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Chapter 1

Fundamentals

Let None But Geometers Enter Here
-inscribed about the entrance to Plato’s Academy.

A student who is using these lecture notes is not likely to be a geometer (person who studies geometry) but is
also unlikely to pass through the arch with the quotation on it. The original Academy was Plato’s school of
philosophy. It was founded approximately 25 centuries ago, in 385 BC at Akademia, a sanctuary of Athena, the
goddess of wisdom and skill. Plato’s motives for making this inscription are not recorded but he clearly felt that
an educated person needed to know mathematics.

When am I going to use this crap?

-a typical exclamation from a student who is not putting in the hours needed

to pass his one required math class.

The answer to the question above may well be “never”. That doesn’t mean the person who asked the question
wouldn’t benefit from basic mathematics. They could have benefitted from math, and its sister quantitative
reasoning, but have chosen not to. There are only a few gainful activities where math is not present. The
innumerate (this is the mathematical analog to illiterate) typically don’t notice that their disability is harmful.
They do get cheated, lied to successfully, and ripped off more often than other people. They also don’t get
promoted as often or paid as much. Mathematical skill also acts as a leveler between the sexes.

Although women earn significantly lower wages than men do across all levels of ed-
ucation and occupational categories, the gender wage gap is not significant among
professional men and women with above-average mathematics skills. One way of re-
ducing the gender wage gap would be to encourage girls to invest more in high school
mathematics courses in order to improve their quantitative skills.

-Aparna Mitra, Mathematics skill and male-female wages in The Journal of Socio-Economics

Volume m 31, Issue 5, 2002, Pages 443-456

Here endeth the sermon. This course is designed for a mix of students and skill levels. It assumes that many of
the people in the course could be better prepared and may have an aversion to mathematics.
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6 CHAPTER 1. FUNDAMENTALS

RULES FOR SURVIVAL

1. Show up to class every single day.

2. Keep up with the material: do the readings, get the
quizzes in on time.

3. Study with other people. Check one another’s work, help
one another.

4. Stick to the truth and there is good hope of mercy.

1.1 Basic Algebra

The origin of the word algebra is the Arabic word “al-jabr” which means (roughly) “reunion”. It is the science
of reworking statements about equality so that they are more useful. We start with a modest example.

Example 1.1 In this example we solve a simple one-variable equation.

3x+ 7 = 16 This is the original statement.

3x+ 7− 7 = 16− 7 Subtract seven from each side of the equation.

3x = 9 Resolve the arithmetic.

3x
3 = 9

3 Divide both sides of the equation by three.

x = 3 Resolve the arithmetic.

Since the final statement contains a simpler and more direct statement about the value of x we judge it more
useful. While the above example is almost insultingly simple in both its content and level of detail it introduces
two important points.

• Algebra can take an equation all over the place. It is your job to steer the process to somewhere useful.

• Any algebraic manipulation consists of an application of one of a small number of rules to change an
equation. Even if you know your exact or approximate destination (e.g.: solve for x) there is strategy that
can be used to find a short (easier) path to that destination.

In example 1.1, subtracting 7 from both sides reduced the number of terms in the equation. Dividing by three
finished isolating x. In both cases the steps clearly led toward the goal “solve for x”.

1.1.1 Some Available Algebra Steps

The following are legal moves when applied to an equation. Some of them involve equations like log and inverse
log (exponentials) that we will get to later in the chapter.
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1. You may add (subtract) the same quantity to (from) both sides of the equation.

2. You may multiply both sides of the equation by the same quantity.

3. You may divide both sides of the equation by the same quantity but only when the quantity is not
zero. Some of you may wonder how a quantity can sometimes be zero - this only happens if it contains a
variable, like x.

4. You may square both sides of the equation.

5. You may take the square root of both sides of the equation but only when the sides of the equation
are at least zero.

6. You may take the log or ln of both sides of the equation but only when the sides of the equation are
positive.

7. You may take the inverse log of both sides of the equation.

8. You may cancel a factor from the top and bottom of a fraction. A factor is a part of an expression that is
multiplied by the rest of the expression. In 2x+ 2y = 2(x+ y) 2 is a factor but, for example, 2x is not.

9. You may multiply a new factor into the top and bottom of a fraction.

There are other steps, and we will get to them later. The rules use the term “quantity” a lot. A quantity can be
a number; it was 3 and 7 in Example 1.1, but it also can be an expression involving variables. The next example
demonstrates this possibility. Both (x− 2) and (y − 1) appear as “quantities” in Example 1.2.

Example 1.2 If y = x+1
x−2 solve the expression for x.
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y = x+1
x−2 This is the original statement

y(x− 2) = (x− 2)x+1
x−2 The fraction is annoying, get rid of it by multiplying both sides by

(x− 2)

y(x− 2) = ����(x− 2)x+1

��x−2
Cancel matching terms on the top and bottom of the fraction.

y(x− 2) = x+ 1 Resolve the arithmetic.

yx− 2y = x+ 1 Distribute the y over (x− 2).

xy − 2y = x+ 1 Use the commutative law to put x and y in the usual order.

-at this point we want all variables x on one side and everything else on the other-

xy − 2y + 2y = x+ 1 + 2y Add 2y to both sides.

xy = x+ 1 + 2y Resolve the arithmetic.

xy − x = x− x+ 1 + 2y Subtract x from both sides.

xy − x = 1 + 2y Resolve the arithmetic.

x(y − 1) = 1 + 2y Factor x out from the terms on the left hand side.

x(y−1)
y−1 = 1+2y

y−1 Cancel matching terms on the top and bottom of the fraction.

x���(y−1)

��y−1
= 1+2y

y−1 divide both sides by (y − 1).

x = 1+2y
y−1 Resolve the arithmetic; we have x and are done.

Example 1.2 is done one tiny step at a time. One of the things we will learn is more efficient steps that let us do
algebra in fewer steps. The small step size in early examples is intended to provide clarity for those who haven’t
had a math course in a while. A potential bad side effect of this stepwise clarity is that it can completely obscure
the strategy for actually solving the problem. It is possible to understand all the steps but miss the point of
the problem. Keep this unfortunate duality in mind during the early steps and try to see both the strategy and
tactics for solving the problem. We will make an effort to show you how to run algebra faster in later parts of
this chapter.

Our next example will show us how to solve for x when there is a square root in the way. As with the fraction
that we eliminated first in Example 1.2, the square root will be the most annoying part of the problem and so
should be eliminated first, if possible.
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Example 1.3 If
√
x+ 1 = 2 solve the expression for x.

√
x+ 1 = 2 This is the original statement.

√
x+ 1×

√
x+ 1 = 2× 2 Square both sides of the equation to get rid of the square root.

x+ 1 = 4 Resolve the arithmetic. Remember that
√
Bob×

√
Bob = Bob and

don’t actually multiply anything out here.

x+ 1− 1 = 4− 1 Subtract one from both sides of the equation.

x = 3 Resolve the arithmetic, and we are done.

1.1.2 Order of Operations

The statement 3× x+ 4× y2 means you should execute the following steps in the following order.

1. Square y,

2. multiply x by three,

3. multiply the result of squaring y by 4,

4. add the results of steps 2 and 3, to obtain the final answer.

The troubling part of this is that the operations are not hitting in the normal left-to-right reading order. This
is because of operator precedence. An operator is something that can change a number or combine two
numbers. Example 1.3 in the above computation are squaring, multiplying, and adding. Operator precedence is
the convention that some operators are more important and hence are done first. If there were no such rules we
could give the order in which we want things done with parenthesis (things inside parentheses are always done
first) by saying:

((3× x) + (4×
(
y2
)
))

but that looks ugly and uses a lot more ink. Here are some of the operator precedence rules.

1. Anything enclosed in parentheses is done first (has the highest precedence).

2. Minus signs that mean something is negative come next; these are different from minus signs that mean
subtraction. E.g. -2 means “negative 2” not “something is getting 2 subtracted from it”.

3. Exponents come next. Remember that
√
x = x

1
2 so roots have the same precedence as exponents.

4. Multiplication and division come next with one exception for division, explained below.

5. Addition and subtraction come next.

6. Things with the same precedence are executed left to right. Usually this doesn’t matter because of facts
like 1+(2+3)=6=(1+2)+3 which make the order irrelevant.

The exception for division concerns the long division bar. The expression

x+ 1
2x− 1

means (x+ 1)/(2x− 1). The top and bottom of a division bar have implicit (invisible) parenthesis.
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1.1.3 Fast Examples

Following up on the remark that detailed steps can obscure overall solution methods, we are now going to repeat
earlier examples, using faster steps with terser descriptions.

Example 1.4 Problem: solve 3x+ 7 = 16 for x.
Solution:

3x+ 7 = 16 This is the original statement.

3x = 9 Subtract 7 from both sides.

x = 3 Divide both sides by 3. Done.

Example 1.5 Problem: solve y = x+1
x−2 for x.

Solution:

y = x+1
x−2 This is the original statement.

yx− 2y = x+ 1 Clear the fraction and distribute y.

yx− x = 2y + 1 Get all terms with an x one one side, everything else on the other.

x(y − 1) = 2y + 1 Factor the left hand side to get x by itself.

x = 2y+1
y−1 Divide both sides by y − 1. Done.

Example 1.6 Problem: solve
√
x+ 1 = 2 for x.

Solution:
√
x+ 1 = 2 This is the original statement.

x+ 1 = 4 Square both sides.

x = 3 Subtract 1 from both sides. Done.

1.1.4 Sliding for multiplication and division.

If we have the equation
A

C
=
B

D

Then multiplying or dividing by any of the expressions A, B, C, or D can be thought of as sliding them along
diagonals through the equals sign. Applying this sliding rule one or more times permits us to solve for each of
the four expressions:

A = BC
D B = AD

C C = AD
B and D = BC

A
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Notice that we reversed the direction of the equality to always place the single variable on the left. This is
standard practice. The following diagram shows how terms in an equality may slide.

Now let’s look at a more complicated equation.

A×B
C +D

=
x+ y

Q×R

If we multiply both sides by R we get
A×B ×R
C +D

=
x+ y

Q

If, instead, we divide both sides by (x+ y) we would obtain

A×B
(x+ y)× (C +D)

=
1

Q×R

If we think of the terms be multiplied or divided by as sliding along diagonals of the short shown in the diagram,
then we can rapidly rearrange an equation of this sort. Warning: Notice that this technique only works if the
expressions are parts of multiplied groups items. We can slide (x+ y) as a single object but we cannot slide x or
y individually; this is because “divide both sides by x (or y)” wold not correctly cancel the term (x+ y) under
the older, slower rules.

Example 1.7 Problem: Using the technique of sliding, solve A×B
C+D = x+y

Q×R for A, B, Q, and R.

Solutions:

A =
(x+ y)(C +D)
Q×R×B

B =
(x+ y)(C +D)
Q×R×A

The next two are harder because the target variable is on bottom but if you keep sliding terms along diagonals
you get:

Q =
(C +D)(x+ y)
A×B ×R

R =
(C +D)(x+ y)
A×B ×Q

The next example shows how to solve for a term that is not just multiplied by the others.

Example 1.8 Problem: Using the technique of sliding, solve A×B
C+D = x+y

Q×R for x.

Solution:
Start by sliding to obtain

(x+ y) =
A×B ×Q×R

C +D
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Now subtract y from both sides and get

x =
A×B ×Q×R

C +D
− y (1.1)

For some purposes this may not be in simplest form because the right hand side is not a single, large fraction.
We will deal with this in the section on fractions.

1.1.5 Arithmetic of Fractions

Normally multiplication seems more difficult than addition but, when dealing with fractions, this usual state
of affairs is reversed. In this section we review the arithmetic of fractions. The first notion is that of putting
fractions in reduced form. The following statement is true:

1
3

=
2
6

=
3
9

=
4
12

=
−2
−6

=
−5
−15

and shows that the fraction we call “one third” can be written a lot of different ways. When answering a problem
we always put a fraction into the form so that the top and bottom have no common factors. Thus the reduced
form of 4

12 is 1
3 .

This rule also applies when variables are involved. So, for example, the reduced form of x
3x is 1

3 . A variable is
only eliminated if it can be factored out of every term in the top and bottom.

Example 1.9 Fractions and their reduced forms:

Fraction Reduced form Comment

4
36

1
9 Common factor is 4.

132
15

44
5 or 8 4

5 Common factor is 3.

91
63

13
9 or 1 4

9 Common factor is 7.

−6
−54

1
9 Common factor is -6.

4
−10 − 2

5 Common factor is -2;
minus signs should end
up on top or out front,
not on the bottom.

x
3xy

1
3y Common factor is x.

xy+y2

2x+2y
y
2 Common factor is x+ y;

note: xy+y2

2x+2y = y(x+y)
2(x+y)

Basic Arithmetic for Fractions

A fraction n
d is made by dividing two expressions the numerator n and the denominator d. Multiplying fractions

is easy, you just multiply the numerators and denominators:
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1
2
× 3

5
=

1× 3
2× 5

=
3
10

or if the expressions making up the fraction are variables

a

b
× c

d
=
a× c
b× d

=
ac

bd

Note that in the latter example we are shortening a × c to ac and b × d to bd. This is a standard, alternate
method of denoting multiplication. It takes less space and we will use this alternate notation frequently from
now on.

You may add two fractions only if they have the same denominator. This means that if two fractions do
not already have a common denominator, you need to modify them so they have one. If fractions already have
the same denominator you simply add the numerators. For example, adding seven halves and four halves yields
seven plus four halves or eleven halves:

7
2

+
4
2

=
7 + 4

2
=

11
2

Example 1.10 Problem: Compute 1
4 + 5

7 .

Solution: The smallest number that is a multiple of both 4 and 7 is 28. Recall that we may multiply the top and
bottom of a fraction by the same number without changing its value.

1
4

+
5
7

=
1
4
× 7

7
+

5
7
× 4

4

=
7
28

+
20
28

=
27
28

To correct each fraction to the common denominator we simply multiply by the missing factor divided by itself.
The ability to factor numbers is an important part of figuring out what the common denominator is.

The common denominator is also needed when the expressions in the fractions have variables in them.

Example 1.11 Problem: Compute x
y + y

x+y .

Solution: The simplest expression that is a multiple of both x and (x + y) is x(x + y). Recall that we may
multiply the top and bottom of a fraction by an expression without changing its value.

x

y
+

y

x+ y
=

x

y
× x+ y

x+ y
+

y

x+ y
× y

y

=
x(x+ y)
y(x+ y)

+
y × y

y(x+ y)

=
x2 + xy

xy + y2
+

y2

xy + y2

=
x2 + xy + y2

xy + y2
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Reciprocals of fractions, dividing fractions.

The reciprocal of a number n is the number one divide by n so, for example, the reciprocal of 2 is 1
2 . In order

to take the reciprocal of a fraction you interchange the numerator and denominator (flip the fraction over). So:

1
2/3

=
3
2

Since dividing by something is equivalent to multiplying by its reciprocal, this gives us an easy rule for dividing
to fractions: flip the one you’re dividing by over and multiply instead.

1/3
1/5

=
1
3
× 5

1
=

5
3

These rules apply to expressions involving variables as well. This means that

1
x+y
x−y

=
x− y
x+ y

for example. If two fractions are divided then one multiplies by the reciprocal of the fraction forming the
denominator. This is called the invert and multiply rule for dividing fractions. Symbolically:

a/b

c/d
=
a

b
× d

c
=
ad

bc

We will use the phrase invert and multiply for this method of resolving the division of fractions from this point
on in the notes. The following example shows a division of fractions consisting of expressions involving variables.
In it the step “Resolve the binomial multiplications with the distributive law” appears. This step actually uses
the distributive law twice:

(a+ b)(c+ d) = a(c+ d) + b(c+ d) = ac+ ad+ bc+ bd

Example 1.12 Problem: Simplify the expression
x+1
y+1
13

x−y

.

Solution:
x+1
y+1
13

x−y

This is the original problem.

x+1
y+1 ×

x−y
13 Invert and multiply.

(x+1)(x−y)
(y+1)×13 Multiply the numerators and denominators.

x2−xy+x−y
13y+13 Resolve the binomial multiplications with the distributive law.

Done.

Exercises

Exercise 1.1 Solve each of the following expressions for the stated symbol.

a) 3x+ 2 = 11 for x.

b) 3y − 2x = y + 7x+ 2 for y.
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c) xy + 1 = 2x+ 2 for x.

d)
√

2x+ 1 = 3 for x.

e) (y + 1)3 = 27 for y (Hint: take a third root).

f) (x+ y + 1)2 = 16 for x (Remember the ± on the square-root).

g) y = x+2
x−3 for x.

h) 3ab− 3cd = 0 for a.

i) y−1
x+1 = 2 for x.

j) y−1
x+1 = 2 for y.

Exercise 1.2 What is the value, rounded to three decimals, of the expression
√
x2 + 1 + 3x
x2 + 3x+ 4

when x =0, 1, and 2? Give three answers.

Exercise 1.3 What is the value, rounded to three decimals, of the expression

3

√
x+ 2
x− 2

when x =0, 1, and -1?

Exercise 1.4 What is the value, rounded to three decimals, of the expression

x3 + 3x2 + 3x+ 1
x2 + 2x+ 1

when x =3, 4, and 5?

Exercise 1.5 What is the value, rounded to three decimals, of the expression(√
x− 1 + 2

) (√
x− 1− 2

)
1− x

when x =2, 3, and 4?

Exercise 1.6 For the expression (3x+ 2y3)2 state in English phrases the operations in the order they occur. An
example of this sort of exercise appears at the beginning of section 1.1.2

Exercise 1.7 For the expression 3
√
x2 + 1 + 7 state in English phrases the operations in the order they occur.

An example of this appears at the beginning of section 1.1.2

Exercise 1.8 Using the technique of sliding, and any other algebra required, solve each of the following for every
variable (letter) in the expression.

a) xy
rs = 6. b) (a+b)c

uv = 1. c) 1
a = cd

s . d) x+y
a = u+v

t . e) abc
d = x

y . f) (a+b)(c+d)
2 = uv.

Exercise 1.9 Reduce the following fractions to simplest form. Also report the common factor. So, for example,
the answer for 8/12 would be “2/3, the common factor is 4”.
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a) 255
40 . b) −255

51 . c) 255
27 . d) 120

84 . e) 125
625 . f) x2

3xy . g) 9y2

3xy . h) x2−4x+4
x2−3x+2 . i) abc

abd+abe . j) 255x2+17x
34x .

Exercise 1.10 Compute the following expressions on fractions, placing the results in simplest form.

a) 1/2 + 1/3. b) 1/2− 1/3. c) 3/4 + 5/7. d) 255/34− 255/51. e) 91/14− 1/2. f) 1
x −

1
y .

g) 2x+ 1
x . h) x

y −
2
x . i) 1

x+h −
1
x . j) 1

2 + 1
3 + xy.

Exercise 1.11 Compute the following expressions on fractions, simplifying and placing the results in simplest
form. Be sure to reduce the result to a single fraction.

a) 1
3 ×

5
8 −

1
2 . b) 1

4 ÷
2
x . c) x

3 ÷ 2y − 2
3x. d) 1

n −
1

n+1 . e) 1
n × 1n+ 2 + 2

n+1 . f) 1
2x÷

3
y + 1.

g)
1
2+ 1

3
1
2−

1
3

. h)
1
x−

1
y

xy . i) (x+y)(x−y)
1
x +2

. j) (x+h)2−x2

h .

Exercise 1.12 Suppose that an expression is the ratio of one more than the square of x and two minus the
square of y. Write the expression in algebraic notation.

Exercise 1.13 If the expression in problem 1.12 is equal to one, solve it for both x and y.

Exercise 1.14 Write an algebraic expression for the following quantity. The third power of the sum of twice x
and three times y.

Exercise 1.15 Write an algebraic expression for the following quantity. Two more than the square root of one
more than the ratio of a to b.

Exercise 1.16 Suppose that the cost of manufacturing n units of a widget includes a $1200 setup charge, uses
$18.42 of parts for each widget, uses $0.88 of labor to assemble each widget, and has a charge of $0.07 per widget
for the amount the factory wears out making the widget. Write an expression for the marginal cost of making
widgets that depends on the number of widgets made.

Exercise 1.17 Suppose we add up the numbers 1
n for n = 2, 3, . . . , 7. What is the common denominator of the

result?

Exercise 1.18 Suppose that in a partnership general partners divide one-third of the profits, tier one partners
divide one-half the profits, and tier two partners divide the remainder of the profits. If there are four general
partners, twenty tier one partners, and one hundred and sixty tier two partners then what fraction of the profits
does each sort of partner get?

Exercise 1.19 Suppose that we are dividing a pie in the following odd fashion. Each person, in order, gets
one-quarter of the remaining pie until the amount of pie left is one-quarter of the pie or less. This last piece of
pie is given to the last person. What fraction of the pie is the smallest piece of pie handed out?

Exercise 1.20 Suppose that two people are supposed to divide a small cake so that each person feels they have
gotten al least their fair share. The cake has decorations on it that are different in different places so the two
people may have different opinions about how good a given piece is. Give a method for dividing the cake and
demonstrate logically that each person will feel they have gotten at least their share.

1.2 Lines and Quadratic Equations

In this section we review formulas that use the first power of the variable (lines) and those that use the second
(quadratics).
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1.2.1 Equations of Lines

Lines are equations in which there are two variables both of which are raised to the first power. Here are some
examples of lines:

y = 3x+ 1

2x+ 4y = 7

2(x− 1) + 3(y − 5) = −1

Notice that these lines are all in different forms. The first one considered to be simplified, the other two forms
may be useful for some other reason. There are two forms we will often use for lines: slope intercept and
point slope. The slope-intercept form of a line is

y = mx+ b

where m is the slope of the line and b is the intercept or y-intercept of the line. The slope is the steepness of
the line going from left to right. A line with slope m increases in the y direction by m units whenever x increases
by one unit. The intercept is the value of the line when x = 0 or, alternatively, the value on the y-axis where the
line hits the axis. The x-intercept is the value of x when y = 0 - the value of x when the line hits the x axis.
Figure 1.1 shows an example.

Figure 1.1: The graph of the line y = 3x+ 1 showing the slope and intercept.

The point-slope form of a line is most often used to construct a line with a slope m going through a point (a, b).
It has the form:

(y − b) = m(x− a)
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If we plug the points x = a, y = b into this formula we get

(b− b) = m(a− a)

0 = m · 0

0 = 0

which is a true statement, so the point (a, b) is on the line. It is possible to convert a line in point-slope form
into one in slope-intercept form:

(y − b) = m(x− a)
y − b = mx−ma

y = mx−ma+ b

This demonstrates that the line does have slope m and that the intercept is equal to (−ma+ b).

Figure 1.2: The line (y − 3) = 2(x− 2) (also y = 2x− 1) with the point (2,3) displayed.

Example 1.13 Using the point slope form
Problem: Construct a line of slope 2 that contains the point (2, 3). Place the line in slope-intercept form.

Start with the point-slope form and then plug in the desired point and slope.

(y − b) = m(x− a)
(y − 3) = 2(x− 2)
y − 3 = 2x− 4

y = 2x− 4 + 3
y = 2x− 1
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Figure 1.2 shows the resulting line and the point (2,3). An important thing to remember is that a line has a
single, unique slope-intercept form but it has a different point-slope form for every one of the infinitely many
points on the line. This means that if we are comparing lines to see if they are the same it is necessary to place
the lines in slope-intercept form.

Two points determine a line: which one?

Figure 1.3: Details of finding that a line defined by the points (2,1) and (5,3) has a slope of 2/3.

You have probably heard the saying that “two points determine a line”. So far we can find a line from one point
and a slope, using the point-slope formula. If we have two points and want to know the equation of the line
containing both of them, the easy method is to find the slope and then apply the point-slope formula to either
one of the points. Recall that slope is the amount y increases when x increases by one. We cold also say that
the slope of the line is its rise over its run. In this case rise is the distance the line moves in the y direction
while run is the distance it moves in the x direction. If we have two points we can simply divide the y distance
between the points by the x distance between the points and get the slope of the line between them. Figure 1.3
illustrates the process.

Example 1.14 Finding a line through two points.
Problem: find the equation in slope-intercept form of the line through the points (2,1) and (5,3).

This example uses the picture in Figure 1.3. The rise from 1 to 3 is 3-1=2; the run from 2 to 5 is 5-2=3.
Computing slope as rise over run we get m = rise

run = 23 and the slope of the line is m = 2/3. We can now use the
point slope formula with either of the points - since (2,1) has smaller coordinates we will, somewhat arbitrarily,
choose this point. This gives us:

(y − 1) =
2
3

(x− 2)

y − 1 =
2
3
x− 4

3

y =
2
3
x− 4

3
+ 1

y =
2
3
x− 1

3
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The final answer, in slope-intercept form, is y = (2/3)x− (1/3).

In the next example we give several examples of finding the slope of the line between pairs of points.

Example 1.15 Slopes derived from pairs of points

Points Rise Run Slope

(1,1);(3,5) 5-1=4 3-1=2 m = 5−1
3−1 = 4

2 = 2

(2,-2);(3,3) 3-(-2)=5 3-2=1 m = 3−(−2)
3−2 = 3+2

3−2 = 5

(-1,-1);(4,2) 2-(-1)=3 4-(-1)=5 m = 3
5

(-1,-2);(-3,-1) -1-(-2)=1 -3-(-1)=-2 m = 1
−2 = − 1

2

(1,1);(a,b) b-1 a-1 m = b−1
a−1

Earlier we said that the slope-intercept form of a line is unique but a line may have many point-slope forms. By
plugging x = 1 and x = 3 into the line y = 2x − 1 we can find that the points (1,1) and (3,5) are both on the
line. The next example shows that the slope-intercept form of the line for each of these points is the same.

Example 1.16 Different point-slope forms: sample slope-intercept
Problem:Find the line of slope 2 through each of the points (1,1) and (3,5).

Compare the slope-intercept forms of these lines.

First the point (1,1):

(y − 1) = 2(x− 1)
y − 1 = 2x− 2

y = 2x− 2 + 1
y = 2x− 1

Now the point (3,5):

(y − 5) = 2(x− 3)
y − 5 = 2x− 6

y = 2x− 6 + 5
y = 2x− 1

As expected, the slope-intercept forms are identical indicating that both point-slope forms are different equations
for the same line.

The next step in our discussion of equations of lines is giving a formula for the slope a line through two points
in terms of the coordinates of those points and exploring a special slope that may cause a problem.
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Formula 1.1 Slope of a line through two points If we have two points (x1, y1) and (x2, y2) then the slope
of the line though those points is either

m =
y2 − y1
x2 − x1

or, if x1 = x2 the slope does not exist. A line whose slope does not exist is a vertical line. Its rise over run
involves dividing by zero, which is what causes the problem.

Vertical lines are given by a formula of the kind x = c for some constant c. They consist of all points (c, y)
where y can take on any value. The slope of vertical lines is said to be undefined. It can be thought of, informally,
as being infinite but this is not a well defined notion and should only be used informally (i.e. in discussion but
not on an examination).

Parallel and Right-Angle Lines

Once we know how to find the slopes of lines, a very simple rule lets us determine when two lines are parallel or
intersect one another at right angles.

Fact 1.1 Two lines are parallel if and only if they have the same slope.

Example 1.17 Problem: are any two of the following three lines parallel?

L1: y = 2x+ 1

L2: 3y − 6x = 7

L3: 3x+ y = 3

Notice that the slope of L2 and L3 are not obvious because they are not in a form that explicitly displays their
slope. Placing the lines into slope-intercept form:

L1: y = 2x+ 1 (already in SI-form, included for completeness).

L2: y = 2x+ 7
3

L3: y = −3x+ 3

And we see that L1 and L2 have the same slope and so are parallel.
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Fact 1.2 Two lines with slopes m1 and m2 intersect at right angles if and only if

m1 = − 1
m2

In other words if their slopes are negative reciprocals of one another.

Example 1.18 Problem: Find a line that intersects y = 2x− 1 at right angles at the point (1,1).

First of all, double check that the point (1,1) is one the line y = 2x− 1: 2× 1− 1 = 1 (check). The slope of the
given line is m1 = 2. A line intersecting it at right angles would, by the fact above, have a slope of

−1
2

We now have a point (1,1) and a slope m = −1/2 and so we can build a line with the point-slope formula.

(y − 1) = −1
2

(x− 1)

y − 1 = −1
2
x+

1
2

y = −1
2
x+

1
2

+ 1

y = −1
2
x+

3
2

And we have the line that intersect y = 2x− 1 at right angles at the point (1,1).

Finding the Intersection of Lines

A fairly common situation is having two lines and wanting to find the points that are on both lines (equivalently:
that make both equations true). A simple algorithm can do this:
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Algorithm 1.1 Finding the intersection of lines

Step 1: Place the lines in slope-intercept form.
y = m1x+ b1
y = m2x+ b2

Step 2: Since points on both lines have the same y coordinate:
y = y, so
m1x+ b1 = m2x+ b2

Step 3: Solve the equation for x.

Step 4: Plug x into either line to get y.

Step 5: You have the point of intersection.

Example 1.19 Problem: find the intersection of y = 2x+ 2 and y = −x+ 4.

This example is a bit of a softball because the lines are already in slope-intercept form and we get Step 1 for free.
We start with Step 2:

y = y

2x+ 2 = −x+ 4

3x = 2

x =
2
3

So now we know the point on both lines has x = 2/3. Plugging this into the second line we get y = −2/3+4 = 10/3.
This means the point of intersection of the two lines is (2/3,10/3).

One important point: two lines that have the same slope don’t intersect unless they are really the same line.
This means that you can apply the algorithm and get no answer; typically if you plug parallel lines into the
algorithm a divide by zero will happen.
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Application: Balancing Supply and Demand

A supply curve tells us how many units of a commodity manufacturers will offer for sale at a given price.
A demand curve tells us how many units of a commodity consumers will be willing to buy at a given price.
As the price rises, manufacturers are willing to make more items but consumers are willing to purchase
fewer. There is a balance point or equilibrium in which the number of units manufacturers are willing
to supply and consumers are willing to purchase are equal.
We will use the variables p (for price) and q (for quantity) rather than the usual x and y. Suppose that the
supply and demand curves for inexpensive cell phones are:

Supply: p = 10 + q/50 Demand: p = 200− q/40

The graph of the supply and demand curves shows that the balance, where cell phones offered for sale and
cell phones consumers are willing to purchase, is a little over 4000. Let’s intersect the lines and find the
exact value. This is Algorithm 1.1, just with different variable names.

p = p

10 + q/50 = 200− q/40

q/50 + q/40 = 190

4q
200

+
5q
200

= 190

9q
200

= 190

q =
38000

9
∼= 4222

The symbol ∼= means “approximately” and is used because the answer is rounded to the nearest cell phone.
If we plug that quantity into the supply curve we see the price at the balance point is

10 + 4222/50 = $94.44
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1.2.2 Solving Quadratic Equations

A quadratic equation is an equation like y = x2 +3x+2 or y = 4x2 +4x+1. The general form for a quadratic
equations is y = ax2 +bx+c where a, b, and c are unknown constants. We insist that a 6= 0 so that the quadratic
has an squared term, in other words a quadratic equation must have a squared term but may have no higher
order terms.

The roots of a quadratic equation are those values of x, or whatever the independent variable is, that make y, or
whatever the dependent variable is zero. There are three methods for finding the roots of a quadratic equation:

1. Factoring,

2. completing the square, and

3. the quadratic equation.

It is also important to know that a quadratic equation may have zero, one, or two solutions. Figure 1.4 gives
examples of all three of these possibilities. We will explore how to distinguish these three types of quadratics
later.

x2−2x+2 (no roots). x2+2x+1 (one root). x2−4 (two roots).

Figure 1.4: Quadratic equations with zero, one, or two roots. The roots are circled in green.

Factoring to Solve Quadratics

The first method of solving quadratic equations we will study is factoring.

Example 1.20 Problem: find the roots of y = x2 + 3x+ 2 by factoring.
Solution:

Notice that 2× 1 = 2 but 1 + 2 = 3. Since

(x+ u)(x+ v) = x2 + ux+ vx+ uv = x2 + (u+ v)x+ uv

these facts let us deduce that
x2 + 3x+ 2 = (x+ 1)(x+ 2)

It remains to find the values of x that make y = 0. With the factorization we can use the following rule:
If the product of two numbers is zero then one, the other, or both of those numbers are zero.

Compute:
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x2 + 3x+ 2 = 0
(x+ 1)(x+ 2) =

SO

x+ 1 = 0
x = −1

OR

x+ 2 = 0
x = −2

and we say “x = −1 or −2” which can be written in shorthand as x = −1,−2.

In order to factor a quadratic you need to find two roots, like 1 and 2 in the example above, so that the numbers
add to make the coefficient of x and multiply to make the constant term. You also need to experiment with
the signs (±) of the roots to make the signs of the numbers in the quadratic come out correctly.

Completing the Square

In order to complete the square we need to understand what it means for a quadratic to be a perfect square.
In general, a perfect square is a quantity that is the square of some other quantity. For example

(2x+ 1)2 = (2x+ 1)× (2x+ 1) = 2x2 + 2x+ 2x+ 1 = 4x2 + 4x+ 1

so we can say that 4x2 + 4x + 1 is a perfect square because it is the square of 2x + 1. Of course the hard part
about perfect squares isn’t constructing them like this, it is spotting them in the wild. When we complete the
square we force a perfect square to exist on the way to solving a quadratic equation. We will start with a very
easy example based on the perfect square (x+ 1)2 = x2 + 2x+ 1.

Example 1.21 (Completing the square)

Problem: Solve x2 + 2x− 1 = 0.

Solution:

x2 + 2x− 1 = 0 Start with the problem.

x2 + 2x− 1 + 2 = 2 Add 2 to both sides to make the expression look like the known
perfect square, above.

x2 + 2x+ 1 = 2 Resolve the arithmetic

(x+ 1)2 = 2 Factor the quadratic into its perfect square form.

x+ 1 = ±
√

2 Take the square root of both sides, remember that numerical square
roots might be positive or negative.

x = −1±
√

2 Subtract one from both sides. Done.
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Notice that we, again, have two answers: −1 +
√

2 and −1−
√

2.

Example 1.21 worked out quickly and evenly because x2 +2x−1 is very close to the perfect square (x+1)2 =
x2 + 2x + 1, differing from it only by an additive constant. We can, however, use brute algebra to solve any
quadratic that has solutions (or notice that it does not have solutions) with some form of completing the square.
We now give the general algorithm for completing the square.

Algorithm 1.2 Completing the square. Starting with

ax2 + bx+ c = 0

first simplify matters by dividing through by a to obtain

x2 +
b

a
x+

c

a
= 0

Compute the number
(

1
2
b
a

)2
= b2

4a2 and add and subtract it to the left hand side to obtain

x2 +
b

a
x+

b2

4a2
− b2

4a2
+
c

a
= 0

Notice that x2 + b
ax+ b2

4a2 =
(
x− b

2a

)2
. This makes our expression:

(
x+

b

2a

)2

− b2

4a2
+
c

a
= 0

Subtracting the terms outside of the square to the right hand side yields(
x+

b

2a

)2

=
b2

4a2
− c

a

At which point simple algebra will solve for x.

Example 1.22 Completing the square with the algorithm.

Problem: Solve 2x2 − 3x− 5 = 0 by completing the square.

Solution: Follow the algorithm.

2x2 − 3x− 5 = 0

x2 − 3
2
x− 5

2
= 0

x2 − 3
2
x+

9
16
− 9

16
− 5

2
= 0(

x− 3
4

)2

− 9
16
− 5

2
= 0(

x− 3
4

)2

=
9
16

+
5
2
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At this point the algorithm is done and we finish with algebra(
x− 3

4

)2

=
9
16

+
5
2
× 8

8(
x− 3

4

)2

=
9
16

+
40
16(

x− 3
4

)2

=
9 + 40

16(
x− 3

4

)2

=
49
16

x− 3
4

= ±
√

49
16

x− 3
4

= ±
√

49√
16

x− 3
4

= ±7
4

x =
3
4
± 7

4

x =
3± 7

4

So in the end we see x = −4
4 = −1 or x = 10

4 = 5
2 . In shorthand, x = − 5

2 , 1. This also means that the quadratic
factors as

2x2 − 3x− 5 = (2x− 5)(x+ 1)

by simply reconstructing the factorization from the roots. The first monomial (2x − 5) is zero when x = 5
2 and

the second (x+ 1) is zero when x = −1.

Application: Finding the Vertex of a Parabola

The graph of a quadratic equation is a kind of curve
called a parabola. If the x2 term is positive then the
parabola opens upward like the ones in Figure 1.4. if it
is negative it opens downward like the one shown at the
left.

If we complete the square for the quadratic that is
graphed at the left we get that

−(x− 1)2 + 4

The squared term is zero when x = 1 and the point on the
parabola when x = 1 is (1,4). This is the point where the
parabola turns around. This point is called the vertex
of the parabola.

Once you’ve completed the square for any quadratic you can get an expression like ±c · (x− u)2 + v where
c is a constant. The point (u, v) is the vertex of the parabola - the largest value of a parabola opening
downward or the smallest value of a parabola opening upward.
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Example 1.23 If the profits in thousands of dollars, based on both cost and potential sales, for manufacturing
n advanced military helicopters is given by the formula P (n) = 360 + 174n− 3n2 find the number of helicopters
that maximizes the profit.
Strategy: Since the x2 term is negative, this quadratic opens downward and so the maximum value is at the
vertex. Complete the square:

360 + 174n− 3n2 = 360− 3(n2 − 58n)

= 360− 3

(
n2 − 58n+

(
58
2

)2

−
(

58
2

)2
)

= 360− 3
(
n2 − 58n+ 292 − 841

)
= 360− 3 (n− 29)2 − 3× (−841)

= 360− 3(n− 29)2 + 2523

= 2883− 3(n− 29)2

So we see that
P (n) = 2883− 3(n− 29)2.

Profit is largest when the squared term is zero so this occurs when n = 29 and the profit is 2883 thousands or
$2,883,000.

Notice that in Example 1.23 that the numbers were a little large but still worked out evenly. If the number
of helicopters at the vertex had come out to something like n = 31.11657 then we would need to compare the
profits P (31) and P (32). Depending on the exact shape of the profit curve, it might be either one. It is also
important to warn you that while completing the square is a method for finding the largest or smallest value
of a parabola, when we start using calculus in later chapters we will develop a much more general and robust
technique for optimizing.

The Quadratic Formula

At this point we are going to create the quadratic formula by applying the algorithm for completing the square to
a general quadratic (one that uses letters for all three constants). We will use a trick of using another name for a
complex quantity to keep the expressions simpler than they might otherwise be. Notice that (x−u)2 = x2−2u+u2.
This means we need to force the general form of a quadratic,

ax2 + bx+ c

into this form in order to complete the square.

Example 1.24 The general form of completing the square.

Problem: Solve ax2 + bx+ c = 0.
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ax2 + bx+ c = 0 Start with the problem.
a
ax

2 + b
ax+ c

a = 0
a Since the form we want starts with x2, divide through by a to force

this to happen.

x2 + b
ax+ c

a = 0 Resolve the arithmetic.

Set 2u = b
a The form we want has 2u in front of x, find out what u is in terms

of a, b, and c.

u = b
2a Divide through by 2.

x2 + 2ux+ c
a = 0 Substitute the u expression into the original formula.

x2 + 2ux+ u2 − u2 + c
a Add and subtract u2 to create the perfect square.

x2 + 2ux+ u2 = u2 − c
a Subtract all the constants that are not part of the perfect square to

the other side.

