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Foreword

With technology, perfect timing is the key to success. A technology could be superior, and there could be a need 
for it, but if the timing is not right success usually does not take place. There are many examples. James Gosling, 
inventor of Java, developed the Network‐Extensive Window System (NeWS) and a few other technologies, but 
only Java caught on widely. When he invented Java there were multiple operating systems and Java was a 
c ommon language across many platforms. This enabled a “write once, run anywhere” paradigm. Even more 
important – it was the client‐server era, when Java’s concepts of virtual machines and object orientation thrived.

The same is true for the Encyclopedia of Cloud Computing. This is a book for this time. A couple of years earlier, 
it would have been premature; a few years later, it may be old news. Cloud computing has matured over the past 
few years and now it is part of the offering of many major IT companies, not just technology leaders and early 
adopters. It is being used by many industries and in different ways. It is delivered as public and private cloud and 
anything in between. It is accepted by industry, academia, and even governments. While Amazon Web Services are 
still the leaders, there are also many other cloud service providers (such as Azure, Google, HP, and IBM) as well 
as numerous cloud enablers who supply the necessary cloud software tools and hardware. The cloud computing 
field is hard to navigate. Wikipedia entries, and numerous technical and business documents satisfy some of the 
needs. However, a comprehensive compendium of materials on cloud computing did not exist until now. This is the 
offering by San Murugesan and Irena Bojanova. Irena and San undertook a challenging task to spearhead editing 
a massive volume focusing on 56 topics in the area of cloud computing. Defining the encyclopedia content, choos-
ing experts to author the chapters, coordinating with them, and delivering a coherent book, is a monumental effort.

The record of Murugesan and Bojanova in the area of cloud computing makes them ideal editors for the ency-
clopedia. They both were up to the challenge. Irena was the founding chair of the IEEE Special Technical 
Community (STC) on cloud computing, one of the first established STCs, where she helped define the STC 
agenda and execute its first deliverables. San is the editor‐in‐chief of IEEE Professional, a unique publication 
targeting computing professionals, and edits the “Cloud cover” column in IEEE Computer. They both also guest 
edited theme issues on cloud computing at IEEE Computing Now and elsewhere. Irena was editor‐in chief of 
IEEE Transaction on Cloud Computing. I have personally witnessed these efforts as president of the IEEE 
Computer Society.

This is a remarkable book. It can be read selectively (certain parts or chapters) or from cover to cover. 
It offers readers a comprehensive and detailed view of cloud computing, covering horizontal technologies as 
well as vertical solutions and applications delivered in the cloud. It meets current needs and I strongly recom-
mend it to technical and business people alike. It will also have lasting practical and historical value, covering 
the foundations of cloud computing for generations to come.

Dejan S. Milojicic, Senior Researcher and Manager
Hewlett Packard Laboratories, Palo Alto
IEEE Computer Society President, 2014

Managing Director of Open Cirrus Cloud Computing Testbed, 2009–13



Several converging and complementary factors are driving the rise of cloud computing. The increasing 
maturity of cloud technologies and cloud service offerings coupled with users’ greater awareness of the 
cloud’s benefits (and limitations) is accelerating the cloud’s adoption. Better Internet connectivity, intense 
competition among cloud service providers (CSPs), and digitalization of enterprises, particularly micro‐, 
small‐, and medium‐sized businesses, are increasing the cloud’s use. Cloud computing is not just an IT para-
digm change, as some perceive. It is redefining not only the information and communication technology 
(ICT) industry but also enterprise IT in all industry and business sectors. It is also helping to close the digital 
(information) divide, driving innovations by small enterprises and facilitating deployment of new applications 
that would otherwise be infeasible.

Cloud computing is becoming ubiquitous and the new normal. To better understand and exploit the poten-
tial of the cloud – and to advance the cloud further – practitioners, IT professionals, educators, researchers, 
and students need an authoritative knowledge source that comprehensively and holistically cover all aspects 
of cloud computing. Several books on cloud computing are now available but none of them cover all key 
aspects of cloud computing comprehensively. To gain a holistic view of the cloud, one has to refer to a few 
different books, which is neither convenient nor practicable. There is not one reference book on the market 
that comprehensively covers cloud computing and meets the information needs of IT professionals, academics, 
researchers, and undergraduate and postgraduate students.

This encyclopedia serves this need and is the first publication of this kind. It targets computing and IT 
professionals, academics, researchers, university students (senior undergraduate and graduate students), and 
senior IT and business executives. This publication contains a wealth of information for those interested in 
understanding, using, or providing cloud computing services; for developers and researchers who are inter-
ested in advancing cloud computing and businesses, and for individuals interested in embracing and capital-
izing on the cloud. This encyclopedia is a convenient ready‐reference book with lots of relevant and helpful 
information and insights.

About the Encyclopedia

The Encyclopedia of Cloud Computing is a comprehensive compendium of cloud computing knowledge and 
covers concepts, principles, architecture, technology, security and privacy, regulatory compliance, applica-
tions, and social and legal aspects of cloud computing. Featuring contributions from a number of subject 
experts in industry and academia, this unique publication outlines and discusses technological trends and 
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developments, research opportunities, best practices, standards, cloud adoption and other topics of interest in 
the context of the development, operation, management, and use of clouds. It also examines cloud comput-
ing’s impact, now and in the future.

The book presents 56 chapters on a wide array of topics organized in ten parts. After gaining an overview 
of cloud computing in Chapter 1, readers can study the rest of the chapters in sequence or hop to a chapter 
that interests them. We present a brief preview of the encyclopedia below.

Book Preview

Part I: Introduction to Cloud Computing

In this part, we present an overview of cloud computing concepts, cloud services, cloud‐hosting models, and 
applications. We also outline the benefits and limitations of cloud computing, identify potential risks of the 
cloud, and discuss its prospects and implications for business and IT professionals. This introductory chapter 
should enable readers gain an overall, holistic view of cloud computing and help them comprehend the rest 
of the chapters.

Part II: Cloud Services

Cloud vendors offer an array of cloud services that enterprises, individuals and IT personnel can use. In this 
part, we present five chapters that outline a range of generic and specialized services. To help readers 
f amiliarize themselves with available cloud services and make appropriate choices that meet their require-
ments, in the “Cloud Services and Cloud Service Providers” chapter we outline cloud services and tools 
offered by different vendors. In the “Mobile Cloud Computing” chapter, we present a comprehensive 
o verview of mobile cloud computing (MCC) – its definition, motivation, building blocks, and architectures – 
and outline challenges in MCC that deserve future research. Next, in the “Community Clouds” chapter, we 
identify the design goals of community clouds and discuss cloud application scenarios that are specific to a 
few different communities of users. In the “Government Clouds” chapter, we discuss primary considerations 
for government agencies in adopting the cloud and cloud service offerings in the federal marketplace, and 
offer some insight into the progression towards the adoption of clouds by government organizations world-
wide. In the last chapter of this part, “Cloud‐Based Development Environments (PaaS),” we discuss the 
fundamentals of platform as a service (PaaS) and focus on a specific cloud‐computing layer, called “applica-
tion Platform as a Service” (aPaaS). Then we articulate basic approaches to aPaaS and provide a concise 
comparison of leading PaaS solutions.

Part III: Cloud Frameworks and Technologies

Clouds adopt special frameworks for their implementation and employ several concepts and technologies, 
virtualization being a key technology supporting the cloud. In this part we present seven chapters covering 
a few different popular cloud reference frameworks, different types of virtualization, and datacenter net-
works. In the “Cloud Reference Frameworks” chapter, we review major cloud reference frameworks – the 
NIST Cloud Reference Architecture, the IETF Cloud Reference Framework, the CSA Cloud Reference 
Model, and others – and provide the context for their application in real‐world scenarios. In the next chapter, 
“Virtualization: An Overview,” we introduce the concepts of virtualization, including server, storage, and 
network virtualization, and discuss the salient features of virtualization that make it the foundation of cloud 
computing. Then we describe advanced concepts such as virtualization for disaster recovery and the b usiness 
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continuity. In the “Network and I/O Virtualization” chapter, we discuss how network and computer input‐
output virtualization techniques can be leveraged as key underpinnings of a cloud network, and examine 
their use and benefits.

Next, in the “Cloud Networks” chapter, we provide a comprehensive overview of the characteristics, 
c ategories, and architecture of cloud networks, which connect compute, storage and management resources 
of cloud infrastructure and provide network services to all tenants of the cloud computing environment. In the 
“Wireless Datacenter Networks” chapter, we analyze the challenges of traditional datacenter networks 
(DCNs), introduce the most popular and efficient wireless technology, 60 GHz RF technology, and several 
classic architectures for wireless DCNs, and outline recent research on developing high performance in 
w ireless DCNs. Next, as open‐source software and tools for building clouds are gaining popularity and 
acceptance, in the “Open‐Source Cloud Software Solutions” chapter, we highlight and compare leading 
open‐source cloud software solutions for IaaS, PaaS, and SaaS, and discuss the features of open‐source cloud 
infrastructure automation tools. Lastly, in the “Developing Software for Cloud: Opportunities and Challenges 
for Developers” chapter, we discuss challenges in developing SaaS clouds, the popular SaaS development 
platforms available for the public cloud and private cloud, and best practices to transform traditional Web 
applications to cloud‐based multitenant SaaS applications.

Part IV: Cloud Integration and Standards

In this part, we present three chapters covering topics such as cloud portability, integration, federation, and 
standards. In “Cloud Portability and Interoperability,” we discuss the problem of cloud interoperability and 
portability and outline relevant methodologies, research projects, proposals for standards, and initiatives 
aimed at resolving interoperability and portability issues from different viewpoints. Next, in “Cloud 
Federation and Geo‐Distribution,” we outline motivation for cloud federation and discuss the challenges in 
the location and access of data stored and shared between datacenters, computation on such distributed data, 
and communication of data across datacenters. Lastly, in “Cloud Standards,” we discuss key unique features 
of cloud‐computing standards, map cloud standards categories to cloud service layers, and detail the c urrently 
available set of cloud standards with respect to these categories.

Part V: Cloud Security, Privacy, and Compliance

Cloud security, privacy, and compliance continue to be key barriers to wider adoption of the cloud. In this part 
we present six chapters focusing on these issues and potential solutions to address them. First, in “Cloud 
Security: Issues and Concerns,” we present an overview of key security issues and concerns arising in the 
cloud scenario, in particular with respect to data storage, management, and processing. Next, in “Securing the 
Clouds: Methodologies and Practices,” we provide an overview of security issues posed by SaaS, IaaS, and 
PaaS cloud service models and discuss methodologies, best practices, practical approaches, and pragmatic 
techniques to address these issues. In the “Cloud Forensics” chapter, we discuss the challenges of cloud 
forensics, and techniques that support reliable forensics, and explore key open problems in this area. Then, in 
“Privacy, Law, and Cloud Services,” we examine legal issues surrounding digital privacy, including applica-
tion of the Fourth Amendment and the Stored Communications Act. Having an understanding of these issues 
helps consumers alter their service choices to protect their digital privacy when migrating data to the cloud. 
Next, in “Ensuring Privacy in Clouds,” we examine the philosophical foundations of privacy, review privacy 
risks particular to the cloud, and discuss IT best practices for addressing those risks and emerging research in 
privacy relevant to cloud‐based systems. Lastly, in “Compliance in Clouds,” we provide an overview of com-
pliance and security challenges in adopting clouds and discuss information security certificates as a means to 
evaluate service providers with respect to their compliance.



xlii Preface

Part VI: Cloud Performance, Reliability, and Availability

In this part, which consists of seven chapters, we discuss other key factors that influence cloud adoption 
such as performance, reliability, and availability of the cloud. In “Cloud Capacity Planning and Management,” 
we present a comprehensive overview of capacity planning and management of cloud infrastructure: first, we 
state the problem of capacity management in the context of cloud computing from the viewpoint of service 
providers; next, we provide a brief discussion on when capacity planning should take place, and, finally, 
we survey a number of methods proposed for capacity planning and management. Next, in “Fault Tolerance 
in the Cloud,” we discuss fault tolerance in the cloud and illustrate various fault tolerance strategies and 
provide taxonomy of fault‐tolerance approaches.

In the “Cloud Energy Consumption” chapter, we discuss the cloud energy consumption and its relationship 
with cloud resource management, and how cloud computing infrastructures could realize their potential of 
reducing the energy consumption for computing and data storage, thus shrinking their carbon footprint. Next, 
in “Cloud Modeling and Simulation,” we provide an introduction to cloud modeling and simulation tech-
nologies with focus on performance and scalability and describe modeling of contention, data segmentation, 
and workload generation. Then we illustrate various stages of cloud modeling using the simulation of 
OpenStack image deployment on the cloud as an example. In “Cloud Testing: An Overview,” we describe 
various cloud test dimensions such as elasticity and scalability testing, security testing, performance testing, 
compatibility testing, API integration testing, live upgrade testing, disaster recovery testing, and multitenancy 
testing, and introduce approaches for automation of cloud integration testing. In “Testing the Cloud and 
Testing as a Service,” we discuss testing of cloud infrastructure and applications and outline how cloud ser-
vices could be leveraged for testing and quality assurance of software, hardware, Web apps and information 
systems. Lastly, in “Cloud Services Evaluation,” we discuss objectives of evaluation of cloud services from 
different vendors, the features that are commonly evaluated, the de facto benchmarks, and a practical 
m ethodology for cloud service evaluation.

Part VII: Cloud Migration and Management

To migrate applications to the cloud successfully, several technical and nontechnical aspects, such as access 
control, service‐level agreement, legal aspects, and compliance requirements have to be addressed. In this 
part, we present ten chapters that focus on these considerations. In the first chapter, “Enterprise Cloud 
Computing Strategy and Policy,” we discuss how a well crafted cloud‐computing strategy that uses a struc-
tured engineering approach to balance requirements, schedule, cost, and risk, would help in the successful 
application of cloud computing. Next, in “Cloud Brokers,” we discuss different cloud broker mechanisms and 
their properties, and describe a typical cloud broker architecture. In “Migrating Applications to Clouds,” we 
present a methodology for cloud migration that encompasses an application‐description process, a cloud‐
identification process, and an application‐deployment process, and we illustrate the method with an example. 
Next, in “Identity and Access Management,” we elaborate on the essence of identity and access management 
(IAM) and why effective IAM is an important requirement for ensuring security, privacy, and trust in the 
cloud computing environment. In the chapter “OAuth Standard for User Authorization of Cloud Services,” 
we describe the IETF OAuth specification – an open Web standard that enables secure authorization for 
applications running on various kinds of platforms. In “Distributed Access Control in Cloud Computing 
Systems,” we highlight the issue of distributed access control, access control policies and models, distributed 
access control architecture for multicloud environments, and trust and identity management in the cloud 
computing environment.

Next, in “Cloud Service Level Agreement (SLA),” we describe the typical elements of a cloud SLA with 
examples, give an overview of SLAs of well known public cloud service providers, and discuss future directions 
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in SLAs of cloud‐based services. In “Automatic Provisioning of Intercloud Resources Driven by Nonfunctional 
Requirements of Applications,” we present an automatic system that performs provisioning of resources on 
public clouds based on the nonfunctional requirements of applications by translating the high‐level nonfunc-
tional requirements from administrators into VM resource parameters. The system also selects the most 
appropriate type of VM and its provider, and allocates actual VMs from the selected provider. Next, in “Legal 
Aspects of Cloud Computing,” we discuss the legal landscape of the cloud, providing a high‐level overview 
of relevant laws and regulations that govern it, including how countries have addressed the problem of trans-
border dataflow; and describe the increasingly important role played by contracts between cloud service 
providers and their clients. Lastly, in “Cloud Economics,” we discuss economic considerations of cloud 
computing, such as cloud pricing, supply chain, market models, stakeholders, and network effects.

Part VIII: Cloud Applications and Case Studies

Clouds are used in many different applications in several domains. In this part, we present four chapters 
focusing on cloud applications in four different domains. First, in “Engineering Applications of the Cloud,” 
we outline two applications to illustrate the potential of the cloud service environment for supporting infor-
mation interoperability and collaborative design – one in product information sharing and the other in distrib-
uted collaboration. Next, in “Educational Applications of the Cloud,” we present a broad overview of cloud 
computing in education for activities such as instruction, front‐office interaction, and back‐office operations, 
and discuss the potential of cloud computing in academic research. Next, in “Personal Applications of 
Clouds,” we discuss personal cloud applications associated with collaboration, social networking, personal 
computing, storage of personal data, and some forms of entertainment access. Finally, in “Cloud Gaming,” 
we outline platforms that provide cloud‐gaming services and classify the services into four models and the 
corresponding platforms into four architectural frameworks. We also examine their advantages and disadvantages, 
discuss their associated challenges, and identify potential future developments in cloud gaming.

Part IX: Big Data and Analytics in Clouds

Clouds are excellent platforms for big data storage, management and analytics. In this part, in nine chapters, 
we cover various aspects of the big data‐cloud nexus. In the first chapter, “An Introduction to Big Data,” we 
provide an overview of big data and big data analytics and their applications, and outline key big‐data tech-
nologies. In “Big Data in a Cloud,” we provide an overview of NoSQL databases, discuss an analytic cloud 
and how it contrasts with a utility cloud, and focus on running big data analytics in a virtualized environ-
ment. Next, in the chapter “Cloud‐Hosted Databases,” we outline popular technologies for hosting the 
 database tier of software applications in cloud environments and discuss their strengths and weaknesses. 
In  “Cloud Data  Management,” we present recent advances in research and the development of cloud 
data  management, including practical cases of current and anticipated data challenges, the state‐of‐the‐
art data‐management technologies for extremely large datasets in the cloud, and lessons learned on building 
data‐management solutions in the cloud.

Apache Hadoop – an open‐source Java‐based framework – is the driving force behind big data. In “Large‐
Scale Analytics in Clouds (Hadoop),” we provide an overview of Hadoop and its variants and alternatives. The 
MapReduce framework is a simple paradigm for programming large clusters of hundreds and thousands of 
servers that store many terabytes and petabytes of information. In the next chapter, “Cloud Programming Models 
(Map Reduce),” we present an overview of the MapReduce programming model and its variants and implemen-
tation. In “Developing Elastic Software for the Cloud,” we describe the Google App Engine as an example of a 
PaaS programming framework, and MapReduce and Simple Actor Language System and Architecture 
(SALSA) as examples of distributed computing frameworks on PaaS and IaaS. In the “Cloud Service for 
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Distributed Knowledge Discovery” chapter, we discuss the functional requirements of a generic distributed 
knowledge system, and how these requirements can be fulfilled by a cloud. As a case study, we describe how a 
cloud platform can be used to design and develop a framework for distributed execution of knowledge d iscovery 
in database (KDD) workflows. Lastly, in “Cloud Knowledge Modeling and Management,” we present and dis-
cuss the main aspects of cloud knowledge modeling focusing on the state of the art solutions.

Part X: Cloud Prospects

In the last part, comprising four chapters, we examine the prospects of the cloud. First, in “Impact of the 
Cloud on IT Professionals and the IT Industry,” we discuss the impact of cloud computing on IT, changes to 
existing IT roles, and newly created IT roles. Next, in “Cloud Computing in Emerging Markets,” we analyze 
the current status of cloud computing in emerging markets and examine the fundamental forces driving its 
adoption and major constraints these countries face in using and deploying it. In “Research Topics in Cloud 
Computing,” by aggregating information from several sources (publications in journals, conferences and 
workshops; white papers from major industry players; objectives of major cloud computing laboratories in 
universities; reports on government and industry research funding; and the major cloud research and develop-
ment projects in several countries), we present cloud computing research trends in industry and academia. 
Finally, in our concluding chapter, “Cloud Computing Outlook: The Future of the Cloud,” we discuss the 
future of the cloud and outline major trends that are poised to make the cloud ubiquitous and the new normal.

We believe that this encyclopedia, which covers a range of key topics on cloud computing in a single 
volume, should be helpful to a spectrum of readers in gaining an informed understanding of the promise and 
potential of the cloud. We welcome your comments and suggestions at CloudComputingEncyclopedia@
gmail.com.
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1.1 Introduction

Cloud computing is receiving keen interest and is being widely adopted. It offers clients applications, data, 
computing resources, and information technology (IT) management functions as a service through the 
Internet or a dedicated network. Several converging and complementary factors have led to cloud comput-
ing’s emergence as a popular IT service‐delivery model that appeals to all stakeholders. Considered as 
 paradigm change in IT, it is being adopted for a variety of applications – personal, academic, business, 
 government, and more – not only for cost savings and expediency but also to meet strategic IT and business 
goals. It is transforming every sector of society and is having a profound impact, especially on the IT industry 
and on IT professionals – application developers, enterprise IT administrators, and IT executives. Driven by 
advances in cloud technology, the proliferation of mobile devices such as smartphones and tablets, and use of 
a variety of applications supported by ubiquitous broadband Internet access, the computing landscape is 
 continuing to change. There is an accompanying paradigm shift in the way we deliver and use IT.

Cloud computing is a radical new IT delivery and business model. Users can use cloud services when and 
where they need them and in the quantity that they need, and pay for only the resources they use. It also offers 
huge computing power, on‐demand scalability, and utility‐like availability at low cost.

Cloud computing is no longer hype. Individuals are using cloud‐based applications, such as Web mail and 
Web‐based calendar or photo‐sharing Web sites (e.g., Flickr, Picasa) and online data storage. Small‐ and 
medium‐sized enterprises are using cloud‐based applications for accounting, payroll processing, customer 
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relationship management (CRM), business intelligence, and data mining. Large enterprises use cloud  services 
for business functions, such as supply‐chain management, data storage, big data analytics, business process 
management, CRM, modeling and simulation, and application development. Research studies reveal that 
users give convenience, flexibility, the ability to share information, and data safety as major reasons for 
engaging in cloud computing activities.

As cloud computing is moving towards mainstream adoption, there is considerable excitement and opti-
mism, as well as concerns and criticism. Many people have incomplete information or are confused about 
cloud computing’s real benefits and key risks, which matter to them. Given its transformational potential and 
significance, it is important that students, IT professionals, business managers and government leaders have 
an informed, holistic understanding of cloud computing and how they can embrace it.

In this chapter, we present an overview of cloud computing concepts, cloud services, cloud‐hosting mod-
els, and applications. We also outline the benefits and limitations of cloud computing, identify its potential 
risks, and discuss the prospects for the cloud and what businesses and individuals can do to embrace cloud 
computing successfully. Finally, we discuss the prospects and implications of cloud computing for busi-
nesses, the IT industry, and IT professionals.

1.2 Cloud Computing

In its evolution since the mid‐1970s, computing has passed through several stages – from mainframe computers 
to minicomputers to personal computers to network computing, client‐server computing, and distributed 
 computing. Now, coming full circle, computing is migrating outward to the clouds, to distant computing 
resources reached through the Internet.

Depending on how you view cloud computing, it can be described in different ways. There are several 
definitions, but the National Institute of Standards and Technology (NIST) offers a classic definition that 
encompasses the key elements and characteristics of cloud computing (Mell and Grance, 2011):

Cloud computing is a model for enabling ubiquitous, convenient, on‐demand network access to a shared pool of 
configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly 
provisioned and released with minimal management effort or service provider interaction.

The International Organization for Standardization (ISO) provides a similar definition, choosing to call 
cloud computing an “evolving paradigm”: “Cloud computing is a paradigm for enabling network access to a 
scalable and elastic pool of shareable physical or virtual resources with self‐service provisioning and admin-
istration on‐demand” (ISO/IEC DIS 17789:2014, 2014).

Gartner defines cloud computing in simplistic terms as “A style of computing where scalable and elastic 
IT‐enabled capabilities are provided as a service to multiple customers using Internet technologies” (http://
www.gartner.com/it‐glossary/cloud‐computing, accessed November 25, 2015).

Another definition encompasses several key characteristics of cloud computing and presents a broader and 
practical view of it (Vaquero et al., 2009):

Clouds [are] a large pool of easily usable and accessible virtualized resources such as hardware, development 
platforms and/or services. These resources can be dynamically reconfigured to adjust to a variable load (scale), 
allowing also for an optimum resource utilization. This pool of resources is typically exploited by a pay‐per‐use 
model in which guarantees are offered by the Infrastructure Provider by means of customized SLAs [service‐level 
agreements].
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1.2.1 Key Cloud Characteristics

Cloud computing has the following key distinguishing characteristics:

 ● on‐demand self‐service;
 ● broad network access;
 ● resource pooling;
 ● rapid elasticity and scalability;
 ● measured service;
 ● multitenancy.

These characteristics, briefly outlined in Table 1.1, differentiate cloud computing from other forms of tra-
ditional computing.

The cloud draws on some of the older foundations of IT such as centralized, shared resource pooling, util-
ity computing, and virtualization, and incorporates new mechanisms for resource provisioning and dynamic 
scaling. It adopts new business and revenue models and incorporates monitoring provisions for charging for 
the resources used. Cloud computing became more widely available only with the adoption of broadband 
Internet access and advances in virtualization and datacenter design and operation. Philosophical and attitude 
changes by IT vendors and users were also drivers for cloud’s popularity.

1.2.2 Cloud computing attributes

Computing clouds have several distinguishing attributes. They:

 ● have massive resources at their disposal and support several users simultaneously;
 ● support on‐demand scalability of users’ computational needs;

Table 1.1 Cloud characteristics

Cloud characteristic Description

On‐demand self‐service Computing capabilities (e.g. server time and network storage) can be 
unilaterally automatically provisioned as needed).

Broad network access Capabilities are accessible through heterogeneous thin or thick client 
platforms (e.g., mobile phones, tablets, laptops, and workstations).

Resource pooling Computing resources (e.g. storage, processing, memory, and bandwidth) are 
pooled to serve multiple consumers, and are dynamically assigned and 
reassigned according to demand. Customers have no control over the 
exact location of resources, but may be able to specify location (e.g., 
country, state, or datacenter).

Rapid elasticity Capabilities can be elastically provisioned and released commensurate with 
demand. Available capabilities often appear to be unlimited.

Measured service Resource use is automatically controlled and optimized through metering 
capabilities, appropriate to type of service (e.g., storage, processing, 
bandwidth, and active user accounts).

Multitenancy Cloud computing is a shared resource that draws on resource pooling as an 
important feature. It implies use of same resources by multiple 
consumers, called tenants.
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 ● offer ubiquitous access – stored data and applications are accessible by authorized users anywhere, anytime;
 ● facilitate data sharing, enterprise‐wide data analysis, and collaboration;
 ● are generally self‐healing, and can self‐reconfigure providing continuous availability in case of failure of 

their computing resources;
 ● offer enhanced user experience via a simplified Web‐browser user interface.

1.3 Cloud Service Models

A computational or network resource, an application or any other kind of IT service offered to a user by a 
cloud is called a cloud service. Cloud services range from simple applications such as e‐mail, calendar, word 
processing, and photo sharing to various types of complex enterprise applications and computing resources 
offered as services by major providers. For comprehensive information on cloud offerings currently available 
from several vendors, see the Cloud Computing Directory (http://www.cloudbook.net/directories/product‐
services/cloud‐computing‐directory, accessed November 25, 2015) and also refer to Chapter 2.

Depending on the type of services offered, cloud services can be classified into three major categories (see 
Table 1.2): software as a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS). 
In addition to these foundational services, several cloud support services, such as security as a service and 
identity and access management as a service, are on offer. Each service category can be used independently 
or used in combination with others.

1.3.1 Software as a Service

“Software as a service” clouds are also called software clouds. In the SaaS model, an application is hosted by 
a cloud vendor and delivered as a service to users, primarily via the Internet or a dedicated network. It 
 eliminates the need to install and run the application locally, on a user’s computer, and thereby also relieves 
the users from the burden of hardware and software maintenance and upgrades. The software license is not 

Table 1.2 Cloud service models

Service model Capability offered to the user Controllability by users

Software as a 
service (SaaS)

Use of applications that run on the 
cloud.

Limited application configuration settings, 
but no control over underlying cloud 
infrastructure – network, servers, operating 
systems, storage, or individual application 
capabilities.

Platform as a 
service (PaaS)

Deployment of applications on 
the cloud infrastructure; may 
use supported programming 
languages, libraries, services, 
and tools.

The user has control of deployed applications 
and their environment settings, but no 
control of cloud infrastructure – network, 
servers, operating systems, or storage.

Infrastructure as 
a service (IaaS)

Provisioning of processing, 
storage, networks, etc.; may 
deploy and run operating 
systems, applications, etc.

The user has control of operating systems, 
storage, and deployed applications running 
on virtualized resources assigned to the user, 
but no control over underlying cloud 
infrastructure.
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owned by the user. Users are billed for the service(s) used, depending on their usage. Hence, costs to use a 
service become a continuous expense rather than a huge up‐front capital expense at the time of purchase. 
Examples of SaaS include Webmail, Google Apps, Force.com CRM, Quicken online accounting, NetSuite’s 
Business Software Suite, Sun Java Communications Suite, and Paychex payroll management system.

1.3.2 Platform as a Service

In the PaaS model, the platform and tools for application development and middleware systems are hosted by 
a vendor and offered to application developers, allowing them simply to code and deploy without directly 
interacting with the underlying infrastructure. The platform provides most of the tools and facilities required 
for building and delivering applications and services such as workflow facilities for application design, devel-
opment, testing, deployment, and hosting, as well as application services such as Web service integration, 
database integration, security, storage, application versioning, and team communication and collaboration. 
Examples of PaaS include Google App Engine, Microsoft Azure, Amazon’s Web services and Sun 
Microsystems NetBeans IDE. The PaaS cloud is also called platform cloud or cloudware.

1.3.3 Infrastructure as a Service

In an IaaS cloud, raw computer infrastructure, such as servers, CPU, storage, network equipment, and 
 datacenter facilities, are delivered as a service on demand. Rather than purchasing these resources, clients get 
them as a fully outsourced service for the duration that they need them. The service is billed according to 
the resources consumed. Amazon Elastic Compute Cloud (EC2), GoGrid, and FlexiScale are some of the 
 examples of IaaS clouds. This type of cloud is also called a utility cloud or infrastructure cloud.

An IaaS cloud exhibits the following characteristics:

 ● availability of a huge volume of computational resources such as servers, network equipment, memory, 
CPU, disk space and datacenter facilities on demand;

 ● use of enterprise‐grade infrastructure at reduced cost (pay for the use), allowing small and midsize enter-
prises to benefit from the aggregate compute resource pools;

 ● dynamic scalability of infrastructure; on‐demand capacity can be easily scaled up and down based on 
resource requirements.

1.3.4 Cloud Support Services

In order to embrace the promise of clouds fully and successfully, adopters must use one or more of the 
three foundational cloud services – software as a service (SaaS), infrastructure as a service (IaaS), and 
platform as a service (PaaS). But they must also address several other related factors, such as security, 
privacy, user access management, compliance requirements, and business continuity. Furthermore, would‐
be adopters may have to use services from more than one service provider, aggregate those services, and 
integrate them with each other and with the organization’s legacy applications / systems. Thus they need to 
create a cloud‐based system to meet their specific requirements. To assist them in this, and to facilitate 
transition to the cloud, a cloud ecosystem is emerging that aims to offer a spectrum of new cloud support 
services that augment, complement, or assist the popular SaaS, IaaS, and PaaS offerings. Examples of 
such cloud support services are data storage as a service (DSaaS), analytics as service (AaaS), desktop as 
a service (DAAS), security as a service (SecaaS), identity and access management as a service (IAMaaS), 
and monitoring as a service (MaaS).



8 Encyclopedia of Cloud Computing

1.3.4.1 Data Storage as a Service (DSaaS)

With cloud storage, data is stored in multiple third‐party servers, rather than on dedicated servers used in 
traditional networked storage, and users access a virtual storage. The actual storage location may change as 
the cloud dynamically manages available storage space; however, the users see a static location for their data. 
Key advantages of cloud storage are reduced cost and better data safety and availability. Virtual resources in 
the cloud are typically cheaper than dedicated physical resources connected to a PC or the network. Data 
stored in a cloud is generally safe against accidental erasure or hard‐drive failures as Cloud Service Providers 
(CSPs) keep multiple copies of data across multiple physical machines continually. If one machine crashes, 
the data that was on that machine can be retrieved from other machine(s) in the cloud. Cloud vendors gener-
ally offer better security measures than a small business could afford. Enterprise data storage in clouds, 
however, raises some concerns, which are discussed later.

1.3.4.2 Analytics as a Service (AaaS)

Analytics as a service (AaaS), also known as data analytics as a service (DAaaS), refers to the provision of 
analytics platforms – software and tools – on a cloud for analysis and mining of large volumes of data (big data). 
Several vendors, such as IBM, Amazon, Alpine Data Labs, and Kontagent, offer such services. Customers can 
feed their data into the platform and get back useful analytic insights. It lets clients use particular analytic soft-
ware for as long as it is needed and they pay only for the resources used. As a general analytic solution, AaaS 
has potential use cases in a range of areas and offers businesses an alternative to developing costly in‐house 
high‐performance systems for business analytics. An AaaS platform is extensible and scalable and can handle 
various potential use cases. It lets businesses get their data analytics initiatives up and running quickly.

1.3.4.3 Desktop as a Service (DaaS)

Desktop as a Service (DaaS) is a cloud service in which the back‐end of a virtual desktop infrastructure (VDI) 
is hosted by a cloud service provider. It provides users with the ability to build, configure, manage, store, exe-
cute, and deliver their desktop functions remotely. Examples of such service are VMware Horizon Air, Amazon 
WorkSpaces and Citrix XenDesktop. Clients can purchase DaaS on a subscription basis and the service provider 
manages the back‐end responsibilities of data storage, backup, security and upgrades. DaaS is well suited for a 
small or mid‐size businesses that want to provide their users with a virtual desktop infrastructure (VDI), but find 
that deploying a VDI in‐house is not feasible due to cost, implementation, staffing and other constraints.

1.3.4.4 Security as a Service (SecaaS)

Security as a Service (SecaaS) refers to the provision of security applications and services via the cloud, 
either to cloud‐based infrastructure and software or from the cloud to the customers’ on‐premises systems. 
This enables enterprises to make use of security services in new ways, or in ways that would not be cost effec-
tive if provisioned locally. The services provided include authentication, virus detection, antimalware / spyware, 
intrusion detection, encryption, e‐mail security, Web security, and security event management.

1.3.4.5 Identity and Access Management as Service (IAMaaS)

Identity and access management as a service (IAMaaS) offers cloud‐based IAM services to clients and 
requires minimal or no on‐premises presence of hardware or software. Services include user provisioning, 
authentication, authorization, self‐service, password management, and deprovisioning.

www.ebook3000.com
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1.3.4.6 Monitoring as a Service (MaaS)

Monitoring‐as‐a‐service (MaaS) facilitates the deployment of monitoring functionalities for various other 
services and applications within the cloud. Monitoring focuses on how services are performing. The common 
application for MaaS is online state monitoring, which continuously tracks certain states of applications, 
networks, systems, instances or any element that may be deployable within the cloud.

1.4 Cloud Computing Deployment Models

Based on where the cloud is deployed and by whom, who owns and manages it, and who its primary users 
are, clouds are classified into five categories: public cloud, private cloud, virtual private cloud, community 
cloud, and hybrid cloud.

1.4.1 Public Cloud

The public cloud is the most common and widely known form of cloud, and is open for anyone – business, indus-
try, government, nonprofit organizations and individuals – to use. The cloud infrastructure is, however, owned 
and managed by the cloud service provider – the organization that offers the cloud services. Public cloud services 
are offered on a pay‐per‐usage model; however, some applications on public clouds are accessible for free.

1.4.2 Private Cloud

A private cloud is deployed, provided, and controlled by an enterprise behind its firewall for its own use. 
Unwilling to head into public clouds because of concerns surrounding them and compliance requirements, 
some enterprises deploy their own cloud computing environments for their own (and their business partners’) 
exclusive use. Thus, by having their own cloud, they gain operational efficiencies, effectively use their 
 existing resources, if any, and have full control over the cloud, the applications, and data on the cloud.

1.4.3 Virtual Private Cloud

A virtual private cloud (VPC) is a segment of a public cloud, designated for a user with additional provisions 
and features for meeting that user’s specific security and compliance requirements. Virtual private clouds 
provide users with more control over the resources they use than a pure public cloud does. An example of this 
type of cloud is Amazon’s VPC.

1.4.4 Community Cloud

A community cloud is known as an industry cloud or vertical cloud. It is optimized and specially deployed 
for use by a particular industry sector or a group of users so that it meets specific requirements to address 
issues that are crucial to them. AcademyOne’s Navigator Suite (aimed at academics and students) and Asite 
Solutions (specifically designed for construction industry) are examples of these types of clouds.

1.4.5 Hybrid Clouds

A hybrid cloud is a combination of two or more of the above cloud models. In this model, an enterprise 
makes use of both public and private clouds – deploying its less critical, low‐risk services on a public cloud 
and business‐critical core applications on its internal private cloud. A hybrid model allows for selective 



10 Encyclopedia of Cloud Computing

implementation addressing concerns about security, compliance, and loss of control, as well as enabling 
adoption of public clouds that offer cost benefits and more application options.

1.5 Benefits, Limitations, and Concerns associated with Cloud Computing

Cloud computing offers several substantial benefits to its users – individuals and enterprises. But it also has limi-
tations and poses some risks, the effects of which depend on the application type and liabilities involved. In 
embracing cloud computing, therefore, users must understand, acknowledge, and address its limitations and risks.

1.5.1 Benefits of Cloud Computing

The key benefits of embracing a cloud include reduced capital and operational cost, improved flexibility, 
on‐demand scalability, easier and quicker application deployment, ease of use, and availability of vast cloud 
resources for every kind of application or use. Many applications, including e‐mail, office document creation, 
and much data storage continue to move into the clouds to reap the benefits of this new paradigm in IT.

Cloud computing frees users and businesses from the limitations of local computing resources and allows 
them to access the vast computational resources and computation power out in the cloud. For users to make 
use of cloud resources from anywhere in the world at any time, all that is needed is an Internet connection and 
a Web browser. The cloud lets the users run even computationally intensive or storage‐intensive applications, 
as all of their computing and storage needs are sourced from the cloud.

Public clouds eliminate significant capital expenses for hardware and upfront license fees for software, 
as well as the headaches of hardware and software maintenance and upgrade by users. Cloud applications 
can be deployed instantly and simultaneously to thousands of users in different locations around the world, 
and can be regularly updated easily. Further, as clouds provide improved business continuity and data 
safety, they are particularly attractive to small‐ and medium‐size enterprises, as well as enterprises in dis-
aster‐prone areas. Startups and application developers can use computing clouds to try their ideas without 
having to invest in their own infrastructure.

Other benefits of using a cloud are:

 ● lower operational and service cost to users – they pay for what they use;
 ● on‐demand scalability to meet peak and uncertain computing demands;
 ● shared access to data / application‐supporting collaboration and teamwork;
 ● greater data safety than most businesses can provide and manage in their own on‐premises IT systems;
 ● ease of, and quicker, application deployment;
 ● freedom to use a vast array of computational resources on the cloud.

1.5.2 Limitations of Cloud Computing

There are a few limitations that users must consider before moving to the cloud. The key limitations of the 
cloud are:

 ● need for a reliable, always‐available high‐speed network access to connect to clouds;
 ● possibility of slow response at times due to increased traffic or uncertainties on the network, or higher 

load on computers in the cloud;
 ● additional vulnerabilities to security of data and processes on clouds;
 ● risk of unauthorized access to users’ data;
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 ● loss of data due to cloud failure (despite replication across multiple machines);
 ● reliability and continued availability of services offered by cloud service providers.

1.5.3 Cloud Concerns

Despite its promises, cloud computing’s mainstream adoption is constrained by perceived and real barriers 
and concerns. Security and privacy of data and applications on the cloud are two of the top concerns of users 
in moving into clouds followed by reliability and availability of cloud services, as well as adherence to 
 compliance requirements, where applicable. External clouds raise additional concerns about loss of control 
and sharing data outside the enterprise firewall.

Many people think that because they don’t know where their data is stored remotely, and because the appli-
cations are accessed over the Internet, cloud services are insecure. They believe that if data and applications 
were physically housed in computers under their control, they would protect them better. But this is not neces-
sarily the case as economies of scale allow a CSP to offer more sophisticated security, disaster recovery, and 
service reliability than an individual institution (particularly a small enterprise) can afford to deploy on its own.

Cloud computing security concerns and requirements can differ considerably among the stakeholders – end‐user 
service consumers, cloud service providers and cloud infrastructure providers – and are determined by the specific 
services they provide or consume. The Cloud Security Alliance (CSA) has identified seven top cloud security 
threats and outlined impact of those threats as well as remediation for them (Cloud Security Alliance, 2009, 2010).

They are:

1. Abuse and nefarious use of cloud computing.
2. Insecure application programming interfaces.
3. Malicious insiders.
4. Shared technology vulnerabilities.
5. Data loss/leakage.
6. Account, service & traffic hijacking.
7. Unknown risk profile.

Based on a 2013 survey, CSA has also identified nine critical threats to data security in the order of severity:

1. Data breaches.
2. Data loss.
3. Account hijacking.
4. Insecure APIs.
5. Denial of service.
6. Malicious insiders.
7. Abuse of cloud services.
8. Insufficient due diligence.
9. Shared technology issues. (Cloud Security Alliance, 2013)

Many enterprise computing applications must meet compliance requirements, which depend on the type of 
business and customer base. To better ensure the desired level of service delivery and to limit liabilities, 
 service level agreements (SLAs) with the cloud vendors are highly recommended when consuming cloud 
services. A cloud SLA specifies terms and conditions as well as expectations and obligations of the cloud 
service provider and the user.
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By careful planning and incorporating the user’s requirements into cloud service offerings, both the cloud 
vendors and users can reduce risk and reap the rewards of cloud‐based hosted services.

1.6 Migrating to Clouds

A new mindset is needed to embrace cloud computing. To use and benefit from clouds successfully, an 
enterprise must prepare itself strategically, culturally and organizationally, and take a holistic view of 
cloud  computing. It must develop its strategic plan and follow a phased, pragmatic, step‐by‐step 
approach that provides a business context for its cloud adoption. It must choose a cloud option that is 
appropriate for the application, considering and managing the risks of migrating to clouds by applying 
safeguards. Moving into clouds is not just about technology; the cloud migration should also factor in 
the role of people, processes, and services, and the change‐management process. Migration to clouds 
will also demand a new kind of IT management and governance framework.

1.6.1 Choosing your Cloud

A major decision that IT managers and enterprises have to make is the type of cloud – public clouds, private  
clouds, or variations of them – that is well suited for their application. To arrive at a better decision, they have 
to understand the differences between these deployments, and understand the risks associated with each in 
the context of the characteristics and requirements of their applications. They also have to consider:

 ● performance requirements, security requirements, and cloud service availability and continuity;
 ● amount of data transfer between the user and the clouds and/or between the clouds;
 ● sensitive nature of the applications;
 ● control of their application and data;
 ● total costs involved;
 ● whether the external cloud providers are trusted;
 ● terms and conditions imposed by the external cloud providers; and
 ● in‐house technical capabilities. (Claybrook, 2010)

1.7 Cloud Prospects and Implications

Computing clouds are powerful change‐agents and enablers. Soon the core competency for most enterprises 
would be using IT services and infrastructure that cloud computing offers as hosted services, not building 
their own IT infrastructure. Cloud computing will profoundly change the way people and enterprises use 
computers and their work practices, as well as how companies and governments deploy their computer appli-
cations. It is transforming the way we think about computing environments and will drastically improve 
access to information for all, as well as cutting IT costs. Ongoing developments – the increasing maturity of 
clouds, the introduction of new cloud computing platforms and applications, the growth in adoption of cloud 
computing services, and the emergence of open standards for cloud computing – will boost cloud comput-
ing’s appeal to both cloud providers and users.

Clouds will enable open‐source and freelance developers to deploy their applications in the clouds and 
profit from their developments. As a result, more open‐source software will be published in the cloud. Clouds 
will also help close the digital divide prevalent in emerging and underdeveloped economies and may help 
save our planet by providing a greener computing environment.



Cloud Computing: An Overview 13

Major stumbling blocks for enterprises moving their applications into the cloud in a big way are reliability, 
performance, bandwidth requirements, trust, and security issues. However, these barriers are gradually being 
lowered or removed. Government regulations and other compliance requirements lag behind market develop-
ments and demand, and these aspects need to be addressed swiftly.

Driven by economic imperatives and the promise of flexibility and convenience, cloud computing will 
gain wider acceptance. Like the Internet, cloud computing is a transformational technology. It will mature 
rapidly, as vendors and enterprises come to grip with the opportunities and challenges that it presents.

Cloud computing creates new possibilities for businesses – IT and non‐IT – and there will be new invest-
ments. Researchers will be better able to run experiments quickly on clouds, share their data globally, and 
perform complex analysis and simulations. Universities and training institutions will offer new courses and 
programs, focused on cloud computing.

Some IT professionals, particularly those who work with on‐premises IT systems, might be afraid of losing 
their jobs because of the ongoing adoption of cloud computing. The truth is that while some might lose their 
current job, they might be absorbed in other roles. So, they should be prepared to learn new skills and evolve 
in these new roles. They might need to learn how to deploy and manage applications in the cloud and mini-
mize risks, as well as how to work with cloud providers. There will be a need for professionals to develop new 
kinds of cloud applications and to design, deploy, and maintain computing clouds.

Cloud service providers, the IT industry, professional and industry associations, governments, and IT 
professionals all have a role to play in shaping, fostering, and harnessing the full potential of the cloud 
ecosystem.

1.8 Conclusions

The cloud ecosystem is evolving to provide a vast array of services that support and aid deployment of cloud‐
based solutions for a variety of applications across many different domains. Further, new types of cloud 
deployments, new models that deliver value‐added services, and new costing and business models are on the 
horizon. Besides cloud service providers and users, many new players that perform niche roles are getting 
into the cloud arena. Cloud‐based applications are being adopted widely by individuals and businesses in 
developed countries, and even more so in developing economies such as India, South Africa, and China. 
Governments in many countries are promoting adoption of clouds by businesses – particularly micro, small, 
and medium enterprises, as well as individuals. As a result, a new bigger cloud ecosystem is emerging.

References

Claybrook, B. (2010) Cloud vs. in‐house: Where to run that app? Computer World, http://www.computerworld.
com/article/2520140/networking/cloud‐vs‐‐in‐house‐‐where‐to‐run‐that‐app‐.html (accessed November 25, 
2015).

Cloud Security Alliance (2009) Security Guidance for Critical Areas of Focus in Cloud Computing V2.1, https://
cloudsecurityalliance.org/csaguide.pdf (accessed November 25, 2015).

Cloud Security Alliance (2010) Top Threats to Cloud Computing V1.0, http://cloudsecurityalliance.org/topthreats/csathreats.
v1.0.pdf (accessed November 25, 2015).

Cloud Security Alliance (2013) The Notorious Nine: Cloud Computing Top Threats in 2013, Cloud Security Alliance, 
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_
Threats_in_2013.pdf (accessed November 25, 2015).

ISO/IEC DIS 17789:2014 (2014) Information Technology – Cloud Computing – Reference Architecture, International 
Organization for Standardization, Geneva.



14 Encyclopedia of Cloud Computing

Mell, P. M., and Grance, T. (2011) The NIST Definition of Cloud Computing. Special Publication 800‐145. NIST, 
Gaithersburg, MD, http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909616 (accessed November 25, 2015).

Vaquero, L. M, Rodino‐Merino, L., Caceres, J., and Lindner, M. (2009) A break in the clouds: Towards a cloud definition. 
ACM SIGCOMM Computer Communication Review 39(1), 50–55.

Cloud Vocabulary

The following are some of the key terms commonly used in cloud computing:

Cloudburst. The term is used in a positive and a negative sense. Cloudburst (positive) refers to the 
dynamic deployment of a software application that runs on an enterprise’s in‐house computing resources 
to a public cloud to address a spike in demand. But cloudburst (negative) conveys the failure of a cloud 
computing environment due to its inability to handle a spike in demand.
Cloudstorming. This term refers to the act of connecting multiple cloud computing environments.
Cloudware. This is a general term referring to a variety of software, typically at the infrastructure 
level, which enables building, deploying, running, or managing applications in a cloud computing 
environment.
Cloud provider. A cloud provider is an organization that makes a cloud computing environment 
available to others, such as an external or public cloud.
Cloud enabler. This term refers to an organization or a vendor that is not a cloud provider per se but 
makes technology and services available, such as cloudware, which enables cloud computing.
Cloud portability. This term refers to the ability to move applications (and often their associated data) 
across cloud computing environments from different cloud providers, as well as across private or internal 
cloud and public or external clouds.
Cloud interoperability. This term refers to the ability of two or more systems or applications to 
exchange information and to use the information that has been exchanged together.
Cloud sourcing. This term refers to leveraging services in the network cloud – raw computing, stor-
age, messaging, or more structured capabilities, such as vertical and horizontal business applications, 
even community – to provide external computing capabilities, often to replace more expensive local IT 
capabilities. While it might provide significant economic benefits, there are some attendant tradeoffs, 
such as security and performance. These services are delivered over the network but generally behave 
as if they are local.
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2.1 Introduction

Cloud computing has become popular. It provides resources to consumers in the form of different services, 
such as software, infrastructure, platforms, and security. The services are made available to users on demand 
via the Internet from a cloud computing provider’s servers, as opposed to being provided from a company’s 
own on‐premises servers. Cloud services are designed to provide easy, scalable access to applications, 
resources and services, and are managed by cloud service providers. A cloud service can be dynamically 
scaled to meet the needs of its users. Examples of cloud services include online data storage and backup 
 solutions, Web‐based e‐mail services, hosted office suites and document collaboration services, database 
processing, managed technical support services, and more.

Cloud services can be broadly classified into three major types: software as a service (SaaS), platform as a 
service (PaaS), and infrastructure as a service (IaaS). Many other services, such as security as a service 
(SeaaS), knowledge as a service, and analytics as a service (AaaS) are emerging.

Many companies have come forward to adopt a cloud environment and ensure that both the users and the 
companies benefit from this. Amazon, Microsoft, Google, EMC, Salesforce, IBM, and many more companies 
provide various tools and services to give cloud support for their customers. In the subsequent sections we 
provide an overview of different tools and services offered by various cloud service providers.

2.2 Providers of Infrastructure as a Service

Infrastructure as a service (IaaS) is a provision model in which an organization offers storage, hardware, serv-
ers, and networking components to users for their use on demand. The client typically pays on a per‐use basis. 
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The service provider owns the infrastructure and is responsible for housing, running, and maintaining it. This 
subsection provides information about a few major IaaS providers such as Amazon and Rackspace.

2.2.1 Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud (EC2) is an IaaS offering by Amazon Web Services, a leading provider of 
IaaS. Powered by the huge infrastructure that the company has built to run its retail business, Amazon EC2 
provides a true virtual computing environment. By providing a variety of virtual machine or instance types, 
operating systems, and software packages to choose from, Amazon EC2 enables the user to instantiate virtual 
machines of his choice through a Web‐service interface. The user can change the capacity and characteristics 
of the virtual machine by using the Web‐service interface, so the virtual machines have therefore been termed 
“elastic.” Computing capacity is provided in the form of virtual machines or server instances by booting 
Amazon Machine Images (AMI), which can be instantiated by the user. An AMI contains all the necessary 
information needed to create an instance. The primary graphical user interface (GUI) is the AWS Management 
Console (Point and Click) and a Web‐service application program interface (API), which supports both sim-
ple object access protocol (SOAP) and query requests. The API provides programming libraries and resources 
for Java, PHP, Python, Ruby, Windows, and .Net. The infrastructure is virtualized by using Xen hypervisor 
and different instance types:

 ● standard instances – suitable for most applications;
 ● microinstances – suitable for low‐throughput applications;
 ● high‐memory instances – suitable for high‐throughput applications;
 ● high‐CPU instances – suitable for compute‐intensive applications;
 ● cluster compute instances – suitable for high‐performance computing (HPC) applications.

An instance can be obtained on demand on an hourly basis, thus eliminating the need for estimating com-
puting needs in advance. Instances can be reserved beforehand and a discounted rate is charged for such 
instances. Users can also bid on unused Amazon EC2 computing capacity and obtain instances. Such instances 
are called spot instances. Those bids that exceed the current spot price are provided with the instance, which 
allows the user to reduce costs. The spot price varies and is decided by the company.

Instances can be placed in multiple locations. These locations are defined by regions and availability zones. 
Availability zones are distinct locations that are engineered to be insulated from failures and provide inexpen-
sive, low‐latency network connectivity. Thus, by placing the instances in multiple availability zones, one can 
achieve fault tolerance and fail‐over reliability. The Amazon EC2 instances can be monitored and controlled 
by the AWS Management Console and the Web‐service API. However, AWS provides Amazon Cloud Watch, 
a Web service that provides monitoring for AWS cloud resources, starting with Amazon EC2. It enables 
 customers to observe resource utilization, operational performance, and overall demand patterns – including 
metrics such as CPU utilization, disk reads and writes, and network traffic.

Elastic load balancing (ELB) enables the user to distribute and balance the incoming application’s 
traffic automatically among the running instances based on metrics such as request count and request 
latency. Fault tolerance and automatic scaling can be performed by configuring the ELB as per spe-
cific needs. ELB monitors the health of the instances running and routes traffic away from a failing 
instance.

An instance is stored as long as it is operational and is removed on termination. Persistent storage can be 
enabled by using either elastic block storage (EBS) or Amazon Simple Storage Service (S3). EBS provides a 
highly reliable and secure storage while Amazon S3 provides a highly durable storage infrastructure designed 
for mission‐critical and primary data storage. Storage is based on units called objects, whose size can vary 
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from 1 byte to 5 gigabytes of data. These objects are stored in a bucket and retrieved via a unique, developer‐
assigned key. Storage is accessible through a Web‐service interface and provides authentication procedures 
to protect against unauthorized access.

2.2.2 Rackspace Cloud

Rackspace Cloud offers IaaS to clients. It offers three cloud computing solutions – cloud servers, cloud files, 
and cloud sites. Cloud servers provide computational power on demand in minutes. Cloud files are for elastic 
online file storage and content delivery; and cloud sites are for robust and scalable Web hosting.

Cloud servers is an implementation of IaaS where computing capacity is provided as virtual machines, 
which run in the cloud servers’ systems. The virtual machine instances are configured with different amounts 
of capacity. The instances come in different flavors and images. A flavor is an available hardware configura-
tion for a server. Each flavor has a unique combination of disk space, memory capacity, and priority for CPU 
time. Virtual machines are instantiated using images. An image is a collection of files used to create or 
rebuild a server. A variety of prebuilt operating system images is provided by Rackspace Cloud – 64‐bit 
Linux Distributions (Ubuntu, Debian, Gentoo, CentOS, Fedora, Arch and Red Hat Enterprise Linux) or 
Windows Images (Windows Server 2003 and Windows Server 2008). These images can be customized to the 
user’s choice.

The cloud servers’ systems are virtualized using the Xen Hypervisor for Linux and Xen Server for 
Windows. The virtual machines generated come in different sizes, measured based on the amount of physical 
memory reserved. Currently, the physical memory can vary from 256 Mb to 15.5 GB. In the event of availa-
bility of extra CPU power, Rackspace Cloud claims to provide extra processing power to the running work-
loads, free of cost.

Cloud servers can be run through the Rackspace Cloud Control Panel (GUI) or programmatically via the 
Cloud Server API using a RESTful interface. The control panel provides billing and reporting functions and 
provides access to support materials including developer resources, a knowledge base, forums, and live chat. 
The cloud servers’ API was open sourced under the Creative Commons Attribution 3.0 license. Language 
bindings via high‐level languages like C++, Java, Python, or Ruby that adhere to the Rackspace specification 
will be considered as Rackspace approved bindings.

Cloud servers scale automatically to balance load. This process is automated and initiated from either the 
Rackspace Cloud Control Panel or the Cloud Server API. The amount to scale is specified, the cloud server 
is momentarily taken offline, the RAM, disk space and CPU allotment are adjusted, and the server is restarted. 
A cloud server can be made to act as a load balancer using simple, readily available packages from any of the 
distribution repositories. Rackspace Cloud is working on beta version of Cloud Load Balancing product, 
which provides a complete load‐balancing solution.

Cloud servers are provided with persistent storage through RAID10 disk storage, thus data persistency is 
enabled, leading to better functioning.

2.3 Providers of Platform as a Service

Platform as a service (PaaS) is a category of cloud computing services that provides a computing platform for 
development of applications. Its offerings facilitate the deployment of applications without the cost and com-
plexity of buying and managing the underlying hardware and software and provisioning hosting capabilities. 
It may also include facilities for application design, development, testing, and deployment. It also offers 
services such as Web‐service integration, security, database integration, storage, and so forth. This section 
gives an overview of the few companies that offer PaaS.
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2.3.1 Google Cloud Platform

Google Cloud Platform enables developers to build, test and deploy applications on Google’s highly scalable 
and reliable infrastructure. Google has one of the largest and most advanced networks across the globe and 
offers software infrastructure such as MapReduce, BigTable, and Dremel.

Google Cloud Platform includes virtual machines, block storage, NoSQL datastore, big data Analytics, and so 
forth. It provides a range of storage services that allows easy maintenance and quick access to users’ data. Cloud 
Platform offers a fully managed platform as well as flexible virtual machines allowing users to choose according 
to their requirements. Google also provides easy integration of the user’s application within Cloud Platform.

Applications hosted on Cloud Platform can automatically scale up to handle the most demanding work-
loads and scale down when traffic subsides. Cloud Platform is designed to scale like Google’s own products, 
even when there is a huge traffic spike. Managed services such as App Engine or Cloud Datastore provide 
autoscaling, which enables the application to grow with the users. The user has to pay only for what he uses.

2.3.2 Google App Engine

Google App Engine lets the user run Web applications on Google’s infrastructure. App Engine applications 
are easy to build, easy to maintain, and easy to scale as traffic and data storage needs grow. There are no serv-
ers to maintain App Engine.

App can be served from the user’s own domain name (such as http://www.example.com/) using Google 
Apps. Otherwise it can be served using a free name on the appspot.com domain. An application can be shared 
with the world, or it can limit access to members of organization.

Google App Engine supports apps written in several programming languages. Apps can be built using 
standard Java technologies, including the JVM, Java servlets, and the Java programming language – or any 
other language using a JVM‐based interpreter or compiler, such as JavaScript or Ruby. App Engine also fea-
tures a Python runtime environment, which includes a fast Python interpreter and the Python standard library. 
It features a PHP runtime, with native support for Google Cloud SQL and Google Cloud Storage, which 
works just like using a local mySQL instance and doing local file writes. Finally, App Engine provides a Go 
runtime environment, which runs natively compiled Go code. This runtime environment is built to ensure that 
the application runs quickly, securely, and without interference from other apps on the system.

App Engine costs nothing to start. All applications can use up to 1 GB of storage and enough CPU and 
bandwidth to support an efficient app serving around 5 million page views a month, absolutely free. When 
billing is enabled for the application, free limits are raised, and one has to only pay for resources one uses 
above the free levels.

2.3.3 SAP HANA Cloud Platform

The SAP HANA Cloud Platform is an open‐standard, Eclipse‐based, modular platform as a service. SAP HANA 
Cloud Platform applications are deployed via command‐line tools to the cloud as Web application archive 
(WAR) files or Open Services Gateway initiative (OSGi) bundles. These bundles are normal jar  components 
with extra manifest headers. The applications run within the Java‐based SAP HANA Cloud Platform runtime 
environment powered by SAP HANA, and can be maintained using Web‐based management tools.

The main features of the SAP HANA Cloud Platform are as follows:

 ● an enterprise platform built for developers;
 ● native integration with SAP and non‐SAP software;
 ● in‐memory persistence;
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 ● a secure data platform;
 ● a lightweight, modular runtime container for applications.

The SAP HANA Cloud Platform lets the users quickly build and deploy business and consumer applications 
that deliver critical new functionality to meet emerging business needs. It also helps connecting users with cus-
tomers in more engaging experiences. It provides connectivity based on the cloud connectivity  service. As a 
result, the platform streamlines the integration of new applications at the lowest possible total cost of ownership. 
Support for open programming standards provides a low barrier to entry for developers. This makes them pro-
ductive from the start in building enterprise applications that can integrate with any SAP or non‐SAP solution.

2.3.4 Captiva Cloud Toolkit

A tool called Captiva Cloud Toolkit to assist software development is offered by EMC. The EMC Captiva 
Cloud Toolkit is a software developer kit (SDK) comprised of modules that help Web application 
 developers  to add scanning and imaging functionality quickly and directly to their Web‐based business 
applications. It  is ideal for document‐capture vendors, commercial software developers, and enterprises 
that want to  create custom Web‐based applications that are fully scan enabled, complementing their 
 business solution offerings.

Using the Captiva Cloud Toolkit, developers can quickly create a working scan‐enabled Web‐based busi-
ness application. As a result, time to market is shortened and development, testing, and support costs are 
greatly reduced. The enterprise’s return on investment is also achieved quickly and its ability to compete in 
an increasingly competitive distributed document capture market is accelerated.

There are a few modules that are commonly used in most of the process development. These are basic modules 
that import images from various sources like Fax, e‐mail, scanners or from any repository. Major modules are:

 ● Scan. Basically scanning happens at page level to bring images page by page into Captiva. Scanning is the 
entry point to Captiva where one can import any kind of document like pdf, tiff, or jpg.

 ● MDW. Multi Directory Watch is another entry point to Captiva. It can be pointed to any folder/repository 
from where Captiva could import documents directly. It is very useful if business is receiving documents 
in the form of softcopy – for example as attached files sent by e‐mail. It also acts as a scan module.

 ● IE. Image enhancement is a kind of filter or repairing tool for images that are not clear. It enhances image 
quality so it can be processed easily. One can configure IE in accordance with business requirements and 
images being received. The main functions of IE include deskewing and noise removal.

 ● Index. Indexing is data‐capturing activity in Captiva. One can capture key data from various fields. For 
example, if a bank form is being processed, the account number and sort code could be the indexing field. 
Indexing could be added as required by the business. A validation field could be added to avoid unwanted 
data entry while indexing any document.

 ● Export. Export is the exit point of Captiva where images / data are sent to various repositories like File, 
Net, Document or a data repository. The exported data is used for business requirement of various busi-
ness divisions. For example, if we are capturing an account number and sort code for bank applications, 
this could be mapped to any department where it is needed.

 ● Multi. Multi is the last process in Captiva. It deletes batches that have gone through all the modules and 
have been exported successfully. Multi could be configured according to the needs of the business. In 
cases when it is required to take a backup of batches, this module could be avoided.

These modules are the very basic modules of Captiva for indexing and exporting. But for more flexibility 
and automation, Dispatcher is used, which is more accurate in capturing the data.
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2.4 Providers of Software as a Service

Software as a service (SaaS) is a software distribution model in which applications are hosted by a vendor or 
service provider and made available to customers over a network. SaaS is becoming an increasingly common 
delivery model as underlying technologies that support Web services and service‐oriented architecture (SOA) 
mature and new developmental approaches, such as Ajax, become popular. This section briefly outlines a few 
companies offering SaaS.

2.4.1 Google Cloud Connect

Google Cloud Connect is a feature provided by Google Cloud by integrating cloud and API for Microsoft 
Office. After installing a plug‐in for the Microsoft Office suite of programs, one can save files to the cloud. 
The cloud copy of the file becomes the master document that everyone uses. Google Cloud Connect assigns 
each file a unique URL, which can be shared to let others view the document.

If changes are made to the document, those changes will show up for everyone else viewing it. When 
 multiple people make changes to the same section of a document, Cloud Connect gives the user a chance to 
choose which set of changes to keep.

When the user uploads a document to Google Cloud Connect, the service inserts some metadata (informa-
tion about other information) into the file. In this case, the metadata identifies the file so that changes will 
track across all copies. The back end is similar to the Google File System and relies on the Google Docs 
infrastructure. As the documents sync to the master file, Google Cloud Connect sends the updated data out to 
all downloaded copies of the document using the metadata to guide updates to the right files.

2.4.2 Google Cloud Print

Google Cloud Print is a service that extends the printer’s function to any device that can connect to the 
Internet. To use Google Cloud Print, the user needs to have a free Google profile, an app program or web site 
that incorporates the Google Cloud Print feature, a cloud‐ready printer, or printer connected to a computer 
logged onto the Internet.

When Google Cloud Print is used through an app or Web site, the print request goes through the Google 
servers. Google routes the request to the appropriate printer associated with the user’s Google account. 
Assuming the respective printer is on and has an active Internet connection, paper and ink, the print job 
should execute on the machine. The printer can be shared with other people for receiving documents through 
Google Cloud Print.

Google Cloud Print is an extension built into the Google Chrome Browser but it should be enabled explic-
itly. Once enabled, the service activates a small piece of code called a connector. The connector’s job is to 
interface between the printer and the outside world. The connector uses the user’s computer’s printer software 
to send commands to the printer.

If one has a cloud‐ready printer, one can connect the printer to the Internet directly without the need for a 
dedicated computer. The cloud printer has to be registered with Google Cloud Print to take advantage of its 
capabilities.

2.4.3 Microsoft SharePoint

Microsoft offers its own online collaboration tool called SharePoint. Microsoft SharePoint is a Web applica-
tion platform that comprises a multipurpose set of Web technologies backed by a common technical infra-
structure. By default, SharePoint has a Microsoft Office‐like interface, and it is closely integrated with the 



Cloud Services and Service Providers 23

Office suite. The Web tools are designed to be usable by nontechnical users. SharePoint can be used to pro-
vide intranet portals, document and file management, collaboration, social networks, extranets, web sites, 
enterprise search, and business intelligence. It also has system integration, process integration, and workflow 
automation capabilities. Unlike Google Cloud Connect, Microsoft SharePoint is not a free tool but it has 
additional features that cannot be matched by Google or any other company.

2.4.4 Sales Cloud

Salesforce.com is a cloud computing and social enterprise SaaS provider. Of its cloud platforms and applica-
tions, the company is best known for its Salesforce customer relationship management (CRM) product, 
which is composed of Sales Cloud, Service Cloud, Marketing Cloud, Force.com, Chatter and Work.com.

Sales Cloud refers to the “sales” module in salesforce.com. It includes Leads, Accounts, Contacts, 
Contracts, Opportunities, Products, Pricebooks, Quotes, and Campaigns. It includes features such as Web‐to‐
lead to support online lead capture, with auto‐response rules. It is designed to be a start‐to‐end setup for the 
entire sales process. Sales Cloud manages contact information and integrates social media and real‐time 
customer collaboration through Chatter. The Sales Cloud gives a platform to connect with customers from 
complete, up‐to‐date account information to social insights, all in one place and available anytime, anywhere. 
Everything occurs automatically in real time, from contact information to deal updates and discount  approvals.

Salesforce.com created the Sales Cloud to be as easy to use as a consumer web site like Amazon and built 
it in the cloud to eliminate the risk and expense associated with traditional software. With its open architec-
ture and automatic updates, the Sales Cloud does away with the hidden costs and drawn‐out implementation 
of traditional CRM software. By continuing to innovate and embrace technologies like mobile, collaboration, 
and social intelligence, the Sales Cloud has continued to pull ahead of the competition.

2.5 Providers of Data Storage as a Service

Data Storage as a service (DSaaS) is another important service in the field of cloud computing. One need not 
buy large‐sized hard drives. Instead, one can use this service and pay rent to the company, which provides this 
service. This section gives a brief overview of a few major storage providers.

2.5.1 Amazon Storage as a Service

Amazon Storage as a Service known as Amazon S3 is storage for the Internet. It is designed to make Web‐
scale computing easier for developers. Amazon S3 provides a simple Web‐services interface that can be used 
to store and retrieve any amount of data, at any time, from anywhere on the Web. It gives any developer access 
to the same highly scalable, reliable, secure, fast, inexpensive infrastructure that Amazon uses to run its own 
global network of web sites. The service aims to maximize benefits of scale and to pass those benefits on to 
developers.

Amazon S3 was built to meet users’ requirements and expectations. Along with its simplicity, it also takes 
care of other features like security, scalability, reliability, performance, and cost. Thus, Amazon S3 is a highly 
scalable, reliable, inexpensive, fast, and also easy to use service, which meets design requirements.

Amazon S3 provides a highly durable and available store for a variety of content, ranging from Web appli-
cations to media files. It allows users to offload storage where they can take advantage of scalability and 
pay‐as–you‐go pricing. For sharing content that is either easily reproduced or where one needs to store an 
original copy elsewhere, Amazon S3’s Reduced Redundancy Storage (RRS) feature provides a compelling 
solution. It also provides a better solution with Storage for Data Analytics. Amazon S3 is an ideal solution for 
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storing pharmaceutical data for analysis, financial data for computation, and images for resizing. Later this 
content can be sent to Amazon EC2 for computation, resizing, or other large‐scale analytics without incurring 
any data transfer charges for moving the data between the services.

Amazon S3 offers a scalable, secure, and highly durable solution for backing up and archiving critical data. 
For data of significant size, the AWS Import / Export feature can be used to move large amounts of data into 
and out of AWS with physical storage devices. This is ideal for moving large quantities of data for periodic 
backups, or quickly retrieving data for disaster recovery scenarios. Another feature offered by Amazon S3 is 
its Static Website Hosting. Amazon S3’s web site hosting solution is ideal for web sites with static content, 
including html files, images, videos, and client‐side scripts such as JavaScript.

2.5.2 Google Cloud Storage

Google Cloud Storage is an Internet service to store data in Google’s cloud. It enables application develop-
ers to store their data on Google’s infrastructure with very high reliability, performance, and availability. 
The service combines the performance and scalability of Google’s cloud with advanced security and 
 sharing capabilities. It is safe and secure. Data is protected through redundant storage at multiple physical 
locations. It is different from Google Drive as Google Drive is for users whereas Google Cloud Storage is 
for developers.

Cloud Storage provides many features like high capacity and scalability, consistency in data storage, and 
RESTful programming interface. It uses authentication and authorization to interact with APIs.

Tools for Google Cloud Storage are:
 ● Google Developers Console. This is a Web application where one can perform simple storage manage-

ment tasks on the Google Cloud Storage system.
Gsutil is a Python application that lets the user to access Google Cloud Storage from the command line.

2.6 Other Services

Some companies offer various services under a single name. In this subsection, we discuss a few such 
 providers. We also include other services like Knowledge as a Service (KaaS) by Salesforce.com and Queuing 
by Amazon Simple Queue Service (SQS).

2.6.1 IBM SmartCloud

Various cloud services are also offered to consumers by IBM. IBM cloud computing consists of cloud 
 computing solutions for enterprises as offered by the global information technology company, IBM. All 
offerings are designed for business use and marketed under the name IBM SmartCloud. IBM cloud includes 
IaaS, SaaS, and PaaS offered through different deployment models.

IBM SmartCloud is a branded ecosystem of cloud computing products and solutions from IBM. It includes 
IaaS, PaaS, and SaaS offered through public, private, and hybrid cloud delivery models. IBM places these 
offerings under three umbrellas: SmartCloud Foundation, SmartCloud Services, and SmartCloud Solutions. 
Figure 2.1 illustrates the architecture of IBM SmartCloud.

SmartCloud Foundation consists of the infrastructure, hardware, provisioning, management, integration, 
and security that serve as the underpinnings of a private or hybrid cloud. Built using those foundational 
 components, PaaS, IaaS, and backup services make up SmartCloud Services. Running on this cloud platform 
and infrastructure, SmartCloud Solutions consist of a number of collaboration, analytics and marketing SaaS 
applications.
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Along with IaaS, PaaS, and SaaS, IBM also offer business process as a service (BPaaS). Infrastructure 
cloud services provide consumers with processing, storage, networks, and other fundamental computing 
resources where the consumer is able to deploy and run arbitrary software, which can include operating 
 systems and applications. In Platform cloud services consumers can deploy consumer‐created or acquired 
applications onto the cloud infrastructure created using programming languages and tools supported by the 
provider. Application cloud services allow consumers to use the provider’s applications, running on a 
cloud infrastructure. The applications are accessible from various client devices through a thin client inter-
face such as a Web browser (e.g., Web‐based e‐mail). Business process cloud services are any business 
process (horizontal or vertical) delivered through the cloud service model (multitenant, self‐service provi-
sioning, elastic scaling, and usage metering or pricing) via the Internet with access via Web‐centric inter-
faces and exploiting Web‐oriented cloud architecture. The BPaaS provider is responsible for the related 
business functions.

2.6.2 EMC IT

EMC is one of the leading global enterprises that require dynamic scalability and infrastructure agility in 
order to meet changing applications as well as business needs. In order to reduce the complexity and optimize 
the infrastructure, EMC chose cloud computing as the ideal solution to address the challenges. Offering IT as 
a service (ITaaS) reduces energy consumption through resource sharing.

By virtualizing the infrastructure, allocation of the resources on demand is possible. This also helps to 
increase efficiency and resource utilization. EMC IT provides its business process units with IaaS, PaaS, and 
SaaS services. Figure 2.2 gives an overview of the services offered by EMC, which are explained below.

IaaS offers EMC business units the ability to provision infrastructure components such as network, stor-
age, compute, and operating systems, individually or as integrated services.

Platform as a service provides secure application and information frameworks on top of application  servers, 
Web servers, databases, unstructured content management, and security components as a service to business 
units. EMC IT offers database platforms and application platforms for the purpose of development.

SaaS provides applications and tools in a services model for businesses. EMC IT offers widely used appli-
cations to business units like BI, CRM, ERP, and master data management. EMC IT brought together several 
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existing business solutions under unified architecture called Business Intelligence as a Service. It also offers 
ERP and CRM as a service.

User interface as a service (UIaaS) provides an interface rather than the actual device used.

2.6.3 Microsoft Windows Azure

Cloud computing is providing a new way to imagine IT at Microsoft, called Microsoft IT (MIST). Cloud 
computing is now the preferred and default environment for new and migrated applications at Microsoft. 
Windows Azure is a cloud‐computing platform and infrastructure created by Microsoft. It provides both PaaS 
and IaaS services.

Windows Azure Cloud Services (Web and Worker Roles/PaaS) allows developers to deploy and manage 
application services easily. It delegates the management of underlying role instances and operating system to 
the Windows Azure platform.

The migration assessment tool (MAT) for Windows Azure encapsulates all the information to be aware of 
before attempting the application migration to Windows Azure. Based on responses to a series of simple 
binary questions, the tool generates a report that outlines the amount of development effort involved to 
migrate the application, or the architecture considerations for a new application.

The Windows Azure pricing calculator analyzes an application’s potential public cloud requirements 
against the cost of the application’s existing infrastructure. This tool can help to compare current 
operational costs for an application, against what the operating costs would be on Windows Azure and 
SQL Azure.

Azure Virtual Machines provide IaaS to the clients who request virtual machines (VMs). It provides the 
ability to create VMs on demand from a standard image or the one given by customer. One has to pay for the 
VM only when it is running. To create a VM, one has to specify a virtual hard drive (VHD) and the size of 
the VM. Azure Virtual Machines offer a gallery of stock VHDs. These include Microsoft‐provided options, 
such as Windows Server 2008 R2, Windows Server 2012, and Windows Server 2008 R2 with SQL Server, 
along with Linux images provided by Microsoft partners. One can also create VM from one’s own VHD and 
add it to the gallery.
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2.6.4 Salesforce Service Cloud: Knowledge as a Service

Salesforce.com provides another service known as knowledge as a service (KaaS) in the form of Service Cloud. 
It includes Accounts, Contacts, Cases, and Solutions. It also encompasses features such as the Public Knowledge 
Base, Web‐to‐case, Call Center, and the Self‐Service Portal, as well as customer service automation. Service Cloud 
includes a call‐center‐like case‐tracking feature and a social networking plug‐in for conversation and analytics.

Service Cloud delivers the world’s first enterprise‐grade knowledge base to run entirely on an advanced, 
multitenant cloud platform. That means that one can obtain all cloud‐computing benefits that salesforce.com 
is known for delivering without expensive datacenters or software. Powerful knowledge management is pro-
vided, without the hassle of on‐premises software. Unlike stand‐alone applications, this knowledge base is 
fully integrated with everything else. Service Cloud offers all the tools one needs to run the entire service 
operation. When the consumer’s knowledge base is a core part of the CRM solution, knowledge as a process 
can be managed. One can continually create, review, deliver, analyze, and improve the knowledge, and because 
it is delivered by the Service Cloud, the user’s knowledge is available wherever other customers need it. Agents 
have the right answers at their fingertips to communicate over the phone, send out in an e‐mail, or share via a 
chat client. The same knowledge base serves up answers to the service Web site as a part of company’s public 
site. If one wants to take advantage of social channels like Twitter or Facebook, one can easily share knowl-
edge that is tapped into the wisdom of the crowd to capture new ideas or answers. All this is done securely.

2.6.5 Amazon Simple Queue Service (SQS)

Amazon Web Services offers a queuing service called Amazon Simple Queue Service (SQS). It is a fast, reli-
able, scalable, fully managed message queuing service. SQS makes it simple and cost‐effective to decouple 
the components of a cloud application. It can be used to transmit any volume of data, at any level of through-
put, without losing messages or requiring other services to be always available.

SQS is a distributed queue system that enables Web service applications to queue messages quickly and 
reliably that one component in the application generates to be consumed by another component. A queue is 
a temporary repository for messages that are waiting to be processed.

SQS offers various features like allowing multiple readers and writers at the same time, providing access 
control facilities, and guaranteeing high availability of sending and retrieving messages due to redundant infra-
structure. It also provides for variable length messages as well as configurable settings for each queue.

2.7 Nonmajor providers

Some of the nonmajor providers include Dell, VMware, Manjrasoft, and Akamai. Dell provides IaaS and also 
supports datacenter virtualization and client virtualization. VMware supports cloud through vCloud, vCloud 
Hybrid Services. Manjrasoft provides Aneka Platform to work in a .NET framework. Aneka provides a set of 
services for cloud construction and development of applications. Akamai provides cloud services as well as 
cloud security. Akamai’s Global Traffic Manager ensures global load balancing.

2.8 Conclusion

In this chapter, we have discussed various companies that support cloud computing by providing tools and 
technologies to adapt to cloud environment. Each section briefly described a particular service like IaaS, 
PaaS, SaaS, etc. Each subsection gave an overview of a particular company tools which offer the services. 
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Table 2.1 gives some details of the service model, deployment model, and server operating systems of a few 
cloud service providers.

An attempt has been made to list the tools / services offered by each company in Table  2.2. A brief 
 explanation for major providers has been given in the previous sections. Although there are a larger number 
of companies that offer cloud services, we have chosen to present those that have progressed the most.
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Table 2.1 Details of cloud service providers

Provider name Service model Deployment model Server operating system

Amazon Web Services IaaS Public Widows, Linux
Google App Engine PaaS Public Windows
Windows Azure IaaS Public Widows, Linux
IBM Cloud IaaS Private, Hybrid Widows, Linux
Salesforce Platform PaaS Public Widows, Linux
Rackspace IaaS Public, Private, Hybrid Widows, Linux
SAP HANA Cloud PaaS Public Linux

Table 2.2 List of tools / services offered by companies

Company name Tools / services

EMC Captiva Cloud toolkit, EMC IT
Google Google App Engine, Google docs, Google Cloud Print, Google Cloud Connect
Amazon Amazon EC2, Amazon S3, Amazon SQS
Microsoft Windows Azure
IBM IBM Smart Cloud
Salesforce Sales Cloud, Service Cloud
SAP LABS SAP HANA Cloud
Rackspace Rackspace Cloud
VMware vCloud
Manjrasoft Aneka Platform
Redhat OpenShift Origin, OpenShift Enterprise
Gigaspaces Cloudify



Encyclopedia of Cloud Computing, First Edition. Edited by San Murugesan and Irena Bojanova. 
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

3.1 Introduction

Mobile devices, especially smartphones, are creating dependency. People do not leave home without them. 
However, smartphones’ small size, lightness, and mobility impose severe limitations on their processing 
capabilities, battery life, storage capacity, and screen size and capability, impeding execution of resource‐
intensive computation and bulky data storage on smartphones (Abolfazli et al., 2013). Resource‐intensive 
mobile applications are mobile applications whose execution requires a large central processing unit (CPU) 
capable of dealing with many transactions per second, a lot of random access memory (RAM) to load the 
code and data, extensive disk storage to store contents, and long‐lasting batteries, which are not available in 
today’s mobile devices. Enterprise systems, three‐dimensional games, and speech recognition software are 
examples of such resource‐intensive applications.

To address the shortcomings of mobile devices, researchers have proposed frameworks to perform 
resource‐intensive computations outside mobile devices, inside cloud‐based resources. This has led to mobile 
cloud computing (MCC) (Sanaei et al., 2013a). Mobile cloud computing infrastructures include a multitude 
of mobile devices, cloud‐based resources (individual / corporate computing devices that inherit cloud 
 computing technologies and principles), and networking infrastructures that are managed via software 
 systems known as cloud‐based mobile augmentation (CMA) (Abolfazli et al., 2014a). The augmented mobile 
device can execute intensive computations that would not be done otherwise. Thus, the mobile application 
programmers do not consider the deficiencies of mobile devices while programming applications and users 
will not experience device limitations when employing intensive applications.

Cloud‐based mobile augmentation can overcome the resource deficiencies of mobile devices and execute 
“three main categories of applications, namely (i) computing‐intensive software such as speech recognition 
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and natural language processing, (ii) data‐intensive programs such as enterprise applications, and (iii) com-
munication‐intensive applications such as online video streaming applications” (Abolfazli et al., 2014a). To 
fulfill the diverse computational and quality of service (QoS) requirements of numerous different mobile 
applications and end users, several CMA solutions (reviewed in Abolfazli et al., 2012a, 2014a) have been 
undertaken that suggest four major architectures for MCC. The major differences in these MCC architectures 
derive from various cloud‐based resources with different features, namely multiplicity, elasticity (defined 
later in this chapter), mobility, and proximity to the mobile users. Multiplicity refers to the abundance and 
volume of cloud‐based resources and mobility is unrestricted movement of the computing device while its 
wireless communication is maintained, uninterrupted. Resources employed can be classified into four types: 
distant immobile clouds (DIC), proximate immobile clouds (PIC), proximate mobile clouds (PMC), and 
hybrid (H). Consequently, efforts can be classified under four architectures, namely MDICC, MPICC, 
MPMCC, and HMCC (the prefix “M” represents mobile devices and the suffix “C” indicates computing 
action).

Deploying various cloud‐based resources in CMA solutions is not straightforward and the diversity of 
existing resources complicates system management and maintenance. Several ongoing challenges, such as 
high augmentation overheads, application dependency on the underlying platform (known as portability), 
lack of interoperation among various mobile devices and cloud‐based resources, absence of standardization, 
and mobility management, require future work before MCC solutions can be successfully adopted.

The remainder of this chapter is as follows. Section 3.2 presents an overview of MCC including its motiva-
tion, definition, and major building blocks. Section 3.3 briefly reviews four fundamental architectures for 
MCC. Section 3.4 provides a brief discussion on open challenges and section 3.5 concludes the chapter.

3.2 Mobile Cloud Computing

In this section, we present the motivation for augmenting mobile devices and define mobile cloud computing 
(MCC). We also devise a taxonomy of MCC building blocks, and explain them. Major differences between 
cloud computing and MCC are also explained.

3.2.1 Motivation

The motivation for MCC lies in the intrinsic deficiencies of mobile devices and the ever‐increasing comput-
ing requirements of mobile users (Abolfazli et al., 2013, 2014a). The miniature nature and mobility require-
ment of mobile devices impose significant constraints on their CPU, RAM, storage, and batteries. Mobile 
device manufacturers are endeavoring to enhance the computing capabilities of mobile devices by employing 
energy‐efficient multicore processors, large fast RAM, massive low‐overhead storages, and high charge 
 density (long‐life) batteries. However, technological limits, financial and time deployment costs, weight and 
size, and user safety regulations hinder mobile device empowerment.

Alternatively, researchers have used the concept of cloud computing to address the limitations of mobile 
devices and fulfill users’ demands, which has led to the state‐of‐the‐art MCC (Abolfazli et al., 2014a). Mobile 
cloud computing researchers envision enhancing the computational capabilities of contemporary mobile devices 
to enable users to perform unrestricted computing, anywhere, anytime, from any device.

3.2.2 Definition

Mobile cloud computing (MCC) “is a rich mobile computing technology that leverages unified elastic 
resources of varied clouds and network technologies toward unrestricted functionality, storage, and mobility 
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to serve a multitude of mobile devices anywhere, anytime through the channel of Ethernet or Internet regard-
less of heterogeneous environments and platforms based on the pay‐as‐you‐use principle” (Sanaei et al., 
2013a).

Computing resource richness in MCC is realized by exploiting the computational power of computing 
entities, including giant clouds, desktop computers in public places, and resource‐rich mobile devices that 
inherit cloud computing technologies and principles, which are named cloud‐based resources. Resource 
 elasticity enables automatic on‐demand provisioning and deprovisioning of computing resources. 
Elasticity allows service consumers to use an amount of computing resources that matches their require-
ments. The resources can be acquired instantaneously when necessary and can be released when not in 
use with  minimum effort. Hence, mobile users pay (depending on the service delivery model) only for the 
resources consumed.

Moreover, accessing varied cloud‐based resources in MCC does not require communication through the 
Internet, whereas in stationary computing, cloud services are mainly delivered via this risky channel. In 
MCC, services can more effectively be delivered using a local network via WLAN, regardless of networking 
technologies and standards.

It is noteworthy that MCC involves execution of only those applications that require extensive compu-
tational resources beyond native mobile devices. If a user starts an application on a mobile device and 
connects to the cloud to monitor resource utilization or VM status inside the cloud, it is not MCC. 
Similarly, when a mobile user uses an application such as Facebook that is hosted on a cloud server, there 
is no MCC.

3.2.3 Building Blocks

In this section, the main building blocks of MCC are studied from two aspects: hardware and software. In 
every MCC system, hardware building blocks provide a rich mobile computation platform that can be 
employed by varied software programs. Our taxonomy is illustrated in Figure 3.1 and explained as follows.
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Network infrastructures
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Cloud-based augmentation
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Multitier programming

Live cloud streaming

Remote data managing
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Figure 3.1 Taxonomy of mobile cloud computing building blocks
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3.2.3.1 Hardware

Hardware infrastructures, including heterogeneous resource‐constraint mobile devices, cloud‐based 
resources, and networking infrastructures are tangible building blocks of MCC. Heterogeneity in MCC is 
inherited from mobile and cloud computing technologies and is intensified by the existence of a multitude of 
dissimilar devices, infrastructures, technologies, and features (Sanaei et al., 2012a).

 ● Mobile devices: MCC is complicated by a multitude of heterogeneous battery‐operated wireless‐
connected mobile devices (e.g., smartphones, tablets, and wearable computers) that feature varied limited 
computing capabilities.

 ● Cloud‐based resources: computing entities that are built based on cloud computing technologies and 
principles (e.g., elasticity and pay‐as‐you‐use) are called cloud‐based resources. Four types of cloud‐
based resources are identified in Abolfazli et al. (2014a) as distant immobile clouds (DIC), proximate 
immobile clouds (PIC), proximate mobile clouds (PMC), and hybrid (H). These are discussed in 
 section 3.3.

 ● Networking infrastructures: efficient, reliable, and high‐performance networking in MCC necessitates the 
deployment of both wired and wireless networking technologies and infrastructures. Although mobile 
devices perform only wireless communications, immobile cloud‐based resources require wired commu-
nication to transmit digital contents to different computing devices in a reliable and high‐speed medium.

3.2.3.2 Software

The software building block of MCC comprises augmentation protocols and solutions to efficiently leverage 
cloud‐based resources to mitigate the shortcomings of mobile devices.

Cloud‐based mobile augmentation (CMA) “is the‐state‐of‐the‐art mobile augmentation model that lever-
ages cloud computing technologies and principles to increase, enhance, and optimize computing capabilities 
of mobile devices by executing resource‐intensive mobile application components in the resource‐rich cloud‐
based resources” (Abolfazli et al., 2014a). Major CMA approaches consist of computation offloading, live 
cloud streaming, multitier programming, and remote‐data managing.

 ● Computation offloading is the process of identifying, partitioning, and migrating resource‐intensive 
 components of mobile applications to cloud‐based resources. Identifying intensive components and 
 partitioning can take place in three different ways: static, dynamic, and hybrid. Static partitioning is a 
one‐time process of identifying and partitioning the resource‐intensive components of a mobile applica-
tion at design and development time. The benefit of static partitioning is that it does not impose runtime 
overheads on a mobile device and once the application is partitioned the same partitions can be used for 
an infinite number of executions. However, static partitioning is not adaptable to environment changes. 
On the other hand, in dynamic partitioning the identification and partitioning take place at runtime to 
 better meet changes in the MCC environment. The challenge in dynamic partitioning is the excessive 
overhead of identifying intensive tasks, monitoring the environment, partitioning the application, and 
offloading the components. The third approach is to use a hybrid model where part of the application is 
partitioned at design time and part during runtime to mitigate the partitioning overhead and adapt to the 
environmental changes. Despite significant efforts in offloading (efforts are reviewed in our previous 
work (Abolfazli et al., 2013, 2014a), offloading performance is degraded due to the overhead of partition-
ing and content offloading (Shiraz et al., 2012).

 ● Multitier programming is used (Sanaei et al., 2012b) to alleviate the overheads of code partitioning and 
offloading by building loosely coupled applications that perform resource‐intensive computations 
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(often Web services) in the remote resources and minimize mobile‐side computations. Resource‐inten-
sive computations are always available in the remote servers to be called for execution. Thus, the 
overhead of identifying, partitioning, and migrating tasks from mobile device to remote resources is 
omitted. Upon successful execution of the intensive tasks, the results are synchronized with the native 
components in the mobile device. In this model, only data is transmitted to the remote resources and 
codes are not migrated from the mobile device. Thus, the transmission overhead is significantly 
reduced. At application runtime, when the execution reaches the resource‐intensive components, it 
pauses local execution and transmits application stack memory and raw data to the remote resources 
for execution. Upon completion of the execution, results are integrated and execution is resumed. 
However, application functionality in these solutions depends on the remote functions and services 
whose failure affects the application’s execution. For instance, the speech‐recognition component in 
navigation applications is a resource‐intensive task whose execution with acceptable accuracy is 
impossible inside the mobile device.

 ● Live cloud streaming is another approach that aims to augment mobile devices by performing all of the 
computations outside the mobile device. Results are delivered to users as precompiled screenshots, 
streaming live to the mobile device. This approach requires low latency, high throughput, and a reliable 
wireless network, which is challenging to establish using current technologies.

 ● Remote data‐managing solutions such as Dropbox virtually expand mobile storage by storing users’ 
digital contents in the cloud‐based resources. Parallel to the growth in computing, digital data is 
increasing sharply, demanding a huge amount of space on mobile devices, which further hinders 
mobile device adoption and usability. Although cloud storage enhances storage in mobile devices and 
improves data safety, trust and data security and privacy concerns prevent some users from leveraging 
remote storage.

3.2.4 Mobile Cloud Computing versus Cloud Computing

Although MCC inherits cloud‐computing traits, significant fundamental differences exist between these two 
technologies. These are summarized in Table 3.1.

Cloud computing aims to provide rich elastic computing resources for desktop clients, whereas MCC envi-
sions serving mobile users and realizing unrestricted functionality on the go. Service providers also differ in 
cloud computing and MCC. Resources in cloud computing consist of one or more unified computing entities, 

Table 3.1 Comparison of major cloud computing and mobile cloud computing characteristics

Characteristics Cloud computing Mobile cloud computing

Service consumers Desktop users Mobile users
Service providers Giant datacenters Cloud‐based resources
Network carrier Wired Wired/wireless
Objectives Elasticity, pay‐as‐you‐use Mobile augmentation
Energy solutions Conserve energy and emit less CO2 

on the server side
Conserve client’s battery

Mobility Neither client nor server Both client and server
End‐users’ major 

considerations
Monetary ownership and 

maintenance costs of proprietary 
resources

Temporal, energy, and 
communication 
overhead
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known as cloud datacenters, working in a parallel and distributed manner under corporate ownership located 
on the vendor’s premises. Resources in MCC can be any computing device inheriting cloud technologies and 
principles capable of mitigating the resource deficiencies of mobile devices – these are referred to as cloud‐
based resources (Abolfazli et al., 2014a).

Cloud computing leverages only wired communications, whereas MCC uses both wired and wireless 
devices. Although wireless is the dominant communication mode in MCC, immobile cloud‐based resources 
leverage wired networks to enhance the computational experience of the end users. Wired network is benefi-
cial in areas such as live virtual machine (VM) migration (Clark et al., 2005) which is an emerging phenom-
enon that aims to mitigate the impacts of user mobility in augmentation process. Live VM migration in MCC 
allows immobile computing entities to transfer the running computational tasks over the wired network to a 
computing device, which is proximate to the new location of the nomadic user.

Another major difference between cloud computing and MCC is in their objectives. The former aims to 
reduce the ownership and maintenance costs of running private datacenters by introducing the concepts of 
resource elasticity and pay as you use. Cloud computing promises on‐demand elastic resources by which 
desktop users can automatically provision computing resources and pay accordingly. Researchers in cloud 
computing endeavor to improve resource utilization rates, minimize the energy cost of intensive computing, 
and reduce negative impacts on the environment. However, MCC envisions augmenting computational capa-
bilities of mobile devices by enabling long‐time execution of resource‐intensive mobile computing tasks. 
Mobility is not provisioned for cloud datacenters or desktop service consumers, whereas it is necessary for 
service consumers and feasible / beneficial for service providers. Users in cloud computing are concerned 
about high resource availability and saving monetary costs of executing resource‐intensive computations on 
demand, whereas mobile service consumers use cloud‐based services to enhance application execution time, 
reduce energy consumption of the mobile device, and reduce the wireless communication cost (in the absence 
of monthly flat communication plans).

3.3 Mobile Cloud Computing Architectures

Numerous MCC proposals have been investigated over the last few years, developing four major architec-
tures for MCC, which are briefly discussed in this section. Table 3.2 presents major characteristics of four 
MCC architectures. It is noteworthy that these architectures are applicable to all cloud‐based augmentation 
models described in Figure 3.1.

Table 3.2 Major characteristics of varied mobile cloud computing architectures

Characteristics MDICC MPICC MPMCC HMCC

Architecture Client‐server Client‐server/peer‐to‐peer
Heterogeneity High High Low Medium
WAN latency High Medium Low Medium
Resource elasticity High Medium Low High
Resource multiplicity Low Medium High High
Resource availability High Low Medium High
Mobility implication Medium (client‐side mobility) High since both can move
Utilization cost Low Medium High Medium
Security and privacy High Medium Low High
Trust High Medium Low High
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3.3.1 Mobile Distant‐Immobile‐Cloud Computing (MDICC)

A general abstract architecture for a typical MCC system consists of a mobile device that consumes the 
computing resources of a computing entity using a typical offloading framework like MAUI (Cuervo et al., 
2010) via a bidirectional wireless link. The first proposed architecture for MCC is depicted in Figure 3.2 
(a)  where the mobile user is consuming computational resources of public clouds using the Internet. 
Computational tasks in this model are executed inside the DIC resources (i.e., public cloud service providers 
such as Amazon EC2) and the results are sent back to the mobile client. The main advantages of DIC are high 
computational capabilities, resource elasticity, and relatively high security. High computing capabilities and 
elasticity of DIC minimize remote computational time and conserve the mobile battery. The utilization cost 
of DIC  datacenters is the least possible cost given the ultimate goal of cloud computing, which is to reduce 
the computing costs.

However, existing architecture, hardware, and platform heterogeneities between DIC resources (x86 archi-
tecture) and mobile devices (ARM‐based) complicate code and data portability and interoperability among 
mobile and cloud computers (Sanaei et al., 2013a). Heterogeneity also imposes excess overheads by employ-
ing handling techniques such as virtualization, semantic technology, and middleware systems. Moreover, 
DIC are coarse location granular resources (meaning they are few in number and located far away from the 
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majority of mobile service consumers) and are intrinsically immobile computing resources. Thus, exploiting 
DIC to augment mobile devices leads to long WAN latency due to many intermediate hops and high data 
communication overheads in the intermittent wireless networks. Long WAN latency degrades the applica-
tion’s execution performance and wastes the limited mobile battery. Moreover, service consumers’ mobility 
on one hand and lack of cloud mobility on the other hand intensify WAN latency, and degrade effectiveness 
and efficiency of MCC solutions.

In fact WAN latency will likely remain in wireless communications for a long time, despite significant 
improvements in data transmission speed and network bandwidth (Satyanarayanan et al., 2009). The main 
delaying factor in WAN latency is the processing delay at each intermediate hop to perform tasks such as 
decompression, decryption, security checking, virus scanning, and routing for each packet (Abolfazli et al., 
2013). Thus, the greater the number of hops, the longer is the WAN latency.

3.3.2 Mobile Proximate‐Immobile‐Cloud Computing (MPICC)

To mitigate the effects of long WAN latency, researchers (Satyanarayanan et al., 2009) have endeavored to 
access computing resources with the least number of intermediate hops and have proposed alternative 
architecture for MCC, depicted in Figure 3.2 (b). Hence, mobile devices utilize computing resources of 
desktop computers in nearby public places such as coffee shops and shopping malls. Instead of travelling 
through numerous hops to performing intensive computations in DIC, tasks are executed inside the one‐
hop distance public computers in the vicinity (called PIC). These are medium location‐granular (compared 
to the coarse grain resources, PICs are more numerous and are located nearer to mobile service consumers) 
and feature moderate computational power that provides less scalability and elasticity. Employing the 
computing resources of PICs holds several implications that require future research, particularly with 
regard to service providers’ and consumers’ security and privacy, isolating a computer’s host OS from a 
guest mobile OS, incentivizing computer owners and encouraging them to share resources with nearby 
mobile devices, lack of on‐demand availability (shops are open at certain hours and on certain days), and 
lack of PIC mobility.

3.3.3 Mobile Proximate‐Mobile‐Cloud Computing (MPMCC)

The third MCC architecture, depicted in Figure 3.2 (c), has been proposed recently (Abolfazli et al., 2012b; 
Marinelli 2009) to employ a cloud of nearby resource‐rich mobile devices (i.e., PMCs) that are willing to 
share resources with proximate resource‐constraint mobile devices. Rapidly increasing popularity and ever 
increasing numbers of contemporary mobile devices, especially smartphones and tablets, are enabling the 
vision of building PMC to be realized. Two different computing models are feasible: peer‐to‐peer and  client‐
server. In peer‐to‐peer, service consumers and providers can communicate with each other directly to negoti-
ate and initiate the augmentation. However, the service consumer needs to perform an energy‐consuming 
node discovery task to find an appropriate mobile service provider in vicinity. Moreover, peer‐to‐peer  systems 
are likely vulnerable to fraudulent service providers that can attack the service consumer device and violate 
its privacy. The alternative MPMCC communication model is arbitrated client‐server in which mobile client 
communicates with a trusted arbitrator and requests the most reliable and appropriate proximate node. The 
arbitrator can keep track of different service providers and can perform security monitoring. The crucial 
advantages of exploiting such resources are resource pervasiveness, and short WAN latency. In client‐server 
and peer‐to‐peer models, the number of intermediate hops is small due to the service provider’s proximity to 
the consumer. The resource pervasiveness of PMCs enables execution of resource‐hungry tasks anytime 
 anywhere (either in an ad hoc ecosystem or an infrastructure environment where mobile network operators 
(MNO) like Verizon can manage the process). Therefore, short WAN latency, and the ubiquity of mobile 
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service providers leverage such resources in high latency‐sensitive, low security‐sensitive mobile computa-
tional tasks.

In this architecture, scalability and elasticity are limited due to the constrained computing power of indi-
vidual mobile devices. Mobility management is another challenging feature of this architecture. Unrestricted 
mobility of mobile service providers and mobile service consumers in this architecture significantly compli-
cates seamless connectivity and mobility, and noticeably degrades the efficiency of augmentation solutions. 
When a user (either service consumer or provider) starts moving across heterogeneous wireless networks 
with dissimilar bandwidths, jitters, and latencies, the varying network throughputs, increasing mobile‐cloud 
distance, and frequent network disconnections increase WAN latency and directly affect application response 
time and energy efficiency. However, the utilization cost of PMCs is likely to be higher than the cost of other 
immobile resources due to their ubiquity and negligible latency, although they feature finite computing 
resources. Other shortcomings of this model are security, privacy, and data safety in mobile devices. Mobile 
devices are not safe to store user data because they are susceptible to physical damage, robbery, hardware 
malfunction, and risk of loss.

3.3.4 Hybrid Mobile Cloud Computing (HMCC)

Each of the three architectures features advantages and disadvantages that hinder optimal exploitation for 
efficient mobile computation augmentation. Sanaei et al. (2013b) demonstrated the feasibility of consolidat-
ing various resources to build a HMCC model (see Figure  3.2 (d)) that addresses these deficiencies, to 
 optimize CMA. SAMI (Sanaei et al., 2012b) is a multitier infrastructure that convergences public clouds, 
MNOs, and MNOs’ trusted dealers to optimize resource‐constrained mobile devices. In the core of the 
 multitier infrastructure, a resource scheduler program evaluates each computational task and allocates appro-
priate resources to meet computational needs and fulfill user’s QoS requirements (like cost, security, and 
latency) optimally. However, addressing the challenges – especially seamless mobility, significant MCC 
heterogeneity, wireless network intermittency, and current wireless networking – and developing an optimal 
generic scheduler is not a trivial task. Moreover, increasing number of mobile service consumers and hybrid 
cloud‐based resources increase system complexity and complicate management and maintenance. Lightweight 
resource discovery and scheduling algorithms are essential for this MCC architecture.

3.4 Outstanding Challenges

Although advancements in MCC research are very impressive, several outstanding challenges require 
 further work.

3.4.1 Lightweight Techniques

Resource‐poverty in mobile computing is the major factor that necessitates the development of lightweight 
techniques for mobile consumers (e.g., offloading techniques), cloud service providers (e.g., light resource 
scheduling methods), and network providers (lightweight signal handoff). Native CPU, RAM, storage, and 
batteries are major resources to be conserved when performing intensive computation. To realize lightweight 
approaches in MCC, shrinking application dependency on underlying platforms (towards portability) is sig-
nificantly beneficial. Moreover, exploiting lightweight communication technology (i.e., wireless local area 
networks compared to cellular), omitting excess / redundant native computation outsourcing protocols, using 
light data compression algorithms, and leveraging nearby high performance cloud‐based resources are feasi-
ble and beneficial solutions.
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3.4.2 Portability

Many and varied mobile and cloud operating systems, programming languages, application programming inter-
faces (APIs), and data structures fragment the MCC domain and hinder the portability of content among various 
computing entities. Portability in MCC is illustrated in Figure 3.3. It refers “to the ability of (i) migrating cloud 
components from one cloud to other clouds, (ii) migrating mobile components from one smartphone to other 
smartphones, and (iii) migrating data across heterogeneous clouds” (Sanaei et al., 2013a) with little / no 
m odification or configuration. These are non‐trivial tasks in the absence of standards, technologies, and solu-
tions to handle the heterogeneity in MCC. To achieve portability in MCC, automatic code convertor solutions, 
such as PhoneGap (http://phonegap.com/, accessed November 29, 2015), which regenerate codes for different 
platforms, together with early standardization, and lightweight heterogeneity handling techniques such as 
s ervice oriented architecture that enable developing loosely coupled mobile‐cloud  applications, are promising.

3.4.3 Interoperability

Interoperability in MCC, shown in Figure 3.4, refers to the collaboration of interclouds, mobile clouds, and 
intermobiles with heterogeneous APIs and data structures. This is a challenging task. Lack of interoperability 
in MCC breeds vendor lock‐in problems – user data and applications are locked inside certain clouds. When 
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users change service providers (mainly due to quality and cost issues), migrating content originates high 
monetary and time costs of moving codes and data from one format to another and transmitting them from 
the old provider to the new cloud provider. Risks of code and data corruption during conversion and transmis-
sion still threaten cloud consumers in MCC. Addressing interoperability in MCC demands standard protocols 
and common APIs such as the Open Cloud Computing Interface (OCCI) (http://occi‐wg.org, accessed 
November 29, 2015).

3.4.4 Seamless Connectivity

Mobility in MCC is an inseparable property of service consumers and mobile service providers that requires 
seamless connectivity. Establishing and maintaining continuous, consistent wireless sessions between  moving 
service consumers and other computing entities (e.g., mobile devices and clouds) in the presence of 
 heterogeneous networking technologies requires future research and development. Lack of seamless connec-
tivity increases application execution time and mobile energy consumption due to frequent disconnections 
and interruptions, which substantially degrade user experience. Seamless connectivity across heterogeneous 
wireless ecosystems requires solutions such as next‐generation all IP‐based infrastructures wireless networks.

3.4.5 Live VM Migration

Executing resource‐intensive mobile applications via VM migration‐based application offloading frameworks, 
involves the encapsulation of an application and migrating it to the remote VM. These are nontrivial tasks due 
to additional overheads of deploying and managing a VM on mobile devices. Live VM migration between 
distributed cloud‐based resources (especially for DICs) is vital in executing resource‐intensive applications, 
considering wireless bandwidth, network intermittency, and mobility constraints. When a roaming user 
increases distance from the offloaded contents (code or data), the increased distance prolongs access latency 
and degrades user‐observed application performance. Thus, mobilizing the running VM and migrating it to 
resources nearer to the user without perceivable service interruption becomes essential to avoid user experience 
degradation. Therefore, optimal solutions such as reactive and proactive migration of VM instances (a proac-
tive model requires predicting the new user destination) to a place closer to the mobile user without service 
interruption, and solutions alike VMware vMotion (http://www.vmware.com/files/pdf/VMware‐VMotion‐DS‐
EN.pdf, accessed November 29, 2015) are vital to smooth live migration of VM and to avoid user experience 
degradation. Consider, for example, a scenario that reactively initiates the migration of a VM to a server in 
Detroit as soon as you depart from a New York airport and ends migration before you reach Detroit.

3.5 Conclusions

Mobile Cloud Computing (MCC) is the state‐of‐the‐art distributed mobile computing technology that aims 
to alleviate resource deficiency of a multitude of heterogeneous resource‐constrained mobile devices by 
 performing resource‐intensive computations inside cloud‐based resources. Mobile augmentation solutions 
are influenced to a large extent by the cloud‐based resources employed. Granularity (resource multiplicity 
and proximity), computational capability, mobility, and heterogeneity between mobile devices and resources 
are major resource properties that affect augmentation performance and need consideration in design and 
development of imminent augmentation solutions. Despite impressive MCC findings, several challenges, 
such as lightweight low‐latency architecture, live VM migration, efficient resource scheduling (automatically 
allocate resources to intensive mobile tasks), and seamless mobility, require further efforts to enable MCC in 
real scenarios.
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4.1 Introduction

Cloud computing infrastructures have emerged as a cost‐effective, elastic, and scalable way to build and 
 support Internet applications, but issues like privacy, security, control over data and applications, performance, 
reliability, availability, and access to specific cloud services have led to different cloud deployment models. 
Among these deployment models, the public cloud offers services of generic interest over the Internet,  available 
to anybody who signs in. On the other hand, the private cloud model aims to provide cloud services only to a 
specific user group, such as a company, and the cloud infrastructure is isolated by firewalls, avoiding public 
access. When a private cloud is combined with the public cloud – for instance when some functionality of the 
cloud is provided by the public cloud and some remains in the private cloud – then this cloud model is called 
a hybrid cloud. The community cloud bridges different aspects of the gap between the public cloud, the general 
purpose cloud available to all users, and the private cloud, available to only one cloud user with user‐specific 
services. The concept of community cloud computing has been described in its generic form in Mell and 
Grance (2011) as a cloud deployment model in which a cloud infrastructure is built and provisioned for exclu-
sive use by a specific community of consumers with shared concerns and interests, owned and managed by the 
community, or by a third party, or a combination of both. The community cloud model assumes that cloud 
users can be classified into communities, where each community of users has specific needs. A specific cloud, 
the community cloud, addresses the cloud requirements of such a group of users.

We discuss community clouds in the rest of this chapter as follows. In section 4.2 we explain the concept 
of community cloud computing in detail. In section 4.3 we give examples of cloud user communities for 
which the community cloud model could be applied. In section 4.4 we derive the requirements of community 
clouds in relation to user communities. Section  4.5 presents the potential and advantages of community 
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clouds, and in section 4.6 we examine how existing community cloud solutions fulfill the challenges for their 
communities. Finally in section 4.7 we conclude our study on community clouds and outline some future 
scenarios based on current trends.

4.2 The Concept of Community Clouds

The wide availability of commercial cloud solutions has led to widespread adoption of cloud use by all kinds 
of stakeholders (Buyya et al., 2011). It is a natural evolution from this growing number of cloud users that, 
among these users, certain clusters or communities of users arise, where each community is characterized by 
shared interests and common concerns. Cloud communities can extend over several users and they are not 
necessarily limited geographically. A community, however, is characterized by having common interests and 
concerns. For a community cloud to be tailored to a group of users, this group will need to have some specific 
requirement from the community cloud, different from those of the other communities. While communities 
may be of different sizes, some kind of critical mass related to this community will be needed to make it 
worth the effort of developing a tailored community cloud. The community cloud solution may have an 
advantage over the private cloud of sharing the cost of the cloud development and maintenance among its 
community members.

General‐purpose cloud solutions provided by the public cloud do not optimally fit the specific needs of the 
different user communities because, for instance, certain security concerns or performance requirements 
regarding clouds are insufficiently addressed by such generic cloud solutions. This leads to increasing interest 
in building community cloud solutions that fit specific communities of users (Marinos and Briscoe, 2009). A 
community cloud offers features that are tailored to the needs of a specific community. Each community 
cloud is specialized to provide particular features – the ones that are needed by its community. The difference 
between one community cloud and another for their users is that the provision of different features, such as 
performance, security, and ease of use of the cloud, is emphasized.

The specific requirements of a community of its particular cloud will influence the design of the 
 community cloud. While the concept of addressing the needs of a particular community is common to 
 community clouds, its requirements may lead to very different cloud designs between one community cloud 
and another. The tailored solutions for each community cloud may affect the hardware needed to build the 
cloud, the cloud management platforms, the services available in the cloud, and the applications provided to 
the user community.

The advantage of a community cloud lies in being able to offer optimized cloud solutions to specific user 
communities. They can see the drawbacks of using off‐the‐shelf cloud solutions, motivating them to look at 
community clouds, because when a community cloud is used, certain user requirements can be better satis-
fied. An important condition, however, is that there is enough commonality between the requirements of the 
community, for example in terms of cloud services that the community uses or cloud performance needs, in 
order to allow the finding of a specific but common cloud solution.

Community clouds are implemented using different designs depending upon requirements. Figure  4.1 
depicts some of these possible architectures. One common approach is that a public cloud provider sets up 
separate infrastructure and develops services specifically for a community to provide a vertically integrated 
solution for that market. Similarly, a third‐party service provider can focus on a particular community and only 
specialize in building tailor‐made solutions for that community. Another option is that community  members 
that already have expertise in cloud infrastructures come together to federate their private clouds and collec-
tively provision cloud services for the community (Buyya et al., 2010). Another radical model involves build-
ing community cloud services using resources contributed by individual users by either solely relying on user 
machines or using them to augment existing cloud infrastructures (Marinos and Briscoe, 2009).
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4.3 Cloud User Communities

Community cloud systems are designed according to the requirements of the community of users they are to 
serve. Several community clouds have recently been reported for enterprise communities. Enterprises belong-
ing to the same industrial sector often use similar but independent cloud solutions, and, comparing these 
solutions, it can be seen that these clouds are optimized in similar aspects, which allow these enterprises to 
gain advantages for reaching common goals. Instead of these private clouds, building a community cloud for 
such enterprises shares the cost of the cloud solutions among them, and may also offer opportunities for 
 collaboration for mutual benefit, even among competitors. Enterprise use of community cloud computing can 
also extend to the following two situations, beside the common scenario of consuming the services provided 
by a third‐party cloud provider. One is where a number of organizations or departments within an organiza-
tion sign peering agreements to share cloud resources to provide services, giving rise to federated cloud 
systems (Moreno‐Vozmediano et al., 2012). The other is where an organization can make use of the resources 

Community cloud
infrastructure

(a) (b)

(c)

Community cloud
provider

Public cloud provider

Figure 4.1 Different architectures for community cloud. (a) Public cloud provider’s separate infrastructure for a 
community. (b) Purpose‐built cloud infrastructure for a community. (c) Multiple private clouds combined for 
community
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of its customers to meet peaks in demand or to deliver a better experience to them. Table 4.1 lists some of the 
popular community clouds. In the following we identify some user communities that adopt community cloud 
solutions.

4.3.1 Government Departments and Agencies

Government departments and contractors need to work with sensitive data that cannot be stored or shared in 
a public cloud environment. This is because of the nature of the data and the requirement for privacy, which 
is also enforced by government regulations and laws. This requires cloud infrastructure to be set up separately 
for government departments and the private contractors working with them, which allows the data to be 
 handled in a confident and secure manner. Major public cloud vendors offer solutions specifically tailored for 
this, which adhere to government legislation and standards, and are mostly designed for particular countries 
as requirements differ for different regions. There are many cloud solutions in the United States – for exam-
ple, GovCloud from Amazon, Federal Community Cloud from IBM, and SolaS Secure Community Cloud 
from Lockheed Martin. Similarly, there is the G‐Cloud program in the United Kingdom and the Cloud for 
Europe program in European Union, and other countries are also looking to develop similar cloud systems.

4.3.2 Health Service Providers

Stakeholders in health services include patients, physicians, health IT administrators, hospitals, pharmacies, 
insurance companies and government entities. Public and private organizations working in health services 
deal with private data related to patients and health professionals, and they are legally obliged to keep such 
data secure. Coordination among IT health systems through a community cloud better satisfies the common 
requirements of this user community for improved and secure access to information to support health deci-
sions about patients. Community cloud solutions allow the secure exchange of this data between organiza-
tions and pave the way for designing innovative and useful applications for health services that are not 
possible with public cloud infrastructure. Examples include the Health Care Cloud by Optum.

4.3.3 Financial Services Providers

Enterprises operating in the financial market share the need for cloud platforms that offer low latency to access 
real‐time information and the highest security standards for data privacy. These requirements are not met by 
the public clouds and private clouds require too large an investment to make it feasible for most organizations. 

Table 4.1 Community cloud success stories

Community Solutions

Government agencies UK’s G‐Cloud, EU’s Cloud for Europe, Amazon’s GovCloud,
IBM’s Federal Community Cloud, Lockheed Martin’s SolaS Secure 
Community Cloud

Healthcare industry Optum’s Health Care Cloud
Financial services industry NYSE Technologies’ Capital Markets Community Platform, CFN Services’ 

Global Financial Services Cloud
Media industry Siemens’ Media Community Cloud, IGT Cloud
Aviation industry SITA’s ATI Cloud
Higher education Oxford’s Online Research Database Service
Telecom industry Ericsson Cloud System
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For the financial community, community cloud platforms have been developed with optimization and services 
specifically designed for financial services providers. Examples include Capital Markets Community Platform 
from NYSE Technologies and the Global Financial Services Cloud from CFN Services.

4.3.4 Media Industry

Media production is a collaborative task, often carried out within an ecosystem of partners. For content 
 production, media companies need to apply low‐cost and agile solutions to be efficient. For instance, computer‐
game development companies make use of cloud infrastructures to transfer huge files efficiently. Sharing of 
content between partners allows collaborative and faster decision making. A community cloud allows fast 
exchange of digital media content and deploys services for specific B2B workflow executions to simplify 
media content production. Examples of such clouds include IGT Cloud from IGT and CA Technologies and 
Media Community Cloud from Siemens.

4.3.5 Aviation Industry

In the air transport industry, many different players need to interact. Business applications are often shared 
across stakeholders in order to assure that critical functions are satisfied. A high level of adoption of common 
infrastructure is already taking place to ease the orchestration of the operational processes. A community 
cloud framework to better manage air transport unifies the different cloud systems that are used by this com-
munity. Examples of such clouds include the ATI cloud from SITA.

4.3.6 Higher Education Institutions

Departments and schools in universities share the use of IT for teaching, learning, and research. From 
an administrative perspective, these units are often independent while needing similar services. Through 
a  community cloud, management and configuration of servers can be shared and become more cost‐
effective, while the accounting service of the community cloud allows the consumed services to be 
chargeable to each member of the community. Examples of community clouds in higher education 
include the Online Research Database Service (ORDS) offered by University of Oxford to institutions 
in the United Kingdom.

4.3.7 Legal Services Providers

Judicial services and law firms need access to historical and current data from legal proceedings and other 
government legislation. The ongoing work of these organizations deals with sensitive data. Storing this data 
on a public cloud can pose a risk or violate government regulations on data protection. A community cloud 
in this situation allows the data to be exchanged in a secure manner and also makes it possible to design 
applications that are able to aggregate data from multiple organizations that are working together and provide 
useful insights to support decision making.

4.3.8 Engineering and Manufacturing Industry

Engineering companies involved in computer‐aided design and manufacturing require access to computing 
and storage resources. The data and processes form the intellectual property of these organizations and the 
security and privacy of this information is very important. The applications are very compute and data inten-
sive. Transferring data to and from public clouds and running the processes in public clouds may not meet 
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performance requirements and in some cases may not be the most cost‐efficient solution either. Community 
clouds allow these companies to address their requirements in an effective manner, sharing the costs of set-
ting up and running the infrastructure among themselves.

4.3.9 Energy Industry

Energy companies working in oil and gas exploration need to exchange data between the partners and the 
subcontractors. The main requirements in this case are that data can be very large in size and must be avail-
able in timely fashion to locations all over the globe. A community cloud set up by the partners working in 
energy sector addresses these requirement and different members contribute their infrastructure and facilities 
to make this possible.

4.3.10 Scientific Research Organizations

Scientific research is also benefiting from bringing together computing resources across the organizations. 
This is seen as the extension of earlier grid computing systems (Foster and Kesselman, 2003), where organi-
zations share their clusters and private clouds with others and reap the benefits of having greater resource 
availability on demand. Another approach also followed in some projects is the use of voluntary computing 
systems to form a community cloud that makes use of resources contributed by users connected to the Internet 
to solve research problems (Cappos et al., 2009).

4.3.11 ICT Services Providers

Community clouds have been used by Internet, mobile, and telecom services providers. Examples include 
clouds for service providers taking advantage of customer‐premises equipment (CPE) or network edge devices 
to improve delivery of services, or better use of provider’s facilities. Cases were reported from Telefónica 
pooling together Wi‐Fi of different customers to provide higher bandwidth – an idea that can be extended to 
providing other services like video‐on‐demand. This model also helps for content distribution networks (CDN) 
in that this can allow content to be distributed efficiently for users. For the latter, Ericsson is looking at placing 
cloud nodes at the base stations, which provides the flexibility of cloud model for networking services. This 
idea builds on the concepts of software‐defined networking (SDN) and network virtualization. These exam-
ples show that interesting cloud‐based solutions can be developed in the future that make use of a federation 
of a large number of smaller cloud installations set up either at the service providers’ or the consumers’ end.

4.3.12 Online Social Network Users

Online social networks, like Facebook, Twitter and Google Plus among many others, connect users that 
already know each other in real life and the basic premise is that such users are more likely to collaborate 
among themselves and share resources. Compared to other user communities, a specific feature of this com-
munity is that mutual trust and resource‐sharing agreements can be easily established. The context of this 
community imposes the requirement on the cloud system that it should be closely integrated with the API 
provided by commercial online social networks. For example, social cloud projects integrated the Facebook 
API to provide a distributed storage service by which a user can store files on friends’ machines (Chard et al., 
2012). The particular needs of this scenario match the community‐cloud model, where a user community has 
identical underlying issues and challenges. The integration of social networks brings some additional com-
plexity to the implementation of the community cloud system, but also makes issues like resource discovery 
and user management easier to tackle.
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4.3.13 Mobile Device Users

Mobile devices increasingly provide better computing capacity, memory, and storage, even though battery power 
and bandwidth are still limitations. Interesting cloud applications are being envisaged that either employ the 
mobile devices both as providers and consumers of cloud services or use resources on mobile devices to augment 
the traditional cloud infrastructure. Issues like high mobility and limited capacity of the devices, however, pose 
constraints for providing applications in community clouds consisting of or augmented by mobile devices.

4.3.14 Clouds in Community Networks

Community wireless mesh networks are already based on the principle of reciprocal resource sharing. The 
social and community aspects make it easy to extend this sharing of bandwidth to other computing resources. 
Particular challenges for community clouds in such networks exist, however. For example, these networks are 
limited in resources, are often unstable, have variable network bandwidth between links, and have a high 
churn of nodes. A generic cloud solution is therefore not an option for this user community, but a community 
cloud focused on community networks is required. The strong sense of community and technical knowledge 
of participants of such networks are positive factors that can be taken into account in the design of such a 
community cloud tailored to the local needs and built on infrastructure provided by community members.

4.4 Requirements and Challenges

This section considers requirements for community clouds emphasized by different user communities. These 
requirements provide the foundation for the design of the community cloud system, and need to be satisfied 
for it to be deployed and adopted successfully by the community.

4.4.1 Security

There are many security challenges that need to be addressed to ensure users’ trust in the system. With 
 multiple independent cloud providers from the community, security becomes even more important in a 
 community cloud. The data and applications running on different cloud systems have to be protected from 
unauthorized access, damage, and tampering. With the rise in sophisticated security threats and increase in 
data breaches, this is one of the most critical factors impacting any community cloud system.

4.4.2 Autonomy

Community cloud systems may be formed based on individual cloud systems that are set up and managed 
independently by different owners. The main requirement for a cloud owner for participating in such a com-
munity cloud is that the local cloud setup should adhere to the common API provided by the community 
cloud. The cloud owner should also contribute some set of mutually agreed resources to the community.

4.4.3 Self‐Management

Depending on the type of community, self‐management capabilities may be an important requirement of the 
community cloud system. Community clouds should manage themselves and continue providing services 
without disruption, even when part of the infrastructure runs into issues. Self‐management should also help 
in the coordination between different cloud owners that become part of a federated community cloud.
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4.4.4 Utility

For the community cloud to be accepted it should provide applications that are valuable for the community. 
Usage strengthens the value of the community cloud, motivating its maintenance and update.

4.4.5 Incentives for Contribution

Some types of community cloud may be built upon collective efforts. Such a community cloud builds on the 
contribution of the volunteers in terms of computing, storage, network resources, time, and knowledge. For 
these community clouds to be sustainable, incentive mechanisms are needed to encourage users to contribute 
actively towards the system.

4.4.6 Support for Heterogeneity

The hardware and software used by members in a community cloud can have varying characteristics, which 
can result from the use of different hardware, operating systems, cloud platforms, or application software. 
The community cloud system should handle this heterogeneity seamlessly.

4.4.7 Standard API

The cloud system should make it straightforward for the application programmers to design their applications 
in a transparent manner for the underlying heterogeneous cloud infrastructure. The API should provide the 
appearance of middleware that obviates the need to customize the applications specific to each cloud archi-
tecture. This is essential for community clouds that result from the federation of many independently  managed 
clouds. Each such cloud may be using a different cloud management platform that may provide a different 
API. Providing a standard API for the community cloud ensures that applications written for one community 
cloud can also be deployed for another community cloud in the future, and as they are integrated into the 
community cloud they can be easily deployed on new cloud architectures.

4.4.8 QoS and SLA Guarantees

The community cloud system needs mechanisms for ensuring quality of service (QoS) and enforcing service‐
level agreements (SLA). With business processes increasingly reliant on the cloud services and applications, 
businesses need strong guarantees before transitioning to a community cloud system.

4.5 Potential of Community Clouds

This section states the potential of community clouds, highlighting their key advantages.

4.5.1 Security, Control and Privacy

In some cases, the security and privacy of data are so important that giving access and control of this infor-
mation to a public cloud provider is not feasible. Private clouds are also not an option because of the huge 
investment needed to set up and maintain such infrastructure. Community clouds address both of these 
concerns, provided that the members of the community have existing trust relationships among themselves 
and require similar applications.
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4.5.2 Elasticity, Resilience and Robustness

Community clouds bring cooperating entities together to pool their infrastructures. In contrast to private 
clouds, this provides redundancy and robustness, and results in a more resilient system than those provided 
by public clouds, which can act as a point of failure as evident from the outages, even though rare, at many 
public providers in recent years. In the situation of peaks in demand and outages at the location of one mem-
ber, resources from other members can help to alleviate these problems.

4.5.3 Avoiding Lock‐In

Services from a public cloud can suffer from vendor lock‐in problems. In the absence of standardization in 
clouds, moving data and applications from one cloud vendor to another is not feasible. A community cloud 
allows users to consume resources either from a variety of vendors or from infrastructure tailored to the 
 community, and so provides a protection against vendor lock‐in.

4.5.4 Cost Effectiveness

Private and hybrid clouds require a huge capital investment for building and maintaining the infrastructure 
in‐house. Community clouds allow this cost to be distributed among the members of the community.

4.5.5 Enhanced Requirement Satisfaction

In some cases, public clouds may not be able to meet the performance and functionality demands of the 
 community. For example, the applications may be time critical and need better network speed than a public 
cloud service provider can commit.

4.6 Achievements of Community Clouds

We now look at the different aspects of existing community cloud solutions and study how they address specific 
requirements of the community they are designed to serve.

4.6.1 Community Clouds for Governmental Organizations

The prime motivation for community clouds for organizations and departments working with government 
services is the issue of the privacy of citizens’ data, which cannot be stored or processed in public clouds. 
There are many regulations for working with private data, for example the US International Traffic in Arms 
Regulations (ITAR), the Federal Risk and Authorization Management Program (FedRAMP), the Federal 
Information Processing Standard (FIPS), and the Federal Information Security Management Act (FISMA) in 
the United States, the Data Protection Act in the United Kingdom, and the Data Protection Directive in 
European Union. To address these concerns, Amazon in the United States has set up an isolated cloud infra-
structure for government agencies and their customers, which is separate from public cloud offerings from 
Amazon, which is accredited by FedRAMP for dealing with private and sensitive data. SolaS Secure 
Community Cloud also places a strong emphasis on security using a perimeter networking demilitarized zone 
(DMZ) and distinct virtual datacenters (VDCs) using virtualization firewall capability to offer complete 
logical separation for data and applications. IBM has similarly set up dedicated federal datacenters (FDC) 
that can ensure certified computing capabilities for government organizations.
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4.6.2 Community Clouds for Financial Industry

For financial industry applications, security and privacy of data are important, as in any other cloud‐based 
solutions, but the driving factors behind the community cloud for this market are challenging demands on 
the service’s performance. For instance, public clouds are too slow to support the applications for high‐
performance electronic trading. NYSE Technologies has addressed this problem by setting up customized 
infrastructure, highly secure datacenters and a high‐speed network to meet high performance and security 
demands of the applications for the financial industry. This secure and high performance infrastructure allows 
the development and deployment of sophisticated applications for financial industry, which are not feasible 
within public clouds.

4.6.3 Community Clouds for the Health Sector

The prime issue for organization in the health sector, preventing it from using public clouds, is the privacy of 
sensitive data of patients and related information. The storage and usage of this data are governed by strict 
government regulations like the Health Insurance Portability and Accountability Act (HIPAA) in the United 
States, the Privacy Act 1988 in Australia, and similar data‐protection regulations in the United Kingdom, 
the European Union, and many other countries. Optum, in the United States, provides cloud solutions for the 
health sector and ensures compliance with HIPAA and other federal data‐protection laws. Another advantage 
resulting from the community cloud is that Optum can offer data analytics from historic and real‐time data to 
support decision making and other application for improving patients’ healthcare.

4.6.4 Community Clouds for Aviation Industry

The main need of the aviation industry is to have customized, flexible and on‐demand applications and 
 software that can assist with industry and business process optimization and enable operational agility for 
growth and cost savings. SITA, with its strong background of working in the air transport industry, has devel-
oped the ATI cloud for the aviation industry, addressing its needs with specifically tailored cloud applications, 
high‐performance architecture and strong SLA guarantees.

4.7 Conclusion

A community cloud is a cloud deployment model in which a cloud infrastructure is built and provisioned for 
exclusive use by a specific community of consumers with shared concerns and interests, owned and managed 
by the community or by a third party, or a combination of both. The wide offer of commercial cloud solutions 
has led to the widespread adoption of cloud usage by all kinds of stakeholders. It is a natural evolution from 
this growing number of cloud users that certain clusters or communities of users arise, where each community 
is characterized by shared interests and common concerns. Community clouds have become a reality today 
with community cloud solutions deployed in many important economic sectors and for different stakeholders, 
like manufacturing industry, telecommunication providers, financial service providers, health services, 
 government agencies, and education. Among the advantages of community clouds is that specific cloud‐user 
requirements are satisfied and in a more cost‐effective way. High security standards and high cloud perfor-
mance can be achieved with community clouds at a cost that is shared among the community. The opportunity 
of community cloud lies in being able to offer optimized cloud solutions to specific user communities. An 
important condition, however, is that the requirements of the community are shared, in order to be able to 
determine a specific cloud solution that is worth the effort of developing a community cloud.
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5.1 Introduction

There is a great need for modernization and transition to cloud based technologies within government agen-
cies. The US Federal government is moving to cloud, based on various directives and legislative actions. 
While the government agencies have much in common with commercial institutions in terms of need, they 
differ significantly in how they can make use of cloud computing, and have many restrictions relating to 
security and privacy that impact how they can use cloud technology. This chapter will explore in detail the 
impact of cloud computing on government agencies, and identify the most significant constraints that govern-
ment agencies face.

5.2 The Federal Government’s Journey to the Cloud

The US Federal Government is composed of three branches – executive, legislative and judicial – supported 
by numerous administrative agencies. According to the US Office of Personnel Management, there are over 
2.7 million federal employees, excluding those in agencies with secret clearances. There are 456 federal 
agencies, with the majority of employees and agencies supporting the executive branch of the government. 
The government estimates that it spent $79.5 billion on information technology (IT) in 2012, whereas private 
estimates that take into account quasi‐government agencies like the US Postal Service and Fannie Mae place 
the spend at closer to $120 billion. One way to get acquainted with these numbers is to look at the Federal IT 
Dashboard (IT Dashboard, 2014).

The federal landscape for IT spending is complex and influenced by factors such as the economy, political 
leadership, legislation, and policy. For the past several years, the struggling economy has pressured the vari-
ous IT organizations to pursue economies. The lack of agreement in Congress on a budget, and the resultant 
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Continuing Resolutions that have effectively frozen IT spending for years, have also contributed to a climate 
where continued cost savings are vital to meeting the mission needs of the various agencies.

One of the ways in which the government has begun to address this need is through a program called 
PortfolioStat. This program is an annual budgeting and review process that was instituted by the Office of 
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Management and Budget (OMB). According to www.itdashboard.gov/portfolio_stat (accessed December 4, 
2015), PortfolioStat required the various federal agencies to establish 3‐year IT spending plans “to consoli-
date or eliminate duplicative, low‐value, or wasteful IT spending and improve the Portfolio management 
processes with the organization.” Each agency was charged with cost reductions, and an overall plan for 
consolidation was established (see Figure 5.1) for a 3‐year total reduction of over $2.5 billion. The  breakdown 
of savings is targeted heavily at IT infrastructure and enterprise systems, including computing equipment, 
mobile devices, and commonly used collaboration tools.

The adoption of sequestration has also affected the IT community. Faced with further budget reductions, 
the Office of the Chief Information Officer (OCIO) has had to increase the cost reductions in its yearly plans 
in order to meet the further reduced IT budgets. A major pressure on the federal IT community is the need to 
reduce capital expenditures.

A second factor affecting the federal government IT community is the large number of independent data-
centers. In 2010 the White House launched the Federal Data Center Consolidation Initiative (FDCCI) with 
the goal of eliminating at least 800 datacenters by 2015. This effort acknowledges the fact that there is a great 
deal of redundancy and excess capacity in the real estate and support systems that house and power the IT 
capacity of the government. Additionally, through analysis of agency datacenter consolidation plans, the 
utilization of computer resources has been shown to be under 30% of capacity for many agencies (Kundra, 
2011). Another major pressure on government IT is the overcapacity and underutilization of IT infrastructure.

One facet of the government IT process that exacerbates this pressure is the need for certification and 
accreditation of facilities and computer systems. While some forms of this process may be performed in the 
private sector, in the federal IT landscape this is a necessary and fairly extensive process that takes time and 
dollars to complete. Given the redundancy in the number of datacenters and systems, the magnitude of this 
cost is increased significantly, adding to the burden of the IT organization. The federal IT community needs 
to reduce or eliminate redundant systems, and use the computing resources it employs more effectively to 
meet the mission needs of the various agencies.

Until recently, the IT community in the government did not have a satisfactory method for acquiring IT 
services that account for scalability and reliability requirements without acquiring significant excess  capacity. 
In many agencies, computer resource use is periodic in nature. As an example consider the flow of informa-
tion to the Internal Revenue Service (IRS). There are monthly and quarterly peaks, but there is a very 
 significant peak in resource utilization that occurs near the annual tax deadline of April 15. Under such condi-
tions, and given the prevailing architectural approaches for resilience that required multiple instances of a 
solution to avoid single points of failure, in a pre‐cloud environment where IT resources are neither virtual-
ized nor tied to a utility / consumption model, it is not surprising that dramatic utilization differences occur, 
as systems had to be sized for peak usage, rather than average usage. The federal IT community needs a 
consumption‐based model that can adjust to dramatic swings in resource consumption (i.e. elastic capacity).

As in the private sector, the US federal IT community is faced with several disruptive technology move-
ments. Mobility, and the advent of the bring‐your‐own‐device (BYOD ) model, in which the federal govern-
ment is asked to allow access to protected resources by third‐party devices, is a new and disruptive IT 
approach that is gaining traction due to the demand by knowledge workers for the ability to use the device 
they desire to achieve their daily work requirements.

Device form factors, and the growth of the post‐PC movement to tablets, phablets, phones, and other 
devices, is also pressing government agencies to accommodate security models that allow modes of access 
that were not possible in the past. Government telecommuting initiatives have also contributed to a growing 
need in the IT community to grant access to data outside of the existing internal network.

The rapid growth and maturation of virtualization and cloud technologies has also affected the federal IT 
point of view. While the federal government is seldom a first mover in the IT space, one of the key concepts 
of the commercial cloud computing model – a utility or consumption pricing model and dynamic, elastic 
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capacity – has started an inevitable movement in the government. This is the concept of paying for IT services 
not on a license‐based or server‐based model but rather on the basis of dynamic, changeable usage, similar to 
the consumption of electrical power from a utility. Datacenter managers and agency CIOs have noted the low 
utilization of their current equipment footprint, and have realized that virtualization can, to a limited extent, 
provide them some of the elastic capacity that they need within their current inventory of equipment. There 
are still limitations to this approach including power, network, and the physical construction of the existing 
datacenters, and the ultimate capacity is limited to what is available in one agency datacenter.

The first White House CIO, Vivek Kundra, launched an ongoing federal initiative to reform information 
management in the federal government (Kundra, 2010), which included a shift to “cloud‐first” thinking. This 
initiative included tasking agency CIOs with creating a cloud strategy for their agencies, shortlisting several 
“must‐move” services to begin a migration to cloud‐based computing, and creating contract vehicles that 
would allow agencies to purchase cloud services (such as the General Services Administration (GSA ) infra-
structure as a service blanket purchase agreement (BPA)). This and other initiatives are starting the process 
for the government to move to cloud computing, and to make a fundamental procurement shift from capital 
expense to operating expense.

A basic frustration felt throughout federal government IT organizations is the difficulty faced in procuring 
computing resources in a timely manner. Based on traditional contracting methods it can take more than 
6 months to acquire additional equipment. There has not been a mechanism to allow the government to 
acquire for “as long as necessary but no longer” – they have traditionally purchased and maintained equip-
ment. In many cases, agencies are seeking agility and flexibility in IT space, looking to be able to trial new, 
innovative solutions quickly, and move rapidly from proof of concept to production, and, when the solution 
becomes obsolete, to be able to decommission and migrate rapidly to a different solution. Agencies have been 
frustrated in this desire, as contracts lock them into a vendor for many years, make it difficult to modify the 
 services (either to decrease or increase capacity), and in general do not lend themselves to the freedom of 
movement many commercial IT organizations enjoy.

A frequently cited wish of the government IT specialist is the basic ability to buy computing services on 
an operating‐expense basis, rather than on a capital‐expense basis. This would represent a major change and 
improvement to the mechanism by which the government IT does business. Amazon Web Services (AWS) is 
often cited as a proper model but in reality many nuances of services would suffice for the government. The 
main needs are:

 ● Dynamic capacity without extensive contractual negotiations or procurements. The ability to change the 
level of consumption in response to changes in usage (such as from peak periods or a temporary surge in 
usage due to some temporary event) is a definite requirement for future government IT.

 ● Avoiding vendor lock‐in is also a desirable feature. Although moving from one vendor to another is a 
painful event, at times there is a need to move from one supplier to another. The government needs the 
ability to move when a need exists, without penalty for shifting services.

 ● Preintegrated services. One major effect that mobile devices have had on computing is the concept of 
“apps”, and the corollary which implies that services can build on one another, such as when an app for 
finding local restaurants leverages GPS, maps and crowd sourced ratings to help a user find the best res-
taurant to meet his needs. In practice this need is much more complex, but software as a service (SaaS) 
built on top of cloud infrastructure cannot maintain the same silo approach as in the past – the need to 
share information between services is too great to be ignored.

In summary, the federal government realizes that migration to cloud computing is a necessary step in the 
continued evolution of IT in the government. Economic pressures have reduced budgets and forced IT depart-
ments to make difficult choices, but they have also hastened the recognition of cloud computing as a potential 
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source of cost reduction. The government has also recognized that it has a tremendous amount of redundancy 
of IT solutions, a problem compounded by low utilization of computer resources on many solutions. The 
25‐point plan launched by the White House CIO outlines an approach to improve the landscape of govern-
ment IT by addressing these issues and transforming the IT organization of the government.

5.3 The Pre‐Flight Check – Primary Considerations for Government agencies

In one sense, the IT needs of the federal government are similar to the needs of businesses in the private sec-
tor. There is a basic need for sufficient infrastructure capacity, enough computer power to accomplish tasks, 
sufficient network bandwidth for all users to work without extensive delays, adequate storage to maintain 
information, a secure infrastructure that prevents unauthorized access to information, and the ability to 
respond in sufficient time (as defined by the situation) to new requests. These needs are little different between 
government and private sector, although there may be increased emphasis on some aspects in the government. 
But in another sense there are significant differences between what may be considered an acceptable IT risk 
in the private sector and what is acceptable from a government perspective. The next several sections describe 
some key considerations for cloud computing that have significant differences from the private sector.

5.3.1 Legal, Policy and Regulatory Requirements

In addition to the normal needs that a government IT organization has, there are legal, policy and regulatory 
requirements that go far beyond average private sector needs. From a cloud‐computing perspective, there are 
a few significant areas that any government agency must cope with.

The Federal Data Center Consolidation Initiative (FDCCI) and the Cloud First initiative of the White House’s 
25‐point plan, and corresponding legislative requirements are forcing many agencies to migrate to cloud solu-
tions, or face budget penalties that will further affect the already reduced spending currently in effect.

There is also direction from the Office of Management and Budget (OMB), in the form of Circular A‐11, 
in particular Exhibit 300s and Exhibit 53.

Exhibit 300s are companions to an agency’s Exhibit 53. Exhibit 300s and the Exhibit 53 together with the agency’s 
Enterprise Architecture program, define how to manage the IT Capital Planning and Control Process. Exhibit 53A is 
a tool for reporting the funding of the portfolio of all IT investments within a Department while Exhibit 300A is a tool 
for detailed justification of Major IT Investments. Exhibit 300B is for the management of the execution of those invest-
ments through their project life cycle and into their useful life in production. (http://www.whitehouse.gov/sites/default/
files/omb/assets/egov_docs/fy13_guidance_for_exhibit_300_a‐b_20110715.pdf, accessed November 28, 2015)

The process of creating and approving these documents is significant, and they affect the funding of IT 
investments over multiple years. The amount of planning, justification and oversight exceeds the normal IT 
process within a private sector corporation.

5.3.2 Security and Privacy

Security and privacy in the Federal government are subject to a host of regulations, but there are three sets 
that are commonly discussed, the 3 Fs – FIPS, Federal Information Security Management Act (FISMA) and 
the Federal Risk Management Authorization Management Program (FedRAMP). Each of these has some 
impact on cloud providers and the way in which they provide services.
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FIPS 140 is a series of publications regarding security from NIST (the National Institute of Standards and 
Technology). There are four levels of FIPS 140 security (FIPS 140‐2, levels 1–4), each of which is a higher 
order of security than the previous level. FIPS 140 relates to cryptographic controls and modules for securing 
electronic communications. A new version, FIPS 140‐3 is under development.

The Federal Information Security Management Act, is a set of policies, procedures and responsibilities that 
federal agencies (and by extension third party cloud service providers) must adhere to in order to receive 
certification and authorization to operate (ATO). Providers are required to have an inventory of systems and 
their interfaces to other systems, a categorization of information and information systems according to level 
of risk (as defined by FIPS 199), a set of security controls (as defined by FIPS 200), to implement security 
controls, and assess those controls, to authorize operation, and then continually monitor the security controls. 
Detailed information regarding FISMA is available from NIST at http://csrc.nist.gov/groups/SMA/fisma/
index.html (accessed November 28, 2015).

The Federal Risk Management Authorization Management Program is a program aimed at simplify-
ing the process of certifying “aaS” solutions throughout the federal government. It is designed to be a 
“certify once, operate everywhere” process. Without FedRAMP, providers would be required to recer-
tify solution offerings with every new customer purchase. With FedRAMP, cloud solution providers 
(CSPs) can simplify their path to implementation. To achieve a FedRAMP certification, a CSP must 
implement the FedRAMP requirements, which are FISMA compliant, and have a third‐party assess-
ment organization (3PAO) perform an independent assessment to audit the cloud systems under review. 
The FedRAMP Joint Authorization Board (JAB) reviews the assessment and grants authorization. 
Detailed information regarding FedRAMP can be obtained at http://www.fedramp.gov (accessed 
November 28, 2015).

5.3.3 Data Location Requirements

There are several government requirements regarding the storage and location of data, and access to it by 
personnel. In general, data must be stored in the continental United States (or CONUS), unless specifically 
excepted. This requirement can have significant impact on cloud providers. In order to operate as a provider 
for the federal government, cloud providers must offer storage options that are only located in CONUS. Data 
cannot be stored outside CONUS, even if the provider normally uses offshore locations as nodes for  additional 
redundancy or data replication.

An additional requirement is the need for dedicated support personnel who are at minimum US r esidents, 
and usually US citizens who have government clearances. Many cloud solution providers use offshore 
resources to provide round‐the‐clock support as well as to balance the costs of labor. To be a provider to 
the federal government, these resources must be US residents or, better, located in a US facility, that has a 
 separate, dedicated capacity for US‐only processing. No foreign nationals, or resources without clearance 
are allowed to access the dedicated capacity, and physical security as well as electronic safeguards must 
be in place.

An additional concern is compliance with export restrictions such as the International Traffic in Arms 
Regulations (ITAR). These restrictions apply to the management of data and often require additional audit 
trails for compliance purposes. An example of a cloud provider service that meets all of these regulations is 
AWS GovCloud (http://aws.amazon.com/govcloud‐us/faqs/, accessed November 28, 2015).

To summarize, Federal IT faces many of the same challenges as private‐sector commercial organizations 
when it comes to cloud computing. The federal sector also has some fairly significant requirements from 
legal, regulatory, security, and data perspectives that increase the effort necessary for CSPs to deliver  solutions 
to the federal government.
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5.4 The Federal Market Place – Primary Offerings

Governments across the globe are facing challenges very similar to those that the private sector is facing but 
in some respects they are actually outpacing their civilian counterparts in adopting, or at minimum experi-
menting with, cloud technologies. Also in step with much of the private sector, governments are still in the 
process of consolidating infrastructure and services to high‐density capable datacenters, implementing virtu-
alization and positioning themselves for future moves to the cloud.

One of the primary concerns and to some extent a limiting factor in the adoption of cloud services within 
the United States federal government and other governments as well is around security concerns and laws 
and regulations prohibiting the use of commercial vendors that are not certified by the government. The 
limited number and relatively recent entry of providers authorized to operate in this space has required 
agencies to build their own services or wait in anticipation as vendors made it through the process. It is 
projected that the adoption of the services described below will increase over the next several years as 
facilities and IT enterprises are transformed and the commercial industry provides more choices to the 
Federal governments.

 ● Infrastructure as a Service (IaaS). The ongoing movement to new, high‐density powered and cooling 
datacenter facilities is providing the opportunity to establish the infrastructure components necessary to 
provide IaaS within the government IT landscape. Like the private sector, some government departments 
and agencies are seeing delays in datacenter transitions due to obligations arising from long‐term  contracts 
with communications and datacenter providers and are currently only moving services that reap the great-
est benefits and leaving other services behind (for now) to avoid cancellation penalties and contract buy‐
out costs. One such benefit on the radar is data storage / archival and retrieval as a service to be hosted 
within the private cloud and available to multiple agencies. As with the private sector, the maturity of IaaS 
is such that most agencies do not yet have the capability to provide on‐demand, catalogue‐based services 
for infrastructure rapid provisioning.

 ● Platform as a Service (PaaS). The implementation of PaaS has not become prevalent within Federal 
markets due to the maturity levels needed to provide the combined infrastructure, database, storage, 
and other components in a self‐service catalogue. The private sector has the ability to procure PaaS 
through external vendors; however, Federal security requirements often prohibit the use of noncompli-
ant providers.

 ● Software as a Service (SaaS). The value of SaaS is recognized within federal governments and is being 
adopted for specific applications. The parallels with the private sector remain consistent, there are internal 
systems suitable for SaaS as well as external (customer‐facing) systems that are being considered and 
implemented. Such enterprise applications as internal (corporate) e‐mail are predominant in early adop-
tion with client‐facing (public) access for such areas as case management and other services becoming 
more common.

5.4.1 Summary of Commercial Offerings to Federal Government

The landscape of Cloud Services being offered to federal government is growing exponentially as companies 
large and small find their niche and compete for a piece of the market. The traditional behemoths like IBM, 
Hewlett Packard, AT&T, and a plethora of others have well established datacenters and are providing a wide 
variety of options for both physical hosting of private clouds (IaaS) and for the SaaS and PaaS needs as well. 
Other companies, small and large, are finding their niche in providing specific solution sets that provide a 
specific service.
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5.5 The Next Generation of Cloud Adopters

Governments around the globe have recognized the value of cloud services for several years and many have 
specific policies that encourage the use of the cloud and virtually all major powers are actively moving 
towards the cloud. The following provides some insight in to the progression towards cloud adoption by 
government organizations worldwide.

5.5.1 Japanese Government

In 2009, the Japanese Government introduced a comprehensive cloud services initiative called the 
Kasumigaseki Cloud as part of its Digital Japan Creation Project (ICT Hatoyama Plan). The Kasumigaseki 
Cloud initiative goal is to (i) establish a cloud‐based infrastructure that will meet the present and future 
needs of the government’s IT systems, and (ii) enable a more efficient service organization by providing 
a centralized pool of resources. The expected outcome of the plan is to eliminate redundancies in ser-
vices among the various ministries and the need for separate ministries to maintain autonomous IT 
systems.

Additional goals have also been established as part of the project: (i) establish a National Digital Archive 
digitize government documents and other information; (ii) define and introduce standardized formats and 
metadata that will improve public access. The standardization of document formats across ministries is 
intended to reduce the number of documents required by the public to file and subsequently provide efficien-
cies within the government and improve the public access experience.

As with all Government initiatives in the cloud space, the initiative is expected to provide cost savings 
through the consolidation of the IT Infrastructure, improve IT operational efficiencies and – a concern to 
governments across the globe – provide tangible benefits to the environment.

5.5.2 US Government

In 2009 the Cloud Computing Mall for government agencies was designed and deployed to provide a portal 
for government agencies to learn, use, acquire, manage, and secure cloud services.

In 2010, Recovery.com Launched. It was established by the 2009 Recovery Act and required the Recovery 
Board to create and manage a web site “to foster greater accountability and transparency in the use of funds 
made available in this Act.” The site displays for the American public the distribution of all Recovery funds 
by federal agencies and how the recipients are spending those funds. The site also offers the public the ability 
to report suspected fraud, waste, or abuse related to Recovery funding.

In 2011, Federal Cloud Computing Strategy (Cloud First), a publication from the Office of the White 
House, US Chief Information Officer, outlined the strategy for cloud computing and outlined high level 
 benefits and guidance. The strategy was designed to:

 ● articulate the benefits, considerations, and tradeoffs of cloud computing;
 ● provide a decision framework and case examples to support agencies in migrating towards cloud computing;
 ● highlight cloud‐computing implementation resources;
 ● identify federal government activities and roles and responsibilities for catalyzing cloud adoption.

The US Federal Budget for 2011 incorporated cloud computing as a major part of its strategy to achieve 
efficiency and reduce costs. It stated that all agencies should evaluate cloud computing alternatives as part of 
their budget submissions for all major IT investments, where relevant. Specifically:
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 ● By September 2011, all newly planned or performing major IT investments acquisitions had to complete 
an alternatives analysis that included a cloud‐computing‐based alternative as part of their budget submis-
sions.

 ● By September 2012, all IT investments making enhancements to an existing investment had to complete an 
alternatives analysis that included a cloud‐computing‐based alternative as part of their budget submissions.

 ● By September 2013, all IT investments in steady state had to complete an alternatives analysis that 
included a cloud‐computing‐based alternative as part of their budget submissions.

 ● In 2010, the US Government established FedRAMP to streamline the process of determining whether 
cloud services met federal security requirements. As of May 2013, nine vendors had met the requirements 
and were granted “authority to operate” all the IaaS category.

 ● In 2013, the General Services Administration (GSA) was exploring the concept of cloud brokerage as a 
service. This initiative was intended to address agencies challenges in managing multiple service  providers 
and the legacy infrastructure and services. In late 2013, GSA put out to bid for a pilot to evaluate and learn 
more about the potential benefits.

5.5.3 UK Government

In 2010 the United Kingdom implemented its G‐Cloud strategy to bring economic efficiencies and sustain-
ability to the government’s information and communication technology (ICT) operations. The initiative was 
committed to the adoption of cloud computing and delivering computing resources. Specific mention was 
made that the initiative would make “fundamental changes” in how the public sector procured and operated 
ICT. The G‐Cloud strategy detailed how the government will achieve this as follows:

 ● achieve large, crossgovernment economies of scale;
 ● deliver ICT systems that are flexible and responsive to demand in order to support government policies 

and strategies;
 ● take advantage of new technologies in order to deliver faster business benefits and reduce cost;
 ● meet environmental and sustainability targets;
 ● allow government to procure in a way that encourages a dynamic and responsive supplier marketplace and 

supports emerging suppliers.

5.6 The Foreseeable Future – Current Initiatives

5.6.1 Green IT

Governments are very aware of the widespread concerns regarding the environment and our collective use 
and potential waste of resources. Whether deliberately, as in the case of Japans Kasumigaseki Cloud initia-
tive, or as an unplanned cause and effect, the movement of government computing to the cloud is providing 
a real positive effect on the environment.

The combined effect of consolidating IT services into new high‐density, energy‐efficient datacenters and 
thereby closing inefficient facilities can reduce the carbon footprint considerably. The datacenter builds 
 during the 1900s to accommodate the .com boom are now obsolete as virtually every energy‐consuming 
component of datacenters has undergone changes and they are now more efficient and scalable. The preva-
lence of hardware virtualization and the ability to consolidate 20 servers, serving 20 different applications 
into one server and 20 applications has pushed the datacenters to upgrade power, and chilling, and to rear-
range or build new to meet the new, smaller, and highly condensed infrastructure footprint. Hardware and 
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virtualization software vendors are including the “Green IT” benefits of their products in their literature and 
conversations, and some will even calculate the potential reduction in the customer’s carbon footprint based 
on customized transformation requirements.

As the datacenters of old are retired or upgraded and the worldwide effort to consolidate and improve ser-
vices and efficiencies through cloud technologies comes to fruition, the positive environmental impact will 
be of real value.

5.6.2 Cloud Service Management (Brokerage)

As agencies further adopt cloud services of all varieties they are often met with the same challenges they have 
been experiencing for decades but with less direct control. Although the cloud concept promises less 
 complexity in both providing services and management of those services, the reality is that IT managers still 
find themselves in the historically difficult position of managing their legacy IT and cloud‐service providers, 
The challenge of problem identification and resolution is further complicated because of the nature of cloud 
services. The US General Services Administration is leading an effort to alleviate this management problem 
and is reviewing the concept of cloud brokerage services.

The cloud broker provides a set of services that fills the gaps many agencies have found when trying to 
establish, monitor and manage cloud services and their providers. The following are the primary roles for the 
cloud broker and the value that is expected:

 ● End‐to‐end service visibility through the use of a robust tool set and state‐of‐the art monitoring capabili-
ties the cloud broker will enable the agency to be proactively notified of service issues and to monitor the 
end‐to‐end service. The traditional problem of multiple vendors to provide a complete service (e.g. SaaS, 
PaaS and communications links) are aggregated and treated as a single service by the cloud broker.

 ● Single‐point‐of contact (the cloud broker) for the end‐to‐end service and bound by specific SLAs to 
 measure performance and use metrics. The problem of vendors pointing fingers and not working together 
is no longer the user’s issue.

 ● Provides a set of proven end‐to‐end service options from the GSA service catalog, which, as more  agencies 
participate, will reduce time to deliver, provide a wider selection of E2E services, and result in potential 
cost savings.

In summary, cloud computing presents a new approach for governments in managing the cost, utilization, 
redundancy, and complexity of their IT projects. Due to the unique nature of government computing, there 
are additional constraints and requirements beyond those of normal private‐sector organizations but the need 
and ability to include cloud computing in the portfolio of IT solutions is clear and compelling.
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6.1 Introduction

Cloud computing has been promoted as a panacea for long‐standing problems concerning the use, development, 
and management of information technologies (IT). One might argue that it is yet another “catchy term,” and 
has evolved from other unfilled promises such as application service provisioning, IT outsourcing, and ser-
vice‐oriented architecture. The premise of these attempts, including cloud computing, is that the paradigm 
underpinning such IT aspects as development, management, distribution, use, and pricing, is subject to 
change. We have already witnessed such changes in the market along with alternative ecosystems in which 
new players are taking off or established firms are about to change (IDC, 2010; Gartner, 2011; Rymer and 
Ried, 2011). In this chapter, we focus on a specific cloud‐computing layer, which is called platform as a 
 service (PaaS). The emergence of this layer raises several questions regarding the existence of traditional 
development environments and tools, as well as the viability of alternative ecosystems along with new 
 positions in the market. It is this questioning that shows the need for making sense of what underpins the very 
idea of PaaS and how the idea is manifested in the market, and finally what implications can be drawn for 
academics and practitioners.

Cloud computing essentially refers to a model for enabling ubiquitous, convenient, on‐demand network 
access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, 
and services), which can be provisioned and released rapidly with minimal management effort or service 
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provider interaction (Mell and Grance, 2011). As such, cloud‐computing‐based services reflect salient 
 features of cloud computing including metered billing (“pay as you go”), resource pooling, virtualization, 
automation, and elasticity.

Given the evolving conceptual ground of cloud computing, three abstraction layers (infrastructure,  platform, 
and software as services, abbreviated Iaas, PaaS, and SaaS respectively) have been proposed and to a large 
extent agreed upon to frame out cloud‐computing endeavors. Each layer has its own characteristics and requires 
in‐depth analysis of its essential elements with exemplary solutions. As discussed in later  sections, PaaS medi-
ates between SaaS and IaaS conceptually and practically, and appears to be a challenging and promising area 
for academics and practitioners. Thus, in the next section, we elaborate the fundamentals of PaaS and outline 
core components of a typical platform as a service. Given the proliferation of such  platforms, appropriate cat-
egories are needed, which are provided in the third and fourth sections. Further attention is given to aPaaS as a 
particular category in the fourth section. We then articulate basic approaches to aPaaS and discuss metadata 
aPaaS by utilizing our industry experience as well as a review of recent studies on this subject. The last section 
concludes by considering implications of the present study for academics and practitioners.

6.2 Fundamentals of the PaaS Model

Cloud computing offerings and deployments can be described in two different ways – by the service architecture 
and by the network deployment architecture. Network deployment architecture shows how the resources are 
physically deployed, and generally falls into two categories: private clouds and public clouds. The service archi-
tecture defines the set of resources that a cloud provider is offering. The most common model in use today con-
ceptualizes three service models in terms of a layered aspect of hardware and software stack. The three service 
layers comprise software as a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS) 
layers. At the bottom of the stack is the IaaS, which comprises the facilities, hardware, abstraction, core connec-
tivity, delivery, and API layers. The addition of integration and middleware services forms the PaaS module.

Platform as a service acts as a bridge between IaaS and SaaS – it is the runtime environment, the middle-
ware of the cloud service architecture. In a cloud‐computing model, what is meant by a platform is a “stand-
ard for the (virtualized) hardware of a computer system, determining what kinds of software it can run.” In 
principle, a platform would not remain visible to cloud consumers, as it is the layer that provides integration 
and middleware services for Web‐based applications. However, cloud‐computing platforms are very different 
from traditional platforms, with many additional components exclusively built for SaaS. Such components, 
unique to SaaS applications, include, for example, SaaS‐to‐SaaS and SaaS‐to‐on‐premises integration tools, 
billing and metering applications, and infrastructure provided over the cloud. Moreover, a SaaS platform has 
to be multitenant. Nearly all of these new components, which were unnecessary in traditional platforms, have 
come to be provided as a service – i.e. on‐demand, and over the cloud. Thus PaaS evolved from the SaaS 
concept, which emerged as an independent cloud‐service model, combining an application platform with 
managed cloud infrastructure services. Platform‐as‐a‐service cloud providers have become additional actors 
in the cloud ecosystem, offering new products to the software market.

The focus of PaaS has widened its scope in recent years, touching upon not only the runtime environment 
of a SaaS application but also the tools and methods of developing apps in the cloud. Platform as a service, 
in this context, can be defined as a “complete application platform as a service” that offers independent 
 software vendors (ISVs) as well as individuals the means to produce “multi‐tenant SaaS solutions or various 
application integration solutions” in a fast and efficient way (Beimborn et al., 2011). Thus, some of the PaaS 
offerings comprise a predetermined development environment with all tools for development, testing, and 
deployment cycles of an application.
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Emerging PaaS solution providers take the responsibility for managing the computing infrastructure, 
including runtime execution stack, database, middleware, security, performance, availability, reliability, and 
scalability. They provide middleware technologies as a service, such as applications servers, enterprise 
 service buses (ESBs), business process modeling (BPM) tools, and message brokers in order for SaaS solu-
tions to launch consistently. In addition to providing a complete set of technologies required in developing 
SaaS applications, there is a new trend in platform providers, which is to offer marketing and / or selling 
opportunities.

It is generally agreed that the core components of PaaS offerings should at least comprise the following 
(Beimborn et al., 2011; Teixeira et al., 2014):

 ● application runtime environments;
 ● database system and middleware.

Supplementary components, which differentiate contemporary PaaS offerings, can be listed as follows:

 ● facilitated development environment (cloud IDE);
 ● marketplace of applications deployed into the corresponding PaaS.

One of the main components of a PaaS computing platform is its runtime environment, which must satisfy 
such features as scalability, security, and portability. Run‐time environments support multitenancy architec-
tures: all tenants share a common codebase and instances of an application.

Another important component of a PaaS, which focuses particularly on fast and efficient development of 
SaaS applications, is the Web‐integrated development environment (WIDE) (also known as a Cloud IDE). 
Often, WIDEs support the use of multiple programming languages and offer a wide range of libraries and 
tools for modeling, implementing, testing, and version control. Depending on the application domain, various 
database management systems (DBMs) are also included. Integration of discrete data from services is usually 
done by representational state transfer (RESTful) (Richardson and Ruby, 2007).

Platform as a service offerings can be analyzed further with respect to application development capabili-
ties. On the one hand, there are those platforms providing a core application as their own, letting ISVs 
develop extensions (or add ons) for it. In this case, any software makes sense only as an add‐on to the 
 provider’s core application. Other platforms let users to develop their own stand‐alone SaaS style applica-
tions. Forrester’s study (see Figure 6.1) is an attempt to clarify how the ongoing interaction between ISVs and 
cloud service providers create an ecosystem that has ushered in migrating their on‐premise software solutions 
to PaaS solutions.

In addition to the core components of PaaS, many cloud providers enrich their platforms by providing an 
online marketplace, which serves two purposes: giving support to ISVs’ sales activities, and providing a 
software repository for application developers.

Software development on a PaaS is a new paradigm. It has caused a shift from the traditional waterfall 
model (or its modified flavors) of sequential software development processes to agile software development 
methodologies consisting of multiple processes at every phase. At the end of the day, developers want to 
focus on coding for the business, so that they solve business problems. They do not want to configure operat-
ing systems (OSs), storage blocks, or IP addresses on virtual machines. Platform as a service, in this context, 
should also focus on presenting developers with agile, self‐service provisioning of a full application platform, 
and tools to use for agile development of applications. In that sense, PaaS lowers the economic barrier for any 
project ensuring developers can access computing resources they could not otherwise afford.

Basically, two major categories of PaaS offerings have come into prominence: integration platform as a 
service (iPaaS) and application platform as a service (aPaaS).
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6.3 Integration Platforms as a Service (iPaaS)

The shift to the cloud is one of the biggest shifts in IT ever. The number of SaaS solution providers is growing 
by leaps and bounds. In addition to pure SaaS players, legacy software vendors have started to convert their 
product ranges from traditional single‐tenant on‐premise application models to multitenant SaaS model cloud 
offerings (Hai and Sakoda, 2009). Business users are purchasing independent SaaS applications in ever 
increasing numbers. It is estimated that there are over a thousand cloud computing companies specializing in 
SaaS around the world (Gartner, 2011).

One of the challenges for this shift is SaaS integration. Integration services in the cloud play a critical role for 
the success of any application within an organization or across organizations (Marian, 2012). In this regard, cloud 
integration can take place as cloud‐to‐cloud integration or cloud‐to‐on‐premise integration. One of the fundamen-
tal prerequisites of integration is a bridge among SaaS applications. The way for the SaaS model to handle inte-
gration has been to leverage a set of Web application programming interfaces (APIs). There are about 5000 APIs 
published by SaaS solution providers. The number is doubling every 6 months. With this rapid growth of cloud 
services and APIs, the question is how to harness all that technology and how to make it work seamlessly.

Standardization efforts to achieve seamless integration are promising, but require an ecosystem that is 
mature enough in terms of united and strong collaborations among industry partners. For instance, as an open 

Browser only
No client
footprint

SLA reporting

Single
tenant
dev.
test

PaaS
IDE

SaaS migration

Application components provided
by OEM supplier

Marketing

Pricing

Contracting

SaaS application
Provided by the ISV

Billing

SLA
management

Provisioning
“Coded” business logic

Application server – DBMS

Mediation of SaaS components
and legacy interaction

ESB – MDM – metadate

User interface
framework

BPMS, BRMS,
CEP, BI

Traditional app
platform: “coded”
business logic;

application
server – DBMS

SaaS ALM
(versioning,

testing,
deployment)

Lagacy/cloud
integration
(optional)

Infrastructure options:
• Hosted by PaaS provider
• Provisioned by scale-out clouds
• Licensed to “private clouds”

User
management

Orchestration
of multiple
SaaS apps

Configure
integration of
legacy apps,
data, metadata,
master data

Subscription or
purchasing of
functionality

Subscriber

Local
integration

hub

Subscriber
portal

Provider
portal

SaaS application SaaS ISV

PaaS sandbox

Multitenant platform

Application components
as a service

Web 2.0 UI

Integration platform

Application platform

SaaS security framework

Model platform

Figure 6.1 Forrester’s PaaS reference architecture. Source: Rymer and Ried, 2009. Reproduced with permission 
of Forrester Research, Inc.



66 Encyclopedia of Cloud Computing

community leading cloud standard, Open Cloud Computing Interface (OCCI) was initiated to create a protocol 
(RESTful) for all kinds of API management. The current release of OCCI aims to support other models includ-
ing IaaS and SaaS. Yet another standardization effort, Cloud Application Management for Platforms (CAMP), 
submitted to OASIS for nonassertion mode use, is backed by Oracle Corp., CloudBees Inc., Cloudsoft Corp., 
Software AG, Huawei Technologies Co., Rackspace Inc., Redhat Inc.

Organizations may be tempted by the ease of use of Web service integration tools available in most 
 development environments but in the long term this would raise serious issues by creating connections liable 
to break by software upgrades, or possibly by additional integrations.

Some SaaS solution providers supply integration as part of their service offering but, in general, companies 
are not willing to solve these integration problems because it would pull them away from their core business.

For example, in order to link a shipping application and a billing application companies need to write some 
custom point‐to‐point integration code. Over time, with ever increasing SaaS incorporation into business, 
they would need to write hundreds of such applications. And if anything changes, they would need to update 
every connection.

As more companies move their business into SaaS, there have been new emerging partners called 
integration platform as a service (iPaaS), which are cloud integration platforms that provide all the ben-
efits and architecture of SaaS. A typical iPaaS can be used for cloud‐to‐cloud, cloud‐to‐on‐premise, or 
even on‐premise‐to‐on‐premise integration including legacy applications. To achieve this, they provide 
specialized  connectors for SaaS applications that help the sites to make connections using different pro-
tocols. In most of the cases these connectors can significantly reduce the integration effort. In such 
component architecture the traditional role of a programmer is replaced by a component assembler who 
constructs middleware from prefabricated connectors, which are displayed as icons in a graphical user 
interface (GUI).

6.4 Application Platform as a Service (aPaaS)

Among the PaaS, a major category is those products that offer a combination of some form of computing 
infrastructure, which is made accessible over public clouds.

What they offer is a set of development tools and services, much like traditional integrated development 
environments (IDEs), which allow them to create applications and have them deployed and executed over the 
PaaS infrastructure. Such platforms have come to be referred to as application‐Platform‐as‐a‐Service (aPaaS). 
What distinguishes an aPaaS from a basic PaaS offering is the inclusion of two more core components: a Web 
2.0 user interface (UI) and a model platform. The UI is a what‐you‐see‐is‐what‐you get (WYSIWYG)‐style 
software development editor. The model platform helps implementing the business logic. In this respect 
aPaaS is what can be called an extended application server. There are three different approaches to applica-
tion development on aPaaS. Analyst reports (e.g., Gartner, 2011) and industry players (e.g. OrangeScape) 
tend to agree on three service layers, which comprise metadata application platform as a service (metadata 
aPaaS), framework application Platform as a service (framework aPaaS), and Instance application Platform 
as a Service (Instance aPaaS) layers.

6.4.1 Instance aPaaS

The Instance aPaaS layer lies at the bottom of aPaaS stack, which is closer to the IaaS layer of the cloud‐com-
puting architecture. A cloud instance refers to a virtual server instance (a virtual machine) from an IaaS solution 
provider. In this service model, Web‐based applications are developed on and deployed to dedicated cloud 
instances. Instance aPaaS solution providers take responsibility for managing development and deployment 
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components, including on‐demand instance creation, Web application and database servers, monitoring and 
process management, databases and a number of application server and framework choices for server‐side 
application development.

Independent software vendors, on the other hand, are responsible for the planning of instance resources 
such as adding or removing instances, adding or removing capacity from instances, or deploying new appli-
cation versions. Thus, Instance aPaaS tenants are experienced software developers and systems programmers 
who get direct command line access to the operating system but have to take care of all the details of actually 
deploying the code.

Platform consumers are billed according to platform support options, the number and types of cloud 
instances, or the bandwidth allocated to them on a pay‐as‐you‐go basis.

6.4.2 Framework aPaaS

In framework aPaaS, developers deploy code conforming to framework conventions and let the platform 
worry about deploying code onto compute nodes. Framework aPaaS presents a platform stack chosen by the 
provider; it is often tightly coupled to its infrastructure. Third‐party libraries, which satisfy platform restric-
tions, can be included. For example, Google App Engine abstracts Java and Python application server 
instances using the Servlet request model and common gateway interface (CGI). VMforce provides an 
 external environment for deploying abstractions that are structured around the Spring Framework. Salesforce.
com’s Heroku is another example of framework aPaaS.

This approach to aPaaS takes into account instances aPaaS with a frame consisting of interoperable ele-
ments. Such framing is taken for granted by the users (i.e., developers needing some or all of these elements). 
One way of framing can be based on key phases of a software development process, which are development, 
distribution, and operations phases (Giessmann and Stanoevska‐Slabeva, 2013). In this regard, one can 
 identify specific services for each element of the frame. For instance, the framework aPaaS may provide 
additional features such as monitoring, community features for the operation phase with integration with 
other elements of the framework. The advantage of this integration is that developers are facilitated with 
additional features without any configuration problem.

6.4.3 Metadata aPaaS

In this section, we will investigate fundamental metadata aPaaS features as well as provide a basic comparison 
amongst metadata aPaaS solutions in the market to date; Force.com, ImonaCloud.com, Mendix.com and 
OrangeScape.com.

At a high abstraction level, metadata aPaaS offers visual tools to customize data models, application logic, 
workflow, and user interfaces. It also enables users (including nondevelopers) to customize applications 
according to their own business needs.

An architectural concern for a typical aPaaS is the application metadata development environment, which is 
one of the most distinguishing architectural characteristics of aPaaS, it targets novice coders (even “noncoders”) 
with a cloud computing application development framework for building standalone and/or  integrated applica-
tions. Thus cloud service providers are responsible for providing and maintaining hardware resources, operating 
systems, development frameworks, and control structures. Users (clients), who can use these tools to build and 
host applications in the cloud, are responsible for installing and managing the applications, they want to use.

From a customer (tenant) perspective, multitenancy as an architecture principle adopted in aPaaS (Bezemer 
et al., 2010) enables customers to share the same hardware resources, by offering them one shared application 
and database instance, while allowing them to configure the application to fit their needs as if it runs on a 
dedicated environment.
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Basically, a typical metadata aPaaS is a metadata‐driven application development environment that targets 
novice coders with a cloud computing application development framework for building standalone and / or 
integrated applications. With Force.com and ImonaCloud.com, developers using Web‐based visual program-
ming tools describe an application’s data model, application logic and UI components. In this approach, 
deployment of the application metadata to the platform infrastructure is instant.

6.5 A Brief Comparison of Leading PaaS Solution Providers

Given the dynamic nature of the PaaS market, a comprehensive analysis of the PaaS market in terms of 
 providers and customers is not viable. It is, however, important to use examples to demonstrate salient char-
acteristics of PaaS.

OrangeScape.com and Mendix.com use a standalone IDE that is downloaded to a developer’s personal 
computer (PC). This way, while the development of an app’s metadata takes place in a richer user inter-
face, after the development is over, deployment up to the cloud infrastructure takes place through just a 
few clicks.

With metadata aPaaS, the developer gains access to a metadata‐driven development environment. 
Classically, metadata is defined as “data about data.” As a programming language concept, a less ambiguous 
definition would be “data about the containers of data.” A major obstacle in developing metadata aPaaS 
 systems based on metamodeling is the need for an underlying problem‐solving algorithm. For this reason 
metadata aPaaS environments tend to be special‐purpose in nature, designed for use in particular applica-
tions. Most of the metada aPaaS options target business analysts.

In such an environment the task of a business analyst becomes that of developing the business dictionary, 
the business logic, presentation layer artefacts rather than of hardcoding an entire application program.

Developers configure custom data objects, code, and presentation elements; they create metadata inter-
preted by the platform at runtime. The decoupling of application metadata from the application runtime is a 
very strong proposition to solve cloud computing’s vendor lock‐in problem. Considering that an PaaS is 
deployed on multiple IaaS offerings, one can expect that application metadata can easily be transferred across 
multiple PaaS runtimes deployed across major IaaS vendors, thus giving a chance to end users to opt for an 
infrastructure offering of their choice.

End users would prefer to have a chance to choose among IaaS vendors according to their availability, 
quality of service (QoS) and pricing strategies. This would ultimately encourage competition amongst IaaS 
vendors, solving the lock‐in problem. OrangeScape offers private and public cloud options to accommodate 
its metadata aPaaS offering according to business needs. ImonaCloud is already deployed into major IaaS and 
PaaS offerings; applications developed and used on ImonaCloud can seamlessly be transferred across the 
majority of IaaS vendors, whereas apps developed on Force.com platform lock in to its vendor (Armbrust 
et al., 2010).

Another innovative aspect in PaaS architectures is the marketplace offering complementary to the 
application development platform. Marketplaces are becoming an inevitable component of PaaS offer-
ings, so that the platform attracts customers and thus developers. While Azure, as an instance aPaaS, is 
offering applications in its Azure Marketplace, Google App Engine, as a framework aPaaS, is offering 
Google Apps Marketplace, Force.com as a metadata aPaaS, is offering applications in various vertical 
sectors, as well as applications extending SalesForce’s CRM functionality in its AppExchange.com 
Marketplace. Integration at the metadata level of applications offered in the marketplace is a critical 
 consideration in terms of attracting more customers. The ImonaCloud.com application development 
 platform offers its developers the possibility of extending the functionality of any application placed in 
its marketplace.
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6.6 Conclusion

The customer’s choices among PaaS models and offerings differ according to needs. Providers of aPaaS 
choose the technology frameworks and tools on behalf of their customers to improve productivity. One should 
bear in mind that PaaS technology stack choices are often optimized for their platforms. If keeping technol-
ogy stack choices open is a priority – if you want to run your application using a specific library of your 
choice – using IaaS offerings may be more valuable than the services provided by a PaaS provider.

Each different aPaaS type forces developers to change their programming models to suit the platform style. 
Instance aPaaS requires the least significant changes, framework aPaaS requires the most significant changes, 
and metadata aPaaS forces teams to abandon most of their existing models entirely.

Let us use an analogy to make it clearer. Instance aPaaS is like shopping and cooking for yourself. 
Framework aPaaS is going out to a restaurant, where cooking is taken care of for you, but you have to make 
it to the restaurant. Finally metadata aPaaS is ordering online, you continue your daily routine and only focus 
on eating. Choices made differ according to how you feel that day, your budget, or diet.

As a result, one needs to understand the competencies, restrictions, and business model for each of the 
PaaS models before adopting them.
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7.1 Introduction

Cloud reference frameworks are important tools for enabling meaningful dialogs when comparing cloud 
technical architectures, for informing business stakeholders evaluating cloud services, and providing for a 
common cloud taxonomy across organizational boundaries. Reference frameworks are composed of a variety 
of reference architectures and reference models, which collectively describe all of the relevant aspects in a 
context that can then be applied to particular stakeholder viewpoints and interests.

The majority of this chapter describes commonly discussed cloud and related reference frameworks. These 
frameworks most commonly arise from standards bodies, consortiums, and forums where the need for 
 common ground generally overrides proprietary interests. As a result, any particular reference framework 
embodies the perspectives and interests of the organization from which it emerged, such as a security or any 
other architectural view.

Systemic interoperability, being a critical factor for market success in general, is enabled through the 
development and adoption of reference frameworks. By leveraging each framework’s architectural view in 
the context of any particular initiative, business outcomes are more clearly mapped to enabling technologies, 
which lowers risk while enhancing investment return.

Cloud Reference Frameworks
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7.2 Review of Common Cloud Reference Frameworks

7.2.1 NIST Cloud Reference Framework

The National Institute of Standards and Technology (NIST) promotes the US economy and public welfare by 
providing technical leadership for the measurement and standards infrastructure. The Institute has published 
a reference architecture document for cloud computing to foster adoption of cloud computing, and its imple-
mentation depends upon a variety of technical and nontechnical factors. This document was published in the 
form of Special Publication 500‐292 (Liu et al., 2011). Titled NIST Cloud Computing Reference Architecture 
(RA) and Taxonomy, this document explains the components and offerings of cloud computing. The NIST 
Cloud RA is a vendor‐neutral architecture and provides flexibility for innovation within the framework. The 
NIST Cloud RA is presented in two parts:

 ● a complete overview of the actors and their roles;
 ● the necessary architectural components for managing and providing cloud services such as service deploy-

ment, service orchestration, cloud service management, security, and privacy.

The NIST cloud‐computing reference architecture defines five major actors:

 ● A cloud consumer represents a person or organization that uses the service from a cloud provider via a 
business relationship. A cloud consumer uses the appropriate service based on a service catalog and a 
service contract with the cloud provider.

 ● A cloud provider acquires and manages the computing infrastructure and cloud software that provides the 
services and makes arrangements to deliver the cloud services to the cloud consumers through network 
access. The types of services can be infrastructure as a service (IaaS), software as a service (SaaS), and 
platform as a service (PaaS).

 ● A cloud carrier provides network connectivity and transport of cloud services from cloud providers to 
cloud consumers.

 ● A cloud auditor conducts independent assessments of cloud services, information system operations, 
performance, and security of the cloud implementation.

 ● A cloud broker manages the usage, performance, and delivery of cloud services, and negotiates relation-
ships between cloud providers and cloud consumers. They can provide intermediation, aggregation, and 
arbitrage functions.

A cloud provider’s activities can be described in five major areas, as shown in Figure 7.1: service deploy-
ment, service orchestration, cloud service management, security, and privacy. Service deployment models 
include public cloud, private cloud, community cloud, or hybrid cloud. The differences between these service 
models are based on how cloud resources are provided to a cloud consumer.

Service orchestration is the process of composing system components, like hardware and software 
resources, in an abstracted fashion, to support the cloud providers for the creation of a service.

Cloud service management includes service‐related functions (business support, provisioning/configura-
tion, and portability/interoperability) for services consumed by cloud consumers. Business support can 
include customer care, contractual issues, inventory management, accounting / billing, reporting / auditing, 
and pricing management. Provisioning / configuration consists of resource provisioning, monitoring and 
reporting, SLA, and metering management. Cloud service management may also include mechanisms to 
 support data portability, service interoperability, and system portability.
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The NIST Cloud RA makes security a concern of cloud providers, consumers, and other parties. Cloud‐
based systems address security requirements such as authentication, authorization, availability, confidential-
ity, identity management, integrity, audit, security monitoring, incident response, and security policy 
management. With regard to privacy aspects of RA, personal information (PI) and personally identifiable 
information (PII) should be protected and processed appropriately by the cloud providers.

Key Takeaway

This framework enables use case and scenario planning methods by providing major actor and service con-
structs for cloud.

7.2.2 IETF (Draft) Cloud Reference Framework

This section discusses the Cloud Reference Framework submitted to Internet Engineering Task Force (IETF) 
as a draft. The IETF is an open international community of network designers, operators, vendors, and 
researchers concerned with the evolution of the Internet architecture and operations. The IETF‐proposed 
draft cloud reference framework describes different layers for interoperability, integration, and operations of 
virtualized applications (Figure 7.2). The IETF draft reference framework provides standardization of cloud 
functional elements and the interfaces between the functions.

The cloud reference framework consists of the following horizontal layers:

 ● user / customer side services / functions and resources layer (USL);
 ● access delivery layer (ADL);
 ● cloud service layer (CSL);
 ● resource control (composition and orchestration) layer (RCL);
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 ● resource abstraction and virtualization layer (RAVL);
 ● physical resource layer (PRL).

The vertical cross‐layer cloud management functions perform the following:

 ● configuration management;
 ● services registry and discovery;
 ● monitoring with logging, accounting, and auditing;
 ● service‐level agreement (SLA) management;
 ● security services and infrastructure management.

The cloud reference framework also describes Intercloud. Intercloud provides a capability to enable port-
ability and interoperability of independent cloud domains, and cloud provisioning and operation services.

The USL functions include access to information and identity tasks in the cloud, including visualization 
and administrative management functions.

The ADL hosts infrastructure components to deliver cloud‐based services to customers and their access by 
end users. The ADL may include endpoint functions such as user portal and service gateways, like distributed 
cache and content delivery network (CDN) gateways. The Intercloud functions of the ADL include Intercloud 
infrastructure to support cloud federation, federated identity, cloud services registry / discovery, and cloud 
brokering functions.

The cloud service layer provides functionality for the three cloud services models, namely, IaaS, PaaS, and 
SaaS. The CSL develops these services based on the basic technical resources of CPU, memory, hard‐disk 
space, and bandwidth.

The resource control layer manages and integrates the virtual resources to the upper layers and provides 
the ability to create efficient, secure, and reliable services. Additionally, the RCL layer has the following 
responsibilities:

 ● resources composition and orchestration;
 ● resource schedule control;
 ● Intercloud resource control;
 ● resource availability control;
 ● resource security management;
 ● services lifecycle management.
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Figure 7.2 IEFT cloud reference architecture. Source: Khasnabish et al., 2013
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The RAVL provides the abstraction of the physical resources to the higher layers. The abstracted physical 
resources are abstracted first, next they are composed by the cloud management software (at composition and 
abstraction layers), and finally they are deployed as virtual resources on the virtualized physical resources. 
The function of the RAVL is to convert physical resources into a virtual resources pool. As part of the RAVL, 
the networking (resources) layer converts network capabilities and capacities (such as bandwidth, ports, etc.) 
into a set of resource pools, which can be leveraged by the upper layers. The resource pools include virtual 
switch, virtual router, virtual firewall, virtual network interface, virtual network link, and virtual private net-
work (VPN) resources.

