 4 intervals for
discretising the data breaks all the dependencies between the vari-
ables; dag4 has only two arcs. Using 2 or 3 intervals results in DAGs
with 4 arcs, which is closer to the 6 arcs of the true structure. How-
ever, the DAGs are still quite different from the latter, suggesting
that a noticeable amount of information is lost in the discretisation.

Exercises of Chapter 5

5.1 One essential task in any analysis is to import and export the
R objects describing models from different packages. This is all the
more true in the case of BN modelling, as no package implements
all of structure learning, parameter learning and inference.

1. Create the dag.bnlearn object from Section 5.1.1.
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2. Export it to deal.

3. Import the result back into bnlearn.

4. Export dag.bnlearn to catnet and import it back in bnlearn.

5. Perform parameter learning using the discretised dmarks

and dag.bnlearn and export it to a DSC file, which can be
read in Hugin and GeNIe.

1. > library(bnlearn)

> dag.bnlearn <- model2network(

+ paste("[ANL][MECH][LAT|ANL:MECH]",

+ "[VECT|LAT][ALG|LAT][STAT|LAT]", sep = ""))

2. > library(deal)

> data(marks)

> latent <- factor(c(rep("A", 44), "B",

+ rep("A", 7), rep("B", 36)))

> marks$LAT <- latent

> ord <- bnlearn::node.ordering(dag.bnlearn)

> bn <- deal::network(marks[, ord])

> bn <- deal::as.network(

+ bnlearn::modelstring(dag.bnlearn), bn)

> all.equal(deal::modelstring(bn),

+ bnlearn::modelstring(dag.bnlearn))

[1] TRUE

3. > dag2 <- bnlearn::model2network(deal::modelstring(bn))

4. > library(catnet)

> nodes <- bnlearn::nodes(dag.bnlearn)

> edges <- sapply(bnlearn::nodes(dag.bnlearn),

+ bnlearn::children, x = dag.bnlearn)

> dag.catnet <- cnCatnetFromEdges(nodes, edges)

> dag2 <- empty.graph(nodes)

> arcs(dag2) <- cnMatEdges(dag.catnet)

> all.equal(dag.bnlearn, dag2)

[1] TRUE

5. > dmarks <- discretize(marks[, 1:6], breaks = 2,

+ method = "interval")

> dmarks$LAT <- marks$LAT

> bn <- bn.fit(dag.bnlearn, dmarks)

> write.dsc(bn, file = "dmarks.dsc")
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5.2 Learn a GBN from the marks data (without the LAT variable)
using pcalg and a custom test that defines dependence as significant
if the corresponding partial correlation is greater than 0.50.

> library(pcalg)

> customCItest = function(x, y, S, suffStat) {

+ pcor <- cov2cor(solve(suffStat$C[c(x, y, S), c(x, y, S)]))

+ pcor[1, 2]

+ }#CUSTOMCITEST

> suffStat <- list(C = cor(marks), n = nrow(marks))

> pc.fit <- pc(suffStat, indepTest = customCItest,

+ p = ncol(marks), alpha = 0.50)

5.3 Reproduce the example of structure learning from Section 5.1.1
using deal, but set the imaginary sample size to 20. How does the
resulting network change?

> library(deal)

> latent <- factor(c(rep("A", 44), "B",

+ rep("A", 7), rep("B", 36)))

> marks$LAT <- latent

> net <- network(marks)

> prior <- jointprior(net, N = 20)

Imaginary sample size: 20

> net <- learn(net, marks, prior)$nw

> best <- autosearch(net, marks, prior)$nw

> best

## 6 ( 1 discrete+ 5 ) nodes;score= -1750.773;relscore= 0.0178

1 MECH continuous() 2 3

2 VECT continuous() 3 4 6

3 ALG continuous() 4 6

4 ANL continuous() 6

5 STAT continuous() 1 3 4 6

6 LAT discrete(2)

The network learned with imaginary sample size 20 has 12 arcs, compared to
the 9 arcs of the network learned in Section 5.1.1. This is a known effect of
choosing a uniform prior and giving it a weight on the same order of magnitude
of the observed sample size: the resulting graphs are not sparse, and typically
have many more arcs than nodes.
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