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1
Prolegomenon: A Personal
Perspective and an Explanation
of the Structure of the Book

Time series analysis: a personal perspective

1.1 My interest in time series analysis began around 1977, soon after I had
been appointed to a lectureship in econometrics in the School of Economic
Studies at the University of Leeds. I had earlier been subjected to a rather hap-
hazard training in econometrics and statistics, both as an undergraduate at Essex
and as a postgraduate at Warwick, so that when I entered academia I was basi-
cally self-taught in these subjects. This was an undoubted advantage in that
my enthusiasm for them remained undiminished but it was accompanied by
a major drawback: I was simply unacquainted with large areas of economet-
ric and statistical theory. As an example of this haphazard background, in my
final undergraduate year in 1973 I attended a course on the construction of
continuous time economic models given by Peter Phillips, now the extremely
distinguished Sterling Professor of Econometrics and Statistics at Yale but then
in his first academic appointment, while my econometrics course consisted
of being taught the yet to be examined thesis of a temporary lecturer who
subsequently left academia, never to return, at the end of that academic year!

I was made painfully aware of these lacunae in my education by the arrival of
Brendan McCabe – one of the finest theoretical time series analysts of our gen-
eration – to a lectureship at Leeds just three months after my own appointment,
and then to what seemed at the time to be a flood of papers by Denis Sargan,
David Hendry and Grayham Mizon outlining a new approach to time series
econometrics (see, for example, Davidson et al., 1978; Hendry and Mizon, 1978;
Sargan, 1980). The serial appearance of these papers meant that I had continu-
ally to rethink my doctoral thesis for the University of Warwick on modelling
the UK demand for money function, for which the time limit for submission
was rapidly approaching!

Hendry (1977) had a particularly major impact on my research and this led
me – and not before time, many would say – to George Box and Gwilym Jenkins’

1
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2 The Foundations of Modern Time Series Analysis

classic book (Box and Jenkins, 1970) which, it is not too fanciful to say, altered
my academic career completely! Throughout my academic ‘training’ in depart-
ments of economics I had never been comfortable with either economic theory
or the traditional econometric approach of estimation conditional on a given
theory, preferring to take an unashamedly empirical approach to econometric
modelling (I had, in fact, been offered a grant to take the MSc in Operational
Research at Lancaster in 1973, where Gwilym Jenkins was then based, as well as
one to take the MA in Economics at Warwick, opting for the latter on the grounds
that, as a Londoner, Lancaster was much too far ‘up north’ – an interesting deci-
sion given that I subsequently spent almost twenty years at the universities of
Leeds and Hull!)

The model-building philosophy expounded by Box and Jenkins was there-
fore intellectually very congenial to me and I embraced it with enthusiasm.
Assimilating all these ideas, along with the then extremely popular approach
of Granger–Sims causality testing (Granger, 1969; Sims, 1972), enabled me to
successfully complete my thesis in 1979 and to get my first publications under
my belt.

My time series education was extended further during a part-time stint in
the Bank of England’s Monetary Policy Group during the early 1980s, where
a chance encounter with Peter Burman, then Head of Statistical Techniques,
enabled me to become acquainted with unobserved component models and
signal extraction techniques (Burman, 1980; Mills, 1982a, 1982b). I was now
up and running and a few years later Time Series Techniques for Economists (Mills,
1990) was published, which, to my continued surprise, remains in print over
twenty years later.

1.2 I have always been interested in the historical development of economet-
rics and statistics, no doubt in part a consequence of my long collaborations and
friendships with economic historians, notably Nick Crafts and Forrest Capie. My
early forays into the subject were restricted to the introductions to Edward Elgar
collections on economic and financial market forecasting and on the modelling
of trends and cycles (Mills, 1999, 2002a, 2002b), but later articles (Mills, 2009,
2011) consolidated my interest and led directly to the writing of this book.

Scope of the study

1.3 The early, essentially descriptive, history of time series analysis has been
covered in detail by Klein (1997). I therefore quickly decided that my starting
point would be the formal development of the concept of correlation and the
first statistical analyses of meteorological and economic time series, which took
place during the last decade of the nineteenth century. My end point was chosen
rather more subjectively, but it became clear that the publication of Box and
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Jenkins’ book in 1970 marked, in retrospect, a watershed in the development
of the subject, as it synthesized much of the analysis that had been carried out
up to that point and, as a consequence, acted as a catalyst for the explosion
of research that has subsequently been undertaken over the last 40 years. The
choice of 1970 also resonated from a personal perspective, as it was the year in
which I entered higher education, where I have remained ever since!

Style and structure of the book

1.4 Natural reference points to the development of time series analysis in the
first half of the twentieth century are Udny Yule and Maurice Kendall’s An Intro-
duction to the Theory of Statistics (Yule and Kendall, 14th edition, 1950) and
Kendall’s Advanced Theory of Statistics (Kendall, 1946). As well as being hugely
impressed by the general excellence of these texts, I was also taken by the format
of subheading and section number used in them. I have adopted this format
here, both to pay homage to these two British greats of the subject and also
because of the ease with which it allows cross-referencing, an essential part of
a study such as this. Thus a cross-reference to section y of Chapter x will be
denoted §x.y in subsequent chapters.

On reading many of the early papers on time series, particularly those in
Biometrika and the Journal of the Royal Statistical Society, I was immediately struck
by their discursive prose style and, it must be said, by the length of the articles,
which facilitated such discursiveness (no doubt this was helped by the relatively
small number of active time series analysts writing at the time, the lack of a peer
review process – not necessarily a bad thing under the circumstances – and the
fact that authors were also often the editors of the journals!) I have thus taken
the opportunity of quoting at length from these seminal contributions as it is
my opinion that being able to read the original descriptions, arguments and,
quite frankly, the prejudices and hobby horses of the major protagonists, adds
much to our understanding of the development of the subject and, indeed, to
the overall gaiety of these contributions. Indeed, the contrast between these
papers and the terseness of many current journal articles is quite striking.

I have also provided, in various endnotes, short ‘pen pictures’ of some of the
major figures in time series to provide background colour to the analysis being
developed. Of course, biographies exist for several characters and references to
these are given in the notes.

1.5 The book contains 16 chapters, including this. Chapter 2 introduces the
early work of Yule on regression and correlation and of Hooker on the concept
of trend. Chapter 3 is devoted to periodogram analysis and focuses on the appli-
cations of this technique made by Schuster and Beveridge to sunspots and wheat
prices, respectively. Early concerns with detrending are the focus of Chapter 4,
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which examines the variate differencing method of Student and Pearson and
its critique by Yule and Persons. By this time, the early 1920s, formal statistical
models of time series had begun to be developed and Chapter 5 concentrates
on the ‘first generation’ of these models proposed by Yule, Slutzky and Work-
ing, with the analyses of Yule and Walker on periodicities in sunspots and air
pressure being a consequence of superposed fluctuations forming the material
of Chapter 6.

During the 1930s the probabilistic theory of time series began to be developed,
first by Russian mathematicians and then by the Swede Herman Wold: Chapter 7
is devoted to his 1938 monograph A Study in the Analysis of Stationary Time Series,
which laid the foundations for subsequent theoretical research in the subject.
Chapter 8 covers various extensions to the autoregressive class of models, in
particular the oscillatory models of Kendall. Hard on the heels of Wold, the
1940s saw major research activity, by an increasing number of statisticians, on
developing a theory of statistical inference for stationary time series. This is
developed in Chapter 9, which then goes on to discuss various proposals for
estimating autoregressive, moving average and mixed processes, culminating in
the univariate modeling methodology that was developed by Box and Jenkins
during the 1960s.

Of course, analysts since the beginning of the twentieth century had been con-
fronted with time series that were not stationary but which contained trends,
hence the need for methods such as variate differencing. A parallel literature had
also developed, primarily in the actuarial profession, of detrending by ‘gradua-
tion’ – the taking of successive moving averages. Chapter 10 begins by linking
this literature to the more conventional detrending method of fitting local poly-
nomial trends. It then goes on to consider other methods of eliminating trend
movements, most notably by differencing, which led on to the concept of an
integrated process and the associated ARIMA model. Forecasting time series with
local trends became of increasing concern during the 1950s in a variety of dis-
ciplines and this is the subject of Chapter 11, which looks at both exponential
smoothing techniques and the ‘full blown’ theory of forecasting ARIMA models
whilst also examining the links between them.

Up to this point, the development has been focused almost exclusively on
methods for analysing time series individually, but during the 1950s the mod-
elling of several series together began to attract attention. Chapter 12 thus
develops the transfer function approach of Box and Jenkins, in which an ‘input’
affects an ‘output’, and also the more general framework of multiple time series
analysis, which allows feedback between various series.

Chapter 13 focuses on the modern extension of the periodogram, spectral
analysis, while Chapter 14 discusses the various techniques that have been
developed to deal with seasonal patterns in time series, both to adjust the
data for such fluctuations and to explicitly model the observed seasonality.
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Chapter 15 examines four sub-themes that developed between the late 1950s
and 1970, namely inference concerning nonstationarity, the use of model selec-
tion criteria, state space models, the Kalman filter and recursive estimation, and
nonlinearity in time series. Finally, Chapter 16 links the emerging themes from
the previous chapters to the huge explosion of research undertaken over the last
forty years since 1970 and offers some thoughts as to where the subject is likely
to go from the position it finds itself in at the start of the second decade of the
twenty-first century.
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2
Yule and Hooker and the Concepts of
Correlation and Trend

Yule on regression and correlation

2.1 The foundations of modern time series analysis began to be laid in the
late nineteenth century and were made possible by the invention of regression
and the related concept of the correlation coefficient. By the final years of the
century the method of correlation had made its impact felt primarily in biology,
through the work of Francis Galton on heredity (Galton, 1888, 1890) and of Karl
Pearson on evolution (Pearson 1896; Pearson and Filon, 1898).1 Correlation had
also been used by Edgeworth (1893, 1894) to investigate social phenomena and
by G. Udny Yule in the field of economic statistics, particularly to examine
the relationship between welfare and poverty (Yule, 1895, 1896).2 This led Yule
(1897a, 1897b) to provide a full development of the theory of correlation which,
unusually from a modern perspective – but, as we shall see, importantly for time
series analysis –, was based on the related idea of a regression between two
variables X and Y .3 It also did not rely on the assumption that the two variables
were jointly normally distributed, which was central to the formal development
of correlation in Edgeworth (1892) and Pearson (1896). This was an important
generalization, for Yule was quick to appreciate that much of the data appearing
in the biological and social sciences were anything but normally distributed,
typically being highly skewed.

2.2 Yule’s development is worth setting out in some detail. Let x = X − X
and y = Y − Y denote the deviations of the variables from their respective
means. Suppose that x takes on k distinct values and that a particular value,
xi, i = 1, 2, . . . , k, is associated with ni values of y, yij, j = 1, 2, . . . , ni, (n1 + · · ·
+ nk = n). These ni pairs of values (yij, xi) are called a ‘y-array’, from which can
be defined the array mean4

yi =
ni∑

j=1

yij/ni

6
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and array variance

σ2
i = 1

ni

ni∑

j=1

(yij − yi)
2

Let y = bx be the regression line that is, in some sense, the best linear represen-
tation of the relationship between the k pairs (yi, xi) and define

di = yi − bxi

to be the distance from the ith array mean to the regression line. For the ith
y-array,

nj∑

j=1

(yij − bxi)2 = niσ
2
i + nid2

i

and summing over all k arrays gives

k∑

i=1

nid2
i =

k∑

i=1

nj∑

j=1

(yij − bxi)2 −
k∑

i=1

niσ
2
i (2.1)

Yule chose his best-fitting regression line to be the one that minimizes the left-
hand side of (2.1). Because the second term on the right-hand side of (2.1) does
not depend on b, this minimization is equivalent to choosing b to minimize

k∑

i=1

nj∑

j=1

(yij − bxi)2

This, of course, is the standard method of least squares and leads to

b =
∑k

i=1
∑nj

j=1 yijxi
∑ni

i=1 ni
∑ki

i=1 x2
i

(2.2)

Yule referred to b as the regression coefficient or, somewhat confusingly from
today’s perspective, as simply the regression. Redesignating the individual pairs
of observations as (yp, xp), p = 1, 2, . . . , n, then allows (2.2) to be written in the
familiar form5

b =
∑n

p=1 ypxp
∑n

p=1 x2
p

(2.3)
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Yule then defined

n∑

p=1

x2
p = nσ2

x ;
n∑

p=1

y2
p = nσ2

y ;
n∑

p=1

ypxp = nrσyσx

where σx and σy are the standard deviations of x and y.6 The formula (2.3) can
then be expressed as

b = r
σy

σx
(2.4)

and what Yule termed the characteristic relation between y and x becomes

y = r
σy

σx
x

By analogous reasoning, the characteristic relation between x and y is

x = r
σx

σy
y = b′y

How is the new variable r = √
bb′, the geometric mean of the two regressions, to

be interpreted? Note first that the two characteristic relations can be written as

y
σy

= r
x
σx

x
σx

= r
y
σy

prompting Yule to state that

if we measure x and y each in terms of its own standard deviation, r becomes at
once the regression of x on y and the regression of y on x, these two regressions being
then identical. (Yule, 1897b, page 820: italics in original)

Using (2.4), and dropping subscripts and limits of summation for notational
convenience, obtains

∑
(y − bx)2 =

∑ (
y − r

σy

σx
x
)2

= nσ2
y (1 − r2) (2.5)

and, analogously,
∑

(x − b′y)2 = nσ2
x (1 − r2) (2.6)

∑ (
y
σy

− x
σx

)2

=
∑ (

x
σx

− y
σy

)2

= n(1 − r2)
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All these quantities, being sums of squares, must necessarily be positive, so
that r cannot be numerically greater than unity (i.e., |r| ≤ 1). If r = ±1, all these
quantities become zero, but

∑ (
y
σy

± x
σx

)2

= 0

requires that

yp

σy
± xp

σx
= 0 p = 1, 2, . . . , n

or
y1

x1
= y2

x2
= · · · = yp

xp
= ±σy

σx

the sign of the last term being the sign of r. Hence, ‘when the value of r is unity,
all pairs of deviations bear the same ratio to one another, or the values of the two
variables are related by a simple linear law’ (ibid., page 821: italics in original). In
other words, the distribution of the scatter of Y and X values has collapsed into
a distribution along a straight line. The greater the value of |r|, the more closely
this result holds, and hence r is termed the coefficient of correlation. Yule took
great care to contrast the interpretation of |r| = 1 – that of perfect correlation –
with its ‘polar’ opposite:

. . . r = 0 does not in general imply that the variables are strictly independent
in the sense that the chance of getting a pair of deviations is equal to the
product of the chances of getting either separately. The condition r = 0 is
necessary but is not sufficient. (ibid., page 821: italics in original)

Yule was clearly aware that the linear regression model underlying the calcula-
tion of r was just an assumption: ‘if the [true] regression be very far from linear
some caution must evidently be used in employing r to compare two different
distributions’ (ibid., page 821: see also the discussion on pages 816–17).

Yule then noted that the quantities in (2.5) and (2.6), σy
√

1 − r2 and σx
√

1 − r2,
were the standard errors made in estimating y and x from their respective char-
acteristics, i.e., regressions, and regarded

√
1 − r2 as such an important quantity

that he provided a table (Table I of the Appendix) of its values for r incrementing
in hundredths.

2.3 After a detailed numerical example reworking the pauperism and wel-
fare relief data of Yule (1896), he then extended the regression framework to
three variables, now denoted X1, X2 and X3, with mean deviations x1, x2 and x3,
and with

∑
x2

i = nσ2
i , i = 1, 2, 3;

∑
xixj = nrijσiσj, i �= j
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The characteristic relation, or regression,

x1 = b12x2 + b13x3 (2.7)

is then fitted by solving the following normal equations for b12 and b13:

∑
x1x2 = b12

∑
x2

2 + b13

∑
x2x3

∑
x1x3 = b12

∑
x2x3 + b13

∑
x2

3

As these can be written

r12σ1 = b12σ2 + b13r23σ3

r13σ1 = b12r12σ2 + b13σ3

the solutions are

b12 = r12 − r13r23

1 − r2
23

σ1

σ2
(2.8)

b13 = r13 − r12r23

1 − r2
23

σ1

σ3

There are, of course, two further characteristic relations expressing x2 and x3,
respectively, in terms of the remaining pair of variables: ‘(t)he value of any b in
terms of the r’s can be written down from the expressions [2.8] by simply inter-
changing the suffixes. Thus b23 could be written down by simply writing 2 for 1
and 3 for 2 in the expression for b12’ (Yule, 1897b, page 832). Yule then defined

v = x1 − (b12x2 + b13x3)

to be the ‘error made in estimating x1 from relation [2.7] or a deviation of x1

from the value (b12x2 + b13x3)’, remarking that the ‘relation [2.7] has been so
formed that

∑
v2 =

∑
(x1 − (b12x2 + b13x3))2

is the least possible’ (ibid., page 832). Using the solutions (2.8), this sum of
squared errors can be written as

∑
v2 = nσ2

1

(
1 − r2

12 + r2
13 − 2r12r23r31

1 − r2
23

)
= nσ2

1 (1 − R2
1)

where σ1

√
1 − R2

1 is the standard error made in estimating x1 from the regression
(2.7) and R1 is the coefficient of correlation between x1 and (x2, x3), which Yule
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suggested might be termed a ‘coefficient of double correlation’.7 Yule termed the
quantities b12, b13, etc., the net or partial regression coefficients, and the quantity

r12.3 =
√

b12b21 = r12 − r13r23√
(1 − r2

13)
√

(1 − r2
23)

(2.9)

the net, or presumably partial, correlation coefficient.8 It retains the chief
properties of the ordinary correlation coefficient in that r12.3 will be zero if
both partial regression coefficients are zero, it is a symmetric function of the
variables (r12.3 = r21.3), and |r12.3| ≤ 1. The definition (2.9) has some interesting
implications. Since

(r12 − r13r23)2 ≤ (1 − r2
13)(1 − r2

23)

r12 must lie between the limits

r13r23 ±
√

1 + r2
13r2

23 − r2
13 − r2

23

By providing a table of special cases, Yule (ibid., page 834) showed that it was
perfectly possible for both r13 and r23 to be positive, yet for r12 to be negative or
zero: indeed, only when r13 and r23 both exceed

√
0.5 = 0.707 will 0 < r12 ≤ 1.

2.4 Yule then considered the conditions under which the standard error of the
regression of x1 on x2 and x3, σ1

√
1 − R2

1, would be smaller than the standard

error of the regression of x1 on just x2, σ1

√
1 − r2

12. This is equivalent to finding

the conditions that guarantee R2
1 > r2

12. The necessary condition is easily shown
to be (r13 − r12r23)2 > 0. But, from (2.9), r13 − r12r23 is the numerator of r13.2, so
that R2

1 > r2
12 as long as r13.2 is non-zero. For example, if r12 = ±0.8, r23 = 0.5 and

r13 = 0.4, then r13.2 = 0 and, although x3 is reasonably positively correlated with
x1, it turns out to be of no assistance in estimating x1. Conversely, if r13 = 0 it
cannot be concluded that x3 is of no use (i.e., r13.2 = 0) unless r12 = 0 as well.

2.5 The remainder of Yule (1897b) extended the analysis to four variables
and then considered the cases of two and three variable correlation when the
variables are jointly normally distributed. In the latter development, Yule intro-
duced a result on the probable error of the correlation coefficient that was
contained in the then unpublished Pearson and Filon (1898), being

0.674489
1 − r2

√
n

(2.10)

The constant 0.674889 is the 0.25 value of the standard normal distribution,
so that this formula provides the approximate bounds for a 50% confidence
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interval for the ‘true’ value of the correlation coefficient: (1 − r2)/
√

n can there-
fore be seen to be the standard error of the correlation coefficient from a normal
population.

Hooker and the concept of trend

2.6 By the turn of the twentieth century, applications of the theory of correla-
tion were becoming more popular, particularly using economic and social data
(in addition to the references given in §2.1, see also Yule, 1899, and Hooker,
1901a).9 Hooker (1901b), in examining the correlation between the marriage
rate and trade (taken to be the value of exports per capita) over the period 1857–
1899, raised an important difficulty with correlation analysis when applied to
time series data.10 If the movements in the two series that are being correlated
are produced by a combination of slow secular movements and more rapid, say
year to year, changes, then the latter may be highly correlated while the former
may be unrelated, so that the overall correlation between the two series may
turn out to be small. This is exactly what appeared to be happening with the
marriage rate and trade, which over the period exhibited declining and increas-
ing secular movements, respectively, thus producing a calculated correlation
of just 0.18 with a probable error (see equation (2.10)) of 0.09. Arguably, what
was really of interest was the correlation between the minor oscillations – the
short-run movements in the series – and to counteract this, Hooker proposed
the following strategy, which is worth quoting in full.

What I wish to suggest . . . is an elementary method of eliminating the general
movement in the particular case of phenomena exhibiting similar regular
periodic movements, so as to enable us to correlate the oscillations.

To correlate the oscillations of two curves, I propose that all deviations
should be reckoned, not from the average of the whole period, but from the
instantaneous average at the moment. The curve or line representing the
successive instantaneous averages I propose to call the trend. Any point on
the trend will be represented by the average of all observations in the period
of which that moment is the central point; e.g., if a curve shows a period of
p years, the instantaneous average in any year is the average of the p years of
which that particular year is the middle. By working out this instantaneous
average for consecutive observations, we obtain the trend in the curve; i.e.,
the direction in which the variable is really moving when the oscillations are
disregarded. And by replacing the deviations from the average in the formula
r = ∑

x1x2/nσ1σ2 by the deviations from this trend, we shall obtain a measure
of the correlation of the oscillations of two curves exhibiting similar regular
fluctuations. (Hooker 1901b, page 486)
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Thus, not only did Hooker introduce for the first time the notion of a trend,
but he also proposed detrending by a moving average.11 Choosing p = 9 on the
grounds ‘that a trade maximum occurs, on an average, approximately every
ninth year’ (ibid., page 487), this strategy produced a correlation of 0.80 (proba-
ble error 0.04) between the detrended marriage rate and trade, leading Hooker to
conclude ‘that while there is no connection between the general movements of
the two curves, there is a close correspondence between the oscillations’ (ibid.,
page 487, italics in original). Hooker then asked the following question

does the marriage-rate respond immediately to general prosperity? In other
words, will not a maximum in the marriage rate occur some time after a
maximum in the trade curve; and ought we not therefore to correlate the
marriage-rate with the trade in the previous year? (ibid., page 487, italics in
original)

To answer this, Hooker also calculated correlations between the marriage rate
and trade lagged by one year and by half a year (taken as the average of the
current and previous year’s trade) and led by one year and by half a year. The
maximum correlation was 0.86 when trade was lagged by half a year, allowing
Hooker to ‘conclude that, on the average of the thirty-five years, the marriage-
rate follows the exports at an interval of half a year’ (ibid., page 488). This would
therefore represent the, admittedly rudimentary, first appearance of what would
come to be known as a cross-correlation function (see §12.13).

2.7 Hooker repeated the analysis using various other measures of trade and
also broke the sample into two, enabling him to contrast the correlations and
the lead/lags across the two sub-samples. As Hendry and Morgan (1995, page
11) remark, ‘Hooker’s paper demonstrates the new level of technology brought
in from the biometricians and the new skills of inference needed for such tech-
niques, as well as their remarkable range of application. In modern parlance, he
explicitly considers non-stationarity due to both stochastic trends and regime
shifts as well as deterministic trends, cross serial correlations and lead-lag deter-
mination, and issues of model selection when there are multiple correlated
causes so that the empirical model has to be discovered from the data’. Hooker
had thus taken the analysis of time series data to a much higher plane than ever
before.12

2.8 Hooker’s core example of the correlation between the marriage rate and
per capita trade can be recreated using data from Mitchell (1998). Table 2.1
presents the marriage rate for the UK, the trend in the marriage rate, calculated
as a 9-year centred moving average, and the detrended marriage rate, which
Hooker called the oscillations in the rate, along with similar calculations for
total UK trade per capita, for the period 1857 to 1899. The correlation between
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Table 2.1 Marriage rate and trade per capita in the UK, 1857–1899

Nine-year Detrended Trade Nine-year Detrended
Marriage moving marriage per moving trade per
rate average rate capita average capita

1857 16.19 – – 15.00 – –
1858 15.60 – – 13.56 – –
1859 16.59 – – 14.69 – –
1860 16.67 – – 16.38 – –
1861 15.90 16.39 −0.49 15.98 16.83 −0.85
1862 15.73 16.49 −0.76 16.66 17.57 −0.91
1863 16.47 16.55 −0.08 18.77 18.30 0.47
1864 17.18 16.46 0.72 20.26 18.97 1.29
1865 17.15 16.34 0.81 20.15 19.46 0.69
1866 17.13 16.33 0.80 21.69 20.03 1.66
1867 16.16 16.41 −0.25 20.11 20.79 −0.68
1868 15.74 16.48 −0.74 20.74 21.51 −0.77
1869 15.58 16.49 −0.91 20.76 22.09 −1.33
1870 15.87 16.45 −0.58 21.17 22.58 −1.41
1871 16.39 16.38 0.01 23.51 22.81 0.70
1872 17.10 16.39 0.71 25.25 23.09 2.16
1873 17.33 16.37 0.96 25.40 23.32 2.08
1874 16.77 16.30 0.47 24.56 23.40 1.16
1875 16.46 16.12 0.34 23.77 23.39 0.38
1876 16.31 15.93 0.38 22.64 23.41 −0.77
1877 15.54 15.69 −0.15 22.83 23.19 −0.36
1878 14.97 15.47 −0.50 21.46 23.02 −1.56
1879 14.20 15.31 −1.11 21.07 22.97 −1.90
1880 14.69 15.13 −0.44 23.68 22.81 0.87
1881 14.95 14.91 0.04 23.30 22.59 0.71
1882 15.32 14.74 0.58 23.89 22.24 1.65
1883 15.33 14.66 0.67 24.09 22.11 1.98
1884 14.91 14.66 0.25 22.31 22.15 0.16
1885 14.33 14.67 −0.34 20.66 22.06 −1.40
1886 14.00 14.71 −0.71 19.71 22.02 −2.31
1887 14.19 14.71 −0.52 20.26 21.86 −1.60
1888 14.20 14.70 −0.50 21.42 21.56 −0.14
1889 14.79 14.66 0.13 22.95 21.31 1.64
1890 15.28 14.71 0.57 22.89 21.23 1.66
1891 15.39 14.80 0.59 22.46 21.29 1.17
1892 15.24 14.95 0.29 21.34 21.38 −0.04
1893 14.52 15.13 −0.61 20.13 21.34 −1.21
1894 14.79 15.27 −0.47 19.90 21.16 −1.26
1895 14.82 15.38 −0.56 20.28 21.08 −0.80
1896 15.52 – – 21.06 – –
1897 15.81 – – 21.01 – –
1898 16.03 – – 21.33 – –
1899 16.32 – – 22.19 – –
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Figure 2.1 Marriage rate and trade per capita in the UK, 1857–1899, with nine year centred
moving average superimposed
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Figure 2.2 Detrended marriage rate and trade per capita in the UK, 1861–1895

the marriage rate and trade per capita is −0.001, so that the two observed series
are uncorrelated, but the detrended ‘oscillations’ have a correlation of 0.85 with
a standard error, calculated from (2.10), of 0.03.

The data are plotted in Figures 2.1 and 2.2 and these very different correlations
are obviously borne out from the plots. Table 2.2 reports the ‘cross-correlations’,
where r(k) denotes the correlation between the current detrended marriage rate
and detrended trade lagged k years (with negative k implying a lead). Following
Hooker, k = 1/2 denotes the correlation using the average of the current and
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Table 2.2 Correlations between the detrended marriage rate and lags of detrended trade
per capita

Lag k 2 1 1
2 1 1

2 0 − 1
2 −1 −1 1

2 −2

(a) 35 years: 1861–1895

r(k) 0.28 0.59 0.76 0.91 0.85 0.68 0.37 0.10 −0.23

(b) 15 years: 1861–1875

r(k) 0.11 0.45 0.68 0.91 0.93 0.80 0.52 0.26 −0.07

(c) 20 years: 1876–1895

r(k) 0.36 0.68 0.82 0.92 0.80 0.59 0.24 −0.09 −0.39

lagged one year detrended trade and other non-integer k are defined in analo-
gous fashion.13 As in Hooker, the sample is split at 1876 and cross-correlations
computed for the full and the two sub-samples.

These findings replicate those of Hooker in that the lag looks to have increased
across the samples, at least in terms of the value of k that produces the maximum
cross-correlation: this is found to be k = 1/2 for the later sub-sample but k = 0
for the earlier one.

2.9 Hooker (1905) returned to the issue of ‘detrending’, but now attacked
it by suggesting a method that ‘consists simply in calculating the correlation
coefficients of the differences between successive values of two variables’ (page
697). Thus, given two time series (Yt , Xt ), t = 1, 2, . . . , T , then, rather than cal-
culating the usual correlation coefficient from the mean deviations yt = Yt − Y ,
xt = Xt − X,

rxy =
∑

xtyt

nσxσy
σ2

x =
∑

x2
t

n
σ2

y =
∑

y2
t

n
(2.11)

the correlation coefficient between the successive differences, �xt = xt − xt−1,
�yt = yt − yt−1, t = 2, . . . , T , is calculated.14 Noting that the sample means of
these differences can be written as �x = (xT − x1)/T and �y = (yT − y1)/T , this
correlation is given by

r�x�y =
∑

(�xt − �x)(�yt − �y)
Tσ�xσ�y

σ2
�x =

∑
(�xt − �x)2

T
σ2

�y =
∑

(�yt − �y)2

T

This correlation coefficient was applied to the daily changes of the corn prices
analysed in Hooker (1901a), finding that the absolute sizes of the correlation
coefficients so obtained were considerably smaller than (often less than half the
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size of) the corresponding correlation coefficients calculated from the levels.
The conclusion drawn by Hooker from this analysis seems particularly prescient
when viewed from a modern perspective:

in examining the relationship between two series of observations extending
over a considerable period of time, correlation of absolute values (deviations
from the arithmetic mean) is the most suitable test of ‘secular’ interdepen-
dence, and may also be the best guide when the observations tend to deviate
from an average that may be regarded as constant. Correlation of the devi-
ations from an instantaneous average (or trend) may be adopted to test the
similarity of more or less marked periodic influences. Correlation of the dif-
ference between successive values will probably prove most useful in cases
where the similarity of the shorter rapid changes (with no apparent periodic-
ity) are the subject of investigation, or where the normal level of one or both
series does not remain constant. It may even, in certain cases, be desirable to
combine the two methods, and to correlate the deviations from the mean in
the one series with the successive changes of the other. (Hooker, 1905, page
703: italics in original)

Hooker was thus clearly aware of the distinction between what are now called
integrated (here I(0) and I(1)) processes and of the difficulties inherent in
modelling the relationships between series of different orders of integration
(see the discussion in §16.20). Almost contemporaneously, Cave-Browne-Cave
(1905) was considering both the correlation between daily changes in baromet-
ric heights between two meteorological stations and the correlation between
successive daily barometric heights at the two stations themselves, thus provid-
ing the first example of calculating serial correlations. Thus by the early years
of the twentieth century, the first hesitant steps along the path of modern time
series analysis were clearly being taken, although formalization of these methods
would have to wait another twenty years.
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3
Schuster, Beveridge and Periodogram
Analysis

Periodogram analysis

3.1 Around the time that Hooker and Yule were developing correlation and
detrending techniques for economic time series, the physicist Sir Arthur Schus-
ter was investigating periodicities in series such as earthquake frequency and
sunspot numbers using a technique that became to be known as periodogram
analysis (see Schuster, 1897, 1898, 1906).1 Periodogram analysis is based on the
technique of harmonic analysis and the use of Fourier series, which we outline
using the classic approach taken in Whittaker and Robinson (1924) and Davis
(1941).2

By a harmonic we mean a function of the form

y = A cos
2πt
n

+ B sin
2πt
n

= ρ cos α cos
2πt
n

+ ρ sin α sin
2πt
n

= ρ

(
cos

(
2πt
n

− α

))
(3.1)

=
√

A2 + B2 cos
(

2πt
n

− α

)

where we use the trigonometric identity cos(β − α) = cos α cos β + sin α sin β

and note that the definitions A = ρ cos α and B = ρ sin α imply that tan α = B/A
and ρ2 = A2 + B2 since cos2 α + sin2 α = 1.

In (3.1) n is the period of the harmonic, its reciprocal, 1/n, is the frequency,
and ρ = √

A2 + B2 is the amplitude; α = arctan B/A is the phase angle, whose effect
is to delay by nα/2π time periods the peak of the cosine function, which would
otherwise occur at t = 0, n, 2n, . . . . A plot of the harmonic function

y = 6 cos
2πt
12

+ 8 sin
2πt
12

= 10 cos
(

2πt
12

− α

)

α = arctan 1.3333 = 53.13◦ = 0.2952π

18
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is shown below, where the amplitude and the period of the cycle are clearly
10 and 12 respectively, with the phase angle of 53.13◦ inducing a phase shift of
12 × 0.2952/2 = 1.77 time periods.

−10
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0

5

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

y

t

3.2 By writing ω = 2π/n as the frequency measured in radians, a series of the
form

yt = 1
2 A0 +

∞∑

j=1

Aj cos jωt +
∞∑

j=1

Bj sin jωt

may be defined, which is known as a (trigonometrical) Fourier series. To obtain the
coefficients Aj and Bj in terms of the observed series yt , we can make use of the
orthogonality conditions which prevail amongst the harmonic components,
which lead to3

A0 = 2
n

∫ n

0
yt dt

Aj = 2
n

∫ n

0
yt cos jωt dt j > 0

Bj = 2
n

∫ n

0
yt sin jωt dt j > 0

Suppose now that yt is to be approximated by the first J harmonics of a Fourier
series:

yt = 1
2 A0 +

J∑

j=1

Aj cos jωt +
J∑

j=1

Bj sin jωt + eJ ,t = yJ ,t + eJ ,t

The integral of the square of the residual, eJ ,t , is

I = 2
n

∫ n

0
e2

J ,t dt = 2
n

∫ n

0
(yt − yJ ,t )2 dt = 2

n

∫ n

0
(y2

t − 2yt yJ ,t + y2
J ,t ) dt
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Noting the well-known integrals

∫ n

0
sin pωt sin rωt dt =

∫ n

0
cos pωt cos rωt dt =

∫ n

0
sin pωt cos rωt dt = 0, p �= r

2
n

∫ n

0
sin2 pωt dt = 2

n

∫ n

0
cos2 pωt dt = 1

we obtain

I = 2
n

∫ n

0
y2

t dt − ( 1
2 A2

0 + ρ2
1 + ρ2

2 + · · · + ρ2
J

) ≥ 0 ρ2
j = A2

j + B2
j

which implies the Bessel inequality

1
2 A2

0 + ρ2
1 + ρ2

2 + · · · + ρ2
J ≤ 2

n

∫ n

0
y2

t

with equality holding if J = ∞. Now, from the definition of A0, it is clear that
the mean of yt is μy = 1

2 A0. Hence, the variance, σ2
y , of yt is

σ2
y = 1

2

∫ n

0
(y2

t − μ2
y ) dt = 1

2

∞∑

j=1

ρ2
j

The variance of the residual, σ2
e , is similarly given by

σ2
e = 1

2 I = 1
2 (ρ2

J+1 + ρ2
J+2 + · · · )

which can thus be made smaller than any preassigned number by choosing J
large enough.

3.3 The set ρj, j = 1, 2, . . . , n/2, is referred to as the periodogram. As an exam-
ple of the construction of a periodogram, consider the harmonic function
yt = A sin (κt + β), for which the Fourier coefficients are given by

Aj = A sin β

(
sin π(κ/ω − j)

π(κ/ω − j)
+ sin π(κ/ω + j)

π(κ/ω + j)

)

and

Bj = A cos β

(
sin π(κ/ω − j)

π(κ/ω − j)
− sin π(κ/ω + j)

π(κ/ω + j)

)
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so that

ρ2
j = A2

π2

(
sin2 π(κ/ω + j)

(κ/ω + j)2
+ sin2 π(κ/ω − j)

(κ/ω − j)2
− 2 cos 2β

sin π(κ/ω + j) sin π(κ/ω − j)
κ2/ω2 − j2

)

= A2

π2

(
sin2 π(κ/ω + j)

(κ/ω + j)2
+ sin2 π(κ/ω − j)

(κ/ω − j)2
− 2 cos 2β

sin π(κ/ω + j) sin π(κ/ω − j)
(κ/ω + j)(κ/ω − j)

)

(3.2)

Since the function sin π(κ/ω− j)/(κ/ω− j) has a maximum value of 2π as j → κ/ω,
the expression (3.2) has a limiting value, as j → κ/ω, of

ρ2
j = A2

π2

(
sin2 2πκ/ω

4(κ/ω)2
+ 4π2 − 2π cos 2β sin 2πκ/ω

κ/ω

)

= A2 + A2

(
sin2 2πκ/ω

4π2(κ/ω)2
− 2 cos 2β sin 2πκ/ω

πκ/ω

)

The second term in this expression will be small compared to the first so that
ρ2

j will have a maximum in the neighbourhood of j = κ/ω. This is the funda-
mental idea underlying the use of the periodogram in the discovery of hidden
periodicities.

The dominating term of (3.2) is sin2 π(κ/ω − j)/(κ/ω − j)2, so that ρ2
j will also

have minima in the neighbourhood of the value of j which makes this term
zero. Such zero values are obtained from the equation κ/ω − j = m, where m is
an integer. An equivalent expression for κ is κ = 2π/p, where p is the ‘true’ period
of the cycle. The above equation then becomes n = p(j + m).

3.4 As an application of this approach, consider the function

yt = 100 sin
(

2πt
43

+ π

4

)

Using (3.2) and noting that cos 2β = cos π/2 = 0, we have

ρ2
j =

(
100
π

)2

⎛

⎜⎜⎜⎝

sin2 π

(
2π

43ω
+ j

)

(
2π

43ω
+ j

)2 +
sin2 π

(
2π

43ω
− j

)

(
2π

43ω
− j

)2

⎞

⎟⎟⎟⎠

=
(

100
π

)2

⎛

⎜⎝
sin2 π

( n
43

+ j
)

( n
43

+ j
)2 +

sin2 π
( n

43
− j

)

( n
43

− j
)2

⎞

⎟⎠
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If we set n = 204 and define x = 2/j to be the Fourier sequence 2.00, 1.00, 0.6667,
0.50, 0.40, 0.333, …, we have

ρ2
x =

(
100
2π

)2

⎛

⎜⎜⎜⎝

sin2 2π

(
102
43

+ 1
x

)

(
102
43

+ 1
x

)2 +
sin2 2π

(
102
43

− 1
x

)

(
102
43

− 1
x

)2

⎞

⎟⎟⎟⎠

The plot of ρx against x for 0 < x < 1 is shown below and clearly reveals the
existence of a period at x = 43/102 = 0.4216. However, minor peaks are found on
either side of the major peak. This is a characteristic of periodograms and such
‘shadows’ should not be interpreted as being evidence of other periodicities,
which clearly do not exist here.
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ρ

The minimum points can be found by recalling that, when m = 1,
j = (n − p)/p, thus implying that, since x = 2/j, the ‘greater’ minima is given
by x1 = 2p/(n − p) = 86/(204 − 43) = 0.5342. Similarly, the ‘smaller’ minima,
obtained when m = −1, is given by x2 = 2p/(n + p) = 86/(204 + 43) = 0.3482: the
interval (x2, x1) may be termed the ‘interference band’. The width of this band is
thus 	x = x1 − x2 = 4p2/(n − p)(n + p) = 0.1860 and these can all clearly be seen
from the periodogram.
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If the period was unknown, but we knew x1 and x2, and hence 	x, we could
estimate p as

p = n

√
	x

4 + 	x

and this recovers p = 43.

3.5 Consider now the periodograms of the following functions (again with
n = 204)

(a) yt = 50 sin
(

2πt
35.7

+ π

4

)
+ 100 sin

(
2πt
43

+ π

4

)

(b) yt = 50 sin
(

2πt
35.7

+ π

4

)
+ 50 sin

(
2πt
43

+ π

4

)

The first component in each function has an interference band stretching from
x2 = 0.2979 to x1 = 0.4242 and this will seriously overlap with the interference
band of the second component, which, as we have seen, extends from 0.3482
to 0.5342. Consequently, the periodograms of functions (a) and (b), which are
shown with their components in the figure below, have peaks that are much
too broad to have been derived from a single harmonic and thus reveal the
importance of checking the theoretical width of any peak suspected to have
arisen from a single harmonic.
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Calculating the periodogram

3.6 With this framework in mind, the approach taken by Schuster (1906)
to examine the periodicity of sunspots may be set out in the following way.
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Suppose we have T observations available on the variable y: y1, y2, . . . , yT .
These are arranged in m rows of p observations, where m and p are such that
mp ≤ T ≤ (m + 1)p:

y1 y2 y3 y4 . . . yp

yp+1 yp+2 yp+3 yp+4 . . . y2p

y2p+1 y2p+2 y2p+3 y2p+4 . . . y3p

. . . . . . . . . . . . . . . . . .

y(m−1)p+1 y(m−1)p+2 y(m−1)p+3 y(m−1)p+4 . . . ymp

For a ‘trial period’ P = p/s, the amplitude of the periodogram is given by

ρP =
√

A2
P + B2

P , where

AP = 2
pm

p∑

j=1

Mj cos
2πj
P

= 2
pm

p∑

j=1

Mj cos
2sπj

p

BP = 2
pm

p∑

j=1

Mj sin
2πj
P

= 2
pm

p∑

j=1

Mj sin
2sπj

p

Mj =
m∑

i=1

yj+(i−1)p

3.7 Figure 3.1 shows the annual mean number of sunspots for the years 1700
to 2007.4 This is clearly a series with a pronounced, but certainly not determin-
istic, periodicity. The calculated periodogram is plotted in Figure 3.2 and shows
that a maximum amplitude occurs at a period of p = 11.1 years, consistent with
the known behaviour of the sunspot cycle and also consistent with Schuster’s
analysis of the shorter sample from 1749 to 1901.5

The further important period of around ten years was also found by Schuster,
and this led him to split his sample into two subsamples of 150 years and to
calculate the periodograms for both. Figure 3.3 repeats Schuster’s subsample
calculations and also shows the periodogram for a third subsample running
from 1901 to 2007.

The features observed by Schuster are again revealed clearly. During the inter-
val 1750 to 1825 there are peaks in the periodogram at approximately 9 and
14 years, while during the years 1826 to 1900 there is a pronounced single
peak between 11 and 11.5 years. The peak for the ‘post-Schuster’ observations is
around 10.5 years, suggesting that during the twentieth century the periodicity
of the sunspot cycle may have declined slightly.6
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Figure 3.1 Annual mean number of sunspots, 1700–2007
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Figure 3.2 Periodogram of sunspot activity, 1700–2007
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Figure 3.3 Periodograms of sunspot activity: A: 1750–1825; B: 1826–1900; C: 1901–2007

3.8 It was another 15 years before the next serious attempt at constructing a
periodogram. This was made by (the then) Sir William Beveridge (1921, 1922) in
his investigation of cycles in European wheat prices.7 Figure 3.4 plots Beveridge’s
Western and Central Europe wheat price index for 1500 to 1869, as reported in
Beveridge (1921, Appendix). Unlike the sunspot activity series, this price index
has no clear periodicity but a pronounced secular trend. To eradicate this trend,
Beveridge divided the series by a centred 31-year moving average, i.e., if the price
index is denoted yt , the detrended index, which Beveridge terms the ‘Index of
Fluctuation’, is defined as

xt = yt
1

31

∑15
j=−15 yt−j

(3.3)
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Figure 3.4 Beveridge’s wheat price index and Index of Fluctuation, 1500–1869

The moving average is shown superimposed on the wheat index in Figure 3.4
and the Index of Fluctuation is also plotted, from which it is clear that the
detrending has been successful.

The periodogram of the Index of Fluctuation is shown in Figure 3.5.8 A peak
at approximately 15 years is observed, and this is the cycle that was emphasized
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Figure 3.5 Periodogram of the Index of Fluctuation

by Beveridge, although he regarded it as resulting from combinations of shorter
cycles. Many other local peaks are observed and, in particular, there appear to
be longer cycles having periods of approximately 35, 54 and 68 years, which
Beveridge attributed to meteorological cycles. The 35-year cycle is known as
the Brűckner cycle in temperature, rainfall and barometric pressure, the 54-year
cycle corresponds to one found in English rainfall and wind direction, while the
68-year cycle is close to a cycle observed in air pressure.

The interpretation of the 15-year cycle as a combination of shorter cycles
caused a good deal of disquiet to the discussants of Beveridge (1922) because,
as Yule pointed out, combining several cyclical components could not produce
a ‘composite’ component with a longer cycle. Beveridge’s response (page 473)
appears somewhat obfuscatory and, it is fair to say, many discussants seemed
unconvinced by the justification for many of the cycles that Beveridge claimed
to have found, perhaps anticipating the criticisms of periodogram analysis that
were to be made over the next decade or so by a variety of researchers, Yule
included, and these are discussed in Chapters 5 and 13.

3.9 The ‘detrending’ equation (3.3) may be written in the general multiplica-
tive form yt = atxt , where at is the ‘trend function’ multiplying the trend free
series xt to give the observed series yt . The approach to detrending taken by
Hooker (1901b) that was discussed in §§2.6–2.8 takes the general additive form
yt = at + xt . Half a century after Beveridge, the two approaches were shown to
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Figure 3.6 Periodogram of the first difference of the Index of Fluctuation

be approximately identical by Granger and Hughes (1971). As was discussed in
§2.9, Hooker (1905) later considered first differencing as a detrending method.
Figure 3.6 plots the periodogram for xt = yt − yt−1, and shows that, in compar-
ison to the Beveridge method of detrending, those cycles having long periods
have been downgraded, with greater emphasis being placed on shorter cycles,
so much so that the 15-year cycle is no longer dominant. The impact of dif-
ferent detrending procedures on the periodogram would not be worked out for
some years but, when it was, provided further ammunition for detractors of the
technique.
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4
Detrending and the Variate
Differencing Method: Student,
Pearson and Their Critics

‘Student’ and the variate differencing method

4.1 The differencing approach to detrending time series proposed by Hooker
(1905) and Cave-Brown-Cave (1905) (§2.9) was reconsidered some years later
by ‘Student’ (1914) in rather more formal fashion.1 Student began by assuming
that yt and xt were randomly distributed in time and space, by which he meant
that, in modern terminology, E(ytyt−i), E(xtxt−i) and E(ytxt−i), i �= 0, were all zero
if it was assumed that both variables had zero mean. If the correlation between
yt and xt was denoted ryx = E(ytxt )/σyσx, where σ2

y = E(y2
t ) and σ2

x = E(x2
t ),

Student showed that the correlation between the dth differences of x and y was
the same value. To show this result using modern notation, define these dth
differences as

�dyt = (yt − yt−1)d �dxt = (xt − xt−1)d

Consider first d = 1. Then

σ2
�y = E(�y2

t ) = E(y2
t − 2ytyt−1 + y2

t−1) = 2σ2
y (4.1)

σ2
�x = 2σ2

x

E(�yt�xt ) = E(ytxt + yt−1xt−1 − ytxt−1 − yt−1xt ) = 2ryxσyσx

and

r�y�x = E(�yt�xt )
σ�yσ�x

= ryx

Thus, proceeding successively, we have

r�dy�dx = r�d−1y�d−1x = · · · = ryx

30
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Student then assumed that yt and xt were given by polynomials in time:

yt = Yt +
d∑

j=1

βjt j xt = Xt +
d∑

j=1

γjt j

where E(YtYt−i), E(XtXt−i) and E(YtXt−i), i �= 0, are all zero. Since a polynomial
of order d,

T (d)
t =

d∑

j=1

βjt j

becomes, on differencing d times,

�dT (d)
t = d!βd

we have

�dxt = �dXt + d!βd , �dyt = �dYt + d!γd ,

so that �dxt and �dyt are independent of time. Thus

r�dy�dx = r�dY�dX = rYX

and

r�d+1y�d+1x = r�dy�dx

leading Student to the conclusion that

if we wish to eliminate variability due to position in time or space and to
determine whether there is any correlation between the residual variations,
all that has to be done is to correlate the 1st, 2nd, 3rd. . . dth differences
between successive values of our variable with the 1st, 2nd, 3rd. . . dth
differences between successive values of the other variable. When the cor-
relation between the two dth differences is equal to that between the two
(d + 1)th differences, this value gives the correlation required. (Student, 1914,
page 180)

4.2 Student’s paper, which contained only a rudimentary empirical example,
was swiftly followed by several further contributions in Biometrika by Anderson
(1914; in German), Cave and Pearson (1914), Elderton and Pearson (1915) and
Ritchie-Scott (1915).2 This led Cave and Pearson, in what was the first serious
empirical application of the technique, to remark that the

method appears to be one of very great importance, and like many new
methods it has developed in a co-operative manner, which is a good reason
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for not entitling it by the name of any single contributor. We prefer to term it
the Variate Difference Correlation Method. (Cave and Pearson, 1914, page 341;
italics in original)

4.3 Equation (4.1) is easily generalized. Since

�dYt = (Yt − Yt−1)d = Yt − dC1Yt−1 + dC2Yt−2 − · · · + (−1)d
dCdYt−d

where

dCj = d!
(d − j)!j!

is the standard combinatorial formula, then

σ2
�dY = E(�dYt )2 = E(Y2

t ) + dC2
1E(Y2

t−1) + · · · + dC2
dE(Y2

t−d)

= σ2
Y (dC2

0 + dC2
1 + · · · + dC2

d )

Since (see Anderson, 1914)

dC2
0 + dC2

1 + · · · + dC2
d = 2dCd

the variance of the dth difference of Y is

σ2
�dY = 2dCdσ

2
Y = 2d!

d!d!σ
2
Y

Anderson (1914, page 278) then derived the variance of r�dy�dx as the expression

σ2(r�dy�dx) = (1 − r2
yx)2

(T − d)

⎛

⎝1 +
d∑

j=1

2(T − d − j)
(T − d)

(
d!d!

(d − j)!(d + j)!
)2

⎞

⎠ (4.2)

where T is the number of observations available.3 Thus, for d = 0

σ2(ryx) = (1 − r2
yx)2

T

and, consequently,

σ2
�Y = 2σ2

Y ; σ2(r�y�x) = (1 − r2
yx)2

T − 1
3T − 4

2(T − 1)

σ2
�2Y = 6σ2

Y ; σ2(r�2y�2x) = (1 − r2
yx)2

T − 2
35T − 88
18(T − 2)

σ2
�3Y = 20σ2

Y ; σ2(r�3y�3x) = (1 − r2
yx)2

T − 3
231T − 843
100(T − 3)

and so on.
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4.4 Cave and Pearson noted that the ratio of the variances of the successive
differences of Y had a simple form:

σ2
�dY

σ2
�d−1Y

= 2dCd

2(d−1)Cd−1
= 2d!

d!d!
(d − 1)!(d − 1)!

(2d − 2)! = 2d(2d − 1)
d2

= 4 − 2
d

They therefore suggested focusing on this ratio as it avoids the need to estimate
σ2

Y , which can only practically be found from σ2
�dy

after that value has become

equal to σ2
�dY

, i.e., after ‘steadiness has set in’ (ibid., page 346).

4.5 The issue of estimating the successive variances was a major concern
of Cave and Pearson. Anderson (1914) had implicitly assumed that the sam-
ple of available observations, T , was large enough so that he could take as
approximately true that, for example,

1
T − d

T−d∑

t=1

Xt = 1
T

T∑

t=1

Xt and
1

T − d

T−d∑

t=1

X2
t = 1

T

T∑

t=1

X2
t

Cave and Pearson were acutely aware of the difficulties that this, and other
features of data collection, posed for practical applications of the method:

Now such relations will undoubtedly be very approximately true, if the X’s are
random variates uncorrelated to each other, and provided d is small compared
with T . These conditions seem amply satisfied when we proceed to fourth
or fifth differences in barometric pressures, taken, say, over ten or twelve
years; the addition of four or five daily pressures will hardly affect sensibly
either the mean or the standard deviation. But such extensive data, while
not only involving a great deal of labour in the difference work are not those
which, perhaps, most frequently demand the attention of the statistician,
whether he be economist, sociologist or a student of scientific agriculture. In
such cases it not infrequently happens that the available data only provide a
range of 20 to, perhaps, at most 50 years; and we need to discover whether
there is a true relationship between our variates, apart from a continuous
change in both due to the time factor. At present accurate statistics of annual
trade or revenue, or satisfactory annual demographic data hardly extend at
most beyond a period of 50 years. Very often – under even approximately
like methods of record – we shall hardly have more than twenty years’ trust-
worthy returns. Not only has the method of record been changed, but the
conditions of transit and trade may have been immensely modified and in a
manner which we could not suppose to be even approximately represented
by a continuous function of time. (ibid., page 342)
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Figure 4.1 Italian economic indices, 1885–1912

4.6 Cave and Pearson therefore decided

to illustrate the theory of the variate difference correlation method in its
present stage of development on a short series of economic data, in order to
test what approximation there is in such a short series to stability, and further
how Dr Anderson’s values for the successive standard deviations apply to such
cases. (ibid., page 342; italics in original)

To this end they used indices of ten Italian economic sectors for the years 1885 to
1912.4 Figure 4.1 shows the set of indices and a variety of trending behaviours
may be observed in their evolution. Because of these pronounced and varied
trends, the high correlations between the indices shown in Table 4.1 may be
viewed with some suspicion:

the correlations . . . are very high solely because the individual indices are
variates increasing one and all as continuous functions of time. . . . For exam-
ple, the correlation between the indices for tobacco and savings is .984; are
we to interpret this to signify, that, if there are large savings this means that
much will be spent on tobacco? Or is this high correlation simply in whole
or part spurious, merely indicating that both savings and consumption of
tobacco increased markedly with the time? (ibid., page 344)
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Table 4.1 Correlation coefficients for Italian economic indices. Probable errors are all less than 0.03 as calculated using equation (2.10)

Coal Coffee Commerce Post and Railways Revenue Savings Banks Shipping Stamps Tobacco
Telegraph

Coal 1
Coffee 0.921 1
Internat’ Comm 0.970 0.969 1
Post and Telegraph 0.957 0.884 0.949 1
Railways 0.989 0.938 0.982 0.979 1
Revenue 0.974 0.918 0.962 0.971 0.989 1
Savings 0.990 0.940 0.980 0.972 0.996 0.988 1
Shipping 0.986 0.937 0.981 0.970 0.997 0.990 0.990 1
Stamps 0.965 0.913 0.941 0.898 0.961 0.981 0.963 0.967 1
Tobacco 0.968 0.955 0.967 0.935 0.979 0.983 0.984 0.978 0.973 1
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Table 4.2 Values of the ratio σ2
�dy

/σ2
�d−1y

and their approach to 4 − (2/d)

d 1 2 3 4 5 6

4 − (2/d) 2 3 3.333 3.5 3.6 3.667
Coal 0.035 2.074 3.075 3.379 3.580 3.682
Coffee 0.036 0.843 3.307 3.619 3.701 3.791
International Commerce 0.038 1.720 3.032 3.213 3.104 2.881
Post and Telegraph 0.009 0.799 1.959 2.597 3.010 3.208
Railways 0.012 0.708 2.816 3.128 3.449 3.711
Revenue 0.019 0.763 2.124 2.747 3.020 3.164
Savings Banks 0.010 0.350 2.214 3.106 3.275 3.455
Shipping 0.031 1.834 3.093 3.174 3.189 3.195
Stamp Duties 0.040 0.585 1.660 2.008 2.328 2.499
Tobacco 0.022 0.352 2.213 3.025 3.117 3.101
Mean 0.025 1.003 2.549 3.000 3.177 3.269

Cave and Pearson thus computed differences of the indices up to d = 6 and
assessed how the ratio σ2

�dy
/σ2

�d−1y
approached 4 − (2/d) as d increased. These

calculations are reported in Table 4.2. The ratios do not ‘approach steadiness’
until d = 3, after which

there is increasing approach to agreement in the observed and theoretical val-
ues, but this approach is slow, and we believe that there is greater steadiness
than is really indicated by this test. The source of this apparent unsteadiness
lies we think in the relative largeness of d compared with T (i.e. at a maxi-
mum 6 as compared with 28), rather than in our not having taken sufficiently
high differences. (ibid., page 347)

4.7 Cave and Pearson then computed correlation coefficients for all pairs of
indices at each level of differencing. We shall content ourselves with report-
ing the correlations (± probable errors) between tobacco and savings for
d = 0, 1, . . . , 6, the d = 0 correlation being the focus of concern in the second
quotation in §4.6:

d Correlation
0 0.984 ± 0.005
1 0.766 ± 0.065
2 −0.044 ± 0.182
3 −0.327 ± 0.181
4 −0.380 ± 0.188
5 −0.402 ± 0.197
6 −0.432 ± 0.204
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It is clear that the large positive correlation between tobacco and savings at
d = 0 does appear to be spurious: by d = 3 the correlation is negative and by
d = 6 it is probably significantly so. Interestingly, Cave and Pearson found that,
by this latter degree of differencing, tobacco was also significantly negatively
correlated with coal (−0.514 ± 0.184), but was insignificantly correlated with
all other indices, leading them to the view

that the consumption of tobacco can hardly be considered as a measure
of general prosperity; it appears to be the greatest when trade conditions
are unfavourable, and in particular when savings are least and manufactur-
ing conditions as measured by the importation of coal are slack. The result
suggests the pipe of the unemployed at the street corner, rather than the
increased expenditure of the fully occupied artisan. (ibid., page 352)

Indeed, Cave and Pearson become quite effusive about the findings of the variate
difference method, and their enthusiasm is well worth presenting as an extended
quotation.

If we turn . . . to the actual correlations of the indices themselves, we find in
every case an arid and scarcely undulating waste of high correlation. No one
can obtain any nourishment whatever from the statement that the Tobacco
Index is correlated with the . . . Savings Bank Index to the extent of .984! The
organic relationship between these variates is wholly obscured by the contin-
uous increase . . . of them with time. But when we proceed to sixth differences
and see that the consumption of tobacco . . . is associated substantially but
negatively with savings, we seem to touch realities, and realities of some
worth. . . . [T]here can be small doubt that to proceed from the actual corre-
lation of such indices to the correlations of their higher differences gives the
feeling of clearing away the sand of the desert, and reaching all the ordered
arrangements of an excavated town below; the slight undulations of the waste
above are all really fallacious, and enable us to appreciate nothing of the
actual topography of the city.

The method is at present in its infancy, but it gives hope of greater results
than almost any recent development of statistics, for there has been no source
more fruitful of fallacious statistical argument than the common influence
of the time factor. One sees at once how the method may be applied to
growth problems in man and in lower forms of life with a view to measuring
common extraneous influences, to a whole variety of economic and medical
problems obscured by the influences of the national growth factor, and to a
great range of questions in social affairs where contemporaneous change of
the community in innumerable factors has been interpreted as a causative
nexus, or society assumed to be at least an organic whole; the flowers in a
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meadow would undoubtedly exhibit highly correlated development, but it is
not a measure of mutual correlation, and the development of various social
factors has to be freed from the time effect before we can really appreciate
their organic relationships. (ibid., pages 353–4)

4.8 Nevertheless, Cave and Pearson were well aware that the sample of Italian
indices data was comparatively small and that this led to some uncertainties
and difficulties with the method:

In the present paper we have dealt only with very sparse ‘populations’ (only
28 values of the variates), but this has enabled us to consider not only a very
large number of correlations, but to see the practical influence of terminal
conditions on our theory. This may we think be summed up in the statement
that the Andersonian formulae for the standard deviations will hardly in
many practical cases be more than very roughly approximated before the
size of the population becomes too small to make the deductions reliable.
Further in most cases our difference correlations have hardly even with the
sixth differences reached a steady state. . . . From an examination of the actual
numerical working of the correlations, it appear to us that the terminal values
are in the case of these short series of very great importance. It is further clear
that the theory as given by ‘Student’ depends upon certain equalities which
are not fulfilled in short series. (ibid., page 354)

The arguments being made in this passage were formulated in a footnote (ibid.,
page 355) as follows. Allowing for X, and hence �X, to have non-zero means,
the latter estimated as

�X = 1
T − 1

T∑

t=2

(Xt − Xt−1) = XT − X1

T − 1
,

Cave and Pearson estimated the variance of �X as

σ̂2
�X = 1

T − 1

T∑

t=2

(Xt − Xt−1)2 − (�X)2 = 1
T − 1

(
T∑

t=2

(X2
t + X2

t−1)

)
− (�X)2 (4.3)

on the assumption that

T∑

t=2

XtXt−1 = 0

Equivalently, (4.3) may be written as

σ̂2
�X = 1

T − 1

(
2

T∑

t=1

X2
t − (X2

1 + X2
T )

)
− (�X)2
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On defining σ̂2
X = ∑T

t=1 X2
t /T , this becomes

σ̂2
�X = 2σ̂2

X + 2
T − 1

(σ̂2
X − 1

2 (X2
1 + X2

T )) − (�X)2

= 2σ̂2
X + 2

T − 1

(
σ̂2

X − 1
2

(
X2

1 + X2
T + 1

T − 1
(XT − X1)2

))

Since, on average,

X2
1 + X2

T ≈ (X2
T − X2

1)2 ≈ 2σ̂2
X

it follows that

σ̂2
�X = 2σ̂2

X

(
1 + 1

(T − 1)2

)

Although for large T , the Anderson formula σ2
�X = 2σ2

X is clearly recovered, for
small T there could obviously be discrepancies, and particularly so for the more
complex formulae holding for the higher-order differences.

4.9 Elderton and Pearson (1915) provided a further application of the variate
difference method, this time analysing death rates in the first five years of life for
the period 1850 to 1912. Variate differencing was used to annihilate any trend
movement in infant mortality, which they attributed to environmental fac-
tors, and they contrasted this approach favourably with the partial correlation
analysis that Pearson (1912) had previously employed, concluding that

for both sexes, a heavy deathrate in one year of life means a markedly lower
deathrate in the same group in the following year of life, and that this extends
to a lessened degree to the year following that, but is not by the present
method easy to trace further. It is difficult to believe that this important
fact can be due to any other source than the influence of natural selection,
i.e., a heavy mortality leaves behind it a stronger population. (Elderton and
Pearson, 1915, page 506)

Persons and Yule’s critiques and Pearson’s response

4.10 Although Pearson and his co-workers were concerned about the impact
that short series may have on the variate difference method (see §4.8), in
general they were extremely enthusiastic about using the technique to attack
problems across a wide range of areas that suffered from the ‘time-correlation’
problem:

there is small doubt that it is the most important contribution to the appa-
ratus of statistical research which has been made for a number of years past.
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Its field of application to physical problems alone seems inexhaustible. We
are no longer limited to the method of partial correlation, nor compelled to
seek for factors which rendered constant will remove the changing influence
of environment. (ibid., page 489)

Nevertheless, it was not long before two major critiques of the method were
published – Persons (1917) and Yule (1921) – and these prompted a detailed
rejoinder from Pearson and Elderton (1923). The points of disagreement were
essentially fourfold:5

(i) Persons and Yule, writing primarily from an economic perspective, naturally
saw a time series as made up of a number of components, the isolation
and analysis of which was of fundamental concern to them; Pearson and
Elderton, from a predominantly medical/geneticist viewpoint, were more
concerned with eradicating common time varying factors so that attention
could be focused on ‘organic’ relationships.

(ii) Persons, in particular, but also Yule to a lesser extent, emphasized the
underlying assumptions of Student and Anderson (see §§4.1–4.3), arguing
that these were too restrictive in many applications; Pearson and Elderton
responded by claiming that these assumptions were not critical and could
be, and indeed had been, generalized.

(iii) Yule was more exercised by the potential for short-period fluctuations to
confound the effects of differencing, with Pearson and Elderton counter-
claiming that this possibility had been over-emphasized by Yule.

(iv) Persons felt that polynomials in time were too limited to offer an ade-
quate representation of the underlying trend for many time series and
that other possibilities should be investigated; Pearson and Elderton,
although first appearing to dispute this, effectively conceded this point
when they reanalysed the infant mortality data (§4.9) using more flexi-
ble ‘smooths’ taken from the actuarial literature (see Chapter 10 for related
methods).

As these disagreements lie at the heart of many recurring issues in time series
analysis, we shall discuss each of them in some detail.

4.11 Persons (1917) was one of the first statisticians to explicitly consider the
decomposition of a time series into unobserved components.

The items of annual time series of economic data may be conceived to be
constituted of the following elements or component parts:

First, the secular trend or growth element due to the increase of population
and development of industry;
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Figure 4.2 Idealistic representation of a time series as the sum of trend, cyclical and
irregular components

Second, cyclical fluctuations, extending over a number of years and having a
greater or less degree of periodicity, due to the alternating periods of business
prosperity and depression;

Third, irregular fluctuations from year to year due to the influence of acciden-
tal or, at any rate, unpredictable events such as inventions, striking changes
in fashion, or war. (Persons, 1917, page 619; italics in original)

In the spirit of Persons (1917, Figure 1), an idealistic representation of a time
series containing these three components is shown as Figure 4.2. Of course, as
emphasized by Persons, the secular trend may be other than a straight line and
the cyclical fluctuations could be more complicated than the simple sine curve
shown here.

Persons viewed the secular trend, or ‘normal growth element’, as increasing
or decreasing regularly according to some principle and, consequently, did not
think that it should ‘fit’ the cyclical or irregular fluctuations of the data. Suppose
that the trend is linear, β0 +β1t, so that the cycle (plus irregular) is xt −β0 −β1t.
The first difference of the cycle is thus �xt − β1, which differs from the first
difference of the observed series xt by just a constant. Hence any correlations
calculated from the first differences of the cycles of two ‘linearly detrended’
series will be identical to the correlations calculated from the first differences of
the observed series themselves.

Persons then derived a further interesting result. Consider the deviation of
xt from a three-year moving average centred on xt : xt − (xt+1 + xt + xt−1)/3.
This is equivalent to − 1

3 (xt+1 − 2xt + xt−1) = − 1
3�2xt+1, so that the correlation

between the second differences of two series will be identical to the correlation
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between the deviations from three-year moving averages. These considerations
led Persons to the view that

[i]n general, significant coefficients of correlation for the raw figures of two
series indicate the similarity of the growth elements of the two series, if
large growth elements exist. The existence or non-existence of such elements is
readily determined graphically or by fitting a simple function to the data.

Significant coefficients of correlation for first differences indicate that the
cyclical fluctuations synchronize, if there be cyclical fluctuations. Evidence of
such cycles may be secured by plotting the deviations from the assumed
linear trend.

Significant coefficients of correlation for second and in some cases higher
differences indicate, in general, that the irregular fluctuations synchronize.
Coefficients for higher differences of short series contain a large spurious
element which increases with the order of the difference. This element is
due to the tendency of the items to alternate in sign. (ibid., page 622: italics
in original)

Yule (1921) took a similar stance, averring that

[t]he essential difficulty of the time correlation problem is the difficulty of
isolating for study different components in the total movement of each vari-
able: the slow secular movement, probably non-periodic in character or, if
periodic, with a very long period; the oscillations of some ten years’ dura-
tion, more or less, corresponding to the wave in trade; the rapid movements
from year to year which give the appearance of irregularity to the curve in
a statistical chart and which may in fact be irregular or may possess a quasi-
periodicity of some two years duration; the seasonal movements within the
year, and so on. (page 501)

He then contrasted this approach with what he took to be the variate difference
perspective.

[A]nd if ‘Student’ desires to remove from his figures secular movements, peri-
odic movements, uniform movements, and accelerated movements – well,
the reader is left wondering with what sort of movements he does desire to
deal. (ibid., page 502; italics in original)

[‘Student’] desires to find the correlation between x and y when every com-
ponent in each of the variables is eliminated which can well be called a
function of the time, and nothing is left but residuals such that the resid-
ual of a given year is uncorrelated with those that precede or that follow it.
(ibid., page 503)
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Yule left the reader in no doubt as to which position he preferred.

But which view of the problem is correct? Do we want to isolate oscilla-
tions of different durations, two years, ten years, or whatever it may be,
or nothing but these random residuals? Personally I cannot hesitate for a
moment as to the answer. The only residuals which it is easy to conceive
as being totally uncorrelated with one another in the manner supposed are
errors of observation, errors due to the ‘rounding off’ of index numbers and
the like, fluctuations of sampling, and analogous variations. And an error
of observation or fluctuation of sampling in x would normally be uncorre-
lated with an error of observation or fluctuation in y, so that if the generalized
variate-difference method did finally isolate nothing but residuals of the kind
supposed I should expect it in general to lead to nothing but correlations that
were zero within the limits of sampling. . . . [T]he problem is not to isolate
random residuals but oscillations of different durations, and unless the gen-
eralized method can be given some meaning in terms of oscillations it is not
easy to see what purpose it can serve. (ibid., page 504)

In their response to these views, Pearson and Elderton were typically combative:

Now we know that if we correlate the falling phthisis deathrate with the
falling birthrate we shall have a correlation of the order 0.9. But no one
is likely to believe there is an organic relationship between the two of this
order, – any more than one believes that the correlation between the cancer
deathrate and the increasing expenditure on apples per head of the popula-
tion, the value of which is 0.89, is a true organic relationship, i.e. is due to
one or more common factors in the two variates. Such high correlations as
arise from common growth or decline with time, when interpreted as causal
or semicausal relationships, are in our opinion perfectly idle, indeed are only
apt to be mischievous, and we shall reach nothing, or less than nothing –
knighthoods, – by the investigation of them.

But when we take the apparently random deviations from the secular trend,
it does seem a perfectly legitimate problem to ask: is there any relationship
between them?

If the deviations of two variates from their secular trends be X and Y , we
want to discover their correlation rxy . All are agreed, we think, as to the
desirability of finding this correlation, – including even Mr. Yule, although
he apparently confesses that he cannot find any source for such correlation
except in common periodic terms. Now the real problem before us is this:
Having by means of a high order parabola or an adequate smooth got rid of
the secular trend, will the variate difference method give us rxy or what does
it give us?
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. . . [I]n our opinion the deviations X and Y from the secular trends of the
two variates, such as occur in vital and economic statistics, are dependent
on factors which are obviously non-periodic in character. They are summed
up in sanitation, legislation, new routes and methods of transport, over-
and under-production, new methods of agriculture, wars, famines, trans-
fer of population and thousands of other factors which make up civilized
human life. We might define them as ‘historical factors’, history takes place
in time, but its events are not mathematical functions of the time, still
less periodic functions, whatever folk experience may whisper about history
repeating itself.

It is only legitimate to call the effects of these historical factors random
fluctuations, if that term is used in a special sense as Mr Yule appears to use
it, i.e. for everything which is not due to a periodic variation. Such ‘ran-
dom fluctuations’ are by no means as Mr Yule would seem to suggest due
only to errors of observation or the deviations of random sampling; they are
due to non-periodic causes which may affect both the . . . variates or may
not. The question is to what extent have [X] and [Y] common causes behind
their fluctuations, apart from growth with time. We think this is a perfectly
legitimate question to ask, and that in asking it we are not open to the insin-
uation, contained in the term ‘random disturbances’, of asking whether pure
chance fluctuations are or are not correlated. (Pearson and Elderton, 1923,
pages 282–3)6

This extended quote makes it clear that Pearson and Elderton conceived of a
time series as being decomposed into just two components, a ‘catchall’ com-
ponent comprising the secular trend and periodic fluctuations, modelled by
a polynomial in time, and a random component – in modern time series
parlance they work within a trend stationary specification à la Nelson and
Plosser (1982): see §16.2. Persons and Yule, on the other hand, preferred to
decompose the series into its secular trend, which will typically be a sim-
ple linear function of time or something similar, and cyclical (periodic) and
irregular components, thus giving rise to an unobserved components for-
mulation. The elimination of the signal by differencing shows the variate
differencing procedure to be an early forerunner of the Box–Jenkins approach
to modelling nonstationarity (see §10.16–10.19), and is indeed mentioned by
them (Box and Jenkins, 1970, page 89), although they state that the moti-
vation and objectives of the procedure were quite different from their own
differencing approach. In contrast, the Persons–Yule unobserved component
formulation is what would now be referred to as a structural model (Nerlove,
Grether and Carvalho, 1979, Harvey, 1989). From a bivariate perspective, using
variate differencing prior to correlating a pair of time series was a forerun-
ner of the ‘prewhitening’ approach (see Pierce, 1977), while the Persons–Yule
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idea of correlating the components has its descendants in Mills (1982b) and
Watson (1986).

4.12 Persons was concerned about the underlying assumptions made by
Student (cf. §4.1).

It is my contention that these assumptions are such that as cannot be retained
in applying the method to the most common types of problems. For instance
the pairing of items of two time series is made possible by the position of those
items in time either because they occur in the same time interval (concur-
rent) or in definitely related intervals (lag). Our problem may be, and usually
is, not only to determine the correlation but to find what pairings give the
maximum correlation. In such case the assumption that only one pairing
is significant vitiates the conclusion at the outset. The writers on the vari-
ate difference correlation method all assume that ‘the true rXY ’ is for pairs
concurrent in time. (Persons, 1917, page 604)

Persons thus claimed that the variate difference approach would necessarily rule
out the results obtained by Hooker when looking at the relationship between
trade and the marriage rate that was discussed in §§2.6–2.9.7

After showing how oscillatory movements in a time series cannot be removed
by differencing through using artificially constructed observations, Persons then
investigated a set of 21 American economic series observed over the period 1879
to 1913. Working within the framework of §4.11, Persons assumed that the
secular trend was linear, fitted a straight line by least squares or by the method
of moments, and designated the ‘deviations of the raw figures from the lines
of secular trend’ as ‘cycles’.8 Nine of these cycles were found to ‘synchronize’
and these were combined into a ‘business barometer’.9 This barometer was then
cross-correlated, for lags running for three years in either direction, with several
of the series using up to sixth differences. Persons remarked that, while the
correlation coefficient for concurrent items held fairly steady for all differences,
the correlations showed a marked tendency to alternate in sign as ‘successive
degrees of lag are taken in either direction’, which led him to ask

(w)hat is the explanation of the observed steadiness, and of the alternation
of sign of coefficients for various degrees of lag? ‘Student’ believes that the
steadiness is due to the random distribution, with respect to time, of the dif-
ferences. The alternation in sign is a phenomenon not noticed, or if noticed
not considered, by the writers on the subject. (ibid., page 609)

Persons then showed that

(i)f consecutive items of a series alternate in sign the first and higher dif-
ferences will also alternate in sign and the resulting items will increase
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numerically as the order of the difference increases. A succession of like signs
may persist with the first and higher differences but the number resulting will
be smaller numerically than those resulting where the sign alternates. Where
the variate difference method is applied to two short series we may, there-
fore, expect the terms alternating in size to be of dominating influence upon
the coefficient of correlation. Also when a lag is taken in either direction the
coefficients will tend to alternate in sign. (ibid., pages 609–610)

Persons examined the phenomenon of alternating signs in the cross-correlations
of the various differences of his series, finding a ‘marked tendency to alternation
in sign’ for second and higher differences. He then investigated what would
happen for two random series. In an early example of a simulation experiment,
Persons constructed two series of 35 random observations and then calculated
cross-correlation coefficients for up to eighth differences.10

Table 4.3 recreates Persons’ simulation and, for comparison, also shows the
results for a second, much larger, sample of 1,000 random observations. For the
smaller sample of just 35 observations (that available for the data being analysed
by Persons), there is indeed a persistent alternation in the sign of the cross-
correlations as lags are taken in either direction from zero. This is because the
two series being correlated have a tendency to alternate in sign on differencing
so that, as further differences are taken, the observations that alternate in sign
become dominating ones: lagging either series in either direction then brings
a different set of signs into correspondence. Moreover, as predicted by Persons,
the absolute magnitudes of the correlations increase, although they at best only
become marginally significant by the eighth difference. For the much larger
sample, such patches of alternating signs are no longer able to dominate and all
cross-correlations at all differences remain close to zero.

Persons then made an analytical investigation of the conditions under which
cross-correlations at a particular lag would remain ‘steady’ as successive differ-
ences were taken. The Student assumptions were found to be sufficient but not
necessary, for such steadiness would also occur if certain conditions, termed by
Persons the ‘balancing conditions’ and involving the product sums

∑
xtxt−1,∑

ytyt−1 and
∑

xtyt+1 + ∑
xtyt−1, were to be approximately satisfied. Indeed,

Persons (1917, page 615) claimed that, for time series of the length that he was
considering, ‘the conditions . . . are apt to occur and be the cause of any stability
of the coefficients of correlation between multiple differences’, backing this up
with computational evidence that this had, in fact, actually happened within
his data set.

Yule (1921) focused attention on the correlation induced into a series by
differencing. Using the set-up of §4.1, it can be seen that

E(�yt�yt−1) = E(ytyt−1 − ytyt−2 − y2
t−1 + yt−1yt−2) = −σ2

y



9780230290181_05_cha04.tex 8/4/2011 13: 42 Page 47

Detrending and the Variate Difference Method 47

Table 4.3 Cross-correlation coefficients between two random series and their
differences

d r(−2) r(−1) r(0) r(1) r(2)

0 −0.04 −0.07 +0.13 −0.04 +0.11
(0.17) (0.17) (0.17) (0.17) (0.17)

1 +0.02 −0.08 +0.17 −0.14 +0.22
(0.21) (0.21) (0.20) (0.20) (0.20)

2 +0.10 −0.09 +0.18 −0.21 +0.30
(0.24) (0.24) (0.23) (0.23) (0.22)

3 +0.15 −0.15 +0.20 −0.28 +0.36
(0.26) (0.26) (0.26) (0.25) (0.23)

4 +0.20 −0.22 +0.26 −0.34 +0.40
(0.28) (0.27) (0.27) (0.25) (0.24)

5 +0.23 −0.28 +0.32 −0.39 +0.40
(0.29) (0.28) (0.28) (0.27) (0.28)

6 +0.24 −0.31 +0.38 −0.41 +0.39
(0.31) (0.29) (0.28) (0.27) (0.28)

7 +0.24 −0.33 +0.42 −0.42 +0.38
(0.32) (0.31) (0.28) (0.28) (0.29)

8 +0.25 −0.35 +0.45 −0.43 +0.37
(0.34) (0.32) (0.29) (0.29) (0.24)

0 −0.02 −0.03 −0.01 −0.01 +0.03
(0.03) (0.03) (0.03) (0.03) (0.03)

1 +0.00 −0.01 +0.00 −0.02 +0.04
(0.04) (0.04) (0.04) (0.04) (0.04)

2 +0.01 −0.01 +0.01 −0.02 +0.03
(0.04) (0.04) (0.04) (0.04) (0.04)

3 +0.01 −0.01 +0.02 −0.03 +0.03
(0.05) (0.05) (0.05) (0.05) (0.05)

4 +0.01 −0.01 +0.02 −0.03 +0.02
(0.05) (0.05) (0.05) (0.05) (0.05)

5 +0.01 −0.01 +0.02 −0.03 +0.02
(0.05) (0.05) (0.05) (0.05) (0.05)

6 +0.01 −0.02 +0.02 −0.03 +0.01
(0.06) (0.06) (0.06) (0.06) (0.06)

7 +0.01 −0.02 +0.02 −0.02 +0.01
(0.06) (0.06) (0.06) (0.06) (0.06)

8 +0.01 −0.02 +0.02 −0.02 +0.01
(0.06) (0.06) (0.06) (0.06) (0.06)

Top panel: T = 35; bottom panel: T = 1000. r(k) denotes the correlation between Yt and Xt−k. Figures
in parentheses are standard errors computed using equation (4.2).

If the correlation between �dyt and �dyt−k is denoted dry(k), then clearly

1ry(1) = E(�yt�yt−1)
√

E(�y2
t )E(�y2

t−1)
= −σ2

y

2σ2
y

= − 1
2



9780230290181_05_cha04.tex 8/4/2011 13: 42 Page 48

48 The Foundations of Modern Time Series Analysis

so that the adjacent differences are (negatively) correlated even though the orig-
inal series is random. Note, though, that this correlation does not extend any
further than adjacent observations, for

E(�yt�yt−2) = E(ytyt−2 − ytyt−3 − yt−1yt−2 + yt−1yt−3) = 0

implying that 1ry(2) = 0 and, by extension, 1ry(k) = 0 for k > 1. Having shown
this, Yule then generalized these results to dth differences:

dry(1) = − d
d + 1

, dry(2) = d(d − 1)
(d + 1)(d + 2)

, · · ·

dry(k) = (−1)k d(d − 1) · · · (d − k + 1)
(d + 1)(d + 2) · · · (d + k)

= (−1)k d!d!
(d − k)!(d + k)! k ≤ d

with dry(k) = 0 for k > d.11 Hence dth differences of a random series y have
nonzero correlations between observations up to d intervals apart, with these
correlations declining and alternating in sign, being negative for odd d:

The correlations start with a high negative value between adjacent terms,
and the values slowly die away with alternating signs. Differencing a random
series tends therefore to produce a series in which the successive terms are
alternately positive and negative. (Yule, 1921, page 521)

Yule thus echoed Persons’ findings of alternating signs of correlations but these
are now between the lagged differences of a random series as well as between
the differences of two random series.

Pearson and Elderton’s response to this critique was to claim that Elderton
and Pearson (1915, section (8)) had, in fact, investigated cross-correlations using
their mortality data, but agreed that the non-randomness of x and y was a valid
criticism:

. . . there seems to us two main criticisms of the Variate Difference correlation
method: . . . that we cannot assume that X is solely correlated with a single
Y , and that the series of X’s is not intercorrelated, nor the series of Y ’s. We
think that this is a valid criticism which has to be met, either by showing
that there are many cases in which the causes which produce the X’s and Y ’s
do not last over more than one interval, or else by enlarging our method and
supposing that correlations between the X’s and Y ’s of the above character
really exist. (Pearson and Elderton, 1923, page 286)

They then proceeded to generalize the variate difference method when the
original series were ‘intercorrelated’, utilizing results provided by Egon Pearson
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(see note 9).12 Thus we extend our notation to denote the correlation between
xt and xt+k as rx(k) and the correlation between xt and yt+k as rxy(k), so that the
correlation between xt and yt−k is rxy(−k), etc. (where, implicitly, rx(k) ≡ 0rx(k)
and so on). Asymmetry is allowed, so that rx(k) is not necessarily equal to rx(−k),
and so on. The key result (Pearson and Elderton, 1923, page 294, equation
(xviii)) is

E(�dxt�
dyt+k)

σxσy
= (2d)!

d!d! φ(d, rxy , k) (4.4)

where, for a generic sequence of correlations r(j), j = 0, ±1, ±2, . . . , ±d,

φ(d, r, k) =
d∑

j=−d

(−1)|j| d!d!
(d − j)!(d + j)! r(j + k)

From (4.4), it follows that (cf. §4.4)

E(�dxt�
dyt+k)

E(�d−1xt�d−1yt+k)
=

(
4 − 2

d

)
φ(d, rxy , k)

φ(d − 1, rxy , k)
(4.5)

and, on defining φ(d, r, k) = r(0) φ(d, r ′, k), where r ′ = r
/

r(k), the correlation
between �dxt and �dyt+k can be expressed as

drxy(k) = E(�dxt�
dyt+k)

√
E(�dxt )2E(�dyt+k)2

= rxy(k)
φ(d, r ′

xy , k)
√

φ(d, rx, 0) φ(d, ry , k)
(4.6)

If r ′
xy(k) = rx(k) = ry(k) = 0 for all k �= 0, then drxy(0) = rxy(0) and drxy(k) = 0, which

recovers the original Student result. This result is also recovered if, more gener-
ally, r ′

xy(k) = rx(k) = ry(k), i.e., if the correlations die out at the same rate, which
implies that rxy(k) = rxy(0) × rx(k)

Suppose now that the correlations decay at different rates, for example as

rxy(k) = rxy(0)εk
xy rx(k) = εk

x ry(k) = εk
y

We then have

φ(d, r, k) = 2ϕ(d, ε, k) − 1

where

ϕ(d, ε, k) =
d∑

j=0

d!d!
(d − j)!(d + j)!ε

j
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Equation (4.5) then becomes

E(�dxt�
dyt+k)

E(�d−1xt�d−1yt+k)
=

(
4 − 2

d

)
2ϕ(d, rxy , k) − 1

2ϕ(d − 1, rxy , k) − 1

and similarly

E(�dxt )2

E(�d−1xt )2
=

(
4 − 2

d

)
2ϕ(d, rx, 0) − 1

2ϕ(d − 1, rx, 0) − 1

Thus (4.6) is

drxy(k) = rxy(k)
2ϕ(d, r ′

xy , k) − 1
√

(2ϕ(d, rx, 0) − 1)(2ϕ(d, ry , k) − 1)

If both εx and εy are larger than εxy , so that the intercorrelations within the series
decay slower than the cross-correlations, which is plausible in many cases, then

drxy(k) > rxy(k). On the other hand, if εx and εy are negative, as would be the case
if there were two-period oscillations, then the sign of this inequality would be
reversed, leading Pearson and Elderton (1923, page 298) to conclude that ‘(w)e
think the theory of the variate difference method thus generalized will meet
such criticisms as those of Persons, which are valid. It may be harder to meet
those of Mr Yule’, to which we now turn.

4.13 Yule (1921) considered taking differences of the periodic function

yt = ρ sin
(

2π
t + α

n

)
= ρ sin

(
2πt
n

+ 2πα

n

)
(4.7)

where (cf. §§3.1–3.5) ρ is the amplitude of the sine wave, n is the period, and α

is the phase, whose effect is to advance the peak of the sine function by nα/2π

periods. The first difference of interval h of (4.7) is

�yt+h = ρ

(
sin

(
2π

t + α + h
n

)
− sin

(
2π

t + α

n

))

= 2ρ sin
(

π
h
n

)
cos

(
2π

t + α + 0.5h
n

)
(4.8)

= 2ρ sin
(

π
h
n

)
sin

(
2π

t + α + 0.5h + 0.25n
n

)

The second equality in (4.8) uses the trigonometric identity 2 cos A sin B =
sin (A + B) − sin (A − B), with A = 2π(t + α + 0.5h)/n and B = πh/n, while the
third equality uses sin (A + 0.5π) = cos A.

Thus the first difference of y is given by a sine wave of the same period as
the original function but with the phase shifted by the amount 0.5h + 0.25n
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and the amplitude multiplied by the factor 2 sin (πh/n). The second difference
will therefore be derived from the first difference by multiplying the amplitude
by the same factor and shifting the phase by the same amount, and so on for
successive differences.

Yule focused attention on the factor 2 sin (πh/n), since whether this is greater
or less than unity will determine if successive differences will continually diverge
(because of an increasing amplitude) or will converge with the amplitude getting
smaller and smaller. It is clear that the factor will exceed unity if n/6 < h < 5n/6,
so that if h lies in this interval, differencing will emphasize periodic fluctuations
rather than eliminate them. Equivalently, this interval can be written as 6h/5 <

n < 6h, so that if h = 1 year, a period of between 1.2 years and 6 years will produce
a diverging amplitude.

Since 2 sin (πh/n) reaches a maximum of 2 at h = n/2 then, for h = 1, a period
of n = 2 produces the greatest increase in amplitude. For example, by taking
sixth differences the amplitude will be multiplied 26 = 64-fold, leading Yule to
conclude that

(t)he effect then of differencing the values of a function which is given by
a series of harmonic terms is not gradually to extinguish all the terms, but
selectively to emphasize the term with a period of 2 intervals; terms with a
period between 2 and 6 intervals, or between 2 and 1.2 intervals have their
amplitude increased, but not so largely; terms with a period between 1 and
1.2 intervals, or greater than 6 intervals, are reduced in amplitude. Further,
every term is altered in phase, by an amount depending on its period. Corre-
lations between high differences will accordingly tend to give the correlations
between component oscillations of very short period – predominantly of a
two-yearly period, in so far as such oscillations exist in the original observa-
tions, even though they may not be the most conspicuous or characteristic
oscillations. (Yule, 1921, page 509; italics in original)

In responding to Yule, Pearson and Elderton adopted a slightly different
framework to show that, if there was a single harmonic in yt with a period
n, then

E(�dyt )2

E(�d−1yt )2
= 4

(
sin

(
πh
n

))2

and

σ2
y = E(�dyt )2

22d

(
sin

(
πh
n

))2d
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These equations were then used to determine the period if such a single har-
monic existed and to examine how far a given harmonic would account for
fluctuations in the original data (after any secular trend had been removed,
of course).

If two series, yt and xt , had common periodic terms but with different phases
α and β, then Pearson and Elderton showed that

E(�dxt�
dyt )

E(�d−1xt�d−1yt )
= E(�dxt )2

E(�d−1xt )2
= E(�dyt )2

E(�d−1yt )2
= 4

(
sin

(
πh
2n

))2

(4.9)

and

drxy(0) = cos (α − β) (4.10)

leading them to conclude that

we know that on ‘Student’s’ hypothesis, the ratios of the differences given in
[4.9] tend to the value 4. They would only tend to 4 in the case of a single
periodic term if the period were twice the fundamental unit of time, i.e. . . .

for n = 2h. After the secular terms have been eliminated, the ratios in [4.9]
and the correlation in [4.10] should always be the same in the case of a single
periodic term. But in the case of correlated fluctuations, while the correlation
in [4.10] would be constant, the ratio of differences – of course on ‘Student’s’
hypothesis – would be 4−2/d and thus only tend to a constant value = 4. On
the other hand if rxy,k, rx,k and ry,k be not a series of zero correlations (except,
of course for k = 0) then the ratios in [4.9] will tend more slowly to 4, because
they depend on quantities like d/(d + 1) being equal to (d − 1)/d practically,
as d becomes large. (Pearson and Elderton, 1923, page 300; italics in original;
notation altered for consistency)

4.14 As discussed in §4.11, a particular interest of Persons was the correlation
between the cyclical components of two series. He took great pains, however,
to emphasize how such a correlation was dependent upon the method used to
eliminate the secular trend:

judgment concerning the correlation of cyclical fluctuations of two series
must be preceded by elimination of the secular trend. The choice of a function
to represent the secular trend, indeed the choice of the method of eliminat-
ing the trend, whether by curve fitting or otherwise, these are questions
fundamental to the process. (Persons, 1917, pages 623–4)

Persons then assessed the importance of the choice of trend function by
analysing two of the series used to illustrate the variance difference method by
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Figure 4.3 London bank clearings (in millions of pounds), 1868–1913, with straight line
(A), parabola (B) and compound interest curve (C) fitted to data
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Figure 4.4 Sauerbeck’s index numbers of wholesale prices, 1868–1913, with straight line
(A) and parabola (B) fitted to data
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Figure 4.5 Sauerbeck’s price indices (P) and London clearings (C), 1868–1913, with their
respective nine-year moving averages, 1872–1909

Student (1914), London bank clearings and Sauerbeck’s price index, providing
the data in Persons (1917, Table IX). Because this was the first serious attempt
at decomposing time series we discuss it in some detail. Figures 4.3 and 4.4
recreate Persons’ figures 2 and 3, showing various trends fitted to the two series,
while Figure 4.5 recreates his figure 4, in which the two series are plotted with
nine-year moving averages superimposed.13

Figures 4.6–4.9 (Persons’ figures 5–8) show the deviations from the various sec-
ular trends and hence may be regarded as alternative estimates of the cyclical
fluctuations. Whatever the method used to compute these fluctuations, Per-
sons (1917, page 625) felt able to conclude that ’fluctuations of clearings show
a tendency to precede or forecast the fluctuations in prices’, before going on to
emphasize that ‘(t)he main question upon which we wish to get light is, how-
ever, the effect of the various methods of eliminating the secular trend upon the
coefficients of correlation between corresponding deviations’ (ibid., page 629).
Table 4.4 repeats Persons’ calculations that underlie his Table X. Although there
are some minor numerical differences in the correlations, Table 4.4 supports
Persons’ original conclusions.