(x+ u)2 = u2 − c
a Resolve the perfect square.(

x+ b
2a

)2
=
(
b
2a

)2 − c
a Get rid of the u by substituting.(

x+ b
2a

)2
= b2

4a2 − c
a Start simplifying the right hand side.(

x+ b
2a

)2
= b2

4a2 − c
a ×

4a
4a Find a common denominator for the fractions on the right.(

x+ b
2a

)2
= b2

4a2 − 4ac
4a2 Multiply out the fraction to get the common denominator.(

x+ b
2a

)2
= b2−4ac

4a2 Combine the fraction.

x+ b
2a = ±

√
b2−4ac

4a2 Take the square root of both sides

x = − b
2a ±

√
b2−4ac

4a2 Subtract the constant on the left from both sides to isolate x.

x = − b
2a
±
√
b2−4ac
2a Notice that 4a2 = (2a)2 and simplify the square root. This gives us

a common denominator for free!

x = −b±
√
b2−4ac
2a Combine the fraction. Done.

Students that recall the quadratic formula will notice that that formula results from completing the square in
general.

Fact 1.3 If ax2 + bx+ c = 0 then

x =
−b±

√
b2 − 4ac

2a
if any such numbers exist.

All three methods, factoring, completing the square, and the quadratic formula can be used to solve any quadratic
equation. For different equations, different methods are easier and more effective. There is also the issue that
some quadratic equations do not have solutions. We will now do some examples of quadratic equations with
different numbers of solutions and also explain, in terms of the graphs of the equations, why a given quadratic
has the number of solutions it does.

Fact 1.4 Finding the number of solutions of a quadratic
The quadratic formula involves plus-or-minus a square root. The way that square root works out predicts the
number of solutions to the equations ax2 + bx+ c = 0 by the following rules:

If b2 − 4ac > 0 then there are two solutions,

if b2 − 4ac = 0 then there is one solution,

and if b2 − 4ac < 0 then there are no solutions.
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The quantity b2 − 4ac is called the discriminant of the quadratic.

When the rule for the number of solutions of a quadratic says there are no solutions, this means no solutions
that take on real number values. There are solutions but they are not real numbers. You may have encountered
them in your previous experience in mathematics, they are called complex numbers. We don’t work with complex
numbers in these notes, but many online resources are available if you are curious.

Exercises

Exercise 1.21 For each of the following lines, state the slope and intercept.

a) y = 2x+ 5. b) y = −3x+ 1. c) 2x− 4y = 5. d) 3(x+ y) + 2x = 4. e) (y − 5) = 3(x− 1).

f) The line through (1,1) and (3,5).

g) A line parallel to y = −2x+ 5 through the point (-1,3).

h) The line intersecting y = (x− 5)/2 at right angles at the point (3,-1).

i) The line of slope 2 through the point (a,b).

j) A line intersecting y = 2abx+ 1 at right angles at the point (1,2ab+1).

Exercise 1.22 Find both the point-slope and slope-intercept forms of lines through the following pairs of points.

a) (1,1) and (2,5) b) (1,1) and (5,2) c) (-1,2) and (2,-1) d) (17,122) and (35,-18)

e) (a,b) and (3,2) f) (x, x2) and (x+ 2, (x+ 2)2)

Exercise 1.23 Find the intersections of the following sets of lines. Hint: at least one pair of lines does not
intersect.

a) y = 2x+ 1 and y = −x+ 10. b) y = 2x+ 1 and y = 3x− 5. c) y = 2x+ 1 and 2y − 4x = 3.

d) 2x+ 3y = 1 and 3x− 5y = 7. e) x+ y + 1 = 0 and x− y − 1 = 0. f) y = ax+ 2 and y = −2x+ 5.

Exercise 1.24 Carefully graph the following lines.

a) y = 3x− 2. b) y = 7x+ 1. c) y = −2x+ 3. d) y = −x/3 + 2/3. e) y = 6− x. f) 2y + 5x = 1.

Exercise 1.25 Factor the following quadratic equations.

a) x2 + 4x+ 3. b) x2 − 8x+ 15. c) x2 + 2x− 8. d) x2 − 6x+ 9. e) 9x2 − 6x+ 1. f) x2 − 25. g) x2 − 12. h)
2x2 + 5x− 3. i) 6x2 + 13x+ 6. j) x2 + 1

2x+ 1
4 .

Exercise 1.26 Complete the square to place each of the following quadratics in the form ±c · (x − u)2 + v for
some constants c, u and v. Also state if each of the parabolas opens up or down.

a) x2 − 8x+ 60. b) x2 − 15x+ 12. c) 22 + 6x− x2

d) 126 + 20x− 2x2 e) (x+ 4)(x− 24) f) 4x2 − 12x+ 14

Exercise 1.27 For each of the following, use the quadratic equation to find all the solutions or demonstrate with
the discriminant that there are none.

a) x2 + x+ 1 = 0. b) x2 − x− 1 = 0. c) x2 + 2x+ 1 = 0 d) 2x2 + 5x− 7
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e) 2x2 + 5x+ 7 f) 7− 2x− x2 = 0 g) x2 = 2

h) −2x2 + 5x+ 6 = 0 i) (x+ 1)(x− 6) = 4 j) 17.1x2 − 122.8x− 76.3 = 0

Exercise 1.28 Carefully graph the following quadratics.

a) y = x2. b) y = x2 − 4x + 4. c) y = (x − 3)2 − 5. d) y = x2 + x − 1. e) y = x2/4 + x/2 − 1. f)
y = (x+ 2)(x− 2) + 1.

Exercise 1.29 Graph the set of all points (a,b) so that the line through the points (a,b) and (3,2) has a slope
of 2.

Exercise 1.30 Graph the set of all points (u,v) so that the line through the points (a,b) and (-1,2) has a slope
of 3/2.

Exercise 1.31 Find two different point-slope forms for the line y = 2x− 5.

Exercise 1.32 Find two different point-slope forms for the line 2y − 6x+ 2y = 22.

Exercise 1.33 Prove or disprove that the following points are the vertices of a right triangle:
(1,3), (-6/5,-7/5), (2,-1).

Exercise 1.34 Prove or disprove that the following points are the vertices of a right triangle:
(1,3), (-3,-1), (2,-1).

Exercise 1.35 Find four lines that enclose a square of area 9.

Exercise 1.36 Find four lines, one of which has slope 2, so that the four lines enclose a square with area 4.

Exercise 1.37 Suppose that the supply curve for a particular brand of MP3 player is p = q/25 while the demand
curve is p = 1000− q/30. Find the quantity and price that balance supply and demand.

Exercise 1.38 Suppose that the supply curve for light electric scooters is p = 20 + q/1250 while the demand
curve is p = 400− q/1000. Find the quantity and price that balance supply and demand.

Exercise 1.39 Find a quadratic y = −x2 + bx + c that opens downward and has roots at x = −2 and x = 7.
Find its maximum value by completing the square.

Exercise 1.40 Find a quadratic y = −x2 + bx + c that opens downward and has roots at x = 1 and x = 15.
Find its maximum value by completing the square.

Exercise 1.41 If the profit for making n video game consoles is given by

P (n) = 25000 + 850n− 10n2

then complete the square to find the vertex of the parabola and find the number of consoles that maximizes profit.

Exercise 1.42 If the profit for printing a particular poster is given by the formula

P (n) = 4.2 + 3.8n− 0.014n2

then complete the square to find the vertex of the parabola and find the number of posters that maximizes profit.

1.3 Exponents, Exponentials, and Logarithms

In this section we review the rules for exponents, extending the notion to exponents that are not whole numbers
and then go on to work with exponential and logarithmic functions.
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1.3.1 Exponents: negative and fractional

You are already familiar with the idea of raising a variable to a power. The expression x2 means multiply x by
itself; x3 means multiply three copies of x. It turns out that both negative and fractional exponents, like x−2

and x3/4 also have meanings. We will build them up now, one step at a time.

The notation a = n
√
c means that a is a number so that an = c. The name for this number is the nth root of c.

Fractional exponents arise from roots via the following convention:

n
√
c = c

1
n

This convention extends to fractions that are not just reciprocals of whole numbers by taking powers of roots or
roots of powers:

n
√
cm =

(
n
√
c
)m = cm/n

Example 1.25 Problem: compute 82/3.

Using the convention above,
82/3 = 3

√
82 = 3

√
64 = 4

Notice that this example works out particularly neatly, with a whole number answer.

Fact 1.5 Reciprocals are negative first exponents.

So for example, 2−1 = 1
2 and x−2 = 1

x2 . Here are some more rules of algebra, the ones that apply to roots and
exponents.

1. a = a1 (mostly used when simplifying).

2. Negative numbers do not have even roots; they do have odd roots.

3. If a = b then ac = bc unless there is a problem with a and b being negative.

4. b
√
a = a1/b.

5. ab · ac = ab+c.

6. ab

ac = ab−c.

7.
(
ab
)c = abc.

8. 1
ab = a−b.

While all the rules are phrased in terms of exponents, the fact that roots are fractional exponents mean they
apply to roots as well. Rule 4 provides the connection.

Notice, also, that odd roots and powers preserve negative signs. Even roots, like the square root, require a ±
- they can produce a positive or negative answer. This fact goes hand-in-hand with the fact that even powers
forget minus signs.

Example 1.26 Using fractional exponents
Problem: Solve x3/4 = 2.

The reciprocal of 3/4 is 4/3 so a good way to get rid of the fractional power is to take the 4/3rds power of each
side and then use normal algebra:
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x3/4 = 2

(
x3/4

)4/3

= 24/3

x
3
4×

4
3 = 3

√
24

x1 = 3
√

16

x = 3
√

16 ∼= 2.52

Example 1.27 Solving a strange type of quadratic with fractional exponents.
Problem: Solve: x4/3 − 3x2/3 + 2 = 0

The tricky step in this problem is to notice that x4/3 =
(
x2/3

)2
. Once you notice this, rewrite the problem as a

quadratic-like expression and solve it, in this case by factoring.

x4/3 =
(
x2/3

)2

(
x2/3

)2

− 3
(
x2/3

)
+ 2 = 0(

x2/3 − 1
)(

x2/3 − 2
)

= 0

x2/3 = 1 or x2/3 = 2

x = 13/2 or x = 23/2

x = 1 or x =
√

23

x = 1 or x =
√

8

and we have the answer.

Example 1.28 Clearing a root from the denominator

Problem: simplify the fraction
√
x−1+2√
x−1−1

. In particular, eliminate the square-root in the denominator.

Strategy: use the fact that (a− b)(a+ b) = a2 − b2 to clear the denominator.

√
x− 1 + 2√
x− 1− 1

=
√
x− 1 + 2√
x− 1− 1

×
√
x− 1 + 1√
x− 1 + 1

=
x− 1 + 3

√
x− 1 + 2

(x− 1)− 1

=
x+ 1 + 3

√
x− 1

x− 2

And the square-root is removed from the denominator.
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So far all the functions we’ve dealt with can be created by doing arithmetic on variables and constants. At this
points we introduce functions. A function is a a mathematical widget that accepts a number and returns another
number. An example with which you are already familiar is the square root. Square roots cannot accept any
number - they only return values if the number you are putting into the square root is not negative.

We are introducing two new types of functions in this section: exponentials and logarithms. These two are
opposite to one another, like the square and square-root and they have their own collection of algebraic rules.
We start by defining them.

Definition 1.1 An exponential function is any function of the form

y = cx

where c is a positive constant. Examples of exponential function include y = 2x or y =
(

1
4

)x.

The partner to the exponential function is the logarithm function. This is a little trickier to define and we will
start not with the function but with individual logarithms.

Definition 1.2 Suppose that a, b, and c are constants and that b > 0. Then logb(a) = c if and only if bc = a.
When logb(a) = c we say “The log base b of a equals c.”

Example 1.29 Examples of logarithms

Since 23 = 8 we can say that log2(8) = 3

Since 102 = 100 we can say that log10(100) = 2.

If a =
√

3 then the fact a = 31/2 means log3(a) = 1
2 .

Since 1
1000 = 10−3 we can say that log10( 1

1000 ) = −3.

Most logs are not whole numbers: log10(2) ∼= 0.30103

With those examples of logarithms in hand we can define logarithmic functions.

Definition 1.3 Logarithmic functions are written y = logb(x). Because a power of a positive number b must
be positive, logarithm functions only exist when x > 0.

If we have the functions y = cx or y = logb(x) then we call c and b the base of the exponential or logarithmic
functions, respectively. We require that the base of an exponential or logarithmic function be positive. Functions
with a base of one are exceptional; the exponential function is a constant function equal to one while the log
function is the vertical line x = 1. Because of this the base of one is not much use and seldom seen. There are
two logarithmic functions that, by convention, do not require us to state the base.

Definition 1.4 The usual logarithm functions.
We make the following pair of notational conventions:

log(x) means log10(x), and

ln(x) means loge(x)

The second function is called the natural log and the number e ∼= 2.7182818. Getting an exact value for e requires
infinite series and is covered in the next chapter.
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Any logarithm function other than the two above require an explicit statement of their base, with the exception
of some computer science classes where log(x) is confusingly used as a shorthand name for log2(x). The number
e is a special type of constant, like π, that arises in a natural fashion out of mathematics itself. Both e and π
have infinite decimal expansions that do not ever settle down to a repeating pattern.

Fact 1.6 Graphs of the exponential and logarithmic functions The functions y = 2x and y = log2(x)
are graphed below. The shape of these functions are common to all exponential and logarithmic functions which
have a base greater than one.

y=2x y=log2(x)

Geometric properties of exponential functions.

1. The exponential function exists for all values of x.

2. It can take on any positive value but only takes on positive values.

3. The function increases from left to right if the base is bigger than 1 and decreases if the base is smaller
than one.

4. As x grows, an exponential function with a base larger than one grows rapidly toward infinity.

5. As x becomes larger in the negative direction, an exponential function with a base larger than one approaches
arbitrarily close to zero.

Geometric properties of logarithmic functions.

1. The logarithmic function exists only for positive values of x.

2. It can take on any value of y.

3. The function increases from left to right if the base is bigger than 1 and decreases if the base is smaller
than one.

4. As x grows, a logarithmic function with a base exceeding one grows slowly toward infinity.

5. As x approaches zero, a logarithmic function with a base exceeding one rapidly toward negative infinity.
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Why base e?

Logarithm functions were used, before we had machine
computation, to make multiplication and exponentiation
easier. Where, though, did the function come from? Why
is e considered the natural base? Examine the graph at
the left. The area under the curve y = 1/x and the x-
axis, between 1 and c is equal to ln(c). This means that
the log function that arises “naturally” from the rest of
mathematics is the log base e.

The orange areas, to the right of x = 1, correspond to
the natural log of numbers bigger than one, which are
positive. The green areas, to the left of x = 1, correspond
to the natural log of numbers smaller than one, which are
negative. Areas are, of course, always positive, but the
negative of the area from c < 1 to x = 1 is the natural
log of such c.

One technique that was used to estimate logarithms is to make a graph like the one above on a piece of heavy
paper of known area. The paper was weighed and then the area corresponding to the log was then cut out.
The ratio of the weight of the cut-out area to the whole sheet yields an estimate of the corresponding log.

The exponential and logarithmic functions are presented together because they are intimately linked. Much as
the square and square root have the opposite effect, exponentials and logarithms have opposite effects: each can
be used to undo the other. The analogy even holds to the following extent: you can take the square (exponential)
of anything but only some numbers have square roots (logarithms). These properties are stated in mathematical
form in the following list of properties.

Exponential and logarithmic functions have the following algebraic properties. Many of these may be used to
simplify expressions. A couple of the rules are repeated from the section on roots and exponents - this is done
to make this list complete.

1. If a = b then ca = cb for any c > 0. (exponentiate with both sides).

2. If a = c then logb(a) = logb(c) whenever a > 0. (take the log of both sides).

3. logb(ac) = c× logb(a)

4. logb(a× c) = logb(a) + logb(c)

5. logb(a/c) = logb(a)− logb(c)

6. ba × bc = ba+c

7. (ba)c = ba×c

8. blogb(a) = a for b > 0. (for getting rid of logs).

9. logb(ba) = a for b > 0. (for getting rid of exponentials).

10. logb(a)
logb(c)

= logc(a) (base conversion law).
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Notice that the last of the properties above tells you how to compute logs for any base even if you only have a
calculator that does log base 10 or base e. We are now ready to practice some problem solving with logs and
exponents.

Example 1.30 Problem: Compute log3(7).

Using rule 10 above,

log3(7) =
log(7)
log(3)

∼=
0.84509804
0.47712125

∼= 1.7712437

Note that we are using the log base 10 to solve the problem. The natural log would have worked as well:

log3(7) =
ln(7)
ln(3)

∼=
1.9459101
1.0986123

∼= 1.7712437

Only the intermediate values are different.

Example 1.31 Problem: Solve 3 = 2x for x.

Strategy: take the log base two of both sides.

3 = 2x

log2(3) = log2 (2x)
log2(3) = x

x = log2(3)

x =
ln(3)
ln(2)

∼= 1.5849625

Example 1.32 Problem: Solve ln(x+ 3) = 2 for x.

Strategy: first remove the log with an exponential, then resolve the expression with standard algebra. Remember
that ln(x) is loge(x).

ln(x+ 3) = 2
eln(x+3) = e2

x+ 3 = e2

x = e2 − 3 ∼= 4.3890561

Example 1.33 Problem: Solve 4x − 3 · 2x + 2 = 0 for x.
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Strategy: Notice that (2x)2 = 4x and treat the problem as a factorable quadratic.

4x − 3 · 2x + 2 = 0

(2x)2 − 3 (2x) + 2 = 0

(2x − 1) (2x − 2) = 0

SO

2x − 1 = 0

2x = 1

log2(2x) = log2(1)

x = 0

OR

2x − 2 = 0

2x = 2

log2(2x) = log2(2)

x = 1

And as can happen with quadratic or quadratic-like equations we get two answers: x = 0, 1.

The examples in this section give you a starter set of methods for using logs and exponentials in algebra. There
are some pitfalls. If you are working a problem and you need to take the log of a negative number then, if
you didn’t make mistakes, the correct answer is that the answer is undefined. If either of the roots of the odd
quadratic in Example 1.33 had been negative that would have meant that there was no answer associated with
that root.

In a similar fashion, if an exponential function that needs to produce a negative number to solve a problem,
then the problem may not have a solution. The way to write such a non-existent answer varies but two common
notations for these situations where something impossible happens are undefined or does not exist.
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Application: Compound Interest

If an account pays 5% simple interest per year, that means that at the end of each year, the bank
adds money equal to 5% of the current total to your account. This, in effect, multiplies the account
by 1.05 each year. This means that the amount of money in the account, is the original amount was
D dollars, the amount of money at the end of n years is

D × (1.05)n

in other words the original amount multiplied by 1.05 n times.
Problem: how many years to double, or more than double, the account?

2D = D · (1.05)n

2 = 1.05n

log1.05(2) = log1.05(1.05)n

log(2)
log1.05

= n

n =
log(2)
log(1.05)

∼= 14.206699

And so the amount of money passes double the original amount at the end of year fifteen.

Exercises

Exercise 1.43 Simplify each of the following expressions as much as possible.

a)
(
22
)3. b)

(
x3
)2. c) x2 × x3/4 ÷ x5/2. d) (2x)2 ÷ (4x)1/2. e) 2+2−1

2−2+2−3 . f) x1/2y3/4

x2y4/3 .

Exercise 1.44 Solve the following equations.

a) x6 − 5x3 + 6 = 0. b) x− 6
√
x+ 8 = 0. c) e2x − 5ex + 4 = 0. d) e2x − 4 = 0.

e) 4x3/4 − 4x3/8 + 1 = 0. f) xex − x− ex + 1 = 0 (hint: factor). g) x−2 + x−1 − 2 = 0.

h) x−2 + x−1 − 1 = 0. i) 9x − 4 = 0. j) 4x − 5 · 2x + 6 = 0.

Exercise 1.45 Solve the following equations using logs and exponentials as needed.

a) log(x + 1) = 4. b) ex+1 = 4. c) log2(x − 2) = 3. d) 1.05x = 3.5. e) logx(12) = 5. f) 3x = 14. g)

log1/4(x) = 2. h) log
(
x2 + 4x+ 4

)
= 1. i) Ln

(
x−1
x+1

)
= 1. j) 2 = ex+1

ex−1 .

Exercise 1.46 Remove the radical from the denominator of
√
x−1√
x+1

.

Exercise 1.47 Remove the radical from the denominator of
√

2x+5−2√
2x+2−3

.

Exercise 1.48 Remove the radical from the denominator of 2x
1−
√

2x
.

Exercise 1.49 Remove the radical from the denominator of x2+1
7−
√
x

.

Exercise 1.50 Carefully graph the following functions using an appropriate range and domain.
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a) y = log3(x). b) y = log1/2(x). c) y = ln(3x). d) y = 1.1x. e) y = 2x+4. f) y = ex×ln(3).

Exercise 1.51 If log(a) = 1.5 and log(b) = 2.25 then what is the logarithm of log
(
a3

b2

)
?

Exercise 1.52 If log(u) = 0.5 and log(v) = −1 then what is the logarithm of log
(
u2

v3

)
?

Exercise 1.53 What is the smallest whole number n so that 1.15n > 3?

Exercise 1.54 What is the smallest whole number n so that 1.03n > 2.5?

Exercise 1.55 If $1000.00 is invested at d% interest compounded yearly for 10 years and the final balance is
$1218.99 then what was the rate of interest?

Exercise 1.56 If $400.00 is invested at d% interest compounded yearly for 8 years and the final balance is
$637.54 then what was the rate of interest?

Exercise 1.57 If $1000.00 is invested at 5% interest for 10 years how much of a difference does it make if the
interest is compounded yearly or monthly? In the latter case 5

12% interest is paid each month.

Exercise 1.58 If $400.00 is invested at 6% interest for 12 years how much of a difference does it make if the
interest is compounded yearly or monthly? In the latter case 1

2% interest is paid each month.

Exercise 1.59 Suppose that a person borrows $1000.00. If they pay the same amount every month and also pay
0.5% monthly interest on the remaining balance what payment will clear the debt in one year? Hint: you need a
high-lo game to solve this problem.

1.4 Moving Functions Around

This section deals with moving and distorting the graphs of functions. The following rules cover horizontal and
vertical shifts.

1. The graph of f(x− c) is the graph of f(x) shifted c units to the right.

2. The graph of f(x+ c) is the graph of f(x) shifted c units to the left.

3. The graph of f(x) + c is the graph of f(x) shifted c units upward.

4. The graph of f(x)− c is the graph of f(x) shifted c units downward.

Figure 1.5 shows the result of applying horizontal and vertical shifts to a simple parabola. This type of action is
called a translation of the graph of the function. It amounts to a rigid move of the graph that does not change
its shape at all.

There are two simple ways to bend the shape of a graph.

1. The graph of c× f(x) is the graph of f(x) with the y-axis stretched (multiplied by) a factor of c. If c < 1
then the “stretch” is really a compression because everything gets closer to the x axis. If c < 0 then the
graph is flipped around the x-axis.

2. The graph of f(c× x) is the graph of f(x) with the x-axis stretched (multiplied by) a factor of 1
c . If c > 1

then the “stretch” is really a compression because everything gets closer to the y axis. If c < 0 then the
graph is flipped around the y-axis.
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Figure 1.5: The result of shifting the graph of f(x) = x2 three units to the left and right and two units up and
down.

Figure 1.6 shows the result of bending the function f(x) =
(
x3 − 4x

)
/2 in various ways. It turns out that

translating and bending functions is closely related to completing the square.

Example 1.34 Problem: Complete the square to show how y = x2− 4x+ 2 is a bent translation of f(x) = x2.

y = x2 − 4x+ 4− 4 + 2
y = (x− 2)2 − 2

So we see that the graph of y = x2− 4x+ 2 is the graph of f(x) = x2 shifted two units to the right and two units
down.

Notice that, in the graphs shown in Figure 1.6 that all five of the graphs cross the x-axis at zero and all but
f(2x) share the axis crossings at x = ±2. This is true simply because zero times anything is still zero. This nice
fact does not hold when we translate graphs. If you translate the graph of a function then its roots, the places
where it is zero, can move (and usually do). When you modify the x-axis as in f(2x) the roots can also move.
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Original graph

Horizontal compression Flip around x-axis

Vertical expansion Flip around y-axis

Figure 1.6: The result of applying distortion factors of 2 or -1 to the cubic function f(x) = 1
2

(
x3 − 4x

)
. Notice

that in this case f(−x) = −f(x). This is not always the case, but in this example it shows that apparently
different modifications of a function may have the same effect.
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Exercises

Exercise 1.60 If f(x) = x3 − x carefully graph f(x), f(x− 2), f(2x) and f(x) + 2.

Exercise 1.61 If f(x) =
√
x2 + 1 carefully graph f(x), f(x− 3), f(2x) and f(x) + 1.

Exercise 1.62

A B

C D
Each of the graphs above is the result of translating, and in some cases bending, f(x) = x2 so that the function
is f(x) = a(x− b)2 + c. For each of the above find a, b, and c.

Exercise 1.63 Translate the function f(x) = x2 + 2x by finding a and b to place the vertex of f(x − a) + b at
(1,1).

Exercise 1.64 Translate the function f(x) = x2 − 4x by finding a and b to place the vertex of f(x − a) + b at
(2,-1).
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Exercise 1.65 Use translation and bending to make the function f(x) = 2x go through the points (0,2) and
(1,5).

Exercise 1.66 Use translation and bending to make the function f(x) = 3x go through the points (0,-1) and
(2,6).

1.5 Methods of Solving Equations

In this section we will put a little polish on our techniques for solving equations and learn a last-resort method
that works on almost anything but is a lot of work to apply. We will start with an example.

Example 1.35 Problem: Solve x3 − 4x = 0.

Strategy: factor the expression. Since x3 − 4x = x(x2 − 2) it is easy to see that

x4 − 4x = x(x− 2)(x+ 2)

We then apply the rule that if numbers multiplied together are zero, one of the numbers must be zero, and get
three answers:

x = 0,
x− 2 = 0 so x = 2, and
x+ 2 = 0 so x = −2

If we were to graph the function f(x) = x3 − 4x:

then we see that the solutions x = 0,±2 are all places where the graph crosses the x-axis. These have been circled
in green.

Remember that a root is a number that makes a function zero and a factor of an expression is another expression
that divides it evenly.

Fact 1.7 The root-factor theorem If f(c) = 0 then (x− c) divides f(x) evenly.

Example 1.36 Problem: Factor f(x) = x3 − 6x2 + 11x− 6.
Strategy: Plug in small numbers looking for a root and apply the root-factor theorem.

f(0) = −6, f(1) = 1− 6 + 11− 6 = 0 Aha!
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The root factor theorem tells us (x− 1) is a factor, so now we divide:

x2 − 5x+ 6
x− 1

)
x3 − 6x2 + 11x− 6

− x3 + x2

− 5x2 + 11x
5x2 − 5x

6x− 6
− 6x+ 6

0

The fact the division comes out evenly tells us that

x3 − 6x2 + 11x− 6 = (x− 1)(x2 − 5x+ 6)

If we factor the quadratic this gives us

x3 − 6x2 + 11x− 6 = (x− 1)(x− 2)(x− 3)

and so if we wanted to solve x3 − 6x2 + 11x− 6 = 0 the answers would be x = 1, 2, 3.

In this section we are working with functions that involve x3 where before we were working mostly with lines
and quadratics. This is mostly because the root-factor theorem only starts to be interesting when you’re dealing
with things bigger than quadratic equations. We now make some definitions that give us vocabulary to talk
about this sort of expression in general.

Definition 1.5 A polynomial is a sum of constant multiples of non-negative whole-number powers of a variable.
Examples include 2x + 1, x2 + x + 1, x3 + 2x2 − 4x − 7, and x7 + 3x − 1. The degree of a polynomial is the
largest exponent of the variable so the degrees of the examples are 1, 2, 3 and 7. A polynomial function is a
polynomial used as the rule of a function as in y = x2 + x+ 1.

The first example using the root factor theorem came out nice and even. We now do a similar example that does
not come out quite so nicely.

Example 1.37 Problem: Solve x3 + 3x2 + x− 2 = 0.
Strategy: Plug in small numbers looking for a root and apply the root-factor theorem.

f(0) = −2, f(1) = 3, f(−1) = −1, f(2) = 20, f(−2) = 0 Aha!

Since x = −2 is a root the root-factor theorem tells us that (x+ 2) is a factor, so we divide:

x2 + x− 1
x+ 2

)
x3 + 3x2 + x− 2
− x3 − 2x2

x2 + x
− x2 − 2x

− x− 2
x+ 2

0

We get the one obvious answer x = 2 but we also have to solve x2 + x− 1 = 0. Since this does not factor evenly,
we use the quadratic formula and get two more answers:
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x =
−1±

√
1− 4(1)(−1)

2
=
−1±

√
5

2
∼= 0.61803399 or − 1.618034

If it has been a while since you did long division on polynomials, you should probably work some of the practice
problems in the exercises. We conclude this section with some handy pre-factored expressions. If you can
recognize these while solving a problem they can serve as a shortcut. They usually are useful when working with
polynomials but may come up in other contexts.

Fact 1.8 Polynomial general forms

1. a2 − b2 = (a− b)(a+ b)

2. (a+ b)2 = a2 + 2ab+ b2

3. a3 − b3 = (a− b)(a2 + ab+ b2)

4. a3 + b3 = (a+ b)(a2 − ab+ b2)

Example 1.38 Examples of general forms
Here are some examples of applying the general forms.

• x2 − 1 = (x+ 1)(x− 1)

• 4− y2 = (2− y)(2 + y)

• (z + 5)2 = z2 + 10z + 25

• (a+ 2b)2 = a2 + 4ab+ 4b2

• x3 − 27 = (x− 3)(x2 + 3x+ 9)

• y3 + 64 = (y + 4)(y2 − 4y + 16)

• e2x − 1 = (ex − 1)(ex + 1)

1.5.1 High-lo Games to Solve Expressions

A really annoying fact is that almost every expression of the form f(x) = 0 you can write down cannot be solved
for x using algebra. Your math courses, of course, tend to emphasize those expressions that can be solved and
useful expressions are much more likely to be solvable by algebra than random ones. Think, for example, about
how many natural laws are quadratic: the inverse-square law for gravity or electrical fields, for example, or area
laws for the cross section of pipes. In this section we will give a method for getting an approximate solution for
f(x) = 0 that can be used on any expression where there is an answer. We will give the method, first, as an
example.
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Example 1.39 Problem: Get the largest possible approximate solution to ex = 4x.

First, we turn the problem into something equal to zero:

ex − 4x = 0

and then we turn the problem into one of finding roots of a function f(x) = ex − 4x. Look at the graph of the
function:

Notice that there are two solutions, one between 0 and 1 and one between 2 and 3. We want the larger solution
- so we start with x = 2 and x = 3 and play the following game, in which we sneak up on the value of the root
from both sides by plugging values into f(x).

f(2) ∼= −0.6109439 Lower endpoint is negative.
f(3) ∼= 8.0855369 Upper endpoint is positive.
f(2.5) ∼= 2.182494 Positive: 2 ≤ x ≤ 2.5
f(2.2) ∼= 0.2250135 Positive: 2 ≤ x ≤ 2.2
f(2.1) ∼= −0.23383009 Negative: 2.1 ≤ x ≤ 2.2
f(2.15) ∼= −0.015141603 Negative: 2.15 ≤ x ≤ 2.2
f(2.17) ∼= 0.078284041 Positive: 2.15 ≤ x ≤ 2.17
f(2.16) ∼= 0.031137658 Positive: 2.15 ≤ x ≤ 2.16
f(2.155) ∼= 0.007890179 Positive: 2.15 ≤ x ≤ 2.155
f(2.153) ∼= −0.001348357 Positive: 2.153 ≤ x ≤ 2.155
f(2.154) ∼= 0.0032666013 Positive: 2.153 ≤ x ≤ 2.154

At this point, since f(2.153) is closer to zero than f(2.154) we will accept x = 2.153 as our approximate answer
to ex = 4x.

We will now make the process in the previous example rigorous as an algorithm.

Algorithm 1.3 The high-lo game
The goal is to find a solution to the expression f(x) = 0.

1. First find, by graphing or trial and error a and b so that a < b and f(a) and f(b) have different signs.
These are your initial endpoints of an interval
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2. Pick a point c between the current endpoints of the interval containing a solution.

3. Compute f(c).

4. If f(c) has the same sign as the value of f(x) on the left endpoint, c replaces the left endpoint; otherwise
it will have the same sign as the value of f(x) on the right endpoint and c replaces the right endpoint.

5. If the new endpoint is close enough to zero (depends on what you’re doing) you are done. Otherwise go to
Step 2.

When the high-lo game is programmed into a computer, Step 2 simply chooses c to be in the middle of the
interval. A human being with a graph can often chop off more than half the interval by choosing c well. Choice
of c in the middle of the interval also cause the decimals of the endpoints to build up really fast - picking rounder
numbers can make the process easier for a human running the high-lo game with a hand calculator.

Many calculators have the ability to run a high-lo game, or a more sophisticated root-finding algorithm. The
high-lo game lets you solve expressions with a really cheap calculator that is mostly for balancing a checking
account. If your calculator has a “solve” or “find roots” function it is a good idea to learn to use it.

Exercises

Exercise 1.67 Factor the following polynomials. The root-factor theorem will help.

a) x3 + x2 − 10x+ 8. b) x3 − 2x2 − 4x+ 8. c) x3 − 2x2 − 6. d) 2x3 + 7x2 + 7x+ 2. e) 4x3 − 8x2 − x+ 2. f)
x3 + 3x2x+ 3.

Exercise 1.68 Solve the following equations.

a) x3 − 4x2 + x+ 6 = 0. b) x3 − x2 − 3x+ 2 = 0. c) x3 − 27 = 0. d) x3 + 3x2 − x− 3 = 0. e) x4 − 16 = 0.
f) x3 − 3x2 + 3x− 1 = 0.

Exercise 1.69 Using a hi-lo game solve 4ln(x) = x. There are two solutions: approximate them both to three
decimals.

Exercise 1.70 Using a hi-lo game solve exp(x) = x2 + 4. There is one solution, approximate it to 3 decimals.

Exercise 1.71 Using a hi-lo game solve x3 + x2 + 2x − 6 = 0. There is one solution: approximate it to 3
decimals.

Exercise 1.72 Demonstrate logically that f(x) = ax3 + bx2 + cx+ d = 0 must have at least one solution. Hint:
what does the graph of functions of this form look like?
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Still Alive?



Chapter 2

Sequences, Series, and Limits

In this chapter we will introduce the mathematical constructs sequences and series and, in order to deal with
them, we will introduce the first version of one of the central tools of advanced mathematics, the limit. Sequences
are (possibly infinite) ordered lists of numbers. Series are obtained by adding up the numbers in a sequence in
the order in which they appear in the sequence. Limits are a tool for dealing with infinite lists or sums; they
may let us add up an infinite number of numbers or convince us it is impossible, depending on the membership
of the list. We will focus on geometric series which have a number of applications in financial mathematics.

Lending, interest, and related financial instruments are key to making a modern economy work. Interestingly,
loans and interest are very old issues in human civilization. Interest or excessive interest (called usury) is strongly
condemned by Roman Law and many major religions. Even the immortal bard weighed in on the issue through
his character Polonius. The first serious text on financial mathematics was published in 1613 demonstrating that
finance is one of the founding applications of the mathematical sciences. It contained tables that pre-computed
compound interest at various rates of interest, a useful tool in a society without out modern access to machine
computation.

Take no usury or interest from
him; but fear your God, that your
brother may live with you. You
shall not lend him your money for
usury, nor lend him your food at
a profit.
–Leviticus 25:36-37.

O ye who believe! Devour not
usury, doubling and quadrupling
your lendings. Observe your duty
to Allah, that ye may be success-
ful.
–Qur’an 3:130.

Neither a borrower nor a lender
be, For loan oft loses both itself
and friend, And borrowing dulls
the edge of husbandry.
–Hamlet Act 1, scene 3.

Arithmeticall Questions

Touching the buying or exchange of
annuities; taking of leases for fines, or
yearly rent; purchase of fee-simples;
dealing for present or future posses-
sions; and other bargaines and ac-
counts, wherein allowance for disburs-
ing or forbeareance of money is in-
tended; briefly resolued, by means of
certain breuiats, calculated by R.W.
of London, practitioner in the arte
of numbers. Examined also and cor-
rected at the presse, by the author
himselfe.

(The first book dealing with interest and other
financial mathematics, by Richard Witt, pub-
lished in 1623.)

51
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2.1 What are Sequences and Series?

Consider the following picture, created by coloring a square with a side length of one:

The colored regions divide the square into pieces, each half the size of the one before. The five largest regions
have been annotated with their respective fractions of the total area of the square. Note that:

1. Every point in the square belongs to one of the colored regions, and

2. no point belongs to two different colored regions.

From this we deduce that the sum of the areas of the regions equals the area of the square. This means that

1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ · · · = 1

This is a bit problematic because the sum on the left goes on forever as indicated by the use of ellipses (“· · · ”).
The picture demonstrates that we can add up an infinite list of numbers and get a finite total. Keep this example
in mind as we develop the techniques needed to work with sequences and series.

Definition 2.1 A sequence is a list of numbers. If the list is finite:

{3, 7, 11, 15, 19, 23}

then we say the sequence is finite. If the list is infinite:{
1
3
,

1
9
,

1
27
,

1
81
,

1
243

, . . .

}
Then we say the sequence is infinite.
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Example 2.1 Since ellipsis notation can be ambiguous sometimes we have a more precise way of specifying
infinite sequences. The second example in the definition above is supposed to be all positive, whole-number
powers of 1

3 . We introduce a whole number parameter n and write{(
1
3

)n}∞
n=1

The n = 1 and ∞ at the top and bottom of the right hand bracket indicate which values n can take on; all values
one or more, but by convention not ∞ itself, which is not a number.

This notation can also be used for finite sequences. For example

{2n}10n=0

is a shorter way to write {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}. Even though it is finite you probably would not
want to write {(

3
4

)n}100

n=1

as an explicit list. The final term of this series is:

515377520732011331036461129765621272702107522001
1606938044258990275541962092341162602522202993782792835301376

which is sort of long.

Our definition of series is based on our definition of sequences. A series is the result of adding up a sequence.

Example 2.2 The object:
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

is a sequence while
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

is a series. This series has a sum or value of 55.

Definition 2.2 A series is a list of numbers that are to be added up in the order given. If the list is finite:

3 + 7 + 11 + 15 + 19 + 23

then we say the series is finite. If the list is infinite:

1
3

+
1
9

+
1
27

+
1
81

+
1

243
+ · · ·

Then we say the series is infinite. In the next section we will learn how to tell that the infinite series in this
example has a sum of 1

2 .

Finite sums and series are just notational innovations, an increase in the vocabulary of our mathematical lan-
guage. The infinite versions of these objects, however, can be well behaved or badly behaved. This notion of
good or bad behavior requires the idea of a limit.

Definition 2.3 Suppose that S = {a1, a2, a3, . . .} is an infinite sequence. Then we say the number L is the limit
of the sequence S if for every positive number ε we can find a number N (which can be different for different
values of ε) so that all terms ai, for which i ≥ N , differ from L by less than ε.

Informally, the number L is the limit of the sequence S if the members of S eventually get and stay closer to L
than any fixed, positive distance.
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Example 2.3 The limit of {
1
n

}∞
n=1

is 0. To see this notice that for any positive number ε we can round 1
ε up to the nearest integer N to find N so

that 1
N , 1

N+1 , 1
N+2 , . . . are all smaller than epsilon and therefore closer to zero than ε.

Remember that the distance between two numbers a and b is |a− b|, the absolute value of their difference.

An even more informal way to think of the limit of a sequence is this. If the sequence is approaching a value L
then that number is the limit. If the sequence fails to approach any single number L then it does not have a
limit; we might also say the limit of such a sequence is undefined.