The PRL consists of resources like CPU, memory, hard disk, network interface card (NIC), and 
 network ports.

As noted, in addition to the above‐mentioned layers, this framework also provides vertical functions that 
run across all of those layers. The functions provided by the vertical layer are cloud management plane, cloud 
configuration management, cloud service registry / repository, cloud monitoring, accounting, and audit man-
agement, cloud SLA management, and cloud security services management.

Key Takeaway

This framework provides the essential architecture building blocks for engaging cloud networking and asso-
ciated communications services.

7.2.3 Cloud Security Alliance: Cloud Reference Model

The Cloud Security Alliance (CSA) is a nonprofit organization that promotes research into best practices 
for securing cloud computing and the ability of cloud technologies to secure other forms of computing. 
The CSA has developed a cloud reference model, coupled with a security and compliance model 
(Figure 7.3).

The CSA’s Cloud Reference Model has IaaS as the foundation of all cloud services, with PaaS building 
upon IaaS, and SaaS in turn building upon PaaS. As a result, in addition to capability inheritance, information 
security issues and risk are also inherited.

Infrastructure as a service includes the infrastructure resource stack, including facilities, hardware 
 platforms, abstraction, and connectivity functions. It provides the capability to abstract resources, as well as 
to deliver physical and logical connectivity to those resources. IaaS provides a set of Application Programming 
Interfaces (APIs), which allows management and other interaction with the infrastructure.

Platform as a service provides a layer of integration with application development frameworks, middle-
ware capabilities, and functions such as database, messaging, and queuing. These services allow developers 
to build applications on the platform with programming languages and tools.

Software as a service builds upon the underlying IaaS and PaaS stacks and provides a self‐contained 
o perating environment that is used to deliver the entire software user experience, including the content, its 
presentation, the application, and management capabilities. Based on IaaS, SaaS, or PaaS, consumers can 
leverage their content and metadata to develop and deploy applications.

The security and compliance models portray cloud service mapping, which can be compared against a 
catalog of security controls to determine which controls exist and which do not — as provided by the con-
sumer, the cloud service provider, or a third party (Figure 7.3). The security stack addresses several layers 
including physical, compute and storage, trusted computing, network, management, information, and appli-
cations. The security stack can in turn be compared to a compliance framework or set of requirements such 
as PCI, DSS, HIPPA, or FedRAMP.
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The CSA also has 13 other domains, which highlight strategic and tactical security within a cloud environ-
ment and can be applied to any combination of cloud service and deployment models. The domains are divided 
into two broad categories: governance and operations. The governance domains are broad and address strategic 
and policy issues, while the operational domains focus on more tactical security concerns and implementation 
within the architecture.

The governance domain consists of:

 ● governance and enterprise risk management;
 ● legal issues, including contracts and electronic discovery;
 ● compliance and audit;
 ● information management and data security;
 ● portability and interoperability.

The operational domain focuses on:

 ● business continuity and disaster recovery;
 ● datacenter operations;
 ● incident response, notification, and remediation;
 ● application security;
 ● encryption and key management
 ● Identity and access management;
 ● virtualization;
 ● security as a service.
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Figure 7.3 CSA cloud, security, and compliance reference model. Source: Archer et al. (2011)
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Key Takeaway

This reference model provides the essential architectural building blocks for engaging security and compliance 
for cloud initiatives.

7.2.4 Distributed Management Task Force Common Information Model

Founded in 1992, the Distributed Management Task Force, Inc. (DMTF) focuses on collaboration and the 
development of systems management standards, as well as their validation, promotion, and adoption in IT 
organizations. Its standards provide common management infrastructure components for instrumentation, 
control, and communication in a platform‐independent and technology‐neutral way.

Initially developed in 1997, their Common Information Model (CIM) provides a common definition of 
management information for systems, networks, applications, and services, and allows for vendor extensions. 
The CIM’s common definitions enable vendors to exchange semantically rich management information 
between systems throughout the network. As a conceptual information model not bound to a particular 
 implementation, CIM allows for the interchange of management information between management systems 
and applications in a vendor‐neutral fashion. This can be either “agent to manager” or “manager to manager” 
communications that provides for distributed system management. There are two parts to CIM: the CIM 
specification and the CIM schema.

The CIM specification describes the language, naming, and Meta schema, and mapping techniques to other 
management models such as simple network management protocol (SNMP), management information bases 
(MIBs), distributed management task force (DMTF), and management information formats (MIFs). The 
Meta schema is a formal definition of the model. It defines the terms used to express the model and their 
usage and semantics. The elements of the Meta schema are classes, properties, and methods. The Meta 
schema also supports indications and associations as types of classes and references as types of properties.

The CIM schema provides the actual model descriptions. The CIM schema supplies a set of classes with 
properties and associations that provide a well‐understood conceptual framework within which it is possible to 
organize the available information about the managed environment (DMTF Architecture Working Group, 2012).

The CIM schema itself is structured into three distinct layers:

 ● The Core schema is an information model that captures notions that are applicable to all areas of 
management.

 ● Common schemas are information models that capture notions that are common to particular manage-
ment areas, but independent of a particular technology or implementation. The common areas are sys-
tems, devices, networks, applications, metrics, databases, the physical environment, event definition and 
handling, management of a CIM infrastructure (the interoperability model), users and security, policy and 
trouble ticketing / knowledge exchange (the support model). These models define classes addressing each 
of the management areas in a vendor‐neutral manner.

 ● Extension schemas represent organizational or vendor‐specific extensions of the common schema. These 
schemas can be specific to environments, such as operating systems (for example, UNIX or Microsoft 
Windows). Extension schema fall into two categories, technology‐specific areas such UNIX98 or prod-
uct‐specific areas that are unique to a particular product such as Windows.

The formal definition of the CIM schema is expressed in a managed object file (MOF) which is an ASCII 
or UNICODE file that can be used as input into an MOF editor, parser, or compiler for use in an application. 
The unified modeling language (UML) is used to visually portray the structure of the CIM schema.
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Key Takeaway

The DMTF CIM provides essential architecture building blocks for engaging cloud management systems and 
related interoperability concerns

7.2.5 ISO/IEC Distributed Application Platforms and Services (DAPS)

The International Organization for Standardization (ISO) is the world’s largest developer of voluntary 
international standards. Founded in 1947, they have published more than 19 500 International Standards 
covering almost all aspects of technology and business. JTC 1/SC38 consists of three working groups: Web 
services, service oriented architecture (SOA), and cloud computing. JTC 1/SC38 also includes a study 
group on cloud computing whose goals include providing a taxonomy, terminology, and value proposition 
for cloud computing.

The working group on cloud computing was established in February 2012. It is committed to usage 
 scenarios and use cases as an analysis tool to identify specific characteristics and requirements of cloud com-
puting. The relationship between usage scenarios and use cases is illustrated in Figure 7.4. Standard templates 
are provided as well to facilitate the methodology.

Among the major scenarios covered are high level scenarios (including provisioning methods such as IaaS, 
PaaS, and “generic”), cloud delivery scenarios (such as PaaS‐based CRM), business support, migration, 
 portability, interoperability, mobility, and cloud computing for the public sector.

The working group’s collection of use case scenarios and use cases provide a real‐life method to identify 
where standards are or can be applied to cloud reference architectures and help quantify what gaps may exist. 
This method also enables relevant stakeholders to be identified and their collaboration to occur in context.

As of 2013, ISO/IEC JTC 1/SC 38 has eight published standards and five standards are under development 
in DAPS. The cloud computing standards focused on by the working group include standards that define 
cloud computing vocabulary and reference architecture, including general concepts and characteristics of 
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Figure 7.4 Usage scenarios and use cases. Source: ISO/IEC JTC 1/SC 38/WG 3 (2013)



Cloud Reference Frameworks 81

cloud computing, types of cloud computing, components of cloud computing, and cloud computing roles and 
actors (ISO/IEC JTC 1/SC 38/WG 3, 2013). Primary goals of the working group standards activity include 
interoperability and enabling future standards work.

Key Takeaway

This standard provides reference examples and exposes methods and techniques for decomposing business 
requirements in use case and scenario planning efforts, primarily toward application and systems interoperability.

7.2.6 Open Grid Forum Open Cloud Computing Interface (OCCI)

The Open Grid Forum (OGF) is a community of users, developers, and vendors leading the global stand-
ardization effort for distributed computing (including clusters, grids, and clouds). The OGF community 
consists of thousands of individuals in industry and research, representing over 400 organizations in more 
than 50 countries. It is an open community committed to driving the rapid evolution and adoption of applied 
distributed computing.

The purpose of the Open Cloud Computing Interface Working Group (OCCI‐WG) is the creation of 
 practical solutions that interface with cloud infrastructures offered as a service. They focused initially on 
solutions that covered the provisioning, monitoring, and definition of Cloud Infrastructure Services (IaaS). 
The current release of the Open Cloud Computing Interface is suitable to serve many other models in addition 
to IaaS, including PaaS, and SaaS.

The OCCI goals are interoperability, portability, and integration in a vendor‐neutral context with minimal 
cost. The current specification consists of three documents. This specification describes version 1.1 of OCCI. 
Future releases of OCCI may include additional rendering and extension specifications. The documents of 
the current OCCI specification suite are:

 ● OCCI Core: describes the formal definition of the OCCI core model.
 ● OCCI HTTP Rendering: defines how to interact with the OCCI core model using the RESTful OCCI API. 

The document defines how the OCCI core model can be communicated and thus serialized using the 
HTTP protocol.

 ● OCCI Infrastructure: contains the definition of the OCCI Infrastructure extension for the IaaS domain. 
The document defines additional resource types, their attributes, and the actions that can be taken on each 
resource type.

By focusing on the delivery of API specifications for the remote management of cloud infrastructures, the 
work enables the development of vendor‐neutral interoperable tools. Their scope is the high‐level functional-
ity required for lifecycle management of virtual machines or workloads running on virtualization technology 
supporting service elasticity. The API work is supported by use cases that provide context and applicability 
of the API in lifecycle management. Reference implementations are specifically excluded, as are details relat-
ing to supporting infrastructure design (such as storage and network hardware configuration).

Key Takeaway

The OGF OCCI provides essential architecture building blocks for engaging cloud infrastructure analysis and 
design from an interoperability perspective.
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7.2.7 Open Security Architecture (OSA) Secure Architecture Models

Open Security Architecture (OSA) is a not‐for‐profit‐organization supported by volunteers for the benefit of 
the security community. The OSA is divided into three categories: the Control Catalog, the Pattern Landscape, 
and the Threat Catalog. The OSA provides a single, consistent, clearly defined control catalog intended to 
simplify requirements from numerous standards, governance frameworks, legislation, and regulations.

Patterns show the best practice set of controls that should be specified for a given situation, consisting of 
security architectures that address specific security problems. Applying OSA patterns in your work gives you 
a fast start, improves the quality of the solution you deploy, and reduces overall effort (Figure 7.5).

The Control Catalog, based on NIST 800‐53 (2006), provides details for all controls required to create a 
security solution. Controls are mapped against other standards, regulations, legislation, and governance 
standards. To ensure consistency between patterns and application of controls, the OSA has defined “actors” 
for the use cases. OSA actors are prototypical business roles which can be used singly or in combination, 
depending on the intent of the use case.

The OSA Threat Catalog is a list of generic risks that need to be taken into account when rating the applica-
bility of a control to a given pattern. For the classification of top‐level threats, the OSA proposes to categorize 
the threat space into sub‐spaces according to a model of three orthogonal dimensions labeled motivation, local-
ization, and agent. The threat agent is the actor that imposes the threat on a specific asset. Threat agents can be 
human, technological, or force majeure (environmental).
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The Cloud Computing Pattern published by the OSA illustrates the application of controls, actors, and 
threats in the construction of a cloud security reference pattern. The pattern enables the evaluation of a given 
cloud solution according to its function and capabilities in a vendor‐agnostic fashion.

Key Takeaway

The OSA secure architecture model provides essential architecture building blocks for engaging cloud secu-
rity and compliance. It also offers guidance in the application of the architecture building blocks to use case 
and scenario planning efforts for cloud security and compliance perspectives.

7.2.8 Organization for the Advancement of Structured Information Standards

The Organization for the Advancement of Structured Information Standards (OASIS) is a nonprofit consor-
tium that drives the development, convergence, and adoption of open standards for the global information 
society. OASIS promotes industry consensus and produces worldwide standards for security, cloud comput-
ing, SOA, Web services, the smart grid, electronic publishing, emergency management, and other areas.

OASIS cloud‐related standards include:

 ● AMQP: advanced message queuing protocol offers organizations an easier, more secure approach to pass-
ing real‐time data streams and business transactions. By enabling a commoditized, multi‐vendor ecosys-
tem, AMQP creates opportunities to transform the way business is done over the Internet and in the cloud.

 ● IDCloud: identity in the cloud identifies gaps in existing identity management standards for the cloud and 
the need for profiles to achieve interoperability within current standards. IDCloud performs risk and threat 
analyses on collected use cases and produces guidelines for mitigating vulnerabilities.

 ● OData: Open Data is a REST‐based protocol that simplifies the sharing of data across applications for 
reuse in the enterprise, cloud, and mobile devices. OData enables information to be accessed from a vari-
ety of sources including relational databases, file systems, content management systems, and traditional 
web sites.

 ● SAML: security assertion markup language provides a framework for communicating user authentication, 
entitlement, and attribute data between online partners.

 ● SOA‐RM: SOA reference model defines the foundation upon which specific SOA concrete architectures 
can be built.

 ● TOSCA: topology and orchestration specification for cloud applications enhances the portability of cloud 
applications and the IT services that comprise them. TOSCA enables the interoperable description of 
application and infrastructure cloud services, the relationships between parts of the service, and the oper-
ational behavior of these services, independent of the supplier that creates the service, the particular cloud 
provider, or hosting technology. TOSCA facilitates higher levels of cloud service and solution portability 
without lock in.

OASIS perspectives on cloud generally are in data / messaging or security contexts. They are included in 
the category of “open standard” bodies promoting interoperability and ease of management in heterogeneous 
environments. The OASIS Cloud Application Management for Platforms (CAMP) technical committee 
advances an interoperable protocol that cloud implementers can use to package and deploy their applications. 
CAMP defines interfaces for self‐service provisioning, monitoring, and control. Common CAMP‐use cases 
include moving premise applications to the cloud (private or public), and redeploying applications across 
cloud platforms from multiple vendors.
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Key Takeaway

The OASIS cloud-related standards provides essential architecture building blocks for engaging cloud  service 
design and cloud service interoperability initiatives

7.2.9 SNIA Cloud Data Management Interface Standard

The Storage Networking Industry Association (SNIA) is an association of producers and consumers of 
storage networking specifications and standards. It works towards its goal “to promote acceptance, deploy-
ment, and confidence in storage‐related architectures, systems, services, and technologies, across IT and 
business communities” by forming and sponsoring technical work groups for storage networking standards 
and specifications.

The Cloud Data Management Interface (CDMI) is a SNIA standard that specifies a protocol for self‐ 
provisioning, administering, and accessing cloud storage. With help of the CDMI, the clients can discover 
cloud storage capabilities and leverage the CDMI to manage data and containers. In addition, metadata can 
be set on containers and their contained data elements through CDMI. The CDMI can be used for adminis-
trative and management applications to manage containers, accounts, security access, monitoring/billing 
information, and storage that is accessible by other protocols. The CDMI exposes the capabilities of the 
underlying storage and data services to potential clients. Figure 7.6 portrays a cloud reference model.

The cloud storage reference model includes functions and layers that enable clients to discover the capa-
bilities available in the cloud storage, manage containers and the data that is placed in them; and allow meta-
data to be associated with containers and the objects they contain. This is portrayed in above three layers of 
the model. CDMI defines RESTful HTTP operations for the above functions.

The CDMI defines the functions to manage the data and as a way to store and retrieve the data. The means 
by which the storage and retrieval of data is achieved is termed a data path. Hence, CDMI specifies both a 
data path and a control path interface.

The container metadata layer is used to configure and expose the data requirements of the storage provided 
through the storage protocol (e.g., block protocol or file protocol). For example, for the underlying file 
 system for a block protocol (e.g., iSCSI), the CDMI container provides a useful abstraction for representing 
the data system metadata.

The SNIA’s CDMI is based on an object model with categorized data, container, domain, queue, and capa-
bility objects. The CDMI defines two namespaces that can be used to access stored objects: a flat‐object ID 
namespace and a hierarchical path‐based namespace. Objects are created by ID by performing HTTP com-
mands against a special URI.

The CDMI uses many different types of metadata: HTTP metadata, data system metadata, user metadata, 
and storage system metadata. HTTP metadata is metadata that is related to the use of the HTTP protocol (e.g., 
content length, content type). The CDMI data system metadata, user metadata, and storage system metadata 
are defined in the form of name‐value pairs. Data‐system metadata are metadata that are specified by a CDMI 
client and are a component of objects. Data‐system metadata abstractly specify the data requirements associated 
with data services that are deployed in the cloud storage system.

Key Takeaway

This cloud interface standard provides essential architecture building blocks for engaging cloud storage 
design and infrastructure integration.
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7.2.10 The European Telecommunications Standards Institute Cloud Standard

The European Telecommunications Standards Institute (ETSI) produces globally applicable standards for 
information and communications technologies (ICT), including fixed, mobile, radio, converged, broadcast, 
and Internet technologies. Their work in cloud is an extension of an earlier focus on grid computing. The 
ETSI has four published standards for cloud focused on standardization, interoperability testing, and service‐
level agreements. The ETSI working programs include security, interoperability, connected things, wireless 
systems, fixed networks, content delivery, and public safety.

The latest published cloud standard from ETSI (ETSI TS 103 142 Test Descriptions for Cloud 
Interoperability) describes the testing requirements and scenarios for interoperability as defined by another 
standards group, the OCCI from the Open Grid Forum. This illustrates the interlocking interests of the many 
open standards groups and how they collaborate to drive agnostic interoperable solutions.

In order to unleash the potential of cloud computing, the European Commission (EC) published a 
Communication on Cloud Computing, released on September 27, 2012, identifying cutting through the 
 jungle of standards as one of the key actions to foster mass adoption of cloud computing. The ETSI was 
requested by the EC to coordinate with stakeholders in the cloud standards ecosystems and devise standards 
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and roadmaps in support of EU policy in critical areas such as security, interoperability, data portability, and 
reversibility. The first meetings were held in Cannes in December 2012.

Related to cloud standards projects at ETSI are those addressing “connected things” (ETSI, 2013). An ever 
increasing number of everyday machines and objects are now embedded with sensors or actuators and have the 
ability to communicate over the Internet. These “smart” objects can sense and even influence the real world. 
Collectively, they make up what is known as the “Internet of Things” (IoT). The IoT draws together various tech-
nologies including radio frequency identification (RFID), wireless sensor networks (WSNs), and machine‐to‐
machine (M2M) service platforms. The ETSI is addressing the issues raised by connecting potentially billions of 
these “smart objects” into a communications network by developing the standards for data security, data manage-
ment, data transport, and data processing. This will ensure interoperable and cost‐effective solutions, open up 
opportunities in new areas such as e‐health and smart metering, and allow the market to reach its full potential.

Key Takeaway

The ETSI cloud standards outline architecture building blocks for engaging cloud networking and communi-
cations interoperability.

7.2.11 The Open Group Cloud Model

The Open Group (TOG) is a vendor and technology‐neutral industry consortium that provides innovation and 
research, standards and certification development on topics of IT Architecture. It is currently developing 
several related cloud‐reference models, namely Cloud Computing Reference Architecture, the Cloud 
Ecosystem Reference Model, and the Distributed Computing Reference Model. This section will discuss 
details of the published Distributed Computing Reference Model (DCRM) (Figure 7.7).

The DCRM contains several components that are focused on the interfaces between the components. The 
DCRM is leveraged in the context of portability and interoperability of cloud reference architecture. The 
management systems and marketplaces are particular kinds of components, shown separately because of their 
particular relationships to platforms and infrastructure.

The application data, applications, platforms, and infrastructure stack can be applied to enterprise systems, 
cloud systems, and user devices. In cloud systems, applications may be exposed as software as a service (SaaS), 
platforms may be exposed as platform as a service (PaaS), and infrastructure may be exposed as infrastructure 
as a service (IaaS).
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Figure 7.7 Distributed computing reference model. Source: Bakshi and Skilton (2013)
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In the DCRM, an application can have several facets – a cloud SaaS service, enterprise application 
 service, composition of cloud and enterprise application services, an application program running on a 
server, and / or application mobile device. They can also be SOA style – applications consisting of collec-
tions of services. These may be explicitly programmed as service compositions; for instance, using the 
OASIS standard Web services business process execution language (WS‐BPEL). Applications interfaces 
include application data through data models, through application‐application interfaces, and through 
application‐platform interfaces (APIs).

An application platform consists of the hardware and software components that provide the services used to 
support applications. It exposes an application platform interface to applications. In the DCRM, a platform 
may be a PaaS service, where interfaces could be application‐platform interfaces, platform‐platform interfaces, 
infrastructure through platform‐infrastructure interfaces, management systems through platform management 
interfaces, or marketplaces through publication and acquisition interfaces. Platforms are used by developers to 
develop applications and other programs and by systems managers to run and configure applications, either 
through management systems or directly.

In the DCRM, infrastructure includes cloud IaaS services, hardware in servers, PCs and mobile devices, 
and virtualized hardware resources in enterprise systems. A cloud infrastructure service makes hardware 
components available as cloud resources, generally through a virtualization layer. The functional interface in 
this case supports the loading and execution of machine images. The management interface enables the hard-
ware resources to be provisioned and configured, and enables machine images to be deployed on them. 
Infrastructure interfaces to platforms through platform‐infrastructure interfaces; management systems 
through infrastructure management interfaces.

Management systems are components to manage cloud and enterprise IT resources. Management systems 
interface with applications through APIs, platforms through platform management interfaces, and infrastruc-
ture through infrastructure management interfaces. Management systems are used by systems managers to 
manage applications, platforms, and infrastructure.

A cloud marketplace enables cloud providers to make their products available and enables cloud consum-
ers to choose and obtain the products that meet their requirements. The products may be services, machine 
images, applications, or other cloud‐related products. They can have associated descriptions, prices, terms of 
use, and so forth, so that consumers can select them and contract for their use. Marketplaces interface with 
platforms through product publication and acquisition interfaces.

Key Takeaway

This reference model provides essential architecture building blocks for engaging cloud portability and cloud 
interoperability perspectives and offers guidance in the application of the architecture’s building blocks to use 
case and scenario planning efforts for cloud portability and cloud interoperability  initiatives.

7.3 Conclusion

Cloud reference frameworks are a critical tool for architecting, engineering, and standard setting in any major 
cloud initiative. Today’s most influential groups are promoting “open” standards as a rule, which recognize 
the various requirements for heterogeneous ecosystems. They provide the mechanism for introducing 
 transformational change, while still supporting legacy systems.

Collaboration across the groups is a part of the “Open” movement, wherein each group’s interest / focus 
is applied in the context of one or several other reference frameworks using scenarios and use cases. In this 
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fashion, reference frameworks constitute the common taxonomy and architectural landscape for cloud and 
its evolution.

Essential to the success of a cloud effort is the appropriate application of a framework to one’s own 
 business environment, business requirements, and technical capabilities. Each framework presented in this 
 chapter has a particular focus and use as described in its key takeaway. By aligning a framework with the 
actual work at hand, the architecture and engineering efforts become better informed and better integrated. 
This reduces overall risk and works to ensure anticipated business outcomes.
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8.1 Introduction

Used since the 1960s in computing, virtualization is a broad term that refers to the abstraction of computing 
resources, a technique for hiding the physical characteristics of computing resources (CPU, memory, disk and 
network interfaces) from the way in which other systems, applications, or end users interact with those 
resources. Virtualization creates an external interface that hides an underlying implementation by combining 
resources at different physical locations or by simplifying a control system.

Another key concept is encapsulation, which means that all of the files that are associated with the 
 virtualized operating system (OS), application, and support software are saved as one big file, or virtual disk. 
Through encapsulation, the state of a virtual machine can be saved to disk and then the virtual machine can 
be restarted in the time that it takes to reload the data from the disk. The recent development of new virtual-
ization platforms for VMware, Citrix and others has refocused attention on this mature concept and taken it 
to the X86 world and off of mainframes.

Virtualization software such as vSphere from VMware, XEN from Citrix, and Hyper‐V from Microsoft 
can transform or virtualize the hardware resources of an x86‐based computer – including the CPU, RAM, 
hard disk, and network controller – to create a fully functional virtual machine that runs its own operating 
system and applications just like a “real” computer. Note that virtual machines can cover most x86 operating 
systems (i.e. Windows, Linux, or Solaris x86). Multiple virtual machines share hardware resources without 
interference so that a single computer can run several operating systems and applications, commonly referred 
to as workloads, at the same time. See Figure 8.1.

In general, virtualization happens by placing a thin layer of software directly on the computer hardware or 
on a host operating system. This software layer contains a virtual machine monitor or hypervisor, which 
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allocates hardware resources dynamically and transparently so that multiple operating systems, each con-
tained within its own virtual machine, run concurrently on a single physical computer. In the case of VMware, 
the hypervisor is referred to as the ESX server. (See Figure 8.2.)

It is important to understand that a virtual machine can be just about any X86 operating system with its 
associated applications. For example, a Microsoft Hyper‐V physical host could be running three separate 
virtual machines; The first virtual machine could be running the Solaris X86 operating system and a database, 
the second virtual machines could be a Windows Server 2012 and MS Exchange, and the third a Linux oper-
ating system with the LAMP stack being used by developers!

8.2 Origins of Virtualization

The concepts in virtualization can be traced back to the days of mainframes in 1960s. At the time there was 
a major effort by IBM to improve the concept of time sharing. A time‐sharing system that would let multiple 
users access the same computer simultaneously was not an easy problem to solve. While many others were 
working on improving time‐sharing and adding cool interfaces in order to make it easier to submit batch jobs, 
adding these features added complexity to the mainframe OS.

Meanwhile a small IBM engineering team in Cambridge, Massachusetts, came up with a novel approach 
that gave each user a virtual machine with its own operating system. With a virtual machine the operating 
system does not have to be complex because it only has to support one user. In 1972, IBM released a version 
of its CP/CMS product to the general mainframe‐using public. The “CP” was the part that created the virtual 
machine and stood for “control program”; CMS stood for “console monitor system.”

In those days most people were focusing on time sharing. In time sharing you divide up the CPU, memory 
and other system resources between users. The concept of time sharing did not just go away. MultiCS, an 
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Figure 8.1 Virtualization allows many workloads to run on one physical server. Source: Used with permission 
from UNICOM Global
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example of a time sharing OS from that period developed by MIT eventually went on to become the first 
UNIX operating system. UNIX is a very good example of a multiuser system that uses the time‐sharing 
 technique to virtualize applications rather than entire virtual machines.

Building on this work, VMware introduced virtualization on the X86 platform in 2001. However, it was not 
until much more work was done and Virtualization Infrastructure 3 (VI3) was released in June of 2006 that 
server virtualization really took off. Following closely on its heels, Xen was released in 2003.

Xen originated as a research project at the University of Cambridge, led by Ian Pratt, senior lecturer at 
Cambridge. Ian co‐founded XenSource, Inc. with another Cambridge University alumnus, Simon Crosby. Zen 
was acquired by Citrix in October 2007 and has been continually updated and maintained by them since that time.

Shortly thereafter, Microsoft introduced its first real release of Hyper‐V, its server virtualization offering. 
While there was a beta release that was included in Windows Server 2008, the first official release did not 
occur until June, 2008.

8.3 Types of Virtualization

The three major types of virtualization are hardware virtualization, storage virtualization and network virtu-
alization.

8.3.1 Hardware Virtualization

When most people think of virtualization today, they are normally thinking of just hardware virtualization. 
Hardware virtualization is the sharing of the physical system resources (CPU, memory, network, and local 
storage) to enable multiple virtual machines to run on the same physical server. There are three major types of 
hardware or server virtualization: full virtualization, para virtualization, and hardware-assisted virtualization. 
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Figure 8.2 A look inside a virtual machine. Source: Used with permission from UNICOM Global
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8.3.1.1 Full Virtualization

Full virtualization is almost complete simulation of the actual underlying hardware to allow a virtual machine 
consisting of a guest operating system and applications to run unmodified. Today’s modern virtualization 
vendors can virtualize any x86 operating system using a combination of binary translation and direct execu-
tion techniques. Binary translation translates kernel code to replace nonvirtualizable instructions with new 
sequences of instructions that have the intended effect on the virtual hardware. Meanwhile, as many CPU 
requests as possible are directly executed on the host processor for higher performance. In this manner, each 
virtual machine has all the services of the physical system, including a virtual BIOS, virtual devices, and 
virtualized memory management. It is important to note that almost 75% of the CPU requests that are made 
by the virtual machine are passed directly to the host CPU for execution, which is what enables the speed of 
today’s modern virtualized systems.

This combination of binary translation and direct execution provides full virtualization as the guest OS is 
fully abstracted (completely decoupled) from the underlying hardware by the virtualization layer. The guest 
OS is not aware it is being virtualized and therefore requires no modification. Full virtualization is the only 
option that requires no hardware assist or operating system assist to virtualize sensitive and privileged instruc-
tions. The hypervisor translates all operating system instructions on the fly and caches the results for future 
use, while user level instructions run unmodified at native speed.

8.3.1.2 Paravirtualization

Paravirtualization is different from full virtualization. Here the designers were trying to achieve greater speed 
at the cost of adding direct communication between the virtual machine (VM) operating system and the host 
operating system. The goal in paravirtualization is lower virtualization overheads but the performance advan-
tage of paravirtualization over full virtualization can vary greatly depending on the workload. It also means 
that significant kernel‐level modifications to the virtual machine OS are required in order for it to work. As 
paravirtualization cannot support unmodified operating systems, its compatibility and portability is some-
times poor.

8.3.1.3 Hardware‐Assisted Virtualization

In the early 2000s, hardware manufacturers, specifically CPU vendors, started to embrace virtualization rap-
idly. They developed and released new features into their CPUs to simplify virtualization techniques and 
provide greater performance for the virtual machines. Both virtualization technology (VT‐x) from INTEL 
Corporation and AMD‐V from AMD target privileged instructions with a new feature called CPU execution 
mode. With these new CPU features, certain CPU calls are automatically recognized and handled directly by 
the CPU, removing the need for either binary translation or paravirtualization.

In addition to hardware or server virtualization there are others types of virtualization such as storage vir-
tualization and network virtualization that are used in cloud computing.

8.3.2 Storage Virtualization

In general, storage virtualization refers to the abstraction of the physical resources of the storage (disks, 
memory, controllers, etc) from the user. Most of the storage vendors these days provide some level of storage 
virtualization. Storage virtualization means that all storage platforms are presented in a singular manner to 
the virtualized servers, meaning that the virtualized servers can easily and quickly access the storage while 
allowing the storage device to perform the potentially complicated translation to the hardware.
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The advantages of this technology are many. First, it is more efficient for the requestor of the data to know 
only that it resides on the disk array itself and let the disk manager automatically move blocks of data around 
the array to gain efficiencies in both amount of physical resources used and performance.

The primary advantage with storage virtualization is that storage devices from many different vendors can 
be managed as if they were one heterogeneous storage platform. Now one can migrate data (and virtual 
machines, but we will cover that shortly) between storage platforms. This is one of the amazing benefits that 
virtualization provides and it is one of the many features that make virtualization a cornerstone of cloud 
 computing. Again, we will get there shortly, so please continue on!

8.3.3 Network Virtualization

In keeping with the theme of this chapter, network virtualization presents logical networking devices and 
services – logical ports, switches, routers, firewalls, load balancers, VPNs and more – to workloads irrespec-
tive of the underlying physical hardware. In all other respects, virtual machines run on the virtual network 
exactly the same as if they were running on a physical network.

By reproducing the physical network in software one can have better flexibility and agility when deploying 
virtual server workloads. A virtualized network has the same features and guarantees of a physical network, 
but it delivers the operational benefits and hardware independence of virtualization.

Remember the old days of computing? Getting a computer from the server folks, begging for some GBs or TBs 
of storage from the storage admins and, finally, getting network attributes assigned and configured by the network 
admins? With network virtualization this is not necessary. All of the attributes of the physical network are mapped 
logically and presented to the virtual machines. The advantage is that provisioning is fast and nondisruptive to the 
organization. Another advantage is that a virtualized network allows for automated maintenance as remapping of 
physical to logical devices can occur without interruption. Physical resources can then be maintained, replaced, 
or upgraded and the mapping restored all without interruption to the workloads running on them!

In summary, all of these virtualization technologies, server, storage, and networking are now included in 
what is commonly referred to as the software‐defined datacenter (SDDC). An SDDC is a new vision for IT 
infrastructure. It extends the previous three virtualization concepts using the tools of abstraction, pooling, and 
automation, to all of the datacenter’s resources and services in order to achieve IT as a service (a concept that 
is crucial to the cloud!).

8.4 Advantages of Virtualization

There are several compelling forces driving companies and government agencies to adopt a strategy for 
 virtualization in their datacenters. The recognition that there is a finite budget for operations and a finite 
amount of energy for power and cooling has made organizations aware that virtualization is a practical way 
to optimize their datacenters, reduce costs, consume less energy, and implement sustainable energy conserva-
tion measures to serve the public good.

8.4.1 The Return on Investment of Virtualization

Most nonvirtualized servers operate at 5–15% of capacity, which is highly inefficient. Unfortunately, this 
problem scales. Since there are many more physical servers than there need to be, today’s datacenters are 
several times bigger and correspondingly more inefficient than they need to be. With server virtualization, 
operational efficiencies of 70–75% are commonplace and efficiencies of 85% are not unheard of. But don’t 
forget that this advantage of virtualization is actually a double‐edged sword! Given that most of the power 
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input to a physical server is output back out of the back of the server as heat, we need to cool that heat. For 
every watt of power not expelled as heat, another watt less is needed to cool that heat. So virtualization really 
provides us with a return on investment (ROI) that is out of this world.

8.4.1.1 An Example

Recent aggregate data show that datacenters’ power usage today has greatly exceeded past levels, and 
estimates indicate that this trend will continue (see Table 8.1.)

8.4.2 The Datacenter

Companies have reached a critical point where they recognize that they can no longer maintain the status quo 
for how their datacenters use power. In Table 8.1, the projection that a rack could consume an estimated 25 kW 
of power is based on very dense systems, such as the HP C‐class blade system, which provides  significant 
computing and performance advantages. Racks configured for high density; however, can have unanticipated 
costs. For example, the C‐class system is a 10U chassis with up to 16 half‐height blades, each with up to dual 
socket, 12 core CPUs, for a total of 384 cores per chassis. With four chassis per 42U rack, there are a total of 
1536 cores per rack. This is the good news, from a density standpoint. But it also means that each chassis 
requires approximately 5.5 kW or more, and therefore more than 20 kW will be needed at the rack.

High‐density computing means increased power density, causing much faster thermal rise than in older, 
lower‐density systems. A datacenter with an average heat load of 40 W per square foot can cause a thermal 
rise of 25 °F in 10 minutes, while an average heat load of 300 W per square foot can cause the same rise in 
less than a minute. In this scenario, there is not only an increase in the amount of money spent on electricity – 
the datacenter infrastructure is also at greater risk in case of a disaster, where a 25 °F increase in 1 minute 
can potentially cause sensitive electronic components to literally fry in 3 to 4 minutes.

8.4.3 IT Equipment

Recent estimates indicate that 60–70% of a datacenter’s electricity is used by the IT equipment, with the rest 
dedicated to cooling, power conditioning and lights. Table 8.2 gives a breakdown of the three major types of 
IT equipment and the total percentage of power they use in the datacenter.

Table 8.1 The growth of datacenters in power and heat

Power required/
rack (kW)

Heat output/
sq. ft. (W)

Datacenters of the recent past 2 40
2007 datacenters (average) 10 200
Datacenters of the near future 25 500

Source: Used with permission from UNICOM Global

Table 8.2 IT equipment and the power it uses

Component IT equipment usage (%) Percentage of total power

Servers 56 33.6
Storage 27 16.2
Networking 17 10.2

Source: Used with permission from UNICOM Global
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Do you see now why server virtualization has such a high ROI? In one particular case, my previous 
employer helped a government agency remove almost 750 servers from its datacenter. They started small 
with virtualization but quickly became experts at it and, after a lot of work on their part, ended up with a 
consolidation ratio of 37.5 average virtual machines per physical host! That’s 750 physical hosts that are not 
running at 5% efficiency, and not belching most of their power input back out as heat that we have to cool.

We haven’t even mentioned space savings yet. Is there a datacenter out there today that, having virtualized its 
server workloads, is bursting at the seams? Removing 70–80% of the servers in a datacenter would certainly 
help with that problem, wouldn’t it? So that’s why server virtualization has such a high return on investment. I 
helped write the server virtualization TCO calculator for my former employer (Unicom Government Systems). 
While it is a little dated, just by going there and plugging in a few numbers you start to get an idea of why server 
virtualization is such a treat for the datacenter managers as well as the finance team! You can find the calculator 
at http://unicomgov.com/ideas‐innovations/virtualization‐zone/calculators/ (accessed November 29, 2015).

8.4.4 Virtualized Server Infrastructure

The act of virtualizing a single physical computer is just the beginning. While VMware’s estimated market 
share for server virtualization is in the 70% range, almost all of the vendors offer a robust virtualization 
 platform that can scale from one physical machine to hundreds of interconnected physical computers and 
storage devices to form an entire virtual infrastructure. What makes VMware different, and the reason we will 
focus on features from them that will enable cloud computing is other vendors have stayed with server virtu-
alization and have not added features that move their offerings “up‐the‐stack,” so to speak, to Infrastructure‐
as‐a‐Service cloud platforms.

Traditional server virtualization when thought of in light of todays cloud computing, really comprises a 
combination of server, storage and network virtualization. There are several components of virtualization 
which form the backbone for a traditional infrastructure‐as‐a‐service cloud.

8.5 VMware® VI3 and vSphere

VMware® and their Virtual Infrastructure 3 (VI3) was the first generation of server virtualization to gain industry‐
wide acceptance. Because of its reliability, and the number of built‐in features, Virtual Infrastructure 3 quickly 
became the gold standard for virtualizing servers. It was the first product that reliably and consistently allowed 
multiple virtual servers (VMs) and their applications to run unmodified on off‐the‐shelf physical hardware. 
While there are several non‐x86 vendors offering cloud, most people are looking at x86 workloads, so we will 
focus on that. In addition, as VMware currently is the vendor with the biggest market share in private clouds, 
we will consider features from them. Many other vendors have similar features in their offerings.

VI3, as it was commonly called, had a number of important building blocks that made it so popular:

 ● vMotion – The ability to manually migrate (or move) a running virtual machine from one physical server 
to another without disrupting the users connected to that virtual machine. This assumes, of course, that the 
virtual machine is sitting on some kind of shared storage, but just about everyone architected their virtual 
environments that way! Figure 8.3 shows vMotion technology.

 ● Dynamic Resource Schedule (DRS) – An automatic (or manual) feature that allows the VMware hypervi-
sor to move virtual machines around a cluster of physical machines as needed to gain maximum use of 
resources across all the virtual machines.

 ● High Availability (HA) – A feature that allowed VI3 to restart automatically virtual machines that are no 
longer running due to failure of an underlying physical machine. Again, shared storage was necessary 
here, but that is the recommended architecture for virtualization.
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These are some of the features that form the absolute backbone of Cloud Computing.

8.5.1 Recent Feature Additions

Their current offering, vSphere, is not billed as a virtualization platform, but rather a “cloud computing” 
platform. Regardless, there are a number of impressive new features in vSphere that are worth considering.

8.5.2 Scale Up

The resource limits for both virtual and physical machines have been greatly expanded. Virtual machines can 
now have up to 32 virtual CPUs (increased from eight) and up to 1 TB of RAM (previously 255 GB). The 
underlying physical hardware can scale to 2 TB of RAM and 128 total cores! This means you can now run 
many more virtual machines on fewer, but larger, physical machines, making datacenter management a bit 
easier. It also means you can now run workloads that you may have thought previously were too large for a 
virtualized environment.

In addition, it is now possible to “hot add” both CPU and memory to your virtual machines. You cannot, 
however, “hot delete” these same features. Taking away memory or CPUs while an application is running can 
have disastrous results and is not permitted. You can, however, “hot add” and “hot remove” both storage and 
network devices. These features are a wonderful addition to the product line. As of vSphere 5.5 you can even 
hot add Hot‐pluggable SSD PCIe devices.

8.5.3 vStorage Thin Provisioning

When you create your virtual machines and specify the hard disk size there is an option for thin provisioning. 
When setting up the vSphere cluster in our lab, the engineers tried this feature and it truly works as advertised. 

Figure 8.3 VMware and vMotion. Source: Used with permission from UNICOM Global
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We set up a test virtual machine and gave it a 60 GB disk drive but checked the option to thin provision it. After 
installing the OS, there was an 8 GB hard disk there! As we add additional software to that virtual machine, the 
size increases as we need it. This feature is independent of any thin provisioning that you may do at the LUN level 
of your storage. One word of caution: as with any thin provision technology, overprovisioning means that you 
will need to pay closer attention to your storage to avoid running out! It is a very bad idea to use thin provisioning 
at the server layer and also use thin provisioning at the storage layer. This is double trouble just waiting to happen.

8.5.4 Fault Tolerance (FT)

In VI3, we had high availability (HA), the ability to restart virtual machines that are no longer running 
when the physical machines fail. High availability is a good feature but it has one big disadvantage: there 
is a short outage while the virtual machines from the failed host are restarted. What if you cannot afford 
even a short outage? Enter fault tolerance. With fault tolerance, an identical virtual machine runs in lock-
step with the original but is running on a separate host. To the external world, they appear as one instance 
(one IP address, one MAC address, one application), but in reality, they are fully redundant instances of 
virtual machines. If an unexpected hardware failure occurs that causes the active (i.e., primary) virtual 
machine to fail, a second, (i.e., passive) virtual machine immediately picks up and continues to run, 
 uninterrupted, without any loss of network connections or transactions. This technology works at a layer 
underneath the operating system and application, so it can be used on any OS and on any application that 
is supported by VMware without modification.

Now VMware has even gone further with something called vSphere App HA. This new feature works in 
conjunction with vSphere HA host monitoring and virtual machine monitoring to improve the application 
uptime. vSphere App HA can be configured to restart an application service when an issue is detected with 
that application. It is possible to protect several commonly used, off‐the‐shelf applications. vSphere HA can 
also reset the virtual machine should the application fail to restart.

8.5.5 Virtual Distributed Switch (VDS)

Perhaps the greatest feature of vSphere is the virtual distributed switch (VDS). In VI3, each host had its own 
series of virtual switches containing all of the network characteristics of all of the virtual machines on that 
host. It was – and is – a very powerful feature that offers very granular control over the networking charac-
teristics of the cluster. Unfortunately, that was also the downside of this feature. Network engineers hated the 
fact that certain aspects of the network were now in the hands, and under the control, of the server / storage 
managers. Horror stories abound about network problems caused by improper configuration of the virtual 
switches. vSphere still has this capability but has added the capability to support a virtual distributed switch. 
This allows for even more granular control (for example, monitoring traffic between virtual machines on the 
same physical server), while giving network administrators control over the network and the server adminis-
trators control over the servers.

Of course, that is not all. VMware then moved to virtualize the entire network with the software defined 
datacenter that we have already discussed.

8.6 Virtualization and the Private Cloud

Some virtualization vendors have improved and expanded their offerings to allow their customers 
to  build private clouds on top of their virtualized infrastructure. In other cases, the cloud vendors 
 themselves have layered significant capabilities on top of the virtualization layer to facilitate cloud 
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computing. This is the case with Amazon Web Services (AWS), which uses an open source version of 
Xen on which to offer a cloud computing service to their customers.

However, no one virtualization vendor has added more capabilities that have moved them up the stack to 
cloud computing than VMware. For that reason, the cloud‐ready features that we talk about in this chapter 
will reference VMware products. Other vendors have some of these pieces, but VMware leads the pack with 
a robust set of features and functionality.

8.6.1 Cloud‐Ready Features

So if we already have a VMware‐virtualized environment within a software defined datacenter, what would 
be needed to take a virtualized infrastructure and make it an IaaS cloud infrastructure? Assuming that vSphere 
provides the “ability to dynamically scale and provision computing power in a cost efficient way using a 
virtualized environment within a common redundant physical infrastructure,” what more do we need? The 
first step is creating some kind of self‐service portal.

8.6.2 vCloud Director

The vCloud Director has three very important and far‐ranging jobs to do:

 ● Act as the overall cloud coordinator talking to vSphere and (through vCenter) controlling the creation of 
virtual machines.

 ● Act as the portal where users come to request new virtual machines. The user can choose characteristics 
of their virtual machine: number of processors, amount of RAM, size of disk, which virtual networks to 
use, which prebuilt template to deploy, other software to add to the template, and so forth.

 ● Function as the administrator portal where cloud managers set up templates, load software packages, 
develop approval workflows (using an add‐on product from VMware called vCloud Request Manager), 
create and manage user groups, allowing them to have access to virtual machines of various sizes and 
lengths of times with certain templates, and so forth.

 ● Function as the “glue” tying discrete locations (vCloud cells) together into one cloud.

VMware vCloud Director also has built‐in logical constructs to facilitate a secure multi‐tenant environment, 
if users require it.

Other vendors have similar offerings that are very good in their own right. Computer Associates has a product 
called CA Automation Suite for Cloud™. It performs the same functions as vCloud Director, but has the ability 
to provision both virtual and bare metal physical machines as well (Cisco UCS blades, for example). BMC is 
also a strong competitor in this section of the marketplace; and server OEMs (Cisco, HP, IBM, and Oracle) are 
getting into the game too. So there are several vendors with strong offerings from which to choose.

8.6.3 vCenter Chargeback

What about charging the users for the services they require and use? VMware provides a tool called vCenter 
Chargeback which meters usage and provides reporting to allow for individual chargeback or showback to 
users. Administrators can set up charges for:

 ● Product licensing – Fixed cost charges for each Microsoft OS license used on the virtual machine.
 ● Usage – Actual CPU, memory, network, and storage usage can be separately monitored and charged.
 ● Administrative fees – A per‐virtual machine fee can be set up for administrative overhead.
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While we reference the VMware product, companies like Computer Associates, BMC and others have built 
chargeback into their cloud provisioning and management software, which run on top of many of the offer-
ings from other virtualization vendors. There are also smaller companies that specialize in the chargeback/
showback aspect of cloud, giving you several options from which to choose.

We now have created a flexible infrastructure with a portal for users and we can charge them correctly for 
the resources they use. It’s time to add security to the mix!

8.6.4 VMware vShield

vCloud Director is designed for secure multitenancy so that multiple organizations do not affect one another. 
For securing user access, the product ships with the built‐in LDAP/Active‐Directory integration. In addition, 
user access and privileges within vCloud Director are controlled through role‐based access control (RBAC). 
There are additional steps that can be taken to harden the environment.

vShield provides all of the important pieces of network security, including:

 ● vShield Firewall – used when configuring access to the virtual machines;
 ● vShield Edge Virtual Appliances – built‐in devices deployed automatically by vCloud to facilitate routed 

network connections using three different methods, including MAC encapsulation.

In addition, vShield features a built‐in management console called vShield Manager.

8.6.5 vCloud API

Finally, vCloud API is a set of programming tools, application programmer interfaces and constructs around 
which users can make their applications “cloud aware.” Developers can now build “cloud awareness” into 
their applications, making it easier to design, deploy and manage applications within a cloud environment.

8.7 Limitations of Virtualization

From its humble beginnings, virtualization has grown from servers to storage and networks and with some of 
the newly added features forms the basis for many of today’s cloud offerings. But does that mean that server 
virtualization is right for everyone? Is it right for every workload? There are many advantages that virtualiza-
tion brings to a data center but it is not a panacea. There are use cases where virtualization is not a good fit. 
Here are some examples:

 ● In one case, a small department was evaluating virtualization for its environment. It had a total of five 
servers in its group. It also had a total of five workloads, an e‐mail server, a database server, some test and 
development servers, and a small NFS storage device. Given how virtualization and DR / HA works, it is 
typical to architect an environment with no less than three physical hosts. That way, if a physical server 
fails there are still two physical hosts remaining over which to spread the workload and still have some 
redundancy. As you can imagine, the ROI for this project just would not have come close to some of the 
bigger projects that I have implemented. After listening intently, I calmly went against everything in this 
chapter and told them they should keep their current systems!

 ● In a second case, the customers had almost no experience with server virtualization. Yet they were ada-
mant that they wanted to virtualize their Microsoft Exchange environment. Without experimenting with 
small, more expendable workloads like file and print servers, or Web servers, the customers wanted to 
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implement Microsoft Exchange immediately in a virtualized environment. The folly here is not that the 
customers wanted to run Microsoft Exchange in a virtualized environment. Can Microsoft Exchange run 
well in a virtualized environment? Absolutely. But the phrase “walk before you run” is appropriate here. 
Microsoft Exchange is a complex environment that requires more skill and knowledge in a virtualized 
environment. Certainly more skill than basic Web servers, or file and print servers. They didn’t start walk-
ing before they tried to run and the project was a disaster!

 ● The last example is one of pure religion. I had some customers who only had about 50 servers to virtual-
ize. The customers understood the benefits of virtualization but half of the team was Microsoft bigots and 
half were on the side of VMware. (There are plenty of other vendors in there too, but in this example it 
was just these two. We don’t want to forget Citrix and several other prominent vendors. There are at least 
a dozen at this point!) They already had a site license from Microsoft that allowed them to implement 
Microsoft Hyper‐V. Finally they just wanted a very basic environment. They weren’t going to use all of 
the fancy features of VMware and they were very price conscience. Microsoft Hyper‐V is really the right 
solution for this customer. The moral of the story? Understand your requirements and where you want to 
go with virtualization. There are a lot of options out there for you!

8.8 Disaster Recovery and Business Continuity

Before we move from virtualization to cloud computing, there are two concepts that really helped virtualiza-
tion make the leap from datacenter to cloud:

 ● business continuity; and
 ● disaster recovery.

First they are different, although many people mistakenly believe that they are the same. First, these two 
terms are often married together under the acronym BC / DR. That may lead people to think them as one in 
the same but they are very different. Disaster recovery is the process by which an entity resumes business 
after a disruptive event. The event might be something huge, like a natural disaster (say earthquake or tor-
nado) or the terrorist attacks on the World Trade Center, or the event could be something small, like software 
malfunctions caused by computer viruses or even a datacenter power outage.

Business continuity is a much more comprehensive approach to planning how the entity can continue to 
make money after the disastrous event until its normal facilities are restored.

But how does virtualization help companies with DR / BC? A lot of planning that needs to occur to clearly 
delineate roles and procedures in cases of a natural disaster. But virtualization can assist. To see how, we need to 
remember a key concept of virtualization – encapsulation. In a virtual environment the OS, the applications, and 
everything on the physical hard drive of a physical server is encapsulated into a file. It didn’t seem so important 
earlier, but it is a lynchpin of virtualization. Now, thanks to encapsulation, workloads are just big files and there 
is a lot of flexibility in them. They can be copied, for example, and become a backup somewhere else. And since 
my storage is virtualized and is presented to the virtualized servers the same way no matter what the underlying 
hardware, those workloads can reside on storage in another datacenter that is not necessarily from the same 
manufacturer. Since virtualization “normalizes” the underlying physical server resources, these workloads can 
even be copied from one brand of server to another without a problem! VMware even has a product to assist 
called Site Recovery Manager (SRM). Site Recovery Manager assists in the planning for DR / BC in three ways:

Site Recovery Manager allows the administrators to document and tweak a disaster recovery plan. This is not 
as trivial. Suppose the primary datacenter is wiped out due to a natural disaster. Suppose also that everything 
has been replicated and copied to the secondary datacenter. What workloads have to come up immediately? 
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In what order? E‐mail is certainly high on the priority list. But there are probably things that need to come up 
before it, like maybe DNS or Active Directory or a dozen other workloads that would be forgotten in an 
 emergency. SRM replaces erroneous run books that are often outdated as soon as they are written.

Site Recovery Manager allows administrators to test their DR plan. This is important as many public 
 companies, like banks for example, are required to test their DR / BC plans on a quarterly basis. Without 
SRM, this is an enormous undertaking, which is not only complex but expensive. Site Recovery Manager 
automates the testing process, so that you can test and retest as necessary without disruption to the normal 
business activities.

Finally, in a disaster situation, SRM allows an administrator to hit one button and have all necessary 
workloads come up, in order, intact and ready to go. In short the failover and the failback can be started with 
one click of the mouse.

8.9 Conclusion

Hopefully you now have a good understanding of the concepts of virtualization, and how they can benefit 
your organization. Virtualization for X86 platforms has been around since the late 1980s and is a mature and 
valuable platform, significantly reducing cost and improving agility and reliability in today’s modern data-
centers. The virtualization technologies of today also include features that make cloud computing possible 
such as encapsulation and the ability to migrate workloads across disparate platforms and locations. Finally, 
also included are some of the very lynchpins of cloud computing such as chargeback and rapid provisioning.

Before cloud computing, virtualization technologies proved that disaster recovery and even business 
 continuity was easier, more reliable and faster with a virtualized environment.

Its time now to start looking at cloud computing. With the basics of virtualization understood you will 
quickly see how it is the lynchpin of a modern cloud architecture!
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9.1 Introduction

An essential characteristic of a cloud environment is its ability to offer elastic, on‐demand and measured 
access to pooled resources. Virtualization is a key trait to achieve these cloud characteristics, whereby one 
abstracts runtime from the underlying infrastructure. This is especially true for cloud networks and computer 
input output (I/O) systems. This chapter focuses on the virtualization techniques for the data‐in‐motion aspect 
of cloud networks and I/O subsystems. It discusses these techniques and the benefits, applications, and use 
cases of cloud environments. The chapter addresses key virtualization techniques for network infrastructure 
and for the connection of virtually pooled resources in multiple clouds. It also focuses on computer I/O 
 subsystem virtualization techniques, which connect virtual networks to virtual machines in a typical cloud 
environment.

The network virtualization part is discussed in several related contexts. This chapter assumes a basic 
understanding of Open Systems Interconnection (OSI) network layers and leverages the layer constructs. 
First, the traditional concepts of Open Systems Interconnection (OSI) layer 2 virtualization, like virtual local 
area network (VLAN), are presented. Following this section, network function virtualization (NFV) is 
 discussed. This is the virtualization of networking functions on industry‐standard high‐volume servers and 
hypervisors. This is a rapidly emerging form of network virtualization. Next, the chapter discusses, the notion 
of network device partition for cloud resource pooling, where the physical network devices can be logically 
partitioned, for delivering pooled cloud network services. This is a common leverage technique in cloud 
environments. As network traffic patterns for cloud workloads evolve, the cloud datacenter networks need to 
be revisited for these new requirements. The chapter starts to focus on the network techniques to connect 
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clouds for key use cases like virtual machine mobility, including cloud datacenter interconnect and Internet 
protocol (IP) localization. The second major section of the chapter focuses on the computer I/O subsystem 
virtualization techniques. This includes details of network interface virtualization, virtualizing, and pooling 
of common storage protocols like fiber channel (FC) on Ethernet (FCoE), followed by a review of the 
 virtualization of I/O subsystems for virtual and physical workloads to access them in a pooled fashion. These 
are a sample of varied I/O virtualization techniques deployed in a cloud environment. All virtualization 
 techniques in this chapter are reviewed with benefits and use cases in mind.

9.2 Network Virtualization

9.2.1 Network Segmentation

Network segmentation is the most fundamental and commonly used virtualized technique in networks. 
There are several benefits of network segmentation, as it pools network resources and simplifies network 
operations by extending and maintaining the virtualization performed in the devices (both physical and 
virtual) and between these devices, securely and over a common physical network infrastructure. Network 
segmentation references two key components in networks, which map to the Open Systems Interconnection 
(OSI) network layers:

 ● segmentation in the device (router, switch);
 ● techniques to maintain the segmentation as the virtualized content is moved over the network for local 

area networks (LAN), wide area networks (WAN), and cloud datacenters (DC).

Network segmentation techniques are normally categorized in OSI layer 2 (Ethernet layer), or OSI layer 3 
(IP layer). The virtual local area network (VLAN) is the most common technology within the networking 
industry used for network segmentation at layer 2.

The VLANs target virtualizing the “bridge” function in a layer 2 device (i.e., network switch), which 
includes Ethernet MAC addresses, the port that the MAC address is associated with, as well as a VLAN 
trunk for communication between switching devices. Each VLAN is identified over the VLAN trunk 
via a “tag.” This notion follows the IEEE 802.1Q standards (Donahue, 2011), which identify the VLAN 
association of a particular MAC address when the traffic is sent over the trunk. Virtual local area net-
works have been a de facto standard for more than 20 years in both campuses and datacenters for 
segmenting user groups within a layer 2 switch. Virtual local area networks have become even 
more critical as the cloud world has evolved; as virtual machines (VM) are created, in most cases, a 
VLAN and IP address is also associated with that VM, offering IP connectivity and VLANs for virtual 
 segmentation.

As VLANs have evolved into a vital component in cloud networks, limitations for VLANs are begin-
ning to arise, prompting efforts at innovation. The two key areas in which VLANs are exhausting their 
capabilities are scale (number of VLANs) and the complexity that basic bridge networks introduce. To 
address this complexity and these limitations, a key innovation is being adopted in the cloud network 
environments, namely, virtual extensible LAN (VxLAN) (Mahalingam et al., 2012). This is one of the 
leading protocols, which has emerged to overcome VLAN limitations. VxLAN is an emerging standards‐
based technique, which is clearly targeting the cloud computing designs that leverage VLAN‐like capa-
bilities; however, it offers much larger VLAN scale. By expanding the VLAN tag information from 
4000 to 16 million (tag in VxLAN is referred to as a Segment ID), VxLAN offers a new level of scale in 
segmentation allocation.
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9.2.2 Use Cases for Network Segmentation

There are several use cases for network segmentation, as it is commonly leveraged in cloud and enterprise 
networks (see Figure 9.1 for an example). Network segmentation provides a means to group several network 
end points logically, with a common set of appointments. For example, you can give all member of a project 
access to their respective project files, by virtue of segment membership. Hence, one can also leverage in 
company departmental classification, which can be represented in a cloud context.

Companies are typically subject to several regulatory requirements, which oblige them to segment their 
data, organization, and processes. Network segmentation can help achieve compliance with such regulations 
by restricting access to application services. Hence data flowing between finance and outside departments 
could be regulated and protected by firewalls if desired.

Another potential use case for network segmentation could be to isolate malware‐infected workloads from 
approved workloads. One can implement a scheme where, after a check on a cloud workload, it can be placed 
into a functional segment as opposed to a quarantined network segment.

9.2.3 Network Function Virtualization

Network function virtualization (NFV), illustrated in Figure  9.2, is the virtualization of functions onto 
 consolidated industry‐standard servers and hypervisors, which could be located in cloud datacenters, network 
nodes, and in the end‐user premises (Chiosi et al., 2012). Virtualizing network functions could potentially 
offer many benefits and use cases including:
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 ● consolidation for reduced equipment costs and power consumption;
 ● agility for increased speed of service and market creation;
 ● enabling multitenancy, which allows use of a single platform for different applications, users, and tenants.

This section covers implementation of the NFV instance, namely virtualized switches, routers, and virtual 
firewall as part of layer 4 through layer 7 network services (Figure 9.1).

With virtual networking layer 2 and layer 3 devices, virtual machines in a cloud environment can be con-
nected in the same manner as physical machines (Gray and Nadeau, 2013), allowing the building of complex 
virtual networks for cloud virtual connectivity. Virtual layer 2 switches allow virtual machines on the same 
server host to communicate with each other using the same protocols that would be used over physical 
switches without the need for additional networking hardware. Server virtual switches support common capa-
bilities like VLANs that are compatible with standard VLAN implementations. A virtual machine can be 
configured with one or more virtual Ethernet adapters, each of which has its own IP address and MAC 
address. As a result, virtual machines have the same properties as physical machines from a networking 
standpoint.

A virtual switch works in much the same way as a modern Ethernet switch. It maintains a MAC:port for-
warding table and performs the functions of frame MAC lookup and forwarding to ports. A virtual layer 2 
switch resides either in the hypervisor as a kernel module or in use space. It provides capabilities, like the 
layer 2 forwarding engine, VLAN tagging and manipulation, layer 2 security, and segmentation.

Similarly, as shown in Figure 9.3, virtual routers provide layer 3 functions and capabilities for cloud use cases.
A virtual router runs typical router operating systems and hosted capabilities like virtual private network 

(VPN); routing protocols; network address translation (NAT); dynamic host configuration protocol (DHCP); 
ACLs, and authentication, authorization, and accounting functions.

Just as network layer 2 and layer 3 functions can be virtualized, similarly, several layer 4 through layer 7 
functions, such as virtual firewall, virtual load balancer, virtual application accelerator, can also be virtual-
ized. Let us explore some of these virtual network functions for virtual firewalls.

A virtual firewall (VF) is a firewall service running entirely within a virtualized form factor on a hypervi-
sor, providing the usual packet filtering and monitoring that a physical firewall provides. The virtual firewall 
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can be implemented in several ways; it can be a software firewall on a guest VM, a purpose‐built virtual 
security appliance, or a virtual switch with additional security capabilities. A virtual firewall can be used for 
a common layer 3 gateway firewall or a transparent layer 2 firewall.

9.2.4 Use Cases for Network Function Virtualization

This creates interesting use cases for deployment of a virtual router in cloud. The software router can be 
deployed by an enterprise or a cloud provider as a virtual machine (VM) in a provider‐hosted cloud. A virtual 
router can be deployed as a single‐tenant router in virtual form for WAN gateway functionality for multitenant 
provider‐hosted clouds. The virtual router serves primarily as a router per tenant, where each tenant gets its 
own routing instance; hence, its own VPN connections, firewall policies, QoS rules, access control, and so on.

A common use case for a virtual router is a virtual private network (VPN) service to the tenant edge in the 
cloud, which enables an enterprise to connect distributed sites directly to its cloud deployment. A virtual router 
can serve as a multiprotocol label‐switching (MPLS) router enabling managed connectivity from an enterprise 
site to the cloud deployment. There are many other use cases for a software virtual router in the cloud.

A virtual firewall addresses use cases like the invisibility of packets moving inside a hypervisor, between 
virtual machine (VM‐to‐VM) traffic. The virtual network traffic may never leave the physical host hardware, 
therefore security administrators cannot observe VM‐to‐VM traffic. The virtual firewall also provides multi-
tenancy function in a cloud and can also provide functions for intertenant firewalls for application segregation.

9.2.5 Network Device Partitioning

Following the notion of hypervisor and virtualization of x86 hardware, the networking industry has taken a 
similar approach in virtualizing the physical aspects of a router and/or a switch. This notion provides the abil-
ity to run feature‐rich routing and switching software virtually with multiple instances on the physical net-
work device natively.

In the earlier section, we discussed how VLANs and VRFs could be used to virtualize layer 2 and layer 3 
tables in routers and switches. The ability to virtualize the entire switch or router also exists and has proven 
quite useful in operational networks today.

As shown in Figure 9.4, some network devices offer virtual device context (VDC), where the operator can 
partition the entire operating system into multiple virtual OSs, giving the perception of multiple logical 
devices within a single physical hardware.
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9.2.6 Use Cases for Network Device Partitioning

The network partition approach for virtualization has proven useful in operational environments that need 
the control and features of the switch. The key benefit is that the capability exists to logically partition the 
 network device, while paying for a single physical device. The cost savings are obviously a key factor here, as 
is the reduction in power, cooling, and physical hardware maintenance. This capability highlights true capital 
expenditure (CAPEX) savings for the end customers.

The use of network partition opens up a number of use cases that can provide added benefits:

 ● offering a secure network partition between different user departments traffic;
 ● provides empowered departments the ability to administer and maintain their own configurations;
 ● provide a device context for testing new configuration or connectivity options without impacting produc-

tion systems;
 ● consolidation of multiple departments switch platforms into a single physical platform while still offering 

independence from the OS, administration and traffic perspective;
 ● use of a device context for network administrator and operator training purposes.

9.2.7 Wide Area Networks and Cloud Datacenter Interconnect Virtualization

The challenge in cloud datacenter network design is to incorporate scale, high availability, as well as a 
flexible solution, to expand resources outside of the physical location. Cloud datacenter interconnect 
(DCI), offers the ability to transparently extend connectivity between multiple cloud datacenters, offering 
the same look and feel as if there was a cloud single datacenter, while gaining the benefits that multiple 
cloud datacenters offer, such as:

 ● high availability;
 ● increased uptime;
 ● security;
 ● the ability to expand beyond the physical building while appearing as a single datacenter to the applica-

tions, as well as users accessing those applications and / or data.
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The choices for DCI technologies are typically made based on the existing infrastructure, or transport 
options available between the cloud datacenters – specifically, optical, dark fiber, or Ethernet, multiprotocol 
label‐switching (MPLS), as well as the option of IP. These choices are dictated by the service provider offer-
ing the transport between two or more cloud datacenters.

Let us consider one technology as an example of DCI. In an MPLS network, data packets are assigned 
labels and packet‐forwarding decisions are made solely on the contents of these labels, without the need to 
examine the packet itself. This allows one to create end‐to‐end circuits across any type of transport medium, 
using any protocol (Rosen et al., 2001). Looking at MPLS offerings for layer 2 extensions for a cloud data-
center, MPLS allows for point‐to‐point Ethernet “psuedowire” extensions (also akin to Ethernet over MPLS), 
which is ideal when three or more cloud datacenters target full interconnection among them. Ethernet over 
MPLS is a very popular and widely deployed technology, used for DCI.

As shown in Figure 9.5, there are also several deployed techniques for IP transport options for DCI, where 
layer 2 MPLS and other techniques can be tunneled over IP.

9.2.8 Cloud Datacenter Interconnect Use Cases

Cloud DCI technologies have generally targeted several use cases accommodating server communications, 
requiring extending VLAN layer 2 domains between cloud datacenters, offering those applications the func-
tionality of being co‐located, while still located on the same VLAN.

This increases the ease of workload and virtual machine mobility, and offers the server operator (and 
hypervisor vendors) the ability to move active VMs between geographically disbursed datacenters or to relo-
cate applications from an extremely busy server to a server that is less utilized (but which is located in a 
remote datacenter). This is one of several use cases, and the DCI technologies allow this functionality, either 
in a “hot” (active VM) or “cold” (VM / workloads in standby) mode.

9.2.9 Network Localization for Virtual Machine Mobility

Virtual workload mobility is quickly becoming an important use case to load balance virtual resources across 
cloud datacenters, not only to provide high availability of access to the cloud applications and data, but lever-
age computing resources that are used less, regardless of whether the resources are geographically dispersed.

The challenge with leveraging virtual workload mobility is making the consumers of the applications (e.g. the 
end user) aware that the host (physical or logical) has moved. For example, consider the case where a user in 
Chicago is accessing a cloud application that is located in Washington DC. Because of a failure of the VM hosting 
the application, the cloud datacenter operator relocates the application to a less utilized datacenter in San Francisco. 
Other than a brief disruption of service, the end user is not aware of this move. The traffic pattern for the user in 
Chicago must traverse to Washington DC, then across the country to San Francisco, creating a “hair‐pin” traffic 
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pattern that is inefficient, and adds significant delay and response time for the end user of the  application. This 
example highlights the primary challenge with virtual host mobility integrated with efficient routing.

IP localization methods, specifically locator ID separation protocol (LISP), aim at solving this routing inef-
ficiency by efficiently populating the IP routing network with the optimum path (Chiappa, 2014). Prior to 
LISP, these methods were not trivial, and other than injecting route into the customer’s IP backbone, which 
can be very inefficient and does not scale if a large number of host routes exist within the enterprise, the solu-
tions to solve this were minimal. LISP addresses this key requirement, which is becoming increasing com-
mon in cloud environments. LISP is based on Request for Comments (RFC) 6830, and offers a host IP and 
location IP address split, offering a flexible way for enterprise backbone networks to recognize host (physical 
or logical) mobility, and detect the move very rapidly (Farinacci et al., 2013).

The key benefit reference to building cloud computing networks with LISP is the ability for LISP to handle 
the mobility aspect if a workload is relocated from one datacenter to another. The host mobility use case is 
one of several target use cases that LISP addresses and is the optimum routing method for host mobility in 
the industry today, and, because of this, is ideal when building cloud computing environments for stations, 
hosts, or mobile devices accessing the applications in the datacenter.

9.3 I/O Virtualization

Input / output virtualization (I/O virtualization or IOV) is a mechanism to abstract the upper layer network and 
I/O protocols from the underlying physical transport. This is typically discussed in the context of server 
 virtualization and adjacent switches. The growing trend of server virtualization and its use in the cloud puts 
a strain on server I/O capacity. As a result, network traffic, storage traffic, and interprocess communications 
traffic cause bottlenecks on the I/O subsystems of a compute node.

Input / output virtualization addresses performance bottlenecks by consolidating I/O to a single connection 
whose bandwidth ideally exceeds the I/O capacity of the server itself, thereby ensuring that the I/O link itself 
is not a bottleneck. That bandwidth is then dynamically allocated in real time across multiple virtual connec-
tions to both storage and network resources, thereby increasing both VM performance and the potential 
number of VMs per server. The following section discusses several I/O virtualization techniques, namely 
fiber channel over Ethernet (FCoE), converged network adapter (CNA), single‐root I/O virtualization 
(SR‐IOV), and multiroot I/O virtualization (MR‐IOV). There are several other techniques for I/O virtualiza-
tion; however, these are some of the more common techniques being employed.

9.3.1 Network Interface Virtualization

Network interface virtualization (Figure 9.6) takes a single physical adapter and presents multiple virtual 
adapters as if they were physical adapters to the server and network. This technique enables leveraging virtual 
adapters to virtual machines as if they are network adapters. With interface virtualization you can also con-
nect to a virtual switch in the hypervisor or directly to the virtual machines. Each interface creates a virtual 
cable between the network and virtual workloads.

9.3.2 Fiber Channel over Ethernet

Fiber channel over Ethernet (FCoE) is a storage protocol that runs the fiber channel (FC) directly over 
Ethernet. FCoE makes it possible to communicate fiber channel traffic across existing 10 Gb Ethernet‐switch-
ing infrastructure and converges storage and IP protocols onto a single cable transport and interface. Typically, 
Ethernet‐based networks are for TCP / IP networks and fiber channel networks are for storage networks. Fiber 
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channel supports high‐speed (1/2/8/16 GB) data connections between computing systems and storage devices. 
FCoE shares fiber channel and Ethernet traffic on the same physical cable or lets organizations separate fiber 
channel and Ethernet traffic on the same hardware (Figure 9.7). The goal of FCoE is to consolidate I/O and 
reduce cabling and switching complexity and reduce interface card counts in a server.

Fiber channel over Ethernet uses a lossless Ethernet fabric and its own frame‐encapsulated format. It 
retains fiber channel’s character tics and leveraged Ethernet links for fiber channel for communications. It 
works with standard Ethernet cards, cables, and switches to handle fiber channel traffic at the data link layer, 
using Ethernet frames to encapsulate, route, and transport FC frames across an Ethernet network from one 
switch with fiber channel ports and attached devices to another, similarly equipped switch.

9.3.3 Converged Network Adapter

A converged network adapter (CNA) is a network‐interface card (NIC) that contains a fiber channel 
(FC), host bus adapter (HBA), and an Ethernet NIC. It connects servers to FC‐based storage area 
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n etworks and Ethernet‐based networks. In networks without CNAs, servers have to have at least two 
adapters, namely FC HBA to connect the server to the storage network, and Ethernet NIC to connect the 
server to the LAN.

As shown in Figure 9.8, a single CNA to connect servers to storage and networks reduces costs by  requiring 
fewer adapter cards, cables, switch ports, and peripheral component interconnect express (PCIe) slots. 
Converged network adaptors also reduce the complexity of administration because there is only one connec-
tion and cable to manage. A CNA connects to the server via a PCIe to Ethernet and FC networks. The server 
sends both FC SAN and LAN and traffic to an Ethernet port on a converged FCoE switch using the fiber 
channel over Ethernet (FCoE) protocol for the FC SAN data and the Ethernet protocol for LAN data. The 
converged switch can de‐encapsulate FC from FCoE and the Ethernet traffic is then sent directly to the LAN.

9.3.4 Single‐Root I/O Virtualization

The PCI Special Interest Group (PCI‐SIG) has developed several I/O virtualization specifications to 
help standardize I/O virtualization implementations, and single‐root I/O virtualization (SR‐IOV) is one 
of the specifications. As shown in Figure 9.9, SR‐IOV is a specification that allows a PCIe device to 
appear to be multiple separate physical PCIe devices (Intel Corp, 2011). The single‐root (SR‐IOV) 
standard specifies how multiple guests, physical or virtual machines (VM) on a single server with a 
single PCIe controller or root can share I/O devices without requiring a hypervisor on the main data 
path. SR‐IOV works by introducing the idea of physical functions (PFs) and virtual functions (VFs). 
Physical functions are full‐featured PCIe  functions; virtual functions are smaller functions that lack 
configuration resources.

Support is needed for SR‐IOV in the BIOS as well as in the operating system instance or hypervisor that is 
running on the hardware. The hypervisor must work in conjunction with the PF drivers and the VF drivers to 
provide the necessary functionality, such as presenting PCI configuration space to VMs and allowing a VM 
to perform PCI resets on a VF.
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9.3.5 Multiroot I/O Virtualization

Multiple root I/O virtualization (MR‐IOV) extends the concept to allow multiple independent systems with 
separate PCIe roots to connect to I/O devices through a switch. Both SR‐IOV and MR‐IOV require specific 
support from I/O cards. PCI‐SIG is standardizing the mechanisms that enable PCIe devices to be directly 
shared, with no runtime overheads. Multiroot IOV provides a means to share directly between operating 
systems in a multiple systems environment.

Hence, MR‐IOV provides methods for exporting and managing multiple views of the same device in a 
PCIe fabric that can be connected to more than one root port. From each root port’s perspective, the fabric 
appears to be a traditional PCIe‐based fabric and there is no change to the root complex. In addition, there is 
no change to non‐multiroot (MR) endpoints. However, there need to be changes to MR‐aware switches and 
endpoints to support multiple virtual hierarchies.

A common example for MR‐IOV implementation is a blade server with a PCIe “backplane,” where a new 
PCIe hierarchy is required. Essentially, a fabric is constructed which logically partitions the PCIe fabric into 
multiple virtual hierarchies (VHs) all sharing the same physical hierarchy.

9.3.6 I/O Virtualization Use Cases

The I/O virtualization techniques described in the above sections can be implemented in several cloud 
 infrastructure virtualization use cases. These use cases provide benefits ranging from cost‐effectiveness, to 
reducing complexity in cloud infrastructure implementation, to streamlining operational elements of a cloud 
network and reducing power and cooling requirements. Some sample use cases for I/O virtualization are:

 ● Input/output consolidation for discrete servers: the converged network adapters (CNA) in discrete  severs 
in rack mount servers, consolidate access Ethernet and fiber channel switches into a fiber channel over 
Ethernet (FCoE) switches (Gai and DeSanti, 2009). This consolidation not only reduces the infrastructure 
to manage, power, cool and implement, but also reduces cost of only maintaining a  single access network.

VM VM VM VM

Hypervisor

VF PF VF

Physical NIC with SR-IOV

Figure 9.9 Single root virtualization for multiple virtual hosts
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 ● Blade computing efficiencies. A blade server is an enclosure that provides power, cooling and 
interconnectivity to a set of server blades. The I/O virtualization techniques bring several efficien-
cies, reducing the number of cables, adapters, access switches and power requirements.

 ● Input/output assembly efficiencies. Single and multiroot I/O virtualization techniques allow the PCIe 
device to present multiple instances of itself up to the operating systems instance or hypervisor. This 
reduces cost, cabling, infrastructure, and operational processes.

9.4 Conclusion: End‐to‐End Network and I/O Virtualization Design

In conclusion, network virtualization can be seen in traditional areas of network segmentation, network 
 services, and intercloud connectivity. The I/O virtualization is focused on the interface between the compute 
and I/O subsystems. These focus on the abstraction of protocols, networking functions, network devices, and 
I/O access. Let us review a select few future considerations on the topic of network and I/O virtualization. 
First, network and I/O virtualization can be adopted pervasively for cloud networks, where the actual integra-
tion of virtualized environment is conducted by orchestration and programmatic functions. This is a key point 
to note as cloud networks evolve to accommodate scale, complexity, and cost functions via agile provisioning 
of cloud services. Second, the key focus in future of virtualization techniques in cloud will to enable cloud 
software applications for agile, easy and cost‐effective deployment and operations. Hence, any application‐
centric cloud infrastructure should be a key consideration in building any cloud network and I/O systems. The 
network and I/O virtualization function, coupled with orchestration and application enablement, are the key 
future traits for cloud networks.
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10.1 Introduction

Cloud networks are intended to provide network services in a similar fashion to the way in which compute 
and storage services are provided in a cloud‐computing environment. The primary purpose of cloud networks 
is to interconnect the physical and virtualized infrastructure resources, connect them to Internet, and expose 
the network as a service. The usage of cloud networks in a popular commercial model of cloud computing 
called infrastructure as a service (IaaS) can be taken as an example to underline the importance of cloud 
 networks. Infrastructure as a service provides on‐demand infrastructure consisting of storage, servers, and 
network over the Internet. Subscribers configure a network and manage an infrastructure in order to run 
applications. Amazon’s EC2 is an example of such a service. Cloud networks play a pivotal role in IaaS by 
performing following tasks:

 ● They connect storage and virtual servers optimally.
 ● They help in creating network isolation or separate network segments for applications.
 ● They allow the configuration of network security with firewall, authentication, and authorization.
 ● They help in load balancing amongst the application server instances.
 ● They help in steering the traffic as desired.
 ● They allow the creation of secure connectivity with the enterprise’s on‐premises network. They let the data 

traffic from users’ on‐premises networks travel to the cloud infrastructure in a secure way over the Internet. 
Typically, a virtual private network (VPN) is used for this purpose. The VPN uses security  protocols and 
encryption to secure private data communication over the Internet.
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 ● They are extendable to keep the scaled‐out virtual instances connected.
 ● The network configuration is exposed as a service in the form of application programming interfaces 

(APIs) to the user.

10.2 Characteristics of Cloud Networks

Key characteristics of cloud networks are elasticity, autonomic networking, geodistribution and high availa-
bility, and programming interface.

10.2.1 Elasticity

Elasticity of cloud networks can be defined as the property by which a network is grown or shrunk seamlessly 
in response to demand from users. Shrinking or growing a network helps extend the network to connect 
 additional virtual resources and to resize the network after virtual resources are decommissioned. Shrinking 
and growing are done in compliance with the network security requirements and quality of service require-
ments of traffic. In a nutshell, elasticity of cloud networks is the ability to reconfigure network as and when 
cloud services require it. Virtualization enables elasticity in cloud infrastructure because the virtual instances 
can be instantiated and decommissioned faster than the physical configurations. Network is also virtualized 
to enable the network elasticity.

10.2.2 Autonomic Networking

Autonomic networking is the ability of cloud networks to manage themselves by responding to events 
 happening in the network and correcting themselves. In a cloud infrastructure, a network grows and becomes 
complex over time. The management of the network also becomes complex. Due to the lack of scalable man-
agement capability, the growth of the network stops beyond a particular size. Autonomic networking capabil-
ity keeps the network flexible to grow to a greater scale. Autonomic networking is executed by monitor and 
control functions. Monitoring is done proactively. Discovery, awareness, and analysis is carried out perpetu-
ally to diagnose the state and events of a network. It creates the knowledge base to validate the events and 
respond to that. Response is typically a control action regulated by policies. The typical control actions are a 
reconfiguration of network resources, authorization, and authentication.

10.2.3 Geodistribution and High Availability

Cloud infrastructure is distributed across locations. This is needed for various reasons, such as compliance 
with local laws and regulations, disaster recovery, backup, and for having the infrastructure permanently 
available. Cloud networks support the geodistribution of infrastructure. They support the movement of virtual 
instances from one location to another location. Cloud networks extend the network domain to multiple sites 
by network tunnels. Applications residing on virtual machines, located in different locations, use the extended 
network domain for faster communication to each other.

10.2.4 Programming Interface

The “x as a service” model of cloud computing uses application programming interfaces (APIs) exten-
sively. Cloud networks provide APIs for configuration and controllability. Cloud network APIs are used 
to configure network interface, access control lists, routing, virtual private network, network firewalls, IP 
address design, and so forth. In the case of infrastructure as a service, the cloud networks’ APIs are given 
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to the users of the cloud service. In platform as a service, the cloud networks APIs are given to users on 
need basis. In software as a service, the cloud networks’ APIs are not used directly by the user. Cloud 
service providers use the cloud networks’ APIs internally to manage the cloud infrastructure.

Consumption of the APIs triggers an automated network configuration within the cloud networks. The con-
figuration requests are often mediated by an orchestration layer. The orchestration layer configures the virtual 
and physical network elements by using management and control protocols. In some cases it uses network oper-
ating system APIs, where the network elements provide a programmability option from the network operating 
system. It can also use the granular controls provided by the controller of software defined networking (SDN).

10.3 Types of Cloud Networks

The cloud networks depend on the cloud type, size and service models, as outlined below.   

10.3.1 Public, Private, and Hybrid Clouds

The cloud networks vary depending on the type of the cloud. Table 10.1 provides characteristics of cloud 
networks in different types of cloud computing infrastructure:

10.3.2 Size Based – Small, Medium, and Large

The cloud networks depend on the size of the cloud infrastructure. A small‐sized private cloud by a small 
enterprise has a simple network configuration. A large and distributed cloud infrastructure has a complex 
network requirement for securely connecting hundreds of physical and virtual resources.

10.3.3 Service Based – SaaS, PaaS and IaaS

Table 10.2 outlines the features of cloud networks for different commercial service models.

10.4 Architecture of Cloud Networks

10.4.1 Overview

Cloud networks are built using network elements such as switches and routers. Network elements vary in 
capacity and features. Network elements are physically connected by copper or optical cables, which carry 
the data traffic. The arrangement of the network elements and the connections among them are designed by 
following standard architectural practices. The standard architectural practices are required to meet the 
 objectives of cloud networks. Table 10.3 provides a brief overview of the objectives.

Table 10.1 Cloud networks for different cloud computing hosting models

Type of cloud computing Features of cloud networks

Public cloud Internet connectivity of the infrastructure
Network isolation across users

Private cloud Interconnection among resources
Secure connectivity over internet to enterprise’s network

Hybrid cloud Internet connectivity of the infrastructure
Interconnection among resources
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10.4.2 Hierarchical Architecture

Cloud networks architecture is hierarchical. There are multiple tiers in the hierarchy. Traditional three‐
tier architecture has core, aggregation and access layers as in Figure 10.1. Cloud networks are becoming 
flatter due to convergence happening in the cloud infrastructure. Convergence simplifies the cloud net-
works and optimizes the performance. The traditional three‐tier architecture is made flatter by collapsing 
three tiers into two tiers. This is achieved by aggregating the access layer into high density aggregation 
switches. Two‐tier architecture has only core layer and aggregation layer as in Figure 10.2. As a result of 
the convergence, design and management have become simpler. Network latency is also reduced because 
of reducing switching hops.

Table 10.3 Cloud networks’ architecture overview

Objective Overview

Connecting the cloud infrastructure with the 
Internet

The hierarchical architecture with multiple layers helps to 
connect resources to the Internet. This architecture caters 
to the north‐south data traffic.

Interconnecting the infrastructure resources The interconnection architecture helps in fast connection of 
resources and in convergence when needed. This 
architecture caters to the east‐west traffic.

Being elastic and dynamically configurable 
so that it can be leveraged in similar 
fashion to cloud computing infrastructure

Virtualization helps in achieving this objective by creating a 
logical network that is flexible and easily configurable

Keeping the infrastructure secured and 
keeping data securely isolated across users

Security aspects in cloud networks architecture take care of 
this objective

Managing the cloud networks and creating 
service APIs

Management and orchestration features of cloud networks 
architecture help in meeting the set of goals laid out by 
this objective

Table 10.2 Cloud networks for different cloud computing service models

Type of service Features of cloud networks

Software as a service (SaaS) Connects Internet to the virtual servers hosting SaaS applications
Takes care of network security, load balancing, and quality of service 

(QoS) of the offered SaaS
Platform as a service (PaaS) Connects the resources of the platform such as the virtual machines, 

storage, and network appliances like firewall.
Allows flexible network connectivity so that the user can design that as 

per the application requirement
Infrastructure as a service (IaaS) Connects the storage and virtual servers of cloud infrastructure and 

makes sure that the connectivity is configured among the chosen 
utility blocks in the desired way

Makes sure the network isolation and security are maintained as 
required by the user

Provides secure connectivity with the enterprise’s on‐premises network
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10.4.2.1 Layer 2 and Layer 3 Networks

The cloud networks’ hierarchical architecture is based on layer 2 and layer 3 networks. The “layer 2” and 
“layer 3” refer to the data link and network layers respectively of the standard model of communication system 
called the Open Systems Interconnection (OSI) model as in Table 10.4.

A switch is a layer 2 network element. A network created by switches is referred as a layer 2 network. In a 
layer 2 network, network packets are sent to specific network interfaces based on the destination media 
access control (MAC) address. This network is typically used for high‐speed connectivity among the infra-
structure resources attached to it. A network with many infrastructure resources attached typically needs to 
be divided into multiple broadcast domains.

Internet / WAN

Layer 3

Layer 2

Core

Access
layer

Aggregation
layer

Figure 10.1 Three‐tier architecture of cloud networks. (Separate access and aggregation layers.)

Internet / WAN

Layer 3

Layer 2

Core

Virtual
switches

Aggregation
layer

Figure 10.2 Two‐tier architecture of cloud networks. (Access layer is collapsed within high‐density aggregation 
layer and virtual servers.)
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Router and “layer 3 switch” are layer 3 network elements. A layer 3 network deals with the IP addresses 
configured on a network interface. The IP address for a network is designed to create multiple IP address 
subnets to reduce the broadcast domain. Routers help in forwarding traffic from one IP subnet to another 
IP subnet.

10.4.2.2 Core Network Layer of Cloud Networks

The hierarchical architecture of cloud networks is like a tiered pyramid. In the topmost tier of the pyramid 
there are routers operating at layer 3 and connecting the local area network (LAN) to the Internet. This tier is 
called the core network. The core network is known for high processing power, high capacity, high resiliency, 
and high availability. The core network layer’s primary job is speedy routing of high bandwidth of traffic. 
This layer uses many routing protocols. The purpose of a routing protocol is to learn available routes in a 
network, build routing tables, and make routing decisions. When a route becomes unavailable, the protocol 
helps in finding the best alternative route and updating the routing tables. This process is called routing con-
vergence.

10.4.2.3 Aggregation Layer of Cloud Networks

The middle layer of three‐tier architecture is called the aggregation layer. It is also known as the distribution 
layer. It aggregates multiple access switches in such a way that multiple connections are combined to have 
better throughput and redundancy. Primarily, switches with layer 2 and layer 3 capabilities are used in the 
aggregation layer. This layer is the aggregation point for many other network functions such as firewalls and 
load balancers. The primary objective of the aggregation layer is fast routing convergence and high availabil-
ity. Routing convergence is achieved by the routing protocols. High availability is designed by keeping a 
standby switch where the fail‐over can happen.

10.4.2.4 Access Layer of Cloud Networks

The access layer is the layer 2 network, which interconnects all the physical and virtual resources of cloud 
infrastructure such as compute servers, storage servers, and security servers. Each resource in a cloud infra-
structure has a network interface where the interconnection happens. Different network interfaces support 
different data transfer rates and cable types. Transfer rate means the maximum rate at which data can be 
transferred across the interface. The cable types are copper cable and optical cable. Primarily layer 2 switches 
with high port density are used in this layer.

Table 10.4 OSI model of layers of communication system

Presentation (layer 6) – Formats data to be presented to application
Session (layer 5) – Handles session establishment between processes
Transport (layer 4) – Ensures that messages are delivered in sequence without any error, losses 

and duplication.
Network (layer 3) – Controls routing of packets which contains IP address
Data link (layer 2) – Provides transfer of data frames over the physical layer
Physical (layer 1) – Responsible for reception and transmission of bit stream over physical 

medium
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10.4.3 Interconnection

10.4.3.1 Storage Interconnect Structure

Storage is one of the most important resources of cloud infrastructure. This infrastructure is made of virtual-
ized pool of storage servers interconnected with other resources of infrastructure. Data is organized, stored 
and accessed from disks by different storage mechanisms. Cloud networks are configured for latency and 
quality of service according to the typical needs of cloud storage such as backup and restore. They also 
 provide a gateway service to enterprise networks to connect and use the cloud storage services.

10.4.3.2 Server Interconnect Architecture

Compute servers have network interface cards (NICs) supporting various speeds from 3 mbps to 100 gbps. 
Rack‐mounted servers use the standard network interface. Blade servers use integrated network cards. Servers 
can have multiple physical network interface cards grouped into one virtual NIC. It helps in balancing the traf-
fic load across the NICs. The aggregated bandwidth available from the team of NICs is used effectively in this 
manner. It increases the performance. Network interface card teaming also makes the server fault tolerant.

10.4.3.3 Interconnection Using Network Fabric Architecture

Network fabric is a very high bandwidth interconnect system that connects loosely coupled compute, storage 
and network resources. It is also known as unified fabric. There are two components in a fabric. They are 
nodes and links, as in Figure 10.3. Nodes are the servers and the links are fiber‐optic connections with high‐
speed switches. Due to the meshlike structure of the fabric, multiple links are available between two points. 
The network fabric takes advantage of the aggregated bandwidth of the multiple links. Links are aggregated 
and link aggregation protocols are used to carry the packets without any duplication and without being out of 
sequence. It increases the performance of the network.

Figure 10.3 Network fabric representation
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The switches in a fabric select the shortest path available out of the many links of a fabric to reach a destination 
and also forward the traffic to multiple paths. Network latency is reduced by shortest path and the heavy load of 
east‐west traffic can be efficiently managed by multipath forwarding.

10.4.3.4 Interconnection in Modular Pod

Modular architecture allows a predefined set of datacenter resources to form a container, which can be added 
repeatedly. A pod is one such contained, discrete and modular unit of a datacenter. Pods contain a network 
layer along with compute, storage, and application components. Typically access layer switches are kept 
within a pod. With this modular architecture, the network interconnection happens typically in either of two 
models – top‐of‐the‐rack (ToR) or end‐of‐the row (EoR).

In the top‐of‐the‐rack model, one or two Ethernet switches are installed within the rack (not‐necessarily at 
the top) and the servers in a rack connect to them, as in Figure 10.4.

In end‐of‐the‐row model, server racks are arranged in a row and a chassis‐based Ethernet switch is placed 
at one end of the row, as in Figure 10.5.

10.4.3.5 Software‐Defined Networking

Software‐defined networking (SDN) is a concept that decouples the control plane and data plane of a network 
(see Figure 10.6). It envisages a simplified networking where a centralized controller is able to make deci-
sions about the traffic forwarding in a network. It introduces a communication mechanism between the con-
trol plane and data plane when they are decoupled. OpenFlow is an open‐source implementation of this 
communication protocol.
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Figure 10.6 Software‐defined networking. Source: Open Networking Foundation
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An OpenFlow‐capable switch maintains a table called a flow table. The flow table contains entries called flows. 
Packet forwarding happens according to the flow matching entries in the flow table. A software‐based controller 
manipulates the flow table entries using the OpenFlow protocol to decide on how to forward the packets.

The controller opens up services on the northbound side to integrate with the rest of the system. As a result, 
the applications get the privilege of controlling the traffic.

The following points describe how software‐defined networking helps cloud networks:

 ● it enables cloud networks to steer and route the application traffic dynamically across the cloud infrastruc-
ture using controller APIs;

 ● it simplifies the network operation and reduces the complexity of traditional network architecture;
 ● it helps network management systems in network automation;
 ● it helps network orchestration components to compose a service by consolidating with other resource 

management;
 ● it allows innovation in the field of cloud networks by exposing APIs for programmability;
 ● it enables network virtualization;
 ● it makes cloud networks flexible to scale out dynamically.

10.4.4 Virtualization

10.4.4.1 Network Virtualization

Network is virtualized to create a logical network on top of the physical network. Virtualization helps in many 
aspects. It helps in creating smaller logical networks for network isolation. It helps in making the network 
elastic. Elastic network can be scaled out or in dynamically. Virtualization helps in providing bandwidth on 
an on‐demand basis. Virtualization also helps in moving virtual machines from one location to another by 
adjusting the logical configurations without making any changes in the physical network. The abstraction of 
the network is not possible without abstracting the network end points – the network interfaces. Hence NICs 
have been virtualized. The physical switches have also been virtualized. Hypervisors run a virtual switch and 
provide a virtual network interface card to the virtual machines created on hypervisor.

10.4.4.2 Overlay

An overlay network is a concept of creating an independent network on top of a different network. In cloud 
networks, overlay is important because it has been introduced with a promise to tunnel information from one 
datacenter to another datacenter in a direct and simplified way. Overlay connects the switches over the phys-
ical network as shown in Figure 10.7. The Ethernet fabric is the physical network infrastructure. The tunnel 
fabric is an overlay created on top of the physical layer. With help of overlay the cloud networks can scale up 
to millions of logical networks providing layer 2 adjacency across all of them.

10.4.4.3 Network Function Virtualization

Network function virtualization (NFV) is carried out by the software layers within the devices. It reduces the 
capital expenditure of cloud networks as the virtualized network functions can run on commodity servers.

10.4.5 Cloud Networks Security

Cloud computing infrastructure requires many security measures to minimize the vulnerability and risk expo-
sures. Table 10.5 highlights some of the well known network security threats and countermeasures.
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10.4.6 Cloud Networks Management and Orchestration

The cloud network management system configures the cloud networks and monitors the network for perfor-
mance and faults. It takes control action when a fault occurs or performance degrades. The management 
system provides a dashboard where the network operator can visualize the complete network. It generates 

Virtual machines
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Physical network
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Physical network
path
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Figure 10.7 Overlay network

Table 10.5 Threats to cloud networks

Network threat Countermeasure

Denial of Service (DoS) attack: in this attack an attempt is 
made to prevent a server to serve to its clients. The 
service is either crashed or flooded. There are various 
forms of DoS attack.

Access control list
Filters used to prevent a DoS attack
Firewalls
Deep packet inspection system
Intrusion prevention systems

Man‐in‐the‐middle attack. The attacker sniffs a network, 
eavesdrops in a network communication and steals 
confidential information. This attack exploits the 
vulnerability of unencrypted or weakly encrypted 
packets.

Strong encryption and strong mutual 
authentication

Authorization
Authentication

Port scanning. The attacker sends requests to identify an 
active port of a server offering service and later uses 
that port to exploit a vulnerability of the service. This 
may not by itself be an attack but often leads to a 
network attack.

Packet‐filtering firewalls and proxies are used 
to limit the request to go to only defined 
ports. This prevents the attempt to reach to a 
wide range of ports.

Cross‐site scripting (XSS): The attacker injects malicious 
scripts into the client’s computers through web 
applications. The script runs at the client computers and 
gain access to confidential information.

Security controls at the client side such as 
secured cookies, and script disablement.
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alerts when a fault occurs. Network elements such as switches and routers provide information to the 
 management system periodically. The management system also probes the network periodically to collect 
information. Management communication protocols are used to communicate the information. The primary 
challenge in managing cloud networks is its complex configuration. An operator needs to know how to con-
figure a network configuration request on the physical or virtual network elements. The management system 
provides an easy and faster way to do the same without much effort. It provides graphical user interface and 
templates or wizards to do the configuration. Network management systems also provide scripting facilities 
where a customized configuration can be built and used on the network.

A cloud network management system is also used for configuration of authorization and authentication of 
network access. It involves communicating with the authentication‐authorization‐accounting (AAA) server 
for access policies.

The network management system has interfaces by which it can be integrated with other systems. Integration 
with trouble‐ticketing systems is an example of such integration. A trouble‐ticketing system  creates a ticket 
when a fault occurs in the network. Support personnel attend to the ticket to resolve the fault. Integration with 
the order management system is another example. Service orders from users of a cloud infrastructure are sent 
using this integration mechanism to configure the network. Integration with the billing system helps in measur-
ing the network service usage by user and charging the user for the same. Network elements maintain counters 
that measure usage, such as bandwidth. The usage information is collected by network management systems 
and then provided to the billing system. The billing system generates an invoice for users.

Advanced cloud network management systems self‐manage the network. They collect information from all 
possible sources using the monitoring functionalities, and do this very frequently. A large volume of unstructured 
data is analyzed using big data techniques. “Big data” refers to the collection and analysis of really big and 
 complex data sets. Patterns identified from the analysis are used to predict faults that may occur in the network. 
The network management system reconfigures the network to avoid such future faults.

There are associated systems with cloud network management systems that allow dynamic tuning of the 
network as per the application requirements. These associated systems are policy management systems, deep‐
packet inspection (DPI) systems, layer 4‐7 switches, and load balancers. A DPI system inspects the packets and 
identifies which applications are running in the network. Layer 4–7 switches refer to the layers of the OSI 
model, as in Table 10.1, where these layers denote the application‐specific headers of the packet. A DPI is also 
used to detect a security threat from the traffic pattern. A layer 4–7 switch is also used for  identifying the appli-
cations. A policy management system allows policies to be set up for applications. So when an application is 
identified, the policies are triggered from the policy‐management system. Policies reconfigure the network 
according to the needs of the application. The configuration parameters include quality of service requirements, 
dedicated bandwidth requirements, security requirements, and so forth. Load balancers are used to balance the 
traffic load across the host servers of the application. The layer 4‐7 switch helps in load balancing as well.

Cloud orchestration means arranging multiple resources in a coordinated way so that the user gets an end‐
to‐end environment with all resources needed. It helps the user to get all resources without much knowledge 
of the internal architecture of cloud infrastructure. It helps the provider to optimize the resource usage by 
controlling the provision requests from users. Cloud infrastructure hosts the orchestration layer as a software 
middleware. This layer can directly control and monitor all compute, storage and networking resources. It 
exposes REST APIs. Application programming interfaces are used to trigger orchestration across the infra-
structure resources. The orchestration layer creates a service composition by coordinating all resources 
together. It takes automated network configuration into the composition. OpenStack is widely used as cloud 
infrastructure management software. It has a networking component called “Neutron” which manages the 
cloud networks, IP addresses, dynamic traffic routing, and so forth. It can automate network configuration. 
Orchestration uses this automated network configuration along with other automations and creates a work-
flow to provide an end‐to‐end coordination.
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10.5 Conclusion

Cloud networks are in continuous flux in terms of introduction of novel concepts, emerging technologies, 
new solutions and new products. There is plethora of technology options available today and many of them 
are under ratification. However, it can be safely assumed that cloud networks have evolved to a position 
where, on the one hand, they are providing the network services to the cloud computing infrastructure and, 
on the other hand, they are emerging as a service model for business use. The evolution is made possible by 
technological evolution in networks such as virtualization, software‐defined networking, next‐generation 
network management capabilities, and networking protocols solving the challenges posed by the cloud com-
puting infrastructure. One general trend being observed in cloud networks is that the network, which was 
primarily driven by hardware and ASIC designs so far, is now being inundated with software applications. 
This is promoting innovation as software provides the capability to program and creates value‐added layer in 
networks. Researchers, standards bodies, universities, and business houses are investing in bringing in further 
advancement in cloud networks. The next‐generation cloud‐ready datacenter is going to see major traffic 
growth and agility in coming years. Cloud networks are maturing slowly to face the challenge of traffic 
growth and flexibility required to become nimble.
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11.1 Introduction

As cloud‐computing infrastructure, datacenters are built to provide various distributed applications such as 
Web search, e‐mail, and distributed file systems. However, traditional datacenters, which evolved from local 
area networks (LAN), are limited by oversubscription and high wiring costs. Servers connected to the same 
switch may be able to communicate at full bandwidth (e.g., 1 gbps) but the communication bandwidth in 
traditional datacenters may become oversubscribed dramatically when the communicated servers are moving 
between switches, potentially across multiple levels in a hierarchy. Addressing this oversubscription issue 
requires solutions such as large 10 gbps switches and routers. The performance of current Ethernet‐based 
DCNs solutions is also severely constrained by the congestion caused by unbalanced traffic distributions. The 
fixed topology of traditional datacenter networks (DCNs) connected with a large number of fabric wires is 
the root of the problem and influences the performance of the whole network.

Current trends in cloud computing and high‐performance datacenter applications indicate that these issues 
are likely to become worse in the future. A flexible architecture can mitigate the issues. As a complement 
technology to Ethernet, wireless networking has the flexibility and capability to provide feasible approaches 
to handle the problems. Recently, a newly emerging 60 GHz RF communication technology characterized by 
high bandwidth (4–15 gbps) and short range (possibly 10 m) has been developed, to satisfy the transmission 
demands in DCNs efficiently.

Researchers have designed a hybrid architecture for DCNs that integrates the existent Ethernet‐based 
DCNs and wireless networks. These architectures typically place radio transceivers on top of each rack and 
thus enable wireless communications among servers and routers. A multihop relay can be avoided by using a 
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recently emerging technology, called 3D beamforming, which uses the ceiling of the datacenter to reflect the 
wireless signals from each sender to its receiver. Completely wireless DCNs have also been investigated.

To deal with the scheduling problem of wireless transmissions in the hybrid DCN, approximation and 
genetic algorithms to tackle the problems of channel allocation (Cui et al., 2011a) and wireless link schedul-
ing (Cui et al., 2011b, 2012b) have been designed. The wireless scheduling targets the unbalanced traffic 
distribution and maximizes the total network utility, under the constraints of limited wireless resources and 
co‐channel interference.

One‐to‐many group communications (multicasts) are common in modern datacenters. However,  current 
research is based on wired multicast transmissions, which are known to be susceptible to congestion problems 
in datacenters. Further, the number of group members in DCN multicast is often very large, which makes the 
construction of multicast trees difficult. The limited number of multicast addresses is an additional challenge of 
supporting IP multicasts in the datacenter. Based on the hybrid DCN architecture, Liao et al. (2013) have pro-
posed wireless multicast mechanisms in DCNs, which address congestion due to heavy traffic.

Traffic redundancy originates from applications, software frameworks, and underlying protocols. For 
example, in Web‐service applications, some contents are more popular than others and thousands of end users 
(such as PC or smartphone users) will want to download them very frequently, thus resulting in a large 
 proportion of duplicate traffic content carried over the Internet. Although, for the sake of robustness, security, 
and so forth, some of the duplicate traffic content is essential, most is redundant and can be eliminated. To 
solve the traffic‐redundancy problem in DCNs, cooperative redundancy elimination schemes in wireless 
DCNs have been proposed (Cui et al., 2012a, 2013).

11.2 Challenges for Traditional DCNs

Cloud computing, enabled by datacenter platforms, provides various distributed applications such as search, 
e‐mail, and distributed file systems. Datacenter networks are constructed to provide a scalable architecture 
and an adequate network capacity to support the services. Potentially thousands of servers communicate to 
each other across hundreds of racks. The applications, operated on DCN servers, can generate enormous traf-
fic. The transmission optimization of DCNs is one of the most crucial challenges in cloud computing research.

Current DCNs are typically organized by scalable multiroot tree topology, as in Figure 11.1. The leaf nodes 
in this figure represent the racks in the DCNs and each rack contains 10 to 20 servers, which are connected 
to the top‐of‐rack switch (ToR Switch). The leaf nodes are connected to the routers through their parent 
nodes’ switches hierarchically and finally linked to the root nodes, which are located in the core layer via the 
devices in the aggregation layer. In this hierarchical treelike organization, the DCNs can add new servers on 
the existing infrastructure.

However, this tree‐like architecture is very vulnerable to one‐point failure, as the servers connected to the 
leaf nodes will not work once the switches of the parent nodes fail. By adding multiple root nodes and back-
ing up links at different levels, current DCNs can partly avoid one‐point failure. Unfortunately, even under 
normal conditions, some parent nodes can become bottlenecks affecting the whole network because leaf 
nodes may generate a huge amount of traffic. This localized congestion can reduce the throughput of the 
whole network. Consequently, the throughput of the DCN may be far lower than its upper bound, even when 
the servers are equipped with a Gb‐level Ethernet interface. This oversubscription is a major challenge to 
improving the performance of DCNs.

To solve this problem, some researchers focus on optimizing the parameters of the network’s topology, like 
the bisection width and diameter, to increase the available bandwidth to the servers located in the root nodes, 
and reduce data‐forwarding latency (Guo et al., 2008, 2009). Some studies deal with routing mechanisms to 
maximize the utility of the bandwidth provided by the infrastructure of DCNs; other try to optimize the 
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 route‐selection algorithm according to the requirements of applications and distribution of the traffic. Some stud-
ies attempt to eliminate the negative impact of the local congestion at the transport layer (Alizadeh et al., 2010).

These solutions can alleviate the network performance bottleneck to some extent. However, it is impossible 
to build a wired (cable) DCN that can link all the servers and racks directly in an acceptable wiring cost range. 
Different leaf nodes can share common links during their communication, which can become a bottleneck. 
Moreover, the structure of current DCNs is a fixed symmetry and balanced topology for all the servers and 
the available bandwidth is equal for all servers. This symmetrical structure is not efficient in dealing with 
asymmetric flow.

The DCNs should meet the following design goals: scalability, cost effectiveness, and high throughput. 
However, having evolved from large‐scale enterprise networks, traditional datacenters are typically constructed 
based on a hierarchical topology and this fixed and symmetric topology could not meet the demands of high 
dynamics of traffic in DCNs. Datacenters may contain tens of thousands of computers with significant aggre-
gate bandwidth requirements. Unfortunately, the resulting topologies may only support 50% of the aggregate 
bandwidth available at the edge of the network, while still incurring the high wiring cost of switching fabric. 
The performance of current DCNs is far from satisfying the requirements of the modern application running in 
the cloud platform and it is very urgent to develop a new efficient underlying framework for DCNs.

11.3 The architectures of Wireless DCNs

11.3.1 Efficient wireless technology for DCNs

Datacenter networks can be enhanced by augmenting wireless links. The wireless technology should enable 
the Gb level throughput of DCNs. An important such technology is the utilization of the frequency domain 
with extremely high frequency (EHF). This usually refers to the frequency domain within the range of 30 GHz 
to 600 GHz and the frequency domain around 60 GHz (57 GHz ~ 64 GHz). The 60 GHz frequency domain has 
several unique characteristics. It can support high‐bandwidth channels for Gb‐level transmission, and has 
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inherent directional characteristic because its signal has a very short wavelength and a high‐frequency reuse. 
A 60 GHz signal attenuates dramatically during transmission in the air because of oxygen absorption and its 
valid transmission range is no more than 10 m. However, wireless transmission technology with 10 m cover 
range is already adequate for short‐distance indoor wireless communications as a complementary technology. 
Therefore, new DCN architectures are built upon newly emerging directional, beamformed 60 GHz RF com-
munication channels characterized by high bandwidth (4–15 gbps) and short range.

New 60 GHz transceivers based on standard 90 nm CMOS technology implement channels with low cost 
and high‐power efficiency (<1 W). Directional short‐range beams employed by these radios enable a large 
number of transmitters to communicate simultaneously with multiple receivers in tightly confined spaces.

11.3.2 Architectures for Wireless DCNs

Many problems need to be solved to build wireless DCNs, such as the tradeoff between wired connections 
and wireless connections, layout of the antenna, the security of the high‐quality line‐of‐sight (LOS) transmis-
sion that 60 GHz RF requires, and so forth. When designing the network architecture, the basic requirements 
of a DCN, including scalability, high capacity, and fault tolerance, should be addressed. The limited transmis-
sion range of EHF and the interference in wireless communications pose challenges. In the next section, we 
will give brief outlines of several typical examples of wireless DCNs.

11.3.2.1 Hybrid Ethernet / Wireless Architecture

It is difficult for a wireless network alone to meet all the demands. For example, the capacity of wireless links 
is usually limited due to the interference and high transmission overhead. Thus wireless networks could not 
be employed to substitute for the Ethernet entirely. A hybrid architecture that uses wireless communication 
as an assistant technology has been proposed in Cui et al. (2011c).

One prerequisite for utilizing wireless communications in DCNs is to equip servers with radios. An intui-
tive approach is to assign radios to each server. However, this leads to a large number of radios, with high cost 
and a waste of wireless devices because wireless channel limitations allow only some of the radios to transmit 
simultaneously. Therefore, it is more reasonable to assign radios to groups of servers. In the following, “wire-
less transmission unit” (WTU) is used to refer to a group of servers supported by the same set of radios for 
communicating to the servers out of the group.

In practice, datacenters are mainly constructed by connecting racks of servers via Ethernet. Therefore it is 
reasonable to consider each rack as a WTU, as illustrated in Figure 11.2. Note that the racks do not block the 
LOS transmissions as the radios are located on top of them. This addition can be applied to various DCN 
topologies without rearranging the servers.

11.3.2.2 3D Beamforming Architecture

A 60 GHz wireless links is limited by line of sight, and can be blocked by even small obstacles. Even beam-
forming links leak power, and potential interference will severely limit concurrent transmissions in dense 
datacenters. To address these issues, a new wireless primitive for datacenters, 3D beamforming, where 60 GHz 
signals bounce off datacenter ceilings, to connect racks wirelessly, has been proposed in Xia et al. (2012). 
In 2D beamforming, sender and receiver only communicate with line‐of‐sight direct transmissions, in 3D 
beamforming (see Figure 11.3) a transmitter can bounce its signal off of the ceiling and communicate in this 
way with the receiver. This creates an indirect line‐of‐sight path between the sender and receiver by passing 
obstacles and reducing interference footprint. To align its antenna for a transmission, the sender only needs 
to know the physical location of the receiver rack, and point to a position on the ceiling directly between the 
two racks. This is because all racks (and their 60 GHz radio antennas) are of the same height.
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This novel design can establish indirect line of sight between any two racks in a datacenter. In 3D beam-
forming, a top‐of‐rack directional antenna forms a wireless link by reflecting a focused beam off the ceiling 
towards the receiver. There are several advantages of 3D beamforming over prior “2D” approaches. First, 
bouncing the beam off of the ceiling allows links to extend the reach of radio signals by avoiding blocking 
obstacles. Second, the 3D direction of the beam significantly reduces its interference range, allowing more 
nearby flows to transmit concurrently. Third, the reduced interference extends the effective range of each 
link, allowing DCNs to connect any two racks using a single hop, and mitigating the need for multihop links. 
Xia et al. (2012) address limitations of 60 GHz beamforming that arise from signal blockage and interference 
caused by signal leakage. The reach and capacity of 60 GHz links are greatly expanded by 3D beamforming, 
making them feasible as flexible and reconfigurable alternatives to wired cabling.
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11.3.2.3 Completely Wireless Architecture

Based on emerging 60 GHz RF technology, authors in Shin et al. (2012) investigated a radically new meth-
odology for building wire‐free DCNs. They proposed a novel rack design and a resulting network topology 
inspired by Cayley graphs that provided a dense interconnect. Because its network connectivity subgraphs 
belong to a class of Cayley graphs, they call their design a Cayley datacenter.

To separate the wireless signals for communications within a rack and among different racks, they propose 
cylindrical racks (Figure  11.4a) that store servers in prism‐shaped containers. This choice is appealing, 
because it partitions the datacenter volume into two regions: intrarack and interrack free space. A single server 
can be positioned so that one of its transceivers connects to its rack’s inner space and another to the interrack 
space, as illustrated in Figure 11.4b. The prism containers can hold commodity half‐height blade servers. A 
custom‐built Y‐switch connects the transceivers located on opposite sides of the server (Figure 11.4c). The 
Y‐switch multiplexes incoming packets to one of the outputs.

Although it is difficult for today’s wireless technology alone to meet all the demands of the communica-
tions in DCNs, Cayley datacenter is an architecture with deep insight, as it provides a new direction to the 
design of DCNs.

11.4 Performance of Wireless DCNs

11.4.1 Channel Allocation in Wireless DCNs

There are some challenges in the design of hybrid DCNs. To begin with, wireless links should be arranged 
appropriately to improve the performance. A lot of factors are involved in the wireless scheduling. For example, 
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wireless links should be set up to solve the congestion of hot servers. Channels should be allocated to avoid 
interference between wireless links. The scheduling of wireless communications should coordinate with the 
Ethernet transmissions. In other words, the performance of wireless networks (typically measured by through-
put) and the global job completion time should be considered together.

To deal with these challenges, a centralized scheduling mechanism for wireless transmissions has been 
proposed (Cui et al., 2011c, 2012b). They adopt a popular management model of open flow for their central 
controller to gather flow statistics from all the servers in DCNs when acquiring information. Open flow can 
help to achieve effective centralized scheduling for large datacenters with low overhead. By implementing the 
open flow protocol, switches in DCN can both obtain statistics of flows and open a secure channel to the 
central controller. The injection of a new flow or completion of a transmission can therefore be detected and 
signaled to the central controller, and up‐to‐date traffic distributions can also be estimated and sent to the 
central controller. Then a periodical or trigger‐based schedule mechanism can be used to tackle the congestion 
problem. Their scheme can trigger scheduling when a new hot node is observed as it mainly focuses on the 
distribution of hot nodes, (i.e. the aggregate flow rate of a node grows beyond a specified threshold). Periodical 
scheduling can help balance the workload in DCN at a regular interval while hot‐node‐based triggering can 
adapt to the dynamism of the workload more effectively. Their scheduling mainly consists of two parts: the 
first step is to construct a wireless transmission graph based on the traffic information; and the second is to 
perform channel allocation in the wireless transmission graph. Their work has improved global performance 
by wireless transmissions considerably in terms of both throughput and job completion time.

11.4.2 Wireless Link Scheduling for DCNs

Besides the channel allocation problems, there are a number of other issues to be handled in order to provide 
a feasible wireless DCN. First, the requirements of scalability and network capacity should be considered in 
designing the network architecture. Second, the Ethernet DCN infrastructure and the overlay wireless  network 
need to be carefully coordinated. Third, wireless scheduling is the key issue to determine when and where to 
establish wireless links.

To handle these problems, wireless link scheduling for DCNs (WLSDCN) has been proposed in Cui et al. 
(2011b). This considers various factors such as the traffic distribution, network topology, and interference. 
First, they have designed a hybrid architecture (as shown in Figure 11.5) that integrates the existent Ethernet‐
based DCNs and wireless networks to take advantage of the high capacity of Ethernet and the high flexibility 
of wireless networking. Second, they have presented a distributed wireless scheduling mechanism that is able 
to adapt wireless links to the dynamic traffic demands of the servers. Furthermore, they have introduced a 
novel method to organize the servers to effectively exchange traffic information through the network. Third, 
they formulate two wireless‐scheduling problems based on different optimization objectives. Both the traffic 
distributions and the contention of wireless resources are considered. Additionally, they also have analyzed 
the complexity and designed solutions for each optimization problem. Their architecture approach leverages 
wireless connections to schedule links in DCNs. Both the network architecture and the scheduling mecha-
nism are designed to provide an effective wireless DCN.

11.4.3 Multicast Optimization in Wireless DCNs

One‐to‐many group communications are common in modern datacenters. For example, distributed file 
 systems such as Hadoop can generate a huge volume of one‐to‐many traffic. Multicast is known to be most 
efficient in supporting one‐to many transmissions.

In BCube (Guo et al., 2009), a server‐based multicast tree‐construction algorithm was proposed. Vigfusson 
et al. (2010) proposed a datacenter multicast mechanism called Dr. Multicast. Based on the hardware  capacity, 
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some groups are supported by multicast while the remaining groups use unicast communications. Dan and 
 co‐workers (Li et al., 2012) proposed a multicast scheme by exploiting the feature of DCNs and in‐packet 
bloom filters to achieve scalability. However, all these mechanisms are based on wired multicast transmissions, 
which are known to be susceptible to congestion problems in the datacenter. Further, the number of group mem-
bers in DCN multicast is often very large, which makes the construction of multicast trees difficult. The limited 
number of multicast addresses adds in the additional challenge of supporting IP multicast in the datacenter.

Based on the hybrid Ethernet / wireless architecture of DCNs, Liao et al. (2013) proposed multicast for 
wireless DCNs (MWDCN), a multicast mechanism that makes use of wireless links in DCNs to facilitate 
one‐to‐many transmissions more efficiently, especially when the wired transmissions in DCN experience 
congestion due to heavy traffic. They treat ToRs as the basic wireless broadcast units (WBUs), and data 
routed to different servers connected to the same ToR are treated as being transmitted to the same destination. 
Since tens of servers are often connected to each ToR, the number of ToRs is much smaller than that of serv-
ers. By selecting ToRs as WBUs, the number of multicast members can be greatly reduced, which would, in 
turn, reduce the possible wireless interference. Since DCNs are relatively well managed networks, they also 
have designed a centralized module (CM) (see Figure 11.6), which can facilitate the proposed scheme. Each 
WBU will periodically update the CM, through a wired connection, with the link conditions between itself 
and its neighbors, based on past transmission statistics. As all WBUs have fixed locations, the channel condi-
tions are relatively stable in DCNs. The CM decides which WBUs broadcast data and the transmission rates 
used by WBUs (i.e., determining the forwarding set and corresponding rates) based on the packet delivery 
probabilities, transmission ranges, and interference ranges. To take into account the possible difference in 
loss probability between estimation and actual transmissions, some additional number of packets can be 
scheduled to transmit. The CM will update the schedule based on the transmission condition. Based the archi-
tecture with the CM, they also proposed a direction‐based scheme to allocate the broadcast duration of these 
relay nodes based on the location of group members.
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Figure 11.5 A wireless DCN architecture



136 Encyclopedia of Cloud Computing

11.4.4 Redundancy Elimination in Wireless DCNs

A proportion of the traffic in DCNs is redundant. It originates from applications, software frameworks, and 
underlying protocols. In Web‐service application, some content is more popular than others, resulting in a 
proportion of duplicate traffic content carried over the Internet. According to research, the duplicate content 
of the traffic based on http (or http‐opt) is up to 50%. MapReduce can have over 30% (Kim et al., 2011) of 
duplicate content. Although, for the sake of robustness, security, and so forth, some of the duplicate traffic 
content is essential, most is redundant and can be eliminated. Hence, reducing the traffic in DCNs is desira-
ble, to improve their performance.

A lot of work has been done by researchers to eliminate traffic redundancy. A well known approach to 
eliminate traffic redundancy is to use proxy servers to cache popular objects at locations close to clients. 
However, these existing mechanisms are not applicable to DCNs. They are highly centralized, and cause large 
communication overheads to gather the traffic matrix and some other information needed. They ignore the 
difference in utilities of caching the same data by different intermediate nodes, especially when the cache 
capacity is relatively small compared to the huge traffic volume in DCNs. Further, they do not take the redun-
dancy of the data sent by different servers (cross‐source redundancy) into account. Due to the similarity of 
the applications provided by the servers (e.g., file sharing), there is much redundancy between data sent by 
different servers. In existing work, servers register the cache state of the data sent by themselves but are not 
aware of the data sent by other servers. Moreover, they do not address the change in popularity of some con-
tent (e.g., Web searches) with time.

To solve the hot‐point problems in DCNs, Kandula and Bahl (2009) proposed wireless links between serv-
ers to make use of the “hotspot” feature of DCN traffic and reduce the transmission time of DCN jobs. In their 
work, only servers are equipped with wireless network interface cards. In another architecture proposed in 
Cui et al. (2012a, 2013), there are wireless network interface cards and a cache in each router and each server. 
Routers cache the payload of the flow through them, and servers monitor what is cached by each router. 
Hence a server forwards encoded data, previously cached by a router downstream, and that router decodes the 
data and forwards it toward the destination.

Based on the designed architecture of wireless DCNs in Figure 11.7, authors in Cui et al. (2012a, 2013) 
have proposed a mechanism of redundancy elimination in the datacenter to schedule the channels for opti-
mizing the performance of wireless DCNs. They have also designed solutions to choose which node caches 
the specific data in order to minimize the network‐wide flow. Their solution caches data units with the largest 
caching utility among routers with remaining capacity, as illustrated in Figure 11.8. Servers and routers can 
update their status in a single wireless transmission, using an efficient prioritized schedule.
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11.5 Conclusion

The bottlenecks in current DCNs typically originate from their fixed architecture. Fortunately, wireless 
 networking, as a complementary technology to Ethernet, has the flexibility and capability to provide feasible 
approaches to handle the problem. Based on the wireless technology, researchers have done a lot of work 
designing a new, efficient architecture for wireless DCNs. Typically, their architectures are based on the 
newly emerging 60 GHz transmission technology. There is also plenty of research on improving the perfor-
mance of wireless DCNs. This work has been a remarkable achievement and has made a great contribution 
to the development of DCNs.
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12.1 Introduction

The cloud computing paradigm is delivering information technology capabilities to users in the form of 
“ services / utility” with elasticity and scalability, making it an attractive concept for enterprises requiring agility 
and cost‐effectiveness. Various cloud software providers (commercial or open source) offer cloud software 
solutions that enable cloud service providers to offer one of the three services – infrastructure as a service 
(IaaS), platform as a service (PaaS), and software as a service (SaaS).

Open‐source cloud software solutions are distributed along with their source code and are licensed so that 
the copyright holder has the right to study, change, and redistribute the software to anyone and for any purpose 
(Andrew, 2008). The primary motives for an organization to adopt open‐source cloud software solutions 
include reduction in cost of investment, avoidance of vendor lock in, and security. Open‐source cloud software 
solutions with lower initial investments are viable alternatives to commercial cloud software solutions (Endo 
et al., 2010; Voras et al., 2011a, b; Salih and Zang, 2012). The strengths, weaknesses, opportunities, and threats 
(SWOT) analysis of open source cloud software adoption is outlined in Figure 12.1.

For each cloud service delivery model, we select a set of criteria relevant to that service, generally covering 
the SWOT aspects. Then we briefly outline the features of few leading open‐source cloud software solutions 
and compare those solutions based on the set of criteria chosen for the cloud service delivery model.

12.2 Criteria for Evaluating Open‐Source IaaS Cloud Solutions

Infrastructure as a service (IaaS) refers to the capability of provisioning raw computing infrastructure, 
in the form of computing units, storage, and so forth, by a provider to a client. By using IaaS open‐
source solutions, organizations can take advantage of cloud interoperability and portability. We have 

Open‐Source Cloud Software Solutions

G. R. Gangadharan, Deepnarayan Tiwari, Lalit Sanagavarapu, Shakti Mishra,  
Abraham Williams, and Srimanyu Timmaraju

Institute for Development and Research in Banking Technology, India

12



140 Encyclopedia of Cloud Computing

chosen the following criteria for evaluating open‐source IaaS cloud solutions – the criteria are not listed in 
any specific order of preference:

 ● Ease of deployment and management of cloud software. Customers who have already invested in in‐house 
infrastructure capacity want the investments to coexist with the cloud. They should have an option to 
migrate a portion of their workload or the entire workload to the cloud. Cloud service providers should 
address these needs by providing tools and services to ease migration. These tools and services should 
support virtual machine portability for the cloud platform. The cloud software stack should also support 
appropriate and commonly used infrastructure services such as identity and access‐management systems.

 ● Resource provisioning and service orchestration. Resource provisioning is an important issue in cloud 
computing. It refers to how resources may be allocated to an application mix so that the service‐level 
agreements (SLAs) of all applications are met in a cost‐effective manner (Hu et al., 2009). Service orches
tration refers to the coordinating and provisioning of virtualized resources, as well as the running and 
coordination of resource pools and virtual instances. Service orchestration also includes static and 
dynamic mapping of virtualized resources to physical resources.

 ● Monitoring. Monitoring of IaaS is a task of paramount importance for both providers and consumers. 
Monitoring of IaaS cloud solutions involves capacity and resource planning, datacenter management, 
SLA management, billing, and security management.

 ● Interoperability. In IaaS, interoperability typically refers to the ability to move the workload and data 
from one cloud provider to another or between private and public clouds. A common criterion for analyz
ing interoperability is the use of open standards.

Strengths

freedom to use and reuse, 
cost effective, better 

interoperability, and help 
innovation

Weaknesses

lack of support services, 
and lack of open source 
software usage policy in 

organizations

Opportunities

low-cost barrier to entry, 
better reuse, and forking 

for better solution

Threats

lack of awareness among 
decision makers, 

inadequate support 
services, inadequate 

skilled staff, and resistance 
from existing market 

force

Figure 12.1 SWOT analysis of open‐source cloud software adoption
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 ● Network. Network plays a key role in the delivery and performance of cloud services. In IaaS, there is a 
guarantee of the minimum amount of network bandwidth that can be expected for each virtual machine 
(VM) irrespective of the network utilization of other tenants. This type of guarantee is common for resources 
like CPU and memory, and having the same for the network is key to achieving lower bounds for the worst‐
case performance of an application. These criteria are referred to as min‐guarantee (Popa et al., 2012).

 ● Storage. Storage is a critical criterion when developing high‐performance IaaS solutions with high availabi
lity, reliability, and scalability. Cloud‐storage infrastructure needs to provide a distributed, shared solution, 
which eliminates single points of failure and also avoids high costs.

 ● Security. IaaS supports a multitenant architecture to share the computing resources between users. The 
security analysis for IaaS should include network security, VM repository security, data security, and 
security of cloud APIs.

 ● Support. Customer service is the key to success in any organization. Support for IaaS should include com
munity forum, knowledge base, Web‐based issue tracking, and documentation.

12.2.1 Comparison of Open Source IaaS Cloud Solutions

We consider the following leading open source IaaS cloud software solutions for comparison:

 ● Eucalyptus (Elastic Utility Computing Architecture for Linking Your Programs To Useful Systems): 
Eucalyptus (http://www8.hp.com/us/en/cloud/helion‐eucalyptus‐overview.html, accessed December 1, 
2015; Nurmi et al., 2008, 2009; Truksha, 2012) provides a scalable IaaS framework for implementation 
of clouds. Eucalyptus implements the Amazon Web Services (AWS) API allowing interoperability with 
existing services, creating the possibility of combining resources from internal private clouds and from 
external public clouds to create hybrid clouds. This capability presents seamless integration with Amazon 
EC2 and S3 public cloud services. Eucalyptus currently supports Xen and KVM virtualization. Eucalyptus 
can be deployed on all major Linux OS and Windows OS distributions.

 ● OpenStack: NASA and Rackspace jointly developed an open source project called OpenStack 
(www.openstack.org, accessed December 11, 2015) (Sefraoui et al., 2012; Truksha, 2012) supported by 
renowned companies including AMD, IBM, HP, Intel, and Cloud.com. OpenStack has a modular architec
ture with various components including compute, object storage, block storage, networking, dashboard, 
identity service, image service, telemetry, orchestration, and database.

 ● CloudStack: Jointly developed by Cloud.com and Rackspace, CloudStack (Truksha, 2012; Sabharwal and 
Shankar, 2013) supports the Xen, KVM, and VMware vSphere virtualization approaches. The CloudStack 
architecture comprises two components: the management server and the compute nodes. The manage
ment server features a Web user interface for administrators and users. Other management server tasks are 
to control and manage the resources when distributing the instances to the compute nodes. Although this 
software is available in a community edition, an enterprise edition, and a service provider edition, only the 
community edition can be used under an open‐source license.

A detailed comparison of the three open‐source IaaS software solutions listed above is given in Table 12.1:

12.3 Criteria for Evaluating Open‐Source PaaS Cloud Software Solutions

Platform as a Service (PaaS) refers to the capability in which development platforms and middleware sys
tems hosted by a vendor are offered to application developers, allowing developers to simply code, generate 
executables and deploy their application, without directly interacting with the underlying infrastructure. By 
using open‐source PaaS, organizations could move an application very easily from one platform to another.
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Table 12.1 Comparison between open‐source IaaS cloud software solutions

Criteria Eucalyptus OpenStack CloudStack

Ease of 
deployment 
and 
management 
of cloud 
software

Eucalyptus offers a rich API 
compatible with Amazon 
web services API. It also 
provides support for 
management of cloud 
software by clustering 
and zoning, flexible 
network management, 
security groups, and traffic 
isolation.

OpenStack supports a set of 
deployment tools including 
OpenStack Native, DevStack, 
StackOps, RDO, Puppet, 
Chef, and Fuel for ease of 
deployment and management 
of software.

CloudStack deployment 
architecture consists of two 
parts: the management 
server and the cloud 
infrastructure. The 
management server helps 
to provision resources such 
as hosts, storage devices, 
and IP addresses, and also 
manages those resources. 
The cloud infrastructure 
is organized as follows: 
zone, pod, cluster, 
and host.

Provisioning 
and 
orchestration

The node controller (NC) 
and cloud controller (CLC) 
components of Eucalyptus, 
manage service provision 
and orchestration.

OpenStack orchestration is a 
service that orchestrates cloud 
applications onto cloud 
resources using the OpenStack 
heat orchestration syntax 
(HOT) template format, 
through an OpenStack ReST 
API. OpenStack orchestration 
also provides compatibility 
with the AWS CloudFormation 
template format.

The orchestration engine 
is used for configuring, 
provisioning and also 
in scheduling any 
operation.

Monitoring and 
alerts

Eucalyptus monitors running 
components, instantiated 
virtual machines and 
storage services with the 
integration of monitoring 
tools like Ganglia and 
Nagios.

OpenStack supports external 
tools like Nagios, Logmonitor, 
CopperEgg/ RevealCloud for 
monitoring and generating 
alerts.

CloudStack supports 
external tools like Zenoss 
or Nagios for monitoring 
and generating alerts.

Interoperability Eucalyptus supports limited 
interoperability with 
Amazon Web Services 
(AWS) by compatible 
standardized Web 
services API.

OpenStack supports 
CloudBridge, which enables 
conversion between Amazon 
API and CloudStack API.

CloudStack supports a rich 
set of API, the platform 
supports CloudBridge, 
which enables converting 
an Amazon API into a 
CloudStack API.

Network Eucalyptus supports three 
networking modes: 
system, static, and 
managed.

OpenStack networking is a 
pluggable, scalable and API‐
driven system for managing 
networks and IP addresses. 
OpenStack networking has an 
extension framework allowing 
intrusion detection systems, 
load balancers, firewalls, and 
virtual private networks (VPN) 
to be deployed and managed.

CloudStack supports two 
types of networking 
zones, namely basic zone 
and advanced zone.
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The following are the criteria for evaluating open source PaaS cloud software solutions – the criteria are 
not listed in any specific order of preference:

 ● Ease of Deployment: The key factors to consider include ease of deploying an application and the steep
ness of the learning curve associated with its management for adoption of open source PaaS solution. 
Enterprises already have large investments in IT infrastructure. Leveraging existing investments like load 
balancers and management tools for PaaS will save money and accelerate the deployment.

Table 12.1 (continued)

Criteria Eucalyptus OpenStack CloudStack

Storage The storage controller (SC) 
communicates with the 
cluster controller and 
node controller, to 
allocate/ deallocate the 
memory on demand.

OpenStack support two types 
of storage namely as object 
storage and block storage. 
Object Storage is ideal for 
cost effectiveness, scaleout 
storage. It provides a fully 
distributed, API‐accessible 
storage platform that can 
be integrated directly into 
applications or used for 
backup, archiving and data 
retention. Block storage 
allows devices to be 
connected to compute 
instances for expanded 
storage, better performance, 
and integration with 
enterprise storage platforms.

CloudStack has two major 
categories of storage –  
primary and secondary 
storage. Primary storage 
is used for providing disk 
volumes for guest VMs 
and is associated with 
a cluster of the CloudStack 
deployment. Secondary 
storage is associated 
with a zone, common 
to all the pods in the 
zone, and is used for 
storing templates, ISOs 
and the disk volume’s 
snapshots.

Security Eucalyptus provides two 
primary mechanisms 
for instance security: 
availability zones, 
and security groups. 
An availability zone 
receives a fixed amount 
of resources, and those 
resources can be 
controlled via quotas 
and access control lists. 
Security groups are sets 
of networking rules 
applied to all virtual 
machine instances 
associated with a group.

OpenStack composes security 
components for identity 
provisioning, authentication, 
password management, and 
authentication tokens.

CloudStack uses secured 
Web sessions to protect 
the access information 
and DES‐encrypted access 
tokens.

Support Eucalyptus provides support 
through community 
forum, knowledge base, 
Web‐based issue tracking, 
and documentation.

OpenStack provides support 
through community forum, 
documentation, and Internet 
Relay Chat (IRC).

CloudStack provides support 
through Instant Guru, 
access by phone, e‐mail 
or Web portal, etc.
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 ● Security. As PaaS offers an integrated environment to design, develop, test, deploy, and support custom 
applications developed in the language that the platform supports, PaaS security includes security of 
the PaaS platform and security of customer applications deployed on a PaaS platform. The security of 
the PaaS platform should be considered from multiple perspectives including access control, privacy, 
and service continuity while protecting both the service provider and the consumer. Security of cus
tomer applications includes securing the software development lifecycle, Web services security, and 
secure coding practices.

 ● Features. An organization should look for the following (partial) list of features when selecting a PaaS 
solution:

 ◦ multitenant architecture;
 ◦ customizable / programmable user interfaces;
 ◦ unlimited database customization;
 ◦ robust workflow engine/capabilities;
 ◦ granular control over security / sharing (permission / access control models);
 ◦ flexible “services‐enabled” integration model;

 ● Service metering. Platform as a service (PaaS) billing and metering are determined by actual usage, as 
platforms differ in aggregate and instance‐level usage measures. Actual usage billing enables PaaS pro
viders to run application code from multiple tenants across the same set of hardware, depending on the 
granularity of usage monitoring. For example, the network bandwidth, CPU utilization, and disk usage 
per transaction or application can determine the cost. The primary concept and criteria for service meter
ing and billing include incoming and outgoing network bandwidth, CPU time per hour, stored data, high 
availability, and monthly service charges.

 ● Auto sizing for resilience. Resilient computing is a form of failover that distributes redundant imple
mentations of IT resources across physical locations. Information technology resources can be pre
configured so that if one becomes deficient, processing is automatically handed over to another 
redundant implementation. Within cloud computing, resiliency can refer to redundant IT resources 
within the same cloud (but in different physical locations) or across multiple clouds. Cloud consumers 
can increase both the reliability and availability of their applications by leveraging the resiliency of 
cloud‐based IT resources.

12.3.1 Comparison of Open‐Source PaaS Cloud Software Solutions

The following are some of the leading open‐source PaaS cloud software solutions:

 ● Cloud Foundry. Cloud Foundry (www.cloudfoundry.org, accessed December 11, 2015) (Iwasaki et al., 
2012) is an open‐source PaaS platform developed by VMware Corporation. Cloud Foundry has an open 
architecture that consists of a self‐service application execution engine, an automation engine for applica
tion deployment, lifecycle management, and a scriptable command‐line interface (CLI). Cloud Foundry 
is integrated with various development tools to ease deployment processes.

 ● Tsuru. Tsuru (www.tsuru.io, accessed December 11, 2015) is an open‐source cloud PaaS developed by 
Globo.com. Developers use Web‐service architecture to develop applications in programming lan
guages supported by Tsuru, which include Go, Java, Python, and Ruby. Tsuru uses JuJu for service 
orchestration to enable configuration, management, maintaining, deploying, and for scaling efficiently 
required services on the cloud.

A detailed comparison of the two open‐source PaaS software solutions listed above is given in Table 12.2:
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12.4 Criteria for Evaluating Open‐Source SaaS Cloud Software Solutions

Software as a service (SaaS) refers to the capability provided to the user to use applications hosted on a cloud 
infrastructure of the provider. Buyers are freed from developing, possession, and maintenance issues of software 
and hardware. Open‐source SaaS cloud solutions enable organizations to modify a cloud application according 
to their needs in a rapid manner. This capability can be accessed by users from various client devices.

The following criteria may be used for evaluating open source SaaS cloud solutions – the criteria are not 
listed in any specific order of preference:

 ● Features and applicability. Various open‐source cloud vendors offer SaaS services to the consumers to 
analyze the performance of required services, including user‐experience monitoring, scalability analysis, 
and projection, tracking Web transactions, and application analytics.

 ● Security. As SaaS may follow multitenant architecture to provide services to the consumers, security is the 
major criteria for SaaS applications. A SaaS provider provides extensive controls to manage and define 
the security of the application. The following key security criteria are considered for the security assess
ment of SaaS application development and deployment process:

 ◦ data security;
 ◦ network security;
 ◦ data access;
 ◦ authentication and authorization;
 ◦ Web application security;
 ◦ identity management;
 ◦ sign‐on process.

Table 12.2 Comparison between open‐source PaaS cloud‐software solutions

Criteria Cloud Foundry Tsuru

Ease of 
deployment

Cloud Foundry provides an easy way for 
developers to deploy, run and scale Web 
applications.

Tsuru supports deploy hooks to deploy 
an application. Deploy hooks gives 
a notification whenever a new version 
of an application is pushed to Tsuru. It is 
useful to integrate different systems together.

Security The User Account and Authentication (UAA) 
service is the identity management 
service for Cloud Foundry.

Tusru uses cryptographic SSH‐based requests to 
communicate with services.

Features Cloud Foundry supports multiple languages 
and frameworks with flexible 
configurations.

Tsuru is built to be extensible and scalable.

Service 
metering

Cloud Foundry provides general‐purpose 
metered usage API and specific add‐on 
instances for add‐on offerings with 
metered usage billing, such as overages, 
right scale, etc.

Tusru offers a general‐purpose metered‐
usage API.

Auto sizing 
for 
resilience

The deployed applications can be scaled to 
a configured number of instances and can 
use more than their allocated memory.

Tusru does not support dynamic resource 
allocation at the time of initialization of a 
node. Required resources must be predefined 
at the time of the request to the node.
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 ● Scalability. Scalability can refer to the capability of a system to increase total throughput under an 
increased load due to dynamic requests to the services. Scalability criteria can be categorized into two 
aspects. Load scalability deals with a system’s ability to increase throughput effectively while increasing 
levels of demand for computing resources. Administrative scalability deals with the SaaS vendor’s ability 
to manage multiple customers in a single environment.

 ● Customization. SaaS provides a rich set of functionality to achieve the functional needs of a customer. 
Customization is sometimes thought of as defining certain preferences that affect how an application 
behaves. The traditional concept for billing and metering SaaS applications is a monthly fixed cost. In some 
cases, the number of users determines the cost of the service and the organization dynamically allows the 
number of users to access the SaaS applications, which increases the monthly fee. The following criteria 
are used to evaluate the cost of SaaS application:

 ◦ monthly subscription fees;
 ◦ per‐user monthly fees.

 ● Support. The open‐source cloud vendors must have techniques to solve software conflicts and usability 
problems, and to supply updates and patches for bugs and security holes in the SaaS application.

12.4.1 Comparison of Open‐Source SaaS Cloud Solutions

The following are some of the leading open‐source SaaS cloud software solutions.

 ● Acquia. Acquia (www.acquia.com, accessed December 11, 2015) offers multitenant hosting of the Drupal 
open‐source content management system and uses Amazon’s EC2 cloud service.

 ● SugarCRM. Using SugarCRM’s (www.sugarcrm.com, accessed December 11, 2015) SaaS application, 
organizations can integrate multiple systems within the cloud.

A detailed comparison of the two open‐source SaaS software solutions listed above is given in Table 12.3.

12.5 Open‐Source Cloud Infrastructure Automation Tools

Cloud software solutions are starting to have good ecosystem to automate repetitive tasks, quickly deploy, 
monitor, and manage virtual machines in the cloud. Some of the popular open‐source automation and man
agement tools are described in this section.

12.5.1 Hyperic

Hyperic HQ (www.hyperic.com/, accessed December 11, 2015) manages, monitors, and controls large IT 
environments, ranging from hundreds to thousands of machines. This translates to tens of thousands of man
aged resources, from CPUs and network interfaces to application servers and databases. With HQ autodiscov
ery, cloud monitoring and heterogeneous environments can be managed within minutes of installation in both 
physical and virtual environments.

CloudStatus is built on Hyperic HQ, Hyperic’s flagship product designed to monitor and manage large‐
scale Web infrastructure. The Hyperic HQ Server aggregates multiple metrics from sources inside and out
side the cloud to provide cloud availability and health status. Hyperic HQ then calculates the aggregate data 
to determine overall availability and normalized metrics across the cloud. The multiple metrics origination 
scheme assures users a relevant overall perspective on cloud performance. For each service, Hyperic collects 
specific metrics using production instances across the cloud and tailored exercises typical of each service. 
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CloudStatus results reflect general service levels, and serve as an indicator of whether further investigation of 
application behavior or cloud performance is warranted.

12.5.2 Chef

Chef (www.getchef.com/chef/, accessed December 11, 2015) is a systems and cloud infrastructure‐ 
automation framework that makes it easy to deploy servers and applications to any physical, virtual, or 
cloud location, no matter the size of the infrastructure. The Chef client relies on abstract definitions (known 
as cookbooks and recipes) that are written in Ruby and are managed like source code. Each definition 
describes how a specific part of the infrastructure should be built and managed. The Chef client then 
applies those definitions to servers and applications, as specified, resulting in a fully automated infrastruc
ture. When a new node is brought online, the only thing the chef‐client needs to know is which cookbooks 
and recipes to apply.

Chef comprises three main elements: a server, one (or more) nodes, and at least one workstation. The 
Chef server acts as a hub that is available to every node in the organization. This ensures that the right 
cookbooks (and recipes) are available, that the right policies are being applied, that the node object used 
during the previous chef‐client run is available to the current chef‐client run, and that all of the nodes 
that will be maintained by the chef‐client are registered and known to the Chef server. The workstation 
is the location from which cookbooks (and recipes) are authored, policy data (such as roles, environ
ments, and data bags) are defined, data is synchronized with the Chef repo, and data is uploaded to the 
Chef server. Each node contains a Chef client that performs the various infrastructure automation tasks 
that each node requires.

Table 12.3 Comparison between open‐source SaaS solutions

Criteria Acquia SugarCRM

Features and 
applicability

Acquia includes a content‐management system 
with the facility of adding modules and custom 
code to meet the needs of a specific 
organization.

SugarCRM includes sales management, 
marketing management, news services, 
support automation, e‐mail integration, 
reporting, team selling, advanced 
security and workflow automation.

Security Acquia includes AWS control environment, 
physical security, customer segregation, system 
access controls, OS and LAMP stack security‐
patch management, antivirus upload scanning, 
file‐system encryption, SSL and HTTPS, data and 
physical media destruction, and logging to 
support security.

SugarCRM uses multiple levels of 
protection and security.

Scalability Acquia manages sudden spikes in traffic. SugarCRM manages sudden spikes in 
traffic.

Customization 
and its 
implication on 
costing

Customizations can be done based on the 
requirements of the client.

Basic customizations can be done 
through its admin interface without 
touching its code base. Advanced 
customization and extensions to meet 
business requirements are offered by 
the SugarCRM development team.

Support Acquia provides support through a community 
forum, documentation, and IRC.

SugarCRM provides support through a 
support portal, e‐mail, and forums.
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Cookbooks are also a very important element and can be treated as separate components (alongside the 
server, nodes, and the workstation) across the documentation. In general, the cookbooks are authored and man
aged from the workstation, moved to the Chef server, and then are pulled down to nodes by the Chef client 
during each Chef client run.

12.5.3 Puppet

Puppet (http://puppetlabs.com, accessed December 10, 2015) is an IT automation tool to manage infrastructure 
from provisioning and configuration to orchestration and reporting. Puppet can automate repetitive tasks, 
deploy critical applications, and proactively manage change, scaling from tens of servers to thousands, on‐premises 
or in the cloud.

The four‐step process in using Puppet is as follows:

 ● define the desired state of the infrastructure’s configuration using Puppet’s declarative configuration 
 language;

 ● simulate configuration changes before enforcing them;
 ● enforce desired state automatically, correcting any configuration drift;.
 ● report differences between actual and desired states and any changes made enforcing the desired state.

Puppet works for Unix‐based systems as well as Microsoft Windows, and is built using Ruby.

12.5.4 Zenoss

Zenoss (http://www.zenoss.org/, accessed December 11, 2015) software is used to manage datacenter and 
cloud infrastructures for monitoring application, server, and network‐management platforms. Zenoss pro
vides an interface to system administrators for monitoring availability, inventory / configuration, performance, 
and events. Zenoss leverages SMIS and native APIs to extract performance, availability, and utilization KPIs 
on storage from leading vendors. It leverages standard SNMP interfaces to extract performance, availability, 
and utilization KPIs on a wide range of networking providers.

12.6 Concluding Remarks

There is an increasing awareness and adoption of open‐source software across the industries. Even the gov
ernments of various countries are adopting and encouraging the adoption of open source. Open‐source cloud 
software stack deployments in organizations will reduce concerns about data security and privacy and will 
also aid more efficient use of some of the existing resources. Open‐source cloud software solutions can be 
customized for an organization’s needs and can be integrated with existing monitoring and altering systems. 
As the source code is available with all open‐source cloud software solutions, the interoperability with other 
hypervisors becomes relatively easy. The biggest concerns – vendor lock in and dependency on the vendor 
for every small change – are drastically reduced and even the total cost of ownership will come down.
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13.1 Introduction

In recent years, cloud computing and its services have led the IT market, and it is one of the most promis-
ing technologies of the decade. “Everything as a service” is the concept that makes small and large organ-
izations migrate from on‐premises applications to off‐premises cloud services. Smaller enterprises, in 
particular, are moving towards cloud for their computing, storage, networking, and application needs. 
According to the National Institute of Standards and Technology (NIST), cloud computing is an on‐
demand, rapid service provisioning model over the Internet in the form of compute, network, storage, and 
application with minimal management effort (Mell and Grance, 2011). The characteristics of cloud com-
puting include on‐demand self‐service, broad network access, resource pooling, rapid elasticity, and 
measured services.

13.1.1 The Cloud Computing Ecosystem

Cloud computing is composed of three service‐delivery models and four deployment models. Software as a 
service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS) are the service‐delivery 
models (Mell and Grance, 2011). The SaaS model changes the way in which the software is delivered to the 
customer, as the software products are delivered as a service on a pay‐per use basis. Here, the SaaS consum-
ers need not manage any development platform and on‐premises infrastructure; a simple Web browser is 
enough to use the services. The PaaS model is for the developers who can access the development and testing 
platforms that are hosted by service providers. Here, the developers have no need to install any heavyweight 
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development tools or integrated development environments (IDEs) on their infrastructure. In the IaaS model, 
consumers can access the required compute, storage, and networking resources from the infrastructure man-
aged by service provider. Here, the IaaS consumers are free from managing huge datacenters. These three 
service‐delivery models can be delivered to the customers in any of the deployment models (Mell and Grance, 
2011), namely public cloud, private cloud, community cloud, and hybrid cloud. The public cloud is for public 
use, where all the customers share the services provided by the service provider. Customers who cannot 
invest more in infrastructure and are less concerned about security can go for a public cloud deployment 
model. The private cloud is for those who are more concerned about security and are ready to invest a huge 
amount in maintaining their own infrastructure. The community cloud will be suitable for consumers who 
want security with minimum investment. Here, two or more organizations with the same goals can maintain 
and share common resources where the expenses of maintaining the resources can be shared among 
 themselves. The combinations of public, private and community deployment model are generally known as 
hybrid cloud.

13.1.2 Evolution of SaaS Applications

Software as a service applications have evolved through several stages as shown in Figure 13.1. After 
mainframe applications, stand‐alone desktop applications were used in many enterprises for their internal 
operations. After the networking era there was a need for networked applications that connect all machines 
in the enterprises so that they could communicate with each other. These types of applications follow the 
client server architecture, which forces the enterprise to maintain huge servers. This resulted in high 
capital expenditure and maintenance costs for the enterprises. Thus application service providers (ASPs) 
came into the picture and provide on‐demand applications to enterprises, which reduces the spending on 
maintaining on‐premises infrastructure. Even though ASPs are helpful to the enterprises, they do not use 
the infrastructure fully, as separate servers are maintained for each enterprise. The enterprises started using 
shared hosting, which allows multiple applications to share the same infrastructure by server  consolidation. 
In this model, the scalability and management of the application is a big issue. After the advent of cloud 
computing, multitenant SaaS applications are delivered as a service to the consumer on a pay‐per use 
basis, which can be accessed from Web UI or Thin Clients. SaaS applications are maintained by service 
providers; thus, consumers need not worry about the infrastructure, development platform, and updates.

Mainframe
applications

Stand-alone
desktop

applications

On-premises
client server
applications

ASP-hosted
applications

Single-tenant
Web

applications

Multitenant
SaaS

applications
(Web UI,

thin clients)

Figure 13.1 Evolution of SaaS applications
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13.1.3 Software as a Service Benefits

Software as a service is an on‐demand, easy, and affordable way to use an application without the need to buy 
it. The SaaS solutions are easy to adopt and integrate with other software or service. Some of the benefits of 
SaaS are mentioned below:

 ● Pay‐per use. The traditional software forces the customers to buy full packages of software, even if 
 consumers only use it occasionally. Unlike traditional software, SaaS is delivered based on subscription 
or pay‐per‐use, which includes upgrades, maintenance, and customer support.

 ● Zero infrastructure. With SaaS, the customers up‐front cost is zero as the underlying infrastructure is 
maintained by the SaaS provider. Software as a service customers need not maintain infrastructure, 
 operating system, development platforms, and software updates.

 ● Ease of access. A Web browser and Internet access is enough to use SaaS solutions. The browser‐based 
user interface will allow business owners to use their business service without any training. Most modern 
SaaS uses a responsive user interface, which can be accessed from any device (laptops, mobiles, tablets, 
and so forth) with ease.

 ● Automated updates. As the SaaS solutions are managed by the service provider, there is no need for the 
customer to perform the software updates. With SaaS, customers are assured that, at any point in time, 
they will always use the most recent version of the SaaS solution.

 ● API integration. Most of the recent SaaS solutions allow the customers to use the APIs to easily integrate 
their applications with other software or Web service.

 ● Scalability. It is always possible to scale up and scale down rapidly. The SaaS model increases the 
resources of the application.

 ● Green IT solutions. Software as a service solutions are becoming smarter and have energy‐aware 
 features, which do not consume many resources for their operation. The SaaS applications also share the 
same infrastructure. This results in greener IT solutions with less energy consumption and electronic 
waste.

13.1.4 When and Where to use SaaS?

Cloud computing and SaaS applications are growing in the market and are used by many enterprises and 
individuals, mainly because of their cost‐effective services. Even though SaaS is used in many places, there 
are some applications where SaaS may not be the best option (Kepes, 2013):

 ● some real‐time applications where fast processing of data is needed;
 ● applications where the organization’s data is confidential and where it does not want to host its data 

 externally;
 ● applications where existing on‐premises applications fulfill requirements.

SaaS services are the best option (Kepes, 2013) for applications:

 ● where the end user is looking for on‐demand software rather than the full‐term / licensing‐based software;
 ● where a startup company cannot invest more money in buying licensed software such as tax or billing 

software;
 ● where there is a need for accessibility from handheld devices or thin clients;
 ● where there is an unpredictable dynamic load.
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13.2 Challenges

Software as a service (SaaS) is one of the cloud service delivery models that changes the way in which software 
is developed and delivered to customers. Most small and medium‐scale enterprises migrated to cloud from tradi-
tional Web applications. Transition from traditional Web applications to a cloud‐based SaaS application imposes 
lots of challenges for consumers, developers, and providers. Successful Web developers are struggling to be suc-
cessful in developing and delivering SaaS applications. To be successful in SaaS application development, tradi-
tional software developers should be aware of opportunities and challenges in developing cloud‐based applications.

13.2.1 Multitenancy

Multitenancy is a one‐to‐many model that allows multiple customers to share a single instance of code and 
database of SaaS application (Fishteyn, 2008). The important benefit of multitenancy is effective utilization 
of resources, which results in greener IT solutions. Enabling multitenancy for an application with traditional 
development platforms is a difficult job. The developers need to acquire more knowledge about developing 
multitenant software. There are several multitenancy levels (Chong, 2012) available for databases, namely 
separate databases, shared databases with separate schema, and shared databases with shared schema. The 
developer has to choose the correct multitenancy level based on the customer’s requirements before develop-
ing the application. There are many “platform as a service” (PaaS) solutions available, which will reduce the 
overheads in enabling the multitenancy features. Some of the PaaS solutions are discussed later in this  chapter. 
Instead of sticking to traditional development platforms, the developer can start using the PaaS solutions that 
are already available for developing multitenant applications, with lower overheads.

13.2.2 Data Security

Most enterprises are afraid to migrate to cloud because of data security. There might be a possibility of data 
leakage as a single instance of an application is shared between multiple tenants. Isolating the tenants’ data 
in a cloud environment is a biggest challenge for any SaaS developer. The developers can address this chal-
lenge by choosing an appropriate multitenant model based on user requirements. For example, if the cus-
tomer data is more confidential, then the developer can choose a separate database for each customer. But, 
this kind of model is costly and more‐or‐less the same as traditional Web applications. A shared database and 
separate schema model will be the best option for the applications that need logical isolation. Such a model 
is also best suited for applications that do not have confidential data. Even though the data leakage between 
tenants can be prevented through different multitenant models, the security threats of traditional Web applica-
tions are still applicable to SaaS applications. These external security attacks on traditional applications can 
be mitigated by intrusion detection, strong encryption, auditing, RBAC, authentication, and authorization 
(Fishteyn, 2008). The developer can use these techniques to secure SaaS applications also, but the only prob-
lem is that most of the SaaS applications are accessed from resource‐limited devices such as mobiles. If the 
SaaS application uses a strong encryption mechanism to protect user data, then it will definitely consume 
more computing power, energy, and time to process. Hence the response time to the user will increase because 
of limited bandwidth in mobile phones, which leads to SLA violation. When developers choose a security 
mechanism, they have to make sure that it will not lead to SLA violation and more resource consumption.

13.2.3 Scalability

Since social networking, online market places, and other online communities are growing exponentially, the 
number of users of any application is dynamic and unpredictable. Traffic and load on the application cannot 
be predicted correctly. This creates lots of challenge for the SaaS application developers to develop highly 
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scalable applications. Before developing any SaaS applications, the application developer should ask the 
questions “what kind of application am I developing now?” and “what architecture should I follow to make 
my application highly scalable?” The developer has to sit with the system architect and should decide about 
the different tiers of the application architecture. For, example, the system architect can design architecture 
with a load‐balancing tier, an application tier, a caching tier, and a database tier for a scalable SaaS applica-
tion. Normally, scalability refers to how well the application is serving requests whenever there is an addi-
tional load or traffic on the system. Generally, the scalability of the application can be increased by adding 
additional resources to it. There are two types of scaling – vertical scaling and horizontal scaling. In general 
vertical scaling refers to increasing capacity and horizontal scaling refers to adding more resources. The 
developer should decide which scaling mechanism will best suit the application. The scaling mechanism 
should be applied in all tiers of the application for better scalability. Normally, horizontal scaling is used 
widely in many applications as it provides higher availability and better fault tolerance than the vertical 
scaling.

13.2.4 Backup and Recovery

Since SaaS users are storing their data in the service provider’s datacenter, the SaaS provider should ensure 
high availability of the data. It is very difficult to predict the failure of a data store in advance, and one cannot 
take preventive measures. Ensuring that data is readily available is the biggest challenge for developers. A 
better way to address this challenge is to maintain a proper backup or replica mechanism, which will ensure 
that the data is highly available. Most of the traditional application developers rely on third‐party tools to 
ensure backup and disaster recovery. A developer can use distributed NoSQL databases or modern relational 
databases that support automatic replication and disaster recovery (see https://www.mongodb.com/nosql‐
explained, accessed December 11, 2015).

13.2.5 Vendor Lock In

Vendor lock in is the major problem that the most of the cloud customers face, especially in public 
clouds. If the SaaS application is hosted with a public cloud provider it can be very difficult to migrate 
to other cloud providers. The worst part is that the SaaS application also cannot be migrated to an 
on‐ premises datacenter (da Silva and Lucredio, 2012). For example, many public PaaS providers like 
Google App Engine use their own way of developing and deploying applications online, which is differ-
ent from other service providers. If an application is developed using Google App Engine, it is very 
 difficult to port that application to other service providers. The SaaS developers can address this problem 
by using some open‐source programming languages such as PHP, Perl and Python, which are supported 
by most of the PaaS providers. The vendor lock in can be eliminated by using standard APIs and follow-
ing  standard application development approaches, such as model‐driven approaches (da Silva and 
Lucredio, 2012).

13.2.6 Usability

The SaaS application allows the end user to access applications from any device such as a mobile, tablet or 
laptop. This feature imposes the challenges to the developer that the SaaS application should be compatible 
with multiple devices. After Web 3.0, most of the Web applications are responsive. Software as a service 
developers can start using responsive application development platforms in order to provide high‐quality and 
adaptable SaaS. Most importantly, the SaaS applications are used by a wide range of customers. The  developer 
should provide some user‐ level customization (Chate, 2010).
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13.2.7 Billing and Provisioning

Automated billing or metering (Chate, 2010) of the application based on customer use is an important compo-
nent of SaaS applications. Most of the traditional applications do not have this feature (da Silva and Lucredio, 
2012), and it is unavoidable in SaaS applications. The developer should develop the SaaS application in such 
a way that automated invoices or bills will be sent to the customer (Chate, 2010). Developers also have to 
provide the facility to customers to pay the bill through credit cards and electronic fund transfer. The other 
challenge for the SaaS developer is to enable quick service provisioning to customers as soon as they agreed 
to use the services. The application should also be able to allow customers to upgrade or downgrade their 
subscription plans. Automated billing and quick provisioning are still a problem with most SaaS applications.

13.2.8 Automatic Updates

In traditional applications the customers can become tired of updating the software and applying patches 
through the Internet. This is one of the reasons for customers to look for SaaS applications. As SaaS applica-
tions are managed by service providers, the customers have no need to worry about the updating and  patching. 
The automated updating feature of the SaaS application benefits the customer – but there are a lot of  challenges 
for the developer to develop software with automated updating features. Whenever the developer thinking of 
bulk updates, the update should not make the software unavailable, nor it should affect the normal behavior 
of the customer. Developers can solve this issue by keeping the update size small and scheduling updates for 
when there is less user activity.

13.3 SaaS Development Platforms

Platform as a service platforms can be used to develop SaaS application. The PaaS platforms change the way 
that the software is developed and deployed when compared to traditional application developments. 
Generally, PaaS offers a virtual application development platform (Lawton, 2008) to the developers and hides 
the complexity of maintaining the underlying infrastructure. The SaaS developers can use the benefits given 
by PaaS platforms and can concentrate on application development and addressing the challenges of SaaS 
application development. This subsection discusses some of the public and private PaaS platforms that can be 
used to develop SaaS applications.

13.3.1 Public PaaS Platforms

The applications that are developed using public PaaS platforms will be hosted in the service providers’ 
infrastructure. The PaaS provider will maintain the development platform and the underlying infrastructure, 
which can be shared by different SaaS developers. Those SaaS developers who have limited infrastructure 
and are looking for off‐premises applications can use public PaaS. Many public PaaS providers offers Web 
Command Line Interface (Web CLI), Web UI, IDE integration and APIs to access the development platform. 
One of the disadvantages of the most public PaaS platform is that they require Internet connectivity for 
access. However, some of the PaaS providers like Google App Engine and OpenShift Online allow the devel-
opers to develop applications offline and can push the application online whenever there is Internet connec-
tivity. Most of the PaaS providers are charging customers based on their usage or monthly subscription plans. 
Some of the providers, like Microsoft Windows Azure, provide a free trial to familiarize potential customers 
with the platform. Table  13.1 gives a summary and comparison of some popular public PaaS providers. 
Public PaaS enables faster development and deployment of SaaS applications online, which is useful to many 
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developers; but public PaaS fails to fulfill the needs of many private enterprises and independent software 
vendors (ISVs). Most public PaaS providers are not offering the variety of development platforms or pro-
gramming languages that private enterprises and ISVs are looking for. The major disadvantage of public PaaS 
offerings is vendor lock in. They do not allow the developers to migrate the application from one PaaS plat-
form to another PaaS platform. Because of vendor lock in, most well established enterprises started using 
private PaaS to develop their SaaS applications.

13.3.2 Private PaaS Platforms

It is very difficult to port or migrate the application from one public PaaS provider to other public PaaS pro-
viders. Most importantly, there is no security for data that is stored on a public shared platform. This forces 
the enterprises to go for a private PaaS instead of a public one. There are two ways to use a private PaaS: one 
is a private PaaS hosted and maintained by a third party and the other one is a self‐managed private PaaS. If 
the enterprise does not have the required IT infrastructure and skilled IT staff, then it can go for a third‐party‐
hosted private PaaS. If the enterprise has enough resources and skilled IT staff, then on‐premises private PaaS 
will be the best option. Table 13.2 gives a summary and comparison of some of the popular tools available to 
enable a private PaaS platform in an on‐premises datacenter. Once a private PaaS is built, and if it works 

Table 13.1 Comparison of popular public PaaS providers

Provider Pricing / 
licensing

Supported 
languages

Supported 
frameworks

Supported 
databases

Client tools

Cloud 
Foundry

Open source 
and 
proprietary

Python, PHP, 
Java, Groovy, 
Scala, and 
Ruby

Spring, Grails, Play, 
Node.js, Lift, 
Rails, Sinatra, 
and Rack

MySQL, 
PostgreSQL, 
mongoDB, and 
Redis

cf. CLI, 
IDEs, and 
Build 
Tools

Google App 
Engine

Free quota 
and paid 
options 
available

Python, Java, 
Groovy, JRuby, 
Scala, Clojure, 
Go, and PHP

Django, CherryPy, 
Pyramid, Flask, 
web2py and 
webapp2

Google Cloud 
SQL, Data 
store, Big Table 
and Blob store

APIs

Heroku Pay per use Ruby, Java, 
Scala, Clojure, 
and Python, 
PHP, and Perl

Rails, Play, Django, 
and node.js

ClearDB, 
PostgreSQL, 
Cloudant, 
Membase, 
MongoDB, 
and Redis

CLI, and 
RESTful 
API

Microsoft 
Windows 
Azure

Free trial, pay 
per use, and 
subscription 
basis

.NET, PHP, 
Python, Ruby, 
and Java

Django, Rails, 
Drupal, Joomla, 
WordPress, 
DotNetNuke, 
and Node.js

SQL Azure, 
MySQL, 
mongoDB, and 
CouchDB

RESTful 
API, and 
IDEs

Red Hat 
OpenShift 
Online

Commercial Java, Rupy, 
Python, PHP, 
and Perl

Node.js, Rails, 
Drupal, Joomla, 
WordPress, 
Django, EE6, 
Spring, Play, 
Sinatra, Rack, 
and Zend

MySQL, 
PostgreSQL, 
and MongoDB

Web UI, 
APIs, 
CLI, and 
IDEs
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perfectly, the enterprises experience secure deployment of applications and data. The private PaaS also can 
benefit the ISVs as most of the private PaaS tools support a variety of platforms and also allow the developers 
to build custom development environments. A private PaaS also allows sharing the platform with other enter-
prises, which will result in a community PaaS. The community PaaS will give a cost‐effective and secured 
development platform for organizations with same goals. Ultimately, the decision about the PaaS deployment 
model will be based on the requirements and available infrastructure of the enterprise.

13.4 Multitenancy at Database Level

Multitenancy allows the service provider to deliver a single instance of service to multiple customers. It ensures 
effective resource utilization and reduces consumption of resources and energy, leading to green IT solutions. 
Multitenancy can be provided at infrastructure, platform and application levels of cloud  computing. This subsec-
tion discusses the different multitenancy architectures at database level that the developer needs to consider when 
developing SaaS applications. However, the multitenant environment reduces the cost by sharing most of the 
resources; the customers are at risk of data leakage. Most of the SaaS vendors are struggling to ensure the  security 

Table 13.2 Comparison of popular private PaaS providers

Provider Pricing / 
licensing

Supported 
languages

Supported 
frameworks

Supported 
databases

Client 
tools

Activestate 
Stackato

Free for Micro 
Cloud, and 
Paid for 
enterprise

Java, Perl, PHP, 
Python, Ruby, 
Scala, 
Clojure, and 
Go

Spring, Node.js, 
Drupal, Joomla, 
WordPress, 
Django, Rails, 
and Sinatra

MySQL, 
PosgreSQL, 
MongoDB, 
and Redis

CLI and 
IDE

Apprenda Free trial and 
Annual 
Subscription

.NET and Java Most of the 
frameworks 
from .NET

SQL server REST APIs

CloudBees Free and monthly 
payment

Java, Groovy, 
and Scala

Spring, Jrails, 
Jruby, and Grails

MySQL, 
PostgreSQL, 
mongoDB, 
and CouchDB

API, SDK, 
and 
IDEs

Cumulogic Free trial and 
monthly 
payment

Java, PHP, and 
Python

Spring, Grails MySQL, 
mongoDB, 
and 
Couchbase

RESTful 
API

Gigaspaces 
Cloudify

Open Source Any 
programming 
language 
specified by 
recipe

Rails, Play, and 
others

MySQL, 
mongoDB, 
Couchbase, 
Cassandra, 
and others

CLI, Web 
UI and 
REST 
API

Redhat 
OpenShift 
Enterprise

Free trial and 
paid for 
enterprise

Java, Ruby, 
Python, PHP, 
and Perl

Node.js, Rails, 
Drupal, Joomla, 
WordPress, 
Django, EE6, 
Spring, Play, 
Sinatra, Rack, 
and Zend

MySQL, 
PostgreSQL, 
and MongoDB

Web UI, 
CLI, 
and 
IDEs
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of customers’ private information. Now the challenge for the SaaS developers is that they have to share most of 
their resources and at the same time they also have to protect the customer’s data. When the developer shares 
more resources, it adds more complexity to the application. The developers have to use proper multitenancy and 
data isolation models based on the security of the user’s data. The data isolation can be either logical or physical. 
Usually, in most of the SaaS applications, logical isolation will be preferred for efficient resource utilization. 
Multitenancy at database level in an SaaS application can be achieved in three different ways (Chong, 2012):

 ● separate database;
 ● shared database and separate schema;
 ● shared database and shared schema.

Table 13.3 shows the cost and data security of the different multitenancy models. The developer should 
choose any one of the multitenancy models based on the cost and security of the user data that will be stored 
in the application, as shown in Figure 13.2.

Table 13.3 Cost and data security of different multitenancy models

Multitenancy model Cost Data security

Separate database High High
Shared database and Separate schema Moderate Moderate
Shared database and Shared schema Low Low

Separate database Shared database and
separate schema

Shared database and
shared schema

Tenant
A

SaaS
application

Tenant A
database

Tenant B
database

Tenant C
database

Shared
database

Shared
database

SaaS
application

SaaS
application

Tenant
B

Tenant
C

Tenant
A

Tenant
B

Tenant
C

Tenant
A

Tenant
B

Tenant
C

(a) (b) (c)

Tenant A Tenant B Tenant C Tenant A
Tenant A

Tenant B

Tenant B

Tenant C

Tenant C

Figure 13.2 Multitenancy at database level
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Multi‐Tenancy Model 1: Separate Database

In this model, data isolation is good as a separate database is used for different customers. This is the  preferred 
model when the data stored is highly confidential. It is the costliest of all the multitenancy models. The 
 disadvantage of this model is that it does not encourage resource utilization. It requires more storage space 
because the same set of tables will be created in each customer’s database. The developer has to execute 
separate database queries for the same set of operations because the databases and table structures are 
 different. The complexity of the application is increased in terms of space and  maintenance.

Multi‐Tenancy Model 2: Shared Database and Separate Schema

Unlike Model 1, this model uses the same database for storing customer data and hence increases resource 
utilization. The data isolation is provided in the schema level as different schema will be used for different 
customers. The complexity of customizing the data is reduced as the same queries can be executed on the 
database with a different schema name. It reduces the cost and the difficulties in maintaining the data. The 
disadvantage of this model is that still it needs more space to store the data because the same tables will be 
repeatedly created in different customer schemas.

Multi‐Tenancy Model 3: Shared Database and Shared Schema

This is the preferred model for a cost‐effective SaaS application that does not contain confidential data. It 
increases resource utilization as the database and schema are shared by all customer data. The maintenance 
of data becomes easy because there is no need to write separate queries for different customer. The advantage 
of this model is it reduces cost and storage as both database and schema are shared. The main disadvantage 
is that it will affect all customer data if any one table is corrupted. The probability of data leakage is also high 
compared to other two multitenancy models.

13.5 Best Practice

There are many developers who have developed traditional Web applications and want to reuse their existing 
Web applications to develop SaaS applications. They cannot provide the normal Web applications as SaaS 
applications directly. There are some important constraints that the Web applications should satisfy to become 
SaaS applications. This subsection discusses some of the best practices (Petersson, 2011; Tier 3, Inc., n.d.) 
that developers should follow to make their traditional Web application a SaaS application.

Decide Which Application is to be Provided as a SaaS

The developers cannot provide all the applications as the SaaS applications. They should analyze the follow-
ing before provide an application as SaaS:

 ● What is the business objective and expected outcome?
 ● What will the return on investment be (ROI)?
 ● What will be the risks and challenges?
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 ● Who are all the targeted customers and what are their requirements?
 ● What will be the sensitivity of the user data?

If the answer to all of these questions is positive with respect to a transformation to a SaaS application, then 
the service provider can start restructuring its existing applications as SaaS applications.

Architect the Application to Support Multitenancy

After deciding about the application, they need to sit with application architect and design application archi-
tecture by keeping all risks and challenges in their mind. For SaaS applications data security is the important 
constraint. Based on the sensitivity of the data the developer needs to choose the appropriate multi‐tenancy 
model. They should architect the application for better scalability and high availability.

Use NoSQL Databases instead of Relational Databases

Normally, the developers may use relational databases as their back‐end store for traditional applications. 
Since the SaaS application handles big data and big users, it is recommended to change the back end to 
NoSQL databases to ensure better scalability and high availability. With support for horizontal scalability, 
NoSQL databases ensure high scalability and automated replica mechanisms. The developers can use cache 
mechanisms like Memcached to increase the efficiency of the application.

Restructure the Application to Support Multiple Devices and User‐Level Customization

The SaaS application may be accessed from any device such as a laptop, mobile, tablet, or others. Normally, 
traditional applications are compatible with laptops and desktop PCs. The developer should change the user 
interface to support multiple devices by following responsive Web design methodologies. Users also want to 
change or customize the application for their own comfort. The SaaS developers should also provide some 
mechanism to allow the users to customize the application according to their needs.

Select an Infrastructure Provider to Host the Application

Providers of SaaS can deploy the application in their own datacenters or they can obtain the service from any 
IaaS provider. Before choosing any third‐party infrastructure provider, their network connectivity, traffic on 
their servers, and physical security measures should be reviewed. The service provider should be selected in 
such a way that the place of the infrastructure provider is nearer to the end user’s community to increase the 
efficiency of the application. Before choosing the infrastructure provider, it is necessary to ensure interoper-
ability with other service providers and to avoid vendor lock in.

Enable On‐Demand Self‐Service Signup

The SaaS application should allow the customers to sign up for the services without the manual intervention 
of the service provider. Normally, the service provisioning system should be automated, allowing customers 
to obtain their services as soon as they register. The service provisioning system should be on demand and 
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should allow the customers to activate or deactivate their services whenever they want. Each SaaS application 
should have Web form‐based registration mechanism for rapid provisioning of services to the customers.

Employ an Automated Billing Mechanism

The SaaS application should have the ability to automate the billing and payment mechanism. The application 
should calculate the bill based on use by the particular user and should notify the user. It also should be able to pro-
vide the mechanism for the administrator to have the summary of per tenant usage, per service usage. To increase 
customer satisfaction, the developer can incorporate a secured online payment mechanism in the application itself.

Incorporate the Functions to Monitor, Configure, and Manage  
the Application and Resources

As many customers are sharing the same instance of a single application, any misbehavior from one tenant 
will affect the other tenants and the underlying resources. The application should have a monitoring mecha-
nism to detect and prevent the misbehaviors, security attacks, and disasters. One of the tedious jobs in manag-
ing the SaaS application is scheduling the update. The update should not affect the normal behavior of the 
application. The developers need to schedule the update when the application is being less used – and this can 
be seen by analyzing use history of the application.

Define and Manage the Service Level Agreements (SLAs)

Providers of SaaS should define the SLA clearly to the end users before providing any services. Normally, 
the SLA should include details of the availability, response time and level of support provided. Simulations 
and modeling could be used to define a reasonable SLA. The SLA also should clearly mention the behaviors 
of the users in the multitenant application. The service provided to the customers should be disconnected if 
any misbehavior or SLA violation is encountered with any of the users. The service providers also should 
ensure that they are also not violating the conditions in the SLA.

Make the Support Team Work for 24/7

Finally, end‐user support is an important component of SaaS. The SaaS provider should have the customer support 
team working for 24 hours every day to respond to customer queries. The customer support team should be trained 
to solve any application‐related issues. It also has to keep a summary of the type of issues that arise, time taken to 
fix the issues, and the degree of customer satisfaction, to improve the performance of the customer support team. 
Providers of SaaS also need to incorporate a robust ticketing mechanism as part of their customer support service.

13.6 Conclusion

This chapter has highlighted some of the challenges in developing SaaS, and ways of addressing those 
 challenges. It has discussed some popular public PaaS technologies, which will help the developers to  provide 
highly scalable SaaS applications. The major problems with public PaaS are vendor lock in and security, 
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which make ISVs and private enterprises move towards private PaaS. Private PaaS gives the developers 
 freedom to work with any programming languages of their choice. It also ensures the security of the data by 
deploying the application on‐premises or in third‐party‐managed private datacenters. Additionally, most of 
the private PaaS are polyglot platforms that support multiple languages and frameworks, and allow the open‐
source community to extend them further. The underlying database of the SaaS applications plays an impor-
tant role in the performance of those applications. Some of the popular relational and NoSQL databases that 
can be used to develop SaaS applications were discussed. There is a need to transform traditional Web 
 applications to SaaS applications. Best practice for doing this was also discussed. Nowadays, green cloud 
computing is receiving attention from researchers, which motivates developers to develop SaaS applications 
that support green computing. In future there will be a need for developers to adopt energy‐aware application 
development methodologies that result in greener IT solutions.
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14.1 Introduction

Cloud computing is emerging as the most promising technology for software development, changing the way 
in which customers interact with their data and applications. There are a lot of reasons behind the choice to 
move to cloud computing:

 ● Companies no longer need to buy, store, and maintain expensive infrastructures, reducing time and money 
involved in maintaining, updating, and repairing their own equipment.

 ● Hardware dimensioning does not have to be related to peak workload any more but the infrastructure can 
be scaled dynamically according to current needs. This results in a better use of resources.

 ● Customers pay only for the resources they actually use, following a “pay‐as‐you‐go” paradigm, thus 
 saving money.

 ● Using distributed resources, including datacenters and computing nodes, can enhance systems’ resilience 
and improve recovery from disasters.

 ● The ability to choose among a broad range of available resources and services should lead to strong 
 competition among cloud providers, resulting in better quality and lower prices for customers.

These are just a few of the possible benefits that we could derive from the adoption of a cloud‐computing 
paradigm. But, despite the diffusion of cloud computing, differences in offerings from cloud providers still 
exist, which prevent changing or exploiting multiple cloud providers.

Two main issues that are currently preventing free exploitation of different or multiple cloud providers 
are portability and interoperability among cloud platforms at different service levels. A cloud provider 
is  often interested in offering a technological solution that differentiates it from the others: these 
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 differences have the drawback of locking the customers in as no alternatives are provided. Even open-source  
technologies for setting up private clouds are often not compatible with each other.

The problems of interoperability and portability affect the cloud‐computing panorama in different ways. 
The brokering, negotiation, management, monitoring, and reconfiguration of cloud resources are challenging 
tasks for the developer or user of cloud applications due to different business models associated with resource 
consumption and the variety of features that the cloud providers are offering. These points become very 
important when the landscape is a multicloud environment and the main concern is represented by the vendor 
lock‐in problem.

This chapter addresses the problem of cloud interoperability and portability, offering an overview of 
 different methodologies, solutions, and initiatives.

14.2 Interoperability Issues in Cloud Computing

In general terms, interoperability can be defined “as a measure of the ability of performing interoperation 
between two or more different entities (that can be pieces of software, processes, systems, business units, 
etc.)” (Vernadat, 2010). In the case of cloud computing platforms, the meaning of interoperability is not 
always clear.

To some, interoperability might represent applications that are running in different cloud environments 
being able to share information through a common set of interfaces. Achieving interoperability means to 
enable the use and exchange of information between systems so that they appear to be one, so the APIs for 
service implementation need to be vendor neutral (Panhelainen, 2012). For example, in the cloud, there is no 
common interface to access different relational database management systems (RDBMS) at the same time 
but cloud vendors have their own solutions and APIs for handling databases. In this case, the focus is on 
applications – thus we are at “platform as a service” (Paas) level.

Let’s consider the simplified scenario shown in Figure 14.1.
In this example a generic application, running on a server hosted by Cloud Provider A, needs access to a 

database residing in the same Cloud. What if such an application needed to access data stored on a different 

Database A

Server B
Database B

Provider B

Server A

Provider A
Generic

application

Figure 14.1 Simple interoperability scenario



Cloud Portability and Interoperability 167

database, hosted by Cloud Provider B? There can be several reasons to split data among storages hosted by 
different platforms:

 ● enhancing elasticity and failure recovery;
 ● exploiting better security policies (at higher prices) for sensitive data;
 ● exploiting certain capabilities not supported by all the providers;
 ● managing data in a hybrid cloud scenario (for example, A could be public and B private).

In a fully interoperable world, the application could access data from both databases through a common 
interface. In the real world, differences in APIs, data and message formats or communication protocols would 
represent a real obstacle for developers. The situation is worse if we consider management of access to both 
databases.

From another perspective, interoperability refers to the possibility for customers to use the same manage-
ment tools, server images, and other similar software in a variety of cloud computing platforms. Here, the 
focus is on the infrastructure’s management and monitoring, so we are at the “infrastructure as a service” 
(IaaS) level. If we consider the scenario drawn in Figure 14.2, we can have a better idea of this issue. Like in 
Figure 14.1, a generic application tries to access two databases residing on different cloud platforms; but now 
monitoring software, operating from cloud platform A, tries to access information regarding all the compo-
nents involved in the application’s work, including Database B. Again, there can be several reasons to deploy 
a monitoring component in a cloud environment:

 ● network traffic analysis;
 ● tracking of accesses to databases and or servers;
 ● workload balancing;
 ● failure detection.

Server A

Server B

Generic
application

Monitor

Database A

Database B

Provider A

Provider B

Figure 14.2 Monitor interoperability
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If the cloud platforms involved were interoperable, the monitoring object would be able to access informa-
tion regarding Database B freely: but rarely, if ever, would this happen in the real world because of the lack 
of common interfaces, for security or commercial reasons.

14.3 Portability Issues in Cloud Computing

Cloud portability is the ability of data and application components to be moved and reused easily regardless 
of the provider, operating system, storage, format or API (Cohen, 2009).

As for interoperability, portability issues differ slightly according to the target service level. At IaaS 
level we speak mostly of component and data portability. In particular, there are two kinds of component 
portability:

 ● Runtime source portability. Reuse of platform components across cloud IaaS services. An example 
(Figure 14.3) would be represented by the migration of an operating system (OS), with all the applications 
working on it, from one cloud environment to another. This would be possible if the OS supported the 
target hardware but this is not always the case.

 ● Machine image portability. Reuse of virtual images containing applications and data with their supporting 
platforms. In this situation it is possible to exploit virtualization techniques and standard image formats to 
avoid incompatibilities (Figure 14.4).

Porting data is much more difficult because storage models and formats often vary among platforms. We 
should also consider the effort needed to actually move data among cloud platforms, which is not free of 
charge. However, Cloud introduces no new technological problems: commercial agreements among vendors 
can make the existing technical problems more serious.
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Figure 14.3 Platform portability
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At PaaS level we focus on application portability, which requires a standard interface, exposed by the 
 supporting platform, enabling the application to use services and protocols provided by the platform, as well 
as providing access to the capabilities that support the application. This means that, even when standard 
 languages are used, portability at PaaS level is not guaranteed, because implementations of platform services 
may vary between providers.

Generally, when portability is possible at IaaS level, application portability at PaaS level is automatically 
enabled.

PaaS portability issues are caused by:

 ● Lack of a shared platform definition among PaaS providers. Each provider chooses the operating system 
and middleware elements it will support and if competitors make different selections then applications 
using those features cannot be ported.

 ● Lack of alternative providers for a platform. A provider may make a cloud version of a server platform 
available, discouraging competition thanks to his established dominance. Providers of IaaS have been 
adding services steadily to their IaaS platform and, as there are no standards for these added services, 
using them could lock applications to a cloud provider.

Another important issue concerns portability between the development and operational environments. 
Platform as a service is particularly attractive because it avoids the need for investment in systems that will 
be dismissed once the development is complete. If a different environment will be used at run time, however, 
it is essential that the applications can be moved unchanged between such environments. Yet another aspect 
to be considered regards software modernization, which is still a significant challenge in general and even 
more ambitious when a change of the software delivery paradigm needs to be addressed, as in the case of 
cloud computing.