The coefficients of correlation for the raw figures [−.36, −.31 and −.28] show
that the secular trends of prices and clearings are in opposite directions. The
coefficients for the first differences of the raw figures and of all the deviations
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Figure 4.6 Deviations of London clearings (C) and Sauerbeck’s prices (P) from their
respective nine-year moving average secular trends, 1872–1909
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Figure 4.7 Deviations of London clearings (C) and Sauerbeck’s prices (P) from their
respective linear secular trends, 1868–1913

indicate an appreciable positive correlation for concurrent items [r(0)] and
for prices one-year lag [r(1)], with the coefficient [r(0)] larger. The coefficients
for second and higher differences of the raw figures, and deviations as well,
decrease as the order of difference increases; the coefficients for one-year
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Figure 4.8 Deviations of London clearings (C) and Sauerbeck’s prices (P) from their
respective parabolic secular trends, 1868–1913
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Figure 4.9 Deviations of London clearings from trend as compound interest curve (C)
and Sauerbeck’s prices from linear trend (P), 1868–1913

lag of prices decreasing more rapidly than for concurrent items. These facts
indicate that the maximum correlation of business cycles (including irregular
fluctuations) is for clearings preceding prices by less than half a year, say, four
months. (ibid., page 630)
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Table 4.4 Coefficients of correlation between Sauerbeck’s price indices and London
clearings, 1868–1913

d r(−2) r(−1) r(0) r(1) r(2)

A

0 −0.42 −0.36 −0.31 −0.25 −0.22
1 −0.04 +0.10 +0.52 +0.46 +0.17
2 −0.05 −0.19 +0.31 +0.14 −0.00
3 +0.02 −0.23 +0.25 +0.02 −0.02
4 +0.04 −0.22 +0.23 −0.03 −0.02
5 +0.05 −0.19 +0.21 −0.05 −0.01
6 +0.08 −0.17 +0.18 −0.07 −0.00

B

0 −0.22 +0.20 +0.64 +0.64 +0.25
1 −0.15 −0.04 +0.40 +0.35 +0.16
2 −0.02 −0.13 +0.28 +0.07 +0.08
3 +0.06 −0.08 +0.18 +0.01 +0.11

C

0 +0.68 +0.81 +0.92 +0.84 +0.69
1 −0.04 +0.10 +0.52 +0.46 +0.17
2 −0.05 −0.19 +0.31 +0.14 −0.00
3 +0.02 −0.23 +0.25 +0.02 −0.02

D

0 +0.14 +0.45 +0.75 +0.65 +0.33
1 −0.09 +0.04 +0.49 +0.42 +0.15
2 −0.05 −0.19 +0.31 +0.14 −0.00
3 +0.02 −0.23 +0.25 +0.02 −0.02

E

0 +0.59 +0.69 +0.78 +0.69 +0.50
1 −0.08 +0.05 +0.48 +0.42 +0.13
2 −0.05 −0.19 +0.31 +0.14 −0.00
3 +0.02 −0.23 +0.25 +0.02 −0.02

A: Raw figures and their differences
B: Deviations from nine-year moving average and differences
C: Deviations from straight line and differences
D: Deviations from parabola and differences
E: Deviations from compound interest law for clearings and straight line for prices and differences.
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Table 4.5 Coefficients of correlation between Sauerbeck’s price index and London clear-
ings from their respective linear secular trends for the two periods 1868–1896 and
1897–1913 together with coefficients for lag differences

d r(−1) r(0) r(1) r(2) r(3)

1868–1896

0 +0.36 +0.71 +0.63 +0.32 −0.06
1 +0.19 +0.57 +0.38 +0.13 −0.08

1897–1913

0 −0.21 +0.48 +0.68 +0.19 −0.31
1 −0.36 +0.31 +0.46 +0.06 −0.34

r(k) ≡ rCP (k) denotes the correlation between clearings at time t and prices at time t + k

Persons then considered how the various ways of removing the secular trend
had performed.

The coefficients of correlation for the deviations all agree in locating the
maximum, and therefore the lag of prices, at less than a year. The actual
maximum found was for concurrent items, except for deviations from the
nine-year averages which gives a maximum at one year lag of prices. Since
our judgment is based upon the relative values of the coefficients for various
degrees of lag, rather than upon their absolute values, the type of secular trend
chosen does not appear to have great significance. Curve-fitting, however,
does appear to be preferable to the taking of moving averages because, first,
all the items may be used in determining the correlation and, second, the
coefficients for deviations and first differences disagree in their location of
the maximum when deviations from the moving average are taken. (ibid.,
page 630–631)

Persons then went on to consider fitting linear trends to two subperiods of the
data; 1868 to 1896 and 1897 to 1913 (see Table 4.5). These trends are shown
superimposed on the series in Figure 4.10 and the deviations from trend are
shown in Figure 4.11 (cf. Persons Figures 9 and 10), leading Persons to the
conclusion that

(d)ivision of the data into two sections throws new light onto the prob-
lem. Clearings and prices fluctuated concurrently during the first period,
but prices lagged behind clearings by a year during the period 1896–1913.
Perhaps increased speculation has changed the character of clearings during
the second period. (ibid., page 632)
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After a second example in a similar vein examining wholesale prices and
pig iron production in the US, Persons felt able to make the following
recommendations.

The variate difference correlation method has been invented to eliminate
spurious correlation due to position of items in time and space.

The method involves the assumption that the taking of multiple differences
leads to series of random variates. In practice for short series this assumption
is not fulfilled.

Coefficients for higher differences of short series tend to alternate in sign
and to conceal rather than to reveal the nature of the correlation between
the series being tested.

Stability of coefficients for higher differences appears to have little signif-
icance for short series, and perhaps for long series as well. The assumption
that the series correlated are made up of variates ‘randomly distributed in
time,’ if fulfilled, will lead to stable coefficients for successive differences.
However, though this condition is sufficient for stability it is not necessary.

In testing economic time series for correspondence of their cyclical fluctu-
ations, especially in determining the relative position of the cycles upon the
assumption that there are cycles, the correlation coefficients between devia-
tions from a linear secular trend together with coefficients for first differences
constitute a reliable basis for judgment.

When the question is one of the existence or non-existence of similar cycles
in two time series great care must be used in the choice of the function used
to represent the secular trend and in the nature of the fit of the curve or line
to the data. The method of first differences is an extremely valuable aid in
investigating such a question.

Coefficients of correlation between second differences may give informa-
tion concerning minor oscillations as distinct from secular trend and major
cycles. Even for this purpose the use of higher than second differences appears
to be unreliable, especially so for short series. The coefficients of correlation
between second differences are identical with those between deviations from
three-year progressive averages.

The method of measuring correlation between cycles of time series, that
is both easy of application and reliable, is the method of first differences. In
general, however, this method should be supplemented by curve fitting. To
secure a picture of the cycles it is, of course, necessary to take deviations from
a closely fitted curve.

Finally, curve fitting to eliminate the secular trend of a time series should
always be adapted to the problem in hand and interpretation of coefficients
of correlation between time series should be made with continual reference to
the fundamental data. Important light may be secured by dividing statistical
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series into more homogeneous sub-series and analyzing the latter. The nature
of the data is as important as the method to be applied. Rules-of-thumb
concerning method or data are apt to lead to pitfalls. (ibid., pages 641–642)

This extremely thoughtful set of recommendations did, in hindsight, lay the
foundations for many of the developments in time series that have taken place
right up to the present day, especially when dealing with economic time series:
see, in particular, chapters 10 and 16. They met with complete indifference
from Pearson and Elderton, however, who simply responded by stating that
‘Dr Persons’ criticism is valid, although his attempt to get rid of secular trends
are from our standpoint wholly inadequate, and further his criticism was hypo-
thetical’ (Pearson and Elderton, 1923, page 309). They then moved on to an
extended reworking of their 1915 mortality example with little or no reference
to these concerns! Nevertheless, Pearson and Elderton (1923) represented the
end of Karl Pearson’s involvement with the variate difference method, leaving
the field open for other statisticians to become involved.

Later developments: Anderson, Tintner and Quenouille

4.15 The variate difference baton was subsequently picked up by Oskar Ander-
son, who extended the methodology that he had introduced in Anderson (1914)
(§§4.2–4.5) to a sequence of papers (Anderson, 1923, 1926, 1927a, 1927b)
and finally a book (Anderson, 1929). From §4.3, the variance of the random
component Yt is given by

σ2
Y = σ2

�dY

2dCd

so that an unbiased estimate of this variance is given by

V̂d = Sd

(T − d)2dCd
Sd =

T−d∑

t=1

(�dyt )2

The variance of V̂d has an extremely complicated formula, but if terms of
order (T − d)−2 are neglected (i.e., if the sample size T is large), it can be
approximated by14

varV̂d = 1
T − d

(
μY ,4 − 3σ4

Y + 2 4dC2d

(2dCd)2
σ4

Y

)
≈ 1

T − d
(μY ,4 − 3σ4

Y + √
2dπσ4

Y )

where μY ,4 = E(Y4
t ) = κ4 + 3σ4

Y , κ4 being the moment measure of skewness, and
the approximation

22d

2dCd
∼ √

2dπ

is used. If κ4 exists then V̂d/(varV̂d)
1
2 has a limiting standard normal distribution.
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Anderson also derives an even more complicated formula for the variance of
the difference between V̂d and V̂d+1, but provides an easier approximation when
d ≥ 6 and the observations are normally distributed:

var(V̂d − V̂d+1) = (3d + 1)
√

2dπV̂2
d

2(2d + 1)2(T − d − 1)

The obvious problem with implementing these results was the amount of com-
putation that was involved. The evaluation of the variances was facilitated by
the provision of extensive tables of the constants required in the formulae by
Tintner (1940), building on the work of Anderson and also of Zaycoff (1937).
Indeed, Tintner’s monograph provides the definitive discussion of the variance
difference approach up to 1940.

4.16 Tintner (1940) also offered an extension of the asymptotic result given
above concerning the variance of the difference between the variances of two
consecutive differences. An exact test can be computed which takes account
of the correlation induced in an independent series through differencing by
selecting subsamples of the differenced series that ensure that any correla-
tion is eradicated. To be precise, the subsamples of �dyt and �d+1yt should
be selected as:

�dyr : r = t, t + (2d + 3), t + 2(2d + 3), . . . , t + ( j − 1)(2d + 3);

�d+1ys : s = t + d + 1, t + d + 1 + (2d + 3), . . . , t + d + 1 + ( j − 1)(2d + 3)

where t may have any integral value from 1 to 2d + 3 inclusive, with each
value giving rise to a different selection; j takes the largest possible value such
that (j − 1)(2d + 3) ≤ T , the length of the sample. This ensures that none
of the quantities �dyr and �d+1ys have a yt in common, thus ensuring their
independence. If the non-random elements have been removed by taking dth
differences, then �dyr and �d+1ys should be sequences of independent variables,
each with expected value zero and with variances satisfying the ratio

2dCd

2d + 2Cd+1
= d + 1

2(2d + 1)

Tintner thus suggested using the test statistics

F = Sd

Sd+1

2(2d + 1)
d + 1

∼ F(d, d) or z = 1
2

ln F ∼ N(0, 1)

to provide exact significance limits.
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Although providing an exact test, this sample selection method involves
the sacrifice of a considerable proportion of the available data, with only
(T − d − 1)/(2d + 3) observations being used. Subsequently, Johnson (1948) pro-
posed a modification of this approach which allowed a greater proportion of the
data to be used.

4.17 The aim of the variate difference method was thus to establish the order
of the polynomial that gave the ‘best fit’ to a series, in the sense of reducing
the error to randomness, this being the order of differencing after which the
variances V̂d do not seriously change for higher differences. But on the assump-
tion that the original series consisted of a polynomial plus a random error (as
in §4.1), we might also enquire what is the best estimate of the error variance
σ2

Y given a set of V̂ds. This question was examined by Quenouille (1953), who
sought a linear function of the V̂ds which had minimal variance. Quenouille
(1951, 1953) also extended the method to allow for cases when the errors were
not assumed to be random but were intercorrelated. This, however, requires the
concept of serial correlation, probably the most fundamental concept in time
series analysis, to which Yule, in particular, now turned his attention.
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5
Nonsense Correlations, Random
Shocks and Induced Cycles: Yule,
Slutzky and Working

Modern foundations

5.1 By the mid-1920s the methodological advances discussed in the previ-
ous two chapters, namely periodogram analysis and the variate differencing
method, appeared to be running out of steam, with few new applications appear-
ing and increasing concern about the underlying assumptions of the techniques.
At this point, three papers appeared in quick succession which transformed the
subject and laid the foundations for modern approaches to the analysis of time
series. Two of the papers, by Yule (1926) and Slutzky (1927), went a long way to
establishing the basis for the theoretical analysis of stationary time series and,
because of the enduring importance of their contributions, are consequently
subjected to detailed scrutiny in this chapter, along with a subsequent and
closely related paper by Working (1934). The third paper, also by Yule (Yule,
1927), attacked periodic time series in a new way and, in turn, provided the
foundations for analysing oscillatory time series: this is our focus in Chapter 6.

Yule and nonsense correlations

5.2 In his Presidential Address to the Royal Statistical Society in November
1925, Yule considered a problem that had puzzled him for many years. Since it
lies at the centre of all attempts to analyse the relationships between time series,
Yule’s statement of the problem is worth setting out in full:

It is fairly familiar knowledge that we sometimes obtain between quanti-
ties varying with the time (time-variables) quite high correlations to which
we cannot attach any physical significance whatever, although under the
ordinary test the correlation would be held to be certainly ‘significant’. As
the occurrence of such ‘nonsense-correlations’ makes one mistrust the seri-
ous arguments that are sometimes put forward on the basis of correlations

64
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Figure 5.1 Correlation between standardized mortality per 1,000 persons in England
and Wales (circles), and the proportion of Church of England marriages per 1,000 of
all marriages (line), 1866–1911. r = + 0.9512. (Recreated from Yule, 1926, Fig. 1, page 3)

between time-series . . . it is important to clear up the problem of how they
arise and in what special cases. [Figure 5.1] gives a very good illustration.
The full line shows the proportion of Church of England marriages to all
marriages for the years 1866–1911 inclusive: the small circles give the stan-
dardized mortality per 1,000 persons for the same years. Evidently there
is a very high correlation between the two figures for the same year: the
correlation coefficient actually works out at +0.9512.

Now I suppose it is possible, given a little ingenuity and goodwill, to ratio-
nalize very nearly anything. And I can imagine some enthusiast arguing that
the fall in the proportion of Church of England marriages is simply due to
the Spread of Scientific Thinking since 1866, and the fall in mortality is also
clearly to be ascribed to the Progress of Science: hence both variables are
largely or mainly influenced by a common factor and consequently ought to
be highly correlated. But most people would, I think, agree with me that the
correlation is simply sheer nonsense; that it has no meaning whatever; that
it is absurd to suppose that the two variables in question are in any sort of
way, however indirect, causally related to one another.

And yet, if we apply the ordinary test of significance in the ordinary way,
the result suggests that the correlation is certainly ‘significant’ – that it lies far
outside the probable limits of fluctuations of sampling. The standard error
of a coefficient of correlation is (1 − r2)/

√
n, where n is the number of obser-

vations: that is to say, if we have the values of the two variables x and y
entered in their associated pairs on cards, if we take out a random sample
of n cards (small compared with the total of cards available) and work out
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the correlation, for this sample, take another sample in the same way, and so
on – then the correlation coefficients for the samples will fluctuate round the
correlation r for the aggregate of cards with a standard deviation (1 − r2)/

√
n.

For the assigned value of r, viz. 0.9512 and 46 observations, the standard
error so calculated is only 0.0140, and on this basis we would judge that we
could probably trust the coefficient within 2 or 3 units in the second place
of decimals. But we might ask ourselves a different question, and one more
germane to the present enquiry. If we took samples of 46 observations at
random from a record in which the correlation for the entire aggregate was
zero, would there be any appreciable chance of our getting such a correla-
tion as 0.9512 merely by chances of sampling? In this case the standard error
would be 1/

√
46, or 0.1474, the observed correlation is 6.45 times this, and

the odds would be many millions to one against such a value occurring ‘by
chance’ – odds so great that the event may be written down as for all prac-
tical purposes impossible. On the ordinary test applied in the ordinary way
we seem compelled to regard the correlation as having some meaning. (Yule,
1926, pages 2–4; italics in original)

Having thus restated the standard statistical argument of the day, Yule then
made a crucial assertion:

Now it has been said that to interpret such correlations as implying causation
is to ignore the common influence of the time-factor. While there is a sense –
a special and definite sense – in which this may perhaps be said to cover the
explanation . . . , to my own mind the phrase has never been intellectually
satisfying. I cannot regard time per se as a causal factor; and the words only
suggest that there is some third quantity varying with the time to which
the changes in both the observed variables are due . . . But what one feels
about such a correlation is, not that it must be interpreted in terms of some
very indirect catena of causation, but that it has no meaning at all; that
in non-technical terms it is simply a fluke, and if we had or could have
experience of the two variables over a much longer period of time we would
not find any appreciable connection between them. But to argue like this is,
in technical terms, to imply that the observed correlation is only a fluctuation
of sampling, whatever the ordinary formula for the standard error may seem
to imply: we are arguing that the result given by the ordinary formula is not merely
wrong, but very badly wrong. (ibid., page 4: italics added for emphasis)

Yule next set out the problem, as he saw it, more formally:

When we find that a theoretical formula applied to a particular case gives
results which common sense judges to be incorrect, it is generally as well
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to examine the particular assumptions from which it was deduced, and see
which of them are inapplicable to the case in point. In obtaining the formula
for the standard error we assume, to speak as before in terms of drawing cards
from a record: (1) that we are drawing throughout from the same aggregate
and not taking one sample from one aggregate, a second sample from another
aggregate and so on; (2) that every card in each sample is also drawn from the
same aggregate, not the first card from one batch, the second from another,
and so on; (3) that the magnitude of x drawn on, say, the second card of the
sample is quite independent of that on the first card, and so on for all other
pairs in the sample; and similarly for y; there must be no tendency for a high
value of x on the first card drawn to imply that the value of x on the second
card will also probably be high; (4) in order to reduce the formula to the very
simple form given, we have also to make certain assumptions as to the form
of the frequency distribution in the correlation table for the aggregate from
which the samples are taken. (ibid., pages 4–5)

In what ways does the example chosen by Yule and shown in Figure 5.1 diverge
from these basic assumptions?

In the particular case considered and in many similar cases there are two of
these assumptions – leaving aside the fourth as comparatively a minor mat-
ter – which quite obviously do not apply, namely, the related assumptions
(2) and (3). Our data necessarily refer to a continuous series of years, and the
changes in both variables are, more or less, continuous. The proportion of
marriages celebrated in the Established Church falls without a break for years
together; only a few plateaus and little peaks here and there interrupt the fall.
The death-rate, it is true, shows much larger and more irregular fluctuations
from year to year, but there is again a steady tendency to fall throughout the
period; only one rate (the last) in the first half of the years chosen, 1866–88,
is below the average, only five in 1889–1911 are above it. Neither series, obvi-
ously, in the least resembles a random series as required by assumption (3).
(ibid., page 5)

What, then, are the implications for these violations of the basic assumptions?

But can this breach of the assumed conditions render the usual formula so
wholly inapplicable as it seems to be? May it not merely imply . . . some
comparatively slight modification? Even if the standard error by the usual
formula were doubled, this would still leave the correlation almost signifi-
cant. . . . [W]hen the successive x’s and y’s in a sample no longer form a random
series, but a series in which successive terms are closely related to one another, the
usual conceptions to which we are accustomed fail totally and entirely to apply.
(ibid., pages 5–6; italics added for emphasis)
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This, in a nutshell, is the problem of ‘nonsense correlations’ that Yule intended
to analyse in his Presidential Address.

5.3 Yule began his attack on the problem by considering two simple harmonic
functions

yt = sin
(

2π
t
n

)
xt = sin

(
2π

t + α

n

)

where (cf. §§3.1–3.5, §4.13) n is the period and α is the difference in phase
between the two functions (the amplitude is taken as unity as its value is
irrelevant to the analysis). Yule wished to compute the correlation between
simultaneous values of y and x over an interval ±h around the time t = u, treating
the observed values as continuous. Since, for example,

∫ u+h

u−h
sin

(
2π

t + α

n

)
dt = n

2π

(
cos

(
2π

u + α − h
n

)
− cos

(
2π

u + α + h
n
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= n
π

sin
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2π
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n

)
sin

(
2π

h
n

)

dividing this by 2h will give the mean of x over the interval u ± h:

x̄(u ± h) = n
2πh

sin
(

2π
u + α

n

)
sin

(
2π

h
n

)
(5.1)

Similarly,

∫ u+h

u−h
sin2

(
2π

t + α

n

)
dt = h − n

4π
cos

(
4π

u + α

n

)
sin

(
4π

h
n
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so that, on division by 2h, we have

s2
x(u ± h) = 1

2 − n
8πh

cos
(

4π
u + α

n

)
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(
4π

h
n

)
− x̄2 (
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)

(5.2)

which is the variance of x over the interval u ± h. In a similar vein, using

∫ u+h

u−h
sin

(
2π

t
n

)
sin

(
2π

t + α

n

)
dt = h cos

(
2π
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n

)
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)
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(
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h
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)

enables the covariance between y and x over the interval u ± h to be written as

yx(u ± h) = 1
2 cos

(
2π

α

n
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Figure 5.2 Two sine curves differing by a quarter-period in phase, and consequently
uncorrelated when the correlation is taken over a whole period

The correlation between y and x over u ± h is then given by

ryx(u ± h) = yx(u ± h) − ȳ(u ± h)x̄(u ± h)
sy(u ± h)sx(u ± h)

(5.3)

where ȳ(u ± h) and s2
y (u ± h) are the mean and variance of y calculated in an

analogous fashion to (5.1) and (5.2).
Yule focused attention on the case where the phase shift was a quarter of the

period, α = n/4. The correlation between y and x over a whole period is then
obviously zero, as positive deviations from zero in y are exactly matched in
frequency by negative deviations from zero in x, as in Figure 5.2. Now suppose
we only observe data for a short interval of the whole period, say that enclosed
between the two verticals aa, bb. This interval is so short that the segments
of the two curves enclosed between aa and bb are very nearly straight lines,
that for y rising and that for x falling, so that the correlation between the two
variables within this interval will therefore be close to −1. Suppose further that
the interval from a to b is represented by t = u ± h and we let h → 0, so that
the interval becomes infinitesimally short and the segments of the two curves
can be taken to be strictly linear. For u = 0, 0.25, 0.5, 0.75, 1, . . . the correlation
between the two curves will be zero, while for the intervals between these points
the correlation will alternate between −1 and +1 (see Figure 5.3).

Yule then considered how this correlation ‘function’ varied as the length of
the interval increases from h = 0 to h = n/2. When α = n/4 we have

ȳ(u ± h) = n
2πh

sin
(
2π

u
n

)
sin

(
2π

h
n

)
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Figure 5.3 Variation of the correlation between two simultaneous intervals of the sine
curves of Figure 5.2, as the centre of the interval is moved across from left to right
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from which the correlation as u varies for a given value of h can be calculated
from (5.3). Figure 5.4 recreates Yule’s Fig. 4, which shows ‘correlation curves’
for 2h/n = 0.1, 0.3, . . . , 0.9 and from which Yule concluded that

The first effect of lengthening the interval from something infinitesimally
small up to 0.1 of a period is only slightly to round off the corners of the
rectangles of [Figure 5.3], and quite slightly to decrease the maximum corre-
lation attainable; it is not until the sample-interval becomes as large as half
a period, or thereabouts, that the contours of the curve round off and the
maximum undergoes a rather sudden drop. (ibid., page 8)

Yule then used these curves to construct the frequency distribution of the cor-
relation coefficient for a given value of 2h/n. These distributions are shown in
Figure 5.5 and led Yule to conclude that the1

answer to our question, how the distribution of isolated frequencies at +1
and −1 closes up to the distribution of an isolated clump of frequency at
zero, is then that the distribution first of all becomes a U-shaped distribution,
with limits not far from +1 and −1, and that these limits, at first gradually
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Figure 5.4 Variation of the correlation coefficient between two simultaneous finite inter-
vals of the harmonic curves of Figure 5.2, when the length of the interval is 0.1, 0.3, . . . ,
0.9 of the period, as the centre of the interval is moved across from left to right; only
one-eighth of the whole period shown

and then more rapidly, close in on zero; but the distribution always remains
U-shaped, and values of the correlation as far as possible removed from the true
value (zero) always remain the most frequent.

The result is in complete contrast with what we expect in sampling under
the conditions usually assumed, when successive values of either variable
drawn from the sample are independent of one another. In that case the
values of r in successive samples may differ widely, but the mode tends to
coincide with the ‘true’ value in the aggregate from which the sample is
drawn – zero in the present illustration. Here the values in the samples tend
to diverge as widely as possible, in both directions, from the truth. We must
evidently divest ourselves, in such a case, from all our preconceptions based
on sampling under fundamentally different conditions. And evidently the
result suggests – it cannot do more – the answer to the problem with which we
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Figure 5.5 Frequency distribution of correlations between simultaneous intervals of the
sine curves of Figure 5.2 when the interval is, from the top, 0.1, 0.3, 0.5, 0.7 and 0.9,
respectively, of the period
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Figure 5.6 Frequency distribution of correlations between two simultaneous intervals of
sine curves differing by 60◦ in phase (correlation over a whole period +0.5) when the
length of interval is 0.2 of the period

started. We tend – it suggests – to get ‘nonsense-correlations’ between time-
series, in some cases, because some time series are in some way analogous to the
harmonic series that we have taken as illustration, and our available samples
must be regarded as very small samples, if not practically infinitesimal, when
compared with the length required to give the true correlation. (ibid., pages
10–12; italics in original)

Yule then considered the case of two sine curves for which the correlation over
the whole period was not zero. Specifically, he took two curves that differed in
phase by 60◦ (i.e., α = n/6), so that the correlation over a whole period is 0.5,
and assumed that 2h/n = 0.2. The resulting frequency distribution is shown in
Figure 5.6, and was described by Yule thus:2

(i)t remains U-shaped, but has become asymmetrical. The limits are −0.85055
and +0.98221, and frequencies are much higher near the positive limit.
Roundly 68 per cent of the correlations are positive, 32 per cent are negative,
nearly 48 per cent exceed +0.9, only some 13 per cent are less than −0.8. We
could only conjecture, in such a case, that the true correlation was positive, if
we had a number of samples available, and noted that those giving a positive
correlation were to those giving a negative correlation as about 2 to 1. Quite
often, at about one trial in eight, a single sample might entirely mislead us
by giving a high negative correlation exceeding 0.8. And, be it remembered,
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we have taken a fairly long sample, amounting to one-fifth of the period; if
the complete period were something exceeding, say, 500 years, it is seldom
that we would have such a sample at our disposal. (ibid., pages 12–13)

5.4 The implication of the analysis in §5.2 is that meaningless correlations
between time series could arise because the series are in some way analogous to
harmonic functions, leading Yule to ask

(w)hat characteristics must two empirical series possess in order that small
random samples, taken from them in the same way that we took the small
samples from the sine-curves, may tend to give a U-shaped frequency-
distribution for the resultant correlations? (ibid., page 14)

The phenomenon is clearly related to the fact that a small segment of a sine
curve, when taken at random, will usually be either rising or falling and so
will tend to be highly correlated (of either sign) with other segments taken at
random. It is easily seen that, if h = 2n, then

x̄ = x̄(u ± n/2) = ȳ = ȳ(u ± n/2) = 0

s2
x = s2

x(u ± n/2) = s2
y = s2

y (u ± n/2) = 0.5

yx = yx(u ± n/2) = 1
2 cos

(
2π

α

n

)

so that

ryx = ryx(u ± n/2) = cos
(
2π

α

n

)

If the whole period is n = 360 years and the phase is taken to be α = 1 year, then
r = cos 1◦ = 0.99985 gives the correlation between the value of the variable in
one year and the value in the next. Similarly, the correlation between the value
in one year and that in the next but one year is cos 2◦ = 0.99939, so that, for
example, the correlation between values ten years apart is cos 10◦ = 0.98481.

If, following the notation used previously in §4.12, we denote the correlation
between xt and xt+k as rx(k), then Yule proposed that such correlations should
be termed the serial correlations of the x series (ibid., page 14). With this concept
thus defined, Yule then considered answering the following question:

will it suffice to give us a U-shaped distribution of correlations for samples
from two empirical series, if the serial correlations for both of them are high,
and positive at least as far as rx(T − 1) where T is the number of terms in the
sample? (ibid., page 14: notation altered for consistency)
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Yule argued that, if the first term in a sample of consecutive observations taken
from a variable having positive serial correlations is considerably above the sam-
ple average, then the next few terms will probably be above the average as well,
but later terms will have to be below the average to compensate, thus implying
that a plot of the sample against time would tend to show a downward move-
ment from left to right. Conversely, if the first term is below the average such
a plot will show an upward movement from left to right. Different segments
of two such variables would then tend to have markedly positive or negative
correlations, depending on whether the two segments had movements in the
same or opposite directions. ‘This suggests that the frequency-distribution of
correlations will be widely dispersed and possibly tend to be bimodal. But will
it tend to the extreme of bimodality, a definite U-shape?’ (ibid., page 15).

To answer this question, Yule referred back to Figure 5.2.

When we take a small sample out of either of the curves, such as that between
the verticals aa, bb of the figure, the sample does not tend to show a more
or less indefinite upward or downward trend; it moves upward or downward
with a clear unbroken sweep. This must imply something more: if the curve
is going up from year t to year t + 1, it tends to rise further from year t + 1 to
t + 2, which is to say, that first differences are positively correlated with each other,
as well as the values of the variable. For the sine-curve, in fact, we know that
the first differences form a curve of the same period as the original: the serial
correlations for the first differences are therefore precisely the same as those
for the values of the variable, given above. This is a very important additional
property. It suggests that, for random samples from two empirical series to
give a U-shaped distribution of correlations, each series should not merely
exhibit positive values for the serial correlations up to rx(T − 1), but their
difference series should also give positive serial correlations up to the limit of
the sample. (ibid., page 15; italics in original, notation altered for consistency)

5.5 Yule formalized these ideas by first considering the case of a random series,
for which all the serial correlations are zero, and utilized a well-known result
that, in a sample of size T taken from such a series, the correlation between the
deviations of any two terms from the sample mean is −1/(T − 1).3 If the first
sample value was then above the sample mean, there would be no tendency for
the remaining terms to show a downward movement, as they would all have
an equal, although slight, tendency to lie below the sample mean. Yule then
took 60 sets of 10 random terms, obtained by drawing cards from two packs of
playing cards in the following way:

The court cards were removed from two patience packs; black cards were
reckoned as positive, red cards as negative and tens as zeros, so that the



9780230290181_06_cha05.tex 21/4/2011 12: 46 Page 76

76 The Foundations of Modern Time Series Analysis

frequency-distribution in the pack was uniform from −9 to +9, with the
exception that there were two zeros. The mean of this distribution is zero,
and the standard deviation is

√
28.5, or 5.3385. The pack was shuffled and a

card drawn; thoroughly shuffled again and another card drawn, and so on.
Every precaution was taken to avoid possible bias and ensure randomness.
The use of a double pack helps, I think, towards this, as the complete series
is repeated four times. Shuffling was very thorough after every draw; after
shuffling, the pack was cut and, say, the fifth card from the cut taken as the
card drawn, so as to avoid any possible tendency of the cards to cut at a black
rather than a red, or a ten rather than an ace, and so on. (ibid., page 30)

He then computed the deviations from the means in each sample and next
separated the samples into two groups, depending on whether the first deviation
was positive or negative. Taking each group separately, he then averaged the
deviations of each term across the group. Since the standard deviations of all
the terms are the same, and the correlation of every term with every other is
−1/9, then if the mean of the first term of the positive deviation group is rescaled
as 1,000, the most probable deviation of each of the other terms is −1,000/9 or
−111, with a similar expectation for the probable deviations of the terms in the
negative deviation group on reversing signs.

We recreate this simulation in Table 5.1 but, rather than physically repeating
Yule’s rather heroic sampling procedure, we utilize modern computing power
and software!4 Column (3) gives the average deviations for the first deviation

Table 5.1 Deviations from the mean of the sample in samples of 10 terms from a random
series, averaging separately samples in which the first deviation is positive and samples in
which the first deviation is negative: average of first deviations taken as +1,000

Experimental results

Term Expectation First term + First term − Together
(1) (2) (3) (4) (5)

1 +1,000 +1,000 +1,000 +1,000
2 −111 −379 −198 −274
3 −111 −167 −464 −340
4 −111 −131 −105 −116
5 −111 −158 +141 +15
6 −111 +173 +21 +85
7 −111 −2 −192 −112
8 −111 +99 −132 −35
9 −111 −222 −178 −197
10 −111 −213 +108 −27
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positive group; column (4) the average deviations for the first deviation negative
group; and column (5) for the two groups taken together. As Yule concluded,

(t)he figures of neither [column 3], nor [column 4], nor [column 5] show any
definite trend in terms 2 to 10. Selection of the first term does not bias the
remainder of the sample, or give it any trend or ‘tilt’ either upwards or down-
wards; the remaining terms are still random in their order. (ibid., page 16)

He then constructed a correlated series by cumulating a random series:

Now suppose we take from a series of random terms (with mean zero) a sample
of ten terms a, b, c, d, e, f , g, h, k, l, and form from it, by successive addition,
a new series a, a + b, a + b + c . . . . In this new series the terms are correlated
with each other, since each term contains the term before, but the differences
are random. (ibid., page 16)

The mean of the sample is thus

a + 0.9b + 0.8c + 0.7d + 0.6e + 0.5f + 0.4g + 0.3h + 0.2k + 0.1l

so that the deviation of the first term, a, from the mean is

−0.9b − 0.8c − 0.7d − 0.6e − 0.5f − 0.4g − 0.3h − 0.2k − 0.1l

Table 5.2 gives the deviations of the successive terms in the sample from the
mean. The standard deviation of each deviation for a series of such samples is
given by the square root of the sum of squares of the coefficients in the appro-
priate row in Table 5.2 (scaled by the standard deviation of the original random
series). These are given in the rightmost column and show that the end terms in
the sample are the most variable, the central terms are the least variable, and the
standard deviations are symmetrical about the centre of the sample. The corre-
lation between any pair of terms will be given by the ratio of the product sum
of the coefficients associated with the two terms divided by the product of their
respective standard deviations. These coefficients are shown in Table 5.3. The
correlations of terms adjacent to each other at either end of the sample are high
and positive, but terms at opposite ends have moderately high and negative
correlations. The general effect of this arrangement of correlations, argued Yule,
was to ‘give the sample as a whole a tendency to be tilted one way or the other as
the first term is above or below the average’ (ibid., page 18; italics in original).

If the first term in the sample is one unit above the sample mean then the
expected mean deviations of the other terms are given by multiplying the
appropriate correlation by the ratio of their standard deviations to the stan-
dard deviation of the first term. These mean deviations (multiplied by 1,000)
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Table 5.2 Coefficients of the terms in the deviations from the mean of the sample, in a
sample of 10 terms from a series with random differences a, b, c, . . . , l

Term (1) (2) (3) (4) (5) (6) (7) (8) (9) Coefficient
b c d e f g h k l of s.d.

1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 1.688
2 +0.1 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 1.432
3 +0.1 +0.2 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 1.204
4 +0.1 +0.2 +0.3 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 1.025
5 +0.1 +0.2 +0.3 +0.4 −0.5 −0.4 −0.3 −0.2 −0.1 0.922
6 +0.1 +0.2 +0.3 +0.4 +0.5 −0.4 −0.3 −0.2 −0.1 0.922
7 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 −0.3 −0.2 −0.1 1.025
8 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 −0.2 −0.1 1.204
9 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 −0.1 1.432
10 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 1.688

Table 5.3 Coefficients between deviations from the mean of the sample, in a sample of
10 terms from a series of random differences

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 +1 +0.81 +0.57 +0.26 −0.10 −0.42 −0.61 −0.66 −0.64 −0.58
2 +0.81 +1 +0.73 +0.37 −0.04 −0.42 −0.65 −0.73 −0.71 −0.64
3 +0.57 +0.73 +1 +0.61 +0.14 −0.32 −0.61 −0.72 −0.73 −0.66
4 +0.26 +0.37 +0.61 +1 +0.48 −0.05 −0.43 −0.61 −0.65 −0.61
5 −0.10 −0.04 +0.14 +0.48 +1 +0.41 −0.05 −0.32 −0.42 −0.42
6 −0.42 −0.42 −0.32 −0.05 +0.41 +1 +0.48 +0.14 −0.04 −0.10
7 −0.61 −0.65 −0.61 −0.43 −0.05 +0.48 +1 +0.61 +0.37 +0.26
8 −0.66 −0.73 −0.72 −0.61 −0.32 +0.14 +0.61 +1 +0.73 +0.57
9 −0.64 −0.71 −0.73 −0.65 −0.42 −0.04 +0.37 +0.73 +1 +0.81
10 −0.58 −0.64 −0.66 −0.61 −0.42 −0.10 +0.26 +0.57 +0.81 +1

are shown in column (2) of Table 5.4: they show a continuous decline from
+1,000 for the first term to −579 for the tenth term. The deviations from the
mean of each sample constructed from accumulating each of the 60 random
samples drawn earlier were then calculated and an analogous computation to
that reported in Table 5.1 is shown in column (3) of Table 5.4.

As Yule noted, since the correlations and standard deviations in Table 5.2
are symmetrical, the calculations could be repeated if the samples were sorted
depending on whether the last term was positive or negative. These calculations
are shown in column (5) of Table 5.4 and the results from combining the data
on which columns (3) and (5) are based are shown in column (6), leading Yule
to conclude that

(i)n marked contrast with the random series, the sample from the series with
random differences shows a clear tendency to tilt one way or the other as a
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Table 5.4 Deviations from the mean of the sample in samples of 10 terms from a series
with random differences, averaging separately samples in which (a) first deviation is pos-
itive, (b) first deviation is −, (c) last deviation is +, (d) last deviation is −. The average of
first or last deviations, respectively, called +1,000

Experimental results
Experimental

Term Expectation results a and b Term c and d Together
(1) (2) (3) (4) (5) (6)

1 +1,000 +1,000 10 +1,000 +1,000
2 +684 +738 9 +754 +746
3 +404 +436 8 +513 +474
4 +158 +283 7 +274 +278
5 −53 −30 6 +79 +25
6 −228 −184 5 −194 −189
7 −368 −346 4 −479 −412
8 −474 −621 3 −498 −559
9 −544 −655 2 −674 −664
10 −579 −621 1 −776 −698

whole; and hence one random sample from such a series will tend to give
more or less marked correlations, either positive or negative, with another.
(ibid., page 19)

although he did add the proviso

it must be remembered that this tendency of the sample to be tilted one way
or the other as a whole is only a tendency; it is sufficiently clearly marked
to attract attention during experimental work, but by no means stringent, as
is evident from the moderate values of the correlations in [Table 5.3]. (ibid.,
page 19)

Yule finally considered a third type of series, one whose first differences were
positively correlated. He investigated a special case of such a series: that obtained
by cumulating a random series twice, i.e., from our original random sample of
size 10, we calculate

a

2a + b

3a + 2b + c

...

10a + 9b + 8c + 7d + 6e + 5f + 4g + 3h + 2k + l
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Table 5.5 Coefficients of the terms in the deviations from the mean of the sample, in a
sample of 10 terms from a series of which the second differences are random

Term (1) (2) (3) (4) (5) (6) (7) (8) (9) Coefficient
b c d e f g h k l of s.d.

1 −4.5 −4.5 −3.6 −2.8 −2.1 −1.5 −0.6 −0.3 −0.1 2.635
2 −3.5 −3.5 −3.6 −2.8 −2.1 −1.5 −0.6 −0.3 −0.1 2.311
3 −2.5 −2.5 −2.6 −2.8 −2.1 −1.5 −0.6 −0.3 −0.1 1.877
4 −1.5 −1.5 −1.6 −1.8 −2.1 −1.5 −0.6 −0.3 −0.1 1.357
5 −0.5 −0.5 −0.6 −0.8 −1.1 −1.5 −0.6 −0.3 −0.1 0.801
6 +0.5 +0.5 +0.4 +0.2 −0.1 −0.5 −0.6 −0.3 −0.1 0.492
7 +1.5 +1.5 +1.4 +1.2 +0.9 +1.5 −0.6 −0.3 −0.1 0.971
8 +2.5 +2.5 +2.4 +2.2 +1.9 +1.5 +0.4 −0.3 −0.1 1.738
9 +3.5 +3.5 +3.4 +3.2 +2.9 +2.5 +1.4 +0.7 −0.1 2.597
10 +4.5 +4.5 +4.4 +4.2 +3.9 +3.5 +2.4 +1.7 +0.6 3.513

Table 5.6 Coefficients between deviations from the mean of the sample, in a sample of
10 terms from a series of which the second differences are random

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 +1 +0.99 +0.97 +0.91 +0.71 −0.32 −0.94 −0.98 −0.96 −0.94
2 +0.99 +1 +0.99 +0.94 +0.75 −0.27 −0.94 −0.99 −0.98 −0.96
3 +0.97 +0.99 +1 +0.97 +0.82 −0.18 −0.91 −0.99 −0.99 −0.97
4 +0.91 +0.94 +0.97 +1 +0.91 +0.01 −0.84 −0.96 −0.98 −0.98
5 +0.71 +0.75 +0.82 +0.91 +1 +0.36 −0.59 −0.80 −0.87 −0.89
6 −0.32 −0.27 −0.18 +0.01 +0.36 +1 +0.51 +0.21 +0.07 −0.01
7 −0.94 −0.94 −0.91 −0.84 −0.59 +0.51 +1 +0.94 +0.87 +0.82
8 −0.98 −0.99 −0.99 −0.96 −0.90 +0.21 +0.94 +1 +0.98 +0.96
9 −0.96 −0.98 −0.99 −0.98 −0.87 +0.07 +0.87 +0.98 +1 +0.99
10 −0.93 −0.96 −0.97 −0.98 −0.89 −0.01 +0.82 +0.96 +0.99 +1

for which the mean is

5.5a + 4.5b + 3.6c + 2.8d + 2.1e + 1.5f + g + 0.6h + 0.3k + 0.1l

Analogous calculations to those reported in Tables 5.2 and 5.3 are shown as
Tables 5.5 and 5.6:

It will be seen that the standard deviations are now no longer symmetrical
about the centre of the sample, the s.d. of term 10 being much larger than
that of term 1; while the general arrangement of the correlations is similar to
that of [Table 5.2], the correlations are much higher, and again they are not
symmetrical with respect to the two ends of the sample. But the magnitude of
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Table 5.7 Deviations from the mean of the sample, in samples of 10 terms from a series
of which the second differences are random, averaging separately samples in which (a)
first deviation is positive, (b) first deviation is −, (c) last deviation is +, (d) last deviation
is −. The average of first or last deviations, respectively, called +1,000

Experimental Experimental
Term Expectation results a and b Term Expectation Results c and d
(1) (2) (3) (4) (5) (6)

1 +1,000 +1,000 10 +1,000 +1,000
2 +870 +868 9 +733 +726
3 +689 +691 8 +473 +459
4 +467 +489 7 +226 +206
5 +215 −258 6 −1 −10
6 −59 −10 5 −203 −205
7 −347 −300 4 −377 −367
8 −644 −637 3 −520 −502
9 −945 −1002 2 −629 −615
10 −1247 −1357 1 −702 −692

the correlations is now very high. Between terms 1 and 2 there is a correlation
of 0.992, and between terms 9 and 10 a correlation of 0.991. The maximum
negative correlation is that between terms [3 and 8, and is −0.990]. The
tendency of the sample to ‘tilt’ as a whole becomes now very clearly marked,
so clear that it becomes quite evident on forming even a few experimental
samples in this way. (ibid., page 20; italics in original)5

Table 5.7 reports analogous simulations to those given in Table 5.4 and, as
should be expected, these show an appropriate degree of conformity, with the
experimental results being very close to their expectations.

5.6 After reporting these simulations, Yule summarized their implications in
a crucial insight into what are now called integrated processes (a term introduced
by Box and Jenkins, 1970: see §§10.17–10.18):

Now this argument has led us to a remarkable result, which at first sight may
seem paradoxical: namely, that for the present purpose we are really only
concerned with the serial correlations for the differences of our given series,
and not with the serial correlations of those series themselves. For if we take
a long but finite series of random terms and sum it, the serial correlations
for the sum-series are not determinate and will vary from one such series to
another: and yet all such series evidently have the same characteristics from
the present standpoint. And obviously again, if we form the second-sum of a
long but finite series of random terms, the serial correlations for the second-
sum are not determinate and will vary from one such series to another, and
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yet all such series, from the present standpoint, have the same characteristics.
If in either case we make the series indefinitely long, all the serial correlations
will tend towards unity, but the samples remain just the same as they were
before, so evidently we cannot be concerned with the mere magnitude of the
serial correlations themselves: they are dependent on the length of the series.
(ibid., page 22; italics in original)

To formalize this insight, suppose that x1, x2, . . . , xT is a zero mean series with
standard deviation σx for which the serial correlations are rx(1), rx(2), . . . , rx(k),
using the notation of §4.12. Then, if T is assumed to be large,

T−1∑

t=1

(xt+1 − xt )2 =
T−1∑

t=1

x2
t+1 +

T−1∑

t=1

x2
t − 2

T−1∑

t=1

xt+1xt

≈ 2
T−1∑

t=1

x2
t − 2

T−1∑

t=1

xt+1xt

= 2
T−1∑

t=1

x2
t

⎛

⎜⎝1 −
∑T−1

t=1
xt+1xt

∑T−1

t=1
x2

t

⎞

⎟⎠

or, again utilizing the notation of §4.7,

σ2
�x = 2σ2

x (1 − rx(1))

Similarly, and dropping summation limits to ease notation,

∑
(xt+2 − xt+1)(xt+1 − xt ) =

∑
xt+2xt+1 +

∑
xt+1xt −

∑
xt+2xt −

∑
x2

t+1

∼= 2
∑

xt+1xt −
∑

xt+2xt −
∑

x2
t+1

=
∑

x2
t+1

⎛

⎝2

∑
xt+1xt

∑
x2

t+1

−
∑

xt+2xt
∑

x2
t+1

− 1

⎞

⎠

Denoting the serial correlations of the differences as 1rx(k) (as in §4.12), we thus
have

1rx(1)σ2
�x = σ2

x (2rx(1) − rx(2)−1)

i.e.,

1rx(1) = 2rx(1) − rx(2)−1
2(1 − rx(1))
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Generalizing this result gives

1rx(k) = 2rx(k) − rx(k + 1) − rx(k − 1)
2(1 − rx(1))

= − 1
2(1 − rx(1))

�2rx(k + 1) (5.4)

Suppose that the differences are random, so that all the 1rx(k) are zero and
�2rx(k + 1) = 0 for all k, implying that

rx(k) = 2rx(k − 1) − rx(k − 2)

Successive serial correlations are then generated by the arithmetical progression

rx(2) = 2rx(1) − rx(0) = 2rx(1) − 1

rx(3) = 2rx(2) − rx(1) = 3rx(1) − 2

...

rx(k) = krx(1) − (k − 1)

To compute these serial correlations obviously requires a value of rx(1), say r̂x(1).
Yule (ibid., page 59) suggested determining r̂x(1) by making the sum of the cal-
culated correlations equal to the sum of the observed correlations, so that the
mean error was zero. This gives

k∑

j=1

rx( j) = 1
2 k(k + 1)r̂x(1) − 1

2 k(k − 1)

from which r̂x(1) can be calculated. To implement these results, Yule generated
three series with random differences, denoted A1, B1 and C1, in the same fashion
as in §5.4 above, these being shown in Figure 5.8 with the underlying random
series, A0, B0 and C0, being shown in Figure 5.7. Formally, if the random series
is denoted u1, u2, . . . , uT , then xt = u1 + u2 + · · · + ut is a series with random dif-
ferences (in the simulations T is set at 100). Setting k = 10, rx(1) was computed
for each series by solving

11r̂x(1) = 9 + 0.2
10∑

j=1

rx( j)

producing the serial correlations shown in Table 5.8 and plotted in Figure 5.9.
The fits are quite accurate but it is noticeable how the magnitudes of the serial
correlations differ across the three series: rx(10) is 0.764, 0.191 and 0.697 for A1,
B1 and C1, respectively. Yule considered a potential difficulty arising from these
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Figure 5.7 Three random series

linearly declining serial correlations: ‘if the lines are continued downwards, they
will lead to negative and then to impossible values of the correlation’ (ibid., page
60). He responded to this by emphasizing that

we can only obtain such series as those in [Table 5.8] if the serial correlations
are determined from a finite series, and for a finite series [�2rx(k + 1) = 0] will
be only approximately true for moderate values of k and will cease to be valid
for large values.’ (ibid., page 60; italics in original)

Yule next considered the case when the differences are correlated such
that 1rx(k) is a linear function of k. This can be expressed as 1rx(k) = 1 − αk
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Figure 5.8 Three series with random differences (conjunct series with random
differences)

Table 5.8 Comparison of serial correlations for three series with random differences, with
fitted arithmetical progressions

Series A1 Series B1 Series C1

Observed Calculated Observed Calculated Observed Calculated
correlation correlation correlation correlation correlation correlation

1 0.975 0.978 0.909 0.920 0.954 0.967
2 0.953 0.956 0.835 0.840 0.920 0.935
3 0.935 0.934 0.766 0.760 0.894 0.902
4 0.916 0.912 0.691 0.679 0.864 0.870
5 0.897 0.890 0.594 0.599 0.834 0.837
6 0.876 0.868 0.515 0.519 0.801 0.805
7 0.853 0.846 0.458 0.439 0.780 0.772
8 0.826 0.824 0.366 0.360 0.747 0.740
9 0.796 0.802 0.268 0.279 0.720 0.707
10 0.764 0.780 0.191 0.199 0.697 0.675

since 1rx(0) = 1. From (5.4) we then have

�2rx(k + 1) = −2(1 − rx(1))(1 − αk)

and, since their second differences are a linear function of k, the serial
correlations rx(k) must be generated by a cubic in k:

rx(k) = 1 + bk + ck2 + dk3
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Figure 5.9 Serial correlations up to r(10) for three experimental series (of 100 terms) with
random differences

This implies that

�2rx(k + 1) = 2(c + 3dk)

and, on equating coefficients, we have

c = −(1 − rx(1)) d = 1
3α(1 − rx(1)) b = −d = − 1

3α(1 − rx(1))

Defining m = 1 − rx(1), we can thus write the cubic as

rx(k) = 1 − mk2 + 1
3αmk(k2 − 1) (5.5)

Again determining m by making the sum of the calculated correlations equal to
the sum of the observed correlations yields the general equation

k∑

j=1

rx( j) = k − m̂
{ 1

6 k(k + 1)(2k + 1) + 1
6αk(k + 1) − 1

12 αk2(k + 1)2
}

(5.6)
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Figure 5.10 Three series with positively correlated differences (conjunct series with
conjunct differences)

To utilize this result, Yule constructed a series with correlated differences by
taking the random series ut and cumulating 11-period moving sums, i.e., by
calculating

st =
t∑

j=t−10

uj, xt =
t∑

j=11

sj = ut + 2ut−1 + · · · + 2ut−10 + ut−11, t = 11, . . . , T

It is thus straightforward to show that

1rx(k) = rs(k) =
{

1 − (k/11) for k = 1, . . . , 10
0 for k ≥ 11

Thus, setting α = 1
11 and k = 10 reduces (5.6) to

295m̂ = 10 −
k∑

j=1

rx( j)

The series so generated, A2, B2 and C2, are shown in Figure 5.10, with their
observed serial correlations and the serial correlations calculated from the cubic
in k reported in Table 5.9 and plotted in Figure 5.11. The cubic fit is fairly accurate
for A2 and B2, but is rather poor for series C2, for which the serial correlations
appear to decline linearly rather than as a cubic. Again, the serial correlations
differ considerably from series to series.
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Table 5.9 Comparison of serial correlations for three series with correlated differences,
with fitted cubic series

Series A1 Series B1 Series C1

Observed Calculated Observed Calculated Observed Calculated
correlation correlation correlation correlation correlation correlation

1 0.984 0.995 0.989 0.990 0.973 0.995
2 0.965 0.983 0.960 0.963 0.946 0.980
3 0.944 0.962 0.916 0.921 0.919 0.956
4 0.919 0.936 0.858 0.864 0.891 0.925
5 0.892 0.903 0.789 0.795 0.862 0.887
6 0.862 0.866 0.711 0.716 0.831 0.843
7 0.829 0.824 0.625 0.628 0.801 0.794
8 0.793 0.779 0.534 0.533 0.770 0.742
9 0.756 0.732 0.441 0.432 0.738 0.686
10 0.718 0.683 0.348 0.329 0.706 0.629
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Figure 5.11 Serial correlations up to r(10) for three experimental series (of 100 terms)
with positively correlated (conjunct) differences
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Finally, Yule briefly considered the case when the second differences of a series
were random, so that the series is the ‘second sum’ of a random series, i.e.,

st =
t∑

j=1

uj, xt =
t∑

j=1

sj = tut + (t − 1)ut−1 + · · · + u1, t = 1, . . . , T

In this case the first differences of xt are the sum of a random series and therefore
the serial correlations of �xt are given by �2

1rx(k + 1) = 0, or

1rx(k) = k1rx(1) − (k − 1) = 1 − k(1 − 1rx(1)) = 1 − αk

with α = 1 − 1rx(1). Thus, the rx(k) are given by (5.5) and the analysis is identical
to that above.

5.7 This analysis led Yule to classify time series into the following categories
based on the nature of their serial correlations:

Random series: Series for which all serial correlations are zero.

Conjunct series: Series for which all serial correlations are positive. With finite
series, r(k) may well decrease with k and become negative at some point, in
which case the series is said to be ‘conjunct up to r(k)’.

Disjunct series: Series for which the serial correlations are all negative. Although
Yule (ibid., pages 62–3) provided a setup that would generate such a series, the
conditions under which this might occur are extremely stringent. However, a
series that is ‘disjunct up to r(1)’ is simply obtained by taking first differences of
a random series, for which r(1) = −0.5 and all higher serial correlations are zero
(see §4.12).

Oscillatory series: Series for which the serial correlations change sign, alternating
between runs of positive and negative values.

Yule regarded these classifications as building blocks: ‘clearly in the endless
variety presented by facts we may expect to meet with compound series of any
type, e.g., conjunct series with an oscillatory series superposed’ (ibid., page 26).
Nevertheless, his focus continued to be on the three types of series analysed
in §5.5: (a) random series, (b) conjunct series having random differences; and (c)
conjunct series having differences which are themselves conjunct. In terms of these
three types, the random series A0, B0 and C0 shown in Figure 5.7 display ‘no
secular trend, and the whole movement is highly irregular. The graphs are not, to
the eye at least, very unlike graphs of some annual averages in meteorological
data’ (ibid., page 26). Figure 5.8 shows A1, B1 and C1, conjunct series having
random differences: ‘we now get a marked ‘secular movement,’ with irregular
oscillations superposed on it’ (ibid., page 26). Figure 5.10 shows A2, B2 and C2,
conjunct series with conjunct differences: ‘the curves are smoothed out, the
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Figure 5.12 Frequency distribution of 600 correlations between samples of 10 observa-
tions from random series
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Figure 5.13 Frequency distribution of 600 correlations between samples of 10 observa-
tions from conjunct series with random differences

secular movements or long waves are conspicuous, but there are no evident
oscillations of short duration’ (ibid., page 26).

5.8 Having considered the various ‘internal’ properties of the different types of
time series, Yule then turned his attention to his primary aim, that of analysing
the correlations between pairs of series drawn from each of the types. Using sam-
ples of size 10, he correlated 600 pairs of random series, 600 pairs of conjunct
series with random differences, and 600 pairs of conjunct series with conjunct
differences. These series were generated using the sampling procedure of §5.4.
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Figure 5.14 Frequency distribution of 600 correlations between samples of 10 observa-
tions from conjunct series with conjunct differences

We again recreate Yule’s calculations and show in Figures 5.12–5.14 the fre-
quency distributions of the correlations between pairs drawn from the three
types of series. The three distributions are quite distinct, being approximately
normal, uniform and U-shaped, respectively. The distribution of correlations
between random series (Figure 5.12) matches theory: ‘the distribution . . . should
be symmetrical about zero, and . . . should approximate the normal form with
the mode at zero’ (ibid., page 31). With regard to

the two simple types of conjunct series, those with random differences and
those with conjunct differences respectively, correlations between samples
of the first type are subject to a much higher standard error than that given
by the usual formula [1/

√
10 = 0.3162], but do not tend definitely to mislead

[Figure 5.13]; correlations between samples of the second type tend definitely
to be ‘nonsense-correlations’ – correlations approaching plus or minus unity
in value [Figure 5.14]. The tentative answer to the problem of my title is
therefore this: that some time-series are conjunct series with conjunct differ-
ences, and that when we take samples from two such series the distribution
of correlations between them is U-shaped – we tend to get high positive or
high negative correlations between the samples, without any regard to the
true value of the correlation between the series that would be given by long
experience over an indefinitely extended time. (ibid., page 39)

Yule emphasized that conjunct series with random differences (the sum of a
random series with zero mean) would swing above and below the zero base line
but, as the length of the series was increased, would not tend to be correlated
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with time (viz. Figure 5.8). The second sum of a random series, being a conjunct
series with conjunct differences, would display swings above and below the base
line that would be smoother, longer and of greater amplitude, but there would
still be no tendency to be correlated with time as the series length was increased
(viz. Figure 5.10). With this analysis, Yule was making the first tentative steps
towards identifying what are now referred to as stochastic trends (see §16.12).

Interestingly, Yule ended the theoretical part of his paper with this statement:

I give my answer to the problem as a tentative answer only, for I quite
recognize that the discussion is inadequate and incomplete. The full dis-
cussion of the mathematical problem – given two series, each with specified
serial correlations, required to determine the frequency distribution of cor-
relations between samples of n consecutive observations – I must leave to
more competent hands. It is quite beyond my abilities, but I hope that some
mathematician will take it up. The results that he may obtain may seem to
be of mere theoretical importance, for in general we only have the sample
itself, which may be quite inadequate for obtaining the serial correlations.
But to take such a view would, I think, be short-sighted. The work may not
lead, it is unlikely to lead, to any succinct standard error, or even frequency-
distribution applicable to the particular case. But only such direct attack can,
it seems to me, clear up the general problem; show us what cases are par-
ticularly liable to lead to fallacious conclusions, and in what cases we must
expect a dispersion of the sample-correlations greater than the normal. . . .

If my view is correct, that the series correlations of the difference series are
the really important factor [then] the sample may be a more adequate basis
for the approximate determination of the difference correlations than for the
determination of the serial correlations of the series itself. (ibid., page 40)

The statement is extraordinarily prescient on at least two counts. Examination
of the serial correlations of the difference series underlies the famous Box and
Jenkins (1970) approach to time series model building, to be discussed in Chap-
ter 10, while the mathematical treatment of the nonsense regression problem
had to wait some sixty years before a complete solution was provided by Phillips
(1986): see §16.19.

5.9 Yule then turned his attention to applying these ideas to two time series:
Beveridge’s (1921, 1922) wheat price index and rainfall at Greenwich. We rework
here the first application by using the price index that was subjected to peri-
odogram analysis in §§3.8–3.9. Concentrating, as did Yule, on the 300-year
period from 1545 to 1844, and using the index numbers themselves, rather
than the smoothed Index of Fluctuation, the serial correlations up to k = 40 are
displayed in Figure 5.15.6
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Figure 5.15 Serial correlations up to r(40) for Beveridge’s index numbers of wheat prices
in Western Europe, 1545–1844

The correlations are all positive, as they evidently must be in a series that
sweeps up from values round about 20 or 30 in earlier years to 100, 200 and
over in the later years [recall Figure 3.4]. They fall away at first with some
rapidity to a minimum of [0.67] at r(8); there is then a large broad hummock
in the curve followed by some minor oscillations, and finally, from about
r(25) onwards, the curve tails away comparatively smoothly to [0.30] at r(40).
(ibid., pages 42–43; notation altered for consistency)

Yule’s next step was to compute the serial correlations of various differences of
the index. By a similar reasoning to that of §5.5, the serial correlations of the
h-step differences xt+h − xt , which we denote as rh

x (k) (noting that r1
x (k) ≡ 1rx(k)),

are given by a generalization of (5.4)

rh
x (k) = 2rx(k) − rx(k + h) − rx(k − h)

2(1 − rx(h))

on noting that if k < h, rx(k − h) = rx(h − k). The ‘serial difference correlations’ for
various values of h are plotted in Figure 5.16. Yule then embarked on a detailed
discussion of the oscillations contained in the plots of these serial correlations,
which we summarize thus. The plot of the serial correlations for the first dif-
ferences (h = 1) shows that both the peaks and troughs occur between five and
six years apart, which is thus consistent with Beveridge’s findings of important
periodicities in this interval (see Figure 3.4). These oscillations in the serial cor-
relations would be practically eliminated by setting the differencing interval
to either 5 or 6, thus determining the next two choices for h. The two serial
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Figure 5.16 Serial difference correlations rh(k) for the index numbers of wheat prices in
Western Europe; intervals for differencing h = 1, 5, 6, 11 and 15 years respectively
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correlation plots are almost identical, having pronounced oscillations with a
peak-to-peak period of around 18 years and a trough-to-trough period of about
14 years. Setting h = 11 shows a peak-to-peak period of around 14 years and
trough-to-trough period of 12 years, these again being reasonably consistent
with the earlier periodogram analysis.

Yule’s final choice was h = 15, which produces many minor oscillations in the
serial correlations. Ignoring these, he argued that, since the curve cuts the zero
axis at around 13.5 years, this was consistent with the long cycle of 54 years
found by Beveridge. He concluded that analyses such as this ‘may suffice to
suggest the interesting way in which the serial correlations can be used to bring
out, at least by a rough first analysis, the predominant characteristics of a given
series. In the series in question there can be no doubt about the differences being
oscillatory’ (ibid., page 47).

Yule finally compared the curve for h = 5 with a compound cosine curve con-
structed by taking the predominant periodicities found by Beveridge (see ibid.,
Tables XV and XVI). These are plotted together in Figure 5.17. Although there
is only a rough agreement between the two plots, Yule felt that, given the cir-
cumstances, ‘the agreement is, perhaps, as good as we have any right to expect’
(ibid., page 49).

5.10 Yule concluded his address with the following summary which, since it
encapsulates what are arguably the most important concepts so far introduced
for the foundations of time series analysis, is quoted in detail.
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Figure 5.17 Serial difference correlations for h = 5 (r5(k)) (dots) and a curve constructed
from certain of the periodicities given by Beveridge (dashed line)
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Starting from a question that may have seemed to some silly and unnec-
essary, we were led to investigate the correlations between samples of two
simple mathematical functions of time. It appeared that small samples . . .

of such functions tended to give us correlations departing as far as possi-
ble from the truth, the correlations tending to approach ±1 if the time for
which we had experience was very small compared with the time necessary
to give the true correlation. Asking ourselves, then, what types of statisti-
cal series might be expected to give results analogous to those given by the
mathematical function considered, we were led to a classification of series
by their serial correlations r(1), r(2), r(3), . . . , r(k), r(k) being the correlation
between terms t and t + k. The important matter in classification was the
form of the function relating r(k) to k, which indicated the nature of the
serial correlations between differences of the time series. If this function is
linear, the time-series has random differences; if it gives a graph concave
downwards the difference correlations are positive. We concluded that it was
series of the latter type (positively correlated series with positively correlated
differences, or conjunct series with conjunct differences to use my suggested
term) that formed the dangerous class of series, correlations between short
samples tending towards unity. Experimental investigation completely con-
firmed this suggestion. Samples from conjunct series with random differences
gave a widely dispersed distribution of correlations; samples from conjunct
series with conjunct differences gave a completely U-shaped distribution,
with over one-third of the correlations exceeding ±0.9. (ibid., page 53)

Slutzky and the summation of random causes

5.11 In contrast to Yule, Slutzky focused on inducing serial correlations by
taking moving sums of a random series, as he was particularly interested in
modelling the recurring cycles that were a predominant feature of economies
at the time. He began his paper with this evocative description of the evolution
of economic time series.7

Almost all of the phenomena of economic life, like many other processes,
social, meteorological, and others, occur in sequences of rising and falling
movements, like waves. Just as waves following each other on the sea do
not repeat each other perfectly, so economic cycles never repeat earlier ones
exactly either in duration or in amplitude. Nevertheless, in both cases, it is
almost always possible to detect, even in the multitude of individual pecu-
liarities of the phenomena, marks of certain approximate uniformities and
regularities. The eye of the observer instinctively discovers on waves of a cer-
tain order other smaller waves, so that the idea of harmonic analysis, viz.,
that of the possibility of expressing the irregularities of the form and spacing
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of the waves by means of the summation of regular sinusoidal fluctuations,
presents itself to the mind almost spontaneously. (Slutzky, 1937, page 105)

However, Slutzky was not convinced that harmonic analysis, as discussed in
Chapter 3, was necessarily the appropriate way to model such fluctuations.
Although unsatisfactory aspects of the fit of a periodogram might be explained
by ‘casual’ deviations superposed on regular waves or, if there seemed to be
shifts in the fit across the first and second halves of the sample, by the interfer-
ence of factors that caused the original regularity to be replaced by a new one
of a similar type (recall the shift in the sunspot periodogram identified in §3.7),
Slutzky felt that empirical series were typically too short for such hypotheses to
be either conclusively proved or refuted. Moreover, the typical assumption of
periodogram analysis, that successive terms of a series were independent, was
clearly false, leading him to ask

is it possible that a definite structure of a connection between random fluc-
tuations could form them into a system of more or less regular waves? . . .

What means of explanation . . . would be left to us if we decided to give up
the hypothesis of the superposition of regular waves complicated only by
pure random components? . . . (T)he undulatory character of the processes and
the appropriate regularity of the waves are the two facts for which we shall try
to find a possible source in random causes combining themselves in their
common effect. (ibid., pages 106–7; italics in original)

5.12 Slutzky began to answer this question by defining

two kinds of chance series: (1) those in which the probability of the appear-
ance, in a given place in the series, of a certain value of the variable, depends
on previous or subsequent values of the variable, and (2) those in which
it does not. In this way we distinguish between coherent and incoherent (or
random) series. The terms of the second series are not correlated. In series
in which there is correlation between terms, one of the most important
characteristics is the value of the coefficient of correlation between terms,
considered as a function of the distance between the terms correlated. We
shall call it the correlational function. (ibid., pages 107–8; italics in original)

The similarity with Yule’s analysis is clear, with ‘coherent’ and ‘correlational
function’ being used instead of ‘conjunct’ and ‘serial correlations’. Slutzky then
defined the correlational function more precisely, by limiting

our investigation to those cases in which the distribution of probabil-
ity remains constant. The coefficient of correlation, then, is exclusively
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determined by the distance between the terms and not by their place in
the series. The coefficient of correlation of each member with itself (r(0))
will equal unity, and its coefficient of correlation (r(k)) with the kth member
following will necessarily equal its coefficient (r(−k)) with the kth member
preceding. (ibid., page 108; notation altered to maintain consistency)

Slutzky next introduced the idea that ‘any concrete instance of an experimen-
tally obtained chance series’ should be regarded ‘as a model of empirical processes
which are structurally similar to it’ (ibid., page 108). He then considered coher-
ent series that were derived by moving summations of either another coherent
series or an incoherent series. If the ‘causes’, . . . , xt−2, xt−1, xt , . . . produced the
‘consequences’ . . . , yt−2, yt−1, yt , . . . , so that each consequence was determined
by the influence of a number of preceding causes, then

yt = A0xt + A1xt−1 + · · · + An−1xt−(n−1)

yt−1 = A0xt−1 + · · · + An−2xt−(n−1) + An−1xt−n

. . .

Each consequence yt has one particular cause of its own, xt , and n − 1 causes
in common with yt−1. As the successive consequences possess common causes
there will be a correlation between them even if the sequence of causes is
random. Thus, suppose that the causes are indeed random, so that (cf. §4.1)

E(xt ) = 0 E(x2
t ) = σ2

x E(xtxs) = 0, t 	= s

and that the consequences are given by

yt =
n−1∑

i=0

Aixt−i (5.7)

It therefore follows that

E(yt ) = 0

E(y2
t ) = σ2

y = σ2
x

n−1∑

i=0

A2
i

E(ytyt+k) = σ2
x

(n−1)−k∑

i=0

AiAi+k
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Since these expectations do not depend on t, the serial correlation ry(k) is also
independent of t:

ry(k) =
∑(n−1)−k

i=0
AiAi+k

∑n−1

i=0
A2

i

(5.8)

from which it immediately follows that

ry(0) = 1 ry(k) = ry(−k) ry(k) = 0, k ≥ n

When all the weights are equal (A0 = A1 = · · · = An−1), so that (5.7) defines simple
moving summation, the serial correlation coefficients will be given by

r(0) = 1, r(1) = r(−1) = n − 1
n

, . . . , r(n − 1) = r(−(n − 1)) = 1
n

(5.9)

with r(k) = r(−k) = 0 for k ≥ n.8

The process of moving summation may be repeated. Consider an s-fold
moving summation of xt . This will produce, successively,

x(1)
t =

n−1∑

i=0

a(1)
i xt−i; x(2)

t =
n−1∑

i=0

a(2)
i x(2)

t−i; . . .

yt = x(s)
t =

n−1∑

i=0

a(s−1)
i x(s−1)

t−i =
s(n−1)∑

i=0

A(s)
i xt−i (5.10)

which is clearly of the form (5.7).

5.13 Slutzky used various derived series in his empirical work, each based on
the final digits of lottery numbers.9 Since they are effectively all derived from
uniformally distributed random variables, we use here for our recreation of
Slutzky’s simulations a series of length 1,000 drawn from the integers 0, 1, . . . , 9,
a short segment of this ‘basic’ series xt being shown in Figure 5.18. Setting
n = 10, Ai = 1 for 0 ≤ i ≤ 9 and Ai = 0 for i ≥ 10 in (5.7) yields the yt series, termed
Model I, shown in Figure 5.19. Model II is obtained by repeating this moving
summation on yt itself (so that ‘in turn, the consequences become causes’), this
being shown in Figure 5.20.

Model III is derived by using a moving sum whose weights are defined in the
following way:

Ai = 104exp
( 1

2 (0.1(i − 47)2)/
√

2π
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Figure 5.18 The first 100 terms from the basic series
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Figure 5.19 Model I constructed from the first 1,000 terms of the basic series

i.e., the weights trace out a scaled Gaussian curve. This series is shown in
Figure 5.21. Finally, Model IVa is derived by taking a moving summation of
order two 12 times in succession (i.e., n = 2, s = 12 in (5.10)), which is easily
shown to imply that

A(12)
i = 12Ci i = 0, 1, . . . , 12, Ai = 0 i > 12

Models IVb and IVc are then obtained as the first and second differences of
Model IVa. All three series are shown in Figure 5.22.
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Figure 5.20 Model II constructed from the first 1,000 terms of the basic series
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Figure 5.21 Model III constructed from the first 1,000 terms of the basic series

5.14 The serial correlations of the various series can be obtained using (5.8).
For Model I, putting n = 10 into (5.9) gives, for yI ,t = ∑10

i=0 xt−i,

rI (k) =
{

1 − (k/10) 0 ≤ k ≤ 9
0 k ≥ 10
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Figure 5.22 The first 100 terms of Models IVa, IVb and IVc

Using (5.10), Model II is given by yII ,t = ∑18
i=0 A(2)

i xt−i, where

A(2)
i =

{
i + 1 0 ≤ i ≤ 9
19 − i 10 ≤ i ≤ 18

For Model IVa, inserting A(12)
i = 12Ci into (5.9) and noting that, from §4.3 (and

by obvious extension),

12∑

i=0

12C2
i = 24C12

12∑

i=0

(12Ci)(12Ci+k) = 24C12−k

yields

rIVa(k) = 24C12−k

24C12
= 12! 12!

(12 − k)!(12 + k)! = 12.11 . . . (12 − (k − 1))
13.14 . . . (12 + k)
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Models IVb and IVc are given by, respectively,

yIVb,t = �yIVa,t =
12∑

i=0

(12Ci)�xt−i

and

yIVc,t = �yIVb,t = �2yIVa,t =
12∑

i=0

(12Ci)�2xt−i

By extending the results given in §4.12 and using those of Anderson (1923),
Slutzky (ibid., pages 141–2) showed that the serial correlations of these two
series were given by

rIVb(k) = 1rIVa(k) = �2rIVa(k − 1)
�2rIVa(−1)

rIVc(k) = 2rIVa(k) = �4rIVa(k − 2)
�4rIVa(−2)

(5.11)

Finally, Slutzky (ibid., page 139) showed, by an argument too tangential to
the theme being developed here to be discussed in any detail, that the serial
correlations of Model III can be approximated by

rIII (k) = exp (−k2/400)

The serial correlations of the various models are plotted in Figure 5.23. Slutzky
went on to show that the ‘correlational function’ – the set of serial correlations
as a function of the lag k – of a derived series could either be approximated by
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Figure 5.23 Serial correlations of Models I–IVc
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a Gaussian curve (Models II–IVa) or, if the series was obtained by dth differenc-
ing, by the 2dth differences of the ordinates of the Gaussian curve (Models IVa
and IVb).

5.15 Slutzky used the serial correlation structure of the derived series shown
in Figure 5.23 to argue that these models ‘give an inductive proof of our first
thesis, namely, that the summation of random causes may be the source of cyclic, or
undulatory processes’ (ibid., page 114; italics in original). He went on:

If a variable . . . happens to remain above (or below) its general level, then in
that interval it will have a temporary level about which it will almost certainly
oscillate. Thus on the waves of one order there appear superimposed waves
of another order.

The unconnected random waves are usually called irregular zigzags. A
correlation between the items of a series deprives the waves of this char-
acteristic and introduces into their rising and falling movements an element
of graduality. (ibid., page 116; italics in original)

We can see this property operating in the series of Model I, shown in Figure 5.18,
where there are ‘gradual transitions from the maximum point of a wave to its
minimum and vice versa, since the correlation between neighboring items of
the series makes small differences between them more probable than large ones’
(ibid., page 116). Slutzky makes a distinction between graduality and fluency: ‘we
could speak about the absence of the latter property if a state of things existed
where there would be an equal probability for either a rise or a fall after a rise
as well as after a fall. If fluency were missing we should obtain waves covered
by zigzags such as we find in Model I’ (ibid., page 116). Recall that Model I is
defined as

y1 = x1 + x2 + x3 + · · · + x10,

y2 = x2 + x3 + · · · + x10 + x11,

y3 = x3 + · · · + x10 + x11 + x12,

. . .

so that its first differences are

�y1 = y2 − y1 = x11 − x1,

�y2 = y3 − y2 = x12 − x2,

. . .

Thus we see that adjacent first differences have no causes in common and hence
are uncorrelated. The same will apply to pairs of differences that are further
apart, except for the pairs �y1 = x11 − x1 and �y11 = x21 − x11, etc. The series of
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Table 5.10 Serial correlation coefficients for Models I–III

Model Coefficient of correlation between:

Terms First differences Second differences
ry(1) 1ry(1) 2ry(1)

I 0.9 0 −0.5
II 0.985 0.85 0
III 0.9975 0.9925 0.9876

differences will be almost incoherent (uncorrelated) and hence the waves of y
will be ‘covered by chaotically irregular zigzags’ (by extension of the result in
§4.12, 1ry(10) = − 1

2 with all other 1ry(k) equal to zero).
If adjacent differences are positively correlated then a rise will tend to be

followed by further rises and a fall by further falls, so that

a steep rise will have the tendency to continue with the same steepness, a
moderate one with the same moderateness. So small sections of a wave will
tend to be straight lines; and the greater the coefficient of correlation between
adjacent differences the closer the sections approximate straight lines. (ibid.,
pages 116–17)

Serial correlations between second differences play an analogous role. The
higher the correlation the less variable will be the second differences, so that
a series with roughly constant second differences will tend to approximate a
second-degree parabola. In Table 5.10 are shown ry(1), 1ry(1) and 2ry(1) for
Models I, II and III, the latter two correlations being computed using (5.10):

As we go from the . . . basic series to Model I and then to Models II and III, we
find progressive changes in their graphic appearance (see Figures [5.19, 5.20
and 5.21] respectively). These changes are produced at first by the introduc-
tion and then by the growth of graduality and of fluency in the movements of
the respective chance waves. The growth of the degree of correlation between
items (or between their differences) as we go from the . . . basic series to
Model I, etc. . . . corresponds to changes in the graphic appearance of our
series. (ibid., page 117)

5.16 These results were taken by Slutzky as evidence that his first thesis, that
of ‘inducing undulatory processes of a more or less fluent character as the result
of the summation of random causes’, may be regarded as being ‘practically
proved’. He wanted, however, to go further and to demonstrate that the waves
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of the derived process have an approximate regularity. To do this he re-examined
Model II, shown in Figure 5.20, describing its evolution thus:

In many places there are, apparently, large waves with massive outlines as well
as smaller waves lying, as it were, over them; sometimes these are detached
from them, sometimes they are almost completely merged into them. (ibid.,
page 120)

This led Slutzky to suggest that, across the set of models being considered,

(a) careful examination of graphs of our models will disclose . . . a num-
ber of places where the approximate equality of the length of the waves is
readily apparent. If we had a much shorter series, such as series offered by
the ordinary statistics of economic life with its small number of waves, we
should be tempted to consider the sequence as strictly periodic, that is, as composed
of a few regular harmonic fluctuations complicated by some insignificant casual
fluctuations. (ibid., page 120; italics added for emphasis)

By fitting sums of sinusoids to Models II and III, and observing how different
sub-periods of the series were approximated by sinusoids of the same type but
with different parameters, Slutzky arrived at the following tentative hypothesis.

The summation of random causes generates a cyclical series which tends to imi-
tate for a number of cycles a harmonic series of a relatively small number of sine
curves. After a more or less considerable number of periods every regime becomes
disarranged, the transition to another regime occurring sometimes rather gradually,
sometimes more or less abruptly, around certain critical points.

In addition to the tendencies towards graduality and fluency (that is
towards linear and parabolic forms for small sections) we find a third ten-
dency, namely, the tendency toward a sinusoidal form. (ibid., pages 123–4;
italics in original)

To investigate this tendency, consider the simple harmonic function of §5.2:

xt = sin
(

2π
t + α

n

)

from which it follows that

�2xt = −4 sin2 π
1
n

xt+1 = −θxt+1 (5.12)
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The proof of this fundamental result uses standard trigonometric identities. If
we define

A = 2π
t + α + 1

n
B = 2π

1
n

then

�2xt = xt+2 − 2xt+1 + xt = sin (A + B) − 2 sin A + sin (A − B)

= 2 sin A cos B − 2 sin A

= 2 sin A(1 − 2 sin2(B/2)) − 2 sin A

= −4 sin2 B sin A = −θxt+1

on using, first, the addition theorem sin (A ± B) = sin A cos B ± cos A sin B;
second, the double-angle formula cos B = 1 − 2 sin2 (B/2); and, finally, setting
θ = 4 sin2(2π/n).

If there is a high correlation between �2xt and xt+1 then (5.12) will be approx-
imately true and there will exist a tendency towards a sinusoidal form in the
series: the closer this correlation is to −1, the more pronounced will this ten-
dency be. In fact, what will happen is that the sinusoidal form will appear as a
sequence of ‘regimes’ which disrupt gradually depending on the size of the cor-
relation: the accumulation of deviations will necessarily destroy every regime
but will then create a new regime having different parameters, so that a coher-
ent series is patched together out of a number of sinusoids whose parameters
vary in an unpredictable way. By extending (5.11) the correlation between �2xt

and xt+1 may be denoted as

1
2rx(1) = �2rx(−1)

√
�4rx(−2)

The correlations for Models I-IVa are, respectively, 1
2rI (1) = −0.316, 1

2rII (1) =
−0.315, 1

2rIII (1) = −0.578 and 1
2rIVa(1) = −0.599, none of which are particularly

close to −1. (Note that a tendency towards either a linear or a parabolic form
cannot appear in a long section of a coherent series because this would dis-
rupt its cyclic character.) Of course, (5.12) holds only for a single sinusoid and
cannot be applied to a sum of sinusoids having different periods, which is the
traditional setup of periodogram analysis (see §§3.1–3.5).

These informal ideas were expressed more precisely in Slutzky’s Theorem A
(ibid., page 130: proof given on pages 142–4), which he termed the Law of the
Sinusoidal Limit. This considered a series yt with the following properties:

E(yt ) = 0, E(y2
t ) = σ2

y = f (n)
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E(ytyt+k)
E(y2

t )
= ry(k) = φ(k, n)

where n is a parameter related to the series as a whole and f (n) and φ(k, n) are
independent of k. If ry(1) and 1

2ry(1) satisfy the conditions

|ry(1)| ≤ c < 1 lim 1
2ry(1) = −1

as n → ∞, then: (1) for arbitrarily small ε and η and for s arbitrarily large, there
will exist a number, n0, such that, for every n > n0, the probability that the
absolute deviations of a sequence of observations yτ , yτ+1, . . . , yτ+s from a certain
sinusoid will not exceed εσ will be greater than 1 − η; (2) the period of this
sinusoid will be determined by the equation cos (2/L) = ry(1); (3) the number
of periods in the interval (τ, τ + s) will be arbitrarily large provided s and n are
taken large enough.

The practical usefulness of this theorem was provided by Theorem B, also
proved in (ibid., page 144–5). If xt is a random series from which are derived

x(1)
t = xt + xt−1, x(2)

t = x(1)
t + x(1)

t−1, . . . , x(n)
t = x(n−1)

t + x(n−1)
t−1

and

yt = �mx(n)
t

then yt will tend to obey the law of the sinusoidal limit provided m and n increase
indefinitely and the ratio m/n is constant.

Both propositions can be generalized to the case of a series coinciding with
the sum of a number of sinusoids, but the practical coincidence does not extend
to the series as a whole, for the respective sinusoids of closest fit differ across
intervals. This is plainly the case for the series in Theorem B, since, in the limit,
yt and yt+k will be independent of each other as soon as k > m + n + 1, so that the
phases and amplitudes of the sinusoids practically coincident with the partial
series yt , yt+1, . . . , yt+s and yt+k+s, yt+k+s+1, . . . , yt+k+2s, respectively, will also be
independent of each other provided k > m + n + 1. Slutzky thus felt entitled to
conclude that

the chance functions of the type just considered appearing on the one
end of the scale, and the random functions on the other, there evidently
must exist all possible intermediate gradations between these extremes.
The ability of the coherent chance series to simulate the periodic, or the
nearly periodic, functions, seems thus to be definitely demonstrated. (ibid.,
page 132)
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5.17 Before the English translation of Slutzky’s paper appeared in Econometrica
in 1937, Kuznets (1929) had provided an introduction, a detailed interpretation,
and an extension of Slutzky’s ideas. In fact, economists had already become
familiar with the consequences of cumulation, as shown by the extended, and
extremely apposite, discussion in Bullock, Persons and Crum (1927, pages 80–4).
Kuznets explained the appearance of cyclical patterns in the cumulation of
a random series in the following way. Although the successive observations
of a purely random series were uncorrelated, the successive observations of a
cumulation or moving average of this random series, because they will con-
tain many identical observations, will necessarily be serially correlated: the
longer the moving average, the higher the serial correlation. Moreover, because
there will typically be clusters of positive and negative values in the random
series, their cumulation will almost certainly impart cyclical fluctuations into
the moving average. This interpretation was directly in accord with Slutzky, but
Kuznets offered a second source of cyclical patterns in a moving average of a
random series: such patterns could be induced by an extremely large value of
the random series. This would be included in several of the observations of the
moving average and so would raise or depress the level of a sequence of obser-
vations, thus inducing cyclical swings. Consequently, Kuznets argued that both
the shape of the distribution underlying the random series and the length of the
moving average would influence the amplitude and period of the cycles so gen-
erated: a skewed, peaked distribution would be the most likely source of clear-cut
cycles.

Thus the cumulation of random shocks could produce cyclical movements,
but Kuznets was wary of making the inverse inference that actually observed
cycles were indeed caused by cumulating random shocks.

It has been shown that the summation of random causes yields cycles, that
certain peculiarities of the distribution of these random causes and of the
averaging process influences the characteristics of the cyclical oscillations
obtained. But can one invert the proposition and say that, therefore, cyclical
oscillations may be conceived primarily as results of summations of random
causes, and that the characteristics of some of these cyclical oscillations can
best be grasped as a result of the underlying random events or of the process
of cumulation?

Such inference, of course, cannot carry with it any certainty, since we
are never certain of all the contingencies of other hypotheses to which the
formations of cycles in economic data may be reduced. But the only way to
establish the significance of the conclusions stated, is to proceed from it as
from a significant but not exclusive hypothesis and to see how it agrees or
disagrees with the other elements of the known universe which are associated
with the cyclical oscillations. (Kuznets, 1929, pages 273–4)
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5.18 Slutzky’s law of the sinusoidal limit was subsequently extended by
Romanovsky (1932, 1933), who showed that it continued to hold when the
length of the summation was increased. He also obtained a necessary and suf-
ficient condition for the limit to be a sum of several sinusoids and also relaxed
the assumption that the original series had to be purely random. Moran (1949)
was later able to shorten the proof of the theorem using newly developed
analytical techniques (see §8.11) and, in Moran (1950), he went on to show
that taking repeated moving averages of random series could result in several
sinusoids whose number and periods depended on the weights of the moving
averages.

Working and random-difference series

5.19 Interestingly, Kuznets ruled out the possibility that, at least economic,
time series could be generated by simple cumulations of all past shocks:

(w)e shall omit the straight cumulation altogether, because it is too far
removed from reality. In economic life, there is no perpetual influence of
an event once occurred on all the subsequent events. Rather, we must con-
ceive of it in the nature of a moving average in the sense that after a certain
time its influence is reduced to zero and the item must be omitted altogether
from the averaging process. (Kuznets, 1929, page 269)

This was not the view of Holbrook Working, however, who observed just a few
years later that

time series commonly possess in many respects the characteristics of series
of cumulated random numbers. The separate items in such time series are
by no means random in character, but the changes between successive items
tend to be largely random. . . . The fact that series commonly used as indexes
of business activity closely resemble series obtainable by cumulating random
numbers has given support to the theory that so called business cycles result
in large degree from cumulative effects of independent random influences
bearing on the business situation – some favourably, some unfavourably.
(Working, 1934, page 11)

Although he attributed this view to Slutzky (1927), Working took the idea
somewhat further, first introducing the term random-difference series to describe
a series obtained by cumulating random numbers, ‘since it is the first differ-
ences of the series and not the items of the series itself which are random’, and
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then contrasting such series with the typical view of an economic time series
promulgated by both economic statisticians and theorists alike:

Economic theory has fallen far short of recognising the full implications of
the resemblance of many economic time series to random-difference series;
and methods of statistical analysis in general use have given these impli-
cations virtually no recognition. Economic theories and the techniques that
have been employed in analysis of time series generally deal in terms of norms
and of deviations therefrom. The norms may be regarded as constants (as is
common in economic theory) or they may be regarded as changing progres-
sively (represented in statistical practice by trend lines). The deviations from
norms or from trends are commonly regarded as having one of three charac-
teristics: (a) that of random deviation, each item independent of all others;
(b) that of cycles, either regular in periodicity and amplitude or irregular,
but in any case with a definite tendency for deviation in one direction to be
followed after an interval by deviation in the other (not by accident but in
consequence of a specific reaction tendency); or (c) some combination of ran-
dom deviations with a cyclical tendency, or with several cyclical tendencies
of differing period and amplitude. (ibid., pages 11–12)

Working thus clearly took ‘standard’ economic practice of the time as lying
firmly within a trend stationary framework (recall the earlier discussion in
§4.11), regarding this practice as being

inappropriate and misleading when applied to cases in which the domi-
nant tendency is for the effects of successive events to be independent and
cumulative. An outstanding characteristic of a series of this type is that its
changes are largely random and unpredictable. Even in a purely random series
(one of random deviations from a norm) in which individual values are
unpredictable, changes are predictable with considerable accuracy . . . In a
series characterised by primarily random changes, however, absolute values
of immediately subsequent items are predictable with an accuracy that for
many purposes may be regarded as very satisfactory, but subsequent changes
are largely unpredictable. (ibid., page 12; italics in original)

What Working was getting at in this quote is the following. Suppose that xt is
the random series of §5.12 and yt = ∑t−1

i=0 xt−i is its cumulation. The correlation
between xt and its immediately subsequent change, �xt = xt+1 − xt , is, using the
notation and results of §5.14–5.16,

0
1rx(0) = (−1)�rx(−1)

√
(−1)�2rx(−1)

= rx(1) − rx(0)
√

(−1)(rx(1) − 2rx(0) − rx(1))
= − 1√

2
= −0.7071
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whereas the correlation between yt and yt+1 is, by using (5.8) with Ai = 1 and
n = t, ry(1) = (t − 1)/t ≈ 1 for large t, even though rx(1) = 0. Thus,

in a purely random series (one of random deviations from a norm) conspic-
uous trends will be found. Such ‘trends,’ however, must be regarded merely
as generalized descriptions of the course of the series over a certain period,
not as norms, nor as bases for predicting the future course of the series over
even the briefest subsequent period. (ibid., page 12)

5.20 Although Working thought that few of the time series actually encoun-
tered in practice would have purely random changes, he nevertheless felt that
‘the characteristic of random changes is present in such important degree in
. . . many . . . economic series, as to deserve serious consideration’. His aim was
then to present a long standard random-difference series that was known to pos-
sess ‘those characteristics and those alone’ and to this end presented a series of
length 2,400 that was the cumulation of random normal variates with stan-
dard deviation 10.10 We recreate this simulation in Figure 5.24 where, following
Working, we arrange the data as a weekly series observed over 47 years (1900
to 1946). To give a clearer impression of the course of the entire series than can
be obtained from the separate detailed segments shown in Figure 5.24, we plot
‘annual’ averages, along with ‘mid-year’ values, in Figure 5.25.

Working’s discussion of the uses to which such an ‘experimental’ series could
be put is worth quoting in detail, as it predates many of the subsequent discus-
sions of the behaviour of what is nowadays referred to as an integrated process
of order one (see §10.18).

An important application of the random-difference series here presented will
be found in visual comparisons with actual time series, and probably in com-
parisons of appropriate statistical constants derived from the experimental
random-difference series and from the actual series, as an aid in ascertaining
whether and to what extent the actual series shows the characteristics of a
cumulation of random changes. . . . It will be apparent from brief study of the
curves in [Figure 5.24] that an essentially random-difference series of only
200–300 items [for example, an individual segment in Figure 5.24], which
would be regarded as a very long annual series or a fairly long monthly series
in economic statistics, might very easily be taken mistakenly to be a series
dominated by a true irregular cycle with superimposed random fluctuations.