There are three common behaviors for a sequence:

1. Approach a limit L.

2. Jump around without settling anywhere.

3. Grow toward ∞ (or −∞).

Example 2.4 Examples of the three types of sequence behavior

1. The sequence {
n

n+ 1

}∞
n=0

takes on the values {0, 1
2 ,

2
3 ,

3
4 ,

4
5 ,

5
6 , . . .}. Since the top and bottom of the fractions are getting closer and

closer it would not be too hard to show that L = 1 is the limit of this series.

2. The sequence
{(−1)n}∞n=0

takes on the values {1,−1, 1,−1, 1,−1, 1,−1, . . .}. Since the values 1 and -1 both occur infinitely often,
adjacent terms of the sequence are a distance of two apart infinitely often. This makes it impossible for the
sequence to approach a value L; the sequence jumps around.

3. The sequence
{2n}∞n=0

takes on the values {1, 2, 4, 8, 16, 32, 64, 128, 256, . . .}. Since the values grow larger indefinitely this sequence
diverges to infinity. We can say that the limit of this sequence is infinity, but this is another way of saying
the sequence fails to have a limit: again, ∞ is not a number.

To show that a sequence diverges to infinity you must show that it eventually gets larger than any finite number.
For the third sequence above this is easy. For a constant c let n be the next whole number larger than log2(c).
Then 2n, which is a member of the sequence, must be bigger than c and we have demonstrated divergence.

Now that we have sequences at least somewhat under control, we are ready to extend our tools to series. Oddly,
the extension is performed by constructing a sequence from the series we are interested in.

Definition 2.4 If R is the series a1 + a2 + a3 + · · · then the sequence of partial sums of R is the sequence

{a1, (a1 + a2), (a1 + a2 + a3), (a1 + a2 + a3 + a4), . . .}

The nth term of the sequence of partial sums for a series R is the sum of the first n terms of R.
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Example 2.5 Partial sums of powers of 1/2
Suppose R is the series

1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ · · ·

which we already know adds to 1. The sequence of partial sums is:{
1
2
,

(
1
2

+
1
4

)
,

(
1
2

+
1
4

+
1
8

)
,

(
1
2

+
1
4

+
1
8

+
1
16

)
,

(
1
2

+
1
4

+
1
8

+
1
16

+
1
32

)
, . . .

}
If we do the addition we get {

1
2
,

3
4
,

7
8
,

15
16
,

31
32

}
From this we see the general form of the sequence of partial sums is{

2n − 1
2n

}∞
n=0

The more impatient among the readers may be wondering why we went to all the trouble to define the sequence
of partial sums. The answer is that the whole notion of a series converging depends on its sequence of partial
sums.

Definition 2.5 Convergence of a series
A series has a sum L if and only if its sequence of partial sums converges to L as a limit. In this case we say

the series converges to L.

It is not hard to see that the limit of
{

2n−1
2n

}∞
n=0

is 1. Since this is the sequence of partial sums of 1
2 + 1

4 + 1
8 +

1
16 + 1

32 + · · · from Example 2.5 this limit demonstrates that

1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ · · · = 1

using the definition of convergence of a series.

We are now ready to define some types of sequences that are especially easy to deal with.

Definition 2.6 Monotone sequences.

A sequence S = {an}∞n=0 is increasing if an < an+1 for all n.

A sequence R = {bn}∞n=0 is decreasing if bn > bn+1 for all n.

A sequence that is either increasing or decreasing is said to be monotone.

Definition 2.7 Bounded sequences.
A sequence S = {an}∞n=0 is bounded above if there is a fixed constant c so that c > an for all n.

We say S is bounded below if we can find a constant d so that d < an for all n.

A sequence that is bounded above and below is called a bounded sequence.

Bounded sequences are prevented, by their bounds, from diverging to one, the other, or both infinities. Look at
our favorite series

1
2

+
1
4

+
1
8

+
1
16

+
1
32

+ · · ·

The sequence of partial sums grows, but by a smaller amount each time, and so the sequence increases but, since
it totals one, is bounded above. This phenomenon happens fairly often and it is formalized in the following fact.
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Fact 2.1 Bounded, monotone sequences

This fact has three versions:

1. A bounded, monotone sequence converges to a limit.

2. An increasing sequence that is bounded above converges to a limit.

3. A decreasing sequence that is bounded below converges to a limit.

Let us revisit the sequence of partial sums of the powers of 1/2:{
2n − 1

2n

}∞
n=0

Notice that the sequence grows at each step (is increasing) but never grows beyond 1. It is thus an example of
an increasing sequence that is bounded above (by 1). It is sometimes possible to prove that a sequence has a
limit, even when we cannot compute it.

Example 2.6 Using the monotone sequence fact.
Problem: Demonstrate that the sequence {

1
n

}∞
n=1

has a limit.

Strategy: Prove the sequence is decreasing and find a lower bound. Notice that this sequence has the values
{1, 1/2, 1/3, 1/4, 1/5, . . .}. Since 1, 2, 3, 4, 5, . . . are getting bigger, it is clear their reciprocals are getting smaller.
This means that the sequence is decreasing. Since every term of the sequence is positive, it follows that the
sequence is bounded below by zero. This means that the sequence is a decreasing sequence that is bounded below
and so, by the fact, has a limit.

Since the terms of the sequence get as close to zero as you like, it is easy to see that the limit is zero.

Definition 2.8 Mathematical notation for limits.
If a sequence S = {a1, a2, a3, . . .} has the number L as a limit, then the mathematical notation for this situation
is

Lim

n→∞
an = L

Example 2.7 Using limit notation. Drawing on early examples in this section:

Lim

n→∞

(
n

n+ 1

)
= 1

Lim

n→∞

(
1
n

)
= 0

One of the more useful parts of Chapter 1 was that it listed algebraic properties of the operators and functions
that it was explaining. It turns out that limits have a number of useful properties as well. These properties can
be used to work limit problems.
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Fact 2.2 Algebraic properties of limits.
Suppose that S = {a1, a2, a3, . . .}, R = {b1, b2, b3, . . .} are both sequences that have limits as follows:

Lim

n→∞
an = L

Lim

n→∞
bn = M

If c is a constant then:

1. Lim
n→∞ (c · an) = c · L

2. Lim
n→∞ (an + bn) = L+M

3. Lim
n→∞ (an − bn) = L−M

In other words, constant multiples, sums, and differences of sequences that have limits are also sequences that
have limits.

Example 2.8 Using the algebraic properties of limits.
We already know the following pairs of limits:

Lim

n→∞

(
n

n+ 1

)
= 1

Lim

n→∞

(
1
n

)
= 0

These imply, by using the algebraic properties of limits, that

Lim

n→∞

(
3n
n+ 1

)
= 3× Lim

n→∞

(
n

n+ 1

)
= 3× 1 = 3

Lim

n→∞

(
1
n

+
n

n+ 1

)
=

Lim

n→∞

(
1
n

)
+

Lim

n→∞

(
n

n+ 1

)
= 0 + 1 = 1

In order to have a limit, a series must have a sequence of partial sums that converges. That, in turn, means that
the terms of the series have to get very small (in absolute value) as n grows or they will mess up the convergence.
A more precise statement of this is the following.

Fact 2.3 A test for failure to converge.
Suppose that a1 + a2 + a3 + · · · is a series. If the sequence

{a1, a2, a3, . . .}

does not converge to zero then the series itself does not have limit (its sum is undefined).

WARNING! The fact above is one sided. If the sequence does converge to zero then the series may converge
but it also may diverge.

Definition 2.9 general term of a series
In a series a1 + a2 + a3 + · · · we call an the general term of the series.

Another way to state the fact that permits us to test for failure of a series to converge is: “If a series converges
then the corresponding sequence of general terms must converge to zero.” In order to reinforce the warning we
now give an example of a series that fails to converge in spite of the fact its sequence of general terms does
converge to zero.
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Example 2.9 A divergent series whose general term converges to zero.
The series

1 +
1
2

+
1
3

+
1
4

+
1
5

+ · · ·

does not have a limit. To see this we will replace the terms as follows:

1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16 · · ·

are replaced with

1 1
2

1
4

1
4

1
8

1
8

1
8

1
8

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16 · · ·

The new terms are less than or equal to the original ones and all the terms are positive. This means that the
sum of the new terms cannot be larger than the sum of the old terms.

Group the terms of the new sequence:

1 +
1
2

+
(

1
4

+
1
4

)
+
(

1
8

+
1
8

+
1
8

+
1
8

)
+
(

1
16

+
1
16

+
1
16

+
1
16

+
1
16

+
1
16

+
1
16

+
1
16

)
+ · · ·

= 1 +
1
2

+
2
4

+
4
8

+
8
16

+ · · ·

= 1 +
1
2

+
1
2

+
1
2

+
1
2

+ · · ·

Which means the second sequence is one plus an infinite sum of one-halfs. This will eventually grow past any
finite number and so diverges to infinity. The original sequence therefore has a sum that is at least infinity; it
too must diverge to infinity and so fails to have a limit. The sum of reciprocals is a famous series with its own
name. It is called the harmonic series.

The trick used to demonstrate that the harmonic series does not have a limit uses a useful and intuitive fact
that we will now state explicitly.

Fact 2.4 The comparison tests.

Suppose that a1 + a2 + a3 + · · · converges to a limit L and that an ≥ 0 for all n. Then if 0 ≤ bn ≤ an we may
deduce that b1 + b2 + b3 + · · · also converges to a limit that is no larger than L.

On the other hand if a1 + a2 + a3 + · · · diverges to ∞ and we have bn ≥ an for all n then b1 + b2 + b3 + · · · must
also diverge to infinity.

The “On the other hand” version of this fact is the one used to demonstrate the divergence of the harmonic
series. The two halves of the fact above may be stated informally as follows. A series of positive terms that
are all smaller, term-by-term, than a series that has a limit must, itself have a limit. A series of terms that are
larger, term-by-term, than a series that diverges to infinity must also diverge to infinity.

Example 2.10 Demonstrating divergence by comparison

Problem: Show that
1 +

1√
2

+
1√
3

+
1√
4

+
1√
5

+ · · ·

diverges to infinity.
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Strategy: Use comparison to the harmonic series. Notice that if n ≥ 2 that taking the square-root makes the
number smaller. This means that n >

√
n and so their reciprocals share the opposite relationship:

1
n
<

1√
n

This means that the series of sums of reciprocals of square roots is larger than the series of sums of reciprocals
(which is the harmonic series). Since we have already demonstrated that the harmonic series diverges to infinity,
comparison permits us to deduce that the sequence in this example also diverges to infinity.

At this point we introduce sigma notation or summation notation for working with series.

Definition 2.10 So far we have used explicit sums for series. The symbol
∑

means “add up”. It can be used
with finite or infinite series. The finite series

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

becomes
10∑
n=1

n

The variable n is called the index of the sum and its limits are given at the top and bottom of the sum-symbol.
The infinite series

1 +
1
3

+
1
9

+
1
27

+
1
81

+ · · ·

becomes
∞∑
n=0

1
3n

If a series has a limit we say it converges, otherwise we say it diverges. In order for comparison to be a
useful technique for demonstrating convergence or divergence we need to have many sequences available whose
divergence or convergence behavior we already know. The following fact is handy in this regard.

Fact 2.5 p-series
If p is a real number then the series

∞∑
n=1

1
np

converges for all p > 1 and diverges for all p ≤ 1.

Notice this fact, with p = 1, includes the harmonic series. Demonstrating that this fact is true for p 6= 1 requires
tools that we will develop in Chapter 5, but we can start using it now. Notice that p-series make Example 2.10
much simpler. The sequence in that example is just a p-series for p = 1/2 and so obviously diverges (if you have
the p-series fact).

Exercises

Exercise 2.1 Write as an explicit list, using ellipses if you need to, the following sequences. For infinite series
use at least four numerical terms.

a)
{
n2 + 1

}6

n=1
. b)

{
n+2
n+3

}7

n=0
. c) {3n − 2n}5n=0. d)

{
2n

3n

}∞
n=1

. e)
{(

1
4

)n}∞
n=0

. f)
{

n2

n2+1

}∞
n=0

.
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Exercise 2.2 Use curly brace notation to write the following sequences. You will need to find the pattern to
make a formula. Finding a formula for (f) is possible but very difficult. You may explain the pattern instead if
you wish.

a) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

b) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .}

c) {1, 3, 5, 7, 9, 11, . . .}

d) {2, 3, 5, 9, 17, 33, 65, 128, 257, . . .}

e) {1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, . . .}

f)
{

1, 1
2 ,

2
3 ,

3
5 ,

5
8 ,

8
13 ,

13
21 , . . .

}
Exercise 2.3 For each of the sequences in Exercises 2.1 and 2.2 state if the sequence is finite or infinite.

Exercise 2.4 For each of the following infinite series state which of the three behaviors mentioned in this section
the series exhibits and, if it converges to a limit, find the limit.

a)
{(

1
3

)n}∞
n=0

. b)
{(
− 1

2

)n}∞
n=0

. c) { 3
√
n}∞n=1. d)

{
n−2

}∞
n=1

. e) {en}∞n=2.

f) {ln(n)}∞n=2. g) {1 + (−1)n}∞n=0. h)
{

(−2)n

1−2n

}∞
n=0

. i)
{
n−1
n+1

}∞
n=1

. j)
{

3n+5
1+n

}∞
n=0

.

Exercise 2.5 For each of the following series, give the first six members of the sequence of partial sums.

a) 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10.

b) 1
4 + 1

16 + 1
64 + 1

256 + 1
1024 + 1

4096 + · · · .

c) 1− 2 + 3− 4 + 5− 6 + 7− 8 + 9− 10 + 11− 12.

d)
∑∞
n=0

3
2n . e)

∑∞
n=0

(
3
2

)n. f)
∑10
n=1

1
n .

Exercise 2.6 For each of the following infinite series state if the series has a limit or not and give a reason
why.

a)
∑∞
n=1

1
3√n . b)

∑∞
n=1

1
n2 . c)

∑∞
n=0

n
n+1 . d)

∑∞
n=0

5
2n . e)

∑∞
n=1

1
n + 1. f)

∑∞
n=1

n2

n+1 .

Exercise 2.7 Compute the sum of the following series using examples in this section and the algebraic properties
of limits. Some of the series diverge, others have finite sums.

a)
∑∞
n=1

3
2n . b)

∑∞
n=1

5
2n . c)

∑∞
n=0

7n
n+1 . d)

∑∞
n=1

9
n . e)

∑∞
n=1

3n
n+1 −

1
2n . f)

∑∞
n=1

3
2n − 4n

2n+2 .

Exercise 2.8 If
∞∑
0

an = 2 and
∞∑
0

bn = 3

compute the limits of the following series. Remember to simplify your answers.

a)
∑∞
n=0 a+bn. b)

∑∞
n=0 an − bn. c)

∑∞
n=0 2an. d)

∑∞
n=0

1
3bn. e)

∑∞
n=0 7an − 3bn. f)

∑∞
n=0

√
2an −

√
3bn.

Exercise 2.9 For each of the following series, demonstrate by comparison that the series converges or diverges.
Do not compute the limit of the convergent series. You may use the results of Exercise 2.15 if you wish.

a)
∑∞
n=1

2
n . b)

∑∞
n=2

1
n−1 . c)

∑∞
n=1

1
3n2 . d)

∑∞
n=1

1
2n3 . e)

∑∞
n=1

1
n2+n . f)

∑∞
n=2

1
n2−n .
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Exercise 2.10 Using the definition of a limit demonstrate that

Lim

n→∞
1
n2

= 0

Exercise 2.11 Using the definition of a limit demonstrate that

Lim

n→∞
2n2

n2 + 1
= 2

Exercise 2.12 Demonstrate that the sequence

{ln(n)}∞n=2

diverges to infinity.

Exercise 2.13 Demonstrate that the sequence {
n2

n+ 1

}∞
n=2

diverges to infinity.

Exercise 2.14 If S = {a1, a2, a3, . . .} is a bounded sequence which is not monotone but the sequence {ak, ak+1, ak+2, . . .}
is monotone for some positive whole number k, demonstrate logically that S has a limit.

Exercise 2.15 Demonstrate logically that the two series

∞∑
n=0

an or
∞∑
n=k

an

for k ≥ 0 either both converge or both diverge.

Exercise 2.16 The colored partitioned square near the beginning of this section was created using the following
steps.

1. Color half the remaining space from the right.

2. Color half the remaining space from the top.

3. Color half the remaining space from the right.

4. Color half the remaining space from the bottom.

5. Go back to step 1.

The steps continue forever, but we stop drawing the picture after filling 16 areas, because after that you cannot
see the areas. This square corresponded to the series

∞∑
n=1

(
1
2

)n
Question: which sequence does the picture correspond to if, instead, we color one-third of the remaining space in
steps 1-4?

Exercise 2.17 Draw the picture, based on coloring one-third of the remaining area, described in Exercise 2.16.
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Exercise 2.18 Find the next three terms of the sequence 1, 1, 2, 3, 5, 8, 13, 21, . . . assuming it follows a simple
rule.

Exercise 2.19 Find the next three terms of the sequence 1, 1, 1, 3, 5, 9, 17, 31, 57, . . . assuming it follows a simple
rule.

Exercise 2.20 Find, to four decimals,
Lim

n→∞
an+1

an

if an is the sequence from Exercise 2.18

Exercise 2.21 Can you find a simple mathematical rule or algorithm for the following finite sequence?

{27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206,
103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502,
251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858,
2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433,
1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1}

Exercise 2.22 Compute the finite sequence like that in Exercise 2.21 that starts with 38, instead of 27. It ends
at 1.

2.2 Geometric Series

Geometric series occur whenever adjacent terms of a series have the same ratio. The sequence

1 =
∞∑
n=0

(
1
2

)n
that we used extensively as an example in the last section is a geometric series: the ratio of adjacent terms is
always 1/2. We are now ready for a formal definition.

Definition 2.11 A geometric series is any series where the ratio r of adjacent terms is constant. Such series
always have the form

m∑
n=0

d · rn

if they are finite and
∞∑
n=0

d · rn

if they are infinite. The number d is the first term of the sequence while r is called the ratio of the sequence.

Example 2.11 Testing if a series is geometric.
Problem: which of the following series are geometric?

1.
∑∞
n=1

1
n .

2.
∑∞
n=0

3
4n .

3.
∑∞
n=2

2n

52n .

Strategy: See if the ratio of adjacent terms an+1
an

is constant.
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1. The ratio of adjacent terms is
1

n+1
1
n

=
n

n+ 1

which is not constant; the sequence is not geometric.

2. The ratio of adjacent terms is
3

4n+1

3
4n

=
3 · 4n

3 · 4n+1
=

1
4

which is constant; the sequence is geometric.

3. The ratio of adjacent terms is
2n+1

52(n+1)
2n

52n

=
2n+1 · 52n

2n+1 · 52n+2
=

2
52

=
2
25

which is constant; the sequence is geometric.

We are interested in geometric series for two reasons. First, they solve a number of problems in financial
mathematics. Second, there is an exact formula. In order to get the exact formula we need to return briefly to
the land of algebra. A particular form of one of our algebra facts says

(1− x)(1 + x) = 1− x2

Let’s generalize this.

(1− x)(1 + x+ x2) =
(
(1 + x+ x2)− x(1 + x+ x2)

)
=

(
1 + x+ x2 − x− x2 − x3

)
= 1− x3

Notice that all the middle terms canceled out. Does this happen in the next version of the expression?

(1− x)(1 + x+ x2 + x3) =
(
(1 + x+ x2 + x3)− x(1 + x+ x2 + x3)

)
=

(
1 + x+ x2 + x3 − x− x2 − x3 − x4

)
= 1− x4

In fact it is always the case that

(1− x)(1 + x+ x2 + · · ·+ xk) = 1− xk+1

because all the middle terms cancel out. This expression is the key to finding an exact formula for finite geometric
series.

Fact 2.6 Finite geometric series formula.
We know that

(1− x)(1 + x+ x2 + · · ·+ xk) = (1− xk+1)

If we divide by (1− x) we get

1 + x+ x2 + · · ·+ xk =
1− xk+1

1− x
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If we let x = r and we get

1 + r + r2 + · · ·+ rn =
1− rk+1

1− r
Multiply both sides by d and we get

d+ dr + dr2 + · · ·+ drk = d
1− rk+1

1− r
Converting the left hand side to sigma notation we obtain the classical formula for geometric series:

k∑
n=0

d · rn = d · 1− rk+1

1− r

Not that we have the formula, let’s practice using it.

Example 2.12 Problem: Compute

1 + 2 + 4 + 8 + 16 + · · ·+ 29 + 210

Since this is
∑10
n=0 2n we get

1− 211

1− 2
=

1− 2048
1− 2

=
−2047
−1

= 2047

Problem: Compute
8∑

n=0

2 · 5n

Apply the finite geometric series formula and we get:

2 · 1− 59

1− 5
= 2 · 1− 1953125

−4
= 2 · 1953124

4
= 976562

We are now ready to derive the infinite geometric series formula, an endeavor that will require us to use limits.
We need to understand the behavior of the quantity rk where r is the ratio of a geometric series.

Example 2.13 Behavior of powers of a constant.
Consider the following six examples of the sequence of powers of a constant c, starting with c0 = 1.

Constant Powers Behavior

-2 1,-2,4,-8,16,-32,. . . Growing in both directions; diverges.

-1 1,-1,1,-1,1,-,1,. . . Jumping back and forth.

− 1
2 1,−1

2 ,
1
4 ,
−1
8 ,

1
16 ,
−1
32 , . . . Jumping back and forth but shrinking to zero.

1
2 1, 1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
32 , . . . Shrinking to zero.

1 1,1,1,1,1,1,. . . Stays at one.

2 1,2,4,8,16,32,. . . Grows indefinitely.
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These behaviors cover all the possibilities for constants in the five following ranges:

1. Less than minus one: jumps around while diverging.

2. Equal to minus one: jumps around without converging.

3. Strictly between -1 and 1: converges to zero.

4. Equal to one: stays one.

5. Greater than one: grows indefinitely.

Recall that a series must diverge if its sequence of general terms does not converge to zero. This tells us that
there is no hope an infinite geometric series will converge unless its ratio is strictly between one
and negative one.

With the result from Example 2.13 we are ready to create the infinite geometric series formula.

Fact 2.7 The infinite geometric series formula. We start with the finite geometric series formula.

d · 1− rk+1

1− r
=

k∑
n=0

d · rn

Take the limit as k goes to infinity of both sides:

Lim

k →∞
d · 1− rk+1

1− r
=

Lim

k →∞

k∑
n=0

d · rn

Since 1, d, and r don’t involve k we can simplify the limit as follows:

d ·
1− Lim

k→∞r
k+1

1− r
=
∞∑
n=0

d · rn

We already know that if −1 < r < 1 that Lim
k→∞r

k+1 = 0 and that otherwise the limit is undefined. Therefore:

d

1− r
=
∞∑
n=0

d · rn

which is the infinite geometric series formula.

Example 2.14 Infinite geometric series.
Compute the following infinite geometric series:

1.
∑∞
n=0

5
2n

2.
∑∞
n=0

1
(−3)n

3.
∑∞
n=0 2q−n where q > 1 is a whole number.

4.
∑

)∞n=01.1n.

Strategy: identify the first term d and the ratio r and apply the infinite geometric series formula.

1. d = 5, r = 1/2 so the sum is 5
1−1/2 = 10.
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2. d = 1, r = −1/3 so the sum is 1
1−(−1/3) = 1

4/3 = 3
4 .

3. d = 2, r = q−1 = 1/q so the sum is 2
1−1/q = 2

q−1
q

= 2q
q−1 .

4. d = 1, r = 1.1 so the sum does not exist: r is not strictly between minus one and one.

A tricky series: the bouncing ball

The ball above is dropped from a height of two meters. What is the total vertical distance it travels?

The first fall is 2 meters and, after that each fall is 3
4 the distance of the one before. This means the total

distance the ball falls is given by the geometric series

2 + 2 · 3
4

+ 2 · 9
16

+ 2 · 27
64

+ · · ·

The problem is this: the ball also rises. The first rise is as high as the second drop meaning that the rising
distance is given by the series

2 · 3
4

+ 2 · 9
16

+ 2 · 27
64

+ 2 · 81
256

+ · · ·

That means the total vertical distance the ball moves is the sum of these two series with d = 2, r = 3/4
and d = 2 · 3

4 = 3/2, r = 3/4 yielding an answer of

2
1− 3

4

+
3/2

1− 3
4

=
2

1/4
+

3/2
1/4

= 2× 4 +
3
2
× 4 = 8 + 6 = 14 meters

A real ball, of course, does not bounce forever and so the number of bounces the ball makes isn’t infinite. At
the point at which the ball stops bouncing the infinite number of remaining terms of the series add up to a very
small number meaning that 14 meters is quite close to the correct answer.
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Exercises

Exercise 2.23 Which of the following series are geometric? Both state the answer and give a reason.

a)
∑100
n=0

(
3
4

)n. b)
∑100
n=0

7
3n . c)

∑∞
n=1

1−n
1+n . d)

∑∞
n=1

n2

n4+1 . e)
∑∞
n=0

(1+1)n

(1+1+1)n . f)
∑∞
n=0

3n

23n .

Exercise 2.24 Compute the following finite geometric sums. Hint: recover the ratio by dividing adjacent terms
if it is not obvious.

a) 1+2+4+8+16+32+64+128+256+512+1024+· · ·+8192. b) 9+27+81+243+729+· · ·+59049+117147.

c) 1 + 3
2 + 9

4 + · · ·+ 2187
128 . d) 1 + 1.1 + 1.12 + 1.13 + · · ·+ 1.18.

e) 1− 1
3 + 1

9 −
1
27 + · · · − 1

19683 . f) a+ ab+ ab2 + ab3 + · · ·+ ab17.

Exercise 2.25 Compute the following infinite geometric sums. Remember that some of them may be undefined.

a)
∑∞
n=0

2
3n . b)

∑∞
n=0 3×

(
1
2

)n. c) 7 + 7/3 + 7/9 + 7/27 + 7/81/+ 7/243 + · · · .

d) 0.1 + 0.01 + 0.001 + 0.0001 + 0.00001 + 0.000001 + · · · . e)
∑∞
n=0

2n

5n . f)
∑∞
n=0

2n

(−3)n .

g)
∑∞
n=0 3 · (1.02)n h)

∑∞
n=0

5n

4n . i)
∑∞
n=0 3× (−0.9)n. j)

∑∞
n=0

3
4·5n .

Exercise 2.26 Compute the sum of the series that is the answer to Exercise 2.16 in the previous section.

Exercise 2.27 The picture above is similar to the picture at the beginning of the first section of this chapter,
but it goes by fifths rather than halves. It also gives a series that adds up to one. Figure out series in the form

∞∑
n=0

d · rn

Exercise 2.28 Suppose that a ball is dropped three meters and bounces half as high as the last fall each time.
Find the vertical distance traveled by the ball.
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Exercise 2.29 Suppose that a ball is dropped one meter and bounces 90% as high as the last fall each time.
Find the vertical distance traveled by the ball.

Exercise 2.30 Suppose we have a series the members of which are computed as follows. Start with 10. To get
the next member of the series, divide by two and add 3. Using geometric series, find the limit of the series. Hint:
write out the first five terms of the series without simplifying.

Exercise 2.31 True or false: if we were to start the series in Problem 2.30 at 12 instead of 10 we would get the
same answer. Explain why your answer is correct.

Exercise 2.32 Consider two jobs. The first has a $10,000 starting salary and a raise of 5% each year. The
second has a $15,000 starting salary and a raise of 2% each year. How many years before the total earning of
the first job are bigger than the total earning of the second job? Hint: algebra alone is not enough.

Exercise 2.33 The outermost turn of a spiral shown above is 10 meters long. Each turn of the spiral is 87.5%
as long as the one before. Find the total length of the spiral to the nearest centimeter.

Exercise 2.34 Compute and simplify
∞∑
n=0

(
1

x2 + 1

)n
given that x is a real number.

Exercise 2.35 Suppose we have a string and snip out the middle quarter of the string, leaving us with two
pieces. We then snip out the middle quarter of the remaining pieces, leaving us with four pieces of string. If we
could do this forever, how much string would be left?

Exercise 2.36 Two men starting 20km apart each ride their bicycles directly toward one another at 10km/hr.
A well trained bird flying at 50km starts at one bicyclist and flied to the other. As it reaches a cyclist it turns
and flies back to the other. Assuming it can turn on a dime and instantly reverse it speed compute the distance
traveled by the bird.
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2.3 Applications to Finance

Compound interest is fairly simple if we just let the money or debt accumulate. If, on the other hand, we make
deposits or payments then different amounts of money are subject to interest for different amounts of time. This
is a natural way in which we find series in finance.

Example 2.15 Suppose that we deposit $100.00 at the end of each month in a Christmas account, starting in
January, and that the bank pays 5% annual interest compounded monthly. Assuming you draw the money out
December 1st to do your gift shopping, what is the total amount and what was the interest? One thing we can
do is figure the whole thing out, month by month:

Month Balance Interest Deposit

January 0 0 100

February 100 0.42 100

March 200.42 0.84 100

April 301.26 1.26 100

May 402.52 1.68 100

June 504.20 2.10 100

July 606.30 2.53 100

August 708.83 2.95 100

September 811.78 3.38 100

October 915.16 3.81 100

November 1018.97 4.25 100

December 1123.33

Which means we have earned $23.33 in interest over the course of eleven months. Lets look at this as a
series problem. The monthly interest is 5

12% which means that the multiplier is 1 + 5
1200 = 1205

1200 = 241
240 in lowest

terms. This means the steps in the above table are:(
· · ·
(((

100 · 241
240

)
+ 100

)
· 241

240
+ 100

)
· 241

240
· · ·+ 100

)
which is

100
(

241
240

)10

+ 100
(

241
240

)9

+ · · · 100
(

241
240

)8

+ · · · 100
(

241
240

)2

+ 100
(

241
240

)1

+ 100
(

241
240

)0

a finite geometric series with d = 100, r = 241
240 , and index n running from 0 to 10. Applying the geometric series

formula we get

100 ·
1− 241

240

11

1− 241
240

∼= $1123.21

The difference twelve cents is the result of more rounding the last cent up than down when the table was computed.

With only eleven compounding periods, the table in Example 2.15 is manageable. If we has an account where
we were saving for a car for five years, or if our Christmas club account was compounded monthly, the size of the
table would get annoying, rapidly. While we did a specific example in Problem 2.15, there is a general method
lurking under the surface.
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Fact 2.8 Formula for compound interest with deposits.
Suppose that a deposit of D is made for c compounding periods with a per-compounding period interest of i%.

Then, following the reasoning in Example 2.15 we get a final balance B of

B = D ·
1− (1 + i

100 )c

1− (1 + i
100 )

= D ·
(1 + i

100 )c − 1
i

100

Notice that the formula assumes that the first deposit is made at the end of the compounding period after
interest is paid for that period. If the first deposit was made at the beginning of the compounding period we
would get a slightly different formula, which you are asked to derive in the exercises.

Compounded how often? Continuously compounded interest.

Suppose we have an amount deposited at 5% annual interest for four years. How much does it matter how
often the account is compounded?

Compounding Number of Interest Final

period periods per period Multiplier

Yearly 4 5% (1.05)4 ∼= 1.2155

Monthly 48 5/12% (1.00417)48 ∼= 1.2209

Weekly 208 5/52% (1.0009615)208 ∼= 1.2213

Notice that the advantage of more compounding periods is not too large - just over quadrupling the number
of compounding periods from 48 to 208 bought us an added multiplier of 0.0005 or fifty cents if we had
$1000.00 as our initial deposit.

It turns out that the effect of having more compounding periods does increase the multiplier but that
increase is bounded above. That upper bound can be found by taking the limit as the number of com-
pounding periods goes to infinity. Suppose we have an annual interest rate of r and c compounding periods.
Then the multiplier for one year is (

1 +
r

c

)c
because we multiply by one plus the interest per compounding period a number of times equal to the
number of compounding periods. The limit, to find the upper bound on the multiplier is:

Lim

c→∞

(
1 +

r

c

)c
= er

The mechanics of computing this limit are beyond the scope of this course, but we can use the result which
is called continuously compounded interest. It is also interesting to notice that e, the base of the
natural logarithm, appears naturally in the process.

If principal of P is continuously compounded at a rate of r for t years then the final amount is

Pert

Notice that t may be a decimal number of years.

Another similar problem to compound interest with deposits is paying off a loan in some number of equal
payments.
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Example 2.16 Amount of a loan payment.

Suppose we borrow $3000.00 to pay for a used car at 6% annual interest, compounded monthly. If we want to
pay the loan off in equal monthly payments over three years, what is the monthly payment?

Since we don’t know the monthly payment amount we will make it a variable: p. We start with principal of
$3000.00 and at the end of each month we pay the interest and subtract a payment of p. The monthly interest is
6
12 = 1

2% so the multiplier in each compounding period is (1.005). This means that the amount of money goes:

3000.00

3000.00 · 1.005− p

(3000.00 · 1.005− p) · 1.005− p

((3000.00 · 1.005− p) · 1.005− p) · 1.005− p

...and so on
So after three years (36 compounding periods) the fact the loan is paid off tells us that:

3000.00(1.005)36 − p(1.005)35 − p(1.005)34 − · · · − p(1.005)2 − p(1.005)− p = 0

And we see a geometric series. this means that

3000.00(1.005)36 =
35∑
n=0

p · (1.005)n

Simplifying both sides and applying the geometric series formula we get

3590.04 = p · 1.00536 − 1
1.005− 1

3590.04 = 39.34p

p = $91.26

The total amount paid is $91.26× 36 = $3285.36 so we see that $285.36 is the total interest paid over the course
of the loan.

As before, there is a general formula lurking in the specific example. If the geometric series caused by making
payments is equal to the principal times a power of the multiplier equal to the number of compounding payments
then we can get the payment.

Fact 2.9 Formula for the amount of a loan payment.
Suppose that the principal is P , the multiplier in each compounding period is m, and the number of compounding

periods is c. Then, following example 2.16 we see that if p is the payment then

Pmc = p · m
c − 1

m− 1

Solving for p we get

p =
Pmc(m− 1)
mc − 1
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Notice that this formula is simpler because it is done in terms of the multiplier m rather than the interest rate.
Remember that if we are paying i% interest in a compounding period the multiplier is m = 1 + i

100 .

We now turn to a problem quite similar to the last one. Given a monthly payment amount, an interest rate, and
the amount of the original loan, we will find the number of payments that will retire a loan. Typically the last
payment will be partial - we are actually looking for a number of months and so it is likely the last payment will
overshoot the loan amount a bit.

Fact 2.10 Finding the number of payments of a given size. Suppose we have a loan of $L and pay $p
dollars a month with an annual interest rate of r%, compounded monthly. Borrowing steps from Example 2.16
and sliding to get everything with a c in it on the same side, we see that

mc

mc − 1
=

p

P (m− 1)

Recall that m = 1 + r
12×100 in this case. We now solve for c and get

mc

mc − 1
=

p

P (m− 1)

mc = (mc − 1)
p

P (m− 1)

mc = mc p

P (m− 1)
− p

P (m− 1)

mc −mc p

P (m− 1)
= − p

P (m− 1)

mc

(
1− p

P (m− 1)

)
= − p

P (m− 1)

mc

(
p

P (m− 1)
− 1
)

=
p

P (m− 1)

mc =
p

P (m−1)
p

P (m−1) − 1

mc =
p

p− P (m− 1)

c = logm

(
p

p− P (m− 1)

)

Giving us a formula for the number of compounding periods c. Remember to round up to the nearest integer
when using this formula.

Example 2.17 Problem: Suppose we take a a loan for $1000.000 at 5% interest compounded annually. If we
pay $200.00 at the end of each year, how many years will it take to pay off the loan?

Strategy: Find the multiplier m and apply the formula for the number of payments. The multiplier is 1+ 5
100 = 1.05

so we get

log1.05

(
200

200− 1000(1.05− 1)

)
= log1.054/3 =

log(4/3)
log(1.05)

∼= 5.89

rounding up, we see it will take six years to pay of the loan with a partial payment in the sixth year.

We’ve already seen that some numbers, negative ones, don’t have logarithms. If we look at the formula for
the number of payments c in Formula 2.10 then the formula will try to take the log of a negative number if
p − P (m − 1) is negative. This is because if we don’t have p > P (m − 1) then the payment is actually smaller
than the interest that accrues and the amount that is owed grows larger in each compounding period.
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Fact 2.11 Minimum amount of a payment
If we make payments p on a loan of P dollars with multiplier m then it must be true that p > P (m− 1) for the
loan to ever be repaid. Equivalently, if i% is the interest rate in each period then we must have p > P i

100 for the
loan to ever be paid off.

Exercises

Exercise 2.37 Suppose a business makes quarterly deposits of $50,000 to an account that pays 4% annual
interest compounded quarterly. Make a table, like the one in Example 2.15 for three years (twelve quarters).

Exercise 2.38 Use a geometric series to find the final balance for Exercise 2.37. Compare the results - what is
the monetary difference due to rounding?

Exercise 2.39 Use a geometric series to find the final balance for Exercise 2.40. Compare the results - what is
the monetary difference due to rounding?

Exercise 2.40 Suppose a prudent student makes monthly deposits $75.00 to an account that pays 3% annual
interest compounded monthly. Make a table, like the one in Example 2.15 for two years (twenty-four months).

Exercise 2.41 Find the final account balance for each of the following monthly deposit amounts d, assuming
interest is compounded monthly.

a) Amount d = $50 for five years at 3%. b) Amount d = $50 for five years at 5%.

c) Amount d = $100 for ten years at 2%. d) Amount d = $75 for six years at 4/25%

e) Amount d = $50 for twenty years at 4% f) Amount d = $10 for fifty years at 3%

Exercise 2.42 For each part of Problem 2.41 find the total interest earned (the amount above the total of the
deposits).

Exercise 2.43 Find the monthly payment to retire each of the following loans with amount L at the stated rate
of interest. Assume the interest is compounded monthly.

a) Loan L = $5000 for five years at 4%. b) Loan L = $5000 for five years at 5%.

c) Loan L = $220, 000 for twenty years at 4$. d) Loan L = $220, 000 for twenty years at 5$.

e) Loan L = $200 for two years at 15%. f) Loan L = $200 for two years at 10%.

Exercise 2.44 For each part of Problem 2.41 find the total interest paid (the amount above the original amount
of the loan).

Exercise 2.45 For each of the following loan amounts L and monthly payment amounts p find the number of
payments needed to retire the loan at the given interest rate. Assume that the interest is annual but that it is
compounded monthly.

a) Loan L = $5000 payment p = $400 at 4%. b) Loan L = $5000 payment p = $400 at 5%.

c) Loan L = $1, 000, 000 payment p = $2600 at 3%. d) Loan L = $1, 000, 000 payment p = $3000 at 3%.

e) Loan L = $2000 payment p = $10 at 4%. f) Loan L = $2000 payment p = $5 at 4%.

Exercise 2.46 A loan, compounded monthly at an annual rate of 6%, is exactly paid off with 127 payments of
$100.00 each. What was the original amount of the loan?
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Exercise 2.47 A loan, compounded monthly at an annual rate of 4%, is exactly paid off with 217 payments of
$40.00 each. What was the original amount of the loan?

Exercise 2.48 You charge $1200 dollars on a card that charges 1% interest per month. If you forget about it
for two years, what is you card’s balance?

Exercise 2.49 You charge $1200 dollars on a card that charges 1% interest per month. What equal monthly
payments will retire the debt in two years?

Exercise 2.50 You charge $1200 dollars on a card that charges 1% interest per month. What is the minimal
payment to keep the debt from growing?

Exercise 2.51 You charge $1200 dollars on a card that charges 1% interest per month. If you forget about it
for two years then what equal monthly payments will retire the debt by the end of the third year (in one more
year)?

Exercise 2.52 A bank will give you a five year loan at $200,000 for a house at 5% interest or at 4.75% interest
if you pay a processing fee of $1000.00 up front. The interest is annual, compounded monthly. Which is the
better deal by the end of the loan? Decide by comparing the amount left to pay after five years.