In general, the lack of portability can be seen as a barrier to the adoption of cloud computing because 
organizations fear “vendor lock in”: once customers have selected a cloud provider, either they cannot move 
to another provider or they can do it but only at great cost. Risks of vendor lock in include reduced negotiation 
power in reaction to price increases and service discontinuation because the provider goes out of business.

Iaas A

Virtual image

Application

Transfer

Platform
(OS)

Application

Platform
(OS)

Virtual image

Iaas B

Storage

Security Networking

Servers Storage

Security Networking

Servers

Figure 14.4 Machine images portability



170 Encyclopedia of Cloud Computing

14.4 Achieving Portability and Interoperability

As interoperability and portability issues can be seen from different perspectives, several approaches have 
been proposed to solve them. Such approaches can be divided into three main categories:

 ● Framework and model‐based approaches try to exploit, extend or define frameworks and models, which, 
once applied to the cloud computing paradigm, can ease interoperability and or portability issues.

 ● Adapting methodologies try to solve interoperability and portability issues among different cloud plat-
forms by interposing a level of indirection between incompatible interfaces, APIs or protocols, by means 
of “adapters” or “plug ins” working as mediators.

 ● Standardization efforts aim at defining homogeneous and shareable standards, which, once adopted by 
every cloud vendor, would completely eradicate incompatibility issues. This category includes standard 
proposals (resulting from research activities conducted by Standardization Committees) and de facto 
standards (imposed by leading cloud vendors).

14.4.1 Framework and Model‐Based Approaches

14.4.1.1 Agent‐Based Frameworks

Multi‐agent systems (MASs) seem to offer one of the most effective approaches for reducing interoperability 
issues. An MAS can be described as a computerized system composed of interacting intelligent agents, 
 collaborating within the same environment. The outcome of the mOSAIC research project, in particular, 
demonstrated, in the Cloud Agency (Venticinque et al., 2012), the benefits of adopting this kind of cloud 
multiagent architecture. The Cloud Agency is a service for the deployment and execution of mOSAIC appli-
cations on multiple clouds.

14.4.1.2 Model‐Driven Engineering Approaches

The OMG model‐driven architecture (MDA) is a model‐based approach for the development of software 
systems. The main benefits of MDA from the cloud perspective are the facilitation of portability, interoper-
ability, and reusability of parts of the system that can be easily moved from one platform to another, as well 
as the maintenance of the system through human‐readable and reusable specifications at various levels of 
abstraction. In the context of cloud computing, model‐driven development can be helpful in allowing devel-
opers to design a software system in a cloud and to be supported by model transformation techniques in the 
process of instantiating the system into specific and multiple clouds.

For this reason, combining model‐driven application engineering and the cloud computing domain is currently 
the focus of several research groups and projects: Model‐Driven Approach for the Design and Execution of 
Applications on Multiple Clouds (MODACLOUDS) (Ardagna et al., 2012), Advanced Software‐Based Service 
Provisioning and Migration of Legacy Software (ARTIST) (Menychtas et al., 2013), Model‐based Cloud 
Platform Upperware (PaaSage) (Bubak et al., 2013), Intercloud Architecture (ICA) (Demchenko et al., 2012).

14.4.1.3 Semantic Modeling

One of the factors contributing to interoperability and portability problems is the difference in the semantics 
of the resources offered because no uniform representation exists. As Sheth and Ranabahu (2010) have stated, 
semantic models are helpful in three aspects of cloud computing:
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 ● Functional and nonfunctional definitions, that is the ability to define application functionalities and 
 quality‐of‐service details in a platform‐agnostic manner;

 ● Data modeling, including metadata added through annotations pointing to generic operational models, 
which play a key role in consolidating API’s descriptions;

 ● Service description enhancement, in particular as regards service interfaces that differ between vendors 
even if the operations’ semantics are similar.

Existing technologies inherited from the semantic Web discipline can be useful to address these aspects:

 ● Web ontology language (OWL) can define a common, machine‐readable dictionary able to express 
resources, services, APIs and related parameters, service‐level agreements, requirements, offers and 
related key performance indicators (KPIs).

 ● OWL for Services (OWL‐S) adds semantics to cloud services in order to enable users and software agents 
to automatically discover, invoke and compose them.

 ● SPARQL performs queries to retrieve resources according to particular constraints.
 ● Semantic Web rule language (SWRL) expresses additional rules and heuristics.

All these aspects are addressed by the mOSAIC project – in particular in two components of the mOSAIC 
framework: the semantic engine (Cretella & Di Martino 2012) and the dynamic discovery and mapping 
 system (Cretella and Di Martino, 2013).

14.4.1.4 “Write Once Run Anywhere” (WORA) approaches

“Write once, run anywhere” is a slogan created by Sun Microsystems to illustrate the cross‐platform benefits 
of the Java language. The approach followed by Sun was to provide a Java virtual machine (JVM), which, 
once installed on a target device, could interpret and execute any standard Java byte code, regardless of where 
such a byte code had been created. This approach is very similar to the one followed by some PaaS providers, 
such as CloudFoundry and OpenShift, which provide elastic application containers promising ubiquitous 
availability and portability of software. Other providers, instead, offer full API compatibility with the most 
common PaaS platforms, thus enabling developers to leverage a common programming interface. This is the 
case for AppScale, which is fully compatible with Google App Engine and virtually deployable anywhere 
that a virtual machine can exist (Bunch, et al., 2011).

14.4.2 Adapting Methodologies

14.4.2.1 OpenNebula

OpenNebula is a cloud computing toolkit that enables consumers to manage heterogeneous and distributed 
datacenter infrastructures, specifically addressing IaaS platforms and focusing on virtualized infrastructures 
in datacenters or clusters (private clouds). Support for hybrid solutions, which combine local and public 
cloud infrastructures, is also provided, together with interfaces to expose the public cloud’s functionalities for 
virtual machines, storage, and network management.

Apart from a set of native APIs, offered via XML‐RPC and Java or Ruby bindings, OpenNebula also 
implements Amazon EC2, OGF OCCI, and vCloud APIs. Interoperability is supported by leveraging existing 
standards, which leads to the development of adapters and transformers for APIs provided by different 
 vendors. There is a remarkable possibility to exploit adapters for DeltaCloud, introduced below, and Libcloud, 
a standard client library supporting popular cloud providers, written in Python.
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14.4.2.2 DeltaCloud

DeltaCloud is an open source project that aims to define a REST‐based API to access any kind of cloud 
 platform exposing its services at IaaS level. Written entirely in Ruby, it offers the user the opportunity to 
leverage native Deltacloud, DMTF, CIMI, and Amazon‐EC2 APIs, representing the Deltacloud abstraction 
API. Such an API works as a wrapper around these platforms, abstracting and hiding their differences (see 
Figure 14.5. For each cloud provider there is a driver interpreting that provider’s native API, so users do not 
need to deal with it directly.

14.4.2.3 Open‐Source API and Platform for Multiple Clouds (mOSAIC)

The mOSAIC project offers an API to develop components that run on the top of its platform. This API was 
designed to be event driven and communications among mOSAIC components take place through message 
queues. The mOSAIC’s basic component is the Cloudlet, an event‐driven and stateless element, able to access 
cloud services through connectors, introduced to ensure the independence from the cloud service interfaces.

14.4.3 Standardization Efforts

Currently no standard has been accepted worldwide yet to solve interoperability and portability issues defin-
itively. Instead, different efforts have been made towards the definition of such a standard, addressing the 
problem from different points of view. Studies have been carried out to collect existing standards and propos-
als, in order to determine the specific cloud issues they can solve or to define how such standards can be used 
to build a cloud infrastructure. Of course, cloud‐specific standards are in development, both for IaaS and PaaS 
offers. In this scenario, leading cloud vendors are heavily influencing the development of new standards, 
sometimes even imposing their own standards in the market.

14.4.3.1 Cloud Standards Coordination Initiative

Following a direct request from the European Community, the European Telecommunications Standards 
Institute (ETSI) launched the cloud standards coordination (CSC) initiative. The main objective of the initia-
tive was to identify a set of standards to apply in different cloud environments through a series of use cases, 
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in order to support both service customers and administrators in choosing the correct technologies according 
to their requirements. The final report produced by the group, released in November 2013, describes in detail 
a set of cloud‐related use cases. Each use case focuses on a specific cloud issue: in particular, the “Cloud 
Bursting” case deals with interoperability. Some of the standards described in the report are presented in the 
following sections.

14.4.3.2 Standard for Intercloud Interoperability and Federation

The Standard for Intercloud Interoperability and Federation (SIIF) project, aims at defining a topology, a set 
of functionalities, and a governance model for cloud interoperability and federation. The current standard, 
still in development, focuses on the description of the inter‐cloud topology, which makes reference to the 
NIST definition of cloud computing, defining in detail its components and the relationships among them.

A set of protocols and standards, not exclusively related to the cloud, is reported in order to respond to a 
series of requirements:

 ● extensible messaging and presence protocol (XMPP), together with its extensions, XEP and XWS4J, is 
suggested for communications among InterCloud gateways;

 ● transport layer security (TLS), simple authentication and security layer (SASL) and security assertion 
markup language (SAML) are used to provide secure authentication in federated environments;

 ● XMPP‐based RDF and SPARQL are investigated for service discovery.

14.4.3.3 Cloud Application Management for Platforms

OASIS Cloud Application Management for Platforms (CAMP) TC aims at defining models, mechanisms, and 
protocols for the management of applications in a PaaS environment, in order to develop an interoperable 
protocol for PaaS management interfaces that users can exploit to build, deploy, and administer their applica-
tions. To be more precise, CAMP’s goal is to define a simple standard RESTful API, along with a JSON‐based 
protocol, with an extensibility framework that enables interoperability across multiple vendors’ offerings.

Currently the standard defines a set of basic APIs that a cloud vendor should provide as part of its PaaS 
offer, in order to manage the building, running, administering, monitoring, and patching of applications. 
This would enable interoperability among self‐service interfaces to PaaS clouds through the definition of 
artifacts and formats shared among conforming platforms. This would also allow independent vendors to 
create tools and services that communicate with any CAMP‐compatible platform, using the defined inter-
faces and vice versa.

14.4.3.4 Topology and Orchestration Specification for Cloud Applications (TOSCA)

The purpose of OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) is to 
enhance portability of cloud applications and related IT services by defining an interoperable description of 
cloud services, of the relationships existing among components of these services, and of their operational 
behavior, in a way that is independent of the cloud provider offering the services and of the technologies 
involved. In particular the TOSCA technical committee will leverage the existing Topology and Orchestration 
Specification for Cloud Applications document submitted by a number of cloud vendors (among which IBM 
and Red Hat are remarkable contributors), through a process of revision and extension of the proposed XML 
Schema. Scope of the work is the definition of a language for the specification of a service template that can 
describe the topology of a service, also by exploiting existing workflow languages (especially BPMN 2.0) to 
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define orchestration. TOSCA mainly focuses on the description of services and of their relationships, not on 
the IaaS infrastructure. To manage infrastructure, other standards, like CIMI, are more suitable: a provider 
could easily manage the cloud infrastructure required by a service described using TOSCA with CIMI.

14.4.3.5 Cloud Infrastructure Management Interface

Cloud Infrastructure Management Interface (CIMI) is a standard proposed by the Distributed Management 
Task Force (DMTF), which specifies an interface to manage IaaS cloud platforms. The specification docu-
ments focus on the description of a RESTful interface but the standard separates the API design from the 
particular communication protocols to use.

The CIMI model defines a set of resources, associated templates, and configurations that can be accessed, 
operated and managed through basic HTTP methods in a RESTful fashion. These include cloud entry points 
to access lists of all available assets, virtual machines, storage, network, and monitoring resources. Security 
issues are also addressed by the interface, with a focus on the client’s identification.

Using the CIMI interface, a consumer of an IaaS service can request and control the infrastructure offered 
by the provider. The consumer can create, wire up, and control the infrastructure for an entire system on an 
IaaS cloud but the interface is not intended to go beyond its management. Software may be preinstalled on 
the images CIMI instantiates but the interface does not reach beyond the initial instantiation. The consumer 
must use other means to install and manage complex services implemented on an IaaS cloud: in this case 
other standards like TOSCA can be useful.

14.4.3.6 Cloud Data Management Interface

The Cloud Data Management Interface (CDMI) is a standard for managing data on cloud platforms, proposed 
by the Storage Networking Industry Association (SNIA).

It defines a functional interface that users and applications can use to create, retrieve, update, and delete 
data elements from the cloud. Using the interface, clients can also discover the capabilities offered by the 
cloud platform and manage the containers and the data that is placed in them, together with metadata associ-
ated with both containers and data. Administrative and management applications can leverage the interface to 
manage containers, accounts, security access, and monitoring / billing information.

The CDMI interface is RESTful and no other implementations will be included in the standard in the near 
future. Unlike other standard interfaces using both XML and JSON to code messages, CDMI only supports 
JSON in order to reduce the dimension of the payloads.

14.4.3.7 Open Cloud Computing Interface

The Open Cloud Computing Interface (OCCI) is a community‐specified standard published by the Open Grid 
Forum. The standard aims at describing an interface to manage IaaS cloud infrastructures, with goals similar 
to CIMI, but the available documentation points out its applicability to PaaS and SaaS. Much like other stand-
ards, OCCI defines a set of core elements that fully describe a cloud infrastructure but these elements are 
defined using a hierarchical structure. A user can define a new kind of resource or relationship just by extending 
one of the existing elements, as if working with an object‐oriented language. Unlike CIMI, which offers 
 predefined resources that are intended to meet most consumers’ needs, the OCCI model doesn’t provide 
 templates for resources or links. While the model is able to define any kind of feature associated to a resource 
and is never limited by existing definitions, the developer will have to describe every implementation in detail 
in order to make it usable and understandable to all of its possible users. Without some kind of external 
 agreement it could also be difficult for a provider to support extensions provided by another.
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14.4.3.8 De Facto Standards

A de facto standard is a standard that has been accepted and adopted throughout the industry but has not been 
defined or endorsed by industry groups (such as W3 Consortium) or standards organizations (such as ISO). 
They are also known as market‐driven standards. These standards arise when a critical mass simply likes 
them well enough to use them collectively. Market‐driven standards can become de jure standards if they are 
approved through a formal standards organization.

As regards the IaaS offer, Amazon’s AWS has been the market leader and comprehensively dominates its 
competitors, cementing its status as one of the world’s leading options for cloud‐based data storage and data 
warehousing. This is why many see AWS as the de facto standard in the public cloud. Their API is proven and 
widely used, their cloud is highly scalable, and they have by far the biggest traction of any cloud. The open‐
source counterbalance to Amazon’s dominance is OpenStack. Managed by the OpenStack foundation, it is 
released under the Apache license and received a lot of support from large IT companies including Oracle, 
IBM, Red Hat, and RackSpace. These companies now include OpenStack‐compliant solutions into their 
cloud offerings or they are starting to build their products completely around this open platform (IBM efforts 
are surely remarkable), thus suggesting OpenStack as a de facto standard for IaaS platforms.

Regarding PaaS, initially, the major players were Azure and Google and for this reason they are now 
widely adopted. However, recently other PaaS platforms that could be candidates to become a de facto stand-
ard emerged. Among those worthy of attention are OpenShift and Cloud Foundry.

Amazon AWS

This is a comprehensive cloud services platform that offers compute power, storage, network, content deliv-
ery and other functionalities.

The most popular service offered by Amazon is Elastic Compute Cloud (Amazon EC2) that provides resiz-
able compute capacity in the cloud. Associated to EC2 Amazon also offers Auto Scaling and Elastic Load 
Balancing services. To store data on the cloud Amazon offers different ways: Simple Storage Service (S3 – a 
file system‐like storage), Amazon Elastic Block Store (EBS – block level storage volumes), SimpleDB and 
DynamoDB (as a semistructured data store), Relational Database Service (RDS – a relational database SQL).

Amazon offers two types of integration services for system‐to‐system decoupling and messaging: Simple 
Notification Service (SNS) and Simple Queue Service (SQS).

OpenStack

OpenStack is a cloud operating system that controls computing, storage, and networking resources, managed 
by users through the available Web‐based dashboard, command line tools, or RESTful APIs. The platform 
acts as an infrastructure as a service, providing services such as: Compute, enabling the provisioning and 
managing of large networks of virtual machines; Object Storage, a distributed storage system in which data 
are modeled as objects; Block Storage, providing access to block devices, which can be directly exposed and 
connected; and Networking, a scalable and API‐driven system for managing networks and IP addresses,.

OpenStack Shared Services include a series of services exploited by the core components, providing a 
powerful means of integration.

The OpenStack community has worked to reduce incompatibilities with Amazon EC2 and S3, in an attempt 
to further enhance platform interoperability. However, interoperability is still a strong issue for the platform, 
since the OpenStack Foundation didn’t have a policy or a set of standards that companies could adhere to in 
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order to legitimately say they were OpenStack compliant. IBM’s commitment to the project may lead to 
interesting developments, given its support for the OASIS Topology and Orchestration Specification for 
Cloud Applications (TOSCA) TC, together with the OpenStack Heat project, aiming at developing standards 
for workloads orchestration through templates.

Openshift

Openshift is a PaaS cloud computing platform provided by Red Hat whose objective is to provide a cloud 
environment in which developers can easily and quickly design, develop, build, host, and scale applications, 
by using one or more of the programming languages and frameworks supported. The Openshift platform is 
composed of one or more Brokers and a series of Nodes, which are grouped into sets managed by a specific 
Broker. The user interacts with the Broker only, using the available Openshift APIs, allowing developers to 
manage every aspect of the developed applications, from hosting to scaling.

An interesting feature of the platform is the option of choosing a specific programming language, database, 
or other services to use via standard or custom cartridges: developers can build applications in any program-
ming language (given a standard or custom cartridge exists for that language), and then host them on a node 
through the broker’s API.

One major advantage of this architecture is the possibility of running third‐party applications on an 
Openshift node just by selecting the correct cartridge, thus strongly supporting portability.

Cloud Foundry

Cloud Foundry is an open‐source PaaS, originally developed by VMware/SpringSource. Among supported 
languages and frameworks are Spring, Rails and Sinatra for Ruby, Node.js and Scala. To promote interoper-
ability and portability among cloud providers, a set of common core services has been defined. Cloud vendors 
can support extra runtimes on top of the core set in order to compete, thus some companies have created 
public instances of cloud foundry implementations, differing in some features. While such implementations 
share a common set of services, they are not exactly the same: differences in programming platforms, and in 
some cases different versions of the same platform, lead to compatibility issues.

To cover offerings from different cloud providers, Cloud Foundry Core has been recently introduced. Core 
is a Web application that verifies public instances (Cloud Foundry Endpoints) against a common set of 
 features, thus allowing users to know in advance if they can port their Cloud Foundry application to another 
cloud provider, by detecting the supported services and runtimes.

14.5 Conclusion

Due to the huge number of vendors, offers, and technologies involved, interoperability and portability issues 
among cloud environments are still far from a definitive solution. In this chapter, we presented the most 
 relevant methodologies, research projects, standards and initiatives aiming to resolve interoperability and 
portability problems by addressing them from different points of view. Among methodologies, model‐based 
approaches like the model‐driven architecture (MDA) seem to be the most promising. European research pro-
jects produced very good results in defining new frameworks and standards: among these, mOSAIC clearly 
showed how semantic and agent‐based technologies can ease interoperability and portability issues and lead 
to an effective and efficient solution. Commercial proposals distributed as open‐source software and  sustained 
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by cloud vendors, like OpenStack, are steadily growing in importance and are being adopted by a growing 
number of consumers, also thanks to the support given by large communities of developers. Cloud vendors 
also support the creation and adoption of new standards, by proposing them to standardization groups: exam-
ples are CAMP for PaaS and TOSCA for IaaS, submitted to OASIS.

As no standard or framework to solve portability and interoperability issues stands above the others, 
research in this field is still needed, together with further investment. Of course it is also possible that, given 
all the challenges related to interoperability and portability that such a standard should address, together with 
all the different possible approaches, there will never be a unique solution: instead, vendors could adopt a set 
of interoperable standards, giving consumers the opportunity to choose among them according to their 
 specific requirements.
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15.1 Introduction: The Case for Federation

The term “cloud” nebulously defines a variety of services related to distributed storage and computation. 
There are many cloud providers, and the exact services provided vary based on the provider, even at the 
abstract level. For instance, a provider may provide any – or a combination of – infrastructure as a service 
(IaaS), platform as a service (Paas), or software as a service (Saas) (Lenk et al., 2009). Consumers can choose 
one or several of these based on their own needs and development capabilities. Sometimes multiple offerings 
have to work together, be it because applications are built from different existing services or components 
hosted in different clouds, or by design. In fact, there are instances where one cloud service uses another. This 
is referred to as vertical federation, as one cloud offering takes precedence over another in a stack. It is different 
from horizontal federation, in which services do not strictly rely on accessing each other in the same order. 
Horizontal and vertical integration may happen in tandem, as when a processing service accesses multiple 
storage services of different clouds. Technologies including Eucalyptus (http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=5071863, accessed December 5, 2015) and OpenNebula (http://opennebula.org/, 
accessed December 5, 2015) can similarly be viewed as supporting vertical federation, building a service / 
infrastructure on top of horizontally federated cloud services.

Some services are interchangeable, or nearly so. The most straightforward example of this is data storage. 
A consumer may choose to spread data between providers for security so that the full data is not known by 
any third party, or any individual breach does not gain access to the full data. Alternatively, a consumer may 
switch providers when a contract expires or a new product becomes available. In both these cases, data has to 
be accessible across clouds.
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Sometimes the choice of which cloud offering to use is motivated by legal concerns, especially with regard 
to the location or accessibility of data (Winkler, 2011). For instance, the European Union issued a directive 
controlling where private data may traverse or reside. Even storing data within the EU may make that data 
subject to the relevant laws regardless of the origin of the data. In the United States, the Health Insurance 
Portability and Accountability Act and the Gramm‐Leach‐Bliley Act require strong protection for certain 
types of data, which limits the hosting options that comply with the Acts. It may also make sense to isolate 
such data, as it cannot be used for purposes beyond those stated when it was originally collected. Thus if there 
is any reason why the data may be considered sensitive, it is imperative to understand which data can and 
does fall under various jurisdictions to discern which laws govern its storage and use. If there are any disputes 
with the cloud provider, it is also necessary to know which laws apply.

In general, to support federation and to avoid a case where the consumer is locked in to a single provider 
(“vendor lock in”) and a single set of tools it must be possible to (i) distribute data, (ii) compute on such data, 
and (iii) communicate it across clouds and thus most commonly across datacenters (Kurze et al., 2011). 
Given the many different abstraction levels and even abstractions within the same level offered by different 
cloud vendors, we focus in the following on how to fundamentally solve these three issues efficiently; these 
are independent of mediation between specific technologies, APIs, and abstractions.

15.2 Distributed Data

There are several reasons for distributing data across datacenters and ways in which this can be done. For 
example, when global businesses offer cloud‐based Web services on a global scale, they naturally want to serve 
customers from the closest datacenter. This is illustrated in Figure 15.1, where client C1 communicates with 
datacenter DC1, whereas C2 prefers DC3. This can lead to customer databases building up in different data
centers. However, many operations – for example, audits – have to involve logical datasets that are distributed 
across datacenters. Customers may not want to pay to move the data to one place, or such an operation may be 
infeasible, for example due to legal issues when different laws govern the data hosted at the different sites.

Cloud

DC1
DC2

DC3

C1
C2

Datacenter

Access

Client

Figure 15.1 Datacenters and the cloud
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15.2.1 Addressing

Distributed datasets used for a single application can be stored in individual files in distributed file systems 
such as the Hadoop Distributed File System (HDFS) deployed in these datacenters, or in alternative storage 
systems. (For simplicity we may refer in the following to such datasets as files, although they may be stored 
in other formats.) Such files need not share common formats.

The networks within cloud datacenters usually offer significantly different guarantees from the networks 
connecting them. Indeed, cloud providers typically control the network within their offerings and, as such, 
ensure some practical level of quality of service (QoS) for communication. Communication between such 
datacenters may, however, go through the Internet, making it harder to provide guarantees on latency or band
width. Consequently, distributed file systems such as HDFS typically only support deployments within single 
datacenters and perform poorly, if at all, across datacenter boundaries. Each datacenter might host its own 
deployment of such a file system, and accesses would happen only from within a respective datacenter. 
However, several geodistributed file systems and storage systems have been proposed recently, with a global 
perspective on data management. Two main possible approaches exist:

 ● Distribution‐aware addressing consists of managing a different / addressing name space for every data
center involved. Thus file operations, including creation and access, are explicitly parameterized by their 
location. This approach is similar to deploying a separate instance of a storage system in each datacenter 
and facilitating accesses from remote datacenters.

 ● Distribution‐agnostic addressing. Here the level of abstraction is raised by addressing several datacenters 
as a whole. That is, users do not have to know a priori exactly where their files are located.

The resulting explicit and implicit distribution can also be combined. For instance, with a consolidated 
name space, file‐creation operations can support optional arguments denoting the desired location(s) for files, 
or locations can be queried and explicitly modified by users independently of file names per se.

Access features and guarantees are a priori decoupled from the addressing model. For instance, transac
tional guarantees for multiple combined file accesses are possible with both approaches. However, such 
advanced features are usually more often found with single address spaces, in addition to other conveniences 
like automatic load distribution across datacenters, automatic (re)location of files based on access patterns, or 
automatic replication for fault‐tolerance. We describe these services in more detail shortly.

GridFarm (Tatebe et al., 2003) is an early example of a file system that supports geodistributed access with 
explicit denomination of the servers that are managing files. Files are addressed and accessed individually 
without guarantees across accesses.

15.2.2 Partitioning

Sometimes individual logical files are partitioned across datacenters. This can happen for different reasons 
besides the security concern mentioned in section 15.1:

 ● Human initiative. With large datasets, especially those that keep growing at a high rate, one manage
ment mechanism is a manual coarse‐grained division of one dataset into several datasets or files 
which can be stored in a distributed manner. The resulting partitions typically follow a single partition 
criterion (based on the values for some primary key in the data such as “person with family names 
starting by A–D”, or “logs from machines x–y”), or can apply several such criteria in a nested fashion 
with directories.

 ● Technical limitations. Despite the tremendous scalability of existing distributed file systems and storage 
systems, there are always limitations in how much data can be addressed or indexed with a given number 
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of bits. The same goes for the datasets themselves, which can be limited in size, for example by the size 
of individual hard disks. Even without considering such limits, or pushing them very far in practice, file 
systems providing only restricted features for data access can yield bottlenecks in the applications that use 
them. For instance, append‐only semantics for files in HDFS become increasingly cumbersome when 
attempting to access arbitrary parts of larger files.

Figure 15.2 shows an example where a single dataset DS1 is partitioned into two parts DS1.a and DS2.b, 
which are stored in two different datacenters respectively.

15.2.3 Migration

There are many reasons a file might be moved from one location to another, including a change in the rules 
governing the distribution of data or the need for low latency local accesses. Files may even be moved back 
and forth or across multiple sites. This is of particular interest in the case of a unique name space for files 
stored across datacenters. Such a global name space abstracts geodistribution, yet access times between 
datacenters can hardly be abstracted away. Thus it is of increased importance to keep such access times 
minimal, which can be achieved by taking into account access patterns of individual files, and performing 
automatic migration of files to optimize for some objective function such as minimizing the average access 
latency. Optimization may further take latency and bandwidth or cost of remote communication from a 
given datacenter to another into account, as well as legal constraints to disable certain migrations. 
Correlations between accesses to different files can yield additional cues. An example of a system for 
automatic relocation of files is Volley (Agarwal et al., 2010). Volley analyzes logs of access requests from 
datacenters, and uses an iterative algorithm to optimize access latencies to individual files as well as costs 
by taking inter‐datacenter communication bandwidths into account to achieve a user‐defined desired trade
off between the cost of proactive migration and its benefits.

For files which are only read, or for which slight deviation from up‐to‐date versions can be tolerated, 
migration can be augmented with caching for faster access.

Dataset Partitioned dataset

DS1.a DS2

DS1.b

DS3

Figure 15.2 Partitioned data
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15.2.4 Replication and redundancy

Another common technique to orchestrate distributed accesses is to replicate files. Figure 15.3 shows an 
example where two replicas of a dataset DS1 – DS1.1 and DS1.2– are stored in two datacenters. The resulting 
redundancy can also be used to provide tolerance for failures of nodes hosting files, or possibly larger outages 
in datacenters. Inversely, such fault tolerance can motivate multidatacenter setups.

In the case of files that can be modified, replication immediately leads to the issue of synchronizing  concurrent 
access, which is solved straightforwardly when there is a single copy for a file. Several  storage  systems support 
geodistributed replication and provide fault tolerance, differing in the guarantees that they provide.

15.2.5 Consistency

Consistency guarantees become of the utmost importance in the context of access to distributed shared 
data, especially with replication and failures. The CAP theorem states the impossibility of providing 
simultaneous consistency, availability, and partition tolerance (Brewer, 2000); only two of them can be 
implemented simultaneously.

Several systems thus focus on crash failures and / or provide weaker consistency guarantees. For example, 
Dynamo (DeCandia et al., 2007) is a key‐value storage, which provides only some consistency. Vivace (Cho 
and Aguilera, 2012) provides strong consistency in the presence of failures and congestion.

15.2.6 Security

Geodistributed file access exacerbates security problems; for example:

 ● Access control solutions need to be deployed across datacenters, which usually comes down to deploying 
such solutions in datacenters individually, and coordinating them manually.

 ● Data transfer: if the cloud provider is trusted (cf. private clouds), users may be willing to store sensitive 
data in datacenters. With inter‐datacenter communication taking place across the Internet, most users will 
want to encrypt data that is thus transferred though, which further increases the performance overhead of 
cross‐datacenter communication and motivates the consideration of distribution constraints in communi
cation and computation.

15.3 Distributed Computation

With datasets being distributed across datacenters, one also needs to consider how best to perform compu
tations on such datasets. This is of particular relevance in the context of datasets that are partitioned across 
multiple datacenters. While the concepts introduced and discussed in the following are generic in nature, 

Replicated dataset

DS1.1

DS2

DS1.2

Figure 15.3 Replicated data
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we highlight them mostly in the light of a core application scenario for (geodistributed) cloud‐based com
putation, namely that of (big) data analytics.

15.3.1 Centralized computation

With data being geodistributed, even with replication, there might not always be a copy of every relevant data 
item available at every site where computation occurs.

The simplest approach to deal with this situation is to copy – if possible – all data to a single location before 
performing any computation on it. In the example scenario given in Figure 15.4, dataset DS1 is copied to 
datacenter DC2 prior to performing a computation that involves multiple datasets. This approach is simple 
implementation‐wise, yet there are a number of associated disadvantages:

 ● Performance: before executing a program, all data has to be transferred locally, whilst at least parts of the 
computation could possibly be performed locally to the data. Without specific support, this becomes espe
cially inefficient when programs are run repeatedly (possibly after minor modification) on the same data, 
leading to repeated copying.

 ● Cost: with many cloud providers charging for inter‐datacenter communication (while intra‐datacenter 
communication is typically free of charge), transfers of large datasets can become financially expensive.

 ● User effort: in order to avoid the same data being transferred several times, a straightforward approach is 
for the user to deal manually with fetching data and copying it close by. This is, however, tedious, as it 
requires users to deal with updates to datasets manually.

While several systems have been proposed to store data in a geodistributed manner, computation has been 
given only little attention thus far.

15.3.2 Decentralized computation

Performing as much computation as possible close to the data usually improves performance as well as 
minimizing costs. This is particularly valid for big data analysis, where the amount of data tends to decrease 
as the computation proceeds – typically large datasets are used as inputs to the computations, which attempt 
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to extract specific, more concise, knowledge from those datasets. Additionally, legal constraints or security 
concerns can prevent the copying of data to the site of the issuer of a query. Airavat (Roy et al., 2010) thus 
supports remote statistical queries such as averages over large datasets via MapReduce, combined with access 
control and query analysis to allow precisely restricted third‐party queries on protected datasets. However, 
Airavat still assumes that all data is located in a single datacenter.

Implementing generic decentralized computation is far from trivial, when the goal is to optimize performance 
and / or cost, as there are different execution paths according to which computational steps can be interleaved 
with consolidation of data from several datacenters. Consider an operation involving two datasets implemented 
through a single MapReduce task which, as its name suggests, consists of two phases: a first map phase, which 
outputs intermediate <key, value> pairs for its input datasets, followed by a reduce phase which atomically 
processes <key, list<value>> pairs where an instance of list <value> represents all values generated a same key. 
Considering that at some point in the computation all data has to be consolidated in a single datacenter, there are 
three straightforward execution paths, differing by when the consolidation happens:

 ● Premap: copying one of the datasets to another datacenter – for example, the datacenter hosting the 
smaller dataset – prior to computation yields an execution path similar to performing computation in a 
centralized fashion, and in some cases might be the only option due to the nature of the job.

 ● Postmap / prereduce: here the first phase can occur on datasets individually, with copying occurring before 
the reduction phase, by aggregating <key, list<value>> pairs for a same key across datacenters.

 ● Postreduce: consolidating data at the end of the reduce phase assumes that typically no two datacenters 
will generate intermediate values for a same key, or that some simple way exists to aggregate results after 
the reduction.

This is only a simplification: the abovementioned approaches could be combined in many different ways 
especially when more than two datasets are involved, for example consolidating some datasets following path 
(a), with further consolidation following (b). The situation becomes yet more complicated when – as is com
mon in real‐life MapReduce computations – several such tasks are performed in sequence. Relevant param
eters for optimization beside latency, bandwidth, and cost of inter‐datacenter communication as in data 
management include but are not limited to:

 ● amount of data present at individual points in the computation;
 ● complexity and costs of individual computational steps;
 ● (momentary) resource availabilities at datacenters.

As emphasized by the possibly transient nature of resource availability, determining an optimal execution 
path can require runtime information and conflict with other jobs executed simultaneously on a shared cluster 
of nodes. Rout (Jayalath and Eugster, 2010) is an example of a seminal system for geodistributed big‐data 
processing based on MapReduce. Rout employs a lazy copying heuristic based on momentary resource avai
labilities in involved datacenters (or more precisely, clusters of nodes allocated for MapReduce tasks in 
respective datacenters). Computation proceeds individually at the sites of the datasets involved until consolidation 
becomes necessary, at which point cluster resource availabilities are balanced with amounts of data to be trans
ferred and communication bandwidths in order to choose the datacenter in which computation is to proceed. 
Another example of a system supporting geodistributed computation is G‐MR (Geo‐distributed MapReduce) 
(Jayalath et al., 2013b): G‐MR achieves more fine‐grained optimization by using sampling to determine the 
amounts of data at respective points in the computation, yet it uses an offline optimization technique that does 
not take resource availability into account at runtime, yet can support computation models other than (sequences 
of) MapReduce jobs. Legal policies can similarly be considered. Figure 15.5 shows how the computation of 
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Figure 15.4 can be executed in a decentralized manner, involving three different datacenters. Note that com
putation may also be replicated, for instance to ensure high availability.

15.3.3 Associativity and distributed associativity

As hinted above, a reasonable consolidation heuristic during computation on geodistributed and possibly 
partitioned datasets involves consolidating data as late as possible, given that the amount of data typically 
decreases as computation proceeds. However, it is not always possible to perform computation on subdatasets 
in isolation. We can distinguish several scenarios:

 ● Associative computations: following the mathematical definition of associativity, some functions f can be 
performed on arbitrary subsets of data in isolation, before being applied to the outcome of some of these 
subcomputations, and so forth. Consider summing the values of some particular attribute across many 
records: we can create partial sums and sum these further in whatever order, as long as every partial sum 
is considered exactly once.

 ● “Distributed associativity” (Yu et al., 2009): certain functions f can be “made associative,” by describing them 
alternately in two steps f = h o g where g is performed on subdatasets whilst the second h consolidates these 
results in an arbitrary number of stages in an associative manner. As an example, an average can be expressed 
as follows: a first function which computes for a subdataset (1) the respective average as well as (2) the 
number of elements considered; the second function outputs the sum of all the element counts (2) for any 
number of inputs in addition to the respective average computed by prorating the averages of its inputs by the 
respective number of elements (and dividing the result by the total number of elements considered thus far).

 ● We can consider the scenario where the first function is the “original” one, that is, the function that we 
want to apply to an entire dataset (f = h o f ). In this case we can refer to the function h as a “merge” or 
“aggregation” function for the function f. An example consists of counting the number of occurrences of 
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some value across several datasets or a partitioned dataset: we can count the number of occurrences in 
each subdataset, before summing these counts in whatever order we like.

 ● Several authors have considered inferring merge functions (h) or decompositions (g, h) automatically or 
with little programmer input. Most notably, the third homomorphism theorem (Morihata et al., 2009) 
states that if two sequential programs iterate a list from opposite sides and compute the same value, there 
exists a parallel program that can divide‐and‐conquer the program with the same results.

15.3.4 Programming

The impossibility of automatically inferring merge functions in general naturally leads to the question of how 
to aid the programmer in expressing such functions.

In the case of big‐data analysis, several so‐called “data‐flow” languages have been proposed in the recent 
past, which represent data at individual stages by some form of collection or data‐structure, and computa
tional steps as operations performed on such data structures. Such languages are usually compiled to 
MapReduce jobs. Languages differ in the data structures that they propose, though most include some form(s) 
of sets or bags along with some kind(s) of associative maps. For instance, Pig Latin (Olston et al., 2008) 
introduces bags and maps. While early languages tried to be mostly distribution transparent, more recent 
approaches for the sake of performance and advanced functionality (e.g., supporting iteration and increment 
computation) abandon transparency and provide richer APIs to give the programmer more explicit choices of 
how to perform operations. For instance, resilient distributed datasets (RDDs) (Zaharia et al., 2012) go as far 
as exposing map and reduce operations that are parameterized by functions; the signature and semantics of 
the application of these functions are given by the types of their respective formal arguments and the opera
tion through which they are applied. In a similar vein, Rout thus extends Pig Latin with support for merge 
functions for many of the language’s built‐in operators, while for others (e.g., COUNT), the runtime has 
built‐in knowledge of how to perform these in an associative or distributed associative manner.

15.4 Distributed Communication

Executing across multiple datacenters requires generic support for communicating between nodes spread across 
these datacenters. This leads to various challenges beyond efficiency, due to the different mechanisms and fea
tures supported by cloud providers. The space for solutions to overcome these challenges is still very limited.

15.4.1 Mechanisms

Different cloud providers support different basic communication mechanisms, and to different extents. Two 
particular limitations are:

 ● Multicast. Few cloud providers support IP Multicast or UDP Broadcast, for simple reasons. First off, dif
ferent users / applications could use the same IP Multicast address. Second, such clashes could be exploited 
to generate denial‐of‐service attacks. Since cloud host resources are often exploited in bunches, however, 
multicast addressing is a common and thus relevant scenario.

 ● Host addresses. Most cloud providers do not expose hardware addresses, or propose proprietary address
ing mechanisms to avoid enabling arbitrary direct access to hosts from outside of clouds. Such access can 
lead to security vulnerabilities, inefficiencies, and to bypassing cost accounting.

To make up for these limitations, cloud providers typically offer specialized middleware services, which 
are, however, not portable or interoperable across cloud providers and often do not operate efficiently across 
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datacenters of the same cloud provider. Examples of specialized services are Amazon EC2’s CloudFront 
content delivery network or its Simple Notification Service.

15.4.2 Communication models

Several core models of cloud communication can be distinguished. Roughly:

 ● One‐to‐one (unicast): This communication scenario between two endpoints remains the most common 
one. One can further distinguish here between different semantics, and unidirectional versus bidirectional 
communication.

 ● One‐to‐many (multicast). We can further subdivide this scenario:
 ◦ “Explicit multicast”: here, a component producing data wants to share that data with an explicitly 

specified set of destinations.
 ◦ “Implicit multicast”: here the set of actual destination components is given by these components them

selves, for example, based on matching of message attributes to desired ranges of values  specified by them.
 ● One‐of‐many (message queuing). This is similar to implicit multicast, yet the system selects exactly one 

destination for every message based on characteristics of potential destination components (e.g., current 
load), specific policies (e.g., for “fair” load balancing), or others.

 ● One‐to‐all (broadcast): here, a message is sent to all “participating” components, typically of a given 
application instance.

 ● Many‐to‐many: Here we consider systems that allow for different messages to be aggregated within the 
middleware, thus allowing composite messages to be delivered directly to applications.

Figure 15.6 illustrates a system with communicating components distributed across multiple datacenters.

15.4.3 Abstractions

There are several traditional abstractions for programming distributed applications in general, which also 
play a role in cloud datacenter communication:

Intra-DC link

Broker

Inter-DC link

Figure 15.6 Components communicating across datacenters
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 ● Sockets: these are typical for programming unicast interaction (one to one) as well as simple one‐to‐many 
interaction

 ● Publish / subscribe: this is a common high‐level abstraction for multicasting. Producers are termed publish-
ers and consumers subscribe to specific messages. Figure 15.7 illustrates entities of a publish / subscribe 
system. Several variants for outlining messages of interest can be distinguished:

 ◦ Topic‐based publish / subscribe (TPS): here, publishers explicitly post messages under specific topics, 
whilst subscribers delineate topics of interest. Topics can exhibit a “flat” name‐space or be in different 
relationships to each other such as hierarchical.

 ◦ Content‐based publish / subscribe (CPS): here subscriptions are expressed based on predicates on mes
sage content (“filters”). Most systems thus support messages with some form of property‐value pairs, 
which are used for filtering.

 ● Message queuing: these systems are the most common implementation of one‐of‐many communication. 
Typically consumers pull messages from queues, but this can also be replaced by push‐style communication.

Sockets are typically bound to IP addresses, which, given the problems with such addresses outside of 
clouds, makes them unsuited for intercloud communication.

15.4.4 Elasticity

Elasticity is a core tenet of third‐party cloud computing, whose economic benefits depend precisely on the 
ability to tap into resources at need, pay as one goes, and release unneeded resources instantly to avoid any 
amortization or constant costs. This necessitates communication mechanisms to efficiently scale up and down: 
a component may have to communicate with hundreds of others to inform them of changes relevant to their 
individual subcomputations, and the next moment only ten such components may be necessary to proceed. 
Based on this requirement as well as other cloud‐specific needs already mentioned, the publish / subscribe 
abstraction is a suitable candidate for elastic communication in and across clouds:

 ● Addressing: the logical addressing introduced by publish / subscribe abstracts cloud‐specific addressing, 
which in turn enables inter‐datacenter and inter‐cloud communication.

 ● Scale: the publish / subscribe paradigm is able to capture both unicast (one‐to‐one) and multicast (one‐to‐
many) communication scenarios.

PublisherPublisher SubscriberSubscriberPP SS

S1S1 S2S2
P1P1

Figure 15.7 Publish subscribe
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 ● Integration: the property‐name abstraction offered by content‐based publish / subscribe integrates especially 
well with other systems such as many storage systems, which focus on key‐value pairs.

However, typical publish subscribe systems focus on scaling up, and less on small scales. TPS systems 
typically scale up to many topics, and many consumers per topic, although many existing systems work well 
with small consumer numbers for given topics. Content‐based publish / subscribe systems integrate better 
abstractionwise with other cloud services and are more expressive than their TPS counterparts, yet do not 
deal well with scenarios where few consumers are listening to a given producer. Yet, many scenarios exist 
where a producer’s messages are relevant to a handful of consumers: a common pattern is threefold replica
tion of components for fault‐tolerance; CPS systems performancewise deal poorly with such scenarios.

Atmosphere (Jayalath et al., 2013a) is a CPS system designed specifically for cloud communication in a 
way that supports multi‐datacenter setups as well as scaling down and up. The system uses original protocols 
for tracking the number and distribution of subscribers for specific publishers, and splitting the traditional 
overlay networks used in CPS systems in order to facilitate efficient small‐scale communication: the overlay 
is used primarily to keep components connected, while “shortcuts” are created over this overlay for more 
efficient propagation of messages.

15.5 Conclusions

No single cloud solution will be sufficient for all uses while still being wieldy enough to use, and some con
sumers will want to use different services or separate their data. Thus cloud federation is necessary. Several 
solutions exist to distribute and migrate data, as well as to provide services across clouds. Clouds may rely 
on each other, in vertical federation, or coexist to be accessed by a third service in a horizontal federation. 
New services may be introduced to remap proprietary services to a new abstraction, or services may be tied 
together to create seamless interaction.
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16.1 Introduction

This chapter will focus on the standards that are produced and published by organized bodies known as 
 standards defining organizations (SDOs). Such organizations have a wide variety of internal processes and 
membership rules, which range from completely open access to closed formal representation that can in some 
cases require the approval of national governments and international coordinating bodies.

The standards that are dealt with in this chapter are primarily those that are most mature within the 
infrastructure as a service (IaaS) and platform as a service (PaaS) layers. While software as a service 
(SaaS) standards also exist, they tend to be specialized to their areas of application, and so are not 
 amenable to more than a brief overall summary. The chapter starts by motivating the practical use of 
standards, what types of communities issue them, who they are, their primary cloud‐related outputs, and 
their organizing rules for participation.
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16.2 Why Standards?

Among the goals for any robust software, the following are key basic aspects (taken from Edmonds et al., 2011):

 ● Interoperability. Describes how two cloud services can interoperate on the fly. This demands a standard-
ized API and protocol (e.g. live migrating a virtual machine from one host to another, when they are in 
different management domains).

 ● Integration. Describes how a service provider can bring together different technologies and interconnect 
them within his domain (e.g. integrate a virtual machine management tool with an identity‐management 
system).

 ● Portability. This is mostly about porting between cloud service providers. In comparison with interop-
erability, there is no direct connection between the service providers. Portability demands that there 
are standardized data formats that providers can understand (e.g. porting a virtual machine from one 
hypervisor to another).

As services are the key component in today’s cloud‐service offerings, the development and deployment of 
a service should be made as simple as possible. Hence service developers know that incorporation of appro-
priate standards can provide powerful tools to reduce the risk of vendor lock in and allow for incorporation 
of up‐to‐date new methods without the complete rewriting of the entire package.

This use of standards facilitates interoperation with other cloud‐based software services, components, and 
infrastructures. Standardized APIs and interfaces intrinsically promote interoperability and portability. This 
built‐in interoperability allows service developers, vendors, and users to focus more on the higher level capa-
bilities of their services and therefore less on reinventing common aspects and features of their APIs and 
interface modules.

16.3 What Sort of Standards?

There is not just one type of standard. There are a number of types and those considering or using standards 
should know the difference. The following types of standards are of relevance to most users of the cloud:

 ● De jure standards are those driven by government‐related entities. Community driven de facto standards 
can become de jure standards if an official governing body (e.g. the government) officially embraces them.

 ● Community standards are those driven by a mostly open community of people, who by a certain process 
reach agreement on a set of features that a standard should have. Most community standards are open and 
driven by individual people for the common good.

 ● Industry standards are defined and driven either by all or a subset of vendors active in an industry. Most 
such standards are developed in closed groups and require a voting mechanism to be adopted.

 ● De facto standards are those defined by a (single) entity and are adopted by the community so quickly that 
they gain huge popularity. This popularity means that they essentially become the accepted standards, as 
the community expects these standards to apply to all products of the same kind.

16.3.1 Open Standards

Some of the standard types mentioned above can be deemed to be open standards. However, the only way to 
know this is by studying the exact specification and which service‐defining organization it comes from. To 
date there have been three separate efforts to define what an open standard is: the Open Cloud Initiative 
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(http://www.opencloudinitiative.org/, accessed December 5, 2015), OpenStand (http://open‐stand.org/, 
accessed December 5, 2015), and the work in Krechmer (2008). When looking at the three initiatives it makes 
sense to see how each can help with a wider definition. To consider if a particular standard is an open stand-
ard, four dimensions of the standard and its SDO should be considered. These are the governing organization, 
the specification in question, how the specification might have been implemented, and adoption of the speci-
fication. The final two aspects are key to all the standards.

16.4 What Sort of Organizations?

There are many organizations defining standards. The organizations that oversee the standards described in 
this chapter are discussed below.

 ● The Distributed Management Task Force (DMTF) (http://www.dmtf.org/, accessed December 5, 2015) 
creates standards that enable interoperable IT management. Its management standards are critical in 
 enabling management interoperability among multivendor systems, tools, and solutions within the enter-
prise. The DMTF is the steering body behind both Cloud Infrastructure Management Interface (CIMI) 
and Open Virtualization Format (OVF), which are described later

 ● The Organization for the Advancement of Structured Information Standards (OASIS) (https://www.
oasis‐open.org/, accessed December 5, 2015) is a nonprofit consortium that drives the development, 
convergence and adoption of open standards. It promotes industry consensus and produces worldwide 
standards for security, cloud computing, service‐oriented architecture (SOA), Web services and other 
areas. It is the steering body behind both the Cloud Application Management for Platforms (CAMP) 
and the Topology and Orchestration Specification for Cloud Applications (TOSCA), which are 
described later.

 ● The Open Grid Forum (OGF) (http://www.ogf.org/, accessed December 5, 2015) is a leading standards 
development organization operating in the areas of grid, cloud and related forms of advanced‐distributed 
computing. The OGF community pursues these topics through an open process for development, creation 
and promotion of relevant specifications and use cases. The OGF is the steering body behind the Open 
Cloud Computing Interface (OCCI) and WS‐Agreement, which are described later.

 ● The Storage Networking Industry Association (SNIA) (http://www.snia.org/, accessed December 5, 2015) 
is a not‐for‐profit global organization, whose mission is to lead the storage industry worldwide in develop-
ing and promoting standards, technologies, and educational services to empower organizations in the 
management of information. The SNIA is the steering body behind the Cloud Data Management Interface 
(CDMI), which is described later.

 ● The Internet Engineering Task Force (IETF) (http://www.ietf.org/, accessed December 5, 2015) is a 
body that supports the development of new standards related to the Internet of which OAuth and NFS 
– mentioned in this section – are two of many. The IETF is organized under the Internet Society (ISOC), 
itself a nonprofit organization.

 ● The OpenID Foundation (http://openid.net/foundation/, accessed December 5, 2015) is a nonprofit organ-
ization of individuals and companies. It was founded back in 2007 as an open community of vendors and 
developers. The role for the foundation is to drive the OpenID technologies that are described later.

 ● The Cloud Security Alliance (CSA) (https://cloudsecurityalliance.org/, accessed December 5, 2015) is 
again a nonprofit organization trying to promote the security assurance in the cloud. It gained significant 
impact in later years when, for example, the White House used the CSA summit as the venue for announc-
ing the federal government’s cloud computing strategy. The Cloud Security Alliance recommends usinf 
SAML, and OAuth, which are described later in this chapter.
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16.5 Cloud, Standards and Management

The standards that are discussed in this chapter are primarily those that are related to some aspect of service 
management. This set of resources is created and / or orchestrated by the service provider, which then gives 
access to the requesting client. What the client sees is not just a collection of resources or anything to do with 
the internal workings of those resources but a limited set of features organized through a management inter-
face. The organization of this interface is managed by the service provider, either directly or through orches-
tration. From this perspective, the client works and manages interaction with a service instance by controls 
exposed by the management interface, either directly through a user interface (UI) and / or by coding or 
interaction of other services through an application programming interface (API). As the UI itself is often just 
an easily coded wrapper to simplify user interaction with the API or with services that talk to the target API, 
it is the API layer that is the focus of most of the cloud standardization efforts described in this chapter. One 
of the core principles of such services is that clients have broad network access through which service provid-
ers make their offers. These cloud services are “capabilities … available over the network and accessed 
through standard mechanisms” (Mell and Grance, 2011). From a technical perspective, clients generally 
access their service instance and service provider management interfaces over a TCP‐based protocol. For the 
service and service‐instance management interfaces, the TCP‐based protocol, HTTP, is the  preferred approach 
with many service providers choosing to implement a REST‐based (Fielding, 2000) API (note that RESTful 
approaches do not mandate TCP – it is just the most common). Indeed, cloud‐standard‐defining organizations 
take this approach.

16.6 Individual Standards

There are many cloud‐service offerings available today, from IaaS through PaaS to SaaS, which show their 
adherence to the NIST definition of cloud computing (Mell and Grance, 2011). In the following sections, 
individual standards will be detailed and related to the layer they best fit.

16.6.1 OAuth

OAuth (Hammer‐Lahav, 2010) is an open standard for authorization. It enables users to delegate access to 
resources they own to a trusted third party to access in a constrained manner. Version 1.0 of the protocol is 
published as IETF RFC 5849 (Hammer‐Lahav, 2010). It should be noted that the recent version 2.0 of OAuth 
has made significant changes to its predecessor.

16.6.2 WS‐Agreement and WS‐Agreement Negotiation

This sub-section describes the open standards WS‐Agreement and WS‐Agreement Negotiation, which define 
languages and protocols for negotiating and creating service level agreements. The development of WS‐
Agreement (Andrieux et al., 2011) initially started 2005 in the environment of computational grids. However, 
the specification is both generic and domain agnostic such that WS‐Agreement can generally be used (and is 
used) in environments where an agreement between a provider and a customer needs to be created. WS‐
Agreement is not tied to a specific application domain. Constraints used to express particular terms of  services 
can be expressed using domain‐specific languages as long as their definition is realized using XML. 
WS‐Agreement itself is fully symmetric and allows either party to enter the roles of agreement initiator and 
agreement responder.
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WS‐Agreement Negotiation (Wäldrich et al., 2011) is an extension of WS‐Agreement adding multiround 
negotiation capabilities to WS‐Agreement. While for many use cases the discrete‐offer protocol of WS‐
Agreement is sufficient, for some use‐cases, a multiround negotiation protocol is more efficient. In order not 
to break compatibility with WS‐ Agreement, an independent additional layer for negotiations on top is 
defined. An existing agreement can be renegotiated by either of the parties if the circumstances demand.

WS‐Agreement and WS‐Agreement Negotiation are based on a three‐layer (negotiation layer, the agree-
ment layer and the service layer ) model depicted in Figure 16.1.

There is a clear separation between these layers. The negotiation layer is decoupled from the agreement layer 
and the service layer. In that way, the negotiation layer may change independently of the agreement layer and 
can be replaced by another negotiation layer, which might be better suited for a specific negotiation scenario.

WS‐Agreement provides a template‐based approach, where usually the service provider makes predefined 
agreement templates describing properties of the service available to potential service consumers. The ser-
vice customer (the agreement initiator) may download a template suitable for its desired service, probably 
make some modifications if allowed by the constraints defined in the template, and send the template back to 
the provider (the agreement responder) as an agreement offer.

Once the provider receives the offer it can decide, to either accept the offer or to reject it. In the first case 
the agreement is created and binding with obligations for both parties. In the second case no agreement is 
created and the customer is no longer bound to its offer.
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Figure 16.1 Layered model of WS‐Agreement (lower two layers) and WS‐Agreement Negotiation. Source: Fraunhofer 
Institut SCAI
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WS‐Agreement Negotiation is also based on templates. Similar to the Agreement templates these 
Negotiation templates define negotiation constraints that allow both parties to restrict the scope of a 
negotiation.

Implementations of WS‐Agreement consist of a server and a client where the server is realized as a Web 
service running in a tomcat container. The implementation is using the Web Service Resource Framework 
(WSRF) to provide stateful resources.

There are a large number of implementations, many of them provided by European co‐funded projects, 
such as PHOSPHORUS (http://www.ist‐phosphorus.eu/, accessed December 5, 2015), SLA@SOI 
(Theilmann, J., C., A., K., and J., 2010), OPTIMIS (Ziegler, 2012). Moreover, there are first implementations 
in commercial and pre‐commercial environments, for example as part of a product of the UK company 
Cybula (http://www.cybula.com, accessed December 5, 2015), or in the cloud broker of CompatibleOne 
(http://www.compatibleone.org, accessed December 5, 2015).

16.6.3 Open Cloud Computing Interface (OCCI)

OCCI (http://www.occi‐wg.org, accessed December 5, 2015) comprises a set of open community‐led speci-
fications delivered through the Open Grid Forum. The OCCI is a protocol and API for the management of 
cloud‐service resources, primarily for IaaS model‐based services; however, it has since evolved into a flexi-
ble API with a strong focus on integration, portability, interoperability, and innovation while still offering a 
high degree of extensibility (Edmonds et al., 2012). The main design tenets of OCCI are simplicity, extensi-
bility, discoverability and modularity. A key aim of OCCI is to leverage existing SDO specifications and use 
them to leverage the existing work, so where an OCCI feature is needed, a more capable one can be brought 
into play. An example of this is the integration of both CDMI and OVF. In particular those two standards, 
when combined with OCCI, provide a profile for open and interoperable infrastructure cloud services 
(Edmonds et al., 2011). The specification itself currently comprises of three modular parts:

 ● Core. This specifies the basic types and presents them through a metamodel. It is this that dictates the 
common functionality and behavior that all specializations of it must respect (Nyren, Edmonds, 
Papaspyrou, and Metsch, 2011). It specifies how extensions may be defined.

 ● Infrastructure. This specification is an extension of Core (it provides a good example of how other parties 
can create extensions) (Edmonds and Metsch, 2011) and defines the types necessary to provide a basic 
infrastructure as a service offering.

 ● HTTP Rendering. This document (Metsch and Edmonds, 2011) specifies how the OCCI model is 
 communicated both semantically and syntactically using the RESTful architectural‐style.

From an architectural point of view OCCI sits on the boundary of a service provider. It does not seek to 
replace the proprietary protocols / APIs that a service provider may have as legacy. The communication 
between the service consumer and the OCCI implementation can be carried out over HTTP and both exchange 
serialized renderings of the OCCI model.

The OCCI Core Model (Nyren et al., 2011) is the basis of understanding anything about OCCI and its 
extensions. The core model is an abstract model. It defines a “type” system for cloud resources. In this  system, 
a cloud resource has a fixed kind with a set of capabilities. Over the lifecycle of the resource, mix ins can be 
associated giving it additional capabilities. Capabilities are expressed through a set of attributes and actions. 
The core model also defines the means to link resources to each other.

The Infrastructure model defines the capabilities of compute, storage, and types of network. Next to this 
the links are defined, which, for example, express network interfaces, storage attachments, and so forth.
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The rendering documents are free of information that is particular to an extension such as the infrastructure 
model. While being modular and extensible, OCCI offers a unique query interface through which the capa-
bilities of a service provider can be inspected.

Clinets interact with an OCCI implementation over HTTP following a RESTful approach and uses the 
appropriate request to the implementation as detailed in the HTTP Rendering specification (Metsch and 
Edmonds, 2011). The OCCI supports two rendering types – the first is a text‐based rendering and the second 
is a JSON‐based rendering.

There are numerous implementations of the OCCI specifications (http://occi‐wg.org/community/ 
implementations/, accessed December 5, 2015). The available implementations include those that cover the 
main open‐source infrastructure service frameworks, including OpenStack (http://www.openstack.org, 
accessed December 5, 2015), CloudStack (http://www.cloudstack.org, accessed December 5, 2015), and 
OpenNebula (http://www.opennebula.org, accessed December 5, 2015). It is also the core technology for the 
cloud broker of CompatibleOne. More recently, implementations of OpenShift, and other solutions, such as 
an OCCI interface for the Internet‐of‐Things (IoT), have appeared.

16.6.4 Open Virtualization Format (OVF)

A software package is to a computer system what a virtual appliance is to a cloud. More formally, a virtual 
appliance is a “pre‐built software solution, comprised of one or more VMs that are packaged, maintained, 
updated and managed as a unit” (DMTF, 2010). In this era of increasing use of virtualization and clouds, it is 
important to find a standard way to package any virtual appliance to ensure that it can be deployed on various 
cloud platforms, and DMTF’s OVF is a packaging standard that addresses the “portability and deployment of 
virtual appliances.”

Open Virtualization Format is a vendor‐neutral, open metadata standard that includes all necessary virtual 
machine specification and configuration parameters needed to deploy the application successfully over any 
virtualization technology of the customer choice. It is also extensible and allows inclusion of vendor specific 
data if required. It allows for automatic verification of the virtual appliance using industry‐standard public‐
key infrastructure, thereby enabling a safe distribution of virtual solutions from vendors to their customers. 
The OVF standard specifies the packaging format along with the OVF descriptor format, which contains the 
hardware specifications, disks, and other characteristics of a set of VMs.

The detailed OVF specification is available online (DMTF, OVF, 2010). The descriptor contains the details 
of each virtual machine along with disks, network interfaces, and contextualization parameters of that machine. 
It also contains optional startup order information and the virtual appliance scale‐out rules to govern elasticity.

There are several other types of metadata sections described in the specification; together they are suffi-
cient to specify completely all the characteristics of a virtual appliance, thus enabling seamless portability 
and distribution over heterogeneous virtualization tools. The OVF standard enjoys wide industry support. 
Popular open‐source virtualization software Oracle’s VirtualBox (http://www.virtualbox.org/, accessed 
December 5,2015) has full support for OVF packages. It allows import / export of virtual appliances from / to 
OVF packages. Commercial virtualization products from VMware (http://www.vmware.com/, accessed 
December 5, 2015), IBM SmartCloud (http://www.ibm.com/cloud‐computing/, accessed December 5, 2015), 
and several other major cloud players provide full OVF standard support.

16.6.5 Cloud Data Management Interface (CDMI)

CDMI (SNIA, CDMI, 2012) from the Storage Networking Industry Association (SNIA) was first released as a 
standard in April 2010, saw increasing adoption across the storage industry, and is now an ISO standard (ISO/
IEC 17826:2012, http://www.iso.org/iso/catalogue_detail.htm?csnumber=60617, accessed December 5, 2015).
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It standardizes both a data path and control path for cloud‐storage products and offerings. The data path is 
a superset of the existing cloud storage APIs currently being deployed across the industry. The data path sup-
ports single‐level or unlimited nesting of containers for storage objects. The standard also specifies a globally 
unique object identifier for each storage object. In addition to objects and containers, CDMI also supports a 
first‐in first‐out queue type of resource that allows for cross‐cloud coordination and is used by CDMI itself 
to provide logs and audit trails. It also standardizes fine‐grained access control for storage containers and 
objects leveraging Access Control Lists from the NFS standard. Full control over the creation of cloud users 
and their access rights is standardized through CDMI Domains, which also standardize summary information 
for usage of the cloud by each user. CDMI leverages the web technologies by using RESTful semantics and 
the HTTP protocol for all operations.

The CDMI control path uses metadata tagging on containers and objects to control the type and 
 configuration of data services such as backup, archive, encryption, retention, and others at granularity 
down to individual storage objects. It permits implementations to advertise their unique capabilities, 
allowing a CDMI client to discover programmatically whether any given cloud can meet the require-
ments of the data they want to store. The client then marks the data with those requirements using the 
metadata. During operation, CDMI also provides how the cloud can tell the client how well those require-
ments are being met in real time. Combined, this amounts to a dynamic service discovery and negotiation 
of service levels that are only now being recognized as important in the cloud industry. The CDMI pro-
vides a query syntax for searching indexed object content as well as metadata that is stored and acces-
sible to the client. Results are available using the queue resource, allowing powerful and distributed 
processing.

Finally, CDMI also standardizes a format for transporting the data and metadata between clouds. The 
transport can be done not only through the network but also via removable media such as flash, disk, or 
tape. The metadata that represents the data requirements is preserved during this operation so that, upon 
import into the new cloud, no new setup is required for the data to receive the same service levels of the 
previous cloud.

16.6.6 Cloud Infrastructure Management Interface (CIMI)

DMTF’s CIMI is an standard (DMTF, CIMI, 2012) that allows management of infrastructure as a service 
(IaaS). It allows for management of cloud resources including virtual machines, network, and storage but is 
not intended for management of applications and services that the cloud users may start. It uses RESTful 
messages over HTTP protocol with messages sent and received in either JSON or XML formats. The stand-
ard supports cloud application portability by allowing importing an OVF package, and creation of CIMI 
resource elements based on the OVF descriptor elements.

The CIMI standard contains representation for all necessary elements required for an effective manage-
ment of a virtual environment provisioned over IaaS cloud. The resources supported in CIMI are broadly 
organized into cloud entry point, machine resources, volume resources, network resources, system resources, 
and monitoring resources. Some of the supported CIMI resources are:

 ● Cloud entry point – this represents the entry point for the IaaS cloud defined by the CIMI model. It has 
catalog of resources including systems, system templates, machines, and machine templates, and can be 
queried and browsed by the end users.

 ● Machine resources – these represent the set of resources along with the representation needed to spec-
ify all necessary parameters involved in defining a virtual machine or a set of virtual machines. They 
also define all the states a virtual machine can be in, along with a set of operations allowed in a given 
VM state.
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 ● Volume resources – these resources represent storage, at block‐ or file‐system level, which can be con-
nected to a virtual machine. The volume resource specification also includes the state information, type 
information, capacity, list of volume snapshots, meters associated, and so forth.

 ● Network resources – these define how network entities, ports, and their relationship can be represented in 
CIMI. The element’s state, service class, type, and so forth, can be represented easily. A valid list of per-
mitted operations can also be represented, along with several other aspects in order to represent the virtual 
networking capabilities and resources of a cloud provider properly.

The Apache project ∂‐cloud (http://deltacloud.apache.org/cimi‐rest.html, accessed December 5, 2015) is a 
cloud API that supports several IaaS clouds, including OpenStack, OpenNebula, IBM SmartCloud, and many 
more. It exposes three interfaces to application developers and end users including DMTF’s CIMI. Leading 
cloud providers such as Broadcom, CA Technologies, Citrix, Fujitsu, Hewlett‐Packard, IBM, Oracle, Red 
Hat, VMware, and SunGard have announced support for the CIMI v1.0 standard in their products.

16.6.7 Cloud Application Management for Platforms (CAMP)

CAMP standard from OASIS (OASIS, CAMP, 2012) focuses on making it possible to package and operate 
applications across different platforms and cloud services. The principal components of CAMP are the REST 
API, YAML (http://www.yaml.org/, accessed December 5, 2015).

Its REST API specifies how to create, inspect, manage, and terminate applications hosted in a CAMP‐
compliant  platform. The Platform resource is the principal entry point. From here, a client can follow links to 
individual Assembly resources, representing applications deployed and managed by a CAMP platform. New 
Assembly resources can be created by POSTing a Plan (format described in the next section). At an individual 
Assembly resource, a client can traverse Component resources, which comprise the Assembly, and those 
Components in turn can comprise further Components. Each Assembly and Component can also expose 
Sensor resources, which report status and metrics through GET requests, as well as Operation resources, 
which allow management of resources through POST requests. DELETE requests can be used to terminate 
an Assembly. CAMP specifies a schema for application “plans,” in YAML, together with an archive format. 
Both are designed to be simple to create whilst permitting complex descriptions where required.

Multiple archive formats are supported, with the sole stipulation that a file “camp.yaml” be included. In 
simple cases, this YAML file may describe the application completely with no reference to external items. For 
more sophisticated scenarios, the YAML may refer to other files contained in the archive or hosted externally, 
ranging from WAR files and SQL scripts to Chef recipes, RPM packages, and OASIS TOSCA plans.

The CAMP YAML schema for Plans centers on the concepts of Artifacts and Services. In simple cases, a 
Plan may refer to one or more Artifacts, such as a WAR file. Artifact entries in the schema can include 
requirements to inform the platform how it should be handled. Requirements may be monolithic and specific, 
such as indicating that a WAR file requires a precise version of a Tomcat container, or they may follow a more 
general mix‐in approach, such as indicating capabilities expected in the deployed environment but without 
specifying a precise type.

The CAMP specification defines the REST API and the Plan YAML for management but it deliberately 
does not define concrete subtypes for individual artifacts or services, or for characteristics, requirements, and 
components. Instead it provides the schema by which such types can be used in an interoperable way, on the 
basis that the ecosystem of types is best developed by expert communities in the domains being provided by 
CAMP platforms.

Nonetheless, clear extension points are defined for types, endpoints, and the plan schema. Concrete 
 subtypes can be defined by a provider and discovered through the REST API. Namespaces are defined in such 
a manner as to avoid conflict, such as using inverted domain names (e.g. com.java:WAR).
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While early providers and adopters will have to work with custom types, the capacity for interoperability is 
present where platform implementers choose to offer this or where clients or brokers perform plan resolution. 
Due to the aspect / mix‐in approach adopted in the Plan schema, it is possible, in many cases, for different 
vocabularies to be supported simultaneously.

The only open‐source, freely available CAMP Server is the Apache licensed Brooklyn CAMP Server. This 
has been integrated with the codebase for the Apache‐licensed project Brooklyn (http://brooklyn.io/, accessed 
December 5, 2015) to make available a wide range of application servers, data stores, messaging solutions, 
and PaaS systems. A proprietary implementation, called n‐CAMP, has been developed by Oracle and inte-
grated with a selection of application servers and SQL databases.

16.6.8 Topology and Orchestration Specification for Cloud Applications (TOSCA)

TOSCA, defined by OASIS (OASIS, TOSCA, 2013), is used for defining both the service components of 
distributed applications (topology), as well as the service management interfaces (plans). Service orchestra-
tion is realized by describing the interactions between the services using workflows, called plans. TOSCA’s 
objective is to ensure the semiautomatic creation and management of application layer services, while guar-
anteeing applications’ portability across various cloud implementations.

The purpose of TOSCA is to create and declaratively describe the components of distributed applications, 
in terms of services, infrastructure requirements, and interactions between services. It effectively combines 
both declarative and imperative approaches. A declarative model can be defined as describing the desired 
end‐state, while providing the means for adjusting the state until the desired end‐state is achieved. TOSCA’s 
model is composed of the key entities shown in see Figure 16.2.
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Nodes represent components of an application or service and its properties. Example nodes include infra-
structure, and platform. TOSCA nodes include operations as management functions for the nodes, such as 
deploy, start, stop, or connect. The nodes export their dependencies on other nodes as requirements and 
capabilities.

Relationships represent the logical relations between nodes, such as “hosted on”, and “connects to”. They 
describe the valid source and target nodes that they are designed to couple, and have their own properties 
and constraints.

Service templates group the nodes and relationships that make up a service’s topology. This enables mod-
eling of subtopologies, by means of composition of applications from one or more service templates, and 
substitution of abstract node types with service templates of the same type.

TOSCA relies on service management platforms for interpreting the service templates and associated 
management plan and for converting them into infrastructure operations. Such a cloud management platform 
is IBM SmartCloud Orchestrator (http://www‐03.ibm.com/software/products/en/smartcloud‐orchestrator/, 
accessed December 15, 2015). TOSCA plans and service topologies can be created with a variety of tools, 
such as Vnomic’s Application Landscape Designer (http://www.vnomic.com, accessed December 15, 2015).

16.7 Outlook and Conclusion

Each standard presented in this chapter does its job rather well. However, this is from the individual standard 
perspective. If we look from a wider perspective and consider how all of these standards can be used in unison, 
the picture becomes a little more challenging. Given that a cloud‐native application will use many different 
service types, it would need to interface with many standards as described in this chapter. Hence it would be 
important to also understand wider interoperability issues between standards. An initial foray into this area 
was made in (Edmonds et al., 2011); however, it did not include one very important aspect of not just inter-
operability but federation and that authentication and access (AA). From a standardization perspective there 
are a set of AA standards yet these are not common between the IaaS and PaaS oriented standards. For a true 
suite of complementing standards such agreement on AA should be considered.

When considering the use of standards, decision makers should understand what they don’t do and where 
they are best applied. Standards are an excellent means to arrive at interoperability and compliance. Given the 
time taken to create standards they are often well tested and thought out. This makes them excellent tools for 
procurement and compliance within large IT organizations, corporations, and governments. A good example 
of this is report from the German Federal Ministry of Economics and Technology (German Federal Ministry 
of Economics and Technology, 2012) on how they see the market in respect to cloud standards. From the 
perspective of interoperability and how standards can facilitate this, an excellent example is the European 
Grid Initiative’s Federated Cloud task force (http://www.egi.eu/infrastructure/cloud/, accessed December 5, 
2015). In this work, the goal was to federate a set of cloud providers (sites) and their related institutions. 
There were 23 providers and between all of these there were 15 different IaaS technologies. The goal that the 
cloud task force had was to federate all of these and essentially have them all speak the same “language.” The 
resulting solution was given through the selection of a set of cloud standards (including CDMI and OCCI) 
through which interoperability could be achieved. Without standards this large task of interoperating different 
providers would be much more difficult.

Considering activities listed above such as prototyping or development within startups, and indeed within 
in the general ICT industry, SDOs need to adopt a faster cycle in order to stay up with the industry and com-
munity, otherwise they face becoming left behind. This is especially true when considering the pace of devel-
opment within industry, and community‐led initiatives such as OpenStack (http://www.openstack.org, 
accessed December 5, 2015) or OpenDaylight (http://www.opendaylight.org/, accessed December 5, 2015). 
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An interesting development within the world of standardization is the decision that the European 
Telecommunications Standards Institute’s (ETSI) Network Function Virtualization (NFV) (http://www.etsi.
org/technologies‐clusters/technologies/nfv, accessed December 5, 2015) has chosen to take. Rather than 
enter into a possibly long process of multiple technical interface specifications, the group has chosen to 
 provide best practices coupled with open‐source software.

One must keep in mind that not considering standard interfaces leaves such activities open to the risk of 
lock in. Where a cloud service must be moved from one service provider there can then be large costs and 
time associated with the move. It is for such a reason that standards exist, and considering them for adoption 
in a service’s or product’s development lifecycle is a means to minimize risk of lock in. Standards afford risk 
mitigation and, as such, provide a type of interoperability insurance.
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17.1 Introduction

Rapid advances in information and communication technology (ICT) have enabled the emergence of the 
cloud as a successful paradigm for conveniently storing, accessing, processing, and sharing information. With 
its significant benefits of scalability and elasticity, the cloud paradigm has appealed to companies as well as 
individuals, which are increasingly resorting to the clouds to store and process data. Unfortunately, this 
 convenience comes at the price of loss of control by the owners of the data, and consequent security threats, 
which can limit the potential widespread adoption and acceptance of the  cloud‐ computing paradigm. On one 
hand, cloud providers can be assumed to employ security mechanisms for protecting data in storage, process-
ing, and communication, devoting resources to ensure security that many individuals and companies may not 
be able to afford. On the other hand, data owners, and users of the cloud, lose control over their data and their 
processing. The European Network and Information Security Agency (ENISA) has listed loss of control and 
governance as a top risk of cloud computing (European Network and Information Security Agency, 2009). 
The Cloud Security Alliance (CSA) lists data breaches and data loss as two of the top nine threats in cloud 
computing (Cloud Security Alliance, 2013). Security threats can arise because of the complexity of the cloud 
scenario (e.g., dynamic distribution, virtualization, and multitenancy), because data or computations might be 
sensitive, and should be protected even from the provider’s eyes, or because providers might be not fully 
trustworthy and their – possibly lazy or malicious – behavior should be  controlled.

The cloud encompasses a variety of distributed computing environments, varying in the architectural or 
trust assumptions and the services offered. In particular, the US National Institute of Standards and Technology 
(NIST) distinguished four deployment models and three service models (National Institute of Standards and 
Technology, 2011). The deployment models range from a private cloud, where the infrastructure and services 
are operated for a single organization and are maintained on a private network, to a public cloud, where the 
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infrastructure is made available to the public and is owned by an organization offering cloud services. 
Ownership and operation models between these two extremes are also possible, such as in a community 
cloud, where different companies with common objectives (e.g., business goals and security requirements) 
share the cloud infrastructure, and a hybrid cloud, composed of multiple clouds, which can be private, public, 
or community, under the control of one or more cloud providers, and with more stringent security require-
ments than a public cloud. Similarly, different service models, namely infrastructure as a service (IaaS), 
platform as a service (PaaS), and software as a service (SaaS), entail different responsibilities in enforcing 
security. The security and privacy issues to be addressed and the challenges involved can vary in different 
deployment and service models.

In this chapter, we highlight security issues that need to be considered when using the cloud to offer or 
enjoy services in the different models above. We discuss security aspects that are more affected by the cloud 
paradigm, in particular in relationships to the data security lifecycle, reported in Figure 17.1 (Cloud Security 
Alliance, 2011). Of course, complete protection also requires the use of other, perhaps more traditional, secu-
rity techniques, on which we do not elaborate.

The chapter is organized in two main sections. Section 17.2 discusses how the classical confidentiality, 
integrity, and availability properties translate in the cloud. Section 17.3 presents an overview of the security 
issues and concerns to be addressed to ensure confidentiality, integrity, and availability. For each issue, we 
provide a description of the problem and challenges to be addressed together with possible existing solutions 
or directions.

17.2 Confidentiality, Integrity, and Availability in the Cloud

Security problems can be classified with the classical CIA (confidentiality, integrity, and availability) 
 paradigm, which in the cloud can be interpreted as follows. Confidentiality requires guaranteeing proper 
protection of confidential or sensitive information stored or processed in the cloud. Depending on the 
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Figure 17.1 Data security lifecycle. Source: Adapted from Cloud Security Alliance (2011)
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 requirements of the scenario in question, this can relate to any or all of: the data externally stored, the 
 identity / properties of the users accessing the data, or the actions that users perform with the data. Integrity 
requires guaranteeing the authenticity of the parties (users and providers) interacting in the cloud, the 
data stored at external providers, and the responses returned from queries and computations. Availability 
requires providing the ability to define and verify that providers satisfy requirements expressed in service‐
level agreements (SLAs) established between data owners / users and providers. The issues to be tackled, the 
challenges to be addressed, and the specific guarantees to be provided ensuring satisfaction of the security 
properties above depend on the characteristics of the different scenarios. For instance, in a simple scenario, 
where an individual or a company uses the cloud simply for archival / storage purposes, problems to be 
addressed concern protecting confidentiality or integrity of data in storage and assessing satisfaction of SLAs, 
also ensuring correct enforcement of create and destroy operations. In a more complex scenario requiring 
execution of queries over data (use), the problem arises of executing queries as well as guaranteeing 
 confidentiality and integrity of the dynamically computed results. Where people other than the owner (or a 
restricted set of trusted users) access the data (share), this entails further complications such as the need to 
enforce access‐control restrictions over the data, ensure data integrity in the presence of concurrent independ-
ent operations, and even ensure confidentiality of a user’s actions with respect to other users. A further aspect 
that affects the issues to be addressed and possible applicable techniques are the trust assumptions – and 
consequent potential threats – regarding the providers involved in the storage and processing of the data, 
which could be fully trusted, curious, lazy, or malicious. “Fully trusted providers” can be assumed in cases of 
private clouds (or parts of them) under complete and full control of the data owner. “Curious providers” refers 
to scenarios where the storage or processing involves sensitive information (data or actions on them) that 
should be maintained confidential to the providers themselves. “Lazy providers” refers to scenarios where the 
 storing or processing providers might not be considered fully trustworthy for ensuring data or computation 
integrity or for providing the availability promised in the service level agreements. Finally, “malicious (or 
byzantine) providers” refers to cases where providers may intentionally behave improperly in the manage-
ment, storage, and processing of the data, possibly compromising their confidentiality, integrity, or availability 
(this case accounts also for insider threats at the provider’s side).

17.3 Issues and Challenges

The discussion in the previous section makes it clear that there is not a one‐size‐fits‐all solution (or even a 
one‐size‐fits‐all problem definition). There are instead different aspects, with related issues, challenges, and 
security controls that need to be considered and that can find application in different scenarios. In this section, 
we illustrate these issues and challenges, summarized in Table 17.1.

17.3.1 Protection of Data at Rest

A first basic problem that needs to be addressed when relying on the cloud for storing data is to guarantee 
protection (i.e., confidentiality, integrity, and availability) to the stored data. With current solutions, users 
typically need to completely trust the cloud providers. In fact, although cloud providers apply security meas-
ures to the services they offer, such measures allow them to have full access to the data. For instance, Google 
Docs or Salesforce support encryption of the data both in transit and in storage but they also manage the 
encryption keys, and therefore users do not have direct control on who can access their data. Whenever data 
confidentiality needs to be guaranteed, even to the extent of hiding it from the provider’s eyes, other solutions 
have to be considered. Solutions for protecting confidentiality in this honest-but-curious, scenario typically 
require encrypting data before releasing it to the cloud providers (Figure 17.2 (a)). For instance, services like 
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Table 17.1 Summary of cloud security issues

Issue Description

Protection of data at rest Guarantee confidentiality, integrity, and availability of data
Fine‐grained access Enable fine‐grained retrieval and query execution on protected data
Selective access Enable owner‐regulated access control and authorization enforcement
User privacy Support privacy of users accessing data and performing computations
Query privacy Support privacy of users’ actions in the cloud
Query and computation 

integrity
Enable assessment of correctness, completeness, and freshness of queries 

and computations
Collaborative query execution 

with multiple providers
Enable controlled data sharing for collaborative queries and computations 

involving multiple providers
SLA and Auditing Specification and assessment of security requirements to be satisfied by 

providers
Multi‐tenancy and virtualization Provide confinement of different users’ data and activities in the shared 

cloud environment
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Figure 17.2 Protection of data at rest with: encryption (a), fragmentation over two independent providers (b), 
fragmentation with un‐linkable fragments (c), and fragmentation with the owner storing some of the data (d)
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Boxcryptor allow users to encrypt their files locally before releasing them to a cloud provider such as 
Dropbox, Google Drive, and Microsoft SkyDrive. Encryption guarantees both confidentiality and integrity 
(as data tampering can be easily detected). For performance reasons, symmetric encryption is usually adopted. 
While encryption can be effective in many environments, it brings in several complications in scenarios 
where fine‐grained retrieval of data needs to be supported (see section  17.3.2). For this reason, recent 
approaches have put forward the idea of using fragmentation, instead of encryption, when what need to be 
kept confidential are the associations among data values, in contrast to the values themselves (Ciriani et al., 
2010). Fragmentation protects sensitive associations by splitting the concerned pieces of information and 
storing them in separate unlinkable fragments. Fragmentation can be applied in conjunction with  encryption 
or by itself, resulting in different approaches (Figure 17.2 (b–d)). In the “two can keep a secret” approach 
(Figure 17.2 (b)), the data owner relies on two independent noncommunicating providers, each of whom 
stores a portion of the data, as much as possible in plaintext form, with encryption applied only to data values 
that either are sensitive by themselves or cannot be stored in the clear at any of the two providers without 
disclosing some sensitive associations. In the “multiple fragments” approach (Figure 17.2 (c)), only attributes 
with sensitive values are encrypted, while all other attributes are stored in the clear in as many fragments as 
needed, trying to avoid excessive fragmentation. In the “keep a few” approach (Figure 17.2 (d)), nothing is 
encrypted and there is instead the involvement of a trusted party (typically the data owner) for s toring and 
processing a limited amount of data that are sensitive by themselves or whose visibility would disclose some 
sensitive associations.

Ensuring integrity and availability of data in storage requires providing the data owners / users with the 
ability to verify that data have not been improperly modified or tampered with, and that their management at 
the provider side complies with the service‐level agreements. Integrity of data can be verified by employing 
signature schemes, where data is digitally signed to make improper modifications on them detectable. 
Signatures provide a deterministic guarantee of data integrity. Probabilistic guarantees can be provided by the 
use of checks, such as sentinels used in “proof of retrievability” (POR) solutions, which apply to encrypted 
data, or homomorphic verifiable tags used in “provable data possession” (PDP) solutions, which apply to 
generic datasets. Availability of data despite failures or noncompliance of providers can be guaranteed by 
employing classical replication techniques, distributing data at different providers.

Protection of data also entails ensuring correct destruction of the data at the owner’s demand. The use of 
encryption under the control of the owner can provide such a guarantee because possible remaining data cop-
ies would be unintelligible without the proper key (Cachin et al., 2013).

17.3.2 Fine‐Grained Access to Data in the Cloud

Maintaining confidentiality of the data even with respect to the providers storing or processing it implies, 
when data is protected with encryption, that the providers cannot decrypt the data for query execution. In 
applications where fine‐grained access, typically query execution, needs to be supported, queries should then 
be evaluated on the encrypted data. There are two lines of approach for providing this ability. The first approach 
consists in performing queries directly on the encrypted data, where such a capability is made possible by 
specific cryptographic techniques (e.g., homomorphic encryption). The main drawbacks of these approaches, 
applicable typically for keyword searches or very basic operations, remain the limited kinds of accesses sup-
ported and the computational complexity of the execution, which make them inapplicable in many real‐life 
scenarios. Other solutions enabling execution of SQL queries directly on encrypted data while guaranteeing 
more support for operations and efficiency rely on different layers of encryption, each supporting specific 
operations. An example is CryptDB (Popa et al., 2011), where each relation is encrypted at the  column level 
with different onion layers of encryption, each supporting the execution of a specific SQL operation. Whenever 
the CryptDB proxy server receives an SQL query, it determines the onion layer needed for its execution. If the 
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encrypted data is not already at the required onion layer, the proxy sends the provider the key of the onion 
layer, enabling the provider to strip off the other layers and execute the query. The second approach involves 
attaching to the encrypted data some metadata (indexes), which is then used for fine‐grained information 
retrieval and query execution. For instance, in a relational table where tuples are encrypted, different indexes 
can be specified for the different attributes on which conditions might need to be evaluated. Indexes should be 
well related to the data behind them, so to be precise and effective for query execution, but at the same time 
should not leak information on such data. Such a protection should be guaranteed from static observations 
(observation of the encrypted and indexed data in storage) as well as dynamic observations (observation of the 
queries in execution on such data). Different kinds of indexes have been investigated, including direct indexing 
(providing a one‐to‐one correspondence between plaintext and index values), bucket‐ or hash‐based indexing 
(providing a many‐to‐one correspondence between plaintext and index values), and flat indexing (providing a 
one‐to‐many correspondence between plaintext and index values). Other types of indexes have been investi-
gated in relation to tree‐based data structures, and order‐preserving or homomorphic encryption solutions, for 
providing support of range queries or aggregate functions. Different approaches to indexes provide different 
protection guarantees as well as different support for, and performance in, query execution. For instance, the 
many‐to‐one correspondence in bucket and hash‐based approaches, where multiple plaintext values collide to 
the same index, and the flat indexing, where all different index values have the same number of occurrences, 
provide better protection of the confidentiality of the indexing with respect to direct indexing, at the price of a 
more complex query process. Indexing approaches based on order‐preserving encryption also provide support 
for range queries, but are exposed to some information leakage.

Query execution over encrypted and indexed data typically involves a trusted client application translating 
the plaintext query Q in a query Q

p
 to be sent to the provider and query Q

c
 performing some postprocessing 

for decrypting data and removing possible tuples originated by collisions in the index function and not 
belonging to the result (Figure 17.3).

Original query Q

Transformed query Qp

Qp

Qc

Plaintext result

Metadata

User

Client Provider

Encrypted result

Encrypted/
indexed
data

Encrypted/
Indexed data

Query executor

Query processor

Query engine

Encrypt
Decrypt

Meta
data

Translator

Data owner

Figure 17.3 Query evaluation over outsourced (encrypted/indexed) data: the user query Q is translated by a 
trusted client in a query Qp to be executed by the provider and a query Qc to be executed at the client side over 
Qp’s result once decrypted
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17.3.3 Selective Access to Data in the Cloud

In many scenarios, access to data is selective, meaning different users (or groups thereof) should enjoy 
 different views of and access to the data. When data is stored in the cloud, the problem arises of how to 
enforce such access control restrictions. For instance, some cloud storage services (e.g., Amazon S3 and 
Google Cloud Storage) support the definition of access‐control lists for regulating access to data. The 
enforcement of such access‐control policy is, however, delegated to the cloud provider. In many scenarios 
this solution is not possible because the access‐control policy, just like the data, might be confidential and 
therefore should not be disclosed to the provider (note also that even authorization to access data could leak 
information about the data, therefore potentially compromising the protection enforced by encryption). 
Outsourcing access control to the cloud requires complete trust in the enforcing providers, as data protection 
would be completely in their hands (and providers could collude with users to acquire – and improperly 
grant –  unauthorized access to data). On the other hand, having the data owner mediate every access request, 
to ensure only authorized accesses are granted, is clearly impractical and inapplicable. A promising approach 
to delegate access control to the cloud while not requiring complete trust in the providers relies on combin-
ing access control and encryption, that is, encrypt data with different keys, depending on the user’s authori-
zation. Enforcing access control policies via encryption entails some challenges: users should not be 
required to hold many keys for the different resources they can access; at the same time every resource 
should be maintained only once (different replicas encrypted with different keys should be avoided as their 
management would clearly be impractical). This problem can be solved by employing key derivation 
 methods, by which users can derive keys from a single key assigned to them, and public tokens. Access 
control can then be enforced by properly organizing the keys in a hierarchy reflecting authorization, or bet-
ter the access control lists (ACLs) of resources, where the key corresponding to an ACL allows access – via 
one or more tokens – to the keys associated with all ACLs that are superset of it. This way users are able to 
derive, from their keys and public tokens, all (and only) the keys that are needed to access resources that 
they are authorized to access (see Figure 17.4).

Updates to the access control policy can require changing the key with which resources have been 
encrypted, and therefore the need to download the resources from the cloud and release a newly encrypted 
version of them. Such a burden can be avoided by assuming some collaboration from the external providers 
in enforcing policy changes, having the providers apply a further level of encryption, called overencryption 
(De Capitani di Vimercati et al., 2010) in addition to – and on top of – the one applied by the owner. To access 
a resource r (see Figure 17.5), a user needs to pass both the encryption imposed by the provider (SEL, surface 
encryption layer) and the encryption imposed by the owner (BEL, base encryption layer).
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Figure  17.4 An example of access control policy (1 represents authorized accesses) with four users and 
five resources (a) and of key derivation hierarchy enforcing it: solid lines represent public tokens, dotted lines 
represent the keys associated with users and resources (b)
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Alternative solutions to enforce access control in the cloud use attribute‐based encryption (ABE) 
 techniques, possibly combined with other cryptographic techniques such as proxy and lazy re‐encryption 
(Yu, Lou, and Ren, 2012). Attribute‐based encryption is a public‐key encryption that regulates access 
to data according to descriptive attributes associated with the data itself and/or users, and to policies 
defined over these attributes. It can be implemented either as Ciphertext‐Policy ABE (CP‐ABE) 
or  as  Key‐Policy ABE (KP‐ABE), depending on how attributes and policies are associated with data 
and / or users.

17.3.4 User Privacy

In a cloud scenario there might be need to grant access to data to users not registered in the system 
 without requiring such users to declare their identity. In these scenarios, access‐control authorizations and 
enforcement should be based on properties of users (in contrast to their identity), typically provided by 
means of attributes within digitally signed certificates. Access control solutions supporting this new para-
digm are referred to as attribute‐based, credential‐based, or certificate‐based access control, to stress the 
departure from identity to consider instead certified properties in the access decisions, or privacy‐enhanced 
access control, to stress the privacy offered by departing from user authentication. Several proposals have 
investigated different issues to be addressed in this context, including: the language for expressing author-
izations, the access control engine for evaluating users’ requests, the possible dialog and negotiation to be 
supported between providers and users, the support for users’ preferences with respect to properties to be 
released for acquiring services, and possible secondary use restrictions. As for  languages, early proposals 
typically investigated the use of logic‐based approaches, whereas later approaches aimed at balancing the 
tradeoff between expressiveness of the language and simplicity of (and hence ability to maintain control 
on) the specifications. Different strategies for the dialog between users and providers have been investi-
gated, including multistep negotiations. Even in this case, later proposals aimed at balancing the need to 
exchange information to establish trust between users and providers, and the simplicity of the dialog to 
make it suitable for practical applications. As for user preferences, whereas earlier approaches assumed 
users to regulate release of their credentials and properties, with an access‐control approach similar to 
one adopted by the providers, more recent proposals have been investigating solutions specifically 
 targeted at users and their natural way of thinking about preferences (Foresti and Samarati, 2012). 
Standards, such as XACML, have also been developed in these contexts supporting interoperation of 
access control policies.
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Figure 17.5 Protection of resources with overencryption. Every resource is encrypted first by the owner (BEL, 
base encryption layer) then by the provider (SEL, surface encryption layer). A resource is accessible (open) to 
users only if they can pass both levels of encryption
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17.3.5 Query Privacy

In some scenarios what is confidential is not (or not only) data, or users’ identities / properties but also 
the access that users make to such data. In particular, confidentiality should be guaranteed, even from the 
 provider’s eyes, with respect to the fact that an access aims at a specific data (access confidentiality) or the fact 
that two accesses aim at the same data (pattern confidentiality). Traditional approaches for protecting access 
and pattern confidentiality are based on private information retrieval (PIR) techniques that, assuming a data-
base modeled as an N‐bit string, provide protocols for users to retrieve the i‐th bit in the string without disclos-
ing to the provider the specific bit accessed. In addition to the limitations of such modeling and of the fact that 
they do not consider data confidentiality, PIR solutions suffer from high computational complexity and com-
munication costs. Recent efforts, trying to make PIR more practical, have investigated the application of the 
Oblivious RAM, in particular with recent practical ORAM and Path ORAM solutions (Stefanov et al., 2013), 
and of a key‐based hierarchical and dynamic data structure, called Shuffle index (De Capitani di Vimercati et 
al., 2011b). These proposals protect data confidentiality with encryption and protect access and pattern con-
fidentiality by dynamically changing (shuffling), at every access, the physical location of the data, thus 
destroying the otherwise static correspondence between data and the physical blocks where it is stored. These 
approaches also employ a cache to maintain some data at the client side. Besides caching and dynamic alloca-
tion, Path ORAM assumes a tree‐shaped data structure where nodes can contain, in addition to actual blocks, 
dummy blocks to guarantee that nodes have always the same size. The Shuffle index assumes that, at every 
access, additional fake searches, called cover searches, are executed together with the actual target search. 
Cover searches provide confusion to the provider with respect to the targeted block. At every access, the con-
tent of the blocks accessed (target/cover) and in cache is shuffled and rewritten. This dynamically changes the 
allocation of nodes, and the provider can only observe that some blocks have been read and  written 
(Figure 17.6). By assuming a hierarchical value‐based organization of the data (B+‐tree with encrypted node 
content and with no pointer between leaves), the Shuffle index is also able to support range‐based  queries.

17.3.6 Query and Computation Integrity

In scenarios where queries / computations are performed by providers that are not fully trustworthy, the 
problem arises of providing data owners and / or users with the ability to assess that the result returned 
from a query / computation is correct, complete, and fresh. Correctness means that the result has been 
 computed over the original data and the query / computation performed correctly. Completeness means that 
no data is missing from the result. Freshness means that the query / computation has been performed on the 
most recent version of the data. Most of the current approaches focus on providing guarantees of complete-
ness and correctness, with some proposals complementing them with timestamps or periodical refreshing 
to provide freshness guarantees. Current solutions can be roughly classified in two categories: deterministic 
and probabilistic. Deterministic approaches are provided by authenticated data structures that, like signa-
ture schemes for static data, permit integrity violations to be detected with certainty. Examples of deterministic 
approaches for correctness/completeness are signature‐chaining schemas and Merkle hash trees. Signature‐
chaining schemas allow the verification of the ordering among tuples and can then be used to verify the 
integrity of range queries where the selection condition is based on the attribute on which the signature 
schema has been applied. Merkle trees and their variations organize data within a tree‐based structure over 
a given attribute (e.g., a search key). The result of a query with selection conditions on the attribute 
includes, in addition to the tuples belonging to the result, a verification object that allows the assessment 
of the integrity of the query (Figure  17.7). These authenticated data structures provide  deterministic 
integrity guarantees but only for queries about the specific attribute / s on which the data structure has been 
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organized. Techniques that have been applied, individually or in combination, for providing probabilistic 
guarantees include: insertion of fake tuples in the data, which, if not retrieved in the query result, signals 
an integrity compromise; replication of a portion of the data with replicas not recognizable as such, so that 
the presence of duplicated data where the replica is missing signals an integrity compromise; and precom-
putation of tokens associated with chosen query results, which allows the verification of the integrity of 
such queries. Probabilistic approaches, as their name says, provide only probabilistic guarantees: while the 
absence of an expected fake tuple or replica  signals an integrity problem, its presence does not imply the 
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integrity of the result because the providers might have just been lucky in not missing any of the checks 
inserted by the data owner. The probability of detecting an integrity compromise typically depends on 
the amount of controls enforced (e.g., fake tuples, replicas inserted, or precomputed tokens), where the 
more the control the higher the guarantees, but also the higher the performance overhead imposed for 
the verification. The involvement of multiple providers in the storage or computation complicates 
the scenario and requires devising additional controls. A possible solution to assess integrity of joins 
 computed by an untrusted provider over data stored at two trusted storage providers assumes the cooperation 
of the storage providers to insert control information consisting of fake control tuples (markers) and 
 duplicate tuples (twins) that if not present in the join result signals its incompleteness (De Capitani di 
Vimercati et al., 2014).

17.3.7 Collaborative Query Execution with Multiple Providers

Data stored and managed by different cloud providers may need to be selectively shared and accessed in 
a cooperative way. This scenario may see the presence of different providers as well as of different data 
owners. Exchange of data and collaborative computations should be controlled to ensure that information 
is not improperly accessed, released, or leaked. For instance, data stored at one provider might be released 
selectively only to specific providers and within specific contexts. Some solutions have addressed the 
specific problem of private and secure multiparty computation, which provide the ability of different par-
ties to perform a collaborative computation learning only the query results and nothing on the inputs. 
Along the same line are solutions for computing sovereign joins over data, retrieving the result of a join 
operation over different tables, while guaranteeing confidentiality of the information not belonging to the 
join result. Recent approaches have also addressed a more general scenario where different parties (data 
owners or cloud providers) need to collaborate and share information for performing a distributed query 
computation with selective disclosure of data. The problem has also been investigated of determining an 
efficient and safe execution plan for the query computation in which different providers collaborate releas-
ing to others the information authorized and needed to compute the query result (De Capitani di Vimercati 
et al., 2011a).

h12345678 = h(1234||h5678)

h1234 = h(h12||h34)

h12 = h(h1||h2) h34 = h(h3||h4) h56 = h(h5||h6)

h5678 = h(h56||h78)

h78 = h(h7||h8)

h1 = h(t1) h2 = h(t2) h3 = h(t3) h4 = h(t4) h5 = h(t5) h6 = h(t6) h7 = h(t7) h8 = h(t8)

Figure 17.7 A Merkle tree: every leave node is a hash of a tuple, internal nodes are hashed over the concatena-
tion of their children. Colored node represent the integrity check assuming a query with result tuple t3: in gray the 
verification objects returned by the provider together with tuple t3, in black the hash computed for verification
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17.3.8 Service Level Agreement and Auditing

An SLA is a contractual agreement that specifies the performance and availability guarantees that a cloud 
provider promises to deliver, as well as penalties in the case of violations of the SLA. Due to the shared and 
dynamic nature of the cloud, cloud providers have to address several issues related to  offering and man-
aging SLAs, with different requirements coming from different users. Also, while in the past SLAs 
mainly focused on aspects related to the quality of the services offered (e.g., availability, response time, 
and fault resolution time), today they may also include the specification of the security guarantees, such 
as evidence of: the integrity of the stored data, its possession, its handling, or the application of specific 
security mechanisms (e.g., encryption or perimeter protection). In this contest, the auditability of cloud 
providers refers to the ability of users to verify full respect of the security guarantees declared in a SLA. 
Some proposals have presented solutions for verifying; for example, whether cloud providers are cor-
rectly storing data or correctly executing computation‐intensive tasks on behalf of the users. In fact, lazy 
providers could delete some rarely accessed data or omit some computations to save resources. Some 
approaches apply proof‐of‐retrieval  solutions as building blocks to allow users to verify that their data is 
properly secured via encryption, intact, and retrievable. The correctness of the result of outsourced  
computations can be verified by applying the techniques for assessing integrity that we have discussed 
previously.

17.3.9 Multitenancy and Virtualization

Multitenancy refers to the ability to provide computing services to different users by using a common 
cloud infrastructure. Each user or company (i.e., a tenant of the cloud infrastructure) shares computation, 
memory, network, and storage resources, thus reducing the costs and improving the utilization of resources 
as well as the scalability and reliability. A basic mechanism enabling multitenancy in the cloud is virtual-
ization, which creates a virtual version of, for example, an operating system, a storage device, or network 
resources, within a single physical system. Although virtualization brings great flexibility, it also intro-
duces several security concerns that may have the hypervisor and / or the resident virtual machines as the 
main target. The hypervisor is a software component whose goal is to create and run the virtual machines. 
A compromised hypervisor can put at risk the confidentiality and integrity of the data managed by the 
virtual machines. Other security concerns can be related to the allocation and deallocation of resources 
associated with virtual machines. In fact, improper leakages can result if the memory allocated to a virtual 
machine is not properly wiped before being reallocated to another virtual machine. The communication, 
monitoring, modification, and migration of virtual machines can also be a source of security concerns. In 
fact, due to the multitenant nature of cloud environments, there is the risk of improperly leaking informa-
tion if the virtual resources allocated to different users are not perfectly isolated. Other aspects can be 
related to placement of virtual machine instances in the cloud, also supporting security constraints imposed 
by users, such as the request not to allocate given virtual machine instances to the same provider (Jhawar 
et al., 2012).

17.4 Conclusion

With the rapid growth of cloud computing platforms and services, cloud security is becoming a key priority for 
all players (individuals, companies, and cloud providers). In this chapter, we presented an overview of cloud 
security issues and concerns, illustrating their impact on confidentiality, integrity, and availability  properties 
and describing solutions to address them. We also discussed possible challenges and future directions.
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18.1 Cloud Security Management

The fundamental challenge of cloud security is the loss of hands‐on control of systems, applications, data 
security, and other resources. Many of the existing best practice security controls that security teams have 
come to rely on are not available in cloud environments, are stripped down in many ways, or cannot be 
 controlled by security teams. To manage cloud security effectively, organizations should focus on major areas 
such as cloud governance, security policies, service contracts, and service level agreements (SLAs).

18.1.1 Cloud Governance

Cloud governance is a set of processes, policies, technologies, and services affecting the way an enterprise’s 
cloud solutions are directed, administered, or controlled. Cloud governance is essential for enterprises to 
maintain control over increasingly complex and integrated systems, services, and human resources environ-
ments. There are many models of cloud governance; however, all follow the same basic principle – applying 
sound policies and following mature processes when using cloud technologies and services. An effective 
cloud‐governance framework must include the following components.

 ● Workforce education – many security breaches and attacks stem from negligence or ignorance of internal 
workforce in an organization (Petruch et al., 2011). Many breaches are a result of something that internal 
users have done or failed to do. To prevent such things from happening again, or at all, internal users must 
be made aware of the dangers of some actions and must be educated about security measures.
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 ● Identity and access management – this is one of the most effective ways to keep track of people who have 
access to sensitive systems or data. It prevents, or at least mitigates, breaches and attacks from internal 
sources. Access management must be paired with a data‐logging solution that allows administrators to 
know who does what, when, and where, and that all changes are logged and audited properly.

 ● Risk and event management – all businesses face uncertainty and natural or human make events. Businesses 
need to follow established processes to determine how they can detect, manage, and mitigate that uncer-
tainty and quickly respond to expected or unexpected events to minimize the negative impact to business.

 ● Compliance audit – proper cloud governance naturally includes a compliance audit. The audit must be inde-
pendently conducted and should be robustly designed to reflect best practice, appropriate resources, and tested 
protocols and standards. Use audit tools to assess and view the organization’s vulnerabilities across the board.

A sound governance framework is essential for cloud computing. There is no one‐size‐fits‐all solution as 
no two organizations are alike. Despite the differences, all organizations need a security governance frame-
work for any cloud solution that they may be using.

18.1.2 Security Policies

A cloud security policy is a document that states in writing how a company plans to protect the company’s 
cloud solutions and information assets. A security policy is often considered to be a “living document,” mean-
ing that the document is never finalized but is continuously updated as technology and business requirements 
change. Building cloud security policies is a crucial step to take before diving into the cloud, to ensure 
maximum benefits are achieved and data is secure. Developing a good cloud security policy involves thinking 
of the right questions and answering those questions about why organizations are moving information assets 
to the cloud, finding a good fit in a provider, and understanding organizations’ cultures and needs. Below are 
major questions every organization moving to the cloud needs to ask beforehand:

 ● Existing policies – what existing policy does the organization have that can be applied to the cloud solutions?
 ● Best practices – are there proven policies from standards bodies such as ISO, SANS, NIST or CSA? There 

is no need to reinvent the wheel.
 ● What to put in the cloud? Based on this, an organization can identify criteria to determine the best cloud 

provider and service required. Does the organization allow sensitive corporate data, protected data, and 
day‐to‐day operational data in the cloud? Does the organization have a good data‐classification policy and 
mechanisms?

 ● What is the exit strategy? Having a clear exit strategy before starting prevents an organization from poten-
tially large operational costs or downtime later.

 ● Who is allowed to enter into agreements with cloud providers? Who has authority to negotiate SLAs? 
Who can set up an application in the cloud or move data to it, and with whom should it be approved 
beforehand? Who is allowed to modify settings on the cloud that affect performance? Define who, when, 
and under what circumstances changes can be made.

 ● Where are data and applications physically located? The location of the organization’s data and where it 
could be moved could have legal and privacy implications.

18.1.3 Contract Requirements and Languages

A cloud‐computing contract is a formal written agreement between cloud provider and customer. Before 
entering into a cloud‐computing arrangement, a company should evaluate its own practices, needs, and 
restrictions, in order to identify the legal barriers and compliance requirements associated with a proposed 
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cloud solution. In addition, the company should conduct due diligence of the proposed cloud service  provider, 
in order to determine whether the offering will allow the company to fulfill its continued obligation to protect 
its assets.

Depending on the nature of the services, the contract may commonly be in the form of a click‐wrap agree-
ment, which is not negotiated; or the parties may negotiate a more suitable written document that is tailored 
to the specific situation (National Institute of Standards and Technology, 2011). If a click‐wrap agreement is 
the only agreement available, the cloud customer should balance the risks from forgoing negotiations against 
the actual benefits, financial savings, and ease of use promised by the cloud service provider. If the parties can 
negotiate a contract, they should ensure that the provisions of this contract address the needs and obligations 
of the parties both during the term of the contract and upon termination. Detailed, comprehensive provisions, 
addressing the unique needs and risks of operating in a cloud environment, should be negotiated. While there 
are multiple variations of cloud computing delivery models, the contract issues associated with each are 
similar and the contract language should cover at least the following areas:

 ● Pricing – the contract should have a specific price model, including caps to eliminate ballooning costs 
after the initial investment.

 ● Data – the contract should state clearly that the customer owns all data residing within the cloud environ-
ment; mandate that the customer be able to access and retrieve its data stored in the cloud at its sole discre-
tion; provide a mechanism for the customer to require the cloud provider to destroy specified records as 
requested; provide clear instructions on how customer data will be returned or retrieved in the event of 
contract termination, and specify the cloud provider’s obligations in the event of data breach or unauthor-
ized access.

 ● Audit – the customer has the right to request independent audits or certification related to infrastructure 
and security. The customer has a right to perform an onsite inspection of the cloud provider’s infrastruc-
ture and security practices on a specified basis; review the infrastructure and security specifications in 
written format if it so chooses; audit the performance records of the cloud provider, and have access to 
daily and weekly service quality statistics.

 ● Service level agreements – the contract should specify service‐level parameters, minimum levels, and 
specific remedies and penalties for noncompliance with SLAs. The SLA should clearly define uptime, 
performance and response time, and error‐correction time. Remedies for violation of the SLA should 
include corrections and / or penalties.

 ● Business continuity / disaster recovery (BC/DR) – the contract should specify minimum disaster recovery 
and business continuity requirements, and penalties for failures in complying with the minimum require-
ments.

 ● Termination – the contract should state that the customer can terminate the contract “at any time without 
having to show cause and without additional fees or penalties.”

Customers should always aim to avoid a situation where the provider’s liability is severely limited, espe-
cially in relation to business‐critical services because the customer may be left without an effective remedy 
in the case of a serious service breakdown.

18.1.4 Service‐Level Agreements

Service levels are an important way of ensuring that a provider meets the level of service expected by the 
customer. The contract should specify service‐level parameters, minimum levels, and specific remedies and 
penalties for noncompliance with SLAs. Service‐level agreements are important to set clear expectations for 
service between the cloud consumer and the cloud provider. Consideration must also be given to the different 
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models of service delivery: infrastructure as a service (IaaS), platform as a service (PaaS), and software as a 
service (SaaS), as each model brings different requirements. The SLAs must be enforceable and state specific 
remedies that apply when they are not met.

Before evaluating any cloud SLA, customers must first develop a strong business case and strategy for their 
cloud computing solutions. This includes identifying specific services that will be deployed in the cloud 
along with a clear understanding of the importance of these services to the business. A check on the exit 
clauses of current hosted services contracts is also important. Only after this strategic analysis has been 
 completed can the consumer effectively evaluate and compare SLAs from different providers. The following 
steps should be taken by cloud consumers to evaluate cloud SLAs with the goal of comparing cloud service 
providers or negotiating terms with a provider:

 ● understand roles and responsibilities;
 ● evaluate business‐level policies;
 ● understand service and deployment model differences;
 ● identify critical performance objectives;
 ● evaluate security and privacy requirements;
 ● prepare for service‐failure management;
 ● understand the disaster recovery plan;
 ● define an effective management process;
 ● understand the exit process.

18.2 Cloud Security Mechanisms and Techniques

It is critical to recognize that security is a cross‐cutting aspect of the architecture that spans all layers of 
cloud‐computing services. Therefore, security concerns in cloud‐computing architecture is not solely under 
the  purview of the cloud providers, but also cloud consumers. The three service models (i.e. IaaS, PaaS, and 
SaaS) present consumers with different types of service management operations and expose different entry 
points into cloud systems, which in turn also create different attacking surfaces for adversaries (National 
Institute of Standards and Technology, 2011). It is therefore important to consider the impact of cloud service 
models and their different issues in security design and implementation. For example, SaaS provides users 
with accessibility of cloud offerings using a network connection, normally over the Internet and through a 
Web browser. The variations of cloud deployment models (public, private, community, and hybrid) have 
important security implication as well. One way to look at the security implications from the deployment 
model perspective is the differing level of exclusivity of tenants in a deployment model. Regardless of service 
and deployment models, three major cloud security mechanisms are essential across models. They are 
 network, data, and application security.

18.2.1 Network Security

Network security addresses risks relating to the use of, and access to, businesses networks. Network secu-
rity encompasses protecting data as it traverses networks, including public networks such as the Internet, 
protecting systems and data from network‐based attacks, and protecting the networking components them-
selves (Cloud Security Alliance, 2012). In general, all ingress and egress points to the cloud environment 
need to inspect traffic and log network activity at specified periods of time. Major cloud network security 
mechanisms are discussed below.
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 ● Network access controls – network access is the fundamental security control point that ensures basic 
attack vectors are mitigated by effective controls. Controls can be implemented in physical, converged, or 
virtual appliances.

 ● Perimeter firewall controls – these are the first layer of defense which provide real‐time protocol inspec-
tion and detection of known attacks. Place systems or services within a perimeter of security provided by 
the firewall to ensure that known attacks and anomalies are detected and blocked.

 ● Subtier firewall controls – these provide a separate security boundary within the virtualization layer of the 
cloud, to secure the virtual machines and tiers of network created within the cloud network.

 ● Access control lists – These provide a basic security control layer to support securing virtual machines 
from standard layer‐2 security threats like flooding and scanning.

 ● Content inspection and control – various technologies exist to protect the network, business systems, and 
business data from both external attacks and internal data theft. These include intrusion detection, intru-
sion prevention, data‐loss prevention, and proxy servers.

 ● DDOS protection/mitigation – the distributed denial of service (DDoS) attack can best be mitigated at the 
cloud service‐provider backbone or other network that has significantly more bandwidth than the sum of 
the bandwidth of all attack traffic (Lohman, 2011). Once an attack condition is identified, monitoring 
entities trigger a reroute of suspicious traffic through a cleansing instance that attempts to filter out the 
attack traffic while allowing legitimate packets to pass through (Cloud Security Alliance, 2012).

18.2.2 Data Security and Privacy

Data is at the heart and center of the cloud. Three major issues need to be addressed with regard to data secu-
rity and privacy in a cloud environment: data availability, data encryption, and data protection. When choos-
ing the best way of protecting data privacy keep in mind how valuable that data is to an organization and to 
what extent it is reasonable to protect it. Therefore, the first thing an organization should do is to define the 
level of privacy it needs and thus a level of protection for it (Securosis, 2011). Here are five data‐privacy 
protection tips to help an organization tackle the issue of cloud data privacy:

 ● Avoid storing sensitive information in the cloud – if it has a choice, an organization should opt for keeping 
its sensitive information away from the cloud environment or use appropriate alternative solutions.

 ● Review the contract agreement – this is to find out how provider’s cloud service storage works. If organi-
zations are not sure what cloud storage to choose or if they have any questions as for how different cloud 
services work, they need to review carefully the contract agreement of the service they are planning to 
sign up for.

 ● Use strong passwords – weak passwords can be cracked within seconds. A great part of all the sad stories 
about someone’s account getting broken is caused by an easy‐to‐create‐and‐remember password. Strong 
passwords with a combination of alpha, numeric, and upper and lower cases are strongly recommended.

 ● Use an encrypted cloud service – encryption is, so far, the best way to protect corporate data. There are 
some cloud services that provide local encryption and decryption of customer files in addition to storage 
and backup. It means that the service takes care of both encrypting organization files on its own computer 
and storing them safely on the cloud.

18.2.3 Application Security

Cloud computing is a particular challenge for applications across the layers of SaaS, PaaS, and IaaS. Cloud‐
based application security must be provided by the application without any assumptions being made about 
the cloud environment. Developing applications for a cloud environment is different than the traditional 
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 hosting environments in the following areas (see http://resources.infosecinstitute.com/intro‐secure‐software‐
development‐life‐cycle/, accessed December 7, 2015):

 ● Control over physical security is substantially reduced in public cloud scenarios.
 ● Potential incompatibility between providers when services are migrated from one provider to 

another.
 ● Protection of data through the lifecycle must be considered. This includes transit, processing and 

storage.
 ● The combinations of Web services in the cloud environment can potentially cause security vulnerabilities 

to be present.
 ● Fail‐over for data and data security in the cloud has to be more detailed and layered than traditional envi-

ronments.
 ● Assuring compliance with relevant industry and government regulations is typically more difficult within 

a cloud environment.

This creates the need for rigorous practices that must be followed when developing or migrating appli-
cations to the cloud. Essential cloud application security best practices involve a secure software devel-
opment life cycle, effective application security assurance programs, and reliable application monitoring 
mechanisms.

18.2.3.1 Secured Software Development Life Cycle

A Secure Software Development Life Cycle (SSDLC) has assumed increased importance when migrating 
and deploying applications in the cloud and organizations should ensure that the best practices of application 
security, identity management, data management, and privacy are integral to their development programs and 
throughout the life cycle of the application (http://resources.infosecinstitute.com/intro‐secure‐software‐
development‐life‐cycle/, accessed December 7, 2015). In implementing a SSDLC, organizations must adopt 
best practice for development, either by having a good blend of processes, tools, and technologies of their 
own or adopting one of the maturity models such as the Building Security in Maturity Model (http://bsimm.
com/, accessed December 7, 2015), the Software Assurance Maturity Model (http://www.opensamm.org/, 
accessed December 7, 2015), and the Systems Security Engineering Capability Maturity Model (http://www.
iso.org/iso/catalogue_detail.htm?csnumber=44716, accessed December 7, 2015).

18.2.3.2 Application Security Architecture

Traditional noncloud enterprise applications could be protected with traditional edge security controls like 
firewalls, intrusion detection, and proxies. In a cloud environment, all these traditional controls are no longer 
effective enough to protect as these applications are running on untrusted networks. Applications could be 
residing with other co‐tenants of same service provider and could be accessed from anywhere through any 
type of device. This changes the very nature of security requirements for cloud applications. Effective appli-
cation security in the cloud should include the following main components:

 ● Authentication – authentication refers to establishing / asserting the identity to the application. This is 
 usually done in two phases. The first phase is disambiguating the identity and the second phase is validat-
ing the credentials already provided to the user. Enterprises should plan to use risk‐based authentication 
for their cloud applications. This type of authentication is based on device identifier, Internet service 
provider, heuristic information, and so forth. A cloud application should not only perform authentication 



226 Encyclopedia of Cloud Computing

during the initial connection but should also perform risk‐based authentication based on the transactions 
being performed within the application.

 ● Authorization – authorization refers to enforcing the rules by which access is granted to the resources. 
There are different types of authorization models namely, role‐based, rule‐based, attribute‐based access, 
claims‐based, and authorization‐based access control. The enterprise should plan for how the users are 
authenticated seamlessly across all these cloud applications and how the users’ profiles, such as group 
association, entitlements, and roles are shared across these cloud applications for granular access controls. 
Enterprises are recommended to use open standards such as SAML, OAuth, or XACML in this case 
(http://resources.infosecinstitute.com/intro‐secure‐software‐development‐life‐cycle/, accessed December 
7, 2015; National Institute of Standards and Technology, 2011).

 ● Administration – administration refers to managing users and managing access policies for enterprise 
applications. Effective administration provides not only timely access to the users but also timely revoca-
tion of access when the user leaves or timely management of access when the user moves to a different 
role. In addition to users, administration also manages cloud application / services identities, access con-
trol policies for these cloud applications/services, and privileged identities for the applications/services 
(National Institute of Standards and Technology, 2011).

18.2.3.3 Cloud Application Monitoring

As with other aspects of cloud security, how an organization monitors a cloud‐based application varies with 
the type of cloud under consideration. What it means to monitor applications in the cloud and how to monitor 
different types of cloud applications are explained in detail below.

 ● Log monitoring – archiving logs is only the first step for compliance. Understand the potential entries that 
could be sent to these logs, and monitor for actionable events. An application logging entry is of zero use 
unless a process exists to detect and respond to those entry events.

 ● Performance monitoring – a significant change in the performance of one application could be a symptom 
of another customer using more than his fair share of a limited resource (e.g., CPU, memory, storage), or 
it could be the symptom of malicious activity, either with the application being monitored or with another 
applications in the shared infrastructure (National Institute of Standards and Technology, 2011).

 ● Monitoring for malicious use – an organization must understand what happens when a malicious user 
attempts to gain access, or use permissions that they do not have. Audit logs must log login attempts. If an 
application experiences a significant increase in traffic load, verify whether it is an alert created from 
other applications in the cloud environment.

 ● Monitoring for policy violations – it is also important to monitor and audit how a policy decision point 
came to a decision. This is in line with a general policy‐driven monitoring approach that avoids the typical 
monitoring problems of false‐positives and incident overload.

With an IaaS‐based application, monitoring the application is almost “normal,” compared to noncloud 
applications. The customer needs to monitor issues with the shared infrastructure or involving attempted 
unauthorized access to an application by a malicious co‐tenant. Monitoring PaaS‐based applications 
requires additional work. Unless the cloud platform provider also provides a monitoring solution capa-
ble of monitoring the application deployed, the customer should either write additional application logic 
to perform the monitoring tasks within the platform or send logs to a remote monitoring system. As 
SaaS‐based applications provide the least flexibility, it should not come as a surprise that monitoring the 
security of these types of applications is the most difficult (National Institute of Standards and 
Technology, 2011).
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18.3 Cloud Security Audit and Assessment

Cloud solutions has to be auditable and assessable in order to enable continuous evaluation of whether the 
security level of a cloud provider’s specific solution is sufficient to be used for a given system or solution. At 
the same time, a cloud provider must be able to provide adequate information about audit and assessment to 
meet the customers’ risk assessment and be compliant with laws or regulations.

18.3.1 Auditing

Auditing ensures that organizations cloud solutions work according to expectations. The auditing could be 
done either internally by internal IT or business teams, or externally by a third‐party service. The type of 
information provided by the provider is dependent on the type of cloud (IaaS, PaaS, SaaS). Access to audit 
and assurance information is primarily the cloud provider’s responsibility in SaaS solutions but it is a 
shared responsibility between provider and customer in IaaS and PaaS solutions. In general, the following 
information should be provided by the provider for security audit (National IT and Telecom Agency, 
Denmark, 2015).

 ● Written documentation for procedures, standards, policies, etc.
 ● Information about standard configurations and documentation for the current configuration of the cus-

tomer’s systems.
 ● Continuous logging and monitoring information.

In IaaS there are more opportunities in terms of setup, configuration and installation of programs in the 
virtual servers such as installing their own surveillance programs (National Institute of Standards and 
Technology, 2011). In PaaS, the customers can set requirements for the logging facilities of their own pro-
grams, whereas in SaaS solutions the customers depend on the logs and surveillance functionalities provided 
by cloud providers. In SaaS solutions, access to information about audit and assurance is, therefore, primarily 
the responsibility of the provider. In IaaS and PaaS solutions, responsibility is shared between provider and 
customer.

Regardless of the solution considered, the cloud provider must always be able to document physical secu-
rity, the underlying policies, procedures and configurations to meet the customer’s risk assessment, and be 
compliant with legislative requirements. The available information about configuration and logging depends 
on the type of solution (IaaS, PaaS or SaaS) and the functionality offered by the individual provider. As a 
minimum, the cloud provider is always held responsible for the host (the underlying physical server), the 
hardware, network units, and the physical buildings (National Institute of Standards and Technology, 2011). 
The same goes for procedures concerning operation of the hardware. In terms of administration and provid-
ing functionality to the customers, the cloud provider’s responsibility increases when moving from IaaS to 
PaaS to SaaS.

18.3.2 Assessments

Cloud‐based security assessments provide the information necessary for an intelligent, risk‐based decision‐
making process, while relieving IT staff of the operational burdens of managing the assessment tool infra-
structure. Organizations must establish policies, processes, and procedures, and implement controls to ensure 
the confidentiality, integrity, and availability of the information and information technology upon which their 
critical business processes depend.
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Cloud assessment involves primarily vulnerability and compliance scanning. Network and system 
 vulnerability assessments attempt to identify vulnerabilities through the use of IP scanning techniques, 
combined with a detailed understanding of vulnerabilities. The assessments include the identification of 
systems and associated vulnerabilities, as well as information about the potential impact on the network or 
enterprise. Compliance scanning attempts to verify the compliance status of the devices in the cloud 
 solution. Server and workstation compliance assessments allow for the discovery of server / workstation 
configurations, as well as the comparison of the results against industry best practices and any customized 
configuration standards.

Key business processes and the assets that run them should be identified prior to the start of an assessment. 
All parties should agree to, and document, rules of engagement to be used during the assessment, such as 
asset exclusions, time windows, level of attacks, social engineering techniques, and others. Assessments are 
usually safe to run even on production systems, but a service provider should have mechanisms in place to 
be able to stop an assessment at any time if something happens that could be destructive to a server or work-
station, or disruptive to key business processes (National Institute of Standards and Technology, 2011). As 
with all assessment activities, understanding the tools that the assess team will use is important. Coordinate 
with the cloud provider to conduct testing in accordance with best practices. Determine if the cloud provider 
offers such a service. If not, understand the limitations of performing such actions in hosted cloud environ-
ments. Scope and limitation will vary based on which stack of the SPI model the cloud‐hosted application 
seems to fit (National Institute of Standards and Technology, 2011).

The data that results from cloud‐based security assessment services is very sensitive in nature and must be 
properly safeguarded. Cloud‐based security assessment services must ensure the confidentiality of this sensi-
tive data and ensure that only authorized parties can access the data. Both cloud provider and customer 
should sign an appropriate nondisclosure agreement (NDA). The NDA should limit disclosure of all infor-
mation obtained, either in preparation for the assessment or through the assessment results, to only those with 
a verified need to know. Data must be secured at all stages: at creation, in storage, in transit in processing, 
or at deletion.

18.3.3 Penetration Testing

Penetration testing is a security testing methodology that gives the tester an insight into the strength of the 
target’s system security by simulating an attack from a malicious source. The process involves an active 
analysis of the cloud system for any potential vulnerability that might result from poor or improper  system 
configuration, known and / or unknown hardware or software flaws, or operational weaknesses in process or 
technical countermeasures (National Institute of Standards and Technology, 2011). This analysis is carried 
out from the position of a potential attacker, and can involve active exploitation of security vulnerabilities. In 
general, penetration testing involves the following three major phases: preparation, execution, and reporting.

The type of cloud model has a huge impact on penetration testing and deciding if penetration test is 
 possible. Generally, IaaS and PaaS clouds are likely to permit penetration testing. However, SaaS provid-
ers are not likely to allow customers to penetration test their applications and infrastructure, with the 
exception of third parties performing the cloud providers’ own penetration tests for compliance or security 
best practices.

When conducting penetration testing assessments of a cloud environment, special consideration must be 
given to the multitenant nature of the environment and the potential disruption to other organization’s  systems. 
Organizations may not be able to conduct a full end‐to‐end internal penetration test of a cloud hosting 
 provider, and may have to rely on attestation by the provider that testing is conducted. Organizations should 
understand what type of testing they will be allowed to conduct before selecting a cloud provider’s security 
initiatives.
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18.4 Cloud Intrusion Detection and Incident Response

The purpose of intrusion detection is to monitor the enterprise environment at key vantage points to uncover 
malicious activity aimed at degradation, disruption, infection, or exfiltration of data, applications, and the 
systems that host or transmit them. The main purpose of incident response is taking actions to avoid, block, 
contain, disrupt, or continue to operate in the face of attack. A comprehensive intrusion service combines 
detection and response, management infrastructure for control and reporting, and interfaces with the rest of 
the security architecture in order to have a more holistic view of events and better uncover anomalous activity.

18.4.1 Intrusion Detection Techniques and Strategies

Intrusion detection is defined as the process of identifying and responding to malicious activity targeted at com-
puting and networking resources. Intrusion‐detection mechanisms are employed at opportune cross‐connects or 
shared points, where protected and foreign traffic cross paths: a network administrative boundary, end system 
network interfaces, within hosts at virtualized container boundaries, or directly inside a guest environment 
(National Institute of Standards and Technology, 2011). There are two flavors of intrusion detection techniques:

 ● Network‐based detection – this looks for binary or behavioral patterns and anomalous activity in network 
traffic. Network‐based techniques employ strategies for signature detection, behavior heuristics, and traf-
fic pattern correlation. Each of these relies on some form of deep packet inspection, which is the ability 
of the detection device or software to understand various headers and components of network datagrams 
(see https://www.sans.org/security‐resources/idfaq/, accessed December 7, 2015). Network‐based intru-
sion detection systems are usually placed at ingress and egress points of the network in order to detect and 
prevent anomalous traffic, usually based on a combination of signatures, heuristic behavioral analysis, 
and statistic protocol anomaly detection. They can be deployed using existing network equipment, 
 specialized appliances and interfaces, or software that runs on the host.

 ● Event‐based detection – this looks for activity or events on the host at the system, virtual, and application 
layers. Event‐based techniques use access to, or reporting of, events and configurations to determine poten-
tial activity leading to or resulting from malicious attack, compromise, or resultant degradation, corruption, 
or exfiltration (https://www.sans.org/security‐resources/idfaq/, (accessed December 7, 2015). Events are 
detected through analysis of centrally reported logs or by software running directly on the system, in the 
virtual layer, or in the guest OS monitor for particular behaviors that indicate potential intrusion: policy 
violations, changes in configuration, workload changes, foreign processes or system calls, changes to the 
integrity of the OS and file systems, etc. (National Institute of Standards and Technology, 2011).

Intrusion detection in a cloud environment can be much more arduous depending on the available resources 
in the cloud and the level of management or control of the devices, services, or configurations required 
(National Institute of Standards and Technology, 2011). Service level agreements should define the locations 
to be monitored, specify service and performance levels, and how rules are added and managed. Secure man-
agement, transport location, segregation and analysis of collected data must be considered and defined in any 
contracts with the cloud service provider. Any intrusion detection device must be capable of handling the 
volume of traffic that is expected to pass through it in order to be effective.

18.4.2 Intrusion Detection

Intrusion detection systems (IDSs) are an essential component of defensive measures protecting computer 
systems and networks against harm and abuse. They become crucial in the cloud computing environment. 
One key feature of intrusion detection systems is their ability to provide a view of unusual activity and to 
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issue alerts notifying administrators and / or blocking a suspected connection. Differences in the target envi-
ronment have tremendous impact on the available functions and features of the service delivered.

In a cloud environment, event‐based detection requires more visibility at more layers in the system. When that 
environment moves more to a multitenant cloud, additional complexities such as cloud APIs, guest‐process inter-
actions, and the management plane are introduced. In these cases, some specific events or checks might 
include: virtualization layer events, VM image repository monitoring, integrity monitoring, interaction among 
interdependent workloads, and other API activity. To manage the protection of hosts, applications, and data, 
an intrusion service must have control of, or at least visibility into, these points of interest; interface with infor-
mation and event correlation capabilities, and provide the infrastructure for communications in and among 
the components of the service within the target enterprise, as well as back to the intrusion service‐provider 
environment. Delivering this capability from the cloud often requires administrative relationships, elevated 
user rights, and end‐to‐end transactional access between hosted elements and central control and reporting.

18.4.3 Incident Response

The nature of incident response will be affected when services are moved to the cloud. According to the 
Cloud Security Alliance, the customer must consider what must be done to enable efficient and effective 
handling of security incidents in the Cloud (National Institute of Standards and Technology, 2011). Given the 
possibility that log information may not be directly accessible to the customer, the incident response will need 
to take into consideration the type of service being utilized (i.e. IaaS, PaaS, SaaS) and craft a security SLA to 
address responsibilities of the cloud service provider.

If IaaS is being used, then the provider is responsible for the infrastructure‐related logs such as storage, 
networks, and hypervisors. Customers will have access to their VM logs and IDS logs during an incident. If 
PaaS is being utilized, then the incident response team will have access to application logs but the provider 
will still maintain server logs. The customer has more opportunity to retrieve log information from a PaaS 
provider by communicating to the provider what triggers an event (National Institute of Standards and 
Technology, 2011). Examples of triggers can be failed authentication attempts or application errors. If SaaS 
is being used, then the provider incident response team will internally respond to triggers from their security 
incident and event‐management capability, intrusion‐detection tools or other log management tools. In this 
scenario, the customer has no responsibility. In general, services such as PaaS and SaaS may make incident 
response easier because the burden rests upon the cloud service provider. Incidents that require obtaining an 
image or snapshot of the virtual machine for forensics are also easier because a virtualized environment is 
designed to copy or clone images, including memory states. Special software is no longer needed when the 
inherent capability of your virtual platform provides these functions.

18.5 Cloud Business Continuity and Disaster Recovery Planning

The majority of business continuity and disaster recovery (BC/DR) considerations and best practices for cloud‐
based services are very similar to those for traditional noncloud solutions in terms of what is required, and how 
the business must prepare prior to implementation. Key benefits of using a reliable, highly available cloud‐
based service for BC/DR of systems include the following (www.hostway.com, accessed December 7, 2015):

 ● Secure backup – The cloud service provider will host all replicated systems in the cloud, making them 
available should disaster recovery be invoked.

 ● Scalable infrastructure – A key component of any cloud‐based service is its elasticity and effective unlim-
ited scalability. This ensures that the cloud service consumer’s BC/DR systems will scale up as required.
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 ● Pay per use – Consumers pay only for the actual use of the service. This translates to lower service costs 
during times of normal operation, when minimal capacity and performance are required for storage and 
replication of systems and data to the BC/DR solution. When events invoke a BC/DR response, requisite 
supporting services ramp up to meet the need.

 ● Reduced BC/DR expertise – There is a significant reduction in the expertise and effort required on the part 
of the consumer versus traditional BC/DR solutions. The provider can manage scaling up capacity, public 
records, and provide guidance for BC/DR best practices. This is especially true when looking at DR in the 
cloud for cloud‐based systems, as the provider usually will have automated fail‐over facilities protecting 
their systems and infrastructure.

There are numerous business drivers when planning, executing and testing BC/DR solutions either for 
traditionally hosted systems or those already in the cloud. The chosen combination of these benefits 
 discussed above will influence a business’s BC/DR strategy. The considerations and concerns presented 
below should be part of any discussion regarding cloud‐based BC/DR (www.hostway.com, accessed 
December 7, 2015):

 ● What is the value of an enterprise’s data to the business and how much will it cost to replace it, if it is lost 
or stolen? What data should go into the cloud?

 ● How effective is the cloud provider’s own BC/DR planning? Elasticity of the cloud provider – can they 
provide all the resources if BC/DR is invoked?

 ● How is DR testing achieved? Does the cloud provider support DR testing?
 ● How are the DR services accessed if invoked?

Beside the logical components of BC/DR, there also is a need to consider physical locations, such as alter-
native sites of operation, geographically distributed datacenters / infrastructure and relevant jurisdictions, net-
work survivability, and the incorporation of third‐party ecosystems in planning and testing. Data‐protection 
requirements may restrict data that constitutes personally identifiable information (PII). A careful choice of 
vendor and a clear understanding of where the vendor’s datacenters are, along with their data‐movement 
policies, can mitigate this type of risk.

18.6 Conclusion

Cloud computing is profoundly changing the IT landscape. Unfortunately, some of these changes have cre-
ated new security challenges. While enterprises have been focusing on securing their internal computing 
systems for decades, working with external cloud computing providers has exposed new vulnerabilities that 
must be addressed both internally and externally by the cloud computing providers and customers.

Security controls in cloud computing are, for the most part, not greatly different from security controls in 
any noncloud IT environment. However, because of the cloud types adopted, the delivery models employed, 
and the technologies used to enable cloud services, cloud computing presents different challenges and risks 
to an organization than traditional noncloud solutions. This chapter presents fundamental methodologies, 
best practices, and practical techniques to address security issues among cloud models (IaaS, PaaS, and 
SaaS), which vary substantially.

The security threats associated with cloud computing are continuing to evolve, while the perceived and 
actual level of certain security threats has also changed over the last several years. Understanding what major 
threats exist in cloud computing, adopting effective multilayered defense mechanisms, and following matured 
processes and best practices will help organizations to make the successful shift towards the cloud.
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19.1 Introduction

Cloud computing opens a new horizon of computing for business and IT organizations. Since 2007, we 
have seen an explosion of applications of cloud‐computing technology, both for enterprises and individuals 
seeking additional computing power and more storage at a low cost. Small‐ and medium‐scale industries 
find cloud computing highly cost effective as cloud infrastructures replace the need for costly physical 
and  administrative infrastructures, and offer a flexible, pay‐as‐you‐go payment structure. Opportunities 
provided by the cloud have led to estimates that the growth of global cloud computing market could be 
30% compound annual growth rate (CAGR), reaching $270 billion in 2020 (http://www.marketresearchmedia.
com/?p=839, accessed December 7, 2015).

Although cloud computing offers numerous facilities and contributes extensively to the advancement of 
information technology, cloud security is not transparent. Clouds use the multitenant usage model and virtual
ization to ensure better utilization of resources. However, these fundamental characteristics of cloud computing 
are a double‐edged sword − the same properties also make it difficult to prevent and investigate cloud‐based 
crimes and attacks on clouds and their users. Besides attacking cloud infrastructures, adversaries can use clouds 
to launch attacks on other systems. For example, an adversary can rent hundreds of virtual machines (VMs) to 
launch a distributed denial of service (DDoS) attack. After a successful attack, the adversary can erase evidence 
that is important to trace the attack by turning off the VMs. Criminals can also keep their secret files (e.g., child 
pornography, terrorist documents) in cloud storage and remove the files from local storage to remain clean. To 
investigate such crimes involving clouds, investigators have to carry out a digital forensic investigation in the 
cloud environment. This particular branch of forensic has become known as cloud forensics.

While computer forensics itself is not well matured yet, cloud forensics imposes greater challenges on digital 
forensics. As many of the assumptions of traditional digital forensics are not valid in the cloud computing model, 
the traditional digital forensics tools and procedures are not suitable for investigating crimes involving clouds. 
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As a result, cloud forensics brings new challenges from both technical and legal points of view and has opened 
new research areas for security and forensics experts. In this chapter, we examine the cloud forensics problem and 
explore the challenges and issues in cloud forensics, provide a comprehensive analysis of proposed solutions for 
cloud forensics, discuss the advantages and usability of cloud computing to expedite the digital forensic pro
cedures, and, finally, we highlight outstanding problems and future directions in cloud‐forensics research.

19.2 Background

19.2.1 Digital Forensics

The National Institute of Standards and Technology (NIST) defines digital forensics as “The application of 
science to the identification, collection, examination, and analysis, of data while preserving the integrity of 
the information and maintaining a strict chain of custody for the data” (Kent et al., 2006). From the definition, 
we can say that digital forensics is comprised of four main processes:

 ● Identification.  The identification process has two main steps: identification of an incident, and identi
fication of the evidence. Evidence identification depends on the nature of an incident.

 ● Collection.  In the collection process, an investigator extracts the digital evidence from different types of 
media, for example, a hard disk, e‐mail, or a network router. He also needs to preserve the integrity of the 
evidence.

 ● Organization.  There are two main steps in the organization process: examination, and analysis of the 
digital evidence. In the examination phase, an investigator extracts and inspects the data and its charac
teristics. In the analysis phase, investigators interpret and correlate the available data to come to a conclusion 
that can prove or disprove a criminal allegation.

 ● Presentation.  In this process, an investigator makes an organized report to state his/her findings about the 
case. This report should be admissible and comprehensible to the jury.

Figure 19.1 illustrates the flow of these digital forensic processes.

19.2.2 Cloud Forensics

Ruan et al. (2011) defined cloud forensics as a subset of network forensics, because cloud computing is based on 
extensive network access and network forensics handles forensic investigation in private and public networks. 
However, besides network forensics, investigators may need to execute disk forensics, memory forensics, and so 
forth, for a proper forensics investigation. Hence, we define cloud forensics as the application of digital forensics 
principles and procedures in a cloud‐computing environment to establish facts about civil, administrative, or 
criminal allegations. Digital forensics procedures vary according to the service and deployment model of cloud 
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Figure 19.1 Digital forensics process flow
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computing. For software as a service (SaaS) and platform as a Service (PaaS), forensics investigators have very 
limited control over process or network monitoring. A forensics investigator may be able to gain enough control 
in infrastructure as a service (IaaS) to deploy a forensic‐friendly logging mechanism. For SaaS, investigators 
depend solely on cloud service providers (CSP) to get the application log, while for IaaS, investigators may be 
able to acquire a VM image from customers and enter into the examination and analysis phase.

Cloud forensics is applicable in a number of possible scenarios that are mentioned below:

 ● Cloud computing can be used as a tool for an attack; for example, to launch a DDoS attack using VMs 
running inside clouds.

 ● Virtual machines running inside a cloud or the cloud host machines are under attack – for example, they may 
be hacked or compromised – and the method of attack, extent of damage, and so forth, need to be determined.

 ● While investigating a crime, where cloud is not directly related, such as murder or identity fraud, the exist
ing evidence may lead to a cloud that needs to be examined. The cloud can store further crucial evidence, 
such as images or documents, to settle the case.

 ● The computing resources of the cloud can be used to expedite a forensic investigation.

19.3 Challenges of cloud forensics

Most of the factors that make digital forensics challenging in clouds are related to the fundamental natures of 
clouds. We present our analysis by looking into the challenges faced by investigators in each of the stages of 
computer forensics.

19.3.1 Cloud Data Storage

19.3.1.1 Volatile Data

Volatile data cannot be sustained without power. Logs, registry entries, or temporary Internet files that reside 
within the virtual environment will be unavailable when users power off the VM instances and no snapshots 
of the instances have been saved or data have not been synchronized continuously in a persistent storage, such 
as Amazon S3 (http://aws.amazon.com/s3/, accessed December 8, 2015) or EBS (http://aws.amazon.com/
ebs/, accessed December 8, 2015). With extra payment, customers can have persistent storage. However, this 
is not common for small‐ or medium‐scale business organizations. Moreover, a malicious user can exploit 
this vulnerability. After carrying out a malicious activity (e.g., launching a DoS attack, or sending spam e‐mail), 
an adversary can power off her VM instance, which could lead to a complete loss of the valuable evidence 
inside the VM and make the forensic investigation almost impossible. Moreover, because of the volatile data, 
a malicious owner of a cloud instance could fraudulently claim that her instance was compromised by someone 
else and had launched a malicious activity. Later, it will be difficult to prove her claim as false by a forensic 
investigation (Birk and Wegener, 2011).

19.3.1.2 Multitenancy

In cloud computing, multiple VMs can share the same physical infrastructure – data for multiple customers 
are co‐located. This aspect of clouds is different from the traditional single‐owner computer system. While 
acquiring evidence for any adversarial case, two issues can arise because of the multitenancy nature. First, we 
need to prove that data of a suspect user were not co‐mingled with other users’ data. Secondly, we need to 
preserve the privacy of other tenants while performing an investigation. The multitenancy characteristic also 
raises the issue of side‐channel attacks, which are difficult to investigate.
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19.3.2 Forensics Data Acquisition

19.3.2.1 Physical Inaccessibility

The physical inaccessibility of digital evidence makes the evidence collection procedure harder in forensics 
of remote or public cloud environments ((Birk and Wegener, 2011; Dykstra and Sherman, 2011). The estab
lished digital forensic procedures and tools assume that we have physical access to the computing resources, 
for example the hard disk, or network router. However, in cloud forensics, the situation is different. Sometimes, 
we do not even know where the data is located as it is distributed among many hosts of multiple geodispersed 
datacenters. This issue also poses problems in preparing a search warrant as the search warrant must specify 
a location (Dykstra and Sherman, 2011).

19.3.2.2 Less Control in Clouds

In traditional digital forensics, investigators often have full control over the evidence (e.g., a confiscated 
physical hard drive). In a cloud, unfortunately, the control over data varies in different service models. 
Figure 19.2 shows the limited amount of control that customers have in different layers for the three service 
models – IaaS, PaaS, and SaaS. In IaaS, users have more control than SaaS or PaaS. The lower level of control 
has made data collection in SaaS and PaaS more challenging than in IaaS; sometimes it is even impossible. 
For IaaS, the availability of VM images can make the investigation process smooth. Conversely, investigators 
need to depend on cloud providers to collect digital evidence from SaaS and PaaS.

19.3.2.3 Issues with Log Acquisition

Analyzing logs from different sources, such as networks, operating systems, and applications, plays a vital 
role in digital forensic investigation. However, gathering this crucial information from the cloud environment 
is not as simple as it is in a privately owned computer system. In a cloud infrastructure, log information is not 
located at any single centralized log server; rather logs are decentralized among several servers. Multiple 
users’ log information may be co‐located or spread across multiple servers. There are several layers and tiers 
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in cloud architecture. Logs are generated in each tier. For example, application, network, operating system, 
and database – all of these layers produce valuable logs for forensic investigation. Collecting logs from these 
multiple layers is challenging for the investigators. Logs generated in different layers need to be accessible to 
different stakeholders of the system. System administrators need relevant logs to troubleshoot the system. 
Developers need the required logs to fix bugs in an application. Forensic investigators need logs that can help 
in their investigation. Hence, there should be some access‐control mechanism, so that everybody can get only 
what they need and, obviously, in a secure way.

19.3.3 Trustworthiness of Evidence

Dependence on CSPs to acquire evidence inevitably affects trust and evidence integrity. After issuing a search 
warrant, the examiner needs a technician from the cloud provider to collect data. However, the employee of 
the cloud provider, who collects data, is most likely not a licensed forensics investigator and it is not possible 
to guarantee his integrity in a court of law. The date and timestamps of the data are also questionable as a 
malicious VM owner or a dishonest cloud employee can tamper with the system clock. Researchers identified 
that it is not possible to verify the integrity of the forensic disk image in Amazon’s EC2 cloud, because 
Amazon does not expose the functionality of collecting checksums of volumes, as they exist in EC2 (Dykstra 
and Sherman, 2011). Moreover, CSPs can collude with adversaries and tamper with the evidence to save a 
criminal, or a dishonest forensics investigator can collude with a CSP to frame an honest user (Zawoad and 
Hasan, 2012; Zawoad et al., 2013).

19.3.4 Forensics Data Organization

19.3.4.1 Absence of Reliable Forensics Timeline Analysis Support

In the investigation of a criminal case involving computers, the timeline of events can provide critical information 
relating to the prosecution of a suspect. Reliable timelines can help to pinpoint the location of certain individuals, 
can assist with the determination of alibis, can uncover conversations and correspondences, and can possibly help 
ultimately to determine the guilt or innocence of suspects. Conversely, alteration of timeline can lead the investi
gation in a wrong direction (Kent et al., 2006). The first prerequisite for generating reliable timeline is trustworthy 
logs, which is itself a challenging task in clouds (Zawoad et al., 2013). Moreover, the system clock of the VM or 
cloud host can also be altered leading to an untrustworthy timeline. To the authors’ knowledge, none of the existing 
CSPs provide reliable forensics timelines, which hinders the forensics analysis.

19.3.4.2 Absence of Critical Information in Logs

Organizing logs collected from clouds is challenging, as there are no standard formats for different types of 
logs. Logs are available in heterogeneous formats – from different layers to different service providers. 
Moreover, not all the logs provide crucial information for forensic purpose – for example, who, when, where, 
and why some incident occurred (Marty, 2011).

19.3.5 Legal Issues

19.3.5.1 Chain of Custody

Chain of custody (CoC) should clearly depict how the evidence was collected, analyzed, and preserved in 
order to be presented as admissible evidence in court. Chain of custody is defined as a verifiable provenance 
or log of the location and possession history of evidence from the point of collection at the crime scene to the 
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point of presentation in a court of law. However, in clouds, maintaining CoC is not possible as investigators 
can acquire the available data from any workstation connected with the Internet and the actual location of 
data cannot be determined properly. As multiple people may have access to the evidence and investigators 
need to depend on CSPs to acquire the evidence, preserving CoC throughout the investigation process is 
problematic (Dykstra and Sherman, 2011). Moreover, multi‐jurisdictional laws, procedures, and proprietary 
technology in clouds also make CoC preservation challenging (Zawoad and Hasan, 2012).

19.3.5.2 Crime Scene Reconstruction

Reconstructing the crime scene is important when investigating a malicious activity. It helps investigators to 
understand how adversaries launch attacks. However, shutting down a virtual instance after a malicious activ
ity can make the reconstruction task impossible. Moreover, many CSPs are closed and proprietary and the 
investigator does not know what the cloud environment looks like. Without internal knowledge of clouds, it 
will be very difficult for an investigator to recreate a crime scene.

19.3.5.3 Cross Border Law

Data centers of the service providers can be distributed worldwide. It may happen that an attacker is accessing 
the cloud computing service from one jurisdiction, whereas the data she is accessing resides in a different 
jurisdiction. Differences in laws between the two locations can affect the whole investigation procedure, 
starting from evidence collection to capture the attacker. Because of the multitenancy nature of clouds, we 
need to preserve the privacy of the tenants while collecting data of a suspect tenant. However, the privacy and 
privilege rights may vary among different countries or states, which makes cloud forensics a challenging task.

19.3.5.4 Presentation

The final step of digital forensic investigation is presentation, where an investigator gathers his/her findings 
and presents them to the court as the evidence of a case. Proving the evidence in front of the jury for tradi
tional computer forensics is relatively easy compared to the complex structure of cloud computing. Presenting 
admissible and comprehensible evidence from clouds is challenging due to the technicalities of a cloud data
center, running thousands of VMs accessed simultaneously by hundreds of users.

19.3.6 Regulatory and Compliance Issues

Large business and healthcare organizations are not moving towards clouds because today’s cloud infrastructures 
do not comply with regulatory requirements. Trustworthy data retention is one of the mandatory compliance 
issues that have a direct impact on digital forensics. Trustworthy data retention should provide long‐term 
retention and disposal of organizational records to prevent unwanted deletion, editing, or modification of data 
during the retention period. It should also prevent recreation of a record once it has been removed. While 
there are still some problems in ensuring secure data retention at storage level, the cloud computing model 
imposes some new challenges. For example, who enforces the retention policy in a cloud, and how are excep
tions, such as litigation holds managed? Moreover, how can CSPs assure us that they do not retain data after 
destruction (Popovic and Hocenski, 2010)? There are several laws in different countries that mandate trust
worthy data retention. For example, the Sarbanes–Oxley Act (https://www.sec.gov/about/laws/soa2002.pdf, 
accessed December 8, 2015), the Health Insurance Portability and Accountability Act (HIPAA) (http://www.
hhs.gov/ocr/privacy, accessed December 8, 2015), The Gramm–Leach–Bliley Act (http://www.business.ftc.
gov/privacy‐and‐security/gramm‐leach‐bliley‐act, accessed December 8, 2015), and European Commission 
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data protection legislation (http://ec.europa.eu/justice/newsroom/data‐protection/news/120125_en.htm, accessed 
December 8, 2015). Building clouds compliant with all of these laws is challenging, which consequently affects 
the investigation process in clouds.

19.4 Towards Reliable Forensics in Clouds

In the public interest, law enforcement first contacts the cloud provider with a temporary restraining order 
to suspend the offending service and account, and a preservation letter to preserve evidence pending a 
warrant. There are some proven digital forensics tools used by forensic investigators, for example, Encase, 
Accessdata FTK, and others that can be used for forensics data acquisition from clouds. Dykstra et al. 
were able to collect data remotely from the guest OS layer of Amazon EC2 cloud using Encase servlets 
and FTK agents as the remote programs (Dykstra and Sherman, 2012). They also prepared a Eucalyptus 
cloud platform and collected data from the virtualization layer. They tested evidence acquisition from the 
host operating system layer by Amazon’s export feature and found that, although it is possible to export 
data from S3, it is not possible from EBS. However, collecting data using these tools tells us nothing 
about who put the data in the clouds. Moreover, a VM or host machine can be compromised or adversaries 
can terminate VMs. To overcome such challenges, researchers have proposed the following solutions to 
support reliable forensic investigation in clouds.

19.4.1 Cloud Data Storage

19.4.1.1 Continuous Synchronization

Forensics data acquisition is challenging from cloud storage due to the volatile nature of data stored in VMs. 
To overcome this problem, CSPs can provide a continuous synchronization API to customers. Using this API, 
customers can preserve the synchronized data to any cloud storage, for example, Amazon S3, or to their local 
storage. Unfortunately, the attacker will not be interested in synchronizing a malicious VM. Hence, CSPs by 
themselves can integrate the synchronization mechanism with every VM and preserve the data securely 
within their infrastructures.

As a solution to continuous synchronization of cloud data, Zawoad et al. proposed the Proof of Past Data 
Possession (PPDP) scheme, which stores cryptographic proof of cloud data periodically but without preserv
ing the data itself (Zawoad and Hasan, 2012). The proofs of data possession are accessible by forensics 
investigators and cloud users. PPDP is a tamper‐evident scheme that can detect any modification of data by 
dishonest CSPs and investigators. Preserving only proofs saves significant amount of storage cost but can still 
serve the purpose of continuous synchronization. In this solution, the CSP is responsible for the synchroniza
tion task. Hence, even if an adversary terminates a VM after some malicious activity, investigators can still 
prove the data possession using the PPDP scheme.

19.4.1.2 Isolating a Cloud Instance

Because of the multitenant architecture, a cloud instance must be isolated if any incident takes place on 
that instance. Delport et al. (2011) presented some possible techniques for cloud isolation. One way of 
isolating a suspect instance is to move other honest instances residing in the same node. The second tech
nique is server farming, which can be used to reroute a request between user and node. The third technique 
is failover, where there is at least one server that is replicating another. We can also isolate an instance by 
placing it in a sandbox.
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19.4.2 Forensics Data Acquisition

19.4.2.1 Centralized Repository of Logs

Marty (2011) proposed a centralized log management solution for the SaaS cloud model. He implemented an 
application logging library that can be used in Django. This library can export logging calls for each severity 
level, such as debug, info, error, and others. By tuning the Apache configuration, he was able to collect logs 
from the load balancer in the desired format. For PaaS, Birk and Wegener (2011) proposed a central log 
server, where customers can store the log information. In order to protect log data from possible eavesdrop
ping and altering actions, customers can encrypt and sign the log data before sending it to the central server.

19.4.2.2 Application Programming Interface

To get the necessary logs from IaaS cloud model and to preserve the integrity and confidentiality of the logs, 
Zawoad et al. (2013) proposed Secure Logging‐as‐a‐Service (SecLaaS). By using SecLaaS API services, inves
tigators can collect various important logs, such as network, process, registry, and application logs. SecLaaS can 
also detect any alteration of logs by a malicious CSP, or a malicious forensic investigator.

19.4.2.3 Cloud Management Plane

Cloud service providers can play a vital role in data acquisition steps by providing a Web‐based manage
ment console like AWS management console. Dykstra and Sherman (2013) implemented FROST, a forensic 
data‐collection tool for OpenStack. Using FROST, cloud users / investigators can acquire an image of the 
virtual disks associated with any of the users’ virtual machines, and validate the integrity of those images 
with cryptographic checksums. It is also possible to collect logs of all API requests made to CSP and 
OpenStack firewall logs for users’ VMs.

19.4.3 Trustworthiness of Evidence

19.4.3.1 Trust Model

Dependence on CSPs poses trust issues in investigation procedures. Dykstra et al. proposed a trust model 
with six layers: guest application and data, guest OS, virtualization, host OS, physical hardware, and network 
(Dykstra and Sherman, 2012). The further down the stack is the less cumulative trust is required. For exam
ple, in the guest OS layer, we require trust in the guest OS, the hypervisor, the host OS, the hardware, and the 
network layer. While in network layer, we require trust in only the network. Examiners can examine evidence 
from different layers to ensure the consistency of the digital evidence. While executing a forensics investiga
tion in clouds, investigators need to choose the appropriate layer, which depends on the data available in the 
layer and trust in the available data.

19.4.3.2 Integrity Preservation

Generating a digital signature on the collected evidence and then checking the signature later is one way 
to validate the integrity. Hegarty et al. (2009) proposed a distributed signature detection framework that 
will facilitate the forensic investigation in cloud environment. The proposed system uses peer‐to‐peer 
analysis nodes to validate the signature of data distributed in clouds. Zawoad and Hasan (2012) and 
Zawoad et al. (2013) proposed bloom filter‐based integrity preservation techniques for cloud evidence, 
such as logs and files.
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19.4.3.3 Trusted Platform Module (TPM)

To preserve the integrity and confidentiality of cloud evidence, researchers proposed TPM as the solution (Birk and 
Wegener, 2011; Dykstra and Sherman, 2012). Krautheim et al. (2010) proposed the Trusted Virtual Environment 
Module (TVEM) to establish trust in clouds. The root of trust in the solution is the TPM. By using the TPM, we 
can get machine authentication, hardware encryption, signing, secure key storage, and attestation. The TPM can 
provide the integrity of a running virtual instance, trusted log files, and trusted deletion of data to customers.

19.4.4 Forensics Data Examination and Analysis

19.4.4.1 Virtual Machine Introspection

Virtual machine introspection (VMI) is the process of externally monitoring the runtime state of a VM from 
either the virtual machine monitor (VMM), or from a virtual machine other than the one being examined. 
Runtime state refers to processor registers, memory, disk, network, and other hardware‐level events. Through 
this process, we can execute a live forensic analysis of the system, while keeping the target system unchanged 
(Hay and Nance, 2008).

19.4.4.2 Guideline for Log Structure

There is no standard format for logs, so it is difficult to examine and analyze the log evidence. Marty (2011) 
proposed a guideline to overcome this problem. The proposed guideline tells us to focus on three things: when 
to log, what to log, and how to log. At minimum, he suggested logging the timestamps record, application, user, 
session ID, severity, reason, and categorization, so that we can get the answer of what, when, who, and why.

19.4.5 Legal Issues

19.4.5.1 Service Level Agreement

At present, there is a massive gap in the existing service level agreement (SLA), which neither defines the respon
sibilities of CSPs at the time of a malicious incident, nor their role in forensic investigations. A robust SLA should 
state how the providers deal with the cybercrimes – how and to what extent they help in forensic investigation 
procedures. To ensure the quality of SLA, we can take help from a trusted third party (Birk and Wegener, 2011).

19.4.5.2 Secure Provenance for Chain‐of‐Custody Preservation

Provenance provides the history of an object. Provenance can ensure the chain of custody in cloud forensics as 
it can provide the chronological access history of evidence, how it was analyzed, and preserved. Hence, we can 
maintain the CoC by preserving provenance records. Proper provenance in clouds should have four properties 
(Muniswamy‐Reddy et al., 2010): (i) data coupling to ensure that an object is described properly from its prov
enance; (ii) multiobject causal ordering to maintain causal relationships among objects; (iii) data‐independent 
persistence – even if data is removed; we need to store its provenance record, and (iv) efficient query support on 
multiple objects’ provenance. However, as the entire provenance records are under the control of CSPs, they can 
always tamper with the provenance records and, from the provenance data in clouds, an attacker can learn con
fidential data about cloud users. To prevent provenance from these types of attacks, Lu et al. (2010) introduced 
the concept of secure provenance in clouds. They proposed a trusted third‐party (TTP) based scheme for secure 
cloud provenance. This scheme ensures some important properties, such as the confidentiality of the data, 
unforgeability and full anonymity of the signature, and full traceability from a signature.
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19.5 Advantage of Clouds for Digital Forensics

19.5.1 Advantage

Cloud forensics is a complicated process and imposes new challenges in digital forensic procedures but it 
offers some advantages over traditional computer forensics. We can use the VM image as a source of digital 
evidence as we can acquire the computing environment of a VM instance for forensics investigation through 
the image. The computation and storage power of cloud computing can also speed up the investigation process 
by reducing the time for data acquisition, data copying, transferring, and data cryptanalysis. Forensic image 
verification time will be reduced if a cloud application generates a cryptographic checksum or hash. Integrating 
forensic facilities in a cloud environment or offering forensics as a service to customers by using the immense 
computing power will make cloud forensics cost effective for small‐ and medium‐scale enterprise. Currently, 
Amazon replicates data in multiple zones to overcome the single point failure. In the case of data deletion, this 
data abundance can be helpful in collecting evidence. Amazon S3 automatically generates an MD5 hash of an 
object when we store the object in S3, which removes the need for external tools and reduces the time for 
generating the hash. Amazon S3 also provides versioning support. From the version log, we can get some 
crucial information for investigation, such as who accessed the data, and when, what the requestor’s IP was, 
and what the changes in a specific version were.

19.5.2 Cloud Computing Use in Digital Forensics

The use of cloud‐computing technology can also facilitate the traditional digital forensic investigation. Lin et al. 
(2012) proposed an RSA signature‐based scheme to transfer data safely from mobile devices to cloud storage. 
It ensures the authenticity of data and thus helps in maintaining a trustworthy chain of custody in forensic inves
tigations. By using the RSA signature protocol, a verifier can verify the evidence in the court. In this process, 
the cloud computing center computes the RSA signature and sends the signature to cloud storage center, which 
preserves the final output. The final output can later be downloaded to check the integrity of the data.

19.6 Open Problems

Cloud forensics is a new research area and has recently gained popularity among researchers. There are num
ber of open problems that have not been addressed yet or some of the solutions proposed so far are not feasi
ble enough to incorporate with real‐world cloud infrastructures. Only a few of the solutions discussed above 
have been tested in real‐world scenarios. To the best of the authors’ knowledge, CSPs have not adopted any 
of the proposed solution yet.

Maintaining a CoC is one of the basic requirements for reliable and trustworthy forensics investigation. 
Since CoC depends on the location of data, we need to know the precise location of data in clouds at a given 
time. However, there has been no solution that can identify the location of data precisely. To maintain the 
trustworthiness of the CoC and protect eavesdropping, we need secure cloud provenance schemes. A secure 
provenance for cloud infrastructures is also necessary to make clouds more accountable and compliant with 
the regulatory rules, such as HIPAA and SOX (Zawoad and Hasan, 2012). However, the existing TTP‐based 
secure cloud provenance solution (Lu et al., 2010) is not robust enough because TTP increases the attack 
surface and introduces a single point of failure. Besides data, we also need the provenance of applications 
running inside clouds and states of cloud instances, which have not been addressed yet in existing cloud‐
provenance works. Existing works on accountable‐clouds attack some specific problems, such as proof of 
data possession, proof of retrievability, or proof of data redundancy. A cloud computing framework that 
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complies with all the major regulatory rules has not been proposed yet. Cloud computing will not be embraced 
universally unless we integrate regulatory compliance with clouds. For example, as we are yet to offer SOX‐
compliant cloud storage, business organizations invest significant amount of money to host their own private 
SOX‐compliant storage rather than go to cheap cloud storage.

Trusted platform modules have been considered as a solution to establish trust in cloud infrastructures. However, 
the TPM is not totally secure and it is possible to modify a running process without being detected by the TPM 
(Dykstra and Sherman, 2012). Moreover, at present CSPs have heterogeneous hardware and few of them have 
TPMs. Hence, CSPs cannot ensure a homogeneous hardware environment with TPMs in the near future.

Crime‐scene reconstruction is crucial for forensic investigation. However, reconstructing a criminal incident is 
impossible in clouds when a user turns off a VM after some illegal activity. There has been no work that can tackle 
this situation. For crime‐scene reconstruction, forensics timeline analysis is also an important step. However, the 
system clock of a cloud host or a VM can be altered by adversaries and dishonest employees of a CSP. Such 
alteration of a system clock will produce a fake timeline of events and impede the investigation process.

Challenges about legal issues and regulatory compliance have not been resolved yet. To mitigate the cross‐
border issue, researchers have proposed global unity but there is no guideline about how this will turn into 
reality. Similarly, there is no solution about preparing a robust SLA that can cover all the legal bindings of 
CSP in the case of an adversarial situation. Modifying the existing forensic tools or creating new tools to cope 
with the cloud environment is another big issue that has not been resolved yet. If the cloud storage is too high, 
then limited bandwidth is a big challenge for time‐sensitive investigations. We need an efficient solution to 
acquire evidence from clouds that can give us high throughput using low bandwidth. About the logging issue 
in cloud forensics, Marty (2011) proposed some open research topics in application‐level logging: security 
visualization, log review, log correlation, and policy monitoring.

19.7 Conclusion

With the wide adoption of cloud computing there is an increasing emphasis on providing trustworthy cloud 
forensics. In this chapter, we have summarized current challenges, solutions, and open research problems in 
cloud forensics. By analyzing the challenges and existing solutions, we argue that CSPs need to come for
ward to resolve most of the issues. There is very little to do from the customers’ point of view other than 
application logging. All other solutions are dependent on CSPs and the policy makers. For forensics data 
acquisition, CSPs can shift their responsibility by providing a robust API or management panel to acquire 
evidence. Legal issues also hinder the smooth execution of forensic investigation. We need a collaborative 
attempt from public and private organizations as well as research and academia to overcome these issues. 
Solving all the challenges of cloud forensics will clear the way for making a forensics‐enabled cloud and 
allow more customers to take advantage of cloud computing.
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20.1 Introduction

Consumers often worry about how to protect the privacy of their information when they are using cloud 
 services. They may be worried about identity theft and government surveillance, or the possible privacy inva-
sions of targeted marketing. What steps do cloud services take to secure customer information and prevent 
data security breaches that could lead to identity theft? When might the service share the customer’s informa-
tion with third parties? What should consumers do if they are worried about their online activities being the 
subject of government surveillance?

Currently, being informed is the best way to preserve privacy online. Consumers can refrain from posting 
personal information, they can customize their browser settings to disallow third‐party cookies, and they can 
route all of their Internet traffic through an anonymizing system like Tor, among other precautions. But if 
consumers are not sufficiently informed about the practices of the companies with which they deal, they may 
still lose control of their information.

Consumers can familiarize themselves with the privacy policies and terms of service (TOS) of the services 
that they use, and these documents will give them information about things like what information is collected, 
with whom the information will be shared, and whether and to what extent the service provider obtains a 
license to use the consumer’s intellectual property. However, consumers often click “I agree” out of habit, 
without actually reading these documents. This chapter examines a variety of issues relating to privacy, with 
a primary focus on theories and law, with the goal of applying this understanding to cloud services. As the 
following sections discuss, there are a number of possible legal ramifications from the often disregarded legal 
contracts that consumers accept in order to use a service.
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20.2 The Evolution of Privacy Theory

Samuel Warren and Louis Brandeis published The Right to Privacy in 1890, which substantially influenced 
privacy law in the United States in the twentieth century (Richards and Solove, 2010). The publication of this 
piece was spurred by the authors’ concerns about intrusions into personal privacy by the press, especially 
considering the technological improvements that had enabled the production of small, affordable cameras 
(Solove, 2006a). Warren and Brandeis framed their concept of privacy as a “right to be let alone” that relates 
to human dignity. By the time the Warren and Brandeis article was 50 years old, privacy was still a very minor 
doctrine in tort law. Only 12 states recognized the right of privacy by common law, and only two recognized 
it by statute (Richards and Solove, 2010).

The next major development of privacy theory in the United States was the 1960 publication of an article 
by William Prosser on privacy. In this article, Prosser argued that there were four categories within privacy 
tort law: appropriation privacy, intrusion privacy, unauthorized public disclosure of private facts, and false 
light. Today, modern discussions of privacy violations often assume that the privacy violation will be 
addressed through civil suits grounded in one of these four torts.

There are several different types of privacy. Informational privacy is the category of privacy that is the most 
relevant to the cloud context. The nature of the torts proposed by Prosser makes it difficult to apply these torts 
to modern informational privacy issues. The privacy tort of invasion typically requires the invasion to be of 
an offensive nature but a lot of information collection appears largely innocuous (Richards and Solove, 2010). 
In one Ohio case, for example, the sale of information about a magazine’s subscribers was found not to meet 
the injury requirement for the sale to be an invasion of privacy. It is likely that legal redress for violations of 
privacy online will require either the revision of privacy torts or the introduction of new alternatives. Solove, 
a leading informational privacy scholar, divides information privacy problems into four categories: informa-
tion collection, information processing, information dissemination, and invasion (Solove, 2006b). Adoption 
of these new categories could potentially fill in some of the gaps that Prosser’s theories do not address.

20.3 Privacy Law

20.3.1 Stored Communications Act

The Electronic Communications Privacy Act (ECPA) is a federal statute that covers several topics relevant to 
electronic privacy. The ECPA was passed in 1986, partly in response to the findings of the Office of Technology 
Assessment that the protections of e‐mails were “weak, ambiguous, or nonexistent” (Kattan, 2011).

The ECPA consists of three federal statutes (see Figure 20.1): the Stored Communications Act (SCA), 
the Pen Register statute, and the Wiretap Act. Its protections supplement those of the Fourth Amendment 
(Bagley, 2011). The application of each depends on what type of information is sought and where it is in 
the transmission process (Kerr, 2004). The Wiretap Act covers interception of wire, oral, and electronic 
communications. Under the Wiretap Act, obtaining e‐mail content in real time requires a Title III order to 
be issued with Department of Justice (DOJ) approval and a grant by a federal judge, and the order must be 
renewed every 30 days. Under the Pen Register statute, obtaining real‐time subscriber data requires an ex 
parte pen register order. Stored electronic information and the requirements for obtaining each type are 
addressed under the SCA.

Explaining the SCA is difficult because much of the language is very unclear or outdated, and interpreta-
tions of the statute by courts have varied significantly (Kerr, 2004). The two most important sections for 
understanding the SCA’s relevance to online privacy are: (i) § 2702, which addresses the circumstances under 
which a provider can voluntarily disclose customer information to others, and (ii) § 2703, which addresses 
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how the government can compel a provider to produce stored information (see Figure 20.2). However, it is 
not always clear whether a disclosure was voluntary or compelled, and therefore it is sometimes difficult to 
determine which set of exceptions or requirements will apply.

Section 2702 lists situations when a provider may disclose stored information without violating the SCA. 
For example, service providers may disclose information when the subscriber or customer (depending on the 
type of service) consents to disclosure. But what actions can amount to consent? Is it consent under the SCA 
to accept the terms of a very broad privacy policy without reading these terms?

Which part of ECPA might apply?

Is the information collection happening in real time?

What type of information is being sought?

Content

Wiretap act Pen register act
Stored

communications
act

Noncontent

No

Yes

Figure 20.1 Different aspects of the ECPA

Is the disclosure
voluntary or
compelled?

Big questions to ask with the SCA

Voluntary Compelled

Is the provider an ECS
provider or an RCS

provider?

Is disclosure of that
type of data prohibited

by Section 2702?

Does an exception
apply?

Main goal is to determine whether
provider violated SCA by disclosing

Main goal is to determine what
procedures the government must

follow (e.g., is a warrant required?)

What type of
information is it?

Figure 20.2 SCA issues
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To determine the propriety of a disclosure under the SCA, the government must first determine whether the 
sought information is stored as part of an electronic communications service (ECS) or a remote computing 
service (RCS). Section 2702 prohibits ECS providers from knowingly disclosing communication contents 
that the provider holds in “electronic storage,” and prohibits RCS providers from knowingly disclosing com-
munication contents that the provider maintains for the sole purpose of providing the subscriber or customer 
with “storage or computer processing services.” Even though “storage” and “electronic storage” sound very 
similar, distinguishing between the two can make a difference in the outcome of a case.

The process required to compel information can also be affected by whether the provider is ECS or RCS, 
and varies with the type of information sought. Notice is required prior to the disclosure of some information 
types. Some types of information require a warrant, while others require a special court order under § 2703(d), 
and still others require only a subpoena. These three methods of compelling information are listed in descend-
ing order of the strength of the showing required to obtain them. To obtain a § 2703(d) court order, the 
 governmental entity must establish “reasonable grounds” to believe that the information sought is “relevant 
and material to an ongoing criminal investigation.” This standard is less than the “probable cause” standard 
for obtaining a warrant, but greater than the “reasonable relevance” standard for obtaining a subpoena. If 
information is wrongfully disclosed, the injured party has a right under the SCA to sue the provider for the 
wrongful disclosure.

The SCA is a complex statute that Congress wrote based on how early computer networks operated, so its 
application to cloud computing is sometimes unclear. The category of RCS provider was intended to address 
the business model in which companies outsourced a lot of storage and processing functions due to the high 
cost of doing this in house (Robison, 2010). It is thus likely that the RCS category would easily apply to com-
mercial cloud services that provide options for outsourcing IT, but in most other contexts, there is substantial 
overlap between RCS and ECS.

The overlap between RCS and ECS is most easily seen in e‐mails. Currently, the degree of privacy that the 
SCA assures for an e‐mail likely depends on whether the e‐mail is stored on a hard drive or in the cloud. If 
e‐mails downloaded from a service provider are unopened and are fewer than 180 days old, the government 
must obtain a warrant, but it is unclear what requirements apply to webmail (Bagley, 2011).

Companies with services that are supported by advertising often access communication contents for 
 targeted advertising purposes (Kattan, 2011). This may prevent these services from being considered RCS 
providers because the provider is authorized to access communication contents for purposes other than 
 rendering storage and computer processing services (Robison, 2010); TOS agreements and privacy policies 
thus have potentially significant effects on the extent to which the SCA protects the customer’s privacy 
because these terms may give the provider explicit authority to take actions that would disqualify the provider 
from being considered an RCS provider.

20.3.2 Fourth Amendment

The Fourth Amendment declares that people have a right “to be secure in their persons, houses, papers, and 
effects, against unreasonable searches and seizures.”

Fourth Amendment cases often focus on the need for a warrant, the presence of probable cause, and the 
existence of a reasonable expectation of privacy (REOP). Courts recognize a REOP in papers and effects sent 
in the mail, and also recognize a REOP in locked containers. Courts have analogized e‐mail to postal mail to 
conclude that there is a REOP in e‐mail. Similarly, courts have analogized password protection to locked 
containers to conclude that there is a REOP when passwords are required to access specific data. However, if 
a person is careless with password security, password protection may not lead to a REOP. The Fourth 
Amendment likely protects a lot of digital content, but noncontent information is often not protected. Building 
on the e‐mail analogy, because courts do not recognize a REOP in noncontent address information on the 
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outside of envelopes, they generally will not recognize a REOP in similar noncontent address information in 
the “To” field of an e‐mail.

If a warrantless search is conducted where a REOP exists, a court will examine if one of the exceptions to 
the warrant requirement applies. If no exception applies, the search violated the Fourth Amendment, and the 
evidence derived from the violation may be suppressed at trial. Similar to the SCA, where consent to disclo-
sure makes the disclosure legal, consent to a search can validate an otherwise illegal search.

The “third‐party doctrine” of the Fourth Amendment prevents a REOP from being found in papers and 
effects turned over to a third party. However, the third‐party doctrine might not apply when items are entrusted 
to a third party who does not have the authority to view the items or to consent to search of the items by oth-
ers. Thus, much will turn on the authority that the third party has with respect to the entrusted items. If a 
private carrier explicitly retains the right to inspect a package for any reason, customers may not have a REOP 
in packages sent using this private carrier.

Online, users must reveal their information to third parties in order for it to be transmitted or processed, so 
the third‐party doctrine may limit the application of the Fourth Amendment on the Internet (Bagley, 2011). 
On the other hand, one recent federal appellate court case distinguished e‐mail interception from other third‐
party doctrine cases by holding that the e‐mail provider was an intermediary in the communication, not a 
recipient. However, the court also noted that if an agreement with a service provider gave the service provider 
the authority to “audit, inspect, and monitor” the e‐mails of its subscribers, that might cause the subscriber to 
lose a REOP in those e‐mails.

20.3.3 Consumers, the SCA, and the Fourth Amendment

In the past few years, controversies have arisen concerning government monitoring of online activity. 
Consumers who are concerned about their privacy in the cloud should keep these issues in mind when con-
sidering different cloud service providers. Many people do not read TOS agreements and privacy policies, 
but these agreements can affect whether there is a reasonable expectation of privacy in information stored 
using the service. These agreements also may affect the application of the SCA. Thus, consumers who wish 
to preserve their rights against unreasonable searches of digital information should become familiar with the 
policies of the companies with whom they deal.

20.3.4 Other Privacy Laws

Federal privacy law focusing on consumer protection is typically narrow, often focusing on the type of records 
in issue or a particular industry (Solove, 2006a). Early congressional action on privacy includes the Fair 
Credit Reporting Act (FCRA) in 1970 and the Family Educational Rights and Privacy Act (FERPA) in 1974. 
Other federal statutes addressing specific privacy issues include the Children’s Online Privacy Protection Act 
(COPPA), the Health Information Portability and Accessibility Act (HIPAA), the Electronic Communications 
Privacy Act (ECPA), and the Gramm–Leach–Bliley Act (GLBA). Several federal statutes focus on the pres-
ence of personally identifiable information (PII), while others focus on transparency and access to informa-
tion, on protecting consumers from inappropriate use of their personal data, or on imposing duties of 
confidentiality (Solove, 2006b). If directed by statute, federal agencies will enact rules to regulate the privacy 
practices of specific industries.

States also adopt their own privacy laws to protect consumers. For example, Massachusetts requires detailed 
data security procedures, and 45 states require customer notification in the event of a security breach (Rhodes 
and Kunis, 2011). Minnesota has a merchant liability statute, under which a merchant can be held liable if 
there was a security breach and customer credit‐card information was insufficiently protected. California’s 
Song–Beverly Act protects PII by prohibiting merchants from requiring customers to give  personal informa-
tion like their address and phone number “as a condition to accepting the [customer’s] credit card.”
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20.3.5 European Privacy Law

The United States and the European Union take very different approaches to privacy. In the United States, 
most privacy laws are sector‐specific, and privacy concerns may be trumped by other important interests like 
free speech and national security. In the European Union, privacy is considered to be a fundamental right 
(Lanois, 2010).

Information privacy laws in the EU are much stricter than similar laws in the United States. Because of the 
significant differences between data privacy law in the EU and the United States, American companies must 
often be more careful with EU customers’ data than US law requires. Some cloud providers have segregated 
EU clouds, and many companies promise to follow the Safe Harbor framework.

The first European data‐protection laws were enacted in the 1970s, followed by the adoption of the 
Convention for the Protection of Individuals with regard to Automatic Processing of Personal Data in 1981, 
and the enactment of the EU Data Protection Directive 95/46 (DPD 95/46) in 1995. DPD 95/46 focuses on 
the protection of “personal data,” which it defines as “information relating to an identified or identifiable 
natural person.” By its terms, it applies EU law to data controllers that use “equipment” within the EU for the 
processing of personal data, and the term “equipment” has been read broadly to apply to things like cookies 
and JavaScript (Kuner, 2010).

20.3.5.1 The Safe Harbor Framework

DPD 95/46 permits data transfers only to other countries with adequately protective privacy laws (Stylianou, 
2010). The United States does not have sufficient privacy laws but the data of European users can nonetheless 
be transferred to the United States if the company handling the transfer complies with the Safe Harbor agree-
ment between the United States and the European Union (Lanois, 2010).

The Safe Harbor framework allows companies to certify compliance with European privacy standards 
without necessarily using segregated clouds. Under the Safe Harbor Privacy Principles, organizations must: 
(i) provide notice about data collection; (ii) give individuals a choice to opt out (or to opt in, if the personal 
information is considered sensitive); (iii) extend these standards to onward transfers – that is, ensure that third 
parties to whom personal information is transferred also adhere to the Safe Harbor Privacy Principles or have 
comparable controls in place; (iv) provide individuals with access to their personal information held by the 
organization; (v) take reasonable security precautions to protect personal information; (vi) take reasonable 
steps to protect data integrity; and (vii) provide adequate measures for enforcement of the principles.

Adhering to the Safe Harbor Privacy Principles provides a mechanism for companies in the United States 
to preserve the status quo of a self‐regulatory approach to privacy while still being eligible to serve customers 
in the European Union.

20.4 TOS Agreements and Privacy Policies

20.4.1 As Binding Contracts

As noted above, excessively permissive TOS agreements can affect users’ protections under US privacy law. 
This makes determining the validity of these contracts extremely important.

Contract law is typically state law, so standards will vary across cases. Under the common law of contracts, 
forming a contract requires mutual assent. When a contract is not subject to negotiation and is offered by the 
more powerful party on a “take it or leave it” basis, the contract is often referred to as a contract of adhesion. 
Privacy policies and TOS agreements typically meet this definition for an adhesion contract (Bagley, 2011). 
Such contracts are not automatically invalid but they may be subject to greater scrutiny.
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If a court finds that the terms of a TOS agreement are excessively unfair, the court may invalidate the con-
tract. In addition to the possibility of courts invalidating TOS agreements, the FTC may intervene in some 
situations to prevent unfair business practices. If a company violates its own privacy policy, the FTC may 
require the company to follow its own stated policy.

Excessively unfair TOS terms may be invalidated if the court concludes that the terms are unconscionable. 
Courts might be more willing to find unconscionability when there are no market alternatives but the diverse 
reality of the cloud market makes it unlikely that a lack of market alternatives will be a persuasive argument 
(Bagley, 2011).

20.4.2 Common Terms

TOS agreements set forth terms governing the relationship between a service provider and its customers. 
Generally, cloud‐based services targeted at individual users are accompanied by non‐negotiable TOS 
 agreements that favor the service provider over the end user (Wittow and Buller, 2010). The agreements will 
generally address things like metering, monitoring, and data backup, and often include clauses in which the 
provider disclaims liability for harm and forbids customers from using the company’s intellectual property 
without authorization (Bagley, 2011). Some also include terms concerning the retention, control, and owner-
ship of a user’s information (Kesan et al., 2013). TOS agreements take a variety of approaches to customer 
information. Some include terms that allow providers to access customer information for advertising and 
other purposes relating to the business, whereas others are less transparent about what the company may do 
with customer information, and still others make explicit promises in their TOS agreements that the compa-
nies will not access customers’ data (Robison, 2010).

One of the aspects of TOS agreements that many customers are interested in is whether companies claim 
ownership of uploaded material. In their analysis of twelve TOS agreements, Kesan et al. (2013) found a very 
wide variety of approaches to intellectual property. Table 20.1 summarizes these findings.

It is very important that consumers be aware of the terms of cloud services’ TOS agreements because of 
the large amounts of sometimes sensitive information stored with these services (Soma et al., 2010). 
Consumers should pay special attention to how the TOS agreements address customer data, including the 
information that the company claims rights in, and how the consumer can terminate his relationship with the 
cloud provider (Wittow and Buller, 2010). Consumers might be storing information solely in the cloud, mak-
ing it very important for the TOS agreements to include provisions protecting customers’ ability to retrieve 
their content if, for example, a service is shut down.

Table 20.1 Findings from study by Kesan et al. (2013)

Intellectual property provisions Out of 12 Percentage of total

The company retains full rights in its intellectual property that it is 
licensing to the customer

12 100

The company owns all rights in any e‐mails, suggestions, or ideas that 
the customer sends to the company

11 91.67

The customer retains full rights in his intellectual property that is 
maintained on the company’s servers

6 50

The company obtains a license to use the customer’s content to provide 
the service to others

5 41.67

The company obtains a license to use the customer’s content for 
marketing purposes

1 8.33
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Privacy policies and TOS agreements often overlap, but privacy policies tend to be more focused on mak-
ing the customer aware of the company’s policies regarding their data instead of the customer’s obligations 
concerning the service. Terms in a provider’s privacy policy might address things like the quantity and nature 
of collected data and the company’s policies on data retention and customer control over data (Stylianou, 
2010). Privacy policies often also address data security issues, like the use of SSL encryption during data 
transmission (Kesan et al., 2013). However, many of these providers insert provisions in their privacy policies 
or TOS agreements that repudiate any liability for data loss, and reserve to the provider the right to discon-
tinue the service at the provider’s sole discretion.

Table 20.2 summarizes the findings of Kesan et al. concerning security measures mentioned in 19 privacy 
policies. Companies generally listed more than one of these provisions.