In the actual statistical analysis of time series found to have important or
dominant random-difference characteristics, a number of applications of the
accompanying ‘experimental time series’ readily suggest themselves. Some
students of stock and commodity prices attribute great forecasting signifi-
cance to certain ‘formations’ that appear more or less conspicuously in the
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Figure 5.25 ‘Annual’ averages and mid-points of random-difference experimental time
series

charted price data – such as ‘resistance and support levels,’ ‘lines,’ and ‘head
and shoulder formations.’ Other students of these prices scoff at such ideas.
Valuable evidence on the probable significance of such ‘formations’ could
be obtained by ascertaining with what relative frequency they are found
in a random-difference series. If they occur as frequently and as clearly in
the random-difference series as in the actual series, it is to be supposed that
they are without forecasting significance, for it is known that changes in a
random-difference series are quite unpredictable. (ibid., page 21)

This discussion of stock and commodity price formations – the foundation of
chartism and technical analysis11 – was returned to later by Kendall (1953) and
Roberts (1959) and is key to understanding the behaviour of financial time series:
see §§11.2–11.3. However, Working’s concluding paragraph, and in particular
the footnote that comes at the very end of his paper, is even more prescient.

Finally it should be noted that the series here presented cannot fulfill all the
requirements that may arise for an experimental random-difference series.
This series represents only one possible type of class, though one chosen
because of its probably superior generality. Other types, with some notably
different features, may be obtained by varying in some systematic fashion the
standard deviation of the population from which the drawings are made.†

I find that to the important extent that wheat prices resemble a random-difference
series, they resemble most closely one that might be derived by cumulating random
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numbers drawn from a slightly skewed population of standard deviation varying
rather systematically through time.
†It may be questioned whether a series so drawn should be regarded as strictly random.
Systematic variation of the standard deviation of the population, its mean being kept
at zero, would introduce no correlations among algebraic values of the numbers drawn,
but would introduce correlations among their values, signs neglected.

(ibid., page 24; italics added for emphasis)

From a modern perspective, Working had clearly hit upon the idea of a mar-
tingale difference having time-varying variances (which may be interpreted as
measuring volatility), so planting the seed that, some half a century later, would
begin to grow dramatically into the Amazonian forests of the autoregressive
conditional heteroskedastic (ARCH) model of Engle (1982) and its myriad gen-
eralizations (see §16.11 and, for example, Gouriéroux, 1997, for a recent and
detailed treatment)!

5.21 These three key papers thus introduced and analysed a number of fun-
damental concepts in the foundations of time series analysis, some of the most
important being: (i) the formalization of the concept of serial correlation; (ii)
the analysis of the conditions under which nonsense correlations between time
series are likely to exist; (iii) the demonstration that cyclical fluctuations may
be induced by summing a sequence of random causes, and that these random
shocks will also lead to the breakdown and subsequent reformation of any cycli-
cal pattern; and (iv) that the cumulation of random observations will produce
a series that exhibits short-term trends and cycles and other familiar patterns
and hence gives the appearance of apparent predictability, even though such
predictability is illusory. These fundamental themes will reappear in both the
theory and practice of time series analysis throughout our development.
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Periodicities in Sunspots and Air
Pressure: Yule, Walker and the
Modelling of Superposed Fluctuations
and Disturbances

Yule, superposed fluctuations and disturbances

6.1 At the same time as he was analysing the nonsense correlation problem,
Yule was also turning his attention back to harmonic motion and, in particular,
to how harmonic motion responds to external shocks. This attention led to yet
another seminal paper in the foundations of time series analysis: Yule (1927).
Yule’s starting point was to take a simple harmonic function of time and to super-
pose upon it a sequence of random errors. If these errors were small, ‘the only
effect is to make the graph somewhat irregular, leaving the suggestion of period-
icity still quite clear to the eye’ (ibid., page 267), and an example of this situation
is shown in Figure 6.1(a). If the errors were increased in size, as in Figure 6.1(b),
‘the graph becomes more irregular, the suggestion of periodicity more obscure,
and we have only sufficiently to increase the “errors” to mask completely any
appearance of periodicity’ (ibid., page 267). Nevertheless, no matter how large
the errors, periodogram analysis would still be applicable and should, given a
sufficient number of observations, continue to provide a close approximation to
both the period and the amplitude of the underlying harmonic function. Yule
referred to this setup as one of superposed fluctuations – ‘fluctuations which do
not in any way disturb the steady course of the underlying periodic function’
(ibid., page 268).

But Yule did not see this set-up as being the most likely hypothesis in most
physical situations, leading him to suggest a delightful thought experiment,
based on the following set-up of a pendulum.

If we observe at short intervals of time the departures of a simple har-
monic pendulum from its position of rest, errors of observation will cause
superposed fluctuations of the kind supposed in [Figure 6.1]. But by improve-
ment of apparatus and automatic methods of recording, let us say, errors of
observation are practically eliminated. (ibid., page 268)

116
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Figure 6.1 Graphs of simple harmonic functions of unit amplitude with superposed
random fluctuations: (a) smaller fluctuations; (b) larger fluctuations

The recording apparatus is then left to itself, but

unfortunately boys get into the room and start pelting the pendulum with
peas, sometimes from one side and sometimes from the other. The motion
is now affected, not by superposed fluctuations but by true disturbances, and
the effect on the graph will be of an entirely different kind. The graph will
remain surprisingly smooth, but amplitude and phase will vary continually.
(ibid., page 268; italics in original)

To illustrate this experiment formally, consider the simple harmonic function
given by

xt = ρ sin 2π
t
n

(6.1)

where (cf. §§3.1–3.5) ρ is the amplitude of the sine wave and n is the period.
Using the result (5.12) proved in §5.15, (6.1) can be written as

�2xt = −4 sin2 π
1
n

= −θxt+1 (6.2)
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where

θ = 4 sin2 π
1
n

= 2
(

1 − cos 2π
1
n

)
= 2 − 2 cos ϑ

on defining ϑ = 2π/n. Equation (6.2) may be written equivalently as

xt+2 = (2 − θ)xt+1 − xt (6.3)

The ‘errors’ produced by the boys pelting the pendulum with peas leads to
the inclusion of an error, εt+2, in (6.3), which we may rewrite in the more
convenient form

xt = (2 − θ)xt−1 − xt−2 + εt (6.4)

Figure 6.2 shows a graph of xt constructed from (6.4) by setting n = 10, so that
θ = 4 sin2 18◦ = 4 × 0.30902 = 0.382 and thus

xt = 1.618xt−1 − xt−2 + εt (6.5)

Following Yule, εt was defined to be 1/20th of the deviation of the sum of four
independent throws of a dice from the expected value of the four throws (which
is 14). This defines a discrete random variable taking the values −0.5(0.05)0.5,
with mean zero and standard deviation 0.1708. Setting x1 = 0 and x2 = sin 36◦ =
0.588, Figure 6.2 shows the simulation of (6.5) for t = 1, . . . , 300, which led Yule
(ibid., page 269) to observe that ‘(i)nspection of the figure shows that there are
now no abrupt variations in the graph, but the amplitude varies within wide
limits, and the phase is continually shifting. Increasing the magnitude of the
disturbances simply increases the amplitude: the graph remains smooth’.

6.2 Why does the simulated series in Figure 6.2 present such a smooth appear-
ance? An undisturbed harmonic function may be regarded as the solution of
the difference equation

�2xt + θxt+1 = 0 (6.6)

If the motion is disturbed, however, we now have, say,

�2xt + θxt+1 = φ(t) (6.7)

where φ(t) is some ‘disturbance function’. Hence we see that (6.6) is the
complementary function of the solution to (6.7) and φ(t) is the particular
integral.
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Figure 6.2 Graph of a disturbed harmonic function, equation (6.5)
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The solution to (6.4), given initial values x1 and x2 and writing k = 2 − θ, is
the following series for t > 2

x3 = kx2 − x1 + ε3

x4 = (k2 − 1)x2 − kx1 + kε3 + ε4

x5 = {k(k2 − 1) − k}x2 − (k2 − 1)x1 + (k2 − 1)ε3 + kε4 + ε5

x6 = {(k(k2 − 1) − k) − (k2 − 1)}x2 − {k(k2 − 1) − k}x1

+ {k(k2 − 1) − k}ε3 + (k2 − 1)ε4 + kε5 + ε6

etc.

The coefficients on the ε terms form the sequence 1, k, k2 − 1, k(k2 − 1) − k, . . .
and hence are related by an equation of the form

Am = kAm−1 − Am−2

where Am is the coefficient on εm, m ≥ t − 3. But this is simply an equation of
the form (6.3), so that the coefficients on the ε’s are therefore the terms of a sine
function having the same period as the complementary function (6.6) and with
initial terms 1 and k: for our simulated series, they take the values +1, +1.6180,
+1.6180, +1, 0, −1, −1.6180, etc.

The first 30 terms of the simulated series, its complementary function and
particular integral, and the disturbances are shown in Table 6.1.

The series tends to be oscillatory, since, if we take adjacent terms, most of
the periodic coefficients of the ε’s are of the same sign, and consequently the
adjacent terms are positively correlated; whereas if we take terms, say, 5 places
apart, the periodic coefficients of the ε’s are of opposite signs, and therefore
the terms are negatively correlated. The series tends to be smooth – i.e., adja-
cent terms highly correlated – since adjacent terms represent simply differ-
ently weighted sums of ε’s, all but one of which are the same. (ibid., page 272)

Yule pointed out (in an addition to the original text) that if the initial conditions
were set as x1 = x2 = 0 then there would be no true harmonic component and
the series would reduce to the particular integral alone, although the graph of
the series would look little different to that shown in Figure 6.2 – ‘the case would
correspond to that of a pendulum initially at rest, but started into movement
by the disturbances’ (ibid., page 272).

The peak-to-peak periods range from 8.24 to 10.83 with an average of 10.03,
while the trough-to-trough periods range from 8.75 to 10.85 with an average of
10.05, the true period being, of course, 10. Considerations of this type led Yule
to conclude that

(i)t is evident that the problem of determining with any precision the period
of the fundamental undisturbed function from the data of such a graph as
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Table 6.1 Decomposition of the first 30 terms of the simulated series used in Fig-
ure 6.2 into complementary function (simple harmonic function) and particular integral
(function of the disturbances alone)

t Observed Complementary Particular Disturbance
xt function integral εt

1 0 0 0 0
2 +0.5878 +0.5878 0 0
3 +0.7014 +0.9511 −0.2497 −0.25
4 +0.4468 +0.9511 −0.5042 −0.10
5 +0.1216 +0.5878 −0.4662 +0.10
6 −0.2501 0 −0.2501 0
7 −0.3262 −0.5878 +0.2616 +0.20
8 −0.2778 −0.9511 +0.6733 0
9 −0.0232 −0.9511 +0.9279 +0.10
10 +0.3902 −0.5878 +0.9780 +0.15
11 +0.6046 0 +0.6046 −0.05
12 +0.4880 +0.5878 −0.0998 −0.10
13 −0.0150 +0.9511 −0.9661 −0.20
14 −0.4623 +0.9511 −1.4134 +0.05
15 −0.8330 +0.5878 −1.4208 −0.10
16 −0.9355 0 −0.9355 −0.05
17 −0.6806 −0.5878 −0.0928 0
18 −0.2158 −0.9511 +0.7353 −0.05
19 +0.3315 −0.9511 +1.2826 0
20 +1.0521 −0.5878 +1.6399 +0.30
21 +1.3709 0 +1.3709 0
22 +1.1659 +0.5878 +0.5781 0
23 +0.2856 +0.9511 −0.6655 −0.25
24 −1.0362 +0.9511 −1.9873 −0.30
25 −1.8422 +0.5878 −2.4300 +0.10
26 −2.0944 0 −2.0944 −0.15
27 −1.3966 −0.5878 −0.8088 +0.15
28 −0.2653 −0.9511 +0.6858 −0.10
29 +0.8674 −0.9511 +1.8185 −0.10
30 +1.7687 −0.5878 +2.3556 +0.10

[Figure 6.2] is a much more difficult one than that of determining the period
when we have only to deal with superposed fluctuations. It is doubtful if any
method can give a result that is not subject to an unpleasantly large margin
of error if our data are available for no more than, say, 10 to 15 periods.
[F]rom mere inspection of [Figure 6.2] it is, I think, clear that [periodogram
analysis] must give results subject to a much larger margin of error than is
usually supposed – results, consequently, which must be interpreted with
the greatest caution, and that if applied to data covering only a few periods
it may easily give results which are apparently absurd or highly paradoxical.
(ibid., page 278)
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6.3 Yule proposed analysing models of the type (6.4) by using least squares
regression. If (6.4) is written

xt = kxt−1 − xt−2 + εt (6.8)

and it is assumed that the disturbances εt have zero mean, the regression of
xt + xt−2 on xt−1 will provide an estimate of k and hence of cos ϑ = k

/
2, from

which estimates of ϑ and the period of the harmonic may be calculated. Yule first
obtained such estimates for the simulated series of Figure 6.2, having split the
series into two halves of length 150. Here we provide estimates for the complete
sample and for the two halves:

Complete sample of 300 terms

xt = 1.62338xt−1 − xt−2

cos ϑ = 0.81169; ϑ = 35.74◦; period = 10.07

First 150 terms

xt = 1.62897xt−1 − xt−2

cos ϑ = 0.81448; ϑ = 35.46◦; period = 10.15

Second 150 terms

xt = 1.62026xt−1 − xt−2

cos ϑ = 0.81013; ϑ = 35.89◦; period = 10.03

The periods thus found are not far from those obtained in §6.2 and the estimates
of k are close to the ‘true’ value of 1.61803. The three regressions give values of
the disturbances which have correlations of +0.998, +0.992 and +0.999 with
the true disturbances: ‘on the whole, I think that the result may be regarded as
reasonably satisfactory’ (ibid., page 275).

6.4 Yule then turned his attention to annual sunspot numbers between 1749
and 1924, an updated series of which was introduced and analysed using peri-
odogram methods in §3.7. Rather than just focusing on the raw numbers, Yule
also constructed a ‘graduated’ series, defined as

x′
t = wt

3
− �2wt−1

9

where wt = xt−1 + xt + xt+1. Some simple algebra shows that x′
t is the weighted

moving average

x′
t = 1

9 (−xt−2 + 4xt−1 + 3xt + 4xt+1 − xt+2)
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The sunspot and the graduated numbers for the years 1700 to 2007 are shown
in the top two panels of Figure 6.3. To Yule

the upper curve in [Figure 6.3] . . . suggests quite definitely to my eye that
we have to deal with a graph of the type of [Figure 6.2], not of the type of
[Figure 6.1], at least as regards its principal features. It is true that there are
minor irregularities, which may represent superposed fluctuations, proba-
bly in part of the nature of errors of observation; for the sunspot numbers
can only be taken as more or less approximate ‘index numbers’ to sunspot
activity. But in the main the graph is wonderfully smooth, and its departures
from true periodicity, which have troubled all previous analysts of the data,
are precisely those found in [Figure 6.2] – great variation in amplitude and
continual changes of phase. (ibid., page 273)

It was to reduce the impact of superposed fluctuations that the graduated series
was constructed and this aspect is discussed further below.

As both the sunspot and graduated numbers have positive means, being neces-
sarily non-negative, a constant was included in the regression (6.8). Estimation
over both the extended sample period 1700 to 2007 and the period available to
Yule gave the following results (the first two observations in each period are lost
due to the construction of xt−1 and xt−2):

Sunspot Numbers, 1749–1924

s.d. of whole series = 34.75

xt = 1.61979xt−1 − xt−2 + 17.06

cos ϑ = 0.80989; ϑ = 35.91◦; period = 10.02

s.d. of disturbances = 17.08

Sunspot Numbers, 1700–2007

s.d. of whole series = 40.43

xt = 1.64572xt−1 − xt−2 + 17.74

cos ϑ = 0.82286; ϑ = 34.63◦; period = 10.40

s.d. of disturbances = 18.13

The regression for the shorter sample period available to Yule recovers his esti-
mates quite closely. The results for the extended sample show that the estimate
of the period has increased by almost 0.4 of a year and the variability of the series
has also increased somewhat. The disturbances estimated from the extended
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Figure 6.3 Graphs of the sunspots and graduated numbers, and of the disturbances given
by equation (6.7): the lines on the disturbance graphs show quinquennial averages
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sample regression are plotted in the third panel of Figure 6.3 with a quinquennial
moving average superimposed. Focusing on the sample from 1749 to 1924, Yule
described their behaviour thus.

It will be seen that the disturbances are very variable, running up to over
±50 points. But the course of affairs is rather curious. From 1751 to 1792,
or thereabouts, the disturbances are mainly positive and highly erratic; from
1793 to 1834 or thereabouts, when the sunspot curve was depressed, they
are mainly negative and very much less scattered; from 1835 to 1875, or
thereabouts, they are again mainly positive and highly erratic; and finally,
from 1876 to 1915, or thereabouts, once more mainly negative and much
less erratic. It looks as if the ‘disturbance function’ had itself a period of
somewhere about 80 to 84 years, alternate intervals of 40 to 42 years being
highly disturbed and relatively quiet. (ibid., pages 275–6)

The additional observations now available serve only to confirm Yule’s impres-
sions. The disturbances in the first half of the eighteenth century were pre-
dominantly negative and not particularly erratic. The final interval isolated by
Yule probably continued until the late 1930s, whereupon there was again an
extended sequence of generally positive and highly erratic disturbances.

One problem that exercised Yule was that the estimated period for the shorter
sample, here 10.02 years, was too low compared to the usual estimates of some-
what over 11 years. In Yule’s opinion ‘this was probably due to the presence of
superposed fluctuations: as already noted, the graph of sunspot numbers sug-
gests the presence of minor irregularities due to this cause’ (ibid., page 273),
leading him to the view that

if such fluctuations are present, our two variables xt + xt−2 and xt−1 are, as
it were, affected by errors of observation, which would have the effect of
reducing the correlation and also the regression [coefficient]. Reducing the
regression [coefficient] means reducing the value of cos ϑ – that is, increasing
ϑ or reducing the apparent period. (ibid., page 276)

Yule therefore re-estimated the regressions using the graduated data. Doing that
here obtains the following results.

Graduated Sunspot Numbers, 1753–1920

s.d. of whole series = 34.10

x′
t = 1.68431x′

t−1 − x′
t−2 + 14.23

cos ϑ = 0.84216; ϑ = 32.63◦; period = 11.03

s.d. of disturbances = 11.50
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Graduated Sunspot Numbers, 1704–2003

s.d. of whole series = 39.46

x′
t = 1.69408x′

t−1 − x′
t−2 + 15.41

cos ϑ = 0.84704; ϑ = 32.11◦; period = 11.21

s.d. of disturbances = 12.19

From the first regression, Yule felt able to conclude that ‘(t)he estimate of the
period is now much closer to that usually given, and I think it may be concluded
that the reason assigned for the low value obtained from the ungraduated num-
bers is correct’ (ibid., page 276). Interestingly, the period obtained from the
extended sample, 11.21, turns out to be identical to the period obtained using
Fourier analysis for the period 1750–1914 by Larmor and Yamaga (1917). The
calculated disturbances are shown as the bottom panel of Figure 6.3: ‘the scatter
is greatly reduced (s.d. of disturbances [12.19] against [18.13]), but the general
course of affairs is very similar to that shown from the graph for the ungraduated
numbers’ (ibid., page 276).

Figure 6.4 shows a scatterplot of xt +xt−2 on xt−1 and its graduated counterpart
and these provide scant indication of any nonlinearity in the relationships. The
proportion of the variance of xt that has been accounted for by xt−1 and xt−2 is
calculated to be 76 per cent for Yule’s sample and 80 per cent for the extended
sample, with the graduated counterpart values being 89 per cent and 90 per cent.

6.5 Yule then extended the model (6.1) to contain two harmonics:

xt = ρ1 sin 2π
t

n1
+ ρ2 sin 2π

t
n2

Writing xt = a + (xt − a), where a is that part of xt due to the first harmonic and
(xt − a) is that part due to the second, (6.2) extends naturally to

�2xt = xt − 2xt+1 + xt+2 = −θ1a − θ2(xt+1 − a)

�4xt = xt − 4xt+1 + 6xt+2 − 4xt+3 − xt+4 = θ2
1a + θ2

2(xt+2 − a)

where

θi = 4 sin2 π

ni
= 2(1 − cos ϑi) i = 1, 2

By eliminating a, this pair of equations can be reduced to (cf. (6.3))

xt+4 = (4 − θ1 − θ2)(xt+3 + xt+1) − (6 − 2θ1 − 2θ2 + θ1θ2)xt+2 − xt
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(a) Sunspot numbers 

(b) Graduated numbers 

Figure 6.4 Scatterplot of xt + xt−2 (horizontal) on xt−1 (vertical)

and, if a disturbance is again appended, we can write (cf. (6.4))

xt = k1(xt−1 + xt−3) − k2xt−2 − xt−4 + εt (6.9)

While questioning the theoretical legitimacy of appending such an error, Yule
thought that it could be justified in practice.

If . . . we nevertheless assume a relation of the form [6.9] and proceed to
determine k1 and k2 by the method of least squares, regarding xt + xt−4,
xt−1 + xt−3 and xt−2 as our three variables, and forming the regression equa-
tion for the first on the last two, can this give us any useful information?
I think it can. The results may afford a certain criterion as between the
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respective conceptions of the curve being affected by superposed fluctua-
tions or by disturbances. If there are no disturbances in the sense in which
the term here is used, the application of the suggested method is perfectly
legitimate, and should bring out any secondary period that exists. To put the
matter in a rather different way: disturbances occurring in every interval imply
an element of unpredictability very rapidly increasing with the time. Super-
posed fluctuations imply an element of unpredictability which is no greater
for several years than for one year. If, then, there is a secondary period in
the data, and we might well expect a period of relatively small amplitude
– if only a sub-multiple of the fundamental period – equation [6.9] should
certainly bring out this period, provided that we have only to do with superposed
fluctuations and not disturbances. (ibid., page 279: italics in original, notation
altered for consistency)

Estimates of the regression (6.9) for the various series and samples were obtained
as follows:

Sunspot Numbers, 1749–1924

xt = 1.15975(xt−1 + xt−3) − 1.016367xt−2 − xt−4 + 31.21

θ1 = 2.56899 cos ϑ1 = −0.284495

ϑ1 = 106.53◦ or 253.47◦ period = 1.42 or 3.38 years

θ2 = 0.27126 cos ϑ1 = 0.86437

ϑ1 = 30.19◦ period = 11.92 years

s.d. of disturbances = 21.97 years

Graduated Sunspot Numbers, 1753–1920

x′
t = 1.67128(x′

t−1 + x′
t−3) − 1.86233x′

t−2 − x′
t−4 + 23.48

θ1 = 2.07867 cos ϑ1 = −0.03933

ϑ1 = 92.25◦ or 267.75◦ period = 1.34 or 3.90 years

θ2 = 0.25005 cos ϑ1 = 0.87498

ϑ1 = 28.96◦ period = 12.43 years

s.d. of disturbances = 17.47 years
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Sunspot Numbers, 1700–2007

xt = 1.16854(xt−1 + xt−3) − 1.01714xt−2 − xt−4 + 34.14

θ1 = 2.56648 cos ϑ1 = −0.28324

ϑ1 = 106.45◦ or 253.55◦ period = 1.42 or 3.38 years

θ2 = 0.26498 cos ϑ1 = 0.86757

ϑ1 = 28.93◦ period = 12.07 years

s.d. of disturbances = 24.09 years

Graduated Sunspot Numbers, 1704–2003

x′
t = 1.69927(x′

t−1 + x′
t−3) − 1.91419x′

t−2 − x′
t−4 + 25.96

θ1 = 2.04908 cos ϑ1 = −0.02454

ϑ1 = 91.41◦ or 268.59◦ period = 1.34 or 3.94 years

θ2 = 0.25165 cos ϑ1 = 0.87418

ϑ1 = 29.05◦ period = 12.39 years

s.d. of disturbances = 19.12 years

Since the values of the θ’s give cos ϑ and not ϑ itself, the value of ϑ is not
strictly determinate; the longer period is naturally taken as approximate to
the fundamental, but the choice of the shorter period is quite uncertain.
So far as the results go then, they at first sight suggest the existence of two
periods, one year or more longer than the value which anyone, on a mere
inspection of the graph, would be inclined to take for the fundamental, and
the other much shorter. On the face of it the result looks odd, and the last
figures given for the ungraduated and graduated numbers respectively show
that it is really of no meaning. The standard deviations found for the disturbances
are . . . larger than when we assumed the existence of a single period only. . . . So
far from having improved matters by the assumption of a second period, we
have made them very appreciably worse: we get a worse and not a better
estimate of xt when xt−3 and xt−4 are brought into account than when we
confine ourselves to xt−1 and xt−2 alone. To put it moderately, there is no
evidence that any secondary period exists. . . . The result also bears out the
assumption that it is disturbances rather than superposed fluctuations which
are the main cause of the irregularity, the element of unpredictability, in the
data. (ibid., page 280)



9780230290181_07_cha06.tex 19/3/2011 13: 11 Page 130

130 The Foundations of Modern Time Series Analysis

Yule explained this result, which might be taken as paradoxical, in a way that
is now familiar to econometricians but which demonstrated his mastery of
contemporary regression analysis:

it is simply due to the fact that we have insisted on the regression equation
being of a particular form, the coefficients of xt−1 and xt−3 being identical,
and the coefficient of xt−4 unity. The result tells us merely that, if we insist
on this, such and such values of the coefficients are the best, but even so
they cannot give as good a result as the equation of form [6.8] with only two
terms on the right. (ibid., page 280)

6.6 As a second approach, Yule considered the ‘ordinary regression equation’

xt = b1xt−1 − b2xt−2 (6.10)

For xt to have a harmonic component, the roots of the equation

z2 − b1z + b2 = 0

must be imaginary. If these roots are α ± iβ and we let

α2 + β2 = b2 = e2λ and tan ϑ = β/α

then the general solution of the difference equation (6.10) is of the form

xt = eλt (A cos ϑt + B sin ϑt) (6.11)

For a real physical phenomenon, λ would be expected to be either negative
(b2 < 1), so that the solution (6.11) would be a damped harmonic vibration, or
zero (b2 = 1), in which case the solution would be simple harmonic vibration.

The regression (6.10), with a disturbance term εt implicitly appended, was
first fitted to the simulated series of Figure 6.2, producing the following results.

Complete sample of 300 terms

xt = 1.6220xt−1 − 0.9983xt−2

Roots: 0.8110 ± 0.5836i

tan ϑ = 0.71959 ϑ = 35.74◦ Period = 10.07 λ = −0.0009

First 150 terms

xt = 1.6253xt−1 − 0.9955xt−2

Roots: 0.8126 ± 0.5789i

tan ϑ = 0.712334 ϑ = 35.46◦ Period = 10.15 λ = −0.0023
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Second 150 terms

xt = 1.601xt−1 − 0.9999xt−2

Roots: 0.8101 ± 0.5863i

tan ϑ = 0.723753 ϑ = 35.89◦ Period = 10.03 λ = −0.0001

The periods are identical to those obtained previously, with the value of λ being
very close to its true value of zero, leading Yule (ibid., page 281) to conclude that
‘the agreement seems quite satisfactory’!

For the various sunspot series and sample periods, the following results are
obtained

Sunspot Numbers, 1749–1924

xt = 1.33597xt−1 − 0.64986xt−2 + 13.94

Roots: 0.66798 ± 0.45128i

tan ϑ = 0.67559 ϑ = 34.04◦ Period = 10.58 λ = −0.21550

s.d. of disturbances = 15.56

Graduated Sunspot Numbers, 1753–1920

x′
t = 1.51975x′

t−1 − 0.80457x′
t−2 + 12.84

Roots: 0.75987 ± 0.47661i

tan ϑ = 0.62723 ϑ = 32.10◦ Period = 11.22 λ = −0.10872

s.d. of disturbances = 10.96

Sunspot Numbers, 1700–2007

xt = 1.39078xt−1 − 0.69026xt−2 + 15.00

Roots: 0.69539 ± 0.45466i

tan ϑ = 0.65382 ϑ = 33.18◦ Period = 10.85 λ = −0.18533

s.d. of disturbances = 16.69

Graduated Sunspot Numbers, 1704–2003

x′
t = 1.55218x′

t−1 − 0.83264x′
t−2 + 14.14

Roots: 0.77609 ± 0.47992i

tan ϑ = 0.61838 ϑ = 31.73◦ Period = 11.35 λ = −0.09158

s.d. of disturbances = 11.69
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Figure 6.5 Graphs of the disturbances given by equation (6.7): the lines on the graphs
show quinquennial averages

For Yule’s sample, the period for the ungraduated sunspot numbers is increased
when compared with the harmonic formula (10.58 to 10.02) although it is still
too low, but that obtained from the graduated numbers (11.22 against 11.03) is
now almost the same as that suggested by Larmor and Yamaga (1917). For the
extended samples, both periods are increased to 10.85 and 11.35, respectively
(against 10.40 and 11.21 from the harmonic formula).

6.7 The two disturbance series for the extended sample period are shown in
Figure 6.5. Yule analysed these in the context of the alternating quiet and dis-
turbed periods of approximately 42 years alluded to in §6.4. Table 6.2 extends
Yule’s periods both backwards and forwards in time to cover the extended sam-
ple now available. As discussed in §6.4, Yule found that there were alternating
periods of 42 years in which the disturbances gave positive and negative mean
values accompanied by high and low standard deviations respectively.
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Table 6.2 Means and standard deviations of disturbances in successive periods of 42 years.
(Y) corresponds to periods investigated by Yule (1927, Table II)

Period Sunspot disturbances Graduated disturbances

Mean St. Dev. Mean St. Dev.

1709–1750 −2.32 12.07 −2.77 8.69
1751–1792 (Y) 2.48 18.91 2.33 11.81
1793–1834 (Y) −7.23 7.41 −6.46 5.87
1835–1876 (Y) 2.55 17.99 2.11 12.62
1877–1918 (Y) −4.35 13.95 −3.78 8.66
1919–1960 4.19 19.22 2.94 14.23
1961–2002 6.77 19.66 6.19 12.69

Figure 6.6 Graph of the square of a damped harmonic vibration, (6.12)

In the extended period covered in Table 6.2, this alternating pattern continues
to be found from the early 1700s up until 1960, but the final period ‘bucks the
trend’, having a positive mean accompanied by a high standard deviation, rather
than a negative mean and a low standard deviation.1,2

6.8 Yule concluded from his examination of these disturbances that a damped
vibration did explain the evolution of the sunspot numbers. However, rather
than being a simple damped vibration, Yule argued that the process generating
the sunspot numbers was more akin to a ‘train’ of squared damped harmonic
vibrations superposed upon each other. The square of a damped harmonic
vibration,

xt = Ae−at (1 − cos ϑt) (6.12)

is shown in Figure 6.6. Figure 6.7 shows a train of such functions, each with
different amplitude A and each starting when the one before reaches its first
minimum. This looks much more like the graph of the sunspot numbers. How-
ever, if (6.12) is regarded as the solution of a difference equation, then it is seen
to imply that there must be a real root, thus giving rise to at least a third order
difference equation. The difference equation (6.10) would then need extending
to include xt−3, in which case it becomes necessary to examine the correlation
between xt and xt−3 and, possibly, between xt and more distant terms.
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Figure 6.7 Graph of a series of superposed functions of the form of Figure 6.6, each one
starting when the one before reaches its first minimum

Yule thus considered the serial correlations of the sunspot numbers up to
lag five, i.e., he computed rx(1), . . . , rx(5) using the notation of §5.3. He then
computed corresponding partial correlations (cf. §2.3), which we may denote
as rx(1), rx(2 · 1), rx(3 · 12), rx(4 · 123) and rx(5 · 1234), where rx(k · 12 . . . (k − 1))
denotes the correlation between xt and xt−k with the intervening lagged values,
xt−1, . . . , xt−k+1, held constant. Although no details are presented, presumably
Yule computed the partial correlations by following the recursive scheme out-
lined in Yule (1907, §§14–16) with the assumption ‘that the correlation between
xt−1 and xt−2 is the same as that between xt and xt−1, and so forth – an assump-
tion which implies corresponding equalities between partial correlations’ (Yule,
1927, pages 286–7). The serial and partial correlations for the extended sample
are shown in Table 6.3. The third column, labeled 1 − r2, uses the partial corre-
lations in its calculation. The fourth column is computed so as to be able to use
the result, taken from Yule (1907, §17), that

1 − R2
1···k = (1 − r2(1))(1 − r2(2 · 1)) · · · (1 − r2(k · 1 . . . (k − 1)))

where R2
1···k is the coefficient of multiple correlation (cf. §2.3). 1 − R2

1···k then
measures the proportionate reduction in the variance of xt induced by taking
into account k lags of xt .

For both the sunspot numbers and their graduations, the original conclusions
of Yule continue to hold.

It will be seen that after the first two terms all the [partial] correlations are
so small that the continued product of (1 − r2) hardly falls at all. . . . It seems
quite clear that . . . it would be an entire waste of time to take into account any
terms more distant from xt then xt−2 for purposes of estimation. As regards
the idea suggested that the difference equation should be of the form required
for such a function as [6.12], it may be noted that rx(3 · 12) is of the wrong
sign: a positive correlation would be required. The correlations give no evi-
dence at all of any periodicity other than the fundamental, nor of any other
exponential function. They strongly emphasise the increase of the element
of predictability with the time. (Yule, 1927, page 288)
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Table 6.3 Serial correlations of the sunspot numbers and the deduced partial correlations
for the extended sample period 1700–2007. In the serial correlations, 1 denotes the cor-
relation between xt and xt−1, i.e., r(1), and so on. In the partial correlations, 2.1 denotes
the correlation between xt and xt−2 with xt−1 constant, i.e., r(2 · 1), and so on

Serial correlations Partial correlations 1 − r2 Continued product of 1 − r2

Sunspot Numbers
1 0.820 1 0.820 0.328 0.328
2 0.450 2.1 −0.677 0.542 0.178
3 0.038 3.12 −0.144 0.979 0.174
4 −0.278 4.123 0.044 0.998 0.174
5 −0.426 5.1234 0.015 0.999 0.174

Graduated Sunspot Numbers
1 0.845 1 0.845 0.286 0.286
2 0.480 2.1 −0.821 0.326 0.093
3 0.050 3.12 0.058 0.997 0.093
4 −0.280 4.123 0.306 0.906 0.084
5 −0.433 5.1234 0.179 0.968 0.082

6.9 After conducting some experiments that use periodogram analysis on ‘dis-
turbed’ harmonic functions, which need not concern us here, Yule concluded
his paper with the following observation:

many series which have been or might be subjected to periodogram analysis
may be subject to ‘disturbance’ in the sense in which the term is here used,
and that this may possibly be the source of some rather odd results which
have been reached. Disturbance will always arise if the value of the variable
is affected by external circumstances and the oscillatory variation with time
is wholly or partly self-determined, owing to the value of the variable at any
time being a function of the immediately preceding values. Disturbance, as it
seems to me, can only be excluded if either (1) the variable is quite unaffected
by external circumstances, or (2) we are dealing with a forced vibration and
the external circumstances producing this forced vibration are themselves
undisturbed. (ibid., pages 295–7)

Walker’s extension of Yule’s model

6.10 While the correct modelling of the impact of disturbances on harmonic
functions had certainly been demonstrated by Yule, of more fundamental
importance to time series analysis was the introduction of the more general
models in which xt was an unrestricted function of lagged values of itself, as in
the ‘ordinary regression’ equation (6.10). The analysis of such models was taken
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further by Walker (1931), who considered the extension of (6.10) to3

xt = g1xt−1 + g2xt−2 + · · · + gpxt−p (6.13)

Multiplying this equation by xt−p−1 and summing over all values of xt from
t = p + 2 to T obtains

T∑

t=p+2

(xtxt−p−1 − g1xt−1xt−p−1 − · · · − gpxt−pxt−p−1) = 0 (6.14)

If it is assumed that T is large, then, with σx being the standard deviation of the
series, (6.14) becomes

σ2
x (rp+1 − g1rp − g2rp−1 − · · · − gpr1) = 0

or

rp−1 = g1rp + g2rp−1 + · · · + gpr1 (6.15)

Note that we now denote the serial correlation rx(k) as rk to maintain consis-
tency of notation. Walker (ibid., page 519; notation altered for consistency) was
thus able to remark that ‘the relationships between the successive x’s and the
successive r’s are, in the limit when T is very large, identical.’

Denoting the roots of

zp − g1zp−1 − · · · − gp = 0

as h1, h2, . . . , hp, the solutions to (6.14) and (6.15) are, respectively,

xt = A1ht
1 + A2ht

2 + · · · + Apht
p (6.16)

and

ri = B1hi
1 + B2hi

2 + · · · + Bphi
p (6.17)

where the As and Bs are constants.

Thus the r’s must have the same periods as the x’s. This is obvious in slightly
damped simple oscillations each occupying say q of the intervals between
the x’s; for then rq+1, rq+2, . . . , r2q will tend to be the same as r1, r2, . . . , rq; the
r’s will thus have a period of q intervals and will be damped if the x’s are
damped. (ibid., page 520)
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6.11 Suppose now that

xt = gxt−1 + εt

where g is a fraction and εt is a zero mean disturbance. This can be written as

xt − xt−1 = −(1 − g)xt−1 + εt

If g is interpreted as the degree of ‘persistence’, then this form is seen to be
equivalent to the ‘damping’ of a mechanical system, the diminution being
proportional to the magnitude of the previous term. Since r0 = 1, it is clear
that B1 = 1, r1 = h1 = g and ri = gi. Denoting the standard deviation of the
disturbances as σε, it is then straightforward to show that

σ2
ε = (1 − r2

1 )σ2
x

In the general case where there are p lags of x

σ2
ε = (1 − g1r1 − g2r2 − · · · − gprp)σ2

x

6.12 Walker then considered the relationship between the serial correlations
and the trigonometric coefficients of a (zero mean) Fourier series of length T =
2J + 1 (cf. §3.2)

xt =
J∑

j=1

Aj cos jωt +
J∑

j=1

Bj sin jωt, t = 1, . . . , T

Walker showed the relationship to be

rk =
J∑

j=1

f 2
j cos jkω

where f 2
j = (A2

j + B2
j )/2σ2

x is the square of the amplitude-ratio introduced in
Walker (1925). Calling the plot of the rk the ‘correlation periodogram’, Walker
(1931, pages 524–5) observed that

if the series forms an accurate cosine curve with a period of T/q or k terms, . . .

the property of amplitude ratios tells us that fq = 1, all the other f ’s vanishing;
and as the series repeats itself completely after k terms we shall have rk = 1.

Thus any period of q terms with an amplitude ratio f will produce as graph
for rk a cosine curve with maxima of fk at k = q, 2q, 3q, . . . , and equal and
opposite minima half-way between.
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Figure 6.8 Port Darwin pressure, 1882–1925 (quarterly)

Accordingly if there are only one or two periods and they are well-marked,
inspection of the correlation periodogram will reveal them; but if there are
three or four periods or they are ill marked, Fourier analysis of the rk curve
will be necessary.

Walker applied these ideas to the air pressure at Port Darwin, which ‘displays
surges of varying amplitude and period with irregularities superposed, suggest-
ing that pressure in this region has a natural period of its own, based presumably
on the physical relationships of world-weather, but that oscillations are mod-
ified by external disturbances’ (ibid., page 525). 177 quarterly pressure values
from 1882 to 1926, shown in Figure 6.8, are analysed here and the periodogram
of the series, covering periods from 9 to 1 1

2 years, is shown in Figure 6.9, panel
(a). The periods having the largest amplitude ratios are 22 (0.24), 13 1

2 (0.29), 11 2
3

(0.29) and 11 (0.24) quarters (f values shown in parentheses). Walker noted that
the probable value of a single f was 0.09 and the probable value of the greatest
of 26 of these (the number calculated here) would be 0.20 if the f values were
independent. However, from the correlation periodogram shown in Figure 6.10,
the correlation between successive quarterly pressures is of the order of 0.76, so
that the series is far from being independent, leading Walker to the view that
we should

naturally interpret the pressure variations in one of two ways. Either (a) the
pressure is like a mechanical system, with persistence but without natural
periods and acted on by a series of disturbances; in this case it is the period-
icity of the disturbances that must be examined. Or (b) the pressure behaves
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Figure 6.9 Periodograms of pressure at Port Darwin: (a) periodogram of observed series;
(b) periodogram when persistent disturbances are allowed for
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like a mechanical system with persistence and natural periods, and then these
periods interest us. (ibid., page 527)

Walker showed that if there were two ‘physical systems’, one in which the suc-
cessive values were independent and another in which persistence produced
a correlation r1 between successive terms, and if the same disturbances were
imposed on the systems, then the ratio of the squares of the amplitude ratios f ′

q

and fq was given by

f 2
q

f ′2
q

= 1 − r2
1

1 − 2r1 cos qω + r2
1

The amplitude ratios f ′ obtained using this relationship are shown in Figure 6.9,
panel (b). Four ratios reach the limit of 0.20 that is expected to be produced by
mere chance and these suggest natural periods of 11 1

3 and 13 1
2 quarters (2.8 and

3.4 years), with a possible third period of 6.1 quarters (1.5 years).

6.13 Walker was far from convinced that these periods were a physical reality
and went on to consider the second explanation, that Port Darwin pressure
has natural periods of its own, maintained by non-periodic disturbances from
outside. After some experimentation with the first 40 serial correlations, he
decided to compute serial correlation coefficients rk from k = 1 to k = 147: these
are shown as line A in Figure 6.10. Walker explained these results thus:

here when k is 20 we have 157 pairs of correlates, but as k grows the number
of correlates diminishes until when k = 147 it is only 30. A glance shows out-
standing oscillations near k = 44, 93 and 137 with three smaller oscillations
between 0 and 44, three between 44 and 93, and two between 93 and 137;
the general downward slope is maintained. The obvious interpretation is that
we have an oscillation with eight periods in 92 quarters, fitting well with the
intermediate maxima; superposed on this there is evidence of a rise up to
maxima near 46, 92 and 137 with minima in between, or of an oscillation
with a period of about 46 quarters. But far from showing damping the oscil-
lations grow with k, and the explanation seems to lie in the contrast between
the number (177 − k) of correlates when k is small and the number when
k exceeds 100. Thus for the last 40 terms the number of values correlated
averages 50, covering 12 1

2 years, and we have the first 12 or 13 years corre-
lated, with different lags, with the last 12 or 13 years; as [Figure 6.8] shows,
each has well-marked waves and it is obvious that there will be relative posi-
tions in which the waves correspond; so there will be big oscillations in rk

on a scale that would not arise if the number of years correlated were longer.
(ibid., pages 530–1)
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To confirm this explanation, Walker recomputed the rk by ‘correlating the first
77 quarters with the groups of 77 quarters which occur 1, 2, 3, . . . , 100 quarters
later; in this way each correlation coefficient is based on 77 pairs of terms’ (ibid.,
page 531). The resulting serial correlations are plotted as curve B in Figure 6.10
and contain the main features of curve A along with the expected reduction
in amplitude due to damping. Walker suggested ignoring serial correlations for
which k exceeds 100 in Figure 6.10 and concluded that the apparent damping
in B was largely due to a greater amplitude in the first half of the data than in
the second.

6.14 Although Yule and Walker were predominantly interested in analysing
the role of disturbances on harmonic functions, with both having real physical
systems in mind, their analysis led to the introduction of a number of funda-
mental results in time series analysis: the concept of partial correlations to go
with serial correlations; the result that there will be similar solutions to the dif-
ference equations generating the observed data and the serial correlations; the
graphical device of a ‘correlation periodogram’; and the introduction of a fun-
damental model – the ‘ordinary regression model’, to use Yule’s rather prosaic
phrase, in which the current value of a series was a linear function of past values
of the series. These had all been developed using intuition and the observation
of actual physical systems. What was now required were formal theoretical foun-
dations on which to place these concepts, and such foundations were not long
in being put into place.
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7
The Formal Modelling of Stationary
Time Series: Wold and the Russians

Moving averages and autoregressions

7.1 Slutzky’s modelling of the ‘summation of random causes’, introduced in
§§5.11–5.16, and the ‘ordinary regression equations’ (6.10) and (6.13) of Yule
and Walker were to become the basic models of time series analysis. One of
the reasons why they have been such enduring features, apart from their obvi-
ous usefulness, may be because of their renaming as moving averages and linear
autoregressions, respectively, by Herman Wold (1938, page 2), as these are terms
that convey their structure with great clarity and effectiveness.1

Wold regarded these two models as lying within the more general scheme
of linear regression, having the common feature that a ‘random element plays a
fundamental, active role’, a feature which ‘constitutes a distinct contrast to the
scheme of hidden periodicities – as we shall call the hypothesis of strict periods –
and makes the schemes of linear regression a priori plausible in several instances
where the scheme of hidden periodicities has been criticized’ (ibid., page 3; italics
in original). Not content with simply introducing new terminology, however,
Wold’s real desire was to provide a formal theory, based on probability concepts,
within which to set these models.

While the schemes of linear regression thus form a type of hypothesis of the
greatest importance, the development of the subject is still little advanced,
both as to the theory and the application of the schemes. For instance, earlier
definitions concerning the scheme of autoregression are incomplete. One of
the chief purposes of the present volume is to give some contributions for
completion in these respects. It also aims at bringing the schemes into place in
the theory of probability, thereby uniting the rather isolated results hitherto
reached.

In the theory of probability, the schemes of linear regression fall under the
heading of the discrete stationary random process as defined by [Khinchin
(1932, 1933)]. (Wold, 1938, page 29)

142
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Stationary random processes

7.2 As is made apparent in the second paragraph of the quote above, the mod-
els intuitively developed by Slutzky, Yule and Walker are all members of the class
of discrete stationary random processes. Such a distinction had not been made
explicitly before Wold and, in this context, it is worth quoting the opening two
paragraphs of his introduction:

Observational series which describe phenomena changing with time may be
roughly classified in two broad categories, viz. evolutive and stationary. In the
former case, different sections of the time series are dissimilar in one or more
respects. For instance, the sectional averages may be distinctly different, or
some other structural property of the series may present variation. In the
analysis of evolutive time series, absolute time plays a fundamental role, e.g.
as the independent variable in a trend function, or as a fixed scale in studying
the development of a phenomenon from an initial state of rest.

Stationary time series are unchanging in respect to their general structure.
The fluctuations up and down in such a series may seem random or show
tendencies to regularity – in any case, the character of the series is, on the
whole, the same in different sections. Or otherwise expressed, in the analysis
of stationary series time is allotted the secondary role of a passive medium.
Even without preparation, observational time series are frequently stationary.
On the other hand, the deviations from trend form a type of derived time
series which is often stationary. (ibid., page 1)

7.3 Wold’s theoretical development of stationary random processes used the
concepts and techniques introduced by the Russian mathematicians Khinchin
(1932, 1933, 1934) and Kolmogorov (1931, 1933).2 In this chapter we introduce
the basic concepts employed by Wold and the fundamental theorems that he
proved to obtain the representations that now form the formal basis of modern
time series analysis. In order to keep the development manageable, however,
no attempt is made to be inclusive and proofs are not provided.

In his formal development, Wold let {t} stand for the set of values taken by
a real parameter, assumed to represent time, and let one random variable ξ(t)
correspond to each time point t in {t}. The corresponding set of random vari-
ables, denoted {ξ(t)}, will then be a random process if the following conditions
are satisfied.

(A) If a subset of {t}, say (t) = (t1, . . . , tn), is arbitrarily chosen, then the variable
ξ(t1, . . . , tn) = [ξ(t1), . . . , ξ(tn)] will be well-defined. Let the distribution function
of ξ(t1, . . . , tn) be denoted by

F(t1, . . . , tn; u1, . . . , un) = P[ξ(t1) ≤ u1, . . . , ξ(tn) ≤ un] (7.1)
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Here the right-hand side of (7.1) denotes the joint probability that
ξ(t1) ≤ u1, . . . , ξ(tn) ≤ un and may be termed the probability function: let the sets
of distribution and probability functions of ξ(t1, . . . , tn) be denoted by {F} and
{P} respectively.

(B) Given (t) = (t1, . . . , tn) and with (i1, . . . , in) being an arbitrary permutation
of the sequence (1, 2, . . . , n), the functions {F} will satisfy the following relations
identically in u1, . . . , un:

F(ti1 , . . . , tin ; ui1 , . . . , uin ) = F(t1, . . . , tn; u1, . . . un) (7.2)

F(t1, . . . , tm; u1, . . . , um) = F(t1, . . . , tn; u1, . . . , um, +∞, . . . , +∞) (7.3)

where m < n. Equations (7.2) and (7.3) imply that the probability laws govern-
ing {ξ(t)} must not contradict themselves and they are thus referred to as the
consistency relations.

This random (or stochastic) process thus extends the notion of a random vari-
able to an infinite number of dimensions. The sample elements of the process
{ξ(t)}, also called the realizations of the process, are functions of t, say ξi(t).
Keeping t fixed at, say, t = t1, the set of sample values ξi(t1) that constitute the
random variable ξ(t1) are obtained. More generally, if we keep t1, . . . , tn fixed,
the realizations will provide the ‘universe’ of sample elements [ξi(t1), . . . , ξi(tn)]
that constitute the n-dimensional random variable [ξ(t1), . . . , ξ(tn)].

To be able to define stationarity, arbitrary translations within the set {t} must
be considered. Assume that {t} consists either of all real values or is formed by
an unbroken sequence of equidistant values, say . . . , −1, 0, 1, 2, . . . . A random
process {ξ(t)} as defined by a set {F} is then termed stationary if, for an arbitrary
subset (t) = (t1, . . . , tn), the relation

F(t1 + t, . . . tn + t; u1, . . . , un) = F(t1, . . . tn; u1, . . . , un)

is identically satisfied in u1, . . . , un and in t. If t is restricted to be a sequence of
equidistant values then {ξ(t)} is called a discrete stationary random process: if t
is arbitrary then the process will be continuous.

7.4 Expectations derived from the distribution functions {F} determining a
stationary process {ξ(t)} are called the characteristics of the process and will be
independent of t, as will be the distribution functions F(t; u): the function of u
so obtained is then the principal distribution function, F(u). Restricting attention
to a one-dimensional stationary process, the mean μ and variance σ2 are then
defined as3

μ = E(ξ) =
∫ ∞

−∞
udF(u) σ2 = E[(ξ − μ)2] =

∫ ∞

−∞
(u − μ)2dF(u)
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If the variance is finite, the automoments of second order, as defined by

ν
(k)
2 = E(ξ(t) · ξ(t + k)) =

∫

R2

uv · du,vF(t, t + k; u, v) = ν
(−k)
2

will also be finite. These characteristics determine the autocorrelation coefficients
of the stationary process {ξ(t)}

rk = rk(ξ) = (ν(k)
2 − μ2)/.σ2 = r−k

If rk(ξ) = 0 for all k �= 0, the process {ξ(t)} is termed non-autocorrelated.
Now consider a set of random processes {ξ(1)(t)}, . . . , {ξ(k)(t)} with an arbi-

trarily chosen set of time points (t) = (t1, . . . , tn) and k sets of real numbers
(u(s)) = (u(s)

1 , . . . , u(s)
n ), s = 1, . . . , k. The processes {ξ(i)(t)} will be called independent

if the following relation is satisfied

P[ξ(1)(t1) ≤ u(1)
1 , . . . , ξ(1)(tn) ≤ u(1)

n ; . . . ; ξ(k)(t1) ≤ u(k)
1 , . . . , ξ(k)(tn) ≤ u(k)

n ]

= P[ξ(1)(t1) ≤ u(1)
1 , . . . , ξ(1)(tn) ≤ u(1)

n ] . . . P[ξ(k)(t1) ≤ u(k)
1 , . . . , ξ(k)(tn) ≤ u(k)

n ]

If it is assumed that the independent processes {ξ(i)(t)} are stationary and have
finite variances σ2(ξ(i)) then the sum process

{ζk(t)} = a1{ξ(1)(t)} + · · · + ak{ξ(k)(t)}

is stationary with expectation, variance and autocorrelation coefficients
given by

E{ζk} = a1E{ξ(1)} + · · · + akE{ξ(k)}

σ2(ζk) = a2
1σ

2(ξ(1)) + · · · + a2
kσ

2(ξ(k)) (7.4)

rp(ζk) = a2
1
σ2(ξ(1))
σ2(ζk)

rp(ξ(1)) + · · · + a2
k
σ2(ξ(k))
σ2(ζk)

rp(ξ(k)) (7.5)

The expressions (7.4) and (7.5) depend on the identities

r(ξ(r)(t ± p) ; ξ(s)(t ± q)) = 0 p ≥ 0, q ≥ 0 (7.6)

where r and s are arbitrary. If (7.6) is satisfied then {ξ(r)} and {ξ(s)} are said to
be uncorrelated. In fact, (7.4) and (7.5) will hold if {ξ(r)} and {ξ(s)} are simply
uncorrelated processes, stationary or otherwise.

Similarly, the moving average process defined by

ζ(t) = a0ξ(t) + a1ξ(t − 1) + · · · + ahξ(t − h) (7.7)
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will also be stationary if ξ(t) is stationary (ibid., page 38).
These operations may also be applied to observed time series, so that,

if . . . , ξt−1, ξt , ξt+1, . . . represents such a series, the counterpart to (7.7), for
example, is

ζt = a0ξt + a1ξt−1 + · · · + ahξt−h

7.5 Wold then utilized the concept of convergence in probability to state his
first theorem. A sequence ξ(1), ξ(2), . . . of random variables is said to converge in
probability to a random variable ξ if, for every ε > 0

P[|ξn − ξ| > ε] → 0

as n → ∞. A sequence of random processes {ξ(1)(t)}, {ξ(2)(t)}, . . . is then called con-
vergent in probability to a limit process {ξ(t)} if, for an arbitrary set (t) = (t1, . . . , tn),
the sequence

ξ(1)(t1, . . . , tn), ξ(2)(t1, . . . , tn), . . .

is convergent in probability to the limit variable ξ(t1, . . . , tn). This allows Wold
(ibid., page 40) to state

Theorem 1.
A necessary and sufficient condition that a sequence {ξ(1)(t)}, {ξ(2)(t)}, . . . of ran-
dom processes be convergent in probability is that, for an arbitrary t, the sequence
ξ(1)(t), ξ(2)(t), . . . be convergent in probability. If the sequence is convergent and if every
process {ξ(n)(t)} is stationary, the limit process will be stationary.

7.6 Suppose ξ = [ξ(1), . . . , ξ[n]] represents an n-dimensional random variable
with distribution function F(u1, . . . , un) and there exists a linear function, say

L[x − μ] = a1(x(1) − μ1) + · · · + an(x(n) − μn)

such that

P[L[ξ − μ] �= 0] = P[a1(ξ(1) − μ1) + · · · + an(ξ(n) − μn) �= 0] = 0

The distribution of ξ is then said to be (linearly) singular and the variables ξ(i) are
said to be connected by the relation L[ξ − μ] = 0. The singularity is of rank h if
there exist only n − h independent relations between the variables ξ(i), say

a1,h+1(ξ(1) − μ1) + · · · + an,h+1(ξ(n) − μn) = 0

a1,n(ξ(1) − μ1) + · · · + an,n(ξ(n) − μn) = 0
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Suppose that the singularity is of the form

ξ(t) − μ + a1(ξ(t − 1) − μ) + · · · + ah(ξ(t − h) − μ) = 0 (7.8)

where h ≤ n. This is known as a stochastical difference relation of order h. Wold
(ibid., page 45) was then able to prove the following result.

Theorem 2.
Let {ξ(t)} be a discrete stationary process with autocorrelation coefficients rk. If {ξ(t)}
is linearly singular then it is a process of superposed harmonics. A necessary condition
that {ξ(t)} be linearly singular, say on account of the relation L[ξ(t) − m] = 0 given by
[7.8], is that rk satisfies the difference equation L[rk] = 0.

On defining the principal correlation determinants

�(r, n) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 r1 r2 . . . rn

r1 1 r1 . . . rn−1

r2 r1 1 . . . rn−2
... · · · · · · · · · ...

rn rn−1 rn−2 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣

≥ 0 (7.9)

Wold (ibid., page 47) could then assert

Theorem 3.
Let {ξ(t)} be a discrete stationary process with principal correlation determinants
�(r, n). A necessary and sufficient condition that {ξ(t)} be singular of rank h is that
�(r, h) be the first vanishing determinant in the sequence �(r, 1), �(r, 2), . . . .

Wold showed that a stationary process with finite variance which satisfies (7.8)
will also satisfy the difference relation

�2sξ(t − s) + h1�
2s−2ξ(t − s + 1) + · · · + hs[ξ(t) − μ] = 0 (7.10)

Types of discrete stationary processes

7.7 A purely random process is a process such that (7.1) has the form

F(t1, . . . , tn; u1, . . . , un) = F(u1) . . . F(un)

On extending the notation to let {ξ(t; F)} denote a purely random process
defined by a distribution function F(u), the following theorem holds (ibid.,
page 48)
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Theorem 4.
Let {ξ(1)(t; F(1))}, {ξ(2)(t; F(2))}, . . . represent independent, purely random processes such
that the infinite convolution F(1) ⊗ F(2) ⊗ · · · is convergent. Then the sum

{ξ(1)(t; F(1))} + {ξ(2)(t; F(2))} + · · ·

will be convergent, and will constitute a purely random process with this convolution
for its principal distribution function.

In Theorem 4, the convolution of two distribution functions F1(u) and F2(u) is
given by

G(u) = F1(u) ⊗ F2(u) =
∫ ∞

−∞
F1(u − x) · dF2(x)

7.8 From §7.4, a stationary process {ξ(t)} will be obtained by taking

ξ(t) = b0η(t) + b1η(t − 1) + · · · + bhη(t − h) (7.11)

Here {η(t)} represents a purely random process and (b) = (b0, b1, . . . , bh) an arbi-
trary sequence of real numbers. Equation (7.11) defines a process of moving
averages with {η(t)} known as the primary process. Usually the identifying
assumption is made that b0 = 1. The principal distribution functions Fξ(u) and
Fη(u) are connected by

Fξ(u) = Fη(u/b0) ⊗ Fη(u/b1) ⊗ · · · ⊗ Fη(u/bh)

and, as long as the variance of {η(t)}, σ2(η), is finite,

σ2(ξ) = (b2
0 + b2

1 + · · · + b2
h)σ2(η)

If it is assumed that E(η) = 0 and, as h → ∞, the real sequence (b) is such that∑∞
k=0 b2

k is convergent, then (7.11) extends to

b0η(t) + b1η(t − 1) + b2η(t − 2) + · · · (7.12)

It follows from the independence of η(t) that the variance of

bnη(t − n) + bn+1η(t − n − 1) + · · · + bn+pη(t − n − p)

is given by

(b2
n + b2

n+1 + · · · + b2
n+p)σ2(η)
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and thus tends to zero uniformally in p as n → ∞. Accordingly, (7.12) is
convergent and, from Theorem 1, the stationary process {ξ(t)} may be defined as

ξ(t) = b0η(t) + b1η(t − 1) + b2η(t − 2) + · · ·

Wold stated that this is the general formula for a process of linear regression.

7.9 Now let (a) = (a1, . . . , ah) be a set of real numbers such that ah �= 0 and for
which the roots of the characteristic equation

zh + a1zh−1 + · · · + ah−1z + ah = 0

all have modulus less than 1. Let (b) = (b1, b2, . . .) be a sequence such that the
difference equation

x(t) + a1x(t − 1) + · · · + ahx(t − h) = 0

is satisfied when xt ≡ bt and where the initial values b1, . . . , bh are solutions of
the following system of linear equations

a1 + b1 = 0
a2 + a1b1 + b2 = 0
...

ah−1 + ah−2b1 + · · · + a1bh−2 + bh−1 = 0
ah + ah−1b1 + · · · + a1bh−1 + bh = 0

(7.13)

The bi are seen to be real and uniquely determined and, if
∑∞

k=1 b2
k is convergent,

a stationary process will be defined by

ξ(t) = η(t) + b1η(t − 1) + b2η(t − 2) + · · · (7.14)

for purely random {η(t)} with finite variance. Since {ξ(t)} is stationary, so also
will be

ζ(t) = ξ(t) + a1ξ(t − 1) + · · · + ahξ(t − h)

Wold (ibid., page 54) then showed that {ζ(t)} and {η(t)} are equivalent, so that

ξ(t) + a1ξ(t − 1) + · · · + ahξ(t − h) = η(t) (7.15)
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which implies that the variables ξ(t), ξ(t − 1), . . . , ξ(t − h) are connected by a
‘relation of linear regression’, with (7.15) then defining a process of (linear)
autoregression.

7.10 A stationary and singular process given by

ξ(t) − ξ(t − h) = 0

is called a periodic process and any sample series will be strictly periodic with
period h. If {ξ(1)(t)}, . . . , {ξ(k)(t)} are independent stationary processes then the
sum {ξ(t)} = {ξ(1)(t)} + · · · + {ξ(k)(t)} will constitute a stationary process. If at least
one of the processes {ξ(i)(t)} is a periodic process, or a process of superposed
harmonics, then {ξ(t)} will be called a process of hidden periodicities.

7.11 Wold (ibid., pages 60–5) termed a variable ξ(t, t − 1, . . .) connected with a
stationary process {ξ(t)} normal if it had the characteristic function

f (Xt , Xt−1, . . .) = exp

⎛

⎝iμ
∞∑

p=0

Xt−p − σ2

2

∞∑

p=0

∞∑

q=0

r|p−q|Xt−pXt−q

⎞

⎠

where μ, σ > 0 and the autocorrelation coefficients rk are real and satisfy (7.9),
i.e., �(r, n) ≥ 0. This characteristic function has the normal distribution for its
principal distribution function.

From Theorem 2, a singular normal process satisfying (7.10) will exist if the
autocorrelation coefficients of any superposed harmonic are such that

n∑

p=0

n∑

q=0

r|p−q|Xt−pXt−q ≥ 0

for any n and for the real sequence (X) = (Xt , Xt−1, Xt−2, . . .).
Wold used this result to show that Slutzky’s Law of the Sinusoidal Limit (as dis-

cussed in §5.16 and extended by another Russian mathematician, Romanovsky,
1932, 1933) may be verified by analogy to the properties of singular normal
processes in that certain sections of stationary processes which, in the limit,
satisfy singularity restrictions, will approximate superposed harmonics with the
sections having the same period but varying amplitudes and phases: see §7.20
for further details.

Autocorrelation coefficients as Fourier constants

7.12 Wold’s next theorem (ibid., page 66) related the autocorrelation coeffi-
cients rk to the Fourier coefficients of a non-decreasing function.
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Theorem 5.
Let rk(k = 0, ±1, ±2, . . . ) be an arbitrary sequence of constants. A necessary and
sufficient condition that there exists a discrete stationary process with the rks for auto-
correlation coefficients is that the rks are the FOURIER coefficients of a non-decreasing
function, say W(x), such that W(0) = 0; W(π) = π,

rk = 1
π

∫ π

0
cos kx · dW(x)

The ‘inversion formula’ which allows W(x) to be uniquely determined by the
autocorrelation coefficients is

W(x) = x + 2
∞∑

k=1

rk

k
sin kx

This formula, called the generating function of the rk, has a structure given by the
following corollary to Theorem 5.

Corollary
Let {ξ(t)} be a stationary process with autocorrelation coefficients rk such that

∑∞
k=1 |rk|

is convergent. Then W(x) will be absolutely continuous and will have a derivative
W ′(x) that is bounded in modulus and given by

W ′(x) =
∞∑

k=−∞
rk cos kx, 0 ≤ x < π

Linear autoregression analysis of the discrete stationary process

7.13 Wold (ibid., pages 75–80) showed that the variable ξ(t) connected with
the stationary process {ξ(t)} may be approximated by ξ(t − 1), . . . , ξ(t − n), with
the approximating error, termed the residual, being given by

η(t; n) = ξ(t) − μ − a(1, n) · (ξ(t − 1) − μ) − · · · − a(n, n) · (ξ(t − n) − μ)

Here {ξ(t)} has mean μ and principal correlation determinants �(r, n) given by
(7.9). It is also assumed to have finite variance σ2(ξ) and, if �(r, n − 1) �= 0, this
variance will satisfy the inequalities

σ2(ξ) ≥ σ2(η(n)) = σ2(ξ)
�(r, n)

�(r, n − 1)
≥ 0

which implies that

1 ≥ �(r, 1)
1

≥ �(r, 2)
�(r, 1)

≥ · · · ≥ �(r, n)
�(r, n − 1)

≥ 0
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From the analysis of §7.6, this implies that either �(r, n) > 0 for all n, or
�(r, n) > 0 for n < h and �(r, n) = 0 for n ≥ h, where h is the rank of linear singu-
larity. It must therefore be the case that any stationary process belongs to one,
and only one, of the following classes:

(I) The process is non-singular, and there exists a positive constant χ2 ≤ 1
such that

σ2(η(n))
σ2(ξ)

= �(r, n)
�(r, n − 1)

→ χ2 ≤ 1 as n → ∞

(II) The process is singular, say of rank h.

(III) The process presents no singularity of finite rank, but

σ2(η(n))
σ2(ξ)

= �(r, n)
�(r, n − 1)

→ 0 as n → ∞

in which case the process is termed singular of infinite rank.
This led Wold (ibid., pages 81–4) to prove for case (I)

Theorem 6.
A residual process {η(t)} obtained from a non-singular stationary process {ξ(t)}
is stationary and non-autocorrelated. The variable η(t) is non-correlated with
ξ(t − 1), ξ(t − 2), . . . , while

r(ξ(t), η(t)) = σ(η)
σ(ξ)

This theorem also holds for cases (II) and (III) except that, as the resid-
ual variables η(t) are then vanishing, their correlation properties will be
indeterminate.

A canonical form of the discrete stationary process

7.14 The analysis of §7.13 enabled Wold (ibid., pages 84–9) to prove the most
fundamental theorem in time series analysis, which has since become known
as Wold’s Decomposition.4

Theorem 7.
Denoting by {ξ(t)} an arbitrary discrete stationary process with finite dispersion,
there exists a three-dimensional stationary process {ψ(t), ζ(t), η(t)} with the following
properties:

(A) {ξ(t)} = {ψ(t)} + {ζ(t)}
(B) {ψ(t)} and {ζ(t)} are non-correlated.
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(C) {ψ(t)} is singular.
(D) {η(t)} is non-autocorrelated, and E[η(t)] = E[ζ(t)] = 0.

(E) {ζ(t)} = {η(t)} + b1{η(t − 1)} + b2{η(t − 2)} + · · ·
where bn represent real numbers such that

∑
b2

n is convergent.

Thus, by starting from a purely random process {η(t)}, forming a sum process of
the type {ζ(t)} = {η(t)} + b1{η(t − 1)} + b2{η(t − 2)} + · · · and adding an indepen-
dent process {ψ(t)} ruled by an appropriate stationarity, an arbitrarily prescribed
stationary process {ξ(t)} is obtained (one of {ψ(t)} and {ζ(t)} may be vanishing).
The implications and importance of this theorem will be seen throughout later
developments.

Stochastical difference equations

7.15 As already stated, Wold referred to equation (7.8) of §7.6 as a stochastical
difference relation. A more general representation is the linear autoregression
(7.15), rewritten here as

{ξ(t)} + a1{ξ(t − 1)} + · · · + ah{ξ(t − h)} = {η(t)} (7.16)

which Wold (ibid., page 93) termed a stochastical difference relation between the
processes {ξ(t)} and {η(t)}. If {η(t)} is known and {ξ(t)} is unknown, (7.16) is
termed a stochastical difference equation.

Equation (7.16) presents obvious analogies with ordinary difference equations
of the form

x(t) + a1x(t − 1) + · · · + ahx(t − h) = y(t) (7.17)

If there are no ‘external influences’ present, so that y(t) = 0, the solutions
to (7.17) describe how x(t) develops through time from the initial values
x(t − 1) = xt−1, . . . , x(t − h) = xt − h, say, so that the expected value for x(t) is
−a1xt−1 − · · · −ahxt−h. If there is an external influence this expected value
becomes y(t) − a1xt−1 − · · · −ahxt−h, with y(t) being regarded as functional, i.e.,
uniquely determined at any future time point.

In contrast, the stochastical approach assumes that the external factors
{η(t)} are only ruled by certain probability laws: although {η(t)} must follow
the consistency relations (7.1) and (7.2), it could be a non-random or even
a non-stationary process. If the {η(t)} process is known, any sample series
(. . . , ηt−1, ηt , ηt+1, . . .) will describe an actual realization of the external influ-
ence. This will then determine the sample series (. . . , ξt−1, ξt , ξt+1, . . .) of the
process {ξ(t)}. However, typically only probabilistic knowledge of the actual path
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(. . . , ηt−1, ηt , ηt+1, . . .) will be available and so only a probability law about the
behaviour of {ξ(t)} can be reached, so that (. . . , ξt−1, ξt , ξt+1, . . .) forms a solution
to the stochastical difference equation (7.16).

The probability laws will provide information on the ‘average’ behaviour of
{ξ(t)} but Wold was careful to point out that it will not generally be the case
that such behaviour will be identical to the solution of ‘functional’ difference
equations for which there are no external influences.

Wold briefly contrasted the solutions of the stationary linear autoregression
(7.16) with those from the process

{ξ(t)} − {ξ(t − 1)} = η(t)

This is referred to as a discrete homogenous process which is evolutive, having
solutions that are oscillatory with amplitude increasing over time.

The process (7.16) will be a stochastical difference equation if the coefficients
ai are real and if {η(t)} is a discrete random process with finite variance. If ah �= 0
the equation is said to be of order h. If {η(t)} = 0 then, if (7.16) has any solutions,
these will be singular and will have (7.8) with μ = 0 as the relation of singularity.
There will therefore be a non-vanishing stationary process that satisfies this
equation if the related characteristic equation (see §7.9) has roots with modulus
less than one. It also follows that

Theorem 8.
The series bi defined by [7.12] and [7.13] does not satisfy any difference equation of
lower order than h.

Theorem 9.
Let [7.16] be a stochastical difference equation such that all roots of its characteristic
equation are of a modulus less than unity, let {η(t)} be stationary and have finite
dispersion, and let the sequence bi be given by [7.12] and [7.13]. Then

lim
n→∞[{η(t)} + b1{η(t − 1)} + b2{η(t − 2)} + · · · + bn{η(t − n)}]

will exist and forms a stationary solution of the equation.

The process of linear autoregression is thus, by construction, a solution of a
stochastical difference equation such that {η(t)} is stationary and all roots of the
characteristic equation have modulus less than unity. Theorem 9 states that a
mechanism whose intrinsic movements are damped will give rise to stationary
oscillations when influenced by stationary external shocks.
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7.16 Suppose that {ζ(t)} and {η(t)} are two stationary processes such that

ζ(t) = η(t) + b1η(t − 1) + b2η(t − 2) + · · · (7.18)

η(t) = ζ(t) + a1ζ(t − 1) + a2ζ(t − 2) + · · · (7.19)

where
{η(t)} is non-autocorrelated;
σ2(η, t) > 0 is finite;
E[η(t)] = 0;
the sum

∑
b2

k is convergent.

Substituting (7.18) into (7.19) obtains

η(t) = η(t) + (a1 + b1)ζ(t − 1) + (a2 + b1a1 + b2)ζ(t − 2) + · · ·
+ (ak + b1ak−1 + · · · + bk−1a1 + bk)ζ(t − k) + · · ·

so that

ak + b1ak−1 + · · · + bk−1a1 + bk = 0, k = 1, 2, . . .

Writing

K2 = 1 + b2
1 + b2

2 + · · ·
we thus have

σ(ζ) = K · σ(η)

K · r(ζ(t + n); η(t)) = bn

rk = rk(ζ) = (bk + b1bk+1 + b2bk+2 + · · ·)/K2

Consider next rewriting (7.18) and (7.19) as

ζ(t + s) = η(t + s) + b1η(t + s − 1) + b2η(t + s − 2) + · · ·

ζ(t) + a1ζ(t − 1) + a2ζ(t − 2) + · · · = η(t)

multiplying them together and taking expectations to obtain, for s < 0,

rk + a1rk−1 + · · · + ak−1r1 + ak + ak+1r1 + ak+2r2 + · · · = 0

for all k > 0. In the same way, for s ≥ 0,

(1 + a1r1 + a2r2 + · · ·)σ2(ζ) = σ2(η)
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and

rk + a1rk+1 + a2rk+2 + · · · = bk/K2 k ≥ 0

Forecasting with autoregressions

7.17 Wold (ibid., pages 101–3) considered forecasting using the linear autore-
gressive process, taking the variable ζ(t + k) to be conditioned by the devel-
opment of the processes (7.18) and (7.19) up to time point t inclusive.
Thus

ζ(t − k) = ζt−k, η(t − k) = ηt−k; k = 0, 1, 2, . . .

where (ζt , ζt−1, . . .) and (ηt , ηt−1, . . .) are observed sample series, and hence

ζt−k = ηt−k + b1ηt−k−1 + b2ηt−k−2 + · · · k = 0, 1, 2, . . .
ηt−k = ζt−k + a1ζt−k−1 + a2ζt−k−2 + · · · k = 0, 1, 2, . . .

(7.20)

Since the variables η(t) are uncorrelated, the linear forecast of ζ(t + k) made at
time t, denoted Ft [ζ(t + k)], is given by (7.18) as

Ft [ζ(t + k)] = bkηt + bk+1ηt−1 + bk+2ηt−2 + · · · k = 1, 2, . . . (7.21)

Equivalently, from (7.19) the forecast can be written, for k = 1, 2, . . . , as

Ft [ζ(t + k)] = −a1 · Ft [ζ(t + k − 1)] − a2 · Ft [ζ(t + k − 2)] − · · ·
−ak−1 · Ft [ζ(t + 1)] − akζt − ak+1ζt−1 − ak+2ζt−2 − · · · (7.22)

This form shows how successive forecasts may be calculated. It can be shown to
be equivalent to (7.21) by writing every Ft [ζ(t + k − i)] in the above expression
in the form implied by (7.22) and expressing every ζt−i in terms of ηt−i by means
of (7.20). Alternatively, the forecasts may be expressed in terms of ζt−i:

Ft [ζ(t + k)] = fk,0ζt + fk,1ζt−1 + fk,2ζt−2 + · · · (7.23)

For k = 1, (7.22) becomes

Ft [ζ(t + 1)] = −a1ζt − a2ζt−1 − a3ζt−2 − · · ·

so that

f1,i = −ai+1
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Substituting (7.23) into (7.22) obtains

fk,0 + a1fk−1,0 + a2fk−2,0 + · · · + ak−1f1,0 + ak = 0
fk,1 + a1fk−1,1 + a2fk−2,1 + · · · + ak−1f1,1 + ak+1 = 0
. . .

Thus, after having calculated the coefficients fk−i,j appearing in the forecasts
Ft [ζ(t + k − i)], these relations yield the coefficients fk,j necessary for computing
Ft [ζ(t + k)] in terms of the ζt−is.

The relations (7.21)–(7.23) are referred to by Wold as the forecasting formulae.
Given the sample series (ζt , ζt−1, ζt−2, . . .) and/or (ηt , ηt−1, ηt−2, . . .), ‘these formu-
lae furnish the best linear forecast as to the future development of the series’
(ibid., page 102). ‘Best’ is used in the sense that the expected squared error of
the forecast, which, from (7.21), is (1 + b2

1 + b2
2 + · · · + b2

k−1)σ2(η), is shown to be
a minimum. As k → ∞, this expression tends to K2σ2(η) = σ2(ζ), so that for large
values of k, the forecast Ft [ζ(t + k)] is approximately of the same efficiency as
the trivial forecast E[ζ(t + k)] = E[ζ(t)] = 0.

Linear autoregressions

7.18 The linear autoregression process {ζ(t)} is

{ζ(t)} + a1{ζ(t − 1)} + · · · + ah{ζ(t − h)} = {η(t)} (7.24)

where the stationary process {η(t)} is non-autocorrelated and E[η(t)] = E[ζ(t)] = 0.
From the expressions at the end of §7.16, we have

(1 + a1r1 + a2r2 + · · · + ahrh)σ2(ζ) = σ2(η)

and three groups of relations involving the autocorrelation coefficients:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

· · ·
rk + a1rk−1 + a2rk−2 + · · · + ah−1rk−h+1 + ahrk−h = 0
· · ·
rh+1 + a1rh + a2rh−1 + · · · + ah−2r3 + ah−1r2 + ahr1 = 0
rh + a1rh−1 + a2rh−2 + · · · + ah−2r2 + ah−1r1 + ah = 0

(7.25)

⎧
⎪⎨

⎪⎩

rh−1 + a1rh−2 + a2rh−3 + · · · + ah−2r1 + ah−1 + ahr1 = 0
· · ·
r1 + a1 + a2r1 + · · · + ah−2rh−3 + ah−1rh−2 + ahrh−1 = 0

(7.26)
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 + a1r1 + a2r2 + · · · + ah−2rh−2 + ah−1rh−1 + ahrh = 1/K2

r1 + a1r2 + a2r3 + · · · + ah−1rh + ahrh+1 = b1/K2

· · ·
rk + a1rk+1 + a2rk+2 + · · · + ah−1rh+k−1 + ahrh+k = bk/K2

· · ·

(7.27)

The group (7.25) is given in Walker (1931): see §6.10, equation (6.15). The rk

for k ≥ h satisfy a difference equation which is the same as that satisfied by the
bk sequence and both evolve as damped oscillations.

The second group (7.26) contains h − 1 relations and involves r1, r2, . . . , rh−1,
which may be obtained directly from the ai by solving the system (7.26), and
may be regarded as a corollary to

Theorem 10.
Let {ζ(t)} be a process of linear autoregression of order h. Then the autocorrelation
coefficients of {ζ(t)} satisfy no difference equation (cf. [7.8]) of lower order than h.

Since ak = 0 for k > h, the forecasting formula (7.22) shows that the forecasts
Ft [ζ(t + 1)], Ft [ζ(t + 2)], . . . , Ft [ζ(t + k)], . . . will satisfy a difference equation with
respect to k, so that the forecasts will also form a damped oscillation, revealing
how the series will evolve from time t if there were no external influences present
at the future times t + 1, t + 2, . . . . Consequently, Ft [ζ(t + k)] → 0 = E[ζ(t)] as
k → ∞, in agreement with the concluding remark of §7.17.

By referring to Theorem 5 of §7.12, Wold next obtained

Theorem 11 (abridged)
The generating function W(x) of the autocorrelation coefficients in a process {ζ(t)} of
linear autoregression is absolutely continuous, and has a bounded derivative W ′(x)
given by W ′(x) = G(x) + G(−x) − 1, where

G(x) = 1 + (a1 + r1)eix + · · · + (ah−1 + ah−2r1 + · · · + a1rh−2 + rh−1)ei(h−1)x

1 + a1eix + a2ei2x + · · · + aheihx

7.19 Wold (ibid., pages 110–21) analysed in detail the autoregression (7.24)
when h = 2. Denoting the roots of the associated characteristic equation (cf.
§7.9) as p and q, we then have

a1 = p + q, a2 = pq, an = 0 for n > 2; |p| < 1, |q| < 1

and thus

ζ(t) − (p + q)ζ(t − 1) + pqζ(t − 2) = η(t) (7.28)
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As a1 and a2 must be real, two possibilities exist: either I: p and q are real, or II:
p = A + iB, q = A − iB, where A and B represent real numbers such that

A2 + B2 = |p2| = |q2| < 1

Assuming that p �= q, the general solution of the difference equation obtained
from (7.28) with η(t) = 0 is, for P1 and P2 arbitrary,

P1 · pt + P2 · qt (7.29)

For case II, the solution is

Q1 · Ct cos λt + Q2 · Ct sin λt

where Q1 and Q2 are arbitrary and

C = +
√

A2 + B2 cos λ = A/C, 0 < λ < π

I. p and q are real.
Substituting the general solution (7.29) for b1 and b2 into the system (7.13) and
solving for P1 and P2 obtains

bk = p
p − q

· pk + q
q − p

· qk = pk+1 − qk+1

p − q
k ≥ 0

Inserting this result into the expression for K2 yields

K2 = σ2(ζ)
σ2(η)

= 1 + pq
(1 − p2)(1 − q2)(1 − pq)

The system (7.26) reduces to the single equation

r1 + a1 + a2r1 = 0

Solving for

r1 = p + q
1 + pq

observing that r0 = 1, and equating these two coefficients to (7.29) for t = 0, 1
obtains

rk = p(1 − q2)
(p − q)(1 + pq)

· pk + q(1 − p2)
(q − p)(1 + pq)

· qk k ≥ 0
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Two special cases are worth considering. If q = 0 then the various relations
reduce to

ζ(t) − pζ(t − 1) = η(t)

bk = rk = pk, k ≥ 0 σ2(ζ) = σ2(η)
1 − p2

These formulae cover the case h = 1 and were discussed in Walker (1931). If
q = −p, we have

ζ(t) − p2ζ(t − 2) = η(t)

b2k = r2k = p2k, b2k+1 = r2k+1 = 0, k ≥ 0 σ2(ζ) = σ2(η)
1 − p4

II. p and q are complex conjugates.

p = A + iB, q = A − iB

Here we have, by a similar analysis,

ζ(t) − 2A · ζ(t − 1) + (A2 + B2) · ζ(t − 2) = η(t)

bk = Ck cos kλ + A
B

· sin kλ (7.30)

rk = Ck cos kλ + A
B

· 1 − C2

1 + C2
Ck sin kλ (7.31)

σ2(ζ) = 1 + C2

(1 − C2)(1 + C4 − 2A2 + 2B2)
· σ2(η) (7.32)

This set-up covers the case of an oscillatory mechanism whose intrinsic oscilla-
tions consist of a single damped harmonic with a frequency lying in the interval
0 < λ < π and a damping factor Ct . Wold then considered whether periodogram
analysis would accurately uncover λ. If the roots A ± iB of the characteristic
equation lie close to the periphery of the unit circle, so that the intrinsic oscil-
lations are only slightly damped, then periodogram analysis will be able to
discover the frequency of the intrinsic oscillation. The more heavily damped
the intrinsic oscillation is, however, the larger will the bias be in estimating λ,
with periodogram analysis overestimating the intrinsic period if this is above
4 time units and underestimating it if it is between 2 and 4 units. Wold (ibid.,
page 117) summed up these conclusions by stating that ‘the situation may be
described by saying that the inference drawn from the characteristic equation
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of the intrinsic oscillations does not apply directly to the oscillations of the
mechanism when influenced by random external factors’.

7.20 Wold used the linear autoregression of order two to reveal a connection
with the law of the sinusoidal limit (see §5.15 and §7.11). Let

L(x) = x2 − 2Ax + 1 = 0 − 1 < A < 1

be the characteristic equation of the simple harmonic

P1 cos λ1t + P2 sin λ2t

and let {ζ(1)(t)}, {ζ(2)(t)}, . . . be a sequence of autoregressions of the form

ζ(p)(t) − 2Ap · ζ(p)(t − 1) + C2
p · ζ(p)(t − 2) = η(p)(t)

where

lim
p→∞Ap = A, lim

p→∞Cp = 1

Using (7.32),

σ2(ζ(p)) = K2
p · σ2(η(p)) = 1 + C2

p

(1 − C2
p )(1 + C4

p − 2A2
p + 2B2

p)
· σ2(η(p))

where K2
p = 1 + (b(p)

1 )2 + (b(p)
2 )2 + · · · . Since 1 − C2

p tends to zero as p → ∞, it

follows that Kp → ∞ as p → ∞. Since, from (7.30), b(p)
k is bounded,

lim
p→∞

b(p)
k

K2
p

= 0

Thus, the systems of equations (7.25–7.27) imply that

lim
p→∞L(r(p)

k ) = 0, −∞ < k < ∞

which, in turn, implies that the sequence {ζ(p)(t)} is ruled by the singularities that
embody the sinusoidal limit theorem (see §7.11). Thus, if we approximate an
arbitrary sample series (ζ) = (ζ(p)

1 , . . . , ζ(p)
n ) by a simple harmonic with frequency

λ, say xp(t, ζ), then, holding n fixed, it follows that, for every ε > 0

lim
p→∞P[|xp(1, ζ) − ζ

(p)
1 | < ε, . . . , |xp(n, ζ) − ζ

(p)
n | < ε] = 1

This result generalizes to a relation L(x) = 0 of arbitrary order, so that the process
of linear autoregression ‘forms a convenient starting point for the construction
of sequences covered by the sinusoidal limit theorems’ (ibid., page 121).
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Moving average processes

7.21 The general moving average of order h is

{ζ(t)} = {η(t)} + b1{η(t − 1)} + · · · + bh{η(t − h)} (7.33)

where {η(t)} is purely random or, more generally, non-autocorrelated, and the
sequence (b) = (b1, . . . , bh) is real. We continue to assume that σ2(η) is finite and
that E(ηt ) = 0. Unlike the process of linear autoregression, where the sequences
of autocorrelation coefficients and forecasts follow damped harmonic processes,
only the first h elements of these sequences are non-zero. The variance of {ζ(t)} is

σ2(ζ) = (1 + b2
1 + b2

2 + · · · + b2
h) · σ2(η)

while the autocorrelations are given by

rk(ζ) =
{

(bk + b1bk+1 + · · · + bhbh+k)/(1 + b2
1 + · · · + b2

h) for k ≤ h
0 for k > h

(7.34)

where k ≥ 0 and b0 = 1. Specializing the forecast formula (7.21) gives

Ft [ζ(t + k)] =
{

bkηt + bk+1ηt−1 + · · · + bhηt−h+k for 0 ≤ k ≤ h
0 for k > h

Given the moving average process (7.33), does a primary process of the form
(7.19)

η(t) = ζ(t) + a1ζ(t − 1) + a2ζ(t − 2) + · · ·
exist and, if so, how can the coefficients (a) be obtained? Consider the
characteristic equation

xh + b1xh−1 + · · · + bh−1x + bh = 0 (7.35)

If all the roots of (7.35) have modulus less than unity, Theorem 9 states that an
infinite sequence (a) = (a1, a2, . . .) such that (7.19) holds is given by the system
(7.13) and the difference relation of §7.9 on replacing the ais by the bis. These
relations constitute a difference equation of order h satisfied by the sequence
(a), which forms a damped harmonic. Under these circumstances the relations
of §7.16 hold, and take the following form:

a2h+krh + a2h+k−1rh−1 + · · · + ah+k+1r1 + ah+k + ah+k−1r1 + · · · + ak+1rh−1 + akrh = 0
(7.36)
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a2hrh + a2h−1rh−1 + · · · + ah+1r1 + ah + ah−1r1 + · · · + a1rh−1 + rh = 0
a2h−1rh + a2h−2rh−1 + · · · + ahr1 + ah−1 + ah−2r1 + · · · + a1rh−2 + rh−1 = 0
. . .

ah+1rh + ahrh−1 + · · · + a2r1 + a1 + r1 = 0
(7.37)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ahrh + ah−1rh−1 + · · · + a1r1 + 1 = 1/K2

ah−1rh + · · · + a1r2 + r1 = b1/K2

. . .

a2rh + a1rh−1 + rh−2 = bh−2/K2

a1rh + rh−1 = bh−1/K2

rh = bh/K2

(7.38)

Thus, if (7.35) has no root xk falling outside the unit circle, a set of well-defined
linear operations on the moving average (7.33) will yield the primary process
{η(t)} given by (7.19): if |xk| ≤ 1 for all k, the sequence (b) and the process {ζ(t)}
is termed regular.

Wold then uses the generating function W(x) of §7.12 to obtain the funda-
mental identity

1
K2

(xh + b1xh−1 + · · · + bh−1x + bn)(bhxh + bh−1xh−1 + · · · + b1x + 1)

= rhx2h + rh−1x2h−1 + · · · + r1xh+1 + xh + r1xh−1 + · · · + rh−1x + rh

(7.39)

Since the zeros of the factor bhxh + bh−1xh−1 + · · · + b1x + 1 will be x−1
k , the zeros

of the right-hand side of (7.39) may be denoted x1, x2, . . . , x2h−1, x2h, where

xk = x−1
2h+1−k, 0 < |x1| ≤ |x2| ≤ · · · ≤ |xh| ≤ 1 ≤ |xh+1| ≤ · · · ≤ |x2h|

It then follows that if there exists another sequence, say (1, b(i)
1 , . . . , b(i)

h ), such that
the associated moving average has autocorrelation coefficients coinciding with
those of (7.33), then one zero of the polynomial xh + b(i)

1 xh−1 + · · · + b(i)
h−1x + b(i)

h

will equal either x1 or x−1
1 , another either x2 or x−1

2 , etc. There will be at most
2h real sequences of this type, say (b(0)

k ), . . . , (b(s)
k ). If (b(0)

k ) represents the regular
sequence then all other sequences are non-regular.

Letting (b(i)
k ) be a group of sequences attached to the regular sequence (b(0)

k )
and writing

(K(i))2 = 1 + (b(1)
i )2 + (b(2)

i )2 + · · · + (b(h)
i )2

we can then define a group of moving averages as

ζ(i)(t) = K(0)

K(i)
[η(t) + b(i)

1 η(t − 1) + · · · + b(i)
h η(t − h)] i = 1, . . . , s < 2h (7.40)
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It follows from its construction that this group will contain one, and only one,
regular process and that

σ2(ζ(i)) = σ2(ζ(j)); r(i)
k = r(j)

k , k = 0, ±1, ±2, . . . i, j = 1, . . . , s < 2h

If all the roots of (7.35) lie of the periphery of the unit circle, i.e., xk = 1 for all k,
then the group will contain just the process {ζ(0)(t)} = {ζ(t)}; otherwise the group
will contain at most 2h. If we denote by {η(i)(t)} the residuals of the non-regular
processes, then these are given by

K(i)

K(0)
η(i)(t) = η(t) + (a1 + b(i)

1 ) · η(t − 1) + (a2 + a1b(i)
1 + b(i)

2 ) · η(t − 2) + · · ·

+ (ah + ah−1b(i)
1 + · · · + b(i)

h ) · η(t − h) (7.41)

+ (ah+1 + ahb(i)
1 + · · · + a1b(i)

h ) · η(t − h − 1) + · · ·

and we have

{ζ(i)(t)} = {η(i)(t)} + b1{η(i)(t − 1)} + · · · + bh{η(i)(t − h)} (7.42)

for all processes in the group {ζ(i)}.
These ideas may be illustrated by the following examples.

Example 1. Let h = 1 with b1 = 2. Then (7.39) is

0.2(x + 2)(2x + 1) = 0.4x2 + x + 0.4

Hence r1 = 0.4 and rk = 0 for k > 1. The characteristic equation is (x + 2)(2x +
1) = 0, which gives two sequences b0 = (1, 0.5) and b1 = (1, 2). The system (7.13)
gives a1 = −0.5 and, in general, ak = −0.5k. Thus, for the regular process b0,

{ζ(t)} = {η(t)} + 0.5{η(t − 1)}

and it follows that

{η(t)} = {ζ(t)} − 0.5{ζ(t − 1)} + 0.52{ζ(t − 2)} − 0.53{ζ(t − 3)} + · · ·

Since K2 = 1.25 and [K(1)]
2 = 5, (7.40) gives

{ζ(1)(t)} = 0.5{η(t)} + {η(t − 1)}
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while (7.41) gives

η(1)(t) = 1
2 η(t) + 3

4η(t − 1) − 3
8η(t − 2) + 3

16η(t − 3) − · · ·

Thus, using (7.42), we have

ζ(1)(t) = {η(1)(t)} + 0.5{η(1)(t − 1)} = 0.5{η(t)} + {η(t − 1)}

from which it can easily be verified that σ2(η(1)(t)) = σ2(η(t)) and that rk(η(1)) = 0
for k �= 0, i.e., {η(1)(t)} is non-autocorrelated.