Exercise 2.53 A bank will give you a three year loan at $100,000 for a house at 3.75% interest or at 3.25%
interest if you pay a processing fee of $1200.00 up front. The interest is annual, compounded monthly. Which is
the better deal by the end of the loan? Decide by comparing the amount left to pay after three years.

Exercise 2.54 If you deposit $200.00 per month at 5% annual interest, compounded monthly then for how many
months do you have to make deposits to be able to withdraw $1000.00 a month forever, once you return and switch
to making withdrawals?

Exercise 2.55 If you deposit $250.00 per month at 5% annual interest, compounded monthly then for how many
months do you have to make deposits to be able to withdraw $1000.00 a month forever, once you retire and switch
to making withdrawals?

Exercise 2.56 Suppose we have a $2000 loan compounded monthly at 4% annual interest. Make a table showing
the number of payment periods required to retire the loan for each of the following monthly payment amounts:
$5, $10, $15, $20, $25, $30, $40, and $50.

Exercise 2.57 Formula 2.8 assumes that the first deposit is made at the end of the first compounding period
and so earns no interest for that compounding period. Find what the formula would be if the first deposit was
made at the beginning of the first compounding period.

Exercise 2.58 Suppose that a company that sells leather couches offers 3% interest on the cost of a $800.00
couch with $50.00 monthly payments. Compare the terms “no payment for the first year”, “no payment and no
interest for the first year”, and “start paying the first month” by computing the number of payments needed to
pay off the couch. The comparison may turn on the decimal part of the number of payments.

Exercise 2.59 A payday loan shop charges 10% monthly interest, compounded daily. If you borrow $200.00
against a paycheck which will show up in 14 days, what is your repayment amount on the loan?

Going Strong?
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Chapter 3

Introduction to Derivatives

In this chapter we will be understand what a derivative is, how to tell if it exists or not, and how to find it if it
does. The ideas of limits and continuity of a function are pillars on which we build the derivative so we begin
with those concepts.

Calculus required continuity, and continuity was supposed to require the
infinitely little; but nobody could discover what the infinitely little might
be.
– Bertrand Russell

Yet in another way, calculus is fundamentally naive, almost childish in
its optimism. Experience teaches us that change can be sudden, dis-
continuous, and wrenching. Calculus draws its power by refusing to see
that. It insists on a world without accidents, where one thing leads log-
ically to another. Give me the initial conditions and the law of motion,
and with calculus I can predict the future – or better yet, reconstruct the
past. I wish I could do that now.
–Steven Strogatz

Calculus has its limits.
– Anon.

3.1 Limits and Continuity

In the previous chapter we saw a bit about limits and how they are used to deal with sequences and series. This
section will give a more in-depth treatment of how they are related to functions. Let’s start with the notation
for the limit of a function at a point.

Definition 3.1 We write
lim
x→a

f(x) = L

for the limit of the function f(x) as x approaches a. The notation also says that the value of the limit is L.
77
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In plain English, f(x) is the function we are dealing with, we have some number on the x axis a, and we want
to know what is going to happen when we plug numbers that are close to a, but not equal to a, into f(x).
Depending on how close we get to a, that will determine how close the value of f(a) is going to be to L. Here
is the punchline, if we keep plugging in numbers that are getting closer and closer to a and those make f(a) get
closer and closer to L, then we say L is the limit of f(x) as x approaches a. If f(a) fails to get closer to L then
L is not the limit. Let’s do an example to make clear what we mean by “closer”.

Example 3.1 Example of the limit of a continuous function.

Consider the parabola f(x) = x2. If we were to ask, what is the limit of x2 as x approaches 3, we could use a
table like the following to help us answer our question.

x f(x) x f(x)

2.0 4 4.0 16

2.5 6.25 3.5 12.25

2.8 7.84 3.2 10.24

2.9 8.41 3.1 9.61

2.95 8.7025 3.05 9.3025

2.99 8.9401 3.01 9.0601

2.999 8.994001 3.001 9.006001

Clearly, as the numbers we plug in are getting closer and closer to 3, their values in the function are getting closer
to 9. This means that 9 is the limit and we say that the limit of x2 as x approaches 3 is 9. Using mathematical
notation:

lim
x→3

x2 = 9

At this point, you are probably asking why we didn’t just plug 3 into x2 and call it a day. Sometimes that will
work, and when it does it is exactly the right way to get the limit. Not all of the functions we are going to
be working with are as well behaved as x2. They often require manipulation, have values that don’t seem like
they belong, or simply don’t have values that are defined at certain points. Consider the following three graphs,
hopefully they will illustrate many of the possibilities:

(a) (b) (c)
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In part (a) f(a) = L, as we would normally expect. In part (b) f(a) 6= L and in part (c) f(a) is undefined. In
every case, though,

limx→af(x) = L

Notice that there is no requirement that the limit agree with the function - as we will see, however, having the
function and the limit agree is a desirable state of affairs called continuity.

At this point we remind the reader of a convention used in the pictures above. A solid dot represents a point
that is present. A hollow dot represents a point that is absent. The middle graph uses this convention to show
that a point is not where the limit might cause us to expect it to be. This convention is also used in Example
3.2 to show the value of the Heaviside function at x = 0.

3.1.1 One-Sided Limits and Existence

In our earlier example, when we found the limit of x2 in Example 3.1, we approached the number from both
sides; from below x = 3 and from above x = 3. Sometimes we only need to find out what the limit of a function
at a point is from one side, and by convention we say either the left or the right side. The notion of left and
right follow from the standard presentation of graphs.

Example 3.2 Consider the Heaviside function, H(x):

As a piecewise function, which is just another way of saying “this function is made up of different pieces”, we
write the Heaviside function as:

H(x) =

{
1, x ≥ 0
0, x < 0

As you can see, the way we read this is: “If x is bigger than or equal to zero, then the function is equal to 1. If
x is strictly less than zero, then the function is equal to zero.” Let’s take the limit of the Heaviside function as x
approaches 0 from the left side. This means that we are plugging in numbers that are less than 0, getting closer
and closer but never actually equalling 0. The result of this being:
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x H(x)

-1 0

-0.5 0

-0.25 0

-0.1 0

-0.01 0

-0.001 0

-0.0001 0

So we can see that the limit as x approaches 0 from the left is 0, and we write one-sided limits from the left as,

lim
x→a−

f(x) = L

or more specifically in the case of the Heaviside function as it approaches 0 from the left,

lim
x→0−

H(x) = 0

We use a “-” to denote that this is a left-sided limit. If we were to use a “+”, that would mean the limit is a
right-sided limit, and we would write that as,

lim
x→a+

f(x) = L

and if we were to take the right-sided limit of H(x), then we would write it as,

lim
x→a+

H(x) = 1

One purpose of one-sided limits are to figure out whether a limit actually exists or not. Here is the key item to
remember: if the left-sided limit equals the right-sided limit, then the limit exists. If the left-sided limit does not
equal the right-sided limit, then the limit does not exist. Let’s go over a couple of examples to drive this home.

Example 3.3 If we recall 2 pictures we saw from earlier,



3.1. LIMITS AND CONTINUITY 81

In both of these pictures, the function does not equal the limit when x = a. It is important to remember that this
fact has nothing to do with the limit. The limit in both cases is L. In the both pictures, we can see that as we
move towards a from both the left and the right sides, we achieve the same result. Thus in both cases, the limit
exists.

Example 3.4 Returning to the Heaviside function, we already determined that the limit as x approached 0 from
the left was equal to 0, and the limit as x approached 0 from the right was equal to 1. Thus,

lim
x→0−

H(x) 6= lim
x→0+

H(x)

So the limit as x approaches 0 of H(x) does not exist. Hopefully, this also makes clear the reason why in some
cases we cannot simply plug in the value that the limit is approaching. If we did that in this case, then we would
get limx→0H(x) = H(0) = 1, which would be false.

To be clear: the limit of a function completely depends on the choice of a. Thus, if we were to take the limit of
H(x) as x approaches 2, the limits from the left and right would both be 1, and therefore the limit would exist.

So far we’ve covered the limit being a number, or not existing at all. There is a third case, in which the value
grows (or shrinks) without bound. In this case, we use the symbol ∞, called infinity. Infinity is not a number,
but a symbol used to show that something is forever increasing (or decreasing, in which case the −∞ symbol is
used).

Example 3.5 Consider the function, f(x) = 1
x2 , and its limit as x approaches zero. As before, we can’t plug in

zero to see what the answer is, since 1
0 is undefined. We can use a table and a picture to see what is happening:

x 1
x2

±1 1

±0.5 4

±0.2 25

±0.1 100

±0.01 10000

±0.001 1000000

As x gets closer and closer to 0, the values of 1
x2 continue to grow larger without bound. Even though the limit

from the left is the same as the limit from the right, ∞, the limit doesn’t exist since the values of 1
x2 never get

closer to any one number.

Fact 3.1 The limit of a function f(x) at a value x = a exists and is equal to L if and only if the limits from the
left and right both exist and are both also equal to L.
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3.1.2 Algebraic Properties of Limits

Assume c is a constant, f(x) and g(x) are functions, and the limits limx→af(x) = L and limx→ag(x) = M exist.
Here are some limit laws that will be useful when evaluating limits:

1. This is the sum law, which states that the limit of the sum is the sum of the limits.

lim
x→a

[f(x) + g(x)] = L+M

.

2. This is the difference law, the limit of the difference is the difference of the limits.

lim
x→a

[f(x)− g(x)] = L−M

.

3. The scaling law, the limit of a constant times a function is the same as the constant times the limit of a
function.

lim
x→a

c · f(x) = c · L

.

4. The product law, the limit of products is equal to the product of limits.

lim
x→a

f(x) · g(x) = L ·M

.

5. The quotient law, which say the limit of a quotient is equal to the quotient of the limits, given that the
bottom limit is not zero. If M 6= 0 then

lim
x→a

f(x)
g(x)

=
L

M

There are two more details that might be obvious but need to be made explicit, even though they don’t quite
qualify being laws when it comes to limits:

1. limx→a c = c

2. limx→ax = a

These can be read as taking the limit of a constant, no matter what number we approach on the x-axis, will just
be that constant. The second item simply states that if x is the only item in the function you are taking the
limit of, then a direct substitution will give you the limit.

Example 3.6 Let f(x) = 2x+ 6 and g(x) = x2 + 1. We can use the Limit Laws to evaluate the following limits,
if they exist.

a) limx→2 (f(x) + g(x)) b) limx→−3 2 · f(x) c) limx→−1
f(x)

2·g(x)

Solutions

a) We can use the sum law to separate the limits, and both the limits of f(x) and g(x) exist and can be
evaluated without using tables (more on that later). So we get:

lim
x→2

(2x+ 6) + (x2 + 1) = lim
x→2

2x+ lim
x→2

6 + lim
x→2

x2 + lim
x→2

1 = 4 + 6 + 4 + 1 = 15
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b) Here we can use the scaling law, and the sum law:

lim
x→−3

2 · (2x+ 6) = 2 · lim
x→−3

(2x+ 6) = lim
x→−3

2x+ lim
x→−3

6 = 2 · (−6 + 6) = 0

c) In this case, we have to use the quotient law, the scaling law, and the sum law:

lim
x→−1

2x+ 7
2 · (x2 + 1)

=
1
2
· lim
x→−1

2x+ 6
x2 + 1

=
1
2
· limx→−1 2x+ 6

limx→−1 x2 + 1
=

1
2
· limx→−1 2x+ limx→−1 6

limx→−1 x2 + limx→−1 1
=

1
2
· −2 + 6

1 + 1
= 1

3.1.3 The Function Growth Hierarchy

Sometimes we will be taking limits of a function as x approaches ±∞. In other words, we want to know what
a function will do if we keep plugging in larger (or smaller) numbers forever. In some cases, this also causes the
function to continually grow larger (or smaller) and we could write it as

lim
x→∞

f(x) =∞

. Here is a useful guide in determining how “fast” a given function will approach ∞:

log(x) << xn << ex

We read this as, exponential functions grow a lot faster than polynomial functions, which grow a lot faster
than logarithmic functions. Written there is log base 10, but if it were replaced with any other base, e or 2 for
example, and it would still be true. As well, even though we use ex, we could just as easily have written 4x,
or 10x. Let’s define what polynomial functions are, and then we’ll see why we should bother learning how fast
different functions grow.

Definition 3.2 A polynomial is a sum of real-number multiples of whole number powers of a variable (like x).

Example 3.7 A polynomial looks like x4−2x+1. It only has variables, constants and whole number exponents.
A polynomial function looks like f(x) = x4 − 2x + 1, and if we plug a number, lets say 2 into f(x), then
f(2) = 24 − 2(2) + 1 = 13.

Definition 3.3 The degree of a polynomial is the highest power of x that appears in the polynomial.

Example 3.8 degrees of polynomials
The degree of x2 is 2, the degree of 1− 2x− x3 is 3, the degree of (x− 1)(x+ 2)(x− 3)(x+ 4) is 4 because it will
contain a multiple of x4 after we multiply it out.

A nice property of polynomials is that you can find the limit of a polynomial function simply by plugging in the
number that x is approaching. This is because polynomial functions are continuous, which we will go over in the
next section. For now, just trust in the fact that taking the limits of polynomial functions is very easy.

Example 3.9 Find
lim
x→2

2x2 − 4x+ 10

To find the limit, simply plug 2 into the polynomial function,

lim
x→2

2x2 − 4x+ 10 = 2(2)2 − 4(2) + 10 = 10

Definition 3.4 A rational function is a function in the form of a fraction whose numerator and denominator
are polynomials.
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Examples of rational functions are 2x
x2 , x+1

2x−1 , 2
x and x2+2x2+5x−7

27x3+14x2+12x+9 .
Now we finally get to the rule of thumb when it comes to taking the limit of rational functions.

Fact 3.2 When taking the limit of a function f(x) that is the ratio of two other functions, there are three
possibilities:

Lim

x→∞
f(x) =


∞
c a real constant
0

As you can see, either there is no limit, there is a limit and it is a number, or the limit is 0. The key fact is
that if the top is growing faster we go to ∞, if the bottom is growing faster we go to 0, and if they have similar
growth rates we have work left to do. Let’s do some examples to illustrate each possibility.

Example 3.10 Let’s compute the following limits:

a) limx→∞ f(x) = x2

log(x) b) limx→∞ f(x) = log(x)
ex c) limx→∞ f(x) = x3−7x2+1

4x3+10x2

Solutions
a) If we check our speed of growth hierarchy, we can see that the top function, x2 grows much faster than the
bottom, log(x). The following table will tell us what is happening when we plug in increasing values of x:

x f(x)

10 100

100 5000

10000 25000000

As we can see, the value of f(x) is growing without bound, thus we would write limx→∞ f(x) =∞

b) In this function the bottom function, ex grows a lot faster than log(x), so the bottom number is getting big
relative to the top number. Let’s check the following table to see what happens:

x log(x)
ex

10 0.0000454

100 0

1000 0

The values aren’t actually zero, but they are so close that the average calculator doesn’t have enough digits
to display the answer. Thus, the limit of this rational fraction is 0. Generally speaking, whenever the bottom
function grows faster than the top function, the limit is going to be 0. If the top grows faster than the bottom,
the limit does not exist, and we write it as ±∞ to show that its growing forever without bound.
c) In this case, the speed of growth hierarchy won’t help us, since the highest power of x on the top is equal to
highest power of x on the bottom. Here is how we take the limit of a rational function whose two parts are both
polynomials, same degree or not. The first step is to divide everything on the top by the highest power of x on
the top. Separately, divide everything on the bottom by the highest power of x on the bottom.

lim
x→∞

x3 − 7x2 + 1
4x3 + 10x2

= lim
x→∞

x3

x3 − 7x2

x3 + 1
x3

4x3

x3 + 10x2

x3

= lim
x→∞

1− 7
x + 1

x3

4 + 10
x

Now we can use the Limit Laws and speed of growth hierarchy to take the limit of f(x).



3.1. LIMITS AND CONTINUITY 85

limx→∞ 1− limx→∞
7
x + limx→∞

1
x3

limx→∞ 4 + limx→∞
10
x

Taking the limit of each piece of the rational function individually, we see that,

1− 0 + 0
4 + 0

=
1
4

So we can see the limit of this rational is 1
4 , a constant.

Fact 3.3 Rule of thumb for rational functions
Suppose that p(x) and q(x) are polynomials so that

f(x) =
p(x)
q(x)

is a rational function. Then

Lim

x→∞
f(x) =


0 if q(x) is higher degree
c if q(x) has the same degree as p(x)
∞ if p(x) is higher degree

Where c is the constant you get when you divide the highest power terms of p(x) and q(x).

Example 3.11 Applying the rule of thumb

The rule of thumb permits us to immediately calculate the following three limits.

1. Lim
x→∞

x
x2+1 = 0,

2. Lim
x→∞

2x2

1−3x+5x2 = 2
5 ,

3. Lim
x→∞

x4

5x3+2 =∞,

3.1.4 Continuity

This section deals with the concept of continuous functions. Informally, a continuous function can be thought
of in the following way. If we were to graph the function and draw it from end to end with a pencil (assuming
we had infinite lead and time in some cases), we would never have to lift the pencil off the paper. A function is
continuous at a point if we can run our pencil over the area around the point, and through it, without taking
the pencil off the paper. This is a good way to remember how to tell if a function is continuous at a point or
not. Another is the graph of a continuous function has no breaks, holes or jumps in it. If drawing the function
isn’t really practical, we can use the following tools.

Definition 3.5 A function f(x) is continuous at a number a if

lim
x→a

f(x) = f(a)

What this definition implies is that if a function is continuous at a point a, then three things must be true:

1. f(a) is defined and exists

2. limx→af(x) exists
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3. limx→af(x) = f(a)

A function that isn’t continuous but is still defined around a point a is called discontinuous at a, or is said to
have a discontinuity at a. If we consider the Heaviside function again, we can see that it is discontinuous at 0.
The following examples will help make clear how to spot whether a function is continuous at a point or not.

Example 3.12 Are the following functions continuous?

a) f(x) = x2+1
x−1 b) f(x) =

{
x2, x 6= 2
5, x = 2

c) f(x) =

{
x2 x < 2
2x x ≥ 2

d) f(x) =

{
x2 x < 2
2x x > 2

Solutions

a) If we consider limx→1 f(x), we can see that the limit goes to ∞, thus it doesn’t exist. Since the limit
doesn’t exist, this function is discontinuous at 1.

b) Even though the limit of this function as x approaches 2 exists, f(2) = 5 6= limx→2 f(x) = 4. Since the
limit doesn’t equal the function evaluated at 2, this function is discontinuous at 2. Notice that this example is
entirely artificial - we jammed the five in at x = 2 by using piecewise function notation.

c) To see if the limit exists, we need to check the right and left-sided limits.

lim
x→2−

f(x) = 4 = lim
x→2+

f(x)

The limit exists at 2, the function is defined at 2, and the limit equals the value of f(2). Thus, this function is
continuous at 2.

d) It is important to pay close attention to whether a function is defined at a certain point. This function
is almost the same as the function in c), except that it isn’t defined at 2. If we were to graph this, there would
be a hole in the graph at f(2). This function has a discontinuity at 2.

Definition 3.6 A function is continuous on an interval [a,b] if it is continuous at every point in the interval.
If a function is continuous everywhere we simply say it is continuous.

The combination of continuous functions is also continuous, similar to the limit laws. If f(x) and g(x) are
continuous functions, then the following are also continuous:

• f(x) + g(x)

• f(x)− g(x)

• c · f(x), where c is a constant

• f(x) · g(x)

• f(x)
g(x) , as long as g(x) 6= 0

Fact 3.4 Continuity of polynomial and rational functions

a) Polynomial functions are continuous everywhere.
b) Rational functions are continuous at every point where they are defined.

This fact is the reason we can take the limits of polynomial and rational functions simply by substituting numbers
in for x. In fact you can take the limit of many continuous function by just substituting in a number for the
variable. Only discontinuous functions or functions that make sudden or abrupt changes of direction require
formally taking limits. This latter sort of function uses split rules. As we will see, this is an issue when we start
working with derivatives. Here are some more useful facts connected with continuity.
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Fact 3.5 other continuous functions.
The functions y = cx and y = logc(x) are both continuous for any constant c > 0 at all points where they exist.

The function y = n
√
x is continuous where it exists.

Exercises

Exercise 3.1 For each of the following functions, make a table like that in Example 3.1 and give your opinion,
based on the table, if the function has a limit at the given value of x.

a) f(x) = x3 at x = 1. b) f(x) = ln(x) at x = 3. c) f(x) = x+2
x−1 at x = 2.

d) f(x) = x2−4
x2−9 at x = 3. e) f(x) = e−1/x2

at x = 0. f) f(x) = 41/x at x = −1.

Exercise 3.2 Which of the following functions have limits at the given point? Remember to check that the limits
from both sides exist and agree.

a) f(x) =

{
0 x < 0
x2 x ≥ 0

. b) f(x) =

{
2x x < 0
x2 x ≥ 0

. c) f(x) =

{
x2 x < 1
2x− 1 x ≥ 1

.

d) f(x) =

{
x2 + 2x+ 1 x < 0
2x− 1 x ≥ 0

. e) f(x) =

{
ex x < 0
x+ 1 x ≥ 0

. f) f(x) =

{
x3 + 1 x < 1
2x2 − 2 x ≥ 1

.

Exercise 3.3 Suppose that H(x) is the Heaviside function. Which of the following functions have limits at the
given point? Remember to check that the limits from both sides exist and agree.

a) f(x) = H(x) +H(−x) at x = 0. b) f(x) = H(x)×H(x) at x = 0. c) f(x) = H(2− x) at x = 2.

d) f(x) = H(2− x) at x = 1. e) f(x) = (2×H(x)− 1)2 at x = 0. f) f(x) = x×H(x) at x = 0.

Exercise 3.4 Compute the following limits or give a brief explanation of why they cannot be computed.

a) Lim
x→1x

2 + 3x+ 1. b) Lim
x→4 (x+ 2)(x+ 3).

c) Lim
x→3

x3+1
x2+1 . d) Lim

x→2
x4−4
x2+4 .

e) Lim
x→0

ex+1
e−x+1 . f) Lim

x→0
ln(x+2)
ln(x+3) .

g) Lim
x→−2

x2−4
x2+4 . h) Lim

x→−3
x2+9
x2−9 .

i) Lim
x→−4xe

x. j) Lim
x→−1xe

−x.

Exercise 3.5 Compute the following limits.

a) Lim
x→∞

1
x2 . b) Lim

x→∞
1

x2+1 .

c) Lim
x→∞

x2+x+1
1−3x+x2 . d) Lim

x→∞
(2x+1)(2x−1)
(x−3)(x+4) .

e) Lim
x→∞

x3−1
x2+1 . f) Lim

x→∞
x(x+2)(x−2)
(x−1)(x+1) .

Exercise 3.6 Compute the following limits. Looking at the graph of the functions may be inspirational.

a) Lim
x→0

1
x4 . b) Lim

x→0
1
x3 .
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c) Lim
x→1

x2

x4−1 . d) Lim
x→−1

x2

x4−1 .

e) Lim
x→−2

x2−5x+6
x2+5x+6 . f) Lim

x→2
x3

x4−16 .

Exercise 3.7 Suppose we have three functions, f(x), g(x), and h(x) so that for some constant a we have that:

Lim

x→ a
f(x) = 3

Lim

x→ a
g(x) = 0

Lim

x→ a
h(x) = −2

Compute each of the following limits.

a) Lim
x→a (f(x) + h(x)). b) Lim

x→a (2f(x)− 3h(x)). c) Lim
x→a

(
f(x)
g(x)

)
.

d) Lim
x→a

(
h(x)
f(x)−3

)
. e) Lim

x→a (f(x)− h(x))2. f) Lim
x→a (f(x)g(x) + f(x)h(x) + g(x)h(x)).

Exercise 3.8 Find any points at which any of the following functions are not continuous.

a) f(x) = x2+1
x2−4 . b) f(x) = x2−1

x2+4 . c) f(x) = ex

ex−3 .

d) f(x) = ex

e2x−9 . e) f(x) = log(x2 − 4). f) f(x) =
√
x2 − 9.

Exercise 3.9 Consider the function f(x) = x2−4
x−2 . At x = 2 the function has a value of 0

0 which is undefined.
Compute the limit of the function at x = 2. Does this require a table or can it be done with algebra?

Exercise 3.10 Following Problem 3.9, find Lim
x→5

x2−25
x−5 .

Exercise 3.11 Compute Lim
x→∞

log(x5)
x+5 .

Exercise 3.12 Compute Lim
x→∞

exp(2x−1)
x−1 .

Exercise 3.13 Compute Lim
x→∞

ex+1
ln(x)+1 .

Exercise 3.14 Compute Lim
x→∞

ex+e−x

ex−e−x .

Exercise 3.15 Suppose that

f(x) =

{
x2 x < a

2x+ 3 x ≥ a

Find all values of a that make the function continuous.

Exercise 3.16 Suppose that

f(x) =

{
x2 x < a

x+ 2 x ≥ a

Find all values of a that make the function continuous.

Exercise 3.17 Suppose that

f(x) =

{
x3 x < a

4x x ≥ a

Find all values of a that make the function continuous.
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Exercise 3.18 Suppose that

f(x) =

{
x3 x < a

6x2 − 11x+ 6 x ≥ a

Find all values of a that make the function continuous.

Exercise 3.19 If H(x) is the Heaviside function, demonstrate that (H(x− a))2 = H(x− a) for any constant a.

Exercise 3.20 Is there a difference in the value, which is not a number in any case, of the limit as x approaches
zero for 1

x2 and 1
x3 ? Explain.

Exercise 3.21 Using the technique of dividing through the top and bottom of a rational function by the highest
power of x that appears, demonstrate logically that the rule of thumb for rational functions is correct.

3.2 Derivatives

Having waded through the sea of limits and continuity, we are now ready to harvest a useful tool.

Definition 3.7 A tangent line is a line that touches a curve
at a single point.

Fact 3.6 If a curve is measuring a quantity, like distance or
money, at a given time, then the slope of the tangent line at
a time t measures how fast the quantity is changing at time t.

The entire point of this section is to develop the mathematical
tools needed to find the slope of tangent lines to continuous
curves. The reason this is hard is because two points define a
line, but one point defines a tangent line. We are going to have
to use a limit to extract the information to build the tangent
line; information that would normally be in the second point.
The starting point of the effort is to use chords of the curve.

Definition 3.8 A chord of a curve is a line that joins two
points on the curve.

The picture at the left shows the tangent line to the curve
y = x2 at x = 0.5 in purple and several chords with x = 0.5,
y = 0.25 at one end of the chord.

Example 3.13 Finding a tangent line.
Problem: find the tangent line to y = x2 at the point (1,1).

Strategy: If we fix one point of a collection of chords at (1,1) and move the other point toward (1,1) then the
slopes of the chords will approach the chords of the tangent. The slope of chord between the point (1,1) and the
point (1 + h, (1 + h)2) can be computed with the usual formula for the slope of a line between two points:

y2 − y1
x2 − x1

=
(1 + h)2 − 1

1 + h− 1
=

1 + 2h+ h2 − 1
h

=
2h+ h2

h
= 2 + h
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If the slope of the chords is 2 + h then we can compute

Lim

h→ 0
2 + h = 2

Now that we know that the slope of the tangent line to y = x2 at x = 1 is m = 2 we can find the tangent line
with the point-slope formula. The point is (1,1) so

(y − 1) = 2(x− 1)

y = 2x− 2 + 1

y = 2x− 1

The slope of the tangent line is a central object in calculus. The technique we used to extract the tangent line
in the example can be generalized by the following definition.

Definition 3.9 The derivative of a function f(x) at a point x = a is given by the limit

f ′(a) =
Lim

h→ 0
f(a+ h)− f(a)

h

The derivative at a is the slope of the tangent line to the graph of f(x) at a.

Once we have a way of taking the derivative of a function at a point, we can take the derivative in general and
get a formula for the derivative at any point.

Definition 3.10 The derivative of a function f(x) is given by the limit

f ′(x) =
Lim

h→ 0
f(x+ h)− f(x)

h

Notice that we use a “prime” to denote a derivative. If f(x) is a function then its derivative is f ′(x), spoken
f − prime− of − x.

Example 3.14 Computing a general derivative

Problem: find the derivative of f(x) = x3.

Strategy: Use the limit given in the definition.

f ′(x) =
Lim

h→ 0
f(x+ h)− f(x)

h

=
Lim

h→ 0
(x+ h)3 − x3

h

=
Lim

h→ 0
x3 + 3x2h+ 3xh2 + h3 − x3

h

=
Lim

h→ 0
3x2h+ 3xh2 + h3

h

=
Lim

h→ 0
h(3x2 + 3xh+ h2

h

=
Lim

h→ 0
�h(3x2 + 3xh+ h2)

�h

=
Lim

h→ 0
(3x2 + 3xh+ h2)

= 3x2
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So we have that if f(x) = x3 then f ′(x) = 3x2.

Example 3.15 Computing a harder general derivative

Problem: find the derivative of f(x) = 1
x .

Strategy: Use the limit given in the definition.

f ′(x) =
Lim

h→ 0
f(x+ h)− f(x)

h

=
Lim

h→ 0

1
x+h −

1
x

h

=
Lim

h→ 0

x
x ×

1
x+h −

(x+h)
(x+h) ×

1
x

h

=
Lim

h→ 0

x
x(x+h) −

x+h
x(x+h)

h

=
Lim

h→ 0

x−(x+h)
x(x+h)

h

=
Lim

h→ 0

−h
x(x+h)

h

=
Lim

h→ 0
−h

x(x+ h)
× 1
h

=
Lim

h→ 0
−�h

x(x+ h)
× 1

�h

=
Lim

h→ 0
−1

x(x+ h)

=
−1

x(x+ 0)

=
−1
x2

So we have that if f(x) = 1
x then f ′(x) = −1

x2 .

3.2.1 Derivative Rules

Examples 3.14 and 3.15 show that, while knowing the derivative of a function is valuable, we really need a better
way of computing derivatives. Notice that for both f(x) = x2 and g(x) = x3 all but one term in the expression
we got from the definition of the derivative cancelled out. It turns out that this is true in general.

Fact 3.7 The power rule
If f(x) = xn then f ′(x) = nxn−1.

The power rule tells us the derivative of any power of a variable. That’s nice, but we need to extend the reach
of our derivative techniques. The key point is this: because derivatives are based on limits, many of the rules
for limits also hold for derivatives.
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Fact 3.8 Linearity of Derivatives
If c is a constant and f(x) and g(x) are functions then:

1. (c× f(x))′ = c× f ′(x)

2. (f(x) + g(x))′ = f ′(x) + g′(x)

3. (f(x)− g(x))′ = f ′(x)− g′(x)

If we speak the power rule in English it is “multiply by the old power and subtract one from the power”. With
the rules above, we now have enough rules to take the derivative of any polynomial function without resorting
to the derivative.

Example 3.16 Problem: If f(x) = x2 + 3x+ 5 find f ′(x).

Solution:

f ′(x) =
(
x2 + 3x+ 5

)′
=

(
x2 + 3x1 + 5x0

)′
=

(
x2
)′

+
(
3x1
)′

+
(
5x0
)′

=
(
x2
)′

+ 3
(
x1
)′

+ 5
(
x0
)′

= 2× x1 + 1× 3x0 + 0× 5x−1

= 2x+ 3× 1 + 0
= 2x+ 3

The above example is done with a great deal of formality; normally a polynomial derivative can just be done
informally. For example: (

x3 + 5x2 + 7
)′

= 3x2 + 10x

One of the transformations in Example 3.16 is the somewhat artificial 5 = 5 × x0 which relies on the fact that
x0 = 1. Recall that a derivative is the rate at which a quantity is changing. Since constants don’t change, the
following fact is obvious.

Fact 3.9 Derivative of a constant
The derivative of any constant is zero.

While we will not go through the logical demonstrations that the following three rules are correct, they can all
be derived from the limit definition of derivative with a bit of algebraic skill.

Fact 3.10 Product, Quotient, and Reciprocal Rules

Suppose that f(x) and g(x) are functions that have derivatives. Then:

1. (f(x)× g(x))′ = f ′(x)× g(x) + f(x)× g′(x) (the product rule)

2.
(
f(x)
g(x)

)′
= f ′(x)g(x)−f(x)g′(x)

g(x)2 (the quotient rule)

3.
(

1
f(x)

)′
= −f ′(x)

f(x)2 (the reciprocal rule)
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Example 3.17 Let’s practice the new rules. First the product rule:

(
x4 × (x2 + 1)

)′
= 4x3 × (x2 + 1) + x4 × 2x

= 4x5 + 4x3 + 2x5

= 6x5 + 4x3

Notice that, in this case, it would have been perfectly possible to multiply the expression out and then take the
derivative: check that the same answer results. While either method is perfectly workable, you must decide which
one is less work.

Next the quotient rule:

(
x3

x2 + 1

)′
=

(x2 + 1)× 3x2 − x3 × 2x
(x2 + 1)2

=
3x4 + 3x2 − 2x4

(x2 + 1)2

=
x4 + 3x2

(x2 + 1)2

It might seem like a good idea to multiply the bottom of the answer out to get x4 + 2x2 + 1. In practice this
usually isn’t a good idea. This is especially true if we must make further manipulations of the expression, as we
will see in Chapter 4.

We finish up the example with a demonstration of the reciprocal rule.

(
1

x3 + 1

)′
=

−3x2

(x3 + 1)2

We’ve built up the mathematical muscle to deal with both polynomial and rational functions, but we have not
yet touched on the exponential and logarithm functions.

Fact 3.11 derivatives of logs and exponentials

1. (ln(x))′ = 1
x

2. (logb(x))′ = 1
ln(b)×x

3. (ex)′ = ex

4. (cx)′ = ln(c)× cx

Example 3.18 Problem: Find the tangent line to y = 2x at x = 1.

The point of tangency is (1,2) so all we need is the slope of the line. The derivative is the slope of the line so:

f ′(x) = ln(2) · 2x
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m = f ′(a) = ln(2) · 21 = 2ln(2)

Now that we have the slope we build the line with the point-slope form

(y − 2) = 2ln(2)(x− 1)
y = 2ln(2)x− 2ln(2) + 2
y = 2ln(2)x+ 2(1− ln(2))
y ∼= 1.386x+ 0.614

Example 3.19 Problem: Find the value of x so that y = ex has a tangent-slope of 1 and then find the tangent
line.

The tangent slope is the derivative so we must solve for the x that makes the derivative equal to 1.

(ex)′ = 1 (3.1)
ex = 1 (3.2)

ln(ex) = ln(1) (3.3)
x = 0 (3.4)

(3.5)

This means that the point of tangency is (0, e0) = (0, 1). We started knowing that the slope was m = 1. So
the tangent line is:

(y − 1) = 1× (x− 0)
y − 1 = x

y = x+ 1

3.2.2 Functional Composition and the Chain Rule

We have one derivative rule left to learn. It is one of the most powerful and also one of the most confusing. Let’s
start with an example that motivates our need for the additional rule.

Example 3.20 Problem: Suppose that f(x) = x5 and that g(x) = x2 + 1. Find the derivative of f(g(x)).
Compute:

f(g(x))′ =
[(
x2 + 1

)5]′
=

[
x10 + 5x8 + 10x6 + 10x4 + 5x2 + 1

]′
= 10x9 + 40x7 + 60x5 + 40x3 + 10x

The second step above, multiplying out the fifth power, was done using a fact called the binomial theorem which
you can look up if you want to. Contemplate, however, how annoying it would be to multiply out without a trick.
It turns out that the situation is even worse. Let’s continue the computation (using the binomial theorem again).
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10x9 + 40x7 + 60x5 + 40x3 + 10x = 10x(x8 + 4x6 + 6x4 + 4x3 + 1)
= 10x(x2 + 1)4

Which is easier to work with in a lot of cases. The other thing is that something like a power rule happened.
The power of x2 + 1 went from 5 to 4, its just that some other stuff happened as well. What that other stuff is
can be specified precisely by our last derivative rule.

Definition 3.11 If f(x) and g(x) are functions then the composition of f and g is the result of plugging g(x)
into f(x) as if it were the variable. We denote the composition by f(g(x)) or by (f ◦ g)(x).

As you would expect, the last of our derivative rules deals with functional composition.

Fact 3.12 The chain rule
If f(x) and g(x) are functions then

(f(g(x)))′ = f ′(g(x))× g′(x)

Example 3.21 Using the chain rule

1 Suppose that f(x) = x5 and that g(x) = x2 + 1. Find the derivative of f(g(x)) using the chain rule. Notice
that f ′(x) = 4x5 and g′(x) = 2x. Then if we apply the chain rule we get:

(f(g(x)))′ = 5
(
x2 + 1

)4 × 2x = 10x
(
x2 + 1

)4
Which is the answer we got in the earlier example.

2 If h(x) = ex
2
, find h′(x).

Let’s rephrase h(x) as a composition. Set f(x) = ex and g(x) = x2. Then

f(g(x)) = ex
2

= h(x)

We then compute f ′(x) = ex and g′(x) = 2x and apply the chain rule to get

h′(x) = ex
2
× 2x = 2xex

2

Exercises

Exercise 3.22 Use the limit based definition of the derivative to compute the derivative of each of the following
functions. The algebra on the last two functions can get a bit intense.

a) f(x) = x2. b) f(x) = x4. c) f(x) = 1
x2 .

d) f(x) = 1
x3 . e) f(x) = 1

x2+1 . f) f(x) = x
x2+1 .

Exercise 3.23 For each of the following functions, find the derivative at the indicated value of x and use it to
compute the tangent line for that value of x.

a) f(x) = x2, x = 2. b) f(x) = x3, x = 2. c) f(x) = 1
x , x = 1.

d) f(x) = 1
x2 , x = −1. e) f(x) = 1

x2+1 , x = 1
2 f) f(x) = x

x2+1 , x = 2.
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Exercise 3.24 For each of the following functions, find the derivative using the product rule.

a) f(x) = (x2 + x+ 1)(x2 − 3x− 2) b) f(x) = (x3 + 1)(x+ 4 + 3x2 + 1) c) f(x) = xex d) f(x) = x2e2x

e) f(x) = x2ln(x) f) f(x) = xln(x2 + 1)

Exercise 3.25 For each of the following functions, find the derivative using the reciprocal rule.

a) f(x) = 1
x4+1 b) f(x) = 1

x3+1 c) f(x) = 2
xln(x)

d) f(x) = 2
1+x+x2+x3 e) f(x) = 1

ex+e2x f) f(x) = 1
ln(x+1)

Exercise 3.26 For each of the following functions, find the derivative using the quotient rule.

a) f(x) = x
x2+1 b) f(x) = x+1

2x−1 c) f(x) = x2

3x−2

d) f(x) = x3

x2−1 e) f(x) = ex

ex+2 f) f(x) = ex

x3+1

Exercise 3.27 For each of the following functions, find the derivative using the chain rule. You may also need
other rules.

a) f(x) = (x2 + 1)3 b) f(x) = (x3 + 1)5 c) f(x) =
√
x2 + x+ 1 d) f(x) =

√
x3 − x2 + x− 1

e) f(x) = ex
5

f) f(x) = ex
3+3x+2 g) f(x) = x2

(x3+1)5
h) f(x) = (2x+1)8

(1−x)5

i) f(x) = (e2x + 1)5 j) f(x) = (ln(x2 + 1) + 2)6

Exercise 3.28 Find the tangent line at the indicated value of x.

a) f(x) = (x2 + 1)4 at x = 0. b) f(x) = (x2 − 2x+ 1)3 at x = 0. c) f(x) = x+1
x−1 at x = 2.

d) f(x) = x
x2+1 at x = 1. e) f(x) = 1

x + 1
x+1 at x = 1. f) f(x) = 1

x2 + 1
(x−1)2 at x = −1.