Privacy policies typically include information about how the provider may gather, use, disclose, and 
manage the personal information of its customers. Privacy policies, like TOS agreements, often reserve 
significant advantages for the service provider, such as the right to amend its privacy policy unilater-
ally with little notice to its customers (Kesan et al., 2013). Privacy policies may include broad permis-
sions to allow the provider to access information for its own marketing purposes and to disclose 
customer information to its business partners for business‐related purposes (Soma et al., 2010; Kesan 
et al., 2013).

However, few consumers actually read a company’s privacy policy, and even fewer understand it (Schwartz 
and Solove, 2011). Solove criticizes many privacy policies as being “written in obtuse prose,” containing 
large amounts of extraneous information.

Cloud services collect a lot of data, both through the customer’s voluntary disclosure of data and through 
the provider’s automatic collection of information through its operations or advertising policy (Stylianou, 
2010). Many privacy policies assure limited use of customer information. Some, however, are vague, leaving 
ambiguities and loopholes. Transparency in privacy policies is very important, and consumers should be 
informed about how their data will be collected and used. If consumers had more control over their data, this 
could raise consumer awareness of privacy issues, and have a positive effect on the market for cloud services 
(Kesan et al., 2013).

The possible legal effects of TOS agreements and privacy policies are troubling but it is unlikely that most 
consumers have either the time or the expertise to analyze and understand the variety of terms contained in 
these documents. However, as interest in this topic grows there will be an increase in the demand for services 
that track and summarize key points of these agreements.

Table 20.2 Findings from study by Kesan et al. (2013)

Security measures mentioned in privacy policies Out of 19 Percentage of total

Industry standard or commercially reasonable security measures 13 68.42
SSL is used for data transmission 12 63.16
Says that the customer should be managing security from their end as well 

(change passwords often, etc.)
12 63.16

Lists organizational security measures 11 57.89
Lists other technical security measures 9 37.37
Language warning that nothing is 100% secure 6 31.58
Describes how the company will respond if customers’ information is 

compromised
1 5.26

Disclaims responsibility for securing or backing up users’ data 1 5.26
Policy does not address 1 5.26
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20.5 Data Control

Data control, which includes the ideas of data mobility and data withdrawal, is important for informational 
privacy (Kesan et al., 2013). Data control proposals can focus on PII and on “course‐of‐business” data that is 
stored as part of the customer’s use of the service. Secondary use of this information is also an important 
consideration. Adequate data mobility and data withdrawal provisions would attract consumers who are more 
risk averse and who would not use these services in the absence of these protections, thus leading to a net 
benefit to the industry.

Data mobility is an important aspect of data control. Ideally, customers would not lose everything if a 
 service provider became inoperable or if the data had to be moved to a new service provider. However, some 
analysis of TOS agreements and privacy policies indicates that companies often do not address the handling 
of such data after the contract has terminated (Kesan et al., 2013). Data should be exportable so that the cus-
tomer is not locked in to a particular service provider, and could easily move their data from one provider to 
another. When deciding between cloud services, customers should note whether the company provides a 
method for former customers to withdraw and transfer their data.

Current data mobility issues are similar to issues surrounding mobile number portability (Kesan et al., 
2013). In November 2003, an FCC regulation became effective that required cell phone carriers to allow 
numbers to be ported from one carrier to another. Service providers resisted, claiming that this rule would be 
too costly to carriers and would not benefit consumers. The FCC, however, concluded in 2006 that the number 
portability requirement did not significantly increase “wireless churn,” and did in fact have a positive impact 
on service quality due to the need that it created for carriers to devote extra effort to customer retention. Based 
on this history, Kesan et al. (2013) conclude that data mobility in the cloud would similarly facilitate con-
sumer participation and reduce transaction costs for consumers when moving from one provider to another.

20.6 Conclusion

Privacy online is a very important topic that causes concern to many people. Massive data breaches could lead 
to identity theft, so consumers typically demand strong security measures. Recent controversies over govern-
ment surveillance have also increased interest in the issue of protecting the rights of consumers. Lax intel-
lectual property policies could give a company permission to use a customer’s creations for the company’s 
marketing purposes. Consumers should educate themselves on topics like these, which could enable them to 
make informed decisions with regard to services that they use in the cloud.

Consumers can take a number of steps to keep their information private, including using traffic anonymiz-
ers and simply not uploading personal information online. This chapter stresses one of the most important 
tools for protecting privacy online: information. Consumers may currently be underinformed about possible 
privacy issues online, and may not be aware of their legal rights and how to protect them. One way that con-
sumers can become better informed is by becoming familiar with the policies of companies they choose to 
deal with online. Grassroots public education campaigns designed to increase awareness of privacy issues 
could assist with this goal.

Additional Resources

Birnhack, M. and Elkin‐Koren, N. (2011) Does law matter online? Empirical evidence on privacy law com-
pliance. Michigan Telecommunications and Technology Law Review 17, 337.

Soghoian, C. (2010) Caught in the cloud: Privacy, encryption, and government back doors in the Web 2.0 
era. Journal on Telecommunications and High Technology Law 8, 359.
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21.1 Introduction

In this chapter, we examine how privacy relates to the fundamentals of a cloud‐based computing architecture. 
We first introduce important terminology. Later, we will define privacy referring to prevailing legal  definitions 
and principles that influence architecture‐dependent assumptions in cloud services. With an understanding of 
how cloud systems affect privacy, we will identify common risks to privacy and discuss tools to ensure 
 privacy in the cloud.

Cloud‐based computing architecture consists of one or more service offerings that enable data processing 
over a telecommunications network, and the responsibility for the data primarily resides with, or is at least 
shared with, the cloud consumer. There are a few cloud service models (software, platform, and  infrastructure 
as a service, abbreviated SaaS, PaaS and IaaS, respectively) and deployment models (private,  public, 
 community, hybrid) (Mell and Grance, 2011) that affect privacy risks differently. In Figure 21.1, we present 
an example cloud‐based architecture for an online video rental web site that offers entertainment and instruc-
tional videos for children, adults, and classroom instructors and their students. In this view, the cloud 
 consumer is the video rental web site, which purchases streaming media services from a cloud broker; the 
broker packages other cloud‐based services from cloud providers, such as advertising, payment processing, 
and media content services, into a single composite service. The video rental web site works directly with an 
advertising network that tracks what users watch and their browsing behavior at other web sites, in addition, 
to providing banner advertisements that appear in the user’s web browser. The streaming media service 
 contracts with a separate advertising service that supplies in‐media advertising. In Figure 21.1, personally 
identifiable information (PII) is collected from the users and shared with different services to deliver the 
end‐user experience.
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Travis Breaux1 and Siani Pearson2

1 Carnegie Mellon University, USA
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With respect to data privacy, three important distinctions have been widely accepted that we discuss 
throughout this chapter: personal data, also called personally identifiable information (PII), is any data relat-
ing to an identified natural person, called the data subject; the data controller, which is the entity who 
( perhaps with others) determines the purposes and means of processing personal data; and the data processor, 
which is any entity who processes personal data on behalf of the controller. In Figure 21.1, the video rental 
company, acting as the data controller, collects personal and other data from the data subjects. The company 
further outsources its data processing to third parties, who may then use any number of cloud providers to 
deliver these third‐party services. Generally, outsourcing is assumed to reduce costs while affording compa-
nies the ability to scale processing to meet changing demand. For example, the streaming media services in 
Figure 21.1 rely on third‐party platform and infrastructure services to provide basic operating system and 
hardware to meet video watching demand dynamically. A major privacy challenge, however, is in determin-
ing who is responsible for protecting privacy. Moving across service models from SaaS to PaaS to IaaS, the 
cloud provider has increased control over the data processing and thus takes on increased responsibility; 
however, cloud providers who offer only infrastructure still have access to the data, and thus must implement 
privacy and security controls. The IaaS providers may not know who the end users are or what services are 
being offered, while the design and infrastructure of the cloud are not transparent to the data controllers, yet 
data controllers are primarily responsible for the purposes for which data is used.

Data subjects, whose personal information is
regulated under separate rules in different
jurisdictions (e.g., EU omnibus privacy law covers
all subjects, or COPPA covers children, VPPA
covers all, and FERPA covers students)

Data controller, who is the first-
party data collector for registration
account information and billing
information

Third-party data processors, who receive
information about data subjects, including
video watching habits and interests

Classroom
instructorAdult

Child
under 13 years

Online video
rentals

Infrastructure and
platform providers who
technically have access to
PII, but who do not process
PII specifically to provide
their services

Legend:

Cloud consumer

Cloud broker

Cloud provider

Streaming
media services

Rack hardware
provider

SaaS

PaaS

IaaS

SaaSSaaS

SaaS

SaaS

Third-party data processors
with no direct contractual
obligations to the data
controller, but who are
contracted by the streaming
media services provider;
these processors receive PII
about data subjects

Advertising
network

Windows VM
provider

Media content
supplier

Advertising
network

Payment card
processor

Figure 21.1 Cloud‐based architectures include relationships that may overlap with data privacy relationships: 
this example architecture shows a data subject whose personal data is collected by the cloud consumer and later 
transferred to one or more third‐party cloud providers who go on to store or process the data
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The economies of scale attributed to the cloud that arise from streamlining and co‐locating offerings of the 
same kind of service generally lead to reduced transparency or control afforded to cloud consumers and their 
data once it is stored in the cloud (European Commission, Directorate General of Justice, 2012). Thus, to 
mitigate privacy risks, the cloud provider and consumer must ensure certain privacy practices and principles 
are guaranteed by written contract and by design. In Figure 21.1, the data controller would generally use 
service level agreements (SLAs) to acquire assurances that any direct and indirect data processors are protect-
ing privacy in a manner consistent with the online video rental’s privacy promises to its customers.

Cloud consumers primarily ensure privacy through their contracts with the cloud provider. These contracts 
can include privacy policies, which are typically written for end users, and various service agreements, which 
are broadly written to cover all customers or may be tailored to service offerings personalized for specific 
customers. For small customers, and data subjects in particular, there is often little to no leverage to negotiate 
these contracts, which can expose individuals to increased privacy risk. Thus, data subjects largely depend on 
data controllers to ensure that cloud providers have adequate privacy safeguards and controls. In addition to 
contracts, cloud providers can design their services to provide cloud consumers (and data subjects) with 
increased control over their data. These service contracts and cloud designs can be developed to address 
 specific privacy risks that arise in the cloud, which include:

 ● Where is the data geographically stored and how does this location affect the rights of the cloud consumer 
and the data subjects?

 ● What is the scope of third‐party access to the data (e.g., to what extent can the data be repurposed or data 
mined by the cloud provider or its affiliates)?

 ● What security practices are used by the cloud provider to minimize access and ensure availability, confi-
dentiality and integrity of the data?

 ● How long is the data retained for and how are backups managed? This includes competing rights and 
duties to minimize and prolong data retention.

 ● How is individual consent and access managed by the service? This includes allowing data subjects to 
receive copies of the data under certain conditions, or allowing them to correct erroneous data.

In the second section of this chapter, we will define privacy in three important ways: what are the prevailing legal 
definitions of privacy, what is the difference between privacy and security, and what are the common, high‐level 
privacy principles that drive regulation and the emerging paradigm of privacy by design? In the third section of 
this chapter, we will examine how answers to the above questions affect privacy risk to individuals and provide 
developers with available controls to address some of those risks in part four. With knowledge of the privacy 
risks and controls in mind, there are several tools available to cloud providers, data controllers and data proces-
sors that can be used to help them ensure privacy in their clouds. These tools include mapping Information 
technology (IT) privacy and security controls to their data practices and conducting privacy threat analyses and 
impact assessments. We will describe these tools in more detail in the fourth section of this chapter. In the fifth 
section, we review emerging research results that hold promising, new opportunities for addressing particular 
aspects of privacy in the cloud, such as anonymity, secure storage, and privacy‐preserving information flow.

21.2 What is Data Privacy?

The concept of privacy is multifaceted, pluralistic, and has roots that are well over a century old. A common 
misconception among IT professionals and computer scientists is that privacy is equivalent to data protection 
or confidentiality, which is only one part of what constitutes personal privacy. In the United States, privacy 
scholars frequently begin with the Warren and Brandeis (1890) definition of privacy as “the right to be let 
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alone,” which is complemented by Alan Westin’s (1967) four states of individual privacy: solitude, which is 
experienced by individuals who are separated from the group, free from the observation of peers; intimacy, 
which is the shared experience of a small unit of two or more people; anonymity, which is experienced by the 
individual in public, yet still free from identification and surveillance; and reserve, which is the creation of a 
psychological barrier against unwanted intrusion, including holding back communication. Protecting privacy 
includes ensuring that individuals can obtain solitude, intimacy, and anonymity, while diminishing the need 
for frequent uses of reserve. In practice, individuals engage in reserve when they decide not to use a service, 
or when they filter their communications due to fear of unwanted surveillance. In our example in Figure 21.1, 
customers of the online video rental service may not watch certain videos, or may not share their viewing 
history with friends, if they feel the list could expose them to unwanted attention. Users may engage in 
reserve by fabricating or obfuscating their data to conceal their preferences and avoid exposure.

Brandeis, Warren, and Westin emphasize individual control, which minimally affords a person the ability 
to restrict access to information about him or herself, or to restrict interference with freedom of movement 
and speech. Individual control allows people to explore their identity, make mistakes and build strong  personal 
relationships without the threat of social or political pressure to conform (Cohen, 2000). With respect to the 
cloud, personal freedom and autonomy can be limited in many ways. Inaccurate data can lead to decisions 
that restrict a person’s freedom, such as denying a person credit or denying a person employment based on 
false financial data. Poorly designed privacy settings can lead to unwanted information exposure, in which 
data from an intimate online communication leaks into public spaces. The public reaction could be forced 
isolation or cyberbullying depending on the perception of the data. In cloud architectures composed of third‐
party services, responsibility for reducing threats to privacy may be shared across multiple business relation-
ships but ultimately accountability resides with the data controller. For a taxonomy of privacy harms that can 
arise in information systems in general, see Solove (2010).

Privacy harms have been further characterized by Calo (2010) as either objective harms, which result when 
a person experiences emotional or financial distress due to actual third‐party observations, and subjective 
harms, which occur when the person fears that a revelation can occur without specific knowledge that it has 
or will occur. Subjective harms, which are perceived but unconfirmed, can create the kind of reserve that 
Westin envisions and that Cohen warns could restrict experimentation, innovation, and creativity. Cloud pro-
viders can reduce subjective harms by increasing transparency in their data practices and offering assurances 
to data subjects that their personal data is protected and in their control. In third‐party architectures, these 
assurances must be propagated through to the data subject, as the cloud provider may not have a first‐party 
relationship with the data subject. In cloud‐based services, the lack of transparency, the lack of affirmative 
statements about data protection and the lack of privacy controls can all increase subjective harms when 
 sensitive personal information is collected. In addition to the difficulty in measuring appropriate compensa-
tion for privacy harms, there are different assumptions about whether privacy is a human right (e.g., in the 
European Union) or whether privacy is only a statutory requirement (e.g., in the United States).

Privacy has been tacitly framed as a “subset of security” by some computer security experts. Computer 
security concerns the data properties of confidentiality, integrity and availability, which are ensured through 
functionalities such as authentication, access control, data retention, storage, backup, incident response and 
recovery, among others. Confidentiality is sometimes confused with privacy and assumed to be guaranteed 
through access control and encryption; however, as we discussed above, privacy is only partly about protect-
ing the confidentiality of personal data and can include increasing data subjects’ awareness and control over 
their personal data and avoiding misrepresentation by protecting the integrity of their data. While security 
functionalities can be used to limit unwanted surveillance, security controls alone cannot address the broader 
privacy design challenges: how to determine who should have access (e.g., family, friends, employers, the 
government) and when access can lead to privacy harms (objective or subjective), and how much participa-
tion is appropriate for individuals in the use and disclosure of their personal data.
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As an alternative to relying solely on security controls as a means to implement privacy, system architects 
and developers can rely on standard privacy principles as high‐level guidelines to focus their design decisions 
on privacy. We highlight three prominent standards that contain commonly accepted privacy principles:

 ● the OECD Guidelines on the Protection of Privacy and Transborder Flows of Personal Data enacted in 
1980;

 ● the Fair Information Practice Principles (FIPPs) first articulated in the US Department of Health, Education 
and Welfare report Records, Computers and the Rights of Citizens (1973).

 ● the Generally Accepted Privacy Principles (GAPPs) promoted by the American and Canadian profes-
sional associations for certified public accountants.

Each of these standards is similar, with significant overlap in the kind and number of topics. The OECD 
guidelines underpin most of the world’s data protection laws and serve as an international standard, whereas 
the FIPPs are primarily used in US government and industry self‐regulatory practices. The common privacy 
principles described in these standard are:

 ● notice, or openness: prior to collection, notify individuals about how their personal information will be 
used;

 ● consent: whenever possible, avoid using personal information without first obtaining an individual’s 
 consent;

 ● purpose specification: specify the valid purposes for which personal data will be used;
 ● data minimization, or collection limitation: limit the collection and storage of personal data to minimal, 

necessary purposes;
 ● use and transfer limitation: limit the use and transfer of personal data to those purposes for which it was 

originally collected;
 ● individual participation, or access: whenever possible, allow individuals to access and correct data about 

themselves;
 ● security: protect personal data against unauthorized access and loss;
 ● data quality: ensure data is accurate and up to date;
 ● accountability: implement privacy practices and mechanisms, monitor privacy and take corrective action 

when principles are violated.

There are several challenges that arise when implementing privacy principles in the cloud. In a simple cloud 
architecture, the cloud provider has a first‐party relationship with the data subject, so the provider can more 
easily manage the consumer‐facing privacy principles of notice, consent, and access. This is because the 
cloud provider has “design control” over the cloud service implementation. In more complex architectures, 
however, the cloud provider is a third party and the cloud consumer contracts with the provider to ensure that 
certain privacy principles are properly implemented. While the cloud consumer and data controller are 
responsible for specifying the purposes for which personal data will be used (the purpose specification prin-
ciple), the cloud provider must still implement several principles, such as use and transfer limitation, security, 
data quality and accountability, as appropriate. Moreover, if significant data processing is conducted by the 
cloud provider, such as combining data from other sources, then the cloud consumer may require additional 
control and transparency into the cloud provider’s practices to ensure individual notice, consent, and access 
are consistent with the service implementation. In summary, there can be significant tension between a ser-
vice provider’s desire to offer a set of generic, streamlined services to the largest possible market wherein 
privacy is treated homogenously, and cloud consumers’ desire to customize privacy for their business prac-
tices and first‐party consumer relationships. That said, it is reasonable for cloud providers to tailor offerings 
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with custom IT controls for privacy and security that are appropriate for the kind of personal data being 
processed, whether it be financial, health, retail, and so on.

21.3 Risks to Privacy in the Cloud

Privacy threats differ according to the particular cloud scenario and sensitivity of the data involved. In par-
ticular, the Article 29 Working Party (European Commission, Directorate General of Justice, 2012) highlights 
the loss of control and transparency that results from insufficient information, such as the risks of unauthor-
ized access to personal data, and of vendor lock in and vendor demise. This makes the task more difficult of 
selecting a suitable service with an appropriate risk tolerance from the vast choice of cloud offerings.

As discussed above, reasonable security must be used to protect personal data and many security issues for 
cloud computing may be viewed as privacy issues. These security issues include the difficulties of enforcing 
data protection within cloud service provision systems, lack of security awareness and expertise, and unau-
thorized usage. Indeed, there are a number of security issues for cloud computing, some of which are new, 
some of which are exacerbated by cloud models, and others that are the same as in traditional service provi-
sion models – as considered in detail for example within (Catteddu and Hogben, 2009; Cloud Security 
Alliance, 2011). The security risks depend greatly upon the cloud service and deployment model being used. 
At the network, host and application layers, security challenges associated with traditional IT computing are 
generally exacerbated by cloud computing; they are usually not specifically caused by cloud computing, 
although there are cases where this can arise, such as when security breaches are caused by reducing cloud 
service costs through multitenancy, which is the operation of multiple cloud consumers on the same cloud 
infrastructure. Other new security vulnerabilities within the cloud that can affect privacy include compromise 
of the management interface and hackers using public cloud systems to launch massive attacks.

It could be argued that the fundamental challenges tend to be more about the business model rather than 
the technical issues. In particular, an organization moving to a public cloud is similar to an organization 
deciding to move to an outsourcing arrangement, and the associated complexities, including service‐level 
agreements, vendor lock in, e‐discovery, auditability, and so on, are often more difficult to address than the 
technical challenges, which are generally similar to datacenter security problems (apart from issues associ-
ated with isolation failure, which occur when resource demands of one customer affect another). Many cur-
rent problems are related to immature technology but this is expected to change over time.

Major privacy risks include the following concerns:

 ● Lack of transparency, assurance and accountability, especially within complex cloud service ecosystems 
where it is difficult to assess the adequacy of the cloud provider’s security controls. Although many find 
the management system in the ISO 27001 standard to be appropriate for cloud suppliers, some cloud 
consumers find inadequacies in this standard with respect to security in cloud services as it is not designed 
for a cloud context. This immaturity has been a barrier to the wide adoption of cloud services, but it is 
starting to be overcome, for example with the CSA Open Certification Framework (OCF).

 ● Lack of clear responsibility arises in the division of responsibility within cloud supply chains. There is 
uncertainty about who must ensure that data has been properly destroyed, who controls retention of data, 
how to know that privacy breaches have occurred and how to determine fault and liability in such cases. 
In the case of data deletion, care must be taken to delete data and virtual storage devices, especially with 
regards to device reuse. This division of responsibility is hampered by the fact that cloud application pro-
grammer interfaces (APIs) are not yet standardized.

 ● Lack of trust, in part, is triggered by lack of user control and the fear of unauthorized secondary usage of 
or third‐party access to personal data. For example, government surveillance is a major cloud customer 
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concern, especially after the exposure of two previously undisclosed mass surveillance programs (i.e., the 
PRISM and Tempora programs) that have a connection to cloud computing in that information collected 
by certain US‐based companies about European Union (EU) citizens was made available to the US and 
UK security services.

 ● Regulatory challenges. Cloud computing involves environments with data proliferation and global, dynamic 
data flows that create compliance challenges when meeting complex regulatory requirements and uphold-
ing privacy rights. Cloud computing faces the same privacy issues as other service delivery models but it 
can magnify existing issues, especially transborder data flow restrictions, liability and the difficulty in 
knowing the geographic location of data processing and which specific servers or storage devices will be 
used. Individual data subjects’ rights to access data and consent management are often not adequately 
addressed within cloud service provision, and the resulting threats to privacy are especially an issue when 
combined with big data analytics. Indeed, big data predictive analysis techniques can produce personal data 
by making inferences based on observational behavior that might be very sensitive and even damaging – for 
example, leading to discrimination. At present, these analytics are not protected by data protection meas-
ures in their current form and the data subjects may not even be aware that this is happening.

In addition to the above risks, see Ko et al. (2012) for a survey of cloud failures that can impact privacy, from 
insecure APIs to data loss and hardware failure. Within a cloud ecosystem, issues from one cloud provider 
may have ramifications further upstream in a supply chain, for example, in terms of loss of governance. Loss 
of governance may arise as the cloud consumer cedes control to the cloud provider and service level agree-
ments do not offer the level of commitment necessary to provide critical security services on the part of the 
provider, thus leaving a gap in security. There are many ways in which there can be data loss or leakage 
involving IaaS, PaaS and SaaS providers due to security gaps.

21.4 IT Best Practices for Addressing Privacy

Information technology (IT) best practices have emerged to support privacy, including privacy impact assess-
ments (PIA), privacy risk analysis, IT control sets and mappings, and model contract language to comply 
with the EU Data Protection Directive. These practices aim to address privacy across the data lifecycle, from 
data collection, use, retention and transfer to destruction. Standard security techniques should be leveraged to 
achieve privacy: not only mechanisms for confidentiality of information (e.g. using encryption in transit) and 
integrity provision (e.g. using digital signatures) but also access control, identity management, incident man-
agement and data breach notification, among others (Cloud Security Alliance, 2011).

Accountability can be further supported through the use of auditing mechanisms, to create a high integrity 
record of who had access to the data, at what times, and for what purposes. Among technical measures, cloud 
consumers may utilize private or virtual private clouds, anonymization, encrypted storage and just‐in‐time decryp-
tion, among others (Mowbray and Pearson, 2012). With encrypted storage, current best practices recommend 
that the cloud consumer retain the encryption keys as opposed to letting these keys reside with the cloud provider. 
In addition, PaaS and SaaS providers can partition data to reduce the risk that one service can gain access to 
the data of another service, which is a multitenancy issue. Overall, these practices and measures target different 
stages of the software development lifecycle and can be used to ensure privacy in the cloud to varying degrees.

The PIA can be used as an audit tool from the early design stage of requirements and architecture to well 
after deployment. The typical PIA consists of a list of questions that a privacy analyst completes through 
interviews with key stakeholders, including IT managers, IT administrators, developers and users, or anyone 
with knowledge of the low‐level technical design and operations of the system. Typical questions are designed 
to map the privacy principles, such as the OECD guidelines and Fair Information Practice Principles, onto the 
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system as well as to identify all the relevant information flows within the system and to connecting systems. 
Example questions include:

 ● What is the purpose of the system? This includes for what business practices and other activities the sys-
tem will be used (e.g., processing employee timecards, payroll and benefits, or processing retail sales 
transactions).

 ● From whom and to whom does the system collect, use, retain and disseminate information? This includes 
internal and external actors or systems that communicate with the system under assessment, such as third 
parties.

 ● What kinds of information about individuals can be collected, created, and retained? This includes infor-
mation stored in databases as well as log files and appropriate references to those locations.

The PIA is a starting point for conducting the privacy risk analysis that consists of four basic elements (dif-
ferent names may be used in other risk models): the privacy threat, which is an agent or activity that can 
exploit a privacy vulnerability; exploited vulnerabilities can lead to privacy harms of individuals, who are 
typically data subjects; and the response taken by the data controller or processor to avoid, transfer, mitigate 
or accept the risk. For example, a company’s act to share their customer purchase histories with a third party 
is a vulnerability, if the third party should repurpose the information to conduct analysis that reveals a medi-
cal condition of an individual (the threat). If the third party uses this revelation to market to the individual in 
ways that further disseminate knowledge of the medical condition to others, then the individual would suffer 
an exposure, which is a kind of privacy harm. Solove (2010) introduces several privacy harms that can be 
used to identify this and other privacy risks.

Responding to risks may include a combination of administrative and technical controls. Administrative 
controls include policy decisions, such as appointing a chief privacy officer or privacy manager, conducting 
routine privacy training and audits (e.g., PIAs), or ensuring policies enforce the least privilege principle. 
Technical controls include steps to implement software and hardware‐based measures, such as using access 
control and encryption to reduce unwanted disclosure, or reducing the retention of personally identifiable 
information by sanitizing log files. The US National Institute of Standards and Technology publishes a pri-
vacy control catalogue in Appendix J of Special Publication 800‐53, Revision 4. This catalogue includes 
several administrative and technical controls that are common best practices in privacy. In addition, the NIST 
guidelines provide a broad overview of best practices for addressing privacy in public cloud computing 
(Jansen and Grance, 2011).

As part of their larger compliance program, many companies maintain control mappings between their 
system requirements, business practices, privacy laws and international standards, such as the ISO 27002, 
which include security techniques for security management. Privacy laws vary widely: the EU has established 
an omnibus privacy law, which covers any personal data, whereas the United States employs a patchwork of 
laws that separately cover specific information types or industries (Gellman, 2009). Security standards and 
control mappings may be reused to implement a subset of privacy (i.e., use limitation through access control, 
or accountability through logging access to personal data); however, as we discussed above, privacy is much 
broader than security and requires a specific focus on those privacy harms that are relevant to a particular 
cloud‐based service to identify the most appropriate response. Consider the following requirements REQ‐47 
and REQ‐48, which restrict access to data in a fictional cloud‐based service:

REQ‐47: The system shall restrict uses of personal data to only those purposes for which the information was collected

REQ‐48:The system shall not retain customer transaction data longer than 60 days, unless required by subpoena 
or court order



Ensuring Privacy in Clouds 263

The cloud designer can map these requirements to relevant privacy laws and standards and record these 
mappings in matrices similar to the example in Table 21.1. These matrices complement the traditional require-
ments of trace matrices that are normally used in software development to trace requirements to software and 
hardware specifications.

In addition to control mappings, privacy analysts can preserve the rationale that they used to justify the 
mapping. Table 21.2 presents an example rationale to justify the mapping between REQ‐48 and the GAPP 
5.2.1 control and the SCA legal requirement from Table 21.1.

In addition to privacy controls and trace matrices, companies may use model contract language to govern 
information flows to third parties, such as between a data controller and a data processor (European 
Commission, 2015). Model contracts are used as one mechanism to meet the adequacy standards under the 
EU Data Protection Directive for transfers of personal data outside the EU and are an alternative to US Safe 
Harbor membership. An alternative approach to model contracts is to use binding corporate rules (BCRs), 
which were adopted by the Article 29 Working Party – the body that defines data protection rules in Europe – 
by which a corporate group can ensure adequate protection for transfers of personal data between EU and 
non‐EU group members in compliance with the EU Data Protection Directive. The BCRs comprise a binding 
internal agreement or contract that obligates all legal entities within a corporate group who have access to EU 
personal data to adhere to all obligations of the EU Data Protection Directive, including evidence of support-
ing measures to ensure compliance. Both data controllers and data processors that participate in a corporate 
group may use BCRs to comply with the directive. Without BCRs and due to transborder data flow restric-
tions, it is often necessary to use many different model contracts (up to several hundred contracts in a single 
cloud configuration), which can be cumbersome: each contract can require 1–6 months to establish, and they 
must be maintained during the entire lifetime of data processing. Hence, while model contracts afford certain 
benefits, they are not well suited to global and dynamic business environments. The Asia‐Pacific Economic 

Table 21.1 Example control matrix that maps privacy laws and standards to system requirements

Privacy laws and standards REQ‐47 REQ‐48 …

Data minimization
NIST SP 800‐53, App. J, DM‐2 Data Retention and Disposal X
OECD Use Limitation Principle X X
GAPP 5.2.1 Use of personal information X X X
Government access
Stored Communications Act (SCA) U.S.C. §2704 (a)(1) X
Gramm‐Leach‐Bliley Act (GLBA) §313.15(a)(4)

Note: Itemized controls appear along the left‐hand side, while requirement identifiers appear along the top; where a control maps to a requirement, 
an “X” appears in the matrix.

Table 21.2 Example trace link from a source requirement to a target control

Source Target Rationale description

REQ‐48 GAPP 5.2.1 The GAPP 5.2.1 provides an exception for any disclosure that is required by 
law or regulation

REQ‐48 SCA  
§2704(a)(1)

An administrative subpoena can be used to require a company to preserve 
backups for an extended period of time

Note: Each link includes the appropriate references and a rationale to explain why the requirement supports the target control.
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Cooperation (APEC) adopted a similar approach to BCRs in what are called Cross‐Border Privacy Rules 
(CBPRs). More broadly, there is ongoing development of privacy and security certification for cloud service 
providers to help cloud consumers with the selection process.

21.5 Recent Research in Privacy

Research in data anonymity, secure storage and information flow modeling may hold promise for protecting 
personal privacy in future cloud services. Sweeny introduced k‐anonymity, which is an algorithm for deter-
mining whether a person described in a dataset can be distinguished by at least k‐1 other individuals also 
described in the dataset (Sweeney, 2002). The algorithm makes several assumptions that have been  challenged 
and further improvements have been proposed, such as l‐diversity (Machanavajjhala et al., 2007) and t‐closeness 
(Li et al., 2007). These early approaches all seek to address a common threat to privacy in databases, which 
is the use of auxiliary information known by an attacker to reidentify previously anonymized records. In k‐
anonymity, for example, Sweeny shows that a public voter registration database can be used to reidentify 
patient diagnoses, procedures, and medications from an anonymized health database. More recently, Dwork 
proposed differential privacy, which is based on statistical databases and aims to provide statistically accurate 
answers to database queries without releasing information that is specific to any one individual (Dwork, 
2006). In other words, the answer is statistically the same, regardless whether any one individual’s personal 
information were removed from the database. Each of these approaches is computationally intensive; 
 however, practical implementations are possible for datasets with specific characteristics.

Protecting data in the cloud often begins with encryption, such as full disk encryption and encrypted net-
work connections using the secure socket layer (SSL). Gentry (2009) proposed an implementation of homo-
morphic encryption as an alternative to full disk encryption, which is the ability to perform queries on 
encrypted data without decrypting the data. At present, homomorphic encryption is computationally 
 impractical for many applications. Alternatively, Song et al. (2012) argue for a comprehensive approach that 
integrates access control, key management, and audit logs into a single, reusable, and scalable cloud service. 
If encryption is still desirable, however, Stefanov and Shi (2013) discovered an oblivious RAM protocol that 
allows a cloud consumer to store sensitive data across multiple, noncolluding clouds in a way that is confi-
dential, asynchronous, distributed, and scalable. The approach relies on shuffling storage blocks in a 
 seemingly random pattern so that the cloud provider cannot infer which blocks correspond to what type of 
data or how the data is being used. This approach has been evaluated using Amazon E2 cloud services to 
demonstrate its practical feasibility.

As discussed above, accountability in practice often begins with privacy impact assessments and mapping 
privacy laws and standards to system requirements. Researchers have sought to formalize related dimensions 
of accountability to prove privacy guarantees for a system. Contextual integrity was first described by Helen 
Nissenbaum as a means to align the flow of personal information with acceptable norms (Barth et al., 2006). 
For example, patients are likely comfortable sharing their medical information with their doctor and her 
assistants for the purpose of diagnosing an illness but they would be less comfortable sharing this information 
with an employer. Barth et al. (2006) formalize contextual integrity in temporal logic in the form of allow and 
deny rules, similar to role‐based access control, with the aim of proving that data is not shared in violation of 
stated norms. In cloud services, a significant challenge arises because individual service providers have little 
access to third‐party practices. Breaux et al. (2013) introduce a formal language based on description logic 
for specifying privacy requirements governing data collection, use and transfer that can be used to trace data 
flow across multiple services and check whether third parties are repurposing data solely through the use of 
these specifications (Breaux et al., 2013). This approach protects the confidentiality of third‐party practices 
but allows developers to identify potential conflicts needed to take corrective action.
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21.6 Conclusion

In this chapter, we introduced the topic of ensuring privacy in the cloud. Emerging privacy challenges largely 
depend on the type of cloud architecture (service and deployment model) used and the relationship between the 
cloud provider and consumer, and the roles of data controller, data processor, and data subject. Evaluating how 
well a particular cloud configuration and implementation addresses privacy depends on prevailing definitions of 
privacy, which go beyond traditional notions of confidentiality, which is commonly found in security. In addi-
tion to controlling who has access to our personal data, privacy includes the ability to isolate oneself and control 
one’s image, to freely express one’s opinions and develop a sense of identity without unwanted intrusions or fear 
of surveillance or other forms of exposure. To simplify matters, cloud providers may rely on established privacy 
principles, such as the OECD guidelines, which provide general guidance in developing privacy‐preserving data 
practices. While these principles have been relatively timeless, the cloud introduces specific risks that must also 
be considered, such as lack of transparency, accountability, responsibility, and trust, and the complex regulatory 
environment that arises from geographically distributing data processing across multiple jurisdictions. Lack of 
customer trust and regulatory complexity in global business environments are difficult issues to tackle because 
of the underlying complexity across multiple dimensions of cloud computing and the interdisciplinary nature of 
the problem (i.e., legal, IT systems, security). While location matters from a legal point of view, data processing 
and data flows are dynamic, global, and fragmented: there are restrictions about how information can be sent 
and accessed across boundaries, but in cloud computing data will flow along chains of service providers both 
horizontally between SaaS providers and vertically, down to infrastructure providers, where the information can 
be fragmented and duplicated across databases, files and servers in different jurisdictions. Finally, we briefly 
described several IT best practices that can be used to align one’s system requirements with privacy laws, stand-
ards, and guidelines, and we briefly surveyed emerging research in privacy.
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22.1 Introduction

The requirement to ensure security and compliance of systems and processes has become an important 
consideration when leveraging information technology for business operations. Violations of compliance 
requirements can have serious consequences, including legal and contractual penalties, loss of business 
growth, and loss of reputation among customers.

Ensuring and managing compliance is a complex multidisciplinary challenge (Rath and Sponholz, 2009). 
It incorporates the management of, for example, general legal regulations, IT‐specific standards and plan-
ning, and management of business processes within a company. We will provide an overview of general as 
well as IT‐related compliance and security regulations in section 22.2.

Cloud‐based services have seen a rapid growth in popularity in recent years. The cloud has significant 
potential in terms of increased efficiency of IT administration while reducing costs. Nevertheless, many com-
panies are reluctant to outsource existing services to cloud providers, largely due to the concerns regarding 
security and compliance issues. In this chapter, we address these concerns and introduces the concept of 
certificates as a means to evaluate service providers with respect to their compliance.

22.2 IT‐Related Compliance

The term “compliance” is not specific to the information technology (IT) context, and can be defined dif-
ferently depending on the way it is approached. In its broadest sense, it means adherence to regulatory 
specifications of any kind.
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From a commercial perspective, the frequently encountered financial and accounting issues related to 
compliance requirements are predominantly from the Sarbanes‐Oxley Act (SOX) and the Gramm–Leach–
Bliley Act (GLB). Such regulations do not address information technology aspects directly but IT plays an 
important role in providing the necessary means to implement the requirements (Herrmann, 2007).

In addition to these general requirements, businesses in some domains are subject to specific regulations, 
like the Health Insurance Portability and Accountability Act (HIPAA) for the healthcare domain.

As per the general definition, “IT compliance” means the implementation and operating of IT systems 
according to the relevant regulations. Those might be the general requirements mentioned above if information 
technology is used in their implementation, or IT‐specific regulations, for example regarding security aspects.

The IT compliance regulations that have recently seen a significant rise in public awareness are those con-
cerning data privacy. These regulations are a complex field in themselves, as they strongly depend on the 
jurisdiction where IT infrastructure is located, which can lead to inconsistent or even conflicting require-
ments (Mather et al., 2009). The dynamic nature of the physical distribution of data in cloud computing 
environments further complicates this problem.

IT‐relevant compliance regulations can be divided into four groups, depending on their scope and issuer 
(Strasser and Wittek, 2012):

 ● Legal regulations and laws, issued by a public authority, which have an effect on IT. Typically, the regula-
tions in this category concern IT aspects only indirectly, like the Sarbanes–Oxley Act mentioned above.

 ● Contracts with suppliers or customers, either concerning IT aspects explicitly, or merely influencing them.
 ● Internal regulations, issued by the company itself. This includes procedures and regulations established in 

order to meet external requirements. For example, creating and deploying a policy for the use of pass-
words is a compliance requirement in implementing the information security standard ISO 27002. Many 
companies define their own ethical codes as a high‐level orientation for their personnel.

 ● External regulations, such as standards and best practices, which were not issued by an official legislative 
authority. Examples are standards by the ISO and equivalent organizations. The significant compliance 
regulations related to security standards and certificates are discussed in section 22.4.

22.3 IT‐Compliance in Cloud Environments

Cloud services can be considered as an additional layer on top of a classic IT infrastructure. This means that 
compliance and security for clouds can only be achieved if the underlying systems are compliant and secure in 
themselves. Compliance, especially when it comes to personally identifiable information (PII), is in many cases 
concerned with the restriction of access to certain types of data. In cases where an attacker can gain control over 
the systems processing the data, the attacker can access any cloud software running on them directly and the 
restrictions cannot hold. This implies that information security is an important prerequisite for IT‐compliance.

The extra layer introduced by cloud software can also raise new issues regarding compliance, some of 
which will be presented in this section.

In order to achieve compliance, it is necessary to define clearly the kind of data that is processed by the 
service, who is allowed to access them, and for what purposes. With cloud service providers, and possibly 
even more subcontractors, more stakeholders are involved in storing and processing data, leading to an 
increased need to define and enforce rules regarding ownership and accountability of data.

In general, it is the cloud customer’s responsibility to make sure that data is handled in an appropriate way. 
A cloud service provider (CSP) often does not even have enough knowledge about the kind of data stored and 
processed by its customers to determine which compliance regulations are applicable (Golden, 2010). It is 
therefore not realistic to expect the CSP to offer a guarantee for compliance, or take responsibility for it.
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To ensure that a cloud service provider is sufficiently reliable to be chosen, it is generally necessary for the 
customer to thoroughly evaluate the level of compliance and security the CSP offers. But in most cases, the 
actual systems of the provider are inaccessible for the end user, and thus cannot be assessed by him directly. 
The dynamic nature of resource provisioning in cloud concepts makes assessments by individual customers 
even more impractical. Furthermore, the CSP that the customer interacts with might work with even more 
subcontractors. For example, a common business model is for providers of SaaS solutions to host their services 
on systems that are themselves rented from an IaaS provider.

From the customer’s perspective, one of the benefits of the cloud concept is flexibility in choosing the 
provider, which contrasts with the need to invest much effort into assessing individual cloud providers for 
their respective compliance levels.

Both problems can be mitigated by the use of certificates for approved compliance standards, as discussed 
in the next section.

In cloud environments, compliance issues arise from the physical locations of servers, which could be 
opaque to the end user. Especially for data privacy regulations, physical locations of servers play an important 
role. Inappropriate locations can violate certain requirements in themselves, but can also lead to more regula-
tions becoming applicable. Again, this problem is intensified when subcontractors are involved, whose data-
centers’ locations might not be known or restricted appropriately. A common way to handle this concern is to 
define acceptable locations or regions in the SLA of the particular service explicitly.

So far, we have considered a number of reasons that complicate security and compliance management in 
cloud environments. The implication would be that staying with the traditional model of internal IT infra-
structure (or at most a cloud following the private cloud deployment model) is the superior approach. This is 
not necessarily the case.

Maintaining security and compliance for any IT environment is a challenging, time‐consuming, and thus 
expensive task. Neglecting this task, for example by not being able or willing to provide the resources neces-
sary, generally leads to insecure systems.

On the other hand, the cost scales well with larger systems: the bigger the IT infrastructure, the more effi-
ciently security can be handled. This is the point where cloud concepts can lead to a gain in security and 
compliance. By offering similar setups to a number of customers, a cloud service provider can develop and 
apply a sophisticated security concept to a (possibly large) number of systems in a standardized way.

Whether using a cloud service will lead to an increase or decrease in security strongly depends on the 
actual case at hand. In particular, the question of which requirements have to be met at all strongly depends 
on the way a customer would use the services.

22.4 Security Standards and Certificates

Within the context of information technology, and especially regarding information security and compliance, 
certificates are an established mechanism to create trust between a provider and its (potential) customers.

Note that in the field of information technology, the term “certificate” is ambiguous. In this article, we use 
it to mean a way to assure compliance with a given regulatory standard. We use it neither in its cryptographic 
context, nor as a proof of personal qualification.

For cloud computing, the concept of certificates can be used to mitigate some of the problems that arise in 
terms of IT compliance. In most cases, a customer has little to no opportunity to examine the cloud service 
provider’s facilities or its business processes thoroughly. Nevertheless, he is responsible for choosing a pro-
vider that offers a sufficient level of security and compliance. An appropriate certificate can be a way to offer 
the trust needed.
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Obtaining a certificate can also be beneficial for the CSPs themselves, despite the substantial effort involved 
on their part. By obtaining a certificate, they can avoid discussing their security measures with each individual 
customer and also eliminate the need to disclose confidential internal details, or data of other customers, in 
order to provide assurance of security levels (Mather et al., 2009).

Certificates can even be a prerequisite for using a service for specific business activities at all. A prominent 
example is the Payment Card Industry Data Security Standard (PCI DSS) that every company has to imple-
ment in order to be allowed to process credit card payments (PCI Security Standards Council, 2013).

Certificates can roughly be distinguished with regard to their domains:

 ● general information security standards and certificates;
 ● cloud‐specific certificates;
 ● domain‐specific certificates.

The distinction cannot always be clearly drawn, one reason being that cloud services are based on traditional 
IT infrastructure, as described above, and must thus adhere to general security requirements. Which standards 
are relevant for a CSP or its customers depends on the intended use. Some examples for the different catego-
ries will be given below.

22.4.1 General Information Security Standards and Certificates

Most regulations and standards for information technology systems are not specific to cloud environments, 
but are relevant to the IT systems they are based on. Probably the most commonly acknowledged standards 
are those of the ISO 27000 series, which cover different aspects of information security. ISO 27001 describes 
how an information security management system (ISMS) can be established (ISO/IEC, 2013). It also includes 
a set of controls that can be implemented in order to mitigate risks for an IT system; those controls are further 
detailed in standard ISO 27002.

Certification according to ISO 27001 is a common requirement for a provider to guarantee an adequate 
level of security. It is issued by accredited third‐party certification bodies (ISO/IEC, 2014). How audits are to 
be performed is specified in a separate standard, ISO 19011 (ISO/IEC, 2011).

22.4.2 Cloud‐Specific Standards and Certificates

As discussed above, using the cloud computing model for outsourcing of IT resources imposes additional 
concerns regarding security and compliance. In order to open up its possibilities, nonetheless, several organ-
izations have proposed a number of cloud‐specific standards. For some of those standards, corresponding 
certificates can be issued.

22.4.2.1 FedRAMP (Federal Risk and Authorization Management Program)

In line with the Federal Cloud Computing Strategy, US federal government agencies use cloud comput-
ing resources to reduce costs for IT services. The FedRAMP standard is intended to define a consistent 
level of information security for cloud service providers that is sufficient for federal agencies to use 
these services in particular applications (Figliola and Fischer, 2014). Compliance with FedRAMP has to 
be evaluated by an accredited third‐party assessment organization (3PAO) (US General Services 
Administration, 2014).
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22.4.2.2 Security, Trust and Assurance Registry (STAR)

The Cloud Security Alliance (CSA) has developed STAR to establish a registry of cloud service providers 
that offer specified levels of security. STAR defines three stages of certification, based on the Open 
Certification Framework, which has also been developed by the CSA (Cloud Security Alliance, 2014):

 ● STAR Entry – Self Assessment: providers answer a questionnaire, which is then published by the CSA.
 ● STAR Certification: the certification is granted by a third‐party assessment organization (3PAO); the nec-

essary criteria are based on those needed for an ISO 27001 certificate.
 ● STAR Continuous: the third stage requires a continuous monitoring of the CSP’s security, based on the 

CSA Cloud Trust Protocol (CTP).

22.4.2.3 Cloud‐Specific ISO Standards

In addition to the general security standard ISO 27001, several cloud‐specific standards are currently under 
development:

 ● ISO 27017: Information Technology – Security Techniques – Code of Practice for Information Security 
Controls for Cloud Computing Services based on ISO/IEC 27002.

 ● ISO 27018: Information Technology – Security Techniques – Code of Practice for PII Protection in Public 
Cloud Acting as PII Processors.

 ● ISO 27036‐4: Information Technology – Information Security for Supplier Relationships – Part 4: 
Guidelines for Security of Cloud Services.

These documents are not redundant to other standards of the ISO 27000 series but extend those by cloud‐ 
specific controls.

22.4.3 Domain‐specific certificates

For some domains, there exist specific standards that any company has to implement and verify in order to 
act in that field. If a cloud customer intends to use a cloud service provider to perform such tasks, or the CSP 
plans to offer services directed at such a domain, those certificates have to be established.

A common example is the Payment Card Industry Data Security Standard (PCI DSS), which is required 
for systems that handle credit‐card transaction data.

Similarly, US companies involved in the healthcare domain have to adhere to the Health Insurance 
Portability and Accountability Act (HIPAA).

22.4.4 Examples of Certificates offered by Cloud Service Providers

This section gives an overview of the current situation of popular cloud service providers regarding the infor-
mation security and compliance certificates they offer. We focus on those certificates that have been presented 
in the previous sections.

Note that even though a CSP might meet the requirements of a specific standard, this does not imply that 
every usage of those services is secure and compliant as well. As mentioned in section 3, and stressed by the 
CSPs themselves, certification only relates to the underlying infrastructure and services. Determining whether 
a given service is compliant to use for a specific purpose is still the responsibility of the cloud user.
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When choosing a CSP based on required certification, a customer also has to pay attention to the scope of 
the certificate. Cloud service providers commonly offer a number of different services. Issued certificates do 
not necessarily include every one of these services; their scope can instead be restricted to a subset.

In the following paragraphs, we will take three popular providers of IaaS products as examples: Amazon 
AWS, Microsoft Windows Azure and Google Compute Engine.

Security management, according to ISO 27001, can be regarded as a basic requirement that is fulfilled for 
the underlying infrastructure of any of the major providers.

All three services also claim to be compliant for healthcare applications subject to the HIPAA standard, 
although an additional contract in the form of a “business associate agreement” (BAA) has to be signed.

For FedRAMP, CSA STAR Audit and PCI DSS, only the services provided by Amazon AWS and Microsoft 
Azure have been certified. For STAR, both providers have been certified for the first‐stage “STAR Entry – 
Self Assessment.” For PCI DSS, both have been certified for the highest level 1, sufficient for merchants 
processing more than 6 million payment transactions per year.

22.5 Conclusion

Identifying the relevant regulations for a given business case and fulfilling the requirements is a complicated 
task for classic IT systems. The nature of cloud deployment models adds further difficulties:

 ● More stakeholders are involved, whose responsibilities have to be evaluated and defined. This not only 
concerns providers directly interacting with the customer but also includes potential subcontractors.

 ● Actual physical locations of servers and data matters a lot but become harder to determine, verify or 
restrict to allowed regions. This can lead to the violation of compliance requirements, especially concern-
ing data privacy.

 ● The cloud provider’s datacenters are generally inaccessible for customers, so they cannot examine its 
level of security.

On the other hand, using the experience and resources a cloud service provider can offer for establishing 
security and compliance can lead to an increase in security with little effort from the customer.

By establishing adequate approved certificates, it is also possible at least to mitigate the problem of not 
being able to access the provider’s facilities. Instead of every customer having to assess a CSP separately, a 
single certification body asserts that the necessary measures are implemented to ensure an appropriate level 
of compliance and security.

Most of the existing standards make no assumptions about the computing model of the IT infrastructure 
used. Several cloud‐specific standards have been developed, and more are currently under development. 
Nevertheless it is still the task of cloud customers to determine which requirements have to be met for their 
particular applications, and choose appropriate cloud service providers.

Additional Resources

Resources by Cloud Service Providers

Amazon and Microsoft give broad overviews of a number of compliance requirements for their AWS and 
Azure products, respectively, some of which have been described in this article:

http://aws.amazon.com/compliance/ (accessed December 22, 2015).
http://azure.microsoft.com/en‐us/support/trust‐center/compliance/ (accessed December 22, 2015).
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Information for the Google Compute Engine is part of the listed features of the product:

https://cloud.google.com/products/compute‐engine/ (accessed December 22, 2015).

Security and Compliance Standards

ISO 27001 series:

http://www.iso.org/iso/home/standards/management‐standards/iso27001.htm (accessed December 22, 2015).

FedRAMP, and the NIST standard 800‐35 it is based on:

http://cloud.cio.gov/fedramp (accessed December 22, 2015).
http://csrc.nist.gov/publications/PubsSPs.html (accessed December 22, 2015).

CSA STAR certification and the registry of participating cloud service providers:

https://cloudsecurityalliance.org/star/certification/ (accessed December 22, 2015).
https://cloudsecurityalliance.org/star/#_registry (accessed December 22, 2015).

Payment Card Industry Data Security Standard (PCI DSS):

https://www.pcisecuritystandards.org/security_standards/ (accessed December 22, 2015).
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23.1 Introduction

Capacity management is a process used to manage the capacity of IT services and the IT infrastructure. Its 
primary goal is to ensure that IT resources (services and infrastructure) are right‐sized to meet current and 
future requirements in a cost‐effective and timely manner.

Capacity planning is the subactivity within capacity management that determines the optimal capacity of 
resources while capacity management is the complete management process including monitoring the perfor-
mance, estimating the capacity and triggering the reallocation of resources, amongst other things. In the  literature, 
capacity management and capacity planning are frequently used interchangeably.

In traditional computing environments, resources have to be purchased in advance, which may lead to 
over / underprovisioning. With the revolutionary promise of computing as a utility, cloud computing has the 
potential to transform the way IT services are delivered and managed. Indeed, cloud computing is a model 
for providing ubiquitous, convenient, on‐demand network access to a shared pool of configurable computing 
resources that can be rapidly provisioned and released with minimal management effort. As a consequence, 
resources can be seamlessly and dynamically requested / released to face demand spikes / lulls while main-
taining the required level of quality of service (QoS), usually formalized by service level agreements (SLAs).

Capacity management makes sure that adequate resources are available for the business at the right time 
and at optimal cost. With respect to the time resources should be added / released, capacity management can 
be conceived in three ways: (i) reactive, (ii) proactive, or (iii) hybrid. According to the last values obtained 
using a monitoring service, reactive solutions manage on‐the‐fly the capacity whereas proactive solutions 
predict future demand to plan the capacity. Hybrid solutions combine reactive and proactive approaches.
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Thanks to the on‐demand service‐provisioning model of cloud computing, capacity management can be 
achieved using a simple capacity‐planning method by allocating / releasing resources based on a set of rules 
and conditions previously defined, (e.g., Amazon Auto Scaling). However, doing it right, in a way that respects 
SLAs while minimizing service cost is not a trivial task because several parameters should be taken into 
account such as multiple resource types (e.g., physical / virtual machines), nonignorable resource initiation 
time and billing model granularity (hourly, daily, monthly, etc.). For that purpose, effective capacity planning 
may require the combination of several solutions out of different domains. For example, it may be necessary 
to rely on more theoretical models (such as queuing theory or reinforcement learning) to profile services’ 
performance. Based on those models, operational research techniques can be applied to find optimal solutions 
so that the costs are minimized.

This chapter presents a comprehensive overview of capacity planning and management for cloud computing. 
First, we state the problem of capacity management in the context of cloud computing from the point of view 
of several service providers. Next, we provide a brief discussion about when capacity planning should take 
place. Finally, we survey a number of methods for capacity planning and management proposed by both 
practitioners and researchers.

23.2 Problem Statement

The cloud architecture is usually composed of several XaaS (Anything as a Service) layers and SLAs are 
characterized at various levels in this stack to ensure the expected QoS for different stakeholders. In 
Figure 23.1, any cloud layer, except the end user, plays a provider‐consumer role: it is a provider for the upper 
layers and a consumer for the lower layers. Its main challenge is to maintain its consumers’ satisfaction while 
minimizing the service costs due to resource costs and SLA penalties (if there are violations of the SLA).

Web Web

SaaS

PaaS

Energy provider, ...

C
ap

ac
it

y 
m

an
ag

em
en

t

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

IaaS

SLA

Web

End user

SLA SLA

SLA

SLASLASLA

Figure 23.1 Cloud layered architecture
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Capacity management can be seen as a generic problem and thus can be applied at each layer of the cloud 
stack. For instance, the energy provider aims to provide as much energy as required by its clients while 
minimizing the costs due to distribution and storage. The objective of IaaS providers is to allocate physical 
resources requested by their clients in the form of virtual resources in a way to maximize the availability and 
throughput and minimize costs due to energy consumption. The aim of SaaS providers is to adjust the amount 
of virtual resources needed to cope with varying workloads (from end users) to maintain the required level of 
response time and availability.

In this chapter, to better understand capacity planning and management in the context of cloud computing, 
we only focus on the SaaS layer, although the same ideas may be applied to services at other layers. We con-
sider a Web application as an example, whose architecture consists of three tiers: one for load balancing, one 
for computing, and one for storage. In order to offer services with different QoS levels (e.g., for gold, silver, 
or bronze clients), the SaaS provider proposes several SLAs to its clients based on response time, availability, 
and financial cost. The objective of the SaaS provider is to determine the optimal capacity (number of 
instances) that meets SLAs at optimal cost.

For the SaaS provider, this raises the following questions:

 ● When should capacity planning and management take place? Should the process of allocating / releasing 
resources react to the recent past rather than anticipate the future? There are three main approaches: reactive, 
proactive, and a hybrid one.

 ● How should resources be adjusted? There are two main categories for scaling resources: (i) vertical scaling, 
also described as scale up, typically refers to resizing existing resource instances such as CPU, RAM, Disk, 
and (ii) horizontal scale, or scale out, usually refers to adjusting the number of instances.

 ● How many resources are needed to meet demand (i.e., workload requests)?
 ● What is the target resource? Storage instances, compute instances, balancer instances, and so forth? For 

the sake of simplicity, we focus only on the capacity of compute instances.

Later in this chapter, we illustrate how you can answer these questions.

23.3 When Should Capacity Planning and Management Take Place?

Capacity management is the process tasked with defining the capacity of a system, to meet changing demands, 
at the right time and at optimal cost. In order to calculate the capacity plan, we distinguish two main approaches: 
we either react when changing demands arise, or anticipate these demands. In this regard, capacity manage-
ment can be implemented in three ways: (i) reactive, (ii) proactive, or (iii) hybrid (a mix of the previous 
approaches).

23.3.1 Reactive

This kind of capacity management is performed in reaction to events (e.g., if workload exceeds a threshold 
value), and involves taking decisions on the amount of resources based on the system state and monitoring 
data from the environment. The cloud computing provisioning model suits this approach very well because 
it enables on‐demand and rapid resource allocation so as to adjust the capacity while respecting SLAs. This 
approach can be designed and implemented easily when decisions are taken based on monitored perfor-
mance metrics and predefined policies. In that case, monitoring systems, event‐condition‐action rules, 
vertical / horizontal scaling make up the standard toolbox (such as Amazon Auto‐Scaling) to implement 
capacity management. However, it may be difficult to recognize oscillating and / or unstable phases and 
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hence to avoid the “ping‐pong effect” while requesting / releasing resources that are not desirable due to a 
non‐negligible instance initiation time (ranging from a few seconds to several minutes). In addition, as early 
resource reservations generally cost less than on‐demand ones, proactive capacity management could plan 
capacity better in terms of financial cost.

23.3.2 Proactive

Proactive approaches can be used to predict future demands in order to overcome issues that may be raised 
by the reactive approach. We distinguish three categories: (i) cyclic: periodic demand that occurs at fixed 
interval (daily, weekly, monthly, quarterly, etc.), (ii) event based: demand due to a scheduled business event 
(new product releases, marketing campaigns, and so forth), and (iii) prediction based: use past history to 
predict future value of demand.

The later one needs a prediction method. Time‐series analysis (Box and Jenkins, 1994) offers a number of 
methods to predict values at certain specific future times (prediction interval) based on a set of previously 
observed values (prediction window). A time series is a sequence of data points, typically measured at succes-
sive points in time, spaced at uniform time intervals. Time‐series methods analyze time series data in order to 
extract meaningful statistics. Examples of time‐series analysis methods are: averaging methods (e.g., moving 
average, weighted moving average and exponential smoothing), autoregression, autoregressive moving average 
(ARMA) and machine learning‐based methods (e.g., neural networks).

A drawback of proactive approaches is the fact that they may be misleading due to bad prediction results. 
In fact, the accuracy of prediction methods depends on the input window size and the prediction interval.

23.3.3 Hybrid

In order to benefit from the advantages of both strategies and thus be capable of finely adjusting capacity, a 
hybrid approach (i.e., a combination of both reactive and proactive solutions) can be employed. For instance, 
proactive capacity management can be applied for long‐term demand prediction. If there is a prediction error, the 
capacity can be reactively adjusted for the short term. An alternative solution is to use the full‐instance period 
before terminating any instance (Kouki and Ledoux, 2013). These strategies not only absorb workload differ-
ences due to prediction error but also fit a full‐hour billing model. In this way, the SaaS provider uses what 
he / she actually pays for, avoiding waste due to partial usage.

23.4 Capacity Planning and Management: Industrial Solutions

In this section, we provide a brief discussion on the industrial solutions considered in this chapter. They are 
essentially grounded on threshold‐based rules methods, as their management must be as simple as possible 
so that customers can set them up and parametrize them by themselves easily (see discussion in section 23.4.4).

23.4.1 An Ad Hoc Method

The threshold‐based rules method is the most popular method for capacity planning. The main idea 
behind this method is that the capacity might vary according to a set of rules. Each rule is based on one 
or more metrics such as response time, availability or CPU usage. A rule is like a pattern in the sense that 
it is defined by set of parameters. For example, a rule may be composed of an upper threshold UPPER, a 
lower threshold LOWER, and two time values (time

upper
, time

lower
), during which the metric is greater / lower 
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than the corresponding threshold, and two calm durations: calm
add

 and calm
remove

 during which no scaling 
decisions can be committed in order to prevent system oscillations. Based on those parameters, the rule 
can be defined as follows:

If m>UPPER for time
upper

 then capacity=capacity+k
add

Do no thing for calm
add

If m<LOWER for time
lower

 then capacity=capacity‐k
remove

Do no thing for calm
remove

where m is the metric, capacity is the current capacity, and k
add

 and k
remove

 are the capacity to add and the 
capacity to remove respectively.

A rule can be static or dynamic, which means that the parameters (metrics, time intervals and actions) 
involved in it may be modified at runtime in order to better fit to a given context. However, the static thresh-
old‐based rules method is the most popular for capacity planning and it has been used by cloud providers like 
Amazon EC2 and Microsoft Azure. Although most solutions use only two thresholds per metric, recent work 
(Hasan et al., 2012) has considered using a set of four thresholds to prevent further spurious auto‐scaling 
decisions: UPPER, the upper threshold; UPPER−, which is slightly below the upper threshold; LOWER, the 
lower threshold; LOWER+, which is slightly above the lower threshold; and two durations used for checking 
persistence of metric value above / below UPPER / LOWER and UPPER −/ LOWER+. It is obvious that this 
kind of solution better follows changing demands.

23.4.2 Examples

This section considers the two most popular mainstream ad hoc solutions for capacity planning, namely 
Amazon Auto Scaling, from Amazon EC2 and Autoscaling Application Block, from Microsoft Azure. Other 
industrial solutions are Scalr and RightScale.

23.4.2.1 Amazon Auto Scaling

Amazon Auto Scaling (http://aws.amazon.com/autoscaling/, accessed December 12, 2015) is a Web service 
that enables a consumer to launch or terminate Amazon Elastic Compute Cloud (EC2) instances automati-
cally based on user‐defined policies, health status checks, and schedules. It is particularly well suited for 
applications that experience hourly, daily, or weekly variability in usage. It is enabled by Amazon CloudWatch 
and available at no additional charge beyond Amazon CloudWatch fees.

The basic concepts of Amazon Auto Scaling are: (i) launch configuration that specifies the type of Amazon 
EC2 instance that Auto Scaling creates for a consumer, (ii) Auto Scaling Group, which is a collection of 
Amazon EC2 instances to which a consumer wants to apply certain scaling conditions, (iii) policies that 
describe scaling actions, and (iv) alarms that define conditions under which a specific policy is triggered. The 
following commands exemplify those concepts:

Create load balancer
$> elb-create-lb LB --headers --listener "lb-port=80,instance-
port=9763,protocol=http" --availability-zones us-east-1a

Create launch configuration
$> as‐create‐launch‐config LC ‐‐image‐id ami‐49db1a20 –instance‐type 
m1.small
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Create Auto‐scaling group
$> as-create-auto-scaling-group SG --availability-zones us-east-1a 
--launch-configuration LC --min-size 2 --max-size 6 --load-balancers LB 
--region us-east-1

Create scaling policies
$> as-put-scaling-policy scaleOutPolicy --auto-scaling-group SG 
--adjustment=1 --type ChangeInCapacity --cooldown 300 --region us-east-1

$> as-put-scaling-policy scaleInPolicy --auto-scaling-group SG 
--adjustment=-1 --type ChangeInCapacity --cooldown 300 --region 
us-east-1

Create alarms for each condition
$> mon-put-metric-alarm scaleOutAlarm --comparison-operator 
GreaterThanThreshold --evaluation-periods 1 --metric-name CPUUtilization 
--namespace "AWS/ELB" --period 60 --statistic Average --threshold 70 
--alarm-actions scaleOutPolicy --dimensions "LoadBalancerName=LB" 
--region us-east-1

$> mon-put-metric-alarm scaleInAlarm --comparison-operator 
LessThanThreshold --evaluation-periods 1 --metric-name CPUUtilization 
--namespace "AWS/ELB" --period 60 --statistic Average --threshold 30 
--alarm-actions scaleInPolicy --dimensions "LoadBalancerName=LB" 
--region us-east-1

In this example there are two policies: one for scale out and one for scale in. These policies operate on 
a load balancer LB. The policy (scaleOutPolicy) increments the instance by one if the average CPU 
utilization over the last minute has been greater than or equal to 70%. The policy (scaleInPolicy) 
reduces the number of instances by one, if the average CPU utilization has been lower than 30% over 
the last minute.

23.4.2.2 Autoscaling Application Block

The Autoscaling Application Block (WASABi) is a part of the Enterprise Library Integration Pack for Windows 
Azure (https://msdn.microsoft.com/en-us/library/hh680892(v=pandp.50).aspx, accessed December 12, 2015). 
It can automatically scale Windows Azure applications based on rules that the consumer defines specifically 
for his application. The Autoscaling Application Block uses rules and actions to determine how the application 
should respond to changes in demand. There are two types of rules – constraint rules and reactive rules – each 
with its own actions:

 ● constraint rules enable consumer to set minimum and maximum values for the number of instances of a 
role or set of roles based on a timetable;

 ● reactive rules allow consumers to adjust the number of instances of a target based on aggregate values 
derived from data points collected from Windows Azure environment or application.
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Rules are stored in XML documents. The following code sample shows an example rule:

<?xml version="1.0" encoding="utf-8" ?>
<rules xmlns="http://schemas.microsoft.com/practices/2011/entlib/
autoscaling/rules">
 <constraintRules>
  <rule name="default" enabled="true" rank="1" description="The 
default constraint rule">
   <actions>
    <range min="2" max="6" target="ApplicationRole"/>
   </actions>
  </rule>
 </constraintRules>
 <reactiveRules>
  <rule name="ScaleOut" rank="10" description="Scale out the web role" 
enabled="true" >
   <when>
    <any>
     <greaterOrEqual operand="CPU_Avg_5m" than="70"/>
    </any>
   </when>
   <actions>
    <scale target="ApplicationRole" by="1"/>
   </actions>
  </rule>
  <rule name="ScaleIn" rank="10" description="Scale In the web role" 
enabled="true" >

   <when>
    <all>
     <less operand="CPU_Avg_5m" than="30"/>
    </all>
   </when>
   <actions>
    <scale target="ApplicationRole" by="-1"/>
   </actions>
  </rule>
 </reactiveRules>
 <operands>
  <performanceCounter alias="CPU_Avg_5m" performanceCounterName=  
"\Processor(_Total)\% Processor Time"   source = "ApplicationRole" 
timespan="00:05:00" aggregate="Average"/> </operands>
</rules>

In this example there are three autoscaling rules: one constraint rule and two reactive rules. These rules oper-
ate on a target named ApplicationRole. This role is defined in the service model. The constraint rule is always 
active and sets the minimum number of role instances to 2 and the maximum number of role instances to 6. 
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Both reactive rules use an operand named CPU_Avg_5m, which calculates the average CPU usage over the 
last 5 minutes for an ApplicationRole. The reactive rule (ScaleOut) increases the instance counter of the target 
role by one if the average CPU utilization over the last 5 minutes has been greater than or equal to 70%. The 
reactive rule (ScaleIn) decrements the instance counter of the target role by one if the average CPU utilization 
over the last 5 minutes has been less than 30%.

23.4.3 Limits

Threshold‐based rules method is the most popular method for capacity planning. In fact, the simplicity of this 
method makes it more attractive. However, the definition of thresholds is a per‐application task, and requires a 
deep understanding of the workload. This understanding is reflected in the choice of metrics and associated 
thresholds. In addition, this method can lead to system instability: capacity oscillations. These oscillations can be 
absorbed by methods using more than two static metric thresholds or dynamic thresholds (Hasan et al., 2012).

Another limitation is that most solutions focus on low‐level (infrastructure) performance metrics such as 
CPU utilization. Using low‐level performance metrics in the scaling rules is a good indicator for system uti-
lization information, but it cannot clearly reflect the QoS provided by a cloud service or show whether per-
formance meets users’ requirements. In addition, the mapping of high‐level metrics (expected by the end 
user) to low‐level metrics (provided by IaaS provider) is difficult and requires some infrastructure expertise.

23.4.4 Discussion

It is important to state that here we are focusing on capacity management at the SaaS level, and in particular 
capacity management offered as a service such as Auto Scaling service from Amazon. In this case, it needs 
to be as simple as possible so that end users can parametrize by themselves, which is the case of the thresh-
old‐based techniques. Moreover, the variety of applications makes it hard to create and / or maintain more 
complex models such as the ones based on Queueing Networks or Reinforcement Learning. For instance, not 
all types of applications can be modeled as a closed network.

That said, we believe that major cloud providers do rely on complex models at a certain level, for instance, 
to determine the number of physical machines required for running the incoming jobs (e.g., virtual machines). 
However, this kind of information is generally not provided so no assumptions can be made in this regard.

23.5 Capacity Planning and Management: Research Solutions

The ad hoc method enables capacity planning and management to be carried out simply but it may be insuf-
ficient to model performance goals effectively and thus it may be unable to optimize the allocation of 
resources with respect to the demand and service levels previously agreed. For that purpose, it is necessary to 
use more sophisticated methods. Capacity planning can be modeled in different ways, including queuing 
networks, stochastic processes, control theoretical methods, game theory, artificial intelligence and optimiza-
tion methods. For reasons of space and clarity, we will focus here only on approaches that have been widely 
adopted: queuing networks, reinforcement learning, and linear and constraint programming.

23.5.1 Queuing Theory

23.5.1.1 Definition

Queuing theory (Daniel et al., 2004) makes reference to the mathematical study of waiting lines, or queues. 
Kendall’s notation is the standard system used to describe and classify queuing models, in which a queue is 
described in the form A/S/c/K/N/D where A: inter‐arrival time distribution, S: service time distribution c: 
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number of servers, K: system capacity, D: queuing discipline and N: calling population. The elements K, N 
and D are optional. When these parameters are not specified, it is assumed K = ∞, N = ∞ and D = FIFO. The 
most typical values for both A and S are Markovian (M), deterministic (D) and general distribution (G).

A queuing network (QN) is a network consisting of several interconnected queues. Efficient algorithms to 
compute performance measures of queuing networks are proposed such as mean value analysis MVA (Reiser 
and Lavenberg, 1980). This is based on the arrival theorem and allows the efficient computation of mean 
response times, availability, and throughput, while avoiding numerical issues such as the explicit computation 
of the normalizing constant.

23.5.1.2 Capacity Planning Modeling

The capacity planning problem can be formulated using a simple queuing model or a queuing network model 
(QNM). A multitier system (implementing the SaaS application) can be modeled as an M/M/c/K queue (see 
Figure 23.2) where their services are considered as closed loops to reflect the synchronous communication 
model that underlies these services. That is, a client waits for a request response before sending another 
request. Then, we rely on MVA for evaluating the performance of the queuing network.

The MVA algorithm predicts the response time and the availability based on the service workload and 
the current capacity. A utility function is defined to combine performance, availability and financial cost 
objectives:

 
t

t

t
 (23.1)

where ω(t) corresponds to the number of instances allocated to the service at time t and t 0 1,  corre-
sponds to the SLA function that checks SLA objectives. The demanded capacity is the one that provides the 
highest utility (Eq. 23.1). To compute it, we can use any search algorithm.

Balancer

Compute

Storage

Figure 23.2 Queuing network model
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23.5.1.3 Limits

The queuing network model (QNM) is a popular method for the modeling and analysis of systems. A well 
known technique for the analysis of single as well as multiclass separable closed QNM is the MVA algorithm. 
In addition to being efficient, this algorithm is also numerically stable. However, the computation times and 
memory requirements of MVA grow exponentially with the number of classes. To deal with networks with 
many classes, approximative algorithms were proposed (e.g., to compute the solution without iterating over 
the full set of N customers).

23.5.2 Reinforcement Learning

23.5.2.1 Definition

Reinforcement learning (RL) (Richard and Andrew, 1998) is an area of machine learning in computer science 
where the environment is typically formulated as a Markov decision process (MDP). The main difference 
between the classical techniques and reinforcement learning algorithms is that the latter do not need any a 
priori knowledge.

An MDP provides a mathematical framework for modeling decision making in situations where outcomes 
are partly random and partly under the control of a decision maker. It is defined by a 4‐tuple (S, A, P, R), 
where S: state space, A: action space, P: transition rate function and R: reward function.

23.5.2.2 Capacity Planning Modeling

The capacity planning problem can be modeled via basic elements of a MDP. We can model capacity planning 
in the following way:

 ● S N Cap Perf, ,  is the state where N is the workload in number of requests, Cap corresponds to the cur-
rent capacity, and Perf is the performance (e.g. response time).

 ● A a  is the action set, which consists of increasing, reducing or maintaining capacity.
 ● P S A S 0 1,  is the probability distribution P(s’|s, a) of transition from state s to new state s’ using 

action a.
 ● R: S x A x R is reward function when the system is in state s and action a is taken. This function takes into 

account the SLA and the financial cost.

At each step t, the decision maker receives the current state s and the available actions set A. The value 
function of taking action a in state s can be defined as:

 
Q s a r s s a a

k

k
t k t t,

0
1 ,  (23.2)

where rt k 1 denotes the reward function and γ is a discount factor helping Q(s, a)’s convergence 0 1 .
The objective is to find the best action that maximizes expected return. To this end, any search algorithm 

can be used.

23.5.2.3 Limits

Reinforcement learning seems a promising method for capacity planning, even in complex systems. In addi-
tion, this method is able to learn a scaling policy from experience, without any a priori knowledge. However, 
this method has two main limitations: (i) bad initial performance and (ii) large state spaces. The first leads to 
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a long training time whereas the latter produces bad performance and very slow adaptation to change. Using 
parallel learning, agents can reduce the training time. A nonlinear function such as neural networks can cope 
with larger state spaces.

23.5.3 Linear Programming and Constraint Programming

23.5.3.1 Definition

Linear programming (LP) (Dantzig, 1963) and constraint programming (CP) (Rossi et al., 2006) are techniques 
for solving constraint satisfaction problems and optimization problems (CSP/CSOP). A CSP model is defined 
by a set of variables, a set of constraints, and an objective function to be maximized or minimized. The basic 
idea is that the end‐users define a set of variables, impose a set of constraints and an objective function, and a 
general‐purpose solver tries to find a solution that meets these constraints and optimizes the objective function. 
Examples of solvers include JOptimizer and lpsolve, for LP; and Choco and IBM CP Optimizer, for CP.

Linear programming problems are about maximizing or minimizing a linear function subject to linear 
constraints, which can be linear equalities or inequalities, or in the standard form:

maximize cTx

subject to Ax b

and x 0

where x corresponds to the vector of unknown variables, c and b correspond to known coefficients, and A to 
a matrix of known coefficients. Ax b and x 0 are the linear constraints and cTx the objective function.

Similarly, a CP problem is defined as a triplet (X, D, C), where X = {X
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Solving a CP problem (X, D, C) is about finding a tuple of possible values (v

1
, v

2
, …, v

n
) for each variable X

i
 ∈ X 

such that all the constraints C
j
 ∈ C are met. In the case of a CSOP, that is, when an optimization criterion should 

be maximized or minimized, a solution is the one that maximizes or minimizes a given objective function 
f : D(X) → R.

It may be noticed that the ways problems are solved in both LP and CP are very similar. They are distin-
guished, firstly, by their purposes: CP’s main goal is to find feasible solutions (i.e. to meet constraints), 
whereas LP focuses on finding optimal solutions (i.e. solutions that optimize the objective). Regarding the 
modeling, CP may rely on predefined global constraints (see the Global Constraint Catalogue at http://sofdem.
github.io/gccat/, accessed December 22, 2015). Of course global constraints can be translated as linear ine-
qualities and equations such as the LP constraints. Another advantage is that global constraints can be 
 composed so as to generate new constraints.

23.5.3.2 Capacity Planning Modeling

Capacity planning can be modeled as a set of variables X = {K
1
, K

2
, …, K

n
}, where K

i
 ∈[0, N] ∀i ∈[1,n] cor-

responds to number of compute/storage units that should be allocated to each client class c
i
 ∈ C of the SaaS 

application. A first constraint states that the sum of compute/storage allocated should not exceed a certain 
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K
max

 (cf. Eq. 23.3). There might be several client classes C = (c
1
, c

2
, …, c

n
), each one with a specific arrival 

rate λ
i
 ∈ Λ and a SLA ς : Λ → [1, K

max
] → {true, false} to be met. Hence, the constraint expressed by Eq. 23.4 

states that the all the SLAs (ς
i
) must hold for a given K. It should be remembered that function ς

i
 is provided 

by the predefined contracts along with any performance model such as the one obtained in section 23.5.1.2.

 i

n

iK K
1

max (23.3)

 i n Ki i i1 0, ,  (23.4)

The utility is application specific – that is, it depends on the application domain. For example, for a given 
application and a given workload, the utility function may take into account the requirements on the response 
time, whereas for another workload it may be based on other criteria such as availability. Because of this, we 
do not provide any further details about how the functions that verify the SLA are calculated.

The last part of the LP/CP model is the objective function. It should be said that this component of the model, 
although optional in the case of CP, is very important. In fact, it restrains the number of possibilities that eventu-
ally meet the constraints into the ones that optimize a given criteria. As a consequence, the solving time may be 
drastically increased. In the capacity planning scenario, it is always needed to minimize the costs related to the 
resource allocation. So, the sum of all variables K

i
 should be minimized, as formalized in Eq. 23.5.
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23.5.3.3 Solving Algorithm

Simplex (Murty, 1983) is the most popular algorithm for solving LP problems. It involves constructing a fea-
sible region (a convex polyhedron) formed by the intersection of the constraints (inequalities and equalities), 
as it is exemplified in Figure 23.3(a). A maximum of the objective function corresponds to the set of variables 
satisfying the constraints, which resides in a vertex of the convex polyhedron.

Constraint satisfaction problems are usually solved with search algorithmic approaches, which can be 
either complete (systematic) or incomplete (nonsystematic). The former performs systematic search (e.g. 
backtracking or branch‐and‐bound) that guarantees that a solution is found, if at least one exists, whereas the 
latter performs a sort of local search and therefore should not be used to show that such a solution does not 
exist or to find an optimal solution. Nonetheless, nonsystematic approaches might take less time to find a 
solution (if there is any) and an approximation of the optimal solution. Constraint programming also makes 
use of inference to propagate the impact of variable assignments on the possible values the other variables can 
in the following subtrees search space. Hence, the search tree can be constantly pruned as the search goes on. 
Figure 23.3 (b) shows an example of such a mechanism.

23.5.3.4 Limits

It is straightforward that the main advantage of LP/CP is its declarative characteristics – users state vari-
ables and constraints and a general‐purpose engine / algorithm solves it. Hence, users are free from the 
burden of thinking about and building solvers for each CSP. However, it may be a very hard task to model 
a CSP correctly in a way that it can be solved in an efficient fashion, as CSOPs are generally NP‐complete 
(Rossi et al., 2007).
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23.6 Conclusion

In this chapter, we presented the essentials of cloud capacity planning and management. Capacity manage-
ment is the process tasked with defining the capacity of a system, to meet changing demands, at the right time 
and at optimal cost. Since in cloud computing, upon request, resources are almost instantly provisioned, it is 
possible to perform capacity management in reaction to events that have already happened without taking 
them into consideration a long time ahead (reactive approaches). On the other hand, these approaches (i) may 
misbehave in unstable or oscillating environments; (ii) on‐demand resources generally cost way more than 
previously reserved ones. Therefore, there may be times where adjusting the amount of resources in a proac-
tive manner could also pay off. Capacity management approaches may rely on hybrid adaptation strategies to 
improve the cost‐effectiveness in the long term (a proactive approach) and be capable of reacting to unan-
ticipated demand variations in the short term (a reactive approach).

Capacity management and planning may be achieved in a completely ad hoc manner by dynamically 
adjusting the allocation of resources (e.g., by adding or releasing resources) according to a set of predefined 
rules. Examples of such an approach are implemented, for example, by Amazon Auto Scaling and Auto 
Scaling Application Block (Microsoft Azure). However, it becomes harder to profile systems’ performance 
as their level of complexity increases, which, consequently, compromises the accuracy of estimations of 
resource requirements. For that reason, capacity planning may combine techniques from different fields in 
order to be effective. For example, in order to model systems’ performance effectively, queuing theory can be 
applied. Alternatively, reinforcement learning and game theory might also be used to give a more effective 
performance profiles or to deal with economic equilibrium and thus improve estimations of resource require-
ments. Those techniques can be combined along with operational research techniques like constraint and 
linear programming to find solutions that respect the constraints (e.g., imposed by SLAs) or even a solution 
that optimizes certain aspects of quality of service or cost. Table 23.1 summarizes the advantages and limita-
tions for each method.

To conclude, we can imagine that it is not easy for a cloud service provider to compare these methods and 
choose the most appropriate for its needs. We devised a tool – or a platform as a service – to help any cloud 
provider to select the best capacity planning and management method from a catalog according to the service’s 
context (service topology, workload characteristics, and SLA). This service is based on capacity planning and 
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management methods evaluation criteria (e.g., system stability, method scalability, solution optimality, and 
implementation simplicity) applied to the cloud‐provider context, and it proposes the correct method to choose.
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Table 23.1 Capacity planning methods: A summary

Method Advantages Limitations

Threshold‐based rules Simple to design and develop Definition of thresholds/rules 
per application

Queuing theory Performance modeling and analysis Scalability
Reinforcement learning Does not need any a priori knowledge Bad initial performance, large 

state spaces
Constraint programming Declarative method, catalog of constraints Scalability
Linear programming Optimal solution Definition of objective function
Game theory Economy equilibrium Definition of strategies
Control theory Support for dynamic systems May lead to system instability
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24.1 Introduction

Cloud computing is an emerging and innovative platform, which makes computing and storage available to 
the end users as services. The cloud is a “blob” of unstructured resources that are classified into three 
domains: (i) applications (or software), (ii) platforms, and (iii) infrastructure. The cloud is a merger of 
 business and computing models, which makes it a very important scientific and business medium for the 
end users. Cloud computing has been widely adopted in various domains, such as research, business, health, 
e‐commerce, agriculture, and social life. It is also being increasingly employed for a wide range of research 
activities in domains such as agriculture, smart grids, e‐commerce, scientific applications, healthcare, and 
nuclear  science.

As cloud computing systems continue to grow in scale and complexity, it is of critical importance to ensure 
its stability, availability, and reliability. But varying execution environments, addition and removal of system 
components, frequent updates and upgrades, online repairs, and intensive workload on servers, to name a few 
can induce failures and faults in the large‐scale, complex, and dynamic environments of cloud computing. 
The reliability of the cloud can be compromised easily if proactive measures are not taken to tackle the pos-
sible failures emerging in cloud subsystems. For instance, Google reported a 20% revenue loss when an 
experiment caused an additional delay of 500 ms in response times (Greenberg et al., 2009). Amazon reported 
a 1% sales decrease for an additional delay of 100 ms in search results (Greenberg et al., 2009). A minor 
failure in the O2 network (a leading cellular service provider in the United Kingdom) affected around 
7   million customers for 3 days. Similarly, a core switch failure in BlackBerry’s network left millions of 
 customers without Internet access for 3 days.
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To achieve reliability, and as a countermeasure for faults and failures, cloud service providers adopt various 
mechanisms to implement fault tolerance at the system level. Fault tolerance is a vital issue in cloud comput-
ing platforms and applications. It enables a system to continue operation, possibly at a reduced level, rather 
than failing completely, when some subcomponent of the system malfunctions unexpectedly. The signifi-
cance of interconnection networks is obvious from the discussion above.

The diversity in the needs of various services deployed in a cloud environment means that fault tolerance 
also has a pivotal role in maintaining service level agreements (SLAs), as well as, the desired levels of quality 
of service (QoS). The SLAs define various rules to regulate the availability of the cloud service to the end 
users. Virtualization in clouds assigns various services at different levels of access to numerous subscribers. 
Virtualization and multiple subscriptions with diversifying SLAs and QoS requirements significantly raise 
the complexity and unpredictability of cloud environments.

24.1.1 Types of Faults

Faults can be of various types including: (i) transient, intermittent, or permanent hardware faults, (ii) software 
bugs and design errors, (iii) operator errors, and (iv) externally induced faults and errors. In a typical cloud 
environment, faults appear as a failure of resources, such as applications / hardware storage, which are being 
used by the end users. The two most commonly occurring faults in cloud environment are byzantine failures 
and crash failures.

24.1.1.1 Byzantine Failures

In these faults, the system components fail in arbitrary ways, causing the system to behave incorrectly in an 
unpredictable manner. The system may process requests incorrectly and produce inconsistent outputs.

24.1.1.2 Crash Failures

When crash failures occur, they cause system components to stop functioning completely or remain inactive 
during failures – for instance, failures due to power outages or hard‐disk crashes.

As discussed earlier, cloud computing is divided into several operational layers, such as PaaS, SaaS, and 
IaaS. If a failure occurs in one of these layers, then this layer affects the services offered by the layers above 
it. For instance, failure in PaaS may produce errors in the software services offered by SaaS. However, if a 
failure occurs in a physical hardware layer (IaaS) then this may negatively affect both the PaaS and SaaS 
 layers. This implies that the impact of failures occurring at hardware level is significantly high, and it is of 
critical importance to devise fault‐tolerant strategies at hardware level. Supporting research in fault‐tolerance 
computing involves system architecture, design techniques, coding theory, testing, validation, proof of 
 correctness, modeling, software reliability, operating systems, parallel processing, and realtime processing.

24.1.2 Redundancy

A practical approach of implementing fault tolerance is through redundancy that involves duplication of 
hardware and software components, such that if a component or a process fails, the backup process or com-
ponent is available to take the place of the primary one. Some vendors have been involved in developing 
computing solutions with built‐in capability of fault tolerance. For instance, Stratus Computers produces 
duplex‐self checking computers, where each computer belonging to a duplex pair is internally duplicated and 
runs synchronously. If one of the machines fails, the duplication allows the other machine of the pair to con-
tinue the computations without delay. Similarly, Tandem Computers uses a number of independent identical 
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processors and redundant storage devices and controllers to provide automatic recovery in the case of a 
 hardware or software failure.

24.1.3 Fault‐Tolerance Validation

Cloud service providers need to perform fault tolerance / availability analysis of the services they provide to end 
users. The fault‐tolerance validation of a service is of critical importance to ensure proper adherence to SLAs. 
However, due to the numerous stochastic factors involved, it is quite difficult to verify that a fault‐tolerant 
machine will meet reliability requirements. To aid in the assessment of system reliability, a great deal of 
research has been conducted recently in experimental testing by making use of a methodology known as fault 
injection. Fault injection is an important method to mimic the occurrence of errors in a controlled environment 
to make the necessary measurements. A number of stochastic models based on probability computations have 
been developed that use Markov and semi‐Markov processes to perform the availability analysis of a fault‐
tolerant machine. These models have been implemented in several computer‐aided design tools. Some well 
known tools are: (i) the hybrid automated reliability predictor (HARP) (developed at Duke University), (ii) the 
system availability estimator (SAVE) (IBM), (iii) the Symbolic Hierarchical Automated Reliability and 
Performance Evaluator (SHARPE) (Duke University), and (iv) UltraSAN– (University of Illinois, UIUC), and 
(e) DEPEND – (UIUC). These tools are used to perform various measures, such as latency, coverage, and fault 
rates. We define some of the fault‐tolerance measurements in the next subsection.

24.1.4 Fault‐Tolerance Measures

Fault‐tolerance measurement is a crucial aspect of cloud paradigm. Fault tolerance measures can be used to 
quantify the dependability of the cloud system. Two of the major legacy measures for fault tolerance of the 
system are: (i) availability and (ii) reliability (Koren and Krishna, 2010). Availability is the ratio between the 
uptime and sum of the uptime and downtime of the system. Availability can be quantified as:

 
availability

uptime

uptime downtime
 (24.1)

The uptime and downtime values are either predicted using the mathematical modeling techniques, such as the 
Markov availability model, or can be calculated from actual field measurements (Bauer and Adams, 2012). 
Availability can also be measured as a percentage of agreed service time and downtime of the system. The 
agreed service time is the expected operational time of the system per month. The planned downtime of the 
system is explicitly excluded from the agreed service time. The availability of the system can be calculated as:
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Availability of the system can also be quantified using metrics, such as mean time to failure (MTTF), mean 
time between failures (MTBF), and mean time to repair (MTTR). The MTTF is the average time of the 
 system operating accurately until a failure occurs. The MTBF is the average time between two consecutive 
failures of the system. The MTTR measure predicts the average time required to replace the faulty component 
of the system to bring the system back to operational mode. Availability of the system in terms of MTBF and 
MTTR can be computed as:
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Reliability, denoted as R(t), is the probability of the system to work accurately as a function of time “t” 
(Koren and Krishna, 2010). The TL9000 measurement handbook defines reliability as “the ability of an item 
to perform a required function under stated conditions for a stated time period” (Bauer and Adams, 2012). 
Service reliability can be formulated as:

 
service reliability
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total requests
100  (24.4)

As most of the services are highly reliable, services are quantified by defective / unsuccessful transactions per 
million attempts. Defects per million (DPM) can be formulated as:
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The availability and reliability of the system hold a pivotal role in the cloud paradigm. A small fraction of 
downtime has severe financial impacts. It has been reported that a single hour of downtime costs around 
$50 000 in a datacenter (Bilal et al., 2014). Therefore, round the clock availability of cloud services are vital.

In this chapter, we discuss fault tolerance in the cloud and illustrate various fault‐tolerance strategies existing 
in the literature. The rest of the chapter is as follows. In section 24.2, we discuss the different fault tolerance 
strategies for cloud and provide taxonomy of fault‐tolerance approaches. Section 24.3 concludes the chapter.

24.2 Fault‐Tolerance Strategies in Cloud

Crashes and failures, such as disk failures or link failures, are very common in the cloud. Moreover, the num-
ber of nodes (servers) involved in the cloud has an order of tens of thousands or more servers that increases 
the probability and cost of the failures. Jobs executing over the cloud may have a time span that may evolve 
for few days. The effect of failure on medium or long‐running jobs can jeopardize the fulfillment of SLA 
contracts and waste computation time. For instance, if a task requires 24 hours to complete and if, after 
23 hours, the node that was executing the task crashes, then almost one day of execution will be wasted; it will 
also lead to the violation of the SLA. One way to tackle such a problem is to execute a backup process on a 
different system for each primary process. The primary process, in this case, is responsible for checkpointing 
the current state to redundant disks. Should the primary process fail, the backup process can restart from the 
last checkpoint. Generally, fault‐tolerant systems characterize recovery from errors as either roll forward or 
roll back. Roll‐forward mechanisms take the system state at the time when the error was detected in order to 
correct the error, and from there the system moves forward. Alternatively, the roll‐back mechanism uses 
checkpointing to revert the system state to some earlier correct state, and the system moves forward from that 
state. The operations between the checkpoint and the erroneous state can be made idempotent, as a require-
ment of roll‐back recovery. Some systems make use of both roll‐forward and roll‐back recovery for different 
errors or different parts of one error. We discuss checkpointing in detail in the next subsection.

24.2.1 Checkpoint‐Based Fault Tolerance

To avoid the problem mentioned above, checkpoint mechanisms have been proposed and implemented on the 
cloud. This mechanism records the system state periodically after a certain time limit so that, if a failure 
occurs, the last checkpoint state of the system is restored and the task execution is resumed from that point. 
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However, significant overheads are associated with the application of checkpoint strategy as it can be expen-
sive in terms of performance. In case of virtualized environment, such as the cloud, the checkpoint strategy 
becomes more challenging, where huge virtual machine (VM) images needs to saved and restored (Goiri 
et al., 2010). In the said perspective, several researchers have proposed different approaches to make the use 
of checkpoint efficient in the cloud. In the following subsections, we will discuss and highlight some of the 
recent checkpoint‐based fault‐tolerant approaches that are deployed in the cloud.

24.2.1.1 Disk‐ and Diskless‐Based Checkpointing Schemes

Message‐passing interface (MPI) is generally used to achieve parallelism in high‐performance computing. 
This is a language‐independent communications protocol that supports both point‐to‐point and collective 
communications. The goal of MPI is to attain high performance, scalability, and portability. To achieve fault 
tolerance in MPI‐based applications, several strategies have been proposed, such as BlobCR (Nicolae and 
Cappello, 2011) that are specifically optimized for tightly coupled scientific applications written using MPI 
and that need to be ported to IaaS cloud. Two techniques have been widely adopted to achieve fault tolerance 
in cloud: replication (redundancy) and checkpoint. For tightly coupled applications, redundancy implies that 
all components of the process (which is itself part of a distributed application) must also be replicated. The 
reason for such replication is that a failure of one process results in a global failure of all processes and 
eventually leads to process termination. Therefore, in tightly coupled applications, checkpoint approaches 
provide a more feasible solution than replication. The BlobCR use a dedicated repository of checkpoints that 
periodically takes the snapshots of the disk attached to the virtual machine. The aforesaid approach allows 
use of any checkpointing protocol to save the state of processes into files, including application‐level mech-
anisms (where the process state is managed by the application itself) and process‐level mechanisms (where 
the process state is managed transparently at the level of the message‐passing library). Moreover, the BlobCR 
also introduces a support that allows I/O operations performed by the application to rollback. The BlobCR 
brings a checkpointing time speedup of up to 8x as compared to the full VM snapshotting based on qcow2 
over a parallel virtual file system (PVFS) (Gagne, 2007). The checkpoints performed on the whole state of 
the VM are expensive. However, using only a snapshot of the portion of disk is smaller and faster, even if a 
reboot is needed.

Disk‐based checkpointing strategies are widely used. However, the applications that require checkpoint-
ing frequently lead to several disk accesses that result in a performance bottleneck. Several diskless‐based 
checkpoint strategies have been proposed, such as a multilevel diskless checkpointing (Hakkarinen and 
Chen, 2013). In multilevel checkpointing, there are N‐level of diskless checkpoints. Multiple levels of check-
points reduce the overhead for tolerating a simultaneous failure of N processors by layering the diskless 
checkpointing schemes for a simultaneous failure of i processors. For example, an N‐failure checkpoint can 
recover any number of failures from 1, 2,…, N. Multilevel diskless checkpointing scheme can significantly 
reduce the fault tolerance time as compared to a one‐level scheme. To perform multilevel diskless check-
pointing, a schedule for diskless checkpoints must be developed for each level of recovery, such as one, two, 
or N simultaneous failures. When the checkpoints are scheduled, the processor takes specific steps to  perform 
the recovery. For instance, if a one‐level checkpoint is scheduled, then processor will take only one step back 
for the recovery. The coordination of the checkpoints among the processors is important for the consistency 
of the checkpoints. If a failure is detected, then an N‐level diskless checkpointing mechanism will attempt to 
use the most recent checkpoint to recover the state. However, if another failure occurs during the recovery, 
then the mechanism will use most recent two‐level checkpoint to restore the state. If the number of failures 
exceeds the number that is supported, then the system needs to restart the computation. For any diskless 
checkpoint there is an overhead of both communication and calculation. The difference between the disk and 
diskless checkpointing is significant when a failure occurs during a recovery. The system simply restarts 
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from the same checkpoint in disk‐based checkpointing. However, in diskless checkpointing, an earlier check-
point is used to restore the state of the system.

24.2.1.2 Checkpoint Placement Scheme

The number of checkpoints inserted can significantly decrease the performance of the system during recov-
ery. Moreover, the number of checkpoints must be optimal to minimize the storage. Several optimized and 
efficient checkpoint placement strategies have been proposed. One such optimal checkpoint strategy, which 
maximizes the probability of completing all tasks within the deadline, is presented in Kwak and Yang 
(2012). In real‐time systems, the occurrence of faults is normal rather than exceptions. Every fault is 
detected at the checkpoint that comes first after the fault occurrence. In such strategies, the checkpoints are 
inserted constantly after certain interval at the execution of the tasks. However, the time limit for the interval 
may vary from task to task. The slack time of each task is identified first and then the maximum number of 
re‐executable checkpoints are determined that can meet the deadline of the task. In a multitasking environ-
ment, the slack time is calculated not only by the execution time of the task but also of execution of the other 
tasks. Based on the information about the slack time, formulas are derived that compute the number of 
checkpoints that need to be re‐executed to meet the deadline of the task. The significance of such check-
point schemes are that they provide an integrated solution to multiple realtime tasks by solving a single 
numerical optimization problem.

Some smart infrastructures are also proposed, for example in Goiri et al. 2010, which uses Another Union 
File System (AUFS), which differentiates between the read‐only and read‐write parts of the virtual machine 
image file. The goal of such infrastructures is to reduce the time needed to make a checkpoint that will, in 
return, reduce the interference time on task execution. The read‐only parts can be checkpointed only once and 
the read‐write checkpoints are incrementally checkpointed, which means the modifications from the last 
checkpoints are restored. This checkpoint mechanism can also be implemented in a virtualized environment 
using Xen hypervisor, where the tasks can be executed on VMs created on demand. Making the checkpoint 
for tasks running within a VM may involve moving tons of GBs of data as it may include the information to 
resume the task on another node, such as task and memory content, and disks information (Malik et al., 
2013). Some checkpoint mechanisms mount the base system as a read‐only file system, because only a small 
portion of the data changes with respect to the VM startup. Moreover, the user modifications are stored in an 
extra disk space called delta disk. Besides the delta disk, which contains user modification data, there is 
another read‐only disk, which contains the base system. These disks are merged to form a root‐file system to 
start the VM. Once the VM is booted, then the user can work with the file system without worrying about the 
underlying structure. The checkpoints are compressed and are stored in the Hadoop file system (HDFS) so 
that the checkpoints are distributed and replicated in all the nodes. Moreover, by doing this the possibility of 
a single point of failure can also been eliminated.

24.2.1.3 Failures/Faults that are Hard to Recover

Among the different kind of failures or faults, such as node failures and link failures, the faults that are really 
costly and take a longer time to mitigate are hardware failures. In the case of cloud computing, several VMs 
are running on a single physical machine. In such an environment, if a hardware failure occurs, then all the 
VMs have to be migrated. This requires longer downtime than a software or application failure. Moreover, 
the hardware device may need to be replaced, resulting in a longer repair time. Hardware failures can have a 
significant because they may involve (i) device replacement, and (ii) migrations, including VM migrations, 
which cause the recovery time to increase. Some faults and errors are hard to detect, such as routing and 
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network misconfigurations. It is difficult to recover from such faults as it is hard to detect them. However, 
once detected they are easy to address.

24.2.2 Adaptive Fault‐Tolerance Techniques

Adaptive fault‐tolerance techniques help the system to maintain and improve its fault tolerance by adapting 
to environmental changes. Adaptive fault‐tolerance techniques for cloud computing monitors the state of the 
system and reconfigures the cloud computing system for the stability of the system if errors are detected. In 
this subsection, we will overview some of the recently proposed adaptive fault‐tolerance techniques for the 
cloud computing paradigm.

24.2.2.1 Fault Tolerance for Realtime Applications (FTRT)

The realtime applications that execute on cloud environments range from small mobile phones to large indus-
trial controls. The highly intensive computing capabilities and scalable virtualized environment of the clouds 
help the systems to execute the tasks in realtime. Most of the realtime systems require high safety and relia-
bility. A fault tolerance model for realtime cloud computing is proposed in (Malik et al., 2011). The realtime 
cloud fault tolerance model revolves around the reliability of the virtual machines. The reliability of the 
 virtual machines is adaptive and changes after every computing cycle. The proposed technique depends on 
the adaptive behavior of the reliability weights assigned to each processing node. The increase and decrease 
in reliability depends on the virtual machines to produce the results within the given time frame. The tech-
nique uses a metric to evaluate reliability. The metric assesses the reliability level of the node against a given 
minimum reliability threshold. The nodes are removed if the processing nodes fail to achieve the minimum 
required reliability level. The primary focus of the system is on the forward recovery mechanism.

24.2.2.2 Dynamic Adaptive Fault‐Tolerant Strategy (DAFT)

The dynamic adaptive fault‐tolerant strategy (Sun et al., 2013) observes a mathematical relationship between 
the failure rates and the two most common fault‐tolerance techniques, checkpoints and replications. Historical 
data about failure rates helps the cloud computing system to configure itself for the checkpoints or the repli-
cas. A dynamic adaptive checkpoint and replication model is made by combining checkpoints and replica-
tions to achieve the best level of service availability and to attain the service‐level objectives (SLOs). The 
dynamic adaptive fault‐tolerant strategy was evaluated in a large‐scale cloud datacenter with regard to level 
of fault tolerance, fault‐tolerance overheads, response time, and system centric parameters. The theoretical 
and experimental results presented in Sun et al., 2013, demonstrate that DAFT provides highly efficient fault 
tolerance and excellent SLO satisfaction.

24.2.2.3 Fault‐ and Intrusion‐Tolerant Cloud Computing Hardpan (FITCH)

The novel fault‐tolerant architecture for cloud computing, FITCH, supports the dynamic adaptation of repli-
cated services (Cogo et al., 2013). It provides a basic interface for adding, removing, and replacing replicas. 
The FITCH interface also provides all the low‐level actions to provide end‐to‐end service adaptability. The 
technique was originally designed for two replication services: a crash fault‐tolerant Web service and a 
Byzantine fault‐tolerant (BFT) key‐value store based on state machine replication. Both the services, when 
deployed with FITCH, are easily extendable and adaptable to various workloads through horizontal and ver-
tical scalability. The number of computing instances that are responsible for providing the service are 
increased or decreased through horizontal scalability. When there is a requirement to handle peak users’ 
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requests or to handle as many faults as possible, the number of computing resources is increased. The number 
of resources is reduced when there is a requirement to save resources and money. Vertical scalability is 
achieved by increasing or decreasing the size and capacity of allocated resources. The FITCH adapts horizon-
tal and vertical scalability depending on requirements.

24.2.2.4 Byzantine Fault‐Tolerance Cloud (BFTCloud)

The BFTCloud is a fault tolerant architecture for voluntary‐resource cloud computing (Zhang et al., 2011). 
In voluntary‐resource cloud computing, infrastructure consists of numerous user‐contributed resources, 
unlike the well managed architecture provided by a large cloud provider. The architecture of BFTCloud is 
based on a Byzantine fault‐tolerance approach. The architectures operate on five basic operations: primary 
node selection, replica selection, request execution, primary node updating, and replica updating. The  primary 
node is selected based on QoS requirements. The request for the service is handled by the primary node. The 
primary node also selects the 3f+1 replicas from the pool based on QoS requirements. All the replicas and 
primary node perform the operation on the request and send back the result to the primary node. Based on the 
result, the primary node decides to update the other primary node or update the replicas. In primary updating, 
one of the replicas is updated to primary node. In replica updating, the faulty replica is replaced with a new 
one. The BFTCloud provides high reliability and fault tolerance along with better performance.

24.2.2.5 Low‐Latency Fault Tolerance (LLFT) Middleware

Low‐latency fault tolerance (LLFT) middleware uses the leader / follower replication approach (Zhao et al., 
2010). The middleware consists of a low‐latency messaging protocol, a leader‐determiner membership pro-
tocol, and a virtual determiner framework. The low‐latency message protocol provides a reliable and ordered 
multicast service by communicating a message ordering information. The ordering is determined by the 
 primary replica in the group. The technique involves fewer messages than earlier fault‐tolerance systems. 
A fast reconfiguration and recovery service is provided by the membership protocol. The reconfiguration 
 service is required whenever the fault occurs at the replica or some replica joins or leaves the group. The 
membership protocol is faster as it finds the primary node deterministically based on the rank and the degree 
of the backups. The virtual determiner framework takes the ordering information from the primary replica 
and ensures that all the backups receive the same ordering information. The LLFT middleware provides a 
high degree of fault tolerance and achieves low end‐to‐end latency.

24.2.2.6 Intermediate data fault tolerance (IFT)

Intermediate data is the data that is generated during the parallel dataflow program (Ko et al., 2010). The 
technique considers the intermediate data as of high priority (first‐class citizen). The other techniques either 
use the store‐local approach or distributed file system (DFS) approach. In store‐local approach the data is not 
replicated and is used in Map outputs in Hadoop. Although the approach is efficient but is not fault tolerant. 
If there is a failure of a server that stores the intermediate data, this results in the re‐execution of the tasks. In 
the DFS approach the data is replicated, but causes too much network overhead. The network overhead 
results in the delay of jobs completion time. The DFS approach is used for reduce outputs in Hadoop. There 
are three techniques for intermediate data fault tolerance: (i) asynchronous replication of intermediate data, 
(ii) replication of selective intermediate data, and (iii) exploiting the inherent bandwidth of the cloud data-
center topology. A new storage system, the intermediate storage system (ISS), implements the techniques for 
Hadoop mentioned above. Hadoop with ISS outperforms the base Hadoop under failure scenarios.
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24.2.2.7 MapReduce Fault Tolerance with Low Latency (MFTLL)

MapReduce fault tolerance with low latency is a passive replication technique on the top of re‐execution of 
the MapReduce jobs to improve overall execution time (Zheng, 2010). The technique uses the extra copies 
for the cloud tasks to improve MapReduce fault tolerance while keeping the latency low. The technique is 
referred to as a passive replication technique because, in passive replication, not all copies need to be in a 
running state as compared to the active replication technique. The proposed technique allocates a few (k) 
backup copies of the tasks. The backup assignment for each task is based on data locality and on rack locality. 
The placement of the backup in the locality avoids heavy network traffic. The backup copy is only executed 
if the primary task fails. The resources that take a longer time to execute (stragglers) are also identified and, 
for these stragglers, backups are executed in parallel. The MapReduce users or cloud providers decide the 
value of k based on failure statistics. The technique also uses a heuristic to schedule backups, move backup 
instances, and select backups upon failure for fast recovery.

24.2.2.8 Adaptive Anomaly Detection System for Cloud Computing Infrastructures (AAD)

An adaptive anomaly detection (AAD) system for cloud computing infrastructure ensures the availability of 
the cloud (Pannu et al., 2012). The framework uses cloud performance data to discover future failures. 
Predicted possible failures are verified by the cloud operators. The failures are marked as true or false failures 
on verification. The algorithm recursively learns and improves future failure prediction based on the verified 
data. The framework also takes into account the actual failures that were not previously detected.

In Table 24.1, we provide a summary of various fault tolerance techniques discussed above. The schemes are 
categorized on the basis of methodology, programming framework, environment, and the type of faults detected.

Table 24.1 Summary of fault tolerance strategies

Strategy Faulty tolerance 
technique

Programming 
framework

Environment Faults detected

(Nicolae and 
Cappello, 2011)

Disk based 
Checkpoint

MPI IaaS cloud Node/network failure

(Hakkarinen and 
Chen, 2013)

Diskless
Checkpoint

NA HPC Process/application 
failure

(Kwak and Yang, 
2012)

Checkpoint Probability analytic 
framework

Real‐time 
systems

Process failures

(Goiri et al., 2010) Checkpoint Java Virtual Machine Node failure
(Malik et al., 2011) FTRT (adaptive) – Real‐time –
(Sun et al., 2013) DAFT 

(adaptive)
Java Large scale 

Cloud
Works on historical 

failure rate
(Cogo et al., 2013) FITCH 

(adaptive)
Java Large scale 

Cloud
–

(Zhang et al., 
2011)

BFTCloud
(adaptive)

Java Voluntary‐
resource cloud

Byzantine problems

(Zhao et al., 2010) LLFT (adaptive) C++ Middleware Replication faults
(Ko et al., 2010) IFT(adaptive) Hadoop Hadoop Intermediate data faults
(Zheng, 2010) MFTLL 

(adaptive)
MapReduce MapReduce Replication faults, 

stragglers detection
(Pannu et al., 2012) AAD (adaptive) – Local cloud Discovers future 

failures
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24.3 Conclusion

In this chapter we studied fault tolerance and illustrated various state‐of‐the‐art fault‐tolerant strategies for cloud 
environments. Fault tolerance is a major concern in a cloud environment because of the need to guarantee avail-
ability of critical services, application execution, and hardware. As cloud‐computing systems continue to grow 
in scale and complexity, it is of critical importance to ensure the stability, availability, and reliability of such 
systems. Cloud environments are susceptible to failure because of varying execution environments, addition and 
removal of system components, frequent updates and upgrades, online repairs, and intensive workload on the 
servers. The reliability of such systems can be compromised easily if proactive measures are not taken to tackle 
possible failures emerging in cloud subsystems. We discussed various types of faults, and the different methods 
that are in use to tackle such faults. The chapter also mentioned some methods for validating the fault tolerance 
of a system and the various metrics that quantify fault tolerance, and discussed state‐of‐the‐art techniques for 
fault tolerance in cloud computing. A taxonomy of fault‐tolerant schemes was also presented.
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25.1 Introduction and Motivation

Cloud computing has revolutionized our thinking about information processing and data storage. Its impact 
on activities of many organizations, large and small, and on individual application developers, is a proof of 
the economic benefits of the new paradigm. In addition to low cost and the advantages of the utility model 
(users pay only for the resources they consume, “elasticity” – the ability of the system to supply to an applica-
tion the precise amount of resources needed, reliability, security); cloud computing is promoted as a realiza-
tion of the “green computing” ideal, an IT infrastructure with a considerably smaller carbon footprint than the 
traditional ones.

Indeed, cloud computing has the potential to reduce the energy consumption for computing and data 
 storage, thus shrinking the carbon footprint for IT‐related activities. This potential is far from being realized 
by existing cloud infrastructures. To understand the reasons for this state of affairs, we discuss cloud energy 
consumption and its relationship with other aspects of cloud resource management.

The rapid expansion of the cloud computing community helps us realize the full impact of cloud comput-
ing on energy consumption in the United States and the world. The number of cloud service providers (CSPs), 
the spectrum of services offered by the CSPs, and the number of cloud users have increased dramatically 
during the last few years. For example, in 2007, Elastic Cloud Computing (the EC2) was the first service 
provided by Amazon Web Services (AWS); 5 years later, in 2012, AWS was used by businesses in 200 coun-
tries. Amazon’s Simple Storage Service (S3) has surpassed two trillion objects and routinely runs more than 
1.1 million peak requests per second. The Elastic MapReduce has launched 5.5 million clusters since the start 
of the service in May 2010 (ZDNet, 2013).

The infrastructure for supporting cloud services is continually growing. A recent posting on ZDNet reveals 
that, in January 2012, EC2 was made up of 454 600 servers. When one adds the number of servers supporting 
other AWS services, then the total number of Amazon systems dedicated to cloud computing is much larger.

Cloud Energy Consumption

Dan C. Marinescu

University of Central Florida, USA

25



302 Encyclopedia of Cloud Computing

Amazon, Google, and Microsoft were the first to offer infrastructure as a service (IaaS), software as a 
service (SaaS), and platform as a service (PaaS), respectively. In recent years, a fair number of IT organiza-
tions began offering SaaS and PaaS services. There are differences in energy consumption among the 
three cloud delivery models IaaS, SaaS, and PaaS; there are also differences among public, private, and 
hybrid clouds.

A public cloud provides services to a large user community with diverse applications; the hardware is 
shared by multiple customers and applications. Users access the public cloud from anywhere on the Internet 
and only pay for the services they use. A private cloud serves a single organization, typically maintained 
behind a firewall and accessed through an intranet. A set of diverse applications may run on a private cloud. 
An organization may purchase its own private, isolated group of servers from public cloud service providers 
such as Amazon or Rackspace.

The costs of maintaining the cloud‐computing infrastructure are significant. A large fraction of these costs 
is for datacenter housing and cooling and for powering the computational and storage servers and the inter-
connection networks.

The energy costs are different in different counties and in different regions of the same country. Most of 
the power for large datacenters, including cloud computing datacenters, comes from power stations burning 
fossil fuels such as coal and gas but in recent years the contribution of solar, wind, geothermal and other 
renewable energy sources has steadily increased.

The energy costs are passed down to the users of cloud services and differ from one region to another as 
we can see from Table 25.1 (Amazon, 2013), which shows the cost in two regions: United States East and 
South America. The energy costs for the two regions differ by about 40%. The higher energy and networking 
costs are responsible for the significant price difference in this example.

We have witnessed improvements in the energy efficiency of computing – the number of computations 
completed per kWh of electricity. We have also seen an improvement in datacenters’ energy efficiency. 
A measure of the energy efficiency of a datacenter, the so‐called power usage effectiveness (PUE), is the ratio 
of the total energy used to power a datacenter to the energy used to power computational servers, storage 
servers, routers, and other IT equipment. The PUE has improved from around 1.93 in 2003 to 1.63 in 2005. 
Recently, it was reported that Google’s ratio is as low as 1.15 (Baliga et al., 2011).

The increased energy efficiency of the cloud infrastructure, though significant, had a relatively small 
impact on the total energy used for cloud‐related activities. Indeed, in recent years we have witnessed a dra-
matic increase in the number of mobile devices that access data stored on the cloud; this leads to a significant 
increase in the energy used to transfer data to and from the clouds.

The energy used for IT activities represents a significant and continually increasing component of the total 
energy used by a nation; its ecological impact is of serious concern. Thus, it is no surprise that energy opti-
mization is an important dimension of the cloud resource management policies, discussed in section 25.2.

Economy of scale, analyzed in section 25.5, affects the energy efficiency of data processing. For example, 
Google reports that the annual energy consumption for an e‐mail service varies significantly depending on the 
business size and can be 15 times larger for a small business than for a large one (Google, 2013). Cloud com-
puting can be more energy efficient than on‐premises computing for many organizations (Baliga et al., 2011; 

Table 25.1 The costs for a medium utilization instance for quadruple extra‐large 
reserved memory in two different regions for EC2

Costs/ region US East (N. Virginia) South America (Sao Paolo)

Upfront payment for a year $2604 $5632
Per hour cost $0.412 $0.724
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NRDC and WSP, 2012). The energy used to transport the data is a significant component of the total energy 
cost and according to (Baliga et al., 2011) “a public cloud could consume three to four times more power than 
the private cloud due to increased energy consumption in transport.”

One of the main appeals of utility computing is cloud elasticity; additional resources are allocated when an 
application needs them and released when they are no longer needed. The user ends up paying only for the 
resources it has actually used. Elasticity currently comes at a stiff price as cloud resource management is 
based on overprovisioning. This means that a cloud service provider has to invest in a larger infrastructure 
than the “typical” cloud load warrants. It follows that the average cloud server utilization is low (Abts et al., 
2010; Ardagna et al., 2012; Google, 2013; Marinescu, 2013); the low server utilization affects negatively the 
common measure of energy efficiency, the performance per Watt of power and the ecological impact of cloud 
computing, the topic of sections 25.4 and 25.5.

The power consumption of servers has increased over time (Koomey, 2007). Table 25.2 shows the evolu-
tion of the average power consumption for volume servers (servers with a price less than $25 000), mid‐range 
servers (servers with a price between $25 000 and $499 000), and high‐end servers (servers with a price tag 
greater than $500 000).

Reduction in energy consumption and thus of the carbon footprint of cloud‐related activities is increas-
ingly more important for society. Indeed, more and more applications run on clouds, and cloud computing 
uses more energy than many other human‐related activities. Reduction of the carbon footprint can only be 
achieved through a comprehensive set of technical efforts. The hardware of the cloud infrastructure has to 
be refreshed periodically and new and more energy‐efficient technologies have to be adopted; the resource 
management software has to pay more attention to energy optimization; the housing and cooling cost have 
to be reduced, and last, but not least, more energy for powering the cloud infrastructure should come from 
renewable energy sources.

Finally, a word of caution: the predictions formulated by organizations such as the Department of Energy 
(DOE), the National Laboratories, the National Resource Defense Council, or partnerships between indus-
try and universities such as CEET, a joint venture of the Bell Labs and the University of Melbourne, 
regarding many aspects of cloud computing differ, as they are based on different models. Typically such 
models assume several scenarios for each one of the model parameters – worst case, average, and best 
case. The data on cloud resource utilization and energy consumption reported by different sources are 
often slightly different.

25.2 Cloud Resource Management Policies and Energy Optimization

Resource management is a core function of any system; it critically affects the performance, the functionality, 
and the cost, the three basic criteria for the evaluation of a system. An inefficient resource management has a 
direct negative effect on the performance and the cost and an indirect effect on the functionality of the system; 
indeed, some functions provided by the system may become too expensive or may be avoided due to the poor 
performance (NRDC and WSP, 2012).

Table 25.2 Estimated average power use of volume, mid‐range, and high‐end servers (in Watts)

Type/year 2000 2001 2002 2003 2004 2005 2006

Volume 186 193 200 207 213 219 225
Medium 424 457 491 524 574 625 675
High end 5534 5832 6130 6428 6973 7651 8163
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A cloud is a complex system with a very large number of shared resources subject to unpredictable requests 
and affected by external events it cannot control. Cloud resource management requires complex policies and 
decisions for multiobjective optimization. Cloud resource management is extremely challenging because of 
the complexity of the system, which makes it impossible to have accurate global state information and 
because of unpredictable interactions with the environment (Marinescu, 2013).

The strategies for resource management associated with the three cloud delivery models, IaaS, PaaS, and 
SaaS, are different. In all cases the cloud service providers are faced with large fluctuating loads, which chal-
lenge the claim of cloud elasticity. The resources can be provisioned in advance when a spike can be  predicted, 
for example, for Web services subject to seasonal spikes.

Energy optimization is one of the five cloud resource management policies; the others are:

 ● admission control;
 ● capacity allocation;
 ● load balancing; and
 ● quality of service (QoS).

The explicit goal of an admission‐control policy is to prevent the system from accepting workload in viola-
tion of high‐level system policies; for example, a system may not accept additional workload that would 
prevent it from completing work already in progress or contracted. Limiting the workload requires some 
knowledge of the global state of the system. This becomes more challenging as the scale of the system 
increases. Moreover, in a dynamic system such knowledge, when available, is at best obsolete due to the fast 
pace of state changes.

Capacity allocation means allocating resources for individual instances; an instance is an activation of a 
service. Locating resources subject to multiple global optimization constraints requires a search of a very 
large search space when the state of individual systems changes rapidly.

Load balancing and energy optimization can be done locally but global load‐balancing and energy‐
optimization policies encounter the same difficulties as the ones we have already discussed. Load balanc-
ing and energy optimization are correlated and affect the cost of providing the services.

There are strong interdependencies among these policies and the mechanisms for implementing them. 
Many mechanisms are concentrated on system performance in terms of throughput and time‐in‐system but 
rarely include either energy optimization or QoS guarantees (Ardagna et al., 2012, NRDSC and WSP, 2012; 
Paya and Marinescu, 2013). Self‐management and self‐organization could overcome the limitations of these 
mechanisms (Marinescu et al., 2013).

25.3 Energy Proportional Systems and Server Utilization

There is a mismatch between server workload profile and server energy efficiency (Barosso and Hölzle, 
2010). In an ideal world, the energy consumed by an idle system should be near zero and should grow linearly 
with the system load. In real life, even systems whose power requirements scale linearly, when idle, use more 
than half the power they use at full load (Abts et al., 2010). Indeed, a 2.5 GHz Intel E5200 dual‐core desktop 
processor with 2 GB of RAM consumes 70 W when idle and 110 W when fully loaded; a 2.4 GHz Intel Q6600 
processor with 4 GB of RAM consumes 110 W when idle and 175 W when fully loaded (Baliga et al., 2011).

An energy‐proportional system is one when the amount of energy used is proportional to the load of the 
system. Different subsystems of a computing system behave differently in terms of energy efficiency; while 
many processors have reasonably good energy‐proportional profiles, significant improvements in memory 
and disk subsystems are necessary. The processors used in servers consume less than one‐third of their peak 
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power at very‐low load and have a dynamic range of more than 70% of peak power; the processors used in 
mobile and / or embedded applications are better in this respect.

The dynamic power range of other components of a system is much narrower (Barosso and Hölzle, 2010):

 ● less than 50% for DRAM;
 ● 25% for disk drives; and
 ● 15% for networking switches.

The power consumption of such devices is: 4.9 kW for a 604.8 TB, HP 8100 EVA storage server, 3.8 KW for 
the 320 gbps Cisco 6509 switch, 5.1 kW for the 660 gbps Juniper MX‐960 gateway router (Baliga et al., 2011).

A number of proposals have emerged for energy‐proportional networks; the energy consumed by such 
networks is proportional to the communication load. For example, a datacenter network based on a flattened 
butterfly topology is more energy and cost efficient (Abts et al., 2010).

Servers running a single application may be 5% to 15% utilized. Virtualization increases the energy effi-
ciency of a system because it allows multiple virtual machines to share one physical system. The effects of 
virtualization are captured by a recent model developed by the NRDC (National Resource Defense Council) 
and WSP Environment and Energy, based on a wealth of data from multiple sources. The model gives the 
server utilization in several environments and for each it considers the worst case, the average case, and the 
best case scenarios (NRDC and WSP, 2012), see Table 25.3.

Virtualization leads to better utilization for on‐premises operation but utilization is only slightly better as 
we move from on‐premises with virtualization, to private, and then to public clouds.

The utilization of cloud servers can be low in spite of the economy of scale and the advantages of virtual-
ization. Typical server utilization is in the 10% to 50% range, as we can see in Figure 25.1 which illustrates 
the relationship between the power used by a system and the utilization of the system (Barosso and Hölzle, 
2010). A 2010 report (Abts et al., 2010) shows that a typical Google cluster spends most of its time within 
the 10–30% CPU utilization range.

Similar behavior is also seen in the datacenter networks; these networks operate in a very narrow dynamic 
range, and the power consumed when the network is idle is significant compared to the power consumed 
when the network is fully utilized. High‐speed channels typically consist of multiple serial lanes with the 
same data rate; a physical unit is stripped across all the active lanes. Channels commonly operate plesi-
ochronously and are always on, regardless of the load, because they must still send idle packets to maintain 
byte and lane alignment across the multiple lanes. An example of an energy‐proportional network is the 
Infiniband, a switched fabric interconnection network used by many supercomputers. The main reasons 
why Infiniband is also used as the interconnection network of datacenters are: scalability, high throughput, 
low latency, QoS support, and failover support. A network‐wide power manager called Elastic Tree, which 
dynamically adjusts the network links and switches to satisfy changing datacenter traffic loads is described 
in Heller et al., 2010).

Table 25.3 Server utilization in several environments

Environment/case Worst case (%) Average case (%) Best case (%)

On‐premises nonvirtualized 5 10 25
On‐premises with virtualization 6 30 60
Private cloud 7 40 60
Public cloud 7 30 70
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Energy saving in large‐scale storage systems is also of concern. One strategy to reduce energy consump-
tion is to concentrate the workload on a small number of disks and allow the others to operate in low‐power 
modes. Public and private clouds are more energy efficient than local storage of data provided that data is 
accessed infrequently (Baliga et al., 2011).

In cloud computing, a critical goal is minimizing the cost of providing the service and, in particular, minimiz-
ing the energy consumption. This leads to a different meaning of the term “load balancing”; instead of having 
the load evenly distributed amongst all servers, we wish to concentrate it and use the smallest number of servers 
while switching the others to a standby or sleep mode, a state where a server uses very little energy. This strat-
egy is discussed in Preist and Shabajee (2010), Qian and Medhi (2011) and Paya and Marinescu (2013).

Dynamic voltage and frequency scaling (DVFS) is a power‐management technique to increase or decrease 
the operating voltage or frequency of a processor to increase the instruction execution rate, to reduce the 
amount of heat generated, and to conserve power. Techniques such as Intel’s SpeedStep and AMD’s PowerNow 
lower the voltage and the frequency to decrease the power consumption. Motivated by the need to save power 
for mobile devices, these techniques have migrated to processors used for high‐performance servers.

25.4 Energy‐Aware Load Balancing and Server Consolidation

Recently, Gartner Research reported that the average server utilization in large datacenters is 18% (Snyder, 
2010) while the utilization of x86 servers is even lower, 12%. These results confirm earlier estimations that 
the average server utilization was in the 10–30% range. A 2010 survey (Blackburn and Hawkins, 2010) 
reported that idle servers contributed 11 million tons of unnecessary CO

2
 emissions each year and that the 

total yearly costs for idle servers was 19 billion.
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A strategy for resource management in a computing cloud is to concentrate the load on a subset of servers 
and switch the rest of them to a sleep state whenever possible. This strategy aims to reduce the power 
 consumption and, implicitly, the cost of providing computing and storage services.

A comprehensive document produced by Hewlett‐Packard, Intel, Microsoft, Phoenix Technologies, and 
Toshiba (Hewlett‐Packard et al., 2011) describes the advanced configuration and power interface (ACPI) 
specifications, which allow an operating system (OS) to manage the power consumption of the hardware 
effectively. Several types of sleep states are defined:

 ● C‐states (C1‐C6) for the CPU;
 ● D‐states (D0‐D3) for modems, hard drives, and CD‐ROM; and
 ● S‐states (S1‐S4) for the basic input‐output system (BIOS).

The C‐states allow a computer to save energy when the CPU is idle. In a sleep state, the idle units of a CPU 
have their clock signal and the power cut. The higher the state number, the deeper the CPU sleep mode, the 
larger the amount of energy saved, and the longer the time for the CPU to return to the state C0, which 
 corresponds to the fully operational CPU.

Some of the questions posed by energy‐aware load balancing discussed in Paya and Marinescu (2014) are:

 ● Under what conditions a server should be switched to a sleep state?
 ● What sleep state should the server be switched to?
 ● How much energy is necessary to switch a server to a sleep state and then switch it back to an active state?
 ● How much time does it take to switch a server in a sleep state to a running state?
 ● How much energy is necessary to migrate a VM running on a server to another one?
 ● How much energy is necessary to start a VM on the target server?
 ● How to choose the target for the migration of a VM?
 ● How much time does it take to migrate a VM?

Two basic metrics ultimately determine the quality of an energy‐aware load‐balancing policy:

 ● The amount of energy saved.
 ● The number of violations it causes.

In practice, the metrics depend on the system load and other resource management policies such as the 
admission‐control policy and the QoS guarantees offered. The load can be slow‐ or fast‐varying, can have 
spikes or be smooth, can be predictable or totally unpredictable; the admission control can restrict the accept-
ance of additional load when the available capacity of the servers is low. What we can measure in practice is 
the average energy used and the average server setup time. The setup time varies depending on the hardware 
and the operating system and can be as long as 260 s (Gandhi et al., 2012b); the energy consumption during 
the setup phase is close to the maximal one for the server.

The time to switch the servers to a running state is critical when the load is fast varying, the load variations 
are very steep, and the spikes are unpredictable. The decisions when to switch servers to a sleep state and 
back to a running state are less critical when a strict admission control policy is in place; then new service 
requests for large amounts of resources can be delayed until the system is able to turn on a number of sleeping 
servers to satisfy the additional demand.

Energy‐optimization algorithms decide when a server should enter a sleep state, the type of sleep state, 
and when to wake up. Such algorithms have been proposed by Gandhi and Harchol‐Balter (2011) and Gandhi 
et al. (2012a, b, c).
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25.5 Economy of Scale and Energy Consumption

Large enterprises often have significant cost advantages due to their scale, as fixed costs are spread out over 
more units of output. Often, operational efficiency is greater with increasing scale leading to lower variable 
cost as well. It is thus reasonable to expect that economy of scale will manifest itself in cloud computing 
where large datacenters are able to operate more efficiently than smaller or medium‐size ones. The actual cost 
for cloud services indicates that this expectation is justified.

We argued earlier that energy costs are a significant component of the total costs for providing cloud 
services so we should not be surprised that a cloud infrastructure is more energy efficient than a small or 
medium‐size datacenter. A 2013 study led by the Lawrence Berkeley National Laboratory with funding 
from Google (LBL, 2013), considers three common business applications – e‐mail, customer relation-
ship management software, and productivity software such as spreadsheets, file sharing, and word 
 processing – and concludes that: “moving these applications from local computer systems to centralized 
cloud services could cut information technology energy consumption by up to 87% – about 23 billion 
kilowatt‐hours. This is roughly the amount of electricity used each year by all the homes, businesses, and 
industry in Los Angeles.”

The September 12, 2012 issue of the New York Times quotes a senior Google executive: “Google’s servers 
refresh 20 billion pages a day, process over 100 billion search queries a month, provide e‐mail for 425 million 
Gmail users and process 72 hours of video uploaded per minute to YouTube. And yet we’re able to do all that 
work with relatively little energy, compared to other industries.”

A Google report (Google, 2013) discusses costs for an e‐mail service for organizations of different sizes; 
this data is summarized in Table 25.4.

The energy consumption per user per year for powering the servers is almost 15 times lower for a large 
center compared to a small center, while the energy used for housing and cooling is 23 times lower. The 
 carbon emissions are more than 20 times smaller for a large center compared with a small one.

A recent report (NRDSC and WSP 2012) compares the carbon emissions for on‐premises versus clouds. 
One of the main conclusions of this report is that “running a business application on the cloud is generally 
more energy and carbon efficient than running it on‐premises because cloud computing offers greater diver-
sity and can serve more customers at the same time, achieving better economy of scale than small and 
medium organization.” The same report concludes that a private cloud offers essentially the same benefits as 
a public cloud in terms of energy consumption.

The carbon emissions per GB of storage for three modes of operation: (i) on‐premises with virtualization; 
(ii) private cloud; and (iii) public cloud and three scenarios: (a) worst case; (b) average, and (c) best case are 
summarized in Table 25.5.

The carbon emissions for data storing on‐premises with virtualization and private clouds are similar and 
are significantly lower in case of the public clouds.

Table 25.4 The costs for an e‐mail service for small organizations, with up to 50 users, 
medium ones with up to 500 users, and large ones with up to 10 000 users

Annual energy and CO2 emissions / e‐mail service Small Medium Large

Annual energy/user for powering the servers (kWh) 70 16 4.7
Annual energy/user for heating and cooling (kWh) 175 28.4 7.6
Annual CO2 emissions/users (Kg) 103 16.7 1.23
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25.6 Energy Use and Ecological Impact of Large Datacenters

A conservative estimation of the electric energy used now by the information and communication technology 
(ICT) ecosystem is 1500 TWh of energy, 10% of the electric energy generated in the entire world. Energy 
consumption for ICT equals the total electric energy used for illumination in 1985 and represents the total 
electric energy generated in Japan and Germany.

The ICT ecosystem consist of:

 ● datacenters;
 ● broadband wired and wireless communication networks;
 ● end‐user devices such as PCs, tablets, smartphones, and digital TVs;
 ● manufacturing facilities producing ICT hardware.

The number of end‐user devices is increasing. In 2013 there were 1.5 billion PCs and an equal number of 
smart mobile devices. It was predicted that the number of PCs would level off, whereas the number of smart 
mobile devices would increase rapidly (Mills, 2013).

The US demand for electricity grew around 30% per year since the mid‐1990s (EIA 2013). The energy 
consumption of large‐scale datacenters and their costs for energy used for computing and networking and for 
cooling are significant now and are expected to increase substantially in the future. In 2006, the 6000 data 
centers in the United States reportedly consumed 61 × 109 kWh of energy, 1.5% of all electricity consumption 
in the country, at a cost of $4.5 billion (Vrbsky et al., 2010).

The predictions are dire. The energy consumption of data centers and the network infrastructure is  predicted 
to reach 10 300 TWh/year in 2030, based on 2010 levels of efficiency (Vrbsky et al., 2010).

Cloud computing is only possible because the Internet allows user access to the large datacenters; but the 
Internet itself consumes a fair amount of energy as we shall see shortly. This amount is likely to increase 
dramatically. The hourly Internet traffic will shortly exceed the annual traffic in 2000 (Mills, 2013)!

A study produced by CEET (2013), a joint venture of the Bell Labs and the University of Melbourne, 
warns that [ex]access networks, not data centers, are the biggest threat to the sustainability of cloud services. 
This is because more people are accessing cloud services via wireless networks. These networks are inher-
ently energy inefficient and a disproportionate contributor to cloud energy consumption …

The support for network centric content consumes a very large fraction of the network bandwidth; accord-
ing to the CISCO VNI forecast, in 2009 consumer traffic was responsible for around 80% of the bandwidth 
used and is expected to grow at a faster rate than business traffic. Data intensity for different activities varies 
widely (Preist and Shabajee, 2010) as shown in Table 25.6.

The same study reports that if the energy demand for bandwidth is 4 W/h per MB and if the demand for 
network bandwidth is 3.2 GB / day / person or 2570 EB / year for the entire world population, then the energy 
required for this activity will be 1175 GW. These estimates do not count very high bandwidth applications 
that may emerge in the future, such as 3D‐TV, personalized immersive entertainment, such as Second Life, 

Table 25.5 Carbon emissions per GB of storage for three modes of operation and three scenarios

Operation mode /scenario Worst case (kg) Average case (kg) Best case (kg)

On‐premises with virtualization 15.9 7.9 1.7
Private cloud 12.7 5.0 1.4
Public cloud 11.1 1.4 0.6
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or massive multiplayer online games. As we have seen in section  25.3, the power consumption of the 
 networking infrastructure is significant; as the volumes of data transferred to and from a cloud increase, the 
power consumption for networking will also increase.

We now take a closer look at the energy efficiency of computing measured as the number of computations 
completed per kWh of electricity used. In 1985, Richard Feynman, the 1965 Nobel laureate in Physics for his 
contributions to quantum electrodynamics, estimated that computing technology which uses electrons for 
switching could theoretically improve by a factor of 1011 relative to the technology used at that time. In real-
ity, the actual performance per kWh improved only by a factor of 4 × 104 since 1985, far from Feynman’s 
theoretical limit (Koomey et al., 2011).

The popular summary of Moore’s law (not really a “physical law” but an “empirical observation” stating 
that the number of transistors on a chip, and thus the complexity of the circuit, doubles every 18 months) is 
that computing performance doubles approximately every 1.5 years. Koomey et al. (2011) reported that 
electrical efficiency of computing doubles also about every 1.5 years. Thus, performance growth rate and 
improvements in electrical efficiency almost cancel each out. It follows that the energy use for computing 
scales linearly with the number of computing devices.

The power consumption required by different types of human activities is partially responsible for green-
house gas emissions. According to Vrbsky et al. (2010), the greenhouse gas emission due to datacenters was 
estimated to increase from 116 Mt of CO

2
 in 2007 to 257 Mt in 2020, due primarily to increased consumer 

demand.
A comprehensive report released in 2012 (NRDSC and WSP, 2012) identifies four major factors that affect 

the carbon emissions of different types of IT activities:

 ● PUE – the ratio of the total energy consumption of a center to the fraction of energy used to power the 
servers and the routers of the center.

 ● The average server utilization (U) – the lower U is, the lower the energy efficiency is.
 ● The refresh period of the equipment (P) – the time between successive replacements of equipment with 

newer equipment.
 ● The ratio (R) of virtualized servers versus nonvirtualized ones.

For example, for a public cloud, assuming an average scenario, the grid emission factor measured in kg of 
CO

2
 equivalent per kilowatt‐hour is 0.554. This factor improves to 0.268 for a best case scenario but worsens 

to 0.819 for a worst case scenario as shown in Table 25.7.
The CO

2
 emissions are identical for a private cloud but under more relaxed conditions – see Table 25.8.

It is reported that only 3 W out of every 100 W of power consumed in a typical datacenter end up contribut-
ing to useful computation. One can only conclude that datacenters should increase their PUE, adopt newer 
technologies, and improve their resource‐management policies.

Table 25.6 Data intensity for different types of activities

Activity Data intensity (MB/minute)

HDTV streaming 20
Standard TV streaming 10
Music streaming 1.3
Internet radio 0.96
Internet browsing 0.35
E‐book reading 0.0024
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The study (NRDSC and WSP, 2012) shows that the source of electric power has a dramatic effect on the 
carbon footprint of a datacenter. The carbon footprint of a center using power generated from renewable 
energy sources can be four times smaller than the one of a center using high‐carbon sources. The key varia-
bles that determine the carbon emissions of a datacenter are:

 ● the PUE;
 ● the server utilization; and
 ● the carbon emission factor of the electricity used to power the center, in kg of CO

2
.

For example, in the United State the carbon emission is:

 ● 70–80 kg of CO
2
 per year – when PUE = 3.0, the average server utilization is 5%, and the electricity used 

by the cloud is generated by a high carbon‐intensity source.
 ● 30–35 kg of CO

2
 per year – when PUE = 1.5, server utilization is 40%, and the electricity used by the 

cloud is generated by an average carbon‐intensity source.

25.7 Summary and Conclusions

Optimization of energy consumption, along with improved security and privacy, is critical for the future of 
cloud computing. There are natural tensions between basic tenets of cloud computing. A public cloud is attrac-
tive for the users due to its elasticity and the ability to provide additional resources when needed, but the price 
to pay is overprovisioning. In turn, overprovisioning leads to lower server utilization, and thus to higher energy 
costs. The physical components of the cloud infrastructure are not energy proportional; even under a low load 
or when idle, their energy consumption represents a large fraction of the energy consumed at full load.

Virtualization by multiplexing allows multiple virtual machines to share the same physical system. In 
principle, this can lead to higher server utilization but virtualization adds a considerable overhead. Recall that 

Table 25.7 The grid emission factor measured in kg of CO2 
equivalent per kWh for a public cloud

Grid emission factor
(Kg CO2 / kWh)

PUE U
(%)

P
(years)

R

0.819 2.0 7 3 5/1
0.544 1.5 40 2 8/1
0.268 1.1 70 1 12/1

Table 25.8 The grid emission factor measured in kilograms 
of CO2 equivalent per kWh for a private cloud

Grid emission factor
(Kg CO2 / kWh)

PUE U
(%)

P
(years)

R

0.819 2.5 7 5 3/1
0.544 1.8 30 3 5/1
0.268 1.3 60 2 10/1
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the hypervisor and the management operating system (OS), running on one of the virtual machines, control 
the allocation of local resources. Communication and the I/O requests of an application have to be channeled 
through the management OS; system calls issued by an application result in hypercalls to the hypervisor.

The overhead due to virtualization cannot be easily quantified; it differs from one hypervisor to another, and 
it depends on the hardware and the operating system. For example, Xen pays a high penalty for context switch-
ing and for handling a page fault. The CPU utilization of a VMware Workstation system running a version of 
Linux was five to six times higher than that of a native system in saturating a network (Marinescu, 2013).

At the same time, virtualization allows migration of virtual machines for workload consolidation but there 
is a considerable overhead and, thus, additional energy consumption associated with virtual machine migra-
tion. Multitenancy, sharing a physical platform among a number of virtual machines, adds to the system 
overhead. Data replication is another source of overhead and increased energy consumption.

It is expected that hardware will continue to improve, power management techniques such as DVFS will 
improve the efficiency of computing, and new technologies, such as solid‐state disks, will use much less 
energy than mechanical disks. The scheduling algorithms and the system software running on the clouds will 
continue to improve and make their own contribution to energy saving.

Computer clouds contribute indirectly to energy consumption and the number of smart mobile devices 
used to access data stored on the cloud is increasing rapidly. Research on energy‐aware communication pro-
tocols and energy efficient switches should lead to new communication software and hardware capable of 
sustaining the dramatic increase in the volume of the Internet traffic to / from a cloud.

It is likely that the SaaS cloud‐delivery model will continue to attract a larger user community than the 
other two models due to the wide range of SaaS applications and the ease of access to these services. Even 
though the cloud service providers are faced with large fluctuating loads, the resource management seems 
less challenging in the SaaS case. Energy can be saved by requiring all running systems to operate in an 
 optimal region. The load from lightly loaded servers should be migrated to other servers of the cloud and 
these systems should then be switched to a sleep state to save energy, and when the load increases, they 
should be switched back to a running state (Paya and Marinescu, 2013). Some of these services involve data 
streaming thus, increased network traffic and energy consumption.

The spectrum of PaaS services will also continue to grow as more and more e‐commerce and business 
applications migrate to the cloud and demand sophisticated analytics. The number of CSPs supporting this 
cloud delivery model, the number of applications, and the user population, will most likely increase in the 
future. Performance optimization of applications running under this model and the corresponding energy 
optimization will continue to be challenging as performance isolation cannot be ensured due to multitenancy. 
Energy optimization in the context of the IaaS delivery model is probably the most challenging but, as this 
model appeals only to a smaller population of sophisticated users, its impact on the overall cloud energy 
consumption will be modest.

While public clouds will continue to attract the largest number of applications and users, private clouds and 
hybrid clouds will develop their own audience. Organizations with very strict security and privacy concerns 
will opt for these types of clouds. A private cloud that groups together the computing resources of an organi-
zation can offer the same benefits in terms of energy optimization as a public cloud (Marinescu, 2013).

Hybrid clouds combine the advantages of public cloud – elasticity and low cost – with the security and 
privacy characteristic of private clouds. Applications in many areas, including healthcare and engineering, 
could benefit from operating hybrid clouds. For example, it is conceivable that a smart power grid will be 
based on a hybrid cloud where each electric utility company will maintain proprietary data and code on its 
private cloud, while “big data” will be stored on a public cloud along with information needed by all utilities 
to operate in concert.

We expect the CSPs to place their datacenters in regions with low energy consumption to reduce costs. At 
the same time, it seems likely that energy from renewable sources such as solar, wind, and geothermal will 
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represent a significant fraction of the overall energy consumption of big datacenters. Already solar energy is 
used to power some of Google’s cloud‐computing infrastructure.

Better policies and mechanisms addressing all aspects of resource management should be coupled with 
server upgrades to reduce the overall energy consumption. Newer technologies such as solid‐state storage 
devices, or communication systems with a larger dynamic range, coupled with short refresh periods for the 
equipment, will lower the energy consumption and reduce the carbon footprint attributed to computing and 
communication activities.
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26.1 Introduction

Cloud computing is perceived as a game‐changing technology for the provisioning and consumption of data-
center resources (Kavis, 2014). Various nonfunctional attributes like performance, scalability, cost, energy 
efficiency, resiliency, high availability, and security are considered vital to enable the further growth of cloud 
computing (Armbrust et al., 2009).

An engineering approach, limited only to measurements, tuning, and fixing defects, is not sufficient to 
ensure a cloud design would address these attributes. In general, these activities happen late in the develop-
ment cycle. Therefore, they cannot adequately address cloud‐design issues like scalability of algorithms to 
assign virtual machines (VMs) to certain compute nodes or the performance impact of various network 
topologies. Furthermore, only a very limited set of scenarios can be handled this way due to time and resource 
limitations. Although most development projects face these limitations, their impact on cloud computing is 
especially severe due to the huge resources and costs required to create and manage large‐scale clouds.

Modeling and simulation technologies can help address these issues. They can be applied to model various 
cloud attributes like energy dissipation or to evaluate different pricing models. This chapter will focus on 
performance and scalability. The discrete‐event simulation approach described here could be augmented to 
address nonfunctional cloud features like energy efficiency or costs too, but this is beyond the scope of 
this chapter.

Performance modeling and simulation techniques enable performance analysis of cloud designs and capac-
ity planning early in the development cycle on a large scale, with moderate costs, and respecting the strict 
time constraints of an industrial development project. Despite being widely used and well established in 
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various branches of the information and telecommunication industries, the application of these techniques to 
cloud computing provides some new challenges due to complexity, diversity, and scale.

In the following sections, we will first provide a short introduction to performance modeling and simulation 
technologies and provide a rationale to choose simulation technologies in the industrial context. We will also use 
this section to introduce some important terminology. Then we will discuss specific requirements regarding the 
modeling and simulation of clouds, followed by a survey of publications and tools currently available here.

Next, we will identify the various objects of a cloud that need to be modeled. This includes hardware and 
software components as well as workloads consisting of various types of requests. We will also propose 
appropriate levels of modeling abstractions for various cloud objects. We will discuss the modeling of some 
key performance‐related concepts like contention and segmentation in the cloud. Some challenges associated 
with a cloud‐simulation project are then described, especially the specification of objectives, parameteriza-
tion, calibration, execution, and result analysis. Finally, a real‐life cloud simulation project will be described, 
including all project phases, execution characteristics, and some typical results.

26.2 Modeling and Simulation Overview

A model of a system consists of general artefacts like resources and algorithms used to capture the behav-
ior of the system. Such a model can then be implemented and solved in terms of mathematical equations 
(e.g. using analytic queueing modeling) or in the form of a simulation that imitates the operation of the 
system using a computer. A request is a general unit of work posted against the system to be handled. 
Typical examples of such requests in clouds are the provisioning of images, transferring data packets over 
networks or compute jobs. Workloads then consist of patterns of such requests characterized, for example, 
by request types, the distribution of interarrival times between requests, or the concurrent number of 
requests in the system.

We provide a short survey of the two major approaches used to model performance and scalability of 
hardware and software components, namely solving analytic queueing models and executing discrete‐event 
simulations.

Analytic queueing modeling uses mathematical equations to describe the performance of systems consist-
ing of hardware and software components as well as workload requests interacting with them (Bloch et al., 
2006). In fact, analytic modeling can be considered as a branch of applied mathematics, namely probability 
and stochastic processes. It has a long tradition and was first applied by Erlang to model the performance of 
telephone systems at the beginning of the last century (Erlang, 1917). As a simple example here we may think 
of requests (SQL queries) posted by clients and arriving at a database server. Both the arrival of requests and 
their handling at the server can be modeled as stochastic processes using probability distributions for their 
interarrival times and the service times. In some especially simple cases, these stochastic processes can then 
be solved analytically (using a paper‐and‐pencil approach and not relying on approximations or numerical 
methods) to obtain explicit expressions for observables like the average response time as a function of service 
time and device utilization – see Eq. 26.1, which shows the typical results of analytic queueing modeling: 
the average response time R and the average number of requests Q in the system as a function of the service 
time S and the utilization ρ.

 

R
S

Q

1

1

 (26.1)
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Unfortunately, in the majority of real‐life cases, such solutions are not available, so significant idealiza-
tions are required for the system components and workloads under consideration. In fact there are quite a few 
well known and highly important performance‐relevant features in the context of clouds where analytic 
methods are difficult to apply (Bloch et al., 2006), for example:

 ● Blocking. The amount of hardware resources like processor cycles and network bandwidth as well as 
software resources like database connection pool sizes or number of operating system threads in a cloud 
is finite. When a request has to wait for such resources due to contention, its execution blocks. This may 
also impact the execution of other resources. For example, a request waiting for a database connection 
currently in use by other requests cannot proceed using available network bandwidth to access the data-
base server. (Therefore sizes of connection pools are always good candidates for performance tuning in 
clouds.)

 ● Bulk arrivals. A single request, for example a “launch instances” infrastructure as a service (IaaS) request, may 
contain several subrequests (various instances to be provisioned) arriving at the same moment at the cloud.

 ● Segmenting / reassembling. Basically all data transfers in clouds take place in the form of packets requir-
ing a segmentation of large data blocks into smaller packets at the sender; these packets have to be reas-
sembled at the receiver.

 ● Load balancing. Adaptive load balancing is heavily used within clouds to ensure optimal utilization of 
resources.

 ● Mutual exclusion. Frequently data structures at cloud components require atomic access of requests 
for updating data to ensure their consistency (e.g. network configuration data at hypervisors). This is 
 frequently implemented by so‐called “critical sections” of code allowing the execution of a single 
request only. In general, “critical sections” are protected by a lock that can only be owned by one 
request at a time.

 ● Nonexponential service times. The usage of exponential probability distributions to model service times 
is key in analytic modeling but in clouds service times will in general violate this assumption.

 ● Simultaneous resource possession. One of the key methods to enhance performance in clouds is the use 
of asynchronous I/O to overlap computation with storage or network access. This results in requests own-
ing several resources at the same instant, namely processor cycles and storage or network resources.

 ● Transient states. Significant workload fluctuations (e.g. depending on the time of the day) result in cloud 
states far away from a steady state.

On the other hand, various approximation schemes are available for analytical models, which are highly 
efficient in terms of resource consumption and execution time (Bloch et al., 2006) but their impact on the 
accuracy of results is often unclear.

A simulation is an imitation of the operation of a real‐world process or system over time implemented on 
a computer system (Banks et al., 2010; Steinhauser, 2013). In science and engineering simulation technolo-
gies have a long tradition and are extensively used in processes or systems that change their state continu-
ously over time and can be described by differential equations (Steinhauser, 2013) – see the left side of 
Figure 26.1. However, this approach is of limited value when applied to cloud computing, because of the 
inherently discrete, noncontinuous behavior of cloud components and workloads (for example, at a processor 
level, request execution is driven by the discrete processor clock and at the cloud level by events like the 
arrival and departure of launch instance requests at compute nodes). This motivates the application of another 
simulation technology, namely discrete‐event simulations (also known as event‐driven simulations), which 
only model state changes at discrete times, see the right side of Figure 26.1.

Although a detailed discussion of discrete‐event simulations (Banks et al., 2010) is beyond the scope of 
this chapter, we provide a brief description here. The key idea of discrete‐event simulations is to model the 
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Figure 26.1 The left figure shows a system with state changing continuously as a function of time. Such systems 
frequently occur in physics and engineering and are modeled by (systems of) differential equations. The right 
figure shows a system with state changing only at discrete times. Basically all systems used in information technol-
ogy, including clouds, fall into this category. Differential equations are not well suited to model such systems 
because of their discrete nature
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Figure 26.2 The core algorithm of a discrete‐event simulation engine



Cloud Modeling and Simulation 319

system operation only by the sequence of events that causes changes in system state at discrete points in time. 
Typical events are, for example, arrivals or departures of requests occurring at system components. Future 
events that are already scheduled at a particular point in time are kept in a future‐event list. As illustrated in 
the core discrete‐event algorithm in Figure 26.2, the simulator repeatedly picks from this event list the earliest 
next event, hands it over to the particular event handler that is associated with the event, and sets the simula-
tion clock to the event’s occurrence time. A particular event handler, for example, might be responsible for 
performing the necessary state update for a specific system component at arrival of a specific request. 
Typically, a handler also schedules new upcoming events into the future event list, which may be events mod-
eling the next arrival of the same kind or a departing request targeted to another system component. This core 
process shown in the grey box at the center of Figure 26.2 is repeated until the simulation ending condition 
is reached. This way, the dynamic system behavior is correctly modeled by immediate time jumps across the 
nonrelevant time periods between subsequent events. These time jumps make discrete‐event simulation supe-
rior in efficiency to the activity‐based simulation method (also known as time‐driven simulations) where time 
is incremented in sufficiently small equidistant steps thereby wasting computing time during nonrelevant 
time periods.

In our cloud simulation scenarios, the time between two events in the real system is typically several sec-
onds, while it is simulated in approximately a millisecond on contemporary computer systems. Leveraging 
parallel simulation technologies (Wu et al., 2002) allows us to handle many events concurrently enabling the 
accurate simulation of large clouds for long time intervals.

Furthermore, the remarkable simplicity of the core discrete‐event algorithm results in high flexibility and 
enables a straightforward simulation beyond the capabilities of analytic queueing modeling including the fea-
tures mentioned in the bulleted list of section 26.2. Still, significant efforts are required to implement meaningful 
cloud‐simulation models and their execution may require significant resources and execution time.

To sum up, for cloud modeling, discrete‐event simulations seem to be superior to analytic modeling tech-
nologies in terms of accuracy and flexibility. This is essential in an industrial context. The greater efficiency of 
analytic methods can be offset (at least partially) by leveraging parallel simulation technologies on appropriate 
contemporary computer systems. Therefore we have selected discrete‐event simulations as our primary tool to 
model clouds with the option to use simulation models as a basis for analytic queueing modeling efforts.

26.3 Cloud Modeling and Simulation Requirements

Although performance modeling and simulation technologies as introduced in the previous section are widely 
used and well established in various branches of information and telecommunication industries (Bertsekas 
and Gallager, 1992; Pasricha and Dutt, 2008), their application to clouds provides some new challenges due 
to complexity, diversity, and scale (Altevogt, et al., 2011):

 ● The hardware infrastructure of clouds consists of servers, networking devices, and storage subsystems. 
All of these components need to be taken into account on an equal footing. This is in contrast to most of 
the performance simulation work focusing on (parts of) just one of these components.

 ● A cloud is a complex system with intricate interactions between hardware and software modules. 
Therefore, both software workflows and hardware infrastructure must be treated with equal emphasis 
when simulating end‐to‐end performance.

 ● In general, the software workflows for managing and using a cloud change at a much higher rate than the 
available cloud hardware infrastructures; therefore it is important to introduce separate modules for simu-
lating software heuristics and the hardware infrastructure to support a rapid implementation of new cloud 
software heuristics for unchanged hardware infrastructure and vice versa.
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 ● The market for cloud solutions being highly dynamic, simulations of new clouds must be provided in a 
timely manner – we need to support a rapid prototyping.

 ● We need to allow for selectively and rapidly adding details to the simulation of specific hardware or soft-
ware components to increase the credibility of the simulation effort if required by the stakeholders of a 
simulation effort.

 ● Last but not least, the enormous size of contemporary cloud datacenters requires highly scalable simula-
tion technologies.

Besides addressing these challenges, a key point is to find a useful degree of abstraction for modeling the 
system components and workloads under investigation, for example to identify the features of them that need 
to be included in the model and how they should be simulated. This is largely determined by the goals of the 
modeling effort, but must ensure modeling of typical cloud level objects like compute nodes, switches, rout-
ers, hypervisors, VMs, load balancers, firewalls, and storage with an appropriate level of detail. All these 
objects must be treated as first‐class citizens in a cloud simulation in contrast to, for example, a network 
simulation that will focus on simulating network devices and use compute nodes only as workload generators 
posting packets against the network.

In fact there are quite a few simulation frameworks for clouds available – see Wei et al. (2012) for a review. 
We will focus on our cloud simulation approach (Altevogt et al., 2011, 2013) to address the challenges men-
tioned above in more detail.

26.4 Modeling and Simulation of Clouds

Although clouds are complex systems, they consist of a rather small set of fundamentally different high‐level 
hardware and software building blocks – see Figure 26.3. The key modeling challenges here are to:

 ● identify the appropriate building blocks;
 ● model these building blocks on an appropriate abstraction level;
 ● enable their modular and scalable combination to build complex clouds;
 ● support the implementation of request workflows on various levels of detail.

Figure  26.3 shows various hardware and software building blocks of clouds that need to be modeled. 
Besides the hardware components like compute nodes and disk arrays, we use VMs as the building blocks to 
implement software workflows. We distinguish between hardware resources like processor cores, disks, and 
switches where requests spend time for execution. Software resources represent artefacts like database con-
nections or thread pools. By definition, requests do not spend time for execution at these software resources, 
but frequently need to own one or several software resources to access a hardware resource.

As a typical example for a model of a hardware resource, we take a closer look at the model of a network 
device – see Figure 26.4. It consists of basic building blocks (“Lego bricks”) providing bandwidth to model 
the ports and a crossbar switch, another “Lego brick” providing processor cycles and a module implementing 
the software workflow details including the creation of routing tables at initialization of the simulation. Using 
different parameterizations of the components (e.g., processing times, link bandwidths or number of ports), 
this simulation module can be used to model a wide variety of network devices like switches, routers and 
firewalls. A packet enters the network device at a port, traverses the crossbar, spends some time at a processor 
core, the switch or router looks up the appropriate port connected to the next target in the routing table of the 
workflow module and finally the packet leaves the device via this port. (This low‐level request workflow 
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within a network device is in general initiated by a high‐level workflow request implementing, for example, 
a cloud‐level software application.)

A typical scenario for the application of software resources is the simulation of so called critical sections – 
see Figure 26.5. Such sections represent processing phases that allow only one concurrent request to proceed 
and are used, for example, to ensure consistency of data updates. In this case a request has to queue for a token 
(phase 1) provided by a token pool to access the critical section and spend some time for execution within it 
(phase 2). After leaving the critical section, the request releases the token again and proceeds (phase 3). Other 
requests waiting may then try to obtain the token.

Models of large‐scale clouds are created by combining more basic modules, such as processor cores, switches 
disks, and VMs to create a compute node, compute nodes and switches to create a rack, and several intercon-
nected racks and storage units to create a datacenter. This is shown in the left part of Figure 26.6. Modules may 
be replaced by more fine‐grain or coarse‐grain models at any level of this building‐block approach – for exam-
ple, we may add a simulation of various RAID policies at the disk arrays if required. Finally, these modules can 
be combined to build a cloud model consisting of a number of world‐wide distributed datacenters. The key 
design concepts of a simulation framework supporting this approach are modularity and the ability to replicate 
(“copy‐and‐paste”) and connect objects at any level of complexity. This capability significantly supersedes that 
of ordinary Lego bricks, so one might think of it as a “Lego++ approach” – see Figure 26.6.

Compute nodes

FirewallsVirtual machines
(workflows) Workloads

Router

Switches

Disks

Disk arrays HBAs/NICs

CPUs

Memory

Figure 26.3 Samples of modeled cloud hardware and software components. The software components are 
implemented as workflows within VMs

Bidirectional ports

Crossbar switch Processor core(s) 

Routing 

Figure 26.4 A general network device. The dotted line shows the flow of a packet traversing the network device 
(e.g. a switch or a router)
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For a simple taxonomy of cloud requests, see Figure 26.7. At the root of the taxonomy graph, we have a 
general request. Its child requests represent cloud management respectively application (user) requests. The 
children of these requests represent specific cloud management operations respectively application requests. 
This taxonomy supports the implementation of request‐type specific workflows well.

Furthermore, we can associate various levels with requests. Requests at a higher level (e.g. requests at 
cloud level to provision images) are then initiating request workflows at a lower level (e.g. requests associ-
ated with sending packets over the network traversing various NICs and switches). The highest level request 
workflows are in general associated with applications at cloud level and are implemented in the context of 
VMs, the lowest level request workflows with accessing hardware components like disk media. This allows 
the implementation of new cloud‐level application workflows without the need to take details of low‐level 
device‐related workflows into account and vice‐versa.

Time

Pool of 
tokens

Blocking
queue

Release resource
Critical section

Phase 1 Phase 2 Phase 3

Acquire resource

Figure 26.5 Modeling a critical section allowing only one request (thread) concurrently in flight

Internet

Internet

“Lego++ approach”: 
create new objects by copying existing objects 

“Lego approach”:
create compound objects by combining existing bricks

Figure 26.6 Complex compound modules can be created by combining more basic modules, for example a 
server rack, by combining compute nodes with various VMs, disk arrays and network components. Using these 
racks, a datacenter can then be created by a copy‐and‐paste approach. Finally, a cloud consisting of a number of 
worldwide distributed datacenters can also be created by applying the copy‐and‐paste approach, this time 
applied at datacenter level
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In the workload‐generator module (the “Internet” in Figure 26.6), all functionality related to generating, 
initializing, and posting requests of various types against the cloud is implemented. Furthermore, it may also 
be used to collect all request‐related statistics. (Device‐related statistics like utilization and queue lengths are 
in general collected at the device‐simulation modules.)

We will now focus on some key cloud modeling aspects that are quite independent of the concrete resources 
and requests under consideration. All cloud resources are limited and demand may well be bigger than 
resources available in the cloud, so arbitration (scheduling) of resources to requests is essential. We fre-
quently use a simple FCFS (first‐come, first‐served) arbitration heuristic to model this in our simulations 
(Altevogt, et al., 2013), but it is straightforward to implement more complex schemes if required. Another 
key feature when modeling clouds is segmentation and reassembly of requests, especially of requests mod-
eling the transfer of data over the network. This refers to the process of fragmenting requests into smaller 
ones (e.g. splitting a request to transfer a long message into a bunch of small packets) and reassembling these 
after the completion of processing. Such segmentation allows a request to be in flight concurrently at several 
devices, resulting in an increased throughput. Therefore it is essential to model segmentation even if some 
compromises concerning granularity have to be made given the finite time and resources provided to execute 
simulations (for example, it is hardly feasible to model a MTU size of 1500 bytes in large cloud networks due 
to the excessive number of events associated with processing such fine granular data segmentation).

26.5 Cloud Modeling and Simulation Challenges

Modeling and simulation of cloud performance is associated with some specific challenges caused by their 
highly volatile nature and scale:

 ● Architectural and workload details of clouds are changing rapidly. This is caused, for example, by new 
processes of delivering software like continuous delivery (Swartout, 2012). Besides requiring fast updates 
of the simulation models themselves, this makes their precise parameterization difficult. The problem can 
be alleviated by focusing on the prediction of relative values of performance metrics against a known 
baseline, for example modeling the increase of request throughput when updating the cloud.

 ● For calibrating models, high‐quality measurement data with a detailed specification of workloads and 
cloud infrastructure components are of great value. Unfortunately, such data is rare (this is especially the 
case for end‐to‐end measurements on large scale clouds due to constraints in time and resources), and this 
is significantly impacting model accuracy.

Request

Cloud management Application

...Deploy image Logon Add user ... One-tier request  Two-tier request

Figure 26.7 Request taxonomy with the request of type “Request” at its root
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 ● Due to constraints in time and available resources, measurement data is in general available only for small 
or medium‐sized clouds. Using this data for parameterization and calibration, there is a considerable risk 
to overlook resources of importance for clouds at large scale. Not taking these resources into account will 
most likely result in significant modeling errors.

 ● To enable nonexpert users to execute cloud simulations, a limited set of key simulation scenarios should 
be made available as an easy‐to‐use Web service. The challenge here is to identify the most useful sce-
narios and a small set of associated key parameters to be exposed to a non‐expert user.

26.6 Simulation Project Case Study: Openstack Image Deployment

We will use the simulation of image deployment in OpenStack‐managed clouds as an example of a concrete 
cloud simulation project and describe its phases below. For a detailed description see Mirantis Inc. (2012).

26.6.1 Specification of Objectives

Objectives of a simulation project should be specified and agreed on with the stakeholders at the beginning 
of a simulation project. In our case, the objective is to study the impact of increasing the number of concurrent 
image deployment requests on throughput and response time for various cloud architectures. Furthermore, 
we want to learn about various device utilizations and identify potential bottlenecks.

26.6.2 Design and Specification

In this phase, the appropriate cloud architectures to be simulated are specified as well as key workload char-
acteristics. These are in our case, for example, network topologies, the number of concurrent image deploy-
ment requests, the type of images to be deployed, and overall cloud sizes.

26.6.3 Implementation

The OpenStack image‐deployment workflow (Mirantis Inc., 2012) is implemented for various cloud architec-
tures, e.g. for an OpenStack managed cloud consisting of a hierarchical 10 Gbps network fabric, a managed‐
from and a managed‐to system. The managed‐from system supports most of the OpenStack software components, 
while the VMs are deployed on the nodes of the managed‐to system. Storage may be attached to the network 
fabric. Our implementation uses an OMNEST based cloud simulation framework (Simulcraft Inc., 2014).

26.6.4 Parameterization

Key workload‐related parameters like service times and resource consumption (e.g. CPU utilization) of an 
image deployment request at the managed‐from and the managed‐to system are to be extracted from available 
measurements. Parameters of infrastructure components are based on vendor specifications or benchmark 
results. When no appropriate data is available, reasonable values based on past experience are used. 
Furthermore, various tradeoffs have to be made (e.g. concerning size of data packets) to balance between 
execution time, resource consumption and simulation accuracy.

26.6.5 Calibration

Measurements for a single image deployment are used for parameterization (see the second bullet of section 
26.5), while measurement results for concurrent image deployments are used for verification and calibration 
of the simulation. These latter measurements already demonstrate the impact of resource contention and 
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queueing on response times and throughput, so they provide invaluable feedback on the modeling approach, 
for example whether contention at various resources has been modeled appropriately. To factor out various 
unknown details of the benchmark setups and executions, we frequently normalize the times for concurrent 
image deployments with the time for a single image deployment and compare these normalized response 
times with the simulation results.

26.6.6 Execution

The key performance metric characterizing the execution of discrete‐event simulations is the event through-
put. We observe a throughput of approximately 1.2 million events per second on one contemporary  compute 
node using the OMNEST simulation software. This number, as well as the size of the cloud that can be simu-
lated, is largely determined by the type and amount of available memory. This is because discrete‐event simu-
lations need to update data structures representing system state very frequently resulting in a high rate of I/O 
operations. At the current level of detail, a single compute node with 96 GB main memory is sufficient to 
simulate various image‐deployment scenarios on cloud datacenters with approximately 1000 compute nodes 
and associated storage and network devices. Larger clouds would require either a higher level of abstraction 
or parallel simulations on a cluster. The execution time depends critically on the required accuracy: to ensure 
a deviation of less than a few percent for most simulation results, the number of executed requests should be 
at least two orders of magnitude greater than the number of concurrent requests in the cloud.

26.6.7 Result Analysis and Visualization

Visualization is mandatory to convey simulation results – for example, plotting image deployment throughput 
response times as a function of the number of concurrent image deployment requests (Altevogt et al., 2013). 
The simulation results demonstrate the impact of an increased request concurrency on response time and 
throughput as well as their dependency on the number of available compute nodes at the managed‐to system. 
Throughput first increases linearly because the cloud can easily handle all the concurrent image deployments. 
This is true until the first bottleneck shows up and associated queueing of requests sets in. Beyond this satura-
tion point, a further increase in the number of concurrent image deployment requests does not result in an 
associated growth of throughput but instead the response times start to increase linearly. Studying the impact 
of increasing the number of concurrent image deployment requests on queue lengths and device utilizations 
allows us to identify bottlenecks (Altevogt et al., 2013). We may then simulate the impact of various archi-
tectural changes (like increasing the number of nodes of the managed‐to system) to analyze how the bottle-
necks can be eliminated.

26.7 Conclusion

Cloud modeling and simulation are of great value to enhance the design of workload‐optimized clouds, espe-
cially because of the prohibitive costs and time associated with the creation of large‐scale test clouds. The 
challenges here lie in addressing cloud diversity and scalability, treating all hardware and software compo-
nents of a cloud as first‐class citizens, and making cloud modeling and simulation technologies accessible 
easily and timeously for non‐experts. These challenges require quite a different approach than in traditional 
simulation domains like microprocessor design or networking. Progress has been made by leveraging modu-
lar and parallel simulation technologies and a “cloud simulations as a service” approach. Further research and 
innovations are required to enable a more widespread use of these highly valuable technologies by combining 
simulation accuracy and scalability with ease of use and flexibility to deliver relevant results more quickly.
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27.1 Introduction

The technology explosion – with cloud, mobile and big data – demands modern software to be mobile, agile, 
and accessible. More and more software is developed and deployed as a “software as a service” (SaaS) 
 application using cloud platforms (“platform as a service” or PaaS). Several industry  sectors such as  healthcare 
and procurement increasingly use customized SaaS applications provided by cloud  vendors. Most informa-
tion technology companies are either developing and offering new cloud solutions or adopting cloud‐based 
solutions. These solutions have several advantages such as resource availability on demand, faster time to 
market, and reduced capital and operational expenses.

Other key characteristics of cloud computing include interoperability, browser compatibility, multitenancy 
and autoelasticity. This paradigm shift in software development poses several challenges when assessing and 
quantifying the quality of the products developed before they are offered for customers. These challenges 
include security, availability, elasticity, and multitenancy.

Even for a legacy software, testing could be done on a cloud‐based solution. Software testing in the cloud 
changes the traditional testing scenario by leveraging the resources provided by the cloud computing 
 infrastructure to reduce test time, increase the execution cycles available, and thereby increase the efficacy of 
testing to improve the quality of the application (Tilley and Parveen, 2012). Testing in the cloud relies on 
underlying technologies such as a distributed execution environment, service‐oriented architecture (SOA), 
and hardware virtualization.

James Whittaker, engineering director at Google says:

In the cloud, all the machines automatically work together; there’s monitoring software available, and one test case 
will run anywhere. There’s not even a test lab. There’s just a section of the datacenter that works for you from a 
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testing point of view. You put a test case there and it runs. And all of the different scheduling software that any 
datacenter uses to schedule tasks can be used to schedule tests. So, a lot of the stuff that we used to have to write 
and customize for our test labs, we just don’t need anymore. (Shull, 2012)

This chapter describes various research findings on major test dimensions to be assessed by any quality‐
assessment team for any cloud‐based platforms / applications that are developed. It also details the challenges 
introduced by cloud for software testing, various cloud‐test dimensions, and benefits of using cloud‐based 
solutions for software testing. The chapter also describes the challenges associated with automating cloud 
testing and some ways to mitigate these challenges.

Often, cloud‐based systems will be integrated with each other to deliver a cloud‐based offering. For example, 
for an SaaS application, the single sign‐on (SSO) mechanism may be handled by a third‐party system and payment 
mechanisms might be handled by another third‐party system such as PayPal. In such systems, the testing offers 
unique challenges. This chapter discusses testing in such systems. It concludes by considering future directions.

27.2 Challenges Introduced by Cloud for Software Testing

As described in the first section, various characteristics of cloud computing introduce several unique  challenges 
for the software development process – specifically for software quality assurance. Some important challenges 
are given in this section.

27.2.1 Paradigm Shift

With cloud, Web‐driven SaaS applications are becoming more popular. Traditionally, applications are 
designed completely upfront, then developed, tested, and distributed for installation and use. With cloud, 
users can just create an account for a particular software product, provide online payment details, and start 
using the product through the browser in a seamless manner. Everything happens in a few mouse clicks rather 
than the user purchasing the software online or offline, downloading it, or getting it in some electronic form 
such as CD‐ROM, installing it, and setting it up. Thus, the emergence of cloud computing resulted in a 
 revolution for the software industry and hence for software testing.

27.2.2 Seamless Upgrades

Traditionally, a software upgrade is a lengthy process in which one needs to get the new version of the  software 
in the same way the initial version is obtained, take the system down for a particular period of time (which 
depends on the complexity of the installation and setup process), and perform the upgrade. With cloud, an 
upgrade should happen live, with minimal or no down time. Often customers might see that the software has 
been upgraded next time they log in – without any down time. Google products are a common example. So the 
quality‐assurance team needs to find ways to test the upgrade process of software products seamlessly.

27.2.3 Sharing of Resources: Multitenancy

With cloud, the resources used for software development and deployment might be in publicly shared 
resources as against the traditional way of having dedicated resources for individual users. These resources 
are often shared among multiple customers. For example, a company might be developing, deploying, and 
running its software in Amazon Web Services (AWS) using AWS CPU machines and the storage services. 
These resources are often virtualized and are shared among multiple software developers across the globe. 



Cloud Testing: An Overview 329

This introduces several challenges for the quality‐assurance team including the need to have specific 
 testing for systems such as multitenant penetration testing.

27.3 Key Benefits of Testing in the Cloud

All levels of testing can be carried out in cloud environments and, indeed, some types of testing benefit 
greatly from a test environment in the cloud. The primary benefit of cloud‐based testing is reduced costs for 
putting up, maintaining, and licensing internal testing environments (Riungu et al., 2010). For example, 
Amazon’s cloud tested a network management system for a voice over IP telephony system for less than 
US$130 (Ganon and Zilberstein, 2009). Other benefits include the flexibility to acquire a testing environment 
as needed and global market access for both vendors and customers (Riungu et al., 2010).

Cloud computing can carry out performance, scalability, and stress testing in a timely and economical 
manner (Riungu‐Kalliosaari, 2012). With cloud computing, an engineer can acquire the necessary number of 
servers as well as different variations of the operating system and testing environments; in other words, 
 engineers can test faster and can decommission the servers when they are not using them. Key benefits of 
testing in the cloud are given in this section.

27.3.1 Pay‐as‐You‐Go (Cost Savings)

Test systems need to be configured and used only when testing needs to be performed. At all other times, use 
and maintenance of such systems can be avoided. This results in no or minimal capital expenses and reduced 
operational expenses. It also leads to green testing due to the improved efficiency in using existing resources 
and the reduced use of new resources.

27.3.2 Faster Test Execution

One can configure more test environments and run the tests in parallel with ease, resulting in faster test execu-
tion. The advantages are quick resource provisioning and concurrent test execution, resulting in fast execution 
and hence quick feedback.

27.3.3 Test as you Develop

With cloud‐based software development, testing can be done along with the development life cycle to uncover 
potential bugs in the system rapidly. Moreover, the test environment can be identical to (or close to) the 
 production environment to perform real‐time testing along with the development.

27.3.4 Better Collaboration

A test running in cloud environments can be accessed from anywhere on the globe. Hence geographically 
distributed business units can collaborate better and work better by running the tests in the cloud.

27.4 Cloud Test Dimensions

From this section onwards the chapter focuses on testing software products that are completely or par-
tially developed using some of the cloud resources. These applications could be pure SaaS applications, 
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developed, deployed, and running in the cloud, or applications that are built using cloud platforms, or 
they could be in‐house applications integrated with the cloud.

This section describes important characteristics of cloud computing and its impact on the software testing. 
Some of the important cloud dimensions include elastic scalability, multitenancy, security and performance 
(Iyer et al., 2013). The cloud test dimensions and their components are summarized in Figure 27.1.

27.4.1 Elasticity and Scalability

Autoelasticity is the key for cloud‐based business solutions – software solutions can be developed and 
deployed in cloud where resource provisioning should happen on demand within a span of few minutes with 
ease. So the test team should identify various possible resource requirement patterns and perform scalability 
testing for all such patterns. One has to test for cases where users can elastically increase and reduce their 
resource requirements quickly and easily.

Some elastic load‐generation patterns are illustrated in Figure 27.2. The top left graph shows the constant load 
increase pattern that is typical of applications such as Gmail and Facebook where new users are coming at a steady 
rate. The top right pattern illustrates typical step increases in load with time, with sudden dips in resource use at 
times. The bottom left pattern represents typical use of resources that follows exponential resource use. Finally, the 
bottom right pattern represents applications where the resource use is constant in general with spikes in between.

Scenarios involving both vertical and horizontal scalability need to be tested. With vertical scalability, 
users should obtain better performance by replacing current resources with a more powerful resource in order 
to satisfy the increasing demand. In the case of horizontal scalability, a customer should experience increased 
performance by adding more resources of same type in the platform.

One also needs to test the functionality of fully automated scripts for automatic resource provisioning “on 
the go.” Further, testing is required to discover the worst‐case elasticity that can be achieved (in terms of 
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scale up). Often, IaaS providers offer load balancers to balance the load among multiple resources based on 
the incoming traffic flow (Elastic Load Balancer in the case of Amazon Web Services, for example). Such 
providers should test the load balancing capability with different load patterns.

27.4.2 Security Testing

With cloud, security is considered as one of the great challenges and hence it is a challenge for testing as well. 
In addition to regular security issues, cloud imposes a set of unique security constraints such as multitenant 
penetration testing, application development user interface (UI) testing, and identity federation management 
testing. A summary of various security attacks that need special focus by the software testing team is illus-
trated in Figure 27.3.

User access and various user roles need to be tested to make sure that those roles work properly as expected. 
Identity federation management is another important aspect to be tested. This is called a single sign‐on (SSO) 
mechanism, with which a user, once logged in successfully, can access other components of the systems 
without being prompted for credentials again. For example, cloud software may have default application 
areas as well as community support for help and support. In such an environment, once logged into the appli-
cation area, users should be able to access the forums without being prompted for their credentials again.

The SSO concept can be understood using this example. Consider that you have provided your credentials 
to log into Google’s Gmail service. Then, if you want to open your Google drive in another tab, it will do this 
without asking you to log in again. Then assume you have opened Blogger (another Google application) in 
the next tab. Blogger will also be opened automatically, detecting the credentials provided for Gmail. Now 
assume that you have logged out from your Google drive. You will observe that entire session is terminated, 
including the sessions for Gmail and Blogger. This is a typical SSO implementation mechanism.

Other important security vulnerabilities to be tested are the top issues identified by the Open Web 
Application Security Project (OWASP) (OWASP, 2013) such as SQL injection, URL manipulation, and 
cross‐site scripting (XSS). A penetration test is a method of evaluating security by simulating an attack by a 
malicious user. The intent of a penetration test is to determine the feasibility of an attack and the business 
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impact of a successful exploit. Attacks like SQL injection and cross‐site scripting are possible to a greater 
extent in a multitenant application. Test cases should be written to attack the system from the point of view 
of a rogue user who possesses the ID of a tenant of the application, with that user’s ability to penetrate the 
system and view the information of other tenants.

Some important security test considerations are multitenant database security testing and validating the 
storage and retrieval of confidential information such as credit‐card information and passwords.

27.4.3 Cloud Performance Testing

With the unique characteristics of cloud environments, a quality team needs to test the accuracy of various 
data present in the cloud – latency and throughput. Elastic load testing and multitenant performance testing 
are other key items to be considered. High availability and failover testing are also required, to test the behav-
ior of the platform and applications for resilience.

Resilience is very important in the cloud context. It is the ability for the cloud to work normally under 
extreme and adverse conditions. Testing possible security threats such as DoS attacks is one way to measure 
resilience; measuring the system’s behavior when hardware fails is another. A cloud should be able to adapt 
quickly to such failures in various ways, such as spawning new instances, load replication, and so forth. 
While an activity is going on in a particular cloud instance, the test team should kill the VM and measure the 
time taken to recover from such failures and the impact on the ongoing activity.

Another possible resilience issue could result from the presence of multiple tenants sharing the same 
resources. In order to test such scenarios, as one tenant, create and run a process that can continuously allo-
cate some memory or disk space. Then measure the performance of other tenants in the system and discover 
any issues that they experience caused by such activities. Refer to Cartlidge and Sriram (2011) for a simula-
tion model to evaluate resilience for cloud‐scale datacenters

Performance test metrics differ for different types of clouds. For example, the main performance metrics 
for an SaaS application could be the time it takes to customize the application based on the business require-
ments, the time it takes to load the application, and so forth. For a PaaS solution, it could be the time it takes 
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to develop a solution from scratch or using given templates, the response time for executing database‐related 
queries, and so forth. Finally for an IaaS solution, such as CPU or memory, it would include throughput, 
provisioning time, memory, and CPU utilization.

With an integrated cloud‐based product, quality teams have to test other aspects such as latency, reliability, 
and connectivity with other third‐party components. Quality teams must also carry out special performance 
testing such as high availability testing, longevity testing, and scalability testing.

27.4.4 Compatibility Testing

Cloud‐based products are primarily driven by Web browsers. They are designed to work across any platform and 
device. So compatibility testing needs to be performed for browser compatibility, platform compatibility, and device 
compatibility. In addition many cloud‐based solutions support multiple languages and hence internationalization 
(commonly referred to as i18n) should be performed for all supporting languages. These compatibility circles are 
illustrated in Figure 27.4. An interesting observation is that, with a cloud operating system, compatibility is out of 
scope. This is because the applications are designed to run from the browser itself and OS details are abstracted out.

27.4.5 Application Program Interface Integration Testing

Application program interfaces (APIs) are direct links between the client code and the infrastructure. They run only 
when requested by client code. In order to test such systems, one might need to develop a client shell, write sample 
programs to invoke such APIs and then verify the output generated by such APIs. Further, APIs need to be tested 
for different types of user loads. Application program interfaces are exposed to customers and hence are vulnerable 
to security attacks. So all necessary security testing should be performed for all the APIs. Under a multitenant 
environment, APIs could be tested to make sure that tenants are isolated from each other through the APIs.

27.4.6 Live Upgrade and Disaster Recovery Testing

This is closely related to understanding the performance of the system when an upgrade of the software / plat-
form happens, and understanding its capability to continue its business services for users even when the upgrade 
is going on. Companies need to ensure business continuity even when software / hardware maintenance / upgrades 
are performed.

Languages

Browsers

Platforms

Devices

Figure 27.4 Compatibility circles
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It is often necessary to perform live testing for disaster recovery and related issues (Naganathan and 
Sankarayya, 2012). This includes testing the robustness of the platform to disasters, measuring recovery time 
in case of disaster, and self‐healing ability in case of disaster. It also includes live upgrade testing.

It is necessary to test cases where an application developed in one PaaS is migrated to another PaaS (Cunha 
et al., 2012). For example, Progress Pacific (http://www.progress.com/products/pacific, accessed December 
15, 2015) is a rapid application development platform that allows users to develop and deploy high‐end busi-
ness solutions quickly. It also allows users to migrate applications built using the Force.com platform in few 
mouse clicks. Test engineers need to identify such scenarios and to test all such cases. Progress Pacific also 
offers both cloud‐based hosting services and on‐premises self‐hosting services. It then allows users to develop 
applications in one of the two environments and import them in another environment. Quality analysis teams 
must identify such cases and test all of them.

27.4.7 Multitenancy Testing

It is necessary to test for rigid failure containment between tenants (Bauer and Adams, 2011). This 
means that failure of one tenant instance should not cascade to other tenant instances, and that service 
transition activities should apply to individual application instances without inadvertently impacting 
multiple tenant application instances. A quality team also needs to test for availability and business 
continuity in a multitenant environment. Further, multitenancy introduces the risk of correlated or syn-
chronized behaviors (Bauer and Adams, 2011), which can stress the underlying virtualized platform, as 
when multiple application instances execute the same recovery action or periodic maintenance actions 
simultaneously.

Moreover, if the application supports multitenancy, then the service transition activity analysis should also 
verify that no service transition activity impacts active application instances that are not the explicit target of 
the activity. In addition to traditional service transition activities, the multitenancy analysis should also verify 
that there is no service impact on other tenant instances when each and every tenant‐specific configuration 
parameter is changed.