Example 2. Here we suppose that r1 = 1
6 , r2 = − 1

3 and rk = 0 for k > 2. The
fundamental identity (7.39) reads

2
3 (x2 + 0.5x − 0.5)(−0.5x2 + 0.5x + 1) = − 1

3 x4 + 1
6 x3 + x2 + 1

6 x − 1
3

Noting that x2 + 0.5x − 0.5 = (x − 0.5)(x + 1), so that neither root lies outside the
unit circle, there are two sequences, b0 = (1, 0.5, −0.5), which is regular, and
b1 = (1, −1, −2). Thus the regular process is defined as

{ζ(t)} = {η(t)} + 0.5{η(t − 1)} − 0.5{η(t − 2)}

from which we obtain the (a) sequence as

ak = 1
3

( 1
2

)k + 2
3 (−1)k

The non-regular process is given by

{ζ(1)(t)} = 0.5{η(t)} − 0.5{η(t − 1)} − {η(t − 2)}
= {η(1)(t)} + 0.5{η(i)(t − 1)} − 0.5{η(i)(t − 2)}

with the non-autocorrelated residual being

η(1)(t) = 1
2 η(t) − 3

4η(t − 1) − 3
8η(t − 2) − 3

16η(t − 3)

Example 3. Finally, suppose r1 = −0.5 and rk = 0 for k > 1. Now (7.39) reads

0.5(x − 1)(−x + 1) = 0.5x2 + x − 0.5

and we conclude that there is just one sequence b = (1, −1), associated with the
process

{ζ(t)} = {η(t)} − {η(t − 1)}
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Here (7.35) has just one root, which falls on the unit circle. In these cir-
cumstances, Wold (ibid., pages 124–6) showed that a limit process of the
form

{η(t)} = lim
i→∞

[{ζ(t)} + a(i)
1 {ζ(t − 1)} + a(i)

2 {ζ(t − 2)} + · · ·]

exists where, in this case a(i)
k = (1 − ε)k, with 0 < ε → 0 as i → ∞. Setting ε = 10−i,

then

{η(t)} = lim
i→∞

[{ζ(t)} + (1 − 10−i){ζ(t − 1)} + (1 − 10−i)2{ζ(t − 2)} + · · ·]

which we see approaches the process

{η(t)} = {ζ(t)} + {ζ(t − 1)} + {ζ(t − 2)} + · · ·

Some applications of stationary processes

7.22 In §§6.12–6.13 we discussed Walker’s (1931) analysis of the Port Darwin
air pressure data, focusing on the complete ‘correlation periodogram’, which
Wold (ibid., page 135) referred to more succinctly as the correlogram – ‘for
the sake of brevity in writing, the graphs of serial and autocorrelation coeffi-
cients will be termed correlograms (empirical and hypothetical respectively)’. Wold
focused attention on Walker’s preliminary analysis of the first 40 serial coeffi-
cients, which showed that the rk, 0 ≤ k ≤ 40, could be approximately represented
by the function

rk = 0.19 · 0.96k cos πk/6 + 0.15 · 0.98k + 0.66 · 0.71k (7.43)

This function has a damped harmonic with a period of 12 quarters and satisfies
the difference equation

rk − 3.35rk−1 + 4.43rk−2 − 2.71rk−3 + 0.64rk−4 = 0

Walker then used the argument that, since (7.25) implies that

rk + a1rk−1 + · · · + ahrk−h = 0, k ≥ h

then the empirical series, . . . , ζt−1, ζt , ζt+1, . . . , follows the autoregression

ζt + a1ζt−1 + · · · + ahζt−h = ηt (7.44)

i.e.,

ζt − 3.35ζt−1 + 4.43ζt−2 − 2.71ζt−3 + 0.64ζt−4 = ηt (7.45)



9780230290181_08_cha07.tex 21/4/2011 12: 48 Page 167

Formal Modelling of Stationary Time Series 167

Wold (ibid., pages 144–5) pointed out that such an argument was, in fact, invalid,
as the autocorrelation coefficients not only satisfy (7.25) but also the systems
(7.26) and (7.27): in fact, the coefficients r1, r2, . . . , rh−1 will be uniquely deter-
mined by (7.26) in terms of the ais. Thus it is not certain that the autocorrelation
coefficients corresponding to (7.45) will be given by the function (7.43). Wold
showed that the system (7.26) corresponding to (7.45) gives the values r1 = 0.93,
r2 = 0.72 and r3 = 0.43, rather than the values 0.75, 0.55 and 0.35 given by
Walker. Wold also showed that the relationship between the variance of the
disturbances and the observed series given by Walker was incorrect, so that all
the parameters of Walker’s model required modification.

In fact, Wold suggested that the simpler model

ζt − 0.73ζt−1 = ηt (7.46)

gave a good fit to the first few serial coefficients. Since this model is an exam-
ple of case I of §7.19 with q = 0, it gives the sequence of correlations r1 = 0.73,
r2 = 0.732 = 0.53, r3 = 0.733 = 0.39, r4 = 0.734 = 0.28, compared to the actual air
pressure serial coefficients of 0.76, 0.56, 0.36 and 0.18 respectively.

Turning his attention to the empirical correlogram of air pressure, shown in
Figure 6.10, Wold remarked that

the serial coefficients show rather small deviations from zero in the interval
3 < k < 40. On the other hand, the increase in amplitude for certain k-values
> 40 might be due to the successive reduction in the number of correlates.
Perhaps this argument is sufficient to explain also why the fluctuations are
somewhat larger in that alternative variant of a correlogram given by Walker,
where all serial coefficients are based on 77 pairs of correlates. As the fluc-
tuations, furthermore, seem rather irregular and aperiodic – at least to my
eye – it is doubtful whether it would be possible to improve sensibly the
approach [7.46] by taking into account more distant elements ζt−2, ζt−3, etc.
In this connexion it is rather interesting to notice that according to the gen-
eral analysis there exists no process of linear autoregression having [7.43]
for autocorrelation coefficients. Another reason for resting satisfied with the
simple approach [7.46] is that the ordinates of the periodogram presented
[in Figure 6.9] are all lying on about the same level – this periodogram does
not, like that of the sunspots, suggest a scheme of linear autoregression with
a tendency to periodicity. (ibid., pages 145–6)

Thus Wold suggested that a simpler, first-order linear autoregression presented
the best fit to the Port Darwin air pressure data: a view that would hold that any
tendency to periodicity in the series was of a spurious nature.5
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7.23 A function of the form

y(t) = μ +
s∑

k=1

Ck cos(λk + ϕk) = μ +
s∑

k=1

(Ak cos λkt + Bk sin λkt) (7.47)

is referred to by Wold as a composed harmonic. Suppose that ζ(t) = y(t) + η(t),
where η(t) is purely random with variance σ2(η). This is known as the scheme
of hidden periodicities. The autocorrelations of ζ(t) are, for k �= 0, given by (Wold,
equation 46)

rk =
∑s

i=1 C2
i cos λik

2σ2(η) + ∑s
i=1 C2

i

(7.48)

so that rk is also a composed harmonic and there exist arbitrarily large k-values
such that

rk ≈ r0 =
∑s

i=1 C2
i

2σ2(η) + ∑s
i=1 C2

i

The implication of this is that even if an observed time series clearly shows a
cyclical character but has serial coefficients that are gradually vanishing, then
the scheme of hidden periodicities is inappropriate.

In contrast to (7.48), the correlogram of a linear autoregression will form
a damped harmonic while that for a moving average will cut off beyond a
certain k-value. These possibilities are illustrated in Figure 7.1, in which the
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Figure 7.1 Correlograms illustrating the schemes of hidden periodicities (dashed line),
linear autoregression (unbroken line), and moving average (dotted line)
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correlograms are constructed in the following way. For the scheme of hidden
periodicities, (7.48) was used with s = C1 = 1, σ2(η) = 1.25 and λ1 = π/6. The lin-
ear autoregression uses (7.31) with A = 0.8, B = 0.4 and λ = π/6, while the moving
average uses (7.34) with b1 = 0.7, b2 = 0.4, b3 = −0.3 and b4 = 0.2. Given the very
different behaviour of the alternative schemes, Wold (ibid., page 147) argued
that ‘it may be expected that we would obtain useful suggestions by inspecting
the empirical correlogram when searching for an adequate scheme to be applied
to an observational time series. For this reason, the construction of an empirical
correlogram is taken as (a) starting point in . . . applications’.

This led Wold to recommend the following approach to applying the theory
developed above.

If the empirical correlogram suggests a scheme of hidden periodicities, the
next step would be to construct a periodogram for a more detailed analysis
of possible periodicities in the material under investigation.

Next, if the correlogram suggests a scheme of linear autoregression, our
first problem is to find a scheme [7.15] such that the corresponding hypo-
thetical correlogram will fit the empirical one. The chief difficulty is to derive
suitable values for the coefficients (a) – when having arrived at a set of coef-
ficients (a), the corresponding autocorrelation coefficients will be uniquely
determined by the system [7.25–7.26], and the residuals ηt by the relations
[7.44]. It is further a desideratum that these residuals be as small as possible.
Having seen above that these problems are more intricate than emphasized
in earlier studies of the graph of serial coefficients, it will be found that an
empirical autoregression analysis as proposed by Yule (1927) will be useful in
this connection.

Finally, it may happen that the empirical correlogram will suggest a
scheme of moving averages. As far as I know, the problem of fitting this
scheme to observational data has not been attacked. . . . It will be seen
that the relation [7.39] gives a starting point for attacking this problem.
(ibid., page 148)

7.24 Before embarking on applications, Wold took great pains to point out
various limitations of the methodology. A major drawback was the lack of an
inferential framework within which any results might be assessed –

in time series analysis, significance problems are extremely intricate. . . .

Consequently, all questions about the significance and the interpretation
of the quantitative results fall outside the scope of this study, and again
an explicit warning is given against attaching importance to the numer-
ical values found for the parameters of the different models fitted to the
observational data. (ibid., pages 148–9)
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A second question was that of identification: it will not be possible to dis-
tinguish between different schemes that give rise to the same set of autocor-
relation coefficients. As an example of this, Wold considered the nonlinear
function

ξ(t) = η(t) · η(t − 1)

in which η(t) is, as usual, a zero mean random process. It is clear that ξ(t) will
be non-autocorrelated and hence indistinguishable from η(t).

Thus, if we have found a hypothetical scheme that fits well to an empirical
correlogram, it is perfectly possible that there are other schemes which yield
an equally close approximation. When it is necessary to choose between
different schemes, it may happen that theoretical arguments will speak in
favour of one of the schemes.. . . (T)he schemes of linear regression often seem
plausible from theoretical viewpoints, at least to a first approximation. On the
other hand, a rational choice between different schemes may be alternatively
based on an examination of other structural properties of the time series than
its serial coefficients. (ibid., pages 149–50)

Moreover, if a process is actually generated by a nonlinear function, then restrict-
ing analysis to only linear autoregressions may lead to unduly complicated
processes being arrived at.

An application of moving averages

7.25 Wold’s first application was to analyse Beveridge’s Index of Fluctuation,
the periodogram of which was constructed in §3.8, in which he focused atten-
tion on the last 100 years of observations from 1770 to 1869. The correlogram
for 0 ≤ k ≤ 15 is shown in Figure 7.2, where it is observed that r1 ≈ 0.6 and all
following serial coefficients lie in the interval −0.16 < rk < 0.13, i.e., they are all
rather close to zero, allowing Wold (ibid., pages 151–2) to conclude that ‘(t)o my
eye, the correlogram definitely suggests a scheme of moving averages’, leading
him to set out the following problem:

A set of numbers u1, u2, . . . , uh being given, does there exist a moving average
[7.32] with autocorrelation coefficients rk such that rk = uk for 1 ≤ k ≤ h? If the
answer is in the affirmative, we know from [§7.21] that there in general will
exist a finite group of moving averages with the prescribed autocorrelation
coefficients, and we are also in possession of a direct method for determining
the coefficients (b) of these moving averages. (ibid., page 152)
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Figure 7.2 Correlogram of Beveridge’s Index of Fluctuation, 1770–1869

Under these conditions (7.39) becomes

u(x) = uhxh + uh−1xh−1 + · · · + u1x + 1 + u1

x
+ · · · + uh−1

xh−1
+ uh

xh

= 1
K2

(xh + b1xh−1 + · · · + bh−1x + bh)
(

bh + bh−1

x
+ · · · + b1

xh−1
+ 1

xh

)

(7.49)

If x0 is a root of u(x) = 0 then so will be x−1
0 . Thus the substitution z = x + x−1

will transform u(x) to

v(z) = v0zh + v1zh−1 + · · · + vh−1z + vh (7.50)

For example, with h = 3, (7.49) becomes

u(x) = u3(x3 + x−3) + u2(x2 + x−2) + u1(x + x−1) + 1

= u3(z3 − 3z) + u2(z2 − 2) + u1z + 1

= u3z3 + u2z2 + (u1 − 3u3)z + (1 − 2u2)

If z is a root of v(z) = 0 then two roots of u(x) = 0 will be obtained from the
equation

P(x, z) = z − x − x−1 = x2 − zx + 1 = 0
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The roots of this equation are given by

z
2

±
√

z2

4
− 1

Since the products of these roots is unity then, unless both roots have modulus
unity, one of them must be situated inside, and the other outside, the unit circle.

If z is a complex root of v(z) = 0, then another root will be the complex con-
jugate of z, which we denote z∗. If P(x, z) = 0 has the roots x and x−1, then
P(x, z∗) = 0 will have the roots x∗ and (x∗)−1, in which case one of the real
polynomials (x − x1)(x − x∗

1) and (x − (x1)−1)(x − (x∗
1)−1) must be a factor in the

polynomial

b(x) = xh + b1xh−1 + · · · + bh−1x + bh

appearing in (7.49).
If z0 is a real root of v(z) = 0, two cases need to be distinguished. If |z0| ≥ 2,

both x1 and x2 must be real and this will correspond to real roots in b(x) = 0.
If, on the other hand, |z0| < 2 then x1 and x2 will be complex conjugates of
modulus unity, and both (x − x1) and (x − x2) must be contained in b(x). Since
one zero of u(x) corresponds to one zero of v(z), this is impossible unless z0 is a
root of even multiplicity of v(z) = 0. The following theorem is thus obtained.

Theorem 12.
A necessary and sufficient condition that there exists a moving average [7.33] with
autocorrelation coefficients rk equalling uk for 1 ≤ k ≤ h is that the auxiliary polynomial
v(z) defined by [7.50] has no zero z0 of odd multiplicity in the real interval −2 < z0 < 2.

If this condition is satisfied, the sequences (b) sought for will be given by the real
polynomials b(x) satisfying (7.49). There will at most be 2h of these sequences
and the polynomials b(x) may be written in the form (x − x1)(x − x2) . . . (x − xh),
where the real or complex quantity xi is a root of P(x, zi) = 0, where the zi,
i = 1, . . . , h, are the roots of v(z) = 0.

Thus, returning to the correlogram of the Index of Fluctuation, Wold
assumed that the small deviations from zero of rk for k > 1 were merely the
product of chance fluctuations and asked whether there existed a moving
average η(t) + b1η(t − 1) with autocorrelation coefficient r1 equalling 0.595.6

Putting h = 1 and u1 = 0.595 into (7.49) obtains u(x) = 0.595x + 1 + 0.595x−1 and
v(z) = 0.595z + 1. Since the root −0.595−1 = −1.68 of v(z) = 0 lies in the critical
interval −2 < z < 2, it must be concluded from Theorem 12 that there exists no
moving average with r1 = 0.595 and rk = 0 for k > 1.

For z to lie outside the critical interval −2 < z < 2 it must therefore be the
case that −0.5 ≤ r1 ≤ 0.5: i.e., all moving averages of the form η(t) + b1η(t − 1)
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have |r1| ≤ 0.5 and there will only be one moving average of this form for which
r1 = 0.5, namely

ζ(t) − μ = η(t) + η(t − 1)

Consequently, this moving average will yield the closest fit to the prescribed
value of 0.595, in which case the deviations of the serial correlation coefficients
shown in Figure 7.2 from the values r1 = 0.5, r2 = r3 = · · · = 0 must be ascribed
to pure chance.

To obtain a better fit, higher-order moving averages must be considered. Using
the first two serial correlations, u1 = 0.595 and u2 = 0.081, gives

u(x) = 0.081x2 + 0.595x + 1 + 0.595x−1 + 0.081x−2

and

v(z) = 0.081z2 + 0.595z + 0.838

Since the roots of v(z) = 0 are z1 = −1.90 and z2 = −5.45, it follows from Theorem
12 that no moving average of order 2 exists with these autocorrelation coeffi-
cients. To remove z1 from the critical interval, u2 will need to be modified. The
general expression for v(z1) is

v(z1) = u2z2
1 + u1z1 + (1 − 2u2)

Putting z1 = −2 into v(z1) = 0 along with u1 = r1 = 0.595 yields the solution
u2 = r1 − 1

2 = 0.095 with corresponding function 0.095v2 + 0.595z + 0.810 = 0,
from which z1 = −2.0 and z2 = −4.263.

We next solve P(x, 2) = x2 + 2x + 1 = 0, which gives the double root x = −1,
and P(x, −4.263) = x2 + 4.263x + 1 = 0, which gives the real roots x = −0.2491
and x = −4.0139. It then follows that there exist two functions which satisfy the
conditions

b1(x) = (x + 1)(x + 0.2491) = x2 + 1.2491x + 0.2491

b2(x) = (x + 1)(x + 4.0139) = x2 + 5.0139x + 4.0139

The function b1(x) gives rise to the regular moving average

ζ1(t) − μ = η(t) + 1.2491η(t − 1) + 0.2491η(t − 2)

while the function b2(x) yields

ζ2(t) − μ = K1

K2
(η(t) + 5.0139η(t − 1) + 4.0139η(t − 2))

= 0.2491η(t) + 1.2491η(t − 1) + η(t − 2)
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on using K2
1 = 1 + 1.24912 + 0.24912 and K2

2 = 1 + 5.01392 + 4.01392. Alterna-
tively, because of the symmetry of the two roots, ζ2(t) may be written down
immediately once ζ1(t) has been obtained.

Wold argued, after using a second example in which u2 was further adjusted to
make the roots z1 and z2 coincide, that even small changes in autocorrelations
would lead to substantial alterations in the values taken by the moving average
coefficients.

A further example was considered in detail by Wold. The values u1 = 0.60,
u2 = 0.09, u3 = −0.15 and u4 = −0.10 closely approximate the first four serial
coefficients, which we estimate as 0.595, 0.081, −0.161 and −0.126 respectively.
These values yield

−103v(z) = 10z4 + 15z3 − 49z2 − 105z − 62

and on solving v(z) = 0 we obtain

z1 = −2.1272 z2 = 2.5103 z3, z4 = −0.9415 ± 0.5240i

From Theorem 12 there will therefore exist a group of moving averages with the
prescribed correlogram, and this group will consist of eight processes. Solving
P(x, zi) = 0, i = 1, . . . , 4, gives the following solutions

x11 = −0.7013 x12 = −1.4259
x21 = 0.4966 x22 = 2.0137
x31 = −0.3381 − 0.6679i x32 = −0.6034 + 1.1919i
x41 = −0.3381 + 0.6679i x42 = −0.6034 − 1.1919i

Writing

B(x) = (x + 0.3381 − 0.6679i)(x + 0.3381 + 0.6679i) = x2 + 0.6762x + 0.5604

the regular moving average will be obtained from

b(x) = (x + 0.7013)(x − 0.4966) · B(x)

= x4 + 0.8809x3 + 0.3505x2 − 0.1208x − 0.1952

i.e., as

η(t) + 0.8809η(t − 1) + 0.3505η(t − 2) − 0.1208η(t − 3) − 0.1952η(t − 4)
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with K2 = 1.9515. A second moving average with the same correlogram will be
delivered by

b1(x) = (x + 1.4259)(x − 0.4966) · B(x)

= x4 + 1.6055x3 + 0.4807x2 + 0.0420x − 0.3968

with K2
1 = 3.9679. Multiplying b1(x) by K/K1 = 0.7013 yields the second moving

average

η(t) + 1.1259η(t − 1) + 0.3371η(t − 2) + 0.0294η(t − 3) − 0.2783η(t − 4)

Proceeding in analogous fashion, the third and fourth moving averages are
obtained from

b2(x) = (x + 0.7013)(x − 2.0137) · B(x)

and

b3(x) = (x + 1.4259)(x − 2.0137) · B(x)

to yield

η(t) − 0.3159η(t − 1) − 0.8637η(t − 2) − 0.8395η(t − 3) − 0.3930η(t − 4)

and

η(t) + 0.0308η(t − 1) − 0.9432η(t − 2) − 0.7909η(t − 3) − 0.5604η(t − 4)

The four remaining moving averages correspond to the complex roots
x = −0.6034 ± 1.1919i of u(x) = 0. Due to symmetry, these processes can be
obtained directly from the four processes above by reversing the order of the
coefficients. For example, the regular moving average gives

−0.1952η(t) − 0.1208η(t − 1) + 0.3505η(t − 2) + 0.8809η(t − 3) + η(t − 4)

7.26 If {ζ(t)} is a regular moving average then the primary process {η(t)} will
be given either by (7.19) or by its limiting counterpart of Example 3 of §7.21
when the characteristic equation has a root with modulus unity. Thus, consider
the regular moving average

ζ(t) = η(t) + 0.8809η(t − 1) + 0.3505η(t − 2) − 0.1208η(t − 3) − 0.1952η(t − 4)

Using the system (7.13) obtains a1 = −0.8809, a2 = 0.4255, a3 = 0.0548 and
a4 = 0.1043, after which the (a) coefficients are given by the difference relation

ak = −0.8809ak−1 − 0.3505ak−2 + 0.1208ak−3 + 0.1952ak−4 k > 4
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The primary process associated with a non-regular moving average may be
obtained in a similar fashion as outlined by Wold (ibid., pages 160–2). The mov-
ing averages in a group will, by construction, present the same correlogram and
same variance, so that the autocorrelation properties of the corresponding series
ηt will provide no basis for deciding which of the moving averages should be
preferred.

In terms of forecasting, Wold argued that the forecast for which the expected
squared deviation from the future path of {ζ(t)} was minimized is given by

Ft [ζ(t + k)] = bhη
(i)
t + bk+1η

(i)
t−1 + · · · + bhη

(i)
t−h+k

where {η(i)
t } is the primary process constructed from the ith non-regular moving

average in the group and the sequence (b) is that for the regular moving average.
In other words, the different moving averages in a group will give rise to the
same sequence of optimal forecasts and thus in general

Ft [ζ(t + k)] = μ + bhηt + bk+1ηt−1 + · · · + bhηt−h+k

where μ is the sample average of ζt . From this formula it is seen that forecasts
beyond the next h observations reduce to the sample average of the data. The
squared deviation of errors of these forecasts are given by

(1 + b2
1 + b2

2 + · · · + b2
h−1)σ2(η)

so that the efficiency of the forecasts decreases gradually as the number of
periods being forecasted is extended, leading Wold to the opinion that

especially in view of economic time series, the type of forecast delivered
by the scheme of moving averages seems a priori more realistic, seems to
correspond better to what might be reasonably possible to find out from
the past development. Further, considering the forecasts over a short period,
the prognosis given by the scheme of moving averages is, as a rule, rather
efficient. In my opinion, this is a circumstance of central importance, for
often the main interest is concentrated upon the prognosis concerning the
near future. (ibid., page 168)

An application of linear autoregression

7.27 Wold’s second major application was to consider the Swedish cost of liv-
ing index between 1840 and 1913 after he had removed a trend in the data
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Figure 7.3 Swedish Cost of Living Index, 1840–1913, with forecasts out to 1930

to induce stationarity. This index is shown in Figure 7.3 and ‘is seen to reflect
clearly changes between economic expansion and contraction. A certain reg-
ularity seems to be present in the movement up and down, but the distance
between two adjacent maxima is rather inconstant, varying between some 5 and
10 years’ (ibid., page 177). The correlogram is shown in Figure 7.4:

The correlogram looks rather like a simple damped oscillation, say
C · qk · cos (λk + ϕ). An inspection of the graph shows that in approximat-
ing the correlogram by such a function we would have to take the period
p = 2π/λ to be about 7 or 8 years, the phase ϕ to be approximately vanishing,
and q7 ∼ 1/2, the latter relation corresponding to a damping of some 50% in
the duration of one period. (ibid., page 177)

This led Wold to consider a linear autoregression of order two, since ‘this will
present a correlogram forming a simple damped harmonic’ (ibid., page 177):

ζ(t) + a1ζ(t − 1) + a2ζ(t − 2) = η(t) (7.51)

Wold preferred such a process to a scheme of hidden periodicities since the
latter model, because each harmonic component will produce an undamped
harmonic in the correlogram, would require at least two superposed harmonics
to adequately represent its shape. Such a scheme would therefore involve at
least six parameters rather than just the two required by (7.51).
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Figure 7.4 Correlogram of the cost of living index (unbroken line) with the hypothetical
correlograms from equations (7.54) (dashed line) and (7.55) (dotted line) in panel (a), and
from equations (7.56) (dashed line) and (7.57) (dotted line) in panel (b)

7.28 In §7.18, the system of equations (7.26) with coefficients a1, . . . , ah will
deliver the autocorrelation coefficients r1, . . . , rh−1 required for deriving the fol-
lowing coefficients rh, rh+1, . . . from the difference relations (7.25). In searching
for an adequate autoregressive process of the form (7.51), the ‘inverse problem’
has to be confronted, i.e., that of finding a set of coefficients a1, . . . , ah given
a set of serial coefficients. Wold thus suggested replacing the rk with the corre-
sponding serial coefficients rk in the system (7.26) and the last relation in (7.25)
and solving the following system of equations for a ‘trial’ set of (a) coefficients:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r1 + a1 + a2r1 + a3r2 + · · · + ahrh−1 = 0
r2 + a1r1 + a2 + a3r1 + · · · + ahrh−2 = 0
· · ·
rh + a1rh−1 + a2rh−2 + · · · + ah = 0

(7.52)

If the roots of the characteristic equation associated with (a) lie in the unit
circle, these coefficients will define a linear autoregression of the form (7.24).
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By construction, the first h autocorrelation coefficients of this process will coin-
cide with the serial coefficients r1, . . . , rh and the subsequent coefficients can be
obtained using the difference relations (7.25) and (a).

Having thus derived the correlogram of the hypothetical process defined by
(a), this can then be compared with the empirical correlogram. If the fit appears
satisfactory then the analysis can be carried further using (a), but if the devi-
ations between the hypothetical and empirical correlograms are deemed to be
too large, some adjustment of the (a) coefficients would then be required.

Given the h coefficients (a), the primary series ηt may be constructed from
the observed values ζt as

ηt = ζt − μ + a1(ζt−1 − μ) + · · · + ah(ζt−h − μ)

The method employed by Yule (1927) to obtain the (a) coefficients was least
squares (see §6.3), which chooses (a) to minimize

∑
η2. In fact, this approach

closely approximates solving the system (7.52). In this case,

σ2(η) ≈ (1 + a1r1 + a2r2 + · · · + ahrh) · σ2(ζ) (7.53)

where the ≈ sign conveys the approximation produced by having to discard the
first h terms of ζt for which the corresponding values of ηt cannot be calculated.
In other words, the variance of ηt will approximate the hypothetical variance
σ2(η), although this will not be the case if the trial set (a) is determined otherwise
than by (7.52).

Consequently, (7.52) gives a set of coefficients a1, . . . , ah that minimize the
variance of the residuals ηt . The first h autocorrelation coefficients will coincide
with the corresponding serial coefficients but there is no guarantee that the
complete hypothetical correlogram will provide a good fit to the empirical cor-
relogram throughout its whole range. In practice, a compromise needs to be met
‘between the two desiderata of obtaining small residuals ηt and small deviations
between the correlograms, and besides try to satisfy the relation σ2(η) ∼ σ2(η).

7.29 Applying this approach to the cost of living index, Wold used the values
r1 = 0.5216 and r2 = −0.2240 so that, with h = 2, the system (7.52) becomes7

0.5216 + a1 + 0.5216a2 = 0
−0.2240 + 0.5216a1 + a2 = 0

with the solution a1 = −0.8771 and a2 = 0.6815. The roots of the characteristic
equation z2 + a1z + a2 = 0 are 0.4385 ± 0.6994i and are thus less than unity in
modulus, so that the relation

ζ(t) − 0.8771ζ(t − 1) + 0.6815ζ(t − 2) = η(t) (7.54)
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defines a process of linear autoregression. By construction, the first two auto-
correlations of the process {ζ(t)} will be r1 = r1 = 0.5216 and r2 = r2 = −0.2240,
with subsequent autocorrelations being obtained recursively from the difference
relation rk − 0.8871rk−1 + 0.6815rk−2 = 0, k ≥ 3. The resulting correlogram is also
shown in Figure 7.4(a), prompting Wold to argue that

(c)omparing with the empirical correlogram, it is seen that the period in
the hypothetical correlogram is too short, and that the damping is a lit-
tle too heavy. . . . (T)he damping factor equals

√
a2, while the period is

given by p = 2π/λ, where cos λ = −a1/2
√

a2. Thus, an increase in a2 will
bring on a slighter damping. Further, reducing λ we obtain a longer period.
However, . . . we cannot conclude without further evidence that it will be
possible to improve the fit – the coefficients a1 and a2 determine also the
constant factor and the phase of the damped harmonic, and it might hap-
pen that an adjustment in a1 and a2 would cause such a change, e.g. in
the phase, that the total result of the adjustment would be a poorer fit.
(ibid., page 180)

The hypothetical correlogram of (7.54) has a period of 6.22 years. To achieve
a period close to seven years with reduced damping, Wold adjusted the coeffi-
cients to a1 = −1.10 and a2 = 0.77. The correlogram of the process defined by

ζ(t) − 1.10ζ(t − 1) + 0.77ζ(t − 2) = η(t) (7.55)

is also shown in Figure 7.4(a): ‘up to r8 and r9, the hypothetical correlogram
seems to fit rather well. Beyond this point, the fit is less satisfactory, partly
because the graph of the serial coefficients presents a slow descent to the
minimum in k ∼ 12.5, and a rapid rise to the next maximum’ (ibid., page 181).

Substituting the appropriate values from the model (7.54) into (7.53) obtains
σ2(η) ∼ σ2(η) = 0.390σ2(ζ). Wold showed that (7.55) led to a larger residual vari-
ance, leading him to conclude that ‘all in all, neither of the schemes seems
adequate . . . It seems as if we cannot find a satisfactory approach without taking
into account more distant elements ζt−3, ζt−4, etc.’ (ibid., page 182). Wold thus
extended the model by taking h = 4, arriving at the process

ζ(t) − 0.8100ζ(t − 1) + 0.7452ζ(t − 2) − 0.0987ζ(t − 3) + 0.2101ζ(t − 4) = η(t)
(7.56)

The correlogram of this process is shown in Figure 7.4(b) and is seen to be almost
identical to that from (7.55) although here, of course, rk = rk for k ≤ 4. The roots
of (7.56) are 0.5385 ± 0.6814i and −0.1335 ± 0.5106i, so that two of the roots
are reasonably close to those of (7.55). Wold found that an improved fit to the
empirical correlogram was obtained by adjusting the roots to 0.5888 ± 0.6540i
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and −0.20 ± 0.58i, leading to

ζ(t) − 0.7776ζ(t − 1) + 0.6797ζ(t − 2) − 0.1342ζ(t − 3) + 0.2914ζ(t − 4) = η(t)
(7.57)

This is also shown in Figure 7.4(b) and Wold regarded the general shape as
being ‘rather satisfactory’. For (7.56), the relation (7.53) gives σ2(η) = 0.371σ2(ζ),
which represents a slight increase in efficiency over (7.54) as compensation for
introducing two further parameters.

7.30 Forecasts of the cost of living index may be calculated using equation
(7.22). For a model of the type (7.57), these forecasts are built up as

Ft [ζ(t + 1)] = (1 + a1 + a2 + a3 + a4)μ − a1ζt − a2ζt−1 − a3ζt−2 − a4ζt−3

Ft [ζ(t + 2)] = (1 + a1 + a2 + a3 + a4)μ − a1Ft [ζ(t + 1)] − a2ζt − a3ζt−1 − a4ζt−2

and so on. These forecasts, calculated as F1912[ζ(1913)] = 41.4, F1912[ζ(1914)] =
5.2, etc., are shown in Figure 7.3 up to 1930, i.e., for k up to 18. Also shown are
the set of forecasts F1913[ζ(1914)], etc., up to 1930.

The two forecasts curves in [Figure 7.3] yield a good illustration of the progno-
sis situation in an approach of linear autoregression. Firstly, while a forecast
Ft [ζ(t + k)] is often rather efficient for small k-values, the efficiency vanishes
asymptotically as k increases. Further, as soon as we are in a position to take
a new observation ζt+1 into consideration when forming the prognosis, the
new forecast curve is often substantially modified; how much, will depend
on the residual ηt+1 = ζt+1 − Ft [(t + 1)]. – Summing up, it is the short forecasts
that are efficient. In this respect, we meet the same situation as in the scheme
of moving averages, and the same contrast to the scheme of hidden period-
icities. On the other hand, under special circumstances the oscillations in
a scheme of linear regression are nearly functional, viz. nearly strictly peri-
odic – as remarked in discussing the sinusoidal limit theorem . . . , processes
of hidden periodicities can be obtained as limit cases of the schemes of linear
autoregression. (ibid., page 187)

7.31 Wold finally considered how linear autoregressions were formed by the
complete systems analysed in economics by Frisch (1933) and Tinbergen (1937).
A simple example of a complete system is given by

ξ(t) = c1ζ(t − 1) + η′(t)
ζ(t) = d0ξ(t) + d1ξ(t − 1) + η′′(t)
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Such a system may be rewritten as

ζ(t) = d0c1ζ(t − 1) + d1c1ζ(t − 2) + (d0 + d1)η′(t) + η′′(t)

i.e., as (7.51) with ai = −dic1, i = 0, 1, and ηt = (d0 + d1)η′(t) + η′′(t).

7.32 Wold’s monograph was rightly hailed as a major contribution to the foun-
dations of time series analysis, fusing together the intuitive autoregressive and
moving average models of Yule, Slutzky and Walker, developed in response to
observing physical and economic phenomena, with the advances in probabil-
ity theory made by the Russian mathematicians Kolmogorov and Kinchine. But
there is more to Wold’s contribution, for he also introduced the first formal con-
cepts in the theory of forecasting and made suggestions as to how these models
may be arrived at by examining the contrast between empirical and hypothetical
correlograms.

Wold, however, was acutely aware of the limitations of his framework, most
notably in the absence of an inferential framework to bring to bear on the
model selection process – a subject that, unsurprisingly, would quickly engage
the attention of the new breed of mathematical statisticians encouraged by the
work of Wold to research in the area of time series. Wold was also concerned
with two other problems that had been avoided by focusing attention just on sta-
tionary time series – the necessity for detrending an ‘evolutive’ series before this
modelling framework could be employed and the possibility that observed time
series might be generated by a nonlinear process. Again, these were to become
major research agendas in subsequent developments in time series modelling.
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8
Generalizations and Extensions of
Stationary Autoregressive Models:
From Kendall to Box and Jenkins

Oscillatory autoregressions

8.1 After being introduced by Yule and Walker and having its theoretical foun-
dations established by Wold, the autoregressive model was further developed
in a trio of papers written during the Second World War by Maurice Kendall
(1943, 1944, 1945a).1 Because of his interest in what seemed to be systematic
fluctuations in a wide variety of agricultural time series, Kendall’s focus was
on ‘oscillatory’ time series generated by the second-order autoregressive process
studied by Yule (1927)2

xt + axt−1 + bxt−2 = εt (8.1)

for which the roots of the characteristic equation z2 + az + b = 0 are assumed to
be the complex conjugates α ± iβ. The complementary function of (8.1) is then

pt (A cos θ t + B sin θ t) (8.2)

where p = +√
b,

θ = tan−1 β

α
= tan−1

√(
4b
a2

− 1
)

= cos−1
( −a

2
√

b

)

and A and B are arbitrary constants (cf. §6.6). Assuming b > 0, 0 < p < 1, and
4b > a2, the complementary function (8.2) represents a damped harmonic with
a fundamental period of 2π/θ. If ξt is a particular value of (8.2) such that ξ0 = 0
and ξ1 = 1, so that A = 0, B = 1/p sin θ, and

ξt = ptB sin θ t = pt sin θ t/p sin θ = pt sin θ t/p tan θ cos θ

= 2
√

(4p2 − a2)
pt sin θ t

183
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then a particular integral of (8.2) is
∑∞

j=0 ξjεt−j+1 and the complete solution
becomes

xt = pt (A cos θ t + B sin θ t) +
∞∑

j=0

ξjεt−j+1

If the series was ‘started up’ some time ago, so that the complementary function
has been damped out of existence, then this solution is just

xt =
∞∑

j=0

ξjεt−j+1

which is a moving sum of a random series with damped harmonic weights. For
a long series, Kendall showed that the autocorrelations were given by

ρk = pk sin (kθ + ψ)
sin ψ

tan ψ = 1 + p2

1 − p2
tan θ

so that, apart from a constant factor, ρk is given by the product of the damp-
ing factor pk and a harmonic term which has the fundamental period of the
generating equation (8.1). Using the systems of equations in §7.18, it is easily
shown that

ρ1 = − a
(1 + b)

ρ2 = a2 − b(1 + b)
1 + b

with subsequent autocorrelations being computed using the recursion

ρk + aρk−1 + bρk−2 = 0

Focusing on the oscillatory characteristics of both the generated series xt and its
correlogram, Kendall pointed out that, although ρ0 = 1 will always be a peak at
the beginning of the correlogram, the presence of the phase angle ψ implies that
the interval from k = 0 to the next maximum of the correlogram will not be equal
to the fundamental period 2π/θ = 2π/cos−1 (−a/2

√
b). Consequently, Kendall

preferred to judge the length of the period by measuring from upcross to upcross
(i.e., values of k at which the correlogram turns from negative to positive) or from
trough to trough of the correlogram – if peaks are to be preferred, then the peak at
k = 0 should not be counted. On the assumption that the εt are normal, Kendall
(1945a, Appendix) showed that the mean distance (m.d.) between upcrosses was

m.d. (upcrosses) = 2π

cos−1ρ1
= 2π

cos−1 (−a/(1 + b))
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while the mean distance between peaks was

m.d. (peaks) = 2π

cos−1 τ1
, τ1 = −1 + 2ρ1 − ρ2

2(1 − ρ1)
= b2 − (1 + a)2

2(1 + a + b)

The relationship between the variances of the random error εt and the generated
series xt , denoted σ2

ε and σ2
x respectively, is easily shown to be

σ2
ε

σ2
x

= 1 − b
1 + b

((1 + b)2 − a2) (8.3)

a result that will be found useful in §8.8.

8.2 Kendall illustrated these properties of an oscillatory autoregressive pro-
cess by generating 480 observations from the model (8.1) with a = −1.1 and
b = 0.5, i.e.,

xt = 1.1xt−1 − 0.5xt−2 + εt (8.4)

The error process was assumed to be an integer rectangular random variable
ranging from −49 to +49. The observations on this variable, termed Series I,
are listed in Kendall (1945a, Table 2) and are plotted as Figure 8.1. ‘Evidently
systematic movements are present although they are obscured to some extent
by the random variable. The series is, in fact, highly damped, the damping
factor being

√
0.5 = 0.7071, so that we should expect the disturbance function

to exercise considerable influence on the course of the series’ (ibid., page 105).
The frequency distributions of the peak to peak and upcross to upcross inter-

vals are shown in Table 8.1. As τ1 = 0.3, so that cos−1 τ1 = 72.54◦, the expected
mean-distance between peaks is 360/72.54 = 4.96: the observed mean distance
in Series I of 5.05 thus represents an excellent agreement.

The expected mean-distance between upcrosses is 2π/cos−1 (0.7333) = 8.40
compared to an observed value of 8.30. The fundamental period of the gen-
erating equation, however, is 2π/θ = 2π/cos−1 (−a/2

√
b) = 9.25, which is rather

longer.
Given these oscillatory properties of Series I, Kendall considered whether a

standard periodogram analysis would uncover them. The periodogram calcu-
lated by Kendall is shown in Figure 8.2, the top panel for integer values of the
period P up to 50, the bottom panel for a finer mesh of periods between 8 and
9. This led him to conclude that

(t)he results are rather striking. There are about a dozen peaks, two of which,
at 20 and 42, stand out as offering substantial evidence of significant periods.
In fact there are periods almost everywhere except in the right place, at 8 or
9. (ibid., page 106)
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Figure 8.1 480 observations of Kendall’s Series I
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Table 8.1 Distribution of intervals from peak to peak and upcross
to upcross for Series I

Interval Peak-to-peak Upcross-to-upcross
(units) Frequency frequency

2 10 3
3 17 3
4 14 5
5 13 2
6 14 6
7 13 9
8 5 10
9 4 5

10 1 2
11 2 2
12 – 3
13 – 2
14 – 1
15 – 1
17 – 2
29 – 1
Total 93 57

Kendall compared ‘the ambiguous and confusing picture presented by the
periodogram’ with the correlogram of Series I, shown in Figure 8.3.

The damped oscillatory effect is now clearly evident, and the only doubt that
would occur is that after a point the oscillations do not continue to damp
out. This is due to the shortness of the series . . . The average interval between
troughs of the correlogram is 7.2 (or 8.0 if we ignore the doubtful ripple at 41),
moderately close to the mean-distance between upcrosses (but considerably
longer, one may remark, than the mean-distance between peaks).

It seems undeniable that so far as this particular series is concerned the
correlogram gives much better results than the periodogram. Without prior
knowledge of the way in which the series was generated, we should be led by
the correlogram to suspect a simple autoregressive scheme. (ibid., page 110)

Indeed, using the observed serial correlations leads to the scheme

xt = 1.132xt−1 − 0.486xt−2 + εt

which is a good approximation to the true generating equation (8.4).

8.3 Kendall (1943, 1944) applied these ideas to several agricultural series
for England and Wales. Figure 8.4 shows the annual observations from 1871 to
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Figure 8.2 Periodogram of Series I

1934/1935 for wheat prices and sheep population taken from Kendall (1943,
Table 1), while Figure 8.5 shows their correlograms.3 Kendall concluded that
both show ‘real systematic fluctuations’ and used, for the first time, concepts of
statistical significance to affirm this conclusion.

Owing to the comparative shortness of the series one has to safeguard against
being misled by sampling effects and against seeing more in the diagrams
than actually exists. No test is known for the significance of a correlogram.
For any given serial correlation the theory of large samples may be used to
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Figure 8.3 Correlogram of Series I

show that the standard error is approximately 1/
√

n, where n is the number
of pairs entering into the correlation. To test the hypothesis that correlations
are zero we should probably not make a serious misjudgment by using the
standard error to obtain probabilities in the normal way – that is, by reference
to the normal distribution; but it is not clear that the number of terms used
in calculating these particular coefficients (e.g., . . . 64 for r1, 63 for r2 . . . 35 for
r30) is large enough to justify the use of large sample theory. However, taking
the standard error as 1/

√
n, we see that, to the 5 per cent level of probability, a

value of 0.25 would be required for r1 before we could assume its significance,
and a value of 0.33 for r30.

This applies for any given coefficient, but it does not help much in decid-
ing whether the undulatory character of the whole set of serial correlations
is significant of regular oscillation. However, I do not think that anyone
would doubt, after looking at the correlograms . . . that the undulations are
not accidental.’ (Kendall, 1943, pages 102–103; italics in original)4

Focusing attention here on the sheep population data, Kendall considered the
partial correlations of the series (cf. §6.8), the first six being shown in Table 8.2,
along with the continued product of 1 − r2 (as in Table 6.3), concluding that ‘it
is clear that no appreciable gain in representation is to be obtained by taking
the regression on more than two preceding terms’ (ibid., page 104). A similar
pattern of partial correlations is found for the wheat price series, also shown in
Table 8.2.
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Figure 8.4 Detrended wheat prices and sheep population for England and Wales,
1871–1934/5

The autoregression implied by the correlogram of the sheep population
series is

xt = 1.029xt−1 − 0.741xt−2 + εt

Since

tan θ =
√(

4b
a2

− 1
)

= 1.341, θ = 53.3◦

the period is calculated as 360/53.3 = 6.8 years. In the correlogram there are
peaks at k = 7, 17 and 25 years (ignoring k = 0: see §8.1), giving periods of 10
and 8 years with a mean of 9, while there are troughs at k = 3, 13, 21 and 28,
giving periods of 10, 8 and 7 with a mean of 8.3 years. ‘We therefore conclude
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Table 8.2 Partial correlations of the sheep population and wheat price series

Serial correlations Partial correlations 1 − r2 Continued product of 1 − r2

(a) Sheep population

1 0.575 1 0.575 0.669 0.669
2 −0.144 2.1 −0.709 0.497 0.332
3 −0.561 3.12 −0.036 0.999 0.332
4 −0.477 4.123 −0.049 0.998 0.331
5 −0.119 5.1234 −0.089 0.992 0.329
6 0.128 6.12345 −0.209 0.956 0.314

(b) Wheat prices

1 0.568 1 0.568 0.677 0.677
2 0.023 2.1 −0.442 0.805 0.545
3 −0.255 3.12 −0.041 0.998 0.544
4 −0.378 4.123 −0.260 0.991 0.539
5 −0.361 5.1234 −0.097 0.995 0.536
6 −0.313 6.12345 −0.271 0.927 0.497

that the real period is between 8 and 9 years, whereas that given by solving the
autoregressive equation is much shorter’ (ibid., page 107).

Similar calculations for the wheat price series obtains

xt = 0.826xt−1 − 0.448xt−2 + εt
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with θ = 51.9◦ and a period of 6.9 years. The correlogram has peaks at k = 9, 19
and 28 and troughs at k = 4, 14 and 25, thus implying a period of around 10
years, again larger than the fundamental period implied by the autoregressive
scheme.

8.4 Kendall considered whether this underestimation of the period from the
autoregression could be a consequence of an additional superposed random ele-
ment of the type discussed by Yule (1927) (see §6.1). If this is denoted ηt and
assumed to have variance σ2

η and to be independent of the disturbance εt , then,
if superposed on xt , it will increase the variance of the observed series from σ2

x

to σ2
x + σ2

η . The autocovariances will not be affected, so that all autocorrelations
(except ρ0 = 1) will be reduced by the ratio

c = σ2
x

σ2
x + σ2

η

(8.5)

To illustrate this effect, Kendall constructed an autoregressive series of 65
terms as

ut = 1.5ut−1 − 0.9ut−2 + εt (8.6)

where the εt are rectangular random variables in the range −49.5(1) · · · + 49.5.
On to the series so derived were superposed (a) a second rectangular random
variable with the same range, and (b) a further rectangular random variable with
the range −199.5(1) · · · + 199.5, the combined variable then being divided by
10 and rounded up to the nearest integer. These constructed series are given in
Kendall (1944, Table 5) and their correlograms are shown in Figure 8.6. Kendall
showed that, for infinite series, the value of c would be 0.93 for (a) and 0.45 for
(b), so that the autocorrelations for the second series should be much smaller
than those for the first.

The correlograms run according to expectation. The effect of the bigger ran-
dom element is to reduce the amplitude at the beginning of the series and to
introduce some minor irregularities in the data, but not to effect substantially
the lengths of the correlogram oscillations. (ibid., page 114)

From the equations for ρ1 and ρ2 in §8.1, the coefficients a and b can be written
in terms of the serial correlations r1 and r2 as

−a = r1(1 − r2)
1 − r2

1

− b = r2 − r2
1

1 − r2
1

(8.7)

Apart from the fact that r1 and r2 may not be reliable estimates of ρ1 and ρ2 if
the observed series is short, thus imparting sampling error into the estimates of
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a and b, the presence of superposed variation will reduce the serial correlations
by a factor c, leading to the estimates

−a′ = cr1(1 − cr2)
1 − cr2

1

− b′ = cr2 − cr2
1

1 − cr2
1

The estimated fundamental period of the generating equation is then given by

4cos2θ′ = a′2

b′ = cr2
1 (1 − cr2)2

(1 − c2r2
1 )(r2 − cr2

1 )

which Kendall expanded in powers of γ = 1 − c to obtain, as a first-order
approximation,

a′2

b′ = a2

b

(
1 − γ

(1 + b(3b2 − b − a2))
b((1 + b)2 − a2)

)

Hence, if 3b2 − b − a2 > 0 the effect of a superposed variation (i.e., γ positive) is
to make a′2/b′ < a2/b or, in other words, to result in a shortening of the observed
period. The condition 3b2 − b − a2 > 0 is equivalent to

b > 1
6

(
−1 +

√
(12a2 + 1)

)

which is not very restrictive since, in any case, a2 ≤ 4 and 4b ≥ a2. Kendall was
thus led to
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the interesting conclusion that if there is any superposed random variation
present, the period calculated from the observed regression equation accord-
ing to formulae [8.7] will probably be too short even for long series. Yule
himself found too short a period for his sunspot material and, suspecting
that it was due to superposed variation, attempted to reduce that variation
by graduation [§6.4]. The result was a longer period more in accordance with
observation. It does not appear, however, that the superposed variation in his
case was very big. In a number of agricultural time series which I have exam-
ined it is sometimes about half the variation of the series and the effect on the
period as calculated from the serial correlations is very serious. For instance,
in the cases of wheat prices and sheep population referred to above, formu-
lae [8.7] give periods of 7.0 and 6.8 years, whereas the correlograms indicate
periods of about 9.5 and 8.5 years respectively. (ibid., page 116)

To demonstrate this effect, the correlogram of series (b) in Figure 8.6 has
r ′
1 = 0.486 and r ′

2 = 0.133, thus giving, according to (8.7),

−a′ = 0.552 b′ = 0.135 cos θ′ = −a′

2
√

b′ = 0.751 θ′ = 41.3◦

which corresponds to a period of about 8.7 years. In contrast, since it is known
that a = −1.5, b = 0.9 and θ = 37.7◦, the true period is 9.5 years.

This may not seem to be too large an effect, given that the first two serial cor-
relations have been reduced from 0.78 and 0.33 to 0.49 and 0.13, respectively.
Kendall argued, however, that the example served to bring out the difficulties
associated with short series and the consequent unreliability of coefficients cal-
culated from the first two serial correlations in such situations, pointing out that
if r ′

2 = 0.18 rather than 0.13 then an increased period of about 12 years would
have been obtained and if r ′

2 = 0.20 no solution would be possible since then
a′2 > 4b′ and cos θ′ > 1. Both these changes in values were well within the one
standard error bound of 1/

√
65 = 0.12.

Kendall also pointed out that the proportionate declines in the first two serial
correlations brought about as a consequence of superposed variation were rather
different, being 0.49/0.78 = 0.63 and 0.13/0.33 = 0.40 respectively, making it
illegitimate to conclude that r1 and r2 were reduced by a constant proportion c.
In fact, Kendall went on to show that, even in long series where it is legitimate to
make this assumption, the length of the period was very sensitive to superposed
variation, providing an example based on (8.6) in which a superposed variation
of about 10% of the total (c = 0.9) shortened the period by around one year.

8.5 Kendall employed these results to investigate the oscillatory properties of
the wheat price series of Figure 8.4. The correlogram shown in Figure 8.5 has
upcrosses at about 7.5, 17.2 and 26.1 years, giving periods of 9.7 and 8.9 years
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with a mean of 9.3 years, with a similar result being obtained from the troughs in
the correlogram. Calculating a′ and b′ by (8.7) with r ′

1 = 0.5773 and r ′
2 = 0.0246

gives

a′ = −0.8446 b′ = 0.4630

so that

cos θ′ = 0.6206 θ′ = 51.63◦

with an estimated period of 6.97 years. As this is rather smaller than that
calculated from the correlogram, Kendall suspected the existence of super-
posed variation. To estimate the variance of the superposed element η, he
assumed that this was random with no periodic terms of very short period,
thus enabling him to use the variate differencing method of Chapter 4. By
taking up to 10th differences of the original series (i.e., before the trend was
eliminated), Kendall estimated the random variance as 27.72. Since the total
variance of the series is 272.8, this gives c as 1 − (27.72/272.8) = 0.90, so
that r1 = r ′

1/c = 0.5773/0.90 = 0.641 and, similarly, r2 = 0.027. From these are
obtained

a = −1.059 b = 0.652 cos θ = 0.6551 θ = 49.07◦

giving a period of 7.34 years, which is still too short.
To produce a period of 9.3 years would require a random superposed variance

of about 25 per cent, rather than 10 per cent, of the total variance and this led
Kendall to question the assumption of a random superposed variation:

we have little ground for expecting that it should be. A positive correlation
between successive values of η will reduce the variance shown as random by
the variance difference method and unless we have prior reason to suppose
that η is random the values given by the variate difference method are likely
to be too small. Unfortunately we rarely have any prior knowledge of η, but
from general economic considerations one would not be surprised to find
that there do exist positive correlations from one year to the next, owing to
the enduring nature of some of the causes which can give rise to superposed
variation. I conclude generally that discrepancies of the type here considered
support the view that the period is to be determined from the correlogram,
not from solution of the regression equation. (ibid., pages 118–19)

Interactions and cross-correlations between time series

8.6 After mentioning extensions to higher-order and nonlinear autoregressive
schemes, in his final paragraph Kendall (1944) introduced a further potential
difficulty.
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A more serious problem arises if the series ε is itself not random, a state of
affairs which one fears might be fairly common in economic series. To take
the wheat price data once again, it would not be surprising to find that the
wheat price oscillations were regenerated by a series of disturbances, part of
which were attributable to variations in acreages, yields, or the prices of other
crops. Such disturbances might themselves be oscillatory. For such cases the
problem becomes exceedingly complicated. To discuss it at all satisfactorily
one would require a long series or collateral evidence in the form of other
series of a similar character. If there is a royal road in this subject it has not
yet been discovered. (ibid., page 119)

In fact, Kendall (1943) had already addressed the case in which the oscillations
of two series could be correlated.

When a number of products are associated or are likely to be affected together
by external shocks there may appear interactions of a very complicated kind.
Movements in one series may affect the disturbance function in others, and
in consequence the functions may cease to be random: and even if they con-
tinue to be random, the functions for different products may be correlated.
(ibid., page 112)

To analyse such a situation, Kendall used the cross-correlations first introduced
over forty years earlier by Hooker (§2.6), which were denoted rxy(k) using the
notation introduced in §4.12. Suppose there are two series of the form (8.1) with
solutions

xt =
∞∑

j=0

ξjεt−j+1

and

yt =
∞∑

j=0

χjζt−j+1

The covariance between xt and yt+k is then given by

E(xt , yt+k) =
∞∑

t=−∞

⎛

⎝
∞∑

j=0

ξjεt−j+1

⎞

⎠

⎛

⎝
∞∑

j=0

χjζt−j+1

⎞

⎠
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Kendall assumed that the disturbances were random but that ξt = μζt , so that
an external disturbance affects both series to a similar extent but in different
proportions. The covariance then reduces to

E(xt , yt+k) =
∞∑

j=0

(ξjχj+k)μ2σ2
ζ

so that it and the cross-correlation rxy(k) will be proportional to
∑

ξjχj+k. If

ξj = A1p j
1 sin θ1j χj = A2p j

2 sin θ2j

then

rxy(k) ∝ pk
2

∞∑

j=0

p j
1p j

2 sin θ1j sin θ2(j + k) (8.8)

Thus, for k ≥ 0, rxy(k) will have the appearance of a damped sinusoid because of
the presence of pk

2. For k ≤ 0 the effect will be the same except that the damping
will be according to the factor pk

1, so that the damping is not symmetrical and
thus rxy(k) 	= rxy(−k).

8.7 Figure 8.7 shows the sheep and cow population series, while the cross-
correlation function rcs(k), using an obvious nomenclature, is shown in Figure
8.8: Kendall referred to this as the lag correlogram. The series clearly show a similar
pattern of oscillations, while the lag correlogram appears to be of the type arrived
at above, although Kendall was careful to point out that the assumptions made
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Figure 8.7 Cow and sheep populations for England and Wales, 1871–1935
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to reach (8.8) were ‘rather specialized, and unlikely to be realized exactly in
practice’ (ibid., page 113). Nevertheless, he concluded that

the [cross-]correlations . . . reach a maximum for k = 0, which indicates that
the oscillations have some cause in common. It may be inferred that the
oscillations do not take place one at the expense of the other – that is to
say, an increase in cows is not accompanied by a decline in sheep. On the
contrary, the two seem, on the average, to react in the same direction. This
conforms to the idea that the oscillations in livestock populations are excited
by disturbance functions outside the farming system. (ibid., page 116)

‘Internal’ correlations and the lambdagram

8.8 In his final paper on time series, Yule (1945) broke away from the analy-
sis of oscillatory processes to consider an alternative way of characterizing the
properties of a time series.5 This was based on a result in Yule and Kendall (1950,
page 390) concerning the variance of the means of independent samples drawn
from a time series and which focused on the behaviour of the quantity

λn = 2
n

((n − 1)ρ1 + (n − 2)ρ2 + · · · + ρn−1) (8.9)

as n increases. This can be written as

λn = 2
n

Tn
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where

Tn =
n−1∑

i=1

Si Si =
n−1∑

i=1

ρi

so that it is the second sum of the serial correlations scaled by the factor 2/n. If
Sm has a finite value such that m and Tm become negligible when compared to
n and Tn, then the limiting value of λn is 2Sm.

Yule termed λn the coefficient of linkage. If λn = 0 then either all of the serial
correlations are zero or any positive correlations are balanced by negative corre-
lations. Yule showed that −1 < λn < n − 1 and the implications of these limits are
revealed when we use Yule’s result that the variance of the means of indepen-
dent samples of length n is (σ2/n) (1 + λn), where σ2 is the variance of the series
itself. The maximum value λn = n − 1 occurs when ρi = 1 for i = 1, . . . , n − 1, so
that the terms of samples of size n are completely linked together and the means
of the successive samples have the same variance as the series itself. The mini-
mum value λn = −1 is achieved when the terms in the sample are as completely
negatively linked as possible (bearing in mind that not all pairs in a sample can
have a correlation of −1) and the means of the successive samples have zero
variance and hence do not vary at all. If λn = 0 then the terms are unlinked and
the means of successive samples behave like means of random samples. Yule
termed a plot of λn against n a lambdagram.

If a correlated series is formed by summing a random series in overlapping
runs of k terms, i.e., as vt = ∑k

j=1 ut+j, then ρi = (k − i)/k, i = 1, . . . , k − 1, ρi = 0,
i ≥ k, Sn = 1/2(k − 1) and, in the limit, λn = k − 1. Thus all values of λn are positive
and the lambdagram clearly approaches a limit, as is seen in Figure 8.9, which
displays the lambdagram for k = 5.

Figure 8.10 displays calculated lambdagrams for a variety of series analysed
by Yule and Kendall, as well as the sunspot index (n is generally set at the
value chosen by Yule). They display a variety of patterns, with Kendall’s agri-
cultural series having similar lambdagrams both between themselves and with
Beveridge’s wheat price index. The sunspot index has a lambdagram that is gen-
erally increasing towards a maximum that appears to be in the region of 3.75,
while the lambdagram of Kendall’s series I looks to be declining towards a value
of around 1.2. Since this latter series is generated by the oscillatory process (8.4),
Kendall (1945b) analysed the implications for the lambdagram of this underly-
ing generating process. For the process of §8.1, Kendall showed that the limiting
value of the lambdagram for large n is

λ = −2(a + b + b2)
(1 + b)(1 + a + b)

(8.10)
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Figure 8.9 Lambdagram for a correlated series formed by summing the terms of a random
series in overlapping groups of five

If b = 1 then it is easy to see that λ = −1, while using (8.3) and (8.7) allows λ to
be written as

λ = 2
1 + a + b

(ρ1 − b)

For an oscillatory process 1 + a + b = (1 − ρ1)/(1 + b) ≥ 0 because b > 0 and
−1 ≤ ρ1 ≤ 1. Hence λ will be positive or negative depending on whether ρ1 is
greater than or less than b, the square of the damping factor p.

8.9 Of course, the ‘true’ autocorrelations are given by ρ0 = 1 and ρ1 = −a/(1 + b)
followed by the recursion ρi+2 = −aρi+1 − bρi. The set of autocorrelations thus
generated with a = −1.1 and b = 0.5 can then be used to calculate the ‘theoretical’
lambdagram, which is shown with the empirical lambdagram of Series I in Figure
8.10. The limiting value from (8.10) is λ = 1.167 and by n = 50 both the observed
and theoretical lambdagrams are consistent with this and are themselves almost
identical. However

throughout the previous course of the lambdagram the observed values are
much higher than the theoretical values.

It seems clear that these differences are due to the failure of the observed
correlations to damp out according to theoretical explanation [cf. the discus-
sion of §8.2]. If this is the correct explanation I should expect it to be equally
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Figure 8.10 Calculated lambdagrams for a variety of time series

possible on occasion for the observations to be systematically lower than the
theoretical over parts of the range. Series I, it is to be remembered, is based
on 480 terms and we are entitled to expect that for shorter series observation
and theory will be less in agreement. (Kendall, 1945b, page 228)

Values for a and b for each of the other series shown in Figure 8.10 can be
computed using (8.7) and the limiting values of the lambdagram calculated
using (8.10). This produces λ values of −0.421, −0.394 and 0.004 for the sheep,
wheat and cow series, 0.876 for the Beveridge wheat index and 0.935 for the
sunspot index. From Figure 8.10 it is clear that none of these limiting values
look to be very close to the values that the empirical lambdagrams look to
be tending towards. While Kendall thought that short oscillatory series would
give rise to serial correlations that did not damp out according to theoretical
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expectation, and hence empirical lambdagrams at odds with their theoreti-
cal counterparts, an alternative explanation could be that these series are not
adequately represented by oscillatory processes, so that more general autoregres-
sions are required. What is lacking here, of course, is a method for selecting the
appropriate autoregression and, more generally, of assessing serial correlations
for their statistical significance, a method that will be developed in Chapter 9.

Mixed autoregressive-moving average processes

8.10 The general pth-order autoregression

xt + a1xt−1 + · · · + apxt−p = εt

was generalized by (A.M.) Walker (1950) to include a moving average of order q:

xt + a1xt−1 + · · · + apxt−p = εt + b1εt−1 + · · · + bqεt−q (8.11)

For xt to be stationary the roots of the characteristic equation zp + a1zp−1 + · · · +
ap = 0 are required to have moduli less than unity and, for the moving average
to be regular, Wold’s conditions of §7.21 need to hold. Box and Jenkins (1968,
1970) referred to a model of the form (8.11) as a general mixed autoregressive-
moving average model of order (p, q) and gave it the acronym ‘ARMA (p, q)’, arguing
that such models would often offer parsimonious representations of a time series
in the sense that the orders of the ARMA process will be much smaller than
the orders required by pure autoregressive or moving average representations:
typically p and q would be 0, 1 or 2 in most applications.6

Box and Jenkins introduced a notation for ARMA processes that has since
become standard. If xt is allowed to have a non-zero mean μ, define the
deviation as x̃t = xt − μ and write the ARMA (p, q) process for x̃t as

x̃t − φ1x̃t−1 − · · · − φpx̃t−p = at − θ1at−1 − · · · − θqat−q (8.12)

where at is a ‘white noise’ series consisting of uncorrelated random normal
deviates all having mean zero and variance σ2

a . To manipulate models such as
(8.12), it is convenient to define the backshift operator B such that Bxt ≡ xt−1,
Bjxt ≡ xt−j and Bjμ = μ. Using B, (8.12) can be written

φp(B)x̃t = θq(B)at (8.13)

where

φp(B) = 1 − φ1B − · · · − φpBp
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θq(B) = 1 − θ1B − · · · − θqBq

are polynomials in B of degree p and q and are called the autoregressive and mov-
ing average operators respectively. The stationarity and invertibility (regularity)
conditions for (8.12) may then be expressed by saying that the roots of φp(B) = 0
and θq(B) = 0 must lie outside the unit circle.

If the model is expressed in terms of xt rather than the deviations x̃t , (8.13)
becomes

φ(B)xt = θ0 + θ(B)at

where

θ0 = (1 − φ1 − · · · − φp)μ

and the subscripts to the operators have been omitted as there is here no danger
of confusion.

It is easily shown (for example, Box and Jenkins, 1970, chapter 3.4) that the
autocorrelations will be given by φ(B)ρk = 0 for k > q, the first q autocorrelations
depending on the q moving average parameters as well as the p autoregres-
sive parameters. The p values ρq, ρq−1, . . . , ρq−p+1 provide the necessary starting
values for φ(B)ρk = 0, k > q, a recursion which then entirely determines the auto-
correlations at higher lags. If q − p < 0, the whole autocorrelation function will
be dictated by φ(B) and the starting values, but if q − p ≥ 0 there will be q − p + 1
initial values ρq, ρq−1, . . . , ρq−p which do not follow this general pattern. The
partial autocorrelation function (cf. §6.8) will be infinite in extent, behaving
eventually like the partial autocorrelation function of a pure moving average
process.

An important member of this class of model is the ARMA (1,1) process

(1 − φB)x̃t = (1 − θB)at (8.14)

for which it can be shown that

ρ1 = (1 − φθ)(φ − θ)
1 + θ2 − 2φθ

ρj = φ j−1ρ1 j > 1 (8.15)

so that there is one initial value ρ1 that is a function of both φ and θ before
the remaining autocorrelations follow the geometric decay of an AR(1) process.
The stationarity and invertibility conditions are −1 < φ < 1 and −1 < θ < 1 and,
along with (8.15), these can be used to show that ρ1 and ρ2 must lie in the region

|ρ2| < |ρ1|

ρ2 > ρ1(2ρ1 + 1) ρ1 < 0
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ρ2 > ρ1(2ρ1 − 1) ρ1 > 0

The partial autocorrelation function has a single initial value of ρ1 and thereafter
behaves like the partial autocorrelation function of a pure MA(1) process: if θ > 0
it is dominated by a smoothly damped exponential which decays from a value
of ρ1, with sign determined by the sign of (φ − θ); if θ < 0 the exponential decay
oscillates.

Generating functions

8.11 Wold’s Theorem 5 (§7.12) states that a necessary and sufficient condition
for a stationary process to exist is that the autocorrelations ρk are the coefficients
of a non-decreasing function W(ϑ) such that W(0) = 0, W(π) = π and

ρk = 1
π

∫ π

0
cos kϑ · dW(ϑ) (8.16)

The inversion formula which allows W(ϑ) to be uniquely determined by the
autocorrelation coefficients,

W(ϑ) = ϑ + 2
∞∑

k=1

ρk

k
sin kϑ

is termed the generating function of the ρk by Wold. The corollary to the
theorem states that if the autocorrelations are absolutely convergent then the
derivative of W(ϑ) will exist and will be given by

W ′(ϑ) =
∞∑

k=−∞
ρk cos kϑ = 1 + 2

∞∑

k=1

ρk cos kϑ (8.17)

Moran (1949) referred to W(ϑ) as the integrated power spectrum of the process
and W ′(ϑ) as the spectral density. Following Quenouille (1947a) and Moran
(1949), defining z = eiϑ enables (8.17) to be written as

W ′(z) =
∞∑

k=−∞
ρkzk

or, in terms of the autocovariances γk, as

γ(z) =
∞∑

k=−∞
γkzk (8.18)
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This is termed the covariance-generating function (c.g.f.) and Moran (1949)
showed that if the autocorrelations are absolutely convergent then the γk are
uniquely determined and (8.18) converges for |z| = 1. Note that γ(eiϑ) = γ0W ′(ϑ).

Suppose that we now have such a process {xt } with autocovariances γk and
c.g.f. γx(z). A new process {yt } is then defined as

yt =
∞∑

i=0

αixt−i

where
∑∞

i=0 αi is absolutely convergent. {yt } will then be stationary with
autocovariances

γy,k = γy,−k = E(ytyt+k)

= E

{( ∞∑

i=0

αixt−i

) ( ∞∑

i=0

αixt−i

)}

=
∞∑

i=0

∞∑

j=0

αiαjγk+i−j

and c.g.f.

γy(z) =
∞∑

k=−∞
γy,kzk

=
∞∑

k=−∞

∞∑

i=0

∞∑

j=0

αiαjγk+i−jzk

=
( ∞∑

i=0

αiz−i

) ⎛

⎝
∞∑

j=0

αjzj

⎞

⎠ γx(z) (8.19)

which shows the effect on the c.g.f. of taking a moving average.
As an example, consider

xt + a1xt−1 + · · · + apxt−p = ηt (8.20)

where {ηt } is a random process, so that γη(z) = 1, and the characteristic equation

zp + a1zp−1 + · · · + ap = 0

has all its roots outside the unit circle |z| = 1. Using (8.19), we then have

(1 + a1z + · · · + apzp)(1 + a1z−1 + · · · + apz−p)γx(z) = 1 (8.21)
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from which it follows that

γ0W ′(ϑ) = [(1 + a2
1 + · · · + a2

p) + 2(a1 + a1a2 + · · · + ap−1ap) cos ϑ

+ · · · + 2ap cos pϑ]−1

This result can be extended by dropping the assumption that {ηt } is random,
so that we have an ARMA process. The c.g.f. γx(z) can then be obtained from
(8.21) by replacing the right-hand side with γη(z). Moran (1949, 1950) used this
approach to provide a much shorter proof of, and generalizations to, Slutzky’s
sinusoidal limit theorem of §5.15.

If the variances of xt and ηt are σ2
x and σ2

η , respectively, then the autocorrelation
generation function (a.g.f.) is defined from the c.g.f. as

ρx(z) =
∞∑

k=−∞
ρx,kzk = σ2

η

σ2
x
γx(z) (8.22)

and this will be found to be very useful in Chapter 9.
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9
Statistical Inference, Estimation
and Model Building for Stationary
Time Series

The sampling theory of serial correlations

9.1 As we saw in §8.3, Kendall (1945a) expressed frustration at the lack of a
sampling theory related to serial correlations when attempting to interpret the
correlograms obtained from his experimental series.

The significance of the correlogram is . . . difficult to discuss in theoretical
terms. . . . (O)ur real problem is to test the significance of a set of values
which are, in general, correlated. It is quite possible for a part of the correlo-
gram to be below the significance level and yet to exhibit oscillations which
are themselves significant of autoregressive effects. At the present time our
judgments of the reality of oscillations in the correlogram must remain on
the intuitive plane. (ibid., page 103)

In his discussion of the paper from which this quote is taken, Bartlett actually
took Kendall to task for not attempting any form of inference: ‘it might have
been useful, and probably not too intractable mathematically, to have evaluated
at least the approximate theoretical standard errors for the autocorrelations’
(ibid., page 136). This rebuke may have been a marker for a major development
in the sampling theory of serial correlations that was to be published within a
year of the appearance of Kendall’s paper.

Large-sample theory

9.2 This paper was Bartlett (1946), which, by extending results presented a
decade earlier (Bartlett, 1935), aimed to ‘amplify some suggestions I made in
the discussion on [Kendall’s] paper about the sampling errors of a correlogram’
(Bartlett, 1946, page 27). Bartlett’s focus was on large samples and so attention

207
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was concentrated on the serial correlation formula

rk =
1
T

∑T−k
t=1 xtxt+k

1
T

∑T
t=1 x2

t

= c
υ

, (9.1)

say, regarded as an estimate of the true autocorrelation ρk of the zero mean,
variance σ2

x , and normally distributed series xt , t = 1, 2, . . . , T . Writing the total
differential of (9.1) as δrk = δc/υ − cδυ/υ2, so that

(δrk)
2 = (δc)2

υ2
− 2cδcδυ

υ3
+ c2 (δυ)2

υ4

then, on setting υ = 1 without loss of generality and equating (δrk)2 with V(rk),
etc., we have

V(rk) = V(c) − 2cCov(c, υ) + c2V(υ)

Bartlett showed that

V(υ) = 2
T

∞∑

i=−∞
ρ2

i

V(c) = 1
T

∞∑

i=−∞
(ρ2

i + ρi+kρi−k)

Cov(c, υ) = 2
T

∞∑

i=−∞
ρiρi+k

so that the variance of rk could be expressed as

V(rk) = 1
T

∞∑

i=−∞
(ρ2

i + ρi−kρi+k − 4ρkρiρi+k + 2ρ2
i ρ2

k ) (9.2)

This result shows that, even for large samples with the simplifying assumption
of normality, the variance of rk depends on all the autocorrelations and these,
of course, cannot all be estimated directly from a finite series.

9.3 Useful approximations may, however, be obtained in certain cases. If xt is
random, so that ρk = 0, k �= 0, then, from (9.2), V(rk) = 1/T , which is the variance
of a correlation coefficient from a bivariate normal sample and was the formula
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employed by Kendall (1943): cf. §8.3. Using the fact that ρ−k = ρk then, if ρi �= 0,
0 < i < k, and ρi = 0, i ≥ k, from (9.2) we have

V(rk) = 1
T

k−1∑

i=−(k−1)

ρ2
i = 1

T
(1 + 2ρ2

1 + · · · + 2ρ2
k−1) (9.3)

and it may also be shown that

σ4
x Cov(rk, rk+j) = 1

T

∞∑

i=−∞
ρiρi+j (9.4)

If xt is generated by an AR(1), or Markov, process, so that ρk = ρk, then1

V(rk) = 1
T

(
(1 + ρ2)(1 − ρ2k)

1 − ρ2
− 2kρ2k

)

which, for large k, becomes

V(rk) = 1
T

∞∑

i=−∞
ρ|2i| = 1

T
1 + ρ2

1 − ρ2
(9.5)

Equations (9.3) and (9.4) can also be derived directly using the generating
function approach of §8.11, since from the a.g.f. (8.22), it can be seen that

(ρ(z))2 =
∞∑

j=−∞
zj

∞∑

i=1

ρiρi+j

will deliver the sums required in (9.3) and (9.4). For example, as the a.g.f. of a
Markov process is

ρ(z) = −1 + 1
1 − ρz

+ 1
1 − ρz−1

it follows that

(ρ(z))2 =1 + (1 − ρz)−2 + (1 − ρz−1)−2

− 2(1 − ρz)−1 − 2(1 − ρz−1)−1 + 2(1 − ρz)(1 − ρz−1)

The coefficient of z0 is then

1 + 1 + 1 − 2 − 2 + 2(1 + ρ2 + ρ4 + · · ·) = 1 + ρ2

1 − ρ2
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thus delivering (9.5), while the coefficient of zk is given by

(k + 1)ρk − 2ρk + 2(ρk + ρk+2 + · · ·) = ρk
(

k − 1 + 2
1 − ρ2

)

Hence, using (9.4), the covariance between rk and rk+j in a Markov scheme is

Cov(rk, rk+j) = 1
T

ρk
(

k − 1 + 2
1 − ρ2

)

and the correlation between them is then

ρk((k + 1) − (k − 1)ρ2)
1 + ρ2

9.4 Bartlett (1946) used these results to analyse the correlogram of Kendall’s
(1944) artificial series of length T = 65 generated as (8.4) but with the error
process now an integer rectangular random variable ranging from −9.5 to
+9.5 (cf. the process in §8.2). Two estimates of the correlogram and the
true autocorrelations, calculated from ρk = 1.1ρk−1 − 0.5ρk−2, with ρ0 = 1 and
ρ1 = 1.1/1.5 = 0.733, are shown for k up to 30 in Figure 9.1 (two-standard error
bounds under the null hypothesis that the series is random are 2/

√
65 ≈ 0.25).

The first estimate of the correlogram uses the large sample formula (9.1), while
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Figure 9.1 Correlogram and autocorrelations of Kendall’s (1944) artificial series
xt − 1.5xt−1 + 0.5xt−2 = ut



9780230290181_10_cha09.tex 27/4/2011 13: 55 Page 211

Inference, Estimation and Model Building 211

the second uses the formula employed by Kendall (1944, equation (1)):

r ′
k =

∑T−k
t=1 xtxt+k

(∑T−k
t=1 x2

t

∑T−k
t=1 x2

t+k

) 1
2

Neither rk nor r ′
k die down as k increases in the manner predicted by the the-

oretical autocorrelations ρk: indeed, r ′
24 = − 0.43, r ′

25 = − 0.57 and r ′
26 = − 0.56

are unexpectedly large compared to their corresponding ρk values, which by
this time are essentially zero. The ‘large sample’ counterparts, r24 = − 0.24,
r25 = − 0.31 and r26 = − 0.33, are somewhat smaller but still apparently far larger
than they ‘should’ be. However, using (9.3), V(ρk) ≈ 2.44/T for k > 10 and so
these serial correlations have standard errors of approximately 0.20, implying
that, although they are quite large in magnitude, they are not significantly so
(one standard error bounds of ±0.20 are also shown on Figure 9.1).

Large sample goodness of fit tests

9.5 Bartlett (1946) showed that, for linear processes, the formula (9.4) for the
covariance between two observed serial correlations, rk and rk+j, in terms of the
theoretical autocorrelations, could be specialized to

Cov(rk, rk+j) ∼ 1
T

∞∑

i=−∞
(ρiρi−j + ρi−k−jρi+k + 2ρkρk+jρ

2
i − 2ρkρiρi−k−j − 2ρk+jρiρi−k)

which, on defining

λl =
∞∑

i=−∞
ρiρi−l = λ−l

may be written as

Cov(rk, rk+j) ∼ 1
T

(λj + λ2k+j + 2ρkρk+jλ0 − 2ρkλk+j − 2ρk+jλk)

Suppose we have the AR(p) process (8.20). Using (8.22), its a.g.f. is

ρ(z) =
∞∑

i=−∞
ρizi =σ2

η

σ2
x

(1 + a1z + · · · + apzp)−1(1 + a1z−1 + · · · + apz−p)−1 (9.6)

from which it follows that

ρ2(z) =
∞∑

i=−∞
λizi =σ4

η

σ4
x

(1 + a1z + · · · + apzp)−2(1 + a1z−1 + · · · + apz−p)−2
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Following Quenouille (1947a, 1947b), define

(1 + a1z + · · · + apzp)2 =
2p∑

i=0

Aizi (9.7)

Using (9.6) and (9.7) it may be shown that

2p∑

i=0

Aiρj−i = 0 j ≥ p

2p∑

i=0

Aiλj−i = 0 j ≥ 0

Now define the variables

Rs =
2p∑

i=0

Airs−i s > p

Quenouille (1947b) showed that

Cov(rk, Rj) ∼ 0 j > k

∼ σ4
η

Tσ4
x

2p∑

i=0

Aiλi j = k

from which it follows that, for T large, the Rs are independently and normally
distributed about zero with variance

V(Rs) = σ4
η

Tσ4
x

2p∑

i=0

Aiλi

Furthermore, the variables rs − ρs, s = 1, 2, . . . , k, are jointly distributed indepen-
dently of Rs. Thus, if the equations ρs = rs, s = 1, 2, . . . , p, are used to fit an AR(p)
scheme then the Rs can be used to test the adequacy of the fit.

For example, for the Markov scheme xt = ρxt−1 + ηt , for which ρk = ρk and

λk = ρk 1 + ρ2

1 − ρ2
+ kρk

then, since A0 = 1, A1 = − 2ρ and A2 = ρ2, the variables r1 − ρ1 and
Rs = rs − 2ρrs−1 + ρ2rs−2, s ≥ 2, will be independently and normally distributed
with variances (1 − ρ2)/T and (1 − ρ2)2/T .
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9.6 Quenouille (1947b) used this approach to check the adequacy of the
oscillatory models fitted by Kendall (1943, 1945a) using the AR(2) scheme
xt + axt−1 + bxt−2 = ηt . From the relationships in (8.7), the variables

Rs = rs+2 + 2ars+1 + (a2 + 2b)rs + 2abrs−1 + b2rs−2, s ≥ 1

will be distributed with mean zero and variance

V(Rs) = 1
T − s

(
(1 − b)((1 + b)2 − a2)

1 + b

)2

if the scheme is correctly specified. Quenouille focused on the variable
χ2

s = R2
s /V(Rs), which will be distributed as χ2(1), and its accumulation

∑s
j=1 χ2

j ,
which will be distributed as χ2(s), if the AR(2) scheme is indeed the correct
specification (for a related approach, see Whittle, 1952).

For Kendall’s Series I (cf. §8.2), T = 480, a = − 1.1 and b = 0.5, so that

Rs = rs − 2.20rs−1 + 2.21rs−2 − 1.10rs−3 + 0.25rs−4

and

V(Rs) = 0.120
480 − s

Table 9.1 reports the values of Rs, χ2
s and

∑s
j=1 χ2

j for s ≤ 30. Although the statis-
tics are significant at the 10% level for s = 1, no others reach any conventional
level of significance, which should not, of course, come as any surprise given
that this scheme did actually generate the data.

Applying this approach to Kendall’s (1943) wheat price and sheep population
series, analysed as AR(2) schemes in §8.3, found no evidence of misspecification
for the latter series but, for the former, χ2

2 = 4.254, suggesting the possibility that
a higher-order scheme might provide a better fit. Table 9.2 reports the statistics
for the AR(2) scheme fitted to the annual sunspot index from 1702 to 2007
analysed in §6.6, for which a = − 1.39078 and b = 0.69026. Seven of the first 17
χ2

s values are significant, so that the entire sequence of
∑s

j=1 χ2
j are significant,

implying that an AR(2) scheme for the sunspot index offers a poor fit that should
be able to be improved upon.2

9.7 Quenouille (1947b) extended his method to deal with superposed variation
of the type considered in §§8.4–8.5. Further extensions were provided by Bartlett
and Diananda (1950) and A.M. Walker (1950, 1954), who considered the case
of correlated residuals, so that the scheme under test was the ARMA process of
§8.10. Such a test also encompasses Wold’s (1949) test of a pure moving average
scheme.
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Table 9.1 Goodness of fit statistics obtained from fitting an AR(2) scheme to Kendall’s
Series I

s Rs χ2
s

∑s
j=1 χ2

j s Rs χ2
s

∑s
j=1 χ2

j

1 0.0263 2.761 2.761 16 −0.0033 0.043 14.141
2 0.0020 0.015 2.776 17 −0.0027 0.027 14.169
3 0.0199 1.570 4.346 18 0.0064 0.155 14.324
4 −0.0062 0.151 4.497 19 0.0162 1.004 15.328
5 −0.0033 0.044 4.541 20 −0.0108 0.446 15.774
6 0.0236 2.189 6.730 21 −0.0149 0.848 16.622
7 −0.0259 2.646 9.375 22 0.0060 0.139 16.761
8 −0.0247 2.402 11.777 23 −0.0147 0.827 17.588
9 −0.0136 0.728 12.505 24 −0.0188 1.342 18.930
10 −0.0091 0.327 12.832 25 −0.0106 0.425 19.356
11 0.0049 0.095 12.927 26 −0.0189 1.351 20.706
12 0.0148 0.855 13.782 27 −0.0010 0.004 20.710
13 −0.0065 0.163 13.945 28 0.0012 0.005 20.716
14 −0.0056 0.120 14.065 29 0.0010 0.004 20.719
15 0.0029 0.033 14.098 30 0.0083 0.260 20.980

Table 9.2 Goodness of fit statistics obtained from fitting an AR(2) scheme to the sunspot
index

s Rs χ2
s

∑s
j=1 χ2

j s Rs χ2
s

∑s
j=1 χ2

j

1 −0.0249 6.646 6.646 16 0.0207 4.363 55.967
2 0.0100 1.074 7.720 17 0.0273 7.607 63.575
3 −0.0001 0.000 7.720 18 −0.0039 0.151 63.726
4 0.0319 10.806 18.526 19 0.0149 2.242 65.968
5 0.0253 6.777 25.303 20 −0.0097 0.946 66.914
6 0.0368 14.340 39.643 21 −0.0120 1.444 68.358
7 0.0294 9.090 48.733 22 −0.0049 0.237 68.596
8 −0.0083 0.724 49.456 23 0.0026 0.066 68.662
9 0.0044 0.201 49.658 24 −0.0121 1.444 70.106
10 0.0036 0.137 49.795 25 0.0053 0.279 70.384
11 0.0033 0.111 49.906 26 0.0159 2.509 72.894
12 0.0089 0.812 50.717 27 −0.0087 0.745 73.638
13 0.0062 0.391 51.108 28 0.0194 3.681 77.320
14 0.0069 0.492 51.600 29 0.0021 0.045 77.365
15 0.0007 0.005 51.605 30 0.0019 0.034 77.398

Bias in the estimation of serial correlations

9.8 Orcutt (1948) and Moran (1948) defined the sample serial correlation coef-
ficient as in (9.1) but with T − k as the divisor in the numerator and with xt
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explicitly defined to be the deviation of the observed series Xt from its sample
mean X =∑T

t=1 Xt/T , i.e., as

rk =
1

T−k

∑T−k
t=1 xtxt+k

1
T

∑T
t=1 x2

t

xt = Xt − X (9.8)

On the assumption that xt is independently distributed, so that ρk = 0, k ≥ 1,

E(rk) = T
T − k

E
(∑

xtxt+k∑
x2

t

)

= TE
(

xtxt+k∑
x2

t

)

= 1
T − 1

E

(∑
t �=j xtxj
∑

x2
t

)

= 1
T − 1

E

((∑
xt
)2 −∑ x2

t∑
x2

t

)

= − 1
T − 1

(9.9)

since
∑

xt = 0. Thus there is a downward bias in rk even for a random series. If
the serial correlation is defined using the cyclic definition

rc
k =

∑T
t=1 xtxt+k∑T

t=1 x2
t

(9.10)

where it is assumed that xT+t = xt , then it will also be the case that
E(rc

k) = −(T − 1)−1.3

Marriott and Pope (1954) and Kendall (1954) showed that, for the Markov
scheme xt = ρxt−1 + ηt , for which ρk = ρk,

E(rk) = ρk − 1
T − k

(
1 + ρ

1 − ρ
(1 − ρk) + 2kρk

)

to terms of order T−1, denoted O(T−1), so that, for example,4

E(r1) = ρ − 1
T − 1

(1 + 3ρ)
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Thus, for T = 25 and ρ = 0.5, E(r1) ≈ 0.4, and for ρ = 0.9, E(r1) ≈ 0.75. If, on the
other hand, we have the MA(1) scheme xt = ηt + θηt−1, so that ρ1 = θ/(1 + θ2) = ρ

and ρk = 0, k ≥ 2, we obtain, using the method of Kendall (1954),

E(r1) = ρ + 1
T − 1

(1 + ρ)(4ρ2 − 2ρ − 1)

E(r2) = − 1
T − 2

(1 + 2ρ + 2ρ2)

E(rk) = − 1
T − k

(1 + 2ρ) k > 2

Once again, the bias is always downwards (for T = 25 and ρ = 0.5, E(r1) ≈ 0.44,
E(r2) ≈ − 0.11, E(r3) ≈ − 0.09, etc.). Quenouille (1949a) suggested that the bias
of a generic serial correlation r could be reduced by computing the serial cor-
relations for the two halves of the available sample, (1)r and (2)r, and using
r̃ = 2r − 1

2 ((1)r + (2)r), which will be unbiased to O(T−2). For example, for k > 2
(and assuming that T is even for simplicity)

E((1)rk) = E((2)rk) = − 1
T/2 − k

(1 + 2ρ)

so that

E(r̃k) = 2k
(T − k)(T − 2k)

(1 + 2ρ) ∼ O(T−2)

Thus with T = 25 and ρ = 0.5, E(r̃3) ≈ 0.03, which may be compared to
E(r3) ≈ − 0.09 obtained above.

9.9 Kendall (1954), as well as producing ‘cyclic’ versions of these expectations,
cautioned against using such expressions when ρ was near to unity, where the
distribution of r1, for example, is so highly skewed that using expectations as
a criteria for bias is itself open to question (Figures 9.4, 9.6 and 9.7 later in
this chapter illustrate this aspect of the distribution). Moreover, Kendall argued
that expansions of the type being used here are asymptotic and may not be
accurate unless the serial correlations decline rapidly. Although he suggested
that approximations using terms of O(T−2) or O(T−3) may not necessarily be
better, various attempts at obtaining expectations and higher moments using
higher-order expansions have nevertheless been made: see, for example, White
(1961) and Shenton and Johnson (1965).
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Partial autocorrelations

9.10 The approach taken in previous sections may be used to construct large
sample tests of the partial autocorrelations (recall §6.8). The sample partial
autocorrelations (or partial serial correlations) will now be denoted rk·, rather
than r(k · 12 . . . (k − 1)), to economize on notation. If Xt follows an AR(p)
scheme then, for k > p, rk· will be asymptotically normally distributed with
zero mean and variance T−1 or, equivalently, that

√
T · rk· will be distributed as

N(0, 1).
As an example of the application of this result, the first five partial serial

correlations of the sunspot numbers are 0.820, −0.677, −0.144, 0.044 and
0.015 (see Table 6.3). At the 5% level, a partial serial correlation in excess
of 1.96/

√
308 = 0.112 (in absolute value) would reject the hypothesis that the

true partial correlation was zero. The existence of r3· = −0.144 thus provides
strong evidence against the series being generated by an AR(2) scheme, con-
sistent with the finding in §9.6, but the insignificance of r4· and r5· provide
no evidence against an AR(3) specification, although higher order partial serial
correlations may well do so (see the further analysis of the sunspot index in
§§9.43–9.46).

Exact moments of the null distribution of the serial correlation
coefficient

9.11 Alongside the construction of approximate, large sample, goodness of
fit tests, the small sample distribution theory of serial correlation also began
to be developed, with the aim of obtaining, where possible, exact results. Such
exactitude naturally came at a cost, usually that of assuming normality of Xt and
sometimes in using the circular definition of serial correlation and/or assuming
that the mean of Xt was known.

9.12 Anderson (1942) and Dixon (1944) assumed Xt to be independently and
normally distributed with mean μ and variance σ2, so that ρk = 0, k ≥ 1. Using
the cyclic definition rc

1 of the first-order serial correlation from (9.10), they
obtained, as well as E(rc

1) = − 1/(T − 1), the variance

V(rc
1) = T(T − 3)

(T − 1)2(T + 1)

Dixon (1944) also went on to obtain exact expressions for the higher moments:

E(rc
1)2j−1 = −1 · 3 · 5 · · · (2j − 1)

(T − 1)(T + 3)(T + 5) · · · (T + 2j − 1)

E(rc
1)2j = 1 · 3 · 5 · · · (2j − 1)

(T + 1)(T + 3)(T + 5) · · · (T + 2j − 1)
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so that, for example,

E(rc
1)3 = −3

(T − 1)(T + 3)
E(rc

1)4 = 3
(T + 1)(T + 3)

Moran (1948) provided analogous results for the variance of the non-circular
correlation r1 from (9.8),

V(r1) = (T − 2)2

(T − 1)3

and for the third moment:

E(r1)3 = −3(T3 − 2T2 + 2T − 5)
(T − 1)4(T + 3)

although higher-order moments were not given. Analogous results when the
mean of Xt was estimated, rather than being known, were also provided by
these authors.

Moran (1967a) showed that, irrespective of the distribution assumed for Xt ,

V(r1) ≤ T(T − 2)
(T − 1)3

= (T − 2)2

(T − 1)3
+ 2(T − 2)

(T − 1)3

Thus the variance under normality almost attains this maximum: for example,
for T = 20 the maximum variance is 0.0525 while the normal variance is 0.0472.
Moran (1967b, 1970) showed that, for long-tailed distributions, V(r1) could be
much smaller than this: from Moran (1970, Table 1) the variance could be as low
as 0.0307 for a sample of T = 20 drawn from a gamma distribution with index
− 1

2 , and simulation experiments by Cox (1966) showed that it could be even
lower for the Cauchy distribution (although this table also shows that a uniform
distribution has a variance even closer to the maximum than the normal). In
general, though, a variance based on a normal assumption will work quite well
except for long tailed distributions.