Exercise 3.29 Find all tangent lines to f(x) = 2
x2+1 that are parallel to y = x.

Exercise 3.30 Find all tangent lines to f(x) = x3 − 4x that are parallel to y = x.

Exercise 3.31 Find all horizontal tangent lines to y = x3 − 27x.

Exercise 3.32 Find all horizontal tangent lines to y = 3
x2−4x+5 .

Exercise 3.33 Find the derivative of

y =

(
Ln(x2 + 2) + 1

)3
Ln(x2 + 2)− 3

Exercise 3.34 Find the derivative of

y =

(
e2x + 5

)3
e2x + 1

Exercise 3.35 Suppose the dollars of profit on making x units of an MP3 player is P (x) = 2x3+x2+2x
x2+1 . Find the

rate at which the profit is changing (the derivative of profit) and compute the marginal profit of manufacturing
the first, tenth, and hundredth unit.
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Exercise 3.36 Suppose the profit on making x car, in thousands of dollars, is P (x) = 3.5x4+8.1x2

x3+3x+1 . Find the rate
at which the profit is changing (the derivative of profit) and compute the marginal profit of manufacturing the
fourth, twentieth, and fiftieth car.

Exercise 3.37 Suppose that P (x) measures the profit, in dollars, of making x units of some device. If

Lim

x→∞
P ′(x) = 2

what does this tell us about profit per unit? Ignore the logical problem that manufacturing an infinite number of
units is impossible. We often use infinite limits as surrogates for large finite numbers.

Exercise 3.38 Suppose that P (x) measures the profit, in dollars, of making x units of some device. Demonstrate
through argumentation that if the formula P is accurate for all x then

Lim

x→∞
P ′(x) ≤ 0

Exercise 3.39 Demonstrate logically that the reciprocal rule is a special case of the quotient rule.

Exercise 3.40 Suppose that f(x) = eg(x) for a function g(x) that has a derivative. Prove that f(x) and g(x)
have horizontal tangent lines for the same values of x.
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Chapter 4

Applications of Derivatives

In this section we introduce higher order derivatives and study two applications of derivatives. The first, curve
sketching, permits us to draw a picture that helps us understand the shape and behavior of a curve. When this
curve is a mathematical model of a real-word situation, this can be quite useful.

Our second application is optimization, the discipline of finding the largest and smallest value a formula takes
on in a given interval. This will require us to look a bit at what types of intervals there are. This, in turn raises
questions like the following:

What is the largest number smaller than 4?
The problem with that question is that the answer is “there isn’t one”. Any number y < 4 has another number
(y + 4)/2 between it and 4 and so no largest number is possible.

In the fall of 1972 (United States) President Nixon announced that the
rate of increase of inflation was decreasing. This was the first time a
sitting president used the third derivative to advance his case for reelec-
tion.
– Hugo Rossi

Mathematics is not a careful march down a well-cleared highway, but
a journey into a strange wilderness, where the explorers often get lost.
Rigour should be a signal to the historian that the maps have been made,
and the real explorers have gone elsewhere.
– W.S. Anglin

...essentially, all models are wrong, but some are useful.
– George E. P. Box

4.1 Curve Sketching

Curve sketching is making a drawing of the graph of a formula. This drawing may be quite accurate or it may
be intentionally inaccurate in some particulars to emphasize some details of the curve.

Definition 4.1 Suppose that we have a function y = f(x). The domain of f(x) is the set of real numbers for
which f(x) can be computed. The range of f(x) is the set of real numbers that can result from computing f(x).

99
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Example 4.1 Domain and range for various functions.

1. The function f(x) = 2x−1 can accept any real value and can produce any real value. Its domain and range
are thus “all real numbers”.

2. The function f(x) = x2 can accept any real value, but only positive numbers result from squaring a value.
Its domain is “all real numbers” which may be given symbolically as −∞ < x < ∞. The inequalities are
strict because infinity is not a number. The range is all numbers that are at least zero: x ≥ 0.

3. The function y = log(x) can only accept positive numbers but can produce any real number (every real
number is the log of some other real number). Its domain is thus x > 0 while its range is −∞ < x <∞.

4. The function y =
√

4− x2 can only accept numbers whose square is 4 or less so the domain is −2 ≤ x ≤ 2.
This is because negative numbers do not have square roots. If we graph the function:

it is clear that the range is 0 ≤ y ≤ 2.

It can be very helpful to look at a graph when finding the domain and range of a function. The domain is all
numbers, less those excluded by impossibilities like square-roots of negatives or division by zero. Finding the
range requires a number of trial and error steps but calculus can be used to reduce the amount of trial and error.

Students that are familiar with graphing calculators or computer plotting software may wonder why we are
working with curve sketching when there are machines that can do curve-completely-accurate-plotting. The
main reason is that the sketch can contain, emphasize, or even exaggerate information not available on the raw
plot made by a calculator. In addition, learning to sketch curves grants an understanding of what various features
in the plot mean.

Example 4.2 Plotting points
The most fundamental tool for graphing a function f(x) is picking x values, letting y = f(x) to get the corre-
sponding y-values, and then plotting the points on a grid. Start by picking an easy set of points and plugging
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them into the function. If the points you chosen seem to leave the curve ambiguous, then you may want to plot
more points.

Problem: plot points from f(x) = x3 − 4x.

First set of points:

f(-4)=-48
f(-3)=-15
f(-2)=0
f(-1)=3
f(0)=-0
f(1)=-3
f(2)=0
f(3)=15
f(4)=48

Notice that f(±4) are too large to
fit on the grid: drop them.

This may not be enough points, and we had to throw out two of them because they we too far off the grid anyway.
Let’s tighten up the grid a bit.

Next set of points:

f(-3)=-15
f(-2.5)=-5.62
f(-2)=0
f(-1.5)=2.62
f(-1)=3
f(-0.5)=1.88
f(0)=0
f(0.5)=-1.88
f(1)=-3
f(1.5)=-2.62
f(2)=0
f(2.5)=5.62
f(3)=15

These points give us a good sense of the shape of the curve. At this point, we can connect the dots and get a
sketch.
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We developed a good deal of algebraic machinery to solve for roots - those values of x where a function is zero.
For the function in Example 4.2 we can find the roots by factoring:

f(x) = x3 − 4x = x(x2 − 4) = x(x− 2)(x+ 2)

If we set x(x− 2)(x+ 2) = 0 we see that we get roots at x = 0,±2 which are among the points. We always plot
any roots we know when sketching a curve.

4.1.1 Finding and plotting asymptotes

A function can head off toward infinity in a number of ways. We use asymptotes to characterize these behaviors.

Definition 4.2 An asymptote is a line that the graph of a function approaches arbitrarily close to. If such a
line is horizontal we call the asymptote a horizontal asymptote; if it is vertical we have a vertical asymptote.

While there are a few odd exceptions, for our purposes, vertical asymptotes form when the function contains
a value of x that leads to division by zero. Horizontal asymptotes are the limit, if one exists, of the function as
x approaches ±∞.

Example 4.3 Finding asymptotes.

Problem: Find the asymptotes of f(x) = 2x+3
4x−2 .

To find vertical asymptote, we simply look for x where a divide by zero happens. Since f(x) is a fraction, we
solve the denominator for zero.

4x− 2 = 0
4x = 2

x =
1
2

and we have a vertical asymptote at x = 1/2.
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To find horizontal asymptotes we compute the limits of f(x) as x goes to plus or minus infinity. These two limits
are often the same, but can be different.

Lim

x→∞
2x+ 3
4x− 2

=
Lim

x→∞
2 + 3

x

4− 2
x

=
2 + Lim

x→∞
3
x

4− Lim
x→∞

2
x

=
2 + 0
4 + 0

=
1
2

and we have a horizontal asymptote at y = 1
2 . Check for yourself that we get y = 1/2 if we take the limit as

x→ −∞.

Asymptotes are displayed on the graph as dotted lines. Here is the graph for this function:

Look at the function f(x) = x3 − 4x in Example 4.2. There are no x for which a division by zero happens. The
limits as x → ±∞ are infinite. That means that f(x) = x3 − 4x has no asymptote. We now look at a function
with no vertical asymptotes but two different horizontal ones.

Example 4.4 Multiple horizontal asymptotes.

Problem: find the asymptotes of

f(x) =
2ex − 2
ex + 1

Since ex > 0 for all x there is never a divide by zero and so this function has no vertical asymptotes. Lets look
for horizontal ones by taking limits.

Start with:
Lim

x→∞
2ex − 2
ex + 1

Divide the top and bottom of the fraction by ex and we get

Lim

x→∞
2− 2

ex

1 + 1
ex
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Then, since we know ex grows without limit we get

2 + 0
1 + 0

= 2

and we have the horizontal asymptote for x→∞. We also know that as x→ −∞ that ex → 0 so

Lim

x→ −∞
2ex − 2
ex + 1

=
2× Lim

x→−∞e
x − 2

Lim
x→−∞e

x + 1
=

2× 0− 2
0 + 1

= −2

and we have the horizontal asymptote for x → −∞. The horizontal asymptotes are thus y = ±2. The sketch
with these asymptotes looks like this:

The next several examples work on finding asymptotes, providing examples of the various things that can happen.
Here are several, potentially useful, facts about asymptotes.

1. There can be zero or more vertical asymptotes.

2. There are always zero, one, or two horizontal asymptotes.

3. A curve must approach a horizontal asymptote but it can cross it before it approaches it.

4. A curve cannot cross a vertical asymptote.

5. A curve approaches a vertical asymptote in either the positive or negative direction. You can tell which
by plugging in points on either side.

6. The approach to a vertical asymptote can be both in the same direction or in opposite directions.
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Example 4.5 Multiple vertical asymptotes.

Problem: find the asymptotes of x
x2−4

To find vertical asymptotes we solve the denominator for zero:

x2 − 4 = 0
(x− 2)(x+ 2) = 0

x = ±2

giving us two vertical asymptotes. The horizontal asymptote is found by taking the limit

Lim

x→∞
x

x2 − 4
= 0

since the denominator is of higher degree. Here is the graph:

Notice that the curve approaches both its vertical asymptotes in different directions, one approach in the positive
direction and one in the negative.

Example 4.6 A curve crossing its horizontal asymptote.

Problem: find the asymptotes of
xe−x

There are no x for which we divide by zero and hence no vertical asymptotes. The horizontal asymptote is found
by taking the limit

Lim

x→∞
xe−x =

Lim

x→∞
x

ex
= 0
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because ex grows much faster than any power of x. This gives us the horizontal asymptote y = 0. Here is the
graph:

Notice that the curve crosses its horizontal asymptote at (0,0).

Example 4.7 A vertical asymptote with symmetric approaches.

Problem: find the asymptotes of

1 +
1

x+ 1
+

1
(x− 1)2

We divide by zero at x = ±1 giving us vertical asymptotes at x = ±1. Notice that we don’t have to combine the
expression to spot the vertical asymptotes. Since all the fractions go to zero as x gets larger, in either direction,
the horizontal asymptote is clearly y = 1. Here is the graph:
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Since we are dividing by the first power of (x + 1) the function changes signs after we pass x = −1. The other
asymptote is associated with dividing by (x − 1)2 which stays positive on both sides of x − 1. This is why both
asymptotes at x = 1 approach in the same direction.

Another Type of Asymptote

Consider the function

f(x) =
2x2 + x

x+ 1
If we use polynomial long division on the numerator
and denominator:

2x− 1
x+ 1

)
2x2 + x

− 2x2 − 2x
− x
x+ 1

1

We see that f(x) = 2x − 1 + 1
x+1 From this we

see immediately that there is a vertical asymptote
at x = −1. In addition, since 1

x+1 will go to zero
as x approaches ±∞ the graph must approach the
line y = 2x − 1. This is an example of a diagonal
asymptote, shown in the graph at the right.

Diagonal asymptotes happen in rational functions
when the highest power on the top is one higher
than the highest power on the bottom.

4.1.2 First derivative information in curve sketching

We already know from Chapter 3 that the derivative f ′(x) of a function is the formula for the slope of a tangent
line. We can use this slope information to find when the function is increasing and decreasing. Informally a
function is increasing when it is sloping uphill, moving left to right. It is decreasing when heading similarly
downhill. We want to be precise about which ranges of values a function is increasing or decreasing on, leading
us to the following precise definition.

Definition 4.3 A function is increasing on a range a ≤ x ≤ b if for all a ≤ c ≤ d ≤ b we have that f(c) < f(d).
A function is decreasing on a range a ≤ x ≤ b if for all a ≤ c ≤ d ≤ b we have that f(c) > f(d).

Interval Notation

The notation a ≤ x ≤ b is a bit cumbersome. For that reason
we now review a more compact notation for intervals of numbers.
Suppose that a and b are real numbers with b larger than a. Then
we can use either of the notations in the table at the right to
describe four different sets of “numbers between a and b”.

Longer Shorter

Notation Notation

a ≤ x ≤ b [a, b]

a < x ≤ b (a, b]

a ≤ x < b [a, b)

a < x < b (a, b)
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Definition 4.4 The numbers a and b in the intervals above are called the endpoints of the interval. An interval
[a, b] that includes its endpoints is called a closed interval. An interval (a, b) that does not include its endpoints
is called an open interval.

Example 4.8 Using interval notation.

Longer Shorter English

Notation Notation Description

0 ≤ x ≤ 1 [0, 1] The set of all numbers between zero and one, inclusive.

−2 < x < 2 (−2, 2) The set of all numbers between negative two and two, not including
±2.

x ≥ 0 [0,∞) The set of all numbers greater than or equal to zero.

x > 2 or x < −2 (−∞,−2) ∪ (2,∞) The set of all numbers greater than two in absolute value. Note
that “∪” means union

If you want to glue together multiple intervals, the union symbol ∪ is used.

Now that we have the shorter interval notation, we can look at how to use the first derivative to accumulate

information useful for sketching curves.

Fact 4.1 A function f(x) is increasing exactly where f ′(x) > 0, it is decreasing exactly where f ′(x) < 0 and
when f ′(x) = 0 it is neither increasing nor decreasing.

Example 4.9 Increasing and decreasing ranges.
Problem: find the increasing and decreasing ranges for f(x) = x2.

Strategy: Compute f ′(x), find where it is zero, and test the resulting ranges. This is easy because f(x) = x2 is
a very simple function. We see that f ′(x) = 2x which is zero only at x = 0. Plugging in any negative number
to f ′(x) yields a negative number; plugging in a positive number yields a positive number. We can conclude that
f(x) = x2 is:

Increasing on (0,∞)

Decreasing on (−∞, 0)

Here is a picture so we can check the results.



4.1. CURVE SKETCHING 109

Notice that a sign diagram for the first derivative has been added to the top of the picture.

The sign diagram is a flat summary of the increasing/decreasing behavior of a curve. We now give a couple
careful definitions.

Definition 4.5 A critical point for a function f(x) consists of any point (a, f(a)) or an x value a such that:

1. f ′(a) = 0,

2. f ′(a) does not exist, e.g. because of a divide-by-zero.

3. The domain of f(x) ends at a, e.g. at zero for f(x) =
√
x.

Critical points are important because of the following fact.

Fact 4.2 A function can only change between increasing and decreasing at a critical point. Look at Example
4.9.

We now have enough bits and pieces to formally define the sign diagram.

Definition 4.6 A sign diagram for the first derivative for a function f(x) is a chart that lists the x-
coordinate of critical points, with spaces between them, on one line. At each critical point the other line of the
chart lists 0 or ∗ as appropriate (* is for critical points other than those where f ′(a) = 0). Between critical
points, the other line of the chart has a chain of + for increasing and − for decreasing. The symbols ±∞ may
optionally be used to border the line with the x values of critical points on it.

Example 4.10 Sign charts for the first derivative 1) f(x) = x2. We already know the critical point (0,0)
and the increasing and decreasing ranges. This means that the sign chart is:

−∞ 0 ∞
* − − − − − − 0 + + + + + + *
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2) f(x) = x3

3 −
x2

2 − 2x+ 2. Since this function is polynomial, it will exist for all real numbers and so its critical
points are solutions to f ′(x) = 0. Let’s find them. f ′(x) = x2 − x− 2 so:

x2 − x− 2 = 0
(x− 2)(x+ 1) = 0

so

x = 2 or x = −1

and the critical points are (2,-10/3) and (-1,19/6). The ranges of the sign diagram are thus: (−∞,−1), (−1, 2),
and (2,∞). Plug a point in each range to f ′(x) to see if the range is increasing or decreasing.

f ′(−2) = 4 > 0 the function is increasing,
f ′(0) = −2 < 0 the function is decreasing, and
f ′(3) = 4 > 0 the function increasing.

This makes the sign chart:

−∞ -1 2 ∞
* + + + + + + 0 − − − − − 0 + + + + + *

The sign chart gives a sense of the behavior of the function - increasing since the beginning, decreasing for a
short interval, and then back to increasing the rest of the way to infinity. Here is a graph to permit us to check
our results:

The increasing and decreasing ranges for this function are:

Increasing (−∞,−1) ∪ (2,∞)

Decreasing (−1, 2)
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3) f(x) = x
x2−1 . The denominator factors into (x− 1)(x+ 1) so there are vertical asymptotes at x = ±1; these

are critical points. The first derivative, using the quotient rule, is(
x

x2 − 1

)′
=

(x2 − 1) · 1− x · 2x
(x2 − 1)2

= − x2 + 1
(x2 − 1)2

Now a fraction is zero only when its numerator is zero at a point where its denominator is not zero: the
denominator of f ′(x) is a quadratic with no roots. This means that the vertical asymptotes are the only critical
points and the ranges for the sign chart are (−∞,−1), (−1, 1), and (1,∞). For this derivative we do not need
to plug in points: the derivative is the negation of two quantities that are always non-negative. This means the
derivative is negative wherever it exists and so the function decreases everywhere it exists. This makes the sign
chart:

−∞ -1 1 ∞
* − − − − − − * − − − − − * − − − − − *

The * in the interior of the sign chart represent vertical asymptotes where the function leaps from −∞ to +∞.
Here is a picture:

The increasing and decreasing ranges for this function are:

Increasing never

Decreasing (−∞,−1) ∪ (−1, 1) ∪ (1,∞)

Notice that even though the function decreases everywhere it exists, we still need three intervals to deal with the
fact the function doesn’t exist at ±1.

4.1.3 Higher order derivatives

In the last section we kept referring to the derivative of a function as the first derivative. This was a form of
foreshadowing to warn you that there are others: think of it as the mathematical equivalent of ominous music.
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Definition 4.7 The second derivative of a function is the derivative of the first derivative. It is denoted
f ′′(x)

Example 4.11 Computing second derivatives.

Problem: find the second derivative of each of the following functions.

1. f(x) = x2

2. g(x) = x3/3− x2/2− 2x+ 2

3. h(x) = x
x2−1

The first derivatives of these were computed in Example 4.10 so we start with the knowledge that:

1. f ′(x) = 2x

2. g′(x) = x2 − x− 2

3. h′(x) = − x2+1
(x2−1)2

We now go on to the second derivatives:

1. f ′′(x) = 2,

2. g′′(x) = 2x− 1, and

3. h′′(x) =
(
− x2+1

(x2−1)2

)′
Using the quotient rule and simplifying:

= −
(
x2 − 1

)2 · 2x− (x2 + 1
)
· 2(x2 − 1) · 2x

(x2 − 1)4

= −
(
x2 − 1

)�21 · 2x− (x2 + 1
)
· 2����(x2 − 1) · 2x

(x2 − 1)�43

= −2x3 − 2x− 4x3 − 4x
(x2 − 1)3

=
2x3 + 6x
(x2 − 1)3

Notice that polynomial functions get simpler when you take derivatives. Most other functions, excepting f(x) = ex

which stays the same, tend to get much more complicated when you take their derivatives.

We formally define the second derivative because we can use it in both curve sketching and in optimization in
Section 4.2. There are actually many other derivatives and they are about what you would think. The third
derivative is the derivative of the second derivative; the fourth derivative is the derivative of the third; and so on.
You can denote higher order derivatives with more prime symbols: f ′′′(x), f ′′′′(x). There is another notation,
especially for when the number of prime symbols gets ridiculous, which is to put the number of derivatives taken
as a superscript in parenthesis. Thus f (5)(x) means the fifth derivative of f(x).

At this point we are ready to reveal the role of second derivatives in curve sketching. The second derivative
captures the type of curvature a graph has.

Definition 4.8 A function f(x) is said to be concave up for those values c where f ′′(x) > 0 and it is said to
be concave down for those values where f ′′(x) < 0. See Figure 4.1 for examples of the appearance of these
qualities. These qualities are abbreviated CCU and CCD.
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Figure 4.1: Examples of the different types of concavity.

Concavity has similar machinery to increasing and decreasing ranges.

Definition 4.9 An inflection point for a function f(x) consists of any point (a, f(a)) or any x value a such
that:

1. f ′′(a) = 0,

2. f ′′(a) does not exist, e.g. because of a divide-by-zero.

3. The domain of f(x) ends at a, e.g. at zero for f(x) =
√
x.

Just as the function can change from increasing to decreasing at a critical point it can change from concave up
to concave down at an inflection point.

Definition 4.10 A sign diagram for the second derivative for a function f(x) is a chart that lists the
x-coordinate of inflection points, with spaces between them, on one line. At each inflection point the other line of
the chart lists 0 or ∗ as appropriate (* is for inflection points not resulting from f ′′(a) = 0). Between inflection
points the other line of the chart has a chain of + for concave up and − for concave down.

Example 4.12 A sign chart for the second derivative.

Problem: make a sign chart for the second derivative for the function

f(x) = x3/3− x2/2− 2x+ 2

By now this function should be an old friend from earlier examples in this section. We already know that
f ′′(x) = 2x − 1. Solving this equation for zero locates a single inflection point at x = 1/2. This makes the sign
chart:

−∞ 1/2 ∞
* − − − − − 0 + + + + + *

Compare this with the graph:
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It is easy to see the concave up and concave down regions. The concave up and concave down regions for this
function are:

CCU (1/2,∞)

CCD (−∞, 1/2)
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Economic interpretation of derivative information.

Suppose that each of the curves below is the graph of total revenue as a function of the number of items sold.
The four curves represent the possible combinations of concavity and increasing/decreasing status.

Concave up, increasing.
In this case the revenue is increasing with the num-
ber of units made and it is increasing more the
more units are made. Since this is a money tree, it
cannot go on, but it indicates a situation in which
expanding production may be a good idea.

Concave up, decreasing.
In this case the revenue is decreasing with the
number of units made but is decreasing less the
more units are made. If this continues, it is hope-
less, but it may be this is the initial leg of the
curve and it will improve later.

Concave down, increasing.
In this case the revenue is increasing with the num-
ber of units made and it is increasing less the more
units are made. This is typical of a good product
where price drops as supply increases. Decisions
about production will probably require examining
profit, not just revenue.

Concave down, decreasing.
In this case the revenue is decreasing with the
number of units made and it is decreasing more
the more units are made. This situation is typ-
ically described with warm, fuzzy adjective like
“death spiral”.

It is important to embed curves like those above into a larger context before trying to make a decision.
Remembering the difference between profit and revenue is also important.

4.1.4 Fully annotated sketches

A fully annotated sketch of a curve is a complete report on the curves behavior. The following are a list of
what you should have in an annotated curve sketch, in addition to the sketch itself. It consists of a sketch and
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a table that reports other facts. The following appear in a fully annotated sketch of a curve:

1. The formula of the function.

2. Any roots, if you can compute or approximate them.

3. Any vertical and horizontal asymptotes.

4. Critical points.

5. The ranges in which the function is increasing and decreasing.

6. Inflection points.

7. The ranges in which the function is concave up and down.

8. Sign charts for the first and second derivatives.

9. A careful sketch.

Example 4.13 Fully annotating a sketch.

Problem: fully annotate a sketch of

f(x) = x3 − 4x

Since x3 − 4x = x(x2 − 4) = x(x− 2)(x+ 2) the roots of f(x) are x = 0,±2. Since the curve is a non-constant
polynomial it has no vertical or horizontal asymptotes. Taking the first derivative and solving it equal to zero we
get that

3x2 − 4 = 0

x2 =
4
3

x = ± 2√
3

= ±2
√

3
3

And we have two critical points at x = ± 2
√

3
3
∼= ±1.15. Plugging in x = −2, 0, and 2 to check if the first

derivative is positive or negative we get that f(x) increases on (−∞,−2
√

3/2) ∪ (2
√

3/3,∞) and decreases on
(−2
√

3/2, 2
√

3/3).

Turning to the second derivative we get that f ′′(x) = 6x which is zero at x = 0, yielding a single inflection point
at x = 0. Plugging x = ±1 into the second derivative to see if the curve is concave up or down we get CCU
(0,∞), CCD (−∞, 0). We now summarize the results in tabular form and provide a sketch.
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Summary table

Function : f(x) = x3 − 4x

Roots : x = 0,±2

Vertical asymptotes : none.

Horizontal asymptotes : none.

Critical points : x = ± 2
√

3
3

Increasing on : (−∞,−2
√

3/2) ∪ (2
√

3/3,∞)

Decreasing on : (−2
√

3/2, 2
√

3/3)

Inflection points : x = 0

CCU on : (0,∞)

CCD on : (−∞, 0)

Notice that the graph has also been shaded with
vertical has marks to show where it is CCU and
CCD. The sign diagrams for f ′(x) and f ′′(x) ap-
pear above the sketch.

Example 4.14 Fully annotating a sketch II.

Problem: fully annotate a sketch of

f(x) =
1

x2 + 1

The numerator of the function is 1 and so is never zero; the function has no roots. There are no x for which we
divide by zero and so there are no vertical asymptotes. Computing the limit as x→∞ we see that

Lim

x→∞
1

1 + x2
=

Lim

x→∞

1
x2

1
x2 + 1

=
0

0 + 1
= 0

yielding a horizontal asymptote at y = 0.

Taking the first derivative with the reciprocal rule and solving it equal to zero we get that:

−2x
(x2 + 1)2

= 0

−2x = 0
x = 0

And we have a critical point at x = 0. Plugging in x = ±1 to f ′(x) we see the curve increases on (−∞, 0) and
decreases on (0,∞). Turning to the second derivative we use the quotient rule, simplify, and get that

f ′′(x) =
6x2 − 2

(x2 + 1)3
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Solving the numerator for zero we get:

6x2 − 2 = 0

x2 =
1
3

x = ±
√

3
3
∼= ±0.577

demonstrating there are two inflection points at x = ±
√

3
3 . Plugging in x = 0,±1 to f ′′(x) we find that the

function is CCU on
(
−∞,−

√
3

3

)
∪
(√

3
3 ,∞

)
and CCD on

(
−
√

3
3 ,
√

3
3

)
. We now summarize the results in tabular

form and provide a sketch.

Summary table

Function : f(x) = 1
x2+1

Roots : none.

Vertical asymptotes : none.

Horizontal asymptotes : y = 0

Critical points : x = 0

Increasing on : (−∞, 0)

Decreasing on : (0,∞)

Inflection points : x = ±
√

3
3

CCU on :
(
−∞,−

√
3

3

)
∪
(√

3
3 ,∞

)
CCD on :

(
−
√

3
3 ,
√

3
3

)

Notice that the graph above has also been
shaded with vertical hash marks to show
where it is CCU and CCD. The sign dia-
grams for f ′(x) and f ′′(x) appear above
the sketch.

Example 4.15 Fully annotating a sketch III.

Problem: fully annotate a sketch of

f(x) =
x

x2 − 1
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The denominator of the function is x and so is zero at x = 0, the sole root. This function has appeared in
previous examples that tell us there are vertical asymptotes at x = ±1 and a horizontal asymptote at y = 0.

Borrowing the first derivative from Example 4.10:

− x2 + 1
(x2 − 1)2

Since the numerator is a quadratic with no roots, we see there are no critical points due to f ′(x) = 0. There
are, however, two critical points at x = ±1 caused by the division by zero at the vertical asymptotes. Plugging in
x = 0,±2 to f ′(x) we see the curve increases never and decreases on (−∞,−1) ∪ (−1, 1) ∪ (1,∞).

The second derivative for f(x) was computed in Example 4.11 and is

2x3 + 6x
(x2 − 1)3

Solving the numerator for zero we get:

2x3 + 6 = 0
x(2x2 + 6) = 0

x = 0

Notice that 2x2 + 6 is never zero. We thus have one inflection point due to f ′′(x) = 0 at x = 0 and two more
at x = ±1 caused by non-existence of the function. Plugging in x = 0,±1/2 to f ′′(x) we find that the function
is CCD on (−∞,−1) ∪ (0, 1) and CCU on (−1, 0) ∪ (1,∞). We now summarize the results in tabular form and
provide a sketch.

Summary table

Function : f(x) = x
x2−1

Roots : x = 0

Vertical asymptotes : x = ±1

Horizontal asymptotes : y = 0

Critical points : x = ±1

Increasing on : never

Decreasing on : (−∞,−1) ∪ (−1, 1)

: ∪(1,∞)

Inflection points : x = 0,±1

CCU on : (−1, 0) ∪ (1,∞)

CCD on : (−∞,−1) ∪ (0, 1)

Notice that the graph has also been shaded with
vertical has marks to show where it is CCU and
CCD. The sign diagrams for f ′(x) and f ′′(x) ap-
pear above the sketch.
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Exercises

Exercise 4.1 Find the roots of each of the following functions.

a) f(x) = x2 − 2x− 3. b) f(x) = x3 − 7x+ 6. c) f(x) = x3 − 5x2 + 7x− 2. d) f(x) = x3 + 4x2 + 6x+ 4.

e) f(x) = x2+x−2
x2+1 . f) f(x) = x2+2x+3

x2−9 . g) f(x) =
√
x3 − 2x2 − 5x+ 6.

h) f(x) = x2e−x − 16e−x. i) f(x) = ex
2−3x+2. . j) f(x) = ln(x2 − x− 4)− ln(8).

Exercise 4.2 Find all vertical or horizontal asymptotes of the following functions.

a) f(x) = x2

x2−3 . b) f(x) = 3x3−2
x3−2x2−x+2 . c) f(x) = x2−4

x2−4x+3 .

d) f(x) = ex+1
ex+2 . e) f(x) = 1

xex−ex . f) f(x) = ex−e−x

ex+e−x .

Exercise 4.3 For the intervals or collections of intervals below, make a table like that in Example 4.8 giving the
two other methods of describing the numbers.

a) −1 ≤ x ≤ 5, b) 4 < x < 40, c) [2, 7), d) (−2,−1) ∪ (1, 2),

e) The set of all real numbers, and f) The set of numbers that are at most 5 but strictly more than 2.

Exercise 4.4 For each of the following functions, give the sign chart for the first derivative.

a) f(x) = x2 + 3x + 2. b) f(x) = 4 − x − x2. c) f(x) = x3 − 12x + 5. d) f(x) = x3 − 3
2x

2 − 18x + 7. e)
f(x) = 2x

2−x . f) f(x) = x2

x2−4 .

Exercise 4.5 Using the compact interval notation, give the increasing and decreasing ranges for the function in
problem 4.4.

Exercise 4.6 Make first derivative sign chart for the following functions, compare them, and explain what’s
going on in a sentence or two.

a) f(x) = x3. b) f(x) = x5. c) f(x) = x4. d) f(x) = x6.

Exercise 4.7 For each of the following first derivative sign charts, sketch a function that could have generated
that sign chart. You need not find a formula for the function.

a)
−∞ 2 ∞

* + + + + + 0 − − − − − *

b)
−∞ 2 ∞

* − − − − − 0 + + + + + *

c)
−∞ -3 3 ∞

* − − − − − 0 + + + + + 0 − − − − − *

d)
−∞ 2 4 ∞

* + + + + + 0 − − − − − 0 + + + + + *
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e)
−∞ -1 1 ∞

* + + + + + * − − − − − * − − − − − *

f)
−∞ -3 3 ∞

* + + + + + * + + + + + 2 − − − − − *

Exercise 4.8 Find the second derivative of each of the following function.

a) f(x) = x3 − 3x+ 2. b) f(x) = x3 − 9x. c) f(x) = x
(x−1)2 .

d) f(x) = 1
x2+4 e) f(x) = x2e−x. f) ex−e−x

ex+e−x .

Exercise 4.9 For each of the following functions, do a fully annotated sketch.

a) f(x) = x2 − 2x+ 2. b) f(x) = x3 − 9x. c) f(x) = x2−4
x2−4x+3 .

d) f(x) = 1
x2−2x+1 e) f(x) = x2e−x − 16e−x. f) ex−e−x

ex+e−x .

Exercise 4.10 For each of the following sketches, estimate the critical points, increasing and decreasing ranges,
inflection points, and CCU and CCD regions as best you can using the grid supplied.

a) b)
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c) d)

e) f)

Exercise 4.11 Do a fully annotated sketch for

x2 + x− 8
x− 2

including the diagonal asymptote.

Exercise 4.12 Do a fully annotated sketch for

x2 − 5x+ 3
1− x

including the diagonal asymptote.

Exercise 4.13 Find the third derivative of f(x) = xex.
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Exercise 4.14 Find the third derivative of f(x) = x2ex.

Exercise 4.15 Sketch a function that is increasing on two intervals but never decreasing.

Exercise 4.16 Sketch a function with a vertical asymptote at x = 1, a horizontal asymptote at y = 1 that never
gets larger than 2.

Exercise 4.17 Sketch a function that has two intervals in which it is increasing and two on which it is decreasing.

Exercise 4.18 Sketch a graph that decreases before 2, increases from 2 to 5, and decreases after 5. It should
also have a vertical asymptote at 5.

Exercise 4.19 Do a fully annotated sketch for

f(x) =
x3 − 2x+ 3

x3 − x2 − x+ 1

Exercise 4.20 Do a fully annotate sketch for f(x) =
√
x2 + 4.

Exercise 4.21 Do a fully annotated sketch for f(x) = x2e−x.

Exercise 4.22 If f(x) = p(x)ex where p(x) is a quadratic equation, demonstrate logically that f ′(x) = q(x)ex

where q(x) is also a quadratic.

4.2 Optimization

In Chapter 3 we saw how to find tangent lines to a curve. Examine the three tangent lines to f(x) = x2 − 1
below at x = 0, 1

2 , 1.
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Notice that the tangent line at x = 0 is horizontal. It also hits the vertex of the parabola which is its minimum
value. This means that the equation f ′(x) = 0, which locates horizontal tangent lines, can be used to find
minimal and maximal values of continuous functions.
Notice that when f ′(x) = 0 then the curve, whether increasing or decreasing, turns around and goes the other
way. The picture below is of a 4th degree polynomial that has three points for which f ′(x) = 0.

The three horizontal tangent lines are shown in violet.

There is one additional complication to the process of optimization. If the values of x are bounded then the
largest or smallest value may not happen for some x such that f ′(c) = 0. It may also happen at a boundary
point. Examine the following picture:

The function above is f(x) = x2−6
2 on the compact interval [-3,4]. The lowest point (y-value) is (0,-3) and the

highest is (4,5). This means the maximum is 5 and occurs at an endpoint.

Fact 4.3 Consider the graph of f(x) on the closed interval [a,b]. If f(x) is continuous on the interval then the
largest and smallest value of y must occur at a, b, or some value c for which f ′(c) = 0.
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While we will develop other useful tools that help with calculus based optimization, the preceding fact is the
key to the whole affair. When we are solving real world problems, the formula we are optimizing usually do
have a closed interval on which they make sense in the real world - a box or can cannot have infinite or negative
dimensions, for example, and so restricting the function to an interval is a realistic constraint.

Notice that we can rephrase Fact 4.3 by saying that optima occur at critical points or endpoints.

Example 4.16 Verifying a geometry fact by optimization.

Problem: demonstrate that a rectangle of fixed perimeter P = 100cm has its largest area when it is a square.

A rectangle with height H and width W has a perimeter of 2H + 2W and an area of A = H ×W . From this we
may deduce that

2H + 2W = 100

Solving for W we see that W = 50−H and so we may substitute into the area formula to remove one of the two
variables obtaining A = H(50−H). This means we now have area as a function of the height of the rectangle:

A(H) = 50H −H2

The largest possible height is 50, the smallest 0 so we need to optimize A(H) on the interval [0,50]. The derivative
is

A′(H) = 50− 2H

Solving A′(H) = 0 we obtain H = 25cm. This means the maximum and minimum values occur at H = 0, 25, 50.

Height Width Area

0cm 50cm 0cm2

25cm 25cm 625cm2

50cm 0cm 0cm2

So the maximum area occurs when H = W = 25cm, and we see the rectangle is a square.

Now we need some terminology to describe the various types of objects we have learned to locate.

Definition 4.11 A global maximum for a function is the largest value it can take on. A local maximum
is a value of y = f(c) that is larger that all other nearby values - a hill top.

Definition 4.12 A global minimum for a function is the smallest value it can take on. A local minimum
is a value of y = f(c) that is smaller that all other nearby values - a valley bottom.

Definition 4.13 An optimum (plural optima) is a name used to describe either maxima or minima. Optima
can be global or local.

All the terminology in the definitions above gives us a language to talk about the objects we are working with
while performing optimization. Look at the fourth degree polynomial with three horizontal tangents depicted
previously. The three horizontal tangents include two local minima, one local maximum, and the global minimum
for the function at x = c1. Though it is not obvious from the picture, the function does not have a global maximum
because it goes to infinity as x grows.
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Application: Optimizing Use of a Resource.
A frequent goal of optimization is to minimize the amount of a resource used to reach a particular goal.

A company is testing three different types of feed to see if they enhance weight gain in chickens. To try and
control other variable factors as much as possible, they want the pens for the chickens adjacent, leading to
the layout shown above. If each pen must have an area of 600 square meters, what is the minimum length of
fence needed? Step by step:

1 The area requirement tells us XY = 600.

2 There are 6 pieces of fence of length X and four of length Y . This means that the total amount of fence is
P = 6x+ 4Y . The total amount of fence P is what we want to minimize.

3 Solving the area equation for Y tells us that Y = 600
X . If we substitute this into the equation for the total

amount of fence we get

P = 6X + 4
(

600
X

)
=

6X2 + 2400
X

4 Next we find the zeros of the first derivative of P (X) = 6X2+2400
X :

P ′(X) =
X · 12X −

(
6X2 + 2400)

)
· 1

X2
= 0

6X2 − 2400
X2

= 0

Solving the numerator for zero we get

6X2 = 2400
X2 = 400
X = ±20

5) Since X is a length, it cannot be negative. We already know, from our geometry example, that long, thin
pens would be a waste of fencing so the value X = 20 should give us the optimum. If X = 20m then Y = 30m
and we see that P = 6× 20 + 4× 30 = 240m is the least fence we can get away with.
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4.2.1 Is it a Maximum or a Minimum?

The boxed application that minimizes the amount of fence to enclose three 600m2 pens was not completely
rigorous in justifying that X = 20m was a minimum, whether it be local or global. One option is to simply
graph the function P (x) = 6x2−2400

x :

The graph makes it amply clear that setting X = 20m yielded a minimum in the amount of fence used. Graphing
a function can be a bit of a production and there are other methods for determining if a given zero of the first
derivative is a local maximum or minimum.

Example 4.17 Classifying optima with first derivative a sign chart. Look at the first derivative sign
chart at the top of this graph:
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Notice that +++++0−−−−− tells you a zero of the first derivative is a maximum while −−−−−0+++++
tells us it is a minimum. This means we can use sign charts to classify optima as maxima or minima.

The statement if A then B often misleads people into thinking that if B is true they somehow know something
about A. In math this is often not the case. Look at the following graph with a sign chart.

This shows that while optima occur at zeros of the first derivative there is no need for zeros of the first derivative
to be optima. The sign chart immediately spots this possibility as sign charts of the form + + + + +0 + + + ++
or −−−−−0−−−−−.