A unique issue to be tested in the virtual environment is the “traversal vulnerability” (Owens, 2010). One 
is able to traverse from one VM (virtual machine) client environment to other client environments being man-
aged by the same hypervisor. Imagine that many customers are being managed by a single hypervisor within 
a cloud provider. The traversal vulnerability might allow a customer to access the virtual instances of other 
customers’ applications. Consider the impact if your bank or particularly sensitive federal government or 
national defense information happen to be managed in this sort of environment, and the cloud provider does 
not immediately deal with, or even know about, a vulnerability of this nature. It is clear that providing 
 adequate administrative separation between virtual customer environments will be a significant security chal-
lenge with elasticity.

Another security challenge (Owens, 2010) that develops out of this scenario is that of enforcing proper 
configuration and change management in this elastic, dynamic, and scalable model. Even where a portal 
is capable of granular access controls that control which actions a given user is able to perform, it also 
needs to enforce when and under what circumstances a user is allowed to perform certain actions. Without 
this ability, untested code or system changes could result in business‐impacting (or even devastating) 
results. Even something as “slight” as rolling a new system into production without ensuring that proper 
server and application patches have been applied could result in significant damage to an organization. 
Therefore, a mechanism within self‐service portals for enforcing an organization’s change policies 
becomes necessary. One cloud test framework that takes into account many aspects of cloud testing can 
be found in Iyer et al. (2013).
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27.5 Test Challenges and Approaches for Cloud Integration Testing

Often, cloud software will not be a standalone system. It will have the core product components  integrated 
with many back‐office systems and third‐party components. For example, accepting credit card details 
and processing invoices need special compliance certification based on security guidelines. In such 
cases, a software product may integrate itself with third‐party payment gateways such as Bill Desk or 
PayPal. Hence, the test team needs to get sandbox environments (which are identical to the production 
environment) for such payment gateways in order to obtain the same behavior in the test and live envi-
ronments.

There are several issues that need to be resolved when automating an integrated cloud‐based product 
 testing. They are:

 ● In an integrated cloud‐based product, multiple systems behave differently. Further, verification processes 
for different systems differ each other.

 ● Some of the systems do not allow automated deletion of data created for testing. So it imposes a unique 
requirement to have unique users created every time an engineer performs such test automation

 ● Unpredictable delays in updating various systems.
 ● Different types of testing environments. For example, a requirement to perform Web UI testing and runtime 

testing in one test scenario poses its own unique challenges.

27.5.1 Integrated Test Automation with Cloud

Software test automation in cloud imposes its own unique set of challenges. Such software systems consist 
of both run time components as well as UI components. In order to automate such products, one might need 
to either develop a test framework that can efficiently test both run time and UI components or use a combina-
tion of two frameworks one for run time component testing and the other one for UI component testing. In 
the latter case, some mechanisms are required to initiate the test written in one framework from the other one 
as well as approaches to generate a combined test result so that the test engineer does not need to analyze two 
set of results.

Typical test automation framework architecture for such cases is illustrated in Figure 27.5. In this 
architecture the outer harness is the run time automation framework and the inner harness is the UI 
automation framework. In such cases, the runtime component starts executing the test cases with runt-
ime calls such as API calls and wherever required it will trigger the test cases in UI framework for the 
UI testing. After UI testing has been completed, the runtime framework will continue its execution. 
Then the runtime component will generate the combined test results and will be stored in the result 
repository.

For example, consider a cloud‐based SaaS application, CRM. The user is required to authenticate using a 
third‐party system and then lands in the application. Similarly, payment is made through PayPal system. One 
automated test case could first call an API of the authentication system using runtime framework with appro-
priate credentials as parameters and receive a token. Then it could use the UI test framework to test the CRM 
application dashboard for all user interface testing. Finally when it comes to payment, the runtime test frame-
work will make the appropriate API calls or runtime actions to check if payment is correct and then complete 
the test execution by compiling the test results from both frameworks.

In addition, one might have to use the exposed APIs provided by other third party systems integrated as 
part of the product. Sometimes, it is also required to develop stubs to simulate certain functionalities of other 
systems in order to achieve an end to end flow in the automation.
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27.6 Conclusions and Remarks about the Future

This chapter first described several key challenges introduced by cloud‐computing paradigms for software 
testing. These include the paradigm shift in software development from legacy on‐premises software to Web‐
driven, dynamic, cloud‐based applications. The chapter then described several benefits of software testing in 
the cloud. The key benefits achieved by testing in the cloud are reduced cost for software testing, faster test 
execution, ability to test in environments that are close to production environments, and better collaboration.

Various cloud test dimensions were then described, such as elasticity, scalability, security testing, performance 
testing, compatibility testing, API integration testing, live upgrade testing, disaster recovery testing, and multi-
tenancy testing. Finally, challenges and automation approaches for cloud integration testing were discussed.

There are no known frameworks that can test all the issues described in this chapter. However, combina-
tions of two or more frameworks can test all the issues described. Future research could attempt to identify 
such frameworks and develop strategies to combine them so that efficient, reliable, and easy software testing 
can be carried out for modern applications.
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28.1 Introduction

Testing is an important phase of the software development life cycle. It can be regarded as a process of 
verification and validation of the application being tested, to ensure that it is built as per the design and 
specifications, and that the application meets its intended requirements.

Testing is considered as a necessary evil as it consumes a fair amount of time and resources to configure 
test labs and test application but it is unarguably the phase that uncovers functional problems, bugs, and gaps 
in nonfunctional requirements, and helps to build a more predictable application. No amount of testing is 
considered sufficient to find all the defects in a system / application; it is always desirable to have an organ-
ized and systematic testing framework / approach in order to minimize the number of test cycles and to create 
an application whose behavior is more predictable.

Cloud computing has impacted the IT industry and all the business sectors in general, and testing, or 
the quality assurance domain, has also been affected. With the growing demand for cloud deployments, 
quality‐assurance strategies also need to be formalized to cater for the areas associated with testing. The 
two areas that are referred here are testing of applications deployed on cloud (“testing a cloud”) and lever-
aging cloud for testing for applications deployed on‐premises or cloud (“cloud‐based testing”). This chap-
ter  discusses the impact of cloud computing in the area of testing and significance of testing for cloud‐based 
services as well.

Testing the Cloud and Testing as a Service

Nitin Dangwal, Neha Mehrotra Dewan, and Sonal Sachdeva

Infosys Limited, India
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28.2 Testing of Cloud‐Based Services

Testing of cloud‐based services refers to the verification and validation of applications, environment, and 
infrastructure that are available on demand and deployed on the cloud infrastructure (Dewan, 2010), which 
ensures that applications, environment, and infrastructure conform to the expectations of the cloud comput-
ing business model. Like any other software application, the “testing phase” holds equal importance for cloud 
applications as well. This section discusses why cloud testing is important, how testing cloud applications 
differs from testing traditional applications, and what quality‐assurance strategies can be employed for  testing 
cloud‐based applications.

28.2.1 Testing Traditional Deployments versus Testing Cloud Deployments

Organizations need to be aware of risks associated with their cloud deployments and accordingly chalk 
out the testing strategy to mitigate the risks through comprehensive testing methodologies. The areas 
to be  considered for testing a cloud offering encompass both functional and the nonfunctional areas. 
Both these areas are applicable for traditional deployments as well; however, there is a need to test 
certain aspects that are specific to cloud deployments. Apart from these two areas, cloud deployments 
also need to be tested for operational aspects of the cloud. We will cover all of these areas in detail as 
follows.

28.2.2 Testing for Functional Aspects

This section includes testing to assure the quality of applications deployed in the cloud around functional 
services and business processes of the software. The functional testing aspects of cloud applications are more 
or less similar to traditional deployments. Just like in testing of traditional deployments, cloud‐based deploy-
ments will test the application based on its functional specifications, which include types of testing like black 
box testing, integration testing, system testing, user acceptance testing, and regression testing.

28.2.3 Testing for Nonfunctional Aspects

This section includes testing to assure the quality of applications deployed in the cloud around nonfunctional 
aspects of the software. The common testing aspects (Katherine and Alagarsam, 2012) that are applicable to 
both cloud and traditional deployment are performance testing, high‐availability testing, and security testing; 
however, distinctive ones include compatibility or interoperability testing, and elasticity testing.

28.2.3.1 Performance and Load Testing

This includes testing of performance parameters like response time and throughput under defined user load 
and progressively evaluating it with increasing levels of load to ensure that the performance does not degrade 
with an increased volume of data and transactions.

28.2.3.2 High Availability Testing

This ensures application uptime according to the service‐level agreement (SLA) and having a defined disas-
ter‐recovery mechanism in place. Cloud application providers need to design their architecture for high 
 availability in the cloud by creating redundancy across servers, zones, and clouds. They should test for high 
availability by disabling individual servers to simulate a failure scenario.
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28.2.3.3 Security Testing

This is important for both traditional and cloud applications. However, for the latter it holds more significance 
as in a cloud application the data may be stored on cloud and that may be outside of the organization’s 
boundaries. So cloud applications need to follow globally accepted security standards for maintaining data 
confidentiality and integrity, and authorized access and testing methodologies need to align to test these 
aspects of the application (Dangwal et al., 2011).

28.2.3.4 Elasticity Testing

This ensures that cloud deployments adhere to economics of scale as and when desired – i.e. when the 
demand for the application increases or decreases, the cloud readjusts the resources to meet the demand 
without impacting the performance of the application. This is same as scalability in the traditional applica-
tion, although with the difference that the resources used by the application conform to the “elastic” nature 
of the cloud.

28.2.3.5 Compatibility or Interoperability Testing

This ensures the interoperational capability of the cloud application across cloud platforms and applications 
on premises and for legacy systems and applications. It should also ensure that the cloud application can be 
easily migrated from one provider to another, thus avoiding vendor lock in.

28.2.4 Testing for Operational Aspects

There are certain operational aspects of the cloud deployments that do not apply to traditional deploy-
ments. They are:

 ● multitenancy, customizability / configurability, provisioning;
 ● metering and billing.

With regard to multitenancy and customizability / configurability, provisioning testing is carried out to 
ensure that the same application deployment is able to cater for multiple tenants. This is specifically applica-
ble to deployment by ISVs (independent software vendors) that have multiple customers (tenants) for their 
application. Multitenancy testing should ensure that, even in a shared deployment model, the application is 
customizable and configurable for each tenant. The provisioning and deprovisioning of a tenant and the 
 ability to meter and bill a tenant based on amount of its usage of shared applications are aspects that are 
 covered by the operational testing of the cloud.

With regard to metering and billing, a cloud application may have inbuilt billing, licensing, or user 
 subscription management or it may use or rely on cloud APIs to provide the necessary data. For example, the 
application may rely on cloud to provide different licensing models like pay per use, or to track bandwidth 
usage data. Comprehensive testing of all interface interaction must ensure that all the interaction with the 
environment (cloud) is happening as per expectations.

The weight and applicability of each of these areas may vary from application to application. Different 
cloud‐based applications may give different weights to these parameters; depending on the application, some 
parameters may not be applicable. For example, for an online banking application security may be more 
important, whereas response time will have more weight for a gaming application. Therefore, the testing 
strategy for individual cloud applications needs to be tailored.
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28.3 Why Test a Cloud Deployment?

Consider the following three examples that use cloud deployment for hosting applications. Each of the fol-
lowing scenarios focuses on some of the important testing areas that were discussed in the previous section.

28.3.1 Scenario One

Alice needs to transfer funds to a vendor immediately in order to make sure that her shipment arrives on time, 
just before the holiday season. Alice opens her computer to transfer the funds using her online banking appli-
cation, only to find out that her online application is running very slow because it is experiencing a heavy 
load. She patiently waits for the application, fills out all the required details to transfer funds, and clicks on 
the “transfer funds” button. Unfortunately, the application goes offline because of the increased load but 
before it goes down the money is deducted from her account and is not transferred to the vendor’s account.

The relevant testing areas are availability, response time, and function testing. Thorough function testing 
would have ensured that transactions are autonomous. High availability and response‐time testing would 
have ensured that the application is constantly available under high load, and that it responds within accept-
able limits. Thorough testing of these areas would ensure a more predictable behavior.

28.3.2 Scenario Two

“ABC Gaming” is a small startup company that develops online games. Its existing cloud‐based servers are 
running at 20% load capacity. “ABC Gaming” launched a new game, which became an instant hit all across 
the world. Suddenly its subscription rises from half a million to 10 million with users from all across the 
world. This new game gave “ABC Gaming” the exposure that it needed. However, its application couldn’t 
sustain such a high load, leading to frequent crashes and a slowdown in performance. This resulted in a bad 
press and a lot of users being turned away.

The relevant testing areas are dynamic scalability (elasticity), response time, and availability across  geographical 
regions. Thorough dynamic scalability testing would have ensured that additional servers are added automati-
cally to the deployment. Availability and response testing would have allowed the company to know the applica-
tion’s behavior when accessed across geographical regions and thus providing information for better planning.

28.3.3 Scenario Three

“XYZ Docket” is a company that provides a cloud‐based online document repository, with unlimited data 
backup. Multiple users have registered with the application to use the service for backup and restore. One day 
John, a registered user of “XYZ Docket,” loses his personal external hard drive and decides to restore data 
from the backup using “XYZ docket.” He logs onto the online application and clicks to download with a full 
backup. After the download completes, he checks his hard drive only to find that, along with his data, the 
backup has also downloaded the financial statements and personal files of Mr. Franc.

The relevant testing areas are multitenancy and data security. Thorough multitenancy and data security 
testing would have ensured that multiple clients can use the same application and that every client’s data is 
private and protected.

In all these scenarios, if the cloud application had been tested more thoroughly in all aspects (functional and 
nonfunctional), as discussed in sections 28.2.3 and 28.2.4, it would have yielded more predictable results and 
thus it would have allowed the organizations to know, ahead of time, what to expect and to plan accordingly.

Now that the importance of elaborate testing in cloud deployments is established, it is important to understand that 
the testing strategy also requires special considerations. Based on the stack (software, platform, or infrastructure) at 
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which the cloud deployment is to be incorporated, the quality assurance strategy needs to be framed out accordingly. 
Listed below are the testing strategies that need to be followed at each stack level. along with some hybrid scenarios:

 ● Adoption of software as a service (SaaS) – replacing on‐premises applications with their equivalent on‐
demand versions. Quality assurance strategies, in this case, should involve black‐box functional testing, 
concentrating on networking, user interface, business critical requirements, and multitenancy testing.

 ● Adoption of infrastructure as a service (IaaS) to deploy business applications that were deployed on prem-
ises earlier. Apart from all the traditional assurance strategies and testing business workflows, availability, 
disaster recovery as well as security testing should be the emphasis for this type of scenario.

 ● Adoption of a platform as a service (PaaS) to build and host an application. Quality assurance for applica-
tions built using platform as a service mainly depends on the features of the service. Security APIs, 
 storage services, and uptime and virtualization efficiency are governed by their underlying service. It is 
therefore important for consumers to ascertain that the service meets their requirements before choosing 
the PaaS vendor for the development of applications.

 ● Adoption of a hybrid model in which a part of the business application is moved to cloud and the rest stays 
on premises. This is a special type of scenario in which comprehensive interoperability and integration 
testing are required. Security and data‐integrity testing are also critical because of constant transmission 
of critical data over the network.

There is no standard strategy or framework to perform quality assurance for cloud deployments. Vendors 
and consumers should take into account cloud computing features and relevant scenarios during the strategic 
planning phase. The following section discusses a framework that might be adopted to instill more confi-
dence in cloud offerings.

28.4 Generating Confidence in the Outcomes of Cloud Testing

As we discussed in previous sections, different testing areas can be assigned weights to indicate their priority. 
For example, in Table 28.1 a reference weight is a number assigned to each area.

Such data should provide an insight into the level of testing and the quality of the product being tested. To 
be able to achieve an accurate insight it requires individual test stages to have properly weighted test cases. 
For example, most of the applications generally have priorities assigned to the test cases. A priority 1 test case 
will have a higher weighting than a priority 2 test case, and similarly, priority 2 test cases will hold a higher 
weighting than priority 3 test cases, and so forth.

The number of passed and failed test cases for a stage will form a cumulative weighted score for an 
individual stage; a weighted average of cumulative scores for all stages can then be calculated.

Every testing stage must have a clearly defined input and output criteria. For example it could be as simple 
as successful execution of all P1 and P2 test cases.

Multiple stages of deployment can also be tested before making a cloud application available on a public 
cloud. For example, a cloud application can be tested on a private or a hybrid cloud first before making the 
application available on a public cloud. Once the application has passed on a private cloud / hybrid cloud, it 
can then be deployed on a public cloud for final round of testing.

28.5 Cloud‐Based Testing

Cloud‐based testing or “testing as a service” (TaaS) is defined as a cloud‐based model for offering testing 
services. Information technology organizations that deal with testing products and services are making use of 
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a cloud‐based licensing model to offer their testing products and services from the cloud for their end clients. 
The offerings cover functional as well as nonfunctional testing of various applications / products.

In this section we will discuss how cloud testing differs from traditional testing, what benefits cloud testing 
brings, and possible challenges associated with it. This is followed by a case study explaining the benefits of 
cloud testing and giving information about some prominent cloud‐testing providers.

28.5.1 Traditional Testing and Cloud‐Based Testing

As soon as the test planning begins in traditional testing, the organization starts planning for:

 ● Procurement of hardware for testing. This includes budgeting and approvals for acquiring new hardware for 
test servers and could range from low‐end test servers to high‐end load / stress / performance test servers.

 ● Procurement of software. This includes budgeting and approvals for various testing software, and could 
include penetration testing, code coverage, load testing, etc.

 ● Procurement of hardware and software, which is a time‐consuming process and may require approvals 
from multiple stakeholders, and thus have a direct or indirect impact on initial investment and on time to 
market the application.

 ● Installing and configuring testing software and configuring test beds.

28.5.2 What Cloud Brings to a Table

All the testing stages that can be run using a traditional testing approach can be executed through cloud test-
ing as well. From an organization’s perspective, cloud brings simplicity and flexibility in the testing process, 
resulting in lower investment costs by providing:

 ● Ease of deployment. Complete hardware and software can be hosted on a cloud environment. It reduces 
the time required to set up the servers and helps in reducing the time to market the application.

 ● Scalable model. Cloud allows organizations to add or remove hardware or software dynamically, according 
to their needs. For example, a high‐end server may not be needed until the load test or stress test or perfor-
mance test starts. The server can be decommissioned as soon as the testing is complete. Similarly, in cloud 
testing, a license for a load‐test application may be required only for the duration when load test is being run.

 ● Reduced initial capital expenditure. The capability to scale test labs dynamically and the provision to 
deploy or remove software dynamically allows organizations to reduce the initial investment cost. The 
availability of different licensing models, like pay per use, can further help in reducing cost.

Table 28.1 Weighted scores of test areas

Functionality Test case Weight Weighted % passed test cases

Module 1 M1 …
Test case 1 w1 …
Test case 2 w2 …
Test case n wN …

Module 2 M2 …
Test case 1 w1 …
Test case 2 w2 …

Total Average of all stages.
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 ● Real‐world simulation. Cloud testing can also help organizations to simulate real‐world production serv-
ers more effectively. In addition, the load on servers can simulate a real world scenario more closely both 
from a scale of load perspective and from a geographical distribution perspective. The simulation of 
 different browsers and platforms is also much easier when using the cloud infrastructure than when using 
the traditional one.

 ● Effective use of resources. In general, cloud testing will require less administration effort compared to 
traditional testing. The organization can thus use resources more effectively.

 ● More accuracy. The ready‐to‐use standard infrastructure and preconfigured tools and utilities in the cloud 
lead to more accuracy in testing and save a lot of effort that could be wasted due to the wrong test bed or 
tool configuration.

28.5.3 Testing as a Service

As explained above, testing using cloud presents inherent advantages for enterprises, and various test‐tool 
vendors have added cloud‐based testing to their portfolio to benefit from the evolution of this model. Vendors 
have tailored their conventional test‐tool software to adapt to the SaaS model. This, coupled with utilization 
of an on‐demand infrastructure (using IaaS) for hosting their test‐tool software, has led cloud‐based testing 
services to be transformed into a TaaS model.

A typical TaaS architecture (Neotys, 2013) is shown in Figure 28.1. It is built using machines with high 
computing power acquired from the cloud, set up for testing tools and executing scripts, all of this automati-
cally. There is also a test controller that controls the TaaS setup remotely over the Web using the TaaS interfaces 

Cloud
application

TaaS

Test controller

In premise
application

Load

Monitoring

Load

TaaS architecture

Firewall

Test commands

Figure 28.1 TaaS architecture. Source: SOASTA (2012). Reproduced with permission of SOASTA Inc.
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that issues commands using these interfaces. The TaaS setup generates the load on any cloud application or on 
the on‐premises application. Monitoring of the test results is also done remotely through the test  controller.

Some of the cloud‐based testing providers and their tools are listed in the following subsections.

28.5.3.1 SOASTA CloudTest

SOASTA CloudTest (http://www.soasta.com/products/cloudtest/, accessed December 16, 2015) is used for 
Web and mobile performance testing. CloudTest allows users to build, execute, and analyze load tests on a 
single powerful platform to and run the tests on SOASTA’s Global Test Cloud to any traffic level. It is built 
on leading cloud provider platforms and enables the simulation of traffic for load and performance testing of 
Web and mobile applications by leveraging the elasticity and power of Cloud Computing.

28.5.3.2 Blazemeter

Blazemeter (http://blazemeter.com/, accessed December 16, 2015) is a commercial, self‐service load‐testing 
platform, which is fully compatible with open‐source Apache JMeter, the performance‐testing framework by 
the Apache Software Foundation. Blazemeter allows massive load tests to be run in the cloud and can simu-
late any user scenario for Web apps, web sites, mobile apps or Web services.

28.5.3.3 LoadStorm

LoadStorm (http://loadstorm.com/, accessed December 16, 2015) is a Web‐based load‐testing tool for simu-
lating user load for Web sites or Web applications. It is an on‐demand load and performance testing tool that 
uses cloud infrastructure for massive scalability. LoadStorm leverages the power of Amazon Web Services to 
scale on demand with processing power and bandwidth as needed to test the largest Web projects. It auto-
matically adds machines from Amazon’s server farm to handle the processing and releases the machines 
when they are not needed.

28.5.3.4 Neotys NeoLoad

NeoLoad (http://www.neotys.com/, accessed December 16, 2015) is a load‐testing software solution designed 
for Web and mobile applications, to simulate user activity realistically and monitor infrastructure behavior. 
Neoload supports load generation from local infrastructure as well as from the cloud through the Neotys 
cloud platform. It allows use of the cloud load generators in a few minutes; they are paid for with a pay‐as‐
you‐go model.

28.5.4 Case Study

The following case study highlights how cloud testing can help companies to prepare to validate their product 
offerings for real‐life load situations, to handle the anticipated demand for their product, and potentially to 
build a more stable and reliable product offering, thus leading to a superior user experience.

The case study (SOASTA, 2012) is for a company named Myspace that provides social networking service 
and drives social interaction by providing a highly personalized experience around entertainment and by con-
necting people to the music, celebrities, TV, movies, and games that they love.

Myspace launched a new music video series in New Zealand, which included streaming video, favorite 
lists, and search. Anticipating a huge increase in server load, they wanted to supplement existing live traffic 
with performance‐test traffic to get an idea of the impact of the new video offering. Myspace decided that 
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adding the load of one million virtual users to the existing, prelaunch load would be an adequate performance 
test for its infrastructure. So they decided to supplement their live traffic in New Zealand by a million simul-
taneous users.

They were now confronted with a challenge to get the required infrastructure for simulating traffic for such 
a huge user population to test the performance of their application. Realizing that the only source for such a 
huge supplement lies in the cloud, the company turned to the SOASTA CloudTest platform.

The Myspace operations team specified the load that they wanted to impose during testing:

 ● a million concurrent virtual users;
 ● test cases split between searching for and watching music videos, rating videos, adding videos to favorites, 

and viewing artists’ channel pages;
 ● transfer rate of 16 Gb/s;
 ● 6 TB of data transferred per hour;
 ● Over 77 000 hits per second, in addition to live production traffic.

Using the CloudTest platform, the calls were made to Amazon EC2 API, requesting 800 large EC2 instances 
in groups of 25 servers at a time. It also invoked two extra‐large EC2 instances to act as the test controller and 
the results database. All this took about just 20 minutes to spin up. Once CloudTest had instantiated the EC2 
servers, it performed stability checks on them, then discarded and replaced any dead units until it had a 
healthy population. So within minutes, the CloudTest platform could provide a test setup that generated more 
than 77 000 hits per second. While the tests ran, the load generators sent data back to a single analytics service 
connected to a PostgreSQL database, which aggregated performance test metrics.

28.5.5 Testing as a Service: Challenges and Considerations

Although there are several benefits of utilizing the cloud for testing, there are a few challenges associated 
with TaaS:

 ● Pure cloud‐based test beds. Providers of TaaS provide online automated interfaces to create the required 
test infrastructure. The chosen TaaS vendor should provide a cloud‐based way of meeting all the require-
ments and configuration settings for the test environments. In order to overcome this challenge, TaaS 
vendors can partner with IaaS providers (or provide cloud‐enabled processes) to create on‐demand test 
beds. Infrastructure as a service can be used to lower significantly the costs and the time required to create 
test beds and to reduce complexity.

 ● Testing data integrity and security. Data security is a major concern in case of public clouds. Critical data 
might have to be stored at remote locations, which might not comply with the organization’s security 
requirements. Providers of TaaS must ensure that data‐security requirements are met and should provide 
a way to validate that privacy requirements are met, and applications being tested are secured.

 ● Choosing a cost‐effective model. With so many license models being available, it is important to choose 
the correct model, which suits the organization’s requirements. In addition to ensuring security for the 
organization, test managers may have to plan for any additional costs that might incur for securing and 
encrypting data to be sent to the TaaS provider. Similarly, creating additional disaster recovery environ-
ments, or requesting additional test beds for an updated configuration, may need to be planned ahead.

 ● Test tools and understanding and interpreting test reports. Testing teams may need to acquire knowledge 
about running different TaaS tools and may need to understand which tool suits their application and 
requirements best. Different tools have different reporting mechanisms for publishing the test report. 
The testing team should be able to understand and interpret the test reports accurately to be able to take 
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any corrective action. It may require thorough analysis to determine a reported problem (for example a 
performance bottleneck) at the TaaS provider end, in a network interface, or in the actual product. It is 
becomes essential to understand how much coverage TaaS provides. The better the coverage, the better 
are the chances to identify problems.

28.6 Cloud Testing Benchmarks

Cloud testing benchmarks are not yet standardized. Some of the popular benchmarking standards are 
discussed below:

 ● The Yahoo Cloud Serving Benchmark (YCSB) system uses a group of different loads to benchmark the 
performance of various IaaS (specifically “storage as a service”) providers like Google BigTable, 
Microsoft Azure, and Amazon. It provides a framework that can be used to find the best possible offering 
that meets the organization’s requirements, especially around service operation levels. It involves a 
 customizable load generator and proposes a set of loads that can be applied to various systems under 
similar configurations and compares performance on different parameters.

 ● The Cloud Spectator benchmarking system uses its custom framework to measure and compare server‐level 
performance for various public IaaS providers. Although it does not provide a customizable framework like 
YCSB, it publishes comprehensive comparative reports detailing performance for each provider on various 
parameters like storage efficiency, networking, and server. It also publishes the price versus performance 
metrics, which can be very helpful for calculating return on investment while choosing a cloud offering.

 ● CloudStone benchmarking is an open‐source framework to measure performance for various cloud 
 offerings based on different parameters. It uses an automated workload generator to apply loads on various 
offerings using open‐source social media tools.

28.7 Conclusion and Future Scope

In order to understand the difference between cloud testing and testing cloud, recollect the terminology dis-
cussed in previous sections. “Testing Cloud” implies testing cloud‐based offerings emphasizing key nonfunc-
tional parameters to ascertain that the offering is meeting the contractual requirements and its required intents. 
On the other hand, TaaS is sometimes referred to as “cloud testing,” which implies cloud‐based testing where 
various genres of testing – test beds as well as test management suites – are provided on demand.

Cloud computing is playing a key role in making “anywhere anytime” access possible. Private clouds, 
public IaaS and even some SaaS service vendors have a significant role here, especially in lowering prices.

Thorough periodic testing for cloud services is essential to establish an operation’s continuity and to mini-
mize the risks. Testing the cloud offering at agreed intervals will also help in determining whether contractual 
obligations are being met. A cloud offering vendor whose offering is benchmarked for its ability to meet 
requirements, its availability, performance, and security, is more likely to be trusted and partnered.

Testing as a service is also becoming essential with the advent of a slew of devices, everyday launches of 
smart device‐based applications, and worldwide high‐speed access. The leading vendors providing integrated 
software quality suites are successful precisely because they provide testing services on demand, especially 
in the areas of performance testing and mobile testing. On‐demand test beds, automated test execution, and 
online test reports are some of the key features provided by these vendors.

With the growing popularity of PaaS, there is a plethora of applications being developed every day that are 
anticipated to be executed on various devices globally. Consequently, there will be an enormous number of 
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test configurations, including platforms, browsers, devices, networks, and ability to mirror real‐time user 
access. These are becoming challenging for traditional testing suites and processes. Automated test execution 
and management suites and on‐demand testing infrastructure need to be considered when making a choice of 
test vendors.

Over a period of time, testing in cloud computing is expected to reach a more mature stage. As cloud 
 testing standards start evolving, testing strategies will be modified and tailored to test quality of service 
parameters, based on defined standards. Standardization will also allow existing concerns, like security and 
interoperability, to be addressed with more objective data. It is evident that cloud computing is here to stay 
and will grow over a period of time. The testing domain has thus made, and will continue to make, a signifi-
cant contribution to the growth of cloud computing, and vice versa.
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30.1 Introduction

A well developed cloud‐computing strategy will help to accelerate and advance the adoption of cloud 
 computing while simultaneously enabling tangible benefits to be captured and attained. The strategy should 
use a structured engineering approach that balances requirements, schedule, cost, and risk. The cloud strategy 
needs to take an approach that is realistic and achievable for the individual organization, to help position the 
enterprise towards a trajectory of success.

When developing a cloud strategy, the CTO should consider how the strategy will apply throughout the 
organization. The strategy should present a case to stakeholders, explaining why cloud computing is advanta-
geous and approach for implementing the new technology in a way that helps to support the organization’s 
core competencies and mission.

The cloud computing strategy will likely be the foundation block upon which the implementation of cloud 
computing is built. The strategy should be an overarching document that briefly touches on the major 
 components of the organization that will be impacted by the introduction of cloud computing.

30.2 Foundations for success

In developing a strategy, it is suggested that a risk‐based incremental approach be used that will gradually 
introduce cloud to the enterprise at large. A gradual process will allow for challenges that arise from the 
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cloud’s implementation to be resolved on a micro scale. Developing a strategy that plans for a few low‐risk, 
low‐hanging fruit systems to be the initial users of the cloud will lead to quick wins and consequently provide 
the momentum that will lead to a wider acceptance and growth of the user base. Candidates that are low‐
hanging fruit can be characterized by systems that have traits such as low security, low system dependency, 
and low reliability requirements. Although the low‐hanging fruit systems are easier to migrate to the cloud, 
there are unknown risks that may result in complications; thus these system owners should be proponents of 
cloud computing and should be willing to address challenges that they might encounter. A general framework 
for cloud computing implementation phases could include:

 ● establishing an initial cloud computing capability;
 ● forming a coalition of cloud supporters that embrace cloud computing;
 ● maturing the practices and technologies by migrating low‐risk systems first;
 ● moving additional systems to the optimized environment;
 ● having continuous improvement to optimize cloud usage.

30.3 Policy

It is critical that enterprise cloud computing policies be enacted to help preserve a well functioning system. 
Without proper policies there is the potential that ideal candidate systems for the cloud will not utilize the 
environment due to refusal by system owners who are averse to change. A policy will provide a mandate that 
can be referenced to system owners who do not wish to adopt cloud computing due solely to their resistance 
to change. Alternatively, there are other system owners who will be too anxious to use cloud technologies and 
will procure cloud services through improper channels that can lead to cloud sprawl and result in a Wild West 
of unmanaged cloud environments that are not secure and are inoperable with other systems in the enterprise. 
A policy will help to prevent unauthorized cloud‐computing implementations.

Like the cloud strategy, cloud polices should be developed with inputs from all stakeholders to ensure they 
take into account the policies and requirements of the enterprise. The policies should be issued from the desk 
of the CIO, or from an equivalent level, to ensure that they carry the weight required by system owners.

Enforcement and monitoring of policies can be accomplished by several means, including:

 ● management signoff on IT procurements;
 ● contracting officer approval of noncloud versus cloud services, and
 ● enterprise checkpoints for integration of cloud services with back‐end systems.

Policies for cloud computing are important, but ideally system owners should aspire to move their applica-
tions to the enterprise cloud without any type of strong arming. For this to happen, effective and frequent 
communication is needed to gain the trust and support of the user base.

30.4  Identify Goals

An effective cloud strategy should include the identification of realistic and achievable goals for introducing 
cloud computing into the enterprise. The success or failure of the adoption of cloud computing can be meas-
ured by whether these goals are achieved. Specific, measureable, attainable, realistic, timely (SMART) goals 
should be developed that will help determine if the investment is staying on a path towards success or if 
course corrections are needed. The goals should span the lifecycle of the anticipated operational timeframe 
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to ensure that continual progress is being made. Doing so will help to demonstrate that cloud computing is 
not only properly integrated, but that the benefits that were used to sell the concept are achieved.

As an example, the United States Department of Defense (DoD) overarching cloud‐computing goal is to 
“Implement cloud computing as the means to deliver the most innovative, efficient, and secure information 
and IT services in support of the Department’s mission, anywhere, anytime, on any authorized device” (http://
dodcio.defense.gov/Portals/0/Documents/Cloud/DoD%20Cloud%20Computing%20Strategy%20Final%20 
with%20Memo%20‐%20July%205%202012.pdf, accessed December 18, 2015).

While an overarching goal should be identified, it is also important to define sufficiently goals that can be tracked 
and measured. For example, the FAA identified the a few key goals for monitoring as outlined in Table 30.1.

Table 30.1 FAA cloud computing goals

Cloud goal Rationale

Increase cost 
efficiency

The multisharing and elastic characteristics of cloud computing present an 
opportunity to increase the cost efficiency of IT programs across the FAA. 
Under the cloud computing model, the costs of acquiring, maintaining, and 
refreshing software, tools, development platforms, hardware, storage, etc. are 
shifted to the cloud service providers (CSPs). These can serve a high number 
of customers and they are able to offer lower individual pay‐per‐use rates by 
leveraging economies of scale, commoditizing infrastructure, and automating 
datacenter processes. In FAA IT organizations, operational costs represent a 
significant percentage of the IT budget, and the opportunity to optimize and 
reduce operational costs by using cloud services represents a very attractive 
option to IT organizations and the FAA.

Increase provisioning 
speed

The self‐serve automated characteristic of cloud computing presents an 
opportunity to increase the provisioning speed of IT services to FAA programs. 
Providing new applications, setting up technical environments, developing 
new software, etc., often take a long time and it is usually not aligned with 
changing business needs and customer expectations. A key characteristic of 
cloud computing is the automated provisioning of computing resources and it 
has the potential to increase the provisioning speed dramatically.

Increase flexibility 
and scalability

The multisharing characteristic of cloud computing provides an opportunity to 
provide a highly flexible and scalable IT environment. To take advantage of 
economies of scale, CSP datacenters have massive amounts of computing 
resources available automatically to cloud‐service consumers. Individual 
program needs for computing resources may vary for several reasons. An 
unexpected event, new policies or regulations may trigger increased demand for 
computing resources that was not forecast in advance. Cloud computing offers 
the potential benefit of scaling computing resources up and down as needed.

Support and enable 
net‐centricity and 
information sharing

CSP datacenters can be seen as massive repositories of data, applications and 
computing resources, accessed via a network with the potential for 
interconnectivity that creates a network of networks and accelerates  
net‐centric operations and information sharing across the FAA.

Support innovation, 
research and 
development

A more affordable and agile access to massive cloud computing capabilities 
can be seen as an innovation lab in the desktop of every FAA personnel that 
may spur innovation across the FAA.

Support sustainability Optimal utilization levels and the elimination of redundancies and in the FAA 
IT environment will reduce energy consumption and support a more 
sustainable environment.

Source: Adapted from FAA Cloud Computing Strategy (2012).
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Each organization needs to establish goals that are not too broad or general and ensure they align with the 
core mission of that particular organization. If the goals are too broad or generic, they will result in objectives 
that do not bolster the case for cloud computing. The following are general examples of goals that could be 
built upon, but will need customization to be useful for the individual organization:

 ● adopt an enterprise approach to cloud computing;
 ● increase the efficiency of current and future IT investments;
 ● minimize the risks associated with introducing cloud computing to the enterprise.

30.5 Identifying the Approach

An approach needs to be established within the cloud strategy that identifies the major steps and phases that 
the organization will go through to make cloud computing a success. The approach should use a logical 
sequence of activities that enable the gradual introduction of the technology into the organization. Gartner, a 
highly respected information technology research and advisory firm, recommends that

IT leaders follow five major phases when investigating cloud computing (the phases may vary, depending on your 
organization and the extent of your interest in cloud computing):

•	 Build the business case. Link the key initiative to the overall drivers or objectives of the business. Gain support 
from senior business leaders and senior stakeholders. Set a baseline for assessing the impact of the investiga-
tion. Estimate costs and resource requirements.

•	 Develop the strategy. Align the investigation with the business strategy, and show how it can deliver business 
value. Show how the investigation might lead to changes that will affect your business environment. Work with 
key stakeholders to identify business needs.

•	 Assess readiness. Identify the budgetary, staffing, technology and other requirements necessary to prepare the 
business for the investigation. Develop a total cost of ownership analysis framework. Review established 
 policies for assessing risk and managing governance.

•	 Pilot or prototype. Identify a group to pilot, or develop a prototype for the investigation. Develop and commu-
nicate detailed requirements. Manage the pilot/prototype. Assess and communicate the results.

•	 Gain approval. Analyze findings of the readiness assessment and pilot or prototype effort, and revise the 
 strategy and business case accordingly. Present findings of the investigation to senior stakeholders and business 
leaders. (Gartner, 2014).

30.6 Enterprise Architecture

Enterprise architecture (EA) is a discipline for proactively and holistically leading enterprise responses to 
disruptive forces by identifying and analyzing the execution of change toward desired business vision and 
outcomes. EA delivers value by presenting business and IT leaders with signature‐ready recommendations 
for adjusting policies and projects to achieve target business outcomes that capitalize on relevant business 
disruptions. EA is used to steer decision making toward the evolution of the future state architecture. 
(Gartner, 2014)

Enterprise architecture provides a way for programs across an organization to gain an understanding of 
how the various elements of their business operate in relation to the overall ecosystem. With that in mind, 
adding cloud computing to the overarching enterprise architecture will help to convey a message that cloud 
computing is a key function that needs to be considered in various systems architectures.
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Target dates for cloud computing operational capability should be added to an organization’s roadmap to 
notify potential customers of when this technology will be available within the organization. Often program 
offices have to develop system requirements and plan their budget requirements years in advance of going 
operational. The roadmaps help to serve as a guide for early employment of cloud computing, which can be 
integrated into a program’s systems requirements.

30.6.1 Assess the Current State of the Enterprise (As‐Is Architecture)

Understanding the as‐is architecture of the enterprise is important to get an understanding of current cloud 
 computing offerings and how it may need to be altered in order to achieve the long‐term vision. Ideally, the 
architecture of the enterprise will be well documented and understood within the organization. Key informa-
tion to be gathered in the discovery process should include:

 ● Inventory of current datacenters. Knowing the organization’s assets and where they are located will help 
to determine which systems are candidates for moving to the cloud environment.

 ● Migration roadmap. A roadmap will help to identify potential candidates and timelines for systems to 
move to the cloud. Strong candidates for moving to cloud computing will be systems that are currently in 
development or are approaching a tech‐refresh cycle.

 ● Define system dependencies. The dependencies between systems are important to understand as the 
impact of moving a dependent system to the cloud could have major implications on other systems.

 ● Network infrastructure. Because cloud computing relies heavily on the network, it is important to gain an 
understanding of bandwidth, gateways and security policies of the organization moving to the cloud.

30.6.2 Develop a Long‐Term Vision (To‐Be Architecture)

The long‐term vision, also referred to as the to‐be architecture, is the concept of what the architecture will be 
at the end state, after cloud computing has been fully integrated into the enterprise. The architecture needs to 
present a model of how various systems within the organization will integrate into the cloud environment. It 
is challenging to identify all potential clients for the cloud environment, but the overarching end‐state archi-
tecture needs to identify how cloud computing will impact the overall processes of the organization.

30.7 The Cloud Champion – Gaining Senior Executive Support

The success of cloud computing within the enterprise requires the support of senior executives. Too often, 
great ideas are tabled before they have a chance to flourish due to the lack of support by the right executives. 
Cloud computing has tremendous buzz around the IT world but that hype does not always translate outside 
of the IT domain.

There is always resistance to change; however, with the right executive support, the roadblocks to transfor-
mation can be made to crumble. The enterprise cloud strategy should lay out the direction to bring the execu-
tives on board. It is critical that an executive champion be found who fully understands the cloud computing 
concept and is willing to translate / sell this strategy to his peers and subordinates.

Executives are looking for tangible benefits in order to provide backing for a concept or project. Cloud 
computing has many benefits but the concept needs to be brought to a level that can show a direct impact to a 
given mission. For example, IT professionals and CIOs are often troubled by inefficient investment in IT infra-
structure. Linthicum notes that while some estimate that only 10% of server capacity is used, this may be an 
overgenerous estimate and warns that many enterprises may actually have hundreds or thousands of servers 
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running only at 3% to 4% of capacity. Presenting statistics that cite specific benefits can be used as a way to 
gain the support needed to establish cloud computing. Every new IT revolution has its hurdles; however, with 
the right support from the right people, the obstacles can be overcome.

30.8 Avoiding Cloud Silos

Cloud computing will not be successful if it is implemented in isolation. In order to avoid silos, the strategy should 
develop an approach to gain input and support from all anticipated stakeholders. While it is suggested that cloud 
computing be sponsored by the CIO’s office, or an equivalent champion, there are many satellite organizations that 
will need to be involved, including finance, security, program offices, contracting offices, and enterprise engineering.

30.8.1 Keeping the Customer Front and Center

It is important to keep in mind that the success of a cloud computing integration relies on meeting the needs 
and desires of its potential customers. To achieve this, the cloud services must be implemented using a meth-
odology that integrates them into the given ecosystem in such a way that they do not become a hindrance but 
are instead looked upon as an opportunity.

Effective communication is one of the keys to make cloud computing popular within an organization. To 
help develop an approach for communication, the strategy should include the development of a communica-
tions plan that will identify an approach for properly distributing the message of cloud computing to the 
appropriate channels.

Included in this plan should be activities such as holding symposiums, developing a web site, organizing 
brown‐bag luncheons, and conducting meetings with key enterprise players.

 ● Symposiums. Holding a symposium is a great way to generate buzz around cloud computing. A sympo-
sium provides a place for the program offices implementing cloud computing to communicate with its 
stakeholders on the importance of this new technology and the impact it will have on the enterprise.

 ● Web site. In today’s society, many look to the Internet to gather information on topics of interest. A well 
publicized and frequently updated web site on the organization’s cloud‐computing status will help keep 
parties informed and involved.

 ● Brown‐bag luncheons. Brown‐bag luncheons are short informational sessions that are held on specific 
areas of cloud computing. This type of forum provides a place for stakeholders of targeted groups and / or 
topics to gather information, such as “security in the cloud” or “estimating the cost of moving your sys-
tems to the cloud.” The meetings should be kept short to accommodate busy schedules. Think in‐terms of 
TED talks, which are popular and effective presentations where the “speakers are given a maximum of 18 
minutes to present their ideas in the most innovative and engaging ways they can” (https://en.wikipedia.
org/wiki/TED_%28conference%29, accessed December 18, 2015).

 ● Meeting with key enterprise players. Individual meetings should be held with key stakeholders on a regu-
lar basis to keep them informed and to provide a forum for addressing any new concerns.

30.9 Governance

The cloud computing strategy should outline a framework that identifies the governance processes that will 
need to be established within the organization. “IT governance is the processes that ensure the effective and 
efficient use of IT in enabling an organization to achieve its goals” (Gartner, 2014). “Cloud Computing 
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Governance and Integration activities ensure an effective cloud computing governance structure. They also 
ensure a smooth integration of the evolving Cloud Environments to the existing legacy IT environment” 
(FAA, 2012).

As an example, the United States DoD Cloud Strategy states that the “DoD CIO will establish a joint enter-
prise cloud computing governance structure to drive the policy and process changes necessary to transition to 
the DoD Enterprise Cloud Environment and oversee the implementation of the DoD Enterprise Cloud 
Strategy” (Department of Defense Cloud Computing Strategy, 2012).

30.10 Portfolio Analysis

It is important that an organization be able to survey the enterprise at large to identify potential opportunities 
for moving to a cloud‐computing environment. Cloud computing provides the benefit of being able to scale 
up or down, but depending on the nature of the organization, there are upfront costs to an organization to start 
using cloud. This upfront cost will vary widely depending on the spectrum of cloud implemented, ranging 
from a private cloud to a public cloud. Some suggested startup costs to consider include items such as security 
authorizations, network modifications, and staffing.

There are two broad categories of system that need to be assessed for moving to a cloud environment: 
existing systems and future systems.

Existing systems will have already been deployed and are likely operating at some type of enterprise‐
owned datacenter. An important potential cost savings of cloud computing resides in the reduction of the 
human labor to maintain legacy datacenters. As a result, datacenters need to be assessed to identify which can 
be closed down as a result of moving tenant systems to the cloud environment and / or consolidated into 
another datacenter.

Systems that are in the planning or development lifecycle phase are prime candidates for moving to a cloud 
computing environment. The major reason for their prime candidacy is that the systems are still being archi-
tected and can take the cloud architecture into account while being designed.

A consistent assessment approach should be developed for assessing systems in either lifecycle stage. The 
assessment needs to take into account security, policies, and timelines to help to determine if a system is a 
good candidate for moving to the cloud. Table 30.2 presents examples of criteria that can be used in the cloud 
assessment.

An important element to keep in mind when assessing a system for cloud suitability is to look at the system 
in pieces. A system often has multiple aspects, where one portion of the system could be a bad candidate for 
a cloud environment and another portion of the same system might be an excellent candidate. For example, a 
system might be too critical to be hosted in a cloud in its operational state, but be a great candidate for the 
developmental phase.

Following the completion of the overall cloud assessment of the enterprise, the strategy should iden-
tify an approach to analyze the collected data. The data gathered should help to identify overall enter-
prise requirements and conclude which types of cloud deployment model are most beneficial to the 
organization.

30.10.1 Metrics

The organization’s cloud computing strategy should include metrics that can be used to measure the ben-
efits of cloud computing as it grows and matures within the enterprise. Table 30.3 outlines a few key 
cloud metrics.
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Table 30.3 Cloud computing metrics

Metric Rationale

Number or percentage of systems 
assessed for cloud suitability

The number of cloud computing assessments indicates that the 
organization is proactively identifying systems with the potential 
to capture cloud computing benefits

Number or percentage of systems 
in the cloud

The number of systems moving to the cloud indicates that 
programs have identified cost efficiencies and other benefits 
during the investment analysis process, and selected cloud 
computing to support and enable the selected alternative. It also 
measures the multi sharing level of the environment which 
translates into economies of scale

Number of billing units The number of cloud service units in use by systems or billed by 
the cloud service provider give an indication of the cloud 
adoption and use by systems taking advantage of cloud 
computing

Billing amount The total billing amount per cloud service provides information on 
cost efficiency of cloud services. They can be compared and 
benchmarked, and unit costs over time can be calculated to 
measure efficiency over time

Cloud availability Availability of the cloud indicates to what extent cloud risks have 
been reduced or mitigated

Source: Adapted from FAA (2012).

Table 30.2 Cloud assessment criteria

Cloud assessment criteria Criteria explanation

What is the availability requirement 
of the system?

The up‐time requirements of the system.

What is the service restoral 
requirement of the system?

The requirement that determines how quickly the system must 
be restored after a failure.

Does the system process personally 
identifiable information (PII)?

Any information about an individual maintained by an agency, 
including, but not limited to, education, financial 
transactions, medical history and information which can be 
used to distinguish or trace an individual’s identify, such as 
name, SSN, date and place of birth, mother’s maiden name, 
biometric records, etc., including any other personal 
information which is linked or linkable to an individual. 
(Defined in OMB M‐06‐19)

What is the FISMA security level of 
the system?

FISMA‐Low indicates that loss of confidentiality, integrity, or 
availability would have a limited adverse effect (e.g. minor 
financial loss)

FISMA‐Moderate indicates that loss of confidentiality, 
integrity, or availability would have a serious adverse effect 
(e.g. significant financial loss)

FISMA‐High indicates that a loss of confidentiality, integrity, 
or availability would have a severe or catastrophic adverse 
effect (e.g. harm to individuals including loss of life or  
life‐threatening injuries or major financial loss)  
(Defined in NIST 800‐60)
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30.11 Anticipating the Challenges

There will be many challenges while implementing cloud computing. The organization’s cloud computing 
strategy should address the risks and challenges that it could potentially encounter. Challenges to keep in 
mind include: “technical and management risks from cloud computing including security, performance and 
data latency, interoperability, portability, technology maturity, legacy application migration, and enterprise 
planning” (FAA, 2012).

Some examples of risks that an organization might encounter regarding cloud computing are identified in 
Table 30.4.

30.12 Conclusion

It is important to recognize that a cloud computing strategy is just that – a strategy. A well crafted cloud 
computing strategy will help develop an approach for the implementation of cloud computing. That said, it 
may be necessary to deviate from even the best of strategies as technologies evolve, priorities change, and 
lessons are learned. With that in mind, a sound strategy will lay the groundwork that will take an enterprise 
from a concept of utilizing cloud computing to the reality of embracing it and realizing its benefits.
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Table 30.4 Potential risks

Risk description Risk response

If the cloud’s availability levels are not being met 
by the vendor, then the system will be unable 
to use the cloud environment.

Develop a SLA with the cloud vendor that specifics 
the required availability levels. Monitor the cloud 
vendor to ensure that the service levels are 
being met.

If a malicious insider compromises the cloud 
environment, then the organization’s data will 
be compromised.

Maintain strict security controls to reduce the 
chance of a malicious insider.

If the cloud vendor goes out of business, then 
another vendor will need to be selected.

Award the cloud contract to a vendor that is stable 
and demonstrates the ability to be a sustainable 
organization.

If there are not enough customers to support the 
cloud environment, then the initiative may be 
canceled.

Develop an outreach and communication plan to 
generate a customer base.

If there is a breach of sensitive intellectual 
property or a customer’s personal information 
then there could be lost customers, fines and 
legal sanctions.

Develop a security approach that minimizes the 
risk of a security breach.

If a cloud account is hijacked, then undetected 
fraud and abuse could occur.

Develop a security approach that minimizes the 
risk of a security breach.
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30.1 Introduction

A well developed cloud‐computing strategy will help to accelerate and advance the adoption of cloud 
 computing while simultaneously enabling tangible benefits to be captured and attained. The strategy should 
use a structured engineering approach that balances requirements, schedule, cost, and risk. The cloud strategy 
needs to take an approach that is realistic and achievable for the individual organization, to help position the 
enterprise towards a trajectory of success.

When developing a cloud strategy, the CTO should consider how the strategy will apply throughout the 
organization. The strategy should present a case to stakeholders, explaining why cloud computing is advanta-
geous and approach for implementing the new technology in a way that helps to support the organization’s 
core competencies and mission.

The cloud computing strategy will likely be the foundation block upon which the implementation of cloud 
computing is built. The strategy should be an overarching document that briefly touches on the major 
 components of the organization that will be impacted by the introduction of cloud computing.

30.2 Foundations for success

In developing a strategy, it is suggested that a risk‐based incremental approach be used that will gradually 
introduce cloud to the enterprise at large. A gradual process will allow for challenges that arise from the 
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cloud’s implementation to be resolved on a micro scale. Developing a strategy that plans for a few low‐risk, 
low‐hanging fruit systems to be the initial users of the cloud will lead to quick wins and consequently provide 
the momentum that will lead to a wider acceptance and growth of the user base. Candidates that are low‐
hanging fruit can be characterized by systems that have traits such as low security, low system dependency, 
and low reliability requirements. Although the low‐hanging fruit systems are easier to migrate to the cloud, 
there are unknown risks that may result in complications; thus these system owners should be proponents of 
cloud computing and should be willing to address challenges that they might encounter. A general framework 
for cloud computing implementation phases could include:

 ● establishing an initial cloud computing capability;
 ● forming a coalition of cloud supporters that embrace cloud computing;
 ● maturing the practices and technologies by migrating low‐risk systems first;
 ● moving additional systems to the optimized environment;
 ● having continuous improvement to optimize cloud usage.

30.3 Policy

It is critical that enterprise cloud computing policies be enacted to help preserve a well functioning system. 
Without proper policies there is the potential that ideal candidate systems for the cloud will not utilize the 
environment due to refusal by system owners who are averse to change. A policy will provide a mandate that 
can be referenced to system owners who do not wish to adopt cloud computing due solely to their resistance 
to change. Alternatively, there are other system owners who will be too anxious to use cloud technologies and 
will procure cloud services through improper channels that can lead to cloud sprawl and result in a Wild West 
of unmanaged cloud environments that are not secure and are inoperable with other systems in the enterprise. 
A policy will help to prevent unauthorized cloud‐computing implementations.

Like the cloud strategy, cloud polices should be developed with inputs from all stakeholders to ensure they 
take into account the policies and requirements of the enterprise. The policies should be issued from the desk 
of the CIO, or from an equivalent level, to ensure that they carry the weight required by system owners.

Enforcement and monitoring of policies can be accomplished by several means, including:

 ● management signoff on IT procurements;
 ● contracting officer approval of noncloud versus cloud services, and
 ● enterprise checkpoints for integration of cloud services with back‐end systems.

Policies for cloud computing are important, but ideally system owners should aspire to move their applica-
tions to the enterprise cloud without any type of strong arming. For this to happen, effective and frequent 
communication is needed to gain the trust and support of the user base.

30.4  Identify Goals

An effective cloud strategy should include the identification of realistic and achievable goals for introducing 
cloud computing into the enterprise. The success or failure of the adoption of cloud computing can be meas-
ured by whether these goals are achieved. Specific, measureable, attainable, realistic, timely (SMART) goals 
should be developed that will help determine if the investment is staying on a path towards success or if 
course corrections are needed. The goals should span the lifecycle of the anticipated operational timeframe 
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to ensure that continual progress is being made. Doing so will help to demonstrate that cloud computing is 
not only properly integrated, but that the benefits that were used to sell the concept are achieved.

As an example, the United States Department of Defense (DoD) overarching cloud‐computing goal is to 
“Implement cloud computing as the means to deliver the most innovative, efficient, and secure information 
and IT services in support of the Department’s mission, anywhere, anytime, on any authorized device” (http://
dodcio.defense.gov/Portals/0/Documents/Cloud/DoD%20Cloud%20Computing%20Strategy%20Final%20 
with%20Memo%20‐%20July%205%202012.pdf, accessed December 18, 2015).

While an overarching goal should be identified, it is also important to define sufficiently goals that can be tracked 
and measured. For example, the FAA identified the a few key goals for monitoring as outlined in Table 30.1.

Table 30.1 FAA cloud computing goals

Cloud goal Rationale

Increase cost 
efficiency

The multisharing and elastic characteristics of cloud computing present an 
opportunity to increase the cost efficiency of IT programs across the FAA. 
Under the cloud computing model, the costs of acquiring, maintaining, and 
refreshing software, tools, development platforms, hardware, storage, etc. are 
shifted to the cloud service providers (CSPs). These can serve a high number 
of customers and they are able to offer lower individual pay‐per‐use rates by 
leveraging economies of scale, commoditizing infrastructure, and automating 
datacenter processes. In FAA IT organizations, operational costs represent a 
significant percentage of the IT budget, and the opportunity to optimize and 
reduce operational costs by using cloud services represents a very attractive 
option to IT organizations and the FAA.

Increase provisioning 
speed

The self‐serve automated characteristic of cloud computing presents an 
opportunity to increase the provisioning speed of IT services to FAA programs. 
Providing new applications, setting up technical environments, developing 
new software, etc., often take a long time and it is usually not aligned with 
changing business needs and customer expectations. A key characteristic of 
cloud computing is the automated provisioning of computing resources and it 
has the potential to increase the provisioning speed dramatically.

Increase flexibility 
and scalability

The multisharing characteristic of cloud computing provides an opportunity to 
provide a highly flexible and scalable IT environment. To take advantage of 
economies of scale, CSP datacenters have massive amounts of computing 
resources available automatically to cloud‐service consumers. Individual 
program needs for computing resources may vary for several reasons. An 
unexpected event, new policies or regulations may trigger increased demand for 
computing resources that was not forecast in advance. Cloud computing offers 
the potential benefit of scaling computing resources up and down as needed.

Support and enable 
net‐centricity and 
information sharing

CSP datacenters can be seen as massive repositories of data, applications and 
computing resources, accessed via a network with the potential for 
interconnectivity that creates a network of networks and accelerates  
net‐centric operations and information sharing across the FAA.

Support innovation, 
research and 
development

A more affordable and agile access to massive cloud computing capabilities 
can be seen as an innovation lab in the desktop of every FAA personnel that 
may spur innovation across the FAA.

Support sustainability Optimal utilization levels and the elimination of redundancies and in the FAA 
IT environment will reduce energy consumption and support a more 
sustainable environment.

Source: Adapted from FAA Cloud Computing Strategy (2012).
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Each organization needs to establish goals that are not too broad or general and ensure they align with the 
core mission of that particular organization. If the goals are too broad or generic, they will result in objectives 
that do not bolster the case for cloud computing. The following are general examples of goals that could be 
built upon, but will need customization to be useful for the individual organization:

 ● adopt an enterprise approach to cloud computing;
 ● increase the efficiency of current and future IT investments;
 ● minimize the risks associated with introducing cloud computing to the enterprise.

30.5 Identifying the Approach

An approach needs to be established within the cloud strategy that identifies the major steps and phases that 
the organization will go through to make cloud computing a success. The approach should use a logical 
sequence of activities that enable the gradual introduction of the technology into the organization. Gartner, a 
highly respected information technology research and advisory firm, recommends that

IT leaders follow five major phases when investigating cloud computing (the phases may vary, depending on your 
organization and the extent of your interest in cloud computing):

•	 Build the business case. Link the key initiative to the overall drivers or objectives of the business. Gain support 
from senior business leaders and senior stakeholders. Set a baseline for assessing the impact of the investiga-
tion. Estimate costs and resource requirements.

•	 Develop the strategy. Align the investigation with the business strategy, and show how it can deliver business 
value. Show how the investigation might lead to changes that will affect your business environment. Work with 
key stakeholders to identify business needs.

•	 Assess readiness. Identify the budgetary, staffing, technology and other requirements necessary to prepare the 
business for the investigation. Develop a total cost of ownership analysis framework. Review established 
 policies for assessing risk and managing governance.

•	 Pilot or prototype. Identify a group to pilot, or develop a prototype for the investigation. Develop and commu-
nicate detailed requirements. Manage the pilot/prototype. Assess and communicate the results.

•	 Gain approval. Analyze findings of the readiness assessment and pilot or prototype effort, and revise the 
 strategy and business case accordingly. Present findings of the investigation to senior stakeholders and business 
leaders. (Gartner, 2014).

30.6 Enterprise Architecture

Enterprise architecture (EA) is a discipline for proactively and holistically leading enterprise responses to 
disruptive forces by identifying and analyzing the execution of change toward desired business vision and 
outcomes. EA delivers value by presenting business and IT leaders with signature‐ready recommendations 
for adjusting policies and projects to achieve target business outcomes that capitalize on relevant business 
disruptions. EA is used to steer decision making toward the evolution of the future state architecture. 
(Gartner, 2014)

Enterprise architecture provides a way for programs across an organization to gain an understanding of 
how the various elements of their business operate in relation to the overall ecosystem. With that in mind, 
adding cloud computing to the overarching enterprise architecture will help to convey a message that cloud 
computing is a key function that needs to be considered in various systems architectures.
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Target dates for cloud computing operational capability should be added to an organization’s roadmap to 
notify potential customers of when this technology will be available within the organization. Often program 
offices have to develop system requirements and plan their budget requirements years in advance of going 
operational. The roadmaps help to serve as a guide for early employment of cloud computing, which can be 
integrated into a program’s systems requirements.

30.6.1 Assess the Current State of the Enterprise (As‐Is Architecture)

Understanding the as‐is architecture of the enterprise is important to get an understanding of current cloud 
 computing offerings and how it may need to be altered in order to achieve the long‐term vision. Ideally, the 
architecture of the enterprise will be well documented and understood within the organization. Key informa-
tion to be gathered in the discovery process should include:

 ● Inventory of current datacenters. Knowing the organization’s assets and where they are located will help 
to determine which systems are candidates for moving to the cloud environment.

 ● Migration roadmap. A roadmap will help to identify potential candidates and timelines for systems to 
move to the cloud. Strong candidates for moving to cloud computing will be systems that are currently in 
development or are approaching a tech‐refresh cycle.

 ● Define system dependencies. The dependencies between systems are important to understand as the 
impact of moving a dependent system to the cloud could have major implications on other systems.

 ● Network infrastructure. Because cloud computing relies heavily on the network, it is important to gain an 
understanding of bandwidth, gateways and security policies of the organization moving to the cloud.

30.6.2 Develop a Long‐Term Vision (To‐Be Architecture)

The long‐term vision, also referred to as the to‐be architecture, is the concept of what the architecture will be 
at the end state, after cloud computing has been fully integrated into the enterprise. The architecture needs to 
present a model of how various systems within the organization will integrate into the cloud environment. It 
is challenging to identify all potential clients for the cloud environment, but the overarching end‐state archi-
tecture needs to identify how cloud computing will impact the overall processes of the organization.

30.7 The Cloud Champion – Gaining Senior Executive Support

The success of cloud computing within the enterprise requires the support of senior executives. Too often, 
great ideas are tabled before they have a chance to flourish due to the lack of support by the right executives. 
Cloud computing has tremendous buzz around the IT world but that hype does not always translate outside 
of the IT domain.

There is always resistance to change; however, with the right executive support, the roadblocks to transfor-
mation can be made to crumble. The enterprise cloud strategy should lay out the direction to bring the execu-
tives on board. It is critical that an executive champion be found who fully understands the cloud computing 
concept and is willing to translate / sell this strategy to his peers and subordinates.

Executives are looking for tangible benefits in order to provide backing for a concept or project. Cloud 
computing has many benefits but the concept needs to be brought to a level that can show a direct impact to a 
given mission. For example, IT professionals and CIOs are often troubled by inefficient investment in IT infra-
structure. Linthicum notes that while some estimate that only 10% of server capacity is used, this may be an 
overgenerous estimate and warns that many enterprises may actually have hundreds or thousands of servers 
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running only at 3% to 4% of capacity. Presenting statistics that cite specific benefits can be used as a way to 
gain the support needed to establish cloud computing. Every new IT revolution has its hurdles; however, with 
the right support from the right people, the obstacles can be overcome.

30.8 Avoiding Cloud Silos

Cloud computing will not be successful if it is implemented in isolation. In order to avoid silos, the strategy should 
develop an approach to gain input and support from all anticipated stakeholders. While it is suggested that cloud 
computing be sponsored by the CIO’s office, or an equivalent champion, there are many satellite organizations that 
will need to be involved, including finance, security, program offices, contracting offices, and enterprise engineering.

30.8.1 Keeping the Customer Front and Center

It is important to keep in mind that the success of a cloud computing integration relies on meeting the needs 
and desires of its potential customers. To achieve this, the cloud services must be implemented using a meth-
odology that integrates them into the given ecosystem in such a way that they do not become a hindrance but 
are instead looked upon as an opportunity.

Effective communication is one of the keys to make cloud computing popular within an organization. To 
help develop an approach for communication, the strategy should include the development of a communica-
tions plan that will identify an approach for properly distributing the message of cloud computing to the 
appropriate channels.

Included in this plan should be activities such as holding symposiums, developing a web site, organizing 
brown‐bag luncheons, and conducting meetings with key enterprise players.

 ● Symposiums. Holding a symposium is a great way to generate buzz around cloud computing. A sympo-
sium provides a place for the program offices implementing cloud computing to communicate with its 
stakeholders on the importance of this new technology and the impact it will have on the enterprise.

 ● Web site. In today’s society, many look to the Internet to gather information on topics of interest. A well 
publicized and frequently updated web site on the organization’s cloud‐computing status will help keep 
parties informed and involved.

 ● Brown‐bag luncheons. Brown‐bag luncheons are short informational sessions that are held on specific 
areas of cloud computing. This type of forum provides a place for stakeholders of targeted groups and / or 
topics to gather information, such as “security in the cloud” or “estimating the cost of moving your sys-
tems to the cloud.” The meetings should be kept short to accommodate busy schedules. Think in‐terms of 
TED talks, which are popular and effective presentations where the “speakers are given a maximum of 18 
minutes to present their ideas in the most innovative and engaging ways they can” (https://en.wikipedia.
org/wiki/TED_%28conference%29, accessed December 18, 2015).

 ● Meeting with key enterprise players. Individual meetings should be held with key stakeholders on a regu-
lar basis to keep them informed and to provide a forum for addressing any new concerns.

30.9 Governance

The cloud computing strategy should outline a framework that identifies the governance processes that will 
need to be established within the organization. “IT governance is the processes that ensure the effective and 
efficient use of IT in enabling an organization to achieve its goals” (Gartner, 2014). “Cloud Computing 
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Governance and Integration activities ensure an effective cloud computing governance structure. They also 
ensure a smooth integration of the evolving Cloud Environments to the existing legacy IT environment” 
(FAA, 2012).

As an example, the United States DoD Cloud Strategy states that the “DoD CIO will establish a joint enter-
prise cloud computing governance structure to drive the policy and process changes necessary to transition to 
the DoD Enterprise Cloud Environment and oversee the implementation of the DoD Enterprise Cloud 
Strategy” (Department of Defense Cloud Computing Strategy, 2012).

30.10 Portfolio Analysis

It is important that an organization be able to survey the enterprise at large to identify potential opportunities 
for moving to a cloud‐computing environment. Cloud computing provides the benefit of being able to scale 
up or down, but depending on the nature of the organization, there are upfront costs to an organization to start 
using cloud. This upfront cost will vary widely depending on the spectrum of cloud implemented, ranging 
from a private cloud to a public cloud. Some suggested startup costs to consider include items such as security 
authorizations, network modifications, and staffing.

There are two broad categories of system that need to be assessed for moving to a cloud environment: 
existing systems and future systems.

Existing systems will have already been deployed and are likely operating at some type of enterprise‐
owned datacenter. An important potential cost savings of cloud computing resides in the reduction of the 
human labor to maintain legacy datacenters. As a result, datacenters need to be assessed to identify which can 
be closed down as a result of moving tenant systems to the cloud environment and / or consolidated into 
another datacenter.

Systems that are in the planning or development lifecycle phase are prime candidates for moving to a cloud 
computing environment. The major reason for their prime candidacy is that the systems are still being archi-
tected and can take the cloud architecture into account while being designed.

A consistent assessment approach should be developed for assessing systems in either lifecycle stage. The 
assessment needs to take into account security, policies, and timelines to help to determine if a system is a 
good candidate for moving to the cloud. Table 30.2 presents examples of criteria that can be used in the cloud 
assessment.

An important element to keep in mind when assessing a system for cloud suitability is to look at the system 
in pieces. A system often has multiple aspects, where one portion of the system could be a bad candidate for 
a cloud environment and another portion of the same system might be an excellent candidate. For example, a 
system might be too critical to be hosted in a cloud in its operational state, but be a great candidate for the 
developmental phase.

Following the completion of the overall cloud assessment of the enterprise, the strategy should iden-
tify an approach to analyze the collected data. The data gathered should help to identify overall enter-
prise requirements and conclude which types of cloud deployment model are most beneficial to the 
organization.

30.10.1 Metrics

The organization’s cloud computing strategy should include metrics that can be used to measure the ben-
efits of cloud computing as it grows and matures within the enterprise. Table 30.3 outlines a few key 
cloud metrics.
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Table 30.3 Cloud computing metrics

Metric Rationale

Number or percentage of systems 
assessed for cloud suitability

The number of cloud computing assessments indicates that the 
organization is proactively identifying systems with the potential 
to capture cloud computing benefits

Number or percentage of systems 
in the cloud

The number of systems moving to the cloud indicates that 
programs have identified cost efficiencies and other benefits 
during the investment analysis process, and selected cloud 
computing to support and enable the selected alternative. It also 
measures the multi sharing level of the environment which 
translates into economies of scale

Number of billing units The number of cloud service units in use by systems or billed by 
the cloud service provider give an indication of the cloud 
adoption and use by systems taking advantage of cloud 
computing

Billing amount The total billing amount per cloud service provides information on 
cost efficiency of cloud services. They can be compared and 
benchmarked, and unit costs over time can be calculated to 
measure efficiency over time

Cloud availability Availability of the cloud indicates to what extent cloud risks have 
been reduced or mitigated

Source: Adapted from FAA (2012).

Table 30.2 Cloud assessment criteria

Cloud assessment criteria Criteria explanation

What is the availability requirement 
of the system?

The up‐time requirements of the system.

What is the service restoral 
requirement of the system?

The requirement that determines how quickly the system must 
be restored after a failure.

Does the system process personally 
identifiable information (PII)?

Any information about an individual maintained by an agency, 
including, but not limited to, education, financial 
transactions, medical history and information which can be 
used to distinguish or trace an individual’s identify, such as 
name, SSN, date and place of birth, mother’s maiden name, 
biometric records, etc., including any other personal 
information which is linked or linkable to an individual. 
(Defined in OMB M‐06‐19)

What is the FISMA security level of 
the system?

FISMA‐Low indicates that loss of confidentiality, integrity, or 
availability would have a limited adverse effect (e.g. minor 
financial loss)

FISMA‐Moderate indicates that loss of confidentiality, 
integrity, or availability would have a serious adverse effect 
(e.g. significant financial loss)

FISMA‐High indicates that a loss of confidentiality, integrity, 
or availability would have a severe or catastrophic adverse 
effect (e.g. harm to individuals including loss of life or  
life‐threatening injuries or major financial loss)  
(Defined in NIST 800‐60)
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30.11 Anticipating the Challenges

There will be many challenges while implementing cloud computing. The organization’s cloud computing 
strategy should address the risks and challenges that it could potentially encounter. Challenges to keep in 
mind include: “technical and management risks from cloud computing including security, performance and 
data latency, interoperability, portability, technology maturity, legacy application migration, and enterprise 
planning” (FAA, 2012).

Some examples of risks that an organization might encounter regarding cloud computing are identified in 
Table 30.4.

30.12 Conclusion

It is important to recognize that a cloud computing strategy is just that – a strategy. A well crafted cloud 
computing strategy will help develop an approach for the implementation of cloud computing. That said, it 
may be necessary to deviate from even the best of strategies as technologies evolve, priorities change, and 
lessons are learned. With that in mind, a sound strategy will lay the groundwork that will take an enterprise 
from a concept of utilizing cloud computing to the reality of embracing it and realizing its benefits.
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Table 30.4 Potential risks

Risk description Risk response

If the cloud’s availability levels are not being met 
by the vendor, then the system will be unable 
to use the cloud environment.

Develop a SLA with the cloud vendor that specifics 
the required availability levels. Monitor the cloud 
vendor to ensure that the service levels are 
being met.

If a malicious insider compromises the cloud 
environment, then the organization’s data will 
be compromised.

Maintain strict security controls to reduce the 
chance of a malicious insider.

If the cloud vendor goes out of business, then 
another vendor will need to be selected.

Award the cloud contract to a vendor that is stable 
and demonstrates the ability to be a sustainable 
organization.

If there are not enough customers to support the 
cloud environment, then the initiative may be 
canceled.

Develop an outreach and communication plan to 
generate a customer base.

If there is a breach of sensitive intellectual 
property or a customer’s personal information 
then there could be lost customers, fines and 
legal sanctions.

Develop a security approach that minimizes the 
risk of a security breach.

If a cloud account is hijacked, then undetected 
fraud and abuse could occur.

Develop a security approach that minimizes the 
risk of a security breach.
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31.1 Introduction

The emergence of cloud computing has provided access to infrastructure for developing, deploying, and 
 running software services at reduced cost. Features such as on‐demand availability and ability to share 
resources (known as multitenancy) along with the availability of a variety of services for various business 
ventures to enable them to improve their business offerings is very attractive for small and medium software 
organizations. With the vast number of independent cloud service providers (CSPs) currently existing, it is 
challenging for users to choose an appropriate CSP. Other challenges include addressing security, privacy, 
trustworthiness, and vendor lock-in. CSPs also face challenges such as understanding the market, adapting 
to market conditions, and monitoring user profiles. This suggests the need for a cloud broker that can act as 
an intermediary between cloud customers and CSPs, to connect them and to help them make their business‐
critical decisions.

There are five essential characteristics for cloud environments (Mell et al., 2011). Firstly, resources can be 
provisioned rapidly on demand as and when needed. Secondly, the cloud allows broad network access so that 
users can access and use cloud resources through the network using various heterogeneous client devices 
such as mobile phones and laptops. Thirdly, CSPs use virtualization techniques to pool computing resources 
to serve multiple consumers based on their demand. Fourthly, the autoelasticity of the cloud allows users to 
configure resources in minutes and enables them to scale capacity elastically based on their immediate 
resource requirements. Finally, cloud computing has an attractive utility computing‐based pay‐as‐you‐go 
policy in which the user needs to pay only for the capacity that is actually being used.
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Despite these advantages, cloud environments pose considerable challenges to prospective users as well as 
to the CSPs, which offer different types of services. In this chapter, we describe various challenges for the 
users in moving their services to the cloud and various challenges faced by providers in offering their services 
and increasing their revenue. Then we portray cloud brokers as a unified  solution to most of the problems and 
describe cloud brokers in detail.

31.2 Key Challenges in Cloud Computing and the Need for Cloud Brokers

There are several key challenges for both users and providers when entering and becoming established in the 
cloud paradigm.

31.2.1 Challenges from the Users’ Perspective

Key challenges faced by the users in moving their data / services to cloud platforms include the following:

 ● Choosing the right provider. With the variety of services offered by several CSPs, users may find it diffi-
cult to choose the right provider to fulfill their requirements. At present there is no platform providing 
information about the capabilities of all the CSPs.

 ● Security and privacy issues. As several users may share the same physical infrastructure in a virtualized 
manner simultaneously, users are often concerned about the security and privacy of their data in the cloud 
platform.

 ● Trustworthiness of CSPs. Users are concerned about the trustworthiness of the CSPs. This aspect is 
 different from security because trustworthiness conveys information pertaining to task execution such as 
adhering to service‐level agreements (SLAs) and reliability of task execution (such as handling node 
failure, and meeting task deadlines).

 ● Dealing with lock-in. In economics, vendor lock-in makes a customer dependent on a vendor for 
 specific products and / or services, rendering it difficult for users to choose a different CSP without 
substantial switching costs. The switching cost includes possible end‐of‐contract penalties, charges 
for data format conversion and application switching and possible additional fees for bandwidth 
usage.

31.2.2 Challenges from the Providers’ Perspective

From the providers’ perspective there are many challenges to be addressed for exploiting various features of 
cloud platforms. These include:

 ● Understanding the market. New CSPs may need to understand current market dynamics in terms of the 
competitors in the domain, user preferences in terms of the products / services in demand, and user prefer-
ences for various features such as security and trust requirements.

 ● Adapting to the market. Current CSPs charge a fixed price per resource for their products and services, 
with some minor exceptions like Amazon spot pricing. Dynamic pricing strategies are required to improve 
their performance and to attract more customers based on the market situation.

 ● Monitoring user profiles. With competition among different CSPs, they may need to monitor the 
reliability of users – one needs to check if the feedback given by the users is reliable or not to 
decide user acceptance criteria. It also helps to avoid any unhealthy competition among the CSPs 
and users.
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31.2.3 Cloud Orchestration: Cloud Broker as a Unified Solution

Clouds are emerging as a competitive sourcing strategy. With this, there is clearly a demand for the integra-
tion of cloud environments to create an end‐to‐end managed landscape of cloud‐based functions. A broker‐
based cloud orchestration mechanism can solve most of the issues faced by users and the CSPs. Cloud 
orchestration enables connectivity of IT and business‐process levels between cloud environments. Major 
benefits of cloud orchestration are:

 ● It helps users to choose the best service;
 ● It helps providers to offer better services and adapt to market conditions;
 ● It has the ability to create a “best of breed” service‐based environment in which tasks can be deployed 

dynamically among multiple CSPs to reduce task execution time and to meet budget requirements;
 ● It helps users and providers to make their business decisions based on several parameters, such as trust, 

reputation, security, and reliability, which are difficult to handle in the absence of a broker;
 ● It helps users to designate a broker to make some decisions on their behalf so that users can focus on their 

core businesses rather than focusing on task‐deployment strategies and other system administration jobs.

31.3 Cloud Brokers: An Overview

Cloud brokers play an intermediary role, to help customers locate the best and the most cost‐effective CSP for 
their needs. A cloud broker is by far the best solution for multiple cloud orchestration (including aggregating, 
integrating, customizing, and governing cloud services) for SMEs and large enterprises. Major advantages are 
cost savings, information availability, and market adaptation. As the number of CSPs continues to grow, a single 
interface (broker) for information, combined with service, could be compelling for companies that prefer to spend 
more time with their clouds than devising their own strategies for finding a suitable CSP to meet their needs.

We can broadly classify cloud brokers into three groups based on the services offered by them (see 
Figure 31.1). The first group is cloud service arbitrage, where the brokers supply flexible and opportunistic 
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choices for users and foster competition between clouds. If a broker acts as a source of information and 
 provides a way for users to interact with CSPs, then we call this broker a facilitator. If the broker takes deci-
sions in addition to giving information, and assisting in communication on behalf of users, then the broker is 
a decision maker.

The second group is broker aggregation, in which the broker deploys customer services over one or multi-
ple CSPs. On many occasions users have a huge number of tasks that need to be deployed among multiple 
resources belonging to one or more CSPs. This may include the reduction of overall task execution time to 
meet deadlines or meet other complex objectives. In another case, aggregation might be required because one 
CSP alone is unable to meet the task requirements imposed by the user. Therefore, based on user require-
ments, the broker will perform aggregation among one or more CSPs.

Finally, there is cloud service intermediation, where brokers can build services on top of the services 
offered by the CSPs, such as additional security features and / or management capabilities. The most common 
services that a broker can offer include identity federation among multiple CSPs and unified billing services, 
abstracting the complexities of the CSPs underneath.

31.4 Architecture of a Cloud Broker

We describe a comprehensive cloud‐broker architecture and strategies for multiple‐cloud orchestration based 
on the broker architecture to solve several key issues faced by users and CSPs in cloud computing environ-
ments. Our model consists of a set of users and CSPs, which are connected through a broker. The broker 
maintains a few databases about the current system to aid users and CSPs to make their business decisions. 
A detailed architecture for the broker is illustrated in Figure 31.2 (Iyer, 2012). This broker architecture consists 
of three major components:

 ● job distribution manager (JDM);
 ● operations monitor (OM); and
 ● price manager (PM).
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31.4.1 Job Distribution Manager

The job distribution manager (JDM) is responsible for receiving the user’s job requirements, choosing an 
appropriate CSP selection strategy, informing appropriate CSPs about the jobs, and maintaining the job 
 distribution statistics. When the user submits the job requirements, the job‐classification module analyzes 
them and decides the preferred CSP selection strategy (either cloud service arbitrage or cloud aggregation).

This broker can handle several situations such as cloud broker arbitrage, aggregation, and intermediation. 
For example, if the user prefers an auction‐based cloud arbitrage mechanism, then the auctioneer module will 
control the auction process and decide the winners. If the user wants to aggregate its application across 
 multiple clouds, then the cloud aggregation unit will perform the necessary action. The dispatcher module 
dispatches the job to corresponding CSPs after the CSP selection process is completed.

The distribution database maintains a database about the job distribution statistics such as the winning 
CSP. This helps CSPs and users to analyze their performance in the past with respect to other competing 
 players in the market.

31.4.2 Operations Monitor (OM)

The operations monitor (OM) monitors, manages, and maintains information pertaining to users and CSPs. 
The capability management module maintains databases about different resources and services offered by 
various CSPs. It also updates this information periodically when it notices any changes in the services offered 
by existing CSPs or when new CSPs enter the market. The JDM makes use of this information to shortlist the 
CSPs for participating in the competition based on the conditions provided in the new job requests.

The module’s reputation index and security index maintain information about the reputation and security 
values of various CSPs periodically. These values are supplied to users when requested. Based on their pref-
erences, users use these values to choose the appropriate CSP. A cumulative credit value is also based on these 
indices and user feedback, which is stored by the credit rating module.

A user reliability index is maintained by the user reliability index module. This is based on the trustworthi-
ness of the feedback received from the users. It is used by CSPs in making their price offer and by other users 
in forming their utility functions.

31.4.3 Price Manager (PM)

The price manager maintains the price offers supplied by the CSPs. It is also responsible for calculating the 
current market price for different resources. This is used by the CSPs to adjust their price offers. It also main-
tains other financial matters such as maintenance of integrated billing information which can collectively 
calculate, display, and manage the billing information from all the CSPs for the users.

31.5 Cloud Broker Arbitrage Mechanisms

In contrast to traditional arbitrage mechanisms, which involve the simultaneous purchase and sale of an asset 
to make profit, a cloud service arbitrage aims to enhance the flexibility and choices available for users with 
different requirements and to foster competition between CSPs. For example, a user may want to choose the 
most secure e‐mail provider (meeting certain security standards) whereas another user may want to choose 
the cheapest e‐mail service provider.

In a typical broker arbitrage mechanism, the broker helps consumers to compare and contrast different CSPs 
according to their specific requirements. It also often helps them to test benchmark applications on different 
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CSPs and to estimate the cost and performance. The performance parameters considered might include the 
task execution time and quality of service (QoS) offered by the provider. In addition, the broker might track 
and provide the security mechanisms supported by the CSPs, the reputation of CSPs as perceived by its cus-
tomers, and so forth. These help new customers to evaluate various providers in making appropriate decisions.

In many cases, the broker helps in discovering all available resource configurations (Clark et al., 2012), 
choosing the desired configuration, negotiating an SLA, monitoring the SLA and assisting in the migration 
of services between CSPs. A broker can either facilitate users in making appropriate decisions or the broker 
could itself be the decision maker on behalf of users and CSPs.

In (Ganghishetti, 2011), the authors presented a scheme called as MCQoSMS, which collects QoS speci-
fications from CSPs and QoS requirements from users, and finds a suitable match based on rough set theory. 
The model considers various QoS parameters such as availability and security. In (Calheiros et al., 2012) the 
authors proposed architecture and a scheme for a cloud coordinate to improve the performance of various 
entities in a cloud ecosystem. They modeled a market that trades VMs. Cloud exchange is presented to help 
in negotiation services and a cloud coordinator is available for SOA implementation.

31.5.1 The Broker as a Decision Facilitator

When users are the decision makers (which is the typical case), the broker helps them to make their decisions. At 
any point of time a user can submit a job request with a demand to all CSPs through the broker. Each CSP quotes 
an offer price to the broker and the broker informs the user of the offers from all CSPs. Then the user selects the 
CSP that maximizes its utility, based on various parameters such as the offer price, reputation, and level of security. 
Based on individual requirements, different users may have different weightings for these factors. The job is sub-
mitted to the selected CSP and the corresponding databases are updated by the broker. The entire flow described 
above is illustrated in Figure 31.3. See (Iyer, 2012) for one such algorithm using the concept of incentives.

31.5.2 The Broker as a Decision Maker

A cloud broker who supports arbitrage mechanisms can be compared with a system such as eBay where game 
theoretic principles such as auctions are followed for the interactions between the seller and the buyer. 
Auctions are very powerful tools used in modeling such buyer‐seller interactions. Specifically, continuous 
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double auctions are used (Iyer, 2012) in systems like this to enable user interactions. In such cases, sellers and 
buyers submit their bid information to the broker. Sellers submit their price offers and buyers submit their bid 
values and the mediator decides the winner(s) by matching these two values. The choice of bids reflects the 
user’s strategic attempts to influence the selling price.

The user chooses a particular CSP based on its utility function and the user submits a bid price to the bro-
ker for the chosen CSP. The broker also maintains the minimum acceptable price offered by all the CSPs for 
the same resource. Using this information, the broker can select the user bid that is the smallest value above 
the minimum value as the winning bid for the auction. A flow in such a system is illustrated in Figure 31.4.

In such cases, the CSPs learn market demand using the auctioning process through the broker and alter their prices 
accordingly. The process of deciding prices is carried out at the beginning of every auction. Cloud service providers 
keep track of the number of auctions in which they have not been picked. If this value exceeds a certain number, the 
CSPs attempt to put an end to the dry spell by lowering their offer price. If the CSPs have been picked, they raise their 
prices in the next auction. In order to facilitate this process, CSPs keep track of the average winning price. Every time 
the winning price is updated by the broker, the CSPs modify their average winning price to keep it up to date.

31.5.3 Reputation of CSPs Maintained by the Broker

Every time a user uses one of the CSPs, it submits feedback to the broker about its experience with the 
CSP. The broker calculates and maintains a weighted average reputation value about the CSP, which can 
then be used by other users to evaluate a CSP. Mathematically, the reputation value is a combination of the 
performance reviews submitted by the users at the end of each auction and the minimum bid values sub-
mitted by the CSPs (Iyer, 2012). The reputation of a CSP j after k auctions can be calculated as follows:
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Here, the first term is the average value of the product of the performance review submitted by the users 
about a particular CSP under consideration and the reliability index of those users calculated for the last k 
auctions. Y

ij
 is the reputation for CSP j as perceived by user i and φ

i
 is the reliability index for that particular 

user. It means that reviews submitted by reliable users are given more consideration compared to the reviews 
submitted by unreliable users. The second parameter is the inverse of the minimum bid value (X

ij
) submitted 

by the corresponding CSP. If a CSP believes that its performance is rendering its reputation value too low, it 
can increase its reputation by lowering the prices.

In order to enforce truthful feedback by the users after each auction, the broker maintains a reliability 
index, φ

i
, for each user. Users are not aware of the reliability value assigned to them by the broker. In each 

auction, the average performance of a particular CSP is calculated. If a user reports a performance value that 
is different from the average value beyond a threshold value, that user’s review is viewed as a special case. If 
this user consistently submits such reviews, that user’s reliability is reduced.

31.6 Cloud Broker Aggregation Mechanisms

Customer applications can be deployed across multiple CSPs with the help of cloud aggregation brokers. 
Users may have certain requirements such as deadline and budget that need the application to be distributed 
across multiple CSPs, or users may require a service that can be obtained only by combining services from 
multiple CSPs. This second category is also known as cloud broker integration. A typical cloud broker aggre-
gation process is illustrated in Figure 31.5.

There are two types of broker aggregation. One is aggregation among datacenters within one CSP and the 
other is aggregation among datacenters belonging to multiple CSPs. The former category is easier as the 
datacenters are within a CSP. In such cases the broker will most probably reside within the CSP firewalls and 
will be managed by the CSP itself. Based on the customer’s requirements and resource availability, the broker 
will perform the aggregation.
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31.6.1 Task Aggregation in a Private Compute Cloud

An example of task aggregation in a private compute cloud running on a platform in which all computing 
resources have identical characteristics is described in this subsection. Based on requests received for resource 
instances, the broker needs to employ efficient strategies to allocate the optimal number of resources to 
achieve certain goals such as minimizing task‐execution time or maximizing revenue, which is beneficial to 
CSPs and users. In our model, users submit parameters pertaining to the tasks such as task deadline or budget 
requirements and the broker calculates the optimal resource assignment.

Bargaining theory (Muthoo, 1999) can be used for task aggregation. In such cases the tasks to be executed 
in the compute cloud are known a priori. This is a reasonable assumption for a cloud because tasks to be 
executed in the cloud are generally submitted well in advance and they usually have a long processing time 
(of the order of hours or days). Further, tasks within certain applications such as compute‐intensive workflow 
applications are known in advance. However, they may not know the exact amount of resources needed until 
the runtime.

We consider computation‐intensive tasks that demand many virtual CPU instances (VCIs) and need to 
meet certain requirements such as deadline and / or budget. Further, without any loss of generality, we assume 
that the scheduling details such as the task distribution values for different CSPs (if the aggregation is per-
formed on multiple CSPs), the individual billing information, and so forth, are abstracted from the user, that 
the broker manages this information, and the broker maintains information such as integrated billing.

Two types of bargaining approaches can be applied in such situation: the Nash bargaining solution (NBS) 
and the Raiffa bargaining solution (RBS) (Iyer, 2012). The NBS maximizes the use of resources and guaran-
tees proportional fairness, whereas the RBS considers maximum requirements for resources for allocation, 
which is useful when we want to consider the cloud, where tasks, which are either independent or from work-
flow schemes, arrive in a dynamic fashion. Bargaining approaches consider bargaining power, which is a 
crucial parameter in determining the aggregation. Further, by changing the parameters used for bargaining 
power and the minimum and maximum resource requirements by users, brokers can come up with different 
aggregation vectors.

31.6.2 Task / Data Aggregation among Multiple CSPs

An example of broker aggregation among multiple clouds with heterogeneous compute capabilities is 
described in (Iyer, 2012). In such case CSPs can be modeled as independent M / M / 1 queues (Bertsekas and 
Gallager, 1992), formulating an optimization problem to minimize the task execution time and derive optimal 
solutions for task distribution. A heuristic algorithm is also proposed, which considers not only the task‐
execution time but also the user’s budget requirements in order to derive the task distribution.

We can observe that large‐scale data‐intensive divisible load applications such as image processing and 
biological computing applications can also use this model for execution to satisfy various constraints such as 
budget constraints and application execution time. In the case of divisible load applications we calculate the 
optimal amount of data to be distributed to each CSP instead of determining the number of tasks to be distrib-
uted. In addition to application execution time and budget constraints, users have many other considerations 
such as security, trust, and the reputation of the CSP. Using the operations monitor in our broker we can seam-
lessly integrate these features. Brokers can consider a subset of all the CSPs satisfying such user criteria to 
derive the optimal task distribution.

Other cases of broker aggregation are more complex and a complex process is needed to handle them. For 
example, when a set of tasks needs to be handled among multiple CSPs, some of the tasks might need 
 computing resources whereas other tasks might need storage resources. Aggregation among multiple CSPs 
also imposes a unique set of challenges for the broker. These challenges include establishing appropriate 
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SLAs between the CSPs and / or the broker, unified billing for the users to abstract the presence of multiple 
CSPs in the system, data communication between CSPs through their network, and security restrictions and 
network latency for communication between the applications managed by different CSPs.

31.7 Cloud Broker Intermediation Mechanisms

Intermediation brokers customize and build add‐on services on top of cloud services to incorporate additional 
features in current cloud services. They may include services to enhance the experience with clouds, such as 
add‐on security features (e.g. single sign on), integrated billing and monitoring services, and financial  services.

Another broker intermediation service is to offer an identity brokerage and federation model (Dimitrakos, 
2010) to facilitate distributed access, license management, and SLA management for software as a service 
(SaaS), and infrastructure as a service (IaaS) clouds. In most cases, broker intermediation services are 
designed for specific services / application areas. For example, a service could be to find the optimal route 
between the user and the CSPs. Another example is to offer an identity federation mechanism (single‐sign‐
on) on top of the services offered by the provider (He Yuan Huang, 2010). The intermediation services might 
be offered by the CSP itself or by external third‐party services.

31.8 Conclusions and Remarks about the Future

In this chapter, we first described several key challenges faced by cloud users for moving their business into 
cloud platforms and the challenges faced by the CSPs to adapt to market conditions and to take critical busi-
ness decisions. Then we proposed the need for a cloud broker to solve these challenges and we conducted a 
comprehensive classification of existing cloud broker mechanisms into three categories: cloud broker arbi-
trage, aggregation, and intermediation. We proposed a cloud broker architecture to solve several key issues 
existing in the current cloud computing scenario.

An ideal cloud broker should support more than one type of service. For example, the broker architecture 
that we discussed in this chapter supports auction‐based broker arbitrage, bargaining‐based broker aggrega-
tion and a few intermediation services such as unified billing, security index, and reputation index.

Brokers that can deal with vendor lock-in need to be explored to handle all issues associated with lock-in 
effectively. Mathematical models are required for the switching‐cost model. It includes possible end‐of‐contract 
penalties, charges for format conversion and data / application switching and possible additional charges for 
bandwidth usage.

An interesting research project could be to use a cloud broker that can facilitate a spot market. Such a 
 broker should aid in creating a market to offer its unused resources for a short period of time. Mathematical 
models are required to formulate the spot‐pricing strategies based on supply of, and demand for, resources in 
a competitive environment.
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32.1 Introduction

Advantages of cloud applications include the fact that users can utilize them in a low‐cost and risk‐free way. 
Applications can be deployed quickly on clouds so that developers can focus on enhancing their quality of 
service (QoS) to improve core competitiveness. As such, cloud applications are recognized as a growing trend 
that will affect the next generation of business applications.

In terms of the architecture for on‐premise applications (e.g., Web information systems), client‐server 
models were most commonly used in previous decades; almost all kinds of existing on‐premise applications 
were constructed using this style of architecture. How to migrate these applications to the clouds to take 
advantage of cloud applications is a subject of interest. Some discussion on the migration of on‐premise 
applications into the clouds was presented in Banerjee (2010), Cisco Systems (2010), Huey and Wegner 
(2010), and Mallya (2010).

These works have clarified some important issues about migration and have proposed tips. There are thus 
many ideas about matters such as how on‐premises applications can be migrated smoothly to any of the three 
service models – software as a service (SaaS), platform as a service (PaaS), and infrastructure as a service 
(IaaS) – in various cloud environments. Nonetheless, methods that take into consideration the architecture and 
characteristics of both on‐premise applications and clouds to provide guidance on their migration are still miss-
ing. Moreover, little has been said about, for instance, how on‐premise applications can be arranged to take 
advantage of cloud applications via proper virtual mechanisms so that any of the three  service models – SaaS, 
PaaS, and IaaS – can be virtually supported in these mechanisms. A well guided  process is critical for directing 
the migration of on‐premises applications in a systematic and managed manner.

In this chapter, we present a method for directing the migration process. The method starts with the identifica-
tion of the architecture and profile of the on‐premise application to be migrated, and continues with discussion on 
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the requirements for clouds, identification of the configurations of the available clouds, and the selection of the 
 candidate clouds whose service models – SaaS or PaaS or IaaS – satisfy cloud requirements. It concludes with 
the deployment of the application into selected clouds where a deployment and test plan is specified. The situation 
in which no candidate clouds can be found for smooth migrations is specifically considered; some proposals are 
made to address how on‐premises applications in such situations can be arranged via virtual mechanisms where 
either of the three service models – SaaS, PaaS, and IaaS – can be virtually supported in these mechanisms. As an 
illustration, the method is applied to the migration of a customer support system (CSS) application (Orman, 2007; 
Lin, 2009) to its cloud version, which particularly emphasizes both the collection of customer information 
(i.e., knowledge about  /  from customers) for enterprises and, conversely, delivering services information from 
enterprises to benefit customers.

This chapter is organized as follows. Section 32.2 presents the migration method, which encompasses three 
processes: an application‐description process, a cloud‐identification process, and an application‐deployment 
process. The method is illustrated in section 32.3 by applying it to the migration of a CSS application to its 
cloud version. Finally, section 32.4 draws some conclusions and discusses future work.

32.2 Cloud Migration Roadmap

As shown in Figure 32.1, migrating an on‐premises application to the clouds has the following six steps:

1. Identification of application architecture and profile. This determines (i) the architecture of the on‐premises 
application, and (ii) the profile of the on‐premises application including data about, for example, its CPU, 
memory, storage, I / O, and network usage data, as well as data about its users (e.g., the number of active 
users, request rates, transaction rates, and request/transaction latencies).

2. Identification of cloud requirements. This clarifies the cloud requirements for the on‐premises applica-
tion, based on its architecture and profile, including (i) the requirements for the deployment of its 
components on the prospective configuration elements in clouds such as virtual machines, data  storage, 

Clouds migration and testing

Clouds selection and migration plan

Candidate clouds identification

Cloud requirements identification

Application architecture and profile identification

Clouds construction plan

Figure 32.1 The migration method
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and a/synchronous message channels, and (ii) requirements for QoS in clouds – for example customized 
user interfaces and access modes, performance, reliability, security, and scalability.

3. Identification of candidate clouds. This identifies the candidate clouds whose configurations and services (i.e., 
service models – SaaS or PaaS or IaaS – provided in clouds) satisfy the cloud requirements identified above.

4. Cloud selection and migration plan. This determines which of the candidate clouds will be selected for the migra-
tion of the on‐premises application. A plan for the migration into selected clouds will then be specified. In gen-
eral, it includes (i) deploying the application components on the configuration elements in clouds; (ii) deploying 
the interaction mechanisms in clouds; and (iii) refactoring / restructuring components to satisfy user requirements 
such as customized user interfaces and access modes, performance, reliability, security, and scalability.

5. Cloud construction plan. This identifies and schedules alternatives for situations in which no candidate 
clouds can be found for smooth migrations. In such a situation, the on‐premises application may achieve 
its cloud‐based version via virtual mechanisms so that any of the three service models – SaaS, PaaS, and 
IaaS – can be virtually supported in these mechanisms.

6. Cloud migration and testing. This involves the migration of the on‐premises application into selected or 
constructed clouds in accordance with the migration or construction plan identified above. As is usual, 
testing of the migration proceeds in accordance with the activities involved in the migration process.

The first step addresses an application description process, the middle two encompass a cloud identifica-
tion process, and the last three cover an application deployment process.

32.2.1 Application Architecture and Profile Identification

This step addresses (i) the architecture of the on‐premises application, and (ii) the profile of the on‐premises 
application, which includes data about its users.

32.2.1.1 Application Architecture

The architecture of the on‐premises application specifically addresses the architectural components desired 
by the user. As an example, Figure 32.2 shows the architecture of a customer support system (CSS) (Orman, 
2007; Lin, 2009):

 ● It is a four‐layer architecture of collaborative components, where customers interact with enterprises via 
three intermediaries: community, customer knowledge agent, and task service provider.

 ● It emphasizes community to help customers share information about their desired tasks (e.g., buying or 
renting services from enterprises).
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Figure 32.2 The architecture for the customer support system
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 ● It emphasizes the collection of knowledge about the customer by the customer knowledge agent to help 
enterprises meet their needs (e.g., provide services satisfying their desired tasks).

 ● It focuses on the task service provider delivering information about services from enterprises to help 
customers make comparisons.

32.2.1.2 Application Profile

Given the architecture of the on‐premise application, the profile of the on‐premises application can then be 
captured. This may help to size the application before it is migrated to the clouds. In general, the application 
data should be collected for at least 10 to 14 days to allow any variances in daily or weekly usage patterns to 
be noted. There are two kinds of data about the application: (i) usage data (e.g., CPU, memory, storage, I/O, 
and network usage data), and (ii) data about its users (e.g., the number of active users, request rates, transaction 
rates, and request/transaction latencies). With such data, it is feasible to make an initial estimate of the cloud 
resources for the application to be migrated.

32.2.2 Identification of Cloud Requirements

The second step is to identify cloud requirements for the on‐premise application based on its architecture and 
profile, including (i) requirements for the deployment of its components on the prospective configuration 
elements in clouds such as virtual machines, data storage, and a/synchronous message channels; and 
(ii) requirements for their QoS in clouds such as customized user interfaces and access modes, performance, 
reliability, security, and scalability. For the CSS, its five components may require deployment in various 
cloud environments. To collect customer knowledge for enterprises and deliver services information to ben-
efit customers, it may require these deployed clouds to provide customized user interfaces and access modes, 
performance, reliability, security, and scalability.

32.2.3 Identification of Candidate Clouds

The third step is to identify the candidate clouds whose configurations and services (i.e., service models – 
SaaS or PaaS or IaaS – provided in clouds) satisfy the cloud requirements identified above. For this, it is good 
to consider all of the cloud environments available online whose service models may satisfy those cloud 
requirements. The following describes the possible service models in clouds:

 ● Software as a service (SaaS). In this model (Li et al., 2012) the cloud provides application services that 
may replace those provided by the on‐premises application. With such SaaS services, many QoS features 
need to be evaluated to determine their replacement with the on‐premises application as below.

 ◦ Their service‐level‐agreements (SLAs) for availability, scalability, security, and performance. Note 
that specific SLAs such as those for availability, scalability, and performance can be evaluated by 
assessing the profile of the on‐premises application.

 ◦ The compatibility of the application services with those offered by the SaaS.
 ◦ The portability of the application data into the SaaS so that it can be accessed by the SaaS services.
 ◦ The portability of access control by the application users into the SaaS for access control by the SaaS 

users.
 ◦ The portability of the application interoperability with other services into the SaaS for interoperable 

operations by SaaS services.
 ● Platform as a service (PaaS). In this model (Cunha et al., 2013), the cloud provides platform services on 

which the on‐premises application may be deployed based on certain platforms such as JEE and MS.NET.
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 ◦ Service‐level agreements for availability, scalability, security, performance, and configuration (e.g., plat-
form versions, APIs). Note that, as in the case of SaaS, SLAs for availability, scalability, and  performance 
can be evaluated by assessing the application’s usage data and data about the application users.

 ◦ The deployment of application components and their interaction mechanisms on the PaaS.
 ◦ The portability of application services into the PaaS for access by the application users.
 ◦ The portability of the application data into the PaaS for access by the application.
 ◦ The portability of access control on platforms (e.g., virtual servers) by the application users into the 

PaaS for access control on clouds (e.g., virtual machines) by the application users.
 ◦ The portability of application interoperability with other services into the PaaS for interoperable 

 operations by the application.
 ◦ The portability of the application management into the PaaS to monitor and manage the application.
 ◦ Infrastructure as a service (IaaS). In this model (Baun and Kunze, 2011), the cloud provides infrastruc-

ture services such as servers, storage, and networks, which the on‐premises application and its 
 platforms may use with some QoS features.

 ◦ Service‐level agreements for availability, scalability, security, performance, and configuration. Note 
that, as with PaaS, SLAs for availability, scalability, and performance can be evaluated by assessing 
the profile of the on‐premises application.

 ◦ The portability of application services into the IaaS for access by application users.
 ◦ The portability of application data into the IaaS to be stored in IaaS storage.
 ◦ The portability of the access control on infrastructure services (e.g., physical servers) by application users 

into the IaaS for access control on clouds (e.g., physical machines) by the deployed application users.
 ◦ The portability of application interoperability with other services into the IaaS for interoperable oper-

ations by the application.
After considering all possible cloud environments that provide either of the above three service models, it 

is expected that it would be possible to identify some of them whose service models satisfy the cloud require-
ments and then become the candidates to be selected for the migration. For the CSS example, Figure 32.3 
shows the possible candidate clouds with service models that satisfy the cloud requirements for the CSS.
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32.2.4 Clouds Selection and Migration Plan

The fourth step is to determine, from the candidates identified above, which clouds are selected for the migration 
of the on‐premises application. In general, the determination can be clarified by the use of evaluation criteria 
that can rank these candidates in terms of how well they satisfy the cloud requirements. For example, based 
on the QoS features for the three service models, a candidate whose service models gain the best weighted 
assessments on them may be selected as the cloud environment for the on‐premises application to be migrated. 
After determining the selection of targeted clouds, the plan about migration into these selected clouds will 
then be specified. In general, actions include (i) deploying the application components on the configuration 
elements in respective clouds; (ii) deploying the interaction mechanisms; and (iii) restructuring components 
to meet user requirements such as requirements for customized user interfaces and access modes, perfor-
mance, reliability, security, and scalability.

32.2.5 Cloud Construction Plan

The fifth step is to identify and schedule alternatives for situations in which no candidate clouds can be found at 
step 3 for smooth migrations. In such a situation, alternatives may be considered; for instance, the on‐premises 
application may be tailored to achieve a cloud‐based version via virtual mechanisms (http://ventem.com.tw/
DM11.aspx, accessed December 19, 2015). Any of the three service models – SaaS, PaaS, and IaaS – can be 
provided virtually with the support of these mechanisms.

32.2.6 Clouds Migration and Testing

The last step is the migration of the on‐premises applications to selected or constructed clouds in accordance 
with the migration or construction plan identified above. As is usual, testing of the migration proceeds in 
accordance with the activities involved in the migration process.

32.3 Migration of the CSS into Cloud Environments

In this section, the method is illustrated by applying it to the migration of a CSS application to its cloud version.

32.3.1 Application Architecture and Profile of the CSS

In this step, two descriptions of the CSS are addressed: (i) the architecture of the CSS, and (ii) the profile of 
the CSS including data about its use and activity data about its users.

32.3.1.1 Architecture of the CSS

As shown in Figure 32.2, the CSS has a four‐layer architecture where customers are interacting with enterprises via 
three intermediaries: community, customer knowledge agent, and task service provider. The constituents of each 
component need to be clarified. For example, community is organized for customers to share information about their 
desired tasks (e.g., to buy or rent services from enterprises). It is also responsible for forwarding the shared informa-
tion to the customer knowledge agent for restructuring into specific styles of knowledge (e.g., knowledge of 
 customers) (Mobasher et al., 2002). It then sends the restructured knowledge to the task service provider for 
 forwarding to enterprises to identify their needs (e.g., provide services to carry out their desired tasks). Finally, it 
also cooperates with the task service provider to receive services information relevant to customer requests.
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In summary, these requirements for community can be described as follows:

1. Share customer information among customers
1…N

.
2. Process shared information – forward shared information to customer knowledge agent for restructuring 

into knowledge, and then send restructured knowledge to the task service provider.
3. Process task request – receive task requests from and return evaluated information about task‐relevant 

services to customer
1…N

.
4. Cooperate with the task service provider to receive evaluated information about task‐relevant services.
5. Present services information that provides customer

1…N
 with rich user interface controls for visualizing 

the information from the task service provider.

Based on the above requirements for community, Figure 32.4 shows its five constituent parts that meet these 
requirements. In particular, an “interface manager” is imposed to customize and personalize user interfaces for 
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customer
1…N

 where customer profiles are used to determine which interface components are  preferred by them. 
The portals are then used to deliver to customers

1…N
 the information that they require. The “Info. / knowledge 

manager” accesses community member profiles and shared customer info. to help share information among inter-
ested customers; shared customer info. is also retrieved for restructuring into knowledge by customer knowledge 
agent. In addition, the “task request manager” forwards task requests from customers

1…N
 to the “cooperation 

manager,” which cooperates with the task service provider to receive evaluated information about these requests; 
the evaluated information is then visualized and returned to customers

1…N
 through the “portal manager.” Finally, 

the “Web service manager” is responsible for interoperating with the two external architectural components 
through Web service client APIs for accessing those remote services  provided by the two components.

Another example is the task service provider. This is an important intermediary between community and 
enterprises. It receives customer knowledge from community and then forwards that knowledge to enter-
prises that use it to provide information about services that are useful for customers. In addition, based on the 
task requests received from community, it cooperates with enterprises to provide information about these 
tasks. It also helps to evaluate the task‐relevant information in a comparative model for presenting to custom-
ers (via community) to aid their decision making. In summary, the requirements for the task service provider 
can be described as follows:

1. Process customer knowledge – receive customer knowledge from community and forwards it to enter-
prise

1…M
.

2. Process task request – receive task requests from and return evaluated information about task‐relevant 
services to community.

3. Cooperate with enterprise
1…M

 to provide information about task‐relevant services.
4. Evaluate services information so that task‐relevant services from enterprise

1…M
 can be compared.

Figure 32.5 shows the five constituents of the task service provider that meet these requirements. The “task 
request manager” forwards task requests to the “cooperation manager,” which cooperates with enterprise

1…M
 

to provide information about task‐relevant services; the services information from enterprise
1…M

 is then 
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 evaluated by the “evaluation manager” for returning to community. Finally, the “Web service manager” is 
responsible for interoperating with various external architectural components through the Web service client 
APIs for those remote services provided in these components.

32.3.1.2 Profile of the CSS

With the CSS architecture, a CSS profile can then be identified that may help to size the CSS before it is 
migrated to the clouds. In general, the profile should be collected for at least 10 to 14 days to allow any 
 variance in daily or weekly usage patterns to be noted. There are two kinds of profile data about the CSS: 
(i) data about its use (e.g., CPU, memory, storage, I/O, and network usage data), and (ii) data about its users 
(e.g., the number of active users, request rates, transaction rates, and request / transaction latencies). With such 
profile data, it is feasible to have an initial estimate of the cloud resources for the CSS to be migrated.

32.3.2 Cloud Requirements for the CSS

The second step is to identify the cloud requirements for the CSS based on its architecture and profile. 
Initially, considering its five distributed components, various cloud environments may be required.

32.3.3 Candidate Clouds for the CSS

The third step is to identify the candidate clouds whose configurations and services (i.e., service models – 
SaaS or PaaS or IaaS – provided by the clouds) satisfy the cloud requirements for the CSS. To do this it is 
common to consider all of the cloud environments available online whose service models may satisfy the 
requirements. There is usually more than one cloud that satisfies the requirements; such clouds hence become 
the candidates from which specific ones are then selected for the migration.

32.3.4 Cloud Selection and Migration Plan for the CSS

The fourth step is to determine, from the candidates identified above, which clouds are to be selected for the 
migration of the CSS. In general, this can be achieved by using specific evaluation criteria that may rank the 
candidates in the context of the satisfaction of the cloud requirements. For example, a candidate whose service 
models gain the best weighted assessments on the QoS features for the three service models may be selected 
as the cloud environment for the migration of the CSS. As an illustration for the CSS: (i) the SaaS clouds hosted 
by the collaborative agents / enterprises are undoubtedly selected for the migration of its customer knowledge 
agent and enterprises components; (ii) from the available PaaS clouds, which include Google GAE (https://
appengine.google.com/, accessed December 19, 2015) and Microsoft Azure (http://www.windowsazure.com/
zh‐tw/, accessed December 19, 2015), the GAE, shown in Figure 32.6 is selected for the migration of its task 
service provider component due to its well known intercloud and analysis capabilities for the cooperation and 
evaluation requirements of the component; and (iii) from the available IaaS clouds, which include Google GCE 
(https://cloud.google.com/products/compute‐engine, accessed December 19, 2015) and Amazon EC2 (http://
aws.amazon.com/ec2/, accessed December 19, 2015), the EC2 as shown in Figure 32.7 is selected for the 
migration of its community component due to its well known storage and intercloud capabilities for  information 
sharing among customers and cooperation with other components.

After selecting the cloud, the plan to carry out the migration can then be specified. In general, this includes 
(i) deploying the CSS components in the cloud; (ii) deploying the mechanisms for interactions among CSS 
components; and (iii) refactoring / restructuring components to meet requirements. As an illustration, for the 
task service provider to be migrated into the GAE PaaS cloud, denoted as PaaS@Task Service Provider, 



392 Encyclopedia of Cloud Computing

Figure  32.8 shows the deployment of its five constituents on the three virtual servers (i.e., Mashup, 
MapReduce, and Web Service) in GAE and each one may use some storage services such as Datastore and 
Cloud SQL. As another illustration, for community to be migrated into the EC2 IaaS cloud, denoted as IaaS@
Community, Figure 32.9 shows the deployment of its five constituents on the four virtual machines (VMs) in 
EC2 and each one may use some storage services such as S3 storage, EBS storage, and simple DB.
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32.3.5 Cloud Construction Plan for the CSS

The fifth step is to identify and schedule alternatives for a situation in which no candidate clouds can be found 
at step 3 for smooth migrations. In such a situation, some alternatives may be considered. For instance, with 
the virtual mechanism in Li et al. (2012), the migration of the community component, denoted as IaaS@
Community, can be virtually constructed by installing the Vas platform of the mechanism that supports the 
storage and manipulation of the information shared among customers via the dynamic allocation of shared 
information into data stores.

32.3.6 Cloud Migration and Testing for the CSS

The last step is to migrate the CSS into selected or constructed clouds in accordance with the migration or 
construction plan identified above. As usual, testing of the migration proceeds in accordance with the activi-
ties involved in the migration process.

32.4 Conclusions and Future Work

In this chapter, we presented a method for directing the migration of on‐premise applications to selected 
clouds. The method takes into consideration the architecture and characteristics of both on‐premises applica-
tions and clouds to provide guidance on the migration. It starts with the identification of the architecture and 
profile of the on‐premises application, proceeds by discussing cloud requirements for the application and the 
identification of the configurations of selected clouds, and ends with the deployment of the application in 
selected clouds where a deployment and test plan is specified. To illustrate this, the method was applied to the 
migration of a CSS application to its cloud version, emphasizing both the collection of customer knowledge 
for enterprises and, conversely, delivering information about services from enterprises to benefit customers.

As cloud applications have been recognized in recent years as a trend for the next generation of business 
applications, how to migrate the many existing on‐premises applications so that they can take advantage of 
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cloud applications has become a subject of interest. However, current discussions about this need mainly 
focus on important issues about the migration and then present tips for addressing such issues. Methods for 
the migration process that take into consideration the architecture and characteristics of both on‐premises 
applications and clouds to provide guidance on their migration are still missing. Such methods, in my opin-
ion, are important because a well guided process is critical in directing the migration of the many on‐premises 
applications in a systematic and managed manner.

We will continue to explore the migration of existing on‐premises applications to the clouds where specific 
PaaS and IaaS offerings such as Google GAE and Amazon EC2 are selected as the platforms used. While migrat-
ing these applications, experience can be gained about the usefulness and effectiveness of the method used. With 
my systematic and managed steps for gradually identifying application / cloud features and then conducting the 
deployment of the applications on the clouds, the quality of these migrated applications can be expected.
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33.1 Introduction

In recent years, cloud technologies have introduced new methods to attack organizations and individuals, 
broadening their threat landscape. The digital identities that individuals and organizations use, in order to 
access cloud resources, are one of the main areas at risk. Past incidents with LastPass, Google and 
Evernote, where a number of user accounts became compromised, show how challenging it is to protect 
digital  identities. Insecure management of identities and their access can cause a lot of trouble for 
 organizations and individuals, resulting in data breaches, and noncompliance with important standards 
and  regulations (such as HIPAA, PCI‐DSS, EU GDPR), and inability to access resources, services, and 
critical data.

When dealing with identity and access management in cloud context, the main questions often posed by 
users are security related, such as “are my passwords stored securely?”, “are there any privileged accounts 
that can be used to access my data?” and “how vulnerable am I or my organization to hacking attacks?”

The core of the challenge lies in the nature of cloud computing. When switching to the cloud, part of the 
data is no longer stored on devices managed by the owners of the data. This, combined with the growing 
number of users and roles in modern organizations and stricter regulations imposed by governments on 
 privacy and data protection, further complicates the situation and raises the importance of data access  controls. 
Robust identity and access management (IAM) is one of the approaches to minimize security risks of cloud 
computing.

Identity and Access Management
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33.2 IAM Explained

IAM refers to the processes, technologies, and policies that manage access of identities to digital resources 
and determine what authorization identities have over these resources.

For an individual user, IAM generally concerns several processes. The user can create, remove or adjust a 
user account within an application. Users also have a measure of authentication to prove their identity. 
Authentication measures can range from a combination of username and password to multifactor authentica-
tion where smartcards, generated tokens and / or biometric data can be combined to make the authentication 
stronger.

For organizations, IAM is generally used much more intensively as organizations represent multiple users 
(employees) using multiple digital resources. This requires extensive propagation of user accounts and better 
monitoring and audit capabilities. Even though the IAM scale differs based on user type, both organizations 
and individuals are affected by the same processes when accessing digital resources:

 ● Management of identities. Every identity requires a valid user account, with certain requirements 
assigned to it, in order to be able to access digital resources. These authentication requirements and 
authorizations may change during the lifecycle of an identity, up to the point where a user account has 
to be removed from the digital resource. The identity management process here is to reflect the changes 
in a timely manner.

 ● Management of access to resources. Every identity, when attempting to access a resource, needs to prove 
that he or she is who he or she claims to be. If the identity is proven correct and it has the right roles and 
authorizations assigned to access the resource, the requested resource is provisioned. If the validation of 
identity or authorization fails, the identity will be unable to access the requested resource.

For most organizations, managing identities and access means implementing a directory service (e.g. 
Microsoft Active Directory). This directory service allows users to verify their identity with the organization. 
Applications that cannot be tied to this directory service have to use a separate stand‐alone authentication 
system, which generally means that users have to login to that system with separate credentials.

Figure 33.1 depicts the key IAM services that deliver IAM capabilities to manage identities and access to 
(cloud) IT services within an organization. 
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Figure 33.1 Enterprise IAM functional architecture
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 ● Authentication – this service covers the processes and technology for determining that users are who or 
what they claim to be.

 ● Authorization – this service covers the processes and technology for determining that a user has the 
 correct permissions to access IT resources.

 ● User management – this service covers the activities that effectively administer the lifecycle of identities 
(creating, changing, inactivating). Authoritative sources of identity information (e.g. HR information on 
the enterprise employees and customers) are required to govern and manage the identities lifecycle.

 ● Entitlements – this service covers the mapping of authorizations to identities and the related attributes.
 ● Provisioning – this service covers the propagation of identity and authorization data to IT resources via 

automated or manual processes.
 ● Monitoring and audit – this service covers the monitoring, auditing, and reporting of the compliance of 

users’ access to IT resources, within the scope of IAM, based on the defined policies.

33.3 IAM and the Cloud

Customers of cloud services are usually looking for the same benefits that cloud can bring – increased innovation 
and productivity, reduced costs. The challenges presented by the adoption of cloud technologies can however be 
quite different and depend on the specific requirements of an enterprise, individual user, or cloud service provider 
(CSP). Identity management and access control are a part of the cloud challenge landscape, as the new ways of 
consumption and delivery of services introduce new scenarios in managing users and their access to the systems 
on and off premises. Especially when it comes to security, identity is a key focus area as secure provision and 
access to cloud‐based services is the first step on the road to building a secure enterprise in the cloud.

Different types of stakeholders will face different IAM challenges:

 ● Organizations – extending as well as leveraging existing and new IAM solutions to tie together on prem-
ise and cloud-based systems.

 ● Individual users – ensuring access to information at any time, anywhere, from any device.
 ● Cloud service providers – securing customers’ data and ensuring continued access to cloud services.

Still, despite these various challenges, IAM can play an enabling role in the adoption of cloud services. For 
example, existing on‐premises IAM solutions can help an organization start moving to the cloud gradually with 
the step‐by‐step implementation of controls required for the shift. Later the company can choose whether to 
continue with an on‐premises deployment, start using hybrid IAM solution, or completely shift IAM to the cloud.

33.3.1 IAM Architecture for the Cloud

In a traditional IT environment, users have to be added, changed, or removed from a system and also be assigned 
with certain authorizations in order to access digital resources. The general processes of managing identities or 
access remain the same in a cloud computing environment. Even if the management of identities is done at the 
CSP, the users must be recognized by the system in order to access its authorized resources. Depending on the 
requirements and type of cloud model used (IaaS, PaaS or SaaS) the access to different layers has to be managed 
on different layers:

 ● Network layer. This layer concerns the access to the network on which the cloud environment runs. 
Without access to the network, it will not be possible to connect to the cloud system at all.

 ● System layer. This layer concerns the access to the system. Access to this layer generally goes via proto-
cols (e.g. TCP/IP) to access the server (e.g. Web server) on which the cloud environment runs.
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 ● Application layer. This layer concerns the access to the application. Access to this layer determines 
whether a user can access the application.

 ● Process layer. This layer concerns the processes that run within an application. Access to this layer deter-
mines what processes (e.g. making a payment) a user can access within an application.

 ● Data layer. This layer concerns the data that is accessed via an application. Access to this layer determines 
which data a user can view or edit via the application.

33.3.2 IAM Interfacing Models

Roughly speaking, the three interfacing models can be distinguished to manage identities and access in cloud 
computing environment: local management of IAM services, use of an identity service provider (IdSP), or 
use of IAM‐as‐a‐service (IAMaaS).

33.3.2.1 Local IAM management

In the local IAM management model, illustrated in Figure  33.2, business users can access the in‐house 
resources of their organization, such as data and applications, using local authentication. To access resources, 
a user account is created at the CSP for each authorized user. There are software packages on the market to 
propagate user accounts to the CSPs automatically. This is done using standard or custom‐made connectors 
based on the APIs of the CSPs.

Besides that, single sign‐on (SSO) services can be used to reduce the number of identities a user should own to 
access on‐premises resources and cloud services. Single sign‐on is based on the implementation of federated 
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identity between multiple domains – end users can operate with a single identity to authenticate for multiple 
 services in the cloud. Single sign‐on will require the usage of secure federation standards such as AML and OAuth.

The benefit of this model is that it provides the most control over IAM services. However, this model 
requires a lot of costly local maintenance in order to connect to CSPs. For organizations, this limitation may 
make this model unsuitable for the long term, when adopting even more cloud services.

33.3.2.2 Use of an Identity Service Provider

The IdSP model, showed in Figure 33.3, allows use of a third‐party identity provider to access digital resources. 
An IdSP will facilitate individual and business users with means to authenticate – prove their identity – in order 
to access local or cloud resources. This model can be beneficial for both types of users as they do not have to 
maintain multiple identities and a means of authentication to gain access to their authorized resources. Examples 
of organizations that provide identity services are DigiD, Facebook, or SURFnet. When a user attempts to 
access the cloud resource, the IdSP verifies the identity of the user and confirms the status to the CSP.

The main benefit of this approach is that the authentication for different cloud resources and the alignment of all 
different authentication mechanisms becomes the responsibility of the IdSP. Existing IAM solutions of organizations 
can also interact with the IdSP by using federation standards, such as SAML and OAuth. This reduces the overhead 
for IT administrators and employees and enables the opportunity to use SSO among various digital resources.

One of the main concerns with this model is that authentication for digital resources is controlled by a third 
party. This reduces the control of the organization or individual user on the strength and means of authentication.

33.3.2.3 IAM as a Service (IAMaaS)

The last option is to delegate IAM processes to a CSP and utilize it as a service ‐ IAMaaS. The access to 
all other cloud service providers will be managed and controlled through this IAMaaS (see Figure 33.4). 
For organizations, the access to in‐house IT resources will also be conducted via this IAM service. The 
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CSP will store all user accounts, provide authentication options and authorize authenticated users to digital 
resources in the cloud. This gives users the opportunity to use SSO, as the CSP can be the single point to 
authenticate. In most cases, when using this model, organizations choose to outsource monitoring and 
audit to the same CSP.

This approach would result in the least responsibilities for organizations and individual users. However, it also 
means the biggest loss of control over IAM services, as visibility reduces significantly with outsourcing to the cloud.

Although this approach is not widely used by consumers yet, it is possible for them to use IAMaaS and 
have their IAM facilitated by a CSP. There are various providers on the market offering IAMaaS solutions, 
for example SailPoint, Okta, and Ping Idenity.

33.3.3 IAM‐Related Standards

The choice of interfacing model determines how and where the identities and access to the CSP are managed. 
In order to share authentication and authorization data with the applicable CSPs, often, one or more of the 
following standards and protocols are used:

 ● OAuth – OAuth is an open standard that allows users to authorize software programs or web sites to 
access their data. It enables users to provide these authorizations without having to share their credentials 
(e.g. username and password).

 ● OpenID Connect - Open ID Connect is an open standard based on OAuth 2.0 protocol that allows users to 
validate their identity using an IdSP. This enables users to be authenticated at a different site than the site 
from which they are requesting access to a digital resource. This eliminates the need for sites to create and 
maintain their own authentication mechanisms. Users can maintain their digital identity with the preferred 
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IdSP and use this identity to access sites supporting this IdSP. Compared to the previous standard OpenID 
2.0, OpenID Connect provides higher interoperability and is easier for developers to implement.

 ● SAML ‐ Security Assertion Markup Language (SAML) is an XML‐based message‐exchange protocol 
that specifies the rules for exchanging authentication and authorization data between parties. Assertions 
contain statements that service providers use to make access‐control decisions. Three types of assertions 
are provided by SAML:

 ◦ authorization assertions – the rights assigned to a user or software program;
 ◦ authentication assertions – the information required to verify the identity of the user or software 

 program;
 ◦ attribute assertions – information about the user or software program (e.g. “Name”).

 ● SPML – Service Provisioning Markup Language is an XML‐based framework that enables organizations 
to provision and manage user accounts.

 ● XAML – eXtensible Access Control Markup Language enables organizations to share and align 
authorization and entitlement data and methods across multiple CSPs. It consists of the following 
components:

 ◦ Policy Enforcement Point (PEP) – enforces the entitlements based on the available policies in response 
to a request for access to a digital resource.

 ◦ Policy Information Point (PIP) – provides information related to the policies in order for the policies 
to be evaluated.

 ◦ Policy Decision Point (PDP) – makes the decision on whether the user is allowed to gain access to the 
digital resource that is requested.

 ◦ Policy Administration Point (PAP) – enables the creation and administration of policies.

33.4 Challenges and Risks of IAM in the Cloud Context

When adopting a cloud service, a proportion of the IAM processes are managed by the CSP instead of an 
organization or individual user. The extend to which the IAM processes are managed by a CSP is determined 
by the cloud model and IAM interfacing model. This change to IAM introduces risks and challenges that 
should be taken into account when using cloud computing. For example, a CSP can decide to modify authen-
tication mechanisms, such as password encryption, without informing its end users. This can affect the level 
of security and operability of the used cloud resource. The risks caused by shifting towards cloud computing 
are examined throughout this section, for each IAM service.

33.4.1 Authentication management

In most cases the CSP forces users to verify their identity by using the authentication mechanisms of the CSP. 
However, there are examples of CSPs that allow access through shared authentication mechanisms. Examples 
of providers of shared authentication mechanisms are Facebook, Google and IdSPs supporting OpenID Connect.

Having authentication managed by the CSP makes it difficult for end users to have any influence and control 
of the strength and security of the authentication mechanisms that are in place. If the authentication mechanism 
can be circumvented, the data that is stored in the cloud may be accessible to unauthorized users. Besides that, 
the authentication mechanisms of the CSP may not comply with laws, regulations, or policies of the organiza-
tion. However, most of the time it is an enterprise that bears full responsibility in case of a security breach.

Operability can be affected by mismanagement or changes to the authentication mechanisms. For example, 
SSO may no longer work if the authentication mechanism is changed by the CSP, which can possibly result 
in end users not being able to access their cloud resources.
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33.4.2 Authorization Management

The main difference for authorization management, when using cloud services, is the inability to modify and 
adjust available authorizations. Especially when using SaaS, users often cannot make changes to the authori-
zation model and verify whether the appropriate authorizations are enforced. This way it is difficult to guar-
antee that users only access authorized resources and perform authorized actions on them. For example, a 
user can have access to a cloud‐based service to view his monthly salary; however he may not see salaries of 
other employees. His manager at the same time is allowed to see the salaries of other employees. The CSP 
has to be able to manage these authorizations in the same way as the organization using the cloud service. 
Incorrect authorization management can lead to noncompliance with laws and regulations or data breaches.

33.4.3 User Management

In most cases it is the CSP that manages user accounts allowed in the system. This way it becomes difficult 
for end users to verify if changes to user accounts are correctly reflected within the system. This increases the 
unauthorized users accessing cloud resources, without the data owners being aware. Ineffective management 
of privileged users is another relevant risk, bringing compliance issues into play. Laws and regulations on 
protecting and managing user information have become stricter in recent years. Organization may face 
charges if the CSP does not enable compliance with the applicable laws and regulations. For example, organ-
izations in Europe are not allowed to export personal data to country outside of Europe.

33.4.4 Entitlements

The main challenge related to entitlements when using cloud computing is manageability. When using 
more cloud resources managing entitlements tends to become time consuming and prone to errors. The task of 
translating applicable security policies into security implementation becomes more complex when the organi-
zation has to deal with multiple CSPs that are not hosted within the local environment, as most CSPs limit the 
amount of options to change an implementation. The inability to control the entitlements can lead to breaches 
of the segregation of duties or violations of security policies related to identity and access management.

33.4.5 Provisioning

The provisioning and deprovisioning of user accounts – the responsibility of the CSP – has to be performed 
quickly and accurately. End users generally have no control over these processes. Incorrect deprovisioning of user 
accounts can result in unauthorized access to the cloud resources by users that should no longer have access. At 
the same time, incorrect provisioning can make it impossible for authorized users to access their cloud services.

33.4.6 Monitoring and Audit

When using cloud computing, the data and assets of the organization or individual are stored at the servers of the 
CSP. In addition, IAM services could be (partly) managed by the CSP. As such, it becomes very important for 
cloud users to be able to monitor or audit access to their cloud resources. Without proper monitoring in place it is 
difficult to detect unauthorized access to data. Plus, in case of a technical problem with a cloud service, the cause 
of this problem cannot be easily found without using monitoring. Users are mostly dependent on the CSP to deter-
mine the extent to which they are able to monitor the cloud services that are used, and fix problems adequately.

For organizations these risks stretch further. Most organizations have to perform periodical audits on their 
processes, systems, and networks, as prescribed by laws and regulations. However, the organization cannot 
always perform an audit at the CSP, which runs a part of the IAM processes and stores organizations’ data 
and assets. This could result in noncompliance with laws and regulations.
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33.5 Considerations

From IAM perspective, what considerations should individual users and organizations keep in mind prior to 
shifting its data and IT assets to the cloud? When dealing with cloud adoption, it’s key to find a CSP that 
 incorporates robust IAM capabilities. This can be achieved by defining IAM requirements enforcing those 
requirements and by monitoring and auditing.

33.5.1 Define

An enterprise would predictably have much broader spectrum of IAM requirements than an individual user. 
For example, individuals might not go beyond deciding whether to find a CSP that provides two‐factor 
authentication. At the same time organizations will need a larger pack of security  measures, for example 
continuous security monitoring and incident response in order to ensure the enterprise business data is com-
pliant with laws and regulations, accessible at all times and stored in a secure and  controlled fashion.

In order to define the IAM requirements, data and asset classification should take place in combination 
with risk analysis. Data and asset classification are important to determine what an organization or individual 
wants to protect and to understand where their “crown jewels” are. Risk analysis helps to consider all the 
threats arising from off‐premises data processing and storage, multitenant architecture of cloud environ-
ments, and dependence on public networks.

By assigning a risk rating to classified data and assets it will become easier for organizations and also  individual 
users to determine what level of security and what IAM requirements are demanded from the future CSP.

The range of IAM requirements can vary significantly depending on the outcome of risk analysis. For 
instance, it might be required to verify whether or not a CSP complies with the applicable laws and regulations. 
If the CSP is unable to store organizational data within the region as required by law, the CSP might not be an 
option to consider. Another requirement that could be imposed on a CSP might be to use secured authentication 
mechanisms and authorization models, for example to provide authentication to various resources and data via 
a central authentication point. The technology used by the CSP also has to be reviewed for compatibility with 
the devices, for example the CSP should be able to support the preferred authentication mechanisms of users.

33.5.2 Enforce

The defined requirements will help organizations or individuals to ensure a sufficient level of control over IAM and 
eventually select the most suitable CSP(s). Requirements should be either covered in existing agreements or added 
to new agreements with the CSP. Individual users can refer to the general agreements and read these before accept-
ing the conditions. Organizations can sign an agreement or contract that will include details about compliance with 
laws and regulations and the use of security requirements. For example, if the organization agrees to perform con-
tinuous monitoring, it has to be governed by an agreement or contract stating that the CSP should maintain this 
requirement. Another example can be to agree that the CSP does not make changes to the authentication mecha-
nisms without informing the organization using the cloud services beforehand.

33.5.3 Monitor and audit

When the cloud service has been adopted, it is recommended that use of and access to the CSP should be 
monitored or audited on a periodical basis. For individual users it may be sufficient to review the CSP settings, 
read the news and take note of changes to the general agreements. Organizations should focus on monitoring 
and periodically  auditing CSPs. Using a “right to audit” will allow an organization to verify that IAM controls 
are in place and effective and that the CSP is compliant with the applicable laws and regulations. In some cases 
a “right-to-audit” is not possible, in these situations third party certifications or assurance can help to gain more 
trust in the effectiveness of operation by the CSP. Periodical monitoring and auditing will help to find the causes 
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of technological issues and verify changes to the mechanisms and errors made during IAM processes. This is 
an essential process to manage identified IAM risks caused by the nature of a cloud computing environment.

33.6 Conclusion

Cloud computing is susceptible to new methods of attack, making users vulnerable to potential cyber security 
incidents. One of the key risks lay with the digital identities that individuals and organizations use in order to 
access their cloud resources.

IAM refers to the processes, technologies and policies that manage access of identities to digital resources 
and determine what identities are authorized to do with these resources. Users require the ability to create, 
remove, or adjust user accounts within an application. Moreover, users need a measure of authentication (e.g. 
username / password, smartcard, biometrics) to prove their identity. The key processes, technologies and pol-
icies are gathered in the ‘Enterprise IAM functional architecture’.

In this chapter, we described three interfacing models to use IAM in a cloud computing environment. The 
first model leaves the consumers and organizations in charge of their in‐house IAM solution and connect this 
to the CSP. In the second model, an IdSP is used to allow consumers or organizations to authenticate – prove 
their identity – in order to access the cloud. The third model concerns consumers and organizations that fully 
delegate IAM processes to a CSP and make use of IAMaaS. Often, one or more standards or protocols such 
as OAuth, OpenID Connect, SAML, SPML or XAML are used for sharing authentication and authorization 
data with the applicable CSPs. In order to manage risks it is essential to define and enforce relevant IAM 
requirements prior to adoption a cloud service. After the cloud service has been adopted it is recommended 
that use of and access to the CSP should be monitored or audited periodically.

The demand for cloud applications, storage, and computing power will continue to grow, as will the cloud 
threat factor, and this will strengthen the demand for solid IAM and also create business opportunities for new 
IAM solutions.
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34.1 Introduction: The Need for Secure Authorization

Many kinds of data are increasingly being outsourced to cloud computing systems because of the many 
 benefits this brings. It is often more economical for data to be uploaded to and stored in the cloud by a client, 
as the client is typically charged only according to the actual storage space used. The cloud storage can 
instantly scale to match increased storage requirements whenever necessary. The outsourced data may also 
be shared readily with other clients and services if it is centrally located within a cloud. The originators of the 
data, especially mobile devices, may have limited local storage means and connectivity options available for 
retaining and sharing their data. Data that is stored within the cloud is easily accessible and secure due to 
automatic replication and backup mechanisms.

With the proliferation of cloud‐based services, there is a need for applications running on the cloud or other 
servers to access user data stored in the cloud. However, security is a prime concern, as cloud systems share 
computing resources with multiple clients. It is important to safeguard adequately client data that is stored in 
the cloud from security threats by allowing only authorized parties to access it. Security policies may also 
dictate what data is accessible by whom, and for what amount of time, to mitigate risk. Nevertheless, such 
access may be frequent, as applications from multiple vendors may interoperate to provide useful services.

For instance, consider a user that wishes to generate, store, and process multimedia content in the cloud. 
A user may capture photos and videos on a mobile device or workstation and upload them to a multimedia 
 storage service hosted in a public cloud to enjoy highly scalable capacity. Storing the media library in the cloud 
ensures safekeeping of the content and the ability to share it with others. A storage application in the cloud will 
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manage access to the library and provide indexing and search functions. The user, however, may wish to use a 
separate and complementary third‐party cloud service that performs some postprocessing function on the 
 content. This may include performing image enhancement or video editing, posting to a social site, and 
 dispatching the content to a printing or disc‐burning service. The user must grant permission for the post-
processing site to access the content from the storage service. The two services may be completely independ-
ent and thus require user facilitation to collaborate.

It is unwise for the user simply to share secret login credentials with the postprocessing site because grant-
ing such unconditional access to the entire media library would be considered insecure. If the postprocessing 
site proves malicious, or an attacker hacks into its password store, then the media collection of the user would 
be placed at significant risk. If the user elected to choose a new password following the storage access, then 
it would need to be shared with all other sites that need access to the files of the user, which would be onerous. 
The alternative, requiring the user to transfer the content between cloud services manually, by downloading 
the files of interest from one then uploading to another as needed, is impractical in the long run.

Unfortunately, existing identity management systems prove insufficient in this scenario, where the goal is 
not for users to authenticate their identity with the photo sharing site; instead, the user wishes to authorize the 
postprocessing service to access content from the storage service directly, in a way that protects the account 
of the user and limits access to the data specified by the user. This authorization process requires its own 
dedicated host of solutions.

34.2 History of OAuth

The problem of secure authorization emerged after the adoption of OpenID, a federated identity management 
system. OpenID solved the problem of authentication (proving the user’s identity to gain access to a service). 
It allows a user to log into a site or cloud service by being verified through another trusted service that acts as 
a trusted OpenID provider. This technique is a form of federated authentication, which allows any third party 
to authenticate a user based on an existing account with a single identity provider. The use of such authentica-
tion precludes the user from having to enter a separate user ID and password to log into every site that is 
visited. Most users tend to reuse the same password on multiple sites, which gives rise to an unnecessary 
security vulnerability.

The difficulty is that OpenID, by itself, does not address the problem of authorization, where one site gains 
access to the resources of another through a process that is facilitated and controlled by the user. Authorization 
alleviates the need for users to share passwords with third‐party applications to allow access to their protected 
resources resident in the cloud. In fact, contemporary cloud services are often interoperable and must share 
client data; hence, they require both authentication and authorization functions.

Based on such considerations, the authentication protocol OAuth was born. Its basic purpose is resource API 
access delegation, which is not found in OpenID. The OAuth 1.0 protocol was initially formed by a working 
group, and the protocol was incorporated into the Internet Engineering Task Force (IETF) as a standard.

The OAuth 1.0 protocol evolved into its follow‐up version: OAuth 2.0. The WRAP Web Resource 
Authorization Protocol (WRAP) profile of OAuth 1.0, which is now deprecated, became the basis for OAuth 
2.0. The focus of OAuth 2.0 is primarily on simplicity of implementation for the client developer. New fea-
tures introduced in 2.0 include the specification of authorization flows for various application contexts, 
including desktop, Web, and mobile devices. It defines a framework, rather than a strict protocol, with many 
options available with tradeoffs between convenience and security. Current publications include the specifi-
cation of the core framework as well as the use of bearer tokens that are integral to the protocol. The OAuth 
2.0 specification is being developed as an open Web standard for secure authorization by the IETF OAuth 
WG (Working Group).
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34.3 Overview of OAuth 1.0

Third‐party client applications use OAuth 1.0 to access protected resources on behalf of the user, who adopts 
the role of the resource owner. This is done without the need to divulge and exchange credentials such as a 
user name and password. In order to achieve authorization, OAuth provides an access token whose function 
resembles a valet car key. The token can be exchanged for any supported assertion that is compliant with a 
resource API. In practical terms, this includes querying for information and gaining access to protected files.

The high‐level workflow of OAuth 1.0 is now presented, showing how a client application requests a  limited 
access token to access resources on the behalf of the user. Refer to Table 34.1 for an explanation of the terminology 
used throughout. Note that all communication in the example occurs through Hypertext Transfer Protocol (HTTP).

Suppose that the end user logs into a third‐party client, and wishes to authorize the client to access the 
resources of the user, which are resident on a server hosted on the cloud. For instance, the user, a photogra-
pher, might wish to allow an image postprocessing site to gain access to his photo collection stored in the 
cloud. The following steps are taken, as shown in the general workflow in Figure 34.1.

1. To carry out the authorization task, the client, which is the postprocessing site, first sends its client cre-
dentials, which were previously created and agreed upon, and requests temporary credentials from the 
server, which is the cloud on which the photos are stored. The server validates the request, and supplies 
the temporary credentials in the form of an identifier and shared secret. The purpose of the temporary 
credentials is to identify the access request from the client in further stages of the protocol.

2. Next, the client requires approval from the user, the photographer, to access the desired resources, which 
are the photos. To obtain this approval, the client automatically redirects the user to an authorization 
service on the server. The user signs into the server as the resource owner, and approves the granting of 
access, to the client, to the protected resources in the cloud, which are the images to be processed. The 
access request is identified by the temporary credentials obtained earlier.

3. Once approval occurs and the client is notified of it, the client then uses its temporary credentials 
to request a set of token credentials over a secure channel to the server. The server validates the 
request and replies with a set of token credentials, which will now allow the client access to the 
protected resources on the server. Thus, the image postprocessing site gains access to the photo 
collection in the cloud without knowing the password to the collection.

Table 34.1 Definitions

Client A third‐party HTTP client, or consumer, that initiates authorization requests in order 
to access the resources of an end user. The requests are authenticated under OAuth.

Server An HTTP server, or service provider, that accepts authorization requests, typically 
located in the cloud.

Protected resource A resource belonging to the end user for which authorization may be granted. A 
resource will typically consist of data that is permanently stored in the cloud.

End user The end user, or resource owner, who normally accesses and controls protected 
resources in the cloud by using credentials, such as a user name and password, 
to authenticate with the server.

Credentials A pair of a unique identifier and matching shared secret, which are used in various 
communication exchanges in the OAuth protocol. The credentials are used to 
identify and authenticate the client, the authorization request made by the client, 
and the granting of access in response.

Token A unique identifier utilized by the client that associates authenticated resource 
requests with the resource owner who provides authorization.
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4. The server continues to validate all data access requests from the client until the authorization window 
automatically expires, or until the user revokes access by the client. Thus, the postprocessing facility 
continues to retrieve images until its task is complete.

Once access has been granted by the server, the temporary credentials that were previously used by the 
client to obtain the token are revoked. Furthermore, a token can be issued with a limited lifetime, and may be 
independently revoked by the resource owner before it expires. Not allowing a token to be left permanently 
active mitigates the overall security risk for the user, and is a recommended practice.

Additionally, tokens may be issued to the client with restrictions on the scope of data that may be accessed. 
It would not be possible to specify limitations on the duration and the degree of permission if OAuth were not 

Client
(Consumer)

Server
(Service provider)

Request a request token

Redirect user to server

Request authorization

Notify client

Grant access token

Request access token

Grant request token

Grant authorization

End user
(Resource owner)

Figure 34.1 Overview of transactions in OAuth 1.0
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used. The alternative of supplying owner credentials directly to the client would imply unrestricted access, 
which is unacceptable in most applications.

An OAuth‐compliant protocol, much like an OpenID‐compliant one, occupies a layer on top of HTTP. It 
typically relies upon Web redirection logic. For instance, the user is redirected by the client to an authoriza-
tion endpoint on the server to grant access to resources, and then the client is notified of completion of the 
transaction via a callback mechanism.

34.4 Comparison of OAuth 1.0 to OpenID

In contrast to the authorization function provided by OpenID, the purpose and mechanism of the authentica-
tion function of the OpenID protocol are fundamentally different. It is instructive to compare the workflow 
of OpenID with that of OAuth 1.0 to understand how the former addresses the problem of user authentication, 
and the latter addresses the problem of resource authorization.

The high‐level workflow of OpenID is now presented, where users provide their self‐supplied identity to a 
third‐party client application, called a relying party, through a certificate mechanism. To do so, the client first 
asks users for their identity, and the end user provides a reference to a known OpenID provider in response. The 
client then requests a referral for the user from the identity provider, which is trusted. Upon receiving the referral, 
the client completes the authentication of the user. The transaction sequence is shown in Figure 34.2.

End user
(Resource owner)

Client
(Relying party)

OpenID provider

Redirection to provider

Request authentication

Grant authentication

Verify authentication

Log in using identifier

Figure 34.2 Overview of transactions in OpenID
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OpenID authentication provides a way to prove that an end user owns an identifier without the user 
 having to provide credentials such as a user name, e‐mail address, or password. Its goal is to enable digital 
identity management in a portable and decentralized manner. However, proving the identity of the user to 
the client is not equivalent to allowing access to the user’s resources, which reside on another server. Thus, 
OpenID provides an authentication function that is complementary, but not equivalent to, the authorization 
function of OAuth.

In many applications, the two protocols are implemented in tandem to provide both identity control and 
resource access. Recall the example of a multimedia library stored on a cloud server. Users could first use 
OpenID to authenticate their identity with the postprocessing client by using a known OpenID provider. Once 
authenticated, users could then allow access to the multimedia library by authorizing the postprocessing cli-
ent using OAuth.

It is not necessary, however, to utilize OpenID to address the design issue of OAuth being intrinsically 
unable to authenticate the user. To reduce the complexity of implementation, it is possible to rely solely on an 
OAuth implementation and authorize access to additional resources such as the identity of the user, which is 
not otherwise provided by default in the basic protocol.

34.5 Overview of OAuth Version 2.0

The OAuth protocol underwent a significant transformation in its second iteration. One of the principal dif-
ferences between versions 1.0 and 2.0 of the OAuth standard concerns the underlying security mechanism 
that is mandated. The security of the OAuth 1.0 protocol fundamentally relies upon signatures. In order for 
the client to access protected resources via an API, the client must generate a signature using a token secret 
that is shared with the server. The server will generate the same signature, and grant access if the signatures 
match. Although this scheme is considered secure, in practice it requires very careful implementation, which 
is prone to error.

Changes to the security model were deemed necessary in the next version of OAuth in order to reduce the 
complexity of development and to lessen the chance of vulnerabilities being unintentionally introduced that 
could be exploited. Thus, the OAuth standard evolved from a reliance on signatures in version 1.0 and other 
cryptographic features to the use of Secure Sockets Layer (SSL) or Transport Layer Security (TLS) in version 
2.0. SSL/TLS is a cryptographic protocol that is required for all communications in OAuth, including during 
token generation and usage. Client‐side cryptography through the use of certificates, as found in OAuth 1.0, 
is no longer required or recommended.

The workflow in OAuth 2.0 is now generalized as shown in the sequence of interactions in Figure 34.3:

1. A client requests authorization from the end user, acting in the role of the resource owner. Such a request 
can be made directly to the user or via an authorization server acting as an intermediary.

2. The client receives an authorization grant, in one of the various forms supported in the new specification. 
Authorization codes are transmitted over a secure channel.

3. The client authenticates with the authorization server and presents the authorization grant. If the grant is 
valid, the authorization server issues an access token to the client.

4. The client proceeds to access the protected resource from the resource server by presenting the access 
token, which is validated before the resource is served up.

5. The client continues to access the protected content on the resource server using the access token while 
it remains valid.
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There are four types of grants available in OAuth 2.0. An extensibility mechanism allows additional types 
of grants to be defined. The four basic ones are as follows:

 ● Authorization code: The client directs the resource owner to an authorization server. The authorization 
server authenticates the resource owner, obtains access authorization, and directs the resource owner back 
to the client with an authorization code. The authorization code is later used to obtain the access token. 
This technique is useful from the point of view of security because the client is properly authenticated, 
and the access token is transmitted directly to the client without being exposed.

 ● Implicit: The client is issued an access token without the use of an authentication code. Although this 
grant is useful in reducing the number of required transactions in the protocol, it is done at the cost of a 
lack of client authentication.

 ● Resource owner password credentials: The access token is provided on the basis of the client supplying 
the password credentials of the resource owner. The client must have direct access to the password, and 
therefore must be highly trusted by the user.

 ● Client credentials: The credentials of the client can be used for the authorization grant. This method is 
useful in allowing the client to gain access to its own protected resources, in the special case where the 
client is also the resource owner.

Client
(Relying party)

End user
(Resource owner)

Authorization server Resource server

Authorization request

Authorization grant

Authorization grant

Access token

Access token

Protected resource

Figure 34.3 Overview of transactions in OAuth 2.0
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34.6 New Features in OAuth 2.0

Numerous new features are supported in OAuth 2.0, including new application contexts. In some contexts, 
 client credentials may be stored confidentially in a location that is inaccessible to the resource owner. On the 
other hand, they may need to be stored on the device belonging to the resource owner, in which case confiden-
tiality and secure client authentication may not be achieved. For instance, a client may run on a Web server 
where the credentials are stored, or the client may execute as an application running natively or within a Web 
browser on a desktop or mobile device belonging to the user. In the latter case, the client is executed locally, and 
so the credentials could theoretically be extracted by the resource owner. To achieve security in this case, client 
credentials may need to be issued dynamically as needed, rather than being fixed, in order to protect them.

The access token itself is a credential used to access protected resources. As in OAuth 1.0, the token may be 
limited by a particular scope and lifetime, which are enforced by the resource server. To permit continuation of 
access, OAuth 2.0 introduces the optional use of refresh tokens. Refresh tokens are credentials used to obtain 
access tokens once they expire or become invalid. Another reason to use refresh tokens is to obtain additional 
access tokens with narrower scope, without requiring additional authorization by the resource owner.

Refresh tokens are optionally issued alongside access tokens by the authorization server after authentica-
tion of the client and validation of the authorization grant. The client makes repeated requests against the 
resource server using the access token. Once the resource server signifies that the access token has become 
invalid, the client authenticates with the authorization server and presents the refresh token obtained earlier. 
The authorization server validates the refresh token and issues a new access token. The server may also sup-
ply a new refresh token so that the cycle of token requests can be repeated.

Additional protocol suites have been devised to address shortcomings in OAuth 2.0, including its inherent 
lack of identity control. For instance, OpenID Connect provides an identity layer on top of OAuth 2.0 to 
verify the identity of the user and obtain basic profile information. It allows clients of all types to query infor-
mation about authenticated sessions and end users. OAuth 2.0 capabilities are actually integrated into the 
OpenID Connect protocol.

34.7 General Security Considerations

In OAuth 2.0, client‐based credentials are no longer supplied by the client as part of the authorization process, 
as they were in version 1.0 of the protocol. Consequently, the client is no longer authenticated against the 
authorization server. Furthermore, the absence of mandatory client credentials in version 2.0 means that 
resource access tokens are no longer bound to clients as they were in version 1.0. The new protocol relies 
upon the concept of bearer tokens that do not require clients to prove that they should possess them in order 
to use them. Tokens may be misappropriated, and so the client must exercise care in choosing which resource 
owner to trust the tokens with. Otherwise, a token that falls into the wrong hands could result in resources 
being illegitimately accessed for the duration of the token’s existence without means of revocation. As 
authorization codes and access tokens are sent in plain text, communication in OAuth 2.0 must be protected 
by SSL/TLS, which must be correctly configured in the first place.

34.8 Possible Threats and Countermeasures

Various threats may be directed against OAuth 2.0 clients. For instance, an attacker could steal and then 
replay a valid refresh token (that is, resend it to the authorization server pretending that it is the  original). 
Or, the attacker could pose as a valid client and obtain a token on its behalf. By doing so, the attacker 
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could illegitimately bypass client authentication and gain an access token permitting access to a resource 
 without the knowledge and permission of the true client.

Many kinds of countermeasures may be employed to limit the efficacy of such attacks. For instance, the 
client identity associated with a refresh token may be validated with every refresh request, to be able to 
detect the presence of an attacker. Additionally, refresh tokens may require special protection to avoid 
being read and stolen by an attacker, such as being recorded to secure storage. Furthermore, the OAuth 2.0 
framework allows a token to be revoked by the user if the user discovers that the token has been compro-
mised at any point.

Access tokens may also be similarly revealed to an attacker if improperly secured. Similar safe-
guards apply in this case, including the use of secure or transient memory, as well as limitations on the 
permitted access scope and lifetime of tokens, to limit the potential damage that may occur with a 
compromised token. To prevent eavesdropping on access tokens transmitted over the network, from the 
authorization server to the client, transport‐layer security that ensures end‐to‐end confidentiality is 
required.

Phishing attacks are a potential problem not only with regular web‐site passwords, but also OAuth arte-
facts. A client could be tricked into revealing credentials by an attacker appearing to be a credible and trusted 
party in some form of attack that relies upon social engineering. However, such an attack appears to be less 
likely in principle than one that seeks to obtain the original user password; OAuth is deliberately designed to 
not reveal the password in the first place.

Attacks may also originate at the server end. For instance, an attacker may illegitimately pose as an author-
ization server, and OAuth provides no facility for verifying its authenticity. Another possibility is that a 
 malicious client could pretend to be a valid client in order to obtain authorization; to prevent this scenario, it 
is necessary for the authorization server to authenticate the client if possible, after the user has authorized 
access. Many other attacks and countermeasures have been specified by the IETF, some of which are very 
unique to OAuth 2.0.

In general, it is recommended that transport‐layer security such as TLS be used for client requests, as 
OAuth 2.0 provides no guarantee of request confidentiality. Furthermore, server authentication such as 
Hypertext Transfer Protocol Secure (HTTPS) can be used to authenticate the identity of servers. Credentials 
must be securely stored to prevent compromise, and the resource owner should remain in control of the 
authorization process at all times. The security of OAuth 2.0 continues to be actively researched by industry 
and the academic community. It is reasonable to expect that new attacks and countermeasures may be 
 discovered, and new recommendations on best practices proposed, in coming years.

34.9 Application Support

Applications supported by OAuth are numerous and continue to grow. Major commercial vendors, includ-
ing Facebook and Google, have implemented and endorsed the new version 2.0 specification of OAuth. 
Other popular service providers such as Microsoft and LinkedIn are also providing support for the proto-
col. Facebook’s Open Graph social graph requires the use of OAuth’s app access tokens. Like OpenID, 
OAuth is a decentralized protocol, in that no central authority manages information and authorization for 
all Internet users. Any server can elect to support OAuth, and likewise any entity can request to act as a 
resource  consumer.

Possible applications of OAuth 2.0 in a cloud computing context are too numerous to list. Possible exam-
ples include: an advertising service posting a purchase transaction to a social network’s feed, a consumer 
recommendation service performing big data analysis on a data warehouse, or an auditor accessing cloud 
server logs to test for compliance.
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34.10 Criticism

Although OAuth 2.0 is gaining widespread use and backing in industry, its current state of specification and 
apparent trajectory has had its share of criticism. Areas of particular concern include the following:

 ● Interoperability. The standard resembles a highly extensible framework, resembling a blueprint, which 
leaves many implementation questions open by design. Many implementation details such as the 
 capabilities of entities in the system, the format of tokens, and processes such as registration and 
 discovery, are not fully defined. The lack of strict protocol definition is expected to lead to potential 
challenges in achieving interoperability between implementations as well as permitting backward 
compatibility. In fact, clients may need to be configured against specific authorization and resource 
servers in order for the authorization to work. For now, the interoperability issue has been left open for 
future work in the form of recommended extensions and example profiles that will be published even-
tually by the working group.

 ● Security. Another key challenge relates to the apparent strength of security present within OAuth 2.0. It 
has been argued that weaker cryptographic controls are found in the second version due to a lack of 
 signatures and client‐side encryption. The absence of mandatory client credentials means that resource 
access tokens are no longer bound to clients, leading to a tradeoff between flexibility and security. The 
new bearer tokens expire and must be refreshed, and no explicit revocation mechanism is specified. The 
new token handling logic results in its own complications in implementation. It remains to be seen whether 
security issues can be adequately enforced through compliance with the standard, without greater exact-
ness in the protocol specification.

 ● Performance. Although SSL/TLS has gained maturity, its use in OAuth 2.0 requires configuration of a 
sufficient level of security, and may introduce performance overheads that did not exist previously.

It is expected that compatibility work, threat modeling, security analysis, performance analysis, and 
recommendations on security practices will continue to be a primary focus of work in defining the OAuth 
protocol.

34.11 Conclusions

OAuth is a highly useful standardized service that enables secure authorization for Web services to access 
online resources. OAuth uses a token scheme that makes it unnecessary for the resource owner to share its 
credentials with the client seeking access. The OAuth standard has evolved from one based on signatures 
to one based on the use of SSL/TLS and bearer tokens, which simplifies client development. It is antici-
pated that, through these changes, OAuth will gain more widespread use. At the same time, the new OAuth 
version 2.0 is presented as a framework with many available options, leading to concerns about interoper-
ability and security, and suggesting that further guidelines on its implementation and usage are needed for 
practitioners.
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35.1 Introduction

In cloud computing or services computing, users access various resources or services after verification of 
their identity by the service provider. Access control is concerned with determining which user has which 
access rights towards a service or a resource. The aim of an access‐control system is to protect the system 
resources against unauthorized or illegal access by users. Access control in the domain of distributed applica-
tions, in collaborative, distributed, cooperative environments like cloud computing, where several users 
access the resources and services, with different access rights, is called distributed access control. Different  
users have different access rights towards the available resources in the system, which need to be concisely 
specified and correctly enforced.

35.1.1 Need for Distributed Access Control in Cloud

Unless there is a foolproof access‐control mechanism enforced in the cloud, users would be reluctant to use 
the cloud platform to meet their resource requirements and hence the cloud service providers (CSPs) and the 
 consumers may not be able to make use of the advantages this paradigm offers. In the cloud environment, 
which uses service‐oriented architecture (SOA), the service providers and the service consumers generally 
do not have a pre‐established trust relationship between them. Therefore, the authentication of strange users 
and the authorization of their access rights are extremely important in handling the access requests of cloud 
service consumers.
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35.2 Features and Functionalities of DAC

Achieving distributed access control to safeguard resources, information, or data is of extreme importance in 
cloud computing, where sharing of digital resources with different sensitivity levels is involved.

35.2.1 Major Functionalities of DAC

Enforcing DAC makes cloud computing safe, secure and scalable. A distributed access control system in 
cloud computing involves the following basic functionalities.

35.2.1.1 Identification

This process establishes or assigns an identity with a particular user or subject within the cloud by methods 
such as giving a username to a specific user.

35.2.1.2 Authentication

This is the process by which the identity of an entity requesting some resources is verified by the CSP. The 
entity could be a person, process, program or software agent requesting access to some resources for its com-
putation or task.

35.2.1.3 Authorization

This is the process by which the access rights or privileges of a user or entity are verified by the cloud system 
against predefined security policies in order to avoid unauthorized access by malicious users.

35.2.1.4 Accountability

This involves tracing or recording the actions performed by a user in the cloud system by collecting the iden-
tification details of the user, time of access, resource accessed, and so forth. The collected details are entered 
in a log file which could be stored for future security auditing purposes.

35.2.2 Major Features of the DAC

The DAC system in the cloud should provide the following additional features to the CSPs and cloud service 
consumers (CSCs).

35.2.2.1 Confidentiality

Confidentiality ensures that there is no unauthorized access to the data, information, or resources. Physical 
isolation of virtual machines and cryptography techniques can be adopted to achieve confidentiality.

35.2.2.2 Integrity

Integrity ensures that there is no unauthorized modification of data or information in the cloud system. In 
order to provide integrity to the user’s data stored in the cloud, message authentication code (MAC) and 
digital signature (DS) methods could be used.
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35.2.2.3 Availability

Availability ensures that the system resources or information are accessible to the legitimate user on time.

35.3 Distributed Access Control in Cloud Environments

Cloud computing is a service‐oriented distributed computing paradigm, where users access various services 
and shared resources hosted by the service providers, to carry out their tasks efficiently. The access control of 
distributed resources is most important in securing the cloud scenario.

35.3.1 Access‐Control Models and Approaches in Cloud Computing

Many researchers have been working in this area of access control and some of the work carried out by 
them are highlighted here. The work carried out in Wei et al. (2010) shows an attribute‐ and role‐based 
access  control (ARBAC) model. In order to access the services, service consumers provide their attrib-
ute information to the service providers. When the service providers receive the access requests, they 
determine whether to permit or to deny these requests according to their access‐control policies. How 
to enforce access control on the numerous users who are not defined in the system in the distributed 
computing environment is discussed in Lang et al. (2007). Feng et al. (2008) propose a trust‐ and 
 context‐based access control (TCAC) model, extending the RBAC model, for open and distributed 
systems. Turkmen et al. (2011) presented a framework for the verification of run‐time constraints and 
security properties for role‐based access control (RBAC) systems, considering the dynamic behavior of 
users during an active session. Pereira (2011) describes a role‐based access‐control mechanism for 
distributed high‐performance computing (HPC) systems where both users and resources can be dynamic 
and can belong to multiple organizations, each with its own diverse security policies and mechanisms. 
Gunjan et al. (2012) discuss the issue of identity management in the cloud computing scenario. Loss of 
control, lack of trust, and multitenancy issues are identified as the major problems in the present cloud 
computing model.

35.3.2 Authorization Requirements in Distributed Access Control

An inadequate or unreliable authorization mechanism will result in the unauthorized use of cloud resources 
and services. Hence, there is a need for an effective and secure distributed access‐control architecture for 
multitenant and virtualized environments of cloud computing. While designing secure distributed access‐
control architecture for cloud computing, the authentication and authorization requirements to be considered 
include those listed in the following subsections (Almutairi et al., 2012).

35.3.2.1 Multitenancy and Virtualization

Virtualization in the cloud helps the service provider to achieve multitenancy, which makes resource utili-
zation effective through resource sharing. In distributed clouds, an untrusted client might use side‐channel 
attacks in order to access data or information pertaining to other tenants, exploiting any virtualization 
flaws in the cloud environment. Side‐channel attacks arise due to lack of authorization mechanisms for 
accessing the shared cloud resources, and hence access‐control architecture should be made secure against 
these attacks.
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35.3.2.2 Decentralized Administration

Decentralized administration is characterized by the principle of local autonomy and this is an important feature in 
cloud computing. In this case, each cloud service provider or its individual service has full administrative control 
over all of its resources. The access‐control policies should be designed effectively by identifying the required 
authorization rules in order to allow fine‐grained access control over the resources in multicloud environments.

35.3.2.3 Secure Distributed Collaboration

In cloud computing, the clients obtain required services by integrating multiple services either from the same 
cloud service provider or from multiple cloud service providers. The security infrastructure should allow the 
cloud service providers to share the services (infrastructure, platform, or software services) effectively either 
within the same CSP or among multiple CSPs. In the decentralized environment, the individual access 
 policies of the CSP should allow such horizontal (resource sharing among different cloud service providers 
at the same service level) and vertical (resource sharing among different service levels of the same or different 
cloud‐service provider(s)) policy interoperation for efficient service delivery. These collaborative access 
 policies must be correctly specified, verified, and enforced. In this collaborative environment, a service‐level 
agreement (SLA) is made between the CSPs, which give an assurance that services are provided according to 
mutually agreed rules and regulations.

35.3.2.4 Credential Federation

Single sign‐on should be supported in the cloud environment where a user invokes services from multiple 
clouds. The access‐control policies of the CSPs must support a mechanism to transfer a customer’s identity 
credentials across the service layers of CSPs to access the resources and services.

35.3.2.5 Constraint Specification

In the collaborative model of the cloud computing environment, semantic, and contextual constraints should 
be verified to protect services and resources from illegal access. Semantic constraints such as separation of 
duties, and contextual constraints such as temporal or environmental constraints should be evaluated while 
determining the access rights of cloud customers. Semantic and contextual constraints should be specified in 
the access‐control policy.

35.3.3 Distributed Access‐Control Architecture

The distributed access‐control architecture that incorporates the authorization requirements mentioned above 
consists of the following three components: virtual resource manager (VRM), access control manager (ACM), 
and the SLA established between the CSPs (Almutairi et al., 2012).

35.3.3.1 Virtual Resource Manager (VRM)

This module manages the resource requirements of the cloud customers. It is a part of the access‐control 
architecture of each CSP and this module handles the resource requirements of each service layer of a cloud. 
The VRM is responsible for the provisioning and deployment of the virtual resources. Local resources are 
directly handled by this module, and if the requested resources are from a different CSP (remote resource), 
as per the agreed SLA between the CSPs, the VRM contacts the corresponding entity of the remote cloud in 
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order to provide access to the requested remote resources. The VRM monitors the deployed resources and 
allocates or releases them in order to ensure quality of service as per the agreed SLA between the CSPs.

35.3.3.2 Access‐Control Manager (ACM)

This module of distributed access‐control architecture is present at each service layer of the CSP to enforce 
the access‐control policy at the corresponding layer. As shown in Figure 35.1 (Almutairi et al., 2012), the 
architecture of ACM consists of the following components:

 ● policy decision point (PDP);
 ● policy enforcement point (PEP);
 ● policy database.

Access requests of the cloud customers, which include the requesting subject, the requested service or 
resource, and the type of permissions requested for that service or resource (such as read or write privileges) 
are given to the PEP. The access request might also include the identity credentials needed for authentication 
and authorization. The PEP extracts the authentication and the context information from the authorization 
request and forwards them to the credential evaluator and attribute evaluator of the PDP. The PDP takes the 
final decision regarding the access request by evaluating the policy rules from the policy database considering 
the attributes and identity credentials of the requesting user. The PEP receives the decision from the PDP 
regarding the access request, and subsequently it either grants or denies the request. If it is permitted, it is 
forwarded to the virtual resource manager (VRM) of the CSP for the deployment of requested resources.

35.3.3.3 Role Mapping

If the access request from the user contains an authorization credential, the credential evaluator, after 
 verification of the identity, assesses if the role corresponds to a local role (if RBAC is the deployed access‐
control model) and assigns the local role to the user based on the user‐to‐role assignment rules stored in the 
RBAC policy base. The process of user‐to‐role assignment takes its input from the context evaluator. If the 
role does not correspond to a local role, it is assumed that this is a single sign‐on request and hence requires 
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role mapping by a relevant SLA. Role mapping is a function that maps a local role to a role in a remote cloud 
and grants access to all the mapped role’s permissions. Subsequently, the user acquires the access rights of 
the locally assigned role or that of a mapped role in a remote cloud. The ACM module invokes the SLA if the 
requested resources are stored on a remote CSP.

35.3.4 Distributed Authorization Process

In the distributed access‐control architecture, three types of interoperations related to authorization flow can 
occur at various layers of the CSPs as shown in Figure 35.2 (Almutairi et al., 2012).

Type 1 depicts a horizontal (peer‐to‐peer) interoperation between the same service levels of different cloud 
providers; type 2 represents a vertical interoperation between service layers within the same cloud; and type 
3 indicates a crosslayered interoperation between different clouds at different service layers. Both type 1 and 
3 interoperations involve SLAs among the participating clouds for their effective operation. As shown in the 
figure, each service layer of the CSP has both the ACM module and VRM module to deal with the authoriza-
tion and resource management at the corresponding layer. Effective authorization mechanisms should be 
implemented by the ACMs at all the service layers in order to make the interoperation secure. The VRM 
module that is present at each service layer deals with the resource provisioning and de-provisioning at the 
corresponding layer.
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35.3.4.1 Authorization process in the cloud environment

The overall distributed authorization process is shown in Figure 35.3 (Almutairi et al., 2012).
When a service consumer requests a service or virtual resource, the request goes to the local ACM of the 

CSP. If the ACM grants this request, it forwards the request to the local VRM in order to deploy the required 
resources. If the required resources are in a remote cloud, the local VRM contacts the ACM of the remote 
cloud as the appropriate SLA is already established between them. After verifying its own access policies 
and constraints, if the access request is permitted, the ACM of the remote cloud contacts its local VRM to 
allocate the requested resources. Finally, the VRM identifies and configures the required resources for the 
cloud customer.

35.4 Access‐Control Policies and Models

Any computing system enforcing access control over its resources should deal with access‐control policies, 
access‐control models, and access‐control mechanisms (Hu et al., 2006).

35.4.1 Access‐Control Policies

In the cloud model, access‐control policies are high‐level statements that specify who is allowed to access 
the information or the resources in the system, with what access rights, and also the conditions under which 
the access is allowed. An example for a security policy is “separation of duty” (SoD), which prevents a per-
son from assuming more than one role or associated operation in the cloud at a time as that could result in 
security breaches when abused.

35.4.2 Access‐Control Mechanisms

An access‐control mechanism is the means by which the access‐control policies of a computing system 
are implemented or enforced. One simple example could be the access control lists (ACLs) maintained in 
the system.
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35.4.3 Access‐Control Models

Access‐control models bridge the gap between an access‐control policy and the corresponding mechanism. 
Security models formally present the security policy applicable to a computing system, and also discuss and 
analyze any theoretical limitations of a particular system in ensuring the proper access control.

35.4.4 Types of Access‐Control Policies

Access‐control policies implemented in any cloud model could be broadly classified into discretionary 
access‐control (DAC) policies and nondiscretionary access‐control (NDAC) policies.

35.4.4.1 Discretionary Access‐Control (DAC) Policies

In the case of DAC policies, object access can be controlled as per the discretion of the owner of the object 
or resource. For example, the owner of a file decides who else can use that file and with what access rights 
(read, write, execute, or delete). Discretionary access‐control policies are implemented using identity‐based 
mechanisms such as ACL.

35.4.4.2 Nondiscretionary Access‐Control (NDAC) Policies

This type of access‐control policy depends on a rule‐based access‐control mechanism for the purpose of 
implementation. Generally, all the access‐control policies other than the DAC policies are considered as 
NDAC policies. In this case, access‐control policies have associated rules that are not designed as per the 
discretion of the owner or user; instead they might be based on organization‐specific rules. For example, his-
tory‐based separation‐of‐duty (SoD) policy regulates the number of times a subject can access the same object.

35.4.5 Types of Access‐Control Models

Access‐control models should make sure that there is no leakage of access permissions to an unauthorized 
principal. Some of the access‐control models used in the cloud computing paradigm are given below.

35.4.5.1 Role‐Based Access‐Control (RBAC) Model

This model is suitable for organizations where a static hierarchy is maintained and the members have defined roles 
such as manager, accountant or clerk, and specific access rights are associated with each role. Hence, the resources 
that the users are allowed to access are decided by their roles. Users are mapped to roles and roles are mapped to 
privileges (Ferraiolo et al., 2001). The basic RBAC model is shown in the Figure 35.4. DBMS like SQL also use 
role‐ and rule‐based access‐control mechanisms to achieve distributed access control effectively.

Users Roles

Privileges

Distributed  environment

Access 
rights Resources

Figure 35.4 Basic role‐based access‐control model
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35.4.5.2 Attribute‐Based Access‐Control Model

In this model, access to the resources is allowed or rejected depending on the attributes of the subject, context, 
resource and action. Subject attributes include user identity and group membership. Context attributes include 
time and location of access request made. Resource attributes include the resource identity, and the action 
represents the type of operation requested by the user, such as read or write. As shown in Figure 35.5, when-
ever an access request is initiated, the attributes pertaining to the access request are compared with the stored 
access‐control policies and the policy evaluation module either accepts or rejects the access request.

35.4.5.3 Risk-Based Access‐Control Model

In the risk‐based model, real‐time decisions are made to allow or reject a user request to access a particular 
resource, by calculating the risk involved in allowing the access against the perceived benefit of doing that. 
Figure 35.6 shows the risk‐based access‐control model in which the access requests are given to the policy 
enforcement point (PEP). The PEP contacts the policy decision point (PDP) for the access decision and the PDP 
takes the access decision by calculating the risk involved in the access request. In this case, calculation of the 
risk considers the attributes of the user, which also includes the trustworthiness of the requestor other than the 
identity information, context information of the access request such as time, location and the previous access 
history, and also the sensitivity level of the resource requested. Risk threshold levels are specified by the secu-
rity policy from time to time, and the decision to grant or deny a request is taken based on that threshold value.

35.4.6 Selection Criteria of Access‐Control Models

In cloud computing, which is a highly dynamic distributed computing system, the selection of a  particular 
access‐control model depends on factors such as the service delivery models, application architecture, 
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functionalities supported by the applications, sensitivity level of the application, the data stored, level of 
granularity of access control required, and so forth.

35.5 Identity Management in the Cloud

Identity management in cloud deals with the management of identities of various users in the cloud, which 
helps to provide better access control over the available resources in the system based on those identities.

35.5.1 Need for Identity Management (IdM) in the Cloud

In open service‐oriented systems like the cloud, in many cases, the service providers and the service consum-
ers are strangers. As they do not have pre‐established trust between them, the service provider must be able 
to authenticate the unfamiliar users, and then determine whether the requestors have enough privileges to 
access the requested services. In cloud computing, a user or an organization may subscribe to services from 
multiple service providers. Proper identity management is the basis of stronger authentication, authorization, 
and availability features which are crucial in enforcing an effective access‐control system in the cloud envi-
ronment. The major functional requirements of IdM in the cloud environment are dynamic provisioning and 
deprovisioning, synchronization, entitlement and life‐cycle management.

35.5.2 Identity Life‐Cycle Management

Identity life‐cycle management shows the various stages through which a user identity goes. The five stages 
in the identity life‐cycle management (Mather et al., 2009) could be provisioning and de-provisioning of user 
identities, authentication and authorization, self‐service (how the user can maintain, update or reset creden-
tials), password management (how the user password is stored in cloud), and compliance and audit (how the 
access is monitored for security purposes). Identity provisioning involves assigning the identity to a particular 
user by the CSP or the identity provider (IdP), and identity deprovisioning involves terminating the identity 
so that the specific identity is no longer valid for a given user.

35.5.3 Identity Providers

In cloud computing, instead of using separate credentials for different applications, cloud users can submit 
user-centric identity tokens to the CSPs. The identity providers are trusted entities in the cloud computing 
environment, which provide the identity tokens to the cloud users. These tokens could be used by the cloud 
users for services from the CSPs. Examples of IdPs include Ping Identity, and Symplified.
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35.5.4 Federated Identity Management

The users in a cloud federation do not need to use separate credentials for each cloud service provider or service 
they subscribe to; instead, they can use the identity token issued by the identity provider. The users can submit the 
security tokens (normally SAML assertions) issued by the identity provider to the service providers in the cloud 
federation. This is both efficient and secure, and relieves the users of the multiple credentials problem when 
accessing services from multiple cloud service providers. As shown in Figure 35.7, federated identity management 
in the cloud involves the federation between following entities: client, relying party or service provider (SP), and 
the identity provider (IdP). Before accessing the service from the SP, the service consumer has to be authenticated 
as a valid user by the IdP. The client contacts the identity provider listed in the trusted domain of the SP to obtain 
the identity token, and that token is submitted to the SP in order to obtain the requested services. As the SP and IdP 
are part of the federation and they have mutual trust, the user is allowed to access the services from the SP after 
successful authentication. Because of the federated identity management, service providers can concentrate more 
on their core services because the identity management operations are taken care of by the identity provider.

35.5.5 Single Sign‐On (SSO)

This is the process of accessing more than one service from same or different service providers, by logging 
into the system only once. Identity federation supports single sign-on (SSO) as the users are able to access 
multiple services from the same or different CSPs using the same identity token issued by the identity 
 provider. Figure 35.8 shows an overview of the SSO process. In this case, a user first accesses the services 
from service provider‐1 by logging onto it. As shown in the figure, the user is authenticated by the identity 
provider. All the three service providers have mutual trust established with the identity provider. In this case, 
the user is not required to enter the identity credentials again to access the services from service provider‐2 
and service provider‐3 as there is a SSO system established between the three service providers.
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35.5.6 Identity Management Standards and Protocols

The various identity‐management protocols differ in features such as the data format supported and protocols 
to exchange credentials between the entities involved. Some of the well known identity‐management proto-
cols that help in establishing federation among the individual partners are given below.

35.5.6.1 Security Assertion Markup Language (SAML)

Security Assertion Markup Language includes a set of specifications for exchanging the authentication, 
authorization and attributes assertions across the federation. It uses an XML‐based data format and this pro-
tocol is managed under the Organization for the Advancement of Structured Information Standards (OASIS).

35.5.6.2 Service Provisioning Markup Language (SPML)

This is an XML‐based security framework developed by OASIS, and it helps in automating the provisioning 
and deprovisioning of user accounts with the CSP.

35.5.6.3 eXtensible Access‐Control Markup Language (XACML)

In order to implement an access‐control mechanism, this XML‐based access‐control language developed by 
OASIS could be used. This language provides the XML‐schema, which could be used to protect the resources 
by making access decisions over these resources.
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35.5.6.4 Shibboleth

Shibboleth is an open source identity management project, which helps to establish single sign‐on  solutions 
in the federation. Shibboleth uses the SAML specifications to achieve the authentication and authorization in 
the federated environment.

35.5.6.5 OpenID

OpenID provides a user‐centric identity framework for the authentication purposes. OpenID 2.0 supports the 
identification of users through URL or XRI addresses.

35.5.6.6 OAuth

OAuth is an open‐source identity management protocol used to provide the authorization of users’ data 
across different applications, without disclosing the user’s identity credentials. Identity tokens, issued by the 
identity provider, are used by the third‐party applications to gain access to the user’s protected data. Various 
applications have different tokens associated with them, and this helps to maintain the privacy of the data 
resources.

35.5.6.7 OpenID Connect

OpenID Connect is an open‐source identity management protocol used to provide standardized authentica-
tion and authorization functions across federated applications. OpenID Connect combines the authentication 
and authorization processes of OpenID and OAuth. OpenID Connect protocol uses OpenID 2.0 and OAuth 
2.0, and provides APIs to be used by third‐party applications.

35.5.6.8 WS‐Federation

WS‐Federation is a part of the Web services security specification and it is meant for the federation of 
applications or Web services. WS‐Federation specifications are extensions to WS‐Trust protocol. This pro-
tocol can be used to share the identity information of various users across multiple security domains and 
organizations.

As the different identity management protocols have dissimilar features, the selection of a particular pro-
tocol depends on the requirements of the applications and also on their architecture features.

35.5.7 Single Sign-On Products

There are many industry products offering SSO solutions to organizations. Some of them are given below.

35.5.7.1 DACS

Distributed Access‐Control System (DACS) is a lightweight single sign‐on and role‐based access‐control 
system for Web servers and server‐based software, released under an open‐source license (Distributed Access 
Control System, 2014). It ensures secure resource sharing and remote access via the Web. It is used to provide 
SSO functionality across organizational or departmental Web servers, and also to limit access to Web‐based 
resources. It provides a secure, Web‐based SSO and rule‐based authorization process that can be applied 
selectively to any resource or activity (Web services, Web content, program features).
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35.5.7.2 ESSO

Enterprise Single Sign‐On (ESSO) from Dell Inc. enables an organization to achieve SSO (ESSO, 2014). It 
bases application logins on the existing active directory identities in the organization without the need for 
additional authentication methods. It supports the standard username / password logins and various strong 
authentication methods such as biometrics, smart cards or token‐based two‐factor authentication.

35.5.7.3 TrewIDM Cloud

TrewIDM Cloud’s Identity Management engine supports various features of identity and access management 
such as user provisioning, deprovisioning and granting fine‐grained access to specific applications. TrewIDM 
provides a seamless single sign‐on feature for accessing both enterprise and software‐as‐a‐service (SaaS) 
based applications.

35.6 Reputation and Trust

Nowadays, trust‐based access control is gaining dominance in cloud computing, because the cloud is such a 
large distributed system, where it is not possible for a CSP to know in advance every other user or entity in 
the system. Trust represents confidence that somebody would behave exactly the way he is expected to 
behave. Mutual trust between the service providers and service consumers, and also between the providers of 
various services and the identity providers, is highly important in cloud computing to make the best use of it 
in a secure way.

35.6.1 Trust Types

In the cloud environment, trust is not static but is considered dynamic because it changes from time to time. 
Trust could also be classified into direct trust and indirect trust. Direct trust is the trust that an entity develops 
for another entity based on its past transactions or previous experience with the other entity. In the case of 
indirect trust, entity A may trust entity B, based on the recommendation from another entity, C, who is trusted 
by entity A. This form of trust is also known as recommended trust. In a huge distributed system like cloud, 
direct trust is often not possible. Methods or models should therefore be designed to use indirect trust effec-
tively to achieve distributed access control in the cloud.

35.6.2 Reputation

The reputation of an entity, which is generated through successful transactions with other entities over a 
period of time, could result in an increased trust level for that entity. A more trusted person or entity may be 
given permission to carry out more privileged transactions or operations in the cloud-computing domain. At 
the same time, trust is hard to build and easy to lose. It takes time to build trust for an entity and a single 
instance of misbehavior or violation of the contract can reduce the trust level of the entities such as the CSP, 
CSC, or the IdP drastically in the cloud.

35.6.3 Dynamic Trust Management in the Cloud

In the cloud computing scenario, trust is dynamic because the same entity can have different trust values at 
different points of time. The trust value of an entity could be calculated based on various parameters such as 
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past behavior and the history of previous transactions with the same entity and, also, by considering feedback 
from other trusted third parties in the cloud. Hence, in cloud computing, a trust model should be developed 
to calculate the correct trust value of various entities at different points of time, and this value could be used 
in access‐control decisions. Generally, a decay function could be designed to represent the variation in trust 
values of the entities.

35.7 Data Security

In cloud computing, a proper access‐control mechanism should be used to ensure the confidentiality, 
integrity, and availability of users’ data. Data security concerns vary from one deployment model to 
another and the concerns are more serious when the public cloud model is used because of its inherent 
characteristics. Data security in the cloud model should deal with the data in transit, data at rest, and also 
data being processed. There should be suitable mechanisms adopted by the CSPs and the CSCs to protect 
the data while it is passing through each stage of the data life cycle. Encryption of the data and usage of 
secure standards such as SSL/TLS can be deployed to protect the security of the data in the cloud 
 environment.