Distribution of the first-order serial correlation coefficient under
independence

9.13 Anderson (1942) considered the distribution, under the assumption of
independence and normality of Xt , of the cyclic first-order correlation coef-
ficient rc

1, which will now be denoted simply as r. Anderson used a result
from Cochran (1934) that states that every quadratic form

∑T
t=1
∑T

s=1 atsXtXs

is distributed as
∑m

i=1 ζiνi, where m is the rank of the matrix

A =

⎡

⎢⎢⎢⎢⎢⎣

a11 . . . . . . a1T
...

. . .
...

...
. . .

...

aT1 . . . . . . aTT

⎤

⎥⎥⎥⎥⎥⎦
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of the quadratic form, ν1, . . . , νm are independently distributed as χ2(1), and
ζ1, . . . , ζm are the non-zero roots of the characteristic equation of A (if each ζi

appears ki times as a root then νi will be distributed as χ2(ki)). Anderson was
then able to show that r can be expressed as the transformation

r =
1
2 (T−1)∑

i=1

ζiνi/

T−1∑

i=1

νi T odd

=
1
2 (T−2)∑

i=1

ζiνi/

(
T−1∑

i=1

νi + ν

)
T even

where ζi = cos 2πi/T , i = 1, 2, . . . , T − 1, νi is distributed as χ2(2) and ν is
distributed as χ2(1).

Anderson first considered the case of T = 6, for which the first-order serial
correlation, now denoted r(6), can be expressed as

r(6) = ζ1ν1 + ζ2ν2 − ν

ν1 + ν2 − ν

where

ζ1 = cos
2π

6
= 1

2
ζ2 = −1

2

The density function of the ν’s is given by

p(ν1, ν2, ν) = 1

4
√

2π
ν− 1

2 exp (− 1
2 V6)

on defining V6 = ν1 + ν2 + ν. The density function for r(6) is then the piecewise
function

p(r(6)) = 3
2

(ζ1 − r(6))
1
2

(ζ1 − ζ2)(1 + ζ1)
1
2

ζ2 ≤ r(6) ≤ ζ1

= 3
2

(ζ1 − r(6))
1
2

(ζ1 − ζ2)(1 + ζ1)
1
2

+ 3
2

(ζ2 − r(6))
1
2

(ζ2 − ζ1)(1 + ζ2)
1
2

− 1 ≤ r(6) ≤ ζ2

and the cumulative probability function has the same general form:

P(r(6) > r ′) = (ζ1 − r ′)
3
2

(ζ1 − ζ2)(1 + ζ1)
1
2

ζ2 ≤ r(6) ≤ ζ1

= (ζ1 − r ′)
3
2

(ζ1 − ζ2)(1 + ζ1)
1
2

+ (ζ2 − r ′)
3
2

(ζ2 − ζ1)(1 + ζ2)
1
2

− 1 ≤ r(6) ≤ ζ2
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These results generalize to the following functions which, for values of r between
the roots ζi, split into separate analytical expressions which are continuous
although their derivatives may not necessarily be so.

p(r) = T − 3
2

n∑

i=1

⎛

⎝ (ζi − r)
1
2 (T−5)

∏ 1
2 (T−1)
j=1,i �=j (ζi − ζj)

⎞

⎠ ζn+1 ≤ r ≤ ζn T odd

= T − 3
2

n∑

i=1

⎛

⎝ (ζi − r)
1
2 (T−5)

∏ 1
2 (T−1)
j=1,i �=j (ζi − ζj)(1 + ζ1)

1
2

⎞

⎠ ζn+1 ≤ r ≤ ζn T even

P(r > r ′) =
n∑

i=1

⎛

⎝ (ζi − r ′)
1
2 (T−3)

∏ 1
2 (T−1)
j=1,i �=j (ζi − ζj)

⎞

⎠ ζn+1 ≤ r ≤ ζn T odd

=
n∑

i=1

⎛

⎝ (ζi − r)
1
2 (T−3)

∏ 1
2 (T−1)
j=1,i �=j (ζi − ζj)(1 + ζ1)

1
2

⎞

⎠ ζn+1 ≤ r ≤ ζn T even

n = 1, 2, . . . ,
[ 1

2 (T − 1)
]

The density functions for T = 6 and 7 are shown in Figure 9.2, while the density
function for T = 15 is shown in Figure 9.3, which by this sample size is clearly
approaching normality centred on a mean of −1/(T − 1) = −0.0714. Also shown
is a normal approximation with this mean and a variance given by the cyclic def-
inition, V(r(15)) = T(T − 2)3/(T − 1)2(T + 1) = 0.0574. Exact and approximate
critical values were given in Dixon (1944, page 127) and show that the normal
approximation is adequate for samples as small as 20 for a 5% significance level
and for around 45 when using a 1% level.5

9.14 Anderson (1942) showed that the distribution of rk was identical to that
of r1 when T and k are prime to each other, i.e., when T/k is an integer. In
general, the distribution of rk can be derived for any k and T by using only those
distributions for which k is a factor of T and Anderson derived the distributions
and accompanying critical values for T/k = 2, 3 and 4. For T > 4k the critical
values for r1 can probably be used for k ≥ 4.
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Exact distribution of r(7)Exact distribution of r(6)

Figure 9.2 Exact distributions of the first-order serial correlation coefficient for T = 6 and
T = 7

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

Exact distribution of r (15)

Normal approximation

r (15)

Figure 9.3 Exact distribution of the first-order serial correlation coefficient for T = 15
with its normal approximation

9.15 By extending the approach of Koopmans (1942), Dixon (1944) and Rubin
(1945) provided an approximation to p(r) which has the reasonably simple
form6

p̄(r) = K(1 − r2)
1
2 (T−1) = K(1 + r)

1
2 (T−1)(1 − r)

1
2 (T−1) (9.11)
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where

K = ( 1
2 (T + 2))

( 1
2 )( 1

2 (T + 1))
= 1

B( T+1
2 , 1

2 )

with (a) = ∫∞
0 exp (−y)ya−1dy and B(a, b) = ∫ 1

0 ya−1(1 − y)b−1dy = (a)(b)/
(a + b) being the standard gamma and beta functions, respectively.

Distribution of the serial correlation coefficient for a Markov
process

9.16 If the true value of ρ1 is ρ �= 0, Madow (1945) extended the results of
§9.13 to

p(r) = K1

n∑

i=1

⎛

⎝ (ζi − r)
1
2 (T−5)

∏ 1
2 (T−1)
j=1,i �=j (ζi − ζj)

⎞

⎠ ζn+1 ≤ r ≤ ζn T odd

(9.12)

= K1

n∑

i=1

⎛

⎝ (ζi − r)
1
2 (T−5)

∏ 1
2 (T−1)
j=1,i �=j (ζi − ζj)(1 + ζ1)

1
2

⎞

⎠ ζn+1 ≤ r ≤ ζn T even

where K1 is a function of r, ρ, σ2 and T . Since the moments and percentiles
of this distribution are difficult to obtain, Leipnik (1947) extended the Dixon–
Koopmans approach to obtain

pρ(r) = K
(1 − r2)

1
2 (T−1)

(1 + ρ2 − 2ρr)−
T
2

(9.13)

which reduces to the distribution (9.11) when ρ = 0. This has a maximum when

r = rmax = 1
2ρ(T − 2)

((1 + ρ2)(T − 1) −
√

T(T − 2)(1 − ρ2)2 + (1 + ρ2)2)

and it follows that 1 > |rmax| > |ρ| and that rmax → ρ asymptotically. Figure 9.4
shows the distribution (9.13) for T = 15 and various values of ρ, along with the
envelope of pρ(r), K(1 − r2)−

1
2 , this being obtained by differentiating (9.13) with

respect to ρ and then eliminating this parameter. It is clearly seen that, for |ρ|
near 1, the distribution becomes highly concentrated about rmax.

Leipnik (1947) showed that the mean and variance of (9.13) were given by

Eρ(r) = Tρ

T + 2
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Figure 9.4 Distribution of the circular serial correlation coefficient for T = 15 for various
values of ρ when the mean is known

and

Vρ(r) = 1
T + 2

(
1 − ρ2T(T − 2)

(T + 2)(T + 4)

)
∼ 1 − ρ2

T

which confirm that r is a consistent estimate of ρ. Daniels (1956) showed that
the error incurred in using the approximation (9.13) rather than the exact dis-
tribution (9.12) was negligible in the tails of the distribution when T = 20 and
ρ = 0 but could be of concern in the upper tail of the distribution when ρ = 0.5.

Higher-order moments of the distribution (9.13) were obtained by Jenkins
(1954a) and Kendall (1957), where exact expressions are given. In general, the
jth moment will be a polynomial of order j in ρ, with even-order moments
containing only even powers of ρ and odd-order moments containing only odd
powers of ρ.

9.17 Of course, it must be remembered that these distributions are for the
cyclic definition of serial correlation when the mean of X is known (and can
therefore be assumed to be zero). When the mean is unknown and has to be
estimated by the sample mean, Daniels (1956) showed that an approximation
to the distribution of r is

h(r) = K′

(T(1 − ρ) + 1 + ρ)
(1 − r)(1 − r2)

1
2 T−1

(1 − 2ρr + ρ2)
1
2 (T−1)



9780230290181_10_cha09.tex 27/4/2011 13: 55 Page 224

224 The Foundations of Modern Time Series Analysis

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
ρ

|ρ |

 = 100T
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Figure 9.5 |E(r)| for T = 15 and 100 with |ρ| shown for comparison

where K′ = 1/B( T
2 , 1

2 ), which will be accurate to O(T− 3
2 ). Explicit expressions for

the first four moments were provided by Kemp (1970): for example, the mean is

E(r) = −1 + (T − 1)ρ − (T−1)Tρ2

T+3

T(1 − ρ) + 1 + ρ

Figure 9.5 plots |E(r)| against ρ for samples of size T = 15 and 100, while Fig-
ure 9.6 shows this distribution using the same values of T and ρ as Figure 9.4. It
is seen that the effect of having to estimate the mean is to shift the distribution
leftwards and to increase the variance and that |E(r)| < |ρ| except in the region
−0.35 ≤ ρ ≤ 0.04 for T = 15 and −0.33 ≤ ρ ≤ 0.01 for T = 100, with the size of the
absolute bias |ρ − E(r)| declining with T .

Distributions of non-circular serial correlation statistics

9.18 Watson and Durbin (1951) argued that the circular conception of the
stochastic process generating Xt , as embodied in the cyclic definition (9.10) of
rc
1 that has been used in §§9.11–9.17, was rarely plausible in practice. They thus

relaxed the assumptions of circularity and known (zero) mean and considered
the following statistic for testing independence, i.e., ρ = 0:

d =
∑T

i=2 (Xi−1 − Xi)2 − (Xn − Xn+1)2

∑T
i=1 (Xi − X)2

T = 2n
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Figure 9.6 Distribution of the circular serial correlation coefficient for T = 15 for various
values of ρ when the mean is unknown and estimated by the sample mean

where n = T/2 if T is even and n = (T − 1)/2 if T is odd. The exclusion of
the central squared difference in the numerator sum is a device to give the
statistic a known distribution. By extending the results of Anderson (1942)
(cf. §9.13), Watson and Durbin (1951) showed that, for ζi = 4 sin2 (n − i)π/2n,
the distribution of d is

P(d > d′) =
s∑

i=1

(ζi − d′)n− 3
2

ζ
1
2
i

∏n−1
j=1,j �=i (ζi − ζj)

ζs+1 ≤ d′ ≤ ζs s = 1, 2, . . . , n − 1

Watson and Durbin provided 5% critical values for d for various values of T that
may be used for testing independence against the alternative of positive serial
correlation, ρ > 0. This statistic was extended by Durbin and Watson (1950,
1951, 1971) to test for first-order serial correlation in regression models, becom-
ing probably the most recognized test statistic in econometrics (see Durbin,
1982).

9.19 Daniels (1956) investigated the distribution of ρ for a non-circular Markov
process with unknown mean using the following estimator of the first-order
serial correlation, which he termed the intra-class correlation coefficient

r =
∑T

t=2 xt−1xt∑T−1
t=2 x2

t + 1
2 (x1 + xT )
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Figure 9.7 Distribution of the non-circular serial correlation coefficient for T = 15 for
various values of ρ when the mean is unknown and estimated by the sample mean

where, for X = (T − 1)−1(
∑T−1

t = 2 Xt + 1
2 (X1 + XT )), xt = Xt −X. The distribution of

r is then given by

h(r) = ( 1
2 T ′ + 3

2 )

2( 1
2 )( 1

2 T ′)(T ′(1 − ρ) + 1 + ρ)

(1 − r)(1 − r2)
1
2 T ′−1

(1 − 2ρr + ρ2)
1
2 (T ′−1)

where T ′ = T − 1 + ρ2/(1 − ρ2). Figure 9.7 shows this distribution for T = 15 for
various values of ρ: in comparison to Figures 9.4 and 9.6, relaxing the assump-
tion of a known mean and then circularity leads to a much greater overlap
between the individual distributions and, hence, less precise inference. The dis-
tribution is derived by Daniels (1956) using a saddlepoint approximation that,
while accurate for small values of ρ, becomes undefined for large values, so that
no curve for ρ = 0.9, for example, can be drawn.

Distribution of partial serial correlations

9.20 Daniels (1956) and Jenkins (1954b, 1956) extended these results to anal-
yse the small sample distribution of the partial serial correlation, rk·, for which
a large sample approximation was given in §9.10. For a fitted mean, the
approximate density function of the circularly defined partial serial correlation is

Q
∏

k odd

(1 − rk·)(1 − r2
k·)

1
2 (T−3)

∏

k even

(1 − rk·)2(1 − r2
k·)

1
2 (T−3)
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where Q is a function of both T and the coefficients of the underlying autore-
gression. To test the hypothesis that, in the AR(p) model (8.20), ap = 0, rp· can
be taken to have a distribution with density proportional to

(1 − rp·)(1 − r2
p.)

1
2 (T−3) when p is odd

and

(1 − rp·)2(1 − r2
p.)

1
2 (T−3) when p is even.

Jenkins (1954b) showed that E(r2.) ∼ − 2/(T − 1) and E(r2
2·) ∼ 1/(T − 2), while

Daniels (1956) obtained E(r2.) ∼ − 2/(T + 1) and E(r2
2·) ∼ (T + 5)/(T + 1)(T + 2),

which agree with Jenkins to O(T−2) and O(T−3) respectively. No results for non-
circularly defined partial autocorrelations have been obtained, with Kendall,
Stuart and Ord (1983, page 571) remarking that ‘(e)xcept in the Markov case
it appears that only circularly defined statistics and processes are reasonably
tractable. Daniels’ method can be extended to the non-circular case, but
apparently nobody has yet had the stamina to embark on the labour involved’!

Estimation and inference in autoregressive models

9.21 Mann and Wald (1943) considered the estimation of the coefficients of
an AR(p) process and the accompanying sampling theory of the estimators. For
the model

Xt = α0 + α1Xt−1 + · · · + αpXt−p + εt (9.14)

it is assumed that εt is identically and independently distributed with zero mean
and finite higher moments that all exist and that all the roots of the characteris-
tic equation zp − α1zp−1 − · · · −αp = 0 are less than unity in absolute value.7 If it
is further assumed that the εt are normally distributed with variance σ2, Mann
and Wald showed that the maximum likelihood estimators of α1, . . . , αp, α0 coin-
cide with the least squares estimators α̂1, . . . , α̂p, α̂0 and that, for large T , the AR(p)
process (9.14)

can be treated in exactly the same way as a classical regression problem
where Xt is the dependent variable and Xt−1, . . . , Xt−p are the independent
variables. That is to say, the estimates of the coefficients α1, . . . , αp, α0, as
well as the joint limiting distribution of these estimates, are the same as if
[9.14] were treated as a classical regression problem. Hence, the joint limiting
distribution of

√
T(α̂1 − α1), . . . ,

√
T(α̂p − αp) and

√
T(α̂0 − α0) is a multivari-

ate normal distribution with zero means and a finite covariance matrix.
The covariance between ξi =

√
T(α̂i − αi) and ξj =

√
T(α̂j − αj)(i, j = 0, 1, . . . , p))

can be obtained as follows: Denote (1/T)
∑T

t=1 Xt−iXt−j by DijT (i, j = 1, . . . , p),
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(1/T)
∑T

t=1 Xt−i by Di0T = D0iT and let D00T = 1. Furthermore, let ‖cijT‖ =
‖DijT‖−1(i, j = 0, 1, . . . , p) and s2 = (1/T)

∑T
t=1 (Xt − α̂1Xt−1 − · · · − α̂pXt−p)2.

Then the limit covariance between ξi and ξj is equal to the stochastic limit
of s2cijT . Thus, for large T the covariance of ξi and ξj can be replaced by the
quantity s2cijT which can be calculated from the observations. (Mann and
Wald, 1943, page 217: notation altered for consistency)

Kendall (1949) considered further the estimation of the coefficients of an autore-
gressive scheme. Using the second-order autoregression as an example, then,
with k = 2, equations (7.25) become

r1 + a1 + r1a2 = 0

r2 + a1r1 + a2 = 0

from which we obtain (cf. (8.7))

a1 = − r1(1 − r2)
1 − r2

1

a2 = r2
1 − r2

1 − r2
1

which are asymptotically equivalent to the least squares estimates (i.e,
they are identical if the serial correlations are estimated as rk =∑T−k

t=1 xtxt+k/∑T
t=1 x2

t ). Kendall also considered using the complete set of equations (7.25)–
(7.26), which he termed the Yule–Walker equations: for k = 2 these are

r1 + a1 + r1a2 = 0

r2 + a1r1 + a2 = 0

r3 + a1r2 + a2r1 = 0
...

The solution of the first two equations yields the least squares estimates. The
least squares solution to the first m of these equations is obtained by minimizing

m∑

i=1

⎛

⎝
2∑

j=0

(ajri−j)2

⎞

⎠

For example, using the first three Yule–Walker equations leads to the pair of
equations

(r1 + r1r2 + r2r3) + a1(1 + r2
1 + r2

2 ) + a2(2r1 + r1r2) = 0

(r2
1 + r2 + r1r3) + a1(2r1 + r1r2) + a2(1 + 2r2

1 ) = 0
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and the solutions

a1 = (2r1 + r1r2)(r2
1 + r2 + r1r3) − (1 + 2r2

1 )(r1 + r1r2 + r2r3)
(1 + 2r2

1 )(1 + r2
1 + r2

2 ) − (2r1 + r1r2)2

a2 = (2r1 + r1r2)(r1 + r1r2 + r2r3) − (1 + r2
1 + r2

2 )(r2
1 + r2 + r1r3)

(1 + 2r2
1 )(1 + r2

1 + r2
2 ) − (2r1 + r1r2)2

From a set of simulation experiments Kendall concluded that this approach
provided no improvement over the least squares approach of solving the first
two Yule–Walker equations, particularly for large values of m, and he suggested
that this was because the higher-order serial correlations were so affected by
sampling variability that any gain from using these additional equations was
more than offset by the increase in sampling unreliability.

Kendall considered two further estimation methods. The first was a method
of moments type estimator in which the first k covariances of εt were set to zero
and the resulting expressions solved, while the second extended the approach of
Quenouille (1947b) in which the expressions for Rs in §9.6 were set to zero and
solved for the autoregressive coefficients. Again, neither method proved supe-
rior to least squares, which has since become the standard method of estimating
the coefficients of autoregressions.

Durbin (1960) showed that, for the pth order autoregression (9.17), the first
p Yule–Walker equations

r1 + a1 + r1a2 + · · · + rp−1ap = 0
r2 + r1a1 + a2 + · · · + rp−2ap = 0
...

rp + rp−1a1 + · · · + ap = 0

may be solved by a pivotal reduction to provide the recurrence relations

aii = − ri + ai−1,1ri−1 + ai−1,2 + · · · + ai−1,i−1r1

1 + ai−1,1r1 + · · · + ai−1,i−1ri−1
i = 1, . . . , p

ai,j = ai−1,j + aiiai−1,i−j j = 1, . . . , j − 1

using a11 = − r1 as the starting value. The ai1, . . . , aii are the coefficients of the
best-fitting autoregressive model of order i, while −a22, . . . , −app are estimates
of the partial correlation coefficients r2·, . . . , rp·.

Small sample bias in the estimation of autoregressive models

9.22 Mann and Wald’s (1943) analysis outlined in §9.21 considered the lim-
iting distribution of the least squares estimates of an autoregressive process,
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showing that they coincided with the maximum likelihood estimates. The (very)
small sample properties of these estimators were considered by Hurwicz (1945),
who showed that it makes a considerable difference whether the ‘initial value’ –
the value taken by x0 – was taken as fixed or stochastic, a distinction that loses
its relevance for large sample sizes.

Focusing attention on the first-order case, consider the model

xt = αxt−1 + εt , t = 2, 3, . . . , T

where εt is as in (9.14) but with variance σ2 = 1 for simplicity. In the stochastic
initial value case, E(x0) = E(ε0) = 0,

E(xt ) = 0 E(x2
t ) = 1

1 − α2
t = 1, 2, . . . , T

and

E(xt |xt−1) = αxt−1 t = 2, 3, . . . , T

If the least squares estimator of α using T observations is

α̂T =
∑T

t=2 xtxt−1∑T
t=2 x2

t−1

then it will be said to be unbiased if E(α̂T ) = α for all α and for all T . Hurwicz
(1945) thus considered the case of T = 3:

α̂3 = x1x2 + x2x3

x2
1 + x2

2

and showed that

E(α̂3) = α

2

(
1 + 1 − √

1 − α2

α2

)

By defining β = α2 and NT (β) = E(α̂T )/α, the ‘relative bias’ for T = 3 is

N3(β) = 1
2

(
1 + 1 −√1 − β

β

)

and a plot of this function is shown in Figure 9.8. Defining

NT (0) ≡ lim
β→0

NT (β)
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Figure 9.8 Relative bias of estimators of α for T = 3 and 4

then we see that N3(0) = 3/4 and, although N3(1) = 1, this convergence is very
slow: for example, N3(0.942) = 0.875. Thus, when the initial value is stochastic,
α̂3 is a biased estimate of α.

When x0 is fixed, the model becomes

xt = αxt−1 + εt , t = 1, 2, . . . , T

and the least squares estimator (which is now also the maximum likelihood
estimator) is

α̂∗
T =

∑T
t=1 xtxt−1∑T

t=1 x2
t−1

Note that if x0 = 0, α̂∗
T = α̂T . With this particular initial value, then, on defining

N∗
T (β) = E(α̂∗

T )/α, Hurwicz showed that

N∗
3(β) = 3 + β

4 + β

which is also plotted in Figure 9.8. It is seen that, although N∗
3(0) = 3/4 = N3(0),

N∗
3(1) = 4/5 and so α̂∗

3 is biased for all values of α. Hurwicz did not treat the case
when x0 �= 0, but conjectured that, for given β and T , N∗

T (β) → 1 as x0 becomes
numerically large.

Hurwicz also derived an expression for N4(β), which depends upon elliptic
integrals of the first kind (see Hurwicz, 1945, equations (3.37)–(3.39)), and
showed that N4(0) = 11/15 < N3(0) and N4(1) = 1. This function is also plotted
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in Figure 9.8 using the values provided by Hurwicz (1945, Table 1) and it is seen
that N4(β) < N3(β) for all β and that the convergence of N4(β) to 1 is also very
slow as β → 1.

Hurwicz then derived the more general result

NT (0) = N∗
T (0) = T2 − 2T + 3

(T − 1)(T + 1)

and, using a third-order Maclaurin expansion, obtained the following approxi-
mation for NT (β):

ÑT (β) = NT (0) + N ′
T (0)β + 1

2 N ′′
T (0)β2 + · · ·

where

N ′
T (0) = 2(T2 − 8T + 21)

(T − 1)(T + 1)(T + 3)(T + 5)

and

N ′′
T (0) = 4(T4 + 24T3 + 98T2 − 264T − 99)

(T − 1)(T + 1)(T + 3)(T + 5)(T + 7)(T + 9)

While this does not give a very good approximation for values of β near 1 (for
example, Ñ4(1) = 0.7765 rather than 1), it is more accurate for smaller values: for
|α| = 0.5, Ñ4(0.25) = 0.7380 compared to the true value N4(0.25) = 0.7501. Figure
9.9 plots NT (β) for various values of α for a wide range of T values. The function
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Figure 9.9 Relative bias of α̂T for various values of α and T
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reaches a minimum at T = 4, after which it slowly increases, with calculations
showing that N500(β) exceeds 0.996 for all values of β.

Estimation and inference in moving average models

9.23 While the estimation of autoregressive models has been shown to be the
focus of great attention during the 1940s and 1950s, much less progress was
being made on the estimation of moving average schemes and hence, unsurpris-
ingly, on mixed autoregressive moving average models. Whittle (1953a, 1954)
developed a large sample approach to the estimation of moving average mod-
els that, while being a complete solution, was extremely difficult to implement
in practice. The search was thus on for feasible estimators that had satisfactory
properties and this led to the approach proposed by Durbin (1959) and extended
by Walker (1961).

9.24 We shall focus attention on estimating the parameter β in the first-order
moving average model

xt = εt + βεt−1 t = 1, 2, . . . , T (9.15)

where εt is as defined in (9.14) and it is assumed that |β| < 1, so that the mov-
ing average is ‘regular’ (cf. §7.21). A perhaps obvious estimator is to use the
result that ρ1 = β/(1 + β2) (obtained by setting k = h = 1 in (7.34)), solve the
quadratic r1β̃

2 − β̃ + r = 0, and use the regular solution |β̃| < 1. Whittle (1953a),
however, showed that this estimator was very inefficient but his proposed adjust-
ment was extremely complicated. Durbin (1959) thus considered the infinite
autoregressive representation (cf. §7.21) truncated at lag p

xt + α1xt−1 + · · · + αpxt−p = εt

where αi = (−β)i. This finite representation can be made as close as desired to
the infinite autoregression by taking p sufficiently large. Durbin showed that an
approximate maximum likelihood estimator of β is given by

β̂ = −
∑p−1

k=0 α̂kα̂k+1
∑p

k=0 α̂2
k

(9.16)

where the α̂k are the least squares estimates of the αk (taking α̂0 = 1). More-
over, for sufficiently large p the asymptotic variance of β̂ is T−1(1 − β2), which
was shown by Whittle (1953a) to be the minimum asymptotic variance of all
consistent estimators under the assumption of normality of εt . Without the
assumption of normality, the efficiency property is no longer assured.
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To test the hypothesis β = β0, the statistic
√

T(β̂ − β0)(1 − β2
0)−

1
2 ∼ N(0, 1) may

be used, while to assess the goodness-of-fit of the model (9.15) the statistic

T

(
(1 − β2)

p∑

k=0

α2
k − 1

)
∼ χ2(p − 1)

can be employed.
The extension to higher-order moving averages is straightforward, at least in

theory. For the model

xt = εt + β1εt−1 + · · · + βqεt−q (9.17)

assumed to be regular, the estimators β̂1, . . . , β̂q of β1, . . . , βq are given by the
solution of the linear equation system

⎡

⎢⎢⎢⎢⎢⎣

∑p
k=0 α̂2

k

∑p−1
k=0 α̂kα̂k+1 · · · ∑p−q+1

k=0 α̂kα̂k+q−1

∑p−1
k=0 α̂kα̂k+1

∑p
k=0 α̂2

k

...

...
. . .

...∑p−q+1
k=0 α̂kα̂k+q−1 · · · · · · ∑p

k=0 α̂2
k

⎤

⎥⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎣

β̂1

β̂2
...

β̂q

⎤

⎥⎥⎥⎥⎦
= −

⎡

⎢⎢⎢⎢⎣

∑p−1
k=0 α̂kα̂k+1∑p−2
k=0 α̂kα̂k+2

...∑p−q
k=0 α̂kα̂k+q

⎤

⎥⎥⎥⎥⎦

The asymptotic variance matrix of β̂1, . . . , β̂q is T−1Vq, where

Vq =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − β2
q β1 − βq−1βq β2 − βq−2βq · · · βq−1 − β1βq

β1 − βq−1βq
1 + β2

1

−β2
q−1 − β2

q

...

β2 − βq−2βq

β1 + β1β2

−βq−2βq−1

−βq−1βq

. . .
...

...
1 + β2

1

−β2
q−1 − β2

q
β1 − βq−1βq

βq−1 − β1βq · · · · · · β1 − βq−1βq 1 − β2
q

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Thus, for q = 1, 2, 3,

V1 = 1 − β2
1 V2 =

[
1 − β2

2 β1 − β1β2

β1 − β1β2 1 − β2
2

]
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V3 =
⎡

⎢⎣
1 − β2

3 β1 − β2β3 β2 − β1β3

β1 − β2β3 1 + β2
1 − β2

2 − β2
3 β1 − β2β3

β2 − β1β3 β1 − β2β3 1 − β2
3

⎤

⎥⎦

The hypothesis βk = β0k, k = 1, . . . , q, may be tested using the statistic

T
q∑

i=1

q∑

j=1

vij
q,0(β̂i − β0i)(β̂j − βoj) ∼ χ2(q)

where vij
q,0 is the ijth element of V−1

q evaluated at βk = β0k, k = 1, . . . , q. The
goodness-of-fit of (9.17) can be assessed using

T

⎛

⎝
p∑

k=0

α̂2
k +

q∑

j=1

β̂j

p−j∑

i=0

α̂iα̂i+j − 1

⎞

⎠ ∼ χ2(p − q)

with large values of the statistic indicating that the fit is inadequate.

9.25 Durbin (1959) examined this method by simulating twenty series of
length T = 100 from the model (9.15) with β = 0.5 and εt ∼ N(0, 1), and
computing β̂ from (9.16) using fitted autoregressions with p = 5, i.e.,

β̂ = − α̂1 + α̂1α̂2 + · · · + α̂4α̂5

1 + α̂2
1 + · · · + α̂2

5

He also compared this estimator with the simple estimator β̃ obtained from r1

(when the roots of r1β̃
2 − β̃ + r = 0 are imaginary β̃ was taken to be one: this will

occur when r1 > 0.5). Table 9.3 shows the results obtained by recreating Durbin’s
simulation, for which summary statistics are

r1 β̂ β̂C β̃

Mean 0.365 0.457 0.461 0.471
Std. Dev. 0.084 0.097 0.098 0.184
SE of mean 0.019 0.022 0.022 0.041

β̂C is the corrected estimator suggested by Durbin (but not actually used by him)
to mitigate the downward bias observed in β̂. It is obtained by using only the
first p − 1 terms in the divisor of (9.16). The results of the simulation accord
well with those presented by Durbin (1959, Table 1). The mean value of r1 is
below, but reasonably close to, the true value of ρ1, 0.5/(1 + 0.52) = 0.4. The
variance of β̂, 0.0972 = 0.0094, is a little larger than the theoretical variance
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Table 9.3 Twenty simulations of length T = 100 from a first-order moving average with
β = 0.5

Series r1 β̂ β̂C β̃ Series r1 β̂ β̂C β̃

1 0.502 0.601 0.603 1.000 11 0.349 0.525 0.529 0.407
2 0.346 0.428 0.434 0.401 12 0.382 0.388 0.397 0.465
3 0.389 0.417 0.423 0.478 13 0.256 0.486 0.487 0.275
4 0.423 0.445 0.445 0.553 14 0.410 0.586 0.587 0.522
5 0.481 0.486 0.488 0.756 15 0.256 0.409 0.420 0.274
6 0.171 0.254 0.255 0.176 16 0.332 0.361 0.361 0.380
7 0.384 0.434 0.442 0.469 17 0.290 0.494 0.502 0.320
8 0.250 0.300 0.300 0.268 18 0.403 0.375 0.389 0.506
9 0.430 0.445 0.452 0.571 19 0.416 0.543 0.543 0.534
10 0.393 0.520 0.520 0.485 20 0.435 0.637 0.649 0.582

(1 − 0.52)/100 = 0.0075, and is considerably less than that of β̃. The down-
ward bias in β̂, which is not substantial here, is mitigated a little by Durbin’s
correction.8

9.26 Walker (1961) was concerned that the truncation of the infinite autore-
gression to a finite order p might lead to problems in some circumstances and
thus proposed an extension of Durbin’s method which had the added advantage
of allowing bias adjustments to be made fairly straightforwardly. Again focus-
ing on the first-order case, this approach is based on the result that, for large
T , the joint distribution of T

1
2 (ri − ρi) has the covariance matrix (Walker, 1961,

equation (11))

W(ρ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 3ρ2 + 4ρ4 2ρ(1 − ρ2) ρ2 0 0 . . .

2ρ(1 − ρ2) 1 + 2ρ2 2ρ ρ2 0 · · ·
ρ2 2ρ 1 + 2ρ2 2ρ ρ2 · · ·
0 ρ2 2ρ 1 + 2ρ2 2ρ · · ·
...

... · · · · · · · · · · · · · · ·

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where we write ρ for ρ1 as usual. The estimate of ρ is then based on the first p
serial correlations r1, . . . , rp rather than simply taking ρ̂ = r1:

ρ̂(p) = r1 +
p∑

s=2

ĉ1srs (9.18)

The ‘weights’ ĉ12, . . . , ĉ1p are obtained from the equations

p∑

s=2

c1swsj(ρ) = −w1j(ρ) j = 2, . . . , p (9.19)
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Table 9.4 Twenty simulations of length T = 100 from a
first-order moving average with β = 0.5

Series ρ̂(5) β̂(5) Series ρ̂(5) β̂(5)

1 0.425 0.557 11 0.410 0.522
2 0.353 0.413 12 0.353 0.413
3 0.384 0.467 13 0.365 0.434
4 0.367 0.437 14 0.437 0.588
5 0.403 0.505 15 0.319 0.360
6 0.304 0.339 16 0.329 0.376
7 0.359 0.423 17 0.416 0.536
8 0.279 0.305 18 0.374 0.450
9 0.395 0.490 19 0.411 0.524
10 0.405 0.510 20 0.454 0.640

where wij(ρ) is the ijth element of W(ρ), through the following procedure. Taking
r1 as an initial value for ρ and setting p = 2 in (9.19) yields

ĉ12 = −w12(r1)
w22(r1)

= −2r1(1 − r2
1 )

1 + 2r2
1

so that

ρ̂(2) = r1 + ĉ12r2

Equations (9.19) can then be solved iteratively conditional on ρ̂(2) as

ĉ12w23(ρ̂(2)) + ĉ13w33(ρ̂(2)) = −w13(ρ̂(2))

ĉ12w24(ρ̂(2)) + ĉ13w34(ρ̂(2)) + ĉ14w44(ρ̂(2)) = −w14(ρ̂(2))

...

Walker (1961) showed that this estimator has excellent asymptotic efficiency
for p as small as 4 unless ρ is close to its maximum value of 0.5 for a first-order
moving average. He also showed that the limiting distribution of

√
T(ρ̂(p) − ρ) is

N(0, 1) and that a bias adjusted estimator is given by

ρ̂(p) − 2T−1ρ̂(p)(2ρ̂(p)2 − ĉ12ρ̂
(p) − 1)

Given ρ̂(p), the estimate of β is then obtained as the regular solution to the
equation ρ̂(p)β̂(p)2 − β̂(p) + ρ̂(p) = 0.

9.27 Walker (1961) provided the extension of this procedure to the general
moving average (9.17) and illustrated the method using the simulation setup of
§9.24 with p again set at 5. The results are shown in Table 9.4, from which the
summary statistics of the simulation were calculated to be
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ρ̂(5) β̂(5)

Mean 0.377 0.465
Std. Dev. 0.046 0.086
SE of mean 0.010 0.019

Both ρ̂(5) and β̂(5) are closer to their true values and have smaller standard errors
than their Durbin counterparts and adjusting for the bias increases the mean
estimates to 0.385 and 0.470 respectively. Walker, however, argued that it was by
no means clear why this method appeared to suffer from less bias than Durbin’s,
suggesting that the improvement found both here and in his own simulations
was ‘probably fortuitous’.

Estimation and inference in autoregressive moving
average models

9.28 Durbin (1960) and Walker (1962) extended their methods for estimating
moving averages to mixed autoregressive moving average models. In a similar
vein to §§9.22–9.27, we focus attention on the ARMA(1,1) process (cf. (8.14))

xt − φxt−1 = εt + θεt−1 (9.20)

Durbin (1960) suggested fitting an autoregression of order p, as in §9.23, and
estimating the parameters by

φ̂ = α̂1r2 + α̂2r3 + · · · + α̂prp+1

α̂1r1 + α̂2r2 + · · · + α̂prp
(9.21)

and

θ̂ = −φ̂ + r1 + α̂1r2 + · · · + α̂prp+1

1 + α̂1r1 + · · · + α̂prp
(9.22)

showing that this was the solution obtained by minimizing the sum of squared
residuals from (9.20) with the εt replaced by the residuals from the approximat-
ing autoregression. Durbin then used these estimates as the starting values for
the following iterative procedure. Given φ̂ and defining

�i = α̂i + φ̂�i−1 �0 = 1 i = 1, . . . , p

Durbin showed that an efficient estimator of θ was

θ̂ =
∑p

i=0 �i�i+1∑p
i=0 �2

i

(9.23)

Given θ̂, and now defining

wt = xt − θwt−1 = θwt−1 + εt , w0 = 0, t = 1, . . . , T
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an efficient estimator of φ is then

φ̂ =
∑T−1

t=1 wtwt+1∑T−1
t=1 w2

t

(9.24)

Thus, given either (9.21) or (9.22) as an initial condition, (9.23) and (9.24) can
be used iteratively. Durbin (1960) showed how this approach can readily be
extended to the general ARMA(p, q) model.

9.29 Walker (1962) extended the approach of §9.27 to the ARMA(1,1) model.
Provisional estimates of ρ = ρ1 and φ are obtained from the formulae

ρ̂(1) = r1 −
(

γ2
1

1 + 2γ2
1

)
S3,1

φ̂(1)ρ̂(1) = r2 −
(

2γ1(1 + a1γ1)
1 + 2γ2

1

)
S3,1

In these formulae, a1 = r2/r1 and γ1 = (r1 − a1)/(1 + a2
1 − 2a1r1) are estimates

of φ and γ = θ/(1 + θ2) = (ρ − φ)/(1 + φ2 − 2φρ) based on the first two serial
correlations r1 and r2, and S3,1 = r3 − 2a1r2 + a1r2

1 .
Next, assuming that p is set at 5 as before, coefficients ĉij, i = 1, 2, j = 3, 4, 5,

are determined from the two sets of equations
⎡

⎢⎣
1 + 2γ̂2 2γ̂ γ̂2

2γ̂ 1 + 2γ̂2 2γ̂

γ̂2 2γ̂ 1 + 2γ̂2

⎤

⎥⎦

⎡

⎢⎣
ĉ13

ĉ14

ĉ15

⎤

⎥⎦ = −
⎡

⎢⎣
γ̂2

0
0

⎤

⎥⎦

⎡

⎢⎣
1 + 2γ̂2 2γ̂ γ̂2

2γ̂ 1 + 2γ̂2 2γ̂

γ̂2 2γ̂ 1 + 2γ̂2

⎤

⎥⎦

⎡

⎢⎣
ĉ23

ĉ24

ĉ25

⎤

⎥⎦ = −
⎡

⎢⎣
2γ̂(1 + φ̂(1)γ̂)

γ̂2

0

⎤

⎥⎦

where γ̂ = (ρ̂(1) − φ̂(1))/(1 + φ̂(1)2 − 2φ̂(1)ρ̂(1)). These are then used to compute the
final estimates

ρ̂(5) = r1 + ĉ13S3 + ĉ14S4 + ĉ15S5

φ̂(5)ρ̂(5) = r2 + ĉ23S3 + ĉ24S4 + ĉ25S5

where Sj = rj − 2φ̂(1)rj−1 + φ̂(1)2 rj−2, from which an estimate of θ can be obtained
as the regular root of the equation

(ρ̂(5) − φ̂(5))(θ2 + 1) − (1 + φ̂(5)2 − 2ρ̂(5)φ̂(5)) θ = 0

9.30 Durbin (1960) provided no simulation evidence on the properties of his
procedure, but Walker (1962) extended the simulations of §§9.25–9.28 to the
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Table 9.5 Twenty simulations of length T = 100 from a first-order autoregres-
sive-moving average model with φ = 0.8 and θ = 0.5

Series ρ̂(5) φ̂ φ̂(5) θ̂ θ̂(5)

1 0.879 0.649 0.788 0.718 0.476
2 0.834 0.603 0.745 0.650 0.315
3 0.797 0.578 0.637 0.643 0.520
4 0.785 0.578 0.622 0.582 0.493
5 0.923 0.738 0.883 0.752 0.299
6 0.774 0.575 0.547 0.610 1.000
7 0.896 0.712 0.820 0.728 0.455
8 0.893 0.762 0.798 0.699 0.634
9 0.856 0.653 0.727 0.686 0.643
10 0.929 0.774 0.880 0.760 0.421
11 0.875 0.751 0.767 0.670 0.588
12 0.850 0.673 0.727 0.696 0.542
13 0.883 0.749 0.728 0.733 1.000
14 0.858 0.714 0.675 0.688 1.000
15 0.916 0.787 0.846 0.744 0.558
16 0.923 0.691 0.898 0.758 0.168
17 0.844 0.617 0.691 0.678 0.858
18 0.889 0.717 0.822 0.708 0.354
19 0.904 0.734 0.831 0.735 0.480
20 0.853 0.666 0.715 0.684 0.717

ARMA(1,1) process (9.20) with φ = 0.8 and θ = 0.5. Table 9.5 repeats this sim-
ulation for both the Durbin and Walker methods. Since no suggestions were
provided by Durbin as to the number of iterations to use or the convergence
criteria to employ, we used ten iterations, by which time the estimates of both φ

and θ had settled down sufficiently. We follow Walker and set p = 5, thus using
the equations in §9.29. From the results presented in Table 9.5, the following
summary statistics were calculated.

ρ̂(5) φ̂ φ̂(5) θ̂ θ̂(5)

a 0.8681 0.6860 0.7573 0.6960 0.5760
s 0.0465 0.0705 0.0963 0.0497 0.2443
σ 0.0349 0.0648 0.0648 0.0967 0.0967
(a − a) −0.0197 −0.1140 −0.0427 −0.1960 −0.0760√

20(a − a)/s −1.89 −7.23 −1.98 −17.64 1.39√
20(a − a)/σ −2.52 −7.87 −4.47 −9.06 −3.51

Here a denotes the mean of the twenty estimates of the parameter a, while s
and σ are the observed and theoretical standard deviations of a (the latter taken
from Walker, 1962, Table 2: note that the true value of ρ is 0.8878 from (8.15)).
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It is seen that the Walker estimates are superior in terms of both smaller bias
and in the ratio of the bias to the standard error. Walker also proposed a bias
adjustment that reduces the bias in the estimates of ρ and φ but makes the bias
in θ worse.

The likelihood function of an ARMA model

9.31 The advances in both computing power and numerical algorithms (see,
for example, Hartley, 1961, and Marquardt, 1963) during the 1960s meant that
the estimation methods outlined in the previous sections were quickly super-
seded by nonlinear estimation techniques based on the likelihood principle.9 This
approach was developed in considerable detail in Box and Jenkins (1970, chap-
ter 7) and, because of its central importance to the analysis of time series, we
review it in commensurate detail here. The general model to be estimated is the
stationary and invertible ARMA(p, q) process (8.12), which may be written

at = xt − φ1xt−1 − · · · − φpxt−p + θ1at−1 + · · · + θqat−q t = 1, 2, . . . , T (9.25)

where the notation of Box and Jenkins is adopted with xt = Xt − μ and
at ∼ IID(0, σ2

a ). Typically the mean μ will be replaced by the sample mean X,
but if desired it can be estimated along with the other parameters of (9.25),
φ = (φ1, φ2, . . . , φp)′, θ = (θ1, θ2, . . . , θq)′ and σa. The observations x1, x2, . . . , xT are
gathered together in the vector x, while the innovations a1, a2, . . . , aT are
gathered together in the vector a.

The x’s cannot be substituted immediately into (9.25) to calculate the a’s
because of the difficulty inherent in starting up the difference equation. How-
ever, if the p values x−p+1, . . . , x0 and the q values a−q+1, . . . , a0 were available,
then (9.25) could be used recursively to calculate a1, a2, . . . , aT conditional on
this choice of starting values, and these can be gathered together in the vectors
x∗ and a∗.

Thus, for any given choice of parameters (φ, θ) and starting values (x∗, a∗),
we could calculate recursively a set of values at (φ, θ |x∗, a∗, x), t = 1, 2, . . . , T . If
it is assumed that the a’s are normally distributed then their joint probability
distribution is

p(a1, a2, . . . , aT ) ∝ σ−T
a exp

(
−
(

T∑

t=1

a2
t /σ

2
a

))

For a particular set of data x, the log likelihood associated with the parameter
values (φ, θ, σa), conditional on the choice (x∗, a∗), would then be

�∗(φ, θ, σa) = −T ln σa − S∗(φ, θ)
2σ2

a
(9.26)
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where

S∗(φ, θ) =
T∑

t=1

a2
t (φ, θ |x∗, a∗, x ) (9.27)

Since the conditional log likelihood �∗ involves the data only through the con-
ditional sum of squares function S∗ (�∗ being a linear function of S∗ for any fixed
σa), the maximum likelihood estimates will be the same as the least squares esti-
mates and the behavior of the conditional likelihood can therefore be studied
by examining the conditional sum of squares function.

9.32 Although the unconditional likelihood is strictly what is needed for
parameter estimation, if T is reasonably large then a sufficient approximation to
it is obtained by using the conditional likelihood with suitable values substituted
for the elements of x∗ and a∗ in (9.27). One possibility is to set these elements
equal to their unconditional expectations, which are zero. This approximation
can be poor, however, if some of the roots of φ(B) = 0 lie close to the boundary
of the unit circle, using the terminology adopted in §8.10. In these circum-
stances the process is approaching nonstationarity and, as a consequence, the
initial value x1 could deviate considerably from its unconditional expectation
of zero, thus introducing a large transient which would be slow to die out. An
alternative is then to use (9.25) to calculate the a’s from ap+1 onwards, setting
previous a’s equal to zero. Consequently, actually occurring values are used for
the x’s throughout the recursion, but only T − p terms appear in the summation
in (9.27), a loss of information which should only be slight for large T . For pure
moving average models with p = 0, the two procedures are obviously equivalent.

9.33 The unconditional likelihood of (9.25) is given by (Box and Jenkins, 1970,
chapter 7.1.4 and Appendix A7.4)

�(φ, θ, σa) = f (φ, θ) − T ln σa − S(φ, θ)
2σ2

a
(9.28)

where f (φ, θ) is a function of φ and θ, and

S(φ, θ) =
T∑

t=−∞
E(at |φ, θ, x )2 (9.29)

is the unconditional sum of squares function. Usually f (φ, θ) is only important
for small T and quickly becomes dominated by S(φ, θ)/2σ2

a as T increases.
Consequently, the parameter estimates obtained by minimizing the sum of
squares (9.29), known as the least squares estimates, usually provide very close
approximations to the maximum likelihood estimates.
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Backward ARMA processes

9.34 In order to compute S(φ, θ), the set of conditional expectations E(at |φ, θ, x)
for t = − ∞, . . . , −1, 0, 1, . . . , T need to be calculated. To construct an algorithm
to do this, Box and Jenkins (1970, chapter 6.4) introduced the concept of a
backward process. Consider the regular, invertible, MA(1) process

xt = (1 − θB) at |θ| < 1 (9.30)

From the analysis of §7.21 (especially Example 1), this has the dual, but not
invertible, representation

xt = (1 − θ−1B) αt

with σ2
α = θ2σ2

a . This can be written as

xt = (1 − θB−1)(−θ−1B) αt

= ((1 − θ−1B)(−θB−1))(−θ−1B) αt

= ((1 − θ−1B)(−θB−1)) et

= (1 − θB−1) et

on setting et = − θ−1Bαt = − αt−1/θ, which has variance σ2
a . By defining F ≡ B−1

to be the forward operator, the ‘backward’ process

xt = (1 − θF) et (9.31)

is then seen to be the dual of the forward process (9.30), in which the innovation
et is expressible as the convergent sum of current and future values of x:

et = xt + θxt+1 + θ2xt+2 + · · ·

An ARMA(p, q) process thus has both a forward and a backward representation:

φ(B)xt = θ(B) at (9.32)

φ(F)xt = θ(F) et (9.33)

A value x−h therefore bears exactly the same probability relationship to the
sequence x1, x2, . . . , xT as does the value xT+h+1 to the sequence xT , xT−1, . . . , x1.
The expected value of x−h can then be obtained in exactly the same way as
xT+h+1 but by using the backward model (9.33), a procedure termed by Box and
Jenkins as ‘back forecasting’ (or simply ‘backcasting’).
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Calculating the sum of squares function

9.35 The two representations can be used to generate the conditional expec-
tations E(at |φ, θ, x), which we now denote as [at ], by taking conditional
expectations of (9.33) to generate the backcasts

φ(F)[xt ] = θ(F)[et ]

and then using (9.32) to generate the [at ]s, from which the unconditional sum
of squares can be calculated.

To illustrate the procedure, consider the following T = 12 successive values
of xt .

t 1 2 3 4 5 6 7 8 9 10 11 12

xt 2.0 0.8 −0.3 −0.3 −1.9 0.3 3.2 1.6 −0.7 3.0 4.3 1.1

Suppose we wish to compute the unconditional sum of squares S(φ, θ) associated
with the ARMA(1,1) process

(1 − φB)xt = (1 − θB) at

(1 − φF)xt = (1 − θF) et

with parameter values φ = 0.3 and θ = 0.7. If it is assumed that backcasts are
negligible beyond t = − Q, then the non-zero [et ]s can be generated from

[et ] = [xt ] − 0.3[xt+1] + 0.7[et+1] t = 1, 2, . . . , T − 1 = 11

on noting that [e12] = 0 and [et ] = 0 for t ≤ 0. The backcasts of xt are then
generated from

[xt ] = 0.3[xt+1] − 0.7[et+1] t = −Q, −Q + 1, . . . , 0

With the starting value [a−Q ] = [x−Q ], the successive values of [at ] are then
generated from

[at ] = [xt ] − 0.3[xt−1] + 0.7[at−1] t = −Q + 1, −Q + 2, . . . , T = 12

with the unconditional sum of squares being calculated as

S(0.3, 0.7) =
T=12∑

t=−Q

[a2
t ]
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Table 9.6 Calculation of the [at ]s from 12 values of a series assumed
to be generated by the process (1 − 0.3B)xt = (1 − 0.7B)at

t [at ] [xt ] [et ]

−4 −0.008 −0.008 0
−3 −0.031 −0.028 0
−2 −0.107 −0.094 0
−1 −0.359 −0.312 0

0 −1.197 −1.039 0
1 1.474 2.0 2.342
2 1.232 0.8 0.831
3 0.322 −0.3 −0.838
4 0.016 −0.3 0.180
5 −1.799 −1.9 −0.128
6 −0.389 0.3 2.660
7 2.837 3.2 4.743
8 2.626 1.6 2.890
9 0.658 −0.7 1.542

10 3.671 3.0 4.489
11 5.970 4.3 3.970
12 3.989 1.1 0

The calculations are shown in Table 9.6 for Q = 4, from which we obtain
S(0.3, 0.7) = 89.16. Box and Jenkins discuss how a second iteration could be car-
ried out by using the forward model with [a12] = 3.989 to obtain [x13], [x14], . . .
and then substituting these into the backward equation to obtain new backcasts
[x0], [x−1], . . .. They show that little is gained by doing this and that, in general,
the procedure converges very quickly.

The two conditional sums of squares suggested as approximations in §9.32
were (i) to start the recursion at the first available observation, setting all
unknown a’s and e’s to zero and all the x’s equal to their unconditional expec-
tation; and (ii) to start the recursion at the pth observation using only observed
values of the x’s and zeros for unknown a’s and e’s. In the above example the
unconditional expectation of x is zero and p = 1, so that the two approximations
produce

12∑

t=1

(et |0.3, 0.7, x13 = 0, e13 = 0, x)2 = 101.0

and

12∑

t=2

(et |0.3, 0.7, x12 = 1.1, e12 = 0, x)2 = 82.44



9780230290181_10_cha09.tex 27/4/2011 13: 55 Page 246

246 The Foundations of Modern Time Series Analysis

−0.8 −0.6 −0.4 −0.2 −0.0 0.2 0.4 0.6 0.8 1.0

theta

5040

100

28
29
30

−1.0

−0.6

−0.2

ph
i

0.2

0.4

0.6

0.8

1.0

Figure 9.10 Contour plot of S(φ, θ) calculated from the 12 values of xt

respectively. The sum of squares using (i) is a poor approximation, although the
discrepancy, which is over 10% in a series of 12 values, would be diluted if the
sample was larger, since the transient introduced by the choice of starting value
will die out. The approximation (ii) is much more accurate and confirms Box
and Jenkins’ view in §9.32 that this is the method to employ if a conditional
approximation is to be used.

9.36 Figure 9.10 presents a contour plot of S(φ, θ) obtained by calculating the
unconditional sum of squares for φ, θ = −1, (0.1), 1: the minimum is obtained
at S(0.1, − 0.9) = 26.05. While the results for such a small sample cannot be
taken too seriously, the example does illustrate the usefulness of studying the
complete sum of squares function and hence the likelihood function.

Box and Jenkins (1970, chapter 7.1.6) discussed alternative ways of graphically
presenting sums of squares functions, and hence likelihood functions, for two
and three parameters. They pointed out that the likelihood function does not
merely indicate the maximum likelihood values but, according to the likelihood
principle, also represents all the information contained in the data. Its overall
shape can therefore be extremely informative: the existence of multiple peaks,
for example, will imply that there are more than one set of values of the param-
eters that might explain the data, whereas the existence of a sharp ridge means
that one parameter, considerably different from the maximum likelihood, could
explain the data if accompanied by a value of the other parameter which devi-
ated appropriately from its maximum value. Box and Jenkins referred to this as
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the estimation situation, which needed to be understood by examining the like-
lihood both graphically and analytically. For example, care needs to be taken
when the maximum may be on or near a boundary, as in Figure 9.10 where the
maximum likelihood estimate of θ looks to be close to −1.

Analytically, the treatment of likelihood functions has typically consisted of
(i) differentiating the log likelihood and setting first derivatives to zero to obtain
the maximum likelihood (ML) estimates, and (ii) deriving approximate vari-
ances and covariances of these estimates from either the second derivatives of
the log likelihood or from their expected values. Mechanical application of this
treatment can be problematic for two reasons: setting first derivatives to zero
does not always produce maxima, and the information contained in the likeli-
hood is only fully expressed by the ML estimates and the second derivatives of
the log likelihood if the function can be adequately represented by a quadratic
approximation over the region of interest.

Variances and covariances of ML estimates

9.37 Following Box and Jenkins (1970, chapter 7.1.7), we define β to be a vec-
tor whose k = p + q elements, βi, i = 1, . . . , k, are the autoregressive and moving
average parameters φ and θ, and ξ as the complete set of parameters β, σa. The
log likelihood can then be written

�(ξ) = �(β, σa) ∼= �(β̂, σa) + 1
2

k∑

i=1

k∑

j=1

�ij(βi − β̂i)(βi − β̂j)

where, on the assumption that a quadratic approximation is adequate, the
derivatives

�ij = ∂2�(β, σa)
∂βi∂βj

are constant. For large T , the quadratic approximation will be valid if S(β) is,
or if the conditional expectations in (9.29) are, approximately locally linear in
the elements of β. Under these circumstances, useful approximations to the
variances and covariances of the estimates may be obtained and approximate
confidence intervals constructed.

9.38 The information matrix for the β parameters is the k × k matrix defined by
Whittle (1953a) as I(β) = − E(�ij). For a given value of σa, the variance-covariance
matrix V(β̂) for the ML estimates β̂ is, for large T , given by the inverse of this
information matrix:

V(β̂) ∼= −E(�ij)−1



9780230290181_10_cha09.tex 27/4/2011 13: 55 Page 248

248 The Foundations of Modern Time Series Analysis

For example, if k = 2,

V(β̂) =
[

V(β̂1) Cov(β̂1, β̂2)
Cov(β̂1, β̂2) V(β̂2)

]
∼= −

[
E(�11) E(�12)
E(�12) E(�11)

]−1

Now, using (9.28),

�ij ∼= − Sij

2σ2
a

= − 1
2σ2

a

∂2S(β|x )
∂βi∂βj

so that

V(β̂) ∼= 2σ2
a

⎡

⎢⎢⎢⎣

∂2S(β)
∂β2

1

∂2S(β)
∂β1∂β2

∂2S(β)
∂β1∂β2

∂2S(β)
∂β2

2

⎤

⎥⎥⎥⎦

−1

= 2σ2
a

[
S11 S12

S12 S22

]
(9.34)

where Sij = S−1
ij . If S(β) were exactly quadratic in β over the relevant region of

the parameter space, then all the derivatives Sij would be constant over this
region. In practice the Sij will vary somewhat and they are usually evaluated at
or near the point β̂. Box and Jenkins showed that an estimate of σ2

a is provided
by σ̂2

a = S(β̂)/T and that, for T large, σ̂2
a and β̂ are uncorrelated.

Confidence regions for the parameters

9.39 The square roots of the diagonal elements of (9.34) define the stan-
dard errors of the estimates, SE(β̂i). When several parameters are considered
simultaneously, joint confidence regions may be constructed from the result that

−
∑

i,j

E(�ij)(βi − β̂i)(βj − β̂j) = 1
2σ2

a

∑

i,j

Sij(βi − β̂i)(βj − β̂j) < χ2
ε

defines an approximate 1 − ε confidence region. Such a region will be bounded
by the contour of the sum of squares surface for which

S(β) = S(β̂)
(

1 + χ2
ε

T

)

Given the estimates φ̂ = 0.1, θ̂ = − 0.9 and S(0.1, − 0.9) = 26.05 obtained by min-
imizing S(φ, θ) for the data in Figure 9.10, 0.95 and 0.99 confidence regions are
bounded by the contours given by

S0.95(φ, θ) = 26.05
(

1 + 5.99
12

)
= 39.05
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Figure 9.11 0.95 (labelled 39) and 0.99 (labelled 46) confidence regions for φ, θ around
(0.1, −0.9)

S0.99(φ, θ) = 26.05
(

1 + 9.21
12

)
= 46.04

These regions are shown in Figure 9.11 and, unsurprisingly given the very small
sample size, are rather wide.

The covariance matrix for an ARMA(1,1) model was shown by Box and Jenkins
(1970, Appendix 7.5) to be

V(φ̂, θ̂) = T−1 1 − φθ

(φ − θ2)

[
(1 − φ2)(1 − φθ) (1 − φ2)(1 − θ2)
(1 − φ2)(1 − θ2) (1 − θ2)(1 − φθ)

]

so that in the example here it is

V(0.1, −0.9) =
[

0.09802 0.01709
0.01709 0.01882

]

leading to the standard errors SE(φ̂) = 0.313 and SE(θ̂) = 0.137.

Nonlinear estimation

9.40 Although plotting the sum of squares function is important as it ensures
that any peculiarities in the estimation situation are shown up, once we are
satisfied that anomalies are unlikely, nonlinear estimation algorithms may
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be applied. The need for a nonlinear algorithm is seen by contrasting the
autoregressive process [at ] = φ(B)[xt ], for which

∂[at ]
∂φi

= −[xt−i] + φ(B)
∂[xt ]
∂φi

(9.35)

with the moving average process [at ] = θ−1(B)[xt ], for which

∂[at ]
∂θj

= θ−2(B)[xt−j] + θ−1(B)
∂[xt ]
∂θj

(9.36)

In (9.35) [xt ] = xt and ∂[xt ]/∂φi = 0 for t > 0, while for t ≤ 0 both are functions of φ,
so that, except for the effect of ‘starting values’, [at ] is linear in φ. In contrast, [at ]
is always a nonlinear function of θ in (9.36). Nevertheless, iterative application
of linear least squares may be used to estimate the parameters of any ARMA
model.

The problem, as set out earlier, is to minimize
∑T

t=1−Q [at ]
2. Suppose [at ] is

expanded in a Taylor series about its value corresponding to some initial set of
‘guessed’ parameter values β′

0 = (β1,0, β2,0, . . . , βk,0):

[at ] = [at,0] −
k∑

i=1

(βi − βi,0)zi,t (9.37)

where

[at,0] = [at |x, β0]

and

zi,t = − ∂[at ]
∂βi

∣∣∣∣
β=β0

If Z is the (T + Q)×k matrix containing the zi,t as elements, the T +Q equations
(9.37) may be expressed as

[a0] = Z(β − β0) + [a]

where [a0] and [a] are column vectors with T + Q elements. The adjustments
β − β0, which minimize S(β) = [a]′[a], can now be obtained by linear least
squares, regressing the [a0]s onto the zs. Because the [at ]s will not be exactly
linear in β, a single adjustment will not immediately produce least squares val-
ues, so that an iterative procedure, in which the adjusted values are substituted
as new guesses and the process is repeated until convergence occurs, becomes
necessary. The speed of convergence and, indeed, whether there is convergence
at all, often depends on how good the initial guess β0 is to the ‘true’ vector β.
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While (9.35) and (9.36) allow the derivatives zi,t to be obtained analytically, it
is often easier to obtain them numerically. Box and Jenkins (1970, chapter 7.2)
outlined the methods then available to do this and also provided a suite of
computer programs that enabled nonlinear estimation of ARMA models to be
carried out.

Identification and initial estimates of ARMA models

9.41 Before embarking on the nonlinear estimation of an ARMA model for an
observed series, the actual form of the model, i.e., the orders p and q, need to
be selected and the initial estimates β′

0 = (β1,0, β2,0, . . . , βk,0) need to be chosen.
Box and Jenkins (1970, chapter 6) recognized that this was an essential first
stage of the model building process and formalized a procedure, known as the
identification stage, for the purposes of doing just this. The ‘philosophy’ behind
identification is best summed up by their statement that

identification methods are rough procedures applied to a set of data to
investigate the kind of representational model which is worthy of further
investigation. It should be explained that identification is necessarily inexact.
It is inexact because the question of what types of models occur in practice
and in what circumstances, is a property of the behavior of the physical
world and cannot, therefore, be decided by purely mathematical argument.
Furthermore, because at the identification stage no precise formulation of
the problem is available, statistically ‘inefficient’ methods must necessar-
ily be used. It is a stage at which graphical methods are particularly useful
and judgment must be exercised. However, it should be borne in mind that
preliminary identification commits us to nothing except to tentatively enter-
taining a class of models which will later be efficiently fitted and checked.
(ibid., page 173)

The principal tools for the identification of an ARMA process are the autocor-
relation and partial autocorrelation functions: ‘(t)hey are used not only to help
guess the form of the model, but also to obtain approximate estimates of the
parameters. Such approximations are often useful at the estimation stage to pro-
vide starting values for iterative procedures employed at that stage’ (ibid., page
174). This involves studying the general appearance of the sample autocorrela-
tion (or serial correlation) and partial autocorrelation functions to obtain clues
about the choice of the autoregressive and moving average orders p and q. This is
done by relating their appearance to the characteristic behaviour of the theoret-
ical autocorrelation and partial autocorrelation functions for moving average,
autoregressive, and mixed processes. This behaviour is succinctly summarized
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by Box and Jenkins, and brings together the properties of these processes that
have been developed in chapters 7 and 8 (in particular §8.10):

Briefly, whereas the autocorrelation function of an autoregressive process
of order p tails off, its partial autocorrelation function has a cutoff after
lag p. Conversely, the autocorrelation function of a moving average process
of order q has a cutoff after lag q, while its partial autocorrelation function
tails off. If both the autocorrelations and partial autocorrelations tail off, a
mixed process is suggested. Furthermore, the autocorrelation function for a
mixed process, containing a pth order autoregressive component and a qth
order moving average component, is a mixture of exponentials and damped
sine waves after the first q − p lags. Conversely, the partial autocorrelation
function for a mixed process is dominated by a mixture of exponentials and
damped sine waves after the first p − q lags.

In general, autoregressive (moving average) behavior, as measured by the
autocorrelation function, tends to mimic moving average (autoregressive)
behavior as measured by the partial autocorrelation function. For example,
the autocorrelation function of a first-order autoregressive process decays
exponentially, while the partial autocorrelation function cuts off after the
first lag. Correspondingly, for a first-order moving average process, the auto-
correlation function cuts off after the first lag. The partial autocorrelation
function, while not precisely exponential, is dominated by exponential terms
and has the general appearance of an exponential. (ibid., pages 175–6)

Particularly important for model building are the first- and second-order autore-
gressive and moving average processes and the simple mixed ARMA(1, 1)
process. The theoretical properties of these models are summarized in Table 9.7,
which has been adapted from Box and Jenkins’ Table 6.1.

9.42 Comparing the behaviour of the sample and theoretical autocorrelation
functions is by no means straightforward, particularly with small sample sizes.
As discussed in Chapter 8 (particularly §8.3 and §8.9), Kendall had been particu-
larly concerned that moderately large sample autocorrelations could occur after
the theoretical autocorrelation function had damped out, and that apparent rip-
ples and trends could occur in the sample autocorrelation function which had
no basis in the theoretical function. Box and Jenkins thus recommended cau-
tion when attempting to use the sample autocorrelation function as a tool for
identification, because while ‘it is usually possible to be fairly sure about broad
characteristics, . . . more subtle indications may or may not represent real effects,
and two or more related models may need to be entertained and investigated
further at the estimation and diagnostic checking stages of model building’
(ibid., page 177).
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Table 9.7 Behaviour of the autocorrelation and partial autocorrelation functions of
various ARMA(p, q) processes. φkk is the kth partial autocorrelation, being the coefficient
on the kth lag of an AR(k) process

ARMA order (1,0) (0,1)

Behaviour of ρk decays exponentially only ρ1 nonzero
Behaviour of φkk only φ11 non-zero exponential dominates decay
Preliminary
estimates from

φ1 = ρ1 ρ1 = −θ1

1 + θ2
1

Admissible region −1 < φ1 < 1 −1 < θ1 < 1

ARMA order (2,0) (0,2)

Behaviour of ρk mixture of exponentials or only ρ1 and ρ2 nonzero
damped sine wave

Behaviour of φkk only φ11 and φ22 nonzero Dominated by mixture of
exponentials or damped
sine wave

Preliminary
estimates from

φ1 = ρ1(1 − ρ2)
1 − ρ2

1

φ2 = ρ2 − ρ2
1

1 − ρ2
1

ρ1 = −θ1(1 − θ2)
1 + θ2

1 + θ2
2

ρ2 = −θ2

1 + θ2
1 + θ2

2

Admissible region

⎧
⎨

⎩

−1 < φ2 < 1
φ2 + φ1 < 1
φ2 − φ1 < 1

⎧
⎨

⎩

−1 < θ2 < 1
θ2 + θ1 < 1
θ2 − θ1 < 1

ARMA order (1,1)

Behaviour of ρk decays exponentially from first lag
Behaviour of φkk Dominated by exponential decay from first lag

Preliminary ρ2 = ρ1φ1

estimates from
ρ1 = (1 − θ1φ1)(φ1 − θ1)

1 + θ2
1 − 2φ1θ1

Admissible region −1 < φ1 < 1 −1 < θ1 < 1

Given the behaviour of the theoretical autocorrelation and partial autocor-
relation functions, as in Table 9.7, it is also important that there are means to
judge whether their sample counterparts are effectively zero after some specific
lag. Box and Jenkins suggested using the Bartlett formula (9.3), with sample
estimates replacing theoretical autocorrelations, to compute the standard error
of rk as

s(rk) ∼= T− 1
2 (1 + 2r2

1 + 2r2
2 + · · · + 2r2

k−1)1/2

and to use the result in §9.10 that the standard error of the sample partial auto-
correlation rk·, which we may denote φ̂kk, is s(φ̂kk) = T− 1

2 . In both cases the ratio
of the estimate to its standard error may be taken to be asymptotically standard
normal.

9.43 To illustrate the identification stage of ARMA model building, we shall
again use the sunspot index from 1700 to 2007, last investigated in §9.6, where
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Figure 9.12 Sample autocorrelation and partial autocorrelation functions for the sunspot
index with, respectively, one- and two-standard error bounds

an AR(2) fit was found to be unsatisfactory, and also Series A from Box and Jenk-
ins (1970, page 525). The sample and partial autocorrelation functions for the
sunspot index are shown in Figure 9.12. The sample autocorrelation function
shows the familiar oscillatory pattern, while the sample partial autocorrela-
tion function appears to cut off at k = 9 when compared to its two-standard
error bounds, thus tentatively identifying an AR(9) process, as was suggested by
both Craddock (1965) and Morris (1977), although a mixed model, such as an
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Figure 9.13 Series A from Box and Jenkins (1970): T = 197 two-hourly concentration
readings of a chemical process

ARMA(2,1) process, might be appropriate (recall that it was found in §9.6 that
an AR(2) process offered a poor fit to this series).

Series A, consisting of 197 two-hourly concentration readings on a chemical
process, is plotted as Figure 9.13 and appears to be stationary. The sample auto-
correlation and partial autocorrelation functions are shown in Figure 9.14 and
from these Box and Jenkins tentatively identified the series as being generated
by an ARMA(1,1) process on the grounds that, from r1 onwards, the sample auto-
correlations decay roughly exponentially, albeit rather slowly. Initial estimates
of φ and θ may be obtained by solving the expressions for ρ1 and ρ2 in Table 9.7
on substitution with r1 = 0.57 and r2 = 0.50. Chart D of Box and Jenkins (1970)
may be used to read off values for these initial estimates, which Box and Jenkins
report as φ̂ ≈ 0.87 and θ̂ ≈ 0.48.

Estimated models for the sunspot index and Series A

9.44 Table 9.8 reports the estimated parameters of various models fitted to
the sunspot index. Initial values are not needed for the various autoregressive
models as these are linear least squares fits. Initial estimates for the ARMA(2,1)
model were obtained using the procedure set out in Box and Jenkins (1970,
Appendix A6.2). The ARMA(2,1) model clearly gives a better fit than the AR(2),
with the additional parameter θ1 being significantly different from zero and σ̂a

being a little smaller. The innovation standard error from the ARMA(2,1) model
is reduced considerably (the innovation variance being reduced by more than
17%) when the previously identified AR(9) model is fitted. Several autoregressive
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Figure 9.14 Sample autocorrelation and partial autocorrelation functions for Box and
Jenkins’ Series A with, respectively, one- and two-standard error bounds

coefficients are found to be insignificant, however, and so a restricted autore-
gression was also fitted with the coefficients φ3, . . . , φ8 set to zero, which further
improves the fit.

The estimated ARMA(1,1) model for Series A is

xt− 0.92 xt−1 = 1.41 + ât− 0.61 at−1 σ̂2
a = 0.099

(±0.04) (±0.08)

which accords well with the estimated model provided by Box and Jenkins
(1970, Table 7.13).
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Table 9.8 Alternative model estimates for the sunspot index. Standard errors are shown
in parentheses. AR(9)* denotes an AR(9) model with the restrictions φ3 = · · · = φ8 = 0
imposed

AR(2) AR(9) AR(9)* ARMA(2,1)

μ̂ 50.07 (3.19) 52.77 (6.92) 53.49 (9.22) 50.10 (2.81)
φ̂1 1.39 (0.04) 1.16 (0.06) 1.21 (0.04) 1.47 (0.05)
φ̂2 −0.69 (0.04) −0.40 (0.09) −0.51 (0.04) −0.76 (0.05)
φ̂3 – −0.16 (0.09) – –
φ̂4 – 0.15 (0.09) – –
φ̂5 – −0.10 (0.09) – –
φ̂6 – 0.02 (0.09) – –
φ̂7 – 0.04 (0.09) – –
φ̂8 – −0.08 (0.09) – –
φ̂9 – 0.25 (0.06) 0.21 (0.03) –
θ̂1 – – – 0.16 (0.08)
σ̂a 16.69 15.10 15.09 16.60

Diagnostic checking of fitted ARMA models

9.45 The iterative model-building procedure proposed by Box and Jenkins con-
sists of three stages, the first two of which are identification and estimation,
which have already been discussed. The third stage is that of diagnostic checking,
that of deciding whether the fitted model is adequate. Box and Jenkins’ general
philosophy is that if

there should be evidence of serious inadequacy, we shall need to know how
the model should be modified in the next iterative cycle. What we are doing
is only partially described by the words, ‘testing goodness of fit.’ We need
to discover in what way a model is inadequate, so as to suggest appropriate
modification. . . .

No model form ever represents the truth absolutely. It follows that, given
sufficient data, statistical tests can discredit models which could nevertheless
be entirely adequate for the purpose at hand. Alternatively, tests can fail to
indicate serious departures from assumptions because these tests are insensi-
tive to the types of discrepancies that occur. The best policy is to devise the
most sensitive statistical procedures possible but be prepared, for sufficient
reason, to employ models which exhibit slight lack of fit. Know the facts as
clearly as they can be shown – then use judgment.

Clearly, diagnostic checks must be such that they place the model in jeopardy.
That is to say, they must be sensitive to discrepancies which are likely to
happen. No system of diagnostic checks can ever be comprehensive, since it
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is always possible that characteristics in the data of an unexpected kind could
be overlooked. However, if diagnostic checks, which have been thoughtfully
devised, are applied to a model fitted to a reasonably large body of data and
fail to show serious discrepancies, then we shall rightly feel more comfortable
about using that model. (ibid., pages 286–7: italics in original)

9.46 One technique proposed by Box and Jenkins is that of overfitting: ‘(h)aving
identified what is believed to be a correct model, we actually fit a more elaborate
one. This puts the identified model in jeopardy, because the more elaborate
model contains additional parameters covering feared directions of discrepancy’
(ibid., page 286). They emphasized that care needed to be taken as to how the
model should be augmented: for example, additional autoregressive and moving
average terms should not be added simultaneously as this may lead to model
redundancy, as discussed in Box and Jenkins (1970, section 7.3.5).

The ARMA(1,1) model for Series A was subjected to overfitting by estimating
both ARMA(2,1) and ARMA(1,2) models, producing

xt− 1.05 xt−1+ 0.11 = 1.14 + at− 0.68 at−1 σ̂2
a = 0.098

(±0.15) (±0.12) (±0.13)

xt− 0.94 xt−1 = 1.06 + at− 0.59 at−1− 0.08 at−2 σ̂2
a = 0.098

(±0.04) (±0.08) (±0.08)

In both cases the additional parameter is insignificant, thus providing no
evidence that the ARMA(1,1) model is inadequate.

Because the model is extended in a particular direction, overfitting assumes
that we know what kind of discrepancies are to be feared. Box and Jenkins also
considered procedures that were less dependent upon knowledge of this type,
being based on the analysis of the residuals ât = θ̂−1(B)φ̂(B)xt , for if the fitted
model was inadequate in some way this should be reflected in the existence of
patterns and predictabilities in the ât , which should mimic white noise if the
fitted model is an adequate representation of the data.

If the form of the model and the true parameter values φ and θ were actually
known then, using the results of §9.2, the autocorrelations of the a’s, the rk(a),
would be uncorrelated and approximately normally distributed about zero with
variance T−1, so that the statistical significance of apparent departures of these
autocorrelations from zero could be assessed. In practice, of course, the true
values φ and θ are unknown and we only have their estimates (φ̂, θ̂), from which
the residuals ât , but not the true innovations at , may be calculated. Although
the autocorrelations rk(â) of the residuals can yield valuable evidence concerning
lack of fit and the possible nature of model inadequacy, it might be dangerous
to make this assessment on the basis of a standard error of T− 1

2 . To confirm this,
Durbin (1970) showed that, for an AR(1) process with parameter φ, the variance
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of r1(â) was φ2T−1, which could be substantially less than T−1. Box and Pierce
(1970) derived the large sample variances and covariances of the âs from any
ARMA process, and showed that T− 1

2 should be regarded as an upper bound
for the standard error of rk(â), and its use could seriously underestimate the
significance of apparent departures from zero of the residual autocorrelations
for small values of k, although for moderate to large values of k this standard
error estimate would be accurate.

Box and Pierce (1970) also considered assessing the significance of a group
of residual autocorrelations, rather than just examining the rk(â) individually.
They showed that if the fitted ARMA(p, q) model was appropriate then, for the
group containing the first K autocorrelations, the statistic

Q(K) = T
K∑

k=1

r2
k (â)

was approximately distributed as χ2(K − p − q), so that significantly large values
of Q(K) would indicate model inadequacy of some form.

For the residuals obtained from the ARMA(1,1) fit to Series A, Q(20) = 23.50 ∼
χ2(18), which is not significant at the 10% level and so offers no evidence
against the adequacy of this model. For the AR(2) fit to the sunspot index,
Q(20) = 53.02 ∼ χ2(18), which is significant at the 0.1% level and thus confirms
the inadequacy of this model found previously. However, the statistic for the
AR(9)* model is Q(20) = 21.77 ∼ χ2(17), which is insignificant at the 10% level
(note that only three AR coefficients have actually been fitted for this restricted
model, so that the degrees of freedom are 20 − 3 = 17).

Box and Jenkins emphasized that a variety of other diagnostic checks should
be performed on the residuals from a fitted ARMA model, such as examining the
cumulative periodogram, and the adequacy of a model could also be assessed by
looking at the stability of the parameter estimates across sub-samples of the data.

9.47 If the residuals are found to be correlated then this information can be
used to identify a modified model and the three-stage model-building strategy
could then be repeated. For example, suppose the residuals bt from the model

φ0(B)xt = θ0(B)bt (9.38)

are non-random and from their autocorrelation function the model

φ(B)bt = θ(B)at (9.39)

was identified. Eliminating bt from (9.38) and (9.39) leads to the new model

φ0(B)φ(B)xt = θ0(B)θ(B)at
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which can now be fitted and diagnostically checked. For example, if, after fitting
an ARMA(1,1) model to series A, the residuals had been found to follow an AR(1)
process (1 − φB) = bt , then the ARMA(2,1) model

(1 − φB)(1 − φB)xt = (1 − φ1B − φ2B2)xt = (1 − θB)at

could then be fitted in a second iteration of the modelling strategy.

9.48 The research effort over the thirty-year period from 1940 to 1970 thus pro-
duced a practical methodology of inference and estimation that enabled ARMA
models to be identified, estimated and checked. Although Box and Jenkins
(1970) may be regarded as a synthesis of this research programme, it was much
more than that, for it also extended the analysis to nonstationary time series
and to the modelling of the relationships between such series, and it is to these
areas that we now turn.
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10
Dealing with Nonstationarity:
Detrending, Smoothing and
Differencing

Early recognition of the presence of nonstationarity

10.1 As we discussed in §§2.6–2.9, Hooker (1901b, 1905) was the first to be
concerned with the problems of dealing with time series containing trends,
proposing both differencing and the use of moving averages to ‘detrend’ the
data prior to statistical analysis.1 Beveridge (1921, 1922) later used a variation
on the moving average to eliminate a secular trend from his wheat prices before
subjecting them to periodogram analysis (§§3.8–3.9). The variate differencing
approach examined in detail in Chapter 4 explored the link between successive
differencing and fitting polynomials in time to a series, with Persons (1917)
explicitly considering the decomposition of an observed time series into various
unobserved components, one of which was the secular trend (§4.11). Indeed,
the identification and removal of the trend component became a preoccupation
of many analysts of time series data for much of the twentieth century, even
though it was conceded that even the definition of a trend posed considerable
conceptual problems: as Kendall (1941, page 43) remarked

(t)he concept of ‘trend’, like that of time itself, is one of those ideas which
are generally understood but difficult to define with exactitude. A movement
which has the evolutionary appearance of a trend over a period of thirty or
forty years may in reality be one phase of an oscillatory movement of greater
extent. A good deal depends on the length of the series under consideration
whether we regard any particular tendency in the series as a trend, or a long-
term movement, or an oscillation, or short-term movement. But in any case
we require of a trend curve that it shall exhibit only the general direction
of the time-series, and in practice this amounts to saying that it must be
representable, at least locally, by a smooth non-periodic function such as a
polynomial or a logistic curve.

261
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In his own research on agricultural time series, discussed in §8.3, Kendall (1943,
1944) eliminated trends by taking nine-year moving averages prior to analysing
their oscillatory movements.

In contrast to the removal of trends for the purpose of concentrating on
shorter-run components such as cycles and seasonal patterns, Macaulay’s (1931)
focus was on the underlying trend itself, i.e., on the ‘smoothed’ series, as his pri-
mary interest was in examining the longer-run relationships between economic
and financial time series in the absence of confounding short-run, transitory,
fluctuations. While an underlying smooth function can be fitted to station-
ary series, particularly those having a cyclical pattern of some form (see, for
example, Spencer-Smith, 1947), Macaulay (1931, pages 39–40) was primarily
interested in the behaviour of trending economic time series that

seem to be of a type somewhat analogous to … cumulated chance series. Some
economic series suggest chance series which have been cumulated twice, …
(since) each observation is not only highly correlated with the immediately
preceding observation, but the first differences are highly correlated with
the preceding first differences. The commonest type of economic time series
suggest a cumulated chance series on which has been superposed another
but non-cumulated chance series and a more or less regular and unchanging
seasonal fluctuation.

How should such series be smoothed? What sort of procedure would seem
to eliminate all seasonal and erratic fluctuations leaving a reasonable picture
of the cyclical fluctuations and any underlying trend?

Such a view, based on practical experience, was obviously very close to that of
Working’s, which was discussed in §§5.19–5.21. From a theoretical perspective,
Wold (1938), in the opening paragraph of his treatise, also clearly made the
distinction between stationary and nonstationary (or, in his term, evolutive)
time series, as the quote offered in §7.2 makes quite apparent.

These three approaches, that of transforming the data using moving aver-
ages, fitting a deterministic function of time, typically a polynomial or perhaps
some other simple function, and taking successive differences of the data
(or the closely related transformation of taking percentage changes), have
remained the basic ways of eliminating trends, i.e., of transforming a nonsta-
tionary time series into a stationary one, up to the present day. However, the
statistical implications of these approaches and the links between them took
many years to discover and tease out, with several early contributions com-
ing from a discipline yet to be encountered in this narrative, that of actuarial
science.
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‘Graduation’ by moving averages

10.2 An important task in actuarial science is to describe the actual but
unknown mortality pattern of a population. To do this, the actuary calculates
crude mortality rates from raw data, which usually form an irregular series,
and then revises them to produce smoother estimates of mortality, a proce-
dure termed by actuaries as ‘graduation’. Various methods have been proposed
to accomplish this, but one of the earliest and most enduring was the use of
iterated moving averages, as originally suggested by Spencer (1904, 1907) and
outlined in Whittaker and Robinson (1924, chapter XI).

Suppose that the primary series to be graduated is ut and, as usual, define
�ut = ut+1 − ut to be the (first-order) difference and �dut to be the dth-order
difference (cf. §4.1). Whittaker and Robinson introduced the notation

[2m + 1]ut =
m∑

j=−m

ut+j

to denote the sum of 2m + 1 u’s centred on ut . It is then possible to find com-
binations of the operations � and [ ] which, when differences above a certain
order are neglected, reproduce the series operated on, i.e.,

f (�, [ ])ut = ut + higher differences

The function f (�, [ ])ut is then taken to be the graduated value of ut , denoted vt ,

vt = f (�, [ ])ut

with ‘the merit of this vt depending on the circumstance that f (�, [ ]) ut involves
a large number of the observed u’s, whose errors to a considerable extent neu-
tralise each other and so produce a smoothed value vt in place of ut ’ (Whittaker
and Robinson, 1924, pages 288–9).

Whittaker and Robinson then introduced the central difference δ, defined such
that δ2 = ut+1 − 2ut + ut−1, and showed that

[p] [q] [r]
p · q · r

ut = ut + (p2 − 1) + (q2 − 1) + (r2 − 1)
24

δ2ut + terms in δ4ut , δ6ut , . . .

Thus, if f ( ) is a cubic in t, terms in fourth- and higher-order differences vanish,
and the graduated value

vt = [p] [q] [r]
p · q · r

{
1 − p2 + q2 + r2 − 3

24
δ2

}
ut (10.1)

then reproduces the cubic perfectly.
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10.3 With this result, Spencer’s 21-term moving average is defined by substituting
p = q = 5 and r = 7 into (10.1) to obtain

vt = [5][5][7]
5 · 5 · 7

(1 − 4δ2) ut (10.2)

If the [ ] notation is extended to weighted moving sums such that

[w−m, . . . , w0, . . . , wm]ut =
m∑

j=−m

wjut+j

then, since

(1 − 4δ2)ut = −4ut+1 + 9ut − 4ut−1 = [−4, 9, 4]ut

the expression (10.2) can be written as the iterated moving average

vt = [5][5][7][−4, 9, 4]
5 · 5 · 7

ut

This may then be expanded to obtain

vt = 1
350 {60ut + 57(ut−1 + ut+1) + 47(ut−2 + ut+2) + 33(ut−3 + ut+3)

+ 18(ut−4 + ut+4) + 6(ut−5 + ut+5) − 2(ut−6 + ut+6) − 5(ut−7 + ut+7)

− 5(ut−8 + ut+8) − 3(ut−9 + ut+9) − (ut−10 + ut+10)}

or

vt = 0.171ut + 0.163(ut−1 + ut+1) + 0.134(ut−2 + ut+2) + 0.094(ut−3 + ut+3)

+ 0.051(ut−4 + ut+4) + 0.017(ut−5 + ut+5) − 0.006(ut−6 + ut+6)

− 0.014(ut−7 + ut+7) − 0.014(ut−8 + ut+8) − 0.009(ut−9 + ut+9)

− 0.003(ut−10 + ut+10)

which is a symmetric moving average containing ten leads and ten lags of the
primary series ut to obtain the graduation vt .

In a similar fashion, Spencer’s 15-term moving average is defined with p = q = 4
and r = 5, leading to

vt = [4][4][5]
4 · 4 · 5

(
1 − 9

4
δ2

)
ut = 1

320
[4][4][5][−9, 22, −9]ut
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which is a symmetric moving average containing seven leads and seven lags
of ut :

vt = 1
320 {74ut + 67(ut−1 + ut+1) + 46(ut−2 + ut+2) + 21(ut−3 + ut+3)

+ 3(ut−4 + ut+4) − 5(ut−5 + ut+5) − 6(ut−6 + ut+6) − 3(ut−7 + ut+7)

or

vt = 0.231ut + 0.209(ut−1 + ut+1) + 0.144(ut−2 + ut+2) + 0.066(ut−3 + ut+3)

+ 0.009(ut−4 + ut+4) − 0.016(ut−5 + ut+5) − 0.019(ut−6 + ut+6)

− 0.009(ut−7 + ut+7)

10.4 As an example of graduation, suppose that ut is generated by a cubic with
an added random element, specifically

ut = f (t) + εt = (t − 26) + 1
10 (t − 26)2 + 1

100 (t − 26)3 + εt

where the εt are drawn from a uniform distribution ranging from −149.5 to
+149.5. Figure 10.1 shows the cubic curve f (t), the primary series ut , and the
graduation vt obtained using the 21-term Spencer moving average (10.2), for a
segment of the observations running from t = 20 to 80. The graduation certainly
does its job of smoothing out the fluctuations in ut but it does not reproduce f (t)
exactly. Moreover, from Figure 10.2 it can be seen that the deviations from the

0

400

800

1,200

1,600

2,000

20 25 30 35 40 45 50 55 60 65 70 75 80

u f(t) v

t

Figure 10.1 Plots of the cubic f (t), the primary series ut and the graduation vt for t = 20
to 80
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Figure 10.2 Deviations from the graduation, ut − vt , and the graduation of εt

fitted graduation, ut − vt , are not random, as should be expected, but actually
have a first-order sample autocorrelation of −0.52. Also shown in Figure 10.2
is the graduation of the random element εt itself: this graduation is certainly
not random, having a negative mean with fluctuations that oscillate, and these
impart the small oscillatory movement to the graduation vt that can be seen in
Figure 10.1.

The reasons for these effects, which passed unnoticed in the conventional
actuarial applications of the early twentieth century, as they were focused
directly on the smoothed series, became of concern when series were detrended
by a moving average prior to their analysis as potentially oscillatory series during
the 1940s (cf. §8.3). This important issue will be returned to in §§10.9–10.13.

10.5 Macaulay (1931) was perhaps the first to use such graduations, or
‘smooths’, outside of the actuarial profession, examining a wide variety of
moving averages and other methods to be discussed below. These tended to
be considerably more complicated than the Spencer moving averages, primar-
ily because Macaulay was concerned with removing seasonal patterns from
monthly data as well as erratic fluctuations. His favoured smooth was a 43-term
symmetric moving average which closely approximated a fifth-order poly-
nomial and was defined, using the notation introduced above, as

vt = 1
9600

[5][5][8][12][7, −10, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, −10, 7] ut

The set of weights w0, w±1, . . . , w±21, often referred to as the weight function, is
shown in Figure 10.3, along with the weight functions of various other moving
averages discussed in this chapter.
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Figure 10.3 Weight functions for Spencer, Macaulay and Henderson moving averages
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Henderson–Whittaker moving averages

10.6 In a sequence of papers, Henderson (1916, 1924) and Whittaker (1923,
1924) independently considered the problem of designing a smoother (later
more commonly known as a filter) that, as well as reproducing a cubic polyno-
mial trend without distortion, would also satisfy certain smoothness conditions.
The primary condition was that the filter should minimize the variance of the
third differences of the smoothed series, i.e., it should minimize Var(�3vt ).
In deriving this filter, the approach of Kenny and Durbin (1982, Appendix) is
followed, as this is more accessible and transparent than the original derivations
of Henderson and Whittaker.

Given the symmetric moving average of length 2m + 1

vt =
m∑

j=−m

wjut+j

with ut represented as the sum of a cubic in t and a random error, i.e., as
ut = f (t) + εt , then the third differences of vt can be written as

�3vt =
m∑

j=−m

�3wjεt+j +
m∑

j=−m

wj�
3f (t + j)

Since
∑

wj = 1 and the third difference of a cubic is a constant, this reduces to

�3vt =
m∑

j=−m

�3wjεt+j + constant

so that, given the properties of εt ,

Var(�3vt ) = Var(εt )
m∑

j=−m

(�3wj)2

From this expression it is seen that the weights which minimize the variance of
the third differences of vt will also be those which minimize the sum of squares
of the third differences of the weights themselves. The requirement that vt must
itself follow a cubic, i.e., that

vt =
m∑

j=−m

wj( f (t + j) + εt+j) = f (t)

implies that the required weights can be obtained as the solution of the following
problem: minimize

m∑

j=−m

(�3wj)2
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subject to the constraints

m∑

j=−m

wj = 1 (10.3)

and
m∑

j=−m

jkwj = 0 k = 1, 2, 3 (10.4)

Condition (10.4) is automatically satisfied for k = 1, 3 if the weights are sym-
metric and Kenny and Durbin claim that the solution to this constrained
minimization problem is given by

�6wj−3 = α + βj2 j = −m, . . . , m (10.5)

where α and β are chosen so that (10.3) and (10.4) are satisfied (it is understood
that wj = 0 for |j| > m).