Fact 4.4 The first derivative test Suppose that for a continuous function that f ′(c) = 0. Then:

1. If the sign chart near x = c is + + + + +0−−−−− then f(x) has a maximum at x = c.

2. If the sign chart near x = c is −−−−−0 + + + ++ then f(x) has a minimum at x = c.

Example 4.18 Look at the second derivative sign chart at the top of this graph:

Notice that if an optima is a maximum then the curve is CCD and the second derivative is negative. On the
other hand, if an optima is a minimum then the curve is CCU and the second derivative is positive. This means
that the second derivative can be used to classify optima.
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Fact 4.5 The second derivative test. Suppose that for a continuous function that f ′(c) = 0. Then

1. If f ′′(c) < 0 then f(x) has a maximum at x = c.

2. If f ′′(c) > 0 then f(x) has a minimum at x = c.

3. If f ′′(c) = 0 then the test yields no information.

Now that we have the machinery of optimization developed, we will apply it to a series of material optimization
tasks.

Example 4.19 The topless box.

If a square-bottomed cardboard box with no top is to have a volume of one cubic meter then what dimensions
minimize the surface area and hence the amount of cardboard required?

The box bottom has an area of S2 while there are four sides with an area of SH. This means that the surface
area, which we are trying to minimize, is

A = 4SH + S2

We also have information about the volume of the box:

V = HS2 = 1

which tells us that H = 1
S2 Substituting in to eliminate one of the variables in the area formula we get that

A(S) = 4S
(

1
S2

)
+ S2 =

4
S

+ S2

We now need to solve the first derivative of the area formula equal to zero.

A′(S) =
−4
S2

+ 2S =
2S3 − 4
S2

which means the critical point(s) we need are solutions to

2S3 − 4 = 0
S3 = 2
S = 3

√
2 ∼= 1.26

Checking the sign diagram we see that the sign diagram near 3
√

2 is − − − − −0 + + + ++ and so this is
a minimum. Solving for H we get H = 1

3√2
2
∼= 0.63 which tells us the dimensions that minimize the use of

cardboard are S = 126cm and H = 63cm.
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After boxes, one of the most common containers are cans, which have a cylindrical shape. A can is a cylinder
defined by its height and the radius of its circular top and bottom. We now review the relevant volume and area
formulas for cans.

• The area of a circle of radius r is A = πr2.

• The surface area of a cylinder of radius r and height h is A = 2π · r2 + 2π · r · h, because it has a circular top
and bottom and sides with can be flattened into a 2π · r × h rectangle.

• The volume of a cylinder of radius r and height h is V = π · r2 · h.

Example 4.20 An optimal can.

Suppose we have a can with a volume of 1000 cubic centimeters. Find the
radius and height that minimize the surface area and hence the amount
of metal in the can. The relevant equations are:

V = π · r2 · h = 1000 A = 2π · r2 + 2π · r · h

Solving the first equation for h we get

h =
1000
π · r2

Substituting into the area equation gives us a formula for surface are as a function of radius:

A(r) = 2πr2 + (2πr)× 1000
πr2

A(r) = 2πr2 +
2000
r

A′(r) = 4πr − 2000
r2

Solving this equal to zero we get:

4πr − 2000
r2

= 0

4πr3 − 2000
r2

= 0

4πr3 − 2000 = 0

r3 =
500
π

r = 3

√
500
π
∼= 5.42cm

Yielding a single critical point. The sign chart near 5.42 is − − − − − − 0 + + + ++ and examining A(r)
shows that as the radius or height approach the area grows rapidly. This radius thus yields a minimal area. The
corresponding height is h = 1000

πr2
∼= 10.84cm giving us optimal dimensions for the can.

The alert student will have noticed, by this point, that there is a pattern to these optimization problems. We
now codify this problem as a set of steps.
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Steps for Optimization

1. You start with two equations. One that you want to optimize and another called a constraint. Both
equations depend on two variables.

2. Solve the constraint for one of the two variables. Typically one of the two choices yields a much easier
problem in the subsequent steps: choose wisely.

3. Substitute the solved constraint into the equation you want to optimize to eliminate a variable.

4. Simplify the resulting single-variable equation for the quantity you want to optimize.

5. Use f ′(x) = 0 techniques to find the optimum value(s) of the remaining variable. This may include using
the first and second derivative tests.

6. Plug the optimal value of one variable into the equation you found in Step 2 to get the corresponding value
for the other variable. Done.

The next couple examples turns the recourse allocation problem around. They ask “given a fixed amount of a
resource, what is the best you can do with it?”

Example 4.21 A pen with a free side.

Suppose that we have 1000m of fence. If we are building a rectangular pen we can enclose a larger area if the
fourth side of the pen is a cliff face. Ignoring the roughness of the cliff face, find the largest area we can enclose.

Let L be the length of the pen and W be the width. Then the fact we have 1000m of fence gives us the constraint
equation:

L+ 2W = 1000

The area of a rectangle is
A = LW

. Solving the constraint and substituting in we get

L = 1000− 2W and thus A = (1000− 2W )W

So we want to optimize
A(W ) = 1000W − 2W 2

A′(W ) = 1000− 4W = 0 so W = 250m

The equation being optimized is a quadratic opening downward so the single critical point is a maximum. The
corresponding length is L = 500 which means the largest area we can enclose is

A = LW = 250× 500 = 125, 000m2
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Example 4.22 Making a box by bending up sides.

Starting with a piece of rectangular stock, a flat, open-topped box is made by cutting out four squares of side
length s from each corner of the rectangle and then bending up the sides and gluing them. If we are using 40×60
cm stock, what side length for the square maximizes the volume of the box?

The volume of a box is height× length×width. This box has height s, length 60− 2s, and width 40− 2s. This
means we can write an equation for the volume without using a constraint:

V (s) = s(60− 2s)(40− 2s) = 4s3 − 200s2 + 2400s

The first derivative is V ′(s) = 12s2 − 400s + 2400 so we can solve for critical lengths of s with the quadratic
formula:

s =
400±

√
4002 − 4× 12× 2400

24
∼= 7.85cm or 25.49cm

The first derivative is V ′′(s) = 24s− 400 making it easy to use the second derivative test.

V ′′(7.85) = −211.6 < 0
V ′′(25.49) = 211.76 > 0

The second derivative test tells us that s = 7.85cm yields at least a local maximum for box volume. We also
know that 0 < s < 20 (because we must leave some cardboard) but these endpoints yield either a completely flat
box with no volume or no remaining cardboard. This means s = 7.85cm is in fact a global maximum with the
maximum volume being roughly 8450cc.

Exercises

Exercise 4.23 Find all horizontal tangents of the following curves.

a) f(x) = x2 + 3x+ 5. b) f(x) = 2x3 − 3x2 − 36x+ 6.

c) f(x) = x4 − 32x2 + 5. d) f(x) = 3x5 − 65x3 + 540x− 120.

e) f(x) = (2x+ 1)e−x. f) f(x) = x2e−x.

g) f(x) = 4x+ 10
x . h) f(x) = 2x+ 12

x .

Exercise 4.24 Find the largest and smallest value of each of the following functions on the given interval. If
there is no largest or smallest value, say so.
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a) f(x) = x2 on [-2,1]. b) f(x) = 4x− x2 on [-1,6].

c) f(x) = x3 − 4x on [-2,3]. d) f(x) = 3x4 − xx3 − 6x2 + 24x− 7 on [-2:2].

e) f(x) = 2xe−x on [0:20]. f) f(x) = 5x2e−x on [0:20].

g) f(x) = x+ 4
x2 on [0:∞). h) f(x) = 5x+ 27

x on [1:8].

Exercise 4.25 Apply the first derivative test to each of the functions in Problem 4.23 and use it to classify their
optima.

Exercise 4.26 Apply the second derivative test to each of the functions in Problem 4.23 and use it to classify
their optima.

Exercise 4.27 Each of the following functions models the total profits,in hundreds of dollars, from a manu-
facturing enterprise as a function of the number n of units manufactured. Find the optimum number of units
manufactured. Remember that you can only manufacture positive, whole numbers of units.

a) P (n) = 8n
n2−80n+1800 . b) P (n) = 12n

n2−120n+2400 .

c) P (n) = n2

2n2−200n+6000 . d) P (n) = n2

3n2−160n+4000 .

e) P (n) = n2e−n/24. f) P (n) = n2e1−n/30.

Exercise 4.28 Suppose that two 400m2 pens share a common side. Find the minimal length of fence needed to
enclose them.

Exercise 4.29 Suppose that six 100m2 pens are arranged in a row, sharing common sides, as shown above.
Find the minimal length of fence needed to enclose them.

Exercise 4.30 Find the radius and height that minimize the material needed to make an open-topped can with
a volume of 400cc.

Exercise 4.31 Find the radius and height that minimize the material needed to make an open-topped can with
a volume of 1600cc.

Exercise 4.32 Suppose that the sides of a swimming pool, that is twice as long as it is wide, are twice as
expensive to build as the bottom. If the pool is an open-topped rectangular box that holds 2000m3 what width,
length, and depth minimize the material cost?

Exercise 4.33 A rectangular enclosure for Christmas trees by the side of the road has normal chain link fence
that costs $40.00 on three sides and, along the side facing the road, taller, stronger security fence that costs
$80.00 per foot. If the enclosure is to have 8000m2 of area what dimensions minimize the cost. Hint: write out
the cost as a function of the length and width.

Exercise 4.34 A can for frozen juice has a metal top and bottom and cardboard sides. If the metal costs five
times as much as the cardboard, find the height and radius that minimize the materials cost of a can that holds
360 cubic centimeters.
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Exercise 4.35 Some cans have large radius and small height while others have the reverse. Which of these cans
correspond to more expensive top-and-bottom materials and which correspond to more expensive side materials?
Why?

Exercise 4.36 Suppose that we have a rectangle of perimeter 120m. Answer the following questions.

a) What is the maximum area the rectangle could have?

b) Can it have any positive area smaller than the maximum?

c) What height yields an area of 10 square meters?

d) How many different whole number areas are possible?

Exercise 4.37 Is there are more efficient way to lay out the pens in Problem 4.29? Explain.

Exercise 4.38 If there were seven pens instead of six in Problem 4.37 would that change things? Explain.

Exercise 4.39 In this section we saw that, of all the rectangles with the same perimeter, the square is the one
has the largest area. If a square and a circle have equal perimeter, which has the larger area?

Exercise 4.40 Given the answer to problem 4.39, should you use cylindrical cans or rectangular boxes as con-
tainers? Explain your answer.

Exercise 4.41 In the introduction to this chapter it says:

What is the largest number smaller than 4?

The problem with that question is that the answer is “there isn’t one”. Any number y < 4 has another
number (y + 4)/2 between it and 4 and so no largest number is possible.

Demonstrate logically that it is true that

y <
y + 4

2
< 4

Exercise 4.42 Show symbolically, not numerically, that the height of the can in Example 4.20 is exactly twice
the radius.

Coming up: a new direction!



Chapter 5

Integrals

God does not care about our mathematical difficulties - he integrates
empirically.
–Albert Einstein

This is a tricky domain because, unlike simple arithmetic, to solve a
calculus problem - and in particular to perform integration - you have to
be smart about which integration technique should be used: integration
by partial fractions, integration by parts, and so on.
– Marvin Minsky

If one looks at the different problems of the integral calculus which arise
naturally when one wishes to go deep into the different parts of physics,
it is impossible not to be struck by the analogies existing.
– Henri Poincare

As we’ve seen in the last two chapters, the derivative of f(x) is the rate at which f(x) is changing. In this
chapter we will turn this around and learn to deal with the situation where f(x) is the rate at which something
is changing. Our goal is to learn to total up that thing and find how much of it there is.

Example 5.1 Constant rates of change

Suppose that you have a rental property that yields $1200.00 per month of income but which costs $560.00 to
pay for maintenance, upkeep, insurance, and utilities. Then the rate at which your money-in-hand is changing
is $1200.00-$560.00=$640.00/month. What is the total income for the property over 36 months? Since the rate
at which money in hand is changing is constant, this is a very easy problem:

36× $640.00 = $23040.00

In spite of its simplicity, this problem contains one of the important ideas of the integral calculus. If f(x) =
$640.00 is the rate at which our money-in-hand is changing and we graph f(x):

135
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Then we see that the (green) area under the graph, but above the x-axis is the total money-in-hand after 36
months. Since the area is a rectangle, we don’t need calculus to total up the money.

Lets codify this idea in a fact.

Fact 5.1 If f(x) is the rate at which a quantity is changing then the area under the graph of f(x) from x = a
to x = b is the total amount of the quantity that accumulates between a and b.

The next example shows how to deal with a rate of change that isn’t constant.

Example 5.2 dealing with a non-constant rate of change

Problem: Suppose that, to keep a group of people working at a task, the organizer says that the pay starts at
$3.00 per hour at 8:00 but goes up continuously at a rate of one dollar per hour until 5:00. That means that the
rate of pay at t hours after 8:00 is 3+t dollars/hour. If someone works the whole day, what is their wage?

Strategy: Use the fact, start by graphing the rate of pay (which is the rate of change of the wages).

Notice that the area under the curve can be divided into a rectangle from 8:00 to 5:00 (9 hours wide) and $3.00
tall and a triangle with a base of 9 hours and a height of $9.00 (from $3.00 to $12.00). Recalling that the area



5.1. DEFINITION OF INTEGRALS 137

of a triangle is one-half base times height we get

TOTAL WAGES = 9× 3 +
1
2
× 9× 9 = 27 +

81
2

= $67.50

for the full day.

In the first example in this section we see that only the formula for the area of a rectangle is needed. In the
second example the area under the curve was a triangle and a rectangle. The more complicated the rate at which
the thing we are interested in is changing, the more sophisticated the geometry gets. At this point we want to
introduce some calculus that will let us construct the area formula directly.

5.1 Definition of Integrals

Definition 5.1 Suppose that
F ′(x) = f(x)

then we say F (x) is an antiderivative of f(x). An older and more traditional name is to say that F (x) is an
integral of f(x).

The next fact gives us the connection between integrals (or antiderivatives) and the totalling-things-up technique
involving finding the area under the curve.

Fact 5.2 Fundamental Theorem of Calculus (Version One)
If F ′(x) = f(x) then the area under the graph of f(x) from x = a to x = b is

Area = F (b)− F (a)

Which means that we can reduce the problem of finding areas under curve (and hence the total change in some
quantity) to the problem of finding integrals of functions. There is one odd consequence of this fact: areas that
are below the x-axis count as negative “areas”. The reason for this is that when a rate of change is below the x
axis the rate of change is negative: we are losing rather than gaining ground. Keeping this in mind, lets develop
some machinery for finding integrals. Notice that every derivative formula we have now can be turned around
to yield an integral formula.

Example 5.3 Finding the integral of x2

Problem: Find the integral of x2.

We know that (
x3
)′

= 3x2

if we divide both sides by three we get that (
1
3
x3

)′
= x2

so we see that one integral of x2 is 1
3x

3. This leads to a big issue with integrals: they are not unique.

Notice (
1
3
x3 + 2

)′
= x2 + 0 = x2

Since the derivative of a constant is zero, if F (x) is an integral of f(x) then so is F (x) + c for any possible
constant c.
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We deal with the issue of that free constant in an integral by using a convention: we write F (x) + C for any
integral to remind ourselves that the integral is only known up to a constant. When we are finding an area
F (b)− F (a) the constant C appears twice with one positive copy and one negative copy. The copies cancel and
the constant disappears. We now give the notation for integrals.

Definition 5.2 Integral notation

When F ′(x) = f(x) we say that F (x) + C is the integral of f(x) and we write

F (x) + C =
∫
f(x) · dx

The symbol dx is the differential of x and is used to denote which symbol in the integral is being treated as the
variable. This kind of integral, with a “+C” is called an indefinite integral.

If we know the boundaries x = a and x = b we are using to compute an area we write the area as

Area =
∫ b

a

f(x) · dx

This sort of integral, with known bounds, is called a definite integral.

Example 5.4 Practicing integral notation

We now state the answers to Examples 5.1, 5.2, and 5.3 using integral notation. Example 5.1 is a definite
integral:

$23, 040 =
∫ 36

0

$640.00 · d months

The d months means we are using the integral to total up over a period of months.

Example 5.2 is also a definite integral:

$67.50 =
∫ 12:00

8:00

(3 + t) · d hours

The d hours means the integral is totalling over some number of hours.

Example 5.3 is an indefinite integral:
1
3
x3 + C =

∫
x2 · dx

We are now ready to start compiling formal rules for performing integrals. Each can be paired with one of our
derivative rules, something we will do explicitly at first.

Fact 5.3 Power rule for integrals

Since
(xn)′ = nxn−1

it is also the case that
1

n+ 1
xn+1 + C =

∫
xn · dx

so long as n 6= −1. In English this rule is often stated as “add one to the power and divide by the new power”.
The exception for n = −1 is needed to avoid dividing by zero - we fill in this gap in a couple pages with a
surprising formula.
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There are two mildly special cases. Since D = Dx0 for a constant D we have

∫
D · dx = Dx+ C

. Similarly since x = x1 we have ∫
x · dx =

∫
x1 · dx =

1
2
x2 + C

The linearity rule for derivatives let us extend the power rule for derivatives to all polynomial functions. The
same thing happens for integrals.

Fact 5.4 Linearity of Integrals
Suppose that f(x) and g(x) are functions that have integrals and that D is a constant. Then:

1.
∫
D · f(x) · dx = D ·

∫
f(x) · dx

2.
∫

(f(x) + g(x)) · dx =
∫
f(x) · dx+

∫
g(x) · dx

3.
∫

(f(x)− g(x)) · dx =
∫
f(x) · dx−

∫
g(x) · dx

Example 5.5 Problem: Find
∫ (
x2 − 3x+ 5

)
· dx.

Solution: Use the linearity rules:

∫ (
x2 − 3x+ 5

)
· dx =

∫
x2 · dx− 3 ·

∫
x · dx+

∫
5 · dx

=
1
3
x3 − 3 · 1

2
x2 + 5x+ C

=
x3

3
− 3

2
x2 + 5x+ C

Notice that, while technically there are three integrals and hence three unknown constants, it is usual to simply
lump them all together - any act of indefinite integration requires only one unknown constant at the end.

The linearity rules can also be used with definite integrals.

Example 5.6 Linearity in a definite integral

Find the area under the curve y = x2 + 1 from a = 0 to b = 2. Note: area “under a curve” means area between
the curve and the x-axis
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The area we are trying to compute is shown at the left.
The corresponding integral is

Area =
∫ 2

0

(
x2 + 1

)
· dx

=
∫ 2

0

x2 · dx+
∫ 2

0

1 · dx

=
1
3
x3 + x

∣∣∣∣2
0

=
1
3

23 + 2−
(

1
3

03 + 0
)

=
8
3

+ 2 + 0

=
14
3

Notice that, once we have performed the integral, the lim-
its of integration (a = 0, b = 2) are placed on a vertical
bar behind the formula before we plug them in to compute
F (b)− F (a) as in the fundamental theorem.

The vertical bars, used to hold the limits of integration before we plug them in, are standard notation. Let’s do
another example.

Example 5.7 Problem: Find
∫ 1

−1
x3 · dx.

Solution: apply the power rule and the fundamental theorem.

The area we are trying to compute is shown at the left.
The corresponding integral is

Area =
∫ 1

−1

x3 · dx

=
1
4
x4

∣∣∣∣1
−1

=
1
4

14 − 1
4

(−1)4

=
1
4
− 1

4
= 0

Notice that in the diagram the area above and below the x
axis are equal. That means the total change, positive and
negative, exactly balance out and we get no net change. In
fact the integral of an odd power over a plus-minus sym-
metric area is always zero.
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We are now ready to pile up some more integral rules. We know that (ex)′ = ex and that (ln(x))′ = 1
x . Since

integrals are antiderivatives this gives us the following fact.

Fact 5.5 Integrals associated with log and exponential function

1.
∫
ex · dx = ex + C

2.
∫

1
x · dx = ln(x) + C

Notice that the second rule above fills in the gap in the power rule for integrals. While the above rules give
us integrals associated with the most basic log and exponential functions, they leave us unable to deal with
functions like y = 4x or y = e2x. For this we will need a more powerful rule.

Example 5.8 Integration by substitution

Problem: Find
∫
e2x · dx.

Solution: Since we only know how to integrate the exponential of a single variable, let’s make 2x a single
variable. Set u = 2x. Take the derivative of both sides and we get u′ = 2x′. At this point we will use a new fact:
the derivative of a variable is a differential; in other words x′ = dx and u′ = du. This means that

du = 2dx

1
2
du = dx

So if we substitute u for x everywhere we can we get:∫
e2x · dx =

∫
eu · 1

2
du

=
1
2

∫
eu · du

=
1
2
eu + C

=
1
2
e2x + C

and we have the integral. The key is to make a substitution that turns the problem of interest into one we can
do.

The formal name for this technique is u-substitution. The reason it is called substitution is obvious, the u comes
from the traditional variable name. Let’s do another example.

Example 5.9 Integration by substitution, again

Problem: Find
∫
x(x2 + 1)4 · dx.

Solution: Since the derivative of x2 + 1 is 2x the quantity we are trying to integrate looks a lot like (a constant
multiple of) the derivative of (x2 + 1)5. This suggests that the substitution u = x2 + 1 might turn this problem
into a simple power-rule integral. If u = x2 + 1 we have that du = 2x · dx.
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The problem contains x and dx so solve for x ·dx obtaining 1
2du = x ·dx. Now substitute and perform the integral:∫

x(x2 + 1)4 · dx =
∫

(x2 + 1)4 · x · dx

=
∫
u4 · 1

2
du

=
1
2

∫
u4 · du

=
1
2

(
1
5
u5

)
+ C

=
1
10
u5 + C

=
1
10
(
x2 + 1

)5
+ C

and we have the integral. You can verify the integral by computing(
1
10

(x2 + 1)5
)′

and seeing if it simplifies to x(x2 + 1)4.

It is a good idea, for all but the simplest integrals, to check them by taking the derivative of your answer and
check to make sure that it simplifies to the expression you originally integrated. Don’t freak out if the derivative
of your answer is not the thing you started with right away; sometimes a good deal of algebra is needed to
connect the dots.

Steps for u-substitution

1. Look at the integrand (thing being integrated), think what sort of thing it might be the derivative of, and
choose a tentative expression to be u.

2. Compute du = u′.

3. Substitute and see if all the parts of the integrand can be turned into expressions involving u. This may
require some algebraic manipulation.

4. If you cannot make the algebra work out, go back to step 1.

5. Check and see if you can do the new integral. If you can, do it. If not, go to step 1.

Let’s do an integral where algebraic manipulation is needed to make the substitution work.

Example 5.10 More practice with u-substitution

Problem: Find ∫
x+ 1
x− 1

· dx

Solution: The annoying part of this is that x − 1 is not just a single variable. If it were, we could break up
the fraction into two integrals, both of which we could do. This means that a logical choice is u = x − 1. If
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u = x− 1 then du = dx and we still need to deal with x+ 1. But if u = x− 1 we can add two to both sides and
get u+ 2 = x+ 1. Now we can substitute:∫

x+ 1
x− 1

· dx =
∫
u+ 2
u
· du

=
∫ (

u

u
+

2
u

)
· du

=
∫

1 · du+ 2 ·
∫

1
u
· du

= u+ 2ln(u) + C

= x− 1 + 2ln(x− 1) + C

and we have the integral. The difficult step is finding u. Sadly there is no general rule - only lots of examples
and skill that increases with practice.

The next example is a little more direct, and variations on it are a classical source of exam problems. Hint! Hint!

Example 5.11 Even more practice with u-substitution

Problem: Find ∫
x

x2 + 1
· dx

Solution: Since
(
x2 + 1

)
= 2x it’s fairly obvious that u = x2 + 1 will work. We see du = 2x · dx so that

1
2dx = x · dx and we are ready to substitute:∫

x

x2 + 1
· dx =

∫
1

x2 + 1
· x · dx

=
∫

1
u
· 1

2
du

=
1
2

∫
1
u
· du

=
1
2
ln(u) + C

=
1
2
ln(x2 + 1) + C

and we have the integral.

Exercises

Exercise 5.1 Do the following indefinite integrals. Remember to include everything we should see.

a) f(x) =
∫
x5 · dx. b) f(x) =

∫
x6 · dx. c) f(x) =

∫ (
x3 − 2x2 + 5x− 7

)
· dx.

d) f(x) =
∫ (
x4 + x3 + 2x2 + x+ 1

)
· dx. e) f(x) =

∫
((x− 1)(x− 2)(x− 3)) · dx.

f) f(x) =
∫ (

(x4 − 5)(x4 + 5)
)
· dx.
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Exercise 5.2 Do the following definite integrals.

a) f(x) =
∫ 1

0
x5 · dx. b) f(x) =

∫ 1

−1
x6 · dx. c) f(x) =

∫ 1

0

(
x3 − 2x2 + 5x− 7

)
· dx.

d) f(x) =
∫ 2

0

(
x4 + x3 + 2x2 + x+ 1

)
· dx. e) f(x) =

∫ 2

1
((x− 1)(x− 2)(x− 3)) · dx.

f) f(x) =
∫ 2

−2

(
(x4 − 5)(x4 + 5)

)
· dx.

Exercise 5.3 Do the following indefinite integrals, using the technique of substitution.

a) f(x) =
∫

2x ·
(
x2 − 3

)2 · dx. b) f(x) =
∫

3x2(1 + x3)6 · dx. c) f(x) =
∫

x2

2x3−4 · dx.

d) f(x) =
∫

3x2+2x+1
x3+x2+x+1 · dx. e) f(x) =

∫
dx

x·ln(x) · dx. f) f(x) =
∫

ex

ex+2 · dx.

Exercise 5.4 Do the following indefinite integrals, using the technique of substitution. In some cases you may
want to simplify the expression algebraically before performing the substitution.

a) f(x) =
∫

x
x+1 · dx. b) f(x) =

∫
2x+1
x−1 · dx. c) f(x) =

∫
x3

x2+1 · dx.

d) f(x) =
∫
x3+x+1
x−1 · dx. e) f(x) =

∫
ex+1
ex−1 · e

x · dx. f) f(x) =
∫

ex+2
2ex+3 · e

x · dx.

Exercise 5.5 Compute ∫
ex

(ex + 4)3

Exercise 5.6 Compute ∫
ex

(ex − 1)5

Exercise 5.7 Compute ∫ ln(5)

0

e−x · dx

Exercise 5.8 Compute ∫ ln(3)

0

xe−x
2
· dx

Exercise 5.9 Compute ∫ 3

1

1
x · ln(x)

· dx

Exercise 5.10 Compute ∫ 4

2

ln(x)
x · ln(x)2 + x

· dx

Exercise 5.11 Find the formula, in general, for∫
ax+ b

cx+ d
· dx

Exercise 5.12 Find the formula, in general, for ∫
ecx · dx

where c is a constant.
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Exercise 5.13 Verify, by taking a derivative, that∫
ln(x) = x · ln(x)− x+ C

Exercise 5.14 Verify, by taking a derivative, that∫
x2ex =

(
x2 − 2x+ 2

)
ex + C

Exercise 5.15 Find the formula, in general, for ∫
cx · dx

Hint: use substitution after converting cx into an expression involving the number e to some power.

Exercise 5.16 Using the information in Problem 5.13, find a formula for∫
logb(x) · dx

Exercise 5.17 For n ≥ 0 find the general formula for∫ a

−a
xn · dx

Hint: it matters if n is odd or even so you will need a split rule formula.

Exercise 5.18 First simplify the expression 1
x−1 −

1
x+1 and then compute∫

1
x2 − 1

· dx

Exercise 5.19 Show logically that if p(x) is a polynomial of degree n then∫
p(x)ex · dx

is of the form q(x)ex+C where q(x) is also a polynomial of degree n. Hint: remember that integrals are derivatives
done in reverse.

Exercise 5.20 Since integrals are anti-derivatives, each integration rule is the reverse of some derivative rule. In
some cases the derivative rule is so obscure that it doesn’t have a name. The integration technique u-substitution,
however, is the reverse of a famous derivative rule. Which one? Please explain.

5.2 Applications of Integrals

An integral is capable of totalling a continuously changing quantity. The next step is to try to find things to total
that cannot be done in some simpler way. Example 5.1 showed that when you have a constant rate of change
the “integral” to total up the change is just multiplying rate of change by the elapsed time. The earliest example
in these notes of a quantity with a non-constant rate of change is the application on page 70: continuously
compounded interest.
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Example 5.12 Justifying the continuous interest formula

Interest on an account is paid as a fraction of the money present. That means that the rate of change of an
interest-bearing account is a fraction c of the current balance. In Chapter 2 we dealt with the case where the
interest is paid at specific times and mentioned that continuous interest is exponential. With integration we can
demonstrate why this is so.

Suppose that b(t) is the balance in an account at a time t and that the interest rate is a fraction r of that balance.
Then the rate at which the account is changing is r · b(t). That means that

b′(t) = r · b(t)

Let’s solve this equation with integration.

b′(t) = r · b(t)
b′(t)
b(t)

= r∫
b′(t)
b(t)

· dt =
∫
r · dt

At this point set u = b(t) so that du = b′(t). Then:∫
1
u
· du =

∫
r · dt

ln(u) = rt+ C

eln(u) = ert+C

u = ert × eC

b(t) = ert × eC

Set A = eC to emphasize that eC is itself a single constant and we get

b(t) = Aert

It turns out that A is the initial balance of the account (b(0) = ae0 = A)and we see that continuously compounded
interest can be demonstrated to be an exponential function.

An integral can be used to total almost anything. In the next example we use it to total losses from a leaking
tank. Note that in the middle of the problem, the solution of the integral turns out to be a quadratic equation,
at which point we smoothly shift to using the quadratic equation.

Example 5.13 Total losses from a leaking tank

Problem: Suppose that a storage tank leaks 3.6+2t liters of material per hour where t is the duration since the
last time the seals on the tank are tightened. The losses increase as vibration and use loosen the tank’s seals. If
we want to keep total losses between maintenance cycles down to 150 liters, how often must the seals be tightened?

Solution: The integral of losses must be 150L or less, so we solve for the number of hours h until the losses
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reach 150L.

150 =
∫ h

0

(3.6 + 2t) dt

= 3.6t+ 2× 1
2
t2
∣∣∣∣h
0

= 3.6t+ t2
∣∣h
0

= 3.6h+ h2 − 0− 0
150− 3.6h− h2 = 0

quadratic ; a = −1, b = −3.6, c = 150

h =
3.6±

√
3.62 − 4(−1)(150)
−2

h =
3.6±

√
612.96
−2

h =
√

612.96− 3.6
2

∼= 10.58 hours

So the seals need to be tightened every 10 hours or so. Might be time to invest in a better tank. Notice that we
discarded the negative root of the quadratic 150−3.6h−h2 = 0 because common sense tells us that negative times
are not of interest.

In the next example we will use a continuously updated estimate of sales per week to compute the number of
weeks until 500,000 units are sold.

Example 5.14 Integrating demand over time to get total units sold

When a game goes on sale the number of units sold ramp up rapidly and then drop off. A sales consulting firm
estimates that the weekly sales as a function of the number of weeks is D(w) = 10w

10w2+1 hundreds of thousands of
units. Use an integral to estimate the number of weeks until 500,000 units are sold.

The integral of the function D(w) is the total units sold
so solve:

5 =
∫ n

0

10w
10w2 + 1

· dw

Remember that 500,000 is 5-hundred thousand. Notice
that this needs u-substitution with u = 10w2 + 1 and
1
2du = 10w so:∫

10w
10w2 + 1

· dw =
1
2

∫
1
u
· du

=
1
2
ln(u) + C

=
1
2
ln
(
10w2 + 1

)
+ C
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Plugging the result of this indefinite integral into the original integral we get

5 =
1
2
ln
(
10w2 + 1

)∣∣∣∣n
0

5 =
1
2
ln(10n2 + 1)− 0

10 = ln(10n2 + 1)

e10 = eln(10n2+1)

e10 = 10n2 + 1

n2 =
e10 − 1

10

n =

√
e0 − 1

10
n ∼= 46.93

So the sales goal of 500,000 units should be met around week 47.

In the next example we show how to use integrals to total up cross sectional areas in order to obtain a volume.

Example 5.15 Sizing a novelty beer mug

Problem: The diagram above shows the design for a novelty beer glass to be made out of high impact plastic.
The cross section of the mug is circular but the radius of the cross section is given by the formula r(x) = q+ x2

12 .
The mug’s design goes from x = −8cm to x = +8cm. The only number we are allowed to change is q, in
centimeters, which controls how thick the glass is at its stem. Find the value of q that yields a 1 liter glass.

Solution: First notice that the volume for positive and negative x is the same, so we only need to solve for the
volume from x = 0 to x = 8 and make it half a liter (500cc’s). The rate at which the volume changes, as we go
down the x-axis from x = 0 to x = 8 is the area of the cross section. Circles have an area of A = πr2 so we can
find the volume by integrating the areas of the circles that form cross sections of the mug.
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We are given that the radius is r(x) = q + x2

12 and so we want q so that:

500 =
∫ 8

0

πr(x)2 · dx

=
∫ 8

0

π

(
x2

12
+ q

)2

· dx

= π

∫ 8

0

(
x4

144
+ 2

x2

12
q + q2

)
dx

= π

(
x5

720
+
qx3

18
+ q2x

)∣∣∣∣8
0

= π

(
32768
720

+
512q
18

+ 8q2 − 0− 0− 0
)

0 =
1024
45

π − 500 +
256π

9
q + 8πq2

We get a quadratic equation with variable q. Since we are finding a physical length, it is appropriate to move to
decimal approximations:

−428 + 89.4q + 25.1q2 = 0

Applying the quadratic formula (and ignoring the negative root) we get:

q =
−89.4 +

√
89.42 − 4(−428)(25.1)

50.2
∼= 2.72cm

Which means the glass will have a waist with a radius of 2.72cm or a diameter of 5.44cm. This is a fairly
reasonable design, maybe a little thin in the middle. Of course the plastic can be made thicker, leaving the
volume for beer the same, but this might increase materials costs for manufacturing too much. We will revisit
this problem in the exercises.

A type of curve with the same sort of shape as that in Example 5.14 is a polynomial times e−x. Since increasing
the degree of the polynomials permits a statistician or modeler to select the degree of accuracy possible for the
model, we include the integral formula for this type of curve.

Fact 5.6 Suppose that f(x) = p(x)e−x where p(x) is a polynomial. Then∫
f(x) · dx = − (p(x) + p′(x) + p′′(x) + ...) e−x + C

The terms between the large parenthesis are the sum of all the non-zero derivatives of p(x); don’t worry, the
number of derivatives is always finite if p(x) is polynomial.

Example 5.16 Demonstrating Fact 5.6

•
∫
xe−x = −(x+ 1)e−x + C.

•
∫
x2e−x = −

(
x2 + 2x+ 2

)
e−x + C.

•
∫
x3e−x = −

(
x3 + 3x2 + 6x+ 6

)
e−x + C.

•
∫ (
x2 + x+ 1)

)
e−x = −

(
(x2 + x+ 1) + (2x+ 1) + (2)

)
e−x + C = −

(
x2 + 3x+ 4

)
e−x + C.
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Example 5.17 Another demand curve

Problem: Suppose that demand, in millions of units, for a hair clip with a logo from a recent movie has a
weekly demand curve D(w) given by

D(w) = (w2 + 2)e−w

Find the total production needed to satisfy demand for the first ten weeks.

Solution: Integrate from w = 0 to w = 10, using Fact 5.6. The green area in the diagram above represents the
total demand over time. ∫ 10

0

(w2 + 2)e−w · dw = −
(
w2 + 2 + 2w + 2

)
e−w

∣∣10
0

= −
(
w2 + 2w + 4

)
e−w

∣∣10
0

= −
(
124e−10 − 4e0

)
= 4− 124e−10

= ∼= 3.994

So the total demand in the first 10 weeks is 3,994,000 hair clips, assuming the technique used to estimate the
demand curve is good.

Probability is an important application area for integrals. If you take a course in statistics you may see many of
these applications. We include a single application, to demonstrate the potential.

Example 5.18 Lightbulb Failure

The probability an old-style incandescent light bulb will fail has an odd property - if the bulb is still burning then
its remaining lifetime does not depend much on how long the light bulb has been burning. A new light bulb has
roughly the same chance to burn out in the next few hours as one that’s been in use for ten years (as long as the
old bulb is still burning). This means that, ignoring some constants that will just make the problem harder, that
the failure rate of light bulbs burning after t years is f(t) = e−t. It turns out that the fraction of lighbulbs that
fail from time t = 0 to time t = H is the integral of the failure rate.
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Problem: If we are studying a large number of lightbulbs, estimate the time requred for half of them to fail.

Solution: Integrate the failure rate from t = 0 to t = H where the fraction of failed bulbs is 1/2.

0.5 =
∫ H

0

e−t · dt

= −e−t
∣∣H
0

= −e−H − (−e0)
= 1− e−H

e−H = 0.5
−H = ln(0.5)
H = −ln(0.5)
H = ln(2) ∼= 0.693 years

This means that the time at which close to half of a group of bulbs will fail is a little over 8 months. Notice we
integrated the function with Fact 5.6.

Exercises

Exercise 5.21 Do the following indefinite integrals, using Fact 5.6.

a) f(x) =
∫
x3 · e−x · dx. b) f(x) =

∫
x4 · e−x · dx. c) f(x) =

∫ (
x2 + 2x+ 4

)
· e−x · dx.

d) f(x) =
∫ (
x2 − 3x+ 3

)
· e−x · dx. e) f(x) =

∫ (
x3 + x2 + x+ 1

)
· e−x · dx.

f) f(x) =
∫ (
x4 + 5x2 + 1

)
· e−x · dx.

Exercise 5.22 For each of the following functions, find a constant B so that
∫ B
0
f(x) · dx is equal to the given

value.

a) f(x) = x+ 1, total integral is 20. b) f(x) = 2x+ 3, total integral is 60.

c) f(x) = 3x2 − 4x+ 1, total integral is 2. d) f(x) = 3x2 − 8x+ 2, total integral is 8.

e) f(x) = x
x2+1 , total integral is 4. f) f(x) = x2

x3+1 , total integral is 2.
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Exercise 5.23 Suppose that profits from sales of a line of kitchen appliances is f(t) = 1.1 + 0.6t in month t of
a year as sales ramp up toward Christmas and year-end sales. Compute the total profits for the year.

Exercise 5.24 Suppose that profits from sales of garden tools and supplies is f(t) = t2−3t+3
t2−4t+5 in month t of a

year. Note that the maximum profits are in April. Compute the total profits for the year. A graph of the situation
is shown above. Hint: start with long division.

Exercise 5.25 Using the results in Example 5.14, find the total units sold in the first year (52 weeks).

Exercise 5.26 Using the results in Example 5.14, estimate the number of years needed to sell one million units.
The answer is a little surprising.

Exercise 5.27 Suppose instead of going from x = −8cm to x = 8cm the beer glass in Example 5.15 went from
x = −6cm to x = 6cm. Then what would the value of q be?

Exercise 5.28 Suppose in Example 5.15 we want a 2 liter glass. What does q become?

Exercise 5.29 Suppose in Example 5.15 we used a profile of f(x) = x2/25 + q instead of f(x) = x2/12 + q.
What would the value of q be?

Exercise 5.30 Suppose in Example 5.15 we simply set q = 3; what is the volume of the resulting glass?

Exercise 5.31 If the failure rate of a given type of incandescent light bulb after t
years is

f(t) = 4 · e−4t

find the time for roughly half the bulbs to burn out.

Exercise 5.32 If the failure rate of a given type of incandescent light bulb after t
years is

f(t) = 6 · e−6t

find the time for half the bulbs to burn out.

Exercise 5.33 Using Fact 5.6 and u-substitution, find a formula for∫
p(x)ex · dx

Done with calculus!