35.8 Conclusions and Research Directions

In this chapter, we have discussed the issue of distributed access control (DAC) in cloud computing systems. 
Important features and functions of DAC were discussed. Distributed access‐control architecture for hetero-
geneous cloud computing environments was presented along with a discussion of the authorization require-
ments. Various access‐control policies and models were also analyzed. The issues of identity management in 
cloud, effective identity management approaches, and various identity management standards and protocols 
were discussed. A few industry products offering SSO solution were also highlighted. Further research is 
needed on the establishment of a dynamic trust relationship between user domains and cloud domains, and 
between various cloud domains, in order to have a proper solution for distributed access  control. DAC has 
enormous potential for further active research, in order to make the cloud computing paradigm secure, reli-
able, and scalable.
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36.1 Introduction

Cloud‐based services are becoming commonplace. Examples of these services include on‐demand creation 
of virtual machines (VMs), backup of user data, and rapid deployment and automatic scaling of applications. 
These services are typically offered under three different service models: infrastructure as a service (IaaS), 
platform as a service (PaaS), and software as a service (SaaS) (Mell and Grance, 2011). Cloud providers, large 
and small, offer these services to individuals, small and medium businesses, and large enterprises. Each 
 service is typically accompanied by a service‐level agreement (SLA), which defines the service guarantees 
that a provider offers to its users.

While some cloud service deployment models are better understood than others (e.g., IaaS is arguably the most 
understood service model at the time of writing of this chapter), by and large cloud services are rapidly evolving 
and hence not standardized. As a consequence, the services offered by providers vary. Even for services deemed 
similar across providers, the SLAs can vary considerably. Service‐level agreements also serve as a marketing 
tactic to attract new customers, either by bundling together different services, or by offering attractive guarantees 
with small print that may not ultimately benefit a cloud consumer. Such groupings of SLAs make comparison 
across cloud providers even more difficult. Moreover, a cloud provider may offer a canned SLA to all its consum-
ers, irrespective of their requirements or size. An entity running mission‐critical applications on a cloud would 
likely require a different SLA from an entity that is just beginning to evaluate the use of a cloud‐based service.

In this chapter, we briefly explain the entities involved in cloud‐based services (section 36.1.1). We describe 
elements of an SLA of a cloud‐based service with detailed examples, which can help a cloud consumer in 
comparing SLAs of cloud‐based services. We then give an overview of SLAs of two well known public cloud 
providers, namely, Amazon and Rackspace (section 36.3). Finally, we discuss future directions in cloud SLAs 
(section 36.4).

Cloud Service Level Agreement

Salman A. Baset

Thomas J. Watson Research Center, USA

36
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36.1.1 Entities involved in Cloud‐Based Services

The National Institute of Standards and Technology (NIST) has defined a reference architecture for cloud 
services (Liu et al., 2011). The reference architecture defines five unique actors involved in cloud‐based 
 services. They are:

 ● Cloud consumer. A person or entity that uses the services offered by one or more cloud providers.
 ● Cloud provider. An entity that offers services under an appropriate deployment model to cloud consumers.
 ● Cloud carrier. One or more entities that provides network services between cloud provider(s) and cloud 

consumers.
 ● Cloud broker. An entity that negotiates relationships between cloud provider(s) and cloud consumers.
 ● Cloud auditor. An entity that can conduct an independent verification of the offered cloud services and 

their usage.

Service‐level agreements are typically defined between cloud providers, cloud consumers, and network 
carriers (cloud carrier according to NIST Reference Architecture – Liu et al., 2011). Moreover, an SLA may 
also be defined between a cloud consumer and cloud broker(s). Figure 36.1 shows the entities involved in 
cloud‐based services, and their SLA relationships.

36.2 Evaluating SLAs of Cloud‐Based Services

Due to lack of standardization in cloud‐based services, it is difficult for a cloud consumer to compare SLAs 
of different providers. In this section, we break down a cloud‐based service SLA into easy‐to‐understand 
components and provide detailed examples for each component. By understanding the different elements 
of a cloud‐based service SLA, a cloud consumer can make an informed choice when selecting a cloud 
provider.

SLA

Cloud providerCloud carrier

SLA

Cloud carrierCloud consumer

Cloud provider

SLA

Cloud consumer

SLA

Cloud consumer

SLA

Cloud providerCloud broker

Figure 36.1 Service level agreement relationship between cloud providers, cloud consumers, cloud carriers, and 
cloud brokers
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36.2.1 Service Guarantee

A service guarantee specifies the metrics, which a provider strives to meet. Failure to achieve those metrics will 
result in a service credit to the customer. A service guarantee is sometimes also referred to as a service commitment.

Typically, service guarantees are specified over a time period (see section 36.2.2). Availability (e.g., 99.9% 
of a VM, response time (e.g., less than 50 ms for a storage request), disaster recovery (e.g., restoring data 
within 24 hours), ticket resolution (e.g., within 1 hour of reporting), and data backups (e.g., every day) are 
examples of service guarantees over a time period.

In this section, we give detailed examples of performance and data guarantees that may be offered by a 
cloud provider.

36.2.1.1 Performance Guarantees

A service guarantee may specify the performance objectives associated with one or more services. These 
 performance guarantees bind a cloud provider to deliver acceptable performance for cloud services. Failure to 
meet these guarantees will result in a service credit to a cloud consumer. Typical examples of performance 
guarantees address availability, response time, and throughput. We briefly discuss these three guarantees here.

 ● Availability, informally, is the percentage of time for which a cloud system (or a subsystem) can serve 
requests. Availability can be specified on a per resource basis (e.g., VM or database), or on a large scale 
(e.g., an availability zone or a data center). A cloud provider offering an availability service guarantee may 
include a provision in an SLA to exclude any downtime due to maintenance from availability calculations. 
A cloud consumer must pay close attention to service guarantee exclusions from availability calculations. 
Availability can also be measured for a group of resources instead of a single resource. It can be computed 
over a group of servers or VMs, for example as the aggregate uptime of all servers (for more details, see 
section 36.2.3).

 ● Response time, informally, measures the processing time for a request. The response time calculations are 
subject to variations across cloud providers. A cloud consumer is interested in the end‐to‐end response 
time – the time elapsed from when a cloud consumer issues a request until the time a response is received. 
However, a cloud provider may choose to define response time as the duration between a request entering 
and leaving its cloud network. Any delay due to network issues beyond the control of a cloud provider 
may be excluded from response‐time calculations. To provide bounded guarantees on the network delays 
of a request, some cloud providers are now offering a direct physical link between the cloud consumers’ 
premises and their data centers.

 ● Throughput, informally, is defined as the total number of valid requests that are successfully served within 
a time unit. An SLA may define a maximum limit on the number of requests that can be served within a 
time unit, which will have an associated response time guarantee. If a cloud consumer were to initiate 
more requests than the limit defined in an SLA, it may be a violation of an acceptable usage policy and 
excluded from service guarantee calculations.

A cloud SLA needs to specify clearly how these metrics are collected and how often. Any exclusion from 
service guarantee calculations must be clearly specified in the SLA.

Currently, no standard benchmark exists for comparing the performance of cloud services. The cloud 
 subcommittee (https://www.spec.org/osgcloud/, accessed December 26, 2015) of the operating system group 
(OSG) of Standard Performance Evaluation Corporation (SPEC) is working on standardizing a benchmark 
for comparing the performance of IaaS cloud services. Such a benchmark can help a cloud consumer greatly 
in selecting an appropriate cloud service for its usage.
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36.2.1.2 Data Guarantee

Data service guarantees define which data is stored, where it physically resides, whether it is backed up, who 
can view the data, and what happens in case of lawful seizure of data or if a cloud provider or a consumer 
were to go out of business. Below, we discuss some of these issues.

Which Data to Store in Cloud?
A cloud consumer may choose to store some or all of its data in the cloud. Typically, a decision to store 
some or all data in the cloud is guided by the sensitive nature of data, and whether the cloud is hosted by a 
cloud provider or is setup on cloud‐consumer premises, and any data  protection guarantees offered by the 
cloud provider. A cloud consumer must communicate cloud data storage guidelines to its users (that is, 
employees of its organization). Moreover, to detect any violation of the data storage guidelines by its users 
or data protection guarantees offered by a cloud provider, a cloud consumer may choose to perform regular 
audits of the data being stored in a cloud. A cloud consumer may also entrust a third party for performing 
such an audit.

Where is Data Physically Stored?
While evaluating an SLA, a cloud consumer must evaluate where the data will be physically stored. It is 
important to be aware of the physical data storage location for several reasons, such as meeting regula-
tory compliance requirements such as the Health Insurance Portability and Accountability Act (HIPAA), 
country or area jurisdiction, or performance. The data can be stored on the premises of a cloud con-
sumer, or in a data center managed by a cloud provider. A cloud consumer must evaluate whether a cloud 
provider can realistically deliver a data storage solution that spans multiple  jurisdictions (e.g., legal or 
country).

What are Guarantees against Data Loss?
Not all data requires a backup. A cloud consumer should  formulate a redundancy policy for various types of 
data, the size of the data that requires backup, and the access patterns. It can then evaluate data‐redundancy 
solutions offered by cloud providers, and their costs. Cloud providers offer data redundancy in several ways. 
They can either replicate the data within a data center or replicate it across data centers that are geographi-
cally separate. Each redundancy solution has its merits and associated costs, which a cloud consumer must 
evaluate against its business objectives.

In the event of a disaster, the time to recovery may vary across cloud providers even if they provide similar 
data redundancies. It may also vary due to the physical location of data. An SLA may provide a service 
 guarantee time to recovery in the event of a disaster. Obviously, this metric is of interest to cloud consumers 
who cannot afford any downtime due to disasters.

What are Data Privacy Policies?
A cloud consumer must evaluate the data privacy policies of a cloud provider. The public cloud providers 
only offer a standard SLA and a standard privacy policy. It is possible that the default privacy policies of a 
cloud provider may not meet the requirements of a cloud consumer. In such a case, a cloud consumer may 
choose to negotiate a new data privacy policy or consider a different cloud provider. An SLA should clearly 
define the responsibilities of a cloud provider for protecting data privacy, and any service credits to the cloud 
consumer due to advertent or inadvertent leakage of data by a cloud  provider.

Throughout the world, there are laws and regulations that govern the privacy of personal data, and security of 
information systems. These laws vary from one country to another. Within a country, these regulations may vary 
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across geographical boundaries (e.g., state) or jurisdictions (e.g., hospitals, municipalities). The preservation of 
data in the cloud, for instance for backup, requires that data be maintained for an extended period, even beyond 
its useful life. The responsibility for maintaining the privacy of this data typically rests with the cloud provider.

A cloud consumer must be aware that its data can be lawfully intercepted or seized. As part of an SLA, 
it may be the responsibility of a cloud provider to inform a cloud consumer of any lawful data intercept or 
 seizure as appropriate.

A cloud consumer may also need to define privacy policies for its users (e.g., employees of its organization 
or users of its service). Its users must be made aware of the type of data that can be stored in a cloud. 
Moreover, a cloud consumer may need to set up appropriate authorization policies for users in its  organization, 
just as it would do for noncloud storage.

Who Performs Data Audit?
As part of an SLA, a cloud consumer and a cloud provider may choose a third party to audit data storage to 
ensure compliance with regulations and SLA. Such an audit can be a part of a general audit of cloud services.

36.2.2 Service Guarantee Time Period

Service guarantee time period describes the duration over which a service guarantee is calculated. The time 
period can be small (in minutes or hours), span an entire billing month, the duration of service, or the duration 
of contract. As an example of a small service guarantee time period, consider the percentage of I/O operations 
(e.g., 99.9%) that must meet the quality‐of‐service threshold within a minute. A small time period of one 
minute leaves a provider with little wiggle room for erring. A service guarantee over a small period is likely 
going to command a higher premium than a similar guarantee over a longer period.

A service guarantee time period calculated over the entire billing month might, for example, cover the 
availability of a VM (e.g., 99.9%).

An example of a service guarantee over service life cycle might be a guarantee that physical copies of data 
are stored within a data center.

36.2.3 Service Guarantee Granularity

Service guarantee granularity describes the scale of the resource on which a provider specifies a service 
 guarantee. For example, the granularity can be per service, per transaction basis, or per data center. As with 
the service guarantee time period, the service guarantee can be stringent if the granularity of service  guarantee 
is fine‐grained. An example of a fine‐grained service guarantee is availability of a VM. In contrast, if service 
guarantee granularity is per data center, then VMs in the data center may not be available even if the data 
center is available.

Service guarantee granularity can also be calculated as an aggregate of the considered resources, such as 
VMs or requests. As an example of calculating service guarantee over aggregate resources, consider a cloud 
provider that provides an availability guarantee of 99.95% over all VMs of a cloud consumer. This guarantee 
is weaker than per‐VM availability of 99.95%, as some VMs in the aggregate computation may have a lower 
availability than 99.95%.

36.2.4 Service Acceptable Usage Policy

Service acceptable usage policy defines the criteria for a cloud consumer to receive service guarantees. For 
example, in an IaaS cloud, an acceptable usage policy may be defined as the number of VM creation requests 
issued per minute. Another example of an acceptable usage policy is that the number of storage requests per 
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minute must not exceed a certain threshold. Failure to comply with an acceptable usage policy will result into 
a violation of a service guarantee by a cloud consumer. As such, any service requests not meeting the accept-
able usage policy are likely to be excluded from service guarantee calculations (see section 36.2.5) and may 
result in termination of services provided to a cloud consumer.

A cloud provider typically measures and records use of its services so that it can determine if there has 
been unacceptable use. It is typically up to a cloud provider to indicate to a cloud consumer whether accept-
able usage is being violated before suspending the service. Such an indication can be done through API, or 
through an off‐band channel such as e‐mail.

36.2.5 Service Guarantee Exclusions

Service guarantee exclusions specify the instances of a cloud service that are excluded from service guarantee 
calculations. Typically, these exclusions include:

 ● an abuse or unacceptable use of the service by a cloud consumer;
 ● denial of service attacks;
 ● any downtime associated with scheduled maintenance;
 ● any downtime associated with a roll out of a new service version.

Scheduled maintenance can happen due to several reasons. For example, a hypervisor or a VM may need 
to be unavailable or may require a reboot in order to apply all operating system security updates. Or a data-
base‐as‐a‐service may be offline to perform maintenance on the underlying storage hardware. A cloud pro-
vider may design its services in a way to limit any downtime for a cloud consumer due to scheduled 
maintenance. Alternatively, a cloud provider may expose a maintenance schedule to a cloud consumer. In 
both cases, any potential disruption due to scheduled maintenance should be specified in an SLA. While 
examining service guarantees, a cloud consumer should pay careful attention to service‐guarantee exclusions 
due to planned maintenance, and their disruption on its operations.

Service version roll out defines how a newer version of a cloud service is rolled out and when, and what 
impact it may have on a cloud consumer. In some cloud provider SLAs, service version rollout is considered 
part of scheduled maintenance. A cloud consumer needs to consider whether a roll out of a new  service 
 version may result in any service disruption. A cloud provider may specify any disruptions due to service ver-
sion rollout as part of scheduled maintenance (and therefore, exclude it from service guarantee calculations).

36.2.6 Service Credit to a Cloud Consumer

A service credit is given to a cloud consumer if one or more service guarantees are not met. In some cases, a 
service credit may only be applied towards future service usage credit. In other cases, a service credit is real 
money refunded to a cloud consumer. A service credit can be a full or a partial credit to a cloud consumer for 
the affected service. Typically, a service credit never exceeds the service fees of the affected service. However, 
the affected fees may not reflect the cost incurred by a cloud consumer due to service disruption.

36.2.7 Service Violation Detection and Measurement, and Service Restoration

Service violation detection and measurement, and service restoration describes how and who detects, meas-
ures, and reports the violation of service guarantee (or SLA violation), and when a disrupted service is 
restored. A majority of public cloud providers surveyed at the time of writing of this book chapter place the 
burden of service violation detection on the cloud consumer.
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For a cloud consumer, detecting and measuring SLA violations requires storage of request logs, service 
request metadata, and any other relevant data. When a cloud provider receives a request for verifying 
 service violation, it must compare the evidence offered by a cloud consumer against its metrics and logs, 
and respond to cloud consumer within a reasonable time frame. An SLA of a cloud‐based service typically 
states the time period during which a cloud consumer must file a service violation report. This time period 
determines how long a cloud provider must retain the relevant data for any potential claims of service 
violation.

Some cloud consumers may require an SLA conformance report from a cloud provider every service 
 guarantee time period (e.g., one billing month). As part of SLA, cloud consumers may also require an 
 independent evaluation of SLA conformance by a cloud auditor.

An SLA will stipulate how quickly a cloud provider restores a disrupted service. The time duration for 
service restoration may vary according to service problems. For example, (i) once the disruption in the 
 connectivity to a service is established, it must be restored within an hour; (ii) if a physical machine’s disk is 
faulty, it will be replaced within a day.

36.2.8 Service Renewals

Service renewals specify how a cloud consumer may renew the service. Typically, cloud usage is pay per 
use, and service renewal is implicitly embedded in it, that is pay and renew. However, some (large) enter-
prises may negotiate a contract that has a starting and ending date. At the end of a contract, a cloud con-
sumer may choose to renew the contract under the same or a new SLA, or terminate it. An SLA should 
clearly specify the expectation for a cloud provider and consumer in case the cloud consumer chooses not 
to renew the contract.

36.2.9 Service Activation and Deactivation

Service activation and deactivation specifies the time when a service becomes active or is terminated. For 
example, in an IaaS cloud, a cloud consumer must explicitly request the creation of a VM, and a cloud 
 consumer may only be charged when remote login to a VM succeeds after a VM is created. Similarly, 
service deactivation specifies the time when a cloud provider stops charging the cloud consumer for 
 service usage. Service deactivation can be involved. It will likely include provisions on how cloud con-
sumer data may be handled upon a service termination. The precise timing of service activation and deac-
tivation has a direct bearing on the costs incurred by a cloud consumer. Such timing must be clearly 
specified in an SLA.

36.2.10 Service Excess Use

Service excess use defines how a cloud consumer may be charged for excess service use. Typically, cloud 
service is pay per use. However, a cloud consumer may also negotiate a long‐term contract with a cloud 
 provider, which will include provisions on any excess use of services by a cloud consumer.

36.2.11 Service Transferability

If a cloud consumer were to sell its business, or initiate a project with another cloud consumer and / or within 
its different business units, it will need to transfer its cloud resources to the seller or another cloud consumer. 
Such a transfer of resources may not always be possible due to business, technical, or legal reasons. A cloud 
consumer should understand whether a cloud provider limits any transfer of resources.
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Moreover, a cloud provider’s service may be terminated possibly in lieu of a new offering, or a cloud 
 provider may also go out of business. A cloud consumer should pay attention to clauses that limit or prohibit 
transfer of data and resources in such cases, and any timelines on the transfer of data and resources.

36.2.12 Other Things to Consider

We briefly discuss some other aspects that should be considered when evaluating SLAs.

36.2.12.1 Non‐Negotiable or Customized SLA

At the time of writing, all public cloud providers offer a non‐negotiable SLA for their cloud services. These 
SLAs, generally, favor cloud providers. A cloud consumer should examine carefully any future impact on its 
operations when using cloud services under non‐negotiable SLAs.

Depending on the size of cloud services being used, an enterprise may negotiate an SLA with a cloud pro-
vider to meet its business objectives. Such an SLA, if it differs from the standard SLA offered by a cloud 
provider, will likely command a higher price.

36.2.12.2 Cloud Service and Deployment Models

Infrastructure as a service, PaaS, and SaaS are different service‐delivery models for cloud services. These 
services can be offered on a cloud hosted within a cloud consumer premise or in a data center managed by a 
cloud provider. For each service and deployment model combination, the precise definition of service 
 guarantees can vary. For example, in an IaaS cloud, an availability service guarantee may be offered on a per 
VM basis whereas in a SaaS cloud, the availability service guarantee will likely be offered on a per applica-
tion basis, which in in turn can be hosted on a IaaS and/or PaaS cloud.

Cloud consumers may have less control over where their data resides in PaaS and SaaS clouds and the 
format in which the data is stored. The lack of control and proprietary format leads to vendor lock in, which 
is a major concern for cloud consumers. Even if the cloud provider offers service guarantees against lock in, 
the size of cloud consumer data may make it difficult for a cloud consumer to change providers. An enterprise 
cloud consumer may require explicit guarantees on the data format and time to move data across cloud 
 providers for PaaS and SaaS service delivery models.

36.2.12.3 Subcontracted Services

It is conceivable that a cloud provider may subcontract services to other vendors. For example, a cloud 
 provider may in turn obtain services from multiple cloud providers and provide them as a bundled service to 
a cloud consumer. Software as a service cloud providers are more likely to use services of platform and infra-
structure cloud providers to offer SaaS services to their consumers.

A cloud consumer may negotiate an SLA with a cloud provider providing bundled services or directly with 
each of the cloud providers. A cloud consumer should examine whether the SLA from a cloud provider offer-
ing bundled services from other providers meets its business requirements.

36.3 Service Level Agreements of Public Cloud Providers

We briefly give an overview of SLAs of two well known public cloud providers at the time of writing, namely 
Amazon (http://www.amazon.com, accessed December 26, 2015) and Rackspace (http://www.rackspace.com/, 
accessed December 26, 2015). These cloud providers offer IaaS and PaaS compute and storage services. The 
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compute service comprises of a virtual machine (or instance) or CPU cycles that a customer can purchase on an 
hourly, monthly, or yearly basis. The storage service allows storage and retrieval of blob or structured data.

36.3.1 Amazon

Amazon (www.amazon.com, accessed December 26, 2015) is an IaaS provider and offers compute (Elastic 
Compute Cloud (EC2) – https://aws.amazon.com/ec2, accessed December 26, 2015), block storage 
(Elastic Block Store (EBS) – http://aws.amazon.com/ebs/, accessed December 26, 2015), and object storage 
(Simple Storage Service (S3) – https://aws.amazon.com/s3/, accessed December 26, 2015) services. In EC2, 
a customer can obtain virtual machines (instances in Amazon speak) by the hour or reserve them in advance 
for an entire year (https://aws.amazon.com/ec2/purchasing‐options/reserved‐instances/, accessed December 
26, 2015). In addition, EC2 offers spot instances where a customer can bid for compute capacity. EC2 SLA 
(https://aws.amazon.com/ec2/sla/, accessed December 26, 2015) is applicable to hourly, spot, and reserved 
instances. The storage service S3 provides mechanism for storing and retrieving data objects using put(), 
get() operations. The data size of each object can be up to 5 TB.

36.3.1.1 EC2 SLAs

At the time of writing, EC2 and EBS SLA (https://aws.amazon.com/ec2/sla/, accessed December 26, 2015) 
promise a 99.95% region availability service guarantee (a data center is referred to as a region in Amazon 
EC2 service). A region comprises of one or more availability zones, which are groups of physical machines 
that share a minimal set of resources within a region (e.g., cooling of data center). EC2 does not provide any 
per VM availability service guarantee.

A region is considered unavailable if more than one availability zones are unavailable. A region is unavail-
able for EC2 if the virtual machines of a cloud consumer running in more than one availability zones within 
a region have no external connectivity. A region is unavailable for EBS if all attached volumes perform zero 
read or write I/O, with pending I/O in the queue. The monthly percentage uptime is calculated by subtracting 
from 100% the percentage of minutes during which an Amazon region was unavailable.

A cloud consumer must provide evidence of region unavailability to Amazon by the end of second billing 
cycle in which the incident in question occurred. A cloud consumer is eligible for a service credit exceeding 
one dollar if a region is unavailable for more than 0.05% of the time within a billing month. The service credit 
is up to 10% of a cloud consumer’s bill (excluding any one‐time costs) for the EC2 instances and EBS devices 
affected by the outage. Service credits are typically only given towards future EC2 or EBS payments but can 
also be issued to the credit card used to pay for services during the month in which the incident occurred.

Amazon’s EC2 service does not provide any service credit for failures of individual virtual machines not 
attributable to region unavailability. This clause means that cloud consumers must implement appropriate 
reliability mechanisms for their applications. Further, Amazon does not provide any service credits if virtual 
machines suffer from any performance issues. A virtual machine can suffer performance degradation due to 
co‐location or hardware differences with the underlying physical machine. Amazon EC2 SLA is vague in 
terms of the specifics of scheduled or unscheduled region maintenance, which is excluded from service guar-
antee calculations

36.3.1.2 S3 Service Level Agreements

Amazon Simple Storage Service (S3) SLA (https://aws.amazon.com/s3/sla/, accessed December 26, 2015) 
provides storage request completion guarantee of 99.9% over a billing month (service guarantee time period). 
A storage request is considered failed if an S3 server returns an “Internal Error” or “Service Unavailable” 
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response to a request. These responses correspond to HTTP response codes 500 and 503. The burden of 
reporting request failure and providing evidence is on the cloud consumer.

In the S3 service, failed requests are calculated over a 5 min interval, which are then averaged over a 
billing month. The failed requests are calculated by dividing the number of requests generating an error 
response to the total number of requests in the 5 min interval. The percentage of completed transactions in 
the billing month is calculated by subtracting from 100% the average of failed request rates from each 
5 min period.

The service credit is 10% of a cloud consumer’s bill if completion rate is over 99.9%, and 25% of the 
cloud consumer’s bill if completion rate is less than 99%. Similar to EC2, a service credit is typically applied 
towards future service usage but may also be issued to the credit card that was used to purchase the services 
affected. Amazon must receive the claim by the end of second billing month from the month in which the 
incident occurred. The S3 service does not specify any performance guarantees on the storage requests.

36.3.2 Rackspace

Rackspace provides a compute service, namely, Cloud Servers (http://www.rackspace.com/information/
legal/cloud/sla#cloud_servers_next_gen_sla, accessed December 26, 2015), similar to EC2. It also provides 
a block storage service Cloud Block Storage (http://www.rackspace.com/cloud/block‐storage/, accessed 
December 26, 2015) similar to EBS, and a file and object storage service for storing and retrieving files, 
namely, Cloud Files (http://www.rackspace.com/cloud/files/, accessed December 26, 2015). Cloud Servers is 
offered as first or next generation. We now discuss SLAs for the next generation of Cloud Servers.

36.3.2.1 Cloud Servers SLA

Rackspace breaks down its Cloud Servers (next generation) SLA into the following components:

 ● management stack used to create virtual machines (cloud servers in Rackspace speak);
 ● virtual machines.

The service guarantee for the management is computed over a billing month and is defined as the percent-
age of well formed success API requests to the management stack. If the percentage of successful API 
requests is below 99%, the service credit is 30% of the cumulative Cloud Servers fees within a billing month. 
An API request is considered failed if an HTTP 5xx response is received or if no response is received at all. 
Network issues outside the Rackspace data center may cause a response to be lost; however, such losses are 
excluded from service guarantee calculations.

For virtual machines, Rackspace provides a service guarantee that its data center network, HVAC, and 
power will be 100% available in a billing month, excluding the scheduled or emergency maintenance (service 
guarantee exclusions). Scheduled maintenance does not exceed 60 minutes in any calendar month and must 
be announced at least 10 days in advance to the customer. Emergency maintenance is to address critical issues 
such as security vulnerabilities or reliability issues.

If a physical server running the virtual machine fails, Rackspace gives a service guarantee that the failed 
VM will be repaired within an hour of problem identification. Further, if VMs need to be migrated due to 
server overload, a cloud consumer is notified 24 hours in advance. The SLA does not specify if Rackspace 
performs live or offline migration of a VM.

Rackspace computes service guarantee violations in increments of 30 min for data center network, 
HVAC, and power, and in 1 hour increments for downtime associated with physical servers or migration. 
If the  data center network, HVAC, power, or physical servers are down, or if VMs need to be migrated, the 
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service credit starts from 5% of a cloud consumer’s bill up to 100% of the bill for affected VMs. The impli-
cation of Cloud Servers SLA is that Rackspace provides a service guarantee on a per virtual machine 
(instance) basis.

A customer must contact Rackspace within 30 days following the downtime of a virtual machine and 
 provide evidence of the problem in order to receive a service credit. However, it is unclear how a customer 
can provide evidence for a specific problem such as HVAC, power, or network failure. Perhaps Rackspace 
maps the customer’s evidence to specific problems and determine the service credit accordingly.

36.3.2.2 Cloud Files SLA

Rackspace provides a 99.9% request completion rate and Cloud Files server availability guarantee in a billing 
cycle (http://www.rackspace.com/cloud/legal/sla/, accessed December 26, 2015). The service is considered 
unavailable if a data center network is down, or if the service returns an error response (HTTP 500‐599 status 
code) to a request within two or more consecutive 90 s intervals, or if an average download time for a 1‐byte 
document exceeds 0.3 s.

Unavailability due to scheduled maintenance is excluded from the availability calculations. As with Cloud 
Servers SLA, the scheduled maintenance period does not exceed 60 min and must be announced 10 days in 
advance.

A customer must contact Rackspace within 30 days following the down time and provide evidence of the 
problem in order to receive a service credit.

Tables 36.1 and 36.2 summarize our comparison of compute and storage service SLAs offered by Amazon 
and Rackspace. A detailed comparison of SLAs across cloud providers can be found in our earlier work (Baset, 
2012).

36.4 Future of Cloud SLAs

In this section, we consider how a cloud provider may define SLAs for cloud services in the future.

Table 36.1 Compute SLA comparison of Amazon and Rackspace compute services

Amazon EC2 Rackspace Cloud Servers

Service guarantee Availability (99.95%) Availability
Granularity Data center Per instancea and data 

center mgmt. stack
Scheduled maintenance Unclear if excluded Excluded
Patching N/A Excluded if managed
Guarantee time period Per billing month Per month
Service credit 10% if < 99.95% 5% to 100%
Violation report respon. Cloud consumer Cloud consumer
Reporting time period N/A N/A
Claim filing timer 

period
By the end of second billing month from the month 

in which the incident occurred.
Within 30 days of 

downtime
Credit only for future 

payments
Yes (a dollar credit may be issued to a cloud 

consumer at Amazon’s discretion)
No

Note: a Implied by SLA.
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36.4.1 Service Guarantee

At the time of writing, the public cloud providers only offer uptime guarantees for IaaS compute services. 
The cloud providers may also want to offer other guarantees such as performance, security, and ticket resolu-
tion time. Providing a performance guarantee becomes necessary if cloud providers oversubscribe the 
resources of physical servers to decrease the number of physical servers used and increases their utilization. 
The oversubscription of the physical servers implies that performance of virtual machines running on physi-
cal servers may become a concern. Further, co‐location of a virtual machine with other workloads may also 
impact the CPU, disk, network, and memory performance of a VM. Moreover, enterprises purchasing cloud‐
based services may demand a minimal level of performance guarantee. Therefore, it may be necessary for a 
cloud provider to offer performance based SLAs for its IaaS compute services with a tiered pricing model, 
and charge a premium for guaranteed performance.

36.4.2 Service Guarantee Time Period and Granularity

The service guarantee time period and granularity determine the stringency of the underlying service guaran-
tee. A service guarantee is stringent if the guarantee’s metric is performance based for a fine‐grained resource 
over a small time period – for example, 99.9% of memory transactions in a 5‐minute interval must complete 
within one microsecond. Such a stringent guarantee can be loosened by aggregating the service guarantee over 
a group of resources (e.g., aggregate uptime percentage of all instances must be greater than 99.5%) or by 
increasing the service guarantee time period (e.g., over an hour). Providers can use a combination of service 
guarantee granularity and service guarantee time period to price their services appropriately. For enterprise 
and mission critical workloads, a cloud provider may have no choice but to provide finer service guarantees.

36.4.3 Service Violation Detection and Credit

At the time of writing, none of the public cloud providers automatically detect SLA violation and they leave 
the burden of providing proof of the violation on the customer. This aspect may not be acceptable to cloud 
consumers with mission‐critical or enterprise workloads. A cloud provider can differentiate the pricing of its 
offering if it automatically detects and credits the customer for SLA violation. However, the tooling cost to 
automatically measure, record, and audit SLA metrics can be a concern.

Table 36.2 Storage SLA comparison of Amazon and Rackspace storage services

Amazon S3 Rackspace Cloud Files

Service guarantee Completed transactions Completed transactions
Granularity Per transaction Per transaction
Guarantee time period Billing month Billing month
Service credit 10% if < 99.9%

25% if < 99%
10% if < 99%
100% if < 96.5%

Violation report 
responsibility

Cloud consumer Cloud consumer

Reporting time period N/A N/A
Claim filing timer period By the end of second billing month from the month in 

which the incident occurred.
Within 30 days following 

unavailability
Credit only for future 

payments
Yes (a dollar credit may be issued to a cloud consumer 

at Amazon’s discretion)
No
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36.4.4 Standardization of SLAs

The lack of maturity in cloud service delivery (PaaS and SaaS) and lack of standardization in cloud SLAs 
makes it difficult for a cloud consumer to compare them effectively. As cloud services mature, and as the 
vision of utility computing is realized, the standardization of SLA is likely to take center stage. Structured 
representation of SLAs (e.g., in XML) may be a necessary step towards standardized SLAs.

36.5 Related Work

Patel et al. (2009) describe how a Web service legal agreement framework, developed in the context of 
service oriented architecture, can be applied to cloud SLAs. Truong et al. (2012) describe how to design 
contracts and exchanges for sharing and using data among cloud providers and consumers. Alhamad et al. 
(2010) describe nonfunctional requirements that cloud consumers need to consider when negotiating SLA 
with a cloud provider. The Practical Guide to Cloud Service Level Agreements (Cloud Standards Customer 
Council, 2012) provides a guide to cloud consumers on evaluating cloud SLAs.

36.6 Conclusion

In this chapter, we have provided an overview of entities involved in cloud‐based services from an SLA per-
spective and have broken a cloud SLA into easy‐to‐understand components. We have discussed guidelines for 
consumers of cloud services to evaluate cloud providers, and then described SLAs of two well known cloud 
providers. Finally, we have discussed future of SLAs for cloud services.

The rapid evolution of cloud services makes the standardization of cloud services challenging. The lack of 
standardization of cloud‐based services in turn makes it difficult to compare SLAs of different cloud provid-
ers. We hope that, as cloud services evolve, they will become more standardized as well as their SLAs.
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37.1 Introduction

Cloud computing has emerged as a new computing paradigm offering subscription‐oriented services in place 
of traditional in‐house computing infrastructure. Through its utility computing concept, with a pay‐as‐you‐go 
model, enterprises can avoid upfront investment for establishing infrastructures to provide computation 
power in the face of uncertain or fluctuating demand. For system administrators in an enterprise, instead of 
installing new servers and network equipment, they can easily acquire computing resources from one or more 
cloud providers with a few clicks on a Web page and pay only for their actual use. They only need to select 
one or more cloud providers and services that fit for their applications from Inter‐cloud environment (Buyya 
et al., 2010).

Throughout this chapter, “cloud provider” or “provider” refers to a company or an organization that 
 provides public cloud computing services. “Customer” refers to a company, an organization or a person who 
uses the cloud computing service offered by cloud providers to deploy their application and serve to “  end‐
users.” A “system administrator” is a person who is in charge of managing computer resources and configur-
ing infrastructures such as servers and network. In short, an enterprise will become a customer of the cloud 
provider when the system administrator in the enterprise decides to use the cloud service of the provider.

Cloud computing delivers its service to customers in three models: software as a service (SaaS), platform 
as a service (PaaS), and infrastructure as a service (IaaS). SaaS provides a complete stack of applications 
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from the cloud provider, whereas PaaS provides software platforms that can be used by the customer’s appli-
cation. In both cases, the provider is in charge of managing and controlling the underlying environment of the 
services. In contrast, IaaS provides low‐level computer resources – virtual machines (VMs) on which appli-
cations are deployed. Thus, the customer must configure and control the computing resources of VMs, 
whereas only the underlying physical infrastructures are managed by the provider.

When deploying a SaaS or PaaS service from multiple cloud providers, system administrators have less 
need to take infrastructural decisions because services are limited to specific applications or platforms, which 
have fewer options to be chosen, and cloud providers offer automatic features for their services such as 
 automatic scaling.

On IaaS, however, system administrators are expected to make more decisions, because the parameters of 
VMs can be selected, which gives rise to several challenges. First of all, there are a vast number of options 
regarding the dimensions and quantities of VM resources from several possible providers. In most providers, 
the size of the VM is defined by the number and power of CPU cores, the amount of RAM, and the size of 
storage space, which comes with either a predefined amount set by the provider or is flexibly configurable by 
the customer. As each provider has its own set of resource types with different pricing policies, there is no 
common rule for definition of VM types. For example, Amazon EC2 ( http://aws.amazon.com/ec2/, accessed 
December 26, 2015) offers 39 predefined types of VM depending on the sizes of resources, whereas Microsoft 
Azure (http://www.windowsazure.com/en‐us/solutions/infrastructure/, accessed December 26, 2015) has 
30  different VM types. Moreover, providers such as CloudSigma (http://www.cloudsigma.com/#features, 
accessed December 26, 2015) provide a more flexible configuration where a resource set is freely selectable 
by the customer without any fixed size. In addition to the size of the VM, several factors affect the decision 
on how the price for VM usage is determined, such as choice of operating system, location of the datacenter, 
and contract duration. In summary, system administrators are in charge of deciding the best option among 
various resource types, pricing schemes, and cloud providers.

Secondly, estimating the right amount of resources is important in order to determine the optimal size of 
VMs. Although cloud computing provides elastic scaling, which allows changes in the number and types of 
VMs after setup, determining the initial resource set is vital as it reduces the need to reconfigure, which demands 
time to be completed as it requires booting new VMs with the new configuration. Meanwhile, nonfunctional 
requirements, such as the expected number of end users, usage patterns and acceptable response time, are 
obtainable from accumulated statistics for existing application, or can be predicted from the application 
 specification. Nonetheless, converting nonfunctional requirements to low‐level VM resource requirements, 
such as number and computing power of CPU cores and amount of RAM, is difficult without comprehensive 
knowledge about the underlying infrastructure. By estimating proper resource sizes, an enterprise can avoid 
overprovision, leading to spending funds with unnecessary resources, or underprovision causing performance 
loss or failure of the application, which results in end‐user dissatisfaction and consequent loss of revenue.

Finally, VMs must be allocated from the chosen provider with the preferred resource type within the set 
amount of time. As customers do not have control over the cloud infrastructure, there are no guarantees that 
resources will be allocated to the customer unless some type of reservation is made beforehand. When no 
reservation is in place, resource unavailability in one provider forces system administrators to find another 
provider that meets all the determined requirements and is able to fulfill the resources request. It requires 
extra effort and cost to the system administrator and, in the worst case, it may cause a service failure if it takes 
too long to be accomplished.

In this work, we propose an architecture to address the challenges emerging from the system administra-
tor’s perspective. Using our architecture, administrators can acquire the desired number of VMs from the best 
provider with proper resource size that covers their nonfunctional requirements. This will help system admin-
istrators to migrate their applications to the cloud by setting up the required IT infrastructure without being 
too concerned about calculating amounts of resources. Furthermore, enterprises can reduce the cost of cloud 



448 Encyclopedia of Cloud Computing

usage by selecting the optimal set of resources for their applications based on the supplied applications’ 
 nonfunctional requirements.

The rest of this chapter is organized as follows. We look at related work in section 37.2 and explain the back-
ground to this work in section 37.3. The architecture is described in section 37.4, with details of each compo-
nent and its implementation. In section 37.5, we present the performance evaluation of a system  prototype 
based on the proposed architecture. Finally, section 37.6 concludes the chapter and proposes future work.

37.2 Cloud Provisioning, Monitoring and Resource Selection

Several studies have been conducted by different groups in cloud provisioning, monitoring services, and 
resource selection. As our proposal integrates each of these features into one single framework, individual 
works are reviewed for each of these areas.

37.2.1 Cloud Provisioning

Resource provisioning in cloud computing refers to the decision about number, type, and location of resources 
to be deployed for a specific purpose. Definition of resources for provisioning may also include details on 
required processors, amount of storage, network bandwidth, and other relative resources from the cloud pro-
vider. The large number of variables related to resource definition makes it a complex problem. Nevertheless, 
if multiple cloud providers are to be used simultaneously, the problem becomes even more challenging.

Several approaches have been proposed for resource provisioning on multiple cloud providers. Grozev and 
Buyya (2014) reviewed and compared the architectures and brokering mechanisms of those intercloud systems. 
The authors proposed taxonomies for intercloud architectures and presented detailed surveys of each project.

In centralized federation architectures for interclouds, there exists a central component that aggregates the 
status of cloud providers and finds available resources from participating datacenters. For example, if one 
provider receives a request to provision resources from its client but cannot provide them, the request is redi-
rected to another provider that can offer the desired resources.

Peer‐to‐peer federation architecture is similar to centralized federation approach except for the absence of 
the central component. In this architecture, cloud providers communicate and negotiate with each other 
directly, without a centralized server.

Independent intercloud approaches enable resource provisioning from multiple clouds without direct 
exchange between providers, as in the previous approach. This is achieved with an independent service or 
library that supports multiple cloud providers. For example, RightScale (http://www.rightscale.com/cloud‐
portfolio‐management/benefits, accessed December 27, 2015) gives a single Dashboard and APIs to manage 
multiple clouds. They provide a configuration framework with templates to set up the VMs easily. They also 
provide an easy management tool on multiple cloud providers but do not perform the provider selection.

Independent approaches also include providing APIs for cloud application development and support 
deployment on multiple clouds, which allows developers to regard the heterogeneous clouds as a single plat-
form with transparent access. Instead of developing an application using different APIs provided by each 
provider, these libraries include homogeneous controlling and provisioning functions supporting multiple 
providers. Apache Jclouds (http://jclouds.apache.org/, accessed December 27, 2015), for example, is a Java 
library for Java‐based interaction with various providers, which supplies a provider‐independent API for 
execution of operations regarding provisioning of computing resources and storages. While these libraries are 
helpful in developing an application able to execute on various providers, they just provide an alternative to 
provider‐specific APIs, and therefore they do not offer cloud provider selection or automatic resource provi-
sioning, which is still a task of system administrators’ using such libraries.
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37.2.2 Cloud Monitoring Services

Cloud monitoring is an important service to check the health of each datacenter and compare different types 
of VMs in different cloud providers. Infrastructure as a service cloud providers offer the computing resources 
in terms of VM, which is composed of the unit of CPU cores, the amount of memory, and the size of disk 
spaces. These terms are defined by the provider itself; thus, it is not straightforward to compare different 
types of VMs in different providers by just comparing the number of computing units they advertise. 
Periodical checks are necessary to determine the reliability and the availability of the provider. These metrics 
can be obtained by measuring the percentage uptime of the provider.

The importance of knowing the performance of different public cloud providers has encouraged the devel-
opment of monitoring services that report metrics to a give a better picture of the real behavior of the different 
services.

CloudHarmony (http://cloudharmony.com/, accessed December 27, 2015) reports results of benchmarks in 
regard to performance, network, and uptime for a wide set of public cloud providers. To collect these metrics, 
monitoring services are located inside and outside of the cloud provider and some benchmark applications 
are also executed on behalf of CloudHarmony.

37.2.3 Cloud Providers Ranking and Selection

Before starting the provisioning process, a provider and the type of resources that will satisfy all the require-
ments should be chosen by the administrator. The selection criteria can vary depending on the requirements. 
Constraints are requirements that must be fulfilled by the cloud provider. For example, some government 
applications may be restricted to run within their national territory due to legislation. In such cases, geo-
graphical constraints should be applied to choose the provider, so that providers who have no datacenter in 
such a nation will be excluded from the choice. Preferences are the criteria for ordering the providers. A 
particular percentage of uptime from the datacenter can be one of the preferences when an application needs 
higher reliability. Price of the service can be another preference if the system administrator is more concerned 
about the cost, resulting in the selection of the most economic provider.

Some research in this area has already been conducted by several scholars. Some of it is introduced in the 
following paragraphs.

Li et al. developed CloudCmp (Li et al., 2010), which compares different cloud providers by using a tool 
to perform systematic benchmarking. It evaluates the performance of elastic computing, persistent storage 
and intracloud and wide‐area networking for each provider, and compares providers using unified metrics in 
each service. CloudProphet (Li et al., 2011) estimates applications’ resources and performance in the cloud. 
This uses the trace‐and‐replay method, which records the workload of an application from a traditional infra-
structure, and measures performance when the recorded workload is replayed in a cloud environment.

SMICloud (Garg et al., 2011) is a framework to rank cloud providers for a given application considering 
the service measure indexes (SMI): accountability, agility, assurance of services, cost, performance, security, 
privacy, and usability. It operates by assigning different key performance indicators (KPI) to evaluate these 
indexes in different cloud providers.

Zhang et al. (2012) proposed a declarative recommender system to select a cloud provider. The system 
receives as input requirement parameters from system administrators and determines the best provider that 
satisfies the requirements. However, the types of input parameters are resource sizes, which should be trans-
formed from nonfunctional high‐level requirements.

Rak et al. (2013) presented a cost / performance evaluation tool on top of the mOSAIC platform (http://
www.mosaic‐cloud.eu/, accessed December 27, 2015). Evaluation is performed by simulating and estimating 
resources, cost and response time of an application. The authors propose the use of nonfunctional require-
ments to create a system that suggests the best option among a set of cloud providers.
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37.3 Resource Provisioning driven by Nonfunctional Requirements

Resource provisioning in an organization is usually performed by system administrators. They are in charge 
of the IT infrastructure and make decisions about where to deploy applications. The system administrators 
also fix problems related to failures of the hardware and software that support this infrastructure. Although 
the move to the cloud frees system administrators from managing underlying IT infrastructure, and the result-
ing hardware and software issues, it also brings new challenges.

Before deploying an application in the cloud, system administrators need to consider the quantity of 
resources this application will consume in terms of resource capacity as defined by different cloud providers. 
It is a challenging task because this estimation may differ from the one for an in‐house IT infrastructure, and 
from one cloud provider to the other. The constraints for cloud selection must also be considered as the 
selected provider should fulfill every requirement.

After determining resources and other requirements that the application needs to execute satisfactorily in 
the cloud, the next task to be performed by system administrators is to decide which cloud providers can sup-
ply the estimated resources and which of them are more appropriate to host the application. This selection of 
candidate cloud providers is a laborious task as there are a large number of available providers, each offering 
varieties of services, which cannot be directly compared with the services provided for others.

More than 95 public cloud providers are registered by the monitoring service CloudHarmony. Each offers 
a diverse range of services. For example, GoGrid (http://www.gogrid.com/, accessed December 27, 2015) 
offers just one type of machine x‐Large, that is configured with eight cores of CPU and 8GB of memory, 
while Amazon offer m1.xlarge, m2.xlarge, m3.xlarge, and c1.xlarge configurations, all of them with different 
quantities of resources. Moreover, other cloud providers, such as CloudSigma, do not have a default configu-
ration but allow flexible configuration of resources.

After selecting the candidate providers that can supply the services to deploy the application, the next 
 concern of system administrators is to obtain the required resources from cloud providers. This is a challenging 
task because APIs and interfaces to communicate with cloud providers are diverse and nonstandardized. 
Furthermore, latency in communication, provider’s outage, and eventually lack of resources can prevent the 
administrator’s instructions from being carried out. In this case, another provider would need to be contacted 
to obtain resources.

As was discussed previously, these activities of estimating resources, selecting cloud providers, and allo-
cating resources show that the work performed by system administrators is still complex. Solutions should 
therefore be developed for support system administrators to reduce this complexity and to motivate organiza-
tions to move their applications to the cloud.

37.3.1 Nonfunctional Requirements

Currently, when system administrators want to acquire resources from IaaS cloud providers, they need to 
know the details of the resources they need. For example, consider a situation where the local infrastructure 
has extra resources to execute applications successfully. In this environment, administrators may know about 
the expected behavior and performance of their applications and this knowledge can be represented using 
nonfunctional requirements.

Nonfunctional requirements, according to the definition provided by (Glinz 2007), are attributes and 
 constraints of an application created to achieve some level of quality and performance. Therefore they are not 
related to functions that the systems should carry out, but to properties that the systems should have, includ-
ing availability, reliability, portability, cost, efficiency, usability, and testability. For example, in a shopping 
application, nonfunctional requirements can include the number of online transactions it can support; 
 however, shipment tracking functionality is not included in the nonfunctional requirements.
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A nonfunctional requirement can be described with features associated with it. For example, to describe 
the cost of the local IT infrastructure, the related features are the maximum price to spend in the new hard-
ware acquisition and the price for maintenance of the infrastructure. In the specific context of clouds, the 
related feature could be the maximum price for using the resources during a time period.

Some of the nonfunctional requirements that can be used to evaluate cloud providers are described below:

 ● Portability is related to the ease with which an application can be executed on various platforms. It 
includes a type of operating system or image running on VMs.

 ● Reliability includes mean time to repair (MMTR) and mean time to fail (MMTF) of cloud providers, 
which affect the probability of system failure. The type of environment, either on development, on test, or 
in production, will decide the level of reliability. It also relates whether an application is acceptable to use 
Amazon’s spot price model, since the spot model sacrifices reliability while low cost can be achieved. 
Using this model, users can bid for resources that will be delivered only if the bid exceeds the market price 
of the service but once the bid becomes less than the market price, the computing service can be removed 
without any notice.

 ● Availability corresponds to the system’s ability to respond to user requests, including uptime percentage 
of the cloud provider and locations of end‐users. When multiple machines are required to balance the 
overload, load balancing is crucial feature to achieve high availability.

 ● Efficiency is a requirement related with the application performance such as expected throughput and 
response time of an application. Also, it is important to know the type and the amount of workload that 
applications should support, since optimal scheduling or provisioning techniques that maximize the per-
formance can be chosen based on that information.

 ● Cost is related to how much the customer is willing to pay for a service that satisfies all the other nonfunc-
tional requirements.

Features associated with each nonfunctional requirement are presented in Table 37.1. These nonfunctional 
requirements are considered to design the architecture for resource provisioning described in the following 
section.

Table 37.1 Initial nonfunctional requirements to consider in the system

Nonfunctional requirement Relevant features

Portability Virtual machine’s operating system or image
64 or 32 bit architecture of the H/W and O/S

Reliability Mean time to repair (MMTF)
Mean time to fail (MMTR)
Requires application backup
Type of environment (development, test, or production)
Allows spot price model

Availability Uptime percentage
End‐user locations
Requires load balancing for high availability

Efficiency Expected throughput
Response time
Type of workload, amount of workload

Cost Maximum price to pay for a window of time
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37.4 System Architecture

The architecture is composed of three independent modules: high‐level nonfunctional requirements (NFR), 
translator, cloud service selector and resource allocator. Figure 37.1 shows the general view of the system. 
Each of its components is detailed next.

The high‐level NFR translator translates the nonfunctional requirements provided by the system adminis-
trator into the technical specification for a cloud infrastructure. It receives nonfunctional requirements, such 
as efficiency, availability, and reliability of a specific application, and estimates the amount of resources, such 
as number of CPU cores, memory, and storage requirements. The output also includes specific constraints 
that cloud providers should take into account, such as locations or contract periods, which are evaluated from 
the given nonfunctional requirements. When it calculates the estimated resources, it interacts with the 
 application profile database to store and retrieve the profile for the application. Furthermore, this module also 
interacts with the cloud information database to generate the selectable input options, such as available data-
center locations and contract periods.

The cloud service selector is responsible for recommending the cloud providers that are more adequate 
for hosting an application. For this purpose, it receives the estimated size of resources and other parameters 
such as the constraints and the prioritization of the nonfunctional requirements, and then builds a list of 
suggested cloud configurations, including the recommended provider. It interacts with the cloud informa-
tion database, which contains all the information about various resource types in each provider and their 
pricing information, to apply the constraints and calculate the total cost incurred by the recommended 
 configuration.

The resource allocator searches for available resources based on the recommended providers and acquire 
resources directly from cloud providers. For this task, it uses the output list given by the cloud service selec-
tor and tries to obtain VMs from the most suitable provider. If the requested resources are not available from 
the top‐listed provider, it tries to allocate the resources from the second best provider. The process continues 
until either all resources are allocated or no more providers are left in the list. It interacts with the provider 
credential database in order to obtain login credential information for each provider.
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Figure 37.1 System architecture
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As each component is designed to work independently, one component can be substituted by another pro-
gram or module with better performance. For example, the declarative recommender system (Zhang et al., 
2012) can be used to produce the recommended providers list that is fed into the resource allocator. As their 
system includes blob storage and network usage costs, it might produce better results for those services, while 
our cloud service selector focuses more on computing services. In such case, the resource allocator could read 
the output of the declarative recommender system and try to allocate resources.

37.4.1 System Components

37.4.1.1 High‐Level NFR Translator

The high‐level NFR translator evaluates the nonfunctional requirements and translates them into the technical 
parameters for cloud providers. The architecture proposed for the cloud resources estimator follows a client‐
server model of three tiers composed of database, business, and presentation tier.

The presentation tier corresponds to the graphic interface in order to access the application functionality. 
It allows system administrators to select requirements, change their orders and enter the detailed parameters 
of each requirement.

The business tier, containing the main logic, retrieves data from the database, creates a workflow to evalu-
ate nonfunctional requirements and performs estimating the amount of resources and determining the 
 constraints. Figure 37.2 presents the class diagram of the business tier.

When the CloudEstimator receives the application and non‐functional requirements from the presentation 
tier, it begins the nonfunctional requirements evaluation process using the WorkflowEvaluator and builds up 
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Figure 37.2 Class diagram of high‐level NFR translator
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the CloudTotalRequest object that holds information of required resources. The order of evaluation for each 
requirement is determined according to its priority, given by system administrators. Also, for each nonfunc-
tional requirement, the associated evaluator class is used to update CloudTotalRequest. For example, 
NFEvaluatorAvailability is used to evaluate availability requirement and change value in CloudTotalRequest 
that adds a constraint to meet the availability requirement.

Among various evaluators, the efficiency of the evaluator is a key to estimating the size of resources. In order 
to evaluate the efficiency and estimate resources, we propose the use of an application profile  technique that 
runs the application components with a given workload. This technique has been widely adopted in the litera-
ture (Shimizu et al., 2009; Li et al., 2010, 2011). The results of the execution, containing information about 
resources consumed and performance achieved, are stored in the application profile database. When the com-
ponent can be profiled in different infrastructures, better estimations can be achieved (Shimizu et al., 2009).

Once the profile is obtained, the information is fed into an estimator model. The new data obtained using 
the model should also be stored in the database and possibly updated with the values obtained after the appli-
cation is in production in the cloud infrastructure. The data can also be used to update the model itself to 
increase its accuracy. After profiling and modeling the application and estimating the required resources, the 
output is generated by updating the existent CloudTotalRequest with the result of the estimation. Figure 37.3 
summarizes the process.

In the database tier, details of the components that compose the applications are stored along with their 
profiles when executing on different infrastructures. An application comprises several components, and the 
throughput of the entire application can be predicted based on the performance of individual components and 
the cost of communication among them, as discussed by Stewart and Shen (2005). This approach has the 
advantage of allowing the estimation of the application performance with components deployed in different 
infrastructures and possibly in different cloud providers. It also retrieves entries from the cloud information 
database to show a list of requirement options for input parameters when the initial view is available.
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37.4.1.2 Cloud Service Selector

The cloud service selector lists the recommended providers and their services by analyzing the estimated 
resources and constraints. The components are designed following the Model‐View‐Controller model, as it 
can easily separate each component by reducing dependencies on other components. Figure 37.4 shows the 
architecture of the cloud service selector.

The component receives the estimated resources and constraints as input from the high‐level NFR  translator 
through its view subsystem. Once the information is provided to the controller, it retrieves records satisfying 
the requirements from the model through a query to the cloud information database. The database stores 
information about providers and their services including resource configurations, geographical locations, 
operating systems, uptime percentages, contract periods, prices, and other parameters to evaluate the 
 constraints and the cost.

The requirements are used as constraints for the model – for example, the retrieved records should have 
more resources than the requirements, matched location and operating system, and a shorter contract period. 
When three months’ contract is specified, for example, a service with a 1 month contract can be retrieved but 
a service with a 6 months contract cannot.

Once it gets all candidate providers and their service types, the model calculates the expected price based 
on the use period. For some providers, such as GoGrid, only the contract period affects the total price. However, 
in other cases, such as Amazon’s Reserved, the actual running time of the instance influences charges, in 
 addition to the upfront fee for the contract establishment. Hence, the actual use period should be included to 
calculate the correct price. Once the contract and the actual use period are input by the system administrator, 
total cost can be simply calculated using pricing information stored in the cloud information database.

After applying constraints and calculating the actual price for each provider, a list of providers is generated 
and prioritized according to the order. If the system administrator selected price as the most concerning 
aspect, the cheapest provider will be the first entry of the output list. In other cases, the one with greater 
 percentage of uptime will be the first if the administrator weights availability more than the cost.
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37.4.1.3 Resource Allocator

The resource allocator interacts with providers and requests allocation of the resources defined in the list of 
specifications. The component requires a cloud configuration list as its input, which is the output from the 
selector. Each row in the list contains information about the provider, resource set, location, image informa-
tion, and the number of machines to be allocated.

Figure 37.5 describes the flow of the resource allocator. It starts parsing the input configuration list and 
building a collection of cloud configuration objects storing the parsed information. Once all elements are 
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parsed, it tries to create VMs for the provider using those objects. When the system connects to the provider, 
it authenticates the identity using credentials stored in provider credential database. If the connection is suc-
cessfully established, it requests the number of VMs with the specific information of resource, location, and 
image to the cloud provider with a timeout. Once either the allocation succeeds or the timeout is exceeded, 
the allocator analyses the results and proceeds to the next option.

Additionally, partial allocation on different providers is supported by the resource allocator. Depending on 
the selection of whether the allocation needs to occur on a single provider or can be split among multiple 
providers, there is an additional process to be carried out. If the partial allocation to several providers is 
allowed, the remaining number of VMs is added to the next option in the list. If the input specifies that only 
one provider can be used, it does not proceed with the allocation and repeats the process for the next entry.

37.4.2 Implementation

In order to illustrate and evaluate the functionality of the proposed architecture, we implemented a prototype 
for the high‐level NFR translator, cloud service selector, and resource allocator. Each component is  developed 
separately in order to ensure the independence of the component.

The high‐level NFR translator is implemented using JavaEE, JavaEE GlassFish and MySQL, and is devel-
oped on a three‐tier basis including the application profile database. The component’s prototype is configured 
with four nonfunctional requirements: portability, availability, reliability, and efficiency. The requirements 
are selected with the subfeatures described in Table 37.1, which are necessary to create a resource estimation 
request.

The cloud service selector is implemented with conventional model‐view‐controller architecture using 
Ruby on Rails. The cloud information database is also included to store different resource types, pricing 
policies, and datacenter locations of each provider. By enabling the input of resource requirements, it displays 
the prioritized providers’ list as an output.

The resource allocator is implemented with Java on console interface. In order to cover various providers 
in a single program, we use Jclouds, multicloud supporting library, written in Java. Jclouds allows developers 
to use homogeneous APIs to connect to different clouds, thus developers do not need to use different APIs for 
different providers. Instead, Jclouds provides a single interface to connect, create, and destroy VMs. Also, in 
the prototype, the provider credential database is implemented as a list of provider name, user name, and 
password, and parsed by the resource allocator.

37.5 Performance Evaluation

Evaluation is performed independently for each module of the system, as they are designed and developed 
independently. We evaluate the high‐level NFR translator in order to have its performance measure. The 
cloud service selector is assessed in order to evaluate the functionality of selecting the cloud provider candi-
dates that meet requirements, and to evaluate the benefits of prioritizing the candidate providers according to 
nonfunctional requirements. Finally, the performance of the resource allocator is also evaluated.

37.5.1 High‐Level NFR Translator

The goal of this experiment is to evaluate whether the proposed architecture is able to scale dynamically 
when the number of requirements and requirements’ features increase.

The platform used to test the application is the Australia Research Cloud NeCTAR (http://www.nectar.org.au/
research‐cloud, accessed December 27, 2015). This experiment uses an instance of type m1.small. Instances of 
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this type have 4 GB of RAM, 1 CPU core and 10 GB of disk. The Operating System used in the VM is Ubuntu 
13.04.

Requests with a varying number of requirements and a varying number of features per requirement are 
generated. The number of nonfunctional requirements varies from 10 to 300, in steps of 10. For each incre-
ment of requirements and their features, we measure the time taken to evaluate nonfunctional requirements 
and to transform them into technical parameters. The result, shown in Figure 37.6, demonstrates that the 
prototype scales satisfactorily when the number of requirements increases. It takes less than 4 s with 300 
requirements and 300 features input, which is an acceptable time to process such a number of requirements.

37.5.2 Cloud Service Selector

The cloud service selector should be able to select a valid service and calculate the precise price based on the 
given requirements. It also should prioritize the provider candidates according to the priority of the nonfunc-
tional requirements as defined by the system administrator.

For the evaluation of the selector, the contents in the cloud information database are crucial to the result, 
as the quality of the result depends on the database information. For the purpose of this this experiment, we 
create a static database with synthetic data that allowed us to test the functionality. Table 37.2 shows a part of 
the database elements used for the experiment, with various instance types and pricing schemes of different 
providers. In order to validate the system, we input the parameters of the user case described in Table 37.3 
into the cloud service selector, and obtain the result of the ordered list.

The results (Table 37.4) show that the system suggests only services whose resources are greater than 
required, with any operating systems, in any locations, and for any contract periods less than 3 months. For 
example, the service from Provider 1 with 12 months contract is excluded, and the lowest cost service from 
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Provider 3 is placed in the first rank. In addition, we evaluate the benefits of prioritizing by another nonfunc-
tional requirement: response time. When an enterprise can make more profit with faster response time by 
providing better user experience, it will be willing to pay more for it. The system works precisely as it 
 prioritizes the provider with fastest response time to the top of the list although its price is higher than others. 
As a result, the services of Provider 1, previously ranked number 7 in order of price, become the most suitable 
service with the fastest response time.

Table 37.2 Database information used for cloud service selector experiment

Provider Resource 
type

CPU 
(cores)

RAM 
(MB)

Disk 
(GB)

OS Datacenter 
location

Contract 
period

Resp. time
(ms)

Provider 1 m1.small 1 1700 160 Windows Oceania None 10.39
Provider 1 m1.small 1 1700 160 Windows Oceania 12 month 10.39
…
Provider 2 small 1 1000 50 Linux Europe 1 month 25.40
…
Provider 3 custom (Max) (Max) (Max) Linux Europe 1 month 31.60

20 32 000 1024
Provider 3 custom (Max) (Max) (Max) Linux N. America 1 month 18.02

20 32 000 1024
Provider 3 custom (Max) (Max) (Max) Linux N. America 3 month 18.02

20 32 000 1024
…

Table 37.3 User case for cloud service selector validation

Field Value

Resource CPU = 1
RAM = 512 MB
Disk = 20 GB

Operating system Any
Location Any
Contract period 3 months
Allow unreliable services? No
Usage period 3 months
Order by Cost

Table 37.4 Results from cloud service selector

Rank Provider Resource type OS Datacenter Location Contract period Resp. Time Price

1 Provider 3 custom Linux N. America 3 months 18.02  81.11
2 Provider 3 custom Linux N. America 1 month 18.02  83.57
3 Provider 3 custom Linux Europe 1 month 31.60  91.80
4 Provider 2 small Linux Europe 1 month 25.40 108.75
…
7 Provider 1 m1.small Linux Oceania None 10.39 172.80
…
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37.5.3 Resource Allocator

The resource allocator is tested using the list of cloud configurations that is obtained from the selector. 
Although the system supports every provider supported by Jclouds, we evaluate it with “t1.micro” instances, 
cost‐free VMs provided by Amazon’s EC2 service.

We build a cloud configuration list with two candidate configurations with Amazon‐EC2, two t1.micro 
instances, Ubuntu 12.04 and Australia (ap‐southeast‐2) location, and another with an east United States (us‐
east‐1) location. The allocator firstly tries to acquire VMs described on the first element, the Australia one. If 
the first request fails due to lack of resources in Australian datacenters, the allocator attempts to the next 
candidate. When the system was executed, it succeeded in allocating two machines in Sydney, and we can 
find the successfully created machines on the control panel of Amazon’s web site.

37.6 Conclusions and Future Directions

Cloud computing enables a major paradigm shift in the way that computing resources are acquired. Without 
any hardware acquisition, system administrators are able to obtain computing power to deploy their services 
within minutes using cloud computing. It also makes it possible to pay only for resources consumed with no 
minimum contract and upfront costs.

However, deploying applications in the cloud is still a complex task for system administrators. They are 
expected to estimate resources required by their applications, which may be difficult because they frequently 
do not know exactly how many resources are actually necessary. Furthermore, administrators have to select 
the best cloud service amongst various providers and different types of services, and acquire them for 
 applications to deliver the expected performance.

In this chapter, we proposed an architecture supporting system administrators in the arduous task of deploy-
ing applications on the clouds in three ways. Firstly, it translates nonfunctional requirements from adminis-
trators into cloud resource parameters. Secondly, it selects the most convenient provider among different 
candidates, which satisfies every requirement. Finally, the actual VMs are allocated automatically from the 
selected provider.

The proposed architecture is also verified through evaluation and validation. Each component is validated 
in performance and scalability for various sets of nonfunctional requirements. Also, we show that the number 
of VMs with adequate resources is actually allocated from the selected cloud provider at the end of the process.

We recommend a few areas for further work. The proposed architecture can be applied to measure the 
performance of various techniques in each module. Several resource estimation techniques can be applied to 
the estimator in the architecture, which can lead to the most accurate methodology to estimate resources in 
the clouds being found. Similarly, different approaches to select the best provider can be used for the selector 
module. In addition, the cloud information database can be improved by applying dynamic updates; thus, it 
will keep the consistency between the system and the providers, and will provide more accurate selection by 
including real‐time  metrics measured by monitoring services. Finally, dynamic resource provisioning can be 
applied to the system, which can dynamically perform the whole provisioning process depending on the 
real‐time workload measured from the running application.

References

Buyya, R., Ranjan, R. and Calheiros, R. N. (2010) InterCloud: Utility‐Oriented Federation of Cloud Computing 
Environments for Scaling of Application Services. Proceedings of the Tenth International Conference on Algorithms 
and Architectures for Parallel Processing. Springer‐Verlag, Berlin, p. 13.



Automatic Provisioning of Intercloud Resources driven by Nonfunctional Requirements of Applications 461

Garg, S. K., Versteeg, S. and Buyya, R. (2011) SMICloud: A framework for comparing and ranking cloud services. 
Proceedings of the Fourth IEEE/ACM International Conference on Utility and Cloud Computing (UCC’11), pp. 210–218.

Glinz, M. (2007) On non‐functional requirements. Proceedings of 15th IEEE International Requirements Engineering 
Conference (RE ’07), pp. 21–26.

Grozev, N. and Buyya, R. (2014) Inter‐Cloud architectures and application brokering: taxonomy and survey. Software: 
Practice and Experience 44(3), 369–390.

Li, A., Yang, X., Kandula, S. and Zhang, M. (2010) CloudCmp: Comparing Public Cloud Providers. Proceedings of the 
Tenth ACM SIGCOMM Conference on Internet Measurement (IMC ’10). ACM, New York, NY, pp. 1–14.

Li, A., Zong, X., Kandula, S., et al. (2011) CloudProphet: Towards Application Performance Prediction in Cloud. 
Proceedings of the ACM SIGCOMM 2011 Conference (SIGCOMM’11). ACM, New York, p. 426.

Rak, M., Cuomo, A. and Villano, U. (2013) Cost / performance evaluation for cloud applications using simulation. 
Proceedings of 2013 IEEE 22nd International Workshop on Enabling Technologies: Infrastructure for Collaborative 
Enterprises (WETICE 2013), pp. 152–157.

Shimizu, S., Rangaswami, R., Duran‐Limon, H. A., and Corona‐Perez, M. (2009) Platform‐independent modeling and 
prediction of application resource usage characteristics. Journal of Systems and Software 82(12), pp. 2117–2127.

Stewart, C. and Shen, K. (2005) Performance modeling and system management for multi‐component online services. 
Proceedings of the Second Conference on Symposium on Networked Systems Design and Implementation, Berkeley, 
CA, p. 71.

Zhang, M., Ranjan, R., Nepal, S., et al. (2012) A Declarative Recommender System for Cloud Infrastructure Services 
Selection. Proceedings of the Ninth International Conference on Economics of Grids, Clouds, Systems, and Services 
(GECON 2012) (eds. K. Vanmechelen, J. Altmann and O. Rana). Springer‐Verlag, Berlin, Heidelberg, pp. 102–113.



Encyclopedia of Cloud Computing, First Edition. Edited by San Murugesan and Irena Bojanova. 
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

38.1 Introduction

Prior to their widespread adoption, it was clear that cloud technologies would pose problems for current legal 
systems (Armbrust et al., 2009). Many laws and regulations were written under the pretense that organizations 
handled all of their IT needs themselves, and any that were handled by another party could be done so “cleanly” 
(i.e. with a clear division of duties), albeit with significant time and effort. Thus, while laws that affected infor-
mation technology were not without ambiguity, the line between a client and entity that provided a service to 
or on behalf of that client was fairly distinct.

Cloud computing challenged this assumption in many ways. First, the division of duties became less clear, 
as clients could choose to outsource degrees of their IT needs as delineated by the three types of cloud services: 
infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS), as addressed 
in previous chapters. Second, increasing bandwidth, storage, and processing capacities enabled this provision-
ing of services to be accomplished faster, easier, and more seamlessly than ever before, sometimes with the 
click of a button. Current laws were not designed for such rapid change or the increasing probability that pro-
vider and client would be governed by different legal systems, sometimes without either having knowledge of 
this occurring (Mather et al., 2009; Mowbray, 2009). Third, laws were already contending with the growing 
use of social networking and other uses of personal information in online transactions, and cloud computing 
only served to complicate these matters further.

This chapter is intended to serve as an introduction to law and the cloud, and will provide basic infor-
mation regarding the legal landscape in which the cloud exists; a survey of major laws across the United 
States, Europe, and elsewhere that affect cloud operations (Sotto et al., 2010); the complex issue of 
transborder data flows, and the variety of mechanisms available to organizations to achieve compliance; 
and the usage of contracts between cloud service providers and their clients. The chapter will focus on 
legal concerns of cloud service providers, their clients, and the relationship between the two, based on 
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US and European jurisprudence. The laws spoken to herein are frequently reinterpreted, supplemented, 
or modified, and there remains ambiguity in their application. As such, only the most basic, fundamental 
components of these laws will be considered, and under no condition should any content be used as a 
substitute for legal counsel.

This chapter will use the following terms and meanings frequently for convenience; they are similar, but 
not identical to, those found in many major data protection laws worldwide. Additionally, despite differences 
in authority and origin, for the purposes of this chapter, the term “law” will refer to laws, regulations, statutes, 
and directives unless otherwise stated.

 ● Cloud Service Provider (CSP): an entity that provides cloud services to a cloud client, e.g. IaaS, 
PaaS, and SaaS.

 ● Cloud Client (CCL): an entity that obtains cloud services from a cloud service provider.
 ● Data: most laws affecting the cloud described in this chapter are concerned with the security and privacy 

of personal information (Hon et al., 2011), so in the context of this chapter, “data” will refer to personal 
information about an individual, such as first name and last name, address, telephone number, and so 
forth, unless otherwise indicated.

 ● Jurisdiction: a geographic area with an established legal system or body of law and means of enforcement, 
for example California, United States, or European Union. Note that a single location can be considered 
to fall under multiple jurisdictions; for example, an entity located in the state of California is subject to 
both California State law and Federal law.

 ● Trans‐border data flow: the action of data being transferred from one jurisdiction into another.

38.2 Law, Technology, and the Cloud

Previously issued laws and regulations governing data handling and usage – even those enacted as recently 
as the late 1990s and early 2000s – were largely created under the assumption that the IT infrastructure 
of their time had neither the bandwidth, storage, controls, nor architecture for data to change hands or 
jurisdiction without considerable effort. The emergence of cloud computing reduced this effort, as cloud 
service providers enabled businesses and organizations to provision computational resources instantly 
across the globe in an adaptable, portable, and highly redundant environment. In so doing, however, this 
technology raised a number of complex legal issues that previous regulations had not anticipated. To 
address these matters, past laws would need to be reinterpreted or even amended, or new laws would need 
to be introduced.

Broadly, laws that affect the cloud span both public and private law, which serves as a natural divide 
for their discussion. The first of these, public law, pertains to the relationship between individuals and the 
government, or relationships between individuals that are relevant for the rest of society. With regards to the 
cloud, this area primarily concerns the hundreds of regulations issued by governments across the world 
designed to ensure the privacy and security of their citizens’ information, such as the Health Insurance 
Portability and Accountability Act (HIPAA) in the United States or the Data Protection Directive (EU 95/46/EC) 
in the European Union (Jaeger et al., 2008). Private law, in general, covers relationships between private 
individuals, such as the law of contracts or torts. In the cloud, this includes contracts between parties – 
namely, cloud service providers and their clients – which define their relationship and the expected level of 
service between them. Often these contracts may include obligations prescribed by public law. Both types 
of law will be discussed later in this chapter. However, before doing so, we will first provide an outline for 
the basic structure of these laws.
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38.2.1 Structure of Laws

Many laws are structured similarly, including the data privacy and security laws addressed in the next subsection. 
Understanding aspects common to these laws will be helpful not only in understanding each law as it stands alone 
but also how they compare with one another. For the purposes of this chapter, we are chiefly concerned with:

 ● Definitions: terms found in the law that are given explicit meaning with a certain scope, such as through-
out a statute or chapter. Definitions, which are sometimes technical in nature, can be used for a variety of 
concepts, such as stakeholders (“healthcare facilities”), objects or concepts (“computer”, “encryption”) or 
actions (“unauthorized access”). Definitions serve to give the law a common vocabulary and explicitly set 
forth the meaning of significant terms. They are seldom considered “complete,” in that they may apply to 
an object or concept that is not stated verbatim, such as a cell phone being classified as an “electronic 
device that is capable of performing high‐speed data processing.”

 ● Stakeholders: types of entities that the law affects, and they can include individual persons, businesses, 
governments or government agencies, or the like. As mentioned, stakeholders are often explicitly defined 
early in the text.

 ● Requirements: actions the law imposes on stakeholders, including obligations, permissions, and prohibi-
tions, which are actions a stakeholder must, may, or may not do, respectively.

 ● Conditions: criteria that appear before a requirement, or otherwise qualify a stakeholder or action; for 
example, a cloud service provider who “processes data on behalf of a client” (condition) “shall keep that 
data secure” (requirement).

 ● Penalties / right to action: the repercussions that can occur when an aspect of the law is not satisfied, for 
example when a cloud service provider neglects to secure data when the law obligates them to do so. 
Penalties can take numerous forms, such as monetary fees or restrictions on the operations of an organiza-
tion, and may be brought about by different parties specified in the law.

 ● Enforcement: a legal body that is responsible for ensuring compliance with the law or affecting penalties 
for violations, and the means through which they may do so.

38.3 Major Laws and Regulations

Cloud service providers and their clients should be aware of the large number of laws that affect their cloud 
operations, the most significant of which are those enacted to protect the privacy and security citizens’ per-
sonal information. These laws, which began to take shape in the early 1970s and have continued to be intro-
duced and refined in the present day, prescribe practices, guidelines, and restrictions on the handling and uses 
of personal information, such as social security numbers or financial data. Many of the topics addressed by 
these laws relate to one or more of the recommendations for the protection of personal data issued by the 
Organization for Economic Cooperation and Development (OECD) in 1980, including:

 ● Notice: individuals should know when their information is collected or used.
 ● Purpose: an individual’s information should be used for its stated purpose and no other.
 ● Consent: an individual’s information should not be collected or used without their advance consent.
 ● Security: information should be protected from threats, both internal and external.
 ● Disclosure: individuals should know who possesses or uses their data.
 ● Access: individuals should be able to access their information, make corrections and alterations within 

reason, and control access to that information.
 ● Accountability: individuals should have means to hold organizations accountable for these principles.
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The style of regulation adopted varies by jurisdiction, and often reflects correspondingly varied underlying 
intents. The United States, for example, lacks an all‐encompassing data‐protection law, relying instead on a 
patchwork of regulations divided by industry or function; for example, the HIPAA for healthcare, or the 
Gramm–Leach–Bliley Act for the finance sector. In contrast to this, most other nations instead rely on omni-
bus‐style data‐protection laws: that is, laws that apply to all data regardless of the industry or circumstance 
in which it is used. Prominent examples of these laws include the Personal Information Protect and Electronic 
Documents Act (PIPA) of Canada; the European Data Protection Directive 95/46/EC, its successor, 
the  General Data Protection Regulation, and the Information Technology (Reasonable Security Practices 
and  Procedures and Sensitive Personal Data or Information) Rules from India. In addition to protecting 
 citizens’ personal information (Ruiter and Warnier, 2011; Pearson, 2013), these laws serve other purposes, 
such as creating an attractive legal environment for data outsourcing. This chapter will focus on US and 
European law.

This section serves as the barest of introductions to some of the more prominent laws affecting the cloud 
environment for both providers and consumers of cloud services. As many of the laws themselves exceed the 
length of this chapter several times over and are subject to frequent updates and amendments, details con-
tained herein should be used for preliminary guidance purposes only and are by no means comprehensive nor 
a substitute for legal advice.

38.3.1 United States of America

The United States has many laws that affect the cloud. As previously mentioned, the US lacks an omnibus data 
privacy and security law, and instead relies on laws to address each industrial sector individually. This allows 
each sector to create rules and requirements specifically relevant to their operations but it can also lead to dif-
ficulties and confusion over legal coverage as well as incompatibility with the data‐protection efforts of foreign 
countries, nearly all of which rely on laws that apply to any body handling personal information. While laws 
have been introduced explicitly to regulate the cloud, e.g., the Cloud Computing Act of 2012 (S.3569), they 
have not gained sufficient traction in the United States Congress. This section will focus primarily on laws 
governing healthcare, financial, and government organizations, with additional notes on laws addressing spe-
cific issues, such as the Children’s Online Privacy Protection Act.

38.3.1.1 Healthcare

Cloud operators serving the healthcare domain or healthcare organizations wishing to move their operations 
to the cloud are subject to the HIPAA and amendments made to it through the Health Information Technology 
for Economic and Clinical Health Act. Early on, the requirements contained in HIPAA’s Privacy and Security 
Rules (45 C.F.R. 160, 162, and 164) did not necessarily apply to third parties who performed data storage or 
processing on behalf of a healthcare organization. As the law has matured and changed, however, cloud ser-
vice providers are now considered “business associates” under HIPAA and through mandated “business 
associate agreements” are subject to many of the same requirements as healthcare organizations themselves. 
However, if a CSP acts as a “mere conduit” for data (like the United States Postal Service delivering health 
information) and does not have “routine access” to the information, it is not considered a business associate 
(Hall, 2013).

Additionally, all states and territories in the United States have their own laws regarding medical records 
or electronic healthcare records specifically. It has been established, however, that HIPAA provides a legal 
floor, in that when state requirements fall below the standards required by HIPAA, those prescribed by 
HIPAA preempt those issued at the state level. Some CSPs specifically provide services to the healthcare 
industry and claim to be HIPAA compliant. This title is not official, but often means that the organization has 
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undergone an independent audit by a third party who will measure their practices against a set of testing cri-
teria, such as the HIPAA audit protocol created by the Office for Civil Rights (Delgado, 2011).

HIPAA prescribes a number of safeguards divided into three categories: physical, technical, and adminis-
trative. Under a business associate agreement, cloud providers take on responsibility for some of these con-
trols and share responsibility for others. While the CSP may assist the healthcare organization in achieving 
these controls, it is ultimately the organization itself that is responsible for ensuring that they are accom-
plished. Examples of each safeguard type are as follows:

 ● Administrative: periodic risk assessments and ongoing risk management, workforce security and privacy 
training, password management, security incident response procedures, data backup and recovery, login 
monitoring, workforce authentication and authorization.

 ● Physical: media disposal or reuse policies and procedures, facility access controls, workstation authoriza-
tion, data backups and storage, maintenance records, access control and validation.

 ● Technical: automatic logoff, software auditing controls, encryption, means for verifying data integrity, 
transmission security, unique user identification.

Following the implementation of the Health Information Technology for Economic and Clinical Health 
(HITECH) Act, HIPAA also includes policies and procedures to be followed in the case of a data breach. 
Significantly, breaches of deidentified or encrypted data (when the encryption keys have not also been 
breached) are not considered breaches.

38.3.1.2 Corporate and Finance

The Gramm–Leach–Bliley Act (GLBA) or Financial Services Modernization Act of 1999 primarily served to 
remove market barriers between banking, security, and insurance companies. Included in the Act, however, 
were notable provisions for consumer privacy and protection of consumer data possessed by these and other 
financial institutions in the form of the Financial Privacy Rule and the Safeguards Rule (15 USC 6801–6809). 
The Financial Privacy rule contains many similar provisions to other privacy laws, ensuring that consumers 
are informed through a privacy policy about how their data is collected, used, shared, and protected. Customers 
must also be notified of their right to opt out of having their data shared with “unaffiliated parties” as granted 
under the Fair Credit Reporting Act. The Safeguards Rule mandates that financial institutions must have a 
documented information security program that ensures security and confidentiality for consumer data, pro-
tects against threats to those records, and prevents unauthorized access to the records that could harm the 
customer. This includes having an employee or department dedicated to the purpose, conducting periodic risk 
assessment of departments that handle private information, ongoing monitoring and assessment of security 
programs, and ensuring that safeguards are kept relevant for any changes in information collection or usage. 
The rules require that data be encrypted; however, organizations may choose not to encrypt data provided 
they can justify their position to the Federal Financial Institutions Examination Council (FFIEC). Organizations 
that handle common forms of payment data, such as credit card information or point‐of‐sale (POS) cards 
should consider adhering to the Payment Card Industry Data Security Standard (PCI‐DSS).

Financial institutions looking to move portions of their services to the cloud should explicitly look for 
providers that have been proven through third‐party audits to be compliant with the GLBA. Because the 
act requires that consumers be thoroughly informed with regards to the movements of their data, the CSP 
must be able to provide information about its practices to the client. Further, depending on the nature of 
the agreement between the CSP and their client, the CSP may be considered a nonaffiliated third party, 
meaning that the client would be prohibited from sharing information with the CSP without first obtaining 
consumer consent.
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The Sarbanes–Oxley Act, or SOX, sets a number of standards for public companies and accounting firms, 
some of which can significantly affect IT architectures. Many of these standards relate to accountability, 
which can involve frequent and detailed logging of activities as well as widespread user authentication. Cloud 
service providers looking to specialize in this area may wish to consider going through a Statement on 
Auditing Standards (SAS) 70 audit developed by the American Institute of Certified Public Accountants 
(AICPA).

38.3.1.3 Government and More

Businesses aren’t the only organizations that seek to capitalize on the advantages of cloud computing. In 
2010, Vivek Kundra (then serving as the first Chief Information Officer of the United States) issued a 
report that included the “Cloud First” initiative, which called for increased use of cloud computing 
 technologies in government operations. In order to supply cloud services to federal agencies, however, 
providers must be compliant with the Federal Information Security Management Act (FISMA) of 2002 – 
most importantly the FIPS 200 standard. Compliance with FISMA is not easily achieved and involves 
significant risk assessment regarding agencies’ operations and information systems. The minimum secu-
rity and assurance requirements, as well as controls that may be used to satisfy them, can be found in NIST 
Special Publication 800‐53.

In order to facilitate compliance with FISMA, the Office of Management and Budget developed the Federal 
Risk and Authorization Management Program (FedRAMP). This program can assist government organiza-
tions in determining if CSPs meet compliance, authorizes third‐party assessment organizations (3PAOs) to 
conduct independent audits of CSPs prior to approval or rejection by FedRAMP, and maintains records of 
CSPs that have been reviewed.

There are a number of other regulations that affect both federal and private institutions, including the 
Children’s Online Privacy Protection Act (COPPA), which includes specific requirements for obtaining and 
handling data on persons under the age of 13; the multitude of data breach notification laws enacted by each 
state, which mandate that organizations notify affected individuals (be they data subjects or clients) about 
data breaches in their systems; and the Family Education Rights and Privacy Act (FERPA), which provides 
various protections and rules regarding storage of and access to adult educational records.

When the Uniting and Strengthening America by Providing Appropriate Tools Required to Intercept and 
Obstruct Terrorism (PATRIOT) Act of 2001 was passed following the events of September 11, 2001, it was 
uncertain how it would affect the emergent field of cloud computing. In short, the PATRIOT Act permits the 
United States government to obtain records and information that pertain to foreign intelligence or international 
terrorism using less accessible venues than required for investigation of domestic crimes. Despite claims that 
warrantless seizures of data are minimal, this act has been construed by many – particularly other countries – 
to permit the United States government unfettered access to any data kept in the cloud. While the chilling affect 
this has had on adoption of American cloud services by non‐American organizations has not been measured, a 
number of high‐ranking officials, such as the European Vice Commissioner Viviane Redding, have openly 
criticized the Act’s effects on the industry and discouraged use of American cloud services for this very reason.

38.3.2 European Union

Privacy is viewed as a human right in Europe, having been codified under Article 8 in the European Convention 
on Human Rights treaty in the 1950s. With regards to data, this right has been protected under a number of 
regulations, including the EU Data Protection Directive 95/46/EC, its proposed revisions in the form of the 
General Data Protection Regulation issued in 2012, and the various regulations enacted by member states, 
such as Germany’s Bundesdatenschutzgesehzt or the United Kingdom’s Data Protection Act. The broad 
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applicability of these regulations, as well as the strictness with which they are enforced, have resulted in them 
being the standard by which other jurisdictions’ regulations are compared. Cloud Service Providers operating 
in the European Union, on behalf of organizations located in the European Union, or with data from European 
citizens, must ensure their practices are in line with these regulations.

38.3.2.1 Data Protection Directive (95/46/EC)

Unlike the United States, which governs data by the industrial sector in which it falls (e.g. healthcare, finance, 
etc.) most of the EU’s data‐protection laws are considered nonsectoral, in that they apply to all personal infor-
mation, regardless of its nature. Significantly, the definition of personal information used in these laws is 
extremely broad, going well beyond common attributes such as address or phone number to include “any 
information relating to an identified or identifiable person”. The law also makes a distinction between data 
controllers and data processors, in that processors store, operate on, or otherwise process data on behalf of 
controllers. In most cases, cloud service providers are considered data processors. However, under certain 
circumstances they may be considered data controllers: for example, when they process data stored for 
another organization for their own purposes. While controllers are considered responsible for meeting the 
criteria set forth in the directive, they are permitted to delegate these responsibilities onto data processors, so 
regardless of their status, CSPs should be aware of the requirements contained in these regulations.

If a CSP uses subprocessors, the CSP must ensure that the subprocessors are made aware of the legal 
requirements attached to the data and that the original data controller is aware of and has consented to the 
transfer. Cloud service providers are also responsible for assisting their clients in complying with access 
requests by data subjects. The Article 29 Working Party recommends that the requirements should not be 
“dispersed throughout the chain of outsourcing or subcontracting” so that responsibility is clearly allocated.

In principle, the directive itself is not legally binding, and member states are responsible for implementing 
and enforcing it through their internal law. All member states have enacted their own data protection regula-
tions, which are enforced to varying degrees. The directive also contains provisions pertaining specifically to 
transborder data flows. These special circumstances are discussed in detail in the next subsection of this 
chapter.

The Data Protection Directive was followed years later by the Directive on Privacy and Electronic 
Communications or E‐Privacy Directive (2002/58/EC), which establishes the right to privacy for the elec-
tronic communication sector. Cloud service providers that contribute to these services in the public commu-
nications sector should also consider the provisions of this regulation as well as those specified in its revisions 
(2009/136/EC).

38.3.2.2 General Data Protection Regulation

In 2012, the European Commission released a draft of the General Data Protection Regulation (GDPR), which 
was intended to harmonize disparate laws among member states as well as address concerns brought about by 
new technologies, which include cloud computing (Schellekens, 2013). Unlike Directive 95/46/EC, the GDPR 
is a regulation and thus has direct effect without being implemented by member states. The regulation is 
expected to go into effect in 2016, and at the time of this publication its contents are still under discussion.

In general, the Data Protection Regulation can be thought of as revising and extending EU Directive 95/46/
EC; that is, most of the requirements contained in the directive are retained and strengthened in the regulation. 
Among the potential changes that are of concern for CSPs and their clients are an increase in noncompliance 
fees (up to 1 000 000 euros, or up to 2% of global annual company turnover), notification obligations similar 
to those found in the United States, prescription of privacy by design practices, the creation of data protection 
officers within each organization, and a “right to be forgotten.” This last item requires that individuals are able 
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to have their data deleted if there are no legitimate grounds for its retention. Such a right, if preserved, could 
have significant implications for data backups maintained in the cloud.

38.3.2.3 Data Protection Authorities

Each member state in the European Union has a data‐protection authority that cloud service providers and 
their clients are likely to interact with in some capacity (EU Agency for Fundamental Rights, 2010). 
Essentially, each authority is a legal body that is responsible for enforcing data‐protection laws within that 
jurisdiction. If a CSP or client operates out of a certain state or works with a significant amount of personal 
information on that state’s citizens, they should be aware of the practices of the authority for that state. 
Unfortunately, the authorities vary widely from state to state; some are sectorally based, some are not; some 
are federal agencies, others exist as substate agencies. Of primary concern should be the authority’s preferred 
method of enforcement (preventative, or after the fact), how aggressively the authority pursues violators, and 
whether or not the authority needs a judicial warrant prior to accessing cloud resources.

38.3.3 Here, There, Everywhere

While the United States and European Union may lead the way with regards to regulating the cloud, many 
other jurisdictions have made similar efforts. In addition to the primary objective of protecting their citizens 
and businesses, some of these laws have been issued in an effort to meet or exceed the standards issued in 
other countries (such as India’s enactment of the 2011 Information Technology Rules), thereby creating 
attractive outsourcing markets. As it has become easier for businesses to reach new markets or take advantage 
of overseas technology services, CSPs and their clients should maintain awareness of these laws so should 
opportunities arise they will be able to act quickly. Cloud service providers should also be informed should 
they want to take advantage of the ability to subcontract some of their work to another CSP in one of these 
jurisdictions. In this section, we briefly describe recent laws enacted in countries outside of the United States 
and European Union, including Japan, India, and South Korea. Only the most significant features of laws in 
each country are discussed, for reasons of space.

38.3.3.1 Japan

Japan’s Personal Information Protection Act, enacted in 2005, shares many similarities with the EU Directive 
as well as US laws. As the law itself was based on the EU Directive, it uses a similar (broad) definition of 
personal information and prescribes requirements in line with those for the European Union. However, the 
Act itself is interpreted by sectorally based government ministries who then issue administrative guidelines 
for their sector. Thus, clients from different industries may have different requirements, as in the United 
States. Its greatest difference from these other laws is that it provides exemptions for small data sets (5000 
individuals or less). It should be noted that the Personal Information Protection Act does not apply to public 
agencies, who are instead affected by a similar law intended for “Administrative Organs.”

38.3.3.2 India

India has a number of laws for the information technology sector, but of greatest concern is the Information 
Technology (Reasonable Security Practices and Procedures and Sensitive Personal Data or Information) 
Rules issued in 2011. As with Japan’s Personal Information Protection Act, this law closely mimics the EU 
Directive in most aspects. However, it should still be viewed with great care, as the law has been subject to 
frequent reinterpretation since its creation. For example, its consent requirements (considered extremely 
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strict) were first applicable to third parties, meaning that in order for an Indian organization to work with 
personal information on behalf of another firm (native or foreign) the Indian organization would first have to 
obtain consent from the data subject, and do so again upon any major change in practices. This was later 
clarified to not apply to organizations working with firms under a contractual obligation. Due to the uncertain 
stability of the law, CSPs and their clients should make sure their practices are in line with the latest interpre-
tations before determining or claiming compliance.

38.3.3.3 South Korea

South Korea’s Personal Information Protection Act (PIPA), which came into force in 2012, is considered one 
of the strictest privacy laws in existence. Given the country’s strong track record for enforcement in this area, 
it is possible that it will be the precursor to similar laws in other countries. As with the previously mentioned 
laws, the PIPA is similar to the EU Directive. However, it differs significantly in that it mandates minimal 
collection of data as well as prescribing anonymization of data (if possible), creation of the position of pri-
vacy compliance officers within each organization, and requires that data subjects be notified of any process-
ing performed by subprocessors. This latter requirement is particularly important for cloud service providers, 
who occasionally use subprocessors to provide their services. This is also discussed briefly in section 38.5.

38.4 Handling Transborder Dataflows

Many CSPs operate within the same jurisdiction as the clients that they serve (Narayanan, 2011). However, 
some offer their services to those beyond their borders in order to take advantage of lucrative foreign markets 
or more affordable operating costs. When the client’s data leaves its municipality of origin for storage and 
processing elsewhere, a transborder dataflow is created. This introduces new legal complexities to the situa-
tion as the different parties operate under different legal regimes. In this context, which laws apply, to whom, 
and when? If a cloud service provider in India receives medical information regarding California patients 
in  the United States, is it governed by the Health Insurance Portability and Accountability Act? What if 
the HIPAA prescribes data privacy requirements fundamentally incompatible with those found in India? If the 
Indian organization experiences unanticipated downtime or suffers a data breach, what responsibilities do 
the parties have to one another as well as to the patients themselves?

Fortunately, there are a variety of options to address these challenges, including the use of Binding 
Corporate Rules (BCR), Safe Harbor Certification, or Model Contract Clauses (MCC). Although these meth-
ods may only be legally mandated under specific circumstances, the standards they prescribe (owing to EU’s 
strong data protection laws) make them suitable for other relationships involving transborder data flows. 
Each has different effects, and is suitable for different contexts: BCRs are for international transfers of data 
within an organization (e.g. multinational companies), Safe Harbor certification is for US organizations who 
anticipate working with data regarding EU citizens, and model contract clauses allow EU member nations to 
export data to a jurisdiction that has not been deemed to allow an adequate level of protection. In the follow-
ing paragraphs, we describe the background behind each of these mechanisms, the parties they affect, and 
what they entail.

38.4.1 Binding Corporate Rules

Binding corporate rules, or BCRs, allow international organizations to transfer personal information outside 
of the European Union but remain in compliance with EU Directive 95/46/EC. Essentially, BCRs take the 
form of internal data privacy and security standards and practices that an organization is bound to for all data 
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transfers. Once an organization develops a set of BCRs, they are submitted to a national data protection 
authority (DPA), which approves or disapproves the rules for their country. Significantly, the following coun-
tries have formed a mutual recognition system wherein one DPA (the “lead”) can approve BCRs on behalf of 
the rest. Popular lead DPAs include the United Kingdom’s Information Comissioner’s Office (ICO) or 
France’s Commission Nationale de l’Informatique et des Libertés:

Austria France Liechtenstein Norway

Belgium Iceland Luxembourg Slovenia

Bulgaria Ireland Germany Spain

Cyprus Italy Malta United Kingdom

Czech Republic Latvia The Netherlands

Originally available only to data controllers, BCRs became available to data processors in January of 2013, 
and allow a data processor – such as a cloud service provider – to transmit its client’s data outside of the EU. 
Most significantly, many data controllers who have not made other arrangements to have data transferred out-
side of the EU may rely on the BCRs of their processors, including in order to demonstrate compliance. Although 
BCRs vary from organization to organization, there are certain core components that must be present. These 
include assuming responsibility for all transfers of personal information within the organization, which includes 
data breaches; granting third‐party beneficiary rights to data subjects, so individuals can enforce the BCRs 
directly against the organization; and limiting the transfer of information to other third parties.

In general, BCRs are valuable in that, if drafted broadly, they allow the organization to adapt to changes in 
their own corporate structure or dataflows. Further, they serve to strengthen the organization’s privacy prac-
tices as a whole, and avoid specific negotiation of practices on a case‐by‐case basis. It should be noted, how-
ever, that upon submission, approval of an organization’s BCRs may take a year or longer. Many organizations 
have made portions or summaries of their binding corporate rules available to the public.

38.4.2 Safe‐Harbor Certification

As mentioned, EU Directive 95/46/EC prohibits the transfer of European citizens’ data to countries outside of 
the European Economic Area (EEA) that did not meet the “adequacy” standard for data protection. To address 
this, the United States Department of Commerce consulted with the European Comission and developed the 
US‐EU Safe Harbor framework, which simplified the process for US organizations to comply with the EU 
directive. Certifying that they comply with the US‐EU safe harbor framework establishes that an organization 
within the United States provides adequate protection for personal data originating in the European Union, 
waives or grants automatic approval for member state requirements regarding data transfers, and that claims 
brought against US organizations by European citizens will be heard in the United States.

Participation in the US‐EU safe harbor framework is voluntary. To participate, the organization self‐certifies 
with the US Department of Commerce that it meets the requirements set forth in the framework, which are 
based on the seven principles of notice, choice, third‐party transfer, access, security, data integrity, and enforce-
ment. To demonstrate compliance, an organization may self‐certify – which is discussed below – or have an 
audit conducted by an independent third party. Some organizations offer a safe harbor seal program, which can 
be used to demonstrate to clientele that an organization is compliant with some or all of the framework.

Membership in the US‐EU safe harbor framework is valuable for cloud service providers, as European 
clients (or clients who have European data) will need assurance that adequate protections are in place. It 
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should be noted, however, that the safe harbor framework has met with some criticism and may not be suffi-
cient for certain clients or very sensitive data. Note also that the Safe Harbor framework is not available to all 
sectors, as telecommunications companies and financial organizations are not covered. Penalties, which are 
often enforced by the FTC, can include monetary sanctions or removal from the member list, which may 
prohibit an organization from using or operating with EU member data.

38.4.3 Model Contract Clauses

Model contract clauses are another means by which organizations may transfer EU data outside of the EEA. In 
the EU Directive, they take the form of clauses that may be included in contracts between data controllers and 
data processors, which, if adhered to, are sufficient to allow transfer of information outside the EEA. Note that 
the clauses vary depending on the relationship between parties; transfers of data between a data controller 
and data processor use different clauses than transfers between data controllers. Each relationship (controller to 
controller, and controller to processor) has two sets of clauses to choose from; however, Set I for controllers and 
processors is only valid for contracts set in place prior to March 2010; all current contracts between processors 
and controllers must use the newer clauses.

The two sets of clauses for data controllers differ primarily with regards to where liability is placed. In Set I, 
responsibility is jointly shared between the controllers; in Set II, a data subject can only enforce its rights 
against the party that is at fault in the breach of contract. It is important to note that should data subjects be 
unable to enforce their rights against the data importer, they still may be able to take action against the data 
importer for failing to ensure that the data importer has adhered to their requirements. The model clauses 
available for transfers between data controllers and processors also place liability on the party at fault. Note 
that should a data processor transfer data further to a data subprocessor, that data must be transferred under 
the same protections originally established by the model clauses, and allow the data subprocessor to be held 
responsible should the fault occur in its domain. The wording of the model clauses cannot be changed without 
forgoing the guarantee made by the European Commission that the data is sufficiently protected. Although 
technically it is possible for adequate protection to be assured under altered clauses, the parties must have 
evidence supporting these claims. The data importer cannot subcontract out without prior consent from the 
data exporter.

In addition to limiting data processing to reasons explicitly provided in the contract itself, model contract 
clauses also require the data importer to have appropriate levels of security, identify staff that will be trained 
under proper data protection practices, and ensure that the data exporter is aware of laws in the importer’s 
country that allow authorities to access the exporter’s data. Model clauses can be beneficial in that they allow 
selective guarantees of data protections on a case‐by‐case basis, and do not require the organization to main-
tain protection for all data received. However, they require frequent monitoring for updates, can result in 
dissimilarity in operations between clients, and like all contracts, are subject to prolonged periods of negotia-
tion. Note that very few cloud providers offer model contract clauses to their clients.

38.5 Contracts and Terms of Service

Successful relationships between CSPs and their clients are founded on clear and comprehensive contracts 
that formally establish the functional and nonfunctional conditions under which the service is provided 
(Wieder et al., 2011; Myerson, 2013). These legally binding documents vary considerably based on the size 
of the providers and their clients, the import and scope of the service provided, provider positioning (e.g. a 
provider who explicitly claims compliance with HIPAA provisions), and customization of services provided 
(Denny, 2010; Bradshaw et al., 2011; Chief Information Officer Council and Chief Acquisition Officers 
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Council, 2012). In this section, we describe major components that both providers and clients should consider 
when engaging in a contractual relationship. For the purposes of this section, we use the term contract to refer 
to a legally binding agreement between parties that is enforceable by law. This may include traditionally 
conceived paper‐based contracts as well as digital terms of service agreements (Patel et al., 2009).

Although no cloud computing contracts are identical, they often contain similar components and provi-
sions. Some of these components are common to contracts in all domains, such as specifying the applicable 
legal system and jurisdiction; others are more unique to technology fields or cloud computing in particular, 
such as enumerating the conditions under which data may be made accessible to thirrd parties, or the 
strength of encryption used for data in transit. Knowing these components as well as the range of values 
they may take can be valuable both for providers and clients: providers so that they may position themselves 
effectively and be aware of their offerings relative to their competitors, and clients so they can determine 
what values are most important to their organization in addition to as what they are (un)willing to compromise 
on during negotiations. The following represent a small sampling of some of the most relevant components 
found in cloud contracts organized around three categories: (i) legal components, which cover general 
legal issues like dispute resolution, (ii) data components, which cover practices specifically regarding 
cloud data (ownership, security), and (iii) service components, which cover aspects of how the service will 
be provided, such as uptime.

38.5.1 Legal Components

One of the first components seen in many contracts sets forth both the legal system through which the contract is 
enforceable and a specific jurisdiction where claims may be brought. Because cloud service providers will often 
be in a different state or country from their clients, these components are particularly important. Unless there are 
specific reasons to the contrary, both clients and providers should engage in contracts that are enforceable under 
their native legal systems, for many reasons: it minimizes the possibility of differences in legal process, it allows 
each party to draw on readily available legal resources who will be most familiar with that body of law, and 
reduces the chances of one party being unable to enforce a provision against the other. Relatedly, the contract may 
specify a specific venue through which disputes may be settled; for example, clients of Amazon’s EC2 service 
consent to most disputes being heard in the state or federal court of King County, Washington. If the contract 
contains a choice of venue provision, it will often benefit one party or the other.

Most contracts will also provide alternative means of dispute resolution, such as arbitration (the parties 
agree to a resolution determined by an independent third party) or mediation (the parties meet with an inde-
pendent third party who guides the development of a resolution, but they are not obligated to agree to that 
resolution). To take this a step further, nearly all contracts – particularly non‐negotiable contracts – will par-
tially or fully indemnify the parties against specific types of losses: for example, if a provider’s services 
experience difficulties that lead to a loss of profit on the part of a client, the client will be unable to hold the 
provider accountable for those losses.

38.5.2 Data Components

Perhaps most relevant for this chapter are components that describe how data will be kept secure and confi-
dential during storage and transmission, as well as how long it will be retained. Clients should look for text 
that explicitly states that a provider meets the security or confidentiality requirements of relevant laws. 
Unfortunately, many providers will claim that the responsibility for keeping data secure and confidential falls 
to the client. Relatedly, providers should ensure that their providers do not engage in advertising and / or data 
mining driven by client data, which may be addressed in a different section of the contract. Note that provid-
ers will be obligated to provide access to data under court orders or for law enforcement purposes.
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Provided these matters are up for negotiation, both parties should expect explicit details. That is, a 
contract should avoid using ambiguous phrases, such as “the data will be kept secure” or “will be 
encrypted.” When terms like these are used, both parties will be apt to interpret them in their favor, which 
can be problematic. Instead of these terms, parties should provide details regarding how data will be kept 
secure (e.g. cloud facilities will require an RFID badge for entry), or the strength of encryption used (e.g. 
Triple DES, AES). Clients should also look for text that describes how and how often these claims are 
certified or tested.

38.5.3 Service Components

The majority of space in cloud contracts is devoted to the conditions under which the service will be 
provided. Many clients are most concerned with guaranteed uptime, or the amount of time the provider 
promises to have the service available, and the type of acts that are not considered in this metric, such 
as utility failures or natural disasters. It is important to note that, even if an act does count towards 
affecting the metric, the contract may include language that protects the provider from losses as a result 
of that act.

Should providers experience problems that would affect their ability to provide their services, they may 
subcontract the client’s work to another cloud service provider in an effort to maintain consistent service. 
Providers may also subcontract in the ordinary course of business, without the client being aware that any 
changes have occurred. Although consistent, reliable service is obviously desirable, clients should be very 
concerned that it does not come at the expense of the security or privacy of their data, and that any subcontrac-
tors used are guaranteed to provide security and confidentiality at the same level as can be expected from the 
original provider.

Clearly, communication between provider and client is important, and many contracts will contain details 
specifying what will be communicated, and how such communication will be handled. For example, many of 
the laws discussed previously obligate the provider to notify the client in the event of security breaches of 
their systems. Contracts will often, but not always, detail how this notification will be provided, which 
includes specifying to whom it will be delivered, the medium used, the content of the notification (e.g. 
amount of data exposed, exact time of breach), and how quickly the notification will be made after the 
 provider discovers or is made aware of the breach. Contracts that may be changed at the discretion of the 
provider will often contain provisions that allow them to change the contract at any time and notify affected 
clients by posting an update to the provider’s main web site.

38.6 Conclusion

New technologies extend the legal frontier, exposing new issues for lawyers, engineers, and policy 
 makers to explore together – and those issues should not be underestimated. Fortunately, there are many 
strategies, resources, and organizations available to help both CSPs and their clients address their legal 
concerns; the various mechanisms and supporting organizations for transborder data flows discussed in 
this chapter are one such example. However, as laws have changed to adapt to the cloud, it is inevitable 
that with further advances they will change again. This, as well as the fact that cloud service providers 
are often bound by the legal requirements applicable to the clients they serve, means that the two must 
work collaboratively in determining what needs to be done, by whom, and when. At the same time both 
must recognize that any measures taken to protect data, arguably the biggest concern of most laws and 
contracts, are not foolproof, and that the risk of failure is known and mitigated to the fullest extent 
 possible.
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39.1 Introduction

There are many speculations about how cloud computing will progress in the coming years. Information 
technology pioneers and leaders have a critical need for a clear vision of the industry’s future. There is 
some indication that cloud computing will reach the plateau of productivity very soon, increasing the 
urgency to find this vision. The appropriate way to formulate such a vision is to understand the under
lying economics, which drive long‐term trends. In this chapter, we will assess the economics of cloud 
computing.

Economics research themes will broadly include aspects such as pricing and markets. Most research on 
cloud computing focuses on technological aspects and it is vital to look at the economic aspects to bring a 
holistic perspective to discussions about cloud computing. Studies of these aspects in the context of cloud 
computing are at a nascent stage. In terms of review studies, there are several works that provide a review of 
themes pertaining to cloud. While most reviews deal with taxonomy, few deal in detail with specific focus 
areas such as pricing or adoption.

This chapter will serve as an enchiridion of topics pertaining to economic aspects of cloud computing. 
Section 39.2 provides the background on cloud computing economics and discusses metrics to quantify the 
economic benefits. Section 39.3 provides an overview of cloud pricing. Section 39.4 discusses the popular 
market structures for cloud computing services. Section 39.5 gives a snapshot of the cloud supply chain. 
Section  39.6 discusses the role of enablers in adding economic value. Section  39.7 describes the terms 
“demand aggregation” and “network effects” in the context of cloud computing. Finally, Section  39.8 
 discusses future research directions.
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39.2 Economics of Cloud Computing

39.2.1 History, Developments, Trends

The advent of parallel computing dates back several decades. Since then researchers have been constantly looking 
for ways to harness idle CPU cycles and to make network systems look like a single large computer. Advances in 
virtualization and software‐oriented architecture (SOA), and in Internet technology, have made utility computing 
a reality. Cloud computing offers many infrastructure, platform, and software services as a utility (Buyya et al., 
2009). This growing supply and adoption of cloud, which is perceived as the fifth utility, has triggered the 
commoditization of IT. These services have transformed the way IT delivery happens in an organization. Perhaps, 
the most significant transformation is a shift from viewing IT as a capital expenditure, seeing it instead as an 
operational expenditure (Marston et al., 2011). Consumers are aggressively pursuing this shift and this is evident 
from Forrester’s view that the cloud‐computing market is expected to exceed $241 billion by the year 2020.

39.2.2 Quantifying Economic Benefits

Quantifying economic benefits is critical for cloud adoption decisions. For example, consider the case of 
cloud computing in a resource‐intensive industry such as pharmaceutics. Reports indicate that the adoption 
of a virtual screening process resulted in average savings of $130 million and 8 months per drug in its devel
opment cycle (Seifert et al., 2003). In another case, a top‐tier pharmaceutical company handled a molecular 
modeling problem in approximately 8 hours at a fee of just $1279/hour using 30 472 instances, which was 
equivalent to 95 078 hours of computer work (Amazon, 2011). The benefits discussed above are ex post facto 
but often the challenge facing cloud adoption decision makers is in predicting these benefits of transitioning 
to cloud. The first step in quantifying economic benefits is to look at the sources of various costs. A basic list 
of costs to consider for an in‐house setup includes costs of the server, software, networking, bandwidth, cool
ing, power, facilities, real estate, space, and human resources. Comparing and contrasting the in‐house costs 
with the cost of moving to cloud is an important step in understanding the benefits from cloud adoption. Cost 
considerations for the cloud typically include software costs, hardware costs, and migration costs. Researchers 
have studied cloud application economics at the transaction level and have arrived at four constituents for 
transaction cost: processing cost, storage cost, bandwidth cost, and services cost. In addition to cost consid
erations, various other factors can play a role in cloud adoption decisions. For example, security and privacy, 
reliability of the cloud service, performance, interoperability, and operational factors (which include govern
ance, control and change management) have been widely studied. Cultural impact, elasticity and size of 
demand, support provided by cloud service provider, and legal aspects are other decision factors that can 
influence cloud adoption. The following section provides a discussion on metrics, which can guide a decision 
maker both from a provider and from user perspective to derive the economic value of the decision.

39.2.3 Metrics

39.2.3.1 Cloud Provider Metrics

Managing and providing computer resources to cater for user requests remains one of the biggest challenges 
for the cloud‐computing service‐provider community. Current solutions depend on job abstraction for 
resource control in order to manage resources. Users typically submit their computation tasks as batch jobs. 
The resource management system handles these requests and takes care of job scheduling and resource 
allocation. Although a large number of users and various scientific applications use this model, it requires the 
user to know the environment in which the application will be executed. This calls for increased transparency 
at the provider’s end. It is inevitable for the provider to track and display some key metrics that will help users 
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to manage their computing jobs. More importantly, providers have to track metrics that can help them assess 
the economics of their cloud services. For example, cost‐effectiveness metrics focus on cost per unit of out
come and incremental metrics focus on change (Li et al., 2012). Table 39.1 provides a sample list of metrics 
pertinent to economic evaluation for cloud providers.

39.2.3.2 Cloud Consumer Metrics

While many cloud providers offer cloud computing services, their varying pricing schemes and their 
approaches to infrastructure, virtualization, and software services leaves the cloud consumer with a problem. 
A much bigger challenge for a potential cloud consumer is whether to move to the cloud or to continue with 
in‐house facilities. Analysis of the current IT landscape benefit ratios and associated migration costs is crucial 
to address this challenge. Analysis of metrics that show savings is required to assess the benefits after cloud 
adoption. Table 39.2 provides a sample list of these metrics. In addition to these metrics there are other 

Table 39.1 Cloud provider metrics

Metric Description

Cost effectiveness (time based) Cost over a fixed time (e.g. $/month)
Cost effectiveness (performance based) Ratio of price to performance
Incremental cost effectiveness Change in cost per unit speedup
Cost efficiency Number of users supported on a given budget
Average revenue per server Ratio of revenue to the number of servers
Average revenue per user Ratio of revenue to the number of users
Cost per benchmark Ratio of benchmarked task’s finishing time 

to the published per hour price.

Table 39.2 Cloud consumer metrics

Metrics Description

Savings
Supply‐chain cost
License cost
Green cost

Change in cost to deliver due to flexibility and choice offered by cloud.
Change in license cost due to cloud adoption.
Change in cost of maintaining green IT.

Financial ratios
Net present value (NPV)

Benefit‐to‐cost ratio (BCR)

Discounted payback period (DPP)

Net present value is calculated as net benefit from cloud adoption minus 
the cloud’s investment cost. It is an absolute metric and a positive value 
indicates an economic benefit.

This is calculated as discounted net benefit from cloud adoption divided 
by the investment costs. Unlike the NPV, BCR is a relative economic 
metric. A number greater than 1 indicates a positive economic benefit.

The DPP is calculated as the number of years it takes for benefits from 
cloud adoption to equal total investment costs.

Operation and migration
Migration cost

Operational cost

Initial deployment cost of a new IT system on the cloud.
Future cost of migrating an IT system from one cloud to another.
Costs for managing the cloud deployments, procuring / sourcing instances, 

monitoring, backup, and recovery.
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i ntangible factors that need to be analyzed during a cloud adoption. Examples of such factors include stake
holder impact, socio‐political feasibility, operational viability, technological suitability, and regulatory and 
privacy requirements.

39.3 Pricing Cloud Services

Different cloud service providers have adopted varied pricing schemes. The providers base their tariffs and 
charging models on their business objectives. The subsequent sections discuss the pricing structures set by 
different cloud providers and constituent elements.

39.3.1 Pricing Elements

From the provider’s perspective, key considerations for developing a pricing structure include the costs of 
servers, software, networking, cooling, power, facilities, real estate, space and utility. From the consumer’s 
perspective it is imperative to determine the valuation for a cloud service. What is a good price to pay? In 
situations where the consumer’s valuation is unknown, service providers elicit the consumer’s valuation 
through dynamic pricing schemes and auction formats.

39.3.2 Pricing Schemes

The most widespread method of pricing in cloud is pay per use. An example is Amazon’s EC2 on‐demand 
model, which is based on units with a constant price (Weinhardt et al., 2009). Another frequently used pricing 
model is subscription‐based pricing, whereby users enter a contract for few months or a year. An example is 
Amazon’s EC2 reserved instance model. Obviously, customers and providers would like to use static and 
simple pricing models in order to make it easier to predict costs. This explains the prevalence of the above 
models. A newer pricing scheme called dynamic pricing has also recently become available. An example is 
Amazon EC2 Spot Instances. Spot Instances enable cloud consumers to place bids for unused capacity – the 
excess capacity that remains with the cloud provider after fulfilling the pay per use and subscription demands. 
The service provider sets the spot price and users are charged the spot price. The spot price fluctuates 
p eriodically, depending on supply and demand.

In general, there are two broad pricing schemes: static and dynamic. In case of static schemes, the price 
does not fluctuate frequently. The price is listed and remains constant for weeks or months. By contrast, in 
the case of dynamic pricing schemes, the price fluctuates frequently. Different pricing models under these 
schemes are discussed in Table 39.3.

Most IaaS vendors provide a base plan consisting of 512 MB RAM and about 10 GB storage. There are also no 
costs associated with inbound data transfer to the servers. Outbound data transfers are charged. Table 39.4 provides 
a brief review of cloud service providers and their pricing schemes along with the details of the base plan.

39.3.3 Collaborative Pricing

Market structures where a vendor can collaborate with other vendors and deliver services to a consumer are 
becoming popular. Researchers have also started looking at collaborative pricing schemes to suit business 
models where the infrastructure resources are derived from multiple providers. For example, each user can 
bid a single price value for different composite / collaborative services provided by cloud providers. Similarly, 
collaborating providers can set a common price for their collaborative services (Hassan and Huh, 2010). 
Figure 39.1 is a schematic of a collaborative services model.
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39.3.4 Pricing Fairness

With more and more players entering the cloud ecosystem, competition among cloud services providers 
is increasing. Cloud users constantly evaluate these providers on a wide range of parameters. One of the 
key elements is pricing fairness. In economics, pricing fairness includes personal and social fairness. 
Personal fairness is subjective in nature and varies from person to person. It typically means that the 
p ricing should be low enough. Social fairness investigates whether users have the same financial cost for 
the same set of tasks. One instance of pricing fairness can arise in resource allocation – identifying 
b ottleneck resources to understand the allocation profile of users to ensure fairness. This can be an important 

Table 39.3 Cloud pricing schemes

Model Description Example

Static
Pay as you go 

(PAYG)
Users are billed per unit 

of time usage
Rackspace Cloud Servers
Amazon EC2 On‐Demand

Subscription based Users subscribe in advance 
for computing resources

IBM Smart Cloud Reserved Capacity

Prepaid per use Users are billed hourly from 
a prepaid credit

GoGrid cloud servers – hourly basis

Subscription per use Combination of subscription 
and PAYG models

Joyent monthly
SmartMachines and daily usage

Dynamic
Spot Users bid for instances and 

bids, successful bidders 
pay the spot price

Amazon EC2 Spot

Table 39.4 Review of service providers and their pricing schemes

Service provider Pricing options Primary services Starting / base plan

Amazon EC2 PAYG, subscription, 
spot pricing

IaaS 0.6 GB RAM, 1 vCPU, elastic block 
storage

Amazon RDS PAYG, subscription DBaaS 630 MB memory, 64‐bit, low I/O 
capacity, backup

DropBox Per user / year STaaS 100 GB storage
GoGrid PAYG hourly plan 

monthly / yearly 
prepaid plan

IaaS /STaaS 0.5 GB RAM, 10 GB storage

Joyent PAYG IaaS Extra small 0.5 GB smart OS/Linux
LunaCloud PAYG IaaS 512 MB RAM, 1vCPU, 10GB storage
Microsoft PAYG, 6 months, 

yearly
IaaS/PaaS 1.6 Ghz CPU, 1.75 GB RAM, 

225GB instance storage
Rackspace PAYG IaaS 512 MB RAM, 1 vCPU, 2GB local 

storage
Salesforce.com subscription plans 

(per user/month)
SaaS –

Verizon/Terremark PAYG IaaS 0.5 GB RAM
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consideration for providers while developing charging models. Another instance of pricing fairness can 
arise due to the impact of different levels of interruptions faced by the cloud users for the same s ervice 
(particularly in a dynamic price market).

39.4 Market Structures

39.4.1 Standard Vendor‐Customer Structures

The traditional or standard model involves direct one‐one interaction between the vendor and the customer. 
Each vendor publishes the list of services offered and the price of each service. The customer chooses the 
vendor based on current needs (the service required) and places a request for service. The vendor caters to 
the request based on availability and other relevant factors. If there is no single vendor who caters for all of the 
services required by the customer, the customer has to choose two or more service providers manually to 
fulfil the requests. Here, vendors need to devise and publish certain metrics that can help consumers in their 
adoption decision.

39.4.2 Cloud Markets such as Cloud Bank Model

Federated cloud is a mechanism for sharing resources thereby increasing scalability. In federated clouds, 
users request more than one type of resource from different providers. The biggest advantage of using a 
federated cloud service is that users who generally purchase different resources from many cloud providers 
for their different compute and storage needs can obtain all the services seamlessly from a single federated 
cloud market. The challenge with federated cloud markets is that the users need information about all ser
vice p roviders and the status of each provider. To overcome this challenge, researchers have proposed 
various platforms and market models of cloud services such as Mundi and Cloud Bank. The market 
exchange would allow autonomous agents representing providers, consumers and brokers to manage and 
distribute resources through economic models such as posted pricing, auctions and negotiations. For example, 
Spotcloud launched a capacity‐clearing market where buyers select available capacity based on cost and 
location.

Collaborative 
cloud services 

platform
(pool of services)

Cloud 
provider 1

Cloud 
provider 2

Cloud 
provider 3

Cloud 
provider 4 Request services B, E, F

Request services A, C, D

Provide services F, G

Provide services A, B

B, E, F

A, C, D

Provide services C,D

Provide service E

Figure 39.1 Collaborative cloud services
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39.4.3 Review of Auction Formats Employed in Cloud Markets

A variety of auction formats for the cloud have been suggested in the research literature. Advances in cloud 
e conomics have led to the evolution of the market infrastructure in the form of a market exchange that facilitates 
trading between consumers and cloud providers, for example Mandi (Garg et al., 2013). Researchers have 
p roposed the adoption of open markets for trading IaaS resources using a continuous reverse auction mechanism 
(Roovers et al., 2012). Research has also indicated that use of combinatorial auction‐based allocation mecha
nisms can improve allocation efficiency (Zaman and Grosu, 2013). A real‐time group auction system for efficient 
allocation in cloud instance market has been developed based on a combinatorial double auction (Lee et al., 
2013). A combinatorial auction‐based cloud market model that facilitates dynamic collaboration among cloud 
providers to provide composite / collaborative cloud services to consumers has been developed (Hassan and Huh, 
2010). Research also indicates the use of (n + 1)th price auction of multiple goods to maximize provider’s 
revenue, with an ex post facto supply limitation – after the users place their bids. In an (n + 1)th price auction of 
multiple goods, each client bids for a single good. The provider chooses the top N bidders. The provider may set 
“N” up front on the basis of available capacity or in case of revenue maximization choose to set N after receiving 
the bids. In both cases, N is constrained by the available spare capacity and cannot exceed that. The top N winning 
bidders pay the published price and are allocate the instances (Agmon Ben‐Yehuda et al., 2011).

The current form of dynamic pricing adopted and practiced by cloud vendors like Amazon is closer to a 
uniform price auction in which all bidders who win the auction pay the same price. It can also be categorized as 
a “sealed bid” because the bids are unknown to other bidders. Amazon terms its dynamic pricing scheme “spot.” 
It is market‐driven, since the spot price is set according to the clients’ bids. In a spot pricing scheme, if the bid 
price exceeds the current spot price, the instance is allocated until either the user chooses to terminate upon 
task completion or the vendor initiates the termination once the spot price increases above the bid price.

39.5 Cloud Supply Chain

A Cloud Supply Chain is two or more parties linked by the provision of cloud services, related information 
and funds (Lindner et al., 2010). Figure 39.2 gives a macro level view of the cloud supply chain and its enti
ties. At the top of the chain are hardware and software manufacturers that provide the requisite infrastructure 
and software support to the cloud vendors. The cloud vendors form the heart of the cloud supply chain and 
are responsible for running datacenters and providing the first level of cloud services. The cloud providers 
can take many roles within the cloud supply chain. They might act as infrastructure (IaaS), platform (PaaS) 
or software providers (SaaS) and could be directly in contact with the end customer but they may also act as 
agents / brokers or business partners. They could also be service aggregators and value‐added resellers that 
use the service provided and combine or enrich it with another service or a new functionality to create a com
posite service. The end customers usually consume a product that is either a simple or a composite service 
provided directly by a service provider over the cloud supply chain or via an agent or a value‐added reseller 
based on the complexity and nature of their need.

39.6 Role of Enablers in Adding Economic Value

39.6.1 Agents and Brokers

Today, a wide range of brokering mechanisms exists. For example, the utility adaptive personal cloud service 
brokering mechanism matches a service user (consumer) to a specific service to maximize the user’s utility; 
the agent‐based online measure infrastructure, which can be used by consumers to evaluate the quality of 
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service of the computing environment; the Cloud Service Measurement Index Consortium (CSMIC) – a 
framework based on common characteristics of cloud services, which can be used by consumers to compute 
a relative index for comparing different cloud services.

Architectural frameworks capable of powering the brokerage‐based cloud services are available and p rovide 
a list of desirable features for a broker. Broker cloud management systems have been developed with a view to 
minimizing the cost of the link between the broker and the cloud. An efficient negotiation between brokers 
requires the usage of resource‐level information to increase the accuracy of negotiated SLAs and facilitate 
achievement of business and performance goals. Researchers have proposed a nonblocking resource broker for 
a private cloud, which provides the choice of dynamically updating the resource details in the broker.

Figure 39.3, illustrates a simple cloud brokering service. Consumers place requests to a broker, specifying 
a reservation price and a deadline. For example, a user may request a service and be willing to pay a m aximum 
price of $10 for the job and expect a completion time no later than 8 hours. Using this information, the broker 
then negotiates with service provider and offers several proposals that vary on price and time such as: 
($8, 6 hours), ($6, 7 hours), ($4, 8 hours) and ($2, 9 hours).

39.6.2 Government

It has been widely perceived that government departments and agencies can apply cloud‐based services to 
improve transparency while addressing their administrative goals of scalability and interactive citizen web 
sites and portals. The cloud can also help government agencies to increase collaboration across different 
departments, deliver volumes of data to citizens in simple, effective and cost‐efficient ways. Unlike other 
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enterprises, government and public‐sector firms need to operate even during times of crisis. Cloud computing 
can continue to provide operational efficiency even during times of crisis as the portals, applications, and 
servers are not completely dependent on in‐house servers or on‐site staff.

A multitude of e‐Governance systems are currently operational, which provide a diverse range of government‐
to‐consumer (G2C), government‐to‐business (G2B) and government‐to‐government (G2G) services. The 
various stakeholders within the realm of e‐Governance systems have started to recognize the need to develop 
interoperable and reusable systems due to the increasing maturity and complexity of these systems. In terms 
of scalability of functionality and spread, interoperability and reusability together enable rapid scalability. 
However, to assimilate these benefits e‐Governance systems need to be designed and developed by various 
government agencies and departments in unison. E‐Governance projects can easily lose track of these b enefits 
if they set their focus on only attaining their departmental goals.

Many e‐Governance projects have embraced the enterprise architecture approach with this insight in 
mind. IEEE 1471 is a standard for describing architecture of a software system commonly known as enter
prise architecture. Various governments and government agencies have created architectural frameworks 
for use within their domain. Some examples include the European Interoperability Framework and the 
Federal Enterprise Architecture Framework. Many other e‐governance projects are also following this 
trend and building their own frameworks. With the rise in Cloud adoption rates and the various benefits it 
offers, eGovernance projects are beginning to take advantage of cloud computing. Enterprise architecture 
techniques help to describe the features of a cloud computing system. IEEE 1471 supports the indispensa
ble association between the business needs of an e‐governance project and the allied computing resources 
needed to address them.

39.6.3 Standards and Regulations Bodies

A lack of well defined standards could limit the usefulness of cloud computing. It could impose severe 
restrictions on cloud implementation and adoption by limiting interoperability among various cloud p latforms 
and raising doubts about security. In addition to interoperability and security, other key issues for firms that 
are moving into cloud is to provide governance for data that it can no longer directly control. Such organizations 
need to understand how its business practices will continue to guarantee compliance with several other 
existing industry standards, for example HIPAA, PCI, and ITIL. Service‐level agreements, confidentiality 
agreements, compliance audits, and so forth, need to be extended or retuned to combine issues arising from 
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hosting data in the cloud (Cochran and Witman, 2011). Most importantly, Standards and regulations for the 
cloud could have an impact on public finances. The Federal Cloud Computing Initiative (FCCI) was consti
tuted with the goal of supporting standards and rules for the adoption of cloud services, which in turn can 
reduce the US government’s IT spending.

39.7 Economic Terms in the Context of Cloud Computing

39.7.1 Demand Aggregation

Demand aggregation assists enterprises to become aware of the purchasing requests that arise from different 
departments within the company, and makes these requests visible. This information helps companies to 
increase their purchasing power and obtain greater savings on the costs of goods and services. Enterprises 
that can design their systems so that their demand for computer power is flexible should receive better 
p ricing as the economics work out. For example, batch jobs that are not time sensitive can be run at cheaper 
prices at nonpeak hours than if they are processed constantly through the day. On the other hand, demand 
aggregation is beneficial to cloud providers too. A substantial portion of the demand for computing services 
will have constant demand profiles without the spikes and troughs characteristic of business users – for 
example, b ioinformatics, pharmaceutical modelling and other scientific simulations that run around the 
clock. Sellers of utility computing services would do well to segment these customers out and offer them 
lower prices. This technique can greatly improve asset utilization and has been widely used by telecommu
nications providers for years and is currently also employed in the cloud community. Many third‐party 
providers enable demand aggregation through their tools and services. Table 39.5 provides a snapshot of 
some of these tools.

39.7.2 Network Effects

39.7.2.1 Data

Handling data‐intensive tasks automatically leads to network effects because data processing generates 
new data. A company that stores its data on the cloud may also decide to process it. If both the storage 
and processing were to use the services of a common service provider, issues such as portability, and 

Table 39.5 Snapshot of various tools that enable demand aggregation

Tool/solution Description

Gravitant cloudMatrix Delivers comprehensive cloud planning services for enterprise
SnapLogic Connects private and public cloud applications.
Talend Open‐source‐based platform enabling enterprises to build their 

own platform to connect private and public cloud applications.
OneSaaS Connects public cloud applications and synchronizes contacts, 

leads, product details, invoices, sales data, and financial information.
HP Cloud Aggregation 

Platform
Facilitates and standardizes the processes for CSPs to enable a SaaS 

business model.
Mulesoft Synchronizes data between an on‐premises and cloud applications 

and automates business processes between cloud services.
Elastic.io Cloud integration platform, taking care of reading data and API formats, 

data mapping and data transformation.
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interoperability would not arise. For example, if a department within a company decides to place data in 
Amazon Simple Storage Service and to place the code chunk to process it on Amazon EC2, it would be 
simpler for a different department within the company, which needs to run another code on the data, to 
move the processing to Amazon EC2. Each of these processing steps generates even more data. This pro
cess develops into a cycle. When all of a company’s data‐processing tasks move into the same cloud, to 
take advantage of the co‐location and minimize data‐transfer latency and overall costs, the company 
reaches a steady state.

The network effect can extend well beyond the boundary of a single enterprise. In reality, for example, 
Firm Y often consumes data created by Firm X. When the volume of this data interchange is huge, it makes 
economic sense for Firm Y to move into the same cloud as Firm X. Clearly service providers can exploit this 
network effect, particularly by identifying complementary firms that share huge volumes of data. One such 
instance is AppNexus, a utility cloud that is optimized for the use of ad networks and their ecosystem, which 
consists of publishers and advertisers, who use the data predominantly for predictive analytics.

39.7.2.2 Platform Switching

Most application software programs are typically compatible with a specific set of operating systems. This 
means that network effects play a major role in determining the market dynamics. Fershtman and Gandal 
(2012) classified these network effects into direct and indirect. There were strong network effects in the 
o perating systems market. The direct network effects occurred when consumers increasingly used operating 
systems that were available on many computers. The indirect network effects can be attributed to more and 
more users adopting operating systems that offer a large variety of application software. Application develop
ers also preferred to develop applications for operating system with a large user base. The transition to cloud 
will weaken both the direct and indirect network effects due to wider access to technologies like virtualiza
tion, and will therefore impact the pattern of competition in the operating system arena. In particular, indirect 
network effects may diminish for the operating systems in the cloud environment. It is also likely that multi
ple platforms can co‐exist in the cloud (Fershtman and Gandal, 2012).

39.8 Research Directions

39.8.1 Cloud Providers

With the emergence of collaborative cloud services, demand for algorithms for resource sharing and revenue 
sharing, with various cloud providers working together, is bound to increase. The introduction of dynamic 
pricing schemes calls for studies related to factors that influence user buying behavior and related concepts 
from a microeconomic and macroeconomic point of view. Methods that can reduce the time required to reach 
the maximum profit point and enrich relevant approaches from the field of autonomic systems can form a 
valuable research area. Rising cloud adoption rates make it imperative for cloud providers to study the differ
ences among their users and their corresponding demands, workloads, and usage patterns. Evaluation of 
service offering tradeoffs is another valuable area of research. For example, on one hand the diverse needs of 
growing cloud demand may tempt a vendor to offer diversified services, and, on the other hand, considering 
economies of scale, the vendor may only focus on a single service offering. Providers need to consider the 
impact of their QoS decisions on consumer satisfaction and revenue management. For the success of any 
industry, human resources are a key factor. Studies of human resource factors need to be conducted in the 
context of cloud – for example, a research study focusing on identifying the skill sets required for running and 
managing large‐scale datacenters.
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39.8.2 Cloud Consumer

Cloud consumer organizations, in addition to cost modeling, need to investigate project management and 
software cost estimation techniques to unearth the full costs of cloud migration. Study and analysis of 
long‐term workloads can also provide the user with different possible budgets on a monthly or yearly 
basis. Prediction methods can be developed to minimize costs and completion times by identifying correla
tions between past and current prices and between instance types. Firms that have transitioned to the cloud 
need to develop systematic tracking mechanisms to monitor use of cloud services. Without this internal 
monitoring users could spawn instances unnecessarily and cloud costs could turn out to be much higher 
than predicted.

Software development firms need to re‐examine current software engineering practices and tailor them to 
complement development in the cloud. Research on performing application discovery to obtain essential 
input parameters such as application dependencies, component response times, and traffic exchanged between 
components can be valuable. Researchers and businesses need to explore the impact of vendor lock in and 
develop models to estimate the potential loss due to this.

From a human resource perspective, studies need to be carried out to identify the competencies that tradi
tional software developers need to learn in order to build and run applications suited for cloud computing 
environments.

39.8.3 Others

The role of agents and brokers is bound to increase with the expansion of cloud market share. Agents need to 
develop methods that allow them to meet the requirements (such as SLA and security), matching user needs 
with what the cloud provider can offer. Third‐party brokers need to study brokerage‐based cloud services, 
cloud aggregation, and cloud bursting. Value‐added resellers need to examine what kind of standards need to 
be established for a service to become truly valuable to a large community. In the interest of all the stakehold
ers, researchers need to analyze the impact of storing data across multiple geographies. This research can 
address many open questions. For example, one question that remains even today is whether the laws of all 
the countries where the servers reside be analyzed and understood in case litigation occurs.

39.9 Conclusion

Amazon has started offering Elastic Computing Cloud at prices close to10 cents per hour. Microsoft is invest
ing billions and adding up to 35 000 servers a month to build cloud computing. Google applied for a patent 
for ship‐based datacenters generating tidal power to run cooling pumps. Cisco is researching “intercloud,” a 
federation of clouds, in the same way that the Internet is a network of networks. With all of these happening, 
the significance of moving to cloud needs no emphasis.

However, industry reports indicate that cloud spending is yet to make a dent, although it is on the rise. This 
can be attributed to the dilemma faced by adopters due to lack of insight into the economic aspects of moving 
to a cloud. In this chapter, we saw an overview of various terms and concepts pertaining to the economic 
considerations of cloud. This could typically benefit managers in an organizational setting and researchers in 
the IS space. In the course of decision making, organizations need to consider economic implications p ertinent 
to the decision and use appropriate models and techniques to support their decision making. Ideas stemming 
from fields such as economics, management, and decision theory are increasingly becoming relevant to this 
new domain of computing. Researchers need to understand the gaps and the urgency in this emerging area of 
study, identifying opportunities for research and addressing them appropriately.



488 Encyclopedia of Cloud Computing

References

Agmon Ben‐Yehuda, O., Ben‐Yehuda, M., Schuster, A., and Tsafrir, D. (2011) Deconstructing Amazon EC2 Spot 
Instance Pricing. IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom). 
IEEE, pp. 304–311.

Amazon (2011) Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2 (accessed December 29, 
2015).

Buyya, R., Yeo, C. S., Venugopal, S., et al. (2009) Cloud computing and emerging IT platforms: Vision, hype, and reality 
for delivering computing as the fifth utility. Future Generation Computer Systems 25(6), 599–616.

Cochran, M. and Witman, P. D. (2011) Governance and service level agreement issues in a cloud computing environment. 
Journal of Information Technology Management 22(2), 41–55.

Fershtman, C. and Gandal, N. (2012) Migration to the cloud ecosystem: Ushering in a new generation of platform 
c ompetition. Communications and Strategies 85(1), 109–123.

Garg, S. K., Vecchiola, C., and Buyya, R. (2013) Mandi: A market exchange for trading utility and cloud computing 
services. Journal of Supercomputing 64(3), 1153–1174.

Hassan, M. and Huh, E.‐N. (2010) A novel market oriented dynamic collaborative cloud service infrastructure, in 
Handbook of Cloud Computing (eds. Furht, B and Escalante, A.). Springer, Berlin.

Lee, C., Wang, P., and Niyato, D. (2013) A real‐time group auction system for efficient allocation of cloud internet 
a pplications. IEEE Transactions on Services Computing 8(2), 251–268.

Li, Z., O’Brien, L., Zhang, H., and Cai, R. (2012) On a Catalogue of Metrics for Evaluating Commercial Cloud Services. 
Proceedings of the 2012 ACM/IEEE Thirteenth International Conference on Grid Computing (GRID ’12). ACM/
IEEE, pp. 164–173.

Lindner, M., Galan, F., Chapman, C. et al. (2010) The cloud supply chain: A framework for information, monitoring, 
accounting and billing. Second International ICST Conference on Cloud Computing (CloudComp 2010).

Marston, S., Li, Z., Bandyopadhyay, S., et al. (2011) Cloud computing – the business perspective. Decision Support 
Systems 51(1), 176–189.

Roovers, J., Vanmechelen, K., and Broeckhove, J. (2012) A reverse auction market for cloud resources. Lecture Notes in 
Computer Science 7150, 32–45.

Seifert, M., Wolf, K., and Vitt, D. (2003) Virtual high‐throughput in silico screening. Biosilico 1, 143–149.
Weinhardt, C., Anandasivam, A., Blau, B., and Stößer, J. (2009) Business models in the service world. IT Professional 2, 

28–33.
Zaman, S. and Grosu, D. (2013) A combinatorial auction‐based mechanism for dynamic VM provisioning and allocation 

in clouds. IEEE Transactions on Cloud Computing 1(2), 129–141.



Cloud Applications and Case Studies

Part VIII



Encyclopedia of Cloud Computing, First Edition. Edited by San Murugesan and Irena Bojanova. 
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

40.1 Introduction

Cloud computing has emerged as a new computing paradigm that promises to deliver significant value to 
businesses as well as engineering enterprises. The cloud computing concept grew out of recent advances in 
service‐oriented architecture (SOA), distributed and network computing, and virtualization. Cloud computing 
has huge potential beyond the recent technological advances as business models have rapidly evolved to 
harness the network infrastructure, hardware resources, massive data storage, and programming platforms 
provided by cloud service providers. Large corporations can now move from owning their own computing 
resources and internal support to use powerful hardware and software resources over a communication 
network such as the Internet. Small businesses can focus on creating valuable applications without spending 
significant capital on installing and maintaining complex computer resources. As success stories about the 
deployment of cloud services – from Internet companies, such as Snapchat, to traditional consumer companies, 
such as 3 M – have demonstrated, the cloud service model will continue to grow, not only in the Web‐based 
and business industries, and will have a significant impact on science and engineering.

As engineering software applications become Web‐based services, engineers and designers can easily access 
the services as if the tools are running on their desktop. With storage service provided on the cloud, engineers 
can share their designs, drawings, models, data, and documents with project members. Furthermore, with trust 
as well as appropriate access control mechanisms, project partners can collaborate across the supply chain. As 
engineering projects are increasingly globalized and becoming more complex, the cloud service environment 
can be deployed to allow customers, designers, subcontractors, manufacturers, and company owners to share 
information quickly and to develop engineering solutions. In other words, in addition to providing engineering 
software as a service, the cloud computing environment can be deployed as a facilitator for collaboration.

Engineering Applications of the Cloud

Kincho H. Law,1 Jack C. P. Cheng,2 Renate Fruchter,1 and Ram D. Sriram3

1 Stanford University, USA
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For cloud to truly deliver value to engineering enterprises beyond serving application services, which are 
now implemented in a similar way to the traditional service‐oriented architecture, the services in the cloud 
need to be interoperable (preferably among services by different cloud providers). Cloud infrastructure 
s tandards have been actively pursued by industry consortia with participation by several large cloud service 
providers. To ensure interoperability among engineering services, engineering information models and stand
ards are needed to break down silos and islands of automation, particularly as applications are rapidly transiting 
from desktop “close‐box” tools to cloud‐based open software services. Standard industry ontology can play 
an important role in supporting interoperable solutions for engineering collaborations in cloud computing 
(Fenves et al., 2005).

Cloud computing holds out the promise of providing new ways to support collaboration everywhere, at any 
time, through a multitude of platforms, from desktops and tablets to mobile phones. Design changes and 
discussions can be tracked, monitored, and shared in real time by project members, in a way similar to popu
lar social apps. Collaborative technologies, with appropriate access control, are needed to support synchro
nous (real‐time) and asynchronous collaboration in an engineering environment and in global project 
development (Sriram, 2002). The cloud services model provides an appropriate infrastructure to implement 
the technologies as outlined by Sriram (2002).

This chapter is organized as follows. We first review the basic definitions that are commonly used in cloud 
computing and discuss the approaches by which engineering enterprises deliver their applications as cloud 
services. We then discuss service and information interoperability in the cloud environment, review some 
current standardization efforts, and introduce the deployment of engineering information models and 
exchange standards in the cloud service environment. In addition to service and information interoperability, 
the cloud environment has great potential in supporting collaboration among project participants. We discuss 
an example application: deploying cloud services to facilitate virtual brainstorming and team engagement in 
collaborative engineering design. The chapter concludes with a brief discussion on future directions.

40.2 Cloud‐Based Engineering Services

Fundamentally, cloud computing is a utility over a network model that enables on‐demand access to computing 
resources such as servers, storages, applications, and services. To enhance understanding of the technology, 
taxonomies and models on cloud services have been defined to provide a classification of cloud systems. 
The National Institute of Standards and Technology (NIST) has defined three broadly adopted service models, 
namely software as a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS) (Mell 
and Grance, 2011). The service model definitions have also been expanded to include many service utilities 
and acronyms. For instance, Youseff et al. (2008) suggest expanding the infrastructure definition by separating 
data and storage (DaaS), communications (CaaS), and computational resources (IaaS) as services, and to 
include software kernels (such as operating systems, virtual machines, and grid tools) and firmware and 
hardware (HaaS) as additional services. Other suggested cloud terminologies from various vendors include: 
business process as a service (BPaaS) and, in essence, everything as a service (EaaS or XaaS). On the other 
hand, Armbrust et al. (2010) view the cloud platform and infrastructure merely as the basic utility to deliver 
applications over the Internet. Generally, users access cloud‐based applications through thin client interfaces, 
such as a Web browser or a mobile app; the application software and the data are stored on servers at a remote 
location hosted by the service provider.

Major manufacturers and engineering software vendors in electronic design automation (EDA) and 
(computer‐aided design / computer‐aided manufacturing / computer‐aided engineering) (CAD/CAM/CAE), 
such as Synopsys, Cadence, Mentor Graphics, SiCAD, Nimbic, Tabula, Autodesk, MSC, Dassault Systemes, 
Bentley, Belmont, Intergraph, ANSYS, Siemens, and many others, have started or are starting to deliver a wide 
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variety of engineering applications as cloud‐based services. The four basic deployment models, namely 
public, p rivate, community, and hybrid cloud, as defined by NIST (Liu et al., 2011; Mell and Grance, 2011) can 
be used to describe how engineering services are beneficially deployed in the cloud‐computing environment.

 ● Public cloud is probably the most prevalent model for service deployment being reported. Cloud service 
providers such as Google, Microsoft, Amazon, IBM, HP, and Salesforce, provide computing resources, 
platform, and infrastructure that clients can use to deliver services to customers. Engineering software 
vendors, such as Mentor Graphics and others, have deployed public cloud services to house their applications 
for use over the Internet.

 ● Private cloud is provisioned for secured use internally by an organization or private group. One example 
is Futjisu’s Engineering Cloud, which is designed to serve the internal engineering divisions in the com
pany and is planned to serve companies partnering with Fujitsu (Yasuda, 2012). Software vendors, such 
as Tabula and others, have begun to support their platforms in a private cloud computing environment.

 ● Community cloud is referred to infrastructure and services provided for and used exclusively by a 
c ommunity or organizations. In engineering, the community‐cloud model can be deployed to support 
(lifecycle) project‐based development. A community or project‐based cloud environment with services 
and resources made available through public and private IT clouds could be an ideal resource for support
ing collaboration. For example, cloud‐based project‐based collaborations, where project participants can 
share design information and engineering models, are now supported by Autodesk 360, Integraph 
SmartPlant, and other vendors.

 ● Hybrid cloud infrastructure and services combine the utilities and services offered by the public, com
munity, and private cloud providers. Many engineering companies are interested in seeking ways to 
deploy the hybrid model, in that security (not knowing where the data is and who accesses the data) and 
legality issues (such as ownership of the data and change of contractual agreement) can be protected 
(Redmond et al., 2012). The hybrid cloud model is widely supported by software vendors, such as IBM 
and others, to allow clients to integrate services between cloud service providers and in‐house applications.

Although current cloud‐based engineering services are mostly in design automation (and business enter
prises), cloud computing models have been proposed in the manufacturing and biomedical information 
domains (Rosenthal et al., 2010; Xu, 2012).

Irrespective of the cloud deployment models, from the economy of scale perspective the major benefits of 
cloud utilities are the shared resources and application services. Using the cloud services hosted by a service 
provider, consumers are relieved of the costly maintenance and upgrade of software, hardware, and infra
structure. The pay‐per‐use model for cloud services and resources could potentially reduce the burden of IT 
expenditure for companies. Users can also access high‐end computing resources, such as supercomputers and 
computing clusters, for large‐scale simulations on an as‐needed, pay‐as‐you‐go basis. In contrast to desktop‐
based software development, by deploying computing cloud infrastructure, application developers can con
tinue to update software services and to incorporate new features without interrupting users. Furthermore, as 
cloud service providers continue to incorporate enhancements on existing applications and to develop new 
tools, users can beneficially deploy these services faster. Irrespective of the pay‐per‐use or subscription cost 
model, the potential benefit of reduced cost and easy access to shared computing resources and application 
services is one of the driving forces for the adoption of cloud computing by companies, particularly for small 
and medium enterprises (SMEs). Last but not least, an application residing in a cloud can be used by multiple 
users from around the world. For instance, a company may deploy a data‐analytic tool from a cloud service 
to analyze data collected from different facilities and manufacturing plants in geographically separated 
l ocations. As a growing number of engineering services are now available as cloud‐based services, intero
perability among the services is of interest to users (Redmond et al., 2012).
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40.3 Interoperability and Cloud Services

Interoperability refers to the ability of systems and applications to communicate, query and exchange infor
mation, and to work together. The purpose of interoperation is to increase the value of information when 
information from multiple and, likely, heterogeneous sources is accessed, related, and combined. Interoperation 
among systems increases the value of each individual, isolated engineering service and enhances efficiency 
and productivity in the engineering product‐development life cycle and business supply chain. Companies 
around the world are trying to take advantage of information and communication technologies (ICT) to create 
virtual engineering services and supply chains where customers, suppliers, and business partners collaborate 
with each other.

There are four basic categories for service interoperability in the cloud computing environments, as illus
trated in Figure 40.1:

 ● within a cloud environment (offered by a service provider), service invocation, service integration and 
information exchange between services should be supported;

 ● across different cloud environments, services should be able to exchange information and invoke opera
tions;

 ● the local application service should be able to connect and integrate with services residing in the cloud 
environment;

 ● cloud services should be portable and be able to migrate from one cloud environment to another.

Standardized interfaces and protocols should be established to enable: (i) service (or system) portability and 
migration, (ii) service invocation / integration, and (iii) information sharing and exchange among s ervices 
within a single cloud environment and across different cloud platforms.
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Application service
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Figure 40.1 Categories of interoperability in cloud computing environments
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Portability and migration of applications (from one service provider to another) and invocation and 
i ntegration of services (within and across service providers) are issues that are important not only for the 
users of the cloud service but also the software service developers and the companies that market cloud 
p latform and infrastructure resources. To support service portability and service invocation, many organiza
tions and consortia have initiated efforts to define standard interfaces or to provide open source interface 
and protocols to address the platform and infrastructure interoperability issue. For instance, OpenStack (see 
http://www.openstack.org/, accessed January 3, 2016) aims to provide “ubiquitous open source cloud 
computing platform for public and private clouds.” The Open Virtualization Format (OVF) (see http://www.
dmtf.org/standards/ovf, accessed December 30, 2015) proposed by the Distributed Management Task Force 
(DMTF), Inc., aims to define the semantics and implementation details to address the portability and 
deployment of virtual applications and to achieve interoperable cloud environment. A unified code interface 
(see http://code.google.com/p/unifiedcloud/, accessed December 30, 2015), which uses the Resource 
Description Framework (RDF) to describe a semantic cloud data model (taxonomy and ontology), has been 
proposed as an open and standardized cloud interface for unification of various cloud APIs. The Organization 
for the Advancement of Structured Information Standards (OASIS) has developed the Topology and 
Orchestration Specification for Cloud Applications (TOSCA) (see http://docs.oasis‐open.org/tosca/TOSCA/
v1.0/TOSCA‐v1.0.html, accessed December 30, 2015), which aims to simplify the migration of applica
tions from one cloud to another and orchestrates them across multiple cloud environments. Efforts have 
been reported to enhance Web service standards, such as Web Service Definition Language (WSDL) and 
Business Process Execution Language (BPEL), commonly deployed for describing service interfaces and 
orchestrating s ervices, to support service invocation and service integration in the cloud service environ
ment (Anstett et al., 2009). Enterprise software companies, such as WSO2, have incorporated BPEL in their 
cloud service p latforms, whereas others, such as IBM, offer support for delivering service integration with 
other open standards.

Engineering information models and interoperability standards play an important role in supporting infor
mation sharing and exchange and service integration (Fenves et al., 2005). As engineering designs become 
more complex, the variety and volume of digital information and the demand on easy access to the data in 
engineering projects has dramatically increased. Consider building engineering as an example. The design 
and construction of the Beijing National Aquatics Center in China have generated over 1.2 million drawings, 
which required over 200 GB of storage. The amount of building information increases along project life 
cycle, from planning and design, to construction, operations, and maintenance. A cloud‐based storage service 
is desirable for managing building information over the facility life cycle and allows project partners to 
access and share information everywhere and anytime. One approach is to extend storage (infrastructure) as 
a service and to adopt industrywide standard information and ontology models to facilitate information 
s haring and service integration within and across cloud environments.

In the building and construction industry, building information modeling (BIM) applications have begun 
to emerge as a vehicle to support integrated project‐delivery process through exchange of information with 
open standards. By adhering to open standard data modeling and format, such as the Industry Foundation 
Classes (IFC) developed by buildingSMART (formerly called the International Alliance for Interoperability, 
IAI), information exchange and interoperability are supported by BIM application software. Redmond et al. 
(2012) conducted a semistructured interview of 11 BIM experts and concluded that Web‐based BIM 
exchanges on a cloud platform can lead to enhanced information and service interoperability between 
d ifferent construction applications.

The BIM‐PDE server is a prototype cloud‐based framework for storing and retrieving BIM information 
(Cheng and Das, 2013). Unlike in the traditional approach where every end user has his / her own version of 
BIM data, the cloud‐based framework provides a centralized server where the information of an integrated 
building model is stored and the data of customized models can be retrieved. The end users could download 
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or upload partial models by executing updates on the integrated building model in the server. This enhances 
information‐sharing efficiency as only the key information is shared instead of the entire model.

Apache Cassandra (see http://cassandra.apache.org/, accessed December 30, 2015), an open‐source dis
tributed database management system, is used to implement the BIM‐PDE server. The architecture of a 
Cassandra instance consists of a set of independent nodes (computers/ disk space) configured together in a 
cluster. An instance of Cassandra may run on one or more virtual machines called nodes located in the cloud. 
The system architecture of Cassandra is compatible with popular cloud infrastructure providers, such as 
Amazon Elastic Compute Cloud (EC2). The data stored in the BIM‐PDE server is partitioned and distributed 
among the nodes in the Casandra distributed database system to facilitate efficient data retrieval and update 
using parallel threads.

A simple example scenario is presented to demonstrate the retrieval and updating of building models in a 
storage (or infrastructure) as a service environment. The BIM‐PDE server is invoked via a user interface as 
shown in Figure 40.2. The welcome page checks credentials of the users and authenticates the authorized user 
to the “BIM Partial Data Exchange” Web page. As shown in Figure 40.2, three data‐exchange functions are 
supported by the BIM‐PDE server – (i) uploading a new building model, (ii) downloading a partial model, 
and (iii) uploading a partial model.

Figure  40.3 shows the new building model (IFC1) that the designer creates using Autodesk Revit 
Architecture. The architect imports the partial model (IFC2) to the BIM software, Graphisoft ArchiCAD, and 
makes changes to the partial building model. With the partial model, the architect deletes the highlighted 
wall, adds a new wall, and exports an IFC file (IFC3) to the server. The architect updates these changes to the 
integrated building model stored in the BIM‐PDE server without affecting the other parts of the same model. 
Internal functions leveraging the IFC standard data model are implemented to update the key information 
(including geometric and material properties) read from the partial building model file (IFC3) to the 

Figure 40.2 Access to the BIM‐PDE server
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BIM‐PDE server. As only the partial model is exchanged, data exchange and model updating can be  performed 
efficiently. The whole building model, IFC4, can now be downloaded by other services, with relevant changes 
reflected in the new model. While SaaS is a common paradigm currently deployed by engineering application 
services, the use of IaaS or DaaS using standard ontology as a vehicle for information and software intero
perability in the engineering domain could prove beneficial to provide added value to individual cloud 
a pplications and enhance collaboration. It should be emphasized that although we have provided an example 
in the building engineering domain, similar strategies can be achieved using various information models and 
ontologies developed in the manufacturing and other engineering domains (Fenves et al., 2005).

40.4 Collaborative Technologies for Cloud Platform

Design of complex engineering systems is a collaborative task among designers or design teams that are 
physically, geographically, and temporally distributed (Sriram, 2002). Ensuring comprehensive technical pro
ficiency in a world where trends are toward more multidisciplinary design can be a costly undertaking for a 
company. Effective collaborative design environment is important for realization of multidisciplinary design.

Perhaps the most important collaborative activities in the product development process lie in the concep
tual design phase. Meetings are commonly convened to explore and brainstorm design concepts and develop 
design schemas. Creativity, however, is not necessarily restricted within meetings. Many creative or “light‐
bulb” design ideas are instantaneous. Cloud computing, with its capability to support devices, ranging from 
personal and mobile devices to HPC resources, can have a significant impact on creative and collaborative 
design. In addition to facilitating information capturing, sharing and access, the cloud service environment 
offers a new social network paradigm that allows communications, interactions and collaborations among 
collocated and distributed participants and their devices.
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The Project‐Based Learning (PBL) laboratory at Stanford University has been focused on the develop
ment, deployment, and assessment of collaboration technologies in support of synchronous and asynchronous 
collaborative interaction in cross‐disciplinary geographically distributed project teamwork. Collaboration 
software applications and virtualized storage have been deployed on Microsoft’s Azure cloud platform. Two 
examples of such cloud applications are:

 ● BrainMerge: a virtual brainstorming application service that facilitates crossdisciplinary, geographically 
distributed teams. The purpose of BrainMerge is to: (i) make individual “local conditions” visible in real 
time during a specific collaborative event, and (ii) provide a mechanism to harvest the team members’ 
creativity.

 ● eMoC (engagement Matrix of Choices): a mobile application and service that allows project members to 
make their “local conditions” transparent, update them in real time, and track them over time. The purpose 
is to provide feedback on the status of distributed project members towards establishing mutual under
standing, thereby enhancing their degree of engagement, and improving work productivity (Fruchter and 
Medlock, 2013).

The “local conditions” in BrainMerge and eMoc include not only location awareness – time and g eographic 
location information – but also type of location, for example home, café, lab; resource information such as 
available networks, devices, and tools; workload; personal knowledge profile, and intelligent feedback 
regarding potential degree of engagement as a function of the existing conditions of all team members. These 
local conditions include not only the work conditions but also the social and cultural attitudes that are impor
tant to assess and measure the collaboration and performance of a project team.

The virtualization of both BrainMerge and eMoc cloud applications and services led to similar architecture 
implementations as shown in Figures 40.4a and 40.4b, with a MySQL database cloud storage and the respective 
virtual machine application and service running on a Microsoft Windows Azure platform. The participants 
interact with the BrainMerge and eMoc cloud applications and services through the corresponding 
BrainMerge web site and eMoc web site. Distributed participants notify the cloud applications and services, 

BrainMerge VM cloud app and service eMoC VM cloud app and service

BM

MySQL DB MySQL DB

WindowsAzure WindowsAzure

BM
BM

BM

(a) (b)

BM
eMoC

eMoC

eMoC

eMoC
eMoC

Figure 40.4 Cloud applications and services: (a) BrainMerge; (b) eMoC
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i.e., BrainMerge and eMoc, of their local conditions and ideas. This information is collected, updated, and 
tracked in real time, then correlated, integrated, and fed back to the end‐point mobile and desktop devices of 
the participants. This allows teams to best leverage their knowledge and resources during synchronous and 
a synchronous interactions.

40.4.1 BrainMerge – A Cloud Service Supporting Brainstorming Sessions

To harvest knowledge and foster creativity in collaborative brainstorming sessions, BrainMerge is designed 
to allow all the geographically distributed participants to make their local conditions visible in real time from 
their mobile or desktop devices. Figure 40.5 illustrates a digital badge example for Dr. Renate Fruchter, show
ing her geographic location (sun icon), day time – engaging in a brainstorming session during work hours 
(hammer icon), feelings (smiley face), availability – coming from a meeting and going to a meeting (running 
icons left and right the image), workload – number of projects (left side bar), type of network connectivity 
(broadband icon). Furthermore, as shown in Figure 40.6, BrainMerge offers a meshup with Google Maps to 
show the participants’ locations especially for brainstorming sessions where team members have significant 
time zone differences.

BrainMerge supports concurrent, real‐time, synchronous ideation by connecting the participants’ end‐
point devices with the cloud application and service. It captures, tracks, compiles, and feeds all the partici
pants’ inputs. Most importantly, it gives all participants a voice, allowing every participant to review everyone 
else’s ideas and expand or build on others’ ideas, as well as vote, prioritize, and cluster ideas. Figure 40.6 
illustrates a building solution (Figure 40.6a), and a brainstorming session (Figure 40.6b and 40.6c) from a 
global project team of eight participants – architect at University of Ljubljana in Slovenia, structural engi
neers at Stanford University, construction managers at KTH in Stockholm Sweden and Stanford University, 

Figure 40.5 Example of BrainMerge digital badge, which makes local conditions visible
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MEP designers at Stanford University, and LCFM at Bauhaus University in Germany. As shown in the Google 
map (Figure 40.6b), the brainstorming title is the “Big Idea” that the team members submitted their overall 
objectives or ideas about the building (such as “Boat design for (the) building”). The BrainMerge screenshots 
from a participant’s device illustrate: (i) a moment during the brainstorming session as a participant reads 
team members’ current ideas and enters a new idea in the text box (Figure 40.6b); and (ii) a snapshot of the 
voting room (Figure 40.6c) for the results compiled by the BrainMerge cloud service from the votes casted 
by seven out of eight team members and fed back in real time to the participants on their devices.

40.4.2 eMoC – A Cloud Service Supporting Team Engagement in Collaborative Environment

One of the key challenges for collaborative engineering among distributed project teams is to make their local 
conditions visible and, possibly, make other team members aware of them. Transparency, visibility, and align
ment of local conditions are critical for achieving high‐performance teamwork and are fundamentally important 
in building a sense of team identity and belonging (Fruchter et al., 2010). The collaborative tool, engagement 

(b)

(a)

(c)

Figure 40.6 Example of AEC Global Team final building proposal and BrainMerge virtual brainstorming and 
v oting results
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Matrix of Choices (eMoC) is developed to assist global team workers to achieve mutual understanding of 
their local work environment conditions (Fruchter and Medlock, 2013). eMoC enables teams to assess and 
make explicit choices continuously related to the physical, digital, and interaction as available options in their 
work environment.

Engagement involves people, and the content and equipment they create, manipulate, and operate. From 
the physical, digital, and interaction context, we define four degrees of engagement, namely Awareness, 
Attention, Participation and Engagement (AAPE):

 ● Awareness – all participants can only hear each other.
 ● Attention – all participants can only hear and see each other.
 ● Participation – all participants can hear and see each other, and co‐control shared content.
 ● Engagement – all participants can co‐create the collaboration space, content, products, in addition to 

being able to hear and see each other, and co‐control shared content.

Additionally, eMoC assists individuals (i) to assess, reassess, and realign their local work environment and 
build awareness of their current conditions, and (ii) to progressively move from the individual level to the 
dyad and to the team, followed by commitment towards full engagement in the project. Tool kits allow 
i ndividuals and project teams to report and identify their location (including place, network, and devices 
employed), skill levels, workload, and so forth. By formalizing and implementing eMoC as a cloud service, 
the tool allows participants flexible engagements in which they can use their mobile and desktop devices 
through a Web‐based user interface.

The eMoc cloud service captures, stores, tracks, and updates the local conditions of all participants in real 
time. Figure 40.7 illustrates an eMoC individual profile made transparent to the team – vSpeed (displaying 
reported versus actual workload) and ccKit (showing available networks, devices, ICT tools and potential 
AAPE engagement capacity with the e‐mail tool as an example). The eMoc cloud service also compiles, and 
feeds back to the team members, the current level of ICT alignment / misalignment, for example how many 
team members have access to a WiFi network connection, a device like a Smartboard, or tool like Gotomeeting 
Web conferencing. This allows teams to plan their synchronous and asynchronous interactions accordingly, 
to achieve the highest potential degree of engagement.

BrainMerge and eMoC cloud applications and services have been deployed and used in global course pro
jects in education testbeds (see http://pbl.stanford.edu/AEC%20projects/projpage.htm, accessed December 
30, 2015) as well as corporate pilot case studies in Fortune 500 high tech and manufacturing enterprises. 
These education and industry testbeds enabled us to assess the user experience and impact on team dynamics 
and performance (Fruchter et al., 2010; Fruchter and Medlock, 2013). BrainMerge has enabled deliberations 
and collaborative development of design concepts. Industry users have commented that eMoC have made 
them aware of their team members’ local conditions and workload as well as how important it is to have this 
information in order to have more realistic deadlines and work plans. Deploying the collaborative SaaS tools 
on a cloud platform, such as Windows Azure, has significantly reduced the infrastructure and resource cost 
as well as increased the reliability, scalability, storage capacity, and work productivity in the PBL Lab.

40.5 Summary and Discussion

Cloud computing has the potential to transform the practice of engineering by providing services over a net
work to support the entire product life cycle in a transparent manner. In this chapter, we have briefly reviewed 
the basic cloud service and deployment models and discussed how engineering enterprises and engineering 
service providers deliver their applications as cloud services. The business models, such as pay‐per‐use on an 
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as‐needed basis, offered by cloud service providers can significantly reduce the IT expenditures of engineering 
companies. As advanced CAD/CAE/CAM tools become available in the cloud, small and medium enterprises 
(SME) in engineering and manufacturing will be able to utilize the most appropriate, up‐to‐date computational 
tools (which may only be available to large corporations in the past) to develop high‐quality products.

In order to deliver services effectively to support the entire engineering product life cycle, information 
sharing and service interoperability between various clouds must be adequately addressed. Furthermore, 
synchronous and asynchronous cloud‐based collaborative tools can greatly enhance collaboration and the 
productivity of project teams in a geographically distributed setting. In this chapter, we have described two 

AAPE legend

Attention

Participation

Engagement
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vSpeed - workload
Reported vs actual workload
impacted by the number of
distributed projects
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e.g. Email

Figure 40.7 eMoC mobile example of an individual profile made transparent to project team
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case studies of cloud‐based computing in engineering – one in product information sharing and the other in 
distributed collaboration. Continuing research and development efforts in supporting information and service 
interoperability and distributed collaboration are needed to realize the full potential of cloud computing in 
engineering. Last but not least, as sensors and actuators are increasing being deployed to link computational 
systems to the physical world, a cyber‐physical cloud computing environment, where sensors and actuators 
are (remote) services and the information generated is effectively stored, processed, shared in the cloud 
environment, represents the first step towards smart networked engineering systems (Simmon et al., 2013).
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41.1 Introduction

Organizations around the world are adopting cloud computing and the education sector is no exception. 
Education providers, from primary and secondary education to higher education, hope to solve many of 
their technical challenges with cloud technologies. Cloud computing provides an educational institution  
with access to resources that were once only available to wealthy institutions. A perfect example of this is 
Khan’s Academy, which offers individual students, schools, and universities resources to improve their 
 success in the classroom. Resources available from cloud computing will challenge traditional methods of 
education. Today, students can graduate from high school or college without having to sit in a traditional 
classroom. Students in  classrooms have access to outstanding educational resources previously unafforda-
ble to them. The  consumerization of technology and emergence of mobile computing pose unique chal-
lenges for educators. Consumers expect to be able to interact with traditional education institutions in much 
the same way they use public cloud applications (YouTube, Khan Academy, etc.). Access to academic 
resources from any device at any time is not just a benefit – it is expected. This challenge is not just for 
traditional institutions, as licensing restrictions around software or even content can limit the most techni-
cally proficient online institutions.

This chapter discusses the adoption of cloud technology, applications related to instruction, front‐office 
interaction, and back‐office operations. The use of cloud computing in academic research will also be  covered. 
The chapter provides a broad overview broad overview of cloud computing in education and outlines recom-
mendations and considerations for selecting cloud services.

Educational Applications of the Cloud

V. K. Cody Bumgardner, Victor Marek, and Doyle Friskney

University of Kentucky, USA
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41.2 Adoption of Cloud Technologies in Education

From a technology standpoint, educational institutions are in a uniquely difficult position when it comes to 
technology. Education providers experience many of the same problems as producers of consumer products. 
How can all possible technology platforms be supported that might be used by their consumers? As with 
consumer products, there is a careful balance to be made between supporting a subset of technologies effec-
tively, and isolating potential / actual customers. To deal with these challenges, some education providers, like 
some consumer technology companies, only support a very specific platform (for instance IOS 6.x on iPad2 
or greater). Some education providers are in a position to provide a computing platform as part of the cost of 
education, often referred to as 1 : 1 programs but, mostly, devices are provided by students and their families. 
This is often referred to as a “bring your own device” (BYOD) scenario.

Consumerizaton has changed how corporations and educational organizations support today’s computing 
environment. Cloud computing resources combined with personally owned technology minimize the impact 
that IT organizations have on mandating standards. This is both a blessing and a curse. The adoption of cloud 
computing by school organizations will continue to transform how IT organizations support their customers 
(students). In addition to the BYOD problem, education providers also have to overcome all the technical 
challenges experienced by corporations. A large K‐12 school district can have over 100 000 users, spread out 
over a thousand locations. A single large university, from an administrative computing prospective, can 
resemble a Fortune 500 company. Compliance requirements related to regulatory agencies require educa-
tional organizations to address security issues such as PCI (credit card processing), and comply with the 
Family Educational Rights and Privacy Act (FERPA), which defines rules for the protection of student data, 
and the Health Insurance Portability and Accounting Act (HIPAA), which defines rules for privacy protection 
and end use, resulting in challenges for education providers.

41.2.1 Private and Public IaaS Adoption

In recent years, Amazon Web Services (EC2) (http://aws.amazon.com/ec2/, accessed December 30, 2015) 
has been the leader in public infrastructure as a service (IaaS) cloud. During the 2012 Amazon Web Services 
(AWS) Public Sector Summit in Washington, DC, Amazon announced that more than 1500 education institu-
tions were leveraging AWS for a wide range of uses including big data analytics, high‐performance comput-
ing, Web and collaboration applications, archiving and storage, and disaster relief. Despite this, the majority 
of IaaS resources remain centralized at the institutional level. For many institutions a great deal of cost avoid-
ance has already been achieved through server virtualization. These centrally managed pools of virtual 
resources are called “private clouds.”

41.2.2 PaaS Adoption

In comparison to IaaS, if a platform‐as‐a‐service (PaaS) application is not being used, the cost decreases. While 
technically attractive, very few education providers take direct advantage of these services. In part, this is due to 
limited in‐house software development, outside of traditional application frameworks. As previously mentioned, 
existing architectures can’t take advantage of PaaS, and when they are rewritten to do so, software vendors often 
force customers to make the direct transition to software as a service (SaaS). It is also noteworthy that many edu-
cational technology providers use IaaS as their primary means to provide products to the educational community.

41.2.3 SaaS Adoption

The highest growth area is SaaS because it allows the student to select the resource needed with intervention 
by an IT organization. Software as a service is often the choice of school teachers, administrators, and parents. 
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A commonly used example of SaaS by students is YouTube, offered by Google. It is rare to find software 
being introduced to education providers by their vendors that would be considered anything but SaaS. These 
SaaS offerings include: Facebook (http://www.facebook.com), Twitter (http://www.twitter.com), Google 
Apps (https://www.google.com/enterprise/apps/education/, accessed December 30, 2015), and Microsoft 
Office 365 (http://office.microsoft.com/en‐us/academic/, accessed December 30, 2015). These applications 
are highly available, globally redundant, and fully distributed. Unfortunately, even when software is hosted on 
a single server by the software vendor, the solution is sold as a “cloud” application. Technically superior 
 software solutions take advantage of PaaS or build their own distributed cloud frameworks. While often 
 software vendors do not disclose their internal architecture, those who have invested in cloud architectures 
will use this as a selling point. From the standpoint of adopting new software solutions there is often no choice 
but to accept a hosted solution if one wants to use the software. Unlike IaaS or even PaaS solutions, software 
vendors providing SaaS will often take on the responsibility and liability of securing application data.

In terms of existing software, organizations are being faced with the choice of upgrading vendor‐provided 
software for local deployment or migrating to a hosted solution. Often this is not a question about using cloud 
computing; it is a question of licensing model. However, the vast majority of SaaS offerings are based on 
“named‐user” licensing. This is particularly problematic for education providers, where perhaps only a small 
section of their population will use a particular software package. To illustrate, consider a statistics package 
locally hosted by a university department. In the past, the licensing for the software might be related to a 
percentage of expected users, mostly from a specific department, but the software was available campus‐
wide. In a named‐user model, anyone that used the software package would have to be designated to do so. 
This change in licensing forces institutions to choose between maintaining software locally, restricting 
 software availability, or paying higher prices to include all users. While these are not technically cloud 
 problems, they have become barriers to adoption.

41.2.4 Platform Adoption Summary

It is nearly a foregone conclusion that new software introduced by vendors to education institutions will be 
delivered through SaaS. The efficiency with which SaaS vendors can provide services will be rooted in their 
own cloud‐adoption abilities. There is an active debate concerning security around cloud services. There are 
those who think that by giving up control of the infrastructure, platform, and software layers, they are giving 
up their ability to secure their data. One could also argue that the baseline security measures provided by 
cloud providers might not meet the requirements of all organizations. It is also conceivable that large service 
providers are bigger targets for cyberattacks. The other side of this argument is that a fully staffed baseline 
security service is superior to what many institutions are currently able to provide. By migrating the software 
to the cloud, we not only remove risk associated with providing infrastructure but also remove a great deal of 
security risk related to internal threats.

41.3 Cloud Applications in Education

We often associate cloud technology with ubiquitous computing (where an application appears to be acces-
sible from any device). This is reasonable considering that the majority of the consumer‐focused cloud 
 applications (Facebook, Twitter, etc.) have multiple access methods, including mobile, desktop, and Web 
applications. Educational publishers have embraced SaaS to extend their textbook offerings to include inter-
active personalized learning experiences. Users have come to expect that applications will be made available 
in a wide variety of ways from anywhere at any time, and cloud solutions provide this capability. However, 
most organizations simply can’t afford to meet this expectation with applications developed in house.
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The majority of new applications are delivered as SaaS, which eliminates the need for institutions to main-
tain expensive datacenters and information technology staff with dated skills. Cloud‐based education tech-
nology companies compete with the newest ideas to enhance the learning environment. As applications 
become successful they are integrated into the product offerings of mature educational vendors. Integration 
and agility to meet the needs of learners become critical. Most organizations struggle to calculate the savings 
related to infrastructure related to cloud migrations; often the savings are not as important as meeting the 
needs of the students. Cloud vendors provide innovative alternatives to traditional educational solutions. 
Cloud migration strategies must include ways to quantify reasonably the value used by eliminating traditional 
datacenter requirements. While one can argue that cost of cloud communication will increase, the benefit of 
eliminating traditional datacenters should more than offset communication cost.

In the following subsections, we will discuss specific areas impacted by cloud adoption.

41.3.1 Cloud in Instruction

The technology cornerstone of most educational institutions is the learning management system (LMS). The 
basic task of a LMS is to provide a framework to manage all aspects (content, instruction, assignments, 
 testing, grading, etc.) of the learning process. Usage varies greatly based on online requirements and institu-
tional guidelines for course standardization. Learning management systems have evolved to include content 
management systems (CMS), collaboration tools, and a host of other features. The LMS has been around for 
decades and, like many systems of this lineage, they are designed to be hosted (installed locally) by the 
institution. It is common to have many pieces of software, from many vendors, work in conjunction with an 
institutional LMS. Traditional campus LMS integration is shown in Figure 41.1. Components are tightly 
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Figure 41.1 Traditional “highly connected” model for LMS campus integration
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integrated with each other using many integration points. This tight integration, often constructed using cus-
tom developed interfaces, is an impediment when searching for cloud‐based alternatives.

Emerging LMS systems, like most new software, are being delivered in the SaaS model.A good example 
of this is Instructure’s Canvas (http://www.instructure.com, accessed December 30, 2015). One of the key 
differences between legacy LMS systems and emerging cloud offerings is the openness of the ecosystem. 
Traditional systems are highly proprietary whereas emerging systems are created on open standards and 
typically provide APIs that encourage interoperability. Even if a competing LMS could somehow integrate 
with remaining local services, the overall user experience could be limited by locally hosted dependencies. 
The problem becomes harder when components related to an LMS are available from various cloud vendors. 
When everything was hosted locally, one conceivably had low‐level access to components of the system. This 
allowed for various levels of product integration, based on the desired user experience level. In Figure 41.2, 
we show three separate SaaS cloud providers with the same application features as those shown in Figure 41.1. 
There is an important difference between these figures, related to their level of integration. The components 
in Figure 41.1 are highly connected, allowing application data in the various components to be bidirectionally 
shared. The components in Figure 41.2 don’t have the same bidirectional communication capabilities as those 
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in Figure 41.1. These components are limited to both the level of API access provided by the respective SaaS 
providers, and the data exposed by the APIs.

In response to these problems, institutions have formed consortiums to develop open mashups of learning 
platforms (Mikroyannidis et al., 2012). One such consortium is Unizin (http://unizin.org, accessed December 
30, 2015). The goal of Unizin is to provide a common platform focused on digital content development and 
data analytics. Open access to interaction data across clouds (Rizzardini and Amado, 2012) is necessary for 
recommendation engines (Leony et al., 2012) used in adaptive (Chaabouni and Laroussi, 2012), and person-
alized (Gillet and Bogdanov, 2012) learning.

No discussion about cloud and education would be complete without mentioning the so‐called massive 
open online courses (MOOCs). While the idea of a MOOC is really more of a business model based on 
 universal (possibly free) access to education than a specific technology, it provides an edge case for technol-
ogy problems. If instruction were open to everyone in the world and content were made freely available 
 everywhere, one would need to develop a unified platform that operates very efficiently.

41.3.2 The Use of Cloud in the Front Office

The term “front office” is used to describe the departments or services of an institution that come into direct 
contact with the end user. Most school organizations use cloud services to support library systems, admin-
istrative, and academic system. The use of cloud computing was introduced by offerings from companies 
like Google and Microsoft with e‐mail and storage applications. From an education prospective we could 
certainly consider the user‐facing component of an LMS, a front‐office service. However, there are many 
other services beyond those used in instruction that institutions have traditionally provided. Collaboration 
services (online messaging / meeting software), e‐mail, and personal storage all fall into this category. Even 
more recently, these offers have been extended to faculty and staff. The term “free” in this respect is really 
“with no additional charges,” because often existing support agreements must be maintained. Nevertheless, 
organizations have the option to migrate cost and risk associated with maintaining local infrastructure to 
another organization. As with the LMS we discussed in the previous subsection, the migration of local ser-
vices to the cloud is not always a clean one. The “free” option might not include all of the capabilities that 
are provided with local hosting. Many vendors have options to designate paid and free accounts within the 
same institution. If institutions can be flexible, not only can services be migrated to the cloud, but the 
resources provided to their users are often much greater (bigger mailbox, storage, etc.) than they themselves 
can provide.

41.3.3 The Use of Cloud in the Back Office

The term “back office” is used to describe the departments and services of institutions that are dedicated to 
running the institution itself. In subsection 41.3.1 we discussed how LMS systems were used in instruction. 
An LMS has components of both front office and back office. Back office functions of an LMS include 
 grading, assessment, and other administrative functions. Many institutions maintain an enterprise resource 
planning (ERP) system in addition to their LMS system. The ERP system might also have front‐office func-
tions in the form of student, faculty, and staff self‐service functions. However, the majority of ERP func-
tions are dedicated to the administrative aspects of running the organization. Enterprise resource planning 
and LMS systems share many of the same cloud migration challenges. Considering that ERP systems have 
been around longer than LMS systems, it is reasonable to think that decoupling an ERP system from insti-
tutional dependencies could be even more challenging. Much of the risk associated with providing ERP 
infrastructure can be mitigated by remotely hosting private cloud services. Figure 41.3 shows a multisite 
IaaS cloud of traditional services. All of the existing integration benefits are maintained, while risks related 
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to maintaining infrastructures are eliminated. In this model the vendor provides remote IaaS services but, 
unlike public cloud, these resources are isolated from other customers and generally have a fixed size and 
cost. This arrangement can also be expanded to include additional dependencies, including custom 
 developed solutions.

Compared to front‐office applications there is less of an expectation for back‐office applications to provide 
ubiquitous client interfaces. Back‐office applications are typically developed based on institutional business 
practices, which vary between education institutions. For this reason flexibility is valued over “canned” appli-
cation functionality. In the short term one can expect institutions to adopt remotely hosted private cloud 
 solutions for back‐office applications.

41.3.4 Social Networks, Gamification, and Student Analytics

Institutions can mandate that students utilize online systems for instruction. Individual courses might even 
require student interactions through blog post or online meetings. However, it is something else entirely to 
make students want to use these services. There has been limited success in building online communities on 
an institutional level. Social media sites maintained on an institutional level can be conceived as “big brother,” 
which is a deterrent to participation.

The practice of providing learners with feedback related to academic performance and engagement is 
sometimes referred to as the “gamification” of learning. Most often this data is presented to students as a 
scorecard, which shows achievements as if they were participating in a game. The objective of this practice 
is to entice the student to engage and to identify themselves as part of their institution. Increases in  institutional 
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engagement are linked to everything from student retention to alumni endowment. There have been many 
cloud applications developed for student engagement from many education software vendors. Many of these 
applications provide the ubiquitous user experience expected of cloud software. Gamification has opened the 
door for publishers to create personalized learning solutions. The principles of adaptive learning and gamifi-
cation complement one another and create a platform for creating exciting interactive learning environments. 
An example of this is the partnership between Arizona State University, Pearson’s and Knewton (Upbin, 
2012) to develop an adaptive tutoring system.

41.3.5 Education Application Summary

Student analytic services allow institutions to compare and analyze the needs of their students against 
state and national standards. Student sentiments, the development of their social networks, and interaction 
with the institution all play a role in this analysis. Vendor control of the application’s API can be used as 
a competitive advantage for services that the vendor might also provide. Figure 41.4 shows two possible 
options for CMS systems: CMS A and CMS B. CMS A is more expensive and provides fewer features 
than CMS B. However, CMS A is provided by the same cloud vendor as our LMS system and the features 
of both applications are tightly integrated. In this case the vendor with the integrated solution has no 
incentive to provide a robust API that could be used to integrate other options. Care must be taken to 
evaluate the APIs provided by SaaS vendors, to ensure appropriate access to data can be obtained. As 
previously mentioned in subsection 41.3.1, if an instructional cloud standard is adopted by a large number 
of institutions, a common API will likely be defined to overcome data integration problems. Cloud‐based 
companies like StarFish (http://www.starfishsolutions.com, accessed December 30, 2015) and Civitas 
(http://www.civitaslearning.com, accessed December 30, 2015) are examples of K‐20 focused student 
analytic applications.
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41.4 Cloud Computing in Research

While purpose‐built supercomputers have existed for several decades, much of the high‐performance com-
puting that exists in research institutions today has evolved from augmentations of more general‐purpose 
computing services based on Intel/AMD processors, with low‐latency interconnects between each server. 
The use of research computing throughout its relatively short history has been dominated by the “hard sci-
ences.” Specifically, various areas of theoretical physics, computational chemistry, computational biology, 
and materials engineering are often primary consumers of computational resources. One of the primary rea-
sons for this is that in theoretical pursuits, the problems are rarely solved and computational models can 
generally be expanded to match all available resources. In recent years, bioinformatics, linguistics, and other 
disciplines are challenging the status quo in terms of research computing. New needs do not always fit the old 
paradigm, and new architectures are needed to satisfy these new needs. Perhaps the biggest challenge in 
bringing on board new users will be in adapting their needs to existing resources. Learning ways to take 
advantage of a supercomputer is not yet generally part of academic training in most areas. We conclude that, 
in research computing, one size does not fit all. The next phase of computing for research institutions might 
very well be the era of cloud computing. National and regional research laboratories connected through high‐
speed research networks, along with institutionally deployed purpose‐built computers, might fulfill the needs 
of users that are traditionally consumers of significant amounts of computation. Others might need “fast 
data,” “big data,” and throughput‐intensive resources.