If (10.5) is true then wj has to be generated by an eighth-order polynomial in
j which must be valid for |j| ≤ m + 3. This implies that

wj = ((m + 1)2 − j2)((m + 2)2 − j2)((m + 3)2 − j2)(a + b j2)

where a and b are determined by (10.3) and (10.4). It can then be shown that

wj ∝ ((m + 1)2 − j2)((m + 2)2 − j2)((m + 3)2 − j2)(3(m + 2)2 − 16 − 11j2)

with the constant of proportionality being chosen to ensure that (10.3) is
satisfied.

The same set of weights are obtained by fitting a cubic to ut+j, j = −m, . . . , m,
by weighted least squares and taking the value of the fitted function at t as the
smoothed value vt , i.e., by minimizing the sum of squares function

m∑

j=−m

wj(ut+j − a − bj − cj2 − dj3)2

The weight functions for m = 4, 6 and 11 (i.e., the Henderson 9-, 13- and 23-term
moving averages) are also shown in Figure 10.3. These filters were adopted for
trend estimation in the X-11 seasonal adjustment procedure by Shiskin, Young
and Musgrave (1967), replacing the Spencer moving averages used in earlier
versions of the US Bureau of the Census seasonal adjustment procedure: see
§§14.7–14.9 for further discussion.
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10.7 Almost forty years later, Leser (1961) revisited the Whittaker–Henderson
approach and extended the methodology by deriving the weights using the
principle of penalized least squares, in which a linear combination of two sums
of squares is minimized. The first sum of squares contains the deviations of the
observations ut from the filter vt , the second contains the second differences
of successive smoothed values �2vt , with the linear combination of the two
being defined by the weights of unity and λ, i.e., for the observed sequence
u1, u2, . . . , uT , the minimand is

T∑

t=1

(ut − vt )2 + λ

T−1∑

t=2

(�2vt+1)2 (10.6)

The first term measures the goodness of fit of the filter, the second penalizes the
departure from zero of the variance of the second differences of the filter, so that
it is a measure of smoothness: hence λ is referred to as the smoothness parameter.
Successive partial differentiation of (10.6) with respect to the sequence vt leads
to the first-order conditions

�2vt+2 − 2�2vt+1 + �2vt = λ(ut − vt )

so that, given T and λ, vt is a linear function of ut with time-varying weights:

vt =
T∑

j=1

wt,juj

Leser then developed an algebraic method of obtaining the coefficients wt,j,
providing a number of examples in which the solutions were obtained in, it
has to be admitted, laborious and excruciating detail, which must have lessened
the impact of the paper at the time! However, its historical importance lies in
the fact that the method developed by Leser was exactly that proposed some
two decades later by Hodrick and Prescott (1997) and which has entered into
macroeconomic modelling as the H–P filter.2

Fitting local polynomial trends

10.8 The Spencer and Macaulay moving averages were initially popular
because they could be computed essentially as a sequence of summations, which
minimized the computational burden. As computational requirements became
less of a concern, attention focused on the direct fitting of local polynomials.
The general approach is to take the first n terms of a time series, u1, . . . , un say,
where n is taken to be an odd number, fit a polynomial of degree p ≤ n − 1 to
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these observations, and use this polynomial to determine the ‘trend’ value vt

for t = (n + 1)/2 (the choice of an odd value of n ensures that a unique ‘middle’
value exists at any observed time). The operation is then repeated using the terms
u2, . . . , un+1 to obtain the next trend value v(n+3)/2, and the operation is repeated
throughout the time series, finally obtaining, for the terms uT−n+1, . . . , uT , the
trend value vT−(n−1)/2.3

While this procedure would, on the face of it, require the continual fitting of a
pth-degree polynomial by least squares, the recursive nature of the computations
enabled the trend values to be calculated directly as a weighted moving average.
To see this, put n = 2m + 1 and, without loss of generality, consider the sequence
of terms u−m, u−m+1, . . . , u0, . . . , um−1, um. To fit a polynomial of degree p by least
squares to this sequence requires solving the p + 1 equations

∂

∂aj

m∑

t=−m

(ut − a0 − a1t − · · · − aptp)2 = 0 j = 0, 1, . . . , p

which gives equations of the form

∑
t jut − a0

∑
t j − a1

∑
t j+1 − · · · − ap

∑
t j+p = 0 j = 0, 1, . . . , p (10.7)

Since the summations in (10.7) are functions of m only, solving for a0 yields an
equation of the form

a0 = c0 + c1u−m + c2u−m+1 + · · · + c2m+1um (10.8)

where the c’s depend on m and p, but not on the u’s. As u0 = a0 at t = 0, this
value, as given by (10.8), is the value required for the polynomial and is seen
to be a weighted average of the observed sequence of values, the weights being
independent of which part of the series is being used. The process of fitting the
polynomial trend then consists of determining the constants c and then calcu-
lating, for each consecutive sequence of 2m + 1 terms of the series, a value given
by (10.8): if the sequence is uk, . . . , u2m+k, the calculated value will correspond
to t = m + k.

As an example of the procedure, suppose m = p = 3, so that the cubic

ut = a0 + a1t + a2t2 + a3t3

is fitted to sequences of seven terms. Since the origin is t = 0, the summations
in (10.7) are

∑
t0 = 7;

∑
t2 = 28;

∑
t4 = 196;

∑
t6 = 1588;

∑
t =

∑
t3 =

∑
t5 =

∑
t7 = 0
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and the set of equations are
∑

u = 7a0 +28a2
∑

tu = 28a1 +196a3
∑

t2u = 28a0 +196a2
∑

t3u = 196a1 +1588a3

(10.9)

These may be solved to give, for a0,

a0 = 1
21

(
7

∑
u −

∑
t2u

)

= 1
21

(−2u−3 + 3u−2 + 6u−1 + 7u0 + 6u1 + 3u2 − 2u3)

= 1
21

[−2, 3, 6, 7, 6, 3, −2]

To illustrate this example, suppose the series is given by the following values

t 1 2 3 4 5 6 7 8 9 10
ut 0 1 8 27 64 125 216 343 512 729

The trend value at t = 4 is then

a0 = 1
21

((−2 × 0) + (3 × 1) + (6 × 8) + · · · − (2 × 216))

= 1
21

567 = 27

which is, of course, equal to the actual value u4 since a cubic is being fitted to
the series ut = (t − 1)3. In (10.9) it is seen that a0 does not depend on a3, so that
the same value for a0 would have been obtained if a quadratic rather than a
cubic had been fitted. This is a general result: fitting a polynomial of odd degree
p gives the same trend values as fitting a polynomial of even degree p − 1. The
implied moving averages for p ≤ 5 and m ≤ 10 are given in, for example, Kendall,
Stuart and Ord (1983, §46.6).4,5

Oscillations induced by taking moving averages

10.9 Suppose an observed series yt has a decomposition into trend, τt ,
oscillatory, γt , and random, εt , components

yt = τt + γt + εt

and a moving average of the form

Wyt = [w−m, . . . , w0, . . . , wm]yt =
m∑

j=−m

wjyt+j

m∑

j=−m

wj = 1
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is applied, so that

Wyt = Wτt + Wγt + Wεt

As Kendall (1941) pointed out, the ideal moving average is one that reproduces
the trend exactly, i.e., Wτt = τt , in which case the ‘detrended’ series is

yt − Wyt = γt + εt − Wγt − Wεt (10.10)

(T)he point to be emphasized is that the existence of the terms Wγt and Wεt

in [10.10] may introduce oscillatory terms which were not, or annihilate
oscillatory terms which were, in the original yt . That is to say, the method
of moving averages may induce into the data oscillations which are entirely
spurious or may reduce or remove oscillations which are entirely genuine.
(ibid., page 45: notation altered for consistency)

10.10 Kendall considered first the effect on the random component of taking
a moving average. Given that the typical moving average can be expressed as
an iteration of simple sums (or, to be precise, averages), the results of Slutzky
(1937), discussed in §§5.11–5.16, and those provided by Dodd (1939, 1941a,
1941b) on the effect of summing random series may be used. Thus suppose that

ε
[2]
t = Wεt = [2m + 1]

2m + 1
εt = 1

2m + 1

m∑

j=−m

εt+j = 1
n

m∑

j=−m

εt+j

is a simple moving average of εt . If εt is random, so that consecutive values are
independent, consecutive values of ε

(2)
t will not be independent, since ε

(2)
t and

ε
(2)
t+k will have n − k values of εt in common and will thus be correlated if n > k.

ε
(2)
t will then be much smoother than the random series εt and, if further moving

averages are taken, the result will be smoother still. Indeed, as Slutzky pointed
out, after only a few summations the resulting series becomes very smooth,
having fluctuations with varying amplitude and phase and periods concentrated
around a particular modal value – just those features that are characteristic of
oscillatory time series.

Dodd utilized the following useful geometrical result. Consider the two sums

xt =
n∑

j=1

ajεt+j

zt =
n∑

j=1

bjεt+j
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where it is now assumed that the εt are normally distributed with zero mean and
constant variance, V say. Treating xt and yt as planes, the cosine of the angle θ

between them is given by

cos θ =
∑

ajbj
(∑

a2
j

∑
b2

j

)1/2

When θ is expressed in radians, θ/360 has the interpretation of being the prob-
ability that xt and yt are of opposite sign. Using this result, it follows that the
probability of xt and xt+1 changing signs is obtained from

cos θ =
∑

ajaj+1∑
a2

j

The change of sign from negative to positive between successive values of xt

is known as an ‘upcross’, so that the mean distance between upcrosses is 2π/θ

(cf. §8.1: this, of course, is also the mean distance between ‘downcrosses’ –
changes of sign from positive to negative). For

�xt = xt+1 − xt = b1εt + b2εt+1 + · · · + bnεt+n−1 + bn+1εt+n

the probability that �xt−1 > 0 and �xt < 0, i.e., that xt is a maximum, is then
θ′/360, and the mean ‘peak to peak’ distance between maxima is 2π/θ′, where

cos θ′ =
∑

bjbj+1∑
b2

j

b1 = −a1, bn+1 = an, bj = aj−1 − aj, j = 2, 3, . . . , n − 1

Dodd considered various extensions and generalizations of these results. For
example, minor oscillations, or ‘ripples’, may be eliminated by requiring that,
for maxima, the condition xt > xt+p, for p arbitrarily chosen, must hold along
with �xt−1 > 0 and �xt < 0. The assumption of normal random variation may
be relaxed and these results seem to be applicable to various other distributional
assumptions, being used previously in §8.1 to measure the oscillatory properties
of various of Kendall’s agricultural series.

10.11 The amplitude of the induced oscillations in Wεt was also considered
by Kendall. Since ε

(2)
t is the sum of n independent random variables each with

variance V , it will have variance V/n. As further sums are taken, the variance
of these sums becomes progressively more complicated to derive, although an
expression was given in Kendall (1941, equation (11)). The general effect is clear,
however:

the variance of the series . . . is reduced very considerably by the first averaging
but less so by subsequent averagings, and this is what we might expect from
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the correlations between members of the series. For example, when n = 7, the
first averaging reduced the variance by 1

7 , whereas the next four averagings
reduce it by little more than a further 1

2 . (ibid., page 47)

Although oscillatory movements in Wεt will thus tend to be small compared
to the random fluctuations in εt itself if n is large, they are not necessarily
negligible: as Kendall pointed out, even though a periodogram analysis of εt

would reveal no periodicities, an analysis of Wεt may and probably would.
To reduce the effect of Wεt as much as possible, n should be made large rather

than increasing the number of iterations of the moving average, i.e., the individ-
ual weights should be as small and as equal as possible. Unfortunately, this runs
counter to the size of the weights that are required to eliminate the trend. As
the weight functions shown in Figure 10.3 reveal, these have individual weights
that are very far from being equal, being determined from several iterations of
simple summations. Interestingly, Macaulay’s 43-term moving average can be
shown to reduce the variance of a random series to about 0.11 of its original
value, roughly the same as a simple nine-term moving average.

10.12 Kendall then considered the effect of taking a moving average on the
genuinely oscillatory part of the original series, i.e., on the behaviour of Wγt .
Suppose that this component follows a simple sine wave, γt = ∑n

j=1 sin(α + jλ).
Since

n∑

j=1

sin (α + jλ) = sin 1
2 nλ

sin 1
2 λ

sin
(

α + 1
2

(n − 1)λ
)

a simple moving average of n consecutive terms centred at the middle term will
result in a sine series of the same period and phase as the original, but with its
amplitude reduced by the factor

1
n

sin 1
2 nλ

sin 1
2 λ

Iterating q times will reduce the amplitude by the qth power of this factor. This
implies that Wγt will be small if n and q are both large or if 1

2 nλ = 0 (mod π),
i.e., if the extent of the moving average is a period of the oscillation. On the
other hand, if λ and nλ are small then the amplitude will barely be reduced
at all and γt − Wγt will largely disappear because the moving average will par-
tially obliterate the harmonic term in γt . With nλ being small, the extent of
the moving average will be short compared to the period of the harmonic. The
oscillation will then be a very slow one and will be treated as part of the trend
by the moving average and eliminated accordingly. The moving average will
therefore emphasize the shorter oscillations at the expense of the longer ones.
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If, on the other hand, the moving average is longer than the period, Wγt may
have the original oscillation but with the sign reversed, so that the fluctuations
from trend may exaggerate the true oscillations. Kendall thus concluded that

in the study of oscillations obtained from a time-series by eliminating trend
with moving averages it is desirable to safeguard against the introduction
of spurious effects and the distortion of genuine effects due respectively
to the random and oscillatory terms of the original series. This can best
be done by extending the moving average so far as possible and by mak-
ing it approximate to a multiple of any cycles which are suspected to exist.
Iteration rapidly reduces the distortion of genuine oscillatory movements,
but does not exert such a great effect on the spurious cycles due to random
fluctuations.

These considerations support the desirability of extending the moving
average as far as possible; but other considerations will work in the reverse
direction. The saving of arithmetic; the avoidance of sacrificing terms at the
beginning and end of the series; and the nature of the weighting dictated by
trend elimination itself are factors of this kind. (ibid., page 49)

10.13 Given these considerations, Kendall was able to argue that, although
the mean period of the oscillations induced by taking a nine-term moving aver-
age to eliminate the trend in his agricultural series was not sufficiently different
from the observed mean period to dispose of the suggestion that the observed
oscillations were spurious, the use of variate differencing revealed that the vari-
ance of the random component was almost certainly very much smaller than
that implied by the process of moving averaging. Hence Kendall was able to
conclude that detrending his series in this way did not induce spurious oscilla-
tions and that the oscillatory character of the detrended series were indeed an
inherent feature of the data.6

Modelling deterministic trends

10.14 Economists during the early part of the twentieth century particularly
favoured deterministic trend functions and, although simple linear trends were
especially popular, perhaps after logarithmically transforming the series being
analysed, nonlinear functions such as the logistic and Gompertz curves,

xt = k
1 + e−λt

xt = exp (a0 − a1e−λt )

were also employed to model various patterns of growth.
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A common impression was that trends were to be removed quickly and simply
so that attention could be focused on the more economically interesting cyclical
fluctuations thereby revealed. The possibility that the function that was used
to remove the trend could actually affect the cyclical component or, even, that
the trend and cycle could be theoretically interlinked, only became apparent
during the 1930s, particularly after Frickey (1934) showed that a wide range
of cyclical patterns could be obtained in economic time series simply by using
different functions for trend removal. Using some 23 trend functions, Frickey
(1934, table 1) was able to obtain cycles for US pig iron production between
1854 and 1926 ranging from 3.3 to 45 years in average length, leading him to
conclude

first, that the average length of ‘cycle’ for a series – and for that matter, the
whole form of the supposed cyclical picture – may exhibit great variation
depending upon the kind of secular trend which has previously been fitted;
second, that the discovery, about a particular trend representation which
has been set up for a given economic time series, of oscillations which may
conform more or less closely to a certain average length cannot in itself be
taken as establishing the statistical or economic validity of such movements
as cycles. (ibid., pages 16–17)

10.15 Almost no attention was paid to the possibility that the fitted trends
might incorporate a measure of uncertainty: as Working and Hotelling (1929,
page 73) remarked, such trends were ‘frequently discussed as though they rep-
resented observed facts, subject to some error in consequence of possible errors
in the original data, but, when the basic data are reasonably trustworthy, to be
accepted at face value. On this interpretation, trends of economic data must
usually have a negligible probable error.’ Working and Hotelling were not con-
vinced by this argument and neither were they taken by the use of trends as
purely descriptive devices.

The proper use of a trend is as a representation of the course that would
probably have been taken by the data if certain classes of effects appearing in
the data could have been eliminated. Viewed thus, a trend may be a highly
trustworthy representation of this course, or it may be, and usually is, subject
to considerable possible error. (ibid., page 73; italics added for emphasis)

Working and Hotelling were at pains to contrast the classical ‘measurement
error’ interpretation of trend fitting in science to the situation typically found
with economic data, explaining the contrast in some style.

The theory of curve fitting is simplest where the effects which it is desired to
eliminate are simple errors of observations. The data from observations on
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the course of a comet will ordinarily show the heavenly wanderer following
a somewhat erratic course. No sober comet so wavers and stumbles on its
path. Deviations of the observations from a smooth curve may properly be
attributed to errors of observation. The curve fitted to the observations may
be described as representing the probable true course of the comet.

The interpretation of curves fitted to economic data requires a higher
degree of abstraction. The trend of potato yields in the United States, for
example, as shown in [Figure 10.4], does not represent the true course of
potato yields. The original jagged curve is the best available representation
of that true course. The trend gives rather a representation of the course that
would have been followed had yields been affected by but one class of the fac-
tors actually affecting them, namely, those changing uniformly from year to
year. If it is not reasonable to suppose that such a class of factors was actually
in operation, the trend can carry no real meaning: there is no justification
for fitting a trend. (ibid., pages 73–4)

After providing a list of those factors that gave the trend fitted in Figure 10.4 ‘real
meaning’, Hotelling and Working proceeded to investigate the probable error
of such a fitted trend.7 Using a variety of considerations, they settled on a linear
trend fitted to the means of non-overlapping pairs of successive observations
for the years 1910/11 to 1914/15 and 1921/22 to 1927/28. The use of such
means was a device to eliminate serial correlation in the residuals from the
fitted trend, termed by Hotelling and Working as the ‘method of independent
groups’ and employed because negative first order serial correlation was found
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Figure 10.4 Annual average yield of potatoes in the United States, 1890–1928 and recent
trend (bushels per acre)
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in the residuals from a linear trend fitted to the actual potato yields. The fitted
trend has intercept α̂ = 104.4 with standard error σ̂α = 2.81 and slope β̂ = 1.26
with standard error σ̂β = 0.44.

Working and Hotelling then showed that the standard error of the fitted trend

line α̂ + β̂t was
√

σ̂2
α + t2σ̂2

β (where the origin for t has been chosen so that t̄ = 0).
Consequently

α̂ + β̂t ± K
√

σ̂2
α + t2σ̂2

β

determines a value of the series that, at time t, differs from that given by the fit-
ted trend line by K times the standard error. The probability that this difference
will be exceeded by chance is obtained by equating K with an appropriate value
of Student’s t-distribution with degrees of freedom given by two less than the
number of observations used in the fitting. Here the degrees of freedom are 17
and, for a 5% probability, the appropriate value of the t-distribution is 2.110.
Using this value for K obtains the 95% probability interval shown in Figure 10.4.

For the next year, 1929, the best estimate of the ‘normal’ potato yield is 117
bushels but, given this probability interval, the chances are one in 40 that the
true normal yield is below 106 bushels and one in 40 that it is above 128 bushels,
leading Working and Hotelling to conclude that ‘it is always appropriate to
consider the probable errors of a trend and that the probable errors are frequently
so large as to deserve careful consideration in drawing conclusions from the data’
(ibid., page 84).

Differencing to remove nonstationarity

10.16 While the attention of many statisticians and economists was focused
on trend fitting, either directly or via moving averages, to remove nonstationar-
ity in time series data, Irving Fisher, the famous American economist, statistician
and polemicist, returned to the idea of taking differences to transform data to
stationarity (cf. the discussion of Persons analysis in §4.14). While investigating
the relationship between US trade and price indices (denoted T and P respec-
tively), Fisher made the observation that, when looking at a plot of the two
series,

(a)t first glance these two curves reveal no evident relationship. But this is
chiefly because their relationship is not directly between the height (ordi-
nates) of these curves but between the slope of the P curve (i.e. the rate of
change of the price level) and the height of the T curve. (I. Fisher, 1925,
page 182: italics in original)

Fisher measured the slope, P′, of the P curve for a particular month ‘by subtract-
ing the index number for the preceding month from that for the succeeding month
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and reducing the result to a percentage of the given or intervening month’ (ibid.,
page 182, footnote 3: italics in original). Thus

P′
t = Pt+1 − Pt−1

Pt

which can be expressed as

P′
t = �Pt+1

Pt
+ �Pt

Pt
≈ � log Pt + Pt−1

Pt
� log Pt−1

using the familiar approximation log(1 + x) ≈ x for x small. Thus the slope is
a weighted average of the current and past growth rates. It is clearly seen in
I. Fisher (1925, Chart 1) that the wandering behaviour of P is removed by this
transformation, leaving P′ stationary: ‘(w)e note at once that P′ supplies an
oscillating barometer without requiring any of the corrections for secular trend
and seasonal variation found necessary in most “cycle” data’ (ibid., page 183).8

10.17 The use of differencing to induce stationarity was reconsidered by Box
and Jenkins (1962) in the context of developing stochastic models for adap-
tive optimization and control, where they proposed that a nonstationary series
should be differenced enough times until it appeared stationary, although in
their experience second differencing had always proved adequate. This was the
forerunner of the approach utilized in Box and Jenkins (1968, 1970), where they
termed series that could be reduced to stationarity by differencing one or more
times as being homogeneous nonstationary.9

Figure 10.5(a) shows a nonstationary series that is homogeneous in its level:
except for a vertical translation, one part of the series looks much the same

(a) A series showing nonstationarity in level

(b) A series showing nonstationarity in level and in slope

Figure 10.5 Two kinds of homogeneous nonstationary behaviour
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as any other. Such a series can be rendered stationary by differencing once,
i.e., by analysing zt = �xt rather than xt . Figure 10.5(b) shows a second type
of nonstationarity of fairly common occurrence, where the series has neither a
fixed level nor a fixed slope but exhibits homogeneous behaviour if differences
in these characteristics are allowed for, i.e., if second differences zt = �2xt are
considered.

Integrated processes

10.18 In general, if dth differences are required to render xt stationary then
the series to be analysed is zt = �dxt . This can be ‘inverted’ to give

xt = �−dzt = Sdzt

where S is the infinite summation operator defined by

Szt =
t∑

j=−∞
zj = (1 + B + B2 + · · ·)zt = (1 − B)−1zt = �−1zt

The operator S2zt is similarly defined as

S2zt = (1 − B)2zt = �−2zt = Szt + Szt−1 + Szt−2 + · · · =
t∑

i=−∞

i∑

j=−∞
zj

and so on. Thus xt can be obtained by summing (or ‘integrating’) zt d times.
Recalling the terminology first introduced by Hall (1925) (cf. §10.8), xt is an
integrated process of order d.

Autoregressive-integrated-moving average processes

10.19 If the stationary dth differences zt = �dxt can be represented by an
ARMA(p, q) process (cf. §8.10, §§9.30–9.47),

φ(B)zt = θ(B)at (10.11)

then Box and Jenkins (1970, chapter 4) call the equivalent model for xt itself,

φ(B)�dxt = θ(B)at (10.12)

an autoregressive-integrated-moving average process of orders p, d and q, succinctly
given the acronym ARIMA(p, d, q). Such processes have some important and
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interesting properties which have led to them becoming perhaps the most
widely used class of model for dealing with nonstationary processes.

Recall the simple AR(1) process (1 − φB)xt = at . If |φ| < 1, xt is stationary and
will therefore always revert back to its mean, here taken to be zero for simplicity.
On the other hand, if φ > 1 the process is said to be explosive, with xt increasing
rapidly with t. The important point is that, in both cases, the local behaviour of
a series generated from the model is heavily dependent upon the level of xt . This
is in contrast to the behaviour of the series shown in Figure 10.5(a), where its
local behaviour appears to be independent of its level. For an ARMA model to
exhibit such behaviour, the autoregressive operator must be chosen such that

φ(B)(xt + c) = φ(B)xt

where c is any constant. Thus the autoregressive operator must satisfy φ(B)c = 0,
which implies that φ(1) = 0, which will be satisfied if φ(B) is of the form

φ(B) = φ1(B)(1 − B) = φ1(B)�

Hence the class of processes having the desired property will be of the form

φ1(B)�xt = θ(B)at

which, of course, is (10.12) with d = 1, i.e., an ARIMA(p − 1, 1, q) process. The
required homogeneity excludes the possibility that zt = �xt should increase
explosively. This means that either φ1(B) is a stationary autoregressive opera-
tor or φ1(B) = φ2(B)(1 − B), so that φ2(B)zt = θ(B)at , where zt = �2xt , which is the
case for the series shown in Figure 10.5(b). In the latter case the same argu-
ment can be applied to the second difference and so on. Consequently, it must
be the case that, for time series that are nonstationary, but nevertheless exhibit
homogeneity, the autoregressive operator must be of the form shown in (10.12).

10.20 For the AR(1) process, the requirement that φ(1) = 0 implies that φ = 1,
so that the model becomes xt = xt−1 + at or, equivalently, �xt = at . This, of
course, is the famous random (or drunkards) walk, so termed in a correspon-
dence between Karl Pearson and Lord Rayleigh in the journal Nature in 1905 (see
Pearson and Rayleigh, 1905). Although first employed by Pearson to describe
a mosquito infestation in a forest, the model was subsequently, and memo-
rably, used to describe the optimal search strategy for finding a drunk who had
been left in the middle of a field at the dead of night! The solution is to start
exactly where the drunk had been placed, as that point is an unbiased esti-
mate of the drunk’s future position since he will presumably stagger along in
an unpredictable and random fashion: ‘(t)he lesson of Lord Rayleigh’s solution
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is that in open country the most probable place to find a drunken man who is
at all capable of keeping on his feet is somewhere near his starting point’ (ibid.,
page 342).10 If the random walk starts at time t = 0 then

xt = x0 +
t∑

j=1

aj

so that xt is the accumulation of all past innovations. The random walk is thus
equivalent to Yule’s (1926) conjunct series with random differences (§§5.6–5.7),
to Working’s (1934) ‘random-difference series’ discussed in §§5.16–5.17, and
to Macaulay’s (1931) ‘cumulated chance series’ referred to in §10.1. Macaulay’s
‘chance series which has been cumulated twice’ is thus an integrated series of
order two, and may be thought of as a random walk with random walk inno-
vations, since the process �xt = bt with �bt = at can be written as �2xt = at .
The two series shown in Figure 10.5 are generated as �xt = at and �2xt = at ,
respectively, in both cases with at being a standard normal variate.

If a constant is included, the process

xt = xt−1 + θ0 + at (10.13)

is known as a random walk with drift. Figure 10.6 depicts such a process with at

standard normal and θ0 = 0.2. It is often remarked that the evolution of many
macroeconomic time series look very much like this.

If the process again starts at t = 0, the random walk with drift can be written as

xt = x0 + tθ0 +
t∑

j=1

aj

It therefore follows that the mean of the process will be time varying

μt = E(xt ) = x0 + tθ0

Figure 10.6 A random walk with drift
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as will be the variance and all the auto-covariances

γk,t = Cov(xtxt−k) = (t − k)σ2 k > 0

where σ2 = E(a2
t ). Thus the autocorrelation between xt and xt−k is given by

ρk,t = t − k
√

t(t − k)
=

√
t − k

t

If t is large compared to k, all ρk,t will be approximately unity. The sequence of
x values will therefore be very smooth, but xt will, of course, be nonstationary
since both its mean and variance increase with t.

With a constant included, the ARIMA(p, d, q) process takes the form

φ(B)�dxt = θ0 + θ(B)at

The inclusion of θ0 has the effect of including a deterministic function of time,
a polynomial of order d, into the model, but this will now be ‘buried’ in non-
stationary noise. This should be contrasted with the traditional model of a
deterministic trend, in which xt is expressed as the sum of a polynomial and
stationary noise, e.g.

xt =
d∑

j=0

βjt j + bt φ(B)bt = θ(B)at

This can be written as

�dxt = βdd! + �dbt = βdd! + �d θ(B)
φ(B)

at

or

φ(B)�dxt = φ(1)βdd! + �dθ(B)at

with the stationary nature of the noise in xt being manifested in d roots of the
moving average operator being unity.

Determining the order of differencing

10.21 The autocorrelations of an ARIMA( p, 0, q) process will satisfy the differ-
ence equation φ(B)ρk = 0 for k > q (see §8.10). On factorizing the autoregressive
operator as

φ(B) =
p∏

i=1

(1 − GiB)
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then the solution of this difference equation for the kth autocorrelation is,
assuming distinct roots,

ρk = A1Gk
1 + A2Gk

2 + · · · + ApGk
p k > q − p (10.14)

The stationarity requirement that the roots of φ(B) must lie outside the unit
circle thus implies that |Gi| < 1, i = 1, . . . , p. From (10.14) it is clear that, in the
case of a stationary process in which none of the roots lie close to the boundary
of the unit circle, the autocorrelation function will quickly ‘die out’ for moderate
and large k. However, suppose that a single real root, say G1, approaches unity,
so that G1 = 1 − δ where δ is small and positive. Then, for k large,

ρk ≈ A1(1 − δ)k = A1(1 − kδ + k2δ2 − · · ·) ≈ A1(1 − δk)

and the autocorrelations will not die out quickly but will decline only slowly
and approximately linearly. (A similar argument may be applied if more than
one of the roots approaches unity.) This led Box and Jenkins (1970, page 175)
to the conclusion that

a tendency for the autocorrelation function not to die out quickly [can be]
taken as an indication that a root close to unity may exist. The estimated
autocorrelation function tends to follow the behavior of the theoretical
autocorrelation function. Therefore, failure of the estimated autocorrela-
tion function to die out rapidly might logically suggest that we should treat
the underlying stochastic process as nonstationary in xt , but possibly as
stationary in �xt , or in some higher difference.

Box and Jenkins emphasized that the sample autocorrelations need not be high
at low lags: all that is required for nonstationarity is that they do not die
out rapidly. It may then be assumed that the degree of differencing necessary
to achieve stationarity has been reached when the sample autocorrelations of
zt = �dxt die out fairly quickly. In practice, Box and Jenkins found that typically
d ≤ 2 and that it was usually sufficient to inspect the first twenty or so sample
autocorrelations of the original series and its first and second differences.

Once d has been so chosen, the autoregressive and moving average orders p
and q of zt = �dxt can be identified using the procedure outlined in §§9.41–9.43.

10.22 Figures 10.7 and 10.8 show Series B and C taken from Box and Jenkins
(1970, pages 526 and 528 respectively), along with plots of the sample autocorre-
lation functions for d ≤ 2 and k ≤ 20. It is clear that both series are nonstationary
with the autocorrelations for d = 0 declining only very slowly. For Series B,
which is the IBM common stock price for 369 days during 1961 and 1962, first
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Figure 10.7 Series B from Box and Jenkins (1970); IBM common stock closing prices: daily
17 May 1961–2 November 1962

differencing is seen to induce stationarity: indeed, for d = 1 all sample autocor-
relations are close to zero, thus implying that �xt is white noise or that the
series itself follows a random walk, the traditional model used to model stock
prices.
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Figure 10.8 Series C from Box and Jenkins (1970): chemical process temperature readings:
every minute

For Series C (the 226 minute-by-minute temperature readings of a chemical
process), there is some indication that the sample autocorrelations for d = 1 are
decaying only slowly, which might suggest that second differencing is required.
Such a conclusion would be consistent with the changes in level and slope that
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are observed in the series. If d = 2 is chosen, then it would appear from the asso-
ciated sample autocorrelations that �2xt is white noise. Box and Jenkins were
not convinced that second differencing was required, however, for the autocor-
relations for d = 1 could equally be argued to be declining exponentially from

1r1 ≈ 0.8, which would identify the ARIMA(1, 1, 0) model (1 − 0.8B)(1 − B)xt = at

rather than the ARIMA(0, 2, 0) model �2xt = at .
This difficulty of deciding the appropriate order of differencing from the

behaviour of sample autocorrelations alone was to become a major drawback of
the Box and Jenkins identification procedure and, subsequently, led to a massive
research project on the subject of testing for unit roots (see §16.2). Nevertheless,
determining the order of differencing in this way was the final piece in estab-
lishing a workable method of identifying ARIMA processes and subsequently
had a major impact on getting these models accepted and used across a wide
range of time series applications.
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Forecasting Nonstationary Time Series

Early attempts at economic and financial forecasting

11.1 Forecasting time series, particularly economic ones, has had a long, and
often chequered, history. Attempts to find temporal patterns in economic data
that might enable predictions to be made about future events stretch all the way
back to a London cloth merchant, John Graunt, who in 1662 published several
ingenious comparisons using bills of mortality.1 For example, in an attempt to
make trade and government ‘more certain and regular’, Graunt searched for
seasonal and other periodic patterns in mortality, conditioned the data on the
plague, and determined the temporal pattern of ‘sickliness’ that would enable
him to predict ‘by what spaces, and intervals we may hereafter expect such
times again’, as quoted in Klein (1997, page 55), who provides an authoritative
account of these early attempts at statistical analysis using economic data.

As Klein recounts, attempts to detect periodic fluctuations in economic data
continued throughout the eighteenth and nineteenth centuries, and links with
meteorology became particularly fashionable, culminating in William Stanley
Jevons’ advocacy of the sunspot theory of the business cycle, in which he con-
vinced himself that sunspot cycles and business cycles were of the same length,
around ten and a half years (cf. the sunspot cycle estimate provided in §6.4), and
that the causal relationship ran from sunspots to the economy, so that he could
predict commercial cycle turning points from sunspot cycle peaks (see Jevons,
1884). Indeed, Jevons even used the evidence of a cyclical peak in corn prices to
infer the presence of a preceding peak in the sunspot data. Jevons’ sunspot the-
ory was reviewed in Morgan (1990, chapter 1), which emphasized the ridicule,
rather than simply criticism, that the theory received from his peers, possibly
the first in a long line of critiques of economic forecasting!

The presumed link between meteorology and the economy reached its apogee
with Henry Moore’s (1923) ‘Venus theory’, in which he outlined how recent
discoveries in physics had shed light on exactly how Venus, in conjunction

289



9780230290181_12_cha11.tex 26/4/2011 18: 24 Page 290

290 The Foundations of Modern Time Series Analysis

with the Earth and the Sun, might cause rainfall cycles on Earth, which then led
on to produce economic cycles. As Morgan relates, Moore’s theories had about
as much support from other economists as had those of Jevons, although the
reaction was more of polite scepticism than the previous outrage and ridicule.

At the same time as Moore was publishing his ideas about the causes of eco-
nomic cycles, a different, more mainstream, view about measuring and using
business cycles was coming to prominence through the statistical work of Wesley
Mitchell (1913). Mitchell’s analysis was primarily descriptive, and his belief
that each cycle was different effectively excluded formal statistical analysis and,
by extension, any role for forecasting. A parallel statistical approach to cycles
did, however, purport to provide a methodology for forecasting. This was the
business barometer approach of Warren Persons and the Harvard Economic Soci-
ety, a commercial venture set up by several of the economics staff at Harvard
University and which specialized in providing a business forecasting service.
This approach rapidly gained popularity during the early 1920s, with institutes
devoted to business cycle research being established in a number of countries
(see Persons, 1924a, 1924b, and Bullock, Persons and Crum, 1927).

Persons’ view of statistics, that probability theory was unsuitable for business
cycle analysis and forecasting, was shared by Oskar Morgenstern, who in 1928
published a thesis arguing that economic forecasting based on probability rea-
soning was impossible because economic data did not satisfy conditions such as
homogeneity and independence. Morgenstern’s thesis has never been published
in English, but a reply to his critique was written by Marget (1929). Although
Marget accepted Morgenstern’s claim that probability was not applicable to eco-
nomic forecasting, he nevertheless disputed the conclusion that forecasting was
therefore impossible in principle, arguing that most of the forecasting of the
period used extrapolative methods rather than formal statistical techniques.
Of course, a decade later Wold’s treatise showed conclusively that probabilistic
concepts could indeed be employed in the forecasting of (stationary) time series
(cf. §7.17).

11.2 Unsurprisingly, the predictability of financial markets also became of
great interest in the run up to, and aftermath of, the 1929 Crash. The early
years of the twentieth century saw stock prices in the United States soar: prices
rose 60 per cent between 1900 and 1916 and a further sixfold between 1921
and 1929. Unsurprisingly, too, this period also saw the appearance of many
investment forecasting services, not the least of which was the Harvard A-B-C
barometers, originally devised by Persons. These were so termed because groups
of variables were combined into three indices: A was the index, or barometer, of
the group of leading series, B the index of current indicators, and C the index of
lagging series. This approach attempted to identify series, contained in A, that
could be used to predict future movements in the stock market. For several years
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the barometers seemed to be a successful forecasting device, but, after they failed
to predict the 1929 Crash, in which stock prices fell 90 per cent from their peak
before bottoming out in 1932, they swiftly fell out of favour and eventually into
disuse. This episode is entertainingly recounted by Samuelson (1987), who also
provides trenchant comments on the supposed forecasting ability of academic
economists!2

In 1928, just before the Crash, Alfred Cowles III, an independent investor,
began to question the reliability of the vast array of investment information
that was being published and started keeping track records of the most widely
circulated services. As the crash and the subsequent bear market unfolded, it
seemed to come as a total surprise to the services that Cowles was subscribing
to, and this prompted him to set out to find whether stock prices actually were
predictable. Cowles got in touch with the Econometric Society, which had been
established in 1929 to encourage scholars interested in combining mathematics,
statistics and economics. Irving Fisher was the President of the Society, an aca-
demic who (recall §10.16) had a worldwide reputation for his work in monetary
economics, business cycles, and index numbers. By coincidence, he had also
achieved a different, and less enviable, reputation for his attempts to forecast
the stock market, losing a substantial fortune in the wake of the crash (see the
comments in Samuelson, 1987)!

Cowles offered to finance both the publication of the Society’s journal and the
establishment of an organization to promote and publish econometric research.
In 1932, the Cowles Commission for Research in Economics was established in
Colorado Springs, from where it moved to Chicago in 1939 and thence to its
present home at Yale in 1950, where it is now known as the Cowles Founda-
tion. The first issue of the journal, Econometrica, appeared in January 1933 and
the July issue of that year contained the first fruit of Cowles’ research, an arti-
cle entitled ‘Can Stock Market Forecasters Forecast?’, for which there was the
three-word abstract – ‘It is doubtful’. This article (Cowles, 1933) investigated
the track records of 45 professional forecasting agencies, concluding that the
results were basically no better than what could have been achieved through a
random selection of stocks. Two further articles followed in due course, Cowles
and Jones (1937) and Cowles (1944). The latter covered almost 7,000 forecasts
over a period of more than fifteen years and again failed to find evidence of any
ability to forecast successfully future stock market movements.

Apart from these papers, only two analyses of any note on the subject of stock
market forecasting appeared in the quarter of a century following Cowles’ orig-
inal contribution. Holbrook Working’s (1934) paper, the statistical aspects of
which were discussed in §§5.19–5.20, sought to explain why graphs of price
levels displayed trends and fluctuations that appeared to show identifiable and
repetitive patterns, but that when the levels were differenced to obtain price
changes, any such patterns disappeared. This, of course, is arriving at the
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random walk from an empirical, rather than a theoretical, perspective. The
second paper was published some twenty years later by Kendall (1953), who
analysed many different weekly financial price series and came to the same
conclusion as Working, that there was no structure of any sort in the history of
price patterns.

Broadly speaking the results are these:
(a) In series of prices which are observed at fairly close intervals the random

changes from one term to the next are so large as to swamp any systematic
effect which may be present. The data behave almost like wandering series.

(b) It is therefore difficult to distinguish by statistical methods between a
genuine wandering series and one wherein the systematic element is weak.

...

(e) An analysis of stock-exchange movements revealed little serial corre-
lation within series and little correlation between series. Unless individual
stocks behave differently from the average of similar stocks, there is no hope
of being able to predict movements on the exchange for a week ahead without
extraneous information. (ibid., page 11)

Kendall was clearly surprised by these empirical findings.

At first sight the implications of these results are disturbing. If the series is
homogeneous, it seems that the change in price from one week to the next
is practically independent of the change from that week to the week after.
This alone is enough to show that it is impossible to predict the price from
week to week from the series itself. And if the series really is wandering, any
systematic movements such as trends and cycles which may be ‘observed’
in such series are illusory. The series looks like a ‘wandering’ one, almost as
if once a week the Demon of Chance drew a random number from a symmetrical
population of fixed dispersion and added it to the current price to determine the next
week’s price. (ibid., page 13: italics added for emphasis)

Interestingly, Kendall, for all his great knowledge of time series, which has been
amply demonstrated in previous chapters, did not appear to be familiar with
the term ‘random walk’. Even though such a model is clearly implied from the
quotes above, he preferred to state that ‘(i)t may be that the motion is genuinely
random and that what looks like a purposive movement over a long period is
merely a kind of economic Brownian motion’ (ibid., page 18).

11.3 Stimulated by the research of Working and Kendall, Roberts (1959)
demonstrated, by way of a simulation using random number tables, why succes-
sive price changes should be independent and why analysts could get ‘fooled’
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into believing that the evolution of price levels contained patterns that could
be exploited for forecasting. Researching independently and in complete igno-
rance of these papers, Osborne (1959), an astrophysicist at the US Naval Research
Laboratory, hypothesized that the percentage change in stock prices would fluc-
tuate as Brownian motion, finding empirical support for this from both Cowles’
stock price index and the Dow Jones Industrial Average. A follow-up paper,
Osborne (1962), acknowledged the roles played by earlier researchers, including
Bachelier.

Alexander (1961) also asked whether stock prices were predictable, but decided
to answer this question by comparing a buy-and-hold investment strategy with
a ‘filter’ strategy, where the investor buys after prices have moved up by some
predetermined amount, say x per cent, and then sells after they have fallen by
x per cent. Examining daily data for the Standard & Poor’s Industrial Average
from 1857 to 1959 and using various values for x, Alexander found that such a
filter strategy did indeed produce greater profits than the buy-and-hold strategy.
Unfortunately, however, his procedure drew a great deal of criticism, particularly
for ignoring dividends and transaction costs associated with trading stocks, and
this led Alexander (1964) to repeat the analysis taking such factors into account.
The conclusions from this second attempt were much weaker: ‘the big bold prof-
its of Paper 1 must be replaced with rather puny ones. The question still remains
whether even these profits could plausibly be the result of a random walk. But
I admit that the fun has gone out of it somehow’ (Alexander, 1964, page 27).

Tests of the predictability or otherwise of stock market prices or returns now
began in earnest and during the 1960s several important studies were published
examining some feature or other of the random walk’s implications for the pre-
dictability of stock market prices: see, inter alia, Cootner (1962), Fama (1965),
Fama and Blume (1966), Godfrey, Granger and Morgenstern (1964) and Nieder-
hoffer and Osborne (1966). A variety of methods and approaches to examining
the predictability of stock prices were used in these papers, suggesting that a sys-
tematic approach to the forecasting of time series might prove to be particularly
useful.

Forecasting using ARIMA models

11.4 In fact, concurrently with these attempts to ascertain whether the ran-
dom walk model could be outperformed in terms of forecasting stock prices,
Box and Jenkins (1968, 1970, chapter 5) were indeed providing a synthesis of
the theory of forecasting from an ARIMA(p, d, q) model, of which the random
walk, of course, is but a special case. Box and Jenkins focused on the general
model

ϕ(B)xt = θ(B)at (11.1)
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where ϕ(B) = φ(B)�d is the ‘generalized autoregressive operator’, to answer the
question of how a future value, xt+l, l ≥ 1, could be forecast at the current time t.
Such a forecast is said to be made at origin t for lead time l.

An observation xt+l generated by the process (11.1) can be expressed in three
equivalent forms. First, it can be written directly as the difference equation

xt+l = ϕ1xt+l−1 + · · · + ϕp+dxt+l−p−d − θ1at+l−1 − · · · − θqat+l−q + at+l (11.2)

Second, it can be written as an infinite weighted sum of current and past shocks
at+l, at+l−1, . . . ,

xt+l =
t+l∑

j=−∞
ψt+l−jaj =

∞∑

j=0

ψjat+l−j (11.3)

where ψ0 = 1 and the ‘ψ-weights’ are obtained by equating the coefficients of
powers of B in

ϕ(B)(1 + ψ1B + ψ2B2 + · · ·) = θ(B)

Equivalently, for positive l > q, the model may be written in the truncated form

xt+l = Ct (l) + at+l + ψ1at+l−1 + · · · + ψt−1at+1 (11.4)

where

Ct (l) =
t∑

j=−∞
ψt+l−jaj =

∞∑

j=0

ψl+jat−j

has the interpretation of being the ‘complementary function’. Finally, xt+l can
be written as an infinite weighted sum of previous observations plus a random
shock

xt+l =
∞∑

j=1

πjxt+l−j + at+l (11.5)

The ‘π-weights’ may be obtained by equating the coefficients in

ϕ(B) = (1 − π1B − π2B2 − · · ·)θ(B)

and, if d ≥ 1,

xt+l−1(π) =
∞∑

j=1

πjxt+l−j

will be a weighted moving average, since
∑∞

j=1 πj = 1.

11.5 Suppose that, at origin t, a forecast x̂t (l) is to be made of xt+l which
is required to be a linear function of current and previous observations
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xt , xt−1, xt−2, . . . . It will then also be a function of the current and previous
shocks at , at−1, at−2, . . . . The best forecast, in the minimum mean square error
(MMSE) sense, will be

x̂t (l) = ψ∗
l at + ψ∗

l+1at−1 + ψ∗
l+2at−2 + · · ·

where the weights ψ∗
l , ψ∗

l+1, ψ∗
l+2, . . . minimize the mean square error of the

forecast,

E[xt+l − x̂t (l)]
2 = (1 + ψ2

1 + ψ2
2 + · · · + ψ2

l−1)σ2
a +

∞∑

j=0

(ψt+j − ψ∗
t+j)

2σ2
a

This expectation will be minimized by setting ψ∗
t+j = ψt+j, in which case

xt+l = (at+l + ψ1at+l−1 + · · · + ψl−1at+1) + (ψlat + ψl+1at−1 + · · ·) = et (l) + x̂t (l)
(11.6)

where et (l) is the error of the forecast x̂t (l) at lead time l.
On denoting the conditional expectation of xt+l, given knowledge of all the

x’s up to time t, as (cf. §9.35)

[xt+l] = E[xt+l|xt , xt−1, . . .]

then

x̂t (l) = ψlat + ψl+1at−1 + · · · = [xt+l] (11.7)

The MMSE forecast at origin t, for lead time l, is thus the conditional expectation
of xt+l at time t. When x̂t (l) is regarded as a function of l for fixed t, Box and
Jenkins referred to it as the forecast function for origin t. Indeed, not only is x̂t (l)
the MMSE forecast of xt+l, but any linear function

∑L
l=1 wlx̂t (l) of the forecasts

will be a MMSE forecast of the corresponding linear function
∑L

l=1 wlxt+l of the
future observations, which is a useful property when, for example, constructing
annual forecasts from monthly data.

11.6 The forecast error for lead time l is

et (l) = at+l + ψ1at+l−1 + · · · + ψl−1at+1

Since [et+l] = 0 the forecast is unbiased and the variance of the forecast error is

V(l) = Var[et (l)] = (1 + ψ2
1 + ψ2

2 + · · · + ψ2
l−1)σ2

a (11.8)
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From (11.6), the one-step ahead forecast error is

et (1) = xt+1 − x̂t (1) = at+1

Hence, the residuals at are the one-step ahead forecast errors, so that the sequence
of such errors must be uncorrelated: ‘this is eminently sensible, for if one step
ahead errors were correlated, then the forecast error at+1 could, to some extent,
be predicted from available forecast errors at , at−1, at−2, . . . . If the prediction so
obtained was ât+1, then x̂t (1) + ât+1 would be a better forecast of xt+1 than was
x̂t (1)′ (Box and Jenkins, 1970, page 129).

However, this result does not extend to higher lead times. Box and Jenkins
(ibid. Appendix 5.1.1) showed that the correlation between the forecast errors
et (l) and et−j(l) made for the same lead time l, but at different origins t and t − j,
was given by

ρ[et (l), et−j(l)] =
∑l−1

i=j ψiψi−j
∑l−1

i=0 ψ2
i

for 0 ≤ j < l and would be zero for j ≥ l. Furthermore, the forecast errors et (l) and
et (l + j), i.e., those made for different lead times from the same origin, will also
be correlated: from Box and Jenkins (ibid., Appendix 5.1.2)

ρ[et (l), et (l + j)] =
∑l−1

i−0 ψiψj+i
{∑l−1

h=0 ψ2
h

∑l+j−1
g=0 ψ2

g

} 1
2

For example, setting l = 2 and j = 1 in these formulae yield

ρ[et (2), et−1(2)] = ψ1

(1 + ψ2
1)

and

ρ[et (2), et (3)] = ψ2 + ψ1ψ3

{(1 + ψ2
1)(1 + ψ2

1 + ψ2
2)} 1

2

‘One consequence of this is that there will often be a tendency for the fore-
cast function to be wholly above or below the values of the series when they
eventually come to hand’ (ibid., page 129).

Alternative forms of the ARIMA forecast

11.7 The forecasts from the ARIMA model (11.1) can be written down in three
different ways, corresponding to the three equivalent expressions in §11.3.
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Taking conditional expectations of the difference equation (11.2) yields

[xt+l] = x̂t (l) = ϕ1[xt+l−1]+· · ·+ϕp+d[xt+l−p−d]− θ1[at+l−1]−· · ·− θq[at+l−q]+ [at+l]

while using (11.3) and (11.4), respectively, give

[xt+l] = x̂t (l) = [at+l] + ψ1[at+l−1] + · · · + ψt−1[at+1] + ψt [at ]

+ ψt+1[at−1] + · · · + [at+l]

and

[xt+l] = x̂t (l) = Ct (l) + [at+l] + ψ1[at+l−1] + · · · + ψt−1[at+1]

Finally, taking conditional expectations of (11.5) yields

[xt+l] = x̂t+l =
∞∑

j=1

πj[xt+l−j] + [at+l] (11.9)

Box and Jenkins (ibid., page 130) noted that, although the MMSE forecast
was defined in terms of the conditional expectation [xt+l] = E[xt+l|xt , xt−1, . . .],
which theoretically requires knowledge of the x’s stretching back into the
infinite past,

the requirement of invertibility, which we have imposed on the general
ARIMA model, ensures that the π weights in [11.9] form a convergent series.
Hence, for the computation of a forecast to a given degree of accuracy,
for some k, the dependence on xt−j for j > k can be ignored. In prac-
tice, the π weights usually decay rather quickly, so that whatever form
of the model is employed in the computation, only a moderate length
of series xt , xt−1, . . . , xt−k is needed to calculate the forecasts to sufficient
accuracy.

The conditional expectations can be calculated using the results

[xt−j] = xt−j j = 0, 1, 2, . . .

[xt+j] = x̂t ( j) j = 1, 2, . . .

[at−j] = at−j = xt−j − x̂t−j−1(1) j = 0, 1, 2, . . .

[at+j] = 0 j = 1, 2, . . .
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Thus, to obtain the forecast x̂t (l), the model for xt+l can be written in any one
of the above forms, with the terms on the right-hand side of these forms being
treated according to the following rules:

The xt−j( j = 0, 1, 2, . . .), which have already occurred at origin t, are left
unchanged.

The xt+j( j = 1, 2, . . .), which have yet to occur, are replaced by their forecasts
x̂t ( j) at origin t.

The at−j( j = 0, 1, 2, . . .), which have occurred, are calculated as xt−j − x̂t−j−1(1).
The at+j( j = 1, 2, . . .), which have yet to occur, are replaced by their

expectation of zero.

11.8 As an example of constructing ARIMA forecasts, consider Box and
Jenkins’ Series C, which in §10.22 was identified as likely to have been generated
by the ARIMA(1, 1, 0) model

(1 − 0.8B)(1 − B)xt+l = (1 − 1.8B + 0.8B2)xt+l = at+l

The difference equation form, which is usually the simplest to work with for
computing forecasts, is thus

xt+l = 1.8xt+l−1 − 0.8xt+l−2 + at+l

The forecasts at origin t are then given by

x̂t (1) = 1.8xt − 0.8xt−1

x̂t (2) = 1.8x̂t (1) − 0.8xt

x̂t (l) = 1.8x̂t (l − 1) − 0.8x̂t (l − 2) l = 3, 4, 5, . . .

and are readily generated recursively in the order x̂t (1), x̂t (2), . . . .
Thus suppose that we wish to forecast Series C from origin t = 20. The observed

values that are required are x19 = 23.7 and x20 = 23.4, using which

x̂20(1) = (1.8 × 23.4) − (0.8 × 23.7) = 23.16

x̂20(2) = (1.8 × 23.16) − (0.8 × 23.4) = 22.97

and so on. As soon as x21 becomes available, a new set of forecasts x̂21(1),
x̂21(2), . . . can be generated. Since x21 = 23.1, x̂21(1) = (1.8 × 23.1) − (0.8 × 23.7) =
22.86, etc. Using at = xt − x̂t (1), the residual a21 = 23.1 − 23.16 = −0.06 may be
calculated as soon as x21 becomes known.
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Calculation of the ψ-weights and the construction of
probability limits

11.9 The ψ-weights are obtained by equating the coefficients of powers of B in

(1 − ϕ1B − · · · − ϕp+dBp+d)(1 + ψ1B + ψ2B2 + · · ·) = (1 − θ1B − · · · − θqBq)

i.e., as

ψ1 = ϕ1 − θ1

ψ2 = ϕ1ψ1 + ϕ2 − θ2

...

ψj = ϕ1ψj−1 + · · · + ϕp+dψj−p−d − θj

where ψ0 = 1, ψj = 0 for j < 0 and θj = 0 for j > q. If K is the greater of the integers
p + d − 1 and q, then for j > K the ψ-weights satisfy the difference equation

ψj = ϕ1ψj−1 + · · · + ϕp+dψj−p−d

which enables them to be calculated recursively. Thus, for the model
(1 − 1.8B + 0.8B2)xt = at , which is appropriate for Series C,

(1 − 1.8B + 0.8B2)(1 + ψ1B + ψ2B2 + · · ·) = 1

from which ψ0 = 1, ψ1 = 1.8 and ψj = 1.8ψj−1 − 0.8ψj−2, j = 2, 3, . . . . Hence

ψ2 = (1.8 × 1.8) − (0.8 × 1.0) = 2.44

ψ3 = (1.8 × 2.44) − (0.8 × 1.8) = 2.95

and so on.
From (11.7) the forecasts x̂t+1(l) and x̂t (l + 1) of the future observation xt+l+1

made at origins t + 1 and t can be written as

x̂t+1(l) = ψlat+1 + ψl+1at + ψl+2at−1 + · · ·
x̂t (l + 1) = ψl+1at + ψl+2at−1 + · · ·

from which it follows that

x̂t+1(l) = x̂t (l + 1) + ψlat+1
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Thus the t-origin forecast of xt+l+1 can be updated to become the (t + 1)-origin
forecast of the same xt+l+1 by adding a multiple, given by ψl, of the one-
step ahead forecast error at+1. For example, when forecasting Series C, once
x21 = 23.1 is known, from which a21 = 23.1 − 23.16 = −0.06 has been computed,
new forecasts for all lead times may then be calculated as

x̂21(1) = 22.97 + (1.8 × −0.06) = 22.86

x̂21(2) = 22.81 + (2.44 × −0.06) = 22.67

x̂21(3) = 22.69 + (2.95 × −0.06) = 22.51

and so on.

11.10 The expression (11.8) shows that the variance of the l-step ahead forecast
error for any origin t is given by

V(l) =
⎛

⎝1 +
l−1∑

j=1

ψ2
j

⎞

⎠ σ2
a

Assuming the a’s are normally distributed, it then follows that, given informa-
tion up to time t, the conditional probability distribution of a future value xt+l

will be normal with mean x̂t (l) and standard deviation

SE(l) =
⎛

⎝1 +
l−1∑

j=1

ψ2
j

⎞

⎠

1
2

σa

(1 − ε)% probability limits, xt+l(−) and xt+l(+), for xt+l will then be given by
xt+l(±) = x̂t (l) ± zε/2SE(l), where zε/2 is the ε/2 percentage point of the standard
normal distribution.

Of course, σa is typically unknown and must be estimated along with the
θ’s and φ’s using the methods of §§9.31–9.44. Such an estimate for Series C is
σ̂a = 0.134 and, since the length of the series, T = 226, is reasonably large, this
value can be substituted into SE(l) to obtain, for example, 50% and 95% limits
for x̂t (2):3

50% limits: x̂t (2) ± 0.674 × (1 + 1.82)1/2 × 0.134 = x̂t (2) ± 0.19

95% limits: x̂t (2) ± 1.960 × (1 + 1.82)1/2 × 0.134 = x̂t (2) ± 0.55

The interpretation of the limits xt+l(−) and xt+l(+) should be carefully noted.
These limits are such that, given the information available at origin t, there
is a probability of 1 − ε that the actual value xt+l, when it occurs, will be
within them.
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It should also be explained that the probabilities quoted apply to individual
forecasts and not jointly to the forecasts at all the different lead times. For
example, it is true with 95% probability, the limits for lead time 10 will
include the value xt+10 when it occurs. It is not true that the series can
be expected to remain within all the limits simultaneously at this level of
probability. (ibid., page 138: italics in original)

The eventual forecast function and forecast weights

11.11 At time t + l the ARIMA model may be written

xt+l − ϕ1xt+l−1 − · · · − ϕp+dxt+l−p−d = at+l − θ1at+l−1 − · · · − θqat+l−q (11.10)

Taking conditional expectations at time t yields, for l > q,

x̂t (l) − ϕ1x̂t (l − 1) − · · · − ϕp+dx̂t (l − p − d) = 0 l > q

where it is understood that x̂t (−j) = xt−j for j ≥ 0. This difference equation has
the solution

x̂t (l) = b(t)
1 f1(l) + b(t)

2 f2(l) + · · · + b(t)
p+dfp+d(l) (11.11)

for l > q − p − d. Box and Jenkins referred to (11.11) as the eventual forecast func-
tion, whose mathematical form is decided by the general autoregressive operator
ϕ(B), which determines whether the functions fj(l), j = 1, . . . , p + d, are polyno-
mials, exponentials, a mixture of sines and cosines, or some combination of
these functions. For example, suppose d = 0 so that ϕ(B) = φ(B). Using the fac-
torization of §10.21 and assuming that all the roots Gi, i = 1, . . . , p, are distinct,
then if G1, say, is real, f1(l) = Gl

1. If, on the other hand, G1 and G2 are a pair of
complex roots, then they will contribute a damped sine wave to (11.11). If ϕ(B)
has d equal roots of G0 then this imposes the forms fp+j(l) = lj−1G0, j = 1, . . . , d,
onto (11.11). If these roots are equal to unity then, since now fp+j(l) = lj−1, a
polynomial in l of order d − 1 is introduced into the eventual forecast function.

For a given origin t, the coefficients b(t)
j are constants applying for all lead

times l, but they change from one origin to the next. It can be shown that the
updating equations of these coefficients can be written as (Box and Jenkins,
1970, Appendix A5.3.3)

b(t) = (F−1
l Fl+1) b(t−1) + (F−1

l ψl)at (11.12)
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where

Fl =

⎡

⎢⎢⎢⎢⎣

f1(l) f2(l) · · · fp+d(l)
f1(l + 1) f2(l + 1) · · · fp+d(l + 1)
...

...
...

f1(l + p + d) f2(l + p + d) · · · fp+d(l + p + d)

⎤

⎥⎥⎥⎥⎦

b(t) =

⎡

⎢⎢⎢⎢⎢⎣

b(t)
1

b(t)
2

...

b(t)
p+d

⎤

⎥⎥⎥⎥⎥⎦
ψl =

⎡

⎢⎢⎢⎢⎣

ψl

ψl+1
...

ψl+p+d

⎤

⎥⎥⎥⎥⎦

While ϕ(B) decides the nature of the eventual forecast function, the moving
average operator θ(B), through the ψ-weights, determines how the function is
to be ‘fitted’ to the data, i.e., how the b(t)

j are to be calculated and updated.

In general, since only one function of the form [11.11] can pass through
p + d points, the eventual forecast function is that unique curve of the
form required by ϕ(B), which passes through the p + d ‘pivotal’ values
x̂t (q), x̂t (q − 1), . . . , x̂t (q − p − d + 1), where x̂t (−j) = xt−j ( j = 0, 1, 2, . . .). In the
extreme case where q = 0, so that the model is of the purely autoregressive
form ϕ(B)xt = at , the curve passes through the points xt , xt−1, . . . , xt−p−d+1.
Thus, the pivotal values can consist of forecasts or of actual values of the
series. . . .

The moving average terms . . . help to decide the way in which we
‘reach back’ into the series to fit the forecast function determined by the
autoregressive operator ϕ(B). (ibid., page 140)

11.12 Substituting for the conditional expectations in (11.9) obtains

x̂t (l) =
∞∑

j=1

πj x̂t (l − j) = π1x̂t (l − 1) + · · · + πl−1x̂t (1) + πlxt+πl+1xt−1 + · · ·

on using x̂t (l) = xt−l for l ≥ 0. In particular,

x̂t (1) = π1xt + π2xt−1 + · · ·

and the forecasts for higher lead times may also be expressed directly as
linear functions of the observations xt , xt−1, . . . . For example, the lead-two
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forecast at origin t is

x̂t (2) = π1x̂t (1) + π2xt + · · ·

= π1

∞∑

j=1

πjxt−j+1 +
∞∑

j=1

πj+1xt−j+1

=
∞∑

j=1

π
(2)
j xt−j+1

where

π
(2)
j = π1πj + πj+1 j = 1, 2, . . .

More general results and alternative methods of computing these weights are
given in Box and Jenkins (ibid., page 142 and Appendix 5.2).

Forecasting with some special cases of ARIMA models

11.13 Consider the ARIMA(0, 1, 1) process �xt = (1 − θB)at , which at time t + l
may be written

xt+l = xt+l−1 + at+l − θat+l−1

Taking conditional expectations at origin t gives

x̂t (1) = xt − θat

x̂t (l) = x̂t (l − 1) l ≥ 2

so that, for all lead times, the forecasts at origin t will follow a straight line
parallel to the time axis. Using xt = x̂t−1(1) + at , it is clear that

x̂t (l) = x̂t−1(l) + λat (11.13)

where λ = 1 − θ.

This implies that, having seen that our previous forecast x̂t−1(l) falls short
of the realized value by at , we adjust it by an amount λat . . . . λ measures
the proportion of any given shock at , which is permanently absorbed by the
‘level’ of the process. Therefore it is reasonable to increase the forecast by
that part λat of at , which we expect to be absorbed. (ibid., page 144)

Alternatively,

x̂t (l) = λxt + (1 − λ)x̂t−1(l) (11.14)
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This implies that the new forecast is a linear interpolation at argument λ

between old forecast and new observation. The form [11.14] makes it clear
that if λ is very small, we shall be relying principally on a weighted average of
past data and heavily discounting the new observation xt . By contrast, if λ = 1,
the evidence of past data is completely ignored, x̂t (1) = xt , and the forecast
for all future time is the current value. With λ > 1, we induce an extrapolation
rather than an interpolation between x̂t−1(l) and xt . The forecast error must
now be magnified in [11.13] to indicate the change in the forecast. (ibid.,
pages 144–5: italics in original)

The ψ-weights are obtained from

ψ(B) = 1 − θB
1 − B

= 1 + (1 − θ)B + (1 − θ)B2 + · · · = 1 + λB + λB2 + · · ·

The eventual forecast function is the solution of (1 − B)x̂t (l) = 0. From §11.11,
f1(l) = 1 and x̂t (l) = b(t)

1 for l > q − p − d = 0. For any fixed origin, b(t)
1 will be a con-

stant and, as has been shown above, the forecasts for all lead times will follow
a straight line parallel to the time axis. However, b(t)

1 will get updated when a
new observation becomes available and the origin advances. From (11.12), the
updating equation is

b(t+1)
1 = b(t)

1 + λat+1

The forecast function can therefore be thought of as a polynomial of degree
zero in the lead time l, with a coefficient which is adaptive with respect to the
origin t.

The π-weights are obtained from

(1 − θB)π(B) = 1 − B

as

π(B) = 1 − B
1 − θB

= 1 − θB − (1 − θ)B
1 − θB

= 1 − (1 − θ)(B + θB2 + θ2B3 + · · ·)
i.e.,

πj = (1 − θ)θj−1 = λ(1 − λ)j−1

Hence

x̂t (l) = λxt + λ(1 − λ)xt−1 + λ(1 − λ)2xt−2 + · · ·
and the forecast for all future values of an ARIMA(0, 1, 1) process is an exponen-
tially weighted moving average (EWMA) of all current and past x’s.
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The variance of the lead l forecast is

V(l) = (1 + (l − 1)λ2)σ2
a

so that the variance increases linearly with l.

11.14 Now consider the ARIMA(0, 2, 2) process �2xt = (1 − θ1B − θ2B2)at ,
which at time t + l may be written

xt+l = 2xt+l−1 − xt+l−2 + at+l − θ1at+l−1 − θ2at+l−2

On taking conditional expectations at time t

x̂t (1) = 2xt − xt−1 − θ1at − θ2at−1

x̂t (2) = 2x̂t (1) − xt − θ2at

x̂t (l) = 2x̂t (l − 1) − x̂t (l − 2) l ≥ 3

from which forecasts are most naturally calculated. These forecasts are seen to
follow a straight line passing through the forecasts x̂t (1) and x̂t (2). The ψ-weights
are calculated from

ψ(B) = 1 − θ1B − θ2B2

(1 − B)2

= 1 + (2 − θ1)B + (3 − 2θ1 − θ2)B2 + · · · + (1 + θ2 + j(1 − θ1 − θ2))Bj + · · ·

The eventual forecast function is the solution of (1 − B)2x̂t (l) = 0, which from
§11.11 is

x̂t (l) = b(t)
1 + b(t)

2 l l > 0

since q − p − d = 0. The forecast function is thus a linear function of the lead
time l with coefficients that are adaptive with respect to the origin t. Here

Fl = Fl+1 =
[

1 1
1 2

]
ψl =

[
2 − θ1

3 − 2θ1 − θ2

]

so that (11.12) yields the following updating equations

b(t+1)
1 = b(t)

1 + b(t)
2 + (1 + θ2)at+1

b(t+1)
2 = b(t)

2 + (1 − θ1 − θ2)at+1
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The variance of the lead-l forecast is (ibid., page 149)

V(l) = σ2
a

(
1 + (l − 1)(1 + θ2)2 + 1

6 l(l − 1)(2l − 1)(1 − θ1 − θ2)2

+ l(l − 1)(1 + θ2)(1 − θ1 − θ2)

)

which again increases with l, although now in a rather complicated manner.

11.15 A model that has been found to be useful in a variety of applications is
the ARIMA(0, 1, 1) process ‘with deterministic drift’, �xt = θ0 + (1 − θ1B)at . This
has the eventual forecast function

x̂t (l) = b0 + b(t)
1 l = (l − 1)θ0 + θ0

1 − θ1
+ b(t)

1 l l > 0

where, as in §11.13,

b(t)
1 = b(t−1)

1 + (1 − θ1)at

The forecast function thus contains a deterministic slope, or ‘drift’, due to the
term (l − 1)θ0. This forecast function should be compared with that obtained
from the ARIMA(0, 2, 2) model, which is also a linear function but with an adap-
tive intercept. A special case, of course, is the random walk with drift, obtained
when θ1 = 0. In this case the eventual forecast function becomes

x̂t (l) = lθ0 + b(t)
1 l

with

b(t)
1 = b(t−1)

1 + at

i.e.,

x̂t (l) = lθ0 + xt l > 0

In general, if an intercept is included in the ARIMA model then an additional
term, b0 = ξ

∑t+l
j=t+1 ψt+l−j, where ξ = θ0/(1 − θ1 − · · · − θq), appears in the eventual

forecast function (11.11).

11.16 These examples lead to the following summarization. For an
ARIMA(0, d, q) process with drift, the eventual forecast function satisfies
(1 − B)dx̂t (l) = 0 and has for its solution a polynomial in l of degree d − 1:

x̂t (l) = b0 + b(t)
1 + b(t)

2 l + · · · + b(l)
d ld−1

which provides forecasts for l > q − d. The coefficients b(t)
1 , . . . , b(t)

d are progres-
sively updated as the origin advances. The forecast for origin t makes q − d
initial jumps, which depend upon at , at−1, . . . , at−q+1, before following this
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polynomial, whose position is uniquely determined by the ‘pivotal’ values
x̂t (q), x̂t (q − 1), . . . , x̂t (q − d + 1), where x̂t ( j) = xt−j for j ≤ 0.

Analogous results can be obtained for an ARIMA(p, d, 0) process. Here the
eventual forecast function satisfies φ(B)(1 − B)dx̂t (l) = 0 and has for its solution

x̂t (l) = b0 +
p∑

j=1

b(t)
j fj(l) +

p+d∑

j=p+1

b(t)
j lj−p−1 (11.15)

This provides forecasts for all l > 0 and passes through the last p + d available
values, xt , xt−1, . . . , xt−p−d+1, these being the pivotal values.

For the mixed ARIMA(p, d, q) process, equation (11.15) holds for l > q − p − d if
q > p + d and for l > 0 if q < p + d. In both cases the forecast function is uniquely
determined by the pivotal values x̂t (q), x̂t (q − 1), . . . , x̂t (q − d + 1). Thus, for the
ARIMA(1, 1, 1) process (1 − φB)�xt = (1 − θB)at , forecasts are readily obtained
from

x̂t (1) = (1 + φ)xt − φxt−1 − θat

x̂t (l) = (1 + φ)x̂t (l − 1) − φx̂t (l − 2) l > 1

Since q < p + d, the eventual forecast function for all l is the solution of
(1 − φB)(1 − B)x̂t (l) = 0, which is

x̂t (l) = b(t)
1 + b(t)

2 φl

Here

Fl =
[

1 φ

1 φ2

]
Fl+1 =

[
1 φ2

1 φ2

]
ψl =

⎡

⎢⎢⎢⎣

1 − θ

1 − φ
+ θ − φ

1 − φ
φ

1 − θ

1 − φ
+ θ − φ

1 − φ
φ2

⎤

⎥⎥⎥⎦

so that the updating equations are

b(t)
1 = b(t−1)

1 + (1 − θ)
(1 − φ)

at

b(t)
2 = b(t−1)

2 + (θ − φ)
(1 − φ)

at

Substituting for x̂t (1) and x̂t (2) in terms of b(t)
1 and b(t)

2 obtains

b(t)
1 = xt + φ

1 − φ
(xt − xt−1) − θ

1 − φ
at

b(t)
2 = θat − φ(xt − xt−1)

1 − φ
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so that

x̂t (l) = xt + φ
(1 − φl)
1 − φ

(xt − xt−1) − θ
(1 − φl)
1 − φ

at → b(t)
1 as l → ∞

The ARIMA(1, 1, 0) model used to forecast Series C in §11.8 has φ = 0.8 and θ = 0,
which leads to the eventual forecast function

x̂t (l) = b(t)
1 + b(t)

2 0.8l

with

b(t)
1 = b(t−1)

1 + 5at = xt + 4(xt − xt−1)

b(t)
2 = b(t−1)

2 − 4at = −4(xt − xt−1)

Hence

x̂t (l) = xt + 4(1 − 0.8l)(xt − xt−1) → b(t)
1

Thus l-step ahead forecasts tend to the constant xt + 4(xt − xt−1). If a constant is
included then these forecasts will tend to a straight line with slope given by the
constant (see Box and Jenkins, ibid., page 152 and their Figure 5.10).

Exponential and adaptive smoothing for inventory control and
sales forecasting

11.17 The forecasting technique known as exponential smoothing originated
in the operations research activities of the US Navy during the Second World
War. In 1944, Robert G. Brown was given the job of developing a model for track-
ing enemy submarines; this model was essentially an exponentially weighted
moving average applied to continuous data. During the early 1950s, Brown
extended the approach to discrete data, developing models that could deal with
trends and seasonal patterns. A particular application was in forecasting the
demand for spare parts in Navy inventory systems, which was so successful in
terms of forecast accuracy and data storage savings that exponential smoothing,
as the technique quickly became known, was adopted throughout the Navy’s
inventory systems (Gardner, 2006). The methodology was formalized, general-
ized and extended in Brown (1959, 1963), Brown and Meyer (1961) and D’Esopo
(1961).

Working independently of Brown, Charles C. Holt, with support from the
Logistics Branch of the Office of Naval Research (ONR), developed a similar
method for exponential smoothing of trending time series. Originally docu-
mented as an ONR memorandum (Holt, 1957), it has recently been republished
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(Holt, 2004a) along with a short reflection by the author on the genesis of the
method (Holt, 2004b). Holt’s ideas gained much wider acceptance with the pub-
lication of Winters (1960), which tested the methods on sales data with such
success that they became known as the Holt–Winters forecasting system. Fur-
ther developments were soon made by Muth (1960), Theil and Wage (1964)
and Nerlove and Wage (1964), the latter articles coining the term ‘adaptive
forecasting’ for the technique, in view of it being a formulation of the adaptive
expectations mechanism used in various economic models, notably for invest-
ment and consumption (see Koyck, 1954, and Friedman, 1957, respectively, and
Muth, 1960, for a general economic analysis).

11.18 Harrison (1965, 1967) provided the first synthesis of the exponen-
tial smoothing methodology, showing that the various types of exponential
smoothing were all particular forms of the Box and Jenkins (1962) polynomial
predictor (see §11.22 below for further discussion of this predictor):4

x̂t (1) = x̂t−1(1) +
n−1∑

i=0

ηiSiet (11.16)

where et = et−1(1) = xt − x̂t−1(1) is the current one-step ahead forecast error and
Siet is the ith multiple sum of the past errors:

S0et = et ; S1et =
∞∑

j=0

et−j; S2et =
∞∑

j=0

∞∑

k=0

et−j−k; . . .

Harrison (1967) showed that (11.16) could equivalently be written in the more
convenient form

x̂t (1) =
n∑

i=1

m(i)
t

where

m(i)
t =

n∑

j=1

m(j)
t−1 + αiet

The αi, i = 1, . . . , n, are the forecasting, or smoothing, parameters. The first-order
predictor (n = 1) is thus

x̂t (1) = mt

mt = mt−1 + αet = αxt + (1 − α)mt−1 = αxt + (1 − α)x̂t−1(1)

= α

∞∑

i=0

(1 − α)ixt−i
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This is therefore the simple EWMA of Holt (1957) and Brown (1959). Since x̂t (l)
will also be equal to mt , xt is said to be locally constant and the forecasts are
steady.

The second-order predictor (n = 2) is Holt’s two-parameter growth model, in
which xt is represented as a local linear trend, so that

x̂t (1) = mt + bt

and, in general, l-step ahead forecasts follow the straight line

x̂t (l) = mt + lbt (11.17)

Here the updating (or error correction) equations are

mt = mt−1 + bt−1 + α1et

bt = bt−1 + α2et (11.18)

where m(1)
t = mt and m(2)

t = bt . The equivalent EWMA (or recurrence) equations are

mt = α1xt + (1 − α1)(mt−1 + bt−1)

bt = β1(mt − mt−1) + (1 − β1)bt−1 (11.19)

where β1 = α2/α1. Brown’s second-order predictor, otherwise known as double
exponential smoothing, is a particular form of Holt’s, restricting the two param-
eters α1 and α2 so that α1 = 1 − γ2 and α2 = (1 − γ)2: γ has the interpretation of
being the rate at which an observation loses its importance each period, i.e., the
effect of xt on the determination of mt and bt , and hence on x̂t (l), is discounted
by a factor γ each period.

The predictor of Theil, Nerlove and Wage also restricts the parameters of
the local linear trend model such that α1 = 2δ/(1 − δ) and α2 = δα1, implying
that α2 = α2

1/(2 + α1). For the general nth-order predictor, Brown’s method again
restricts the forecasting parameters so that they are all functions of the discount
parameter γ. An exponential trend formulation was proposed by Pegels (1969)
in which equations (11.17)–(11.19) are replaced by

x̂t (l) = mtbl
t

mt = mt−1bt−1 + α1et = α1xt + (1 − α1)mt−1bt−1

bt = bt−1 + α2et/mt−1 = β1mt/mt−1 + (1 − β1)bt−1

although no empirical applications appear to have been made using such an
extension.
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Optimality of exponential smoothing

11.19 Muth (1960) and Harrison (1967) showed that the simple exponential
smoothing predictor was optimal if the observations were generated by the
unobserved component model

xt = mt + ut

mt = mt−1 + vt

where mt may now be thought of as the ‘underlying’ or ‘permanent’ level of
xt , and which evolves as a driftless random walk with a mean zero, variance σ2

v ,
innovation vt . ut is a superimposed random noise with mean zero and variance
σ2

u which is uncorrelated with vt . Harrison (1967) referred to this as the steady
model, as the underlying level mt only randomly changes from its previous
level. These two equations imply that

�xt = vt + ut − ut−1

so that the autocorrelation function for �xt cuts-off at lag one with coefficient

ρ1 = − σ2
u

σ2
v + 2σ2

u

Assuming that the two variances are positive, it is clear that −0.5 < ρ1 < 0, the
exact value depending on the relative sizes of the variances, and that �xt must
therefore be generated by an MA(1) process

�xt = et − θet−1

for which optimal forecasts are known to be generated by a EWMA (see §11.13).
It can then be shown that the optimal value of the smoothing parameter is (see
Harrison, 1967, section 6.3)

α = (1 + 4κ)1/2 − 1
2κ

= 1 − θ κ = σ2
u/σ2

v

and the minimum variance of et is σ2
e = σ2

u/(1 − α) = σ2
u/θ. Using the result from

equation (7.34) that ρ1 = −θ/(1 + θ2), the condition on ρ1 restricts the moving
average parameter to the range 0 < θ < 1 and hence the smoothing parameter to
the range 0 < α < 1, which ensures that σ2

e > 0.
However, a more general result is possible. The unobserved component model

formulation can be dispensed with and replaced simply with xt following
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an ARIMA(0, 1, 1) process. Such a generalization allows �xt to have positive
first-order autocorrelation, which is ruled out by the unobserved component
formulation. Since |θ| < 1 is the condition for the process to be invertible, this
implies that 0 < α < 2, so simple exponential smoothing will be optimal in this
case with the smoothing parameter set at α = 1 − θ.

11.20 The local linear trend model, termed by Harrison (1967) the linear growth
model, is optimal if the observations are generated by the equations

xt = mt + ut

mt = mt−1 + bt + vt

bt = bt−1 + wt

This is seen to extend the steady model by including a second random walk
component which imparts a slope into the underlying level mt , with the slope
itself subject to a random change, the innovation wt being uncorrelated with
ut and vt . Harrison (1967) showed that the relationship between the smoothing
parameters and the variances of the innovations are given by the equations

α2
2κ1 = 1 − α1

α2
2κ2 = α2

1 + α1α2 − 2α2

where

κ1 = σ2
u/σ2

w κ2 = σ2
v /σ2

w

The smoothing parameters must then lie within the region

0 < α2 ≤ (α2
1 + α2

2)2/(2 + α1 + α2) < 1

0 < α1 < 1

The Theil–Nerlove–Wage version of the linear growth model does not include
an innovation to the level, so that vt = σ2

v = κ2 = 0, while if the innovation to the
slope is set to zero the slope is constant and mt becomes a random walk with
drift. If both innovations are excluded mt becomes a linear trend.

It also follows that the linear growth model is optimal if xt follows an
ARIMA(0, 2, 2) process �2xt = (1 − θ1B − θ2B2) at in which θ1 = 2 − α1 − α2 and
θ2 = α1 − 1. Brown’s double exponential smoothing restriction that α1 = 1 − γ2

and α2 = (1 − γ)2 then implies that the ARIMA process has equal moving average
roots: �2xt = (1 − 2γB + γ2B2) at = (1 − γB)2at .

5

Using the expression for the forecast error variance of the ARIMA(0, 2, 2)
process given in §11.14, Harrison (1967) showed that using Brown’s double
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exponential smoothing rather than Holt’s two smoothing parameters proce-
dure would increase the one-step ahead forecast standard error by at most 1.6
per cent as long as α1 < 0.25. Since values of α1 in this range were typically used
in applications of exponential smoothing to sales forecasting, this led him to
recommend the former procedure for short-term forecasting of sales.

11.21 The potential robustness of exponential smoothing was demonstrated
by Cox (1961), who showed that, for one-step ahead forecasts, EWMAs provided
forecasts that were comparable to the optimal predictors from a range of more
complicated models. He also showed that, for l-step ahead forecasts, a modified
EWMA of the form

x̂t (l) = (1 − θ + θφl)xt + φ(1 − θl)x̂t−1(l)

closely approximated the optimal predictor for the stationary AR(1) process
xt = φxt−1 + at .

Box and Jenkins’ polynomial predictor

11.22 Box and Jenkins’ (1962) polynomial predictor of equation (11.16)
is an interesting and general formulation that can be used for forecasting
nonstationary time series. A general form of the predictor is

x̂t (1) = x̂t−1(1) +
n−1∑

i=−m

ηiSiet (11.20)

and Box and Jenkins showed that this will be an optimal predictor if the
observed series xt follows an ARIMA(0, n, m + n) process:

(t)hus we have a result which is of considerable practical value. If, after differ-
encing our series x, which in general will be non-stationary, n times, we could
render it stationary and if the population serial covariances of lag greater than
some value m + n were then zero, a predictor of the type [11.20] would then
be optimal. (Box and Jenkins, ibid., page 313)

Box and Jenkins then pointed out that the EWMA corresponded to setting m = 0
and n = 1, as in §11.18, and that, given the success of this predictor, the simple
generalization

x̂t (1) = x̂t−1(1) + η−1�et + η0et + η1Set (11.21)

might be an adequate model for many practical forecasting purposes. They
also noted that the form of (11.21) corresponded to the type of model used
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in automatic control, with the terms in �et , et and Set corresponding to dis-
crete analogues of derivative, proportional and integral control mechanisms,
respectively.

The stochastic process for which (11.21) is optimal is

xt = μ + at + η−1at + η0Sat + η1S2at

which can be written as the ARIMA(0, 2, 3) process

�2xt = at + (η1 + η0 + η−1 − 2) at−1 + (1 − 2η−1 − η0) at−2 + η−1at−3 (11.22)

If η−1 = 0, so that no difference term is needed, (11.22) reduces to Holt’s linear
growth model of §11.19, while if, as well, η0 = η1 = 1, the model reduces to
�2xt = at , in which the second differences of xt are uncorrelated.

Other issues involved with exponential smoothing

11.23 The whole area of exponential smoothing developed rapidly during the
1960s, with much attention being focused on issues such as parameter selec-
tion, choice of starting values for the recurrence relationships used to compute
forecasts, the monitoring of such forecasts, and the adaptive control of the
smoothing parameters. As none of these issues are germane to the development
of time series analysis being undertaken here, the interested reader is referred to
the survey by Gardner (1985) for discussion and key references.

Examples of exponential smoothing

11.24 Figure 11.1 shows Series A from Box and Jenkins (1970), who identify it
as potentially an ARIMA(0, 1, 1) process. Fitting such a model yields an estimate
of the moving average parameter of θ̂ = 0.7. Also shown in Figure 11.1 are the
one-step ahead EWMA forecasts using α = 1 − θ̂ = 0.3

x̂t (1) = 0.3xt + 0.7x̂t−1(1) = 0.3
∞∑

i=0

0.7ixt−i

Since σ2
e is estimated to be 0.101, the implied steady model of §11.19 has

σ2
u = 0.071, σ2

v = 0.009 and κ = 7.8. Thus the random shocks to the series have
almost eight times the variance of the random shocks to the underlying level,
and this is seen clearly in the relative smoothness of the forecasts when com-
pared to the observations themselves. Estimating the smoothing parameter
directly by minimizing the MSE of the forecasts for alternative values of α also
leads to a value of 0.3 being selected.
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Figure 11.1 Series A from Box and Jenkins (1970) (chemical process concentration
readings every two hours) with one-step ahead EWMA forecasts using α = 0.3

Fitting an ARIMA(0, 1, 1) process to Series B, analysed in §10.22, obtains
θ̂ = 0.08, which implies that α = 0.92, while estimating the smoothing parameter
directly obtains α̂ = 0.999. It is thus clear that this series, daily IBM stock prices,
is indeed effectively a random walk, so that the optimal forecast of a future price
of the stock is essentially the current price.

There was some indication in §10.22 that Series C could need second differ-
encing to render it stationary, thus making it a candidate for fitting by either
Holt’s linear growth model or by Brown’s double exponential smoothing. Holt’s
smoothing parameters are estimated as α̂1 = 1 and α̂2 = 0.87, the forecasts from
which yield a root mean squared error (RMSE) of 0.142. The single parameter of
double exponential smoothing is estimated as γ̂ = 0.69 with an accompanying
RMSE of 0.315, showing that Holt’s linear growth model provides much more
accurate forecasts than double exponential smoothing, which should come as
no surprise as α1 is so much greater than 0.25, the value below which Harrison
(1967) found little difference between the RMSEs of the two approaches.

Note that these estimates of the smoothing parameters imply that the mov-
ing average coefficients of the accompanying ARIMA(0, 2, 2) process are θ1 = 0.13
and θ2 = 0. Fitting the ARIMA(0, 2, 3) model implied by the Box and Jenkins poly-
nomial predictor (11.21) yields the coefficient estimates θ̂1 = 0.15, θ̂2 = 0.13 and
θ̂3 = 0.20, all accompanied by standard errors of 0.07. The implied polynomial
predictor (11.21) is

x̂t (1) = x̂t−1(1) − 0.20�et + 0.73et + 1.32Set (11.23)
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Figure 11.2 Series C and its one-step ahead forecasts from the polynomial predictor
(11.20)

which is optimal for the model

xt = 478.5 + at − 0.20at + 0.73Sat + 1.32S2at

The RMSE for this model is 0.137, which is smaller than that from Holt’s linear
growth model and demonstrates the usefulness of the polynomial predictor.
Figure 11.2 shows just how accurate the forecasts are: since the sample standard
deviation of Series C is 2.059, the polynomial predictor explains in excess of
99.5 per cent of the variation in the series. However, note that the RMSE of the
ARIMA(1, 1, 0) model fitted to this series is, from §11.10, 0.134, which represents
a further marginal improvement. Of course, the eventual forecast functions
of the two ARIMA models are very different, as the analysis of §§11.14–11.16
indicates. While this may not make a great deal of difference when making
just one-step ahead forecasts, for longer lead times very different forecasts will
be obtained and in these circumstances the selection of the appropriate model
becomes paramount.
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12
Modelling Dynamic Relationships
Between Time Series

Testing the correlation between two time series

12.1 As the theory of testing the significance of autocorrelation coefficients
was being developed (see §§9.1–9.7), so the related theory of testing the sig-
nificance of the correlation between two time series was being investigated in
tandem. Again, this began with Bartlett’s (1935) seminal paper, which derived
the result that the variance of the sample correlation, rxy , between two auto-
correlated series xt and yt , when the true correlation, ρxy , was zero, could be
approximately written as

V(rxy) ∼ 1
T2

(T + 2[(T − 1)ρx(1)ρy(1) + (T − 2)ρ2
x (1)ρ2

y (1) + · · ·
+ρT−1

x (1)ρT−1
y (1)])

∼ 1
T

1 + ρx(1)ρy(1)
1 − ρx(1)ρy(1)

(12.1)

where the notation ρx(1) and ρy(1) is now used for the first-order autocorrela-
tions of xt and yt , it being assumed in (12.1) that these series are generated as
the AR(1) processes xt = ρx(1)xt−1 + ax,t and yt = ρy(1)yt−1 + ay,t . This result was
generalized by Bartlett (1946) and Quenouille (1947b) to the case where xt and
yt have autocorrelations ρx(i) and ρy(i), i = 1, 2, . . .:

V(rxy) ∼ 1
T2

(T + 2[(T − 1)ρx(1)ρy(1) + (T − 2)ρx(2)ρy(2) + · · ·
+ρx(T − 1)ρy(T − 1)])

∼ 1
T

∞∑

i=−∞
ρx(i)ρy(i) (12.2)

317
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Moran (1947) was able to derive the variance of the covariance between xt and
yt in this set-up and to show that the covariance was asymptotically normally
distributed, although his results were too complicated to be used in practice.

12.2 The formulae (12.1) and (12.2) have obvious practical limitations, being
based on large sample assumptions and requiring the true but unknown auto-
correlations of the two series. An interesting simulation study was thus carried
out by Orcutt and James (1948) to investigate the small sample properties of
tests of significance based on the above formulae (a similar, but smaller-scale
simulation was also reported by G.T. Walker, 1950). Orcutt and James (1948,
page 398) were ‘anxious [to ensure] that the sampling model used should gen-
erate unrelated series which were as analogous as possible to economic time
series’. To this end they drew on the findings of Orcutt (1948), who had shown
that the 52 series used by Tinbergen (1939) in his business cycle model of the
United States might all have been generated by the model

xt = xt−1 + 0.3(xt−1 − xt−2) + at (12.3)

which was thus used to generate all the series used in Orcutt and James’
simulations. They were clear that (12.3) could not generate stationary series
(the model would, of course, later be described as an ARIMA(1,1,0) process),
but was

rather a Brownian type of movement having no true mean. . . . On the
other hand, the series . . . are not explosive in the sense that they tend
to deviate from any given point or set up oscillations of ever increasing
amplitude. . . . Since the formulae given earlier for V(rxy) were derived on
the assumption of stationary autoregressive processes, it is clear that on this
account alone it would not be safe without additional evidence to apply them
to correlations between non-stationary series such as generated by equation
[12.3]. (ibid., page 399)

Orcutt and James focused attention on an alternative approximation to V(rxy):

V(rxy) ∼ (1 + rx(1)ry(1))
T(1 − rx(1)ry(1))

− 2rx(1)ry(1)(1 − rT
x (1)rT

y (1))

T2(1 − rx(1)ry(1))2
(12.4)

The sample autocorrelations were estimated, taking rx(1) for example, by

rx(1) = 1 − 1
2 δ2/s2



9780230290181_13_cha12.tex 21/4/2011 15: 1 Page 319

Modelling Relationships Between Time Series 319

where

δ2 = (T − 1)−1
T−1∑

t=1

(xt+1 − xt )2

and

s2 = T−1
T∑

t=1

(xt − x̄)2

were calculated from the simulated sample of T observations x1, x2, . . . , xT .1

After a simulation experiment that was, in its extent, then unprecedented,
Orcutt and James concluded that a ‘reasonable way of testing the significance
on the null hypothesis of a correlation between economic time series is first
to estimate V(rxy) by means of equation [12.4] and, in so doing, to use the
sample values of the first lag autocorrelations of the two series’ (ibid., page
409). However, if the estimated value of V(rxy) was less than about 0.25, they
suggested a simpler alternative. Noting that the variance of the correlation coef-
ficient between two independent and random series of length T ′ is 1/(T ′ − 1),
Orcutt and James suggested equating this variance with V(rxy) and solving for
T ′. Rounding off T ′ to the nearest integer then enables the standard prob-
ability distribution of the correlation coefficient to be used. For example, if
rx(1) = ry(1) = 0.6 and T = 30, V(rxy) = 0.07 and T ′ = 16. The use of sample auto-
correlations in (12.4) was justified from the simulation experiments of Orcutt
and James, for they found that the distribution of the correlation coefficient
between non-related series depended primarily on the sample autocorrelations
of the series and very little, if at all, on the true autocorrelations once given the
sample values.