Chapter 6

Systems of Linear Equations

A system of equations is a collection of two or more equations with a same set of
unknowns. In solving a system of equations, we try to find values for each of the
unknowns that will satisfy every equation in the system.
-Anon.

We will have a need for subtraction, and occasionally we will divide, but mostly you
can describe linear equations as involving only addition and multiplication.
-Robert A. Beezer

You don’t hate linear algebra, you hate the class you’re in. There’s a difference. Linear
Algebra is a beautiful subject.
Cyrus, from the “I Hate Linear Algebra” forum.

This section offers a treatment on setting up and solving linear systems of equations. In Chapter 1 we solved
for the intersection of pairs of lines. This is the simplest version of the more complicated skill we will be building
in this section. It would be good to review Section 1.2.1 before diving into this section. The section is also
arithmetic intensive so drink your power tea, do your breathing exercises, or lay in a supply of your favorite
snack, whatever it takes to do a whole lot of arithmetic accurately.

In Chapter 1 there was an easy
picture to work with. When solv-
ing a system like:

2y + 3x = 7
5y − 2x = 8

We could just find the point
where the lines, corresponding to
the equations, intersect. This
is shown in the diagram at the
right.

The answer x = 1, y = 2 that satisfies both the equations at the same time is available with a little algebra. In
this section, we will introduce a different method, than the one in Chapter 1, which would be slightly harder if
we applied it to two lines, like those above with two variables, but which is easier when there are three or more
equations and variables.

153
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Application: Expansion Packs of Cards

Suppose we have 300 darkside cards and 400 lightside cards that we want to put into 10-card expansion
packs for a trading card game. We make solar packs, with two dark and eight light cards that sell for $3.00
and nightfall packs that have five of each sort of card and sell for $5.00. What is the best allocation of cards
to packs?

Let S be the number of solar packs and N be the number of nightfall packs. Then the fact we have 300
darkside cards tells us

2S + 5N = 300

while the fact that we have 400 lightside cards tells us that

8S + 5N = 400

If we graph these linear equations that describe the possible distribution of packs we get:

The red regions are areas where we don’t have enough of one type of card. The blue regions are all the
pairs (S,N) of packs we can make. Since unsold cards are a loss, we want solutions on the boundary of the
blue and red regions. If we are on one of the lines that forms the boundary, revenue will change as we move
along a line. This means that maximum revenue is at a place not only on the boundary of the blue region
but where lines intersect. In other words, we only need to check P1, P2 and P3. For P2 we solve and round
to the nearest whole numbers in the blue region getting S = 16, N = 53. P1 is the “make only solar packs”
solution which means 400/5=50 solar packs. P3 is the “make only nightfall packs” solution which means
300/5=60 nightfall packs. Let’s compare:

Point Packs Revenue

P1 S=50, N=0 $150.00

P2 S=16, N=53 $313.00

P3 S=0, N=60 $300.00

An so P2 yields the maximum revenue. Notice that this is an optimization problem, but a very different
sort from the calculus based optimization in Chapter 4.
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How to Set Up a Linear Equation

Consider the following example. You inherited $55,000 and invested part of it in a tax-free savings account,
part in government bonds, and part in a mutual fund. After one year, you received a total of $2,950 in simple
interest from the three investments. The TFSA paid 5% annually, the bonds paid 6% annually, and the mutual
fund paid 7% annually. You invested $9,500 more in the mutual funds than in the TFSA. Find the amount you
invested in each.
It is clear that there are three things we are looking for:

1. The amount of money you invested in the TFSA

2. The amount of money you invested in bonds

3. The amount of money you invested in the mutual fund

The first helpful thing to do is assign a variable to each item we are looking for, since rewriting them over
and over seems inefficient. Let’s call the amount of money in the TFSA x, the amount of money in the bonds y,
and the amount in the mutual funds z. From our example, we know three things for sure. The first is we know
how much total money was invested, and we can write that in the form:

x+ y + z = 55000

We also know how much money was returned from the simple interest. You got $2,950, and we know how
much what the percentage was on each investment. So we can write that in the form:

0.05x+ 0.06y + 0.07z = 2950

We have one last piece of information, that the amount in the mutual funds minus the amount in the TFSA
is $9,500, which we can write as:

x− z = 9500

We now have the following three equations, which create a system:

x+ y + z = 55000
0.05x+ 0.06y + 0.07z = 2950

x− z = 9500

The process we just went through is called setting up a linear system. We still need to teach you to solve such
systems.
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Why are they called “linear” equations?

An equation like 2y + 3x = 7 can be solved to yield

y = −3
2
x+

7
2
,

clearly the point-slope form of a line. An equation line

0.05x+ 0.06y + 0.07z = 2950,

however, is not something you can solve to get a line. An equation is linear if the variables are all to the
first power and not multiplied by one another.

If we have a three variable equation line x+ y+ z = 3 then it does have a graph, but it is not a line. Instead
it is a plane (flat surface) in three dimensions. An equation like:

a+ b+ c+ d = 12

has a graph that is a solid (three dimensional) object in a four dimensional space. This object is called a
three dimensional hyperplane. This is a little hard to picture, and so we use the abstraction of linear
equations to work with it.

At this point you may be wondering how objects in four dimensions are relevant to the real world in
general, or business in particular. Consider the problem of allocating airplanes, food, fuel, pilots, cabin
staff, maintenance personnel, replacement parts, supplies like lube and cleaning supplies, drinks (first class
and main cabin, they’re very different, etc. etc. for an airline. This can involve hundreds of linear equations
in hundreds of variables. This means a problem whose geometry involves a space with hundreds of dimensions
comes up every day. The formalisms in this chapter, programmed into computers with a little sophistication,
can solve these problems. If you’re interested, look up an article on linear programming.

A final word: a plane is the 3-dimensional generalization of a line. A 3-hyperplane in 4 dimensional space
is the 4-dimensional generalization of a line or plane. Since these objects are generalized lines, we call the
whole area of study “linear” algebra.

A Crucial Fact

When solving linear systems, if you have n variables to solve for, you need at least n equations to do the job.
So if we have 2 variables, we need at least 2 equations, 3 variables, at least 3 equations, and so on. When
setting up a linear system, make sure all your variables are accounted for, and that you have a sufficient number
of equations to solve them. If you don’t have enough equations then you cannot get a unique solution (there
may be many). If you have too many equations then either some of them contain redundant information or it
may be impossible to solve the system. This often happens when solving real problems, because someone wants
something that really isn’t possible.

A Few Things to Remember

Here are a few rules to know about the manipulation of the pieces of a system of linear equations, including a
review of elimination . Let us consider the following example:



157

2x− 3y + 4z = 5 (6.1)
x+ y + z = 1 (6.2)

4x+ y − 2z = −3 (6.3)

Here are three distinct linear equations. When we set up a linear system, solving it is the same as finding
where the planes that the equations represent intersect, if they do so at all. These equations can be rearranged,
according to whatever preference you may have, and it will still be the same linear system. Multiplying any
equation by a constant (and remembering that we have to multiply every piece of the equation on both sides
of the equals sign by that constant) also does not change the linear system. For example, if we were to switch
equations 2 and 3, and multiply equation (1) by 2, the result would be:

4x− 6y + 8z = 10 (6.4)
4x+ y − 2z = −3 (6.5)

x+ y + z = 1 (6.6)

The solution to this system is the same as our original system. Thus, we can apply any manipulation that
involves multiplying by a constant, or shifting the position of an equation, but the result is still the same system.
We can also add (or subtract) two equations without changing the solution of the system. For example, if we
now added equation 5 to equation 6, the result would be:

4x− 6y + 8z = 10 (6.7)
4x+ y − 2z = −3 (6.8)
5x+ 2y − z = −2 (6.9)

Although this system now looks fairly different from the one with started with originally, they share the
same unique solution. Keeping this idea in hand, we move to the technique of elimination. As a quick aside worth
mentioning, we can multiply an equation by any real number, not just integers. So the numbers 1

3 ,
√

5, 12.7, etc.,
are all perfectly acceptable constants. However, don’t make the mistake of multiplying by variables, since that
will definitely change the system of equations you are working with and inevitably give you the wrong answer.

Elimination to Solve Linear Equations

Elimination is the tool we are going to use to help us solve our linear system problems. We’ll use the first
example and explain what is happening step by step:

2x− 3y + 4z = 5(1)
x+ y + z = 1(2)

4x+ y − 2z = −3(3)

Elimination, like the name suggests, is about isolating and solving for a variable in an equation by removing
(eliminating) all the other variables. It involves multiplying equations by constants and adding them to other
equations. It is an extremely useful technique, since all of our operations on these equations in the system won’t
change the answer. Let’s consider the first equation (1), and see what happens when we remove the z variable.
The first thing we have to look at is the coefficient of z in (1), in this case it is 4. Now we can use either equation
(2) or (3). Let’s choose (2), and perform the following operations. First, multiply (2) by 4, giving us 4x + 4y +
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4z = 4, then subtract the new equation from (1). If we write this operation down, it would look like a subtraction
with regular numbers.

2x− 3y + 4z = 5
− 4x+ 4y + 4z = 4

−2x− 7y = 1

A key idea to remember is that even though we performed these operations on (2) and then combined it
with (1), the original (2) does not change. This bears repeating. The equation we choose to manipulate and add
(or subtract) to another equation remains unchanged in the system. So the following operations yield:

−2x− 7y = 1
x+ y + z = 1

4x+ y − 2z = −3

We can continue in this vein and eliminate z from (3). We first multiply (2) by -2, giving us -2x -2y -2z =
-2, to make the coefficients of z in both equations equal. Then we subtract our new equation from (3).

4x+ y − 2z = −3
− −2x− 2y − 2z = −2

6x+ 3y = −1

Our system now looks like:

−2x− 7y = 1
x+ y + z = 1
6x+ 3y = −1

We could continue to eliminate variables from each equation until we solved for each one, and in the next
section we will learn the basic procedure to solve the system.

Procedures for Solving Linear Systems of Equations

Following this procedure will efficiently solve any system of linear equations. The best way to learn this procedure
is by practicing it several times with different systems of linear equations. The first few will be rather time
consuming, but once you have the process down it becomes significantly easier and quicker. Like most things,
repetition is the key to success here. These steps are guaranteed to solve the linear system and later on, we
will go through some examples to demonstrate possibilities and some more subtle aspects solving linear systems.
Listed below are the steps:

1. Start with the last (bottom) equation of the linear system.

2. Consider the variable that is furthest to the right. If the coefficient of that variable is 1, do nothing. If
it is not one, multiply every variable and constant in that equation by the number that will change the
coefficient of the variable you started with to 1.

3. Eliminate the variable from all the equations above the last equation by multiplying each equation by the
appropriate constants and subtracting them.
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4. Now move up to the equation that is right above the equation we were working with, and consider the
furthest variable to the right in our new equation. Repeat steps 2 and 3.

5. Continue until the first equation has the first variable remaining, the second equation has the first 2
variables remaining, and so on, with the nth (last) equation has n variables remaining.

6. Now consider the first variable in the first equation. If the coefficient is not 1, multiply the first equation
by whatever number will make the coefficient 1. We use a similar method to the way we removed variables
from equations above the equation and variable we were working with. Now we work down from the top
equation and remove all the variables in the equations beneath the first equation.

7. Move to the second equation, there should only be the second variable remaining. Eliminate the second
variable from all the equations beneath it.

8. Eliminate all variables from the equations until each equation has only one variable remaining. This is the
solved system.

These steps are guaranteed to solve any system of linear equations (or demonstrate they cannot be solved),
however we can replace steps 6-8 with the following:

1. Consider the first variable in the first equation. If the coefficient is not 1, multiply the first equation by
whatever number will make the coefficient 1. When the coefficient is 1, then we know that variable is equal
to whatever constant is on the other side of the equals sign.

2. When the value of the first variable is known, plug it into the second equation, and solve for the second
variable.

3. Plug the values of the first and second variables into the third equation, and solve for the third variable.

4. Continue until all the variables are solved for.

The steps in the original process or the ones offered in the alternative will both solve the system correctly,
it just becomes a matter of personal preference. Use the methods that makes a given set of equations easier to
solve.

Two Examples

Here are two examples to clearly illustrate what is happening when we solve linear systems.
Example 1

x− 2y + 3z = 7
−3x+ 2y − 2z = −10

2x+ y + z = 4

Let’s follow the procedure outlined in the previous section. Since the coefficient of z is 1 in the bottom
equation, we don’t need to multiply by anything. To eliminate the z variable in the middle equation, multiply
the bottom equation by 2 and add it to middle equation. For the top equation, multiply the bottom equation
by 3 and subtract it from the first equation. This yields:

−5x− 5y = −5
x+ 4y = −2

2x+ y + z = 4
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Before we focus on the middle equation, we can make our lives easier by noticing that every element in the
first equation has a coefficient of 5. If we multiply the top equation by 1

5 , we get the follow equation, which will
be easier to work with.

−x− y = −1
x+ 4y = −2

2x+ y + z = 4

Now we focus on the middle equation, and the second variable. We want to eliminate the second variable
in the first equation, so we multiply the first equation by 4 and subtract it from the second equation.

−3x = −6
x+ 4y = −2

2x+ y + z = 4

Using a similar trick from before, we can change the first equation by multiplying it by 1
3 , which will give

us the equation x = 2. Then to eliminate the first variable from the second equation, we subtract the first
equation from the second equation. To eliminate it from the third equation, we multiply the first equation by 2
and subtract it from the third equation, yielding:

x = 2
4y = −4
y + z = 0

Before the last step, we multiply the second equation by 1
4 to obtain y = -1. To eliminate the second variable

from the third equation, we subtract the second equation from the third equation, giving us the solution to the
system:

x = 2
y = −1
z = 1

Example 2
Unfortunately, unlike the first example most linear systems don’t result in clean, whole number solutions.

The process is still the same, as the following system of equations will demonstrate.

5x+ 4y + 3z = 8
2x+ 7y + 5z = 5
4x+ 4y + 2z = 4

The coefficient of z is 2 in the bottom equation,so we need to multiply the whole equation by 1
2 , giving us:

5x+ 4y + 3z = 8
2x+ 7y + 5z = 5
2x+ 2y + z = 2
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To eliminate the z variable in the middle equation, multiply the bottom equation by 5 and subtract it from
the middle equation. For the top equation, multiply the bottom equation by 3 and subtract it from the first
equation. This yields:

−x− 2y = 2
−8x− 3y = −5
2x+ y + z = 2

Now we focus on the middle equation, and the second variable. We multiply the second equation by − 1
3 , in

order to turn the coefficient of the second variable into 1:

−x− 2y = 2
8
3
x+ y =

5
3

2x+ y + z = 2

To eliminate the second variable from the first equation, multiply the second equation by 2 and add it to
the first.

13
3
x =

16
3

8
3
x+ y =

5
3

2x+ y + z = 2

We want the coefficient of the first variable in the first equation to be 1, so we multiply by 3
13 , obtaining:

x =
16
13

8
3
x+ y =

5
3

2x+ y + z = 2

Now we want to eliminate the first variable from the second and third equations. To eliminate it from the
second equation, multiply the first equation by 8

3 and subtract it from the second equation. To eliminate it from
the third equation, multiply the first equation by 2 and subtract it from the third equation:

x =
16
13

y = −21
13

2y + z = − 6
13

To solve for the last variable, multiply the second equation by two and subtract it from the third, which
gives the solution:
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x =
16
13

y = −21
13

z =
36
13

Two Special Cases

Not every system of equations has a unique solution. When solving a linear system keep an eye out for two
possibilities: the system has an infinite number of solutions, or no solution at all. The case where there are
an infinite number of solutions happens when one (or more) of the equations is made completely of redundant
information. If you’re trying to set up a linear system and accidentally use the same information twice in exactly
the same way, you may create a linear system with an infinite number of solutions. In some situations, this is
natural, and there is some freedom in the system that lets you choose the value of one (or more) of the variables.

The case where there is no solution has a simple geometric explanation: two of the lines, planes, or hyperplanes
that correspond to your system of equations are parallel to one another. Since they have to intersect to yield a
solution, there isn’t one. If you want to think of this in terms of the problem you’re solving, two of the pieces of
information you’re using to set up the linear system conflict with one another in some fundamental way.

Infinitely Many Solutions

A system has infinite solutions if, as a result of elimination, one of the equations becomes something of the form,
0x = 0. Alternatively, 0y = 0, or 0z = 0, or any combination such as 0x + 0y = 0, will give the same answer
of infinite solutions; the point being that the coefficient of all the variables present in the equation are zero, and
that they equal zero. Consider the following example:

2x+ 2y + 3z = 10
3x− 2y + 2z = 10

−2x+ 3y − 0.5z = −5

Let’s go through the process of solving the system and see what we get. We start with the variable furthest
to the right, z and make its coefficient 1 by multiplying the bottom equation by -2:

2x+ 2y + 3z = 10
3x− 2y + 2z = 10
4x− 6y + z = 10

Multiply the last equation by 2 and subtract it from the second equation, and then multiply the last equation
by 3 and subtract it from the first equation, giving:

−10x+ 20y = −20
−5x+ 10y = −10
4x− 6y + z = 10

Now let’s divide the first equation by 20, and the second equation by 10, to make the coefficient of y 1 in
both equations:
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−0.5x+ y = −1
−0.5x+ y = −1

4x− 6y + z = 10

Now let’s eliminate y from the first equation, by subtracting the second equation from the first:

0x+ 0y = 0
−0.5x+ y = −1

4x− 6y + z = 10

At this point, we can stop. The first equation is now of the form 0x+ 0y = 0 (or we could write it 0x = 0,
or 0y = 0, it doesn’t really matter), which means there is an infinite number of solutions. What it means to
have an infinite number of solutions is that any value of x will work, since zero times anything will still give us
zero. The choice of x would be completely dependent on the type of problem these equations were representing.
There may be some problems where you are required to choose a value for x. Let a be the choice you make for
x, such that x = a. Remember, a is just some number, which gives us the system:

x = a

−0.5a+ y = −1
4a− 6y + z = 10

Now we can solve for the other two variables. If we shift −0.5a in the second equation to the other side of
the equals sign, we have the value of y. We can then plug that value of y into the third equation, and solve for
z. Make sure you try those steps and it should give us the solution with an arbitrary number for x:

x = a

y = −1 + 0.5a
z = 4− a

Hopefully, you noticed one very important thing about the nature of the equations. Here is the punchline
for having an infinite number of solutions: whether the system starts out this way or it is achieved by steps
of elimination, if one equation is exactly the same as another, or one equation is an exact multiple of another
equation in the system, then that system has an infinite number of solutions.

No Solution

The other possibility is that a system has no solutions. It has no solutions if, through elimination we get one of
the equations to be something of the form, 0x = c, where c is some constant. Consider the following system:

2x+ 2y + 3z = 10
3x− 2y + 2z = 20

−2x+ 3y − 0.5z = −5

Notice that this is almost the same system from the example with infinite solutions, with the exception of
the constant value in the second equation. If we repeat the same steps we went through in the previous example
(make sure to try this on your own), we end up with the following system:
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0x = 1
0.5x+ y = 0

4x− 6y + z = 10

Clearly, there can be no solution, since zero times anything will not equal 1. Learn the difference between infinite
solutions and no solutions: infinite solutions occur when we have zero times a variable equal to zero, which is
why any value for that variable will work. No solutions occur when we have zero times a variable equal to some
number, which is impossible. A system which has no solution is called inconsistent.

Application: Get The Parabola You Want

One thing we can do with linear equations is to fit a parabola to three points in the plane (as long as they
are not all on the same vertical line). Look at the pictures below:

Remember that the general equation of a parabola is

y = ax2 + bx+ c

so if we plug in the three points (-1,2), (1,6), and (2,11) we get three equations (one per point).

The equations are as follows.

Point: Equation from plugging in:

(-1,2) a− b+ c = 2

(1,6) a+ b+ c = 6

(2,11) 4a+ 2b+ c = 11

Solve: add the first two equations and we get 2a + 2c = 8
(fourth equation). Add twice the first equation to the third
and we get 6a+3c = 15 (fifth equation). Subtract three times
the fourth equation from the fifth and we get −3c = −9 so
c = 3. Plug c = 3 into the fourth equation and get 2a+ 6 = 8
so 2a = 2 and a = 1. Plus a and c into the first equation and
get 1− b+ 3 = 2 so −b = −2 and b = 2.

This means the equation in the left picture, y = x2 + 2x+ 3 is correct.
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Exercises

Exercise 6.1 Solve the following systems of equations using elimination:

a) x+ y = 2, 2x− y = 0

b) −x+ 2y = 10, 0.5x+ 2y = −3

c) 4x+ 2y = 8, 0.5y = 2− x

d) y − 7 = 3x+ 2, x− 4y = 2x− y + 3

e) x+ y + z = 2, −x+ y − z = 1, 2x− 3y + 4z = 0

f) x− y − z = 3, 2x+ 2y + 2z = −1, 3x− 3y − 3z = 15

g) x− 3y + 3z = −4, 2x+ 3y − z = 15, 4x− 3y − z = 19

h) −10x+ 2y + z = −8, 2x− y + 3z = 3, 100x+ 600y − 300z = −200

i) x− y + z = −1, −x− y + 7z = 0, 2x+ 4y − 3z + 5 = x+ 5y − 4z

j) 2x− 10y + 13z = −8y + 12z − 2, y = 2x− 4z + 10, 10x+ 5y + 7z = 8x+ 7y + 6z − 3

Exercise 6.2 Solve the first example:

x+ y + z = 55000
0.05x+ 0.06y + 0.07z = 2950

x− z = 9500

Exercise 6.3 Solve the following systems. Remember to use the step by step process, it will make solving larger
systems like these much easier:

a)

a+ b+ c+ d = 2
2a− b+ 2c− d = −1
3a− 3b− 3c+ 3d = 0

−6a+ 4b+ 10c− 2d = 4

c)

4a− b− c− d = −6
2a− 4b+ c+ 3d = 0
−a− 3b− 4c+ 6d = 0
−3a+ 4b+ 5c+ 3d = 3

b)

4a− 3b− 2c+ 5d = 3
−5a+ b− c− 6d = −9
−2a− 6b+ 8c+ 4d = 5
−3a+ 10b+ c+ d = 3

d)

a− c = 12
b+ d = 7

5a+ 2b− 3c+ d = 4
−2a+ 4c− d = 3

Exercise 6.4 For each of the following problems, find the value(s) that make the system a) have infinite solutions,
and b) inconsistent.

a) 2x+ 2y = 1, 2x+ 2y = C

b) Ax+By = 4, x+ y = C

c) x+ y + z = 2, Ax+By + Cz = 2, x+ y + z = E
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d) 2x+ 4y + 5z = 47, 3x+ 10y + 11z = 104, 3x+ 2y + 4z = A

Exercise 6.5 The cost to eat at a buffet in a restaurant is $6.50 for children and $12.50 for adults. On a certain
day, 620 people enter the restaurant and the total money earned is $5230. How many children and adults ate at
the buffet?

Exercise 6.6 The sum of the digits of a two-digit number is 8. When the digits are reversed, the number is
increased by 18. Find the number.

Exercise 6.7 Find the equation of the parabola that passes through the points (2, 8), (0, 4), and (1, 11).

Exercise 6.8 You own a pie store and placed two orders at a grocery store. The first order was for 13 bushels of
apples and 4 boxes of pie crusts, and totalled $487. The second order was for 6 bushels and 2 boxes, and totalled
$232. The store just sent the bills and they didn’t list the per-item price. What was the cost of one bushel, of
one box?

Exercise 6.9 A riverboat cruise took 2 hours to travel 120 miles in the direction of the river. The return trip
against the river took four hours. What was the boat’s speed and the speed of the river?

Exercise 6.10 The Gryphons scored a total of 102 points in a resounding victory over the Mustangs. They had
a field goal percentage of 0.76 on 50 shots. How many shots were successful? How many successful shots were
worth two points? Three points?

Exercise 6.11 The standard equation of a circle is x2 + y2 + Ax + By + C = 0. Find the equation of a circle
that passes through the points (4,0), (-1,5), and (7,9).

Exercise 6.12 Your company has three acid solutions on hand: 20%, 35%, and 75% acid. It can mix all three
to come up with a 100-gallons of a 32% acid solution. If it interchanges the amount of 20% solution with the
amount of the 75% solution in the first mix, it can create a 100-gallon solution that is 49% acid. How much of
the 20%, 35%, and 75% solutions did the company mix to create a 100-gallons of a 39% acid solution?

Congratulations!

This is the end!



Glossary

The definitions of terms that are specific to mathematics, and so might not appear in a useful form in a standard
dictionary, are gathered here.

The origin of the work algebra is the Arabic word “al-jabr” which means (roughly) “reunion”. It is the science
of reworking statements about equality so that they are more useful. Chapter 1 covers most of the basics of
algebra.

Antiderivative is another word for integral. The antiderivative of f(x) is a function F (x) so that F ′(x) = f(x).

An Asymptote is a line that the graph of a function approaches arbitrarily close to. If such a line is horizontal
we call the asymptote a horizontal asymptote; if it is vertical we have a vertical asymptote.

Bending a function f(x) is the result of either scaling the function by a constant c·f(x) or scaling the function’s
argument by a constant f(cx). See Section 1.4.

Bounded sequences A sequence is bounded above if you can find a constant that is larger than every member
of the sequence. A sequence is bounded below if you can find a constant that is smaller than every member of
the sequence. A sequence is bounded if it is both bounded above and bounded below.

q A chord of a curve is a line that joins two points on the curve.

A constraint is one of two or more equations in an optimization problem that limit the domain of the optimiza-
tion problem. Typically a constraint is solved and used to eliminate a variable.

The common denominator of two fraction is the smallest quantity that is a multiple of the denominator of
both fractions. You must find the common denominator in order to add fractions that do not already have the
same denominator.

The comparison test for series has two parts. The first says that series of positive terms that are all smaller,
term-by-term, than a series that has a limit must, itself have a limit. The second part says that a series of terms
that are larger, term-by-term, than a series that diverges to infinity must also diverge to infinity.

Completing the square is an algorithm for solving a quadratic equation. See Algorithm 1.2 in Section 1.2.2.

The composition of f and g is the result of plugging g(x) into f(x) as if it were the variable. We denote the
compstion by f(g(x)) or by (f ◦ g)(x).

A compounding period is the interval of time for which interest is paid. “Compounded annually” means
that interest is paid once a year. Sometimes and interest rate is given as “annually compounded monthly”. In
this case the rate must be divided by the number of periods to get the rate per period. So 5% annual interest,
compounded monthly, is a complicated way of saying that the monthly interest rate is 5/12% and that the
compounding period is one month.

A function is concave up in a region if the graph in that region is curved so that the shape could hold water
(opens upward). A function is concave down if it is curved in the opposite fashion, opening downward.
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A constant is a letter used to represent a number value that we don’t know, but the value of the constant never
changes for a given problem.

A function f(x) is continuous at a number a if

lim
x→a

f(x) = f(a)

Informally, a function is continuous at a if, when drawing the graph of the function near a you don’t need to lift
your pencil. A function is continuous on an interval [a,b] if it is continuous at every point in the interval.

Convergence for sequences and series. A sequence converges if it has a limit. A series converges if its
sequence of of partial sums converges.

A critical point for a function f(x) consist of and point (a, f(a)) or an x value a such that:

1. f ′(a) = 0,

2. f ′(a) does not exist, e.g. because of a divide-by-zero.

3. The domain of f ′(x) or f(x) ends at a, e.g. at zero for f(x) =
√
x.

A function is decreasing on an range a ≤ x ≤ b if for all a ≤ c ≤ d ≤ b we have that f(c) > f(d).

Decreasing sequences A sequence is decreasing if its terms grow smaller (if an > an+1 for all n).

The degree of a polynomial is the highest power in any term of the polynomial. The polynomial 1 + 2x + x3

had degree 3.

A demand curve tells us how many units of a commodity consumers will be willing to buy at a given price.

The denominator of a fraction is the part on the bottom. It says what the units of the fraction are, e.g.
“thirds”.

The derivative of a function is the rate at which the function is changing. It is also called the marginal of a
function. it is denoted f ′(x) for a function f(x). See Chapter 3.

The discriminant of a quadratic equation ax2 + bx+ c = 0 is b2 − 4ac. This quantity is used to determine how
many roots or solutions a quadratic equation has.

The domain of a a function is the set of real numbers for which the function can be computed.

Elimination is the technique used to solve systems of linear equations by removing variables. The process
involves removing variables from equations until there is one variable left in each equation in the system.

Equations are statements that assert equality between two statements. The statements on opposite sides of
the equals sign must have the same value, once all the variables and constants are accounted for. Equations are
also used for mathematical identities which are true regardless of the value plugged into a given variable. For
example, (x− 1)2 = (x− 1)(x− 1) = x2 − 2x+ 1.

An exponential function is any function of the form

y = cx

where c is a positive constant.

A factor of an expression is a quantity that divides evenly into the expression. Thus 2 is a factor of 8 (8÷2 = 4)
and (x− 1) is a factor of x2 − 3x+ 2 (x2 − 3x+ 2÷ (x− 1) = (x− 2)).
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The first derivative test is a test to determine if an optima is a maxima or minima. It is performed by
examining sign diagrams for the first derivative.

The general term of a sequence
∞∑
n=0

an

is an. The sequence of general terms
{an}∞n=0

is sometimes used in understanding the behavior of a series.

A geometer is a person who studies geometry or, more generally, mathematics.

A geometric series is any series where the ratio r of adjacent terms is constant. Such series always have the
form

m∑
n=0

d · rn

is they are finite and
∞∑
n=0

d · rn

if they are infinite. A geometric series is determined by is initial term d, its ratio r, and the number of terms in
the series.

The geometric series formula has two forms. The first is for finite geometric series:

d
1− rk+1

1− r
=

k∑
n=0

d · rn

The second in for infinite geometric series:

d

1− r
=
∞∑
n=0

d · rn

This latter formula only works when −1 < r < 1.

The high-lo game is a technique for finding roots of a function. It is usually used when other methods fail,
because it is a lot of work. See Section 1.5.1 for examples and an algorithmic statement of the game.

Higher order derivatives of a function are the result of taking the derivative multiple times. If you start with
a function and then compute the derivative four times, the result if the fourth derivative.

A system of equations is inconsistent if it has no solutions. If the equations in the system were represented as
straight lines, having no solutions is the same as saying, all of these lines do not intersect at the same point.

A function is increasing on an range a ≤ x ≤ b if for all a ≤ c ≤ d ≤ b we have that f(c) < f(d).

Increasing sequences. A sequence is increasing if its terms grow larger (if an < an+1 for all n).

An integer is a number without any fractional part. Thus, ...-3, -2, -1, 0, 1, 2, 3.. and so on are integers,
whereas the number 1.1, or 2

3 are not integers.

The integral of f(x) is a function F (x) so that F ′(x) = f(x).

The integrand is the thing being integrated. So, for example, in
∫
x2 · dx, the integrand is x2.
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The intercept of a line is the value where it intersects the y axis. It is also the point on the line with x-coordinate
zero. A line that does not have an intercept must be vertical.

The rule invert and multiply is used to divide fractions. See Section 1.1.5.

Limit of a function from above. If f(x) is a function and as x → a, using only values x > a the value
f(x)→ L then L is the limit of f(x) from above.

Limit of a function from below. If f(x) is a function and as x → a, using only values x < a the value
f(x)→ L then L is the limit of f(x) from above.

Limit of a function. If f(x) is a function and as x → a the value f(x) → L then L is the limit of f(x) at
x = a. This is the case if the limit exists - it may not. See: Limit from above and Limit from below. For a limit
to exist these limits must exist and agree.

Limit of a sequence. If S = {a1, a2, a3, . . .} is an infinite sequence then we say the number L is the limit of
the sequence S if for every positive number ε we can find a number N (which can be different for different values
of ε) so that all terms ai, for which i ≥ N , differ from L by less than ε.

Linear comes from the Latin word linearis, which means createdbylines. A function is linear if it is of the
form ax + b, where a and b are constants and x is the variable. The variable must have an exponent of 1, and
linear equations can be drawn as a straight line on a graph.

A Logarithm is defined as follows. Suppose that a, b, and c are constants and that b > 0. Then logb(a) = cif
and only if bc = a.

Logarithmic functions are written y = logb(x). Because a power of a positive number b must be positive,
logarithm functions only exist when x > 0.

The marginal cost of an item is the amount the total cost of production changes if you make one more item.
Marginal cost often depends on the number of items being made.

A global maximum for a function is the largest value it can take on. A local maximum is a value of y = f(c)
that is larger that all other nearby values - a hill top.

A global minimum for a function is the smallest value it can take on. A local minimum is a value of y = f(c)
that is smaller that all other nearby values - a valley bottom.

Monotone sequence. A sequence is said to be monotone if it is either increasing or decreasing.

If i% interest is accruing in a compounding period then the multiplier for that period is 1 + i
100 , the amount

you multiply the current balance by to get the new balance.

The numerator of a fraction is the part on the top.

Optimization is the process of finding the best possible value a formula or process can produce. This may be
a maximum, minimum, or tradeoff among several goals depending on the exact problem being solved.

An optimum (plural optima) is a name used to describe either maxima or minima pf a function.

The order of operations is a convention about which operations are performed first. Operations that are
performed before others are said to have higher precedence. See section 1.1.2.

A p-series is any series of the form
∞∑
n=1

1
np

where p is a real number. These series converge when p > 1 and diverge when p ≤ 1.
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A percentage is a way of expressing a number as out of 100. It is either expressed with a % sign, as a fraction,
or a decimal. Thus, 6

100 is the same as 6%, is the same as 0.06. These are all the same way of saying, ”six out
of one hundred”.

A perfect square is a quantity that is the square of some other quantity. For constants, perfect squares are
numbers like 4 and 9. When working with quadratic equations perfect squares are expressions like (x − 3)2 =
x2 − 6x+ 9.

The point-slope form of a line is (y − y0) = m(x− xo) where m is the slope of the line and (x0, y0) is a point
on the line.

A polynomial is a sum of constant multiples of non-negative whole-number powers of a variable. Examples
include 2x+ 1, x2 + x+ 1, x3 + 2x2 − 4x− 7, and x7 + 3x− 1.

A polynomial function is a polynomial used as the rule of a function as in y = x2 + x+ 1.

The power rule for derivatives says that if f(x) = xn then f ′(x) = nxn−1.

The precedence of an operation is its relative importance with respect to other operations. More important
operations are performed first. See Section 1.1.2.

The product rule for derivatives says that (f(x)× g(x))′ = f ′(x)× g(x) + f(x)× g′(x)

A quadratic equation is an equation of the form ax2 + bx+ c = 0 where a is required not to be zero.

The quadratic formula solves quadratic equations. If ax2 + bx+ c = 0 then

x =
−b±

√
b2 − 4ac

2a

See Section 1.2.2.

A quantity is a generic term for a piece of, or and entire, algebraic expression. Quantities can be simple
constants like 3 or π or they can be complex like 3x+ 2y− 1. A quantity is something you are currently treating
as a coherent object, even though you may break it up or change it on the very next step of the problem you’re
working.

The quotient rule for derivatives says that
(
f(x)
g(x)

)′
= f ′(x)g(x)−f(x)g′(x)

g(x)2

Radical is another word for root.

The ratio of a geometric series is the constant value obtained when adjacent terms of the series are divided. In
the form

sum∞n=0d · rn

the value r is the ratio. Ratio is also a term for the result of dividing two numbers. Four and two have a ratio
of 2. A ratio may also be expressed in an archaic notation like 3:2 meaning there are three of the first quantity
to two of the second. A room with sixty men and forty women has a 3:2 male-to-female ratio.

The range of a function is the set of values that can result from computing that function.

A rational function is a function in the form of a fraction whose numerator and denominator are polynomials.

The reciprocal of a number of quantity is the result of dividing one by that number or quantity. The reciprocal
of 2 is thus 1

2 . If a number or quantity has a reciprocal, then it is also the thing you multiply the quantity by to
obtain one: 2× 1

2 = 1.

The reciprocal rule for derivatives says that
(

1
f(x)

)′
= −f ′(x)

f(x)2
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A fraction is said to be in reduced form if it has no common factors in it numerator and denominator. See
Section 1.1.5.

A number c is a root of an equation f(x) if f(c) = 0.

The second derivative test is a test to determine if an optima is a maxima or minima. If a function f(x) has
an optima then f ′′(c) > 0 indicates a minimum while f ′′(c) < 0 indicates a maximum. If f ′′(c) = 0 then the test
yields no information.

A sequence is a list of numbers. If the list is finite then we say the sequence is finite. If the list is infinite then
we say the sequence is infinite.

If R is the series a1 + a2 + a3 + · · · then the sequence of partial sums of R is the sequence

{a1, (a1 + a2), (a1 + a2 + a3), (a1 + a2 + a3 + a4), . . .}

The nth term of the sequence of partial sums for a series R is the sum of the first n terms of R.

A series is a list of numbers that are to be added up in the order given. If the list is finite then we say the series
is finite. If the list is infinite then we say the series is infinite.

The symbol
∑

means “add up”. It can be used with finite or infinite series, e.g.:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 =
∞∑
n=1

n

A sign chart is a table showing where some quantity is positive, negative, or neither. When made for the first
derivative of a function they portray increasing and decreasing ranges. When made for the second derivative
they portray regions that are concave up or concave down.

The slope of a line is the ratio of the increase of y to the increase of x on any segment of the line. If (x0, y0)
and x1, y1) are a pair of points on the line then the slope m may be computed using the formula

m =
y1 − y0
x1 − x0

The slope-intercept form of a line is y = mx+ b where m is the slope and b is the intercept.

Sliding is a technique for speeding up algebra operations in which you need to multiply or divide both sides
of an equation by something. It requires that both sides of an equality be in the form of fractions, which can
always be done, for example by imposing a denominator of 1.

The second derivative of a function is the derivative of the first derivative. It is denoted f ′′(x)

The solution of a problem is the answer, generally when solving for variable.

A supply curve tells us how many units of a commodity manufacturers will offer for sale at a given price.

A system of equations is a set of n equations, with each equation containing m variables. The system can be
solved if m ≤ n. The solution of a system of linear equations can be thought of as finding the points where the
lines representing each equation intersect.
Translating a function consists of shifting its graft left, right, up or down. See Section 1.4.

A tangent line is a line that touches a curve at a single point.

A variable is a letter used to represent a number value that we don’t know, and the value of the variable may
change within the scope of a given problem.
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A vertical line is a set of points of the form (c, y) where c is a constant and y can take on any value. The
formula for such a line is x = c, it has no intercept, and its slope is considered to be infinite or undefined.
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Appendix A

Solutions to selected exercises

Following are solutions to some of the exercises in the text. It is better to work the exercise and then chack the
solution than to try to work toward the solution. The first method will let you learn more, on average. Also
remember that some of these solutions may be wrong because the people that wrote the notes suffer from a bad
case of being human. Bring potential errors to your instructor and get help.