41.4.1 Research Computing, Supercomputing, and Cloud Orchestration

Far too many researchers use their own personal computers as their primary computational tool. Much of the 
reason for this is the barrier to entry for traditional research computing and the inflexibility of most institu-
tional offerings. Most supercomputer environments are multiuser but not multitenancy. This means that 
 people sharing an environment must follow the same rules, and make provisions not to interfere with the jobs 
of others. The idea of “less than HPC” has gained some following in recent years. For many workloads 
researchers are willing to trade the speed of traditional supercomputers for the flexibility of virtual multiten-
ant environments. In addition, virtual environments can be used for HPC training (Gomez‐Folgar et al., 
2012). Resources might be provided in the form of public cloud such as Amazon EC2 or Rackspace (https://
www.rackspace.com, accessed February 4, 2016), or private cloud, such as OpenStack or VMware (http://
www.vmware.com). Care must be taken by organizations to leverage cloud resources with open standards, so 
as not to be caught by vendor lock in on the cloud API level.

In many ways, simply providing infrastructure is a step back from traditional research computing services. 
For these reasons, cloud application orchestration is an area of great interest and development. Ubuntu Juju 
and OpenStack Heat, discussed above, are examples of application orchestration packages, which enable 
users to deploy complex application suites across clouds. In such arrangement, a student or researcher deploys 
a large storage cluster or full multinode Hadoop cloud at the click of an icon. While generally limited to 
 single‐sites, cloud orchestration will no doubt evolve into a multisite control model, allowing for deployments 
and migrations on multiple IaaS offerings simultaneously. When this occurs, the applications or the platforms 
they run on can make active decisions related to the best fit resource providers for application resources.

41.4.2 Regional Network and National Laboratories

In general, since the early 1990s, institutional research computing and research networks have kept pace with 
each other. Often these resources are funded from recurring government sources, which are relatively stable. 
It should be observed, though, that although stable, these funds have become stagnant over the past decade, 
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leaving many institutions unable to compete. National laboratories, such as Los Alamos National Laboratory, 
have been at the forefront of supercomputing since its inception, while many individual research institutions 
(universities, small laboratories, commercial research, etc.) that have touted “top 500” ranked supercomput-
ers for decades now find themselves unable to compete. National laboratories and consortium‐funded super-
computers dominate the top supercomputers in the world. As institutions that once had their own central 
resources now look to national laboratories and consortiums for resources, network connectivity will be 
critical. Research networks are used relatively lightly, compared to their institutional research computing 
counterparts. One reason for this is that research networks connecting institutions and national labs are gener-
ally used for applied purposes such as to transfer data from point X to Y, and then they use the resources at a 
remote facility. Research computing, on the other hand, is often very theoretical and ongoing. In addition, 
even very large amounts of data related to theoretical work can often be regenerated with relatively small 
amount of input data. Most often, even in the case of national laboratories, computational results remain on 
the supercomputers that generated them. This is not to say that the research networks are devoid of experi-
mentation – in fact one such NSF‐funded project that supports research network experimentation is the 
Global Environment for Network Innovations (GENI) (one of the authors is involved in this research). Still, 
GENI experimentation is more applied in focus than theoretical research computing.

At present, the financial support for individual institutions to operate on a world‐class computational level is 
waning. On the other hand support for regional and superregional consortium‐based supercomputers is growing. 
Initially, underutilized research networks will be used more but as means to transport preprocessed and post-
processed data. The idea of active “cloud computing,” as described in section 41.4.1, will fully utilize research 
networks with active computational data. This type of resource optimization will universally benefit researchers.

41.4.3 “Big Data” versus “Fast Data”

The term “big data,” while fashionable like “The Cloud,” does actually describe a serious challenge for computer 
scientists and engineers. Industry experts (Gantz and Reinsel, 2012) predict a 50‐fold increase in digital data 
from 2010 to 2020. The same experts estimate that as of 2012, only 3% of data that is generated was “tagged” 
with useful metadata. The majority of digital data today is created and used by consumers, not scientists. Much 
of this new data is generated from social media, sensors, and multimedia content. While large sources (Lynch, 
2008) of data in single locations, like the Hadron Collider (LHC) exist, most of this “big data” is distributed. Not 
only is the source of the data distributed, but the analysis and use may be distributed as well (see Figure 41.5). In 
some cases, distributed data sources can be combined and processed in batches, whereas others need real‐time 
distributed and concurrent processing. The term “fast data” is used to describe data that, while large in volume, 
must also be processed as it arrives. This is to say that we cannot wait until all data is transferred before starting 
processing. Often, data never stops, and one must react to the characteristics of the stream.

This is just one such example of many related to the processing of data “in movement.” In the future this 
type of data processing will be necessary for everything from dynamic billing of cloud resources, algorithms 
for traffic routing, or even personal health services.

41.4.4 Research Cloud Summary

Let us imagine, for a moment, pockets of standards‐based infrastructure in a highly connected global net-
work. This is an accepted form of cloud computing, which we often designated as IaaS. Based on this defini-
tion, one could argue that the connected research and defense computers in the early days, of what would 
become the Internet was a form of cloud computing. Add to this collection of resources applications that can 
self‐distribute and actively react to changes in both the connectivity and health of available resources. While 
many applications could run on this active cloud, perhaps the most benefit can be extracted in the areas of 
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“big data” and “fast data.” If one extends this type of thinking far enough into the future, a vision of the 
“Internet of things” comes to mind.

41.5 Conclusions

There is much to be gained through the use of cloud computing in education. Many of the unique challenges 
related to providing an engaging educational experience can be addressed with cloud technologies. The ubiq-
uitous experience expected by consumers can be achieved through standardized platforms with a global reach. 
However, this utopian user experience will not occur overnight. While most new applications are being deliv-
ered through SaaS, the majority of existing applications will be limited to single‐site deployments. Luckily, 
even single‐site deployments can take advantage of private and public IaaS. The adoption of cloud, even on 
this level, removes the risk and cost of supporting infrastructure. Further benefits can be obtained through the 
use of cloud orchestration technologies, which in time can help users to transition traditional applications to 
PaaS or SaaS. The evaluation of SaaS APIs for both access method and data availability will be critical. Cloud 
software vendors can create a competitive advantage for their service by controlling the API layer. Institutions 
must develop long‐term integration strategies and architectural guidelines before migrating core business 
services to SaaS. In the education industry, if common APIs can be adopted, vendor lock in can be avoided.

Common cloud applications used in academic settings are given in Table 41.1.
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Table 41.1 Common cloud applications used in academic settings

Provides Service Provider

General Digital Media SaaS YouTube
Instructional Digital Media SaaS Khan Academy
Virtual Machines (System) IaaS Amazon EC2
Virtual Machines (Platform) PaaS Microsoft Azure
Learning Management System (Instructure) SaaS Canvas
Student Analytics SaaS StarFish
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42.1 Introduction

Personal cloud applications can be defined as public cloud services that focus on individual or personal use 
as opposed to business use. “The public cloud is used by the general public cloud consumers and the cloud 
service provider has the full ownership of the public cloud with its own policy, value, and profit, costing, and 
charging model” (Singh et al., 2011). Consumers are using personal cloud applications for shared calendars, 
shopping lists, social networking, and location‐based services. With respect to personal cloud applications, 
our model views individuals as consumers who, from a vast number of alternatives, consolidate a coherent 
solution that suits their individual purposes. What emerges is the following: (i) cloud users carry around with 
them a suite of applications ideally suited for their purposes; and (ii) because selection and usage is easily 
tracked by marketers and developers, this behavior drives new offerings toward increasingly more pertinent 
functionality. Increasingly irrelevant are the issues of architecture and operating system. For an application to 
be appropriately labeled “for the cloud” it must operate anywhere (provided there is connectivity to the cloud) 
and on virtually anything.

Some of the advantages of using personal cloud applications include ease of collaboration, synchroniza-
tion of multiple devices, and automated backup of data. In addition to simply sharing information, some 
cloud applications allow for simultaneous entry and updating of data while keeping track of the specific user 
and facilitating version control. Since some users may now use desktops at work, laptops and tablets at home, 
and smartphones on the go, the almost effortless synchronization of information on the various devices is a 
desired feature. Whether one is using multiple devices or a single device for access, automated backup means 
that no longer will a hard‐drive crash or some physical damage to a device mean that data will be lost or 
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unrecoverable. As the pricing for cloud services is based upon economies of scale, collectively, the users have 
technology and function available to the individual that ordinarily would not be cost justified.

We take a two‐dimensional view of using cloud applications: a generic type of application and usage of 
specialized or customized implementations. Generic applications include e‐mail, collaboration tools, and 
shared data storage. Specialized implementations include applications that require geospatial location data 
and applications that are customized to the individual’s specific detailed requirements. This includes applica-
tions that provide information based upon location and applications that are configured based upon the user’s 
perceptions, which may be overtly stated or deduced.

E‐mail is a generic application that has been around for over 40 years, but initially users had to be on a 
specific network to access it. The advent of the Web has eliminated this constraint. Likewise, for document 
collaboration, backup and recovery services, the only true requirement is access to the Internet. The applica-
tions run in the cloud and the user is unconcerned about where the application is or exactly how they will 
connect to it.

Access is one of the key drivers of personal cloud applications, specifically ubiquitous access from any 
device and from practically any place. This applies to data and information related to one’s work as well as 
to personal data such as contacts, e‐books, music, and social media. One might think that the future direc-
tion is only limited by the user’s imagination and desires. However, there are more forces at work than 
market demand. An interesting question to analyze is whether the market is user driven or provider driven. 
McKinsey Global Institute ranks cloud technology as one of the top four most potentially disruptive tech-
nologies that will most radically transform human life between now and the year 2025 (Manyika et al., 
2013). They ranked mobile Internet as number one – and it is the foundation for ubiquitous personal cloud 
application usage.

Personal cloud applications are being developed and marketed at an increasing rate. In the United States, 
77% of online adults use a cloud storage service (Gillett, 2013). This poses potential issues for businesses that 
desire employees to keep their business and personal use separate. Often, early adopters of personal cloud 
applications lead their IT suppliers to the applications that become the business standard. There are many 
personal cloud application services for consumers to choose from ranging from file and document sharing to 
sophisticated personal finance applications. Examples are Google Drive and Drop Box. The most widely 
used personal cloud application providers offer some form of free space for personal use, which ranges from 
2 GB to 50 GB depending on the provider (Drago et al., 2012). Users wanting more space or business accounts 
can expect to pay fees ranging from $3.95 per month to upwards of $600.00.

42.2 Personal Cloud Application Major Providers

Table 42.1 shows the major providers of personal cloud applications. It depicts the key features of the o fferings 
by the various providers. The table is, however, not all inclusive as new companies and offerings are added 
on a monthly basis; however, it does identify the current major players (Vaughan‐Nichols, 2013).

42.3 Issues and Limitations

Consolidation of services by cloud computing providers for the enterprise will continue as most providers 
offer personal cloud application services for the consumer in some form. Security of personal cloud applica-
tions is not the major concern that one may suspect. In August 2013, SafeNet Labs asked with hundreds of 
business professionals worldwide and reported that 52% of them were concerned about the security of cloud 
applications. However, 64% of the total respondents revealed that they frequently use cloud based applications 



Table 42.1 Personal cloud application providers

Application Key features

Amazon Cloud 
Drive

Store photos, videos, documents, and other digital files
Cloud Drive app for Windows and Mac. You can also install Cloud Drive Photos for Android 

and iPhone
Quick access from any Web browser

Apple iCloud Music, apps, books, and TV shows purchased from the iTunes store, Photo Stream, can also be 
stored and streamed from it, and none of the purchased media counts against your storage quota

Access to Apple’s wireless service
Box View and access files on demand

Share a whole folder of files; create a new folder, upload files, then invite others to join.
Access your files anywhere, anytime, on any device: desktop, laptop, iPhone, iPad, Android 

phones and tablets
Online collaboration – post comments and assign tasks

Dropbox Does not need a Web‐browser interface. It will run natively on almost any PC, including 
Linux computers or devices running Android or iOS

Access any files stored because, by default, it syncs with all of your local devices
Google Drive Automatically syncs with the cloud so that everything is consistent across all of your devices

Integrates with Windows and Mac file systems, does not natively support Linux. Supports 
Google’s own Chrome OS, Android, and Apple’s iOS

Enables you to share and collaborate on any kind of file, including documents, music, 
images, and videos

Any content you create in Google Drive does not count against your storage quota
JustCloud (UK) Sync multiple computers

Unlimited storage
Mobile access

Kanbox (China) Cloud storage and sharing platform
Allows users to store photos, videos, and documents across multiple locations and devices
Offers mobile access

Media Fire MediaFire’s free version includes ads
Only download files from a folder one at a time
Supports Linux, Mac OS X, and Windows on the PC, and Android and iOS on devices

SpiderOak Client software, which supports Linux, Windows, and Mac OS X in PCs, and Android and 
iOS, encrypts everything before it hits SpiderOak’s servers

The service can only be accessed through its secure client software – you cannot use it via a 
Web browser or by your native operating system. SpiderOak is designed for security first 
and foremost;

Microsoft 
SkyDrive

SkyDrive is free online storage for your files, which you can access from anywhere
SkyDrive desktop app allows you to sync your files to your devices automatically;
All you need is a Microsoft account
If you have used Microsoft services in the past – like Xbox, Hotmail, Skype, or Outlook.com – 

you already have one.
SkyDrive will let you grab files from any PC that is associated with your account and pull 

them into the cloud remotely
Works natively with Windows phones

MyCloud Content stored at home via device
Shared Storage and backup
Anywhere access

Ubuntu One Linux offers storage and music streaming
Available on Linux, Windows XP or higher and Mac OS X 10.6 or higher. Ubuntu One is also 

available on both Android and iOS.
ZipCloud (UK) Backup for Macs

File sharing
Remote access
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to store their personal and work related data (SafeMonk, n.d.). Consumers have accepted that personal cloud 
applications are secure enough for the storage of personal information considering that there have been few 
breaches. Some businesses fought the trend until they realized the productivity gains. Employees recognized 
the file‐sharing efficiencies and pushed their IT suppliers to respond. What may lag behind are the corporate 
policies providing direction for use.

The intermix of work‐related generic cloud applications and personal applications has potential pitfalls. 
For instance, when an employee forwards all of his or her individual e‐mail accounts to a single account, there 
may be unintended consequences. Sensitive corporate data may end up in an employee’s personal e‐mail 
account. Conversely, an employee’s personal communications may eventually be stored in the business e‐mail 
cloud server and thus be available for viewing by the corporation. In the case of government or classified 
information, e‐mails ending up in personal accounts can lead to legal liabilities.

There have already been legal cases involving the ownership of data after work data and personal data have 
been inter‐mixed (Milligan and Salinas, 2013). PhoneDog is a company that sued a former employee over 
continued use of a Twitter account that was associated with the company. The company argued that the 
Twitter account and password constituted a trade secret. The case was eventually settled out of court but, prior 
to a settlement, the company was initially allowed to proceed with the case (United States District Court, 
Northern District of California, PhoneDog versus Noah Kravitz, No. C 11‐03474 MEJ, Order on Defendant’s 
Motion to Dismiss Pursuant to FRCP, 12(B)(1) AND 12(B)(6), http://www.tradesecretslaw.com/uploads/file/
phonedog%281%29.pdf, accessed December 31, 2015). An example of the intermix of work and personal 
data involves social media as a personal cloud application. Many people are beginning to rely on applications 
such as LinkedIn to be the repository for their contact information. Another example of a potential issue is a 
situation where individuals link to their employer’s client list. If they leave employment, should they still 
have access to the clients who are now a part of their personal cloud contact application?

It may be apparent that, when an individual has data in a personal cloud application, ownership of the data 
resides with the individual. What happens if personal data is modified or captured by the service provider? 
Providers can sell information for marketing studies and behavioral targeting (Milligan and Salinas, 2013). 
For example, when using certain Google applications, information may be captured such as location informa-
tion to facilitate customized marketing. A potential issue is whether it is an infringement of privacy or should 
it be an expectation when procuring the service.

When a personal cloud application is used to store copyrighted or licensed material such as music, it 
raises major issues such as who has the responsibility to enforce the applicable laws as it relates to sharing, 
dupli cating, and use of the material. Depending upon the jurisdiction, the user, the application owner, or 
even the cloud service provider may be liable. For example, Trout (2013) surmises “if music locker services 
continue to operate as they are now under the existing Digital Millennium Copyright Act, it is likely that a 
court could find them secondarily liable for copyright infringement.” This can lead to ineffective enforce-
ment of the various laws. It raises the question of whether inconsistent application of the law has hindered 
the proliferation of cloud applications through uncertainty or whether this uncertainty has created a more 
fertile environment.

Another disruptive technology that may have an influence on the use of personal cloud applications is the 
Internet of things. Through the increased use of embedded sensors, the way information is shared is changing. 
In addition to an individual using a personal cloud application to perform a particular function, information 
serving as a trigger may be obtained from an information network enabled by the Internet of things. An exam-
ple is being awakened by a particular song depending upon the weather. People may be able to set their alarm 
for a particular time. Instead of a buzzer, the device goes to a cloud application and plays music. Prior to 
selecting a particular song, the device will detect information from a sensor that registers temperature and 
precipitation, and obtains forecast data. If it is going be sunny and warm as opposed to cold or raining, the 
music played to awaken the individual would differ.
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42.4 Personal Application Categories

Although there are other various types of personal cloud applications, three of the most common are mobile‐
cloud applications, location‐based applications, and personal cloud storage.

42.4.1 Mobile‐Cloud Personal Applications

Fan et al. (2011) state that definitions of mobile cloud computing can be divided into two categories. The first 
category refers to situations where data storage and processing take place outside of the mobile device. This 
limits the computing capability of the device and allows for more security through centralization of the 
s oftware. The second category refers to situations where the data storage and processing take place within the 
mobile device. This minimizes the network traffic and provides for more efficient access to data stored on 
other mobile devices or sensors.

The growth of personal cloud applications is largely due to the smartphone. More consumers are using 
personal cloud applications primarily driven by the rapid growth of mobile computing. This growth is fueled 
by the need for converged collaborative services, the widespread adoption of mobile broadband service and 
the deployment of key technological enables such as HTML5 and the Open Mobile Appliance Smart Card 
Wed Server (SCWS).

Cloud‐mobile applications are envisioned to minimize smartphones’ resource consumption by leveraging 
rich cloud resources with no quality degradation. A major problem with mobile phone applications is the 
amount of energy and resources required to run them. Based on research by Abolfazli, et al. (2012), mobile 
cloud applications are more efficient and are less resource intensive. Hung et al. (2011), proposed a frame-
work for offloading the demanding jobs from the mobile device to a virtual server in the cloud. This would 
reduce the mobile device’s power consumption, and assist with computational speed, memory size, and wireless 
bandwidth constraints.

In a comparison of mobile augmentation approaches, Abolfazli et al. (2012) identified the required 
characteristics of a mobile cloud application that would make mobile devices more efficient in the use of 
cloud applications. The metrics were separated into low, medium, and high. The characteristics identified as 
high were: quality of experience and data safety. The characteristics identified as medium were: implementation 
cost, implementation complexity, and network delay and security. The characteristics identified as low were 
local resource consumption, device side maintenance, and execution.

Stanford University researchers led an NSF‐funded project investigating personal cloud computing infra-
structures (Kim et al., 2010). The intent was to create a federated storage system out of existing free applica-
tions. This would allow a user, in effect, to create a single indexed view of a virtual personal cloud environment 
consisting of components from various Web services. A higher level management system would create the 
index of current data. It avoids the need for users to migrating existing data that they may currently have stored.

42.4.2 Location‐Based Services

Applications with location‐based services (LBS) are increasingly becoming more valuable and popular 
mobile cloud applications. When traveling to a new place, mobile users often turn to services 
like Yelp or TripAdvisor to get an idea of what restaurants, bars and / or shopping available nearby.

An April, 2012 report by TNS found that almost one‐fifth (19%) of the world’s six billion mobile users are 
already using LBS, with more than three times this number (62%) aspiring to do so in the future:

Navigation with maps and GPS is currently the most popular motivation behind LBS uptake (46 per cent), but there 
is growing interest in more diverse activities, with 13 per cent of current social network users “checking‐in” 
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through platforms like Foursquare – a 50 per cent uplift on 2011. LBS users are increasingly using services to 
enrich their social lives, with one in five (22 per cent) using it to find their friends nearby. Around a quarter use the 
technology to find restaurants and entertainment venues (26 per cent) or check public transport schedules (19 per 
cent) and 8 per cent to book a taxi. (TNS, 2012)

Another location‐based service is the use of mobile phones to navigate golf courses and maintain records on 
strokes, putting and over all scores. The applications connect to satellites to obtain GPS data and may also 
connect to cloud servers to obtain and store performance data (Zahradnik, 2013).

42.4.3 Personal Cloud Storage

Personal cloud‐storage devices and applications are feasible alternatives to using a cloud service provider. 
This involves a user setting up one’s own storage device and configuring secure remote access. The primary 
advantages include the elimination of monthly or annual fees and the provision of essentially unlimited 
s torage. When connected on the same network, access speed can be much faster than a solution that is only 
available remotely.

Although the setup is becoming easier, especially with help of the vendor, using a personal cloud requires 
the user to have the capability to address individual devices behind the router that is connected to the Internet. 
Technically, it requires dynamic name‐resolution services. One will also need a domain name from DDNS to 
avoid issues with the changing IP addresses received from one’s Internet provider.

42.5 Lessons Learned

The use of personal cloud applications is an emerging area with considerable opportunities for future research, 
which include issues related to privacy and security, robustness of storage space, customization, upload / down-
load times, and bandwidth and the various types of uses that are in demand by consumers.

The growth in the Internet of Things will have a profound effect on the use of personal cloud applications. 
Tektonidis et al. suggests various scenarios on the use of content services. One scenario is that of a blind 
person living alone, making use of the feedback from sensors in the environment, providing data to personal 
cloud applications, and mobile devices helping that person to navigate on foot, access public transportation, 
or make online purchase decisions (Tektonidis and Koumpis, 2012).

The proliferation of personal applications that are similar to each other initially saturates the market until 
market forces drives usage towards a balance. An example is how the decisions of whether to store one’s 
music in iTunes or Amazon or alternatively use Spotify or Pandora will change the basic concept of music 
ownership. Consumer decisions on the use of personal applications have far‐reaching implications for 
i ndustry and society. Music, movies and the arts are examples but it extends to any type of creative enterprise 
even knowledge creation. In fact, according to the McKinsey Global Institute study, automation of knowledge 
work will be the second most disruptive technology in the coming years (Manyika et al., 2013). In the near 
future, understanding the art of the possible will become crucial to the supplier of services as well as to the 
users of personal cloud applications.
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43.1 Introduction

Video games are among the most profitable products in the software marketplace. Realizing the cloud’s 
v irtually infinite processing power, game companies have started to seize the opportunities to host game 
applications on the cloud (Ross, 2009), and the term “cloud games” has appeared. Cloud games offer a thin‐
client approach to computer games by having all game data stored in the cloud’s datacenters and enabling 
computation‐intensive tasks to be offloaded to the cloud, and enable players to gain full access to their 
p ersonalized game environment from any mobile device and virtually anywhere. This is a relatively new 
trend in the gaming industry, which started in recent years when mobile devices’ technological advancements 
rapidly accelerated. We believe cloud games are the future of the gaming industry and the reason is twofold. 
From the game providers’ perspective, cloud computing services such as Amazon Web Services, which 
f eature a “pay‐as‐you‐go” model, allow game providers to pay only for the required computing resources, 
which means that the game providers can focus almost exclusively on developing the games themselves. 
From the players’ perspective, cloud gaming frees them from upgrading their hardware frequently, and eliminates 
physically purchasing software, as only a thin client is needed to access the game via the Internet.

Cloud gaming can be extended to game players in the form of gaming as a service (GaaS) (Cai et al., 
2014a), which exhibits many attractive and unique features including:

 ● An effective anti‐piracy solution: as binary code is hosted in a secured cloud server, the cloud gaming 
model is a potential solution to the ever‐present issue and concern of gaming software piracy.

 ● A flexible business model: transforming from gaming software retailing to gaming service provisioning 
brings in more attractive and flexible business models such as “pay per play,” prepaid, postpaid, and 
monthly subscription.
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 ● Click‐and‐play. The game copies need not be installed in the game terminals, which reduces the time cost 
for players. Nowadays, the storage requirements of gaming programs have significantly increased. 
However, many games are seldom played after installation. Therefore, “click‐and‐play” can attract more 
potential players’ attention, thus increasing the popularity of the game.

In this chapter, we categorize cloud gaming services into four models: video‐based cloud gaming, instruction‐
based cloud gaming, file‐based cloud gaming, and component‐based cloud gaming. We describe architecture 
and system design of each of them. We also discuss selection among cloud gaming models.

43.2 Video‐based Cloud Gaming

Video‐based cloud gaming, also known as gaming on demand, is the most popular service model in the market.

43.2.1 Offloading Everything

The basic idea of video‐based cloud gaming is to offload everything of a game into the cloud, including the 
game engine, artificial intelligence (AI) processing, and rendering modules. User inputs and the encoded 
video frames are transmitted between the cloud game server and game players. This model allows direct and 
on‐demand streaming of game videos onto computers, consoles, and mobile devices, in a similar way to 
video on demand, through the use of a thin client. The actual game is stored in the operator’s or game 
c ompany’s server and is streamed directly to clients accessing the server. This allows access to games without 
the need for a console and largely makes the capability of the user’s client computer unimportant, as all the 
processing needs are satisfied by the server.

43.2.2 Architecture

Figure 43.1 shows the architectural framework for video‐based cloud games. In this model, the cloud virtual-
izes an execution environment and initiates a game instance once it receives a connection request from a 
player. Depicted as a data flow, the real‐time gaming video is rendered by the game instance in the cloud and 
then recorded by the video capture module, frame by frame. Afterwards, the video frames are encoded and 
transmitted to the player’s terminal over the Internet. These encoded frames are reconstructed at the video 
decoder in the game terminal and displayed by the video player on the player’s screen. In reverse, as indicated 
by the control flow, the player’s inputs are recorded by the user controller and transmitted to the cloud server 
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after encoded by the input encoder. The cloud server receives these encoded signals and decodes them into 
control inputs for the game instances, to reproduce the player’s interactions in the cloud.

43.2.3 Industry

This revolutionary new model of gaming has its roots in Internet Protocol television (IPTV) from 2004. 
However, the model did not see many signs of adoption until 2009, when two of the biggest brands in the 
market, Gaikai and OnLive, were launched. Currently, companies such as G‐Cluster, StreamingMyGame, 
OTOY, CiiNOW, Sony, and Microsoft have also started to provide such commercialized game services to the 
public. OnLive, Gaikai and G‐Cluster have significantly different infrastructures. They all provide the service 
on multiple platforms but OnLive requires users to install a software client, whereas Gaikai only requires a 
modern browser to run, and G‐Cluster requires a TV‐set‐top box. All service providers require users to have 
a decent Internet connection speed; in particular, OnLive requires users to have at least a 2 mbps connection, 
and Gaikai 3 mbps, but both have a recommended connection speed of 5 mbps for optimal performance and 
experience. One major difference between the three companies is that OnLive requires users to be located 
within 1000 miles (1600 km) of one of its five datacenters across the United States; Gaikai has 300 datacenters, 
to date, across the United States, and has also signed deals with local broadband providers to install servers 
at another 900 peering locations; and G‐Cluster provides white‐labeled services that are sold to Internet 
service providers. The difference in the number of datacenters operated by OnLive and Gaikai means that 
users in more isolated areas will have significantly different experiences on the these two platforms, and 
Gaikai likely achieves lower latency for all users. GaiKai was acquired by Sony in 2012 at the value of 280 
million USD, which led to PS NOW’s launch in 2014. In 2015, OnLive ceased operations after 3 years of 
financial difficulty and sold their patents to Sony. With PS Now, Sony allows their customers to play hundreds 
of PlayStation 3 (PS3) games on the latest PlayStation 4 (PS4) consoles without porting the games.

43.2.4 Ongoing Research

Cloud gaming is also a hot topic in academia. Researchers have been studying the measurement mechanism 
to analyze existing commercial cloud gaming frameworks, proposing and implementing their own cloud 
gaming systems and finding ways to optimize the system’s performance.

43.2.4.1 Measurements

Several models have been proposed to measure cloud gaming performance in terms of system parameters 
representing quality of service (QoS) – interaction latency. An empirical study (Claypool et al., 2012) on 
OnLive has performed a detailed analysis. The authors selected three types of game genres, including first 
person, third person and omnipresent, to analyze the network turbulence of upstream and downstream, 
including bit rate, package size and interpackage time. Similarly, Shea et al. (2013) measured the interaction 
delay and image quality of the OnLive system under diverse game, computer, and network configurations. 
Experimental results indicate that cloud processing introduces an additional latency of 100 to 120 ms to the 
overall system, hence more efficient designs in terms of video encoders and streaming software are required. 
Another measurement methodology is proposed in Chen et al. (2011), which assessed the system response 
delay (RD) of a cloud gaming system. In that paper, RD was segmented into three components, namely 
n etwork delay, processing delay (elapsed time between when the server receives user actions and responds 
with a corresponding encoded frames), and playout delay (elapsed time between when the client receives the 
video frame and presents it on screen after decoding the frame). A series of mechanisms is developed to 
measure and analyze the total RD as well as the delay components.
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For the game players, quality of experience (QoE) is the determining factor for the success of a game. 
Hence, the ability to model and evaluate the QoE of a cloud gaming service is important to game providers, 
so that they can provision for the appropriate QoE levels, monitor the QoE achieved, and take steps to 
improve the service as needed. In Jarschel et al. (2011), a measurement study based on subjective tests was 
used to evaluate QoE. The study first developed a test bed that emulated the cloud gaming services, then a 
series of tests was developed to gauge a user’s reactions to varying settings of network delay and packet loss. 
Finally a survey was conducted with each individual test person. The collected survey data was then analyzed 
to determine the impact of network delay and package loss on QoE.

Similarly, in Wang and Dey (2012), a measurement metric, which is similar to the subjective quality 
assessment methodology termed Game Mean Opinion Score (GMOS) was introduced and developed to 
quantitatively measure QoE in a real‐time gaming session. Lee et al. (2012) considered MOS to be a com-
paratively costly approach, due to its fewer and coarser responses. Therefore, they propose a more objective 
method: they use the fEMG potentials measured at the corrugator supercilii muscle, known to be associated 
with negative human emotions, to indicate how much a player is annoyed by the latency in a game’s input‐
response loop. According to their results, not all games are equally friendly to cloud gaming.

43.2.4.2 System Design

A system similar to OnLive, called GameOn, is implemented to gain an understanding of the OnLive system. 
The prototype includes both the GameOn server and its thin client. Communication between the server and 
the thin client is via the User Datagram Protocol. The client runs two threads; one thread captures the user 
inputs while another one receives and decodes video frames transmitted by the server. The server, in the 
meantime, runs three threads, which are responsible for streaming game video, receiving inputs from clients, 
and providing the game menu.

Another well known cloud gaming system is called GamingAnyWhere (Huang et al., 2013), which is an 
open system that allows game developers to implement their own algorithms and protocols to extend the 
capabilities of the system. It provides diverse system parameters so that researchers could tune the system for 
different experimental purposes. Two network flows, namely data flow and control flow, are defined, where 
the data flow is used to stream audio and video (A/V) frames from the server to the client, and the control 
flow is used to send the user’s actions back to the server. Associated with each selected game running on the 
same server is an agent that behaves as the user and interacts with the server by replaying the received user 
inputs. The client is basically a customized game console implemented by combining a real‐time streaming 
protocol / real‐time transport protocol (RTSP/RTP) multimedia player and a keyboard / mouse logger. The 
architecture also allows observers. As the server delivers encoded A/V frames using the standard RTSP and 
RTP protocols, observers could access and watch a game using multimedia players.

43.2.4.3 Optimization

To meet constantly changing network communication and cloud computation constraints, in Hemmati et al. 
(2013), a selective object‐encoding method is proposed to reduce the required network bandwidth and pro-
cessing power without much impact on user‐perceived QoE. The key idea is to add fewer objects to the scene 
so that the game processing and image generating time is reduced. On the other hand, Shi et al. (2011) intro-
duced a video encoder that selects a set of key frames in the video sequence, and uses the three‐dimensional 
(3D) image‐warping algorithm to interpolate other nonkey frames. This approach takes advantage of the pixel 
depth, rendering viewpoints, camera motion pattern, and even the auxiliary frames that do not actually exist in 
the video sequence to assist video coding. Furthermore, in Wang and Dey (2010), rendering parameters, such as 
realistic effect, view distance, texture detail, environment detail, and rendering frame rate, are studied and their 
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effects on communication and computation costs are characterized. Then, an adaptive rendering technique is pro-
posed, which dynamically varies the graphic rendering parameters in the cloud servers in response to the con-
stantly changing communication and computation constraints. The adaption process includes both offline and 
online steps, where the offline step is used to derive optimal rendering s ettings for different adaption levels 
(determined by the communication and computation costs), and a run‐time adaptation scheme that can select the 
optimal adaptation level depending on the current network and computation environment.

43.2.5 Challenges

Video‐based cloud gaming takes advantage of broadband connections; however, this model encounters 
p ractical issues in existing network provisioning. First, computer games are response‐sensitive applications. 
For video based cloud gaming, the cloud server will have to respond to and process user inputs, render and 
encode video frames, and transmit the results back to user in near real time. Also, in order for users to receive 
the video frame as well as transmit user inputs, a reliable Internet connection is required. However, video 
transmissions consume a great deal of network bandwidth and hence will be very costly for both the user and 
the game provider. Therefore, bandwidth saving is another problem for researchers to solve.

43.3 Instruction‐Based Cloud Gaming

43.3.1 Offloading Game Logics

With the improvement of hardware capability, most gaming terminals, including mobile devices, are capable 
of performing complicated rendering for game scenes. Under this circumstance, a mechanism for on‐device 
rendering instruction execution (also known as instruction‐based rendering) could be adopted, where only 
instructions needed to render the image are sent to the client instead of the encoded video frames. Such a 
mechanism is used in Baratto et al. (2005), which proposes a virtual display architecture for thin‐client 
c omputing. In this architecture, applications are hosted on a remote server, with a virtual device driver that 
simulates users’ inputs received from client devices, and a virtual display driver that intercepts and transmits 
drawing commands of screen updates over the network to client devices to display. Applying instruction‐
based rendering to cloud gaming, an instruction‐based cloud gaming model is proposed to encode the game 
presentations, including characters and scenes, as a set of instructions, which are rendered afterwards in the 
gaming terminal to eliminate the high burden of real‐time video transmissions on the network. Essentially, 
this cloud gaming model offloads only the game logics to the cloud.

The most highlighted benefit for the instruction‐based cloud gaming system is that the cloud server no 
longer needs to transmit real‐time gaming video frames to the terminals through the Internet, which signifi-
cantly reduces the network workload. In the meantime, the instruction‐based cloud gaming system still has 
the benefits that video‐based cloud gaming has, including “click‐and‐play,” anti‐piracy, development cost 
reduction, and so forth. Moreover, this model also supports a cross‐platform gaming experience, given that 
the corresponding implementations of interface renderers for multiple platforms are available.

43.3.2 Architecture

Figure 43.2 depicts the architectural framework for instruction‐based cloud gaming. As we can see from the 
instruction flow, the gaming video is no longer rendered in the cloud server. Instead, the gaming logic 
g enerates a set of display instructions to represent the gaming contents, and sends them to the gaming terminal 
via the Internet. The terminal then interprets the display instruction with a designated instruction set and 
renders the gaming video locally at the terminal. On the other hand, the reverse control flow is similar to that 
in the video‐based cloud‐gaming model.
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43.3.3 Industry

Browser games (Vanhatupa, 2011), also known as “web games”, are examples of instruction‐based cloud 
g aming, which have great commercial potential. The web browser is the most accessible thin client because it 
is the most commonly installed application in both computers and mobile devices. Also, the widespread of the 
latest version of hypertext markup language (HTML), HTML5, and JavaScript library provides the Web game 
developers opportunities to support the latest multimedia in their games, which makes the browser an ideal 
candidate to be the client of the instruction‐based cloud gaming model. Browser games have existed long 
before cloud gaming and it is important for us to know its evolution, which can be categorized as follows.

 ● The script phase. This is the initial phase, which supports games with low image‐quality requirements and 
no frequent interactions (e.g., chess games). The supported games are easy to play and implement as they 
are usually written as a script that manipulate the static HTML elements with the document object model 
(DOM).

 ● The plugin phase. This is also the phase when the graphic quality of browser games is enriched by 
browser plugins such as Adobe Flash and Java Applet, and large‐scale video games are implemented and 
deployed using integrated development environment (IDE). In this phase, browser games have started to 
be rendered as three‐dimensional (3D) graphics.

 ● The HTML5 phase. This is the time when the industry has started to turn its attention towards plugin‐free 
browser games as plugin‐powered browser games fail to provide cross‐platform services. With the 
e mergence of the HTML5 standard, along with related Web technologies, HTML5 games have become 
the new trend in the gaming industry. Currently, many HTML5 game engines (e.g., Akihabara and ammo.
js) already exist, which provide good support for the development of such browser games.

43.3.4 Ongoing Research

Recent studies have focused on utilizing the power of cloud computing while considering the advantages of 
instruction‐based architecture. Such architecture is proposed in Gorlach et al. (2014), where a cloud proxy 
client is introduced to act as an intermediary between the cloud server and its mobile clients. Running on the 
cloud, the proxy client is responsible not only for computing user actions based on received user inputs and 
forwarding them to the cloud game server but also applying game logic to the latest received game states and 
creating the rendering instructions for updating game scene. More importantly, the proxy client intercepts the 
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execution of rendering instructions and transmits them to the mobile device for local execution. By decoupling 
the creation of rendering instructions from its execution and transmitting only small‐size rendering instruc-
tions over the Internet, the communication burden caused by video transmission is eased, and hence addresses 
the challenges caused by the limitations of the mobile networks.

43.3.5 Challenges

For the instruction‐based cloud gaming platform, the most critical challenge is to design an instruction set 
that (i) can represent all gaming images for various games, and (ii) can be efficiently transmitted via the 
Internet. On the other hand, interpreting the display instruction and rendering the gaming video in the terminal 
efficiently and accurately is also an open research issue.

43.4 File‐based Cloud Gaming

43.4.1 Progressive Downloading

Cloud gaming is distributed to various terminals with diverse capacities, some of which are even capable of 
executing the game locally. In addition, instruction‐based rendering cannot render high‐quality images, and 
hence the games using this method cannot be very complicated and attractive. Thus, downloading the game 
logic for local execution appears to be a better solution.

File‐based cloud gaming, also known as progressive downloading, initially downloads only a small part of 
the game onto the user’s device. As the game proceeds, more game fragments are downloaded and the game 
is executed on the user’s device. This technology makes it possible to download the data in the form of 
fragments. A small part of a game is downloaded initially so that the player can start playing the game quickly. 
The remaining game content is downloaded to the end user’s device while playing. This allows instant access 
to games with low‐bandwidth Internet connections with minimal lag. The cloud is used for providing a 
scalable way of streaming the game content and for big data analysis. Compared to video‐based cloud gaming, 
file‐based gaming services can reduce distribution costs and enhance user experience – not only by offering 
instant playability but also by reducing the number of steps to start playing.

43.4.2 Architecture

Figure 43.3 illustrates the architectural framework for the file‐based cloud gaming. Game contents, including 
both fragmented game data and the binary code, are progressively downloaded to the terminal, and the game 
instance is then executed locally. The locally executing code fragments directly process both user inputs and 
game scene rendering. Game states, as well as user information, are synchronized back to the online gaming 
server residing in the cloud, for the purposes of inter‐player message exchange, storage and statistical analysis.

43.4.3 Industry

Companies such as Kalydo, Approxy, and SpawnApps are providing file‐based cloud gaming. Kalydo is now 
supplying the service with over 150 million sessions served in over 15 countries worldwide. Its file‐streaming 
service sends data to players only when needed, via the proprietary Kalydo Player plugin, which can run in a 
browser, or from the PC desktop. Many games that have been launched using Kalydo are subsequently serviced 
through social networks and game portals such as Facebook, Kongregate, and Mini Clip. Approxy is trying to 
apply the same progressive download approach to cloud gaming via a technology it calls “cloudpaging.” Cloudpaging 
works by breaking applications up into 32‐Kbyte “pages,” which are then fetched on demand over a secure 
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hypertext transfer protocol connection by a virtual memory management unit on the client machine, and this 
allows the game to immediately start executing inside a virtual console, without any installation. The full game 
may then be downloaded in the background while the user plays it. With cloudpaging, a single Approxy server 
can serve 10 000 customers, far cheaper than a dedicated “pixel pusher” server that must dedicate racks of 
graphic processing units to rendering a game. More importantly, Approxy claims that games can be played 
offline, even if an Internet connection is unavailable, which is something that OnLive cannot offer. On the other 
hand, Approxy includes its own “pixel‐pushing” operations to other machines on the network, like OnLive. It is 
a mixed mechanism of the file‐based and video‐based cloud gaming: a local server residing in a local area 
n etwork has the game downloaded progressively, and actually renders and pushes the gaming video frames to 
the player’s mobile device, which accesses the local server over the local area network. This two‐layered 
a rchitecture works well because the latency within a local area network is usually very low.

43.4.4 Challenges

However, with file‐based cloud gaming the games must still be downloaded, and users must also invest in 
their own top‐of‐the‐line graphics hardware to play the most advanced games, which is a disadvantage that 
OnLive and similar cloud gaming services do not have. In fact, file‐based cloud gaming does not reduce the 
minimum specifications of the processing and graphic hardware that users must have in their machines. 
Hence, file‐based cloud gaming does not fully utilize the computing resources in the cloud.

43.5 Component‐Based Cloud Gaming

43.5.1 Dynamic Partitioning

To overcome the problem in file‐based cloud gaming system, a more flexible solution can be explored. In 
fact, computer games are software applications that could be written using many different programming 
l anguages. In general, the core of any game is the game loop, which could be described in three steps: read 
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user inputs, run AI, and render results. This particular procedure might contain different input / output 
m ethods and involve information exchange between multiple players. However, in general a game program 
may be considered as a series of interconnected modules with distinct functionalities. From this perspective, 
file‐based cloud gaming means all game modules are implemented at the terminal, while the networking 
module provides the interface between game clients and the online gaming server. In this case, the cloud is 
only used as an information exchange server, which is the traditional design for online games. Video‐based 
cloud gaming goes to the other end of the spectrum: the terminal only contains the input module, while the 
cloud hosts all of the remaining modules / components. In this case, the rendered real‐time gaming videos are 
transmitted to the player via the Internet. In contrast, instruction‐based cloud gaming illustrates another 
design idea: the input module and the rendering module are executed in the terminal, while the other modules 
are running in the cloud. According to the three schemes, we can see that the essence of cloud gaming is to 
leverage the cloud resources to execute a number of gaming modules for the purpose of reducing terminal 
workload and achieving better efficiency.

This observation gives rise to the following questions. Is there a more flexible solution adapting the cloud 
gaming service to the varying circumstances, for example the unstable quality of network connectivity? To 
this end, a new design methodology termed component‐based cloud gaming becomes promising, whereby a 
cloud‐based game is constructed by a set of interdependent components that are executed either in the cloud 
server or the player’s terminal, as determined by the current conditions of the terminal and its network 
c onnectivity. Such cognitive capabilities, named dynamic partitioning, enable optimal component allocations 
that can potentially provide a high efficiency to the cloud gaming model. As a flexible and intelligent p latform, 
component‐based cloud gaming monitors the real‐time environment status, sets an optimization target 
(e.g., the overall interaction latency, computational resource upper bound, or bandwidth ceiling), and achieves 
the target through dynamic partitioning. Despite the cognitive partitioning, video‐based, instruction‐based 
and file‐based cloud gaming, which are based on a static partition of the game modules, are all special cases 
of component‐based cloud gaming.

43.5.2 Architecture

Figure 43.4 illustrates the architectural framework for the component‐based cloud gaming. In this category, 
the game programs are modularized as components, which are able to migrate from the cloud to the terminal 
during gaming session and dynamically concatenate with each other to form a complete game. In other 
words, the terminal can fetch and execute a set of redundant game components from the cloud to reduce the 
burden on the cloud. As shown in the figure, a partitioning coordinator layer incorporating cognitive capa-
bilities is designed to manage the execution of game components. Once a control instruction from the player 
is transmitted, the coordinator intelligently assigns the responsive components, whether in the cloud or in the 
terminal. The same mechanism applies to the invocation between components: all “invoke” messages are 
scheduled by the partitioning coordinator in order to achieve dynamic partitioning.

43.5.3 Ongoing Research

Cai et al. (2013) designed and implemented a cognitive platform that both supports “click‐and‐play” and 
cognitive resource allocation for decomposed cloud games. Consisting of a set of controllers and coordina-
tors, the cognitive platform is able to dispatch selected gaming components from the cloud to a player’s 
t erminal and later use dynamic partitioning to adapt its service QoS to the real‐time system environment. 
As a development‐friendly environment, the platform also provides a set of application programming inter-
faces, so that game developers need not be concerned with the lower layer resource management details but 
only focus on the design of game programs.
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From the prospective of cloud resource management and scheduling, Cai et al. (2014b) modeled the 
component‐based game and investigated the capacity of intelligent resource management for different 
optimization targets, including cloud resource minimization and throughput‐oriented optimization. 
Experimental results show that, with cognitive resource management, the cloud system can adapt to various 
service requirements, such as increasing the quantity of supported devices and reducing the network throughput 
of user terminals, while satisfying players’ QoE expectations.

43.5.4 Challenges

As a cognitive system, to achieve adaptive system optimization in real‐time is the most critical challenge. Note 
that, as a component may invoke another remote component as scheduled by the partitioning coordinator, the 
communication latency can be controlled explicitly to provide an acceptable QoE level. In addition, as identi-
cal components may reside in both the cloud and terminal, developing an efficient mechanism to synchronize 
the data in the components is also a challenge. Besides, in order to support “click‐and‐play,” no gaming 
c omponent resides in the terminal at the beginning of the gaming session, so how to efficiently dispatch the 
necessary components to the terminal without interrupting the gaming experience is also an open issue.

43.6 Selection Among Cloud Gaming Models

Given that the various cloud gaming models are quite different and have different advantages and disadvan-
tages for different game genres, the game developers and service providers need to weigh the advantages and 
disadvantages of each to decide which cloud gaming model best fits their needs.

43.6.1 Game Genres

We classify game genres on the basis of two elements. Scene observation is how a player’s observation of the 
game scene determines the variety of output images on the screen. In general, the most common scene 
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observation styles are categorized as first‐person, third‐person, and omnipresent. Game topic refers to the 
game content provided, which determines the interaction behavior between players and the game. Game top-
ics include shooting, fighting, sports, turn‐based role‐playing (RPG), action role‐playing (ARPG), turn‐based 
strategy, real‐time strategy (RTS), and management.

Figure 43.5 shows the relationships between the scene variety and motion frequency for the most common 
game genres. The figure indicates that these features vary among distinct game genres, so we must consider 
each architectural framework’s advantages and disadvantages and use the best solution for the target gaming 
services.

43.6.2 Solution Comparison

For video‐based cloud gaming solutions, simplicity is one factor that attracts traditional gaming companies: 
with a well‐designed video‐streaming server and an efficient virtual machine in the cloud, all of the existing 
video games can easily be converted to and steamed as cloud games. The virtually infinite resources in the 
cloud mean that the overall system’s QoS will not be affected by the systemic complexity of game design. 
Having all virtual machines running on the cloud and connected to each other via internal network links, 
video‐based cloud gaming also makes multiplayer game more efficient as, by default, the cloud is assumed 
to have high‐quality internal network connectivity.

In contrast, instruction‐based cloud gaming is still limited by the capacity of the local renderer and the 
efficiency of the instruction set. However, as the gaming logic and rendering modules are decoupled, it is a 
perfect choice for those gaming services that focus on strategy management instead of frequent real‐time 
interactions with fascinating graphics. For instance, most of the Web‐page games integrated in online social 
networks fall into this category.
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On the other hand, file‐based cloud games are intrinsically executed locally as most of the conventional game 
software only uses the cloud as a progressive downloading server for data and compiled codes. This feature 
makes it a good candidate for games with specific storylines: a minimal proportion of the game is sufficient for 
players to get their games up and running, while the forthcoming data and codes are streamed to the terminal 
during their gaming session.

Representing a future solution, component‐based cloud gaming intends to address existing issues in the 
above three solutions. The dynamic partitioning solution enables the mobile devices to extend their gaming 
functionalities in a flexible fashion. With intelligent component migration, the platform can adaptively 
b alance the workloads for the cloud and terminals to optimize the whole gaming system while satisfying the 
players’ perceived QoE expectations. This adaption to the environment, including network quality and 
t erminal capacities, makes it an ideal solution for providing ubiquitous cloud gaming services for various 
devices, ranging from powerful desk top computers to mobile terminals with constraints on various resources.

43.7 Conclusion

Cloud gaming provisioning is considered as the next generation modality of the gaming industry. This 
c hapter summarized the platforms aiming to provide cloud‐based gaming services. We have compared 
 differences between the existing cloud gaming models and architectural frameworks and have examined 
their benefits, challenges, and research status. Based on these studies, we have analyzed a selection of cloud 
gaming provisions based on game characteristics and a variety of terminals. We have identified the component‐
based cloud gaming model as a future solution that can address most of the issues concerning other cloud 
gaming models.
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44.1 Introduction

Our world is awash in a rising ocean of data. Modern modes of transportation – planes, cars, and ships – 
contain thousands of sensors that constantly generate data (Hemsoth, 2013). Medical researchers sort through 
thousands of genes in millions of patients, attempting to find genes that lead to diseases such as cancer (Hurd, 
2013; Kinney, 2013). Physicists use enormous colliders to smash particles and improve our understanding of 
the universe; the sensors in these colliders generate more raw data than the system can store (O’Luanaigh, 
2013). Online businesses such as Amazon and Netflix track their customers’ online behavior and use that 
information to suggest books or movies for them to purchase. Smartphones record audio, video, and images, 
as well as metadata about when and where the video and images were recorded, and their owners post them 
to social media sites. All these are examples of big data. The age of big data has begun, and exploiting big 
data is changing our world.

The rise of sensors, search engines, smartphones, online retail, and social media have all led to a tremendous 
increase in the amount of data collected about each of us. In fact so much data is collected that it may seem to 
be too much to process. Data scientists have had to devise new techniques to analyze and process all this data –
transforming it from data into useful information. Advances in genomics have led to the need to process huge 
quantities of DNA information in a short period of time (Kinney, 2013). Numerous oceanographic sensors 
collect data about the ocean (OOI, 2012). Radio telescopes collect large amounts of data for astronomers to 
pore over (McKenna, 2013). In so many ways, the analysis of big data touches everyone’s lives.
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44.2 What is Big Data?

44.2.1 Preliminary Concepts

Before delving into big data, there are a few concepts that we should understand.

44.2.1.1 Types of Data

Data is structured, semistructured, or unstructured. Structured data is data that is organized in a structure. 
This structure can either be fixed fields inside a record (as in a relational database), or in a well formed format 
such as XML or JavaScript Object Notation (JSON). Semistructured data has some structure, but the data 
isn’t expressed in terms of rows and columns or a formal structure such as XML with a schema. An HTML 
page is an example of semistructured data. Unstructured data does not have fields in fixed locations, nor does 
it follow a standard format such as XML or JSON. Examples of unstructured data include raw text files such 
as a server log, a Microsoft® Word document, a Portable Document Format (PDF) file, or an e‐mail.

44.2.1.2 Sources of Data

There are many processes that produce big data. Sources of big data include business operational data, scien-
tific data, social networking, web logs, video streaming, sensor data, smartphone data, and more. Here are 
some examples:

 ● Imagery. Google Maps offers over 20 petabytes (PB) of imagery (McKenna, 2013).
 ● Video streaming. Netflix has over 3.14 PB of video in the master copies alone (Vance, 2013, p. 4).
 ● Social networks. By February of 2012, Facebook had stored over 100 PB of data (McKenna, 2013).
 ● Scientific sensor data. As of February 2013, the CERN Data Centre had recorded over 100 PB of physics 

data over a period of 20 years. The Large Hadron Collider (LHC) at CERN in Switzerland and France 
generated about 75 PB of that data in only 3 years. One hundred PB is about the same size as 700 years 
of HD movies (O’Luanaigh, 2013). IBM estimates that the Square Kilometer Array (SKA), a radio tele-
scope due to be completed in 2024, is expected to produce 1376 PB per day (McKenna, 2013).

 ● The Internet. In 2007, Google was already processing over 403 PB of data per month (Dean and Ghemawat, 
2008). Cisco estimated that all global Internet traffic in 2012 was about 400 Exabytes (EB) (http://www.
cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/images/qa_c67‐482177‐1.jpg, 
accessed January 1, 2016).

These are just some of the examples of big data. There are many more.

44.2.1.3 Streams

Some data is produced in streams. A data stream is “a sequence of digitally encoded signals used to represent 
information in transmission” (Federal Standard 1037C, 1996 ). Some examples include click streams, packet 
streams, sensor data, satellite data, a video stream produced by an online video camera, and financial data 
such as stock‐market data.

44.2.2 Big Data Defined: Volume, Velocity, and Variety

What is big data? One proposed definition of big data is data that has grown to a size that requires new tech-
niques to store, organize, and analyze the data (Butler, 2013). This seems to be a reasonable definition at 
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the  moment but this definition will inevitably break down over time as data scientists develop ways of 
 handling what is now considered big data. The data will still be big but it may no longer be necessary to 
innovate in order to handle it. Thus this book will use another popular definition of big data involving the 
three “Vs”: volume, velocity, and variety.

Big data has one or more of three key features: a large volume of data, a high velocity with which the data 
is created, or a high degree of variety in the data (Gartner, 2013). Volume simply means the amount of data. 
Velocity means that the data is being created rapidly (e.g., hundreds of messages per second); velocity is 
typically associated with streams. High variety is usually associated with unstructured data such as server 
logs. So big data is associated with three “Vs”: volume, velocity, and variety.

Consider velocity. How can data be created at a high velocity? It is typical for a sensor to produce high‐
velocity data. The GPS in a smartphone, for example, can emit location data every second. Similarly, Airbus 
has over 100 000 sensors in each of their planes, each sensor generating a stream of data (Hurd, 2013). Airbus 
processes this data in real time to feed information to the pilot. Later, they mine the data to help improve 
future aircraft designs. It is also possible for a large group of people to create high‐velocity data – for exam-
ple, the set of all links clicked on by everyone on the Internet represents a high velocity of data. Another 
example is the stream of all stock trades each day that the market is open.

Big data needs big data analytics. In its raw state, big data is too large to be very useful – it takes too long 
for a human to consume it and make sense of it. To become useful, it must be processed into something 
smaller. Big data analytics involve processing big data into useful information.

44.2.3 How Big is Big?

Big data can be relative to the size of data that a business is accustomed to handling. For example, a business 
may have tracked inventory and accounting before but now it may be tracking what its customers are buying, 
and analyzing their buying habits (e.g. what things they buy together, when they shop, how often they buy a 
particular product, etc.). That’s a different level of data collection that a business may consider to be big data.

But generally the term “big data” is used to indicate data above the 100 GB range. Often it deals with hun-
dreds of terabytes (TBs), and possibly a PB or more. This threshold will no doubt move upwards as time passes.

44.2.4 Applications of Big Data

As noted above, sources of big data include search engines, social media, online retail, sensors, and smart-
phones. Some very successful companies rely on big data generated by the Internet. Google, Amazon, Yahoo, 
and Facebook are well known examples of such companies. Netflix uses data collected from customer behav-
ior to offer its customers movies that they might enjoy; Amazon does the same for books, music, movies, and 
other items that they purvey.

Weather‐prediction systems consume data taken from weather sensors around the country and in many 
parts of the world. These sensors collect data on temperature, wind speed, pressure, and humidity. Satellites 
also offer more data about the weather. All this data is consumed by weather prediction algorithms to help 
predict the weather each day (Hardy, 2012).

The National Cancer Institute is investigating gene‐to‐cancer interaction, correlating 17 000 genes in 
60  million patients with five major cancer types, and handling 20 million medical publications (Hurd, 
2013). Similarly, Georgetown University is using genomics to help understand the causes of premature birth 
(Kinney, 2013).

NTT Docomo is the largest Japanese mobile phone operator. It has 13 million smartphone users, generat-
ing 700 000 events per second. The company is performing real‐time mobile traffic processing and using the 
resulting analysis to optimize its network (Hurd, 2013).
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The New York Stock Exchange generates 185 000 messages per second, with 2 TB per day of data. It has 
to be reliable as this data describes about $2.5 trillion in transactions per day. It all has to be fast, measuring 
latency in milliseconds (Hurd, 2013).

The United States Securities and Exchange Commission (SEC) worked with Tradeworx to develop a sys-
tem that runs on Amazon’s cloud‐computing services to perform real‐time analysis of 20 billion messages per 
day to allow them to reconstruct any market, on any given day in history (Kinney, 2013).

Ford collects data on its new cars. Ford’s Fusion hybrid model can create 25 GB of data per hour. This data 
can be used to fine‐tune the car. Ford’s use of big data analytics includes analyzing computer‐aided design 
(CAD) and computer‐aided engineering (CAE) models, along with running manufacturing simulations 
(Hemsoth, 2013).

The Ocean Observatories Initiative (OOI) is collecting data from various sensors such as those on buoys, 
underwater cameras on submersibles, and undersea robots. These sensors can measure the depth, salinity, and 
temperature of the water. Some can sample the phytoplankton to count how numerous they are in a particular 
area. The goal of the project is to collect and analyze this data to better understand a number of important 
oceanographic related issues, including climate, the ecosystem, and sea‐floor dynamics. The data will be 
shared with the public in real‐time (OOI, 2012).

Ancestry.com® has over 10 PB of data. This data is related to genealogy, and includes DNA data, pictures, 
and a variety of records (Zhukov, 2013).

There are many other sources of big data, but the above examples offer a taste of some of the big data that 
organizations are collecting and processing.

44.2.5 Preconditions

There are three main preconditions for the rise of big data:

 ● The ability to store large volumes of data in a form that is accessible (i.e., on hard drives or solid‐state 
drives, not tape drives).

 ● The ability to process big data rapidly at a reasonable cost. This means inexpensive computing power, 
particularly in the form of cloud computing.

 ● The existence of producers of big data.

The first of these is the ability to store large volumes of data in a format, such as a disk array, that makes 
the data accessible. This storage needs to be at a reasonable cost. In November 2014, an internal consumer‐
grade 1 TB drive sold for less than $65, and the price per TB continues to drop. Typical cloud computing 
storage costs more than that as the data is normally replicated to at least three drives for redundancy.

Second is the ability to process that data into something that is understandable to humans in a reasonable 
amount of time at a reasonable cost. Two main things that have made this possible are inexpensive computing 
power in the form of faster and less expensive central processing units (CPUs) and the rise of cloud comput-
ing. Cloud computing services, such as those offered by Amazon Web Services (AWS), put massive and 
inexpensive compute power in the hands of anyone who can afford it. There is no longer a need to purchase 
an expensive supercomputer and lease a building to house it. Now big data can be crunched on a set of 
Amazon Elastic Compute Cloud (Amazon EC2) instances and stored using Amazon Simple Storage Service 
(Amazon S3).

Third, for big data to exist, copious data producers must exist. Important data producers that generate all 
this data include sensors, mobile devices, social media such as Facebook and Twitter, and user interaction 
with web pages. Examples of sensors include a weather sensor, a tsunami sensor in a buoy, a pressure sensor 
on a plane, the GPS in a smartphone, the microphone in a phone, a digital camera, and the sensors in the 
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Large Hadron Collider. Each day millions of people visit the Internet and click on various links; that is 
another source of big data. Google and Facebook, for example, use such data to offer targeted advertisements 
to their users.

A modern smartphone contains several sensors: a microphone, a camera, and a GPS. So a smartphone can 
collect location data, audio, pictures, and videos, as well as data on which applications (apps) the owner runs 
and which links they click on in Web pages accessed from that phone.

44.2.6 Why Big Data?

Some of the reasons that have driven businesses to implement big data analytics are: to aid in making critical 
business decisions, improve customer response, increase revenue, and carve out new lucrative businesses. 
Some of these businesses are quite well known, and completely dependent on their ability to consume, store, 
and process big data. These are companies that operate at internet scale, companies like: Google, Amazon, 
Facebook, Netflix, Yahoo, and Twitter.

Consider retail data. When a consumer purchases items at a store, the cashier scans the bar code of the 
item. If that consumer also has a rewards (or membership) card for that store, the store can track which items 
were purchased, when, and how frequently. This data can help the store manager know how much of an item 
to stock in the store, or when to offer a coupon for a particular item to that consumer. Similarly, a rewards 
card helps restaurants track what items customers order and when to offer them an incentive to dine there.

Online retailers don’t need to offer a membership card – each customer has an account. Amazon, for exam-
ple, tracks purchases and suggests other items that customers might like, based on their purchase history. A 
recommendation engine then analyzes the data and decides what to suggest. Netflix is another good example 
of a company that uses a recommendation engine.

44.3 What Can You Do With It? Big Data Analytics

If big data existed but there was no way to analyze it, it would be of little use. It is partly the ability to store 
such large volumes of data that has allowed the rise of big data but it is also the ability to process that data 
into something that is understandable by humans in a reasonable amount of time that has allowed the exploi-
tation of that data. Successful big data analytics must be able to process the data into something smaller than 
the raw data, allowing an application to present the results in a way that makes sense to a human.

Because big data is so large, it normally cannot be processed sequentially in a reasonable amount of time. 
So the data is broken up into chunks, which are analyzed by a set of processes running in parallel. These 
processes typically run one per CPU core in a server, or one per virtual machine (VM). The results of the 
parallel analysis are then joined together to create the result.

To help understand how some typical big data analytics work at a high level, consider the following exam-
ple. Suppose a company offers a web site and collects the click logs from all those who visit the web site. 
These logs may be several TB in size. For example, the company may want to know the top paths that people 
follow through the web site to make a purchase.

To apply big data analytics, first chop up the logs into multiple pieces. Then create a cluster of machines 
to work on the problem. Feed a piece of the log to each machine in the cluster, and let it work on that piece. 
The result of the processing must be smaller than the original piece. When the machine has completed 
 processing that piece, it reports back its result and accepts another piece to process. Other machines work on 
their respective pieces and report their results. Once all the pieces have been processed, the results are aggre-
gated and reported. This is illustrated in Figure 44.1. Note that this is a simple case. In other cases, the results 
are fed into other sets of parallel processes and reduced again and again before the final result.
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Thus one of the key features of big data analytics is that they typically use parallel processing. This need 
for parallelism to process big data has led to the need for frameworks that enable parallel processing of vari-
ous kinds. An example of this is reactive steams, discussed in section 44.7.3.2.

44.4 Limitations of Big Data Analytics

Parallel processing of big data is crucial yet there are limits to how much an algorithm can be sped up by 
parallelizing most of it. There is usually a part that cannot be parallelized. This issue leads to Amdahl’s law 
(Amdahl, 1967).

44.4.1 Amdahl’s Law

Amdahl’s Law states that if p is the number of times part of the algorithm can be sped up, f represents the 
fraction of the computational load that was not improved by parallelizing it, and m is the maximum speed 
increase possible, then

 
m

p

f p1 1  

For example, if an algorithm has a part that can be done in parallel on p 100 machines, but 1/10 of the 
original algorithm cannot be parallelized, then m 100 10 9 9 17/ . . . So a ninefold increase is about the best 
a new algorithm could do in that case. If p 1000 machines, then m 1000 100 9 9 91/ . . , so the improvement 
does not change much if more machines are allocated to the problem. Thus, parallelizing will have the great-
est effect if it is accompanied by a corresponding improvement in the sequential portion of the algorithm, or 
if the sequential part can be minimized.
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Figure 44.1 High‐level big data analytics
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44.5 The Big Elephant in the Room: MapReduce and Hadoop

The seminal paper in the field of big data analytics (Dean and Ghemawat, 2004) came from Google and 
introduced MapReduce. Then Yahoo implemented a version of MapReduce, along with a supporting environ-
ment, and donated it to the open‐source community. This implementation became Apache™ Hadoop®. 
Apache Hadoop is currently the most popular tool for running big data analytics. Apache Hadoop is discussed 
in detail in Chapter 48, so it is not covered here.

Later, Google found a way to improve the performance of their web‐page indexing using Percolator, a tool 
created at Google. They found that Percolator improved performance over MapReduce by a factor of 100 
(Peng and Dabek, 2010). However, this technology is currently only available at Google.

44.6 Everything is a Network: Big Data Graph Analytics

There are other big data analytics, besides those based on Hadoop MapReduce. One important type involves 
big data graph analytics.

A graph is a set of vertices (or nodes) along with a set of edges connecting the vertices. Graphs are some-
times called network diagrams. Examples of graphs include the flights between airports, the servers on the 
web along with their connections, and social graphs. Figure 44.2 depicts a small sample social graph.

In this example, the disks indicate vertices and represent people while the edges are the lines connecting 
the vertices, indicating friendship. Here Bob, Carol and Alice all know each other but Ted knows only Carol.

Imagine a graph of all the one billion Facebook users connected to each of their friends. That would 
be a very large graph indeed. Back in September 2012, when Facebook had one billion users, they had 
140.3 billion connections (Taylor, 2012). An intern at Facebook, Paul Butler, created such a graph back 
in 2010, when Facebook had only 500 million users. He plotted a point for each city and drew a great 
circle between each pair of cities that had at least two connected people, shading the curve based on the 
number of connections the great circle represented. The result is a stunning image of the free world 
(Butler, 2010).

What can be learned from studying such social graphs? It is possible to study the structure of social 
 connections, as well as social dynamics: how the social connections evolve over time. For example, it is 
 possible to look at the degrees of separation between people. This is the average distance between users in a 
social graph, where distance is measured in the minimum number of vertices that must be traversed to follow 
the graph from one user to another. In 1969 it was thought that this number was 5.2 (Travers and Milgram, 
1969), but that was based on a small study. For Facebook in 2011, the average distance between users was 
computed to be 4.74. Note that this latter number was computed by looking at all the users and their connec-
tions on Facebook, not just a sample (Markoff and Sengupta, 2011).

CarolBob Ted

Alice

Figure 44.2 Small social graph
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This example illustrates one of the benefits of big data analytics: moving from small statistical studies to 
actually crunching huge amounts of raw data to find more precise answers. When big data is available, the 
old style of working with a small statistical sample and projecting an answer within a margin of error can 
often be replaced simply by computing results for all the data – not just a sample – with no margin of error.

For another example of a large graph, let each web page in the world be a vertex and each hyperlink an 
edge. As of September 2013, the number of web sites was estimated at 739,032,236 (Netcraft’s September 
2013 Web Server Survey). Other examples include the flow of goods and the flow of water.

Big data Web analytics (Web‐scale graph processing) are one of the keys to Google’s success. Consider, 
for example PageRank, Google’s algorithm for ranking pages and determining the order in which to return 
search results (Brin and Page, 1998).

44.6.1 Drawbacks to MapReduce for Graph Problems

MapReduce is very useful, but there are drawbacks to applying it to graph problems. The speed is slower for 
two main reasons. The first is that each iteration is a separate MapReduce job, with all the overhead that 
entails. The second speed issue is that there is too much disk access. With MapReduce, the graph data is read 
from disk, and the intermediate results are written to the Hadoop File System (HDFS). Another drawback is 
that joins need to be implemented by hand and are data dependent.

44.6.2 Pregel

The above drawbacks led Google to develop a big data graph analytic engine called Pregel (Malewicz, 2010). 
Pregel is designed for processing large‐scale graphs, such as a set of Web pages with connecting hyperlinks. 
Pregel uses bulk synchronous parallel (BSP) execution.

The main computational component in Pregel is a superstep. Within each superstep, each vertex in the 
graph can call a user‐defined function. The function can modify the vertex state, and functions can vary by 
vertex and by superstep. Functions can read messages sent to the vertex during the previous superstep and can 
send messages to other vertices, which will receive them in the following superstep. Messages typically 
propagate along edges, but a message can be sent to any vertex known to the sending vertex (Malewicz, 
2010). Figure 44.3 depicts this process conceptually.

• Process each vertex

• Receive messages from superstep S-1

• Send messages to other vertices

• Process each vertex

Superstep S

Superstep S+1

Superstep S-1

• Send messages to other vertices

• Receive messages from superstep S
• Process each vertex
• Send messages to other vertices

• ...

Figure 44.3 Pregel process
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Pregel is vertex‐oriented. Each vertex has an ID, a list of adjacent vertex IDs, and their corresponding edge 
values. Each vertex is invoked in each superstep, can do some processing on its information, and can send 
messages to other vertices that are delivered over superstep barriers.

Pregel uses a master‐slave design. Vertices are partitioned and assigned to workers, while the master 
assigns and coordinates tasks. Workers execute vertices and communicate with one another. It can use termi-
nation votes, which means that vertices vote on whether or not to terminate the job. It also uses checkpointing 
to improve fault tolerance.

Unfortunately, Pregel is not available outside Google. However, there is an open source project that endeav-
ors to emulate Pregel: Apache Giraph.

44.6.3 Apache Giraph

Apache Giraph is an open‐source version of Pregel. Yahoo! developed the original source code, then gave it 
to Apache to open source it. Facebook, LinkedIn, and Twitter have all contributed to its development.

Giraph runs on the Hadoop infrastructure. Computations are executed in RAM. It is fault tolerant, and it 
can run BSP operations on big data that can be represented as a graph. It can run in a Hadoop job pipeline as 
a normal MapReduce job, and it uses Apache Zookeeper for synchronization.

Some other big data graph analytic tools include: Hama, GoldenOrb, and Signal/Collect.

44.7 Data Streams

We have seen that some data is produced in streams. A key feature of streams is that the data is read and 
processed as it arrives. Streams pour data into a system. Contrast this with data in a standard relational data-
base, in which relationships between data elements are persistent.

44.7.1 Event Processing

Data streams can be thought of as a series of events. Each event contains data collected or generated over 
some time interval. New events are constantly being generated. The systems that process the stream of events 
are typically set up to use continuous queries – queries that never finish. That’s quite different from a standard 
relational database. Event processing operates on a stream of events and converts it into useful information. 
Complex event processing (CEP) combines information from multiple sources and attempts to discern action-
able patterns in the information.

44.7.2 Data Stream Management Systems

A data‐stream management system (DSMS) is a system that manages continuous streams of data. Typically, a 
DSMS has one or more standing queries which operate on the data stream as the data is ingested into the system.

44.7.3 Stream Solutions

There are a number of existing products in the stream solutions space. This section discusses a few of these.

44.7.3.1 Streams in Java

Starting with Java 8, Java offers lambda expressions and streams. Lambdas make it easier to operate in parallel 
on streams. Converting lambda expressions from sequential to concurrent processing is as simple as changing 
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stream to parallelStream. Hearkening back to Amdahl’s law, note that there is some overhead to the new 
parallel methods in Java. So it is important to carefully decide what should be parallelized and what should not.

44.7.3.2 Reactive Streams

Reactive Streams (http://www.reactive‐streams.org/, accessed January 1, 2016) is an interesting initiative to 
devise an asynchronous stream‐processing standard when there is nonblocking back pressure on the Java 
virtual machine. Back pressure means that the receiver can assume that it only needs to buffer a preset maxi-
mum amount of data. This allows each queue on the receiving side to be bounded while the number of queues 
can increase as needed.

The related Reactive Extensions (Rx) offer an API for asynchronous programming with observable streams 
(see http://reactivex.io/, accessed January 1, 2016). Rx has implementations in multiple languages, including 
Java, JavaScript, C#, Scala, Clojure, C++, Ruby, Python, and Groovy. Organizations such as Netflix, 
Microsoft and GitHub use Rx.

A related document is the Reactive Manifesto (http://www.reactivemanifesto.org/, accessed January 1, 
2016), which describes Reactive Systems as:

 ● responsive;
 ● resilient;
 ● elastic;
 ● message driven – using asynchronous messaging.

44.7.3.3 Odysseus

Odysseus is an open source in‐memory DSMS and CEP system written in Java. It is designed to process a 
continuous stream of events in near real time. It offers a number of types of processing steps, including the 
ability to filter and to correlate events.

44.7.3.4 Apache Storm

Apache Storm is an open source system for doing computation on streams in real‐time. It is discussed in 
Chapter 48.

44.7.3.5 Oracle Data Stream Solution

Oracle Corporation has a data stream solution called Oracle® Streams. Each unit of information is called a 
message. Oracle® Streams can send messages within a database or from one database to another, even if the 
second database is not an Oracle database. Messages are captured, staged, and consumed. The database ini-
tiating the message is the source database, whereas the database consuming the messages is the downstream 
database. Messages can be staged in a queue and consumed when the downstream database is able to process 
them. Oracle Streams can also transform messages based on a set of rules. Oracle Streams were designed for 
data replication; they can capture changes to a database and replicate them to other databases.

44.7.3.6 IBM Data Stream Solution

IBM® InfoSphere® Streams is a streaming product from IBM that can run either virtualized or on bare metal 
(in other words, not in a virtual machine). It can scale out (horizontally), so it is possible to add more nodes 
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that operate in parallel. Applications written for InfoSphere® Streams use IBM® Streams Processing Language 
(SPL), which works with data streams, tuples, operators, processing elements and jobs. IBM® InfoSphere® 
Streams include data‐visualization tools, some analytics, including some geospatial analytics, and support for 
the statistics packages R and SPSS.

44.8 Conclusion

The rise of big data producers such as sensors, mobile devices, social media, and user interaction with Web 
pages has led to an unprecedented amount of data becoming available. Processing such data requires new 
paradigms, leading to big‐data analytics.

Some big‐data tools, such as Pregel and Apache Giraph, operate on graphs, and they work well on  problems 
that can be expressed in that space, such as the analysis of social networks.

On the other hand, some data is generated in streams, and companies have created various systems and 
technologies to process streams, such as Reactive Streams, Apache Storm, and others. These and other big 
data analytics help companies run at Internet scale.

The world of big data continues to expand. The current state of data science offers considerable room for new 
ideas and new tools to pave the way to assimilating the enormous quantity of data in this new world of big data.
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45.1 Introduction

Cloud computing is ascendant; it offers virtually limitless compute power to consume and process previously 
unimaginably large amounts of data. Cloud computing enables people and organizations to access this power 
with little upfront cost. The emergence of big data and cloud computing, along with the ability to process that 
data so that humans can consume and make sense of it, is leading to revolutions in many fields of human 
endeavor.

It is not a coincidence that the rise of cloud computing has helped enable the ability to process larger and 
larger amounts of data. The ability to run large‐scale big data analytics in a cloud has given some businesses 
the capability to analyze and process data that they could not handle on their own systems. For example, the 
TimesMachine discussed in subsection 45.3.5 illustrates how the New York Times used the cloud to process 
its archives.

Running big data analytics on the cloud is superb for occasional use, obviating the need to purchase, house, 
and maintain the hardware. On the other hand, for those businesses and organizations that run big data analyt-
ics constantly, there are some good reasons for running those analytics on bare metal, perhaps on premises. 
This chapter discusses advantages and disadvantages of running big data analytics on a cloud.

Often, it is not enough to store raw data; instead the data must be stored in a structure so that it can be queried 
and retrieved. Traditional relational databases, which use Structured Query Language (SQL), tend to focus on 
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a single large database server. In an enterprise setup, of course, there is usually a failover database; sometimes 
there is a master database for creating, updating, or deleting records, and a few slave databases from which to 
read records. But these relational databases generally do not perform well when working with big data, and 
when they are distributed across dozens of nodes. Thus new databases have arisen to meet the needs of working 
with large distributed data. These new databases are often referred to as Not Only SQL (NoSQL) or occasion-
ally as NewSQL databases. These are typically distributed databases that can scale out. This chapter starts with 
a discussion of NoSQL databases, then moves into a discussion of running big data analytics on a cloud.

45.2 Databases for Big Data

This section considers how to organize large amounts of data so that it can be found. Organizing such data 
requires a database that can handle big data.

45.2.1 SQL and ACID

Modern relational database management systems (RDBMS) support the use of Structured Query Language 
(SQL). At a high level, the contents of an RDBMS may be thought of as a set of interrelated tables, each row 
of which may be considered a record. For example, a row might contain information about a customer; in this 
case the columns (or fields) might be: name, address, phone number, e‐mail, and so forth.

A key advantage of SQL databases is that they support ACID transactions. ACID stands for: Atomicity, 
Consistency, Isolation, and Durability (Haerder and Reuter, 1983). Atomicity means that either the whole 
transaction is processed and saved or nothing is saved. Consistency means that data moves from one consistent 
state to another; this includes the notion that all database nodes see the same data at the same time. Isolation 
means that concurrent transactions are isolated from each other, and durability means that once transactions 
succeed, the data is never lost. There are several advantages associated with SQL: it has been around a long 
time, many people have experience with SQL, and there is a rich set of tools that work well with SQL.

Relational database management systems are great for transactional data, which requires ACID. But when 
the data is too large to fit into a single RDBMS, difficulties arise. Suppose the database load is split between 
two databases. What happens if two people try to write to the same record? An RDBMS wants to keep the 
data consistent, so it must lock the record when one person asks to edit it, and not allow the second person to 
edit it. What if the first person doesn’t finish editing the record for several hours? Then the second person has 
to wait. This is just a simple example of various locking issues associated with RDBMSs.

There are other partial solutions to the problem, such as setting up a master and a slave database. It is then 
possible to allow writes only to the master, while reads can access the slave. But if the data is too large for the 
master, this will not work either. Another approach is to use sharding. Sharding splits up database tables by 
rows, based on some rule. For example, the system might keep all rows representing people whose address is 
west of the Mississippi in one database and those who live east of the Mississippi in another. But then what 
if each of those databases grows too large? Large online search engines, such as Google’s, for example, con-
tain too much data for any RDBMS. Thus Google and others have had to invent new techniques to store and 
query such large amounts of data, as described in the next section.

45.2.2 NoSQL

The rise of data that is too large to fit into a single RDBMS has led to the creation of other kinds of database 
systems. These systems are called Not Only SQL (NoSQL) databases. Before delving into the different kinds 
of NoSQL databases, it is important to discuss a few other concepts to set the stage.
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45.2.2.1 Brewers CAP Theorem

Three main goals of database design are consistency (defined above), availability and partition tolerance. 
Availability means that database node failures do not prevent surviving nodes from continuing to operate. 
Partition tolerance means that the system continues to operate despite arbitrary message loss (but no data 
loss) between two sets of servers.

The consistency, availability and partition tolerance (CAP) theorem (also known as Brewer’s theorem), 
proves that it is not possible to achieve all three of these database goals, though it is possible to achieve any 
two of the three goals, (Gilbert and Lynch, 2002). Figure 45.1 illustrates the CAP theorem. NoSQL databases 
fit into several different regions in Figure 45.1.

Databases that have consistency and availability, but not partition tolerance, include: MySQL, MongoDB 
and Redis. Examples of those with availability and partition tolerance are Amazon’s Dynamo, Cassandra, and 
CouchDB. Examples with consistency and partition tolerance are: Apache HBase™, Accumulo, and Paxos. 
Many of these are offered on the Amazon cloud either directly from Amazon (e.g., Dynamo), or through the 
Amazon Marketplace (e.g., MongoDB and CouchDB).

45.2.2.2 Eventual Consistency and BASE

In contrast to ACID, there is the concept of “basically available, soft state, eventual” (BASE) consistency. The 
key idea is that, for some systems, it is acceptable to have eventual consistency, rather than enforcing imme-
diate consistency, as in a standard RDBMS. For example, suppose two people do a Web search for the same 
topic at about the same time. Does it matter if the top 10 results are in a slightly different order? In this case, 
it is more important to respond to both users as quickly as possible, rather than to have consistency. That’s a 
natural tradeoff that Google and others have made. Vogels (2008a, b) discusses eventual consistency in some 
detail, and states that in order to create complex distributed systems to operate at the Internet scale it is some-
times necessary to choose availability over consistency. This is not surprising but it is important to remember 
that although BASE is an excellent solution for large distributed systems, some use cases (such as monetary 
transactions) require ACID.
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Figure 45.1 Brewer’s CAP theorem



554 Encyclopedia of Cloud Computing

45.2.2.3 Types of NoSQL Databases

There are four main types of NoSQL data stores: key value, document, column, and graph. Key‐value stores 
are similar to a large persistent HashMap (or HashTable). Each item has a key and a value. The value can be 
something large, such as a video. The key may just be a string, or it may be more complex. Amazon’s 
DynamoDB is an example of a key‐value store (DeCandia et al., 2007; Wood, 2012); Redis is another example.

Document databases also use a key to access a document but each document also has a structure that can 
be queried. The documents typically contain other sets of key‐value pairs, or other kinds of documents, such 
as JSON documents (which contain key‐value pairs as well as arrays). Queries work better with document 
databases than with simple key‐value stores. Good examples of document databases include MongoDB 
(which uses Binary JSON) and CouchDB.

There are also NoSQL databases designed to store and query data that is organized into graphs; Chapter 44 
discussed graph analytics. Graphs consist of nodes and edges (relationships). Social networks are expressed 
well as graphs. Neo4J is a good example of a graph database.

Columnar databases store columns of data together, rather than rows. The father of columnar databases is 
Google’s BigTable, which is a distributed NoSQL database designed to scale to handle petabytes of informa-
tion, (Chang et al., 2006). BigTable is a sparse, sorted, columnar database. Google uses BigTable for Web 
indexing, Google Earth, and Google Finance (Chang et al., 2006). Apache HBase™ was modeled on 
BigTable. Another example of a columnar database is Apache Cassandra, which scales linearly (Cockcroft 
and Sheahan, 2011); Netflix uses Cassandra on Amazon Web Services (AWS) as part of its video streaming 
service (Cockcroft and Sheahan, 2011).

Apache Accumulo™ is another columnar database that is based on HBase, but which includes cell‐based 
access control. In Accumulo, a key is multidimensional and consists of several parts:

1. Row ID
2. Column, which has three parts:

•  Family
•  Qualifier
•  Visibility (access control)

3. Timestamp

Each of these parts is a byte array, with the exception of the timestamp, which is a long. Accumulo is par-
ticularly popular in areas in which cell‐based access control is important.

45.2.3 NewSQL

NewSQL is another type of database, related to NoSQL databases. The idea is to offer the scalability of a 
NoSQL database, while retaining ACID properties and offering an SQL‐like query language. Examples 
include VoltDB and NuoDB.

45.3 Big Data on a Cloud

This section discusses running big‐data applications in a cloud. Big data can be hosted in a cloud, and big data 
analytics can be executed on the cloud. It does not require cloud computing but the rise of cloud computing 
has opened up the exploration and analysis of big data to many more people, due to its low cost and ready 
availability.
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45.3.1 Analytic Clouds and Utility Clouds

An environment that is set up to handle big data and run big data analytics, including a set of machines to run 
the parallel analytic processes, is sometimes called an analytic cloud. An example of an analytic cloud is a 
large cluster of commodity servers running Hadoop, as discussed in Chapter 48.

An analytic cloud is quite different from the standard NIST definition of a cloud (Mell and Grance, 2011). 
That definition includes the five essential characteristics discussed in more detail elsewhere in this book:

 ● on‐demand self‐service;
 ● broad network access;
 ● resource pooling;
 ● rapid elasticity;
 ● measured service.

A cloud meeting the NIST definition of cloud computing is sometimes called a utility cloud, to distinguish it 
from an analytic cloud. A utility cloud uses an infrastructure as a service (IaaS) or platform as a service (PaaS) 
service model, or both. Classic public utility clouds include those offered by Amazon and Microsoft, among 
others, as described elsewhere in this book. Unless otherwise specified, the term “cloud” means “utility cloud.”

An analytic cloud may run natively (i.e., without the use of virtualization) on a set of physical machines 
running an environment such as Hadoop, along with its ecosystem of utilities. On the other hand, it may be a 
set of virtual machines running in a large datacenter with a similar ecosystem of tools. In the latter case, these 
machines may be running in a utility cloud.

Virtualization is a key component of a utility cloud. On the other hand, an analytic cloud may or may not 
use virtualization. It is possible to run an analytic cloud on a utility cloud, but not the converse. Indeed, part 
of the reason for the growth of big data analytics has been the existence of utility clouds, and the ability to 
use them to host analytic clouds.

45.3.2 Running Big Data Analytics on a Utility Cloud

There are advantages and disadvantages to running big data analytics on a utility cloud. Advantages of run-
ning big data analytics in a utility cloud include the fact that it is convenient, readily available, and it can be 
affordable. Naturally, the size and length of the jobs have a large effect on the price. Yet the availability of 
public clouds means that it is no longer necessary to purchase a large number of servers to run the analytics 
or find a suitable room to house the servers, the funding to pay for the power and cooling, the systems admin-
istrators to maintain the servers, and so forth. Instead, it is possible to run big data analytics on a public cloud.

On the other hand, if an organization sets up its big data analytics to run on bare metal – that is, on hard-
ware, using no virtualization – that organization will be rewarded with a speed improvement in the analytics. 
This speed increase is partly due to the input / output (I/O) penalty paid for virtualization.

Another factor is the noisy neighbor problem. In this case, one of the virtual machines (VMs) may be run-
ning on the same server as someone else’s VM. Moreover, their VM may use a lot of I/O. As the company is 
pumping big data through the VM, it also requires a substantial amount of I/O to move the big data into the 
VM. The two VMs then vie for the same physical amount of I/O bandwidth, slowing down both VMs, or the 
one with the lowest priority. In Figure 45.2, VM 2 is the noisy neighbor for VM 1; it consumes so much 
bandwidth that VM 1 cannot attain the bandwidth that it desires.

There are some ways to mitigate the noisy neighbor problem:

 ● Move loads that perform poorly to other physical machines. Or: “If your neighbor is noisy, you can move.”
 ● Reserve specific machines for use, so that their workloads can be tuned to avoid the issue.
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 ● If necessary, use high I/O instances, though these will typically be more costly than normal instances.
 ● If the data is streaming data, store it in place, distributed on the nodes, so less I/O is needed.
 ● In a private cloud, use more NICs per machine, or use NICs with enough bandwidth.

Although big data analytics run faster on bare metal, the mean time to job completion (MTTJC) may be 
shorter on a utility cloud. There are two main reasons for this improvement in the MTTJC. The first reason is 
because it is possible to set up and run jobs on a cloud, without having to purchase the hardware that a bare 
metal setup requires. The second reason is because it is possible to scale up the number of virtual machines 
as needed to process the data. In fact this scaling can be automated, based on a predefined policy. This feature 
of a utility cloud is called rapid elasticity (Mell and Grance, 2011).

45.3.3 Running Big Data Analytics on Bare Metal

With all the advantages of hosting big data on a utility cloud, why would anyone want to use bare metal? The 
main reason is performance. As mentioned above, using virtualization (a technology that underlies utility 
clouds) causes a performance hit over running an analytic cloud on bare metal. Also, a bare metal analytic 
cloud can be designed with high I/O characteristics. Dedicated physical machines, along with a proper design, 
can avoid the noisy neighbor problem.

Disadvantages include the fact that a bare metal analytic cloud is expensive and time consuming to set 
up and maintain. An organization must purchase all that hardware, house it in a building, run cables, and so 
forth. It must also keep a staff of systems administrators on call to keep the servers running. All this makes 
a bare metal analytic cloud quite impractical either for occasional use, or when a job requires rapid elastic-
ity of computing resources. If an organization needs to run analytics constantly, however, then running 
them on bare metal may make sense. Google is a good example of a company that runs its own bare metal 
analytic cloud.

For those who wish to purchase a bare metal analytic cloud, Oracle® offers a big data cloud in a box, called 
the Oracle Big Data Appliance, which includes: the Cloudera® distribution of Apache Hadoop, R (an open 
source statistics tool), and the Oracle NoSQL database. It can be connected to a standard Oracle database, and 
it can stream 15 TB per hour from Hadoop to the Oracle database, (Oracle Corporation, 2013).
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Figure 45.2 Noisy neighbor
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45.3.4 Which Big Data Analytics Belong on a Utility Cloud?

Each situation is different but here are some guidelines for deciding when to use a utility cloud for big data 
analytics.

 ● Some analytics may only need to run occasionally, such as for research purposes, to prototype a new 
application, or for one‐time use. This is a natural reason to use a utility cloud.

 ● If the data to be analyzed is already in a utility cloud, that is another good reason to use a utility cloud.
 ● Another reason to use a utility cloud is if the nature of the big data analytic problem being solved involves 

rapid changes in resource requirements. In a bare‐metal environment, the amount of resources for any 
given job remains fixed, so if the job size varies, it causes the MTTJC to vary. On the other hand, a utility 
cloud is elastic, so it can scale rapidly to complete the job in a shorter time.

 ● Using a utility cloud is also convenient, available, and affordable. All these are more good reasons to use 
a utility cloud.

45.3.5 TimesMachine: An Example of Using a Utility Cloud for Big Data

To illustrate an example of a corporation using a utility cloud to process big data, the New York Times decided 
to digitize all their newspapers from 1851–1922. This project was called TimesMachine, and the process to 
create it is described in Gottfrid (2008). The Times started by scanning in the newspapers and creating large 
tagged image file format (TIFF) images, along with some metadata and the text of the articles acquired via 
Optical Character Recognition (OCR). That yielded several TB of data, which was not easily consumable via 
the Web. So Gottfrid used AWS EC2 virtual servers and S3 virtual storage along with Hadoop to:

 ● ingest 405 000 TIFF images with an equal number of XML metadata files to map 3.3 million SGML 
articles to rectangular areas in the TIFF images;

 ● convert the above data into 810 000 PNG images, both thumbnails and images, along with 405 000 
JavaScript files, composing content for consumption on the Web.

Gottfrid’s team used hundreds of virtual machines in the cloud to process the data in under 36 hours, 
(Gottfrid, 2008). The Times certainly did not need to create a bare metal analytic cloud to process their data. 
The utility cloud offered a perfect solution for its needs.

45.3.6 Running Hadoop in a Cloud

As Hadoop is the most popular big data ecosystem, it is worth discussing running Hadoop in a cloud in more 
detail. Chapter 48 discusses some implementations of Hadoop on a utility cloud. To round out the picture, this 
section deals with some general issues of running Hadoop on a utility cloud.

The main issues are:

 ● Hadoop is rack and host aware, while cloud providers do not offer that information;
 ● virtualization reduces performance.

Hadoop is rack‐aware and host‐aware. That is, Hadoop has knowledge of the underlying physical topology. 
By default, Hadoop stores each piece of data on three nodes. The Hadoop NameNode keeps track of which 
nodes contain what data. Thus it is important for it to know on which rack each node resides. If it lacks this 
knowledge, it might put all three copies of the data on the same rack (or even the same physical machine). Yet 
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on a typical IaaS or PaaS utility cloud, cloud consumers have no knowledge of which physical machines 
contain their virtual machines. This is a potential problem with running Hadoop on a utility cloud.

However, there are some ways to mitigate this problem. One is for the cloud service provider (CSP) to offer 
a Hadoop service. The CSP knows the physical topology, so it can build that into its offering. Most of the 
major CSPs now offer a Hadoop service. For example, the next section discusses Amazon’s offering: Elastic 
MapReduce (EMR). Google, Microsoft, and others also offer similar services.

VMware continues to work on addressing the issue of running Hadoop on virtual machines. To this end, it 
started the open source Project Serengeti. The goal of Serengeti is to facilitate deploying Hadoop in a virtual 
environment. Serengeti is able to deploy the Hadoop ecosystem on top of VMware’s vSphere virtualization 
platform. A number of popular Hadoop distributions have endorsed Serengeti.

Conventional wisdom is that virtualization reduces performance. After all, the hypervisor adds some pro-
cessing and memory overhead. However, a recent paper offered by VMware (Buell, 2013) ran Hadoop virtu-
alized on VMware vSphere. The paper suggests that the deleterious performance characteristics may be 
minimized by properly sizing and configuring the VMs. Independent tests will naturally need to verify this 
finding but it is an encouraging prospect.

It is not possible to cover all the issues with virtualizing Hadoop here. An excellent site with considerable 
detailed information on running virtualized Hadoop is http://wiki.apache.org/hadoop/Virtual%20Hadoop 
(accessed January 2, 2016).

An experiment by Wendt (2014) found that, in their case, running Hadoop in a cloud was less expensive 
than running it internally on bare metal.

45.3.7 Amazon Elastic MapReduce

It takes considerable time and thought to tune an analytic cloud to run on a utility cloud. For this reason, Amazon 
offers an analytic cloud service called Amazon Elastic MapReduce (EMR). The content in this section is based on 
a presentation by Ben Butler, Senior Manager of Big Data at Amazon (Butler, 2013). It is helpful to go through this 
information in detail, as it is an excellent exemplar of how to process big data in a utility cloud. As of 2013, there 
were 5.5 million EMR clusters, so it is currently the most popular way to run big data analytics on a utility cloud.

45.3.7.1 Getting the Data into the Cloud

The data must first get into the cloud. Amazon offers four main ways to do that:

 ● AWS Direct Connect, which provides dedicated low‐latency bandwidth.
 ● AWS Import/Export, which means physically shipping the media (e.g., hard drives) to AWS.
 ● Queuing, such as the Amazon Simple Message Service (SMS), which offers highly scalable event buffer-

ing. This would be one way to feed in high velocity data.
 ● Amazon Storage Gateway, which allows synchronization of local storage to the cloud.

45.3.7.2 Storing the Data

Of course there must be a way to store the data in the cloud. Amazon offers several suitable types of storage, 
depending on the data and analytic needs.

 ● Amazon Relational Database Service (Amazon RDS). This is a relational database management system 
(RDBMS), which offers a variety of engines, including: MySQL, Oracle, and Microsoft SQL Server®. It 
can handle up to 3 TB.

 ● Amazon SimpleDB. This is an example of a NoSQL database, so it is a nonrelational database that is 
schema‐less. It can be appropriate for smaller datasets.
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 ● Amazon DynamoDB. This is another NoSQL database, and it is also schema‐less. Furthermore it is 
designed for high throughput, storing data on Solid State Drives (SSDs), and spread across geographic 
zones for reliability. It currently offers speeds of 5 ms for a read, and 10 ms for a write (Wood, 2012).

 ● Amazon S3. This is Amazon’s popular key‐value object data storage. It is highly durable, with 
99.999999999% durability, and each object can contain up to 5 TB. Access time is in the range of tens to 
hundreds of ms (Butler, 2013).

 ● Amazon Glacier. This is a service designed for long‐term cold storage, to replace older tape storage. It is 
also highly durable but it takes longer to access data, so it is not appropriate to run data analytics against 
it. An item can be accessed within 5 hours of the request (Butler, 2013).

Amazon also offers Amazon Redshift, a data warehouse service designed for sizes from 2 TB to 1.6 PB. This 
may be more appropriate once the data has been processed by EMR and the results stored in one of the above.

45.3.7.3 Typical Usage

A typical way to use EMR is to follow these steps:

1. Put the data into S3 or HDFS. (Both copy the data to three machines.)
2. Launch the EMR cluster and process the data, storing the results in S3.
3. Aggregate the results from all the nodes and store that in S3.
4. Retrieve the results from S3.
5. Terminate the cluster when complete.

It is possible to run multiple clusters against the same data, each researching a different question. To improve 
security, the EMR cluster can launch in a Virtual Private Cloud (VPC).

45.3.7.4 Best Practices

There are a couple of best practices for using EMR. The first is not unique to EMR but is true of all big data 
applications.

 ● Move applications to the data, rather than the other way around. It takes too long to send the data elsewhere.
 ● Use the Amazon EC2 Spot market to reduce costs. Spot instances are EC2 instances that are unused, so Amazon 

offers them at prices that vary from moment to moment. You can specify a limit on how much you would like 
to pay for an instance but if the price goes over your limit you could lose your instance within minutes.

Deyhim (2013) contains a more detailed set of best practices for EMR.

45.3.7.5 Amazon’s Public Data Sets

Amazon offers some public data sets for use with EMR or other big data analytics. One example is the 1000 
Genomes Project, containing over 200 TB of data – see http://aws.amazon.com/1000genomes/ (accessed 
January 2, 2016), for more information.

45.3.8 Windows Azure HDInsight Service

Microsoft also offers a big data service that runs in their Azure cloud, called Windows Azure HDInsight 
Service, which deploys and provisions Apache™ Hadoop® clusters in the Azure cloud, (Microsoft, 2013). 
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This offering supports an entire Hadoop ecosystem of tools, such as Apache Pig, Apache Hive, and 
Apache Sqoop. Those tools are discussed in Chapter48.

45.3.9 Other Cloud Implementations

AppEngine‐MapReduce is an open‐source library for doing MapReduce‐style computations on the Google 
App Engine platform with pricing that is completive with Amazon EMR. See https://code.google.com/p/
appengine‐mapreduce/.

The Sahara project is working on supporting Hadoop on top of OpenStack. OpenStack is a popular IaaS 
implementation that may be instantiated in a private cloud. For more information on Sahara, see https://wiki.
openstack.org/wiki/Sahara (accessed January 2, 2016).

45.4 Conclusion

By taking a different approach to the CAP theorem, many NoSQL databases have been designed to run in a 
distributed fashion, so that they may run at Internet scale, unlike traditional RDBMS tools. Thus they fit 
nicely onto a utility cloud.

The existence of utility clouds has allowed more people to become involved with big data analytics. 
Because of these readily available public clouds, it is no longer necessary to purchase, house, run and main-
tain a room full of servers to analyze big data.

Disadvantages of running big data analytics in a utility cloud include reduction in speed due to the I/O 
virtualization penalty, and the noisy neighbor problem (which can be mitigated). An additional disadvantage 
for Hadoop is that it is rack aware, while public clouds do not provide that information. Fortunately cloud 
providers and virtualization vendors are aware of the issue and most offer a hosted Hadoop solution, such as 
Amazon’s EMR or Project Serengeti.

Cloud computing lowers the barrier to enter the world of big data. Thus it allows researchers to try new 
ideas without imposing on them a large financial burden and a time consuming setup process.
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46.1 Introduction

Cloud computing technology represents a new paradigm for hosting software applications. This para-
digm simplifies the time‐consuming processes of hardware provisioning, hardware purchasing, and soft-
ware deployment. It has revolutionized the way computational resources and services are commercialized 
and delivered to customers. In particular, it shifts the location of its computing infrastructure to the net-
work to reduce the costs associated with the management of hardware and software resources. It, there-
fore, fulfils  the long‐held dream of envisioning computing as a utility where economies of scale help to 
drive down the cost of computing infrastructure effectively (Armbrust et al., 2009). It offers a number of 
advantages for the deployment of software applications such as a pay‐per‐use cost model, low time to 
market, and the perception of (virtually) unlimited resources and infinite scalability. In  practice, the 
 advantages of the cloud‐computing paradigm open up new avenues for deploying novel applications that 
are not economically feasible in a traditional enterprise infrastructure setting. The cloud has become an 
increasingly popular platform for hosting software applications in a variety of domains such as e‐retail, 
finance, news, and social networking. We are witnessing a proliferation in the number of applications 
with a tremendous increase in the scale of the data generated and being consumed by such applications. 
Cloud‐hosted database systems powering these applications form a critical component in the software 
stack of these applications.

In general, data‐intensive applications are classified into two main types:

 ● online transaction processing (OLTP) systems that deal with operational databases up to a few tera-
bytes in size with write‐intensive workloads that require ACID (Atomicity, Consistency, Isolation, 
Durability) transactional support and response‐time guarantees;
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 ● online analytical processing (OLAP) systems that deal with historical databases of very large sizes, up to 
petabytes, with read‐intensive workloads that are more tolerant to relaxed ACID properties.

In this chapter, we focus on cloud‐hosted database solutions for OLTP systems. A successful cloud‐hosted 
database tier of an OLTP system should sustain a number of goals:

 ● Availability. They must always be accessible, even during a network failure or when a whole datacenter 
has gone offline.

 ● Scalability. They must be able to support very large databases with very high request rates at very low 
latency. In particular, the system must be able to replicate and redistribute data automatically to take 
advantage of the new hardware. They must be also able to move load between servers (replicas) auto-
matically.

 ● Elasticity. They must cope with changing application needs in both directions (scaling up / out or scaling 
down / in). Moreover, the system must be able to respond gracefully to these changing requirements and 
recover quickly to its steady state.

 ● Performance. On public cloud computing platforms, pricing is structured in such a way that one pays only 
for what one uses, so the vendor price increases linearly with the requisite storage, network bandwidth, 
and compute power. Hence, the system performance has a direct effect on its costs. Thus, efficient system 
performance is a crucial requirement to save money.

Arguably, one of the main goals of cloud‐hosted database system is to facilitate the job of implementing 
every application as a distributed, scalable, and widely accessible service on the Web. The Amazon online 
retailer, eBay, Facebook, Twitter, Flickr, YouTube, and LinkedIn are just examples of online services that are 
currently able to achieve this goal successfully. Such services have two main characteristics: they are data 
intensive and very interactive. Currently, a common goal is to make it  easy for every application to achieve 
high scalability, availability, and performance targets with  minimum effort.

The quest to conquer the challenges posed by hosting databases on cloud computing environments has led 
to a plethora of systems and approaches. In practice, there are three main technologies that are commonly 
used for deploying the database tier of software applications in cloud platforms, namely, the services of 
NoSQL storage systems, database‐as‐a‐service (DaaS) platforms, and virtualized database servers. This 
chapter aims to discuss the basic characteristics and the recent advancements of each of these technologies, 
illustrating the strengths and weaknesses of each technology.

46.2 NoSQL Database Systems

For decades, relational database management systems (e.g. MySQL, PostgreSQL, SQL Server, Oracle) 
have been considered as the one‐size‐fits‐all solution for providing data persistence and its retrieval. 
These systems have matured after extensive research and development efforts and have very success-
fully created a large market of solutions in different business domains. However, the ever increasing 
need for scalability, and new application requirements, have created new challenges for traditional relational 
database management  systems (RDBMS). There has therefore been some dissatisfaction with this one‐size‐fits‐all 
approach in deploying the data storage tier for large‐scale online Web services (Stonebraker, 2008), which 
resulted in the emergence of a new generation of low‐cost, high‐performance database software that 
challenges the  dominance of relational database management systems. A big reason for this movement, 
known as NoSQL (not only SQL), is that different implementations of Web, enterprise, and cloud 
 computing applications, which have different requirements from their data‐management tiers (e.g. not 
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every application requires rigid data consistency), have opened up various possibilities in the design 
space. For example, for high‐volume web sites (e.g. eBay, Amazon, Twitter, Facebook), scalability and 
high availability are essential requirements that cannot be compromised. For these applications, even 
the slightest outage can have significant financial consequences and impacts customer trust. The CAP 
theorem (Brewer, 2000) has shown that a distributed database system can only choose at most two 
properties from consistency, availability and tolerance to partitions. Therefore, most of these systems 
decide to compromise the strict consistency requirement. In particular, they apply a relaxed consist-
ency policy called eventual consistency (Vogels, 2008), which guarantees that if no new updates are 
made to a replicated object, eventually all accesses will return the last updated value (Vogels, 2008). 
If  no failures occur, the maximum size of the inconsistency window can be determined based on 
 factors such as communication delays, the load on the system, and the number of replicas involved in 
the  replication scheme.

Google’s BigTable (Chang et al., 2008) and Amazon’s Dynamo (2007) (presented by Amazon) have pro-
vided a proof of concept that inspired and triggered the development of a new wave of NoSQL systems. In 
particular, BigTable has demonstrated that persistent record storage could be scaled to thousands of nodes while 
Dynamo has pioneered the idea of eventual consistency as a way to achieve higher availability and scalability. 
In principle, the implementations of NoSQL systems have a number of common design features such as:

 ● Supporting flexible data models with the ability to dynamically define new attributes or data schema.
 ● A simple call‐level interface or protocol (in contrast to a SQL binding), which does not support join 

operations.
 ● Supporting weaker consistency models than ACID transactions in most traditional RDBMS. These mod-

els are usually referred to as Basically Available, Soft‐State, Eventually Consistent (BASE) models 
(Pritchett, 2008).

 ● The ability to horizontally scale out throughput over many servers.
 ● Efficient use of distributed indexes and RAM for data storage.

Commercial cloud offerings taking this approach include Amazon S3, Amazon SimpleDB and 
Microsoft Azure Table Storage. There is also a large number of open‐source projects that have been 
introduced, which follow the same NoSQL principles, such as HBase, Cassandra, Voldemort, 
Dynomite, Riak, and MongoDB. In general, these NoSQL systems can be classified with respect to 
different characteristics. For example, based on their supported data model, they can be classified into 
the following categories:

 ● Key‐value stores. These systems use the simplest data model, which is a collection of objects where each 
object has a unique key and a set of attribute / value pairs.

 ● Extensible record stores. They provide variable width tables (column families) that can be partitioned 
vertically and horizontally across multiple servers.

 ● Document stores. The data model of these systems consists of objects with a variable number of attributes 
with a possibility of having nested objects.

In addition, the systems can be classified into three categories based on their support of the properties of 
the CAP theorem:

 ● CA systems. Consistent and highly available but not partition tolerant.
 ● CP systems. Consistent and partition‐tolerant but not highly available.
 ● AP systems. Highly available and partition tolerant but not consistent.
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In practice, choosing the appropriate NoSQL system (from the very wide available spectrum of choices) 
with design decisions that best fit with the requirements of a software application is not a trivial task and 
requires careful consideration. Table 46.1 provides an overview of different design decisions for a sample of 
NoSQL systems. For comprehensive survey of the NoSQL system and their design decisions, we refer the 
reader to Cattell (2010) and Sakr et al. (2011).

In general, the capabilities of the NoSQL systems have attracted a lot of attention. However, many obsta-
cles still need to be overcome before these systems can appeal to mainstream enterprises such as:

 ● Programming model. NoSQL databases offer few facilities for ad‐hoc query and analysis. Even a simple 
query requires significant programming expertise. The inability of such systems to express an important 
join operation declaratively has been always considered one of the main limitations of these systems.

 ● Transaction support. Transaction management is one of the powerful features of RDBMS. The current 
limited support (if any) of the transaction notion from NoSQL database systems is considered to be a 
big obstacle to their acceptance for implementing mission‐critical systems. In principle, developing 
applications on top of an eventually consistent NoSQL datastore requires a greater effort than  traditional 
databases because they hinder the ability to support key features such as data independence, reliable 
transactions, and other crucial characteristics often required by applications that are fundamental to the 
database industry.

Migration. Migrating existing software application that uses relational database to NoSQL offerings would 
require substantial changes in the software code due to the differences in the data model, query interface and 
transaction management support. In practice, it might require a complete rewrite of any source code that 
needs to interact with the data management tier of the software application.

Maturity. relational database management systems are well known for their high stability and rich func-
tionality. In comparison, most NoSQL alternatives are still preproduction versions with many key features 
being either not stable enough or yet to be implemented, so enterprises are still approaching this new wave of 
data management with extreme caution.

There is thus still a big debate between the proponents of NoSQL and RDBMS, which is centered around the 
right choice for implementing online transaction processing systems. Relational database management systems 
proponents think that the NoSQL camp has not taken sufficient time to understand the theoretical foundation of 
the transaction processing model. For example, the eventual consistency model is still not well defined and 
 different implementations may differ significantly from each other. Figuring out all this inconsistent behavior 
adds to the application developers’ responsibilities and make their lives very much harder. They also believe 
that NoSQL systems could be more suitable for OLAP applications rather than for OLTP applications (Abadi, 
2009). On the other hand, the NoSQL camp argues that the domain‐specific optimization opportunities of 

Table 46.1 Design decisions of sample NoSQL system

System Data model Consistency guarantee CAP option License

BigTable Column families Eventually consistent CP Internal at Google
PNUTS Key‐value store Timeline consistent AP Internal at Yahoo!
Dynamo Key‐value store Eventually consistent AP Internal at Amazon
S3 Document store Eventually consistent AP Commercialized By Amazon
Simple DB Key‐value store Eventually consistent AP Commercialized By Amazon
HBase Column families Strict consistent CP Open Source – Apache
Cassandra Column families Eventually consistent AP Open Source – Apache
MongoDB Document store Eventually consistent AP Open Source – GPL
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NoSQL systems give back more flexibility to the application developers, who are now no longer constrained by 
a one‐size‐fits‐all model. However, they admit that making such optimization decision requires a lot of experi-
ence and the process can be very error prone and dangerous if not done by experts.

46.3 Database‐as‐a‐Service (DaaS)

Datacenters are often underutilized due to overprovisioning as well as the time‐varying resource demands of 
typical enterprise applications. Multitenancy, a technique that is pioneered by salesforce.com, is an optimiza-
tion mechanism for hosted services in which multiple customers are consolidated onto the same operational 
system and thus economies of scale help to drive down the cost of computing infrastructure effectively. In 
particular, multitenancy allows pooling of resources, which improves utilization by eliminating the need to 
provision each tenant for their maximum load. Multi‐tenancy is therefore an attractive mechanism for both of 
the cloud providers, who are able to serve more customers with a smaller set of machines, and also to custom-
ers of cloud services who do not need to pay the price of renting the full capacity of a server.

In practice, there are three main approaches for the implementation of multitenant database systems:

 ● shared server, where each tenant is offered a separate database in the same database server;
 ● shared process, where each tenant is offered its own tables while multiple tenants can share the same 

database;
 ● shared table, where the data of all tenants is stored in the same tables and each tuple has an additional 

column with the tenant identifier.

Database as a service is a technology where a third‐party service provider hosts a relational database as a 
service (Agrawal et al., 2009). Such services alleviate the need for their users to purchase expensive hardware 
and software, deal with software upgrades, and hire professionals for administrative and maintenance tasks. 
Cloud offerings taking this approach include Amazon RDS, Microsoft SQL Azure, Google Cloud SQL, and 
Heroku Postgres. While the shared table multitenancy model can be used by SaaS providers (e.g. Salesforce.
com) because all tenants share the same database structure for their application, the shared server multiten-
ancy model is the most commonly used by most commercial DaaS providers as it is considered to be the most 
effective approach to secure the isolation of each tenant’s data and allocated computing resources.

Amazon RDS is an example of a relational database service that gives its users access to the full capabilities 
of a familiar MySQL database or Oracle. Hence, the code, applications, and tools that are already designed 
on existing MySQL or Oracle databases can work seamlessly with Amazon RDS. Once the database instance 
is running, Amazon RDS can automate common administrative tasks such as performing backups or patching 
the database software. Amazon RDS can also conduct automatic failover management. Google Cloud SQL is 
another service that provides the capabilities and functionality of MySQL database servers, which are hosted 
in Google’s cloud. Although there is tight integration of the services with Google App Engine (Google’s 
platform‐as‐a‐service software development environment), in contrast to the original built‐in data store of 
Google App Engine, Google Cloud SQL allows software applications to move their data in and out of 
Google’s cloud easily without any obstacles. Microsoft has released the Microsoft SQL Azure database sys-
tem as a cloud‐based relational database service, which has been built on Microsoft SQL server technologies. 
It provides a highly available, multitenant database service hosted by Microsoft in the cloud. Applications can 
create, access, and manipulate tables, views, indexes, roles, stored procedures, triggers, and functions. It can 
execute complex queries and joins across multiple tables. It also supports Transact‐SQL (TSQL), native 
ODBC, and ADO.NET data access. In particular, the SQL Azure service can be seen as running an instance 
of an SQL server in a cloud hosted server, which is automatically managed by Microsoft instead of running 
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on an on‐premises managed server. Similarly, Heroku Postgres provides a Web service that provides the 
functionalities of the SQL‐compliant database, PostgreSQL.

Relational cloud (Curino et al., 2011) represents a research effort for developing a system that hosts mul-
tiple databases on a pool of commodity servers inside one datacenter. In order to allow workloads to scale 
across multiple servers, the system relies on a graph‐based data partitioning algorithm that groups data items 
according to their frequency of co‐access within transactions / queries. The main goal of this partitioning 
process is to minimize the probability that a given transaction has to access multiple nodes to complete its 
execution. In addition, in order to manage and allocate the available computing resources to the different ten-
ants effectively, the system monitors the access patterns induced by the tenants’ workloads and the load of 
each database server, and uses this information to determine periodically the best way to place the database 
partitions on the back‐end machines. The goal of this monitoring process is to minimize the number of 
machines used and balance the load on the different servers.

In practice, the migration of the database tier of any software application to a relational database service is 
expected to require minimal effort if the underlying RDBMS of the existing software application is compat-
ible with the service offered. This helps the software applications to achieve faster “time to market” because 
they can host the database tier of their application in cloud platforms quickly, and use their features and 
advantages. However, many relational database systems are, as yet, not supported by the DaaS paradigm (e.g. 
IBM DB2, Informix, Sybase). In addition, some limitations or restrictions might be introduced by the service 
provider for different reasons (e.g. the maximum size of the hosted database, the maximum number of pos-
sible concurrent connections). Moreover, software applications do not have sufficient flexibility in being able 
to control the allocated resources of their applications (e.g. dynamically allocating more resources for dealing 
with increasing workload or dynamically reducing the allocated resources in order to reduce the operational 
cost). The whole resource management and allocation process is controlled at the provider side, which 
requires an accurate planning for the allocated computing resources for the database tier and limits the ability 
of the consumer applications to maximize their benefits by leveraging the elasticity and scalability features 
of the cloud environment.

46.4 Virtualized Database Servers

Virtualization is a key technology of the cloud computing paradigm that abstracts away the details of physical 
hardware and provides virtualized resources for high‐level applications. A virtualized server is commonly 
called a virtual machine (VM). Virtual machines allow the isolation of applications from the underlying hard-
ware and other VMs. Ideally, each VM is both unaware of and unaffected by other VMs that could be operat-
ing on the same physical machine. In principle, resource virtualization technologies add a flexible and 
programmable layer of software between applications and the resources used by these applications. The 
approach of virtualized database server makes use of these advantages where an existing database tier of a 
software application that has been designed to be used in a conventional datacenter can be directly ported to 
virtual machines in the public cloud. Such a migration process usually requires minimal changes in the archi-
tecture or the code of the deployed application. In this approach, database servers, like other software 
 components, are migrated to run in virtual machines. While the provisioning of a virtual machine for each 
database replica imposes a performance overhead, this overhead is estimated to be less than 10% (Minhas et al., 
2008). In principle, this approach represents a different model of multitenancy – shared physical machine – 
where a VM of a virtualized database server can be running on the same physical machine with other VMs, 
which are not necessarily running database operations.

Dynamic provisioning is a well known process of increasing or decreasing the allocated computing 
resources (e.g. number of virtualized database servers) to an application in response to workload changes. In 
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practice, one of the major advantages of the virtualized database server approach is that the application can 
have full control in dynamically allocating and configuring the physical resources of the database tier (data-
base servers) as needed (Soror et al., 2008; Cecchet et al., 2011; Sakr and Liu, 2012). Hence, software appli-
cations can fully use the elasticity feature of the cloud environment to achieve their defined and customized 
scalability or cost reduction goals. However, achieving these goals requires the existence of an admission 
control component, which is responsible for monitoring the system’s state and taking the corresponding 
actions (e.g. allocating more / less computing resources) according to the defined application requirements 
and strategies. Therefore, one of the main responsibilities of this admission control component is to decide 
when to trigger an increase or decrease in the number of the virtualized database servers, which are allocated 
to the software application.

In general, the decision of when to increase or decrease the allocated computed resources is made in a lazy 
fashion for the Web and the application tiers of the software application, in response to an actual or antici-
pated significant workload change. Such lazy triggers are appropriate for these tiers because new capacity can 
be added in a quick manner, whenever required, as the only resulting latency is for the virtual machine 
startup. However, provisioning of a new database replica involves copying and restoring a new replica, which 
can take minutes or hours depending on the database size. The Dolly system (Cecchet et al., 2011) has 
 presented an approach that takes the latency of provisioning new database replicas into account when 
 triggering provisioning decisions. In particular, Dolly incorporates a model to estimate the latency to create 
a replica, based on the virtual machine snapshot size and the database resynchronization latency, and uses this 
model to trigger the replica spawning process well in advance of the anticipated workload increase.

A service‐level agreement (SLA) is a contract between a service provider and its customers. In principle, 
SLAs capture the agreed guarantees between a service provider and its customer. They define the characteristics 
of the service provided, including service‐level objectives (SLOs) (e.g. maximum response times), and define 
penalties if these objectives are not met by the service provider. In practice, flexible and reliable  management 
of SLA agreements is of paramount importance both for cloud service providers and consumers. The CloudDB 
AutoAdmin framework (Sakr and Liu, 2012; Zhao et al., 2014) has presented another approach for the SLA‐
based dynamic provisioning of the database tier of the software applications based on application‐defined poli-
cies for satisfying their own SLA requirements. In this framework, the SLAs of the  consumer applications are 
defined in terms of rules and goals that are subjected to a number of constraints that are  specific to the applica-
tions’ requirements. The framework continuously monitors the application‐defined SLA and automatically 
triggers the execution of necessary provisioning actions when the conditions of the rules are met. Hence, the 
software applications have more flexibility in defining their own lazy or eager  provisioning rules.

46.5 Discussion and Conclusion

This chapter presented an overview of the state of the art of existing technologies hosting the database 
tier of software applications in cloud environments. Table 46.2 summarizes some of the tradeoffs between 
the different cloud‐hosted database technologies. Based on our discussion, we can make the following 
recommendations:

 ● NoSQL systems are viable solutions for applications that require scalable data stores, which can easily 
scale out over multiple servers and support flexible data model and storage scheme. However, the access 
pattern of these applications should not require many join operations and can work with limited transac-
tion support and weaker consistency guarantees. In general, NoSQL systems are recommended for newly 
developed applications but not for migrating existing applications which are written on top of traditional 
relational database systems. For example, Amazon Web Services describe the antipatterns for using its 
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cloud‐hosted NoSQL solution, SimpleDB, to include predeveloped software applications, which are tied 
to traditional relational database or applications that may require many join operations and complex trans-
actions. In addition, with the wide variety of currently available NoSQL systems, software developers 
need to understand thoroughly the requirements of their application in order to choose the NoSQL system 
with the appropriate design decisions for their applications.

 ● Database‐as‐a‐service solutions are recommended for software applications that are built on top of rela-
tional databases. They can be migrated easily to cloud servers and alleviate the need to purchase expensive 
hardware, deal with software upgrades and hire professionals for administrative and maintenance tasks. 
However, these applications should have the ability to accurately predict their application workloads and 
provision the appropriate computing resources so that they can achieve their performance requirements. 
Unfortunately, these applications should be ready not to automatically leverage the elasticity and scalabil-
ity promises of cloud services.

 ● Virtualized database servers are recommended for software applications that need to leverage the full 
elasticity and scalability promises of cloud services and need to have full control of the performance of 
their applications. However, these application need to build and configure their admission control for 
managing the database tier of their applications.

In practice, users of cloud database services often have the challenge of choosing the appropriate technol-
ogy and system that can satisfy their specific set of application requirements. A thorough understanding of 
current cloud database technologies is therefore essential for dealing with this situation. In addition, a set of 
research challenges has been introduced by the cloud computing paradigm; these need to be addressed in 
order to ensure that the vision of designing and implementing successful management solutions in the cloud 
environment can be achieved. We shed the light on some of these challenges as follows (Sakr, 2014):

 ● True elasticity. To unleash the power of the cloud computing paradigm, cloud database systems should be 
able to manage and utilize the elastic computing resources transparently to deal with fluctuating work-
loads. The commercial NoSQL cloud offerings (e.g. Amazon SimpleDB) and commercial DaaS offerings 

Table 46.2 Tradeoffs of different cloud‐hosted database technologies

Technology / criteria NoSQL DaaS Virtualized database 
servers

Ease of adoption / 
migration for 
existing databases

Low (more 
appropriate for 
developing new 
applications)

Moderate (migration process 
can be straightforward if a 
cloud service of the 
underlying database system 
is available)

High (database server can 
be migrated easily to a 
virtual machine like any 
other software 
component)

Ease of management 
for the hosted data

High (the service 
provider takes 
care of all the 
management of 
the hosted data)

High (the service provider takes 
care of all the management 
of the hosted data)

Low (user needs to take 
care of all the 
management of the 
hosted database in a 
virtualized environment)

User control of the 
elasticity and 
scalability of the 
allocated computing 
resources

Low (the user has 
no influence on 
the behavior of 
the underlying 
system / service)

Moderate (the user has limited 
control in configuring the 
service according to the 
requirements of his 
application)

High (the user has full 
control in configuring 
the service according to 
the requirement of his 
application)
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(e.g. Amazon RDS, Microsoft SQL Azure) do not provide their users with any flexibility to dynamically 
increase or decrease the allocated computing resources of their applications. While NoSQL offerings 
claim to provide elastic services for their tenants, they do not provide any guarantee that their provider‐
side elasticity management will provide scalable performance with increasing workloads. Moreover, 
commercial DaaS pricing models require their users to predetermine the computing capacity that will be 
allocated to their database instance as they provide standard packages of computing resources (e.g. Micro, 
Small, Large and Extra Large DB Instances). In practice, predicting workload behavior (e.g. arrival 
 pattern, I/O behavior, service‐time distribution) and consequently accurate planning of the computing 
resource requirements with consideration of their monetary costs are very challenging tasks. Users might 
therefore still tend to overprovision the allocated computing resources for the database tier of their appli-
cation in order to ensure satisfactory performance for their workloads. As a result of this, the software 
application is unable to fully utilize the elastic feature of the cloud environment.

 ● Live migration. Live migration is an important component of the emerging cloud computing paradigm, 
which provides extreme versatility for management of cloud resources by allowing applications to be 
transparently moved across physical machines with a consistent state. It represents an important tool for 
achieving elasticity and dynamic provisioning. It is also used to ensure availability by tenants migrating 
to other servers when the host server is planned to go down for maintenance. Moreover, it can be used to 
consolidate multiple tenants onto a relatively idle server, which alleviates the need for extra servers, which 
can be shut down, thus reducing operating costs. However, live migration is a resource‐intensive operation 
and can come at the cost of degraded service performance during migration due the overhead caused by 
the extra CPU cycles, which are consumed on both the source and the destination servers in addition to 
the extra amount of network bandwidth, which is consumed for the transmission process. In principle, live 
migration of databases in a timely fashion is a challenging task. In addition, there is a tradeoff between 
the migration time, the size of the database, and the number of update transactions in the workload that 
are executed during the migration process. Furthermore, in a multitenancy environment, the challenges of 
deciding which tenant to migrate and where (to which server) this tenant should be migrated to remain 
open issues for further investigation and careful consideration.

 ● SLA management. In general, SLA management is a common general problem for the different types of 
software systems that are hosted in cloud environments for different reasons, such as the unpredictable 
and bursty workloads from various users in addition to the performance variability in the underlying cloud 
resources (Cooper et al., 2010). The state‐of‐the‐art cloud databases do not allow the specification of SLA 
metrics at the application or at the end‐user level. In practice, cloud service providers guarantee only the 
availability (uptime guarantees), but not the performance, of their services. In general, adequate SLA 
monitoring strategies and timely detection of SLA violations represent challenging research issues in the 
cloud computing environments. In practice, traditional cloud monitoring technologies (e.g. Amazon 
CloudWatch) focus on low‐level computing resources (e.g., CPU speed, CPU utilization, I/O disk speed). 
In general, translating the SLO of software applications to the thresholds of utilization for low‐level com-
puting resources is a very challenging task and is usually done in an ad hoc manner due to the complexity 
and dynamism inherent in the interaction between the different tiers and components of the system. 
Furthermore, cloud service providers do not automatically detect SLA violations and leave the burden of 
providing the violation proof on the customer. It therefore becomes a significant issue for the cloud con-
sumers to be able to monitor and adjust the deployment of their systems if they intend to offer viable 
service‐level agreements (SLAs) to their customers (end users). It is an important requirement for cloud 
service providers to provide cloud consumers with a set of facilities, tools and framework that ease their 
job of achieving this goal effectively.

 ● Benchmarking. In principle, benchmarks need to play an effective role in empowering cloud users to make 
better choices regarding the systems and technologies that suit their application’s requirements. In  general, 
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designing a good benchmark is a challenging task due to the many aspects that should be considered and 
can influence the adoption and the usage scenarios of the benchmark. We believe that it is important that 
cloud users become able to paint a comprehensive picture of the relationship between the capabilities of 
the different type of cloud database services, the application characteristics and workloads, and the 
 geographical distribution of the application clients and the underlying database replicas. As yet, the 
 literature does not contain any comprehensive assessments and measurements of the performance, scala-
bility, elasticity or consistency guarantees of the different categories of cloud database services. This is a 
clear gap that should attract more attention from the research community.
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47.1 Introduction

Cloud data management (CDM) offers significant advantages and is already favored by many enterprises as 
a first choice. The world’s major IT companies, such as IBM, HP, Cisco, Microsoft, and Google, have set up 
their own datacenters to provide CDM solutions. Several CDM systems such as GFS (Ghemawat et al., 
2003), BigTable (Chang et al., 2006), HDFS (Borthakur, 2013), HBase (http://hbase.apache.org/, accessed 
January 18, 2016), Dynamo (DeCandia et al., 2007), SimpleDB (http://aws.amazon.com/simpledb/, accessed 
January 18, 2016), S3 (http://aws.amazon.com/s3/, accessed January 18, 2016), Cassandra (http://cassandra.
apache.org/, accessed January 18, 2016), Azure (http://www.windowsazure.com/en‐us/, accessed January 18, 
2016), and PNUTS (Cooper et al., 2008) are currently being used. Energy‐saving measures, virtualization, 
secure data handling, server consolidation, intelligent control and management, and new datacenter concepts 
will have a profound impact on the future of CDM. Some of the key characteristics of CDM are parallelism 
and high‐performance computing, data backup and data protection technology, virtualization, and effective 
data organization and datacenter management.

47.1.1 Parallelism and High‐Performance Computing

Cluster computing and multicore processors, which accelerated the development of parallel applications, are 
widely used in large datacenters. Although parallel computing has solved many bottlenecks, the slow mem-
ory I/O system leads to a performance bottleneck. As datacenters need huge amounts of storage, the storage 
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subsystem should employ the parallel technology. Network File System (NFS) (Tykhomyrov and Tonkonog, 
2002) has a new standard (NFS version 4.1) including an expansion of Parallel NFS (pNFS) (Shepler et al., 
2003), which has a high transmission rate.

47.1.2 Data Backup and Data Protection against Failure

Redundant Array of Independent Disks, or Redundant Array of Inexpensive Disks (RAID) (Patterson et al., 
1988) was the first technology to protect data storage systems against failure. RAID levels 1, 3, and 5 use 
different architecture for the protection of data on the hard drives. The latest RAID6 technology can tolerate 
two disk failures (data corruption), further increasing data protection. Data snapshots are the most commonly 
used data backup and recovery technology. For example, Copy‐On‐Write (COW) and Continued Data 
Protection (CDP) provide block‐level or file‐level data protection. The latest file system technology consists 
of the log‐based file systems (for example, Log‐Structured File System, Ext3, ReiserFS, XFS, JFS, WAFL), 
which track content change. If the entire write operation is interrupted for some reason (such as system power 
down), the system is restarted according to the log – the system resumes from the interrupted operation.

In the industrial sector, data disaster recovery has also been widely used; products for data protection 
include IBM’s FlashCopy / Metro and Mirror / Global Copy / Global Mirror / PPRC (http://www‐03.ibm.
com/systems/storage/software/, accessed January 18, 2016), HP’s OpenView/CASA/XP CA/EVA CA (http://
www8.hp.com/us/en/software/enterprise‐software.html, accessed January 18, 2016), and EMC’s TimeFinder 
and SRDF (http://www.emc.com/index.htm, accessed January 18, 2016). Data deduplication, a lossless com-
pression technology, can reduce the amount of storage space required and can reduce storage costs signifi-
cantly. Deduplication stores data by calculating the dataset repetition rate for duplicate data in a storage 
system; it stores only one copy of the data through the data’s reference identification count.

47.1.3 Virtualization

Traditionally, the concept of virtualization only involved a server and storage but now it has extended to include 
I/O, desktops, and unified communications. Storage virtualization is the abstraction of storage services from the 
underlying hardware resources. Virtualization allows a large number of storage resources to be consolidated into 
a single storage pool; the end users will not see a specific storage disk or tape, and will not care about where their 
data is actually stored (or how data travels through to a specific storage resource). The virtual storage pool is a 
centralized management point where resources are allocated dynamically according to an application’s demands. 
It is difficult to integrate a datacenter’s applications into other applications without virtualization.

An example of virtualization technology is the tape library. It can be used like a disk array with low latency, 
and this is widely applied in today’s virtual tape library (VTL) where it plays an increasingly important role. 
Putting scattered storage resources together into a virtual “storage pool” can improve the system’s overall 
efficiency while potentially reducing the system’s administration cost. Storage virtualization can also support 
resource allocation functions with resource partitioning and distribution capacity. Based on service‐level 
agreements (SLAs), it can integrate the requirements of the storage pool to be divided among different stake-
holders to fulfill the applications’ performance and capacity needs. Many storage vendors use different ways 
to achieve storage virtualization capabilities: host‐based virtual memory, virtual memory‐based storage 
devices, and network‐based virtual storage.

47.1.4 Effective Data Organization and Datacenter Management

Datacenters have the capacity to handle a huge amount of data. Storing, organizing, and searching in a 
huge data set needs an efficient data‐management system. A distributed file system (such as GFS) is a 
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large‐scale data‐management system that can store and organize data in an effective way. An object‐oriented 
storage system (OBS) stores data as an abstract object; the data attributes and operations are bound together 
within the target range storage. This approach greatly simplifies and improves data management and 
 content‐based storage such as content‐addressable memory (CAS) in object storage systems. In the CAS, 
the representation of the data object is a globally unique numeric identifier referred to as a digital finger-
print. A common approach is based on the data contents of the fixed‐length hash, which is calculated to 
replace the file name. For the network storage system, clients simply use the numeric identifier to access 
the  content. Well known content‐based storage (prototype) systems are the Venti network storage system 
(Quinlan and Dorward, 2002), developed by Bell Labs; Deep Store archival storage systems, developed by 
the University of California and the Intel development center, and the CASPER distributed file system 
(Tolia et al., 2003).

One of the current issues faced by datacenters is the management of unstructured data such as video, audio, 
images, XML documents, and Web pages. Attributes of unstructured data are different from traditional struc-
tured data. Unified storage and content management systems, such as HP’s unified storage systems, provide 
a better solution for the management of unstructured data. Structured data can be managed by the Tsinghua 
Tongfang content management system (CMS).

47.1.5 Green Datacenters

The energy consumption of datacenters accounts for 40% of the energy consumption of the entire IT industry. 
A datacenter’s power consumption depends on various aspects of the datacenter. At the macro level, it depends 
on the datacenter’s location, construction, internal structure, wiring, and cooling system. At the micro level, 
power consumption depends on the servers and storage system. Energy‐saving techniques such as virtualiza-
tion may be applied to reduce their energy consumption.

47.2 Cloud Data Management Techniques: An Overview

In this section, we outline key cloud data management technologies such as unified storage resource manage-
ment, data organization, and cloud storage gateway, and also highlight technical difficulties in cloud data 
management.

47.2.1 Data Management Techniques

47.2.1.1 Unified Storage Resource Management

Unified storage resource management can be divided into two major categories: storage resource virtualiza-
tion and tiered storage management.

Storage resource virtualization of heterogeneous storage devices and subsystems can achieve block‐level 
storage virtualization. Hierarchical management of heterogeneous storage devices can be used to manage 
data properly. Such systems are characterized by frequency‐related acquisition, data management strategies, 
intelligent data migration, and dynamic adaptive rights management technology.

47.2.1.2 Data Organization

Currently, popular CDM systems are GFS and BigTable, HDFS and HBase, Dynamo and SimpleDB, S3, 
Cassandra, Azure, and PNUTS. These systems focus on the following five aspects: object‐based massively 
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parallel file‐system architecture, high performance and high reliability of the metadata server cluster, rapid 
retrieval of metadata technology, high‐performance local object file systems, and distributed object locking 
mechanisms:

 ● Object‐based massively parallel file systems relate to the methodology of building an efficient PB‐class 
storage system, storage system self‐organization, self‐management, self‐testing and self‐providing sys-
tem security architecture, and a protection implementation mechanism.

 ● Metadata clustering technology relates to how the rational allocation of preserving metadata storage hier-
archy at all levels (quantity, type, and scheduling policy) is conducted. An efficient cache algorithm of 
metadata and metadata access speed can improve user access performance.

 ● Metadata retrieval technology is mainly used to save storage space; data structures are used to organize 
and manage large volumes of information, metadata, and multidimensional attribute‐based information, 
supporting quick search functions.

 ● A high‐performance local object file system’s main research fields are: object data indexing and storage, 
searching and managing free space, managing object metadata, and storing and retrieving of object prop-
erties to achieve long‐term performance.

 ● A distributed object locking the storage system’s main mechanism is the concurrency control mechanism. 
Using the metadata server, the object storage device and clients can work together to achieve tripartite 
concurrency control.

47.2.1.3 Cloud Storage Gateway

Application of cloud storage services is relatively limited as cloud storage has limitations in terms of 
its interface. Enterprises have many mature applications such as file sharing and data backup (built on 
storage devices). These systems only support the traditional storage interface (block interface such as 
iSCSI) or file interface (such as NFS and CIFS). Cloud‐storage service providers often do not provide 
support for the traditional storage interface, but they use and support common REST (Fielding, 2000) or 
SOAP (Zur Muehlen, 2005) interfaces and protocols. The cloud storage gateway solves the interface’s 
matching problem. A cloud storage gateway in the client side of cloud storage service is a special gate-
way device mainly used for the transformation between cloud storage protocols and traditional storage 
protocols.

47.2.2 Technical Difficulties

Cloud data storage presents the following technical difficulties:

 ● Unified description of heterogeneous storage resources. The practical application of the mass storage 
system function zoning of complex equipment (and a wide range of agreements) needs effective storage 
resource management. The uniform storage resource description, however, is difficult to achieve. There is 
therefore a need to adopt actively and absorb current international standards such as SNIA (http://www.
snia.org/, accessed January 18, 2016), which is endorsed by the International Organization for 
Standardization.

 ● Reliable preservation and fast retrieval of mass storage resource management information. A lot of stor-
age resource management information is described by a large number of storage nodes producing a uni-
fied model. The information includes the creation and expansion of virtual volumes. The information’s 
accuracy and timely access are important. The mass storage resource management information helps to 
achieve reliable and rapid retrieval preservation.
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 ● Storage virtualization performance overheads. In a virtualized environment, the system contains a number 
of different hardware and software characteristics. Different access methods are used to implement storage 
virtualization. This process can increase the complexity of storage virtualization software. On the other 
hand, various types of applications can access a highly complex mixed load concurrently. To ensure the 
system’s storage efficiency, appropriate tools are needed to manage storage resources on demand; it can 
increase the system’s operational overheads. Careful research and development of storage virtualization 
software is required to provide on‐demand storage services with minimum system performance penalty.

 ● Structured data and unstructured data integration. While structured data is stored in the database, unstruc-
tured data is stored in the file system. In general, creating, retrieving, updating, and deleting a data resource 
is very complex, as is maintenance and the transactional consistency associated with the corresponding 
heterogeneous data sources.

 ● Backup and recovery of deduplication‐based systems. Data deduplication has been a hot research topic in 
recent years. It has a broad and effective application setup in the backup and archive storage system. 
Deduplication can effectively remove duplicate data in the data flow, improve the utilization rate of stor-
age, and save network bandwidth. However, there are still many problems to be solved in order to build a 
high‐performance data‐backup system using deduplication.

 ● Key‐value storage. The most notable features of the big data era are that the amount of data is huge 
and there are many types of data, like structured and unstructured data. The traditional relational 
database does not have the capability to deal with such data. The massive growth gave birth to the 
development of NoSQL database, and the key value databases such as MongoDB (Membrey et al., 
2010), Redis (http://redis.io, accessed January 18, 2016), Tokyo Tyrand / Cabinet (Hirabayashi, 
2010), and CouchDB (Anderson et al., 2010). Key‐value databases are generally for specific applica-
tions. However, maintaining the high performance‐database (in the case of using a few system 
resources) is still a problem.

47.3 Design and Implementation

The objective of the hierarchical management approach for CDM is to achieve a unified resource manage-
ment system for various heterogeneous devices. A smart datacenter supports many heterogeneous storage 
devices such as the self‐development of high‐end disk arrays, cost‐effective heterogeneous disk arrays, tape 
libraries, and other low power‐consumption storage devices. The object‐based distributed file system can 
achieve effective organization of mass data. A smart datacenter, shown in Figure 47.1, is divided into five 
basic technical architecture levels: the device layer, the device interface layer, the base software application 
layer, the application programming interface (API) layer, and the application layer.

Key CDM technologies that support a datacenter are unified resource management, massive data storage 
organization, data security, and data resource integration, which are described below.

47.3.1 Uniform Resource Management

Under the guidance of the management strategy, storage virtualization can achieve data migration, replica-
tion, compression, and other management functions, and optimize resource utilization. Depending on the 
access frequency and feature mapping between the storage characteristics, the formation of intelligent 
storage resource‐management strategies (based on the access frequency of stored data) can reduce unnec-
essary migration bumps. We propose an automatic data‐migration program to ensure appropriate data at 
the right time. Administrators can manage the data in a timely manner to achieve rational and efficient use 
of storage resources.
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Mass storage systems are often deployed from different vendors’ storage devices and subsystems; incom-
patibility is widespread in such cases. Although the industry has defined standards, the integrated manage-
ment of a heterogeneous storage environment is still far from application in practice. Incompatibility can 
result in a tremendous waste of storage resources and excessive duplication of investment. It can also affect 
consistent data access and backup disaster recovery efforts.

47.3.2 Large‐Scale Data Storage Organization

Mass data storage architecture, shown in Figure 47.2, is a typical parallel file‐system structure consisting of 
massive parallel file system clients, metadata storage node clusters, and cluster components. Traditional par-
allel file systems are not well organized mass storage systems to meet large‐scale, high‐performance, scala-
ble, highly available, and easy management on demand services. A typical object‐based parallel file system 
mainly includes the client file system software, metadata, and the object storage server software system.

As shown in Figure 47.2, the metadata stored in the background by the metadata server is responsible for 
the back‐end storage system. Metadata server requests arrive via the metadata service processing module. 
The unified view module is responsible for management of the space within the system storage node; the 
storage resource management module is responsible for the user’s information management, quota manage-
ment, and distribution of rights. The multiple system metadata server cluster management module (with the 
MDS) works to establish a mutual connection; the metadata lock module is used to ensure cache coherency, 
concurrent metadata operations, data consistency, and data caching of different nodes.
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The object storage device (OSD) (Weber, 2010) consists of persistent objects in the underlying file system. 
It is responsible for the object’s local preservation management. Data object cache file systems built on top 
of persistent objects are used to improve data access performance. The metadata server, similar to the data‐
logging module, is used to provide a reliability guarantee and cache coherency. The data object lock module 
ensures concurrent multiuser data access object data consistency. The cluster management module is used to 
coordinate multiple object storage device nodes; the object storage device and the metadata server command 
channel are used for communication.

The object‐based parallel file system client and the virtual file‐system interface are used to provide users 
with a POSIX‐compliant access interface. The metadata cache and the data object cache module are used to 
improve access performance. The object lock module is used to provide coherency and consistency in distrib-
uted file system.

47.3.3 Data Resource Integration

For data resource integration, an unstructured data management system architecture, shown in Figure 47.3, 
uses a distributed object file system.

The bottom layer is used to achieve efficient unstructured data storage and fast retrieval. The logical man-
agement of unstructured data implements most of the current operation of unstructured data, corresponding 
to several different operations concerning unstructured data. The upper layer provides a unified operation. 
The following outlines its data model, user interface language, and data logic management.

InfiniBand/
Internet

Massive parallel file system
object storage node cluster

Client Massive parallel file system
metadata server cluster

File I/O

Metadata
access

Management
information

MDS cluster

OSD cluster

Figure 47.2 Massive parallel file system architecture

Distributed unstructured data storage

Unstructured data management

Unified data model and language

Metadata management Management engine

Figure 47.3 Unstructured data management system architecture



Cloud Data Management 579

47.3.3.1 Data Model

To represent unstructured data there must be a unified data model. One such scalable data model is shown in 
Figure 47.4.

The model first organizes unstructured data such as audio, images, video, graphics, and text; it creates 
XML metadata. The metadata includes file name, file type, storage path, index path, and creation time. XML 
metadata can be stored in the file system (or a database) using unstructured data metasearch. To facilitate a 
fast search and content‐based retrieval of unstructured data, hybrid indexes such as text indexes, graphics 
indexes, and other indexes must be created. Through this model abstraction, any unstructured data can be 
stored in the system, and can be processed (based on metadata and content) to add, delete, query, or modify.

Further research and development in unified modeling unstructured data is required in key areas such as unified 
XML representation of unstructured data and content‐based image, audio, video, graphics, and text indexing model.

47.3.3.2 User Interface Language

An unstructured audio data management system’s user interface cannot be used to describe a table because 
of the general characteristics and the special nature of each of the audios. The proposed development can 
browse, search, and perform processing of audio content, enabling users to describe their query requirements 
easily and get the appropriate data. Users sometimes do not even know what to look for in audio data; users 
also do not know how to describe their queries. Hence, unstructured audio data‐management systems (for 
user‐interface requirements) not only receive the user’s description, but also help users to describe their ideas, 
find content if required, and show it on the interface.

47.3.3.3 Data Logic Management

Data logic management is responsible for unstructured data management, system logical structure, and char-
acterization management, providing the general and professional unstructured data management engine, and 
maintaining high data independence.
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The logical management of unstructured data can be further decomposed into two sublayers, as shown in 
Figure 47.5. The upper level of the application layer supports unstructured data query language parsing func-
tionality for the application layer to access statistics, performance‐optimization features, and system cache 
policy control functions. The application support layer, depending on the application, sends a request to 
establish local data structure and characteristics of the logical description, and generates an application asso-
ciated with the logical view of the data.

The underlying logic of an unstructured data‐management engine for the access layer can greatly 
enhance the data‐management system’s optimization potential and scalability. For mainstream unstruc-
tured data, such as text, audio, video, and graphics / images, it will provide a professional management 
engine. Different logical management engines may target specific types of unstructured data storage 
modes and access policies optimization to improve the efficiency of data storage and its access. The inter-
nal structure of the management data logic is shown in Figure 47.5.The data‐access layer ultimately inte-
grates the management module and returns to the application support layer. Diversity in the unstructured 
data storage mode is different from the traditional management system; it is an important feature of a 
structured database.

47.4 Conclusion

We have highlighted current and anticipated challenges in the handling of large data sets in the cloud and 
have outlined key state‐of‐the‐art data management technologies for extremely large datasets. We outlined  
the main lessons learned in designing and building data‐management solutions, presented the opportuni-
ties for deploying CDM. We discussed cloud computing infrastructure for big data storage and computing, 
 services discovery, and content distribution, cross‐platform interoperability, query processing and indexing 
in cloud computing systems, and structured and unstructured data management.

Further advances in research and development of CDM are bound to attract a large and varied pool of 
applications that use time‐ and mission‐critical data.
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48.1 Introduction

The term large‐scale analytics means advanced analytics techniques applied to big data. This chapter 
 discusses Hadoop as a tool for large‐scale analytics.

Information is the data shaped into a form that is useful and meaningful. Data consists of streams of raw 
facts representing events occurring in the organization or in its environment (Laudon and Laudon, 2007). 
Data analysis (data analytics) is the process of shaping data into information. The  hierarchy of “data, infor-
mation, knowledge, and wisdom” (DIKW) defines three levels of data processing: information is about rela-
tionships among data; knowledge is information patterns; wisdom is knowledge principles (Baraglia et al., 
2010). At every level, connectedness grows with data understanding.

Russom (2011) defines advanced analytics as a collection of related techniques and tools used for data 
analysis. Advanced analytics includes predictive analytics, data mining, statistical analysis, complex SQL, 
data visualization, artificial intelligence, natural language processing, and database capabilities. Advanced 
analytics is also discovery analytics because it discovers information, knowledge, and wisdom from the data. 
Big data analytics is discovery analytics techniques applied to big data.

48.2 Hadoop and Data Analytics Tools

Apache Hadoop is the driving force behind the big data industry. It is an open‐source, Java‐based framework. 
It stores data (Hadoop Distributed File System – HDFS) and executes jobs (MapReduce) on large clusters of 
commodity servers. Hadoop is very fault tolerant. This framework is very simple but effective for a large class 
of big data applications. It is scalable from a single server to thousands of servers.
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The two main considerations in big data analytics are big data storage and big data processing. Traditional 
database systems have limitations on the number of columns, table size, and so forth. They accept only 
preformatted data for import. Big data does not meet such requirements. A big data file could store many 
terabytes and has billions of fields. Big data uses a special kind of file storage for data.

Traditional analytics tools use relational data and N‐dimensional cubes. The first approach to big data is 
to extract data from the big data storage and format it for input to traditional analytics tools. The second 
approach is to develop big data analytic tools directly on big data storage – that is the way of Hadoop. 
Hadoop combines big data storage and big data analytics. Hadoop Distributed File System is a solution for 
big data storage and it is a subject of this chapter. Hadoop MapReduce is a solution for big data processing 
and is a subject of the next chapter.

48.3 Brief History of Hadoop

Doug Cutting (2012) created Hadoop. Mike Cafarella and Doug Cutting started the Apache Nutch project in 
2002. Their idea was to create a Web search engine that could index and search one billion Web pages. This 
engine had to be deployed on half million dollars of hardware and with monthly running costs of $30 000 
(Cafarella and Cutting, 2004). The main problem was the index storage. Meanwhile, in 2003, Google engi-
neers published a paper on Google File System (GFS) (Ghemawat et al., 2003). This inspired the Nutch 
project to create Nutch Distributed Filesystem (NDFS) in 2004.

In 2004, Google engineers Jeffrey Dean and Sanjay Ghemawat published a paper on MapReduce (Dean 
and Ghemawat, 2004). This influenced the Nutch project and, in 2005, MapReduce was available for Nutch. 
In 2006, Hadoop was initially a subproject and then, in 2008, it became a top‐level project in Apache. The 
developers realized that the project solutions were useful in a broader area than Web search. Nowadays, 
many companies such as Yahoo! and Facebook use Hadoop. In 2013, Hadoop is the ultimate leader with 1.42 
TB/min sorting.

48.4 Hadoop as Software

Hadoop’s framework is not a Web search engine, sort utility, or file system. This chapter and the next try 
to describe it. Broadly speaking, Hadoop is an open‐source implementation of GFS, Google MapReduce, 
and Google BigTable. Google engineers teach outside the company on Google technologies using 
Hadoop.

Hadoop is not suitable for grid computing. Grids consist of computing and storage nodes (hosts). Processing 
transfers data from storage to computing nodes. Grid data processing is long running. Data nodes store huge 
amounts of data. Data transfers among the nodes are not very frequent. Hadoop does not differentiate hosts 
in the grid way – one host can run several computing nodes and several data nodes. Computing nodes usually 
take their inputs from local data nodes (data locality organization).

Hadoop is not a stream database system. It does not support unlimited streams. Hadoop operates 
optimally on big files using data locality. The programmer can partition an unlimited stream into a 
sequence of files and store it on the Hadoop file system for further processing, but this is not a part of 
the framework.

Hadoop is open to clouds. It runs on commodity hardware. It can run on a cluster of virtual machines in a 
cloud. Hadoop is easily scalable for large clusters. It can use underlying cloud infrastructure to achieve better 
optimization. It is available on the leading clouds, such as Yahoo!, Amazon, and MS Azure.
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48.5 Hadoop Components

Hadoop components are:

 ● Common – utilities supporting the other Hadoop modules, components and interfaces.
 ● MapReduce (YARN) – a framework for job scheduling and cluster resource management. It is a program-

ming model and an execution engine running on clusters of commodity servers.
 ● Hadoop Distributed File System – a distributed file system running on clusters of commodity computers.
 ● Avro – a serialization system for efficient, cross‐language RPC.
 ● Sqoop – a tool for transfer of data between structured data and HDFS.
 ● ZooKeeper – a distributed, highly available coordination service.
 ● Oozie – a service for running and scheduling workflows of Hadoop jobs.
 ● Pig – a data‐flow language and an execution engine for big data.
 ● Ambari – a Web‐based tool for provisioning, managing, and monitoring Hadoop clusters.
 ● Hive – a distributed data warehouse.
 ● HBase – a distributed, column‐oriented database.
 ● Cassandra – a scalable multimaster database with no single points of failure.
 ● Chukwa – a data collection system for managing large distributed systems.

Common and MapReduce are the Hadoop core. All other components are optional. The HDFS plays a 
special role in Hadoop: it significantly facilitates the execution of MapReduce jobs.

MapReduce is a framework for parallel processing of large data sets. There are two phases in MapReduce: 
Map and Reduce. The Map phase applies a user‐defined function on a key value pair and generates a list of 
key value pairs. The Reduce phase sorts all lists of key value pairs in lists, where the values list contains all 
values generated in Map phase for a specific key. A user‐defined function generates a list of values. The next 
chapter gives more details about MapReduce.

48.6 Hadoop Distributed File System

The Hadoop flagship file system is HDFS (a successor to NDFS). Hadoop can link to any file system that 
supports its abstract file‐system interface. It is an implementation of the abstract file system interface. It is 
suitable for big data analytics and has been optimized to write very big files once and then to read them many 
times but it is not suitable for random reads / writes. Hadoop complements traditional database systems – they 
support random I/O operations.

Hadoop Distributed File System stores very large files (many terabytes and petabytes). It could store tens 
of millions of files. It can run on hundreds or thousands of commodity servers. A general assumption about 
HDFS is that hardware failure is a norm – not an exception.

An HDFS file is a sequence of blocks stored in a cluster of multiple servers. Fault tolerance is at block 
level. HDFS blocks are big ones – 64 MB by default. If a file is smaller than a block, it shares the block with 
other small files.

Hadoop Distributed File System is designed for applications that access (streaming) data sets successively. 
It is not suitable for small files or for direct reads and writes. It has a high throughput. Interactive applications 
on HDFS are not the standard use case. Successful Hadoop applications use the MapReduce framework on 
HDFS data sets – they are batch applications.

Hadoop moves the computations to the storage nodes. It is the best approach for cases when the computing 
programs are relatively small and the stored data are big enough. In this case, the network traffic decreases. 
Hadoop Distributed File System can achieve its maximal parallelism if almost all the cluster servers are 
involved in the computations. However, the data set has to be big enough and distributed on almost all the 
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cluster servers. Hadoop Distributed File System is responsible for the file block distribution on the cluster 
servers. It tries to distribute the file blocks among the cluster servers. However, the file block size must be 
bigger than the size of the computing programs.

Figure 48.1 describes HDFS architecture. There are namenode and datanode nodes. The namenode contains 
metadata for files, directories, file block locations, and so forth. The datanode stores data blocks. The distance 
between nodes is in this hierarchy: first in the same host, then in the same rack, then in  different racks.

The namenode is crucial for the file system’s existence – if it fails, then the file system data is lost. The user 
can start a secondary namenode as an option. The namenode collects all the information needed to restart a 
new namenode in case of failure. In case of namenode failure, the system recovers in 30 minutes or more. 
That is an HDFS problem – availability. There are plans for future implementations to resolve this problem 
with a solution based on ZooKeeper. It automatically switches to the secondary namenode and fences the 
failed node for all operations that can damage the data.

HDFS Federation scales the cluster with new namenodes. Every namenode manages a different part of the 
file system – a namespace volume. The last one contains metadata information for the namespace and a block 
pool for the files in that namespace. Namespace volumes do not communicate with each other. One datanode 
can store blocks from multiple namespace volumes.

The client opens files or directories using the metadata from a namenode. After that, the file datanodes exe-
cute the operations. The read operations directly access datanodes in a sequential read access mode. If a read 
fails, then the datanode uses a block replica. The datanode reports the failed block immediately to its namenode. 
When HDFS has read all the data from a given block, it chooses the next block among all next block replicas. The 
replica must be closer to the client. Figure 48.2 describes an example sequence of read operations in HDFS.

Namenode

Metadata

Read metadata

Read

Datanode 1 Datanode 2

Block 1 Block 1 Block 1

Block 2Block 2Block 2

Block 3

Datanode 1 Datanode 2

Block 1 Block 1

Block 2Block 2

Block 3 Block 3

Block 4

Replication

Read

Rack 1 Rack 2

Read/write metadata

Write

Write

Client 2

Client 1

Datanode 3

Figure 48.1 HDFS architecture



586 Encyclopedia of Cloud Computing

Hadoop Distributed File System performs write operations in sequential access mode. The system pipes the 
new block to the file end through the file datanodes. All write operations are queued in the client. The system pipes 
a notification backward to the client and removes this operation from the queue. If the write operation fails, then 
HDFS returns a notification to the client, and performs recovery actions: it removes the failed datanode and redoes 
all unacknowledged operations. Figure 48.3 describes an example sequence of write operations in HDFS.

HDFS provides some utilities, such as Data Ingest, for moving large stream data into HDFS and Sqoop for 
importing structured data stores.

Hadoop archives (HAR) package small files. These HAR files are an acceptable input for MapReduce 
programs, but they do not support compression. Hadoop archives are immutable – they are not updatable and 
the user must recreate the whole archive if he wants to change a file in it.

Hadoop is a Java implementation. It uses its own serialization format. It is compact and fast, but not open 
to the other programming languages. Avro is the serialization solution of Hadoop, based on JSON. It is exten-
sible and interoperable.

48.7 Other Hadoop Components

Pig. Complex data analyses apply MapReduce processing many times, so the programmer has to write a 
MapReduce program for each stage. Pig is a solution for such situations. Pig Latin is a data‐flow language 
for complex processing. It is open and extensible – programmers can replace all kinds of transformations with 
their own functions. This language is very compact with high expressive power. It dramatically reduces the 
development cycle. With Pig, the programmer’s focus is on big data analyses – not on writing MapReduce 
programs. The system translates Pig Latin programs into series of MapReduce programs.
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A Pig Latin program processes data in three steps. At the first step, it loads data from HDFS. Data sources 
could be HDFS files or directories but with a user‐defined function; any other source is acceptable. At the 
second step, it transforms the loaded data. Transformations could be row‐filtering, joins of two file sets, data 
grouping for further aggregation, sorting, etc. The third step is to display or store the results. The system can 
output the results on the screen or can store them in a file for further processing.

Hive is an original Facebook development. Hive query language is HiveQL, which is a SQL‐92 dialect. 
HiveQL does not fully support the SQL‐92 standard. Hive is very convenient for programmers with strong 
SQL skills. Standard analytics tools can use Hive as an interface to big data. The system translates HiveQL 
queries into MapReduce programs, which execute on the Hadoop cluster. Hive queries are long running and 
they are not suitable for interactive use. Hive is read oriented and is not suitable for write operations.

ZooKeeper is a Yahoo! development. It is a Java library for development of Hadoop coordination services 
for distributed applications. The programmer can create a communication system based on highly available 
loosely coupled interactions with the ZooKeeper. It facilitates development of coordination structures and 
protocols. ZooKeeper helps to avoid single points of failure. It is a centralized service for configuration sup-
port and naming. It provides distributed synchronization and group services suitable for coordination of dis-
tributed applications. There are Java and C interfaces with ZooKeeper. Figure 48.4 describes a ZooKeeper 
configuration.

Sqoop is a tool for the import / export of structured data into / from HDFS. Imported data could be loaded 
in Hive or HBase tables. Sqoop’s import source is a table or an SQL query. Sqoop uses MapReduce for its 
import / export operations. These operations are maximally parallel and fault tolerant. Sqoop has many 
 connectors to most popular relational databases and data warehouses.
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HBase is a column‐oriented database system based on HDFS. It is suitable for sparse data. It is nonrela-
tional and does not support SQL. HBase applications are in Java. It provides Google BigTable capabilities for 
Hadoop. Figure 48.5 describes HBase architecture.

An HBase database is a set of tables that have columns and rows. Every table has a primary key that is used 
to access table rows. Every column in the row is an object attribute. A family groups several attributes. Only 
family attributes are stored together. The user must define the table schema and the families. At every time, 
the user can add new columns to the family.

HBase supports data compression, in‐memory operations and column filtering. HBase tables could be 
input / output for MapReduce jobs.

Oozie is a workflow scheduler for Hadoop jobs. It is a workflow engine implemented as a Java Web appli-
cation. Oozie organizes and coordinates the workflow specified as a direct acyclic graph (DAG). The DAG 
consists of action and control nodes connected to each other. The DAG graph is acyclic. Action nodes are 
MapReduce job, Pig, Hive, Sqoop application, DistCp task, shell script, SSH, HTTP, Java program or Oozie 
sub‐workflow. Control nodes are start, end, fail, decision, fork, join. The control node accepts control flow 
and directs it to the other nodes.

Ambari is a framework for provisioning, managing, and monitoring Hadoop clusters. It is a collection of 
tools and APIs for system administration. Some of its features are wizard‐driven installation of Hadoop 
 services; configuration of Hadoop services and components; use of Ganglia for metrics collection and Nagios 
for system alerts; job diagnostic and troubleshooting tools; RESTful APIs for customization and integration; 
cluster heat maps. Figure 48.6 describes the Ambari architecture.

Chukwa is a system that collects monitoring data for big distributed systems. It is a toolset for monitoring, 
analysis, and visualization of collected data. Chukwa is scalable and reliable. Figure 48.7 describes Chukwa 
architecture. Agents collect data from different application sources, such as application logs, and application 
metrics. Collectors collect the information delivered from the agents and load it into data sinks. MapReduce com-
ponents analyze the data and store it permanently in a structured storage. Chukwa detects problems on the cluster 
and alarms. There are plans for visualization tools for monitored data; however, these are still not available.
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48.8 Case Studies

There are many Hadoop case studies in different areas, like politics (Obama’s re‐election), financial services, 
health care, human sciences (NextBio), telecoms (China Telecom Guangdong, Nokia), entertainment (Orbitz), 
logistics (US Xpress), energy (Chevron, OPower), retail (Etsy, Sears), data storage (NetApp), software 
(SalesForce, Ancestry), imaging (SkyBox, Comcast), and online publishing (Gravity). For more details, see 
Hadoop Wiki. All Hadoop use cases demonstrate its scalability on large commodity clusters. The simple 
MapReduce framework is successfully applicable for large classes of big data analytics on different media 
files, logs, indexing, and so forth.

48.9 Hadoop in Clouds

Hadoop is like an open‐source version of Google MapReduce and GFS. Google does not offer direct access 
to its MapReduce. Google stimulates the usage of Hadoop on its cloud platform. Detailed information 
about how to use Hadoop on Google cloud is available on the site of the Google Compute Engine, where 
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Google offers several scenarios for Hadoop. There is a connector for Hadoop to its cloud storage. Some 
researchers nominate Hadoop as a better solution than its Google origin.

Amazon Elastic MapReduce (Amazon EMR) is a Web service that offers Hadoop on Amazon EC2. Amazon 
EMR service starts in minutes. The service is responsible for Hadoop configuration. Data imports / exports 
from / to Amazon S3 are possible. There are detailed instructions and code templates for application develop-
ment with Hadoop tools (Hive, Pig), and in different programming languages (Java, Ruby, and Perl). Cluster 
monitoring is available. Running cluster is easily expandable. When the job finishes, the system automati-
cally removes the cluster.

Microsoft offers Windows Azure HDInsight that is 100% Apache Hadoop. It is a service for the 
deployment of Hadoop clusters in the Microsoft cloud. An alternative offer is the Hortonworks Data 
Platform (HDP) on Windows (from Hortonworks) for on‐premises cloud deployment. HDInsight inte-
grates with Microsoft Business Intelligence platform, with relational (MS SQL Server) and nonrela-
tional databases via Polybase available with SQL Server 2012 Parallel Data Warehouse, with Tables 
(NoSQL key‐value storage) and Blob (a storage for big objects). The user can create a Hadoop cluster 
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in minutes by HDInsight on Microsoft Azure, and he/she can quickly remove the cluster. The Hadoop 
cluster runs on Linux virtual servers in Windows Azure. There are Hadoop command‐line interface and 
a portal for Hive and Pig.

IBM Platform Symphony with IBM InfoSphere BigInsight is the IBM’s grid (cloud) offer. IBM InfoSphere 
BigInsight is a Hadoop implementation. The company rewrote many Hadoop components for optimization 
and compatibility. Adaptive MapReduce is faster than the original implementation. Adaptive MapReduce 
optimizes the system workload using user‐defined metrics.

Big SQL is an alternative to HiveQL. It works with big data via MapReduce but also directly queries small 
data. The General Parallel File System (GPFS) is an alternative to HDFS in this solution. It is a POSIX com-
patible distributed file system. It is the IBM offer for big‐data storage.

A console for monitoring and access control is available in IBM InfoSphere BigInsight. Big Sheets is 
Web‐based tool for analyzing and visualization of big data that is part of the offer. IBM InfoSphere BigInsight 
integrates InfoSphere Streams (stream processing), InfoSphere Data Explorer (multisource multitype data 
manager) and Cognos Business Intelligence.

48.10 Packaging

Like many open source projects, Hadoop is freely available but difficult to install – versions, subversions, 
releases, external libraries, and so forth, require a high level of Hadoop expertise. There are several deploy-
ment alternatives, freely offered by commercial vendors such as Cloudera, Microsoft, and Google. They offer 
a prepackaged version of Hadoop that is easily installable and deployable on the target environment.

Cloudera is a leading promoter of Hadoop. It is advisable to check its offers prior to Hadoop deployment. 
Cloudera is an initiator and contributor to many open‐source projects. Its main expertise is in Hadoop. 
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Cloudera contributes to HBase, Hive, Pig, Hadoop LZO, HTrace, JCarder, JTrace, Jenkins, MooTools, Record 
Breaker, and the US FDA Adverse Drug Event System. Cloderians are cofounders of the next Apache open‐
source projects: Avro, Bigtop, Crunch, Flume, Hadoop, Hive, Lucene, MRUnit, Oozie, Sentry (incubating), 
Sqoop, Whirr, ZooKeeper; and other open‐source projects: Cloudera Development Kit, Crepo, Hue, Impala, 
Kitten, ML, Seismic Hadoop.

48.11 Hadoop Alternatives

Hadoop alternatives do not use the MapReduce paradigm. Some of them are:

 ● HPCC Systems, which offers real‐time query processing – not only big data batch analytics.
 ● Twitter / Backtype Storm, which processes unbounded streams.
 ● Pregel, which executes dynamic graphs of servers and programs.
 ● Spark, which combines SQL, streaming and complex analytics. It is suitable for machine learning.
 ● Microsoft Daytona, which is MapReduce rewritten for Windows and uses Azure storage services.
 ● MongoDB is document‐based database management system (DBMS).

HPCC System can have several THOR or several THOR and ROXIE clusters. A THOR cluster (data refin-
ery) is responsible for big data loading, transformation, and indexing. ROXIE cluster offers ad hoc query 
processing and data warehousing. Both clusters are on top of the distributed file systems with parallel 
 processing. The programmer can use Enterprise Control Language (ECL) to program both clusters. It is a 
declarative data‐flow language. Enterprise Control Language programs compile to C++. Figure 48.8 describes 
the HPCC architecture. HPCC uses commodity servers. HPCC Community Edition is free. It is the choice of 
companies such as LexisNexi@, Sandia National Laboratories, and Elsevier.

Twitter/Backtype Storm is a free open‐source system for real‐time computing of unbounded streams. Storm 
has a simple programming model that simplifies real‐time parallel programming. Its implementation is in 
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Clojure and it runs under JVM but the system can integrate many different programming languages, queues, 
and DBMSs in its computations. Storm is fault tolerant and supports horizontal scalability. It can be used for 
stream processing, continuous computing, distributed RPC, real‐time analytics, online machine learning, 
ETL, and so forth.

Storm runs “topologies.” There are master and worker nodes. Topology describes computations with a 
graph. The nodes of the graph represent processing logic and links among them (data flows). The program-
mer does not have to write the processing logic only in Clojure. A key abstraction in Storm is the stream. The 
stream is an unbounded flow of tuples. Storm provides primitives for stream processing. There are two kinds 
of primitives: “spouts” and “bolts.” The spout is a stream source – internally or externally generated. The bolt 
consummates streams, processes them and eventually generates new streams. It can apply functions, filter 
tuples, call DBMS, join streams, and so forth. All nodes execute in parallel. The topology is running forever.

Pregel is a fault‐tolerant framework for large‐scale graph processing in parallel on many servers. Pregel 
computations are a series of iterations (supersteps) represented as an oriented graph. Every vertex has a 
unique identifier and is associated with a changeable user defined value. Every directed edge is associated 
with a source vertex, a user‐defined value, and an identifier of its target vertex. During the execution, the 
graph topology is mutable, i.e. the vertex can change the destination vertexes. The framework calls in parallel 
the user‐defined function for every vertex during the superstep. The function reads messages sent to the 
 vertex in the previous step; sends messages to other vertexes; and changes the vertex state and eventually 
outgoing edges from the vertex. The programmer focuses only on the local processing in the vertex. The 
execution stops when all vertexes vote for a halt. When a vertex votes for a halt, the framework does not call 
it unless someone outside the framework calls the vertex.

The network sends the messages. Supersteps organize message sending in batches. Pregel aggregators 
organize global communications. Each vertex can send a message to the aggregator, which processes it and 
can produce as output a message to all vertexes. Pregel is available as C++ API.

Spark is an open‐source computing environment. The University of California, Berkeley implemented it in 
Scala. Spark can integrate Hadoop. It offers a new framework for cluster computing. It is optimal for multiple 
reuse of read‐only datasets from parallel operations. The framework caches the working datasets in the mem-
ory to prevent disk read latency. The main term in Spark is the resilient distributed dataset (RDD). It is a 
collection of read‐only objects distributed among a set of nodes. If a part of the RDD fails, the system recre-
ates it automatically. The RDD is a Scala object and Scala applications access it directly. The “drivers” are 
the Spark applications. The driver implements operations on a single node, or in parallel on multiple nodes. 
Spark uses a Mesos manager for resource sharing and isolation. There are two types of operations performed 
by the drivers: actions and transformations. Action processes a dataset and returns a value. Transformation 
produces a new dataset from an existing one. The user can write Spark applications in Java, Scala and Python.

Microsoft has attempted to deliver more functionality for big data through Windows Azure. There are two 
directions: storage and computations. Windows Azure data storage has two main solutions: SQL Azure and 
Azure Table Storage. Microsoft SQL Server is the base of SQL Azure. This is a classical relational database 
technology. Windows Azure Table Storage stores high volumes of data. It is a fault‐tolerant key‐value NoSQL 
storage. The key concept in Azure Table is the table. It is simply a container of rows. Every row has its own 
schema embedded in it. The row stores pairs of a property name and its typed value. Every row must have 
three properties: PartitionKey, RowKey, and TimeStamp. These properties control the table performance and 
its scalability. The PartitionKey is crucial for data distribution. The PartitionKey and RowKey form the table’s 
primary key – the table index. The PartitionKey spreads the data on several servers for workload balancing. 
A table row size is up to 1MB with up to 255 properties. A table size could be up to 200 TB. Java, PHP, LINQ, 
and Python programs can query Azure Table. Azure Table supports ADO .NET, Data Series, and REST.

Project Daytona, MapReduce Runtime for Windows Azure, is freely available from Microsoft. It is a 
MapReduce variant implemented in Microsoft Azure. Daytona automatically deploys interactive MapReduce 
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runtime on virtual servers. It divides data into small portions and distributes them on the servers for parallel 
Map processing. Then, eventually, it recombines the result (the reduce phase).

Daytona leverages the scalable compute and storage services of Azure. Windows Azure storage is available 
via input / output streams. The system performs parallel reads and writes via streams from tables, blobs, and 
queues. Intermediate data are stored in the memory or on the local disks. Daytona offers horizontal scaling 
and elastic cluster management. The user can easily add and remove servers to / from the cluster. Workers 
communicate with each other directly. Daytona uses Azure infrastructure services for robustness and dynamic 
scalability.

Windows Azure mechanisms for data recovery are used and this eliminates the need for a distributed file 
system. The system supports three replicas by default. Azure storage services support the dynamic data 
partitioning.

MongoDB is an open source document‐oriented DBMS. It is horizontally scalable and fault‐tolerant via 
data replicas. The system automatically recovers the data.

The records in MongoDB are the documents – data structures of field‐value pairs. MongoDB documents 
are JSON‐like objects. A field value could be other documents, an array of values or an array of documents. 
The documents can embed other documents. Indexes (secondary) optimize the access. The documents are 
stored in collections (groups of related documents with a set of shared indexes). Queries are on the collec-
tions, under selection criteria for the documents. A projection operation on document fields is possible – 
limits, skips, and sort orders are the other options. Data‐modification operations are applicable to the 
collections. Update and delete operations can be done under selection criteria. Write operations are atomic 
at document level, including embedded documents.

MongoDB provides aggregation operations on single collections. These are pipelines and MapReduce. For 
MapReduce operations, user‐defined JavaScipt operations are used. Alternatively, there can be a finalization 
phase for MapReduce operations. Aggregations are applicable to the “sharded” collections. These are collec-
tions distributed on the cluster servers by a “shard” key.

48.12 Conclusion

Hadoop started from web indexing, document sorting, multimedia processing, and log analysis. It, influenced 
by MapReduce, entered new areas such as machine learning, and unlimited streams (sensor data, user interac-
tions). This process continues, but the power of this technology raises new ethical problems. It is clear that 
companies can use this technology to create detailed user profiles, breaching user privacy. However, these 
problems are beyond this chapter’s scope.

Big data analytic tools are evolving in two directions: reuse of currently available tools, and development 
of new ones dedicated to big data. The first direction benefits from well‐established tools for data analysis, 
but they are not scalable. The second direction is under development.

Undoubtedly big data is here; it contains valuable information and its analysis is a big challenge, requiring 
new decisions.
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49.1 Introduction

There are several cloud programming models: Message Passing Interface (MPI), Directed Acyclic Graph 
(DAG), Bulk Synchronous Parallel (BSP), and MapReduce.

MPI comes from supercomputing. It is a communication library. Distributed  programs based on MPI use 
many processors that compute in parallel. They exchange messages. MPI strictly orchestrates its computa-
tions and communications. Communication time is  relatively short in comparison to computation time. 
The distributed program scales if this relation between communication and computation times is preserved. 
The supercomputing environment (a supercomputer or cluster of supercomputers) supports that relation but 
clouds usually use commodity networks, and this  relation is not always the case.

Directed acyclic graph (DAG) concept is derived from grid computing. They specify the tasks. Every 
vertex in such a graph performs some task. Tasks can be actions or controls. Every graph arc describes a 
control flow. The actions perform computations on local data. The controls define which vertex would be 
next. The control tasks can dynamically change graph topology. The grid transfers data to the actions. 
However, it is possible for data to be local but the model does not focus on that. The problem with this 
model is the big data: many servers have to store the big data and then mapping of vertexes and data dis-
tribution on servers is not a trivial job.

Bulk synchronous parallel (BSP) computing defines an abstract computer with many processors, a network 
that routes messages between pairs of processors, and a synchronization facility for all processors. In this 
model, supersteps divide the computations. In a superstep, the processors compute and exchange data in 
parallel. When a processor reaches a barrier, it waits for all other processors to reach the barrier too. This 
model is suitable for iterative graph processing, where data‐dependencies across stages are sparse, such as in 
machine learning. However, it is not suitable for big data analytics.
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The MapReduce model is suitable for big data analytics. The idea of MapReduce comes from functional 
programming. It uses two higher order Lisp functions: map and reduce. This chapter briefly reinvestigates the 
original MapReduce, which serves a base for further discussions. However, there are several extensions of 
MapReduce (beyond the scope of this chapter) that use not only map and reduce functions, but also join, 
cross, match, union, cogroup, and so forth.

Google (Dean and Ghemawat, 2004) introduced MapReduce as a term. The most popular MapReduce 
implementation is in the open‐source project Hadoop. There are many implementations of MapReduce, and 
many variants influenced by the original MapReduce paradigm allow inexperienced programmers in distrib-
uted computing to write programs that run on large data sets stored on clusters of thousand servers. The 
programmer can test the program on a single computer and then can easily deploy it on a cluster.

49.2 Map and Reduce in Functional Programming

There are many research areas in functional programming: semantic‐based program manipulations; parallel 
functional programming; hardware specification, synthesis and analyses; large applications with massive 
parallelism. There are many possibilities for parallel processing, especially in Lisp pure functional imple-
mentations. Moreover, a pure functional operating system is available for LispKit. It supports lazy evaluation 
as a basic mechanism. Lazy evaluation delays function evaluation. It computes the result only on some other 
function request. Some MapReduce implementations use this mechanism but it is not the leading idea in the 
computing framework discussed here.

There are very simple data types in functional programming – integers, strings, and so forth – such as the 
primitive data types in Java. The main data structure is the list. A list elements cannot only be primitive values 
(atomic values) but can also be a list, for example. In this case, a function accepts lists as arguments and 
returns a list. In addition, the function description is also a list (lambda expression). Functions can have other 
functions as arguments. There is a library of standard functions. They are list‐processing functions. An exam-
ple program in LispKit is as follows:

(lambda (input_stream)
  (append (quote (Example program))
     (cons newline (append (add_up (until_end input_stream)) (quote 

(Finished))))))

This lambda expression processes the list input_stream applying other standard and user‐defined functions, 
and returns a list.

In pure functional programming, functions do not change input lists but they create new lists as a result. 
This approach opens an area of nearly unlimited parallelism for the functional programs. Potentially, the 
system can process all list elements in parallel.

Commonly used higher order functions are map, reduce, filter, and close. Their definitions in LispKit are 
as follows:

 ● (map f l) returns the list whose components are the function f applied to components of the list l;
 ● (reduce f l z) returns the continued application of function f over the list l with zero z, that is (f (head l) 

(f (head (tail l)) (f … z) …));
 ● (filter p l) returns the list of those components c of the list l for which (p c) is true (T);
 ● (close r l) returns the first value x in the sequence l, (r l), (r (r l)), …, for which x is closure, i.e. (equal 

x (r x)).
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The MapReduce programming model uses the first two functions, map and reduce. The map function 
has two arguments: a function (argument‐function) and a list. The function map returns, as a result, a new 
list containing the consecutive applications of the argument‐function on the input list elements. The argument‐
function may apply independently and in parallel on every element of the list. The reduce function has 
three arguments: an initial value, a function, and a list. The argument‐function has two arguments – the 
first argument is the intermediate result and the second argument is the rest of the argument‐list. For the 
first element, the argument‐function applies with the initial value, for the second element it applies with 
the result returned from the previous step, and so on. The result of the reduce function is the result of 
application of the argument‐function to the last element of the argument‐list. However, the reduce func-
tions cannot execute in parallel, because every execution step depends on the result of the previous one. 
The MapReduce programming model uses these two functions with some deviations.

49.3 MapReduce Programming Model

The MapReduce programming model presented here follows the original paper (Dean and Ghemawat, 2004) 
and its implementation in Hadoop (Apache Software Foundation, 2014). MapReduce computation takes on 
input a set of key / value pairs and produces on output a set of key/value pairs. The computation runs into two 
phases: Map and Reduce. The programmer has to write two functions: an argument‐function for Map and an 
argument‐function for Reduce. The first function name is map but, in reality, it is the argument‐function of 
the high‐order function map. It accepts as a parameter key / value pair and produces a set of intermediate key / 
value pairs. The MapReduce framework groups all intermediate values associated with the same key and 
delivers them to the Reduce phase. The second user‐defined function is called reduce, which again is an argument‐
function for reduce. It accepts on input an intermediate key and a set of all intermediate values associated 
with it. This function, eventually, generates a smaller set of values. Usually, the set is empty or contains only 
one value. An iterator delivers the intermediate values to the reduce function. The set of intermediate values 
can be bigger than the main memory can store. Figure 49.1 presents an example of map and reduce functions 
in pseudo code, which the original paper introduced. This example counts the number of occurrences of each 
word in a large collection of documents.

The phase Map is, in practice, implementation of the Lisp map function without the preparations for the 
next phase. This phase has maximal parallelism. Moreover, the sort operations can run in parallel with map 
applications; the framework could directly deliver every calculated intermediate value to the corresponding 
intermediate key list, and Reduce can run in lazy‐evaluation manner. Strictly speaking, the sort of intermediate 

map(String key, String value):
// key: document name
// value: document contents

for each word w in value:
EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));

Figure 49.1 A MapReduce process
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key / values is a part of the Reduce phase. However, the parallelism of the Map phase may be compromised if 
the user‐defined map function is not purely functional – if it has side effects.

The phase Reduce is very different from the Lisp function reduce. This phase does not produce a single 
value from a list and has no starting initial value. The reduction applies to the intermediate values lists. The 
reduction can apply in parallel for every intermediate key. In reality, the Reduction phase is the application of 
the function reduce on the value lists of every intermediate key. The reduction may run in parallel with Map 
phase – for every key an instance of reduce function can run in parallel, when the Map phase calculates a new 
value for the key, then the Reduce phase can deliver this value to the iterator of the corresponding reduce 
function instance. This is a very fine parallelism. The output from the reduce function usually contains one 
or zero values. However, there are no limitations – the result may be a list.

In the above presentation, the functional programming was the context of the concepts. For example, the 
sets of pairs are lists. The element order of the list is not important. However, this programming model in 
environments, such as C++ or Java, must support the strong typing. In the original paper, user defined func-
tions signatures are:

map: (k1, v1) -> list(k2, v2)
reduce: (k2, list(v2)) -> list(v2)

The input key and value types (k1 and v1) are different from the intermediate key and value types (k2 and 
v2). The intermediate key and value types are the same as the output key and value types. The framework 
signature is:

computation: list(k1, v1) -> list(k2, v2)

The framework accepts a list of key / value pairs on input. For each pair, it calls a map that generates a list of 
intermediate key / value pairs. The MapPhase signature is:

MapPhase: list(k1, v1) -> list(k2, v2)

In the Reduce phase, the framework sorts the lists produced during the previous phase, and the result is a 
list of intermediate keys / list of values. In this list, each key is associated with all the values generated for it. 
The preparation signature is:

preparation: list(k2, v2) -> list(k2, list(v2))

After that, the Reduce phase. For every pair in the list, the framework calls the function reduce, which 
produces a list of values for the key. These values are the same type as the one of the intermediate values. The 
original paper does not make it very clear what exactly generates the Reduce phase. It points out that the 
output key and value types are the same as that of intermediate ones. On the other hand, the function reduce 
generates only a list of values. Probably, the framework generates key / value pairs for every call of the func-
tion reduce using the input key and the generated value list. The reduction signature is:

reduction: list(k2, list(v2)) -> list(k2, v2)

Finally, the Reduce phase is:

ReducePhase = preparation; reduction
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and its type is:

ReducePhase: list(k2, v2) -> list(k2, v2)

The MapReduce computations are composition of these two phases:

MapReduce = MapPhase; ReducePhase

49.4 Google MapReduce Implementation

There are several configurations for the MapReduce programming model: on a single computer with shared 
memory, on a multiprocessor system, and on a cluster of servers. The Google implementation is a cluster of 
commodity servers. It is a C++ template library.

The process of model application is as follows: the MapReduce divides the input into several splits of the 
same size. The first phase, the Map phase, processes the splits in parallel on different servers and delivers the 
output locally. The framework uses a user‐defined parameter M to do this partitioning. The next phase, 
Reduce, separates and processes the intermediate output / input data on R servers. The user specifies the 
parameter R. The input may be a single file or a set of files. The user can set the split size from 16 MB to 64 
MB. The number of splits, M, defines the number of cluster servers used in the Map phase.

The cluster servers have different roles. One of them has a leading role – it is the master and assigns map 
and reduce tasks. The other servers are workers (slaves) and they execute jobs assigned to them by the master. 
Every worker executes the Map phase in parallel on its input data: it reads and parses pairs of its split, calls 
the map function for every pair key / value and buffers map‐generated results in the main memory. The frame-
work saves the buffered intermediate key / value pairs on the local disks in R lists distributed by their keys. All 
pairs with the same key are on the same list. The distribution function can be a hash function on the key in the 
range 0..R‐1. The master collects the locations of the local lists for further processing.

In the next Reduce phase, the master assigns reduce tasks to R workers and sends them the locations of 
their input data. Initially, the reduce worker reads all its data from the remote disks: the first worker reads all 
first lists, the second worker reads all second lists, and so forth. The workers use remote procedure calls for 
this reading. After that, the worker sorts its data in the key / values lists. If the data volume is big, the worker 
uses external sort program. Then, the reduce worker calls the reduce function for every element of its sorted 
list. The function reduce returns a list of values for every intermediate key / list of values. Then, the reduce 
worker generates a list of key / value pairs for every call. Each reduce worker generates an output. The 
Reduce phase can provide this output lists as files in a single directory.

Figure 49.2 describes a MapReduce process. The Reduce phase processes the intermediate lists in key 
order and generates the output in the same order.

49.5 Fault Tolerance and Determinism in Google MapReduce

Google MapReduce is a transparent fault‐tolerant framework. The master stores information about all 
 workers. This includes the state (idle, in‐progress, completed) and identification of every worker server. The 
 master stores the location and the size of respective intermediate lists for each map task. The master polls all 
the workers from time to time. If a worker does not respond after a fixed amount of time, the master decides 
that the worker has failed. The failed worker is marked as idle and is available for further processing. If the 
failed worker has not completed its map tasks, the master reassigns these tasks to another worker for 
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re‐execution. The results of the completed tasks are stored on the local disks of the failed worker and there-
fore they are not accessible by default. When a map task fails, the master informs all reduce tasks that use its 
results and redirects them to the new worker. The master does not reassign the completed reduce tasks because 
their results are stored in the distributed file system. If the reduce tasks have not read its input data from the 
failed worker, they can do that from the new worker when it finishes the execution. If the master fails, the 
whole job fails. The user must restart its job.