Generally, Orcutt and James found that high correlations between economic
time series, at least those generated by processes similar to (12.3), often occurred
by chance so that detecting real relationships between such series could be quite
difficult. To mitigate this, they suggested making autoregressive transformations
of the series involved in such a way that at least one of the series became approx-
imately random. This is best seen by working within a regression framework.
Suppose that

yt = βxt + ut

where the error term ut is generated by

ut = αut−1 + εt

εt being a random variable. If β = 0 then yt = ut and an appropriate autoregressive
transformation is

y′
t = yt − αyt−1 x′

t = xt − αxt−1
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leading to

y′
t = βx′

t + εt

Under β = 0, y′
t = εt is random so that ρy′ (1) = 0, V(rx′y′ ) = 1/T and the usual

test of significance can be applied to rx′y′ but now with T rather than T ′ << T
degrees of freedom. When β �= 0 this autoregressive transformation offers an
estimation technique, known as Cochrane–Orcutt, which allows consistent and
efficient estimation of β (Cochrane and Orcutt, 1949).

12.3 Quenouille (1949c) proposed using partial correlation coefficients to test
for correlation between two autocorrelated series. On the assumption that, as
in §12.1, xt and yt are AR(1) processes, Quenouille recommended using the par-
tial correlation coefficient rxy · x(−1)y(−1), the partial correlation between xt and yt

with the effects of xt−1 and yt−1 removed, rather than the simple correlation
rxy . Asymptotically such a statistic will have variance T−1, since at least one of
the ‘residual’ series that are, in effect, being correlated will approach indepen-
dence. Quenouille showed that this will also be the case when the two series
are uncorrelated even in small samples and that any bias will be small. Hannan
(1955) analysed the properties of this partial correlation as a test of significance,
along with those of an alternative partial correlation, that between x2t and y2t

when the effects of y2t−1 + y2t+1, x2t−1 and x2t+1 have been removed, where here
t = 1, 2, . . . ,

[ 1
2 (T − 1)

]
. This latter statistic is always asymptotically more effi-

cient than rxy but, although it is an exact test, it is less efficient in most cases
than rxy · x(−1)y(−1), the exception being when the first partial correlation of the
xt process is high and positive.2

The differing implications of correlating first differences and
deviations-from-trends

12.4 The analysis so far has been couched within the framework of correlating
stationary time series. As the discussion in Chapter 11 has emphasized, many
naturally occurring time series are nonstationary and thus need to be trans-
formed to stationarity before correlation techniques or, equivalently, regression
analysis can be used. The two basic methods of detrending time series are to
take differences or to use the deviations from a fitted trend. In an extraordi-
narily prescient article from a modern time series perspective, Bradford Smith
(1926) considered the implications for regression analysis of the simplest forms
of these alternative detrending methods, that of taking first differences and devi-
ations from a linear trend.3 The first paragraph of his article stated the problem
with great clarity:
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The statistical investigator is not infrequently required to decide between two
methods of correlating time series – the deviations-from-trend and the first
difference. This choice is important, for the two methods often yield corre-
lation coefficients markedly varying in magnitude. This choice of method is
properly made on the basis of the applicability of the implicit assumptions
in the two. Certain of these assumptions are in direct contrast. (Smith, 1926,
page 55)

Although originally couching the problem in terms of correlations, Smith imme-
diately proceeded to set out the two competing regression models. First, the
‘deviation-from-trend’ model was developed from the assumption that

there is a linear relation between deviations from trend in one variable and
deviations from trend in the other variable. Or, expressing it for convenience
in algebraic form,

Y − Ty = b1(X − Tx) (12.5)

wherein Yand Ty represent the dependent variable and associated values of
its trend and X and Tx similar values for the independent . . .

The (linear) trends of the two series can obviously be stated in terms of the
values from which they are computed. Thus

Ty = b2t + K2
(12.6)

Tx = b3t + K3

wherein t is that numerical designate of time which has been assigned . . ., b2

and b3 the annual increments . . . and K are the appropriate constants . . .

If these expressions for trend are substituted in [12.5] an equation may
be formed which shows the type of relationship between the three original
measurements, Y , X and t, which are assumed in correlating deviations from
trend. Thus

Y − b2t − K2 = b1(X − b2t − K3)
(12.7)

Y = (K2 − b1K3) + (b2 − b1b3) t + b1X

Since the terms enclosed in the parentheses are constant, [12.7] may be
written,

Y = K + b4t + b1X (12.8)

which is recognisable as a multiple regression equation in which t and X are
the independents. The term, b4t, may be interpreted as evidencing the trend
in the relationship between y and X. (ibid., pages 55–6, italics in original)
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Next, the first difference model is introduced.

The basic assumption implicit in correlating first differences is that changes
in Y over the preceding value are a linear function of similar changes in X.
Thus

Y − Y−1 = K + b1(X − X−1) (12.9)

Y = K + Y−1 + b1(X − X−1) (12.10)

(ibid., page 56)

Smith then considered the ‘differences’ between the two approaches, bearing
in mind that he was writing before the publication of the seminal articles on
the influence of shocks on time series by Yule (1927), Slutzky (1937) and Frisch
(1933), as discussed in Chapter 5.

A consideration of the ‘estimating’ properties of the two regression equations,
[12.8] and [12.10], permits throwing into direct contrast the assumptions of
the two methods.

If the constants of formulae [12.8] and [12.10] be determined by usual
methods, the right-hand sides of the equations may be evaluated for associ-
ated values of Y , the evaluations being designated Y ′ or estimates of Y . The
difference, Y − Y ′, is, of course, the residual, Z, or error of estimate.

The implicit assumption of the first-difference method, then, is that what-
ever influences there were causing an error in estimating for any given
observation, these influences tend to persist into the ensuing observation.
For, by taking the original value of Y−1 as a base in computing an estimate
of Y , the error of estimating the original Y−1, or Y−1 − Y ′

−1 = Z−1, is added to
the estimate of that Y−1, or Y ′

−1, the base thus being changed from one of
average or normal relationship, Y ′

−1, to one which has been corrected for the
error, Y−1 = Y ′

−1 + Z−1, and hence supposing the continuation of influences
producing that error.

On the other hand, since a normal or trend value is taken as a base for
estimating values in the deviation-from-trend method, the assumption is
here implicit that whatever influences there were causing errors of estimate
in any given observation, those influences are peculiar to that observation
alone and do not persist to the next. The errors are automatically dropped
out of the computations by making the estimates for succeeding observations
from a trend or normal base. (ibid., page 56)
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Although errors were not explicitly included in Smith’s models, it is neverthe-
less clear that not only did he understand that they were present, but that he
also understood their differing interpretations: hence his statement that, in
the first-difference method, ‘whatever influences there were causing an error
in estimating for any given observation, these influences tend to persist into
the ensuing observation’ (ibid., page 56) clearly showed that he realized that
the shocks in this model were permanent. By contrast, for the deviations-from-
trend model, ‘those influences are peculiar to that observation alone and do not
persist to the next’ (ibid., page 56). To emphasize this distinction between the
two models, Smith then embarked on a ‘counterfactual’ analysis.

This contrast between the assumptions of the two methods can be easily
proved by arbitrarily applying to the first-difference method the assumption
of the deviation-from-trend method and showing the identity of the two
under these circumstances.

Thus, if in the first-difference method the estimates uncorrected for errors
were used as a base for computing succeeding estimates, instead of the esti-
mates corrected by the amount of error, then this assumption could be given
algebraic expression by substituting Y ′

−1 for Y−1 in [12.10]. Thus

Y = K + Y ′
−1 + b1(X − X−1) (12.11)

But this calls for the value of Y ′
−1 which can only be determined in terms

of Y ′
−2 and so on. If carried back to the first case and terms collected, the

formula then becomes

Yn = Y ′
0 + nK + b1(Xn − X0) (12.12)

wherein n is a number designating the place in the series of the given obser-
vation, and subscript, 0, designates the initial value from which the first of
the differences in the series was secured. The value of Y ′

0 is, of course, unob-
tainable; but it is a constant for all evaluations of the equations, as also is X0.
Hence [12.12] may be written

Yn = K2 + nK + b1Xn (12.13)

[12.13] is identical in form to [12.8], since n varies with t, thus showing the
identity of the first difference and deviation-from-trend methods when the
assumptions of the latter are applied to the former. The difference between
the two, then, is the difference in using Y ′ and Y as bases for computing
estimates in succeeding years; and this, in turn, is the difference between
assuming that the effect of influences causing deviation is peculiar to a
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given observation in one case, and persists unchanged to the succeeding
observation in the other case. (ibid., 1926, page 57)

Smith then discussed some practical implications of the first-difference model
and emphasized some situations when these might need to be mitigated:

The implicit assumption in the first-difference method makes that method
peculiarly suitable for certain types of analyses – notably those concerned
with prices which have a large element of mass psychology in them, it being
very common and human, for example, to judge a price by comparing it with
the preceding year, forgetting whether or not the preceding year was itself
out of line. On the other hand, the assumption is of unreasonable rigidity for
various other types of analyses. It may be felt that there is some persistence in
influences producing errors from year to year; but, on the other hand, it could
seem highly improbable that such influences tend to be exerted in the given
years to the full and exact force they were exerted in the preceding. Such,
however, is the implicit assumption of the first-difference method. Again, it
may seem perfectly feasible that an influence effective in one year may be
of a pendulum nature and hence be a reverse influence in the succeeding
year. The use of first differences here would aggravate, rather than reduce,
the error of estimate. (ibid., 1926, page 57–58)

Smith then suggested that a composite model combining the benefits of the
first-difference and deviation-from-trend models could be constructed:

Evidently, what is needed is a method which will permit the inclusion of
such persisting influences but allow them importance only in proportion to
the degree to which they persist.

Such a method may be devised as follows:
Equation [12.10] may be written in the form

Y = b1Y−1 + K + b2X + b3X−1 (12.14)

wherein b1 must equal 1.0 and b2 must equal −b3 if the equation is to be
identical with equation [12.10] and, thus, if the assumptions of the first
difference method are strictly appropriate.

But if a solution for the best values of b and K in [12.14] is made by methods
of least squares, the equivalents of b just cited are no longer predetermined
by mathematical necessity as in the case of the more usual solution for b
and K by methods illustrated in formula [12.9]. Hence these equivalents will
only result in case the assumption as to persistence of errors is appropriate.
Formula [12.14] thus typifies a method of correlating time series which has
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all the advantages of the first-difference method without that method’s rigid
implicit assumption. At the same time it obviously has the advantages of the
deviation-from-trend method, since X is one of the independents.

Probably in no single instance of correlating time series can it with strict
truth be said either (a) that there is no association between influences pro-
ducing errors in relationship from one observation to the next or (b) that
there is a direct, ‘one-to-one’ association. But it is equally true that in every
instance of correlating time series some element of both these hypotheses is
present. A correlation of the variables by methods represented in formula
[12.14] permits the data, in themselves, to determine the best values of the
constants by criteria of least squares.

If by this method b1 equals 1.0 and b2 equals −b3 it is evidence that the
assumptions of first-differences are appropriate. To the degree that these fail
to result the assumptions are inappropriate. If b1 and b3 tend to be very
small in comparison with b2 then the assumptions of deviation-from-trend
methods are appropriate. Although experience in using the method shows
that it is practically never necessary to introduce the term in t shown in
formula [12.8], such a term may for completeness be introduced in instances
where the value and relationship of the b terms indicate appropriateness of
deviation-from-trend assumptions. The formula then becomes

Y = K + b1Y−1 + b2X + b3X−1 + b4t

The constant values may be found by methods of least squares. It is possible
to add terms in X−2 and Y−2 and so on, in case it is felt that errors are of a
cyclical nature, or persist over more than one observation. The measure of the
relationship of the independents to Y is, of course, given by the coefficient
of multiple correlation. (ibid., 1926, pages 58–9)

The restrictions placed upon [12.14] to obtain the first-difference model are of
the ‘common factor (COMFAC)’ type considered a half-century later by Hendry
and Mizon (1978) and whose testing was developed by Sargan (1980) and
Mizon and Hendry (1980). It is also clear that Smith was explicitly advocating
a ‘general-to-specific’ modelling strategy (see, for example, Hoover and Perez,
1999), even to the extent of including higher-order lags to model cyclicality
and persistence. It is thus extraordinary that this analysis disappeared com-
pletely from view, only being rediscovered, or more accurately, reinvented, by
econometricians working fifty or so years later.

Fisher’s concept of a ‘distributed lag’

12.5 As well as examining the differencing and percentage change transforma-
tions as means of inducing stationarity (see §10.16), Irving Fisher’s 1925 paper
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‘Our unstable dollar and the so-called business cycle’ was also important for two
other reasons. Concentration is focused here on his introduction of the concept
of a distributed lag.4 Recalling that Fisher was looking at the relationship between
the percentage change in prices, P′, and a trade index, I , he reported that, using
monthly data from 1915 to 1923, the

correlation between P′ and I , with a lag of seven months, is 72.7 per cent.
This is the maximum correlation; that is, it is greater than that (71.9 per cent)
for six months or that (71.5 per cent) for eight months or at any other length
of lag. This is a high degree of correlation. But it can be greatly bettered –
increased, in fact, to 94.1 – simply by substituting for this fixed lag of seven
months a distributed lag spread over one, two, three, etc., months according
to the principles of probability.

So far as I know, this is the first attempt to distribute a statistical lag. (I.
Fisher, 1925, page 183; italics in original)

Fisher explained his idea thus.

The reason for distributing the lag is that the full effect of each P′ item is
extremely unlikely to be felt at only one instant, such as seven months
later, and not felt at any other time either earlier or later than this seven
months. . . . It is far more probable that the influence began at once, . . . and
it then gradually increased to a maximum a few months later and there-
fore tapered off indefinitely according to a probability distribution. (ibid.,
page 184)

The obvious question is what this probability distribution might be and how
it might be chosen: ‘(i)t would seem that we should select . . . that type which
most nearly accounts for the behavior of I ’ (ibid., page 184). Fisher used a rather
convoluted gunnery argument to explain the construction of this distribution
(in fact a log-normal), which eventually was selected to be that shown in Fig-
ure 12.1. The immediate influence of a rise in prices on the trade index is quite
small, approximately 3 per cent of the total influence in the first month. This
rises to 6 per cent in the second month and reaches a maximum of 7 per cent in
the third and fourth months, after which point the ‘intensity’ gradually dimin-
ishes, so that the distribution shown in Figure 12.1 is asymmetric about its mode
of 3 1

2 months. The ‘shape’ of this distribution was selected to provide the closest
fit of the ‘predicted’ trade index to I itself.5

Transfer function analysis

12.6 Fisher’s distributed lag concept resurfaced in the time series literature
during the 1960s in the guise of the linear transfer function model, whose
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Figure 12.1 Fisher’s distributed lag distribution showing the percentage of the total
influence of P′ on I contributed in each month

development formed chapters 10 and 11 of Box and Jenkins (1970).6 While
Fisher did not formally set out his concept of a distributed lag, the distributed
lag/transfer function model was formalized by Box and Jenkins in the following
way. Given observations on an ‘output’ variable Yt and an ‘input’ variable Xt ,
attention is often focused on the value at which the output eventually comes
to equilibrium when the input is held at a fixed level X. This steady state
relationship can be denoted Y∞ = gX, where g is the steady state gain.

If the level of the input is varied and Xt and Yt represent deviations at time
t from equilibrium then the inertia in the system can often be adequately
approximated by the linear filter

Yt = υ0Xt + υ1Xt−1 + υ2Xt−2 + · · ·
= (υ0 + υ1B + υ2B2 + · · ·)Xt (12.15)

= υ(B)Xt

in which the output deviation at some time t is represented as a linear aggregate
of input deviations at times t, t − 1, . . .: the operator υ(B) is the transfer function
of the filter, with the weights υ0, υ1, υ2, . . . being known as the impulse response
function.

The incremental changes in Y and X are yt = �Yt and xt = �Xt , which, on differ-
encing (12.15), are related by yt = υ(B)xt and so satisfy the same transfer function
model as do Y and X.
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It is assumed that the infinite series υ0 + υ1B + υ2B2 + · · · converges for |B| ≤ 1
so that the system is stable, which implies that a finite incremental change in
the input results in a finite incremental change in the output. If X is then held
indefinitely at the value +1, Y will adjust and maintain itself at the value g.
Substituting the values Yt = g and 1 = Xt = Xt−1 = Xt−2 = · · · into (12.15) then
obtains

g =
∞∑

j=0

υj

so that, for a stable system, the sum of the impulse response weights converges
and is equal to the steady state gain of the system.

12.7 The transfer function υ(B) is of infinite extent and thus has limited use for
empirically representing such dynamic systems. A parsimonious representation
is given by the general linear difference equation

(1 + ξ1� + · · · + ξr�
r)Yt = g(1 + η1� + · · · + ηs�

s)Xt−b (12.16)

known as a transfer function model of order (r, s). This may also be written in
terms of B = 1 − � as

(1 − δ1B − · · · − δrBr)Yt = (ω0 − ω1B − · · · − ωsBs)Xt−b (12.17)

or

δ(B)Yt = ω(B)Xt−b = ω(B)BbXt = �(B)Xt

so that the transfer function is υ(B) = δ−1(B)�(B), a ratio of two polynomials
in B. With this representation, an ARIMA model can thus be regarded as a
dynamic system having a white noise input for which the transfer function
can be expressed as the ratio of two polynomials. The stability of the system
requires that the roots of the characteristic equation δ(B) = 0 all lie outside the
unit circle. From (12.17), if Xt is held indefinitely at +1, Yt will eventually reach
the steady state gain

g = ω0 − ω1 − · · · − ωs

1 − δ1 − · · · − δr

Substituting yt = υ(B)xt into (12.17) yields the identity

(1 − δ1B − δ2B2 − · · · − δrBr)(υ0 + υ1B + υ2B2 + · · ·) = (ω0 − ω1B − · · · − ωsBs)Bb
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On equating coefficients of B, the following relationships are obtained

υj = 0 j < b

υj = δ1υj−1 + δ2υj−2 + · · · + δrυj−r + ω0 j = b

υj = δ1υj−1 + δ2υj−2 + · · · + δrυj−r − ωj−b j = b + 1, b + 2, . . . . . . , b + s

υj = δ1υj−1 + δ2υj−2 + · · · + δrυj−r j > b + s (12.18)

The weights υb+s, υb+s−1, . . . , υb+s−r+1 supply r starting values for the difference
equation

δ(B)υj = 0 j > b + s

the solution of which applies to all values υj for which j ≥ b + s − r + 1. In general,
the impulse response weights consist of

(i) b zero values υ0, υ1, . . . , υb−1;
(ii) a further s − r + 1 values υb, υb+1, . . . , υb+s−r following no fixed pattern

(although no such values occur if s < r);
(iii) for j ≥ b + s − r + 1, values υj that follow the pattern dictated by the

rth-order difference equation δ(B) υj = 0, which has r starting values
υb+s, υb+s−1, . . . , υb+s−r+1. Starting values for j < b will be zero.

12.8 The step response weights Vj are defined through the identity
υ(B) = (1 − B)V(B), so that

V(B) = V0 + V1B + V2B2 + · · · = υ0 + (υ0 + υ1)B + (υ0 + υ1 + υ2)B2 + · · ·

from which it follows that

(1 − δ∗
1B − δ∗

2B2 − · · · − δ∗
r+1Br+1) (V0 + V1B + V2B2 + · · ·)

= (ω0 − ω1B − · · · − ωsBs)Bb

with

(1 − δ∗
1B − δ∗

2B2 − · · · − δ∗
r+1Br+1) = (1 − B)(1 − δ1B − δ2B2 − · · · − δr+1Br+1)

Using (12.18), it follows that the step response function is defined by

(i) b zero values V0, V1, . . . , Vb−1;
(ii) a further s − r values Vb, Vb+1, . . . , Vb+s−r−1 following no fixed pattern (no

such values occur if s < r + 1);
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(iii) for j ≥ b + s − r, Vj values that follow the pattern dictated by the (r + 1)th-
order difference equation δ∗(B)Vj = 0 which has r + 1 starting values
Vb+s, Vb+s−1, . . . , Vb+s−r . Starting values for j < b will be zero.

12.9 An example of the representations (12.17) and (12.18) is the transfer
function of order (2, 2):

(1 + ξ1� + ξ2�
2) Yt = g(1 + η1� + η2�

2) Xt−b

(1 − δ1B − δ2B2) Yt = (ω0 − ω1B − ω2B2) Xt−b

The links between the parameters in these ‘�’ and ‘B’ forms are

ξ1 = δ1 + 2δ2

1 − δ1 − δ2
ξ2 = −δ2

1 − δ1 − δ2

η1 = ω1 + 2ω2

1 − ω1 − ω2
η2 = −ω2

ω0 − ω1 − ω2

and

δ1 = ξ1 + 2ξ2

1 + ξ1 + ξ2
δ2 = −ξ2

1 + ξ1 + ξ2

ω0 = g(1 + η1 + η2)
1 + ξ1 + ξ2

ω1 = g(η1 + 2η2)
1 + ξ1 + ξ2

ω2 = −gη2

1 + ξ1 + ξ2

where

g = ω0 − ω1 − ω2

1 − δ1 − δ2

The general behaviour of the transfer function yt = υ(B)xt may be characterized
thus:

Models with r = 0. With r and s both equal to zero, the impulse response
consists of a single value υb = ω0 = g, so that the output is proportional to
the input but is displaced by b time periods. More generally, if s is positive,
after the displacement the input will be spread over s + 1 periods in proportion
to υb = ω0, υb+1 = −ω1, . . . , υb+s = −ωs. The step response is obtained by sum-
ming the impulse response and will eventually satisfy the difference equation
(1 − B) Vj = 0 with starting value Vb+s = g = ω0 − ω1 − · · · −ωs.

Models with r = 1. For s = 0, the impulse response tails off geometrically
from the initial starting value υb = ω0 = g/(1 + ξ1) = g(1 − δ1). The step response,
on the other hand, increases geometrically to g, being the solution of
(1 − δ1B)(1 − B) Vj = 0 with starting values Vb = υb and Vb−1 = 0. For s = 1 the
initial impulse response υb = ω0 = g(1 + η1)/(1 + ξ1) follows no pattern, with
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the geometric decline induced by the difference equation υj = δ1υj−1 begin-
ning with the starting value υb+1 = δ1ω0 − ω1 = g(ξ1 − η1)/(1 + ξ1)2. The step
response is again determined by the difference equation (1 − δ1B)(1 − B) Vj = 0
and again approaches g asymptotically from the starting values Vb = υb and
Vb+1 = υb + υb+1. With s = 2 neither υb or υb+1 follow a pattern, the geo-
metric decline beginning at υb+2. Correspondingly, the step response has
a single preliminary value Vb = υb, after which it is again determined by
(1 − δ1B)(1 − B) Vj = 0 but with starting values Vb+1 and Vb+2.

Models with r = 2. Here the impulse responses eventually satisfy the difference
equation

υj − δ1υj−1 − δ2υj−2 = 0 j > b + s (12.19)

the nature of which depends on the roots S−1
1 and S−1

2 of the associated
characteristic equation

1 − δ1B − δ2B2 = (1 − S1B) (1 − S2B) = 0

If the roots are real (δ2
1 + 4δ2 ≥ 0) the solution to (12.19) is the sum of two expo-

nentials and the system can be thought of as being equivalent to two first-order
systems arranged in tandem and having parameters S1 and S2. If the roots are
complex (δ2

1 + 4δ2 < 0) the solution will follow a damped sine wave.
The weights in the step response function eventually satisfy the difference

equation

(Vj − g) − δ1(Vj−1 − g) − δ2(Vj−2 − g) = 0

As this is of the same form as (12.19), the asymptotic behaviour of the step
response Vj about its asymptotic value g will parallel the behaviour of the
impulse response about zero. If there are complex roots the step response ‘over-
shoots’ g and then oscillates about this value until it reaches equilibrium. When
the roots are real and positive the step response approaches its asymptote with-
out crossing it. If there are negative real roots, the step response may once again
overshoot and then oscillate.

12.10 Box and Jenkins discussed in detail how the discrete dynamic systems
developed above may be linked to continuous systems, either directly or as
approximations. This analysis will not be discussed here but the interested reader
may consult Box and Jenkins (1970, chapter 10.1.2, 10.3, A10.1) for details.

Empirical identification of transfer function models

12.11 In practice, the output Y would not be expected to follow exactly the
pattern determined by the transfer function model since disturbances of var-
ious kinds other than X will normally ‘corrupt’ the system. Box and Jenkins
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therefore assumed that all such disturbances are captured by a noise, Nt , which
is independent of the level of X and additive with respect to the influence of X.
Hence the transfer function with added noise model may be specified as

Yt = δ−1(B)ω(B)Xt−b + Nt (12.20)

Representing the noise as the ARMA (p, q) process

Nt = ϕ−1(B)θ(B)at

leads to the representation

Yt = δ−1(B)ω(B)Xt−b + ϕ−1(B)θ(B)at

the actual form of which may then be identified, fitted and checked using
an extension of the three stage procedure for individual series discussed in
§§9.41–9.48.

12.12 The procedure begins by assuming that there are T simultaneous
pairs of observations (X1, Y1), (X2, Y2), . . . , (XT , YT ) available and uses the cross-
covariance and cross-correlation functions (cf. §4.12, 8.6). It is assumed that, if
Xt and Yt are individually nonstationary, then they may be transformed to sta-
tionarity by differencing. If the order of differencing is assumed, for simplicity,
to be the same in both cases, then the cross-covariance between xt = �dXt and
yt = �dYt at lag k is defined as

γxy(k) = E[(xt − μx) (yt+k − μy)] k = 0, ±1, ±2, ± · · ·

from which the cross-correlation function may be defined as

ρxy(k) = γxy(k)
σxσy

k = 0, ±1, ±2, ± · · ·

As usual, μx, μy , σx and σy are the means and standard deviations, respec-
tively, of x and y and it should be noted that γxy(k) = γyx(−k) �= γxy(−k) and
ρxy(k) = ρyx(−k) �= ρxy(−k), so that the cross-covariance and cross-correlation
functions are not symmetric about k = 0.

These functions may be estimated from the τ = T − d pairs of values
(x1, y1), (x2, y2), . . . , (xτ , yτ) available for analysis. Thus the sample cross-
covariance at lag k is

cxy(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ−1
τ−k∑
t=1

(xt − x̄)(yt+k − y) k = 0, 1, 2, . . .

τ−1
τ−k∑
t=1

(xt−k − x̄)(yt − y) k = 0, −1, − 2, . . .
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Figure 12.2 Series J from Box and Jenkins (1970): X is the input gas feed rate into a
furnace; Y is the percentage output CO2 concentration

from which the sample cross-correlation at lag k is defined as

rxy(k) = cxy(k)
sxsy

k = 0, ±1, ±2, ± · · ·

Here x and y are the sample means and sx = √
cxx(0) and sy = √

cyy(0) are the
sample standard deviations of x and y.

12.13 Figure 12.2 shows the pair of observations denoted Series J in Box and
Jenkins (1970). Xt is the input gas feed rate into a gas furnace and Yt is the out-
put CO2 concentration rate, observed at a nine-second sampling interval, with
T = 296. Both series are clearly stationary and hence no differencing is required
prior to cross-correlation analysis, i.e., d is set equal to zero. Figure 12.3 shows
the cross-correlation function rXY (k), which is not symmetrical about k = 0 and
has a well-defined peak at k = +5, indicating that the output lags behind the
input, as one might expect. The cross-correlations are negative, which is also to
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Figure 12.3 Cross-correlation function between X and Y of Figure 12.2

be expected since an increase in the input X produces a decrease in the output
Y , as can be seen from Figure 12.2.

12.14 Box and Jenkins used the following formula, originally obtained by
Bartlett (1955) as an extension of the univariate formulae of §§9.2–9.5, to
obtain standard errors to attach to cross-correlations:

V [rxy(k)] ≈ (τ − k)−1
+∞∑

v=−∞
ρxx(v)ρyy(v) + ρxy(k + v)ρxy(k − v)

+ ρ2
xy(k)

{
ρ2

xy(v) + 1
2

ρ2
xx(v) + 1

2
ρ2

yy(v)
}

(12.21)

− 2ρxy(k){ρxx(v)ρxy(v + k) + ρxy(−v)ρyy(v + k)}

Here ρxx(v) and ρyy(v) are the individual autocorrelation functions of xt and yt

themselves and replacing each correlation with their sample counterpart will
provide, on taking the square root of (12.21), an approximate standard error for
a sample cross-correlation.

There are some interesting special cases of (12.21) that can be very useful in
practical applications. For example, on the null hypothesis that xt and yt have
no cross-correlation, (12.21) simplifies to

V [rxy(k)] ≈ (τ − k)−1
∞∑

v=−∞
ρxx(v)ρyy(v)
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If, in addition, one of the series is white noise, say yt = at , this simplifies
further to

V [rxy(k)] ≈ (τ − k)−1

In such circumstances, it can then be shown that the cross-correlation function
will vary about zero with standard deviation (τ − k)−1/2 in a systematic pattern
given by the autocorrelation function of xt .

12.15 The procedure for identifying a transfer function model of the form
(12.20) consists of the following steps:

(i) deriving rough estimates υ̂j of the impulse response weights;
(ii) using these estimates to make guesses of the orders r and s of the

polynomials δ(B) and ω(B) and the delay parameter b;
(iii) substituting the estimates υ̂j into equations (12.18) to obtain initial esti-

mates of the parameters in δ(B) and ω(B).

The properties of the υj implied by (12.18) and outlined in §12.9 can be used to
guess the values of b, r and s, while the appropriate order of differencing for the
individual series may be identified by the standard methods of §§10.21–10.22.
Given this value of d, the model can be written as

yt = υ(B)xt + nt (12.22)

where nt = �dNt .
Box and Jenkins argued that the identification procedure is considerably sim-

plified if the input series is white noise or, if xt follows an ARMA process, if it is
‘prewhitened’, i.e., if it is transformed using the ARMA process to the white noise

αt = φx(B)θ−1
x (B)xt

which will also supply an estimate s2
x of σ2

x (recall from §12.2 that transforming
to white noise was also advocated some two decades earlier by Orcutt and James,
1948, in a static regression setting). If the same transformation is applied to yt

to obtain

βt = φx(B)θ−1
x (B)yt

then (12.22) may be written

βt = υ(B)αt + εt (12.23)

where εt = φx(B)θ−1
x (B)nt is the transformed noise. Multiplying (12.23) through

by αt−k and taking expectations yields

υk = γαβ(k)
σ2

α

= ραβ(k)σβ

σα
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so that, after prewhitening the input, the cross-correlation function between
the prewhitened input and the correspondingly transformed output is directly
proportional to the impulse response function. The preliminary estimates υ̂k

will then be given by

υ̂k = rαβsβ

sα

12.16 To identify a transfer function model for the gas furnace data of Figure
12.2, an ARMA model for the input Xt was first obtained, this being the AR(3)
process

(1 − 1.98B + 1.37B2 − 0.34B3) Xt = αt s2
α = 0.0360

On defining βt = (1 − 1.98B + 1.37B2 − 0.34B3) Yt , and with sα = 0.190 and
sβ = 0.360, the estimated cross-correlation function between αt and βt is shown
in Figure 12.4, along with two standard error bounds of 2T−1/2 = 0.12, which
are appropriate if the series are uncorrelated. The impulse responses are then
preliminarily estimated as

k 0 1 2 3 4 5 6 7 8 9 10

υ̂k 0.00 0.11 0.04 0.54 0.63 0.86 0.49 0.29 0.01 0.10 0.07

The values υ̂0, υ̂1 and υ̂2 are all small compared with their standard errors
(approximately 0.11), suggesting that b = 3. Using the results of §12.7, the sub-
sequent pattern of the υ̂’s might be accounted for by a model with (r, s, b) either
equal to (1, 2, 3) or (2, 2, 3). The former model implies that υ3 and υ4 are prelim-
inary values following no fixed pattern and that υ5 provides the starting value

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2
0 1 2 3 4 5 6 7 8 9 10 k

rab (k)

Figure 12.4 Estimated cross-correlation function for the gas furnace data
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for a geometric decay determined by the difference equation υj − δυj−1 = 0, j > 5.
The latter model implies that υ3 is a single preliminary value and that υ4 and
υ5 provide the starting values for a pattern of double exponential decay deter-
mined by the difference equation υj − δ1υj−1 − δ2υj−2 = 0, j > 5. This preliminary
identification suggests the transfer function model

(1 − δ1B − δ2B2)Yt = (ω0 − ω1B − ω2B2)Xt−3 (12.24)

or some simplification of it. Assuming this model, the equations (12.18) become

υj = 0 j < 3

υ3 = ω0

υ4 = δ1υ3 − ω1

υ5 = δ1υ4 + δ2υ3 − ω2

υ6 = δ1υ5 + δ2υ4

υ7 = δ1υ6 + δ2υ5

Substituting the estimates υ̂k into the last two of these equations yield

−0.86δ̂1 − 0.63δ̂2 = −0.49

−0.49δ̂1 − 0.86δ̂2 = −0.29

which give δ̂1 = 0.55 and δ̂2 = 0.02. Substituting these values into the second,
third and fourth equations yields

ω̂0 = υ̂3 = −0.54

ω̂1 = δ̂1υ̂3 − υ̂4 = (0.55)(−0.54) + 0.63 = 0.33

ω̂2 = δ̂1υ̂4 + δ̂2υ̂3 − υ̂5 = (0.55)(−0.63) + (0.02)(−0.54) + 0.86 = 0.50

Hence preliminary identification leads to the transfer function model

(1 − 0.55B − 0.02B2) Yt = −(0.54 + 0.33B + 0.50B2) Xt−3

Note that δ̂2 is very small, suggesting that this parameter may be omitted from
the model.
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12.17 In general, given an estimate of the transfer function υ̂(B), an estimate
of the noise series is provided, from (12.22), by

n̂t = yt − υ̂(B)xt = yt − δ̂−1(B)ω̂(B)xt−b

= yt + δ̂1(n̂t−1 − yt−1) + δ̂2(n̂t−2 − yt−2) + · · · + δ̂r(n̂t−r − yt−r)

− ω̂0xt−b + ω̂1xt−b−1 + · · · + ω̂sxt−b−s

A straightforward approach to identifying the ARMA structure of the noise is to
use the conventional identification procedure of §§9.41–9.43 on n̂t . This sug-
gested an AR(2) structure and the first two sample autocorrelations, rn̂(1) = 0.886
and rn̂(2) = 0.743, yielded the initial autoregressive parameter estimates of
ϕ̂1 = 1.06 and ϕ̂2 = −0.20.7 Thus the identified model for the gas furnace data is

Yt = ω0 − ω1B − ω2B2

1 − δ1B − δ2B2
Xt−3 + 1

1 − ϕ1B − ϕ2B2
at

12.18 Box and Jenkins stressed the importance of using the rational form
υ(B) = δ−1(B)ω(B) for the transfer function to reduce the number of parame-
ters that need to be estimated, particularly as the impulse response weights
will typically have large variances and be highly correlated. Related to this, the
identification procedure requires that the variation in the input X be reasonably
large compared with the variation in the noise and/or a large amount of data
is available, otherwise identification may fail, although even then a process of
beginning with a simple and rudimentary model and extending it if necessary
after estimation and checking (see §12.19 below) may prove successful.

Box and Jenkins also emphasized the problems that may arise through lack of
uniqueness. Since the model (12.20) could equally well be represented by

L(B)Yt = L(B)δ−1(B)ω(B)Xt−b + L(B)ϕ−1(B)θ(B)at

it is possible that the identification strategy could lead to a model of unnecessar-
ily complicated form. This possibility is reduced if simple rational forms of the
transfer function are employed initially – these are often found to be adequate so
that more complicated models should only be considered if the need is demon-
strated. Potential common factors in the operators on Yt , Xt and at should be
investigated and, if possible, removed, as their presence can lead to instabil-
ity in estimation. Considerable ingenuity may be needed in order to do this,
as estimated coefficients will often be accompanied by large standard errors,
but parameter redundancy should be avoided at all costs, with a parsimonious
parameterization always being the goal of model building.
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Estimation and checking of transfer function models

12.19 Box and Jenkins estimated the transfer function with noise model
(12.20) using an extension of the nonlinear least squares method outlined in
§§9.31–9.40: Box and Jenkins (1970, chapter 11.3) may be consulted for details.

After estimation, serious model inadequacy can usually be detected by
examining

(a) the autocorrelation function rââ(k) of the residuals ât from the fitted model,
and

(b) certain cross-correlation functions involving the input and the residuals,
in particular the cross-correlation function rαâ(k) between the prewhitened
input αt and the residuals ât .

The model (12.20) can be written as

yt = δ−1(B)ω(B)xt−b + ϕ−1(B)θ(B)at

= υ(B)xt + ψ(B)at

Suppose that an incorrect model has been identified, producing the residuals
a0t , where

yt = υ0(B)xt + ψ0(B)a0t (12.25)

These residuals can be written as

a0t = ψ−1
0 (B){υ(B) − υ0(B)}xt + ψ−1

0 (B)ψ(B)at (12.26)

so that it is apparent that, if a wrong model is selected, the a0ts will be autocor-
related and also cross-correlated with the xts and hence the αts which generate
the xts. Two important cases need considering.

Transfer function model correct: noise model incorrect. If υ0(B) = υ(B) then (12.26)
becomes

a0t = ψ−1
0 (B)ψ(B)at

The a0ts would not be cross-correlated with the input but they would be auto-
correlated and the form of the autocorrelation function may indicate how the
noise structure could be modified.

Transfer function model incorrect. From (12.26), if the transfer function is incorrect
then, as stated above, the a0ts will be autocorrelated and cross-correlated with
both the xts and the αts, even if the noise model were correct, so that a cross-
correlation analysis could indicate the modifications needed in the transfer
function model.
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12.20 Of course, in practice the parameters of the transfer function model are
unknown and must be estimated, so that the checks suggested in the previous
section must be applied to the residuals ât computed after least squares fit-
ting. This will introduce discrepancies into autocorrelation and cross-correlation
functions so that some caution is warranted when using these results. Never-
theless, if the estimated autocorrelation function of the residuals, rââ(k), shows
marked correlation patterns then model inadequacy is suggested, while if the
cross-correlation checks do not indicate that the transfer function model is inad-
equate, then the problems will tend to lie in the fitted noise model nt = ψ0(B)at .
In this latter case, identification of the ‘subsidiary’ model â0t = T(B)at to rep-
resent the autocorrelation of the residuals from the ‘primary’ model (12.25)
will indicate that the modification of the noise model should take the form
nt = ψ0(B)T(B)at .

Determining the significance of a residual autocorrelation departing from zero
needs to take account of the issues previously discussed in §9.46 when dealing
with residuals from univariate models, although individual tests of significance
and a joint test using the Q(K) statistic can continue to be used. Similar statistics
may be employed for assessing the significance of the cross correlations of the
residuals with the prewhitened input, rαâ(k): for example, a test of the joint
significance of the first K of these cross-correlations is given by the statistic

S(K) = T ′
K∑

k=0

r2
αâ(k)

which will be approximately distributed as χ2(K − r − s), T ′ being the effective
sample size used for estimation, while an individual cross-correlation will have
a variance of 1/T ′, although in practice low order correlations may have a con-
siderably smaller variance than this. (Note that the degrees of freedom in S(K)
are independent of the number of parameters fitted in the noise model.)

12.21 The transfer function model fitted to the gas furnace data was
(

1 − 0.57 B − 0.01 B2

(±0.21) (±0.14)

)
Yt = −

(
0.53 + 0.37 B + 0.51 B2

(±0.08) (±0.15) (±0.16)

)
Xt−3

+ 1(
1 − 1.53 B + 0.63 B2

(±0.05) (±0.05)

)at

where ± one standard error limits are shown in parentheses and
σ̂2

a = 0.0561. Diagnostic checks showed no evidence of model inadequacy with
Q(36) = 41.7 ∼ χ2(34) and S(35) = 29.4 ∼ χ2(31) both being insignificant. The
estimate δ̂2 = 0.01 is very small when compared to its standard error of ± 0.14
and omitting it from the model has no effect on the estimates of the other
parameters.
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Figure 12.5 Impulse and step responses for the transfer function model (1 − 0.57B)Yt =
−(0.53 + 0.57B + 0.51B2)Xt−3 fitted to the gas furnace data

The impulse response and step functions are shown in Figure 12.5: the for-
mer has two initial values of υ̂3 = −0.53 and υ̂4 = 0.67, after which the weights
decay geometrically from υ̂5 = 0.89 as υ̂j = 0.57υ̂j−1; the latter tends, without
overshooting, to the steady state gain

g = −(0.53 + 0.37 + 0.51)
1 − 0.57

= 3.28

Forecasting using leading indicators

12.22 Box and Jenkins utilized the transfer function model to develop the
technique of forecasting Yt from the ‘leading indicator’ Xt . This is essentially
a generalization of their approach to forecasting individual time series, as dis-
cussed in §§11.4–11.10, and will not be developed here: see Box and Jenkins
(1970, chapter 11.5) for details.
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Multiple time series models

12.23 The transfer function model can, at least conceptually, be extended to
multiple inputs, although the full identification of such models was not consid-
ered by Box and Jenkins. A more natural generalization of the single input–single
output transfer function model might be to consider a vector of time series,
thus leading to the analysis of multiple time series. Early contributions to the
field were Bartlett and Rajalakshman (1953) and Whittle (1953b), but the sem-
inal study was Quenouille (1957), which represented the state of the art of the
subject until well into the 1970s. The following sections outline the approach
taken by Quenouille, but it is emphasized that these provide very much a ‘bare
bones’ treatment of the much more detailed analysis provided in Quenouille’s
monograph.

Thus, consider n time series of length T , with the tth observation on the ith
series denoted as xi,t and the corresponding column vector of the n variables
denoted as xt . The covariance between xi,t and xj,t−k is denoted as γij(k) and
the correlation by ρij(k). The sample estimates of these quantities are cij(k) and
rij(k). The n × n matrices �k, Pk, Ck and Rk contain the collections of each of
these quantities at lag k, from which it follows that �−k = �′

k, etc. Using the lag
operator B, define

� =
∞∑

k=−∞
�kBk

with corresponding definitions for P, C and R.
The observations xi,t are assumed to be generated from n infinite random series

εi,t by the infinite linear moving average process

xi,t =
n∑

j=1

∞∑

k=0

fij,kεj,t−k (12.27)

In vector form,

xt =
∞∑

k=0

Fkεt−k =
∞∑

k=0

FkBkεt = F(B)εt , where F(B) =
∞∑

k=0

FkBk

in which εt and Fk are defined analogously to xt and �k respectively. For an
autoregressive scheme, F−1(B) will be a finite-order polynomial in B such that

F−1(B) = A0 + A1B + · · · + ApBp

= A0(I − U1B − · · · − UpBp)
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with determinant

|F−1| = a0 + a1B + · · · + amBm

= a0(1 − u1B − · · · − umBm)

The quantity p is the order of the autoregressive scheme and, unless Ap is sin-
gular, m = np. If Ap is singular then there is some r, called the minimum order,
for which rn ≥ m > (r − 1)n.

As in the univariate case, three schemes are available to model xt : the finite
moving average, where F(B) is a finite-order polynomial in B; the autoregres-
sion F−1(B)xt = εt ; and the autoregressive scheme with moving average residuals,
where F(B) = G(B)/H(B), so that H(B)xt = G(B)εt .8

12.24 Assuming, for simplicity, that xi,t and εi,t have zero means and that
E(εtε

′
t ) = σ2I, it then follows that

�k = σ2
∞∑

i=0

Fk+iF′
i and � = σ2F(B)F′(B−1)

If fewer than n random variables are required to generate xt then F (�) is singular
and vice versa. The rank of F (�) gives the number of random variables needed
and the difference between this and n gives the number of identities between
the variables of xt . The latent vectors of F and � corresponding to the zero latent
roots of these two matrices give the identities existing between the variables. For
example, if

x1,t = ε1,t + ε2,t−1

x2,t = ε1,t + ε2,t

x3,t = ε2,t + ε2,t−1

then

F =
⎡

⎢⎣
1 B
1 1
0 1 + B

⎤

⎥⎦

and

� =
⎡

⎢⎣
1 B
1 1
0 1 + B

⎤

⎥⎦

[
1 1 0

B−1 1 1 + B−1

]
=

⎡

⎢⎣
2 1 + B 1 + B

1 + B−1 2 1 + B−1

1 + B−1 1 + B 2 + B + B−1

⎤

⎥⎦

|�| = 0 and the latent vector corresponding to the zero latent root of � is pro-
portional to [1 + B, −(1 + B), 1 − B], showing that the single identity existing
between the variables is

(1 + B)x1,t − (1 + B)x2,t + (1 − B)x3,t = 0
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i.e.,

x1,t + x1,t−1 + x3,t = x3,t + x2,t−1 + x3,t−1

12.25 Any restriction on F will give rise to corresponding restrictions on � and
P and hence upon the covariances and correlations of the variables in xt . For
example, if n = 2 and x1,t and x2,t are generated just by ε1,t , then |F| = |�| = |P| = 0
and hence

∞∑

i=−∞
ρ11(i)ρ22(k − i) =

∞∑

i=−∞
ρ12(i)ρ21(i) for all k,

which is a necessary and sufficient condition for such dependence. Similarly,
for a finite moving average scheme, ρij(s) = 0 for all s greater than q, the
order of the moving average. For an autoregressive scheme, the fundamen-
tal equations linking the covariance matrices are (cf. §7.18 for their univariate
counterparts)

A0�s + A1�s−1 + · · · + Ap�s−p = 0 s > 0

i.e.,

�s = U1�s−1 + U2�s−2 + · · · + Up�s−p s > 0

or equivalently

a0�s + a1�s−1 + · · · + am�s−m = 0 s > n

and

�s = u1�s−1 + u2�s−2 + · · · + um�s−m s > n

The same formulae hold for autoregressive schemes whose errors follow moving
averages except that the limits are changed to s > q.

12.26 The characteristics of any autoregressive scheme are determined by the
number of non-zero roots of |F−1| = 0, i.e., m, and its order n. If, for example,
m < n, then the scheme either degenerates into separate schemes, some of which
will be of lower order, e.g.,

F−1(B) =
[

1 0
0 a0 + a1B + a2B2

]

or it is possible to construct a matrix U1 such that �s = U1�s−1 for s > 1, so that
the whole scheme behaves as if it was of lower order. Similarly, if n < m ≤ 2n
and the scheme does not break into separate schemes, it is possible to satisfy
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�s = U1�s−1 + U2�s−2 for s > 2, so that the scheme behaves like a lower-order
scheme except that �0 fails to satisfy the recurrence relationships. This would
be characteristic of schemes with correlated or even superposed errors, so that
such degenerate schemes may not be able to be distinguished from these other
types of scheme.

Canonical variables

12.27 Quenouille (1957, section 2.5) used an important result to provide a
means of calculating the covariance matrices. This states that if z1, z2, . . . , zm are
the roots of |F−1| = 0, then

F(B) =
m∑

i=1

uiv′
i

1
B − zi

where

uiv′
i = adj (F−1(zi))

am
∏
j �=i

(zi − zj)

with adj(X) denoting the adjoint matrix of X. It is then straightforward to show
that

F−1(zi)ui = F′−1(zi)vi = 0

From this result it is then possible to calculate a set of vectors, ti, defined as

v′
iF

−1(B) = (B − zi)t′
i

which give rise to a set of canonical variables t′
ixt with the property that

(B − zi)tixt = v′
iF

−1(B)xt

i.e.,

(1 − z−1
i B)tixt = −z−1

i v′
iεt

so that each of the canonical variables follows a Markov scheme with parameter
z−1

i . As an illustration of this property, consider the scheme

2x1,t + x1,t−1 + x2,t = ε1,t

x1,t−1 + 6x2,t + x2,t−1 = ε2,t
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Here

F−1(B) =
[

2 + B 1

B 6 + B

]
adj(F−1(B)) =

[
6 + B −1

−B 2 + B

]

and

|F−1| = 12 + 7B + B2

so that z1 = −3, z2 = −4 and a2 = 1. Thus

u1v′
1 =

[
3 −1
3 −1

]
=

[
1
1

]
[3 −1]

u2v′
2 =

[
−2 1
−4 2

]
=

[
1
2

]
[−2 1]

It then follows that

[3 −1]

[
2 + B 1

B 6 + B

]
= (B + 3)t′

1

to give t′
1 = [2 −1] and, by a similar calculation, t′

2 = [−1 1]. The canonical
variables are therefore 2x1,t − x2,t and −x1,t + x2,t and an alternative representa-
tion of the scheme is provided by

(
1 + 1

3
B
)

(2x1,t − x2,t ) = ε1,t − 1
3

ε2,t

(
1 + 1

4
B
)

(−x1,t + x2,t ) = −1
2

ε1,t + 1
4

ε2,t

This result is interesting in that the individual variables will normally each fol-
low an autoregressive scheme of order m with moving average errors of order
m, as is seen by noting that the autoregression F−1(B)xt = εt can be written as
adj(F(B))xt = |F(B)|εt . The canonical variables, however, comprise those combi-
nations of the individual variables having the simplest possible serial correlation
properties. The canonical variables associated with real roots will then, as in the
example above, follow Markov schemes. If there are complex roots then the
associated canonical variables will have real and imaginary parts that jointly
follow a Markov scheme.

There will also be a relationship between the ti and uj vectors. Since
(B − zi)tiuj = v′

iF−1(B)uj disappears for B = zj, it therefore follows that tiuj = 0.
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The identification problem

12.28 Is it possible to determine the moving average structure from a knowl-
edge of the covariance structure, i.e., to determine F from �? If F(B) satisfies
� = σ2F(B)F′(B−1) then so will F(B)�(B)J�(B), where �(B) and �(B) are diagonal
matrices with elements φi(B−1)/φi(B) and ψi(B−1)/ψi(B), respectively, and J is any
matrix satisfying JJ′ = I. Thus, if any solution exists, there must be an infinite
number of solutions.

If the structure of the scheme, i.e., F, is known, is it possible to uniquely
determine �? Again, this would not seem to be generally possible, as Quenouille
(1957, section 3.1) showed, by way of examples, that different schemes may give
rise to the same �.

Effects of model misspecification

12.29 It is quite possible that a scheme might be specified that it incorrect in
one or more ways. Of particular interest is the case where some variables have
been incorrectly included or excluded. Suppose first that the true specification is

[
K L
M N

] [
xt

yt

]
=

[
εt

ηt

]

where K, L, M and N are polynomials in B whose arguments have been sup-
pressed for clarity of notation. If the set of variables yt are omitted the scheme
becomes

(K − LN−1M)xt = εt − LN−1ηt (12.28)

If some of the xt variables, say x1,t , do not directly affect yt and are themselves
not directly affected by yt , the scheme may be written as

⎡

⎢⎣
G H 0
J K L
0 M N

⎤

⎥⎦

⎡

⎢⎣
x1,t

x2,t

yt

⎤

⎥⎦ =
⎡

⎢⎣
ε1,t

ε2,t

ηt

⎤

⎥⎦ (12.29)

Now the omission of yt gives
[

G H
J K − LN−1M

] [
x1,t

x2,t

]
=

[
ε1,t

ε2,t − LN−1ηt

]

Alternatively, if the variables y1,t from an unrelated scheme are included, so that
the true scheme is

⎡

⎢⎣
G 0 0
0 K L
0 M N

⎤

⎥⎦

⎡

⎢⎣
xt

y1,t

y2,t

⎤

⎥⎦ =
⎡

⎢⎣
εt

η1,t

η2,t

⎤

⎥⎦ (12.30)
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the observed variables will follow the scheme

[
G 0
0 K − LN−1M

] [
xt

yt

]
=

[
εt

η1,t − LN−1η2,t

]

It is clear that these misspecifications are closely related. Noting that
|N|N−1 = adj(N) is a polynomial in B, premultipying (12.28) by |N| reduces
both sides of the equation to polynomials in B, with the order of the polyno-
mial on the left-hand side potentially being increased substantially, while the
appearance of a polynomial on the right-hand side makes the errors now serially
correlated. In other words, omitting relevant variables can quickly result in the
scheme for the remaining variables being too complicated to be analysed eas-
ily, and making the simplicity of the original scheme completely undetectable.
Whether this is so will depend upon the importance of the omitted variables, as
shown by the matrices K, L, M and N. For example, if L = 0, the yt variables do
not affect the xt variables and the scheme is unaltered. Similarly, if L and N are
independent of B, i.e., if previous values of yt do not directly influence either
yt itself or xt , the scheme reduces to a simple autoregression of order equal to
the larger of the orders of K and M. If the order of N is large relative to those
of L and M, the disturbance to the scheme will be small: in particular, if, as in
(12.29), part of the scheme is not directly related to the omitted variables, that
part will remain unaffected. Conversely, in (12.30), which is a special case of
(12.29), the order of N may be expected to be larger and that of K smaller, which
would mean that y1,t will follow a very different scheme to that of xt .

Dealing with nonstationarities

12.30 Quenouille was well aware of the importance of dealing with nonsta-
tionarities and the alternative forms that trending time series could take, stating
that

(t)wo types of trend suggest themselves: trend of a polynomial or functional
nature and trend of a stochastic nature.

If the trend is assumed to be a polynomial in t, the easiest and best method
of analysis is to include extra terms in the analysis corresponding to linear,
quadratic, . . . components of the trend. Although these terms are completely
predictable from previous terms, they may be treated as variables for which
the error is zero. (Quenouille, 1957, page 51)

However, he continued that
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(i)t is my opinion that many economic time series trends will have a stochas-
tic rather than a polynomial nature. That is to say that certain terms in
equation [12.27] will combine to give rise to what is known as ‘trend’. . . .

The position here, then, is that, if the situation discussed in [§12.13] is
not to obtain, all the variables relevant to the trend should be included in
the scheme. This is likely to be difficult to achieve, and methods adopted to
overcome the resulting complications differ.

Most commonly, a moving-difference formula, perhaps of the simple type
xi,t − xi,t−1 is applied to the original series. Uncritical application of this procedure
is, however, more dangerous than the application of no trend-reducing procedure at
all. It is essential that the decision as to the procedure should not be made without
regard to the likely character of the series.

. . . Thus, whether the trend is a polynomial or not, the procedure of including
polynomial terms as extra variables is not a bad one, since it does not commit us to
their acceptance without further consideration, and, if they are rejected, they may
easily be dropped from the analysis. For similar reasons, it is preferable not to carry
out any differencing procedure for any initial analysis. (ibid., pages 54–5: italics
added for emphasis)

To illustrate the potential impact of differencing in the presence of stochastic
trends, Quenouille considered decomposing each individual xi,t into indepen-
dent trend, μi,t , and stationary, zi,t , components such that G(B)μi,t = ξi,t and
F(B)zi,t = ζi,t . This implies that (cf. §11.19)

F(B)G(B)xi,t = G(B)ζi,t + F(B)ξi,t

and, since the autocorrelations of μi,t are likely to be slowly decaying from
unity, G(B) ≈ 1 − B and it will appear that the first differences of xi,t will follow
an ARMA process. In terms of the vector time series xt , Quenouille suggested
that the following scheme was likely to provide a good representation of many
nonstationary time series:

xt = μt + zt

where

μt = μt−1 + B−1
0 ηt

and

zt = U1zt−1 + A−1
0 εt

which is a multivariate extension of the exponential smoothing type model of
§11.18.
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Empirical modelling of multiple time series

12.31 The basic statistics required for building a multiple time series model
are the sample covariance and autocorrelation matrices Ck and Rk, the latter
comprising the elements

rij(k) =
∑T

t=s+1 (xi,t − x̄i)(xj,t−s − x̄j)
(∑T

t=s+1 (xi,t − x̄i)2
∑T

t=s+1 (xj,t−s − x̄j)2
) 1

2

After some experimentation using simulated series, Quenouille suggested that
the correlation matrix quotients RkR−1

k−1 should be examined, along with their
successive differences, RkR−1

k−1 − Rk−1R−1
k−2. For large samples, these quotients

should take approximately the same value, namely U1, for Markov schemes,
so that their successive differences should be close to zero. The latent roots of
the quotients (or their moduli if the roots are complex) will reflect the number
of independent factors significantly affecting the correlation structure of the
scheme generating the data.

12.32 A more sensitive approach to determining the order of an autoregressive
scheme is to use the partial autocorrelations based test proposed by Quenouille
(1949c) and extended to the multivariate context. Suppose xt is generated by
the scheme

p∑

i=0

Aixt−i = εt E(εt+sε
′
t ) =

{
0, s �= 0
I, s = 0

and

xt =
p∑

i=1

Uixt−i + A−1
0 εt

There will then be a second set of related random variables ηt such that

p∑

i=0

Bixt+i = ηt E(ηt+sη
′
t ) =

{
0, s �= 0
I, s = 0

and

xt =
p∑

i=1

Wixt−i + B−1
0 ηt
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with E(εt+sη
′
t ) = 0, s > p. The connection between the two representations is

given by the equations

A′
0A0 = (�0 − U1�

′
1 − U2�

′
2 − · · ·)−1

B′
0B0 = (�0 − �′

1W′
1 − �′

2W′
2 − · · ·)−1

Ai = −A0Ui Bi = −B0Wi

Noting that

εt+p+1η
′
t =

p∑

i=0

p∑

j=0

Aixt+p+1−ix′
t+jB′

j

may be interpreted as the partial correlation between xt and xt+p+1 when the
effects of xt+i, i = 1, . . . , p, have been removed, Quenouille proposed using a
statistic based on the n × n matrix

T−1
T∑

t=1

ε̂t+p+1η̂
′
t = T−1

T∑

t=1

p∑

i=0

p∑

j=0

Âixt+p+1−ix′
t+jB̂′

j =
( p∑

i=0

ÂiCn+1−i

)
B̂′

0 (12.31)

each element of which is independent standard normal in large samples. T times
the sum of squares of these elements will therefore be approximately distributed
as χ2(n2). For example, a Markov scheme has p = 1 and (12.31) becomes

(Â0C2 + Â1C1)B̂0 = Â0(C2 + Â−1
0 Â1C1)B̂0 = Â0(C2 − C1C−1

0 C1)B̂0

with a significant test statistic indicating that the Markov scheme is misspecified
and that a higher autoregressive order is warranted.

Quenouille’s hog series example

12.33 Quenouille illustrated this modelling procedure by way of a detailed
example comprising five annual US time series from 1867 to 1948 on the number
and price of hogs (x1,t and x2,t ), the price and supply of corn (x3,t and x4,t ) and
the farm wage rate (x5,t ). Exact definitions of each of these variables are given in
Quenouille (1957, section 8.1), with the actual data recorded in Table 8.1a of the
monograph. Figure 12.6 shows the five series while the sample autocorrelation
matrices Rk for k = 0, 1, . . . , 5 are reported in Table 12.1. The correlation quotients
RkR−1

k−1 and their successive differences RkR−1
k−1 − Rk−1R−1

k−2 are given in Table 12.2,
with the latent roots of RkR−1

k−1 being shown in Table 12.3. The autocorrelation
matrices show that there are close correlations between the variables but the
successive quotients RkR−1

k−1 vary considerably, suggesting that a Markov scheme
is unlikely to be operating. Each of the differences RkR−1

k−1 − Rk−1R−1
k−2 are nearly
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Figure 12.6 Quenouille’s US hog series, 1867–1948

singular (the determinants for k = 2, . . . , 5 being 0.0005, 0.0004, 0.0110 and
0.0004 respectively). This is because the row elements are roughly proportional
to [2, 1, 0, −2, −1].

The latent roots of RkR−1
k−1 show two large real roots, a generally smaller,

but rather volatile, third real root and a pair of imaginary roots giving rise to
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Table 12.1 Correlation matrices of the hog series

k Rk

0

⎡

⎢⎢⎢⎢⎢⎢⎣

1.000 0.625 0.413 0.784 0.743

0.625 1.000 0.695 0.604 0.937

0.413 0.695 1.000 0.124 0.726

0.784 0.604 0.124 1.000 0.644

0.743 0.937 0.726 0.644 1.000

⎤

⎥⎥⎥⎥⎥⎥⎦

1

⎡

⎢⎢⎢⎢⎢⎢⎣

0.882 0.705 0.315 0.857 0.730

0.609 0.911 0.792 0.555 0.923

0.481 0.584 0.790 0.299 0.686

0.757 0.648 0.267 0.797 0.645

0.770 0.907 0.757 0.627 0.983

⎤

⎥⎥⎥⎥⎥⎥⎦

2

⎡

⎢⎢⎢⎢⎢⎢⎣

0.753 0.733 0.272 0.831 0.722

0.677 0.765 0.806 0.529 0.874

0.535 0.507 0.608 0.380 0.645

0.705 0.650 0.252 0.807 0.633

0.775 0.855 0.712 0.649 0.949

⎤

⎥⎥⎥⎥⎥⎥⎦

3

⎡

⎢⎢⎢⎢⎢⎢⎣

0.684 0.724 0.334 0.755 0.720

0.730 0.664 0.693 0.550 0.810

0.567 0.550 0.455 0.426 0.628

0.674 0.569 0.295 0.295 0.615

0.758 0.803 0.641 0.641 0.905

⎤

⎥⎥⎥⎥⎥⎥⎦

4

⎡

⎢⎢⎢⎢⎢⎢⎣

0.653 0.696 0.441 0.676 0.699

0.724 0.637 0.502 0.604 0.751

0.511 0.598 0.379 0.439 0.621

0.701 0.487 0.231 0.775 0.561

0.739 0.763 0.563 0.635 0.860

⎤

⎥⎥⎥⎥⎥⎥⎦

5

⎡

⎢⎢⎢⎢⎢⎢⎣

0.605 0.634 0.409 0.683 0.652

0.653 0.642 0.347 0.624 0.710

0.444 0.580 0.376 0.436 0.595

0.683 0.455 0.181 0.728 0.514

0.677 0.736 0.500 0.619 0.815

⎤

⎥⎥⎥⎥⎥⎥⎦

oscillatory behaviour. The first real root corresponds to a canonical variable
largely dominated by x5,t and thus captures the major trend component in the
data; the second real root, although less stable than the first, captures a further
trend component.

Quenouille argued that the stationary components could be captured by three
canonical variables defined from the real and imaginary parts of the 3rd/4th



9780230290181_13_cha12.tex 21/4/2011 15: 1 Page 354

354

Table 12.2 Correlation quotients and their successive differences

k RkR−1
k−1 RkR−1

k−1 − Rk−1R−1
k−2

1

⎡

⎢⎢⎢⎢⎢⎢⎣

0.64 0.56 −0.11 0.26 −0.37

−0.22 0.31 0.40 0.28 0.42

−0.17 −0.68 0.84 0.34 0.62

0.43 0.62 −0.03 0.41 −0.58

0.11 −0.07 0.12 0.00 0.88

⎤

⎥⎥⎥⎥⎥⎥⎦

2

⎡

⎢⎢⎢⎢⎢⎢⎣

−1.45 −0.39 −0.33 2.28 0.91

−1.54 −0.74 0.79 1.71 1.06

−2.57 −1.74 0.93 2.71 1.77

−1.67 −0.39 0.03 2.71 0.45

−1.35 −0.77 0.21 1.50 1.56

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

−2.09 −0.96 −0.22 2.02 1.27

−1.32 −0.95 0.39 1.43 0.63

−2.40 −1.06 0.09 2.38 1.15

−2.10 −1.01 0.06 2.31 0.95

−1.46 −0.70 0.09 1.50 0.68

⎤

⎥⎥⎥⎥⎥⎥⎦

3

⎡

⎢⎢⎢⎢⎢⎢⎣

7.42 3.78 0.49 −5.23 −5.22

−8.19 −4.55 0.22 6.59 6.72

−12.05 −6.96 −0.94 9.45 10.57

12.11 6.11 2.27 −8.53 −10.04

2.56 0.86 0.62 −1.99 −0.88

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

8.87 4.18 0.82 −7.51 −6.12

−6.64 −3.80 −0.57 4.87 5.66

−9.48 −5.23 −1.86 6.73 8.81

13.78 6.50 2.24 −11.24 −10.50

3.91 1.63 0.41 −3.49 −2.44

⎤

⎥⎥⎥⎥⎥⎥⎦

4

⎡

⎢⎢⎢⎢⎢⎢⎣

2.13 1.63 −0.90 −0.96 −1.11

−0.81 −0.55 1.32 0.85 0.47

0.62 −0.16 0.49 −0.44 0.30

−1.04 −0.76 1.20 1.92 −0.01

−0.44 −0.61 0.59 0.39 1.17

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

−5.29 −2.16 −1.39 4.27 4.11

7.38 4.00 1.10 −5.73 −6.25

12.67 6.80 1.43 −9.89 −10.27

−13.15 −6.87 −1.07 10.45 10.03

−3.00 −1.47 −0.03 2.38 2.05

⎤

⎥⎥⎥⎥⎥⎥⎦

5

⎡

⎢⎢⎢⎢⎢⎢⎣

1.05 −0.85 −1.03 0.15 1.29

−0.60 −0.72 0.95 0.69 0.81

0.32 −1.05 −0.05 −0.00 1.39

−0.19 0.60 0.90 1.02 −1.08

−0.12 −0.79 0.00 0.21 1.60

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

−1.08 −2.48 −0.13 1.11 2.40

0.21 −0.17 −0.37 −0.16 0.34

−0.31 −0.89 −0.54 0.44 1.09

0.85 1.36 −0.31 −0.91 −1.07

0.32 −0.18 −0.59 −0.18 0.43

⎤

⎥⎥⎥⎥⎥⎥⎦

Table 12.3 Latent roots of RkR−1
k−1

Root

k 1st 2nd 3rd 4th 5th

1 0.98 0.81 0.56 ± 0.40i 0.08
2 0.97 1.27 0.44 ± 0.40i −0.14
3 0.93 ± 0.03i −9.31
4 0.98 1.07 −0.54 ± 0.56i 2.02
5 0.96 1.02 0.70 ± 0.56i −0.40
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Table 12.4 Correlation matrices of the canonical
variables y1,t , y2,t and y3,t

k Rk

0

⎡

⎢⎢⎣

1.00 −0.10 0.32

−0.10 1.00 0.42

0.32 0.42 1.00

⎤

⎥⎥⎦

1

⎡

⎢⎢⎣

0.62 −0.59 −0.04

0.26 0.52 0.35

0.03 0.02 0.07

⎤

⎥⎥⎦

2

⎡

⎢⎢⎣

0.18 −0.68 −0.22

0.23 −0.02 0.06

−0.00 0.03 0.06

⎤

⎥⎥⎦

3

⎡

⎢⎢⎣

−0.12 −0.44 −0.25

0.05 −0.34 −0.04

−0.05 −0.09 0.11

⎤

⎥⎥⎦

4

⎡

⎢⎢⎣

−0.26 −0.01 −0.04

−0.14 −0.19 −0.01

−0.26 0.01 0.16

⎤

⎥⎥⎦

5

⎡

⎢⎢⎣

−0.25 0.15 −0.06

−0.26 0.15 0.09

−0.35 0.05 −0.07

⎤

⎥⎥⎦

roots and the trend-free fifth root. These were defined as

y1,t = 380x1,t − 68x2,t − 111x3,t − 133x4,t + 80x5,t

y2,t = −109x1,t − 251x2,t + 177x3,t + 18x4,t + 165x5,t

y3,t = 1216x1,t + 139x2,t − 7x3,t − 711x4,t − 154x5,t

The autocorrelation matrices of these variables, shown in Table 12.4, clearly indi-
cate that all three of the variables are stationary and trend free, as is confirmed
by the plots of the series in Figure 12.7.

12.34 Quenouille subjected the canonical variables to various partial corre-
lation tests. Tests of all three as a group, of just the pair y1,t and y2,t , and of
various linear combinations all refuted the hypothesis that they were generated
by Markov schemes. He concluded that there were two likely possibilities: either
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Figure 12.7 Canonical variables y1,t , y2,t and y3,t

there was serial correlation in the residuals (or superposed error), or the parame-
ters of the scheme were changing over time, or indeed both of these possibilities
were occurring. While he gave some evidence in favour of these possibilities he
had to conclude that this was not conclusive and that a much fuller analysis
was probably necessary.

Nevertheless, Quenouille’s analysis, the first of its kind and one which would
not be repeated for many years, was able to make several conjectures. First, there
was clear evidence of an oscillatory component. This he explained by high hog
prices or low corn prices tending to be followed by an increase in hog numbers,
which were in turn followed by lower hog prices, while high corn prices or farm
wage rates would tend to be followed by higher hog prices. Second, there existed
non-oscillatory movements with very high serial correlations, which Quenouille
characterized as ‘trend’ components. Third, part of the trend was accounted for
by the farm wage rate, x5,t , which appeared to act as an exogenous canonical
variable (this may be seen from the very small non-diagonal elements in the last
row of R1R−1

0 ).

12.35 The dynamic modelling of the relationships between two or more time
series developed in this chapter, beginning with the ideas of Fisher and Smith
in the mid-1920s, and culminating with the transfer function approach of Box
and Jenkins and the full multiple time series framework of Quenouille, provided
a formal basis for the econometric modelling of time series, a discipline that
expanded dramatically in the last forty years, with some of the links being drawn
out in the concluding Chapter 16.
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13
Spectral Analysis of Time Series:
The Periodogram Revisited and
Reclaimed

Revisiting and revealing the periodogram

13.1 The periodograms of the sunspot numbers and Beveridge’s wheat price
index calculated in Chapter 3 are rather ‘jumpy’ and show numerous peaks,
particularly in the latter, which led to much disquiet from commentators and
discussants when they were first published and a rather unconvincing expla-
nation by Beveridge (§3.8). Subsequently, periodogram analysis lost much of
its appeal, but it was only in the late 1940s that a convincing explanation was
offered for this erratic behaviour of the periodogram.

The key to this explanation was Wold’s (1938) Theorem 5 (§7.12), which
linked the autocorrelations ρk, k = 0, 1, 2, . . . , of a stationary process Xt to the
Fourier coefficients of a non-decreasing function F(ω), which has the form of a
cumulative distribution function and is known as the integrated spectrum of the
process. A convenient way of writing this relationship is, from Moran (1949)
and Bartlett (1950),

ρk =
∫ π

−π

eikωdF(ω)

or, by using its Fourier transform (cf. §8.11), as

dF(ω) = f (ω) = 1
π

(
1 + 2

∞∑

k=1

ρk cos ωk

)
0 ≤ ω ≤ π

The relevance of this result becomes clear when it is realized that the spectrum,
or spectral density, f (ω) = dF(ω), may be either discrete or continuous or, possi-
bly, a combination of the two. Only for a discrete distribution will the concept
of a classical harmonic series of the type analysed in Chapter 3 be valid, as
a harmonic series will have a discrete spectrum containing ‘spikes’ at the har-
monic frequencies. In general, though, the possibility of any kind of continuous
component to the spectrum should be allowed for.1

357
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As an example, consider the AR(2) process

Xt + aXt−1 + bXt−2 = εt

Bartlett (1948, 1950) showed that the spectrum of this process is given by

2πf (ω) = (1 − b)(1 − a2 + b2 + 2b)
(1 + b){1 + a2 + b2 − 2b + 2a(1 + b) cos ω + 4b cos2 ω} (−π ≤ ω ≤ π)

(13.1)

Hence the spectra for white noise (a = b = 0) and for an AR(1) process (b = 0)
are, respectively, unity and (1 − a2)

/
(1 + a2 + 2a cos ω). If a is negative this latter

spectrum will be large at low frequencies ω and small at high frequencies, the
reverse being true for a positive: these are termed low- and high-frequency
spectra respectively. The AR(2) spectrum (13.1) will also produce low- and high-
frequency spectra for certain values of a and b. It is also possible to obtain spectra
with a peak or a trough at an intermediate frequency ω0, given by

ω0 = cos−1
(

−a(1 + b)
4b

)

which will occur when
∣∣a(1 + b)

∣∣ < |4b|. This has an interesting implication,
which was later pointed out in Jenkins and Watts (1968, section 6.2.5). The case
where a2 − 4b < 0, for which the autocorrelation function of X is a damped sine
wave, lies partially in the region where the spectrum has no intermediate peak,
so that a periodicity in the autocorrelation function need not appear as a peak
in the spectrum unless the amplitude of the damped sine wave is large enough.

13.2 For a time series of length T , the classic estimator of the periodogram
was given in §3.6, which Bartlett (1950) showed could be written as the sample
spectrum or ‘intensity’

Ip = 2
T−1∑

k=−T+1

(
1 −

∣∣k
∣∣

T

)
ck cos ωpk = 1

π

(
c0 + 2

T−1∑

k=1

ck cos ωpk

)
(13.2)

where ωp = 2πp
/

T and the ck are the sample autocovariances

ck = 1
T − k

T−k∑

t=1

XtXt+k (k > 0, c−k = ck)

Assuming E(Xt ) = 0, E(X2
t ) = σ2 and E(XtXt+k) = σ2ρk, then the expectation of

(13.2) is

E(Ip) = 2σ2
T−1∑

k=−T+1

(
1 − |k|

T

)
ρk cos ωpk = σ2

π

(
1 + 2

T−1∑

k=1

(
1 − k

T

)
ρk cos ωpk

)
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It can be shown that the limiting value of this expectation as T → ∞ is σ2f (ωp),
which is known as the power spectrum.

If Xt contains a harmonic component of frequency ω then the autocorrela-
tion function will have a component λ cos ωj and the spectrum will be discrete,
having a spike at ω, at which frequency E(Ip) will tend to infinity as T increases,
while tending to zero at all other frequencies. Since E(Ip) = 2σ2 for a completely
random series, it follows that, when Xt is normal, P(Ip ≥ z) = exp (−z

/
E(Ip)),

i.e., Ip is exponentially distributed with mean E(Ip), a result shown originally
by Fisher (1929) and which can be used to form the basis for hypothesis tests
concerning frequency components (Hartley, 1949).

When the spectrum is continuous, as it will be for the AR(2) process (13.1)
and, indeed, for any linear process (see Bartlett, 1946), the position changes
completely. Bartlett (1950) and Grenander (1951) showed that, in this case,
although Ip remains an unbiased estimator, it is inconsistent: although it will
fluctuate about f (ωp), Ip will not tend to this or to any other value as the sample
size T increases, a consequence of its variance being σ4f (ωp), which obviously
does not decrease to zero as T → ∞. In fact, for large T , the distribution of
Ip becomes a multiple of a χ2 distribution with two degrees of freedom, inde-
pendently of T , so that there is no statistical sense in which Ip converges to
f (ωp) as T becomes large. As Daniell (1946) had already derived the property
that Ip and Iq for p �= q were asymptotically uncorrelated, these results there-
fore imply that, for a time series with a continuous spectrum, the traditional
periodogram estimator will have a very jumpy and irregular appearance, thus
explaining the behaviour of the periodograms calculated in Chapter 3 and also
that of the periodogram of Kendall’s Series I shown in Figure 8.2, which is a
simulated AR(2) process with a = −1.1 and b = 0.5, so that it has a continuous
spectrum with a peak at ω0 = 0.191 radians. Bartlett (1950, page 1) remarked that
problems of this type meant that ‘the classical method of searching for period-
icities in time series, the so-called periodogram analysis of the series, is useless
in many cases’, while Jenkins (1961, page 149) was later of the opinion that
the misuse of periodogram analysis ‘has been responsible for the acceptance of
probably more spurious hypotheses than any other statistical or mathematical
tool’.

Smoothing the periodogram

13.3 To circumvent these problems, Bartlett (1950) extended a suggestion
made by Daniell (1946), that of averaging alternative estimates of the peri-
odogram, by invoking the idea that an average taken from m independent
samples would possess the usual sampling property of its fluctuations being pro-
portional to 1

/√
m. Specifically, he suggested calculating the sample spectrum

over m contiguous portions of length n of the observed series (so that mn = T)
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and then taking the average across the m subseries. If the subseries periodogram
estimates are denoted Ip,r , r = 1, 2, . . . , m, this leads to the estimator

Ip = m−1
m∑

r=1

Ip,r

for which the variance will be given by σ4f 2/m, which can be made as small as
required by taking m large or, equivalently, n small. It can also be shown that,
apart from a few end corrections in going from one subseries to the next, Ip may
be closely approximated by

f̂ (ω) = 1
π

(
c0 +

T−1∑

k=1

λkck cos ωk

)
(13.3)

where λk = 1 − k
/

n for k ≤ n and λk = 0 for k > n. The covariances are thus
weighted in the computation of the periodogram, thus leading to the term
‘smoothed periodogram’ for this type of estimator.

Figure 13.1 shows the true spectrum of Kendall’s Series I along with two
smoothed periodograms calculated using (13.3) with n set to 15 and 30,
respectively: following Bartlett (1950, Figure 1), the values were calculated for
q = 30ω/π, corresponding to m = nω/2π. Compared to the unsmoothed peri-
odogram shown in Figure 8.2, the two smoothed periodograms are certainly
closer to the true spectrum and a test of goodness of fit calculated by Bartlett
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Figure 13.1 Periodogram analysis of Kendall’s series I: smoothed periodograms (n = 15
and 30) compared with the true spectrum
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reveals little evidence of systematic differences. Nevertheless, such calcula-
tions still leave open the question of how m and n should be chosen and,
indeed, of whether the proposed smoothing function λk is the best that is
available.

Spectral analysis comes of age

13.4 Unsurprisingly, these questions provoked a major research effort through-
out the 1950s, with the theory of estimating continuous spectra being taken
forward by, most notably, Grenander and Rosenblatt (1953), Bartlett and Mehdi
(1955), Lomnicki and Zaremba (1957, 1959), Parzen (1957, 1958), Whittle
(1957), Jenkins and Priestley (1957) and Grenander (1958).

The position at the beginning of the 1960s was summarized by two papers
in volume 3 of Technometrics, Jenkins (1961) and Parzen (1961), and the subse-
quent discussions by Tukey (1961) and Goodman (1961). Jenkins’ focus was on
the physical and statistical aspects of spectral analysis, while Parzen was more
concerned with technical and mathematical considerations.

Frequency response functions and filters

13.5 Suppose that Xt = A cos ωt = Aeiωt is an input into a simple linear system
and that the output is characterized as

Yt = G(ω)A cos(ωt + φ(ω)) = G(ω)Aei(ωt+φ(ω))

G(ω) is referred to as the gain and φ(ω) as the phase shift, both being func-
tions of the frequency ω. The frequency response function is then defined as
ψ(ω) = G(ω)eiφ(ω), so that G(ω) = |ψ(ω)| and φ(ω) = arg ψ(ω).

In general, if Xt and Yt have spectra fX(ω) and fY (ω) and variances σ2
X and σ2

Y ,
then these are related by the gain through the formula

σ2
Y fY (ω) = G2(ω) σ2

XfX(ω) (13.4)

A linear filter may be defined as

Yt =
h∑

j=−h

λjXt+j λj = λ−j

or as Yt = G(ω)Aeiωt , where

G(ω) =
h∑

j=−h

λjeiωt
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is the frequency response function of the filter. If G(ω) is defined to accept only
low (high) frequencies then it is referred to as a low (high)-pass filter. If it is
allowed to accept a band of intermediate frequencies (so that it is defined as
the difference between a low- and a high-pass filter) then it is referred to as a
band-pass filter. It also then follows that

σ2
Y =

∫ ∞

0
fX(ω)|G(ω)|2dω

which shows that the variance of the output is a weighted average, with weights
given by the squared gain, over the spectrum of the input.

Nyquist frequency and aliasing

13.6 If the data consist of a continuous trace X(t) then it is often read only
at discrete intervals ∇t, which will obviously lead to a loss of information. In
terms of the spectrum, all information will be lost for frequencies above what
is called the Nyquist frequency ωN = π/∇t, as what is measured at ωN is not f (ωN )
but the latter confounded with all frequencies which are indistinguishable from
ωN . In general, if f ∗(ω) is the spectral density corresponding to X(t), then the
spectral density of the sampled trace is given by

f (ω) =
∞∑

k=0

{
f ∗

(
2πk
∇t

+ ω

)
+ f ∗

(
2πk
∇t

− ω

)}

This may be interpreted as being obtained by ‘folding’ the unsampled spectrum
about even multiples 2πk

/∇t of the Nyquist frequency and then adding these
contributions in the range (0, ωN ), a practice known as aliasing. It is clear that,
for this to work, f ∗(ω) should be (approximately) zero for ω > ωN and Jenkins
(1961, pages 144–5) offered some guidance on how this could be achieved.

Kernels and windows

13.7 Jenkins (1961) showed that (13.3) could, in general, be expressed
equivalently as

f̂ (ω) =
∫ π

0
I(y)K(ω, y)dy

where

K(ω, y) = 1
2

(μ(ω + y) + μ(ω − y)) μ(y) = 1
π

T∑

k=−T

λkeiyk



9780230290181_14_cha13.tex 8/4/2011 13: 1 Page 363

Spectral Analysis of Time Series 363

from which it follows that the kernel or window K(ω, y) is such that
∫ π

0
K(ω, y)dy = 1

For example, the kernel corresponding to the ‘Bartlett weights’ λk = 1 − k
/

n for
k ≤ n and λk = 0 for k > n is

K(ω, y) = 1
πn

(
sin2(n/2)(ω + y)

sin2 1
2 (ω + y)

+ sin2(n
/

y)(ω − y)

sin2 1
2 (ω − y)

)

This kernel has a shape that falls off rapidly from its maximum at the peak
frequency y = ω and reaches zero at y = ±π/n, beyond which it oscillates with
decreasing amplitude.

Associated with a kernel is its bandwidth. Parzen (1961) defined this to be half
the base width, 2π/n, of a rectangular kernel which has the same height and same
area as K(ω, y), although other definitions have been suggested. Increasing n thus
has the effect of reducing the bandwidth, which increases the ‘focusing power’
of the kernel and hence decreases the sampling distortion: unfortunately, it will
also increase the variance of the estimated spectrum. The trade-off between these
considerations led to a variety of kernels being suggested. Writing the weight
function as λ(u), u = k

/
n, then the Bartlett weights correspond to setting

λ(u) = 1 − |u|, |u| ≤ 1
= 0, |u| > 1

The ‘hanning’ estimate of Blackman and Tukey (1958) is

λ(u) = 1
2 (1 + cos πu), |u| ≤ 1

= 0, |u| > 1

while their ‘hamming’ estimate is

λ(u) = 0.54 + 0.46 cos πu |u| ≤ 1
= 0, |u| > 1

A generalization of these two weight functions is

λ(u) = 1 − 2a + 2a cos πu, |u| ≤ 1
= 0, |u| > 1

in which hanning is obtained by setting a = 0.25 and hamming by setting
a = 0.23. Parzen (1957, 1961) suggested the weight functions

λ(u) = 1 − u2, |u| ≤ 1
= 0, |u| > 1
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and

λ(u) = 1 − 6u2(1 − |u|), |u| ≤ 1
2

= 2(1 − |u|)2, 1
2 < |u| ≤ 1

= 0, |u| > 1

Finally, the Daniell weight function sets λ(u) = sin u/u and so involves no weight
truncation. These weight functions and their associated kernels are conveniently
tabulated in Jenkins (1961, Table 1) and Parzen (1961, Table I and II).

13.8 The ‘design’ considerations involved in choosing a weight function/
kernel and a bandwidth were discussed in detail in Jenkins (1961), where a
convenient summary is to be found, and in Blackman and Tukey (1958), to
which readers interested in an engineering perspective are referred, while further
extensions were provided by Daniels (1962) and Priestley (1962) and surveyed
in Jenkins (1965).

The Fast Fourier Transform

13.9 Because of the ubiquitous nature of the Fourier Transform to spectral anal-
ysis, early computation of the spectrum was hampered by the limited computing
power then available, particularly when analysing long time series. A major
innovation was the development of the Fast Fourier Transform (FFT) by Cooley
and Tukey (1965), to which an issue of the IEEE Transactions on Audio and Elec-
troacoustics (IEEE, 1967) was devoted, covering the FFT’s history of discovery and
rediscovery and various of its applications. The algorithm’s importance was that,
while direct computation of a Fourier transform of a series containing T obser-
vations required approximately T2 operations, the FFT required only T log2 T ,
thus constituting a huge saving in computer time. A convenient summary of
the FFT algorithm was provided in Jenkins and Watts (1968, Appendix A7.3)
and a useful contemporary monograph on the topic is Brigham (1974).

Dealing with nonstationarity

13.10 It must be emphasized that spectral analysis assumes that the under-
lying series is stationary about a zero mean, so that the usual considerations
involved with detrending need to be considered before spectral analysis can be
attempted. If the series being analysed has a non-periodic trend component, say
Yt = μ(t) + Xt , where Xt is stationary, then the presence of μ(t) will introduce a
jump in the spectrum at ω = 0. When estimating the spectrum from a sample, it
may then be difficult to differentiate between a true trend and a component hav-
ing a very low frequency, although whether this has any practical implications is
perhaps arguable in many applications. Granger and Hatanaka (1964, chapter 8)
discussed how trends should be dealt with prior to spectral analysis, although
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they were unable to come to any firm recommendations, as these would depend
upon the type of analysis that was to be undertaken: for example, on whether
low-frequency components were of interest or not. Nerlove (1964), however,
felt able to propose the use of prewhitening, a technique suggested by Blackman
and Tukey (1958) for filtering out power at low frequencies prior to computing
the spectrum. Nerlove proposed using a filter of the form of repeated ‘quasi’-
differences �(k) = xt − kxt−1, for which the pth repeat has the gain function
G(ω) = (1 − 2k cos 2πω + k2)p. For ω ≈ 0, this function is approximately (1 − k)2p

and at frequencies near 0.5 it is approximately (1 + k)2p. Setting k to be a positive
fraction will thus have the effect of raising power at higher frequencies and low-
ering the power at low frequencies, rather than annihilating it completely by
setting k to unity. Nerlove suggested setting k = 0.75 and p ≤ 3, with the object
being to obtain an appropriately flat spectrum. An estimate of the original spec-
trum may then be obtained by dividing the prewhitened spectrum by the gain
function, a process termed by Nerlove as recoloring.

13.11 The above considerations suggest that the spectrum fitted to trending
series would look similar to that depicted in Figure 13.2. Granger (1966) sur-
veyed the spectra that had been fitted to a wide range of economic time series
and suggested that this was the ‘typical spectral shape’ of an economic time
series, even after a trend had been removed: ‘if one estimates the power spectrum
of an economic series containing an important trend, a “typical shape” spec-
tral estimate is likely to result. The important point about the typical spectral
shape, however, is that it still appears even if trend in mean is removed’ (Granger,
1966, page 154). To Granger, this suggested that ‘the long-term fluctuations in
economic variables, if decomposed into frequency components, are such that
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Figure 13.2 Granger’s (1966) ‘typical spectral shape’
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the amplitudes of the components decrease smoothly with decreasing period’
or, in other words, ‘events which affect the economy for a long period are more
important than those which affect it only for a short time’ (ibid., page 155).

Cross-spectral analysis

13.12 Suppose that §13.1 is generalized to the case where there is a bivariate
stationary generating process (Xt , Yt ), with spectral representations

fx(ω) = 1
π

(
1 + 2

∞∑

k=1

ρxx,k cos ωk

)

and

fy(ω) = 1
π

(
1 + 2

∞∑

k=1

ρyy,k cos ωk

)

There will also be a cross-spectrum, defined as

fxy(ω) = c(ω) + iq(ω)

where c(ω) and q(ω) are the co-spectrum and quadrature spectrum, which obey the
‘coherence-inequality’

c2(ω) + q2(ω) ≤ fx(ω)fy(ω)

and are defined, using the cross-correlations ρxy,k, as

c(ω) = 1
π

(
1 +

∞∑

k=1

(ρxy,k + ρyx,k) cos kω

)
(13.5)

and

q(ω) = 1
π

∞∑

k=1

(ρxy,k − ρyx,k) sin kω (13.6)

Granger and Hatanaka (1964, chapter 5) provided an interpretation of these
concepts. If Xt and Yt are real, then they have Cramér representations (Cramér,
1940)

Xt =
∫ π

−π

eitωdzx(ω) =
∫ π

0
cos tω dux(ω) +

∫ π

0
sin tω dvx(ω)

(13.7)

Yt =
∫ π

−π

eitωdzy(ω) =
∫ π

0
cos tω duy(ω) +

∫ π

0
sin tω dvy(ω)
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where the dzx(ω), etc., are random and uncorrelated processes. Each process
can thus be represented by the integral over all frequencies in 0 ≤ ω ≤ π, with
each frequency being decomposed into two components π/2 out of phase with
each other. Each of these components has a random amplitude, dux(ω), etc.,
and Granger and Hatanaka showed that for each process the amplitudes are
uncorrelated not only between the components for any particular frequency but
also with the random amplitudes of the components for all other frequencies.
The random amplitudes for frequency ω1 for one process are also uncorrelated
with the frequencies, other than ω1, of the other process. Consequently, only
the relationships between a particular frequency in one process and the same
frequency in the other process need to be considered.

Granger and Hatanaka also showed that

E(dux(ω)duy(ω)) = E(dvx(ω)dvy(ω)) = 2c(ω)dω

and

E(dux(ω)dvy(ω)) = 2q(ω)dω

E(duy(ω)dvx(ω)) = −2q(ω)dω

Thus (twice) the co-spectral density gives the covariance between the compo-
nents that are ‘in phase’, while (twice) the quadrature spectral density gives the
covariance between the components that are ‘in quadrature’ (i.e., π/2 out of
phase). If q(ω) = 0 ( �= 0) the components of the two processes at frequency ω

are exactly in (out of) phase with each other, while if c(ω) = 0 ( �= 0) the two
processes at frequency ω are uncorrelated (correlated).

Coherence, phase and gain

13.13 To measure the correlation between the frequency components of the
two processes, the coherence at ω is used:

0 ≤ C(ω) = c2(ω) + q2(ω)
fx(ω)fy(ω)

≤ 1

C(ω) is analogous to the square of the correlation coefficient between two sam-
ples and may be interpreted in a similar way: the larger is C(ω), the more closely
related are the two components at frequency ω. The gain is then defined as
(cf. equation (13.4))

G2(ω) = C(ω)
fx(ω)
fy(ω)
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A plot of C(ω) against ω over 0 ≤ ω ≤ π is called the coherence diagram.
If the two series are given by Yt = at cos(ωt + θ) and Xt = at cos(ωt + ϕ), with

θ > ϕ, ψ = θ − ϕ is termed the phase-difference (or phase-lag) at frequency ω. In
general, a measure of the phase difference between two frequency components
is given by

ψ(ω) = tan−1
(

q(ω)
c(ω)

)

and the plot of ψ(ω) against ω is called the phase diagram, with ψ(ω)/ω measuring
the extent of the time lag. In general, two series that differ only in phase will
have a coherency of unity.