A.1 Selected Answers from Chapter 1

Problem 1.1

a) x = 3.

c) Move everything with an x to one side, everything without an x to the other, such that xy− 2x = 1. Then
use the distributive property to pull x out of the left side, giving, x (y − 2) = 1. Divide both sides by
(y − 2) to isolate x, giving. x = 1

y−2 .

e) Take the third root of both sides. Since,
(

3
√
y + 1

)3 = y + 1, and 3
√

27 = 3, we are left with y + 1 = 3.
Solving for y by subtracting 1 from both sides, y = 2.

g) Use the slide rule, move (x − 3) to the left side so we are left with (x − 3)y = x + 2. Then distribute y
on the left side, xy − 3y = x+ 2. Since we are solving for x, move x to the left side and move −3y to the
right side, remembering to change the signs as they cross the equals sign, xy − x = 3y + 2. Pull x out of
the left side, x(y − 1) = 3y + 2. Divide both sides by (y − 1) to solve for x, x = 3y+2

y−1 .

i) Use the slide rule to get y− 1 = 2(x+ 1). Distribute 2 through the right side, y− 1 = 2x+ 2. Get 2x alone
by subtracting 2 from both sides, y − 3 = 2x. Divide both sides by 2, x = y−3

2

Problem 1.3

For x = 0, 3

√
0+2
0−2 = 3

√
−1 = −1

For x = 1, 3

√
1+2
1−2 = 3

√
−3 = −1.442

For x = -1, 3

√
−1+2
−1−2 = 3

√
1
−3 = −0.693

Problem 1.5

179



180 APPENDIX A. SOLUTIONS TO SELECTED EXERCISES

This problem becomes easier if we recognize that
(√
x− 1 + 2

) (√
x− 1− 2

)
= (x− 1− 4) = x − 5, using

the difference of squares property. This leaves us with x−5
1−x . Then,

x = 2→ 2−5
1−2 = −3

−1 = 3
x = 3→ 3−5

1−3 = −2
−2 = 1

x = 4→ 4−5
1−4 = −1

−3 = 0.333

Problem 1.7

3
√
x2 + 1+7. First, square the value of x. Then add 1 to that value. Now take the square root, and multiply

by 3. Finally, add 7.

Problem 1.9

a) 255
40 = 51

8 . Common factor is 5.

c) 255
27 = 85

9 . Common factor is 3.

e) 125
625 = 1

5 . Common factor is 125.

g) 9y2

3xy = 3y
x . Common factor is 3y.

i) abc
abd+abe = c

d+e . Change the bottom into abd+ abe = ab(d+ e), then divide the top and bottom by ab

Problem 1.11

a) 1
3 ×

5
8 −

1
2 = 5

24 −
1
2 = 5

24 −
12
24 = −7

24 .

c) x
3 ÷ 2y − 2

3x = x
6y −

2x
3 = x−4xy

6y = x(1−4y)
6y .

e) 1
n × 1n+ 2 + 2

n+1 = 3 + 2
n+1 = 3n+5

n+1 .

g)
1
2+ 1

3
1
2−

1
3

=
5
6
1
6

= 5
6 ×

6
1 = 5.

i) (x+y)(x−y)
1
x +2

= x2−y2

2x+1
x

=
x(x2−y2)

2x+1 .

Problem 1.13

x2+1
2−y2 = 1. Use the slide rule to achieve x2 + 1 = 2− y2, now solve for x and y

x = ±
√

1− y2 and y = ±
√

1− x2.
Problem 1.15

2 +
√

1 + a
b

Problem 1.17

The common denominator will be 420.

Problem 1.19

First we start with the whole pie and call it 1. Then subtracting one quarter from 1, 1 − 1
4 = 3

4 . Now we
have to find out what one quarter of 3 quarters is, 3

4 ×
1
4 = 3

16 and subtract that from 3
4 . So, 3

4 −
3
16 = 9

16 . Now
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find what one quarter of 9
16 is and subtract it from 9

16 . Repeat this process as follows:

1− 1
4

=
3
4

3
4
− 3

16
=

9
16

9
16
− 9

64
=

27
64

...
81
256
− 81

1024
=

243
1024

Thus, 81
1024 is the smallest piece of pie handed out.

Problem 1.21

a) y = 2x+ 5. slope = 2, intercept = 5.

c) 2x− 4y = 5. slope = 1
2 , intercept = −5

4 .

e) (y − 5) = 3(x− 1). slope = 3, intercept = 2.

g) A line parallel to y = −2x+ 5 through the point (-1,3). Use the point-slope formula, slope = -2, intercept
= 1.

i) The line of slope 2 through the point (a,b). Use the point-slope formula, slope = 2, intercept = -2a + b.

Problem 1.23

a) Set 2x+ 1 = −x+ 10. Solve for x, 3x = 9 or x = 3. Plug the x value into either equation to get y = 7.

c) y = 2x+ 1 and 2y− 4x = 3. First you need to put the second equation in slope intercept form, y = 2x+ 3
2 ,

then set the equations equal to each other. 2x + 1 = 2x + 3
2 , clearly has no intersection, since these are

parallel lines.

e) x + y + 1 = 0 and x − y − 1 = 0. Transform both equations into slope intercept form, set them equal to
each other. x = 0, y = −1.

Problem 1.25

a) x2 +4x+3 = (x+ 3) (x+ 1). c) x2 +2x−8 = (x+4)(x−2). e) 9x2−6x+1 = (3x−1)(3x−1) = (3x−1)2.
g) x2 − 12 = (x−

√
12)(x+

√
12). i) 6x2 + 13x+ 6 = (3x+ 2)(2x+ 3).

Problem 1.27

a) x2 + x+ 1 = 0. a = 1, b = 1, c = 1. No solutions, 12 − 4(1)(1) < 0.

c) x2 + 2x+ 1 = 0. a = 1, b = 2, c = 1 1 solution, x = 1.

e) 2x2 + 5x+ 7. a = 2, b = 5, c = 7. No solutions, 52 − 4(7)(2) < 0

g) x2 = 2→ x2 − 2 = 0. a = 1, b = 0, c = −2 Two solutions, x = ±
√

2

i) (x+ 1)(x− 6) = 4→ x2 − 5x− 10 = 0. a = 1, b = −5, c = −10. Two solutions, x = 5
2 ±

√
65
2
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Problem 1.31

There are infinite solutions, but here is how you would find 2 different point-slope forms. For the first
form, choose x = 1, which gives us y = −3. You can use those two numbers to build the point-slope forms,
the first being y+3 = 2(x−1). Try for another value of x, get a value for y, and then you can build the second line.

Problem 1.33

Check the slopes of the 3 lines that constitute the triangle. If two slopes are negative reciprocals of each
other, then it is a right triangle.
Slope between (1,3) and (2, -1), 3+1

1−2 = −4

Slope between (1,3) and (−6
5 ,
−7
−5 ), 3+ 7

5
1+ 6

5
= 1

8

Slope between (2,-1) and (−6
5 ,
−7
−5 ), 2+ 7

5
−1+ 6

5
= 2

Since none of these slopes are negative reciprocals, this is not a right triangle.

Problem 1.35

Any solution that encloses an area of 9 will work, but here is a simple one: the two vertical lines x = 0 and
x = 3 and the two horizontal lines y = 0 and y = 3.

Problem 1.37

Set the supply curve equal to the demand curve, such that q
25 = 1000− q

30 and solve for q. q = 150, 000 and
p = 6, 000.

Problem 1.39

We can use the roots to build the quadratic. Since the parabola opens downward, we put a negative sign
in front of everything to start, −(x− 7)(x+ 2) = −(x2 − 5x− 14) = −x2 + 5x+ 14. Then we can complete the
square using Algorithm 1.2,

−
(
x2 − 5

2

)
+

81
4

= 0

Telling us our maximum is at 81
4 .

Problem 1.41
First, set P (n) = 0 = 25000 + 850n − 10n2. Factor out a 10, giving us: 0 = 10(2500 + 85n − n2). Then

use Algorithm 1.2. to complete the square, yielding, −10
(
n2 − 85

2

)2 + 43062.5 = 0. This tells us our vertex is
at
(

85
2 , 43062.50

)
, telling us that the maximum occurs between 42 and 43 consoles. Both 42 and 43 consoles, by

plugging back into the profit formula, are found to yield a profit of$43060.00, which is the maximum.

Problem 1.43

a)
(
22
)3 = 64.

c) x2 × x3/4 ÷ x5/2 = x2+ 3
4−

5
2 = x

1
4 .

e) 2+2−1

2−2+2−3 = 2+ 1
2

1
4+ 1

8
=

5
2
3
8

= 20
3 .

Problem 1.45

a) log(x+ 1) = 4→ x+ 1 = 104 → x = 9999.
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c) log2(x− 2) = 3→ x− 2 = 23 → x = 10.

e) logx(12) = 5→ 12 = x5 → x = 5
√

12.

g) log1/4(x) = 2→ x = ( 1
4 )2 → x = 1

16 .

i) Ln
(
x−1
x+1

)
= 1→ x−1

x+1 = e→ x− 1 = e(x+ 1)→ x = e+1
1−e .

Problem 1.47
√

2x+ 5− 2√
2x+ 2− 3

×
√

2x+ 2 + 3√
2x+ 2 + 3

.

=
√

4x2 + 14x+ 10− 2
√

2x+ 2 + 3
√

2x+ 5− 6
2x− 7

Problem 1.49

x2 + 1
7−
√
x
× 7 +

√
x

7 +
√
x

=

(
x2 + 1

)
(7 +

√
x)

49− x
=

7x2 + x
5
2 + 7 +

√
x

49− x
Problem 1.51

log
(
a3

b2

)
= log

(
a3
)
− log

(
b2
)

= 3log (a)− 2log (b) = 3(1.5)− 2(2.25) = 4.5− 4.5 = 0
Problem 1.53

1.15n > 3→ nlog(1.15) > log(3)→ n > log(3)
log(1.15) = 7.86, n = 8.

Problem 1.55

Using the Compound Interest Application, we simply use the formula: T = D(1 + d)n, where T is the total
after interest, D is the original amount invested, d is the interest rate invested at, at n is the number of times its
compounded. In this case, we know T = 1218.99, D = 1000, n = 10, and all that is left to solve for is d. Using
the formula, we get:

1218.99 = 1000(1 + d)10

The first step is dividing both sides by 1000,

1.21899 = (1 + d)10

, then we take the 10th root of both sides,

10
√

1.21899 = 1 + d

1.01999963− 1 = d

.01999963 = d

Solving for d, we can see the interest is almost 2%.

Problem 1.57

The first part of the question is fairly easy, just use the formula, 1000(1.05)10 = 1628.89. To calculate com-
pound interest on a monthly basis, we need to find what d is going to be. To do that, divide the yearly interest by
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12 to get the monthly interest, so d = .05÷12 = .00416667. We also need to recalculate n, since there are 10 years
and 12 months per year, now n = 10 × 12 = 120 Now we can use the formula, 1000(1.00416667)120 = 1647.01.
We get a difference of 1647.01− 1628.89 = 18.12.

Problem 1.62

A a = 1, b = 1, c = 1

B a = -1, b = -1, c = 4

C a = -4, b = 2, c = 5

D a = 1
2 , b = 0, c = -1

Problem 1.64

If we complete the square of x2 − 4x, we get (x − 2)2 − 4. Currently the vertex is at (2, -4), so we change
-4 into -1 to get the vertex (2, -1), and our new function is (x− 2)2 − 1.

Problem 1.66

We are looking for a new function f(x) = A3x + b. If we plug 0 into the function, we get f(0) = −1 =
A(30) + b = A + b and if we plug 2 into the function we get f(2) = 6 = A(32) + b = 9A + b. We can use these
two equations to now solve for our two variables (See chapter 6 for a detailed explanation).

A+ b = −1
− 9A+ b = 6
−8A = −7

A =
7
8

So we know A = 7
8 , now we plug that into the first equation to solve for b. 7

8 + b = 1 → b = −15
8 . Our

equation is f(x) = 7
8 (3x)− 15

8 .

Problem 1.67

a) x3 + x2 − 10x+ 8. Try x = 1, 13 + 12 − 10(1) + 8 = 0, so we know (x− 1) divides the polynomial.

x2 + 2x− 8
x− 1

)
x3 + x2 − 10x+ 8

− x3 + x2

2x2 − 10x
− 2x2 + 2x

− 8x+ 8
8x− 8

0

We are left with x2 + 2x− 8, which factors into (x− 2)(x+ 4), so x3 +x2− 10x+ 8 = (x− 1)(x− 2)(x+ 4).
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c) x3 − 2x2 − x− 6. Try x = 3. 27− 18− 3− 6 = 0, so we know (x− 3) divides the polynomial.

x2 + x+ 2
x− 3

)
x3 − 2x2 − x− 6

− x3 + 3x2

x2 − x
− x2 + 3x

2x− 6
− 2x+ 6

0

We are left with x2 + x+ 2, which does not factor, so our answer is (x− 3)(x2 + x+ 2).

e) 4x3 − 8x2 − x+ 2. Try x = 2. 32− 32− 2 + 2 = 0, so we know (x− 2) divides the polynomial.

4x2 − 1
x− 2

)
4x3 − 8x2 − x+ 2

− 4x3 + 8x2

− x+ 2
x− 2

0

We are left with 4x2 − 1, which factors into (2x− 1)(2x+ 1), so our answer is (x− 2)(2x− 1)(2x+ 1).

Problem 1.69
If we graph f(x) = 4ln(x)− x, we can see the roots are between 1 and 2 and 8 and 9. Let’s start with the root
between 1 and 2.

f(1) ∼= −1 Lower endpoint is negative.
f(2) ∼= 0.772588722 Upper endpoint is positive.
f(1.5) ∼= 0.121860432 Positive: 1 ≤ x ≤ 1.5
f(1.25) ∼= 0.357425795 Negative: 1.25 ≤ x ≤ 1.5
f(1.375) ∼= 0.101185076 Negative: 1.375 ≤ x ≤ 1.5
f(1.4375) ∼= 0.014121975 Positive: 1.375 ≤ x ≤ 1.4375
f(1.40625) ∼= 0.042543652 Negative: 1.40625 ≤ x ≤ 1.4375
f(1.421875) ∼= 0.013969307 Negative: 1.421875 ≤ x ≤ 1.4375
f(1.4296875) ∼= 0.000136056 Answer.

So our first answer is 1.429. Let’s look at the second root:

f(9) ∼= 0.211101691 Lower endpoint is negative.
f(10) ∼= 0.772588722 Upper endpoint is positive.
f(1.5) ∼= 0.121860432 Positive: 1 ≤ x ≤ 1.5
f(1.25) ∼= 0.357425795 Negative: 1.25 ≤ x ≤ 1.5
f(1.375) ∼= 0.101185076 Negative: 1.375 ≤ x ≤ 1.5
f(1.4375) ∼= 0.014121975 Positive: 1.375 ≤ x ≤ 1.4375
f(1.40625) ∼= 0.042543652 Negative: 1.40625 ≤ x ≤ 1.4375
f(1.421875) ∼= 0.013969307 Negative: 1.421875 ≤ x ≤ 1.4375
f(1.4296875) ∼= 0.000136056 Answer
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Problem 1.71

If we graph x3 + x2 + 2x− 6 = 0, we can see the root is between 1 and 2.

f(1) ∼= −2 Lower endpoint is negative.
f(2) ∼= 8 Upper endpoint is positive.
f(1.5) ∼= 2.625 Positive: 1 ≤ x ≤ 1.5
f(1.25) ∼= 0.015625 Positive: 1 ≤ x ≤ 1.25
f(1.125) ∼= 1.060546875 Negative: 1.125 ≤ x ≤ 1.25
f(1.1875) ∼= 0.540283203 Negative: 1.1875 ≤ x ≤ 1.25
f(1.21875) ∼= 0.266876221 Negative: 1.21875 ≤ x ≤ 1.25
f(1.234375) ∼= 0.126773834 Negative: 1.234375 ≤ x ≤ 1.25
f(1.2421875) ∼= 0.055862904 Negative: 1.2421875 ≤ x ≤ 1.25
f(1.24609375) ∼= 0.020191252 Negative: 1.24609375 ≤ x ≤ 1.25
f(1.248046875) ∼= 0.002301224 Negative: 1.248046875 ≤ x ≤ 1.25
f(1.249023437) ∼= 0.006657356 Answer

So our solution is approximately 1.249.
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A.2 Selected Answers from Chapter 2

Problem 2.1

a) x = 2
5 , y = 4

5 . c) Infinite solutions. e) x = −1
2 , y = 3, z = −1

2 . g) x = 28
9 , y = 173

54 , z = 5
6 . i) Inconsistent

system.

Problem 2.2

x = 22250, y = 45500, z = -12750

Problem 2.3

a) a = 0, b = 2
3 , c = 1

3 , d = 1.

c) a = -1.96, b = -0.978, c = 0.593, d = -0.375.

Problem 2.4

a) C = 1 for infinite solutions, C6= 1 for inconsistent.

c) A, B, C = 1 gives infinite solutions, E6= 2 causes the system to be inconsistent.

Problem 2.5
Adults = 200, Children = 420

Problem 2.6
35

Problem 2.7
−5x2 + 12x+ 4

Problem 2.8
Bushels cost 23, boxes cost 47.

Problem 2.9
Boat speed is 45, river speed is 15.

Problem 2.10
12 shots worth 2 points and 26 shots worth 3 points were scored.

Problem 2.11

x2 + y2 + 12.967x+ 8.567y − 55.867 = 0

Problem 2.12

37.455 gallons of the first solution, 56 gallons of the second solution and 6.545 gallons of the third solution
were used.
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A.3 Selected Answers from Chapter 3

Problem 3.1

a) 2, 5, 10, 17, 26, 37.

c) 0, 1, 5, 19, 65, 211.

e) 1, 1
4 ,

1
16 ,

1
64 , . . .

Problem 3.3
2.1 a) finite, c) finite, e) infinite
2.2 a) finite, c) infinite, e) infinite

Problem 3.5

a) 1, 3, 6, 10, 15, 21.

c) 1, -1, 2, -2, 3, -3.

e) 1, 1 + 3
2 = 5

2 , 1 + 3
2 + 9

4 = 19
4 , 1 + 3

2 + 9
4 + 27

8 = 65
8 , 1 + 3

2 + 9
4 + 27

8 + 81
16 = 211

16 , 1 + 3
2 + 9

4 + 27
8 + 81

16 + 243
32 = 665

32 .

Problem 3.7

a)
∑∞
n=1

3
2n = 3×

∑∞
n=1

(
1
2

)n = 3× 1 = 3.

c)
∑∞
n=0

7n
n+1 = 7×

∑∞
n=0

n
n+1 = 7×∞ =∞.

e)
∑∞
n=1

3n
n+1 −

1
2n = 3×

∑∞
n=1

n
n+1 −

∑∞
n=1

(
1
2

)n = 3×∞− 1 =∞

Problem 3.9

a) 2
n >

1
n , for n ≥ 1, this series diverges.

c) 1
3n2 <

1
n2 , converges by the p-series property.

e) 1
n2+n <

1
n2 , converges by the p-series property.

Problem 3.11

We can rewrite this limit as 2 × limn→∞
n2

n2+1 . Now let’s consider the limit. If we write out the first few
terms of the series, we get

(
0, 1

2 ,
4
5 ,

9
10 , ...

)
. As we can see, the numbers get closer and closer to 1 without ever

equaling it, so our limit is 1. Then multiplying the limit by the constant, we can see that the total limit is 2.

Problem 3.13

Let’s consider the first few terms of the sequence,
(

4
3 ,

9
4 ,

16
5 ,

25
6 ...
)
. Clearly, the terms are getting bigger.

Since we have no upper bound on our limit, this means that the sequence cannot possibly converge. Therefore,
it must diverge.

Problem 3.15
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Consider the sequence of partial sums of
∑∞
n=k an. If it doesn’t converge to zero, then adding all the terms

from a0, ..., ak−1 won’t make it converge to zero either. If the entire sequence of partial sums also doesn’t con-
verge to zero, then the part of the sequence that starts when n = k won’t converge to zero either. Thus, if one
diverges, they both diverge.

Now assume the series
∑∞
n=0 an does converge. That means that it has a sum L. Then this implies that if

we start the series at n = k, then the sum will be L − (a0 + ... + ak−1), which means that both are convergent
sums. Using reverse reasoning, let

∑∞
n=k an converge to a sum L. Since there can only be a finite number of

terms before n = k, they must have a finite sum. Thus if one series converges, both have to converge.

Problem 3.19

The rule is to find the next number is add the 3 numbers that come before it, so the next 3 numbers are:
105, 193, 355.

Problem 3.21

This numbers are generated by the hailstone problem. If the number is odd, multiply it by 3 and add 1 to
get the next number. If its even, divide it by 2 to get the next number.

Problem 3.23

a) Geometric, it has a ratio of 3
4 . c) Not geometric, it does not have a constant ratio. e) Geometric, has a

constant ratio of 2
3 .

Problem 3.25

a) 2×
(

1
1− 1

3

)
= 3

c) 7×
(

1
1− 1

3

)
= 21

2

e)
(

1
1− 2

5

)
= 5

3

g) Divergent series, undefined.

i) 3× 1
1−(−0.9) = 30

19

Problem 3.27∑∞
n=0

(
1
5

)
×
(

4
5

)n
Problem 3.29

There are two series to build in this solution. The first is for how far the ball drops each time. The first
few terms are 1 + 0.9 + (0.9)2 + (0.9)3 + . . ., which can be written as

∑∞
n=0(0.9)n. The second series is how far

the ball travels each bounce up, which is 0.9 + (0.9)2 + (0.9)3 + (0.9)4 + . . ., so we can write this sequence as∑∞
n=0(0.9)(0.9)n. Adding both of these series up, it becomes:

1
1− 0.9

+
0.9

1− 0.9
=

1
0.1

+
0.9
0.1

= 10 + 9 = 19
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Problem 3.31

True. This first term, 12 in this case, vanishes after a while and what you are left with is a series with the
first term of 3 and a ratio of 1

2 .

Problem 3.33

10 + 10(0.875) + 10(0.875)2 + . . .+ 10(0.875)n + . . . =
∞∑
n=0

10× (0.875)n

=
10

1− 0.875
=

10
1
8

= 80

Problem 3.35

Let’s calculate the answer by finding out how much string we will be cutting away as we reach infinity
(assuming we could get there). In the first round, we cut away 1

4 , leaving 3
4 total. Since there are two pieces,

each piece is 3
8 long. Now we cut away a quarter of each string, so 1

4 ×
3
8 = 3

32 × 2 = 3
16 , is cut away. Since there

was 12
16 of the original string left, cutting away 3

16 leaves us with 9
16 . If we continue on that path, the terms of

our series will be ( 1
4 ,

3
16 ,

9
64 , . . .). Now we can sum up how much string we are cutting away:

∞∑
n=0

(
1
4

)(
3
4

)n
=

1
4
× 1

1− 3
4

=
1
4
× 4 = 1

Which means that we are cutting away everything, since 1 - 1 = 0. Thus, there is nothing left of the string.

Problem 3.37

Before we make our table, we should find out what interest we will be compounding with. Since it’s quarterly,
we have to divide the annual interest by 4, 0.04

4 = 0.01. Now we can make our table.

Month Balance Interest Deposit

1st Q 0.00 0.00 50000.00

2nd Q 50000.00 500.00 50000.00

3rd Q 100500.00 1005.00 50000.00

4th Q 151505.00 1515.05 50000.00

5th Q 203020.05 2030.20 50000.00

6th Q 255050.25 2550.50 50000.00

7th Q 307600.75 3076.01 50000.00

8th Q 360676.76 3606.77 50000.00

9th Q 414283.53 4142.84 50000.00

10th Q 468426.37 4684.26 50000.00

11th Q 523110.63 5231.11 50000.00

12th Q 528341.74 5283.42 50000.00

Final balance 583625.16

Problem 3.39
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1852.70 For the table method but 1852.71 by using the formula. In this instance, rounding yields a one cent
difference.
Problem 3.41

a) 50×
(

(1.0025)60−1
0.0025

)
= 3232.34

c) 100×
(

(1+0.02/12)120−1
0.02/12

)
= 13271.97

e) 50×
(

(1+0.04/12)240−1
0.04/12

)
= 18338.73

Problem 3.43

a) 5000(1.0033)60(.0033)
1.003360−1 = 91.99

c) 220000(1.0033)240(.0033)
1.0033240−1 = 7324.04

e) 200(1.0125)24(.01215)
1.012524−1 = 9.70

Problem 3.45

a) log1.0033

(
400

400−5000(0.0033)

)
= log(1.043024772)

log(1.0033) = 12.786180127 =∼= 13

c) log1.0025

(
2600

2600−1000000(0.0025)

)
= log(26)

log(1.0025) = 1304.866985555 ∼= 1305

e) log1.0033

(
10

10−2000(0.0033)

)
= log(2.941176471)

log(1.0033) = 327.451127287 ∼= 328

Problem 3.47
Using the formula from Fact 3.9, we can rearrange it to find P .

Pmc = p · m
c − 1

m− 1
→ P =

p

mc
· m

c − 1
m− 1

Knowing that m = 1.0033, c = 217, and p = 40, we plug these values into the formula.

P =
40

1.0033217
· (1.0033)217 − 1

0.0033
= 6191.14

Problem 3.49

p =
Pmc(m− 1)
mc − 1

=
1200(1.00083)24(0.00083)

(1.00083)24 − 1
= 50.52

Problem 3.51

We need to find out what the balance will be at the end of the two years first, then we can calculate what
payments will be needed to pay it off in one year.

1200(1.00083)24 = 1224.13

Now we can use the formula to find the amount each payment will have to be per month in one year.
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p =
1224.13(1.00083)12(0.00083)

(1.00083)12 − 1
= 102.56

Problem 3.53

Without the preprocessing fee, 100000(1.003125)36 = 111887.60. With, 98800(1.002708333)36 = 108903.90.
Clearly, paying the preprocessing fee is the smarter choice, with a difference of 111887.60 - 108903.90 = 2983.70.

Problem 3.57

B =
(

1 +
i

100

)
D · (1 + i/100)c − 1

i/100

Problem 3.59

We need to calculate what the daily interest is going to be. Assuming that a month has 30 days (we could
assume 31, the way we get the answer is the same), then 10% monthly interest becomes 0.1

30 = 0.0033, which we
can now use in our compound interest formula:

200(1.0033)14 = 209.44
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A.4 Selected Answers from Chapter 4

Problem 4.1

a) Limit exists. c) Limit exists. e) Limit exists.

Problem 4.3

a) Has a limit = 1.

c) Limit does not exist.

e) Has a limit = 1.

Problem 4.5

a) Lim
x→∞

1
x2 = 0, since the bottom is continually getting larger while the top remains constant.

c) Lim
x→∞

x2+x+1
1−3x+x2 = 1. The numerator has x2 as its highest power of x, and the denominator has the same.

Thus, when taking the limit as x→∞, all other terms will cancel out, leaving x2

x2 = 1

e) Lim
x→∞

x3−1
x2+1 =∞. This expression has no limit, since the degree of the top is higher than the degree of the

bottom, and both the numerator and denominator have positive coefficients for the highest powers of x.

Problem 4.7

a) Lim
x→a (f(x) + h(x)) = Lim

x→af(x) + Lim
x→ah(x) = 3− 2 = 1.

c) Lim
x→a

(
f(x)
g(x)

)
= 3

0 = Undefined.

e) Lim
x→a (f(x)− h(x))2 = (3− (−2))2 = 52 = 25.

Problem 4.9
Consider x2−4. This is a factorable polynomial, and using difference of squares we can get x2−4 = (x+2)(x−2).
Using this fact, let’s reconsider the limit.

Lim

x→ 2
x2 − 4
x− 2

=
Lim

x→ 2
(x+ 2)(x− 2)

x− 2
=

Lim

x→ 2
x+ 2 = 4

.
Problem 4.11
Using the speed of growth hierarchy we know polynomials grow faster than logarithmics,

Lim

x→∞
log(x5)
x+ 5

= 0

.
Problem 4.13

Lim

x→∞
ex + 1
ln(x) + 1

=∞

.
Problem 4.15
We need to find when these two equations are equal when x = a, so set them equal to each other, shift everything
to one side, and solve for a.

a2 = 2a+ 3→ a2 − 2x− 3 = 0→ (a− 3)(a+ 1) = 0
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This function is continuous when a = 3,−1.

Problem 4.17
Similar steps as problem 3.15.

a3 = 4x→ a3 − 4x = 0→ a(a2 − 4) = a(a− 2)(a+ 2) = 0

This function is continuous when a = 0, 2,−2.

Problem 4.22
Use the limit based definition of the derivative to compute the derivative of each of the following functions. The
algebra on the last two functions can get a bit intense.

a) f ′(x) = limh→0
(x+h)2−x2

h = limh→0
x2+2xh+h2−x2

h limh→0
2xh+h2

h = 2x.

c)

f ′(x) =
Lim

h→ 0

1
(x+h)2 −

1
x2

h

=
Lim

h→ 0

x2−(x+h)2

x2(x+h)2

h

=
Lim

h→ 0

x2−(x2+2xh+h2)
x2(x+h)2

h

=
Lim

h→ 0

−2xh−h2

x2(x+h)2

h

=
Lim

h→ 0

h · −2x−h
x2(x+h)2

h

=
Lim

h→ 0
�h · −2x−h

x2(x+h)2

�h

=
Lim

h→ 0
−2x− h
x2(x+ h)2

=
−2x
x4

=
−2
x3
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e)

f ′(x) =
Lim

h→ 0

1
(x+h)2+1 −

1
x2+1

h

=
Lim

h→ 0

x2+1−((x+h)2+1)
(x2+1)((x+h)2+1)

h

=
Lim

h→ 0
x2 + 1− (x2 + 2xh+ h2 + 1)
h(x2 + 1)((x+ h)2 + 1)

=
Lim

h→ 0
−2xh− h2

h(x2 + 1)((x+ h)2 + 1)

=
Lim

h→ 0
−2x− h

(x2 + 1)((x+ h)2 + 1)

=
Lim

h→ 0
−2x

(x2 + 1)(x2 + 1)

=
Lim

h→ 0
−2x

(x2 + 1)2

Problem 4.24
For each of the following functions, find the derivative using the product rule.

a) f ′(x) = (2x+ 1)(x2 − 3x− 2) + (x2 + x+ 1)(2x− 3) c) f ′(x) = ex + xex

e) f ′(x) = 2xln(x) + x

Problem 4.26
For each of the following functions, find the derivative using the quotient rule.

a) f ′(x) = 1−x2

(x2+1)2 c) f ′(x) = 3x2−4x
(3x−2)2

e) f ′(x) = 2ex

(ex+2)2

Problem 4.28
Find the tangent line at the indicated value of x.

a) y = 1.

c) y = −2x+ 7.

e) y = −5
4 x+ 11

4 .

Problem 4.30
First, we need to find when x3−4x is equal to y = 0. So, x3−4x = x and then x3−5x = 0→ x(x2−5) = 0. We
know then that x = 0,

√
5,−
√

5. If we plug any values into either function, we respectively get y = 0,
√

5,−
√

5.
Now we take the derivative of f(x), so f ′(x) = 3x2 − 4 and plug in the values of x we found earlier to get the
slopes of the tangent lines. So if we plug in x = 0,

√
5,−
√

5, we get f ′(x) = −4, 11, 11, respectively. Then,

y − 0 = −4(x− 0)→ y = −4x

y −
√

5 = 1(x−
√

5)→ y = 11x− 10
√

5

y +
√

5 = 1(x+
√

5)→ y = 11x+ 10
√

5
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Problem 4.32
Find the derivative first and set it equal to 0, f ′(x) = −6x+12

(x2−4x+5)2 = 0. We only need to solve for the top, which
gives us x = 2. Make sure to check that the point doesn’t cause a division by 0. Plug our x value into the y,
which gives us y = 3, our solution.

Problem 4.34

y′ =
3(e2x + 5)2 · (2e2x)(e2x + 1)− (e2x + 5)3 · (2e2x)

(e2x + 1)2

=
4e2x(e2x + 5)2(e2x − 1)

(e2x + 1)2

Problem 4.36

P ′(x) =
(14x3 + 16.2x)(x3 + 3x+ 1)− (3.5x4 + 8.1x2)(3x2 + 3)

(x3 + 3x+ 1)2

P ′(4) = 3.66

P ′(20) = 3.51

P ′(50) = 3.50
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A.5 Selected Answers from Chapter 5

Problem 5.1

a) f(x) = x2 − 2x− 3 = (x− 3)(x+ 1) Roots at x = 3, -1.

c) f(x) = x3 − 5x2 + 7x− 2. We check for roots that will make f(x) = 0, in this case x = 2. Then,

x2 − 3x+ 1
x− 2

)
x3 − 5x2 + 7x− 2

− x3 + 2x2

− 3x2 + 7x
3x2 − 6x

x− 2
− x+ 2

0

leaves us with x2 − 3x+ 1→ x = 3±
√

5
2 which are our 2 other roots.

e) f(x) = x2+x−2
x2+1 . We only need to consider the top when dealing with roots, so x2 + x− 2 = (x+ 2)(x− 1).

Roots at x = -2, 1

g) f(x) =
√
x3 − 2x2 − 5x+ 6. Try possible roots, see that x = 1 works. Then,

x2 − x− 6
x− 1

)
x3 − 2x2 − 5x+ 6

− x3 + x2

− x2 − 5x
x2 − x
− 6x+ 6

6x− 6
0

leaves us with x2 − x− 6 = (x− 3)(x+ 2), roots at x = -2, 3.

i) f(x) = ex
2−3x+2. No roots, ex > 0 for all x.

Problem 5.3

a) −1 ≤ x ≤ 5 [−1, 5] The set of all numbers between -1 and 5, inclusive.

c) 2 ≤ x < 7 [2, 7) The set of all numbers greater than or equal to two and strictly
less than 7.

e) −∞ < x <∞ (−∞,∞) The set of all real numbers

Problem 5.5

a) Decreasing for (−∞,−1.5), increasing on (−1.5,∞).

c) Decreasing for (−2, 2), increasing on (−∞,−2)
⋃

(2,∞).
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e) Increasing (−∞,∞).

Problem 5.8

a)

Summary table

Function : f(x) = x3 − 3x+ 2

Roots : x = 1,−2

Vertical asymptotes : none.

Horizontal asymptotes : none.

Critical points : x = ±1

Increasing on : (−∞,−1) ∪ (1,∞)

Decreasing on : (−1, 1)

Inflection points : x = 0

CCU on : (0,∞)

CCD on : (−∞, 0)

c)

Summary table

Function : f(x) = x
(x−1)2

Roots : x = 0

Vertical asymptotes : x = 1.

Horizontal asymptotes : y = 0.

Critical points : x = ±1

Increasing on : (−∞,−1) ∪ (1,∞)

Decreasing on : (−1, 1)

Inflection points : x = 0

CCU on : (1,∞)

CCD on : (−∞, 1)

e)

Summary table

Function : f(x) = x2e−x

Roots : x = 0

Vertical asymptotes : none.

Horizontal asymptotes : y = 0.

Critical points : x = 0, 2

Increasing on : (0, 2)

Decreasing on : (−∞, 0)
⋃

(2,∞)

Inflection points : x = 0

CCU on : (−∞, 2−
√

2)
⋃

(2 +
√

2,∞)

CCD on : (2−
√

2, 2 +
√

2)

Problem 5.11
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Summary table

Function : f(x) = x2+x−8
x−2

Roots : no roots

Vertical asymptotes : x = 2

Horizontal asymptotes : none.

Diagonal asymptotes : y = x

Critical points : x = 2

Increasing on : (−∞, 2) ∪ (2,∞)

Decreasing on : none.

Inflection points : x = 0

CCU on : (−∞, 2) ∪ (2,∞)

CCD on : none.
Problem 5.13

f (3)(x) = 3ex + xex

Problem 5.15

Try

f(x) =


x x < 0
0 0 ≤ x ≤ 1
x− 1 x > 1

for example.
Problem 5.23

a) f(x) = x2 + 3x+ 5. No horizontal asymptotes.

c) f(x) = x4 − 32x2 + 5. No horizontal asymptotes.

e) f(x) = (2x+ 1)e−x. y = 0.

g) f(x) = 4x+ 10
x . No horizontal asymptotes.

Problem 5.25

a) x = −3
2 global minimum.

c) x = 0,±4 0 is a local maximum, ±4 are global minima.

e) x = 1
2 . no classification.

g) x = 0,±
√

5
2 . 0 has no classification,

√
5
2 are global maxima.

Problem 5.27

a) n = 42.
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c) n = 8.

e) n = 7.

Problem 5.29

12x+ 7y = P , xy = 100

x =
100
y

1200
y

+ 7y = P

0 =
14y2 − 1200− 7y2

y2

0 = 7y2 − 1200

y = ±
√

1200
7
∼= 13.07

13.07x = 100→ x ∼= 7.64

Problem 5.31

V = 1600 = π · r2 · h, A = π · r2 + 2π · r · h.

h =
1600
π · r2

A = π · r2 +
3200
r

0 = 2π · r − 3200
r2

2π · r3 = 3200

r = 7.98589

h =
1600

π · (7.98589)2
= 7.98589

Problem 5.33

40W + 120L = P , LW = 8000

W =
8000
L

320000
L

+ 120L = A

−320000
L2

+ 120 = 0
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L2 =
320000

120

L ∼= 51.64

W =
8000
51.64

= 154.92

Problem 5.36

a) 900 m2

b) Yes.

c) y ∼= 51.09

d) 60.
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A.6 Selected Answers from Chapter 6

Problem 6.1

a) F (x) = x6

6 + C.

c) F (x) = x4

4 −
2x3

3 + 5x2

2 − 7x+ C.

e) F (x) =
∫

((x− 1)(x− 2)(x− 3)) · dx =
∫
x3 + 6x2 + 11x− 6 · dx = x4

4 − 2x3 + 11x2

2 − 6x+ C.

Problem 6.3

a) F (x) = (x2−3)3

3 + C. c) F (x) = 1
6 · ln(2x3 − 4) + C.

e) Hint, let u = ln(x). F (x) = ln(ln(x)).

Problem 6.5

∫
ex

(ex + 4)3
=

−1
(ex + 4)−2)

= −(ex + 4)−2 + C

Problem 6.7

Compute ∫ ln(5)

0

e−x · dx = −e−x
∣∣ln5

0
= −e−ln5 + e0 = 5 + 1 = 6

Problem 6.9 ∫ 3

1

1
x · ln(x)

· dx = ln(ln(x))|31 = ln(ln(3))− ln(ln(1))

We have a problem here, this gives us a ln(0) in the second term...
Problem 6.11 Let u = cx+ d. Then solve for x, x = u−d

c , and find dx, dx = du
c . Now substitute:∫

a · u−dc + b

u
· du
c

=
1
c

∫
au

cu
− ad

cu
+
b

u
· du =

a

c2
· u− ad

c2
· ln(u) +

b

c
· lnu+ C

Problem 6.15

Let cx = exln(c), then let u = xln(c), which means du = ln(c) · dx→ dx = du
ln(c) . Now substitute:

∫
eu · du

ln(c)
=

eu

ln(c)
=
exln(c)

ln(c)
=

cx

ln(c)
+ C

Problem 6.21

a) F (x) = −(x3 + 3x2 + 6x+ 6) · e−x. c) f(x) =
∫ (
x2 + 4x+ 8

)
· e−x.

e) f(x) =
∫ (
x3 + 4x2 + 9x+ 10

)
· e−x.
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Problem 6.23

∫ 12

0

1.1 + 0.6t · dt = 1.1t+ 0.3t2
∣∣12
0

= 56.4

Problem 6.25

∫ 52

0

10w
10w2 + 1

· dw =
1
2
· ln(10w2 + 1)

∣∣∣∣52
0

=
1
2
· ln(522 + 1) ∼= 3.95

Problem 6.27

500 =
∫ 6

0

π
(
x2 + q)2

)
· dx

π

∫ 6

0

x4

144
+

2x2q

12
+ q2 · dx

π

[
x5

720
+
x3q

18
+ q2x

]6
0

6q2 +
63q

18
+

65π

720
− 500 = 0

q2 + 2q +
64π

720
− 500

6
= 0

q ∼= 7.87

Problem 6.29

500 =
∫ 8

0

π

(
x2

25
+ q)2

)
· dx

π

∫ 8

0

x4

625
+

2x2q

25
+ q2 · dx

π

[
x5

3125
+

2x3q

75
+ q2x

]8
0

8q2 + 13.6533q − 156.181 = 0

q ∼= 3.65

Problem 6.31

Integrate the failure rate of the given type of lighbulbs until the total failure, as computed by the integral,
is one half:

0.5 =
∫ H

0

4e−4t · dt
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0.5 = 1− e−4H

ln( 1
2 )
−4

= H → H ∼= 0.173 years