Another important problem of the framework is it determinism – the programmer must pay attention to that. 
The functions map and reduce may be deterministic regarding their inputs. This means that the framework 
guarantees that the program will generate the same output each time – i.e. it will generate the same outputs on 
a single computer and on a cluster. Moreover, when these user‐defined functions are nondeterministic, the 
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Figure 49.2 A MapReduce process
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framework still guarantees that, for each distributed execution, there exists at least one sequential execution 
that can produce the same outputs.

Input and output data are stored in the Google File System (GFS). This stores the files in blocks of 64 MB 
and each block has several replicas (three, by default). The master takes into account the files’ locations and 
tries to execute the map task on the server that stores a replica of the map task input data. If this is impossible, 
then the master looks for a server that is closest to the input data. Such a nearby server can use the same 
 network switch. This way the framework does not overload the network with unnecessary data transfers.

Sometimes, some servers fail to finish their tasks in a reasonable time. Hardware or software problems 
prevent them from normal execution. In this case, the overall program execution is delayed. The master 
 prevents these situations from happening by starting “backup” tasks in parallel when a few map or reduce 
tasks remain at “in‐progress” state for long time. When a backup or a normal task finishes, the whole task is 
marked as completed. This approach allows an acceptable execution time to be achieved for the overall job 
through a small increase of resources over use for the backup jobs.

49.6 Intermediate Results and Combiners

For optimization purposes, the framework offers the combiners mechanism, which works on the intermediate 
results. The framework sorts and processes the intermediate key / value pairs in each partition in key order. 
The system sorts the intermediate lists and the output lists by the intermediate key. Sometimes, the map tasks 
generate outputs with many repeating keys. If the function reduce is commutative and idempotent, a com-
biner function can be used. An example of such a reduce function is the word count reduce function.

The combiner function can merge the data before sending it over the network. This function runs on the 
worker after the map task. The framework decides whether or not to use the supplied combiner function. 
Usually, the combiner function’s code is the same as that of the reduce function. The difference is that the 
combiner writes on the local disk, whereas the reduce writes on the distributed file system. This approach 
relieves the network from unnecessary transfers.

49.7 Framework inputs and outputs

The MapReduce library can read the input data in several formats. For example, in text mode, every line is a 
key / value pair, where the key is the line offset in the file and the value is the line contents. Each input mode 
knows how to split the input in such a way that a single map processes one split. In the text mode, the system 
partitions the input on line boundaries. Programmers can add new input modes implementing a simple reader 
interface. The set of input modes is rich enough and this option is rarely used. It is not obligatory for the 
MapReduce input to be only from files. It is possible for the reader to read database records.

The output modes work in the same way. The programmer can produce some additional files as output – 
not only the standard ones. This can be done in map and reduce tasks. These additional files are outside the 
framework and they may cause side effects. The programmer is responsible for these side effects being 
atomic and idempotent. These tasks have to be deterministic or they compromise the framework.

49.8 Additional features

The functions map or reduce may fail in reading or processing some records. That is why the library can 
install a signal handler in every worker. When the user‐defined function fails for a given record, the worker 
notifies the master. If it happens more than once for a given record, the master instructs worker to skip that 
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record. This approach is applicable when the program collects some kind of statistics on the data. In that case, 
several skipped records will not influence the statistics very much.

The MapReduce program runs on a single computer for testing and debugging. In this execution mode, the 
programmer can use debugging tools.

The counters are another interesting feature of the MapReduce library. Some of them can be defined in the 
map and reduce functions, others are automatically embedded in the program. The master periodically 
receives the information from the counters, aggregates it and sends it back to the workers. Counters are useful 
for program execution control.

Figures 49.3, 49.4 and 49.5 give an example program using the MapReduce library. It is from the original 
paper.

49.9 Google Use Cases

Google uses the programming model MapReduce for indexing, information clusterization, machine learning, 
data extraction for report generation for popular queries, retrieval of properties from Web pages, and graph 
computations. The model succeeds because it is applied even by programmers who have no experience with 
parallel and distributed systems because the details on parallelization, fault tolerance, localization optimiza-
tion, and load balancing are hidden from the programmer. The implementation is easily scalable to clusters 
of a thousand servers and it effectively uses their resources.

The limitations set on the programming model simplify computing parallelization and distribution, making 
it fault tolerant. The intensive use of the local disks for intermediate read / write operations optimizes the 
network bandwidth. Redundant computing allows the impact of the slow servers to be overcome. It protects 
the program from server faults and loss of data.

#include "mapreduce/mapreduce.h"
// User's map function
class WordCounter : public Mapper {
public:
virtual void Map(const MapInput& input) {
const string& text = input.value();
const int n = text.size();
for (int i = 0; i < n; ) {
// Skip past leading whitespace
while ((i < n) && isspace(text[i]))
i++;

// Find word end
int start = i;
while ((i < n) && !isspace(text[i]))
i++;

if (start < i)
Emit(text.substr(start,i-start),"1");

}
}

};

REGISTER_MAPPER(WordCounter);

Figure 49.3 Class mapper implementation
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// User's reduce function
class Adder : public Reducer {
virtual void Reduce(ReduceInput* input) {
// Iterate over all entries with the same key and add the values
int64 value = 0;
while (!input->done()) {
value += StringToInt(input->value());
input->NextValue();

}
// Emit sum for input->key()
Emit(IntToString(value));

}
};

REGISTER_REDUCER(Adder);

Figure 49.4 Class reducer implementation

int main(int argc, char** argv) {
ParseCommandLineFlags(argc, argv);
MapReduceSpecification spec;
// Store list of input files into "spec"
for (int i = 1; i < argc; i++) {
MapReduceInput* input = spec.add_input();
input->set_format("text");
input->set_filepattern(argv[i]);
input->set_mapper_class("WordCounter");

}
// Specify the output files:
// /gfs/test/freq-00000-of-00100
// /gfs/test/freq-00001-of-00100
// ...
MapReduceOutput* out = spec.output();
out->set_filebase("/gfs/test/freq");
out->set_num_tasks(100);
out->set_format("text");
out->set_reducer_class("Adder");
// Optional: do partial sums within map tasks to save network bandwidth
out->set_combiner_class("Adder");
// Tuning parameters: use at most 2000 machines and 100 MB of memory per task
spec.set_machines(2000);
spec.set_map_megabytes(100);
spec.set_reduce_megabytes(100);
// Now run it
MapReduceResult result;
if (!MapReduce(spec, &result)) abort();
// Done: 'result' structure contains info about counters, time taken, number of
// machines used, etc.
return 0;

}

Figure 49.5 Main program
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49.10 Hadoop MapReduce

The Hadoop implementation of MapReduce follows the original Google implementation. It is a Java pack-
age. The programmer has to supply two functions. These functions are Java methods. Their names are map 
in the generic abstract class Mapper and reduce in the generic abstract class Reducer. Hadoop’s input list is 
simply a flat list (file) of pairs. Each pair has a key element and a value element. MapReduce’s framework 
applies the map function to every element of the list and sorts the output list. The result is a list of pairs where 
the key (Map phase produced key) is unique in the list, but the value is a list of all values for that key produced 
in the Map phase. The reduce function is applied on series of the values with the same key. It has a key as an 
argument, and all values for that key. This function differs from its functional programming counterpart. 
MapReduce reduce generates lists of key / value pairs, but every pair is a result of the application of the argu-
ment‐function to all pairs in the list that have the same key.

A Hadoop MapReduce job consists of input data, the MapReduce program, and configuration information. 
The job consists of two types of tasks: map tasks and reduce tasks. A node jobtracker controls the job execu-
tion. Several node tasktrackers can execute a task. The tasktracker reports to its jobtracker. If some task-
tracker fails, then the jobtracker runs its task on another tasktracker.

The framework divides the input information into input splits. They have the same fixed size. For every 
split, a map task processes all records in the split. Hadoop tries to run the map task on the node where the split 
resides. This is data locality optimization. The splits have to be large enough, otherwise the system will over-
run for split management. Hadoop with Hadoop Distributed File Systems (HDFS) divides data into HDFS 
block‐size splits.

If the primary data block node is overloaded, Hadoop schedules the map task on the split block replicas. 
Following the HDFS replication strategy, Hadoop schedules the map task on another node in the same rack, 
or in another rack, or in a rack on another datacenter. The map task writes its results on the local disk – not in 
HDFS. After that, the framework sorts all data from the Map phase and transfers them to the Reduce phase. 
The reduce tasks do not use locality of data, because their map output lists reside on many severs.

It is possible for more than one reduce task to run simultaneously but it is a subject of configuration. In this 
case, map tasks must divide their output data in portions – a portion for each reducer task. The framework 
selects the output by the keys; for example, it transfers the pairs with the same hash value to the same reducer. 
Every reducer generates its own independent output. It is possible no reduce tasks to run, and then map tasks 
write their output directly to the HDFS.

Hadoop has so‐called combiner functions as an option. They run on map task output and combine it for 
input to reduce tasks. This is useful when map and reduce functions are on different nodes, because data 
transfer can be minimized. Hadoop decides whether to use or not the supplied combiner function.

The programmer can write the functions map and reduce in programming languages different from Java. 
One approach to achieve that is through standard input and output streams and Hadoop commands. The other 
approach is Hadoop Pipes. It is a library for the different programming languages. The Pipes library uses 
sockets for communication instead of standard input and output.

Figures 49.6 and 49.7 describe the same example program, introduced above, in Hadoop. The description 
is from Hadoop system documentation.

49.11 MapReduce Implementations in Clouds

MapReduce is available in clouds as a library, as a deployment package, or as a Web service. The previous 
chapter discussed these implementations in more detail. Without a solution for the data locality MapReduce 
does not provide benefits.
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package org.myorg;
import java.io.*;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;

public class WordCount extends Configured implements Tool {
public static class Map extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {
static enum Counters { INPUT_WORDS }
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
private boolean caseSensitive = true;
private Set<String> patternsToSkip = new HashSet<String>();
private long numRecords = 0;
private String inputFile;

public void configure(JobConf job) {
caseSensitive = job.getBoolean("wordcount.case.sensitive", true);
inputFile = job.get("map.input.file");
if (job.getBoolean("wordcount.skip.patterns", false)) {
Path[] patternsFiles = new Path[0];
try {
patternsFiles = DistributedCache.getLocalCacheFiles(job);

} catch (IOException ioe) {
System.err.println("Caught exception while getting cached files: " +
StringUtils.stringifyException(ioe));

}
for (Path patternsFile : patternsFiles) {
parseSkipFile(patternsFile);

}
}

}

private void parseSkipFile(Path patternsFile) {
try {
BufferedReader fis = new BufferedReader(new FileReader(patternsFile.toString()));
String pattern = null;
while ((pattern = fis.readLine()) != null) {
patternsToSkip.add(pattern);

}
} catch (IOException ioe) {
System.err.println("Caught exception while parsing the cached file '" + patternsFile +
"' : " + StringUtils.stringifyException(ioe));

}
}

public void map(LongWritable key, Text value, 
OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
String line = (caseSensitive) ? value.toString() : value.toString().toLowerCase();
for (String pattern : patternsToSkip) {
line = line.replaceAll(pattern, "");

}
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);
reporter.incrCounter(Counters.INPUT_WORDS, 1);

}
if ((++numRecords % 100) == 0) {
reporter.setStatus("Finished processing " + numRecords + " records " +
"from the input file: " + inputFile);

}
}

}

Figure 49.6 Class map
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49.12 MapReduce in MongoDB

The DBMS MongoDB has a command mapReduce, which works on MongoDB collections. Alternatively, a 
query can preprocess the input. The user can sort or limit the number of documents for command. There are 
three phases of mapReduce: Map, Reduce, and Finalize. The last one is optional. The programmer supplies a 
JavaScipt function for each phase. The map function accepts a document and produces a list of key / value 
pairs. The result list can be empty. The function reduce accepts on input key / list of values produced in the 
previous phase. The reduce function aggregates the list of values into a value (object). For each key, it gener-
ates exactly one value. The function finalize aggregates the outputs. The user can display the output on the 
screen or save it in a MongoDB collection.

public static class Reduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();

}
output.collect(key, new IntWritable(sum));

}
}

public int run(String[] args) throws Exception {
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName("wordcount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class); 
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
List<String> other_args = new ArrayList<String>();
for (int i=0; i < args.length; ++i)
if ("-skip".equals(args[i])) {
DistributedCache.addCacheFile(new Path(args[++i]).toUri(), conf);
conf.setBoolean("wordcount.skip.patterns", true);

} else {  
other_args.add(args[i]);

}
FileInputFormat.setInputPaths(conf, new Path(other_args.get(0)));
FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1)));
JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new WordCount(), args);
System.exit(res);

}
}

Figure 49.7 Class Reduce and main program
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49.13 MapReduce Use Cases

The classical MapReduce use case is document indexing. For example, a web crawler loads a huge quantity 
of html documents in HDFS. The programmer writes a function map that accepts on input a document and a 
list of keywords. The function generates a list of pairs of keywords and the number of their occurrences in the 
document. The other function that the programmer has to supply is reduce. This function accepts on input a 
keyword and a list of all its occurrences in all documents. It generates a pair of keywords and the sum of all 
its occurrences. Another example is log files and respective response times; the problem is to calculate the 
average response time.

Google uses the framework to calculate page ranking. PageRank is the number of documents that point to 
a given one. The function map accepts an URI (document) and URI of the scanned document, and generates 
a list of URIs (documents) that reference it. The function reduce accepts an URI (document) and a list of 
document URIs that reference it. The function calculates the number of different occurrences in the list and 
generates a rank for this URI. This is a very simplified version of the real algorithm.

49.14 MapReduce Merits and Limitations

MapReduce is a very simple paradigm: the programmer has to write only two functions that operate locally, 
while it is responsible for parallelization, fault tolerance, load balancing, and so forth. All attempts to extend 
the paradigm will make it more complex for programming. MapReduce is useful when data processing is 
performed at one stage. If the job has several iterations and every stage depends on the data generated in the 
previous one, then that job uses several MapReduce programs. Some extensions, such as Iterative MapReduce, 
try to solve the problem in one program. MapReduce is suitable for programs that read all the data only once 
and generate aggregate results. The processing in map and reduce functions must be simple. That is the case 
with big data analytics. MapReduce programs are easily scalable and they utilize all resources in the cluster: 
more resources mean faster execution. They are suitable for clouds.

49.15 Conclusion

For many years, data programming was a mature technology implemented in DBMS. Now, with big data, it 
is a challenge to the programmers.

MapReduce uses only two of the higher order functions in Lisp: map and reduce. This paradigm deviates 
from the basic concepts of functional programming. Some programming models for big data analytics, such 
as the pipes in MongoDB, use the third high‐order function filter. The fourth function is not used in any 
 programming model for big data.

Google developed MapReduce to solve a concrete problem: Web page indexing. It was an initial step to big 
data analytics. In future, new programming models, which are more consistent and suitable for solving big 
data problems, may emerge.

References

Apache Software Foundation (2014) Apache Hadoop NextGen MapReduce (YARN), http://hadoop.apache.org/docs/
current/hadoop‐yarn/hadoop‐yarn‐site/YARN.html (accessed December 4, 2016).

Dean J. and Ghemawat, S. (2004) MapReduce: Simplified Data Processing on Large Clusters, http://static.googleusercontent.
com/media/research.google.com/en//archive/mapreduce‐osdi04.pdf (accessed January 4, 2016).



Encyclopedia of Cloud Computing, First Edition. Edited by San Murugesan and Irena Bojanova. 
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.

50.1 Introduction

Developing standalone applications running on a single computer is very different from developing scalable 
applications running on the cloud, such as data analytics applications that process terabytes of data, Web 
applications that receive thousands of requests per second, or distributed computing applications where com-
ponents run simultaneously across many computers. Cloud computing service providers help facilitate the 
development of these complex applications through their cloud programming frameworks. A cloud program-
ming framework is a software platform for developing applications in the cloud that takes care of nonfunc-
tional concerns, such as scalability, elasticity, fault tolerance, and load balancing. Using cloud  programming 
frameworks, application developers can focus on the functional aspects of their applications and benefit from 
the power of cloud computing.

In this chapter, we will show how to use some of the existing cloud programming frameworks in three 
application domains: data analytics, Web applications, and distributed computing. More specifically, we will 
explain how to use MapReduce (Dean and Ghemawat, 2008) for data analytics, Google App Engine (Google, 
2014) for Web applications, and SALSA (Varela and Agha, 2001) for distributed computing. The rest of the 
chapter is structured as follows. In section 50.2, we describe nonfunctional concerns supported at different 
levels of cloud services and go through existing cloud programming frameworks. In section 50.3, we explain 
MapReduce, Google App Engine, and Simple Actor Language System and Architecture (SALSA). In 
 section 50.4, we illustrate how to use these three programming frameworks by showing example applications. 
Finally, we conclude the chapter in section 50.5.

Developing Elastic Software for the Cloud

Shigeru Imai, Pratik Patel, and Carlos A. Varela

Rensselaer Polytechnic Institute, USA

50



610 Encyclopedia of Cloud Computing

50.2 Programming for the Cloud

50.2.1 Nonfunctional Concerns

Figure 50.1 illustrates how cloud programming frameworks hide nonfunctional concerns from application 
developers by providing programming languages or application programming interfaces (APIs) to manage 
application’s execution on different cloud service models, such as IaaS and PaaS.

Nonfunctional concerns are not directly related to the main functionality of a system but guarantee important 
properties such as security or reliability. In the context of cloud computing services, important nonfunctional 
concerns include the following:

 ● Scalability: the ability to scale up and out computing resources to process more workload or to process it 
faster as demanded by cloud users.

 ● Elasticity: the ability of an application to adapt in order to scale up and down as service demand grows or 
shrinks.

 ● Fault tolerance: the ability to keep the system working properly even in the event of a computing resource 
failure.

 ● Load balancing: the ability to balance the workload between heterogeneous networked computing 
resources.

If not using cloud computing, application developers would have to acquire physical infrastructure 
(machines, networks, etc.) to support their needs. Using IaaS, developers can create virtual machines 
(VMs) without up‐front costs for hardware; however, they have to install and configure the VM management 

Data analytics

Google App
Engine

MapReduce SALSA

Physical infrastructure

IaaS

PaaS

Web application
Distributed
computing

: Application developer

Cloud
applications

Cloud
programming
frameworks

Cloud
services

API

Cloud programming frameworks (Middleware)

Figure 50.1 Cloud programming frameworks take advantage of layered services by exposing an Application 
Programming Interface (API) to developers
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software, networking, operating system, and any additional libraries that their application needs. Finally, 
different PaaS providers offer from transparent scalability and elasticity to transparent fault tolerance and 
load balancing services. Typically, these nonfunctional concerns are offered, constraining developers to 
specific programming models and patterns, such as MapReduce, Web applications, and distributed actor 
computations.

50.2.2 Overview of Cloud Programming Frameworks

Data analytics. MapReduce is a popular data‐processing framework created by Google following a data‐par-
allel programming model based on the map and reduce higher‐order abstractions from functional program-
ming. Hadoop (see http://www.apache.org/, accessed January 5, 2016) is a popular open‐source 
implementation of MapReduce and has a large user and contributor base. There are a number of projects 
derived from Hadoop. One such project is Pig (http://www.apache.org/), which was first developed by Yahoo! 
Pig offers a high‐level language called Pig Latin to express data analytics programs. Programs authored in 
Pig Latin are translated into Java‐based Hadoop code and thus Pig users benefit from Hadoop’s scalability 
and fault‐tolerance properties as well as Pig Latin’s simplicity. Another Hadoop related project is Hive (http://
www.apache.org/), initially developed by Facebook. Hive is a data warehouse platform built on top of 
Hadoop. Mahout (http://www.apache.org/) is a set of scalable machine learning libraries that also works over 
Hadoop. Spark (http://www.apache.org/) is a cluster‐computing framework that focuses on efficient use of 
data objects to speed up iterative algorithms such as machine learning or graph computation. Whereas Hadoop 
reads (writes) data from (to) storage repeatedly, Spark caches created data objects in memory so that it can 
perform up to 100 times faster than Hadoop for a particular class of applications. Shark (Xin et al., 2013) is 
a Structured Query Language (SQL) query engine that has compatibility with Hive and runs on Spark. These 
frameworks do not support elastic behavior of applications, but have good scalability, load balancing, and 
fault tolerance.

Web applications. As Web applications have unpredictable and varying demands, they constitute a very 
good match for cloud computing. There are several PaaS providers that offer a framework for developing and 
hosting Web applications, such as Google App Engine, Microsoft Azure (Microsoft, 2014), and Heroku 
(2014). Google App Engine supports Python, Java, PHP, and Go. The runtime environment for Google App 
Engine is restrictive (e.g., no socket use and no file system access), but you get good scalability with a few 
lines of code. In contrast, Microsoft Azure offers a more flexible runtime environment; however, it requires 
you to write more code. Microsoft Azure supports .NET, Java, PHP, Node.js, and Python. Heroku originally 
supported only Ruby, but now supports Java, Node.js, Scala, Clojure, Python, and PHP. In terms of coding 
flexibility, Heroku is also as restrictive as Google App Engine; however, it has libraries to support data man-
agement, mobile users, analytics, and others.

Distributed computing. Distributed computing systems typically have components that communicate 
with each other via message passing to solve large or complex problems cooperatively. Erlang (Armstrong 
et al., 1993) and SALSA are concurrent and distributed programming languages based on the actor model 
(Agha, 1986), in which each actor runs concurrently and exchanges messages asynchronously while not 
sharing any state with any other actor. Actor systems can therefore be reconfigured dynamically, while 
transparently preserving message passing semantics, which is very helpful for scalability, elasticity, and 
load balancing. Erlang is a functional language that supports fault tolerance and hot swapping. SALSA’s 
compiler generates Java code allowing programmers to use the entire Java library collection. It also sup-
ports transparent actor migration across the Internet based on a universal naming system. Several research 
efforts have been made to support nonfunctional concerns for SALSA programs. The Internet Operating 
System (IOS) (El Maghraoui et al., 2006) is a distributed middleware framework that provides support for 
dynamic reconfiguration of large‐scale distributed applications through opportunistic load balancing. 
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In addition to the distributed load‐balancing capability, the Cloud Operating System (COS) (Imai et al., 
2013) further supports elasticity, enabling adaptive virtual machine allocation and de‐allocation on hybrid 
cloud environments, where private clouds connects to public clouds.

Table 50.1 summarizes the cloud programming frameworks mentioned above.

50.3 Cloud Programming Frameworks

In this section, we present existing cloud programming frameworks for data analytics, web applications, and 
distributed computing, namely, MapReduce, Google App Engine, and the SALSA programming language.

50.3.1 Data Parallelism with MapReduce

MapReduce created by Google is a data‐parallel programming model based on the map and reduce higher 
order abstractions from functional programming. The implementation of the model is also called MapReduce; 
it is designed to schedule automatically the parallel processing of large data sets distributed across many 
computers. MapReduce was designed to have good scalability to achieve high throughput, and fault tolerance 
to deal with unavoidable hardware failures. These nonfunctional concerns are transparent to application 
developers; MapReduce provides a simple application programming interface requiring to define only the 
map and reduce functions that have the format shown in Listing 50.1.

Table 50.1 Summary of cloud programming frameworks

Category Name Nonfunctional 
concerns

Description

Data analytics MapReduce, 
Hadoop

Scalability, fault 
tolerance, load 
balancing

MapReduce exposes simple abstractions: map 
and reduce. Hadoop is an open‐source 
implementation of MapReduce.

Pig, Hive Pig and Hive are high‐level languages for 
Hadoop.

Mahout, Spark, 
Shark

Mahout is a machine‐learning library running 
on top of Hadoop. Spark is a data analytics 
framework especially for iterative and graph 
applications. Shark is a Hive‐compatible 
SQL engine running on top of Spark.

Web applications Google App 
Engine

Scalability, elasticity, 
fault tolerance, load 
balancing

A PaaS from Google. The runtime environment 
is restrictive, but provides a good scalability. 
Python, Java, PHP, and Go are supported.

Microsoft 
Azure

A PaaS from Microsoft with automatic scaling, 
automatic patching, and security services.

Heroku A PaaS from Heroku with libraries for data 
management, mobile users, analytics, and 
others.

Distributed 
computing

SALSA, Erlang Scalability, fault 
tolerance (for Erlang)

General‐purpose programming languages 
based on the actor model.

IOS, COS Scalability, elasticity 
(COS), load 
balancing

Middleware framework for managing 
distributed SALSA programs.
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The computation in MapReduce basically consists of two phases: the “map” phase producing intermediate 
results, followed by the “reduce” phase processing the intermediate results. Both phases take a (key, value) 
pair as input and output a list. Keys and values can be arbitrary numbers, strings, or user‐defined types. First, 
the map function gets called by MapReduce and transforms a (k1, v1) pair into an intermediate list of 
(k2, v2). For instance, in text‐mining applications, v1 may be a partial text of an input file. Next, these 
intermediate lists are aggregated into pairs where each pair has all v2 values associated with the same k2 key. 
Finally, the reduce function is invoked with a (k2, list(v2)) pair and it outputs a list of v3 values.

Suppose you have a big input file consisting of DNA sequences, which are combinations of {C, G, T, A} 
characters, one way to write map and reduce functions to count each character occurrence in the input file can 
be given as shown in Listing 50.2.

The map function emits count 1 as an occurrence of a DNA character. The reduce function takes a list of 
counts and emits the sum of these counts for a particular DNA character. By calling these simple two func-
tions repeatedly, MapReduce outputs occurrences of each DNA character. An example execution for the 
DNA sequence counting example is shown in Figure 50.2.

50.3.2 Service‐Oriented Programming with Google App Engine

Google App Engine (App Engine hereafter) is a programming framework to develop scalable Web applications 
running on Google’s infrastructure. Developed Web applications are hosted by Google and accessible via the 
user’s own domain name. Google automatically allocates more computing resources when service demand 
grows and also balances the workload among the computing resources. App Engine is regarded as a PaaS 

map(k1, v1) → list (k2, v2)

reduce(k2, list(v2)) → list (v3)

Listing 50.1 MapReduce abstract application programming interface

map(string key, string value)

//key: the position of value in the input file

//value: partial DNA sequence in the input file

foreach character c in value do

emit(c, 1);

end

reduce(string key, string value)

//key: DNA character (C, G, T, or A)

//value: a list of counts

sum = 0;

foreach count in value do

sum = sum + count;

end

emit(sum);

Listing 50.2 MapReduce pseudo code for DNA sequence analysis
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implementation and charges costs based on the use of storage, CPU, and bandwidth. App Engine  currently 
supports development in Java, Python, PHP, and Go. App Engine’s core features and its programming frame-
work are described in the following sections. We use only Python for brevity.

50.3.2.1 Core Features

The core features of App Engine are as follows:

 ● Sandbox. To prevent harmful operations to the underlying operating system, applications run in an iso-
lated secure environment called sandbox. In the sandbox, an application is allowed to only access other 
computers on the Internet using Uniform Resource Locator (URL) Fetch and Mail services, and applica-
tion code is able to only run in a response to a Web request. The application is not allowed to write to the 
file system directly, but instead uses Datastore or Memcache services.

 ● Storing data. App Engine Datastore is a data storing service based on Google’s BigTable (Chang 
et al., 2008), which is a distributed storage system that scales up to petabytes of data.

 ● Account management. Applications can be easily integrated with Google Accounts for user authentication. 
With Google Accounts, an application can detect if the current user has signed in. If not, it can redirect the 
user to a sign‐in page.

 ● App Engine services. App Engine provides a variety of services via APIs to applications including fetching Web 
resources, sending e‐mails, using cache and memory instead of secondary storage, and manipulating images.

Input
file

Map Map Map

Aggregates intermediate values by keys

CGTC
GCAG
CGGA
TCCA

[(C, 1), (G, 1),
( T, 1), (C, 1)]

[(T, 1), (C, 1),
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[(C, 1), (G, 1),
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Figure 50.2 Execution sequence of MapReduce
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50.3.2.2 Programming Framework for Python

We describe the App Engine’s programming framework for Python as visualized in Figure 50.3. When the 
Web server receives a Hyper‐Text Transfer Protocol (HTTP) request from the browser, the Web server passes 
the request to a framework (a library that helps Web application development) via Web Server Gateway 
Interface (WSGI). The framework then invokes a handler in a user script (in this example, main.py) and the 
invoked handler processes the request and creates an HTTP response dynamically.

The Python runtime in App Engine uses WSGI as an interface to connect the Web server to the Web appli-
cations. WSGI is simple, but reduces programming effort and enables more efficient application develop-
ment. Here, we give an example of a request handler using the webapp2 framework that interacts with 
WSGI as shown in Listing 50.3.

The application object – an instance of WSGIApplication class of webapp2 framework – 
 handles the requests. When creating the application object, a request handler called MainPage is 
associated with the root URL path (/). The webapp2 framework invokes the get function in the MainPage 
class when it receives an HTTP GET request to the URL /. In the get function, it creates an HTTP response 
with a Content‐Type header and a body containing a “Hello, World!” message.
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Figure 50.3 Google App Engine programming framework for Python

import webapp2

class MainPage( webapp2.RequestHandler ): 

def get( self ):

self.response.headers[  ‘Content-Type’ ] = ‘text/plain’

self.response.write( ‘Hello, World!’ )

application = webapp2.WSGIApplication(

[(‘/’, MainPage)],

debug=True )      

Listing 50.3 Application Python script for the Helloworld example
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50.3.3 Distributed Actor Systems with SALSA

Simple Actor Language System and Architecture is a concurrent programming language based on the actor 
model (Agha, 1986). Each actor runs concurrently and exchanges messages asynchronously while encapsu-
lating its state. Since an actor does not share any memory with other actors, it can migrate to another comput-
ing host easily. As shown in Figure 50.4, under a hybrid IaaS cloud environment, actors can migrate between 
the private and public clouds seamlessly with runtime software installed on virtual machines (VMs) on both 
ends. In this scenario, application developers need either to use COS middleware or support appropriate 
 nonfunctional concerns by themselves as IaaS clouds only provide scalability by means of VM addition / 
removal. Nevertheless, hybrid clouds can be attractive for those who can access their private computing 
resources at no additional cost and who need high computing power only occasionally.

In the following subsections, we introduce the actor‐oriented programming model followed by a distributed 
application written in SALSA.

50.3.3.1 Actor‐Oriented Programming

Actors provide a flexible model of concurrency for open distributed systems. Each actor encapsulates a state 
and a thread of control that manipulates this state. In response to a message, an actor may perform one of the 
following actions (see Figure 50.5):

 ● alter its current state, possibly changing its future behavior;
 ● send messages to known actors asynchronously;
 ● create new actors with a specified behavior;
 ● migrate to another computing host.

Analogous to a class in Java, SALSA programmers can write a behavior which includes encapsulated state 
and message handlers for actor instances:

 ● New actors are created in SALSA by instantiating particular behaviors with the new keyword. Creating 
an actor returns its reference. For instance:
ExampleActor exActor = new ExampleActor();

 ● The message sending operation (<‐) is used to send messages to actors; messages contain a name that 
refers to the message handler for the message and a possibly empty list of arguments. For instance:
exActor<-m(1, 2);

 ● Actors, once created, process incoming messages, one at a time.
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Actors
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…

Scale out

…

Extra VMs
Scale in

Scale up

Scale down
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VM1
VMN+1

VMM

VM2
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Figure 50.4 Workload scalability over a hybrid cloud using actor migration. Source: Imai et al. (2013)



Developing Elastic Software for the Cloud 617

50.3.3.2 Programming Distributed Applications

A simple distributed SALSA application that migrates an actor with name as specified by an universal 
actor name (UAN) from a location specified by a universal actor location (UAL) is shown in Listing 50.4. 
A UAN is an identifier that represents an actor during its lifetime in a location‐dependent manner. An 
actor’s UAN is mapped by a naming service into a UAL, which provides access to an actor in a specific 
location.

Listing 50.4 defines a behavior of the Migrate actor. First, the program starts from the act message 
handler and a Migrate actor named migrateActor is created with a UAN “uan://wcl.
cs.rpi.edu:3030/myName” at a UAL “rmsp://host1.cs.rpi.edu:4040/myLoca-
tor”. Next, the actor receives a print message and prints out a string “Migrate actor is 
here!” in the standard output of host1. Right after printing the string, the actor migrates to a new 
location specified by a UAL “rmsp://host2.cs.rpi.edu:4040/myLocator”. Finally, after 
the migration, the actor prints out the same string at host2. Note that SALSA’s transparent migration 
support enables execution of the same print message in two different hosts.
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Figure 50.5 Actors programming model



618 Encyclopedia of Cloud Computing

50.4 Sample Applications

In this section, we present sample applications for the three programming frameworks. First, we describe a 
data analytics application that computes the average temperatures of historical weather data using Hadoop. 
Next, we show a simple Web‐based bulletin board application using Google App Engine. Thirdly, we describe 
a distributed face recognition application using SALSA.

50.4.1 Data Analytics

The application presented in this subsection processes a large amount of data by Hadoop to compute average 
temperatures for every month using temperature data collected from all over the world.

50.4.1.1 Global Surface Summary of Day Data (GSOD)

Global surface summary of day (GSOD) data is a collection of daily weather data produced by the National 
Climatic Data Center. The weather data has been collected from 1929 to the present by stations all over the 
world. The elements contained in the daily data include mean temperature, mean sea level pressure, mean 
visibility, and mean wind speed.

The datasets are provided in ASCII characters. Each row contains weather data for a station on a particular 
day (see, for example, Listing 50.5). Fields are explained in Table 50.2.

Since we compute average temperatures for every month, the fields we are interested in are YEAR, MODA 
and TEMP.

behavior Migrate {

void print() {

standardoutput<-println(“Migrate actor is here!”);

}

void act(string[] args) {

UAN uan = new UAN(“uan://wcl.cs.rpi.edu:3030/myName”); 

UAL ual = new UAL(                   

“rmsp://host1.cs.rpi.edu:4040/myLocator”); 

Migrate migrateActor = new Migrate() at (uan, ual); 

migrateActor<-print()@

migrateActor<-migrate(

“rmsp://host2.cs.rpi.edu:4040/myLocator”)@

migrateActor<-print();

}

}  

Listing 50.4 SALSA migration code example
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50.4.1.2 MapReduce Functions for Averaging Numbers

Suppose we are given an input file that consists of (tag, number) pairs, where tag is an arbitrary string of a 
month, year, station, and so on, we can compute an average number for each tag by the map and reduce 
functions shown in Listing 50.6.

The map function emits an intermediate (tag, (number, 1)) pair for every input and then the reduce func-

tion computes the average number 
1

1N i
N numberi  for each tag from an aggregated pair (tag, [(number

1
, 1), …, 

(number
N
 , 1)]).

50.4.1.3 GSOD Data Analytics Application

Based on the functions’ pseudo code presented in the previous section, we show a Hadoop application that 
computes average temperatures for every month using GSOD temperature data. The map function is defined 
as a GsodMapper class implementation that extends the Mapper class as shown in Listing 50.7.

STN--- YEARMODA  TEMP  DEWP    SLP     STP …

030050  19291001  45.3 4  40.0  4 1001.6 4  9999.9 0 …

Listing 50.5 Example of GSOD data

Table 50.2 Field definitions of GSOD data

Field Position Type Description

STN  1–6 Integer Station number for the location
YEAR  9–12 Integer The year
MODA 13–16 Integer The month and day
TEMP 19–24 Real Mean temperature for the day 

in degrees
… … … …

map(String key, String value)

//key: tag, value: number

pair = (value, 1); 

emit(key, pair);

reduce(String key, String value)

//key: tag, value: a list of (number, count)pairs

sum = 0; count = 0;

foreach pair (n, c) in value do

sum = sum + n;

count = count + c;  

end

average = sum / count;

emit(average);

Listing 50.6 MapReduce pseudo code for average number calculation
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The Mapper class is a generic class that takes four type variables – the input key type, the input value type, 
the output key type, and the output value type. In this example, the input key type is Object, the input key 
value is Text, the output key type is Text, and the output value type is DoubleIntPair. DoubleIntPair 
is used to store a pair of double and int values.

The map function repeatedly receives one line of GSOD weather input data in the value variable. If 
the value starts with an “STN”, that means that it is a line for weather field names, therefore we skip it. 
Otherwise, split the value into a data array in which each element is separated by spaces. Since we 
want to compute the average temperature for each month, we are interested in the YEARMODA and TEMP 
fields, which are the third and fourth fields of the weather data. From these two fields, we can extract a 
year and month by data[2].substring(0,6) in the YYYYMM format and temperature by data[3]. 
By calling context.write() function, the map function outputs a key value pair in the format 
(key=YYYYMM, value=(temperature, 1)).

The GsodReducer class that implements the reduce function is defined in Listing 50.8. The specified 
input types are Text and DoubleIntPair and output types are Text and DoubleWritable. The 
reduce function iterates the values, which is a list of a temperature and count, and sums up the tem-
peratures and counts to compute the average temperature.

50.4.2 Bulletin Board Web Application

In this subsection we present a simple bulletin board Web application developed on the Google App Engine 
framework (see Figure 50.6 for user interface). This application lets users post a message with their user-
names to a public bulletin board. The posted messages are stored in the server and shared among the users 
accessing the application.

public class GsodMapper extends

Mapper<Object, Text, Text, DoubleIntPair> {

private Text word = new Text();

private DoubleIntPair pair = new DoubleIntPair();

public void map(Object key, Text value, Context context)

throws IOException, InterruptedException {

if (value.toString().startsWith( “STN” )) {

return;

}

String[] data = value.split( “+” );  

String yearmon = data[2].substring(0, 6);

word.set( yearmon );

pair.set( Double.parseDouble( data[3] ), 1 );

context.write( word, pair )

}

}    

Listing 50.7 GsodMapper class definition



public class GsodReducer extends

Reducer<Text, DoubleIntPair, Text, DoubleWritable> {

private DoubleWritable average = new DoubleWritable();

public void reduce(Text key, 

Iterable<DoubleIntPair> values, 

Context context)

throws IOException, InterruptedException {

double sum = 0;

int count = 0;  

for (DoubleIntPair value: values)

sum += value.getDouble(); 

count += value.getInt();   

}

average.set(sum / count);

context.write(key, average)

}

}    

Listing 50.8 GsodReducer class definition

Figure 50.6 User interface of the bulletin board application
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50.4.2.1 HTML Template

Unlike the helloworld example, which just returns an HTTP response containing a “Hello, World!” string 
to the browser, we can create a more elaborate and dynamically generated response using HTML templates 
such as Jinja2 (Ronacher, 2011). Jinja2 is a template engine for Python supported by Google App Engine. For 
the bulletin board application, we can use a Jinja2 template as shown in Listing 50.9.

In the second div section, this HTML file first creates a form to post a username and a message to the 
Web server. Once these forms are filled by the user and the submit button is pressed, an HTTP POST 
request is sent to the URL specified by /postmsg. Then, the message‐showing part is expressed using the 
Jinja2 template. In the Jinja2 template, “{{ variable }}” refers to the value of a variable. Similarly, 
“{% control logic %}” refers to control logic such as for, while, or if. In this example, the stored 
messages are referred to as msgs and the username, creation date, and content of each message are dis-
played by iterating msgs. Using HTML templates, we can express dynamic and static HTML contents side 
by side easily.

<html>

<head>

<link type=”text/css” rel=”stylesheet”

href=”/css/main.css” />

</head>

<body>

<div class=”headline”>

<h1>Bulletin Board</h1>

</div> 

<div class=”content”>

<h4>Leave a message!</h4>

<form action=”/postmsg” method=”post” class=”form-inline”>

<label>user: </label> 

<input type=”text” name=”user” placeholder=”anonymous”>

<label>message: </label>

<input type=”text” name=”content”>

<button type=”submit”>submit</button>

</form>

{% for msg in msgs %}

<b>{{ msg.user }}</b> wrote at <i>{{ msg.date }}</i>:

<blockquote>{{ msg.content|escape }}</blockquote> 

{% endfor %}

</div> 

</body>

</html>

Listing 50.9 Jinja2 HTML template for bulletin board application
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50.4.2.2 Application Script

An example script for the bulletin board application is shown in Listing 50.10.
Once the script starts, a global variable JINJA_ENVIRONMENT is instantiated and configured to look for 

Jinja2 HTML templates from the current directory (specified by “__file__”). This program consists of three 
classes: Messages class for data model, PostMessage class for handling submitted messages, and 
MainPage class for handling requests for the main page. Meanwhile, an application object is created by 
WSGIApplication so that HTTP requests for “/” and “/postmsg” are handled by the MainPage and 
PostMessage class respectively.

import os, jinja2, webapp2

from google.appengine.ext import ndb

JINJA_ENVIRONMENT = jinja2.Environment(

loader=jinja2.FileSystemLoader(os.path.dirname(__file__)),

extensions=[‘jinja2.ext.autoescape’])

class Messages(ndb.Model):

user = ndb.StringProperty()

content =  ndb.StringProperty()

date = ndb.DateTimeProperty(auto_now_add=True)

class PostMessage(webapp2.RequestHandler):

def post(self):

msgs = Messages()

user = self.request.get(‘user’)

if user == “”:

msgs.user = “anonymous”

else:

msgs.user = user   

msgs.content = self.request.get(‘content’)

msgs.put()

self.redirect(‘/’)

class MainPage(webapp2.RequestHandler):

def get(self):

msgs = ndb.gql(“SELECT * FROM Messages

ORDER BY date DESC LIMIT 10”)

template_values = {‘msgs’: msgs}

template = JINJA_ENVIRONMENT.get_template(‘index.html’)

self.response.write(template.render(template_values))

application = webapp2.WSGIApplication(

[(‘/’, MainPage), (‘/postmsg’, PostMessage)], debug=True)

Listing 50.10 Application Python script for bulletin board example
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The Message class defines a data model that consists of three fields: user for the username, content 
for the message content, and date for the current time when the model instance is added to the datastore 
(specified by “auto_now_add=True”). The PostMessage class defines the behavior when the applica-
tion receives an HTTP POST message. It extracts the user and content fields from the request and puts 
them into a Messages data model instance. The MainPage class defines the behavior when the application 
receives an HTTP GET message to the main Web page. Using a SQL‐like query called GQL, it retrieves 
stored messages from the Messages datastore up to ten in descending order of date (latest date comes first), 
and then passes the retrieved msgs messages to the template index.html. Finally, it creates a complete 
HTTP response from the template and returns the response to the browser.

50.4.3 Distributed Face Recognition

Face recognition is an application that can be vastly improved by leveraging cloud computing resources. 
Rather than using a single device, in this case a mobile phone, we can offload parts of the image processing 
to the cloud (Abolfazli et al., 2014). By using cloud computing, we can save the battery in the mobile device, 
and also we can consider larger data sets. Using the SALSA programming language and the FaceRecognizer 
API from OpenCV (http://opencv.org/, accessed January 5, 2016), we can design a mobile phone application 
to recognize a face in a given image using a database of faces (see Figure 50.7).

The face recognition application consists of two stages: the training stage, and the prediction stage. The 
training stage trains a database of faces using the FaceRecognizer method defined in OpenCV. The pre-
diction stage predicts a given face using the desired method with a certain confidence. When the database of 
faces is small, there is no need to offload computation because the phone can process the faces locally just as 
fast as it would take to offload to the cloud. As the database grows we run into the limitations mentioned 
above and offloading to the cloud can be beneficial.

The distributed face recognition model consists of a “farmer actor” that creates N1 “worker actors” in the 
cloud. While the farmer and worker actors reside in the cloud, a client on the mobile phone requests the farmer 
actor to recognize an unknown face. The farmer actor assigns each worker actor a range of faces (N2/N1 each) 
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Figure 50.7 Distributed face recognition using SALSA actors
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to train from the cloud face database containing N2 faces. The worker actors then predict the closest match to 
the unknown face based on their assigned database. The farmer actor collects the closest match from each 
worker actor and calculates the best candidate for the unknown face. Pseudo programs for the client, worker 
and farmer SALSA programs are shown in Listings 50.11, 50.12, and 50.13 respectively.

In Listing 50.13, note that a join block in the predictAll message handler is used to synchronize all 
the worker actors executing predict. After all the workers finish processing predict, the join block returns 
an object array ImageMetaData[], which contains prediction confidence from the workers. Finally, 
getBestMatch takes the array and finds the best matching image with the highest confidence.

50.5 Conclusions

Cloud computing has the potential to bring the benefits of large‐scale data analytics and high‐performance 
computing to everyone’s fingertips enabling unprecedented societal applications. We have described three 
programming frameworks for cloud computing: Hadoop’s MapReduce, Google App Engine, and SALSA. To 
illustrate the use of these frameworks, we have shown a weather data analytics application on Hadoop, a 

behavior FaceClient {

void act(String[] args) {

FaceFarmer farmer = (FaceFarmer) 

FaceFarmer.getReferenceByName(

“uan://nameserver/facefarmer”);

Image unknownImage = new Image(args[0]);

farmer<-predictAll(unknownImage)@ 

displayImage(token);  

}

}    

Listing 50.11 SALSA pseudo code for face recognition client actor

behavior FaceWorker {

FaceRcognizer faceRecognizer;

void train(Image[] assignedDatabase) {

faceRecognizer.train(assignedDatabase);

}

ImageMetaData preditct (Image testImage) {

// return the closest match

return faceRecognizer.predict(testImage);

}

}    

Listing 50.12 SALSA pseudo code for face recognition worker actor



626 Encyclopedia of Cloud Computing

simple bulletin board Web application on Google App Engine, and a distributed face recognition application 
on SALSA offloading computation from a mobile device to the cloud. As we have seen, the target applica-
tions for these frameworks are very different from each other, and the support level of nonfunctional concerns 
is also different between IaaS and PaaS. These frameworks are ideal for the illustrated target application 
domains, but not necessarily for other application scenarios. Therefore, to get the best from these cloud ser-
vices, application developers still need to carefully consider the characteristics of their applications and find 
best matching cloud services in terms of QoS, cost, programmability, vendor lock‐in possibility, and others.
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51.1 Introduction

The information technology market has been moving from the demand and supply of products towards a 
service‐oriented model in which all resources – processors, memories, data and applications – are provided 
as services to customers through the Internet. Such convergence between Internet technologies and services, 
combined with the use of virtualization techniques, has led to the development of the cloud computing 
paradigm (Mell and Grance, 2011).

In many application areas, knowledge discovery in databases (KDD) techniques are used to extract useful 
knowledge from large datasets. Very often, distributed KDD approaches must be used because datasets are 
too large to be analyzed in a single site, or because they are distributed across many locations and cannot be 
moved to a central site for processing. Several distributed KDD systems have been proposed so far. In most 
cases, those systems had to face infrastructure‐level issues, such as resource allocation, execution manage-
ment, fault tolerance, and so on (Talia and Trunfio, 2010).

This chapter discusses how cloud computing technologies can be exploited to implement a distributed 
KDD system without worrying about low‐level aspects because they are already addressed by the cloud infra-
structure. First, we identify the requirements of a generic distributed KDD system, and discuss how these 
requirements can be fulfilled by a cloud platform. Then, as a case study, we describe how we used a cloud 
platform to design and develop the Data Mining Cloud Framework, which supports the distributed execution 
of KDD applications modelled as workflows.

Cloud Services for Distributed 
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51.2 Requirements for a Distributed KDD System

In this section, we identify the main requirements that should be satisfied by a generic distributed KDD system. 
System requirements are divided into functional and nonfunctional requirement. The former specify which func-
tionalities the system should provide; the latter include quality criteria mostly related to system performance.

51.2.1 Functional Requirements

The functional requirements that should be satisfied by a generic distributed KDD system can be grouped 
into two main classes: resource management requirement and application management requirement. The 
former refers to requirements related to the management of all the resources (data, tools, results) that may be 
involved in a knowledge‐discovery application; the latter refers to requirements related to the design and 
execution of the applications themselves.

51.2.1.1 Resource Management

Resources of interests in distributed KDD applications include data sources, knowledge discovery tools, 
and knowledge discovery results. A distributed knowledge discovery system should therefore deal with the 
following resource‐management requirements:

 ● Data management. Data sources can be in different formats, such as relational databases, plain files, or 
semistructured documents (e.g., XML files). The system should provide mechanisms to store and access 
such data sources independently from their specific format. In addition, metadata formalisms should be 
defined and used to describe the relevant information associated with data sources (e.g., location, format, 
availability, available views), in order to enable their effective access and manipulation.

 ● Tool management. Knowledge discovery tools include algorithms and services for data selection,  preprocessing, 
transformation, data mining, and results evaluation. The system should provide mechanisms to access and use 
such tools independently of their specific implementation. Metadata have to be used to describe the most 
important features of KDD tools (e.g., their function, location, usage).

 ● Result management. The knowledge obtained as the result of a knowledge discovery process is repre-
sented by a knowledge (or data‐mining) model. The system should provide mechanisms to store and 
access such models, independently from their structure and format. As for data and tools, data‐mining 
models need to be described by metadata to explain and interpret their content, and to enable their  effective 
retrieval.

51.2.1.2 Application Management

A distributed KDD system must provide effective mechanisms to design KDD applications (design management) 
and control their execution (execution management):

 ● Design management. Distributed knowledge discovery applications range from simple data mining tasks 
to complex data‐mining patterns expressed as workflows. From a design perspective, three main classes 
of knowledge discovery applications can be identified: single‐task applications, in which a single data 
mining task such as classification, clustering, or association rules discovery is performed on a given data 
source; parameter sweeping applications, in which a dataset is analyzed using multiple instances of the 
same data mining algorithm with different parameters; workflow‐based applications, in which possibly 
complex knowledge discovery applications are specified as graphs that link together data sources, data‐
mining algorithms, and visualization tools. A general system should provide environments to design all 
the classes of KDD applications mentioned above effectively.
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 ● Execution management. The system has to provide a distributed execution environment that supports the efficient 
execution of knowledge discovery applications designed by users. As applications range from single tasks to 
complex knowledge discovery workflows, the execution environment should cope with such a variety of applica-
tions. In particular, the execution environment should provide the following functionalities, which are related to 
the different phases of application execution: accessing the data sources to be mined; allocating the needed com-
pute resources; running the application based on user specifications, which may be expressed as a workflow; 
presenting the results to the user. The system should also allow users to monitor the application execution.

51.2.2 Nonfunctional Requirements

Nonfunctional requirements can be defined at three levels: user, architecture, and infrastructure. User 
requirements specify how the user should interact with the system; architecture requirements specify which 
principles should inspire the design of the system architecture; finally, infrastructure requirements describe 
the nonfunctional features of the underlying computational infrastructure.

51.2.2.1 User Requirements

From a user point of view, the following nonfunctional requirements should be satisfied:

 ● Usability. The system should be easy to use by the end users, without the need to undertake any specialized 
training.

 ● Ubiquitous access. Users should be able to access the system from anywhere using standard network 
technologies (e.g., web sites), either from a desktop PC or from a mobile device.

 ● Data protection. Data represents a key asset for users; therefore, the system should protect data to be 
mined and inferred knowledge from both unauthorized access and intentional/incidental losses.

51.2.2.2 Architecture Requirements

The main nonfunctional requirements at the architectural level are:

 ● Service‐orientation. The architecture should be designed as a set of network‐enabled software components 
(services) implementing the different operational capabilities of the system, to enable their effective reuse, 
composition, and interoperability.

 ● Openness and extensibility. The architecture should be open to the integration of new knowledge‐discovery 
tools and services. Moreover, existing services should be open for extension, but closed for modification, 
according to the open‐closed principle.

 ● Independence from infrastructure. The architecture should be designed to be as independent as possible 
from the underlying infrastructure; in other words, the system services should be able to exploit the basic 
functionalities provided by different infrastructures.

51.2.2.3 Infrastructure Requirements

Finally, from the infrastructure perspective, the following nonfunctional requirements should be satisfied:

 ● Standardized access. The infrastructure should expose its services using standard technologies (e.g., Web 
services), to make them usable as building blocks for high‐level services or applications.

 ● Heterogeneous/distributed data support. The infrastructure should be able to cope with very large and 
high‐dimensional datasets, stored in different formats in a single datacenter, or geographically distributed 
across many sites.
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 ● Availability. The infrastructure should be in a functioning condition even in the presence of failures that 
affect a subset of the hardware / software resources. Thus, effective mechanisms (e.g., redundancy) should 
be implemented to ensure dependable access to sensitive resources such as user data and applications.

 ● Scalability. The infrastructure should be able to handle a growing workload (deriving from larger data to 
process or heavier algorithms to execute) in an efficient and effective way, by dynamically allocating the 
needed resources (processors, storage, network). Moreover, as soon as the workload decreases, the infra-
structure should release the unneeded resources.

 ● Efficiency. The infrastructure should minimize resource consumption when executing any given task. In 
the case of parallel / distributed tasks, efficient allocation of processing nodes should be guaranteed. The 
infrastructure should be used extensively to provide efficient services.

 ● Security. The infrastructure should provide effective security mechanisms to ensure data protection, identity 
management, and privacy.

51.3 Cloud for Distributed KDD

A key aspect of cloud computing is that end users do not need to have either knowledge or control over the 
infrastructure that supports their applications. In fact, cloud infrastructures are based on large sets of comput-
ing resources, located somewhere “in the Cloud,” which are allocated to applications on demand. Cloud 
resources are provided in highly scalable way, i.e., they are allocated dynamically to applications depending 
of the current level of requests. Although similar in overall aims to grid systems, clouds are different because 
they hide the complexity of the underlying infrastructure, providing services ready to use where end users pay 
only for the resources effectively used (pay‐per‐use).

Cloud computing vendors classify their services into three categories: software as a service (SaaS), where 
each software or application executed is provided through Internet to customers as ready‐to‐use services 
(e.g., Google Calendar, Microsoft Hotmail, Yahoo Maps); platform as a service (PaaS), also known as cloud 
platform services, in which cloud providers offer platform services such as databases, application servers, or 
environments for building, testing and running custom applications (e.g., Google Apps Engine, Microsoft 
Azure, Force.com); infrastructure as a service (IasS), also known as cloud infrastructure services, which 
provides computing resources like CPUs, memory, and storage for running virtualized systems over the cloud 
(e.g., Amazon EC2, RackSpace Cloud).

Clouds can be exploited as effective infrastructures for handling knowledge discovery applications. In 
particular, KDD services may be implemented within each of the three categories listed above:

 ● KDD as SaaS, where a single well defined data‐mining algorithm or a ready‐to‐use knowledge dis-
covery tool is provided as an Internet service to end users, who may use it directly through a Web 
browser.

 ● KDD as PaaS, where a supporting platform is provided to developers that have to build their own applica-
tions or extend existing ones. Developers can just focus on the definition of their KDD applications with-
out worrying about the underlying infrastructure or distributed computation issues.

 ● KDD as IaaS, where a set of virtualized resources are provided to developers as a computing infrastruc-
ture to run their data‐mining applications or to implement their KDD systems from scratch.

In all three scenarios listed above, the cloud plays the role of infrastructure provider, even if at the SaaS 
and PaaS layers the infrastructure can be transparent to the end user. In the following we briefly discuss 
Windows Azure as an example of a proprietary PaaS environment that can be effectively exploited to imple-
ment KDD systems and applications.



632 Encyclopedia of Cloud Computing

51.3.1 An example of PaaS: Windows Azure

Windows Azure is an environment and a set of cloud services that can be used to develop cloud‐oriented 
applications, or to enhance existing applications with cloud‐based capabilities. The platform provides on‐
demand compute and storage resources, exploiting the computational and storage power of the Microsoft 
datacenters. Azure is designed for supporting high availability and dynamic scaling services that match user 
needs with a pay‐per‐use pricing model. The Azure platform can be used to perform the storage of large 
datasets, execute large volumes of batch computations, and develop SaaS applications targeted towards end 
users. Windows Azure includes three basic components/services:

 ● Compute is the computational environment to execute cloud applications. Each application is structured 
into roles: Web role, for Web‐based applications; worker role, for batch applications; VM role, for virtual‐
machine images.

 ● Storage provides scalable storage to manage binary and text data (Blobs), non‐relational tables 
(Tables), queues for asynchronous communication between components (Queues), and NTFS volume 
(Drives).

 ● Fabric controller whose aim is to build a network of interconnected nodes from the physical machines of 
a single datacenter. The Compute and Storage services are built on top of this component.

The Windows Azure platform provides standard interfaces that allow developers to interact with its  services. Moreover, 
developers can use IDEs like Microsoft Visual Studio and Eclipse to design and publish Azure applications easily.

Based on our study summarized in Table 51.1, the Azure components and mechanisms can be effectively 
exploited to fulfill the functional requirements of a generic distributed KDD system that have been introduced 
in section  51.2. We exploited these components and mechanisms to implement the Data Mining Cloud 
Framework described in the next section.

51.4 Data Mining Cloud Framework

We worked to design a framework for supporting the scalable execution of knowledge discovery applications 
on top of cloud platforms. The framework has been designed to be implemented on different cloud systems. 
However, an implementation of this framework has been carried out using Windows Azure and has been 
evaluated through a set of data‐analysis applications executed on a Microsoft Cloud datacenter.

The framework has been designed to support three classes of knowledge discovery applications: single‐
task applications, in which a single data‐mining task is performed on a given dataset; parameter‐sweeping 
applications, in which a dataset is analyzed by multiple instances of the same data‐mining algorithm with 
different parameters; and workflow‐based applications, in which knowledge discovery applications are spec-
ified as workflows.

51.4.1 System Architecture

The Data Mining Cloud Framework architecture includes different kinds of components that can be grouped 
into storage and compute components (see Figure 51.1).

The storage components include:

 ● A Data Folder, which contains data sources and the results of knowledge‐discovery processes. Similarly, 
a Tool Folder contains libraries and executable files for data selection, pre‐processing, transformation, 
data mining, and results evaluation.
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 ● Data Table, Tool Table and Task Table contain metadata information associated with data sources, tools, 
and tasks.

 ● The Task Queue contains the tasks ready to be executed.

The compute components are:

 ● A pool of Worker instances, which are in charge of executing data‐mining tasks submitted by users.
 ● A pool of Web instances host the web site, by allowing users to submit, monitor the execution, and access 

the results of their data‐mining tasks.

The web site is the user interface to three functionalities: (i) app. submission, which allows users to submit 
single‐task, parameter‐sweeping, or workflow‐based applications; (ii) app. monitoring, which is used to 
monitor the status and access results of the submitted applications; (iii) data / tool management, which allows 
users to manage input / output data and tools.

Table 51.1 How Azure components fulfill the functional requirements of a distributed KDD system

KDD system  
requirements

Azure components

Resource 
management

Data Different data formats: binary large objects (Blobs); nonrelational 
tables (Tables); queues for communication data (Queues); relational 
databases (SQL database).

Metadata support: tables/SQL databases to store data descriptions; 
custom description fields can be added to Blobs containing data 
sources.

Tools Implementation – independent access: tools can be exposed as Web 
services.

Metadata support: Tables/SQL databases to store tools descriptions; 
custom description fields can be added to Blobs containing binary 
tools; WSDL descriptions for Web services.

Results Models storing: Blobs to store results either in textual or visual form.
Metadata support: Tables/SQL databases to describe models format; 

custom description fields can be added to Blobs containing data‐
mining models.

Application 
management

Design Single‐task applications: programming the execution of a single Web 
service or binary tool on a single Worker role instance.

Parameter sweeping applications: programming the concurrent 
execution of a set of Web services or binary tools on a set of 
Worker role instances.

Workflow‐based applications: programming the coordinated 
execution of a set of Web services or binary tools on a set of 
Worker role instances.

Execution Storage resources access: managed by the Storage layer.
Compute resources allocation: managed by the Compute layer.
Application execution and monitoring: Web services / Worker role 

instances to run single tasks; Tables to store tasks information; Web 
role instance to present monitoring information.

Results presentation: Blobs / Tables to store/interpret the inferred 
models; Web role instance to present results.
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51.4.2 Applications Execution

A user interacts with the system to perform the following steps for designing and executing a knowledge 
discovery application:

1. The user accesses the web site and designs the application (either single‐task, parameter sweeping, or 
workflow‐based) through a Web‐based interface.

2. After application submission, the system creates a set of tasks and inserts them into the Task Queue on 
the basis of the application.

3. Each idle Worker picks a task from the Task Queue, and concurrently executes it.
4. Each Worker gets the input dataset from the location specified by the application. To this end, a file trans-

fer is performed from the Data Folder where the dataset is located, to the local storage of the Worker.
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Data folder Tool folder

Task queue

Tables

Worker instances
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Figure 51.1 System architecture and application execution steps
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5. After task completion, each Worker puts the result on the Data Folder.
6. The web site notifies the user as soon as her / his task(s) have completed, and allows her / him to access 

the results.

The set of tasks created in the second step depends on the type of application submitted by the user. In the 
case of a single‐task application, just one data‐mining task is inserted into the Task Queue. If the user submits 
a parameter sweeping application, the tasks corresponding to the combinations of the input parameters values 
are executed in parallel. In the case of a workflow‐based application, the set of tasks created depends on how 
many data‐mining tools are invoked within the workflow; initially, only the workflow tasks without depend-
encies are inserted into the Task Queue.

The Task Table is dynamically updated whenever the status of a task changes. The web site periodically 
reads and shows the content of this table, thus allowing users to monitor the status of their tasks.

Input data is temporarily staged on a server for local processing. To reduce the impact of data transfer on 
the overall execution time, it is important that input data are physically close to the virtual servers where the 
workers run on.

51.4.3 User Interface

The App submission section of the web site is composed of two main parts: one pane for composing and run-
ning both single‐task and parameter‐sweeping applications and another pane for programming and executing 
workflow‐based knowledge discovery applications.

As an example, Figure 51.2 shows a screenshot of the App submission section, taken during the execution 
of a parameter‐sweeping application. An application can be configured by selecting the algorithm to be exe-
cuted, the dataset to be analyzed, and the relevant parameters for the algorithm. The system submits to the 
cloud a number of independent tasks that are executed concurrently on a set of virtual servers.

A user can monitor the status of each single task through the App monitoring section, as shown in 
Figure 51.3. For each task, the current status (submitted, running, done, or failed) and status update time are 

Figure 51.2 Screenshot of the App submission section
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shown. Moreover, for each task that has completed its execution, two links are enabled: the first one (Stat) 
gives access to a file containing some statistics about the amount of resources consumed by the task; the 
second one (Result) visualizes the task result.

51.4.4 Workflow Programming

As mentioned above, the framework also includes the programming interface and its services to support the 
composition and execution of workflow‐based knowledge discovery applications. Workflows support 
research and scientific processes by providing a paradigm that may encompass all the steps of discovery 
based on the execution of complex algorithms and the access and analysis of scientific data. In data‐driven 
discovery processes, knowledge discovery workflows can produce results that can confirm real experiments 
or provide insights that cannot be achieved in laboratories.

Visual workflows in our framework are directed acyclic graphs whose nodes represent resources and 
whose edges represent the dependencies among the resources. Workflows include two types of nodes:

 ● Data node, which represents an input or output data element. Two subtypes exist: Dataset, which repre-
sents a data collection, and Model, which represents a model generated by a data analysis tool (e.g., a 
decision tree).

 ● Tool node, which represents a tool performing any kind of operation that can be applied to a data node 
(filtering, splitting, data mining, etc.).

The nodes can be connected with each other through direct edges, establishing specific dependency rela-
tionships among them. When an edge is being created between two nodes, a label is automatically attached 
to it representing the kind of relationship between the two nodes.

Data and Tool nodes can be added to the workflow singularly or in array form. A data array is an ordered 
collection of input / output data elements, while a tool array represents multiple instances of the same tool.

Figure 51.3 Screenshot of the app monitoring section
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Figure 51.4 shows a data‐mining workflow composed of several sequential and parallel steps as an example for 
presenting the main features of the visual programming interface of the Data Mining Cloud Framework (Marozzo 
et al., 2013). The example workflow analyzes a dataset using 16 instances of the J48 classification algorithm 
provided by the Weka toolkit (Witten and Frank, 2000), which work on 16 partitions of the training set and gener-
ate the same number of knowledge models. By using the 16 generated models and the test set, 16 classifiers in 
parallel produce the same number of classified datasets. In the final step of the workflow, a voter generates the 
final dataset by assigning a class to each data item, choosing the class predicted by the majority of the models.

Table 51.2 presents execution times and speedup values achieved by using up to 16 virtual machines to 
execute the workflow on three datasets with size of 125, 250 and 500 MB. They are extracted from the KDD 
Cup 1999’s dataset (Bache and Lichman, 2013).

We can observe that, in this example, the speedup achieved is satisfactory even if it does not increase line-
arly with the number of servers used because partitioning and voting tools run sequentially in the workflow. 
On the other hand, there are cases in which the inherent parallelism of applications can be fully exploited, 
bringing a linear speedup. For example, with a parameter‐sweeping data‐mining application on large data, 
discussed in Marozzo et al., 2011), we achieved almost a linear speedup (14.6 on 16 virtual servers). Even 
when the speedup is not linear, the absolute amount of time saved can be significant when large datasets are 
analyzed. For instance, in the application whose results are presented Table 51.2, the execution time drops 
from more than 3 hours using 1 server, to less than 20 minutes using 16 servers. These results show the effec-
tiveness of the proposed approach based on cloud resource exploitation for running data analysis applications.

Figure 51.4 The workflow during its execution

Table 51.2 Execution times and speedup of the application using up to 16 virtual machines

No. of servers 125 MB dataset 250 MB dataset 500 MB dataset

Execution time Speedup Turnaround time Speedup Turnaround time Speedup

 1 00:29:49 1 01:18:07 1 03:16:38 1
 2 00:16:03 1.86 00:39:25 1.98 01:44:03 1.89
 4 00:08:25 3.54 00:19:54 3.93 00:53:04 3.92
 8 00:04:57 6.02 00:12:45 6.13 00:30:47 6.76
16 00:03:05 9.67 00:07:10 10.9 00:19:02 10.9
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51.4.5 Other Cloud Solutions for KDD Implementation

In the implementation mentioned before, the following mapping is used between Data Mining Cloud 
Framework’s components and Azure’s components: (i) Data Folder and Tool Folder are implemented as 
Azure’s Blob containers; (ii) Data Table, Tool Table, Application Table, Task Table, and Users Table are 
implemented as Azure’s nonrelational tables; (iii) the Task Queue is implemented as an Azure’s Queue; (iv) 
Virtual Compute Servers are implemented as Azure’s Worker Role instances; (v) Virtual Web Servers are 
implemented as Azure’s Web Role instances.

Even though the current implementation of framework is based on Azure, it has been designed to abstract 
from specific Cloud platforms. It can therefore be implemented using other cloud systems, like, for instance, 
the popular Amazon Web Services (AWS) or the Google App Engine. In particular, AWS offers compute and 
storage resources in the form of Web services, which comprise compute services, storage services, database 
services, and app services. Compute services include Elastic Compute Cloud (EC2) for creating and running 
virtual servers and Amazon Elastic MapReduce for building and executing MapReduce applications (Dean 
and Ghemawat, 2008). Storage services include Simple Storage Service (S3) for storing and retrieving data 
via the Internet. Database services include Relational Database Service (RDS) for relational tables and 
DynamoDB for nonrelational tables. App services include, among others, Simple Queue Service that imple-
ments a queue for application‐level messages. If AWS is considered as a target Cloud platform, the Data 
Mining Cloud Framework’s components can be implemented on the AWS’s components as follows: (i) Data 
Folder and Tool Folder could be stored on S3; (ii) Data Table, Tool Table, Application Table, Task Table, and 
Users Table could be implemented as non‐relational tables using DynamoDB; (iii) the Task Queue could be 
implemented using the Simple Queue Service; (iv) Virtual Compute Servers and Virtual Web Servers could 
be created on top of EC2.

Furthermore, other than on well known public cloud platforms, the framework can be implemented on 
the top of a private IaaS system by using open source cloud frameworks such as OpenStack. In this case, 
each component could be implemented using a software library/application deployed on a virtual machine 
executed by the IaaS system. According to this approach, the Data Mining Cloud Framework components 
can be implemented as follows: (i) Data Folder and Tool Folder could be implemented as FTP servers (e.g., 
Filezilla); (ii) Data Table, Tool Table, Application Table, Task Table, and Users Table could be implemented 
as nonrelational tables (e.g., MongoDB); (iii) Task Queue could be implemented using a message‐oriented 
middleware (e.g., Java Message Service); (iv) Virtual Compute Servers could be implemented as batch 
applications (e.g., Java applications); (v) Virtual Web Servers could be implemented as Web servers (e.g., 
Apache / Tomcat).

51.5 Conclusion

In this chapter, we discussed how cloud computing technologies can be exploited to implement a service‐ori-
ented distributed KDD system. Starting from the requirements of a generic distributed KDD system, we 
discussed how these requirements can be fulfilled by a cloud platform. As a case study, we described the Data 
Mining Cloud Framework, a system that supports the distributed execution of KDD applications. The user 
interface is very simple and hides the complexity of the cloud infrastructure used to run applications.

The performance of the Data Mining Cloud Framework have been evaluated through the execution of 
data‐mining applications on a pool of virtual servers hosted by a Microsoft Cloud datacenter. The experi-
ments demonstrated the effectiveness of the framework, as well as the scalability that can be achieved through 
the parallel execution of parameter sweeping data‐mining applications on a pool of  virtual servers.
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Current work is aimed at supporting the design and execution of script‐based data analysis workflows on 
clouds. In Marozzo et al. (2015), we introduced a workflow language, named JS4Cloud, that extends 
JavaScript to support the implementation of cloud‐based data analysis tasks and the handling of data on the 
cloud. We also demonstrated how data analysis workflows programmed through JS4Cloud can be  processed 
by the Data Mining Cloud Framework to make parallelism explicit and to enable their scalable execution 
on clouds.
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52.1 Introduction

Almost all relevant infrastructures are using cloud‐based approaches to manage their resources, and have set 
up high‐availability solutions addressing different layers such as IaaS, PaaS, and SaaS. Several vendors are 
covering different aspects and supporting different services natively for cloud solutions. Most of them pro-
vide specific products addressing only a limited number of features and services. On the other hand, the 
availability of a wide range of services is often the basis for selecting cloud solutions. Among the services 
that are requested is the ability to monitor, change, and move virtual machines and services in the same cloud 
for resource optimization and among different clouds to increase reliability and for migration purposes. To 
this end, the modeling and formalization of cloud models and information is becoming more relevant to the 
formalization of different aspects of a cloud at its different levels – IaaS, PaaS, SaaS – and to specific 
resources: hosts, virtual machines, networks, memory, storage, processes, services, applications, and so forth, 
and their relationships.

52.1.1 Modeling Knowledge

In the past, some knowledge representation formalisms were introduced for cloud data modeling. Most of 
them were rooted in simple data structure with description logic to model more complex relationships. In 
recent years, with the beginning of the semantic Web, there has been a new interest in knowledge description 
formalisms. The W3C introduced several recommendations for the description of information on the Web, 
and information to be interpreted by machines in general. The basis of the standards is the Resource 
Description Framework (RDF). With RDF (http://www.w3.org/RDF/, accessed January 5, 2016) a fact is 
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represented with a “triple,” made up of a subject, a predicate and an object or a data value. Moreover the 
subject, the predicate and the object are represented with a uniform resource identifier (URI). For example, 
RDF triple http://www.example.com/p.bellini, http://xmlns.com/foaf/0.1/knows, http://www.example.
com/p.nesi states that the “thing” identified by URI http://www.example.com/p.bellini “knows” the other 
“thing” identified by http://www.example.com/p.nesi. The “knows” predicate is also defined as an object 
property and it is identified by URI http://xmlns.com/foaf/0.1/knows. This property belongs to the FOAF 
(Friend Of A Friend) vocabulary defining aspects and characteristics of people and their relations on the Web 
(http://www.foaf‐project.org/, accessed January 5, 2016).

To express it more concisely, a part of the URI can be considered a prefix that identifies the namespace of 
the thing being described. So, for example, “ex” could be the prefix for http://www.example.com/ and “foaf ” 
for http://xmlns.com/foaf/0.1/ and thus the same triple is expressed by:

ex:p.bellini foaf:knows ex:p.nesi

It is also possible to state that something belongs to a class of things and this fact can be represented by a 
triple. For example, the following RDF triple states that ex:p.bellini identifies something that belongs to the 
class of people:

ex:p.bellini http://www.w3.org/1999/02/22‐rdf‐syntax‐ns#type foaf:Person

There is also the possibility of associating simple data values (strings, numbers, dates, etc.) with a subject 
URI. In the following example, family name and given name of ex:p.bellini, are provided. Furthermore, the 
familyName and givenName are called data properties:

ex:p.bellini foaf:familyName “Bellini”
ex:p.bellini foaf:givenName “Pierfrancesco”

When two or more consecutive triples share the same subject URI (as in the previous example), we can write:

ex:p.bellini foaf:familyName “Bellini”; foaf:givenName 
“Pierfrancesco”.

A vocabulary defines the common characteristics of things belonging to classes and their relations. 
A  vocabulary can be also called “an ontology.” It is defined using the RDF Schema (RDFS) or Web Ontology 
Language (OWL). For example, the “knows” object property is defined as having a domain and range class 
foaf:Person. When using this information, what can be inferred is that both ex:p.bellini and ex:p.nesi belong 
to the class foaf:Person. Moreover, the vocabulary states that the class foaf:Person is a subclass of a more 
general class foaf:Agent; thus both ex:p.bellini and ex:p.nesi belong to the class foaf:Agent.

Web Ontology Language is a family of three ontology languages: OWL‐Lite, OWL‐DL, and OWL‐Full. 
The first two languages can be considered syntactic variants of SHIF(D) and SHOIN(D) description logics 
(DL), respectively, whereas the third language was designed to provide full compatibility with RDF(S) 
(Bellandi et al., 2012). The OWL version 2 language proposed by W3C is quite powerful; it allows the defini-
tion of disjunctive classes, union and intersection of classes, functional properties, symmetric, transitive 
properties, minimum and maximum cardinality of the associated elements of a property, and other features. 
OWL 2 is still based on RDF semantics and provides datatype. It has three profiles: OWL2 EL, OWL2 QL 
and OWL2 RL specifically designed and suitable for reasoning with existential quantifications, query 
 formalization and access, reasoning and formalization of rules, respectively (http://www.w3.org/TR/owl2‐
profiles/, accessed January 6, 2016).
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In order to exploit the information encoded as a set of RDF triples, it can be stored in RDF stores, which 
are optimized for RDF data management and for the activation of reasoning processes on the collected 
knowledge. To this end, a specific query language was designed to find RDF store reticular information. 
Thus, the SPARQL (SPARQL Protocol and RDF Query Language, recursive definition (http://www.w3.org/
TR/2004/WD‐rdf‐sparql‐query‐20041012/, accessed January 5, 2016)) uses an advanced matching algorithm 
to match a portion of the RDF graph with a specified template. For example, the following query lists names 
of people known by a person (identified with his e‐mail) directly and indirectly through one or more people:

SELECT ?n WHERE {
?p1 foaf:mbox <mailto:pbellini@unifi.it>.
?p1 rdf:knows+?p2.
?p2 foaf:name ?n.

}

Moreover, integrated ontologies can be adopted to enforce capabilities in the model – for example, by 
exploiting vocabularies (ontology segments) to define properties such as the FOAF for people and structures, 
Dublin Core for metadata, wgs84_ pos for latitude and longitude representation, OWL‐Time or TimeOnt for 
reasoning about time and temporal aspects, INDL for infrastructure and network description, and QoSOnt to 
define quality of service aspects.

52.1.2 Exploiting Knowledge

The main motivations for modeling and using a cloud knowledge base are related to its exploitation for seman-
tic computing and thus for reasoning about cloud (Androcec et al., 2012). The modeling can be  performed using 
ontology in OWL and RDF. A cloud ontology and knowledge base consists of an ontology that can be used as 
model for a big data RDF store, including cloud resource configurations and conditions at the level of IaaS, 
PaaS, and SaaS, the service level agreements (SLAs) of multitier applications and deployments, monitoring 
data, supporting reselling, brokerage, and real instance data. In a seminal work, Youseff et al. (2008)  proposed 
an approach to the creation of a cloud ontology, decomposing problems into five layers: applications, software 
environments, software infrastructure, software kernel, and hardware. The work  identified the  challenges and 
discussed the ontology. First attempts to model cloud aspects have been grounded on the  proposed taxonomical 
and Simple Knowledge Organization System (SKOS) models (Hoff, 2009; Lairds, 2009).

A more precise understanding of the effective usage of cloud knowledge modeling exploitation can be taken 
from an analysis of the literature concerning the use of cloud knowledge for: (i) facilitating interoperability 
among public and private clouds including automated configurations and deployment (e.g., virtual machine, 
storage and cloning or migration of services); (ii) verification and validation of cloud configuration structures, 
virtual machine patterns, hosts, and so forth, against available resources and structures; (iii) discovering and 
brokering services and resources brokering, including SLAs, SLA, analysis and matchmaking; (iv) computing 
cloud simulation for resource and cost planning, prediction, and optimization; (v) reasoning about cloud work-
load conditions estimated by monitoring and needed when taking decisions about the use of resources, such as 
moving virtual machines, changing resource parameters, negotiating different SLA agreements, detecting 
critical conditions, and so forth; (vi) reasoning about cloud security conditions and evolution.

The Open Grid Forum (OGF) (https://www.ogf.org/ogf/doku.php, accessed January 5, 2016) with its Open 
Cloud Computing Interface (OGF‐OCCI), aims to define interfaces for a unified interface at the level of IaaS. 
This would allow the creation of an interoperable layer among different vendors, by using a Unified Modeling 
Language (UML) model. In the mOSAIC EC FP7‐ICT project (Moscato et al., 2011), cloud knowledge 
modeling has been addressed with the aim of creating a common model to cope with the heterogeneity of 
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terms used by different cloud vendors, and with standards referring to cloud systems using different terminology. 
The major issue for cloud interoperability is the lack of standardized APIs, thus the interaction and migration 
of VMs is a difficult task. The problem of interoperability has been addressed by IEEE Project, P2301 – 
Guide for Cloud Portability and Interoperability Profiles (CPIP), and by IEEE P2302 – Draft Standard for 
Intercloud Interoperability and Federation with the aim of defining common interoperability protocols among 
federated clouds and defining configuration, functionalities, and management of inter‐cloud interoperability 
(IEEE, 2014).

The problems of discovering services, negotiating them, and their composition for cloud infrastructure 
based on ontological models have been discussed in Sim (2011). The proposed solution included a reasoner 
for similarity analysis and compatibility analysis. Dastjerdi et al. (2010) proposed an architecture and solu-
tion to provide virtual appliances on demand. The idea is mainly derived from the SLA models adopted for 
grid computing solutions. Some efforts to describe SLAs were made in the past, beginning with WSLA for 
the definition of SLAs of WebServices (Ludwig et al., 2003).

Regarding cloud simulation, a significant example is CloudSim (Calheiros, et al., 2011), where several 
layers of a typical cloud stack can be simulated, including IaaS, SLA, and so forth, without using knowledge‐
based modeling. The solution is suitable for simulating simple cloud solutions but not, for example, problems 
related to the verification and validation of configurations, smart strategies.

The use of a knowledge base for reasoning about cloud structures and resources, which means automated 
provisioning and verification of service composition, configuration, optimization and deployment, can be 
defined as “Smart Cloud.” This may consist of a set of semantic modeling and computing tools for cloud status 
reasoning while considering the cloud status and evolution via the cloud knowledge base. Intelligence on a 
smart cloud is enforced by means of a set of algorithms to detect and predict critical conditions, verification, 
and validation of configurations (feasibility in terms of consistency and completeness, while taking into 
account present and possible future available resources), estimating slack, automated verification of complete-
ness and consistency, verification of the compatibility of the service level agreement (SLA) with available 
resources, and so forth.

Currently there are several attempts to build smart cloud solutions grounded on ontology and cloud com-
puting (Androcec et al., 2012). Most efforts have been focused on the description of the services available on 
the cloud, to allow users to search and compare services (Zhang et al., 2012).

The most interesting projects related to this topic are: (i) linked USDL (Unified Service Description 
Language – http://www.linked‐usdl.org/, accessed January 6, 2016) used by the FI‐WARE European project, 
providing a set of vocabularies for the description of the different service aspects (core service description, 
SLA, security, price and intellectual property rights (IPRs), even though it is focused on service search and 
discovery; (ii) the mOSAIC project developed a wide ontology covering many aspects from service deploy-
ment to service description, and is also focused on cloud service search (Moscato et al., 2011); and (iii) the 
Icaro Cloud project developed an ontology for the description of both infrastructure and services considering 
verification and validation of configurations and monitoring information and SLAs (http://www.disit.
org/5482, accessed January 6, 2016).

In addition to the above innovative solutions, there are state‐of‐the‐art solutions provided by major vendors 
such as IBM, VMware, HP, and Microsoft, and some specific additional tools and plugins that enforce intel-
ligence on infrastructure management systems.

52.2 Cloud Knowledge Modeling for Smart Cloud

This section reports the current attempts to model cloud knowledge; focuses on the description of infrastructure, 
platform, applications, and business processes.
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52.2.1 Modeling IaaS Information

The IaaS information contains material related to the physical structure of a datacenter, which is made of host 
machines connected on one or more networks, while hosts may have virtual machines assigned. What follows 
is a possible example of a datacenter with 100 hosts, one external storage, and two firewalls described using 
the vocabulary being developed for the Icaro project (http://www.disit.org/5482, accessed January 6, 2016):

ex:datacenter1 rdf:type cld:DataCenter;
cld:hasName “production data center”;
cld:hasPart ex:host1;
…
cld:hasPart ex:host100;
cld:hasPart ex:storage1;
cld:hasPart ex:firewall1;
cld:hasPart ex:firewall2;

Each host machine can have details of the number of CPUs available, the memory size in GB, the disk size 
in GB, the network adapters and the installed operative system, as in the following example:

ex:host1 rdf:type cld:HostMachine;
cld:hasName “host 1”;
cld:hasCPUCount 16;
cld:hasCPUSpeed 2.2;
cld:hasCPUType “Intel Xeon X5660”;
cld:hasMemorySize 16;
cld:hasDiskSize 300;
cld:hasLocalStorage ex:host1_disk;
cld:hasNetworkAdapter ex:host1_net1;
cld:hasNetworkAdapter ex:host1_net2;
cld:hasOS cld:vmware_esxi;
cld:isPartOf ex:datacenter1.

ex:host1_net1 rdf:type cld:NetworkAdapter;
cld:hasIPAddress “192.168.1.1”;
cld:boundToNetwork ex:network1.

ex:host1_disk rdf:type cld:LocalStorage;
cld:hasDiskSize 300.
…

ex:firewall1 rdf:type cld:Firewall;
cld:hasName “Firewall 1”;
cld:hasNetworkAdapter ex:firewall1_net1;
cld:hasNetworkAdapter ex:firewall1_net2.

Each host machine contains a number of virtual machines; for example, a virtual machine with 2 CPUs, 
1 GB of RAM, 10 GB of disk, one network adapter, with Windows XP professional running on host5, which 
is described as:

ex:vm1 rdf:type cld:VirtualMachine
cld:hasName “vm 1, windows xp”;
cld:hasCPUCount 2;
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cld:hasMemorySize 1;
cld:hasVirtualStorage ex:vm1_disk;
cld:hasNetworkAdapter ex:vm1_net1;
cld:hasOS cld:windowsXP_Prof;
cld:isStoredOn ex:host1_disk;
cld:isPartOf ex:host1.

ex:vm1_disk rdf:type cld:VirtualStorage;
cld:hasDiskSize 10.

Moreover each element can have associated information needed for monitoring purposes (see section 52.3.4).
Regarding the description of infrastructure resources, ontology like INDL‐Infrastructure and Network 

Description Language may be used (Ghijsen et al., 2012). It defines a generic Node that is linked with other 
nodes through interfaces and links. VirtualNodes are used to represent virtual machines running on nodes. 
NodeComponents are used to represent the processing, memory, and storage components of a node.

The differences between the two formalizations seem to be mainly related to the description of networking 
aspects – namely in INDL it is more detailed, although it lacks some details.

The mOSAIC ontology allows some information about the host and the virtual machines to be described (e.g., 
CPU, memory, storage), but it does not describe how they are connected in the network and how the  virtual 
machines are related to the host machine. Virtual machines are stored and associated with hosts or clusters.

52.2.2 Modeling PaaS Information

This section reports current efforts to model the platform level, while considering the services used to create 
applications. In the cloud, services are the building blocks used to create more complex and complete appli-
cations, which can be used. In general, an application uses services, like a database service, a file system 
service, a mail service, as well as some Web servers or Web application servers. Generally these services are 
requested by other specific applications at SaaS level by allocating them on a set of virtual machines. These 
virtual machines can host and implement more than one service or cooperate with other virtual machines to 
implement a service (e.g., a DB cluster). Moreover, these virtual machines can either provide services for 
only one specific customer or can be shared among multiple customers. In the latter case, some kind of 
authentication and service‐sharing mechanism is used.

An application can be modeled using specific constraints (e.g., a maximum of four web servers); the appli-
cation can be seen as a class containing the specific application instances. A way to represent an application 
is by defining its relations using the OWL constructs. What is reported below is the general definition of the 
class of Applications expressed using the OWL2 Manchester syntax (http://www.w3.org/TR/owl2‐manchester‐
syntax, accessed January 6, 2016):

Application = Software
and (hasIdentifier exactly 1 string)
and (hasName exactly 1 string)
and (developedBy some Developer) and (developedBy only 
Developer)
and (createdBy exactly 1 Creator) and (createdBy only Creator)
and (administeredBy only Administrator)
and (needs only (Service or Application or ApplicationModule))
and (hasSLA max 1 ServiceLevelAgreement)
and (hasSLA only ServiceLevelAgreement)
and (useVM some VirtualMachine) and (useVM only VirtualMachine)
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It states that an Application is a Software, which has exactly one identifier and one name, it has been developed 
by one or more developers (and only by developers!), it has been created (instantiated) by a creator user, it can be 
administered only by administrator users, it needs only Services, other Applications or ApplicationModules, it 
has at most one SLA, and it uses some virtual machines. Subclasses of the Service are the services running on a 
virtual machine. A specific application, for example Joomla, is a subclass of Application with some additional 
constraints:

Joomla SubClassOf Application
and (needs exactly 1 MySQLServer)
and (needs exactly 1 HttpBalancer)
and (needs exactly 1 NFSServer)
and (needs min 1 (ApacheWebServer and (supportsLanguage value php_5)))

The Joomla class is defined as a subclass of the intersection of the Application class with the classes of 
things that need exactly one MySQL server, one Http balancer, one NFS server, and at least one Apache 
WebServer supporting PHP 5.

A specific instance of the Joomla application is as follows:

ex:Joomla1 rdf:type app:Joomla;
cld:hasName “Joomla for my business”;
cld:developedBy ex:user;
cld:createdBy ex:u1;
cld:needs ex:mysql1, ex:apache1, ex:apache2, ex:httpbalancer1, 
ex:nfsserver1;
cld:hasSLA ex:sla1;
…

ex:mysql1 rdf:type cld:MySQLServer;
runsOnVM ex:vm1;
…

ex:apache1 rdf:type cld:ApacheWebServer;
cld:runsOnVM ex:vm2;
cld:supportsLanguage cld:php_5;
…

52.2.3 Modeling SaaS, and XaaS Information

This section describes current efforts to model the whole service provided by the cloud, by considering the 
interoperability aspects and the brokerage of services from different clouds, as well as the description of a 
whole business process.

As shown in section 52.3.2, an application may be described by its parts (the services being used) and 
it may also have associated pricing information, a description of the provided functionalities, a service‐
level description, and other aspects. When using this kind of information, a third party can store all such 
application descriptions, and provide a service making it possible to search for applications having some 
functionality (e.g., enterprise resource planning – ERP) with some pricing constraints and some other 
interesting features.
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The most interesting project dealing with this kind of information is Linked USDL. It allows the description 
of the pricing information of a service while reusing other popular vocabularies such as GoodRelations 
(Hepp, 2008), Dublin Core (http://dublincore.org, accessed January 6, 2016) and FOAF. It allows a service to 
be associated with a PricePlan having different PriceComponents, which may be based on different 
PriceVariables. It also allows complex dynamic pricing to be modeled. The following example is related to a 
plan to use a service for 5 euro / month:

ex:Joomla rdf:type usdl-core:ServiceOffering;
usdl‐price:hasPricePlan ex:joomlaPriceplan.
…

ex:joomaPriceplan rdf:type usdl-price:PricePlan;
usdl‐price:hasPriceComponent ex:ppc;
…

ex:ppc rdf:type usdl-price:PriceComponent;
price:hasPrice [ rdf:type gr:PriceSpecification ;
gr:hasCurrency "EUR" ;
gr:hasCurrencyValue "5";
gr:hasUnitOfMeasurement "MON"
] .

Another aspect related to SaaS is multitenancy. This approach involves the possibility of exploiting only a 
part of a shared service and not the entire software application. This portion of the service application is defined 
as tenant, and it behaves as if it were the full application, whereas the service is shared among all the applica-
tion tenants. In this case, the shared application has a set of tenants that can have specific SLAs (e.g., they may 
use a certain amount of storage, a certain amount of network bandwidth, a certain amount of connections, etc.).

When business users create their business processes on cloud, they can decide to use different applications, 
which can be connected to share information. A BusinessConfiguration can be described as a set of applica-
tions or application tenants that may have dependencies on one another – for example, a business configura-
tion with a Joomla instance and a customer relationships management (CRM) tenant.

52.2.4 Modeling SLAs and Monitoring Aspects

Regarding the formalization of SLAs, some efforts have been made beginning with WSLA for the definition 
of SLAs of WebServices (Ludwig et al., 2003). The SLA is described using XML schema and it is very gen-
eral, thus allowing service metrics to be defined and composed.

The description defines services (ServiceDefinition) on the basis of parameters (SLAParameter) that are 
defined using metrics (Metric) and metrics are defined using functions that can use other metrics. An SLA 
can be associated with some Obligations describing the objectives of the service level to be guaranteed.

The WS‐Agreement was developed from the Grid Resource Allocation Agreement Protocol Working Group 
(GRAAP‐WG). The WS‐Agreement Specification V1.0, defined a protocol to specify the agreement between 
two services, and it was published in May 2007 as an Open Grid Forum Proposed Recommendation. The 
specification is composed of a schema for the agreement description, a set of “port type” and “operation” to 
manage the agreements life‐cycle (including creation, termination and agreement state control). An Agreement 
is made of a Context and some Terms divided into ServiceTerms and GuaranteeTerms, the latter including the 
conditions that need to be guaranteed by the service. Conditions can be specified with a target value for the 
parameter or using expressions, but the syntax to be used to express these conditions is not specified. Any kind 
of XML or textual representation can be used, thus limiting the description interoperability.
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Oldham et al. (2006) defined an ontology for matching service requests and offers, beginning with WS‐Agreement. 
This ontology uses QoSOnt (Dobson et al., 2005) to define quality of service aspects and TimeOnt for temporal 
aspects. This service (SWAPS) is based on semantic technologies such as IBM SNOWBASE for ontology manage-
ment and IBM ABLE for the reasoning and for inference rules. It should be noted that WSLA expressions (which 
can be easily modeled in OWL) are used to define service conditions.

The European project NextGrid, for the definition of a European platform for grid computing, has defined 
a SLA based mainly on WS‐Agreement. Moreover, SLAng (Lamanna et al., 2003) is a different XML schema 
for SLA definition, which is far less generic than WSLA and WS‐Agreement. Moreover, in the context of the 
FI‐WARE project, the SLAware model has been proposed. SLAware defines the formal semantics of the SLA 
by using Transparent Intentional Logic (a modal temporal logic), while the data model is defined using UML.

In the context of the FI‐WARE project, LinkedUSDL has a part related to SLA representation, which is 
much simpler than SLAware. On the other hand, it seems that the work on SLAware modeling and mainte-
nance has been stopped. In LinkedUSDL‐SLA, the service‐level profile is associated with a service level that 
can be a Guaranteed State or a Guaranteed Action. The service level can be associated with a service‐level 
expression, representing, in natural language, the description of the condition to be met, and it is also associated 
with variables that are taken into account to check whether the condition is fulfilled or not.

In Icaro Cloud, the SLA allows the formalization of a set of conditions based on metric values associated with 
applications, application tenants, and / or complete business configurations. The Icaro Cloud SLA model follows 
a simplified WSLA model, composing complex conditions and / or conditions based on comparing metric values 
to constant values (e.g., defined in the SLA contract). For example, Figure 52.1 depicts a SLA to guarantee a response 
time less than 5 s for the Apache http server and a database size less than 1 GB. In Figure 52.1 the SLA is represented 
as an oriented graph where nodes are subject or object URI and arcs are the properties relating them.

In the MOSAIC ontology, the SLA of a service allows it to associate a set of policies. The latter, in turn, can 
be defined as a set of functional (e.g., monitoring, backup and recovery, replication) and nonfunctional properties 
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Figure 52.1 A graph representing a SLA in the framework of the Icaro cloud ontology
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(e.g., CPU speed, network bandwidth, availability). For example, a virtual machine provided as IaaS with x86 
CPU architecture, and two CPU cores featuring high replication, can have an SLA represented as follows:

ex:vm_sla rdf:type msc:SLA;
msc:definedForService ex:vm;
msc:definePolicy ex:vm_policy.

ex:vm rdf:type msc:VirtualMachine;
msc:hasVirtualizationTechnology msc:Xen;
…

ex:vm_policy rdf:type msc:Policy;
msc:expressRequirement msc:x86;
msc:expressRequirement [ msc:numberOfCPUCores 2 ];
msc:expressRequirement msc:HighReplication;

The modeling of SLAs can be very different; some approaches are focused on the specification of service 
metrics bounds and conditions that need to be verified, whereas others, like Mosaic, are more focused on the 
specification of high‐level requirements, which are more difficult to verify. This is due to the fact that some 
solutions are oriented to SLA verification / checks, whereas others are oriented to allow service search or 
match. Among solutions focused on SLA checking, there are Linked‐USDL and WS‐Agreement, which do not 
have a way to represent the conditions that have to be met. On the other hand, other solutions such as WSLA, 
SWAPS, and Icaro Cloud, define specific constructs to represent conditions and fit them in their automated 
computation and reasoning. These latter ones are obviously more suitable for knowledge reasoning.

As far as we know, only Icaro Cloud allows the description of monitoring information associated with host 
machines, virtual machines, services, and application tenants. The monitoring information may include, for 
example, the IP address to be used for monitoring a service or specific information regarding the metrics to 
be monitored – particularly those that are specific to the application and that are used in the SLA. For exam-
ple, an Apache Web server may have defined a monitor on response time:

ex:apache1 rdf:type cld:ApacheWebServer;
cld:runsOnVM ex:vm2;
cld:hasMonitorInfo ex:minfo1;
…

ex:minfo rdf:type cld:MonitorInfo;
cld:hasMetricName “responseTime”;
cld:has Arguments “http://…”; #specific arguments to be 
provided to the plugin
cld:hasWarningValue 1;
cld:hasCriticalValue 4;
cld:hasMaxCheckAttempts 3;
cld:hasCheckInterval 5; #check every 5 min

52.3 Smart Cloud vs Industrial Applications

Modeling cloud knowledge can be the basis for enabling a large range of future reasoning applications. Due 
to the complexity of cloud knowledge models and to the amount of data collected by cloud monitoring sys-
tems, cloud reasoning is becoming a big data problem (Bellini et al., 2013). At the industrial level, the closest 
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features to “smart‐cloud” reasoning are the so‐called resource optimization tools, elasticity, and so forth. 
Elasticity aims to cope with objectives such as performances, energy consumption, optimization of costs. 
These approaches could benefit from the presence of cloud knowledge base, and yet in most cases, traditional 
approaches are used, thus limiting cloud smartness.

As a general rule, elasticity is defined as the ability given to customers to quickly request, receive, and 
release as many resources as needed. The elastic paradigm in cloud computing is strongly related to cloud 
resource monitoring and prediction, and it should not be confused with scalability, which is the ability of a 
system to make use of the available increased resources. An elastic application can automatically adapt itself 
to modify the requested or released resources. Therefore, scalability is defined as a static property, and elas-
ticity as a dynamic one. Elasticity policies are divided into automatic (actions are taken on the basis of rules 
and settings or SLAs) and manual (the user is responsible for monitoring the cloud environment). GoGrid, 
Rackspace and Microsoft Azure are notable examples of cloud infrastructures where resources are manually 
managed with no automatic elasticity policies.

Typically, elastic computing includes three different aspects: replication (i.e., horizontal scale), migration, 
and resizing (i.e., vertical scale). Replication includes adding / removing resource instances from the cloud 
environment (e.g., virtual machines, SaaS modules). Migration includes moving a running virtual machine 
from one physical server to another. Resizing includes adding / removing processing, memory and storage 
resources from a running resource instance.

Automatic policies are further divided into reactive (based on rules) and predictive. As an example, reac-
tive rules are implemented in Amazon. On the other hand, predictive policies make use of heuristics and 
mathematical techniques to predict the system behavior, and hence to decide the modality and the amount of 
scaling. Amazon Web Services includes a replication feature called Auto‐Scaling, in the EC2 service (http://
aws.amazon.com/ec2, accessed January 6, 2016). This feature makes use of the so‐called Auto Scaling Group 
(ASG) (i.e., a set of instances at the disposal of an application), and it uses an automatic reactive approach 
where each ASG includes a set of rules defining the number of rules that must be added / removed.

52.4 Conclusions

The cloud knowledge models reviewed and represented in this chapter have been derived from the literature 
and current attempts at standardization. The state of the art of cloud knowledge is presently in evolution. 
A major effort is needed to fully cover all the potential capabilities of cloud knowledge base applications. The 
most widespread applications are in the areas of modeling and reasoning about: (i) cloud interoperability 
among public and private clouds; (ii) cloud configuration at the different levels of cloud stacks; (iii) cloud 
service and application discovering and brokering, including SLA matchmaking; (iv) cloud simulation for 
workload prediction; (v) dynamic analysis to adapt cloud workload conditions, as in the elastic computing 
paradigm; and (vi) security and security analysis. Most of these application fields need to work on different 
cloud knowledge models, while a common standard would be needed to make the applications and algo-
rithms interoperable. Modeling cloud knowledge can be the basis for enabling a large range of future reason-
ing applications. Due to the complexity of cloud knowledge models and the amount of data collected by 
cloud monitoring systems, cloud reasoning is becoming a big data problem.
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53.1 Introduction

Information workers are familiar with many common cloud applications such as Google, Facebook, iTunes, 
and Drop Box. These applications access resources that are part of the current information technology (IT) 
landscape. As consumers, information workers access online banking tools while giving little thought to the 
implications of these applications for their professions. This chapter will focus on the implications and how 
cloud computing is impacting the IT industry today and the IT industry of the future.

Perhaps an understanding of the impact on the IT industry depends on the perspective one has of the defi-
nition of cloud computing. Different people/institutions define cloud computing with varying degrees of 
precision and technical specificity. Some take a hardware‐centric, services‐oriented point of view. It is the 
infrastructure and the services provided that establish whether or not one is in the realm of cloud computing. 
Others, like the National Institute of Standards and Technology (NIST), take a much broader view.

On a narrow perspective of cloud computing, the implications for the IT industry are limited to the effect 
that cloud computing has on the handoffs between technical roles. The focus would be on understanding the 
overlaps and gaps among various skills required to develop and maintain the infrastructure and provide ser-
vices. A broader perspective takes into consideration a wider range of skills, including strategic analysis and 
architecture. Financial implications also come into play.

This chapter takes a broad perspective of cloud computing to look at the effect it has on the overall industry 
as well as on individual job roles. Cloud computing will impact the overall industry as it relates to where the 
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jobs are located. In a traditional structure there is duplication of skills within the service provider and con-
sumer organizations. The nature of cloud computing lends itself to the elimination of this duplication.

The implication is that many of the traditional technical roles will migrate from the consumer organization 
to the provider of services. As these roles migrate, they will evolve as a result of requiring individuals to pos-
sess skills that heretofore have been identified as different disciplines such as networking, database, hard-
ware, software, and security. Cloud computing will blur the lines across these disciplines. This chapter brings 
into focus the drivers of transformation in the current IT industry, the rationale behind the changes to job 
roles, and a perspective of the probable future state of the IT industry as a result of the growth of cloud com-
puting.

53.2 Impact on the IT Industry

A perfect storm of hardware cost reduction, a proliferation of Web‐related development tools, and a similar 
proliferation of stable open‐source tools have allowed cloud services to mature into the prevailing comput-
ing paradigm in IT. Cloud technology allows firms to offload the management of what can be viewed as 
commodity services – networking, analytics, applications, and infrastructure. Instead of employing a large 
staff to maintain the corporate infrastructure, many companies are purchasing, as services,  functions they used 
to maintain in‐house on a day‐to‐day basis. Major cloud service providers like Google, Amazon, and IBM 
are increasing the services they provide, and more customers are using them. As a result, traditional IT ser-
vice providers, whose offerings in the past have been very similar to the services companies would provide 
internally, will be challenged to incorporate cloud technologies effectively into their business models. As a 
consumer of these services, of course, one may not care whether the provider uses cloud  technologies or not – 
one only wants the service that was contracted. But providers will be increasingly  compelled to avail themselves 
of cloud services when these services, as they often do, provide cost or efficiency advantages for the ser-
vice they provide.

Kim et al. (2012) outlines the challenges traditional IT service providers face vis‐à‐vis areas of outsourc-
ing. They note that maintaining an optimal workforce level for the service provider is difficult due to the 
volatile nature of IT. For example, in one period, demand for a complex skill like enterprise database manage-
ment may be high, such as the demand for Oracle database administrators (DBAs), but a year later such 
demand may dissipate. It should be noted that often these services merely provide flexible staffing for the IT 
service providers’ clients as the contracts provide for on‐site expertise. The volatility of the market for IT 
services makes it hard for service providers to keep adequate staff on hand to match demand precisely. This 
is compounded by the issue of underutilization of personnel. To keep an adequate level of staff for customers’ 
needs, IT service providers often maintain excess staff, idle for long periods of time. This is of course expen-
sive and inefficient. A cloud‐based service model allows IT service providers to maintain skills closer to 
optimal staffing levels. While specific business‐related competencies like DBAs will still be needed for the 
business, commodity skills like network administration can be provided via cloud services.

The evolving world of IT in various industries has created demands that service providers recognize as 
opportunities and challenges. Among these are: mobile devices, biometric services, autonomic management 
of cloud services, healthcare information systems, increased security concerns, and cloud based desktop 
interfaces. As result, the IT service model is increasingly becoming cloud based. In the past, service providers 
managed customers’ networks, either on site or remotely, using specific protocols for specific customers. As 
cloud service providers, they must still offer these services but now, with networking as a service (NaaS), the 
providers’ tasks become much more sophisticated and challenging. They must offer multiple platforms to 
multiple customers, and often, due to virtualization, these protocols will live side by side on the same hard-
ware. Multiple levels of service and completely dynamic provisioning must be provided. Accounts of outages 
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with Amazon’s Elastic Community Cloud and Intuit, as well as data access problems at Dropbox and Google, 
give a clear indication that cloud‐based services introduce a new level of sophistication for network service 
providers (Bouchenak et al., 2013).

Feng et al. (2011) propose an approach to manage the increased demands of cloud‐based network services. 
They give an overview of the philosophy behind their approach:

From the perspective of service, the abstraction of network function and the layer of network protocol stack will 
be re‐organized and divided into three layers: service specification, network capacity, network behavior. In this 
vision, network service in different abstract forms will regard as middle ground for the continuous resolution of 
tussles between providers and users.

The approach includes a “cloud‐based network” with the ability to deploy network protocols dynamically. 
This is done using a “protocol service instance,” which allows for separate instances of networking protocols 
as services. A potential major tool for the deployment of networks in the cloud is the open‐source tool Open 
Flow, which is functionality added to commercial switches that facilitate software defined networking. It is a 
layer of abstraction above the existing infrastructure, which allows easier modification and management. 
Open Flow, and solutions like it, are seen as the path forward to allowing cloud‐based networking to be more 
dynamic and robust.

Another IT service that is moving rapidly to the cloud is healthcare informatics. As we have seen with the 
complications of implementing the Affordable Healthcare Act, performance and security are essential issues 
when it comes to healthcare technology via the Web. The Health Insurance Portability and Accountability Act 
(HIPPA) is a set of legal guidelines to be followed in protecting patient confidentiality. Managing this data in 
the cloud provides considerable challenges.

Liu et al. (2012) proposed a model for using mobile devices and a virtual integrated medical information 
system (VIMS). Using such a service, healthcare professionals can share vital patient data via the cloud. The 
challenge, of course, is to make sure this data is handled securely and efficiently. Liu and her team proposed 
a cloud‐based system to follow both HIPPA guidelines and run in a multiplatform, multidevice environment. 
Such solutions are absolutely essential if healthcare informatics is to live in the cloud effectively.

Prior to the advent of outsourcing, an organization had to manage all of the components involved in its IT 
function: hardware, operating systems deployment, backend server deployment including databases, and all 
involved middleware. Outsourcing allowed the organization to contract services either for cost advantages or 
to provide expertise the company did not have.

The IT function in organizations has long used outsourcing to extend its capabilities. In the past, IT ser-
vices were merely third‐party solutions for functions normally provided by the IT organization. In 1989, 
Eastman Kodak was spending $250 million a year on information technology. They entered an agreement 
with IBM and two other companies for $250 million over 10 years to provide IT services. While not the first 
or largest company to enter into an outsourcing agreement, this is cited as the first highly visible, successful 
outsourcing agreement (Marchewka, 2012: 386). It was also the beginning of IT outsourcing as a standard 
industry practice. By 2000, 54% of IT services purchased in North America were outsourced.

Pre‐cloud IT outsourcing did not fundamentally change the nature of the IT services provided. As previ-
ously stated, they were for the most part identical in nature to the services companies would provide for 
themselves internally. The IT function had evolved from the 1950s to 2000 as companies began to see the 
computer as an essential tool for doing business, and one that needed dedicated resources to manage it.

Around the year 2000, the technical foundation for cloud computing was in place. Both industry and end 
users began to see the benefit of accessing computing resources remotely. Home users could access the 
world’s information instantly via the World Wide Web, and companies began allowing their information 
workers to access company LANs remotely. While most of the software used still lived on company desktops 
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and servers, the appearance of SalesForce.com in 1999 marked the beginning of the cloud era (Hayes, 2008). 
SalesForce offered a suite of programs that users could access, which were housed entirely online. While 
SalesForce was and is an application and not an IT outsourcing service, it did not take long for the advantages 
of this model to be understood by the IT industry. As servers grew faster and storage became cheaper, it 
became more reasonable for applications to be accessed remotely via a cloud model.

The current cloud model encompasses software as a service (SaaS), platform as a service (PaaS), and 
infrastructure as a service (IaaS), and most recently desktop as a service (Deboosere, 2012). The term “ser-
vice” implies that an organization needs one of the services mentioned above while engaging in its core 
competencies such as manufacturing. Under the cloud model, all of these components can be offloaded to a 
third‐party service provider, and the organization pays a fee for access to them. When done correctly, this can 
result in considerable cost saving to the company. Why? Because the cloud service providers can aggregate 
the needs of their customers (using hardware virtualization) and enjoy considerable economies of scale, 
thereby providing services to their customers at a much lower cost. At present the cloud model can be regarded 
as “mature” as opposed to “emerging.” In the near future, we foresee a considerable restructuring of the IT 
support industry based around the cloud model.

Cloud computing’s impact on IT has been dramatic. It is safe to say that the industry is in effect being 
redefined by it. The core competencies required for a cloud‐enable company are the same essential ones 
required for a company to remain viable, irrespective of its size.

In his book, The World Is Flat, Thomas Friedman (2007: 303) outlines for us his view that the global cloud 
infrastructure has completely flattened the playing field for those firms that know how to use it. Any product 
or service that can be digitized can be cloud enabled, from a small accounting firm in India doing the routine 
work for larger firms in the United States and Europe to a fast‐food vendor using the Internet to having its 
order takers located in one state and the actual restaurant in another. This has created a new business model 
with a new set of competencies required to change an existing business model into one that includes cloud. 
Due to the abundant new cloud‐based services, companies can compete at levels far above where small size 
has traditionally been a problem. To understand why this is the case, we need to begin with an understanding 
of the cloud services known as software as a service (SaaS), hardware as a service (HaaS), platform and 
applications as a service (PaaS), and, peripherally to all three, security as a service. These offerings of cloud 
computing are well documented, so this chapter does not go into a detailed description. For the uninformed, 
these services allow users to access computing resources to which a small business would not have access 
prior to the pervasiveness of the cloud.

For small businesses, SaaS probably has the most immediate impact. A small business can either be a pro-
vider of a service, as in the small Indian accounting firm mentioned above, or a consumer of the service. It 
can also be a startup software developer who has a product for which the firm wants to charge, but instead of 
installing its code on a customer’s system it merely allows customers access to it via cloud enablement. In the 
following example, a client has a product that automates the billing of a medical procedure. It is a case study 
of how a small firm can dramatically extend its footprint via the Cloud.

A small five‐person software development company wants to focus on developing and refining its prod-
uct. The product is a healthcare application that automates billing for a particular medical procedure. To 
deploy this application entails considerable expertise in hardware and network security. The company has 
neither the staff nor the expertise to maintain its own hardware infrastructure to distribute the product via a 
cloud environment, nor does it have the staff to address issues like installation problems and maintenance. 
Providing its product as a cloud service allows it to generate revenue from the product with minimal staff. 
The company contracts with vendors to host the application, secure it, and provide customer support. The 
geographic location of the vendors is irrelevant. All that is needed is the right business model for the product 
or service and the identification of vendors and partners with the necessary expertise to support the business 
model.
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For a medium‐sized company (revenues between $50M and $200M) cloud computing can be a mixed 
blessing. On the one hand, it opens a lot of new opportunities for markets. On the other hand, however, it 
enables smaller companies to become potential threats due to the opportunities that cloud computing 
opens to them. In addition, medium‐sized companies may have considerable sunk costs in noncloud 
infrastructure that they may be hesitant to forsake in favor of cloud technologies. For example, a medium‐
sized furniture retailer (annual revenues of $150m/year), which was trying to expand its customer base 
via technology, had invested a considerable amount of money in proprietary technology (midrange  servers 
and expensive database product). A decision had to be made to use the existing infrastructure for the 
expansion or use cloud technologies in lieu of them. The company decided to use its existing  infrastructure 
and experienced some degree of success, but smaller companies can deploy the same functionality 
 (management of branch offices, Web based catalogs and purchases, and other applications) for a fraction 
of the overall cost. The same cloud computing technology that levels the playing field and allows medium‐sized 
companies to compete with larger global firms, also facilitates smaller companies competing head to head with 
medium‐sized companies.

For large companies, cloud computing is merely the latest step in an evolutionary process of enterprise 
computing. Large companies have always had a need for systems that allow connectivity throughout a broad 
geographical area. What the cloud allows, however, is a level of transparency that permits much more flexi-
bility in deployment. Database management systems can be much more lightweight and eclectic (lightweight 
to the user, that is; for the provider they become more complex). Cloud‐friendly technologies like XML allow 
for seamless integration. So while cloud computing does not represent the same scaling opportunities for 
large companies that it does for small and medium sized companies, it provides another dimension along the 
competitive landscape. Large companies have always been challenged to deploy IT strategically; this chal-
lenge now includes deploying IT so that it permeates the business. This level of deep integration of IT into 
the business is increasingly driven by cloud‐based technologies.

53.2.1 Changes to Existing IT Roles

Along with the impact of the cloud on the IT function of a firm will come a considerable redefinition of 
 existing roles and new roles will be created. As cloud computing evolves, the long‐standing and time‐tested 
concepts that have fueled enterprise computing will increasingly be mapped to the cloud. Enterprise comput-
ing is reliable, secure, and high performing: exactly what is needed as the demands of cloud computing 
continue to grow.

For example, traditionally in IT, often the roles of systems administrator and storage administrator were 
functionally separate. The systems administrator is the person who managed the day‐to‐day system’s opera-
tions; setting up accounts and deploying physical and virtual servers. The storage administrator is the person 
who configured and managed physical storage. A cloud model requires a merging of these formerly separate 
functions into a new function, often known as an infrastructure engineer. This type of redefinition of roles is 
necessitated by the nature of cloud computing. Virtualization, which is the backbone of cloud computing, 
sees the management of the virtual servers and the storage upon which they reside as transparent. The merg-
ing of previously separate functions is influenced by the change in perspective of the IT space that accompa-
nies cloud computing. Storage and systems administration were separate because they were, in fact, two 
separate functions. Under the cloud model both are merged into an infrastructure service, which is managed 
as a distinct entity.

Previously, physical servers accessed defined blocks of storage, such as storage area networks. This interac-
tion could be, and perhaps needed to be, managed separately due to the nature of the structure of the in‐house 
IT department. Often multiple departments would access the same blocks of physical storage. A team would 
be assigned to manage storage across the firm, while departments or business units would have systems 
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administrators for functional units. In a cloud‐based world, virtual servers should use a consistent configura-
tion built around specific virtualization products such as VMWare. It is more efficient and less expensive in 
terms of labor costs for an individual or team to manage the entire cloud infrastructure. This is especially true 
if multiple firms are using the same cloud. While purchasers of cloud services will often manage their own 
virtual servers, the infrastructure on which these virtual servers live will be managed by a person or team 
external to the customer. The service provider (individual or team) will manage both the operating system or 
hypervisor (the software that controls hardware virtualization) and the storage required by it. This model can 
be modified to include more or less self‐service on the part to the customer as needed.

Similarly, it is anticipated that other roles will also be merged into service entities that will be 
 managed as a whole. Application development and application support will be merged into application 
services. Database management system support and business intelligence support will be merged into 
database and analytics services. The enterprise architect and businesses analyst roles will be merged 
into business process services. These new roles will redefine IT functional groupings for both for 
 corporate IT departments and Cloud based service providers. While it is not cloud technology per se 
that drives all of this merging of roles, it is the layers of abstraction that cloud computing creates that 
makes it possible.

For the most part, traditional IT roles like network administrator and DBA will morph into combined roles 
that focus more on process and service delivery than they do on specific technologies. For example, currently 
there are senior technical roles for systems administration and storage administration. We will see a general 
move toward combining these roles into a role that has technical responsibility for both areas. This will be a 
technical manager, with expertise in both areas, though perhaps in neither to the degree of his or her predeces-
sors when the roles were more separate. This individual will become adept at managing the tools and APIs 
that emerge as a result of cloud data services. But the new infrastructure engineer will know more about use 
cases and organizational value than in the past, to allow the decisions they make to be better aligned with the 
organization’s strategic plan. Table 53.1 is an example of the combination of these evolving roles (Belfoure 
et al., 2013).

From a corporate perspective, a sample IT organization might have the following units: strategic develop-
ment (overseeing the strategic integration of the other units); application development (not only managing all 
internal software development but also integrating software development by cloud service providers with the 
applications developed for and by the firm); business intelligence/analytics development (a combination of 
the traditional data services units and the business intelligence units); platform management (managing the 
deployment of applications on the heterogeneous cloud‐aware infrastructure); infrastructure design 
(integrating specific hardware deployments with both the other units and cloud services providers); security 

Table 53.1 Evolving roles

Systems administrator
Infrastructure engineer

Storage administrator

Software developers
Development operations engineersSupport engineers

Oracle DBA
Data engineerDB2 DBA

Business intelligence administrator

Enterprise architect
Business architectBusiness analyst
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and compliance (managing the increased complexities of IT security internally and in the cloud). In this 
hypothetical department, each area is managed by a director who reports to the CIO. The overriding differ-
ence between these new, cloud‐savvy IT departments and their predecessors is that, instead of developing 
requirements for specific vendors of IT services, the departments will focus on their requirements for specific 
services, which can be provided via the services markets by a variety of vendors. It could commonly be the 
case that networking, application development, security and data management will all be provided by differ-
ent vendors, each with detailed service‐level agreements (SLAs).

The total number of full‐time employees in corporate IT will almost assuredly decrease. However, this will 
not cause the absolute number of IT jobs to go down, as many of the positions previously existing within the 
firm will be pushed to the cloud services provider. The US Bureau of Labor Statistics estimates tremendous 
job growth for several IT skills in future years.

Since the positions will increasingly become available in cloud service provider organizations, our predic-
tion is that the growth estimates may be conservative. This is especially true for software development and 
data related jobs. Software development and data‐related work are changing at such a rapid pace that it is 
difficult to predict how the jobs in these areas will look in the near future.

53.2.2 Newly Created IT Roles

Along with the growth in traditional IT job roles, newly created roles will develop. As we enter the era of big 
data, the role of DBA is evolving to the role of data engineer. It requires the skill to manage the huge data 
repositories being created across the enterprise and the cloud. This new role will merge the responsibilities of 
database administration with those of the business intelligence developer. It is also likely that a distinct role 
will emerge that incorporates the skills of a software developer with the ability to make sense of accessing a 
vast amount of data.

The roles of the past still need to be carried out but they will reside within different organizations and 
across different people possessing combined skill sets. For example, the physical infrastructure still needs to 
be supported but it may be transparent to the organization that uses it. The user organization will have plat-
form engineers responsible for enterprise specific environments required to support its applications. These 
environments will be used by the application developers and the groups responsible for data analytics. 
Threading throughout all of these environments is the focus on aligning IT strategy to the corporate strategy 
and, of extreme importance, security. The need to have a subset of each of these skills residing in a single 
individual will have a dramatic effect on future roles.

Vast numbers of highly specialized cloud‐based enterprise architects and developers will be needed to 
deploy and maintain the infrastructure that cloud computing will require. Information technology depart-
ments of companies will become leaner and more specialized. The internal IT function will focus more on the 
company’s core competencies while offloading more of the commodity functions of database, Web access, 
and network architecture to cloud providers who specialize in providing such services. While initially IT 
programs will be reduced in size, the need for professionals with cloud skills will increase considerably. The 
traditional IT job roles as we have understood them will be restructured to match the evolving needs of sup-
porting the cloud.

53.2.3 The Future IT Industry

It is clear that the future of the IT industry will be tightly coupled with that of cloud computing. The growth 
of data is exponential and showing no signs of slowing down. As has been the case since the appearance of 
the personal computer, hardware is becoming faster and cheaper. Datacenters are becoming denser (due to 
virtualization) and greener at the same time. IT departments are becoming smaller and more efficient but the 
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impact of this increased efficiency does not appear to be reducing the number of IT staff needed in absolute 
terms. Our current educational structures are not producing, and it appears they will not produce, nearly 
enough workers with IT skills. New training models will have to emerge to meet the steadily increasing need 
for skills.

Belfoure et al. (2013) say that the IT jobs will move up the stack. What they mean by this is, relative to the 
architectural layers of the IT environment, the increase in the numbers of jobs will be at the higher levels. 
Explicitly, this includes the database engineering jobs and the middle‐ware engineering jobs. Schadler and 
McCarthy (2013) says that the CIO will have six major organizations delivering IT services. The organiza-
tions will focus on strategy, security, analytics, application development, platform, and infrastructure. They 
estimate that the workload of the individuals performing various roles in the organizations will decrease due 
to technology, in essence, allowing companies to do more with less. In the near future there will be a greater 
need for generalists who have cross‐discipline skills and a decreased need for specialists. With this need for 
generalists, the traditional departmental boundaries will break down. Organizations will become more inte-
grated and matrixed as opposed to functional. This heightens the need for centralized governance systems and 
metrics that truly measure the IT organization’s ability to respond quickly, efficiently, and effectively to 
changing business requirements.

As the strategic and logistical advantages of Cloud technology become clearer to larger numbers of 
people, many roles will emerge to facilitate the expansion of cloud‐based services. Services like Open 
Shift, (open source code driven by Red Hat) provide a robust development environment, which allows 
companies and individuals to completely ignore platform issues and focus on software development. What 
this entails is a focused group of infrastructure support personnel who work across organizations to pro-
vide a standard set of tools. In line with Friedman’s view of the world as flat, this horizontal team can 
stretch as far as it needs to accommodate increasing demand. Some would argue that this will mean fewer 
jobs overall in IT due do to the ability of a tool like Open Shift to serve a huge customer base. While an 
argument could be made that in absolute terms we may need fewer database and network administrators, 
the need for more developers, business analysts, and analytics experts will be ongoing, increasing, and 
insatiable. There will also be a demand for application owners, vendor relationship managers, and types of 
expertise we do not yet even fathom. These factors contribute to an extremely healthy outlook for the 
future of the IT industry, with one provision: that there should develop a clearer collaboration between 
industry and academia in terms of what IT skills will be needed and how they will be acquired. Traditionally, 
universities have taught their courses based on an organization of content that had little to do with how 
industry was organized. Computer science was taught with little regard given to the needs of industry. As 
the cloud paradigm becomes more pervasive, it is imperative that universities correctly reflect this model 
in their curricula. There is now a misalignment between industry and academia such that industry, for the 
most part, has to train new hires in the practical application of the basic IT principles the new hires learn 
in school. But there is still enough overlap between the two worlds to make this task possible. A relational 
database is still a relational database, so a student who has taken one or two database courses in college is 
able to learn the specific implementation used by a given company. But in the cloudcentric world, the 
nature of how we manage data is always developing new techniques for managing increasingly large and 
complex data stores. What will be needed are not so much students who are versed in a given technology 
but students who are trained to manage the complexity and rapid change of the environment. At present, 
this is not what our universities do.

To conclude, cloud computing has introduced a new way of thinking about the nature of both consumer and 
business computing. The focus is now more on what is the service that one needs rather than the technology 
needed. This new way of thinking has opened an exponentially larger universe of possibilities and opportuni-
ties that we are only just beginning to uncover.
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54.1 Introduction

Cloud computing (hereafter: “the cloud”), which is likened to the industrial revolution in terms of technological 
innovations, structural change, and as a source of economic growth, has started to transform economic activities 
(Kshetri, 2013a). It has been argued that the cloud reduces infrastructure costs and levels the playing field for 
small and medium‐sized enterprises (SMEs), especially in emerging markets (EMs) (Greengard and Kshetri, 
2010; Kshetri, 2010a, b, 2011, 2012; Alcantara and Kshetri, 2013).

Unsurprisingly, EMs are rapidly embracing the cloud‐based economy as evidenced by more rapid growth 
in cloud deployment in these markets compared to more developed markets (Kshetri, 2013b). For instance, 
according to Cisco’s third annual Global Cloud Index, during 2012–17, the Middle East and Africa region 
will have the highest cloud workload (which is amount of work run on the cloud) growth rate (CAGR: 45%), 
followed by Asia Pacific (CAGR: 40%) and then by Central and Eastern Europe (CAGR: 31%) (http://tinyurl.
com/nmdqn7q, accessed January 7, 2016). Likewise, in 2012, Tata reported that emerging economies are the 
most aggressive adopters of the cloud.

Some early signs indicate a number of cloud‐led economic and social transformations affecting society. 
The cloud may provide an opportunity to leapfrog and overcome barriers related to information and 
 communications technology (ICT) infrastructures. A comparison of how the cloud is being used in EMs and 
in industrialized economies, however, reveals basic similarities as well as striking differences. For instance, 
for a small segment of the population in EMs the use of the cloud closely resembles that in industrialized 
countries. Cloud‐based services related to entertainment, media, social networking, and communications such 
as e‐mail, social media, YouTube and cloud‐based TV are becoming as popular in EMs as in industrialized 
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countries. At the same time, a number of interesting and creative techniques involving the cloud have been 
developed and deployed in the EMs, which are unique to these markets.

Due to the attractiveness of EMs, a number of global cloud providers have entered these markets. IBM has 
built cloud centers in a number of EMs such as China, India, Kenya, Vietnam, and Brazil. Microsoft, VMware, 
Hewlett‐Packard, Salesforce, Parallels, and other high‐profile global cloud providers are also active in EMs. 
Similarly, firms based in the developing world have jumped on the cloud bandwagon. Cloud‐related venture 
capital investments are flowing in these markets. Global and local companies have made creative adaptation 
of the cloud to the local market to suit modern and traditional economic sectors.

Cloud diffusion patterns and associated factors among EMs are highly heterogeneous. For instance, 
South Korea had over 2700 secure servers per 1 million people compared with less than 2 in a number of 
least developed countries (LDCs) such as Afghanistan, Bangladesh, Myanmar, and Nepal (UNCTAD, 
2013). The patterns also exhibit a wide rural‐urban gap on various indicators as well as differences across 
various sectors of the economy. This chapter will analyze the current status of the cloud industry in EMs 
and examine the fundamental forces driving the use and deployment of the cloud in these countries, as 
well as major constraints facing them. It also provides a comparison of cloud deployment in traditional 
and modern sectors of EMs, and discusses some examples of cloud deployment in EMs that can become 
a role model.

54.2 Diffusion of Cloud Computing in Emerging Markets: A Survey

As Table 54.1 illustrates, the cloud has been deployed in EMs in diverse activities, which involve various 
levels of sophistication.

The diffusion pattern of the cloud and the associated environmental factors vary widely across EMs. In this 
section, we focus on the top three countries on the list of the top 20 EMs released by Bloomberg Businessweek 
in January 2013: China, South Korea, and Thailand. As shown in Figure 54.1, these three economies differ 
drastically in terms of development attributes and risks related to the cloud. This figure is based on the Cloud 
Readiness Index developed by the Asia Cloud Computing Association for 14 countries in Asia. The Index 
represents three types of environmental factors: information regulations (intellectual property (IP) protection, 
freedom of access to information, data sovereignty, and data privacy), information infrastructure (broadband 
quality, datacenter risk, power grid and green policy, and international connectivity), and business and gov-
ernment environment (business sophistication and government online services, and ICT prioritization). 
Figure 54.1 shows that South Korea performs better than China and Thailand in all the dimensions. The 
performances of China and Thailand are relatively lower in most dimensions, particularly in terms of infor-
mation regulations and infrastructure.

54.2.1 Environmental Factors Related to the Cloud in China

Cloud computing is considered by the Chinese government to be one of the so‐called strategic emerging 
industries (http://tinyurl.com/ax9ae4g, accessed January 7, 2016). In fact, cloud computing is part of the 
Chinese government’s twelfth Five‐Year Plan, which aims to transform the economy into a steadier and more 
stable trajectory. The government has promoted five pilot cloud‐computing cities in Beijing, Shanghai, 
Shenzen, Hangzhou, and Wuxi (http://tinyurl.com/7ycljl5, accessed January 7, 2016).

As reported in Kshetri (2010a, b, 2011), the Chinese government‐run IBM Cloud Center in Wuxi City’s 
Science and Education Industrial Park in Jiangsu province illustrates how clouds could help SMEs. IBM 
provides technology, including system x and system p servers on a secure virtual local area network. It is 
worth noting that, on average, software firms in China have 25 employees, whereas in India, the average is 
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Table 54.1 Some representative examples of cloud deployment in EMs

Area of cloud 
deployment

Examples of organizations / consumers

R&D Yahoo! collaborates with the Indian Institute of Technology Madras (IIT‐Madras) 
and establishes Grid Computing Lab, which allows researchers to access and 
conduct research on big data and cloud computing.

Education The University of Information Technology, part of Vietnam National University, 
is using IBM PureFlex System, IBM Tivoli Service Delivery Manager, and IBM 
Workload Deployer to build a Smarter Computing IT infrastructure that hosts 
the university’s virtual campus and deploys virtual education services.

The South Korean Ministry of Education, Science and Technology is 
implementing a program that will turn the nation’s classrooms paperless by 
2015. This program will provide each student a tablet and an access to 
textbooks and other educational materials from a cloud computing system.

Healthcare Capacity Kenya, a USAID funded project, in collaboration with the Kenya 
Medical Training College and Africa Medical and Research foundation, has 
hosted a local cloud environment that is used to locate and map healthcare 
specialists and develop virtual learning platforms for medical students 
(http://tinyurl.com/pahlah8, accessed January 7, 2016).

The Medical Informatics Group of the Centre for Development of Advanced 
Computing in India has made the Mercury Nimbus Suite available for 
healthcare service providers. This suite offers telemedicine services to people 
in remote areas through public and private cloud.

Agriculture and 
farming

Haiti’s Ministry of Agriculture has strengthened its knowledge management 
system through its adoption of cloud technology. This project is funded by the 
World Bank and makes Haiti’s agricultural infrastructure, which was destroyed 
by earthquake in 2010, resilient to natural disasters (World Bank, 2013)

E‐business/e‐
commerce

KT Corporation, a large telecommunication service provider in Korea, offers a 
cloud computing service, Olleh U‐cloud, which allows end consumers to 
watch videos and photos on TV via cloud for a monthly fixed fee.

Alibaba Group Holding Ltd., the largest e‐commerce company in China, offers 
a cloud service, known as Ju Baopen. It allows bank and securities firms to 
provide online payment services (http://tinyurl.com/nlgvvyh, accessed January 
8, 2016).

Business process and 
IT outsourcing

Turkey’s Türk Telekom has implemented IBM Smart Cloud Entry, which allows 
the company to shorten provisioning time, delegate server administration to 
internal IT users, and provide a metering and billing system of cloud services 
to end users.

Banking and finance Twelve Mexican financial institutions including Sofol Tepeyac, Grupo Agrifin, 
Findeca, Soficam and C. Capital Global use Temenos’ T24, the most 
technically advanced banking system that runs in the cloud (http://tinyurl.com/
q8t4ppn, accessed January 8, 2016).

Fourteen commercial banks in China’s Shandong Province have formed an 
alliance to deploy cloud service platforms, providing them with a unified IT 
system and various settlement services.

Environmental 
monitoring and 
protection

Hadley Center for Climate Prediction and Research has sponsored a researcher 
in West Africa for free access to cloud services (Kshetri, 2013b).

Burkina Faso’s University of Ouagadougou has modeled the movement of 
pollutants in the Sourou River drainage basin (Kshetri, 2013b).
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174. Park tenants (mostly start‐up software and chip‐making companies) have access to an entire IT infra-
structure. They do not need to buy servers, applications, or tools, and pay only for the services they use. Using 
virtualized resources lowers upfront investment and product development costs. The industrial park plans to 
support “several hundred thousand developers across hundreds of companies.” In July 2009, IBM and Wuxi 
Park launched the PangooSky SaaS platform, which targets SMEs. Within a few weeks, 21 enterprises had 
signed agreements for the platform.

The significant involvement of the private sector in the diffusion of cloud is also reported by Accenture 
in 2010. A subsidiary of the Alibaba Group founded in 2007, Alisoft, announced in 2009 its $146 million 
worth 3‐year promotion of its new free “Shopkeeper” accounting and financial management SaaS ser-
vices to SMEs. It was reported that a 2‐week trial run of “Shopkeeper” attracted over 135 000 users 
(Wei, 2009). Together with Suzhou Industrial Park and Fengyun Network services, Microsoft has also 
started to provide SaaS services to SMEs. In May 2012, Microsoft launched its Microsoft Cloud 
Accelerator (MCA) for Windows Azure, which provides a cloud computing platform for startup busi-
nesses in China, with the hope of accelerating cloud‐based innovations in the country. In November 
2012, Microsoft announced the expansion of its premier commercial cloud services, Office 365 and 
Windows Azure, into China under a strategic partnership with the Shanghai Municipal Government and 
21Vianet Group, Inc. Moreover, aimed at promoting cloud education, Microsoft has partnered with the 
Qingdao Municipal Government and Weidong Real Estate to develop a cloud computing center in the 
Jiaodong Peninsula.

Although there are cases indicating the diffusion of cloud among SMEs, the cloud‐computing in China 
is still at the early stage of development. There is a lack of knowledge about the cloud. Chinese officials 
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and business leaders are also concerned about losing highly sensitive data about the economy, military, 
government, and commercial secrets. The security concern is largely attributed to the country’s lack of 
comprehensive data privacy laws and regulations.

To move to a different issue, the Chinese government’s cyber‐control measures have led to an inability of 
businesses and consumers to realize the cloud’s potential. For instance, China’s filtering system makes it dif-
ficult or impossible to access cloud services provided by foreign vendors such as Google (specifically Google 
Docs), and Dropbox and causes significant connectivity speed and capacity reduction (Getting to grips with 
cloud in China, 2011).

Cybercontrol measures have also discouraged foreign investments. Google’s 2009 report indicated that it 
had discovered an attack on its infrastructures that originated in China. In 2008, Google’s CEO said that his 
company would work with Chinese universities, starting with Tsinghua University, on cloud‐related aca-
demic programs. The country’s unfavorable environment from the security standpoint, however, led to 
Google’s withdrawal from China.

54.2.2 Environmental Factors Related to the Cloud in South Korea

There is a huge market for cloud‐based IT businesses in South Korea. According to the OECD, South Korea 
ranked sixth for total number of fixed broadband subscriptions and third for wireless broadband subscriptions 
in 2012. When measured per 100 inhabitants, South Korea had more wireless broadband subscriptions than 
inhabitants (104.2). Moreover, South Korea had the highest average Internet connection speed of 14.7 Mbps 
(http://tinyurl.com/osbshhf, accessed January 8, 2016). It also leads the world in terms of “fiber to the home” 
connectivity with 62% of the homes connected to fiber as of 2012 (UNCTAD, 2013). This provides a healthy 
infrastructure for the cloud.

The South Korean government has taken initiatives to improve its IT environment and promote the adop-
tion of the cloud. According to the National Computing and Information Agency (NCIA), since the beginning 
of the 2000s, the government has tackled challenges facing its e‐government system such as the lack of sys-
tematic strategies to respond to security attacks and natural disasters, high demand for stable and consistent 
services, poor quality management of various agencies’ administrative services, and high cost yet inefficient 
computing systems. As a part of its solution, the government constructed the world’s first Governmental 
Internet Data Center (GIDC), which integrates and operates the entire information system of its 40 central 
administrative organizations. The GIDC was completed in December 2007 under the supervision of the 
NCIA, and is now recognized as the leading e‐government solution in the world. It has developed a compre-
hensive defense system called e‐ANSI (Advanced National Security Infrastructure) that has dramatically 
enhanced the security of the e‐government system (Kim and Kim, 2011). In 2012, with the continuing effort 
of the NCIA to increase the stability and security of the GIDC, South Korea ranked as the world’s most e‐ready 
government, up from the 13th place in 2003 by the United Nations.

In addition, in 2011, the NCIA deployed a government cloud computing platform, the Government Cloud 
Computing Service (G Cloud), which has improved the services and reduced the costs of GIDC and 
 supported the ICT industry. The NCIA’s president Woo‐Han Kim noted: “[NCIA] is implementing various 
policies in order to shape a market environment to support the growth of small and medium‐sized enterprises. 
NCIA has not only strengthened its capabilities by going into partnership with local companies but also in 
actively introducing new trends and technologies and spreading them across all sectors of the government” 
(as quoted in Kim and Kim, 2011). In fact, 50% of NCIA yearly projects are participated by SMEs (Kim and 
Kim, 2011).

The private sector has also played a key role in expanding the cloud market in South Korea. In 2011, the 
South Korean telecom provider, KT, launched a joint cloud computing venture with Japan’s Softbank, named 
kt‐SB data service, in Gimhae City, with initial funding of about US$37 million (http://tinyurl.com/okb8vpl, 
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accessed January 8, 2016). This venture targets Japanese companies seeking reliable data storage safe from 
natural disasters and power outages.

The collaboration between the local government and private sector has also been a key driver in the 
diffusion of cloud in South Korea. According to a Groupe Speciale Mobile Association (GSMA) report in 
2012, with a total investment of US$320 million, the local government of Busan together with Cisco and 
KT built Busan green ubiquitous city (u‐city). The u‐city uses a cloud‐based infrastructure based on the 
blueprint and business architecture developed by Busan metropolitan government and Cisco. In the first 
phase of the blueprint, in 2010, Busan Mobile Application Center (BMAC) was set up to provide a plat-
form as a service (PaaS) for SMEs developing online apps and services. During the first year of operation, 
BMAC supported the launch of 13 new companies and development of 70 new apps by SMEs, generating 
revenues of US$2.2 million and online sales revenue of US$42 000. The second phase of the project was 
planned to deliver SaaS cloud services, while in the third phase, the cloud‐based services are made 
accessible to all citizens.

54.2.3 Environmental Factors Related to the Cloud in Thailand

As shown in Figure 54.1, much improvement is needed in the cloud infrastructure, regulations, and business 
environment in Thailand. In fact, Thailand, along with Vietnam, had the lowest cloud preparedness among the 
14 countries included in the index. Nonetheless, efforts to promote and diffuse cloud services in the country 
are noticeable.

In May 2010, the True Internet Data Center, the leading Internet datacenter provider in Thailand, intro-
duced the first cloud computing service in the country through a collaboration with Trend Micro, a global 
Internet content security company founded in the United States and headquartered in Japan. A month later, 
NIIT Technologies and Hitachi Asia (Thailand) collaborated to launch cloud services. NIIT was responsible 
for the design and architecture of the cloud system, while Hitachi implemented and maintained the system. 
In 2011, Japan’s NEC launched its cloud computing solutions to provide low‐cost offerings to SMEs. In addi-
tion, CAT Telecom Plc (CAT), a state‐owned telecom service company, signed an agreement with IBM in 
April 2013 to provide cloud‐based services ranging from basic IT infrastructure to specialized business appli-
cations, to midsized businesses in the country.

Despite the low score of Thailand in the Cloud Preparedness Index, the Asia Cloud Computing Association 
reported in March 2013 that the cloud market in Thailand will increase by 22%, amounting to US$77 million, 
particularly among medium size companies. This increase will be driven by further developments in cloud 
infrastructure such as the introduction of 3G wireless broadband and big data analytic services.

54.2.4 Rural‐Urban and Intersectoral Differences in the Use and Deployment of Cloud Computing

Many EMs also exhibit a rural‐urban gap on various cloud‐related indicators as well as differences across 
various sectors of the economy. In sub‐Saharan Africa (SSA), for instance, while 53% of the urban population 
has access to electricity, only 8% of the rural population has such access. Moreover, rural‐income gaps in 
income and other factors translate to such gaps in the diffusion of the cloud.

The traditional and modern economic sectors in EMs also exhibit wide variations in cloud deployment 
patterns. The deployment of the cloud in modern economic sectors highlights the growing demand for more 
sophisticated cloud‐based applications in. For instance, South Africa’s Nedbank uses the IBM Cognos plat-
form in budgeting and forecasting solutions (http://tinyurl.com/o9onzax, accessed January 8, 2016). In order 
to enhance security, Nedbank and South Africa’s Entersect Technologies have developed a system that uses 
digital certificates placed on the phone and push notifications. Push notifications, which allow messages to 
be sent directly to a mobile device, resemble text messages. This means that the end user’s experience is 



670 Encyclopedia of Cloud Computing

similar to receiving a text (http://tinyurl.com/pzn3c3o, accessed January 8, 2016). In this way the system adds 
security without sacrificing the ease of use. A user enters a PIN to approve or deny transactions such as online 
purchases, wire transfers, and ATM withdrawals when prompted on the mobile phone. The system takes 
advantage of AWS, which can handle massive amounts of mobile phones connecting to its infrastructure. In 
this way, the bank can cope with a large number of users connecting to its system.

Financial institutions such as Nedbank are likely to face the fluctuation of demand within a year and within 
a month. For instance, the ends of the months are high transaction periods because employees are paid. 
Likewise, the end of the year and the holiday and shopping seasons are characterized by a comparatively high 
demand for services. The cloud is ideal to deal with a high degree of fluctuation in demand. During high 
transaction periods, the system scales up and, in the slower periods, the infrastructure scales down.

As an example of cloud deployment in the traditional economic sector, one can consider the Apps4Africa 
award‐winning app, iCow developed by Green Dreams, which is based on a mobile application, and helps 
small‐scale dairy farmers track and manage their cows’ fertility cycles. The app informs farmers about impor-
tant days of the cow gestation period, collects and stores milk and breeding records, and sends farmers best 
practices. It also helps a farmer find the nearest vet and other service providers. Green Dreams has also 
formed a simple system involving Google Docs.

Compared to iCow, Nedbank’s e‐banking application is somewhat more costly for the end consumers. For 
instance, digital certificates need to be installed on the user’s phone. The system looks for this certificate to 
authenticate transactions.

Fraud‐related risks are increasing in banks in EMs. Compared to the users of iCow, Nedbank’s e‐banking 
customers require a high degree of cybersecurity. In this regard, the Entersekt system sends fully encrypted 
data from the bank, which passes through AWS.

Finally, local firms developing cloud‐based applications for the modern sectors are likely to be of higher 
caliber. For instance, while both Green Dreams (the developer of iCow) and Entersect’s systems are SSA‐
based firms, the latter is more globalized. For instance, Entersect’s system is being sold in the United States 
by Transecq (http://tinyurl.com/pzn3c3o, accessed January 8, 2016).

54.3 Factors Driving the Use and Deployment of Cloud Computing in Emerging Markets

In this section, we discuss the key factors driving the cloud industry and market in EMs.

54.3.1 The Roles of Local Cloud Providers

The current global market is dominated by a few US‐based cloud providers. Nonetheless EM‐based firms 
have also jumped on the cloud bandwagon. Especially there are a number of local cloud players in big EMs 
such as China, India, and South Africa. CRL and AdventNet, for instance, are among high‐profile Indian 
cloud providers. TCS and Wipro have also entered the cloud market. TCS started cloud pilot projects in 2009 
and had 130 clients by February 2011. TCS claims that its cloud can make savings of up to 30–40% for SMEs 
(http://tinyurl.com/o2b7q24, accessed January 8, 2016). Infosys has dedicated 175 engineers to identify 
potential areas attractive for the cloud (http://tinyurl.com/363c8ht, accessed January 8, 2016), while 
Hyderabad‐based Pressmart provides SaaS based e‐publishing and digitization services to the print industry. 
The Pressmart solution can help firms deliver content across multiple platforms such as the Web, mobiles, 
Really Simple Syndication (RSS), podcasts, blogs, social networking sites, articles directories and search 
engines.

In China local players account for the bulk of cloud investments. The cloud has also been a critical 
component at Huawei and a number of other Chinese companies.
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In Africa, for instance, South Africa’s Integr8 and MTN, and Zimbabwe’s Twenty Third Century 
Systems, have launched cloud offerings. MTN MyOffice supports accounting, human resource, customer 
relationship management, e‐mail and videoconferencing, storage and back‐up for SMEs in manufacturing, 
hospitality, microfinance, and advertising. In 2011, Kenya’s Safaricom launched the Safaricom Cloud, 
hosting platforms for government agencies and corporations and other offerings. By 2011, it had invested 
US$150 million and announced plans to invest another US$200 million (http://tinyurl.com/ko5gfq6, 
accessed January 8, 2016).

A number of EM‐based cloud firms have collaborated with foreign companies in order to enhance their 
cloud offerings. Safaricom teamed up with Cisco (storage), EMC (security), and Seven Seas Technology 
(overseeing and training). Some EM‐based cloud players have also acquired foreign firms. For example, in 
early 2012, Bangalore‐based Aditi Technologies acquired Cumulux, a US‐based cloud startup.

54.3.2 Multinationals’ Entry into the Cloud Sector

The development of the cloud industry and market in EMs is associated with and facilitated by the 
entry of global multinationals into this sector. Consider India, for instance. In 2008, IBM opened a 
cloud center in Bangalore for mid‐market vendors, universities, government bodies, and microfinance 
and telecommunications companies. Then, in early 2012, it helped the India‐based Tulip Telecom 
 construct a 900 000 square foot datacenter – the largest in the country – which will provide cloud infra-
structure services. Parallels has also been operating in India since late 2008. In 2009, Microsoft started 
offering productivity apps on the cloud for approximately $2 per month, including e‐mail, collabora-
tion, and conferencing services. Also in 2009, VMware opened a cloud center in Pune. Salesforce.com 
started operations in 2005, and in September 2011, it acquired a social customer‐service SaaS startup, 
Assistly, for US$50 million. Salesforce.com has many high‐profile clients in India, including Bharti, 
eBay India, SIFY Technology, Polaris, and the National Research Development Corporation (Kshetri, 
2012).

Similarly, in 2008, IBM opened a cloud center in Beijing. Its Shanghai R&D facility also has the cloud as 
a primary area. In 2009 it opened a Healthcare Industry Solution Lab for hospitals and rural medical co‐
operatives. IBM has a partnership with China’s Range Technology to construct a 6.2 million square foot 
state‐of‐the‐art center in Langfang city, which will be comparable to the Pentagon, with 646 000 square feet 
devoted to the datacenter (Wilson, 2011).

Similar developments are taking place in other EMs (Kshetri, 2013b). Consider, for instance, Africa. In 
addition to its Johannesburg datacenter, IBM built its 41st global innovation center in Kenya in 2013. 
Other global providers, such as HP and VMware, have a significant presence in sub‐Saharan Africa. 
Amazon’s customer service center in South Africa opened in 2011 and employs 1400 people, and in 2012, 
it launched the AWS Developer Support office in Cape Town. Specialized providers have also entered 
sub‐Saharan Africa. In 2012, Switzerland‐based Sofgen launched the core banking platform, Temenos 
T24. It targets banks, microfinance institutions, and savings and credit cooperatives and has built‐in fraud 
detection capabilities.

54.3.3 The Roles of International Agencies

International agencies’ roles in facilitating the cloud industries in EMs deserve mention. For instance, in 
2006, the World Bank (WB) and the African Development Bank financed a US$280 million cable project 
serving 23 countries. Likewise, in 2007, the International Finance Corporation invested US$32.5 million in 
EASSy, connecting 21 countries (http://tinyurl.com/pq57roq, accessed January 8, 2016). Similarly, Sierra 
Leone received US$31 million to connect to ACE cable through the WB‐funded West Africa Regional 
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Communications Infrastructure Program. The WB also provided bandwidth subsidies to many universities 
(http://tinyurl.com/ko5gfq6).

54.3.4 Philanthropic Causes

Philanthropic and charitable causes have also been a factor in stimulating the cloud industry in EMs. 
For instance, Worldreader, which describes its mission as to “make digital books available to children 
and their families in the developing world, so millions of people can improve their lives,” uses AWS 
to  download books to computers in Africa (http://tinyurl.com/dyf9yqo, accessed January 8, 2016). 
Likewise, the UK‐based Indigo Trust funded over £65 000 (about $100 000) to develop iCow, which 
helped to cover the core costs, legal fees and customer care supports (http://tinyurl.com/plx4mpb, accessed 
January 8, 2016).

54.4 Factors Constraining the Diffusion of Cloud Computing in Emerging Markets

A number of barriers are hindering the cloud’s use and deployment in most EMs. We discuss some of the 
most important hindrances in this section.

54.4.1 Economic and Infrastructural Constraints

The most important barrier to cloud diffusion in many EMs relates to the lack of availability of basic infra-
structures. For instance, regular power outages in some EMs disrupt communications between cloud users 
and providers as well as among various cloud providers (UNCTAD, 2013). We contrast the gap between the 
availability of datacenters in the least developed countries (LDCs) and industrialized countries to illustrate 
how the lack of various types of infrastructures could hinder the growth of the cloud in EMs. In 2013, about 
85% of the world’s datacenters that offered co‐location services were in developed economies. UNCTAD 
(2013) refers to this gap as the “datacenter divide” and notes that high‐income economies had about 1000 
times more secure data servers per capita than in LDCs in 2013.

Among the important barriers are also high prices of cloud offerings. In EMs economies, bandwidth, 
electricity and other traditional IT infrastructures are costly in absolute as well as relative terms. For 
instance, electricity in Kenya costs $0.20/KWH, which is 50% higher than in the United States. 
Excluding cooling and management, a server in Kenya costs more than $1800 a year to run (http://
tinyurl.com/pzpotor, accessed January 8, 2016). There are prohibitively high costs in SSA economies 
relying on satellite. According to the World Bank, bandwidth in Sierra Leone costs ten times as much 
as in east Africa and 25 times the price in the United States. Some embassies, banks, and mining com-
panies in Sierra Leone have reportedly secured 2 MBPS satellite‐based connection known as very small 
aperture terminals (VSAT), which cost US$8000 a month plus a very high installation fee. NATCOM 
estimated that there were 100–150 VSATs in the country in 2011. One level below is 512 kbps connec-
tions provided by ISPs, which disburse leased bandwidth through wireless networks. Such connections 
typically cost US$570 a month for a household plus US$445 for the modem. Services offered by mobile 
phone companies, which charged US$70 a month, distribute satellite bandwidth via GPRS or Edge 
modems packaged as USB sticks. These services are among the cheapest but have extremely slow 
speed and totally unusable at busy times (http://tinyurl.com/3eg9v7j, accessed January 8, 2016). Even 
in more internationally connected economies, such as Ghana and Nigeria, prices are higher compared 
with international standards.
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Due to the lack of availability and high prices of local bandwidth, some EM‐based cloud users have found 
the offerings of providers in foreign locations more attractive. For instance, in India, many firms use cloud 
offering of providers that are located in Singapore due to cheaper bandwidth and more developed infrastructure 
(UNCTAD, 2013).

54.4.2 Regulatory Constraints

Regulatory and human resources issues also represent a barrier to the development of the cloud industry and 
market in EMs. While there have been regulatory demands for long‐term retention of data in EMs, underde-
veloped regulatory institutions have hindered the growth of the cloud industry in most EMs. For instance, 
according to the Business Software Alliance’s (BSA) evaluation of national laws and regulations in seven 
policy areas related to cloud computing, South Africa, which has one of the most developed cloud industries 
in Africa, ranked 20th out of 24 economies considered in 2013.

54.4.3 Human Resources Constraints

The development of the cloud industry in EMs is also hampered by the lack of sufficient human resources and 
expertise (ITU, 2012). Due to the lack of the availability of IT‐skilled teachers and other related factors, many 
EMs have failed to incorporate curriculums related to IT skills development in their education systems at 
various levels (UNCTAD, 2013).

54.4.4 Concerns Related to Security

Research has suggested that a significant gap remains between vendors’ claims and regulators’ and users’ views 
of the cloud’s security, privacy and transparency (Kshetri, 2013a). Issues such as security, privacy, and availabil-
ity are among the topmost concerns in organizations’ cloud adoption decisions rather than the total cost of own-
ership (McCreary, 2008). This concern is equally, if not more, applicable to EMs. For instance, security concern 
among CIOs and IT managers in Africa has been a key barrier to a wider adoption of the cloud in the continent 
(http://tinyurl.com/oo8v43e, accessed January 8, 2016). Likewise, in a survey conducted in 2010 among Indian 
enterprises, 72% of the respondents cited privacy and data security as among extremely significant concerns for 
the cloud (http://tinyurl.com/nj42n4y, accessed January 8, 2016). Another survey found that Indian companies 
were concerned about maturity and the capability of cloud vendors and 86% believed that external certification 
would increase their trust in the vendors (http://tinyurl.com/qgr3nwd, accessed December 8, 2016).

Potential cloud users have also been concerned about the possibility that third parties may access sensitive 
data stored in cloud. One fear has been foreign governments’ access to sensitive data (UNCTAD, 2013). For 
instance, Brazil’s IT policy secretary Virgilio Almeida discussed the possibility that the Brazilian government 
may store its sensitive data locally rather than in the cloud (http://tinyurl.com/pnzoyo5, accessed December 
8, 2016). Brazil’s president Dilma Rousseff also asked Brazil’s Congress to introduce regulations that may 
require foreign technology companies such as Facebook and Google to store data generated by Brazilians on 
servers physically located in Brazil (Brooks and Bajak, 2013).

54.5 Discussion and Implications

While it took many years and large investments for the industrialized economies to acquire infrastructure, 
datacenters and customized applications, the cloud has made it possible for the EMs to access them easily. 
In this regard, the chapter identified certain key issues associated with the diffusion and adoption of the cloud 
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in EMs and explored a number of factors that facilitate or hinder the development of the cloud industry in 
these markets.

As noted above, underdeveloped regulatory institutions have hindered the cloud’s growth in most EMs. 
That said, few encouraging signs have emerged in recent years to suggest that governments in EMs are 
becoming more serious about introducing regulatory and policy measures to drive the cloud industry. In order 
to develop a government cloud and a cloud strategy, for instance, the Indian Government established an 
Empowered Committee, which consisted of representatives from government departments. It also established 
a special task force with private‐sector participation (UNCTAD, 2013). Likewise, the cloud industry in 
Vietnam is being driven by the government’s initiatives to build a skilled workforce. The cloud is used to link 
government agencies, universities, private‐sector research, start‐ups and other organizations (Cleverley, 
2009).Vietnam started collaboration with IBM in 2007.

Another barrier hindering EMs’ embracement of the cloud economy centers around poor infrastructure 
development required for the cloud economy. For instance, while South Korea has the highest household 
fiber penetration, as mentioned earlier, it is also worth noting that less than three dozen economies in the 
world had a household fiber penetration of over 1% in 2012 (UNCTAD, 2013). This means that most EMs 
perform poorly in terms of fiber penetration to capitalize on the cloud’s potential.

Foreign and local firms can take a wide variety of measures intended to help the development of the cloud 
industry and market in EMs. Foreign companies, for instance, could benefit by collaborating with local cloud 
providers, characterized by lean cost structures and experience in developing low‐cost products. For EM‐
based cloud providers, on the other hand, their ability to deliver value for money in the domestic and regional 
markets could give them a competitive advantage in foreign markets, especially if they are in a position to 
reconfigure their resources to operate effectively in other EMs.

54.6 Concluding Remarks

Cloud computing is in the infant stage of development in EMs and currently cloud usage has been shallow, 
narrow, and vanishingly small in these markets. Cloud‐based innovations and business models are, as yet, far 
from inclusive of SMEs in EMs, especially in the least developed small nations. However, as economic and 
regulatory factors improve in EMs, the cloud certainly holds promise for bridging the digital divide. The EMs 
must thus exploit the opportunities afforded by the cloud while minimizing the associated risks to allow 
access to advanced IT infrastructure, datacenters and applications, and to protect sensitive information.
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55.1 Introduction

This chapter considers research needs, indicators, and trends from the Extreme Science and Engineering 
Discovery Environment (XSEDE) together with industry trends of some of the major cloud players, 
which were discussed in research papers published in IEEE Transactions on Cloud Computing, at the 
ACM Symposium on Cloud Computing (SOCC), the Cloud Computing Conference (CLOUDCOM), and 
at the International Conference on Cloud Computing Technologies, Applications and Management 
(ICCCTAM).

55.2 Virtualization

On the applied research front, virtualization technologies and products can be evaluated for their perfor
mance with regard to latency (ACM Symposium on Cloud Computing, 2013). Efficient techniques for 
replication of virtualization are also of interest (ACM SOCC, 2013) as well as related availability per
formance measures. Methods to monitor and diagnose virtual networks are essential to determine the 
performance of virtualization (ACM SOCC, 2013; see also http://blog.zhaw.ch/icclab/category/projects/
the‐init‐cloud‐computing‐lab/, accessed January 9, 2016). The impact of various virtualization technolo
gies on parameters like computability and network bandwidth, bandwidth guarantees, computability and 
network latency, memory size and bandwidth, throughput and I/O has been researched but needs further 
investigation.

Research Topics in Cloud Computing

Anand Kumar, B. Vijayakumar, and R. K. Mittal

Birla Institute of Technology and Science, United Arab Emirates

55



Research Topics in Cloud Computing 677

One of IBM’s white papers examined the role of virtualization in disaster recovery, when data must be 
backed up and key processes need to continue even if the organization’s datacenter is disabled due to a disas
ter (IBM Global Technology Services, 2013). Migration in the context of virtualization and associated 
throughput optimization must be researched (http://2013.cloudcom.org/, accessed January 9, 2016). Live 
migration and co‐migration of virtual machines is important. Virtualization’s impact on cloud datacenter 
design is also an important area for investigation, in particular to ensure optimal use of energy, optimal avail
ability of bandwidth, and optimal scalability (http://2013.cloudcom.org/, http://www.cloudbus.org/research_
probes.html, accessed January 9, 2016).

The interplay between virtualization and architecture is worth examining more closely to simultaneously 
support resource awareness and scalability, adaptive memory management, and critical infrastructure  services 
(http://2013.cloudcom.org/). Virtual resource representation, provisioning, and management are important 
(http://2013.cloudcom.org/, http://www.cloudbus.org/research_probes.html). Research must be conducted to 
identify robustness metrics for virtualization‐based cloud‐computing datacenters. Formal analysis, modeling, 
and verification of VM‐based cloud platforms is needed (see the first issue of IEEE Transactions on Cloud 
Computing in 2013).

55.3 Provisioning

Microsoft has shown interest in infrastructure provisioning. Universities and some budget‐constrained organ
izations that explore high‐performance computing (HPC) or the “Internet of things” (IoT) would be inter
ested in provisioning that considers cost as a constraining factor in the optimal delivery of service. Service 
provisioning, in general, and for mobile phone users, is an applied research area worth exploring. Some 
industry and university labs are researching such areas (http://www.cloudbus.org/research_probes.html; 
http://www.hpl.hp.com/research/, accessed January 9, 2015).

55.4 Monitoring

Research into monitoring design, methods, and techniques is important for infrastructure provisioning 
(Microsoft System Center, 2012), security, performance, and quality of service measurement. Monitoring 
network resources to alleviate congestion and in dynamic routing provides scope for research. Such monitor
ing would assist in future system design. Furthermore real‐time and dynamic monitoring would include traf
fic monitoring and perhaps support network reconfiguration. Monitoring is a key element in fault and 
configuration management (http://2013.cloudcom.org/, accessed January 9, 2016). Research in monitoring 
supports and affects big data, cloud architecture, and grid monitoring, implying specialized research might be 
required for each context rather than generalized research (http://2013.cloudcom.org/, http://www.cloudbus.
org/research_probes.html). Methods to monitor and analyze elasticity of cloud services are essential. For 
telephony applications supported on the cloud, latency monitoring is also essential.

55.5 Cloud Design

In terms of cloud design, the following associated areas require research: network planning; data storage 
design; design of an efficient multiuser environment; network design incorporating high QoS, low costs, and 
low CO

2
 emission; design of scalable replicable protocols; distributed memory caching; security design; open 

cloud design; and disruptive memory technologies. New algorithms and software architectures are needed 
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that support energy efficiency of the cloud datacenters. Research into modeling network and computational 
components to achieve load balancing and simultaneously reduce carbon emissions is relevant. Research into 
scalability and elasticity that span multiple clouds is necessary. Quality‐of‐service aware data‐replication 
algorithms are a very much needed outcome from research. Highly available and reliable cloud design must 
be also researched. Holistic resource management frameworks that connect geographically distributed 
resources with a backbone network but meet regulatory and legal requirements on data must be researched 
and designed. The legal issues of distributed data must be studied in conjunction with risks associated with 
cross‐border services. Classical robustness metrics may not be appropriate for cloud datacenters, and hence 
new metrics are needed. Programming models are needed to convert normal programs into elastic cloud 
applications.

Some services, like sensor network as a service, perhaps should be designed and deployed with a service‐
level agreement (SLA) focus. Efficient search algorithms for big data in cloud context are essential, as is 
dynamic exception handling in federated clouds. Brokering algorithms for optimizing the availability and 
cost of cloud storage services is essential. The impact of market on cloud platforms cannot be underesti
mated. Metrics for service performance must be standardized and used by a majority of vendors. Cognition 
has a major role in mobile cloud gaming, and this must be researched.

Given the volume of applications and their varied nature, applied research to develop suitable program
ming models for each application is necessary and important (Lifka et al., 2013; see also the Proceedings of 
ICCCTAM‐12, which are available on IEEE XPlore).

As major cloud benefits identified pertain to reduced costs for the user, it is necessary to research and 
identify cloud‐licensing mechanisms for tools like MATLAB, which will bring about a win‐win situation for 
the end user, the cloud service provider, and the tool vendor. Identification of such cloud‐licensing mecha
nisms will be essential in most software as a service (SaaS) offerings.

Furthermore, the charging  /  billing mechanisms for cloud usage should be researched to provide a win‐win 
situation for the end user and cloud service provider (Lifka et al., 2013). The charging  /  billing mechanisms 
should also provide maximum flexibility for end users in making choices on how to mix and match their 
requirements on CPU, memory, data storage and speed of execution. Cloud design must support data and 
application migration as well as application execution across federated clouds.

55.6 Application Deployment and Architecture

There are a variety of areas of applied research that can be researched. Some of these areas are identified here. 
Architectures must be proposed to support computing that is data intensive and scalable. Systems must be 
architected to support dynamic storage management. Federated architectures are worth looking into. The 
impact of dynamic resource composition, multicloud environments, scaling, large in‐memory computation, 
fast deployment, cloning services, service‐level agreements (SLAs), SLA performance, and dynamic optimi
zation of SLA‐based services on the architecture are worth exploring. Architecture can be fine tuned to sup
port automatic fault diagnosis, cloud performance prediction, monitoring, and reconfiguration of cloud 
resources. Other areas of interest would be self‐organizing architectures and architectures to evaluate distrib
uted application deployments in multiclouds.

Architectures will be required to support networking across distributed cloud datacenters. Scaling that is 
time aware, resource aware and energy aware has to be considered in the architecture. Decision support for 
migration must be built into the architecture. The impact of Hadoop, MapReduce, and similar techniques on 
the architecture must be evaluated. Support for dynamic and flexible provisioning on the architecture can be 
investigated. Frameworks supporting self‐healing and self‐adaptation should be explored.
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Hybrid clouds must be investigated further to enable a mix of private clouds that protect intellectual property 
and steady‐state workloads and public / community / national clouds for computational scaling and burst modes 
(Lifka et al., 2013).

55.7 Security and Privacy

Real and perceived security concerns are major barriers for cloud computing adoption, although it has many 
advantages such as large‐scale computation and data storage, virtualization, high expansibility, high reliabil
ity, and reduced up‐front commitment, lower long‐term cost, and green friendliness. A holistic view of cloud 
computing security spans the issues and vulnerabilities connected with virtualization infrastructure, software 
platform, identity management, and access control, data integrity, confidentiality and privacy, physical and 
process security, and legal compliance. Before people fully embrace cloud services, they must feel assured 
that the services are addressing these legitimate concerns.

In this section, we analyze cloud computing security problems, highlight some recent trends, and outline a 
number of critical issues that researchers and practitioners should consider as they develop future solutions for 
data security in the cloud. The cloud security issues can prevent the rapid development of cloud computing and 
hence need to be addressed from the point of view of cloud service providers (CSPs), cloud consumers, and 
third parties such as governments.

Conditions invariably exist that can result in security of data stored in cloud being compromised. The general 
security concerns emanate from:

 ● a shared cloud environment;
 ● a lack of client control;
 ● potential system failure;
 ● service provider problems.

To address these legitimate concerns, we have tools like data auditing and encryption, which require a 
continuous upgrade.

55.7.1 Data Auditing

Data auditing techniques provide continued verification of the accuracy and security of remotely stored infor
mation for both the cloud service provider and the client. To ensure effective and efficient data auditing, the 
cloud data auditing protocol (CDAP) requirements can be enumerated as follows:

 ● Cloud data, being stored in encrypted format for obvious reasons, requires auditing protocols capable of 
verifying integrity of encrypted information while maintaining privacy.

 ● Data auditing protocols should timeously detect any corruption or destruction of user data for whatever 
reason – system failure or tampering.

 ● To resolve possible disputes between clients and CSPs, the protocol should provide for third‐party verifica
tion without compromising the confidentiality of information and involving as little metadata as possible.

 ● The cloud data auditing protocol should provide for batch processing support as multiple clients might 
need to verify data at the same time.

 ● Adaptability of the CDAP is required to adapt to rapidly changing technology and the dynamic fluidity of 
virtual machines.

 ● Cost is always a concern and the CDAP should have low overheads – in terms of both communication and 
computation costs.
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No single traditional auditing protocol meets all these requirements. To accomplish the requirements of the 
clients and CSPs, a full auditing protocol for encrypted data that maintains cloud data integrity and privacy 
remains a challenge for future research. Some of the keywords for these are: secure dynamic auditing, static 
and dynamic provable data, proof of retrievability, and privacy‐preserving auditing.

55.7.2 Data Encryption

Traditional data encryption requires decryption and invites huge data‐processing overheads. Newer crypto
graphic schemes allow computing to be performed on the encrypted data. An ideal encryption algorithm for 
cloud data should offer both security and flexibility while providing a cost‐effective, searchable, and comput
able (structured) encryption that is homomorphic and order preserving.

We believe that some combination of traditional encryption techniques with newer schema can ultimately 
achieve these goals. Ideally, the encryption process should be amenable to CDAP and enhance overall perfor
mance of cloud computing. We see versatile data‐auditing protocols and encryption schemas as steps towards 
fully protecting cloud users’ data from cyberattacks while assuring high availability.

55.8 Big Data and Analytics

Further research is required to determine, tune, and optimize the performance of compute engines like Google 
Compute Engine for Scientific Computing and for methods like MapReduce. New, accurate, and perhaps dis
tributed algorithms are needed to handle large‐scale graph processing, cluster‐size scaling, and large  datasets. 
Real‐time requirements of network monitoring data need to be researched for data‐intensive frameworks. The 
quality of data is a performance parameter and must be investigated for cloud data store replication.

Analytics and defined, repeatable processes are an important dimension of the virtualization and 
 consolidation process in building a cloud or migrating to a cloud (IBM Global Technology Services, 
2012). Research into new platforms, distributed and secure analytics, and workloads at cloud scale is 
needed (http://www.hpl.hp.com/research/, accessed January 9, 2016). Enabling and porting current data 
analytics on to the cloud and making business intelligence (BI) affordable for organizations is an area that 
must be further explored.

55.9 Government and Cloud Computing Research

Much government engagement in cloud computing research comes from exploring cost‐effective and energy‐
efficient computing paradigms for scientists to accelerate discoveries in a variety of disciplines, including 
analysis of scientific data sets in biology, climate change, and physics. There is also an interest in creating an 
inexpensive cloud platform quickly and securely for military and associated personnel.

In the civilian sector, there is interest from some governments in increasing operational efficiencies, optimiz
ing common services and solutions across organizational boundaries, and enabling transparent, collaborative, 
and participatory government.

NASA’s research project, Matsu, aims to create a cloud of satellite imagery data and make it available to 
interested users and for disaster assistance; this came in the aftermath of the Haiti earthquake in 2010.

Japan has looked to cloud computing to boost its economy. One of the emphases of the Canadian govern
ment is to leverage the country’s vast landscape and cold climate for the construction of large, energy‐efficient 
cloud computing datacenters.
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55.10 Conclusions

The survey from XSEDE brings out the benefits of using cloud computing for research and education. 
Scalable computing, storage, and services enable research to be pushed into advanced frontiers that would 
greatly benefit mankind. Most research funding comes from government sources, which implies that govern
ment initiatives must be in place. Governments venturing into cloud computing are motivated by improved 
operational efficiency, the principle of open government, a wish to provide digital equality for the common 
man, to achieve excellence in government services, to boost the country’s economy, and to leverage local 
climate conditions, among other factors.

The performance of clouds with respect to dedicated servers, and their associated ease of use, are important 
parameters for clouds to be more extensively used in research and education. Security did not seem to be 
much of a concern for the research and education communities but must be a major research parameter for 
industry to leverage cloud computing more extensively. Portability and interoperability between clouds and 
cloud service providers are essential for this progress.

Much research in industry is focusing on particular companies’ current strengths and adapting them to the 
cloud scenario, be they hardware, operating systems, databases, search engines, or other applications. The 
major thrust in academic research is big data and analytics.

The main areas that are likely to be the focus of research are virtualization, provisioning, monitoring, cloud 
design, architecture, security, privacy, and associated performance and QoS measures.
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56.1 Introduction

Cloud computing’s transformational potential is huge and is yet to be fully embraced. Driven by several 
 converging and complementary factors, it is advancing as an IT service‐delivery model at a staggering pace 
and is causing a paradigm shift in the way we deliver and use IT services and applications. Cloud computing 
is also helping to close the digital (information) divide.

In order to embrace the cloud successfully and harness its power for traditional and new kinds of applica-
tions, we must recognize the features and promises of one or more of the three foundational cloud services – 
software as a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS). We must also 
understand and properly address several other aspects such as security, privacy, access management, compliance 
requirements, availability, and functional continuity in case of cloud failure. Furthermore, adopters need to learn 
how to architect cloud‐based systems that meet their specific requirements. We may have to use cloud ser-
vices from more than one service provider, aggregate those services, and integrate them on premises’ legacy 
systems or applications.

To assist cloud users in their transition to the cloud, a broader cloud ecosystem is emerging that aims to 
offer a spectrum of new cloud support services to augment, complement, or assist the foundational SaaS, 
IaaS, and PaaS offerings. Examples of such services are security as a service, identity management as a service, 
and data as a service. Investors, corporations, and startups are eagerly investing in promising cloud computing 
technologies and services in developed and developing countries. Many startups and established companies 
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continue to enter into the cloud arena offering a variety of cloud products and services, and individuals and 
businesses around the world are increasingly adopting cloud‐based applications. Governments are promoting 
cloud adoption, particularly among micro, small, and medium enterprises. Thus, a new larger cloud ecosys-
tem is emerging.

56.2 Bright Prospects

The prospects for the cloud are bright. Several converging and complementary factors are driving the 
further ascension of the cloud. The increasing maturity of cloud technologies and cloud service offer-
ings by cloud service providers (CSPs) coupled with users’ greater awareness of the cloud’s potential 
benefits (and limitations) is accelerating its adoption. Better Internet connectivity, intense competition 
among CSPs, and digitalization of micro‐, small‐, and medium‐sized enterprises are increasing the 
cloud’s use. Changing attitudes and mindsets toward the cloud among users now accustomed to the 
growing ubiquity of mobile devices and applications is also greatly improving the cloud’s adoption. 
Cloud technologies offer appealing responses to the growing demand from emerging markets for com-
puting services at an affordable cost, and government support and initiatives are propelling clouds. 
Cloud computing is not just an IT paradigm change, as some perceive. It is redefining not only the IT 
and communication industry but also enterprise IT in all industry and business sectors. It is also helping 
to close the digital (information) divide, and facilitating the deployment of new applications that would 
otherwise not be feasible.

A cloud ecosystem has begun to evolve to provide an array of services that support the deployment of 
cloud‐based solutions for applications across several domains. As the market for cloud computing continues 
to grow there will be more offerings of cloud services, and competition among CSPs will further intensify. 
New cloud‐deployment types, value‐added cloud services, and innovative costing and business models will 
emerge to serve varied client needs. Both private clouds and hybrid clouds will increase in number and capac-
ity, as more medium and large enterprises start embracing them. Open‐source cloud software will become 
popular and may be used widely.

Of course, there are a few major concerns about, and limitations of, the cloud that remain barriers to 
exploiting its fuller potential, and they need to be addressed satisfactorily. Several initiatives are under way 
that focus on standards for cloud security and interoperability, data virtualization through advanced analytics 
and parallel‐processing optimization, and special services for development and deployment of mobile appli-
cations. Another key area being addressed is interoperability among clouds, which would let users scale a 
service across disparate providers, while maintaining the appearance of a single offering. Cloud federation – the 
interconnection of cloud services from different providers and networks – is a promising approach that lets 
providers wholesale or rent computing resources to other providers to balance workloads and handle spikes 
in demand.

There are also several ongoing developments, outlined in the next section, which are aimed at further 
advancing the cloud and its widespread adoption, addressing its limitations and concerns about it.

56.3 Advances and the Way Forward

The cloud computing field is fertile and cloud researchers, developers, cloud vendors, IT industry, regula-
tory agencies, and government must work together to advance the cloud further, addressing its limitations 
and concerns about it. Several new developments and initiatives are under way, which will further aid 
cloud computing. They span a range of areas, including software‐defined systems, community clouds, 
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cloud standards, cloud interoperability and portability, fog computing, cloudlets, cloud aggregation, cloud 
gaming, streamlined and standardized service‐level agreements (SLAs), and cloud regulations. Major driv-
ers of cloud adoption are big data analytics, the Internet of Things, ubiquitous mobile applications, and 
the increasing demand for IT services by individuals and businesses in emerging markets that are yet to 
fully embrace the power of IT.

56.3.1 Software‐Defined Datacenters

The software‐defined datacenter (SDDC), also known as a virtual datacenter, is an emerging next step in the 
evolution of virtualization and cloud computing. A traditional cloud computing environment has a flexible 
arrangement for resource allocation, utilization, and management gained through virtualization. However, its 
hardware environment is still “stiff” and hard to modify and adapt in an integrated fashion, and it poses con-
siderable challenges regarding the flexibility, dependability, and security that next‐generation systems will 
require. For example, networking topologies, many aspects of the user control over IaaS, PaaS or SaaS layers, 
construction of XaaS services, and others have limited flexibility and management options. To address 
these limitations, software‐defined systems (SDS) that add software components to help abstract actual IT 
 equipment and other layers, are gaining interest. Examples of SDS are: software‐defined network (SDN), 
software‐defined storage (DSD), software‐defined servers (virtualization), software‐defined security 
(SDSec), SDDC, and software‐defined cloud (SDCloud).

In a SDDC, all infrastructures are virtualized and the control of the datacenter is fully automated by soft-
ware – that is, the hardware configuration is managed by intelligent software system. This is in contrast to 
traditional datacenters, where the infrastructure is typically defined by hardware and devices. Ongoing 
research and development is poised to advance these areas and drive the next generation of clouds.

56.3.2 Smaller Regional Clouds, Community Clouds

Besides major global cloud vendors such as Amazon, Microsoft, Google, Rackspace, and IBM, which have 
huge cloud infrastructures to cater for a large number of clients, many small regional vendors have begun to 
offer cloud services that are intended to cater for the needs of local clients, providing local technical and 
application support. Such offerings also address the problem of legal jurisdiction, data residence, compliance 
requirements, if any, and pricing commensurate with local / regional conditions. New local cloud vendors are 
setting up datacenter facilities in their region, which would also help address concerns of cloud users related 
to global vendors.

Further, more community clouds, also known as vertical clouds or industry clouds, which are optimized 
and specially deployed for use by a particular industry sector or a group of users meeting specific require-
ments that are crucial to them, are emerging.

56.3.3 Innovative Applications Based on Combination of Cloud Services

Several cloud‐based services will be combined in previously unimagined ways to offer entirely new appli-
cations and services. For example, let us consider an application such as Uber, which uses a few different 
cloud services. It utilizes geolocation to find both users and nearest cars, analytics to price on demand, com-
munication to negotiate and connect with a traveler, and finally payment services to close the transaction 
(Abrosimova, 2014). Companies like Onshape, Proto Labs and MarkForged are offering new services that 
facilitate design, modeling, testing and collaboration to support manufacturing using 3D printing and other 
technologies. Many such new applications, which innovatively combine several services, will emerge in 
the near future.
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56.3.4 Cloud Service Brokers and Aggregators

Enterprises will use multiple cloud environments delivered on heterogeneous platforms. This will require 
specialist skills and capabilities to manage the different cloud environments with a consistent management 
framework. Rather than obtaining in‐house capabilities, which many SMEs cannot afford, users may prefer 
to utilize services of intermediaries such as cloud brokers and cloud aggregators who can provide value‐added 
services that help cloud users. For example, a cloud broker can help a client to find a suitable cloud service, 
review its SLA, and negotiate and manage a deal on behalf of that client. A cloud aggregator can offer tailor‐
made cloud services / applications by drawing on a few different services from different CSPs, and integrate 
and manage the services offered to its client. As there will be increased demand for such value‐added cloud 
services by intermediaries, new players will emerge to offer cloud brokering and aggregation services.

56.3.5 Cloud in Emerging Markets

Cloud computing is, and will continue to be, a catalyst for change in emerging markets (EMs) — nations in 
the process of rapid growth, industrialization, and socioeconomic development, which represent two‐thirds 
of the global population. Although these markets have historically lagged behind advanced economies in 
adopting and innovatively leveraging IT to address their problems, they are now harnessing cloud computing 
in novel ways in a range of areas including business, education, socioeconomic development, health care, and 
governance. Emerging markets are fostering a new level of transformation, facilitated by the cloud. The 
cloud, combined with pervasive mobile phones, is transforming developing countries by facilitating improved 
productivity and economic and social progress. The potential of the cloud in developing countries is enor-
mous. Hence, multinationals, local companies, policy makers, and IT professionals in emerging markets 
pay greater interest to develop and deploy the cloud and foster adoption of cloud computing particularly by 
micro, small, and medium enterprises (MSMEs), and by individuals. A number of supporting factors are 
contributing to the rise of clouds in EMs. Multinational IT businesses’ interest in EMs, emergence of local 
CSPs, government and international organizational initiatives, collaborative initiatives and growing interest 
in and need for using IT for socioeconomic development, education, governance, banking and finance, and 
other factors, will raise the cloud offerings and adoption in EM.

56.3.6 Internet of Things

The Internet of things (IoT), in which things such as cars, TVs, machinery, and electrical appliances will be 
connected to the Internet, will create a whole range of new applications and services – smart grids, smart 
homes, smart cities, healthcare applications, and more. The large volume of data collected from vast array of 
sensors will be stored and analyzed at one or more clouds, and accessed from anywhere by mobile phones 
and other devices. Widespread adoption of the IoT in the coming years will drive demand for traditional and 
special cloud services, such as data analytics and location‐based services, and will be a key driver for cloud’s 
accession.

56.3.7 Fog Computing

Fog computing, also known as edge computing, is a new incarnation of the cloud. Instead of using comput-
ing and storage resources at a centralized location, as in a traditional centralized cloud, the data is stored and 
processed where it is generated or needed by placing some processes and resources at the network ends. Fog 
computing aims to reduce communication bandwidth needed by aggregating data at certain access points 
and then transmitting to a central cloud, rather than sending every bit of data. It is closely linked with the 
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IoT and sensor networks and is primarily for applications that require very low and predictable latency. 
Large distributed‐control applications and some mobile and IoT applications have embraced fog computing 
as it facilitates simple processing and decisions where data is generated or aggregated near to the source, 
minimizing long‐distance data transmission. It is also a way of bypassing the wider Internet, whose speed 
can vary considerably and largely depend on carriers.

56.4 Cloud Computing: The New Normal

Cloud computing is pervasive and is the new normal. However, while hailing the features of current and new 
cloud services that help users adopt and tailor the services they use according to their needs, it is important to 
recognize that the new interlinked cloud ecosystem still presents a few challenges and concerns. Such con-
cerns are those relating to interoperability, the quality of service of the entire cloud chain, compliance with 
regulatory requirements and standards, and security and privacy of data, access control and management, and 
service failures and their impact. All these issues need to be addressed innovatively, and this calls for col-
laboration among various players in the cloud ecosystem. Good news is that investors, established corpora-
tions, and startups are eagerly investing in promising cloud computing technologies and services, and are 
willing to collaborate (to an extent) to raise the clouds to newer heights. We can hope for a brighter, bigger, 
more collaborative cloud ecosystem that benefits all of its stakeholders and society at large. Cloud service 
providers, the IT industry, professional and industry associations, governments, and IT professionals all have 
a role to play in shaping, fostering, and harnessing the full potential of the emerging cloud ecosystem.

In this encyclopedia, we offered a holistic and comprehensive view of the cloud from different perspec-
tives. Innovations in technology, service delivery, and business models are needed to make further inroads 
and embrace the cloud ecosystem’s untapped potential. We hope this encyclopedia kindles your thinking and 
helps to make the grand vision of an all‐encompassing, interoperable, collaborative cloud ecosystem that 
benefits the society at large a reality in the near future.

We welcome your feedback on this encyclopedia and your thoughts on the emerging cloud ecosystem at 
cloudcomputingencyclopedia@gmail.com.
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cloud integration testing, 335
cloud interoperability, 14, 116, 650
cloud knowledge, 642–643
cloud migration, 383–394

application architecture, 385
profile identification, 385
roadmap, 384–385

cloud modelling, 640–650
IaaS information modeling, 644–645
PaaS information modeling, 645–646
SaaS information modeling, 646–647
SLA modeling, 647–649
Xass modeling, 646–647

cloud networks, 102, 115
access layer, 120
aggregation layer, 120
APIs, 117
architecture, 117
characteristics of, 116
core network layer, 120
elasticity, 116
layer 2 network, 119
layer 3 network, 119
management, 125
orchestration, 125
security, 124

cloud orchestration, 374
cloud outlook, 682–686
cloud policy, 364
cloud portability, 14, 168
cloud privacy, 245, 255–266

best practices, 261–264
challenges, 259
harms, 258, 262
laws, 262
principles, 259
relationship with security, 258, 260
response to dealing with risk, 262
risks, 257, 260–261
threats, 262
vulnerability, 262

cloud programming frameworks, 609–612
cloud programming models, 596–608

cloud prospects, 683
cloud provider, 434
cloud reference frameworks, 73

CSA cloud reference model, 77
distributed computing reference model (DCRM), 86
IETF, 75
NIST, 74
OSA Secure Architecture Models, 82
SNIA CDMI, 84

cloud requirements, identification, 386
cloud resource management Policy, 303
cloud security, 220–231

application security, 224–226
cloud governance, 220–221
contract requirements, 221–222
incident response, 230
intrusion detection, 229–230
mechanisms and techniques, 223–226
network security, 223–224
security policies, 221
service‐level agreements, 222–223

Cloud Security Alliance, 77
cloud security assessment, 227–228
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