Estimating the cross-spectrum

13.14 Estimates of the cross-spectrum can be obtained by analogy to and
extension of the smoothed periodogram (13.3). Thus, from (13.5) and (13.6),
estimates of the co-spectrum and the quadrature spectrum at frequency ωj,
j = 0, 1, . . . , m, are given by

ĉ(ωj) = 1
π

(
cxy,0 +

m−1∑

k=1

λk(cxy,k + cyx,k)cos ωjk

)

q̂(ωj) = 1
π

m−1∑

k=1

λk(cxy,k − cyx,k)cos ωjk ωj = πj
m

cxy,k(cyx,k) being the sample covariance between Xt and Yt−k (Yt and Xt−k). The
sample coherence is then given by

Ĉ(ωj) = ĉ2(ωj) + q̂2(ωj)

f̂x(ωj)f̂y(ωj)

where f̂x(ωj) and f̂y(ωj) are the sample spectra of X and Y at frequency ωj (cf.
equation (13.3)). Granger and Hatanaka (1964, chapter 5.2) gave the distribution

of u =
√

Ĉ(ω) under the null C(ω) = 0:

F(u) = 1 − (1 − u2)T/m−1

and provided critical values. They also provided confidence intervals for the
estimated phase angle φ̂(ω) = tan−1 (q̂(ω)/ĉ(ω)).

13.15 Granger and Hatanaka (1964) provided the first applications of cross-
spectral analysis and the underlying theoretical framework was further advanced
in the treatment by Jenkins and Watts (1968, chapters 8–11).
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The partial cross-spectrum

13.16 Paralleling the use of partial correlation coefficients, partial cross-spectra
may be defined to help in assessing the spectral relationships between sets of
time series. Granger and Hatanaka (1964, chapter 5.8) thus considered the set of
M stationary series (X1i, X2t , . . . , XMt ), each series having its own (auto) spectra,
fii(ω), as well as there being a set of cross-spectra, fij(ω), i, j = 1, . . . , M , noting
that these will typically be complex quantities. The matrix of these spectra,
�(ω), was regarded by Granger and Hatanaka (ibid., page 91: italics in original)
as ‘estimating the covariance matrix of the time series around frequency ω, the term
“around” being deliberately chosen as a reminder that spectral estimates are
estimates of an average over a frequency band’.

Concentrating on the partial cross-spectrum between X1(ω) and X2(ω), these
being the components of X1t and X2t around frequency ω, consider the following
partition of the cross-spectral matrix

�(ω) =

⎡

⎢⎢⎢⎢⎢⎢⎣

f11(ω) f12(ω) f13(ω) . . . f1M (ω)
f21(ω) f22(ω) f23(ω) . . . f2M (ω)
f31(ω) f32(ω) f33(ω) . . . f3M (ω)
...

...
...

...

fM1(ω) fM2(ω) fM3(ω) . . . fMM (ω)

⎤

⎥⎥⎥⎥⎥⎥⎦
=

[
�11 �12

�21 �22

]

and define the matrix

�12·k(ω) = �11 − �12�
−1
22 �21 =

[
f11·k(ω) f12·k(ω)
f21·k(ω) f22·k(ω)

]

where k denotes the set 3,4, . . . , M . This is the partial cross-spectral matrix for
X1t and X2t and from it the definitions of the partial coherence and partial phase
angle follow naturally:

C12·k(ω) =
∣∣f12·k(ω)

∣∣2

f11·k(ω)f22·k(ω)
ψ12·k(ω) = Imaginary part of f12·k(ω)

Real part of f12·k(ω)

These concepts have the following interpretation. Suppose that an optimum
linear combination of the series X3t , X4t , . . . , XMt has been subtracted from X1t

and X2t to form X̂1t and X̂2t (how this optimum combination might be arrived
at is discussed in §13.18). f11·k(ω) will thus be the spectrum of X̂1t , and C12·k(ω)
and ψ12·k(ω) will be the coherence and phase angle, respectively, between X̂1t

and X̂2t .

As a simple example, consider a three variable set of series X1t , X2t and X3t .
If X1t and X3t are related for all frequencies and X2t and X3t are also related,
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there is no reason why X1t and X2t should be. If, for example, X1t were sale
of ice cream, X2t sale of air conditioners, and X3t was a temperature series,
then the coherence between X1t and X3t and between X2t and X3t would
probably be large for many frequencies. The coherence between X1t and X2t

might also be large but this would be a spurious relationship, as X1t , X2t are
connected only via X3t . In such a case the partial coherence between X1t , X2t

ought to be zero (in theory) or small (in practice) for all frequencies. (Granger
and Hatanaka, 1964, pages 92–3)

Cross-spectral analysis, feedback and causality

13.17 The concepts introduced in §§13.14–13.16 were utilized by Granger and
Hatanaka (1964, chapter 7) and Granger (1963, 1969) to develop one of the most
enduring concepts in time series analysis. Through the phase-lag and coher-
ence, cross-spectral methods provide a useful way of describing the relationship
between two (or more) variables when one is leading in time, so ‘causing’ (in a
very precise way to be defined below) the other(s). Suppose Xt and Yt have the
Cramér representations

Xt =
∫ π

−π

eitωdz(ω) =
∫ π

0
cos tω dux(ω) +

∫ π

0
sin tω dvx(ω)

and

Yt =
∫ π

−π

eitωa(ω)e−i�ωdz(ω) = a(ω)
∫ π

0
cos tω�(ω)dux(ω)

+ a(ω)
∫ π

0
sin tω �(ω)dvx(ω)

where �(ω) = φ(ω), ω > 0 and �(0) = 0. The spectrum of Yt is then given by
fy(ω) = a2(ω)fx(ω) and the relationship between the two series can be expressed as

Yt = Xt (a(ω), φ(ω)) + Ut (13.8)

where Ut is some stationary series such that Cxu = 0, so that

0 < Cyx = a2fx(ω)
fy(ω)

< 1

If, as well as (13.8),

Xt = Yt (b(ω), θ(ω)) + Vt (13.9)
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where Vt has similar properties to Ut , then there is said to be feedback between
Xt and Yt . In the presence of feedback the phase diagram is unlikely to provide
much useful information as no one process continually lags the other.

13.18 To provide a formal definition of feedback from which tests may be
developed, Granger (1969) set up the following framework. Suppose, in general,
that At is a stationary stochastic process and that A(k) = {At−k, At−k−1, . . .}. Then

A = A(1) and A = A(0) represent the sets of past and past and present values of At .
The optimum, unbiased, least squares predictor of At using the set of values B is
denoted Pt (A|B), so that Pt (X|X) is the optimum predictor of Xt using only past
values of Xt . The predictive error series is then denoted εt (A|B) = At − Pt (A|B),
with variance σ2(A|B). Let It be all the information in the universe accumulated
since time t − 1 and let It − Yt denote all this information apart from the specified
series Yt . Granger then introduced the following definitions.

Causality

If σ2(X|I) < σ2(X|I − Y) then Y is said to cause X, denoted Y ⇒ X: Xt is better
able to be predicted using all available past information than if the information
apart from past Y had been used.

Feedback

If σ2(X|I) < σ2(X|I − Y) and σ2(Y |I) < σ2(Y |I − X) then feedback is said to occur,
denoted Y ⇔ X: feedback thus occurs when Y causes X and, at the same time,
X causes Y .

Instantaneous causality

If σ2(X|I , Y) < σ2(X|I) instantaneous causality is occurring, denoted Yt ⇒ Xt : Xt

is better predicted if the current value of Y is included in the prediction than if
it is not.

Causality lag

If Y ⇒ X, the causality lag m is defined to be the least value of k such that
σ2(X|I − Y(k)) < σ2(X|I − Y(k + 1)): knowing the values Yt , Yt−1, . . . , Yt−m+1 is of
no help in improving the prediction of Xt .

The assumption that only stationary series are involved ensures that predic-
tion variances remain constant. If nonstationarity is allowed such variances
would depend upon time, implying that the existence of causality could alter
over time.

Granger argued that the unrealistic use of the universal information set I could
easily be modified so that it was defined to contain only those series that are
relevant. For example, if it is restricted to just the two series Xt and Yt then
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Y ⇒ X if σ2(X|X) > σ2(X|X, Y). Use of restricted data sets opens up the possibil-
ity of spurious causality in a way analogous to that of spurious correlation: if a
third series, Zt , is actually causing both Xt and Yt , but is omitted from the anal-
ysis, spurious causality patterns may result. Spurious instantaneous causality is
another possibility when the sampling interval is greater than the causality lag.

13.19 In practice linear predictors will tend to replace optimum predictors in
these definitions and it might be argued that the prediction error variance is
not always the appropriate criterion to employ, although it is natural to use it
in connection with linear predictors. Granger suggested that ‘causality in mean’
might be a more accurate term in these circumstances.

13.20 These definitions of feedback and causality have implications for the
cross-spectrum between Xt and Yt and the related measures of coherence and
phase. Using the notation of Chapter 12, suppose these series are generated by
the bivariate process

Xt =
p∑

j=1

ajXt−j +
p∑

j=1

bjYt−j + εt = a(B)Xt + b(B)Yt + εt

(13.10)

Yt =
p∑

j=1

cjXt−j +
p∑

j=1

djYt−j + ηt = c(B)Xt + d(B)Yt + ηt

where εt and ηt are two uncorrelated white noises with variances σ2
ε and σ2

η

respectively. From the definitions above, Y ⇒ X if some bj is not zero, while
X ⇒ Y if some cj is not zero. Using Cramér representations, the lag polynomial
a(B)Xt in (13.10), for example, can be written as

a(B)Xt =
∫ π

−π

eitωa(e−iω) dzx(ω)

so that (13.10) can be written
∫ π

−π

eitω((1 − a(e−iω))dzx(ω) − b(e−iω)dzy(ω) − dzε(ω)) = 0

∫ π

−π

eitω(−c(e−iω)dzx(ω) + (1 − d(e−iω))dzy(ω) − dzη(ω)) = 0

From this representation, Granger (1969) showed that the spectra of Xt and Yt

are given by

fx(ω) = 1
2π�

(|1 − d|2σ2
ε + |b|2σ2

η )

fy(ω) = 1
2π�

(|c|2σ2
ε + |1 − a|2σ2

η )
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in which a is written for a(e−iω), etc., and where � = |(1 − a)(1 − d) − bc|2. The
cross-spectrum takes the form

C(ω) = 1
2π�

((1 − d)cσ2
ε + (1 − a)bσ2

η ) = C1(ω) + C2(ω)

where

C1(ω) = σ2
ε

2π�
(1 − d)c C2(ω) = σ2

η

2π�
(1 − a)b

Thus, if Yt is not causing Xt then b = 0 and C2(ω) vanishes and, similarly, if Xt

is not causing Yt then c = 0 and C1(ω) vanishes. Hence the cross-spectrum may
be decomposed into the sum of two components: C1(ω), depending upon the
causality of Y by X, and C2(ω), depending on the causality of X by Y . In general,
these may be treated separately and coherences can be defined for X ⇒ Y and
Y ⇒ X: for example, the causality coherence,

C→
xy

(ω) = |C1(ω)|2
fx(ω)fy(ω)

= σ4
ε |(1 − d)c|2

(σ2
ε |1 − d|2 + σ2

η |b|2)(σ2
ε |c|2 + σ2

η |1 − a|2)

may be considered to be the strength of the causality X ⇒ Y at frequency ω.
Similarly,

φ→
xy

(ω) = tan−1 imaginary part of C1(ω)
real part of C1(ω)

will measure the phase lag at frequency ω of X ⇒ Y . Similar functions can be
defined for Y ⇒ X using C2(ω).

Instantaneous causality may be allowed for by including the terms b0Yt

and c0Xt in the respective equations in the representation (13.10). The cross-
spectrum is then given by

C(ω) = 1
2π�′ ((1 − d)(c + c0)σ2

ε + (1 − a)(b + b0)σ2
η ) = C′

1(ω) + C′
2(ω) + C′

3(ω)

where �′ = |(1 − a)(1 − d) − (b + b0)(c + c0)|2, C′
1(ω) and C′

2(ω) are defined as C1(ω)
and C2(ω) but using �′ rather than �, and

C3(ω) = 1
2π�′ (c0(1 − d)σ2

ε + b0(1 − a)σ2
η )

The presence of instantaneous causality clearly means that the measures of
causal strength and phase lag lose their distinct interpretations.

Granger (1969) provided an illustrative example to show the potential use-
fulness of these definitions and also considered extensions to more than two
variables. However, an estimation and testing methodology for causal cross
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spectra was not presented and the importance of what was later to be termed
‘Granger causality’ had to wait until a time domain approach to estimation and
testing was developed, as is discussed in §16.17.

W(h)ither spectral analysis?

13.21 By the end of the 1960s major developments had thus been made in both
the theoretical foundations and the computational aspects of spectral analysis.
Yet, as Jenkins (1965, page 2) was able to remark, ‘(i)n no sense … can it be
said that spectral analysis is widely used or understood by statisticians’. Most of
the applications of spectral analysis had been made by physicists and engineers,
possibly because of the ‘genuine difficulties which statisticians (as opposed to
physicists and engineers) face in thinking in terms of frequency concepts’ (but
see the discussion of seasonal adjustment procedures in Chapter 14). Jenkins
argued that the advantages of spectral analysis were: (i) that it was able to convey
a great deal of visual information about the underlying process generating the
data and hence could suggest potentially useful models; and (ii) that the basic
gain relationship (13.4), which shows that the output of a linear system has
a spectrum which is the spectrum of the input multiplied by a factor that is
proportional to the squared gain of the system, may be used as an aid in system
and experimental design.

The major disadvantages of spectral analysis were its non-parametric nature,
which necessitated fitting either a whole function or a very large set of parame-
ters, with a corresponding loss of efficiency, and its reliance on the assumption
of stationarity. By the end of the 1960s it was far from clear whether spec-
tral techniques would find a place in the mainstream of time series analysis or
whether they would remain in a backwater helping engineers and physicists to
design physical systems by experimentation.
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14
Tackling Seasonal Patterns in
Time Series

Early interest in seasonal fluctuations

14.1 Seasonal patterns in economic and meteorological time series were first
investigated in the middle of the nineteenth century, with Gilbart (1854),
Babbage (1856) and Jevons (1866) all uncovering seasonal fluctuations in cur-
rency data, but an, albeit informal, definition of seasonality had to wait a further
half-century until Persons (1919, page 18): ‘(b)y seasonal movement is meant
a consistent variation from one month to the next. Are the items for certain
months of the year systematically or regularly different from the items for other
months? If so, there is a seasonal variation.’

Persons’ main intention as editor of the newly published Review of Economic
Statistics, from which the above quote is taken, was to construct indices of
business conditions. Clearly, many of the extant business statistics contained
marked seasonal patterns, so that these indices needed to take such patterns
into account:

(t)he object of the present study of seasonal fluctuations is, first, to determine
the existence of such fluctuations in various series of monthly data; second,
if fluctuations exist, to measure them; and third, to correct the items for
seasonal movement. … That many series of business statistics consisting of
monthly or quarterly items present marked seasonal variations is recognized
both by producers and by consumers of such statistics. That such seasonal
variations must be taken into account if we are to use the data as indices of
business conditions is also recognized. (ibid., pages 18–19)

Indices of seasonal variation

14.2 A prior attempt at constructing a business conditions index had actu-
ally been made by Copeland, who dealt with seasonal fluctuations by ‘dividing
the actual figure for the month by the average for that month during the

375
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ten preceding years’, since ‘by using the ten-year monthly averages, seasonal
fluctuations are automatically allowed for’ (Copeland, 1915, pages 554, 556).
Even earlier, Kemmerer (1910) had constructed indices by using both simple
monthly averages and monthly means of what were, effectively, annual ranks.

Persons was not impressed by any of these approaches, preferring to use what
he termed the link-relative method, which he described in detail in Persons
(1923). Given a monthly time series Yt , the link relative is simply the ratio
of each observation to the previous observation, Yt/Yt−1. The medians of the
monthly link relatives are then denoted r1, r2, . . . , r12, where r1 is the median
January link relative, etc. Next, the initial chain relatives are obtained as the
sequence c2 = 100r2, c3 = c2r3, . . . , c12 = c11r12. By circularity, the January chain
relative will then be c1 = c12r1, but this will not, in general, be equal to 100,
as is implied by the sequence above. This ‘discrepancy’ is assumed to be dis-
tributed across the chain relatives using the factor 1 + d, obtained by solving
100(1 + d)12 = c12r1, thus leading to the adjusted chain relatives

c12r1

(1 + d)12
= 100,

c2

1 + d
,

c3

(1 + d)2
, . . . ,

c12

(1 + d)11

These relatives are then taken as the index of seasonal variation (after any rescal-
ing to ensure that the factors average to 100), which is constant across years
and, if denoted St , has the property that St = St−12. ‘Seasonal adjustment’ can
then be carried out: ‘(i)f it be desired to correct the original items for seasonal
variation …, the form Yt/St may be used, the result being expressed in terms of
the units of the original series’ (Persons, 1923, page 722).

14.3 Contemporaneously with Persons, statisticians at the Federal Reserve
Board and the National Bureau of Economic Research (NBER), led by Freder-
ick Macaulay, were developing an extension of the Copeland approach. Rather
than dividing Yt by what is, in effect,

∑10
j=1 Yt−12j/10, they preferred to use the

divisor
∑5

j=−6 Yt−j/12, i.e., a 12-month moving average ‘centred’ on the seventh
month. For each month a ‘central value’ of this ratio was then computed, the
exact manner of doing this depending on the length of the series, often being a
trimmed mean using the four middle values when ranked by size. These twelve
‘average ratios’ were then adjusted to total 1,200 by ‘prorating the difference
between their sum and 1,200 in proportion to the size of the ratio’ ( Joy and
Thomas, 1928, page 245). According to Joy and Thomas, the resulting ‘relatives’
were then treated as preliminary seasonal factors which ‘were then inspected
to determine whether they gave evidence in any way of accidental variations
of a non-seasonal character’ (ibid., page 246). This approach was termed the
ratio-to-moving average index of seasonal variation by Joy and Thomas.

14.4 These two methods of seasonal adjustment are applied to the series
shown in Figure 14.1, which is Series G from Box and Jenkins (1970), originally
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Figure 14.1 Series G from Box and Jenkins (1970): international airline passengers (in
thousands), monthly, 1949–1960

provided by Brown (1963). These are monthly observations from 1949 to 1960
on international airline passengers and have become a stock series for analysing
seasonality, often being referred to as the ‘airline data’. The seasonal factors
obtained from the two methods are as follows:

Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.

Link-relative 91.7 88.0 99.9 96.6 97.5 111.1 123.7 122.5 106.2 92.6 80.4 89.8
Ratio-to-ma 91.7 89.1 101.5 98.4 98.9 112.2 123.6 123.0 106.9 92.9 80.8 90.6

Although there are some minor differences in the factors, overall the seasonal
patterns are very similar, as one might expect for a series with a very pronounced
seasonal fluctuation and little volatility. Note that the amplitude of the seasonal
pattern increases with the trend, so that constructing seasonal factors based on
ratios is more appropriate than constructing them using differences. The two
seasonally adjusted series are shown in Figure 14.2 and, unsurprisingly given
the similarity of the seasonals, they exhibit only minor differences, although
that obtained from the link-relative method has a tendency to be slightly larger
than that obtained from the ratio-to-moving average method.

14.5 The introduction of these two methods provoked a great deal of inter-
est, with numerous refinements, extensions and critiques being proposed, all of
which were surveyed in very systematic fashion by Mendershausen (1937).1
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Figure 14.2 Seasonally adjusted airline passenger miles using the link-relative (—) and
ratio-to-moving average (- - -) methods

For all these efforts, however, these two basic approaches, particularly the
ratio-to-moving average, quickly became the ‘industry standard’ for seasonally
adjusting economic time series: see, for example, Barton (1941) and Burns and
Mitchell (1946, pages 43–55), which was the recognized reference on business
cycles at the time.

Evolving seasonality and causal explanations

14.6 A major aim of many of the extensions surveyed by Mendershausen was
to propose ways of allowing the seasonal factors to evolve over time, rather
than remaining fixed as in the basic methods. Unfortunately, Mendershausen
(1937, pages 252–3) was forced to conclude that ‘the results of these methods
in measuring variable seasonal movements are no more significant than those
obtainable by a much simpler mechanical method; and that the proposed mea-
sures of changes in amplitude or pattern would be useful only after the variable
seasonal had been exactly determined’.

Once evolving seasonality is entertained, causal explanations of seasonal fluc-
tuations become of interest. Mendershausen surveyed the embryonic attempts
to provide such causal explanations, typically by relating seasonal amplitudes
to business cycle conditions and/or weather variables, such as temperature, con-
cluding that such studies ‘are tending in the right direction, i.e., to measure the
changes of the seasonal movement as determined by changes in their causes.
It would seem that a general method of dealing with this problem must proceed
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along these lines’ (ibid., page 262). Suffice to say that it was many years before
much progress was to be made in this area: see Hylleberg (1992) for several
notable attempts and further references.

Electronic computations and the Census seasonal adjustment
programmes

14.7 The mechanical nature of the calculations involved in the ratio-to-
moving average method had one important advantage: with the advent of
electronic computers in the early 1950s, these calculations could be straight-
forwardly programmed and computed on the new machines. Such programmes
for seasonally adjusting time series were developed by the US Bureau of the
Census, improved and extended by the NBER, and made available to other orga-
nizations. These efforts were described in Eisenpress, McPherson and Shiskin
(1955), Shiskin (1955) and Shiskin and Eisenpress (1957), and led directly to the
Census Methods I and II seasonal adjustment programs.

The basic approach of Method I was to consider a multiplicative decomposition
of the original monthly time series Y , this being Y = TC × S × I , where TC, S
and I are the trend-cycle, seasonal and irregular components, respectively. The
trend-cycle component is first estimated by a 12-month moving average of Y
and this estimate is then divided into Y to obtain an estimate of S × I = Y/TC.
For each month, a moving average is then fitted to the S × I component for that
month in successive years to obtain estimates of the seasonal factor, S, alone.
The 12 seasonal factors for each year are then ‘centred’ so that their sum equals
1,200: note that the method automatically allows for evolving seasonal factors
throughout the series. An iterative procedure is then used for seasonal adjust-
ment. First, the seasonal factors are divided into the original observations to
obtain a preliminary seasonally adjusted series, Ya = TC × I/S. This series is then
smoothed by a five-month moving average to provide a more flexible trend-
cycle estimate and the above procedure repeated to obtain a new set of seasonal
factors and a final seasonally adjusted series.

Method II followed the general procedure of Method I but made further refine-
ments, based on the experiences of using Method I, which could be afforded
by the increasing computational capacity of electronic computers. The main
change was that the five-month moving average used in the iterative stage was
replaced by a Spencer 15-term moving average (see §10.3). Because of the loss of
seven observations at the start and end of the sample period brought about by
using the Spencer moving average, these missing values were estimated using
an average of the first (last) four months of the preliminary seasonally adjusted
series. Further improvements were also made to the methods used to obtain
the seasonal factors and to isolate extreme ratios that might unduly influence
these factors. Method II also contained methods for dealing with trading day
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variations within a month and also provided several tests of the efficacy of the
seasonal adjustments (for a full description of the two methods, see Shiskin and
Eisenpress, 1957).

14.8 Over the next decade several variants of Census Method II were devel-
oped, these being identified with the letter ‘X’ and a sequence number,
beginning with X-3. In October 1965 the X-11 variant became the standard
seasonal adjustment programme. This was described in detail in Shiskin, Young
and Musgrave (1967), where it was summarized thus.

(X-11) includes several improvements over earlier versions. Several of the new
features in X-11 provide additional tools for the time series analyst. While
the computations in the standard program are sufficient for most applica-
tions, the analyst can select optional features peculiar to his own needs. For
example, he may choose between the additive and multiplicative versions
and between the full seasonal-adjustment routine and one limited to the
calculation of summary measures computed from seasonally adjusted data
obtained from other sources; the σ limits for identifying extreme values may
be varied, providing for contingencies such as strikes; and he may specify
the moving averages to be used in estimating the trend-cycle and seasonal
components. … As a result of the availability of these options, X-11 is an
instrument, not only for the massive seasonal adjustment of time series, but
also for seasonally adjusting unusual series, for research into new techniques
of time series analysis, and for studies of the relations among different types
of fluctuations. (ibid., page 1)

A particularly interesting extension was the replacement of the preliminary
12-month moving average for estimating the trend-cycle component with a
(Whittaker–)Henderson 13-term moving average (§10.6) and the replacement of
the Spencer 15-term moving average in the iterative stage with Henderson mov-
ing averages whose orders were based on the ratio of the average absolute month-
to-month change in the irregular to that in the trend-cycle (known as the I/C
ratio). X-11 was subsequently made available to other users and was adopted by
many statistical agencies throughout North America and later across the world.2

14.9 An interesting analysis of X-11 was provided by Young (1968). The mul-
tiplicative decomposition Y = TC × S × I has, of course, an equivalent additive
decomposition in the logarithms of Y and its components, i.e., y = tc + s + i.
Young showed that these log-components could each be represented as a com-
bination of linear and nonlinear operations on y. The linear operations could be
expressed as weighted moving averages, with the weights being obtained from
the various moving averages used in Method II: to be precise, s could be esti-
mated by a 145-term moving average and tc and i by 157-term moving averages.
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Figure 14.3 X-11 seasonal factors for the airline data

The nonlinearities arose chiefly through X-11’s requirement that 12-month
sums of the seasonally adjusted and adjusted data should be equal, rather than
their products being equal, as would seem logical for a multiplicative decompo-
sition. However, for many purposes the effect of these nonlinear operations
on the seasonal factors turned out to be negligible, so that ratio-to-moving
average based methods, such as X-11 and the BLS approach, could be closely
approximated by weighted linear moving averages to yield the estimates of
the underlying components. The weight functions for various choices of the
underlying Henderson moving averages were given in Young (1968).

14.10 The seasonal weights for the airline data are shown in Figure 14.3 and
they evolve gradually over the sample period with increasing amplitude, reflect-
ing the trend movement of the series shown in Figure 14.1. The X-11 seasonally
adjusted series is compared with that obtained by using the classic ratio-to-
moving average method in Figure 14.4. Although both series are almost identical
in the early years of the sample, the divergence between them increases over
time.

Unobserved component and spectral approaches to seasonal
adjustment

14.11 In a sequence of papers in the early 1960s, Hannan (1960, 1963, 1964)
examined seasonality from an unobserved component (UC) perspective. Recall-
ing Muth’s (1960) UC decomposition of §11.19, Hannan formally considered
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Figure 14.4 Seasonally adjusted airline passenger miles using the X-11 (—) and ratio-
to-moving average (- - -) methods

the decomposition used in §14.9:

yt = tct + st + it = st + zt (14.1)

where the component zt = tct + it is the ‘remainder of the series over and above
the seasonal’, i.e., the seasonally adjusted series, tct is a smooth function of time
capturing the low-frequency movements of yt , and it , representing the month-
to-month non-seasonal fluctuations, is assumed to be a zero mean stationary
process.

All pairs of components in (14.1) are assumed to be uncorrelated. Hannan
defined a stable seasonal process to be one for which st = st−12, and this leads to
two equivalent representations of such a process:

st =
{

aj for t = j or t − j divisible by 12
0 otherwise

12∑

j=1

aj = 0 (14.2)

and

st =
6∑

k=1

(αk cos ωkt + βk sin ωkt) ωk = 2πk/12 (14.3)

Note that sin ω6t = sin π = 0, so that the corresponding term in (14.3) has been
included only for notational convenience. A demonstration of this equiva-
lence, in which the αk and βk coefficients in (14.3) uniquely determine, and
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are uniquely determined by, the seasonal shift factors aj in (14.2), was given by
Nerlove (1965, footnote 14).

A changing seasonal component can be introduced by extending (14.3) to

st =
6∑

k=1

(αk,t cos ωkt + βk,t sin ωkt) (14.4)

Hannan (1964) regarded the time-varying αk,t and βk,t as changing due to chance
causes, but thought that these changes should only be gradual, achieving this
by assuming that

E(αk,sαk,s−t ) = E(βk,sβk,s−t ) = σ2
k ρk,t

where ρk,0 ≡ 1 and ρk,t ≈ 1 for small t before gradually dying away to zero. All
means and other cross-moments are assumed to be zero. Hannan then showed
that, when ρk,t = ρt

k, the kth term in (14.4) has spectral density

fk(ω) = σ2
k

2π

(
1 − ρ2

k

1 + ρ2
k − 2ρk cos (ω − ωk)

+ 1 − ρ2
k

1 + ρ2
k − 2ρk cos (ω + ωk)

)

which will be highly concentrated around ω = ωk when ρk is close to unity, a con-
dition which is certainly required for a changing seasonal pattern. As Hannan
pointed out, setting ρk = 0.95, so that 0.9548 = 0.085 and 0.9524 = 0.29, implies
that the seasonal component can change almost completely after four years and
that even after two years it could differ quite radically, so that setting ρk even
closer to unity would often be appropriate.

14.12 Before estimation of st can be attempted, it will usually be necessary to
filter yt to reduce the effects of the very low-frequency components in zt (i.e., tct )
on the estimate. This can be accomplished by subtracting a symmetric two-sided
moving average trend estimate from the data to obtain

y′
t = yt −

q∑

j=−q

δjyt−j, δq = δ−q

Any of the moving averages discussed previously could be used for this purpose
(see the discussion in Hannan, 1963, section 2). On defining

h(ω) =
q∑

j=−q

δj cos jω = δ0 + 2
q∑

j=1

δj cos jω

the spectral density of yt , fy(ω), will then be ‘modified’ to f ′
y (ω) = (1 − h(ω))2fy(ω)

and, using y′
t = s′

t + z′
t , the spectra of st and zt will be modified to

f ′
z (ω) = (1 − h(ω))2fz(ω)
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and
f ′
s (ω) =

∑

k

(1 − h(ω))2fk(ω)

Since fk(ω) is concentrated at ωk, it follows that ω ≈ ωk, 1 − h(ω) ≈ 1 − h(ωk) ≈ 1
and the spectrum of the seasonal will not be altered by too much. Hannan
(1964) utilized this idea to propose a method for computing the seasonal com-
ponent that used signal extraction techniques based on the formulae given by
Whittle (1963). Hannan (1967) later obtained a formula for the frequency
response function of a filter which extracts a signal generated by a nonstation-
ary process buried in noise and applied this to extracting a seasonal component
of the type discussed here.

14.13 Nerlove (1964, 1965) utilized spectral techniques to analyse further
Hannan’s procedure and also to assess the BLS seasonal adjustment method.
Burman (1965) also used the UC framework to extend the methodology under-
lying the Census II and BLS methods. Leser (1963, 1966) extended his trend
removal method, discussed in §10.7, to jointly estimate the trend and seasonal
variation. The use of moving averages for trend elimination and for measuring
seasonal variation was extensively discussed by Durbin (1962, 1963) and Leong
(1962).

Spectral evaluation of seasonal adjustment procedures

14.14 Rosenblatt (1968) listed the following spectral criteria needed for a
satisfactory decomposition of a time series.

1. Spectral criteria for a good seasonal adjustment
1.1 Seasonal peaks in the unadjusted series should be removed and should

not appear in the spectrum of the seasonally adjusted series. The spectral
power at seasonal frequencies should not be reduced to zero but to
a uniform level consistent with the expected power of the irregular
component. The spectrum of a good seasonally adjusted series should
be relatively flat with no dominant peaks or troughs at the seasonal
periods of 12/k months (seasonal frequencies 2πk/12), k = 1, 2, . . . , 6.

1.2 The coherence between the seasonally adjusted and unadjusted series
should be very low at seasonal frequencies but should be high at non-
seasonal frequencies, although the strength of the coherence may be
reduced if significant moving seasonality is present.

1.3 Since the adjustment process should not alter the timing between
the unadjusted and seasonally adjusted series, the phase should be
zero, although large deviations from zero are likely to occur at sea-
sonal frequencies where low coherence is expected, given the sampling
properties of phase estimates.
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1.4 The co-spectrum between the seasonally adjusted series and the sea-
sonal component should be zero at all frequencies.

2. Spectral criteria for the separation of the irregular component from the
seasonally adjusted series
2.1 The spectrum of the irregular component should be relatively flat over

the entire range of frequencies.
2.2 Over the frequency range 2π/12 to π (periods from 12 to 2 months)

the spectrum of the seasonally adjusted and irregular series should be
similar in appearance, in that they should have the same spectral power,
both being relatively flat.

2.3 The coherence between the irregular and seasonally adjusted series for
periods from 12 to 2 months should be very high and the phase should
be zero. For periods greater than 12 months the coherence should be
low and the phase arbitrary.

2.4 The trend-cycle and irregular components should have zero co-
spectrum at all frequencies.

In analysing the X-11 and BLS seasonal adjustment procedures, Rosenblatt
found that all the criteria were reasonably well satisfied except for 1.4: the
co-spectra between the seasonally adjusted series and the estimated seasonal
component were not close to zero and, in fact, were often negative for many
frequency bands.

Grether and Nerlove (1970) devised several methods of seasonal adjustment
based on a MMSE criterion of optimality and showed that these methods, in a
simulation of a simple three component model, produced seasonally adjusted
series bearing the same relationship to the unadjusted series as found with
the BLS and X-11 methods, thus further confirming the usefulness of these
adjustment procedures.

Regression methods of seasonal adjustment

14.15 Seasonal adjustment by regression methods was first proposed by
Mendershausen (1937, 1939), Cowden (1942) and Jones (1943), after which it
was ignored for twenty years as the Census and BLS techniques, based on moving
averages, came to prominence. The regression approach was then given renewed
impetus by the publication of Lovell (1963) and Jorgenson (1964, 1967). The
primary aims of these articles were to propose alternative criteria for optimal sea-
sonal adjustment and to show that seasonal adjustment by regression methods
satisfied these criteria.

Lovell stated that an adjustment procedure should have the properties of
orthogonality, idempotency and symmetry. In brief, orthogonality means that
the seasonal component of a series is uncorrelated with the non-seasonal
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component: if ya
t is the seasonal adjustment of yt , then this implies that∑

(yt − ya
t )ya

t = 0. Idempotency is the property that if an adjusted series is
adjusted again, it remains unchanged, i.e., (ya

t )a = ya
t . Symmetry means that if

a linear model of adjustment is used such that ya = Ay, where y and ya are col-
umn vectors made up of yt and ya

t , then the matrix A is symmetric. Lovell proved
that any sum-preserving procedure, i.e., one for which (xt + yt )a = xa

t + ya
t , that

satisfies two of these properties necessarily satisfies the third. A corollary to this
is that any sum-preserving procedure that is orthogonal and idempotent (and
hence symmetric) can be executed by regressing the unadjusted time series on
an appropriate set of explanatory variables. Lovell also proved an extension of
the Frisch–Waugh theorem (see §12.4): in terms of regression coefficients it is
immaterial whether variables in a regression are deseasonalized by linear regres-
sion prior to the regression or whether unadjusted variables are used with the
variables used for deseasonalization included as additional regressors.

Jorgenson (1964) developed a theory of seasonal adjustment based on the
general linear statistical model:

y = Dδ + Sσ + ε (14.5)

where D is a matrix whose columns represent the non-seasonal, deterministic
(i.e., trend-cycle) variables, S is a matrix whose columns represent the seasonal
deterministic variables, δ and σ are vectors of constant coefficients and ε is
a random component satisfying the assumptions E(ε) = 0 and V(ε) = σ2I. The
matrix D ... S is assumed to be fixed and of full rank.

Within this framework, Jorgenson derived linear estimators of the trend-cycle
and seasonal components that are unique, minimum variance and unbiased.
The seasonally adjusted series is obtained by subtracting the estimated seasonal
component

ya = y − Sσ̂ = Dδ̂ + ε̂ (14.6)

and the adjustment procedure is termed minimum variance, linear, unbiased
seasonal adjustment.

Although the Lovell and Jorgenson procedures both lead to regression meth-
ods of seasonal adjustment, they do not satisfy the same optimality criteria
nor lead to identical adjustment procedures. Lovell (1966) pointed out that the
Jorgenson method, while sum-preserving and idempotent, was not orthogonal
or symmetric, so that it would be expected to yield an adjusted series that was
correlated with the seasonal component.

If it is felt that linearity, unbiasedness and minimum variance are desir-
able criteria, then a definition of seasonal adjustment that would also satisfy
Lovell’s criteria is

ya = y − Sσ̂ − S(S′S)−1S′Dδ̂ (14.7)
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In contrast to (14.6), this seasonal adjustment also eliminates that part of the
trend-cycle component which is correlated with the seasonal component.

14.16 Stephenson and Farr (1972) pointed out that there was no way of
disentangling the trend-cycle component from the changing seasonal (the
trend-related) component in (14.7), which could be a major drawback when
the causes of changing seasonality were of interest. They therefore proposed
employing the seasonal adjustment (14.6) but also specifying explicitly the
changing seasonal variables along with the constant seasonals in the S matrix.
The set-up chosen by Stephenson and Farr was to include powers of time in the
D matrix, although they suggested that a set of low-order grafted (or segmented)
polynomials might be preferable if a high-order polynomial was needed to ade-
quately model the trend-cycle. For the seasonal variables making up S the set-up
of (14.3) was adopted for the deterministic seasonal variables. To model chang-
ing seasonality, interactions of the components of (14.3) and powers of time
could be defined, such as t cos(2πk/12), t2 cos(2πk/12), etc.

14.17 This approach was used to make a seasonal adjustment of the logarithms
of the airline data, as such a transformation was more likely to support an
additive component decomposition, and initial investigation suggested that
a quadratic trend and linear seasonal-trend interactions were all that were
required. The estimated seasonal factors are shown in Figure 14.5 with the X-11
factors obtained from an additive decomposition shown for comparison. The
linear seasonal-trend interactions induce an evolving seasonal pattern, with the
seasonal ‘shape’ being very different at the end of the sample period to what
it was at the beginning, whereas the X-11 factors, although changing slowly,
nevertheless keep much the same shape throughout the sample.

Plots of the two adjusted series are shown, along with the unadjusted log-
arithms, in Figure 14.6. Equation (14.6) is seen to effectively remove the
seasonality in the series with the quadratic trend-cycle having a ‘flattening’
effect on the seasonally adjusted series, although both methods of seasonal
adjustment produce very similar adjusted series.

Seasonal exponential smoothing

14.18 The exponential smoothing techniques introduced in §§11.17–11.21
can straightforwardly be extended to deal with seasonal series. The most general
version, Holt’s two-parameter growth model with additive seasonals, now has
l-step ahead forecasts of the monthly series xt given by

x̂t (l) = mt + lbt + st−12+l

where st is the seasonal component, having the updating equation

st = st−12 + δ(1 − α1)et
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Figure 14.5 Seasonal factors for the logarithms of the airline data from the regression and
X-11 approaches to seasonal adjustment

The corresponding recurrence equation is

st = γ1(xt − mt ) + (1 − γ1)st−12

with that for mt becoming

mt = α1(xt − st−12) + (1 − α1)(mt−1 + bt−1)

and that for bt remaining unchanged. Multiplicative seasonality can be mod-
elled by making various straightforward adjustments (see, for example, exhibit 4
of Gardner, 1985, where this formulation of the additive seasonal model is taken
from).

14.19 Fitting this model to the logarithms of the airline data produced esti-
mates of the smoothing parameters of α̂1 = 0.75 and β̂1 = γ̂1 = 0, so that the
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Figure 14.6 Seasonally adjusted logarithms of the airline data

updating equations are

mt = 0.75(xt − st−12) + 0.25(mt−1 + bt−1)

bt = bt−1 = b

st = st−12

and the l-step ahead forecast is x̂t (l) = mt + lb + st−12+l, i.e., it is a constant slope
forecast from the current seasonally adjusted level, the seasonal factors being
fixed.

The Box–Jenkins approach to modelling seasonality

14.20 The Box–Jenkins approach to modelling time series revolved around the
ARMA process (recall, for example, §10.19)

ϕ(B)xt = θ(B)at

which has an eventual forecast function that is the solution to the difference
equation ϕ(B)x̂t (l) = 0, where B is understood to operate on l (cf. §11.11). Box and
Jenkins (1970, chapter 9) argued that, to be able to represent seasonal behaviour,
the forecast function would need to trace out a periodic pattern. This could be
achieved by allowing the autoregressive operator ϕ(B) to consist of a mixture of
sines and cosines, possibly mixed with polynomial terms to allow for changes
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in the level of xt and changes in the seasonal pattern. For example, a forecast
function containing a sine wave with a 12-month period which is adaptive in
both phase and amplitude will satisfy the difference equation

(1 − √
3B + B2) x̂t (l) = 0

The operator 1 − √
3B + B2 has roots of exp(±i2π/12) on the unit circle and is

thus homogeneously nonstationary. Box and Jenkins pointed out, however,
that periodic behaviour would not necessarily be represented parsimoniously
by mixtures of sines and cosines. Taking their cue from their earlier use of the
differencing operator �d = (1 − B)d to effectively model homogenously nonsta-
tionary series, so that setting ϕ(B) = �dφ(B) allowed for d roots of the equation
ϕ(B) = 0 to be equal to unity, Box and Jenkins considered the seasonal dif-
ference operator �s = 1 − Bs, where s is the period of seasonality (e.g., s = 12
for monthly data). �s is a stable nonstationary operator having s roots of
exp(i2πk/s), k = 0, 1, . . . , s − 1, evenly spaced on the unit circle. The eventual
forecast function will then satisfy (1 − Bs)x̂t (l) = 0 and so may (but need not) be
represented by a full complement of sines and cosines:

x̂t (l) = b(t)
0 +

[s/2]∑

j=1

{
b(t)

1j cos
2πjl

s
+ b(t)

2j sin
2πjl

s

}

The b’s are adaptive coefficients and [s/2] = s/2 if s is even and [s/2] = (s − 1)/2
if s is odd.

14.21 When analysing seasonal data, say monthly, Box and Jenkins pointed
out that relationships would be expected to occur (a) between observations for
successive months in a particular year, and (b) between observations for the
same month in successive years. They suggested that observations one year apart
might be linked by a model of the form

�(Bs)�D
s xt = �(Bs)αt (14.8)

Here �(Bs) and �(Bs) are polynomials in Bs of degrees P and Q, respectively,
which satisfy the appropriate stationarity and invertibility conditions.

In general, the error component αt would be expected to be correlated and,
to take care of such relationships, a second model was introduced, this being an
ARIMA (p, d, q) process for αt

φ(B)�dαt = θ(B)at (14.9)

Substituting (14.9) into (14.8) obtains the general multiplicative model

φ(B)�(Bs)�d�D
s xt = θ(B)�(Bs) at (14.10)
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This process is said to be of order (p, d, q) × (P, D, Q)s. A similar argument can be
used to obtain models with more periodic components to take care of multiple
seasonalities.

The ‘airline model’

14.22 The model (14.10) contains a high level of generality and, in accor-
dance with their principle of parsimony, Box and Jenkins focused attention
on generalizing a simple and widely applicable stochastic process for modeling
nonstationary time series, the ARIMA(0, 1, 1) process, to the seasonal case. This
leads to the component models (setting s = 12 for convenience)

�12xt = (1 − �B12)αt

�αt = (1 − θB)at

and the multiplicative (0,1,1) × (0,1,1)12 model

��12xt = (1 − θB)(1 − �B12)at (14.11)

which can be written explicitly as

xt − xt−1 − xt−12 + xt−13 = at − θat−1 − �at−12 − θ�at−13

Since the roots of (1 − θB)(1 − �B12) = 0 must lie outside the unit circle for invert-
ibility, this imposes the conditions |θ| < 1, |�| < 1 on the parameters of the
model.

Box and Jenkins found that (14.11) provided an adequate fit to the loga-
rithms of the airline data with θ̂ = 0.4, �̂ = 0.6 and σ̂2

a = 1.34 × 10−3 and hence
the (0, 1, 1) × (0, 1, 1)12 model often became referred to as the ‘airline model’.3

14.23 Forecasts from (14.11) can be made directly by using the difference
equation approach of §11.7. Thus, using the airline parameter estimates, the
first three months ahead forecasts are given by

x̂t (1) = xt + xt−11 − xt−12 − 0.4ât − 0.6ât−11 + 0.24ât−12

x̂t (2) = x̂t (1) + xt−10 − xt−11 − 0.6ât−10 + 0.24ât−11

x̂t (3) = x̂t (2) + xt−9 − xt−10 − 0.6ât−9 + 0.24ât−10

Figure 14.7 shows the forecasts of the logarithms of the airline data made at July
1957 for lead times up to 36 months: ‘we see that the simple model, containing
only two parameters, faithfully reproduces the seasonal pattern and supplies
excellent forecasts’ (Box and Jenkins, 1970, page 307).
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Figure 14.7 Logarithms of the airline data with forecasts for 1,2,3,…,36 months ahead
made from the origin July 1957

On defining λ = 1 − θ and � = 1 − �, the ψ-weights of (14.11) (cf. §11.3) are
given by

ψ12r+m = λ(1 + r�) + δ� r = 0, 1, 2, . . . m = 1, 2, 3, . . . , 12

where

δ =
{

1 when m = 12
0 when m �= 12

Given these ψ-weights, the forecast error variance at lead l is then given by (11.8)
and, for the airline data and parameter estimates, the forecast error standard
deviations increase from 3.7 × 10−2 at lead l = 1 to 19.6 × 10−2 at lead l = 36.

14.24 The π-weights of the airline model are obtained by equating
coefficients in

(1 − B)(1 − B12) = (1 − θB)(1 − �B12)(1 − π1B − π2B3 − · · · )

to give

πj = θ j−1(1 − θ) j = 1, 2, . . . , 11

π12 = θ11(1 − θ) + (1 − �)

π13 = θ12(1 − θ) − (1 − θ)(1 − �)

(1 − θB − �B12 + θ�B13)πj = 0 j > 14
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Figure 14.8 π-weights of the airline model for θ = 0.4 and � = 0.6

These are plotted in Figure 14.8 for the parameter values θ = 0.4 and � = 0.6.
The reason why the weight function takes this particular form stems from the
fact that (14.11) can be written as

at+1 =
{

1 − λB
1 − θB

}{
1 − �B12

1 − �B12

}
xt+1 (14.12)

From the definition of a EWMA in §11.12, (14.12) can be written as

at+1 = (1 − EWMAλ(xt ))(1 − EWMA�(xt )B12)xt+1

where

EWMAλ(xt ) = λ

1 − θB
xt

EWMA�(xt ) = �

1 − �B12
xt

On substituting x̂t (1) = xt+1 − at+1, (14.12) then becomes

x̂t (1) = EWMAλ(xt ) + EWMA�(xt−11 − EWMAλ(xt−12)) (14.13)

The one-step ahead forecast is thus a EWMA taken over previous months, modi-
fied by a second EWMA of discrepancies found between similar monthly EWMAs
and actual observations in previous years. As Box and Jenkins (1970, page 313)
put it

For example, suppose we are attempting to predict December sales for a
department store. These sales would include a heavy component from Christ-
mas buying. The first term on the right of [14.13] would be an EWMA taken
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Figure 14.9 Sample autocorrelations of ��12xt for the airline data with ±2 standard error
bounds

over previous months up to November. However, we know this will be an
underestimate, so we correct it by taking a second EWMA over previous years
of the discrepancies between actual December sales and the corresponding
monthly EWMA’s taken over previous months in those years.

14.25 Recall from Table 9.7 that, for a nonseasonal IMA(0,1,1) process, the
autocorrelations of the first differences beyond the first lag are all zero. For
the multiplicative (0,1,1) × (0,1,1)12 process (14.11) the only non-zero auto-
correlations of ��12xt are those at lags 1, 11, 12 and 13, which take the
values

ρ1 = − θ

1 + θ2
ρ11 = θ �

(1 + θ2)(1 + �2)
= ρ13

ρ12 = − �

1 + �2

The sample autocorrelations of ��12xt for the airline data are shown in
Figure 14.9. On the assumption that the model is of the form (14.11), the
variances for the higher-order sample autocorrelations are given by

V(rj) ≈ (T − 13)−1(1 + 2(ρ2
1 + ρ2

11 + ρ2
12 + ρ2

13)) j > 13

The standard errors to be attached to the higher-order sample autocorrelations
for the airline data are approximately 0.11 and two standard error bounds are
also shown in Figure 14.9. The sample autocorrelations at lags 1 and 12 are
clearly significant and of the correct sign, those at 11 and 13 are correctly signed
and approximately equal, and no others are significant, thus suggesting that the
(0,1,1) × (0,1,1)12 process might provide an adequate fit to the airline data.
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Seasonal ARMA models

14.26 More general seasonal ARMA models of the form (14.10) were discussed
in Box and Jenkins (1970, chapter 9.3 and Appendix A9.1), where the autoco-
variance structures of numerous seasonal models are provided, including models
for which a non-multiplicative seasonal structure is allowed for. The identifica-
tion, estimation and diagnostic checking of seasonal ARMA models essentially
follow obvious generalizations of the principles outlined in Chapter 9 (Box and
Jenkins find no major inadequacies in the model fitted to the airline data).

Implications of seasonal adjustment on regression models

14.27 Thus, by the beginning of the 1970s there was a well-used and widely
available general method of seasonal adjustment, X-11, well-established sea-
sonal exponential smoothing models for short-term forecasting, and an explicit
extension of the ARIMA class of models for modelling and predicting seasonal
time series. What was lacking was a framework for assessing the implications
of seasonal adjustment for regressions containing time series. A succession of
papers in the early 1970s, particularly those by Thomas and Wallis (1971),
Sims (1974) and Wallis (1974), quickly produced such an assessment, although
discussion of this lies outside our remit here.
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15
Emerging Themes

The swinging sixties

15.1 This chapter discusses four research themes that began to emerge during
the late 1950s and 1960s but whose real importance, like many aspects of this
latter decade, only became apparent from the late 1970s onwards. These themes
are: (i) inference in nonstationary autoregressive models; (ii) the use of model
selection criteria; (iii) the Kalman filter, state space formulations and recursive
estimation of time series models; and (iv) the specification and modelling of
nonlinear time series processes.

Statistical inference in nonstationary autoregressions

15.2 The theory of statistical inference and estimation for stationary time
series, which was discussed extensively in Chapter 9, began to be extended
to nonstationary situations during the 1950s. Rubin (1950) had considered the
first-order autoregressive model of §9.22, showing that the least squares esti-
mator of the autoregressive parameter α was consistent (i.e., p lim α̂ = α) for
all values of α, including the explosive case α > 1, and not just for |α| < 1, as
was implied by the results of Mann and Wald (1943) (see §9.21). White (1958)
later demonstrated that, for α > 1, a suitably standardized function of α̂ had
a well-defined limiting distribution. To be precise, under the assumption that
x0 = 0, |α|T (α2 − 1)−1(α̂ − α) has a limiting Cauchy distribution.1 White (1959)
then showed that, if the innovations could be assumed to be normal and
independent,

(∑
x2

t−1

)1/2 (α̂ − α) has a limiting normal distribution if |α| �= 1,
so that, for example, a symmetric 95% confidence interval for α would be
given by

α = α̂ ± 1.96
σ̂

(∑
x2

t−1

)1/2 σ̂2 = T−1
∑

(xt − α̂xt−1)2

396
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and a large sample test of the hypothesis α = α0 would be given by the likelihood
ratio statistic −2 log λ, where

λ =
(

1 − (α̂ − α0)2 ∑
x2

t−1∑
(xt − α0xt−1)2

)T/2

which is asymptotically distributed as χ2(1).
Rao (1961) extended White’s results to higher-order autoregressive models of

the type (9.14) whose characteristic equations have a single root exceeding unity
with all remaining roots being less than one in absolute value. Anderson (1959)
obtained the limiting distribution of estimators for higher-order models when
more than one of the roots exceed unity in absolute value.

15.3 None of the above results relate to the borderline but extremely important
case of α = 1, when the series follows a random walk. For this case, White (1958)
and Anderson (1959) showed that the limiting distribution of T(α̂ − 1) is the
‘functional’

1
2

x2(1) − 1
∫ 1

0 x2(t)dt

where x(t) is a ‘Weiner process’ with Ex(t) = 0 and Ex2(t) = t, and White (1959)
conjectured that the inferential results of the previous section would not hold.

Because the random walk is such an important model in time series analysis,
the absence of any standard result for the α = 1 case was a serious lacuna in the
theory of statistical inference for autoregressive models. As is discussed in §16.2,
when breakthroughs in this area eventually came in the 1970s and 1980s, these
led to major research developments in the theory of nonstationary time series.

Determining the order of an autoregression by selection criteria

15.4 Akaike (1969) considered the problem of determining the order p of
the autoregression (9.14). Denoting estimates of the innovation variance
σ2 obtained by successively fitting the autoregression by least squares for
p = 0,1,2, . . . , P as σ̂2(p), Akaike defined the final prediction error (FPE) to be

FPE(p) =
(

1 + p + 1
T

)
σ̂2(p) (15.1)

The model with the minimum FPE is then selected as the most appropriate. The
idea here is that σ̂2(p) will be equal to the innovation variance when the correct
autoregression is of order equal to or less than p, in which case FPE gives the
asymptotic mean square prediction error. FPE will tend to be large when an
unnecessarily large value of p is adopted and when p is less than the true order,
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FPE will also be large because σ̂2(p) will contain model bias from the too small a
value being used. Minimizing the FPE thus adopts a compromise between bias
and too large a mean square prediction error.

Akaike (1971) generalized the definition (15.1) to the multivariate case (cf.
§12.33) of an n-dimensional time series xt :

xt =
p∑

i=1

Aixt−i + εt E(εt+sε
′
t ) =

{
0 s �= 0
� s = 0

The multiple FPE (MFPE) is then defined as

MFPE(p) =
(

1 + pn
T

)n (
1 − pn

T

)−n

|�̂(p)|

The FPE was the first information criterion to be proposed and quickly became a
popular method of choosing the order of an autoregressive model. Variations
and extensions to other types of model were soon to follow (see §16.12).

Recursive estimation, state space models and the Kalman filter

15.5 The idea of sequentially updating or recursively estimating the parameters
of a model has a history stretching back to Gauss in the 1820s, but was only
rediscovered by Plackett (1950).2 A decade later, Rudolf Kalman published a
recursive state estimation algorithm for stochastic dynamic systems described
by discrete-time state space equations (Kalman, 1960), at the core of which was
a modified Gauss–Plackett RLS algorithm (although it was unlikely that Kalman
was aware of this at the time). After something of a delay, Kalman’s idea led
to a huge body of research on recursive estimation across a range of different
disciplines, with the algorithm being referred to universally as the Kalman filter.3

It is generally accepted that the reasons for this delay in the take-up of
Kalman’s procedure in the time series community were twofold. First, the orig-
inal paper and its continuous time counterpart (Kalman and Bucy, 1961) were
written for an engineering audience and so used a language, notation and style
that was alien to statisticians. Second, the original set-up of the model assumed
that the parameters of the underlying state space model were known exactly, so
that it could only provide estimates and forecasts of the state variables of the
system. This latter restriction was lifted with the development of methods for
computing the likelihood function for state space models (see Schweppe, 1965),
while several papers in the early 1970s introduced the Kalman filter to a wider
audience by casting it in more familiar terminology (see, especially, Harrison
and Stevens, 1971, and Duncan and Horn, 1972).

15.6 The Kalman filter has been expressed in several ways but essentially con-
tains two recursive equations. Defining yt to be an n-dimensional time series,
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and following, with some modifications, Duncan and Horn (1972), these two
equations are an observation equation

yt = Xtβt + εt t = 1, 2, . . . , T (15.2)

and a dynamic regression coefficients transition equation,

βt = Ttβt−1 + Wtut t = 2, . . . , T (15.3)

with initial value β1 = y1 + u1, where y1 is a known prior mean for β1. Each of
the observation equations is of the familiar regression form in which the r × 1
regression coefficient vector βt is called the state at time t, Xt is a known n × r
matrix of regressors and εt is an r × 1 vector of errors. The dynamic state tran-
sition equation (15.3) expresses the state βt as a known linear transformation,
given by the r × r matrix Tt , of the previous state βt−1 plus a linear combination,
given by the r × g matrix Wt , of the g × 1 vector of errors, ut .

The dynamic state transition equations, the starting equation β1 = y1 + u1, and
assumptions about the error vectors ut , t = 1, 2, . . . , T , provide a model for the
complete vector β = (β1, β2, . . . , βT ) of state elements (regression coefficients).
The stronger set of assumptions concerning the error terms are ut ∼ N(0, Q t ) and
εt ∼ N(0, Rt ) with ut and εt being independent of each other, i.e., that the errors
follow independent multivariate normal distributions with known covariance
matrices. These are known as the Gaussian assumptions, while the weaker set,
the wide sense (WS) assumptions, make no distributional assumptions, so that

[
ut

εt

]
∼ WS

[
Q t 0
0 Rt

]

Kalman (1960) showed that the minimum mean square linear estimator
(MMSLE) bt of the state βt , based on all the data y1, y1, y2, . . . , yt through
to time t, was given by the recursive updating equations:

bt = bt |t−1 + St |t−1X′
tD

−1
t (yt − Xtbt |t−1) (15.4)

and

St = St |t−1 − St |t−1X′
t−1D−1

t XtSt |t−1

where

b1|0 = y1 S1|0 = Q1

bt |t−1 = Ttbt−1 St |t−1 = TtSt−1T′
t + WtQ tW

′
t t = 2, . . . , T

Dt = Rt + XtSt |t−1X′
t t = 1, 2, . . . , T
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It can also be shown that

(b − βt ) ∼ WS(0, St )

and that

E(bt − βt )ỹt = 0

where ỹt = (y′
1, y′

1, . . . , y′
t )

′.
Kalman derived these results using wide-sense conditional distributions and

expectations and orthogonal projection theory and it is important to emphasize
that they do not rely on Gaussian assumptions. This lent a degree of robustness
to the algorithm which made it ideal for many practical applications. If Gaus-
sianity is assumed then (15.4) may be given a Bayesian interpretation in that bt

can be shown to be the posterior mean for βt given ỹt and is thus the Bayesian
estimator under squared error loss or, in other words, the MMSE for βt . A ‘full’
Bayesian approach for a state space formulation of a Holt-Winters type UC model
was provided by Harrison and Stevens (1971) in the context of short-term sales
forecasting.

15.7 At first sight, the state space representation of (15.2) and (15.3), along with
the associated Kalman filter, look to have little in common with the typical
time series models developed over the years. This lack of connection is illusory,
however. Consider, for example, the AR(2) model yt = φ1yt−1 + φ2yt−2 + ut . This
can be written as the state space model

yt = [1 0]βt

βt =
[

yt

φ2yt−1

]
=

[
φ1 1
φ2 0

]
βt−1 +

[
1
0

]
ut

Similarly, the MA(1) model yt = ut + θut−1 has the state space form

yt = [1 0]βt

βt =
[

yt

θut

]
=

[
0 1
0 0

]
βt−1 +

[
1
θ

]
ut

On the other hand, the random walk plus noise model yt = βt + εt , with
βt = βt−1 + ut , is already in state space form.

15.8 There were various extensions to the Kalman filter suggested during the
1960s, most notably the extended Kalman filter, which was a simple, approximate
solution to the underlying optimal, nonlinear, estimation and filtering problem.
This and other alternatives were discussed in the early but very influential book
by Jazwinski (1970). Further applications and extensions of the Kalman filter
and recursive least squares in general are discussed in §§16.8–16.9.
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Nonlinearities in time series

15.9 A general nonlinear time series model would take the form

h(yt , yt−1, yt−2, . . .) = εt (15.5)

Suppose the function h() was such that (15.5) was ‘invertible’, so that

yt = h′(εt , εt−1, εt−2, . . .)

The basis for the nonlinear modelling of time series is to write this as the Volterra
series expansion

yt = μ+
∞∑

u=0

guεt−u +
∞∑

u=0

∞∑

v=0

guvεt−uεt−v +
∞∑

u=0

∞∑

v=0

∞∑

w=0

guvwεt−uεt−vεt−w +· · · (15.6)

where μ = h′(0, 0, 0, . . .) and

gu =
(

∂h′

∂et−u

)

0
guv =

(
∂2h′

∂et−u∂et−v

)

0
guvw =

(
∂2h′

∂et−u∂et−v∂et−w

)

0
etc.

The notation for the derivatives denotes that they have been taken at the point
0 = (0, 0, 0, . . .).

Models of this type formed the basis for Weiner’s (1958) treatment of non-
linear processes but, although there was much theoretical research done on
Volterra series, until the 1970s the formidable complexities of both the theory
and the computations involved meant that there was almost no progress made
on modelling time series in this way.

15.10 Some progress, however, was made by focusing attention on spectral
representations of time series and, in particular, on higher-order counterparts
to the spectrum and cross-spectrum discussed in Chapter 13. If, rather than the
full Volterra expansion (15.6), yt is generated by the stationary, linear process

yt =
∞∑

s=0

guεt−u

it will have the spectrum (cf. (13.4))

f (ω) = |g(e−iω)|2σ2
ε

It will also have the bi-spectrum

f (ω1, ω2) = f (ω1)f (ω2)f (ω1 + ω2)λ3
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where λ3 = Eε3
t . Thus the bi-spectrum will be zero if λ3 = 0, as would be the

case for a Gaussian process. Higher-order functions of spectra and cross-spectra
are called polyspectra, for which Shiryaev (1960) and Brillinger (1965) provided
detailed theoretical treatments, with Godfrey (1965) being the first to compute
bi-spectral estimates for economic time series.

Although progress was thus rather slow during the 1960s, the topic of non-
linear time series modelling began to advance rapidly over the following two
decades, as is discussed in §§16.10–16.11.

15.11 It is thus apparent that several major research areas were in gestation
during the 1960s: how they began to flourish in the decades after 1970, along
with other topics that developed in tandem, is the theme of our final chapter.
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16
The Scene is Set

Box and Jenkins as a watershed

16.1 The publication of Box and Jenkins’ book in 1970 represented a water-
shed in the development of time series analysis, for it provided a systematic
framework for identifying, estimating and checking a range of models that
have had a great impact on the practical modelling of time series, particularly
for forecasting. This synthesis also provided the impetus for major theoretical
developments which, when allied with rapidly increasing computing power and
enhanced computational algorithms, opened up many new areas for empirical
analysis.

This final chapter looks at the major advances in time series modelling that
have occurred since 1970, linking them with the historical developments of
the previous chapters, particularly Chapter 15. The discussion, however, aims
to be as concise as possible, as these advances lead naturally into material that
constitutes the core of all modern textbooks on time series analysis.

Unit roots and trend and difference stationarity

16.2 Box and Jenkins’ championing of differencing to induce stationarity was
an important practical step that attracted great interest. Kendall’s (1971) review
of their book professed some disquiet about the use of differencing, offering
an argument for why d was rarely found to exceed two in practice that was
firmly demolished by Box and Jenkins (1973: see also Box and Newbold, 1971).
Attention then became focused on whether, in the first-order autoregressive
model, it was possible to test the hypothesis that α = 1, which became known
as the unit root hypothesis (recall §15.3). The limit distributions of α̂ and α̂ − 1
under this null hypothesis were obtained by Dickey and Fuller (1979), with
percentiles of test statistics based on these distributions being provided in Fuller
(1976, chapter 8). This was just the start of a major research agenda which, over

403
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the last thirty years, has come to dominate much of the time series literature,
particularly in econometrics, with major contributions being provided by Evans
and Savin (1981, 1984), Phillips (1987a, 1987b), Elliott, Rothenberg and Stock
(1996) and Müller and Elliott (2003). A recent and detailed textbook exposition
of this vast literature is Patterson (2010).

There have been two particularly interesting themes of this research agenda.
The first is the distinction introduced by Nelson and Plosser (1982) between
trend stationary and difference stationary processes: the former represent time
series that can be expressed as stationary deviations about a deterministic trend,
typically linear, so that they do not contain a unit root in their autoregres-
sive component; the latter represent time series that require differencing to
induce stationarity, and hence do have a unit root and embody a stochastic
trend (recall from §12.5 the prescient distinction made half a century earlier
between these formulations by Smith, 1926). Chan, Hayya and Ord (1977) and
Nelson and Kang (1981, 1984) illustrated the difficulties caused by incorrectly
assuming that a series was trend stationary when it was, in fact, difference
stationary, but simple extensions of the Dickey–Fuller testing procedure (see
Dickey and Fuller, 1981) allow discrimination to be made between the two
processes.

The second theme is the impact that shifts and breaks in the trend function
have on inferences about the unit root hypothesis. This was first demonstrated
by Perron (1989) and the theme has been developed substantially over the last
twenty years, an important recent contribution being Harris et al. (2009), with
Perron (2006) surveying the literature.

Signal extraction using unobserved component models

16.3 The steady unobserved component model used to assess the optimality
of exponential smoothing in §11.19 assumed that an observed series xt was
generated by a random walk permanent or trend component plus an inde-
pendent white noise error (the Muth, 1960, model). Such a representation
gives rise to an ARIMA(0,1,1) process for which the first-order autocorrelation
for �xt is restricted to the interval −0.5 < ρ1 < 0, so that the process cannot
account for positive autocorrelation in �xt . To allow for positive autocorre-
lation requires either relaxing the assumption that the trend component is
a random walk, so that it contains both permanent and transitory compo-
nents, or allowing the error and the innovation to the random walk trend to be
correlated.

This idea led to an interesting decomposition of an I(1) series proposed by
Beveridge and Nelson (1981), who thought that a random walk trend was not as
restrictive as it might at first seem, in essence asking the question of why a trend
should contain a transitory component. They thus relaxed the assumption that
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the component innovations had to be independent and considered the Wold
decomposition

�xt = μ + ψ (B) at = μ +
∞∑

j=0

ψjat−j (16.1)

Since ψ(1) = ∑
ψj is a constant, the polynomial ψ(B) can be written as

ψ(B) = ψ(1) + C(B), so that

C(B) = ψ(B) − ψ(1)

= 1 + ψ1B + ψ2B2 + · · · − (1 + ψ1 + ψ2 + ψ3 + · · · )

= −ψ1(1 − B) − ψ2(1 − B2) − ψ3(1 − B3) − · · ·
= (1 − B)(−ψ1 − ψ2(1 + B) − ψ3(1 + B + B2) − · · · )

i.e.,

C(B) = (1 − B)

⎛

⎝−
∞∑

j=1

ψj −
⎛

⎝
∞∑

j=2

ψj

⎞

⎠ B −
⎛

⎝
∞∑

j=3

ψj

⎞

⎠ B2 − · · ·
⎞

⎠

= �ψ̃(B)

Thus ψ(B) = ψ(1) + �ψ̃(B), implying that

�xt = μ + ψ(1)at + �ψ̃(B) + at

Hence, if xt = mt + ut , as in §11.19, then the components are defined as

�mt = μ +
⎛

⎝
∞∑

j=0

ψj

⎞

⎠ at = μ + ψ(1) at

and

ut = −
⎛

⎝
∞∑

j=1

ψj

⎞

⎠ at −
⎛

⎝
∞∑

j=2

ψj

⎞

⎠ at−1 −
⎛

⎝
∞∑

j=3

ψj

⎞

⎠ at−2 − · · · = ψ̃(B) at

Since at is white noise, the trend component is therefore a random walk with a
rate of drift equal to μ and an innovation equal to ψ(1) at , which is thus propor-
tional to the innovation of the original series. The variance of this innovation
is (ψ(1))2σ2

a , which may be larger or smaller than σ2
a depending on the signs and

patterns of the ψ–weights. In particular, the innovations to the trend compo-
nent will be ‘noisier’ than those to x if the ψ–weights are positive, which would
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typically be the case if the changes in x are positively correlated. The error com-
ponent is clearly stationary but, since it is driven by the same innovation as
the trend, �mt and ut must be perfectly correlated, in direct contrast to the Muth
decomposition.

As an example, the Beveridge–Nelson decomposition of an ARIMA(0,1,1) pro-
cess is �mt = μ + (1 − θ) at and ut = θ at . In terms of the original observations,
these can be written as

mt = (1 − θ)
∞∑

j=0

θjxt−j

and

ut = θ

∞∑

j=0

θjxt−j

16.4 In more general set-ups the unobserved components mt and ut can be
estimated by the technique of signal extraction, which is based on the theory
developed in Whittle (1963), itself an extension of Weiner–Kolmogorov predic-
tion theory (see Weiner, 1949). This approach was extended by Pierce (1979)
and Bell (1984) to cover nonstationarities. Suppose that the component mod-
els are �mt = μ + γ(B) vt and ut = λ(B) εt , where γ(B) and λ(B) have no common
roots and vt and εt are independent white noises with variances σ2

v and σ2
ε . The

observed series xt can then be written as �xt = μ + θ(B) at , where θ(B) and σ2
a can

be obtained from

σ2
a

θ(B)θ(B−1)
(1 − B)(1 − B−1)

= σ2
v

γ(B)γ(B−1)
(1 − B)(1 − B−1)

+ σ2
ε λ(B)λ(B−1) (16.2)

Given an infinite sample . . . , xt−2, xt−1, xt , xt+1, xt+2, . . . of observations, the
MMSE estimate of mt is (the following analysis can be straightforwardly
amended when only a finite sample is available: see Pierce, 1979)

m̂t = vm(B)xt =
∞∑

j=−∞
vmjxt−j

where the filter vm(B) is defined as

vm(B) = σ2
v γ(B)γ(B−1)

σ2
a θ(B)θ(B−1)

An estimate of ut will then be given by

ût = xt − m̂t = (1 − vm(B))xt = vu(B)xt
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For example, for the Muth model of a random walk overlaid with stationary
noise

vm(B) = σ2
v

σ2
a

(1 − θB)−1(1 − θB−1)−1 = σ2
v

σ2
a

1
(1 − θ2)

∞∑

j=−∞
θ|j|Bj

and

m̂t = (1 − θ)2

1 − θ2

∞∑

j=−∞
θ|j|xt−j

Thus, for values of θ close to unity, m̂t will be given by a very long moving
average of future and past values of x. If θ is close to zero, however, m̂t will be
almost equal to the most recently observed value of x.

Note that it will not necessarily be the case that the parameters of the compo-
nent models can be identified from θ(B) and σ2

a . For example, if �xt = (1 − θB) at

then, if ut is to be white noise, the most general model for mt is �mt = (1 − �B) vt ,
where −1 ≤ � ≤ θ. Setting � = −1 can be shown to minimize σ2

v and maximize
σ2

ε , subject to the condition (16.2), so making the trend as smooth as possible.
This is known as the canonical decomposition of xt , for which

m̂t = σ2
v

σ2
a

(1 + B)(1 + B−1)
(1 − θB)(1 − θB−1)

A more general framework of signal extraction for ARIMA models was developed
in Tiao and Hillmer (1978), with further extensions being provided by Bell and
Martin (2004).

16.5 The UC approach provides an alternative formulation of the H–P filter dis-
cussed briefly in §10.7. The first-order conditions given there can be expressed,
using current notation, as

xt = (1 + δ(1 − B)2(1 − B−1)2) mt

where δ now denotes the smoothing parameter. The H–P trend estimator is thus

m̂t (δ) = (1 + δ(1 − B)2(1 − B−1)2)−1xt

The MMSE trend estimator can be written, using (16.2), as

m̂t = σ2
v

σ2
a

γ(B)γ(B−1)
θ(B)θ(B−1)

xt = γ(B)γ(B−1)
γ(B)γ(B−1) + (

σ2
ε

/
σ2

v

)
λ(B)λ(B−1)

xt

Comparing this expression with m̂t (δ) shows that, for this to be optimal in the
MMSE sense,

γ(B) = (1 − B)−1, λ(B) = 1, δ = σ2
ε

/
σ2

v
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In other words, the underlying UC model must have the trend component
�2mt = vt with the irregular component ut being white noise.

Several competitors to the H–P filter have since been proposed: see Baxter and
King (1999), Pollock (2000) and Christiano and Fitzgerald (2003) for three such
filters and Mills (2003) for textbook exposition.

Advances in seasonal adjustment techniques

16.6 These signal extraction concepts were subsequently employed to develop
model-based methods of seasonal adjustment, most notably by Box, Hillmer and
Tiao (1978), Burman (1980), Hillmer and Tiao (1982), Hillmer, Bell and Tiao
(1983), Bell and Hillmer (1984) and Maravall and Pierce (1987). Cleveland and
Tiao (1976), Wallis (1982) and Burridge and Wallis (1984) were able to provide a
signal extraction interpretation of the X-11 filters. If the UC decomposition of
a seasonal series is defined as xt = nt + st , where nt and st are non-seasonal and
seasonal components following independent ARMA processes, then Cleveland
and Tiao (1976) found that the following models provide a close approximation
to the monthly X-11 filter:

�2nt = (1 − 1.252B + 0.4385B2) ut

�12st = (1 + 0.64B12 + 0.83B24) vt σ2
u

/
σ2

v = 24.5

These lead to an ARIMA model for xt of the form ��12xt = θ(B) at , where the
moving average polynomial θ(B) is of order 25.

Burridge and Wallis (1984) used the polynomial U(B) = 1 + B + . . . + B11 as the
seasonal operator rather than �12 and obtained the component models

�2nt = (1 − 1.59B + 0.86B2) ut

U(B)st = (1 + 0.71B12 + B24) vt σ2
u

/
σ2

v = 90.9

These lead to the same form of model for xt except that θ(B) is of order 26.
In both cases the moving average coefficients are very small after lag 13, but
those for lags 2–11 are quite substantial, implying that a multiplicative mov-
ing average specification of the type (1 − θB)(1 − �B12) would be a rather poor
approximation to θ(B): as Burridge and Wallis emphasized, simple specifications
for the component models typically do not yield simple composite models.

Of course, within a UC framework it is also possible, and perhaps even desir-
able, to estimate the trend component itself rather than to simply seasonally
adjust the actual observations, which will contaminate the trend with the noise
component. An interesting framework for doing this was proposed by Box,
Pierce and Newbold (1987).
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16.7 The X-11 seasonal adjustment procedure was upgraded in the late 1970s
to X-11-ARIMA by Dagum (1978, 1982). The major innovation is revealed by
the name: the need for asymmetric filters to deal with ‘end-point’ problems
was reduced by extending the series being adjusted with ARIMA forecasts. This
was itself upgraded in the mid-1990s to X-12-ARIMA (Findley et al., 1998).
Scott (1992, 1997) provided extended reviews of the two packages and Ladiray
and Quenneville (2001) gave detailed descriptions of them. Further analysis of
the underlying trend-cycle filters was provided by Doherty (2001), Gray and
Thompson (2002) and Quenneville, Ladiray and Lefrançois (2003).

Several other seasonal adjustment programmes have been developed over
the years, such as SABL (Cleveland, Dunn and Terpenning, 1978) and STL
(Cleveland et al., 1990). Perhaps the most important of these is the compo-
nent model-based TRAMO/SEATS package, which is intensively used at Eurostat
and the European Central Bank and, indeed, by many other central banks, with
parts of the package having since been incorporated into X-12-ARIMA: see, for
example, Gómez and Maravall (1996) and Maravall (2000) for details.

Structural models, state space representations and
the Kalman filter

16.8 As noted in §15.6, UC, or structural models, as they came to be more
popularly known, fit naturally into a state space representation. For example,
the model xt = mt + ut with mt = μ + mt−1 + vt and ut white noise has the
observation equation

xt = [0 1]βt + ut

and transition equation

βt =
[
μt

mt

]
=

[
1 0
1 1

][
μt−1

mt−1

]
+

[
0
vt

]

on defining μt = μt−1 = μ. Once given a state space representation, the parame-
ters of the structural model can be estimated via the Kalman filter and forecasts
straightforwardly obtained.

16.9 Such formulations allowed state space modelling to develop rapidly
across many areas of time series analysis, leading to far too many major con-
tributions to reference individually. Notable texts, however, are Anderson and
Moore (1979), Harvey (1989) and Durbin and Koopman (2001), and reference
should also be made to the dedicated software package STAMP (Structural Time
Series Analyser, Modeller and Predictor: Koopman et al., 2009). A related theme
of some interest is that of Bayesian forecasting using dynamic linear models
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(Harrison and Stevens, 1971, 1976; West, Harrison and Migon, 1985; West and
Harrison, 1997).

Nonlinearities

16.10 Perhaps the greatest advances in time series modelling over the last
forty years have been made in the area of nonlinear processes. At least three
themes have emerged from this research: the use of nonlinear parametric mod-
els, for example regime switching models such as SETAR (self-exciting threshold
autoregressive), STAR (smooth transition autoregressive) and Markov-switching
processes; neural networks; and chaotic processes. Tong (1990), Granger and
Teräsvirta (1993), Kantz and Schreiber (1997) and Franses and van Dijk (2000)
are texts that may be consulted on these themes, while Teräsvirta (2006) provides
a more recent survey.

16.11 A class of models, first introduced in the early 1980s to model inflation
volatility by Engle (1982), have since become extremely influential for mod-
elling variances that change through time. This is, of course, the GARCH class
of processes (see, for example, Gouriéroux, 1997), which often show that the
impact of shocks to the variance can be long-lasting and persistent, especially for
financial time series. There is an enormous literature on this topic and recent sur-
veys of univariate and multivariate volatility models based on GARCH processes
are Baillie (2006) and Brooks (2006).

Persistency, often referred to as long memory, has also been found in the levels
of time series as well as in their variances, being introduced by Mandelbrot and
Wallis (1969), where it was named the Hurst effect, after the hydrologist Harold
E. Hurst, who encountered this phenomenon when analysing records of river
flows for the Nile (Hurst, 1951: for further evidence of long memory in hydrol-
ogy, see Hosking, 1984). Long memory is associated with an autocorrelation
function that decays hyperbolically, i.e., slower than the exponential decline
of a stationary process but faster than the linear decline associated with an I(1)
process. It can be characterized by the use of fractional differencing through the
operator

�d = (1 − B)d = 1 − dB + d(d − 1)
2! B2 − d(d − 1)(d − 2)

3! B3 + · · ·

where d is now allowed to take any value greater than −1, not just integers as in
the typical ARIMA framework. �dxt = at then defines fractional white noise and,
if |d| < 0.5, xt is stationary and invertible and will exhibit long memory. If at

is autocorrelated it may be modelled as an ARMA process, thus leading to the
AR-fractionally integrated-MA, or ARFIMA, process.

The notion of fractional differencing seems to have been proposed contem-
poraneously and independently by Hosking (1981) and Granger and Joyeux
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(1980). Detailed surveys of what is another large literature have been provided
over the years by, for example, Beran (1992), Baillie (1996), Robinson (2003)
and Velasco (2006).

Information criteria and diagnostic checking

16.12 Akaike quickly replaced the FPE autoregressive model selection criterion
with the AIC, which evidently stood originally for ‘An Information Criterion’,
but was quickly tagged Akaike’s Information Criterion (Akaike, 1974). During
the late 1970s several other criteria were also proposed, all taking the general
form (cf. (15.1))

IC(p) = log σ̂2(p) + cT p (16.3)

Here cT is a weighting factor that typically depends upon the sample size T and
its form effectively distinguishes the alternative criteria. The first term of (16.3)
measures the fit of the AR(p) model and will decrease for increasing p, as long
as there are no degrees of freedom correction in the variance estimator and the
sample size remains fixed at T for all p. The order that minimizes this criterion
is chosen as the estimator p̂ of the true order p.

Akaike’s AIC takes the form

AIC(p) = log σ̂2(p) + (2/T) p

thus setting cT = 2/T , while the Hannan–Quinn (1979) HQ and Schwarz (1978)
and Rissanen (1978) SC criteria (the latter also being known as the BIC) set cT to
2 log log T/T and log T/T respectively. The criteria have the following proper-
ties. AIC asymptotically overestimates the true order p with positive probability,
while HQ and SC estimate the order consistently as long as the maximum order
considered exceeds the true order, a result that holds for both stationary and
integrated processes (Paulsen, 1984). Denoting p̂(AIC) as the order selected by
the AIC, etc., then for T ≥ 16 the following inequality holds (Lütkepohl, 1991)

p̂(SC) ≤ p̂(HQ) ≤ p̂(AIC)

Thus the SC will select the most parsimonious specification when different
orders are chosen by the criteria.

These criteria were quickly adapted for ARMA processes and, eventually, for
any type of model, univariate and multivariate, with obvious extensions to the
notation. For example, the corresponding AIC for an ARMA(p,q) process is

AIC(p, q) = log σ̂2(p, q) + (2/T) (p + q)
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16.13 The Box–Pierce (1970) statistic introduced in §9.46 to check the ade-
quacy of a fitted ARMA process, Q(K) = T

∑K
k=1 r2

k (â), was shown by Davies,
Trigg and Newbold (1977) to have actual significance levels that could be much
smaller than those provided by the asymptotically justified χ2(K − p − q) distri-
bution, implying that the chance of incorrectly rejecting the null hypothesis of
model adequacy would be smaller than the chosen significance level. Ljung and
Box (1978) proposed the modified statistic

Q∗(K) = T(T + 2)
K∑

k=1

r2
k (â)

T − k

which they claimed would follow the asymptotic distribution more closely.
However, the power of this modified statistic can still be quite low, even in
the presence of severe misspecification (Davies and Newbold, 1979; Godfrey,
1979).

16.14 ‘Portmanteau’ statistics of this type are derived without explicitly for-
mulating an alternative hypothesis, which is a sensible strategy when there
is little information available about the likely nature of any model misspeci-
fication. This may lead to problems, however, as a strong rejection of model
adequacy might not provide much of a clue as to the type and magnitude of the
inadequacy.

In response to this, tests were proposed that were based on the Lagrange Multi-
plier (LM) principle: see, for example, Godfrey (1979) and Poskitt and Tremayne
(1980). Unlike the portmanteau statistics, an LM-based test requires an explicit
alternative hypothesis, although the model given by this alternative does not
need to be estimated, which is an attractive advantage of this type of test. For
example, suppose the null hypothesis is that of an AR(p) process while the alter-
native is that of an AR(p + r) process. Godfrey (1979) shows that the LM test
can be calculated as the sample size, T , multiplied by the coefficient of determi-
nation (R2) of an auxiliary regression using the fitted residuals from the AR(p)
process, this being

ât = α1xt−1 + · · · + αpxt−p + β1ût−1 + · · · + βr ût−r

On the null hypothesis, T · R2 will be asymptotically distributed as χ2(r),
although for small samples an F-test of the hypothesis β1 = · · · = βr = 0 has better
properties (Kiviet, 1986). LM tests were developed for a wide range of alterna-
tives and have since become a staple test of misspecification in a range of time
series models: see Godfrey (1988).

McLeod (1978) derived the large sample distribution of the residual auto-
correlations from an ARMA(p, q) model and suggested a further portmanteau
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test. Denoting the estimated covariance matrix of r′ = (r1(â), . . . , rk(â)) as Ĉ, this
statistic is defined as Tr′Ĉ−1r ∼ χ2(k). Newbold (1980) showed that this was
equivalent to an LM test of the alternative ARMA(p + k, q) specification.

Intervention analysis and the detection of outliers

16.15 In the iterative ARIMA model-building strategy developed by Box and
Jenkins (1970) and discussed in §§9.41–9.47, little attention was paid to the
behaviour of specific observations from the series under analysis, or to the resid-
uals associated with them, with attention being devoted to the overall patterns
of serial correlation. However, many time series are influenced by specific events
and policy changes that occur at known points of time and ignoring these could
lead to an inadequate model being fitted and poor forecasts being made.

Events of this type, whose timing are known, were termed interventions by
Box and Tiao (1975), who incorporated them into, say, an ARIMA model by
extending it to include deterministic, or ‘dummy’, input variables. For example,
suppose that there is a single intervention, It (τ), known to have occurred at time
τ. If xt is generated by an ARMA(p, q) process then an intervention model may
be defined as

xt = ω(B)
δ(B)

BbIt (τ) + θ(B)
φ(B)

at (16.4)

The parameter b measures the delay in effect, or ‘dead time’, of the interven-
tion, which itself is an indicator sequence taking the values of 1 and 0 to
denote the occurrence or nonoccurrence of the exogenous intervention. Forms
of intervention that have been found to be useful are

(i) A pulse or spike, which models an intervention lasting only for the
observation τ: It (τ) = 1 for t = τ, and It (τ) = 0 for t �= τ.

(ii) A step, which models a step change in xt beginning at τ: It (τ) = 0 for t < τ

and It (τ) = 1 for t ≥ τ.
(iii) An extended pulse, useful for modelling ‘policy on–policy off’ interventions,

defined as It (τ1, τ2) = 1 for τ1 ≤ t ≤ τ2 and 0 otherwise.

Box and Tiao (1975) developed a procedure for identifying models of the form
(16.4) and estimating them via nonlinear least squares and the models may nat-
urally be extended to include several interventions. Box and Tiao’s illustrative
applications were in the economic and environmental areas, and Jenkins and
McLeod (1982) later presented a number of case studies that employed inter-
vention effects, such as changing price structures in the US telephone industry,
competition between rail and air on London to Scotland passenger routes, and
the influence of advertising promotions on product sales. An area that for a time
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became a favourite application was the effect of seatbelt legislation on road traf-
fic accidents: see Bhattacharyaa and Layton (1979), Harvey and Durbin (1986)
and Abraham (1987) for the analysis of Australian, British and Canadian data,
respectively.

16.16 In these models the exact timing of the interventions were known, but
often this is not the case and a variant of this methodology was developed for
handling situations in which the exact timings of the events were unknown
and whose effects lead to what are called aberrant observations or outliers. The
analysis developed by Hillmer, Bell and Tiao (1983), Tiao (1985), Tsay (1986)
and Chang, Tiao and Chen (1988) concentrated on identifying two types of
outliers, additive and innovational. An additive outlier (AO) model is defined as

xt = ωIt (τ) + θ(B)
φ(B)

at

while an innovational outlier (IO) model is

xt = θ(B)
φ(B)

(ωIt (τ) + at )

where in both cases It (τ) is a pulse intervention. Thus the AO case may be called
a ‘gross error’ model, since only the level of the τth observation is affected,
whereas an IO represents an extraordinary shock at τ influencing xτ , xτ+1, . . .

through the memory of the model, given by θ(B)/φ(B).
Iterative methods of identifying outliers and building intervention models

were developed in Tiao (1985) and Tsay (1986) and the approach was extended
by Tsay (1988) to deal with both level shifts and variance changes.

Granger causality in the time domain

16.17 The concept of Granger causality was introduced in §§13.17–13.20
within a frequency domain framework. It began to have a major impact on
time series modelling, particularly in economics, after Sims (1972) ‘translated’
the idea into the time domain and provided a dynamic regression framework
within which to discuss tests of causality, which have since become part of the
standard practice of time series econometrics and discussions of which may be
found in many textbooks: see, for example, Mills (1990, chapter 14.4) or Mills
and Markellos (2008, chapter 8.6). The Granger causality literature subsequently
expanded rapidly, with notable extensions and discussions being Chamberlain
(1982), Granger (1980), Geweke (1982, 1984) and Dufour and Renault (1998).

16.18 The standard framework for investigating Granger causality became,
during the 1980s, the vector autoregression (VAR), after the publication of Sims
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(1980) (cf. §12.23), although Lütkepohl (1991, chapter 6.7) discussed Granger
causality within a VARMA setting. Indeed, VARs, with their associated impulse
response functions and variance decompositions, have since become the stan-
dard multivariate time series model: for a recent survey of the area, see Lütkepohl
(2006).

Spurious regression and cointegration

16.19 The possibility of nonsense regressions, recognized by Yule, Slutzky and
Working and discussed in Chapter 5, re-emerged in the 1970s with the publica-
tion of Granger and Newbold (1974) on the possibility of ‘spurious regression’,
in which they considered the empirical consequences of regressing two inde-
pendent random walks. Although the true regression coefficient must be zero,
they found, in an influential simulation experiment, that a conventional t-test
would reject this correct null approximately three quarters of the time using
a standard 5% significance level. When five independent random walks were
included as regressors in a multiple regression, the rejection rate of the con-
ventional F-statistic for testing that the coefficient vector was zero was found
to be over 95%. Further extensions involving correlated integrated processes
produced similar results, leading Granger and Newbold to conclude that con-
ventional significance tests were seriously biased towards rejection of the null
hypothesis of no relationship and hence towards acceptance of a spurious rela-
tionship when time series were generated as statistically independent integrated
processes.

Such regression results were frequently accompanied by large R2 values and
highly autocorrelated residuals, as indicated by very low Durbin-Watson (d)
statistics: recall §9.18. These findings led Granger and Newbold to suggest that,
in the joint circumstances of a high R2 and a low Durbin–Watson statistic (a
useful rule of thumb being R2 > d), regressions should be run on the first differ-
ences of the variables, and further support for this suggestion was provided by
Plosser and Schwert (1978).

These essentially empirical conclusions were given an analytical foundation
by Phillips (1986), who showed that the regression coefficients do not converge
in probability to constants as the sample size increases but have non-degenerate
limiting distributions, so that different arbitrary large samples will yield ran-
domly differing coefficient estimates. The conventional t-ratio does not have
a t-distribution and, indeed, does not have any limiting distribution, so that
there are no asymptotically correct critical values and it should thus be expected
that the rejection rate when using conventional critical values will continue to
increase with sample size. R2 has a non-degenerate limiting distribution and the
Durbin–Watson statistic converges in probability to zero, so that low values for
d and moderate values for R2 are to be expected in spurious regressions.
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16.20 The spurious nature of regressions of this type is a consequence of the
fact that the regression error, being a linear combination of I(1) processes, must
itself be I(1). In general, if yt and xt are both I(d) then the linear combination
ut = yt − axt will usually also be I(d). It is possible, however, that ut may be inte-
grated of a lower order, say I(d − b), in which case a special constraint operates
on the long-run components of the two series. If d = b = 1, so that yt and xt are
both I(1) and hence dominated by ‘long wave’ components, ut will be I(0) and
so will not have such a component: yt and axt must therefore have long-run
components that cancel out to produce ut . In such circumstances, yt and xt are
said to be cointegrated, a concept first introduced in Granger (1981), although it
should be emphasized that it will not generally be true that there will exist such
an a that makes ut stationary.

The concept of cointegration had an enormous impact on time series analysis
with several tests for cointegration quickly being proposed (see, for exam-
ple, Sargan and Bhargava, 1983; Engle and Granger, 1987; and Phillips and
Ouliaris, 1990). A modelling strategy, based on Granger’s representation theorem,
was also developed, being known as error correction modelling (ECM: Engle and
Granger, 1987; Granger, 1986). Mills and Markellos (2008, chapter 9), for exam-
ple, provide further textbook discussion of testing and estimating cointegrating
regressions. Long memory and cointegration may be combined to produce a
fractional cointegration framework (see Gil-Alana and Hualde, 2009).

Vector error correction models

16.21 Setting cointegration within a VAR framework led to a further class
of models and sets of testing and estimation techniques. This was first done
in Johansen (1988a, 1988b) and subsequently led to the vector error correc-
tion model (VECM) representation of a set of multivariate cointegrated time
series. Within this multivariate setting the presence of cointegration leads to
many complications and refinements and is currently a dominant research area.
Johansen (1995) and Juselius (2006) are prominent texts and Johansen (2006)
provides a current overview of the cointegrated VAR model.

Forecast comparisons and evaluation

16.22 Forecasts of economic time series using the framework developed by Box
and Jenkins, as set out in §§11.3–11.15, began to be compared with forecasts
from much larger-scale econometric models in the early 1970s. Cooper (1972),
Cooper and Nelson (1975), Nelson (1972) and Naylor, Seaks and Wichern (1972)
all provided results that favoured the forecasts of the ‘naïve’ time series mod-
els over those from the larger models, findings that provoked a lengthy debate
in the economics literature: see Granger and Newbold (1986, chapter 9.4) for
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discussion and also references to many other issues in forecasting, such as com-
bining forecasts from different methods. At the same time Granger and Newbold
(1973) questioned the evaluation criteria used by many econometric forecasters,
arguing that these were insufficiently demanding. Out of this debate eventually
arose a theory of economic forecasting which may be used to place the forecast-
ing exercise on much firmer theoretical foundations (see, in particular, Clements
and Hendry, 1998).

Spectral extensions

16.23 A comprehensive review of the theory of spectral analysis was provided
by Priestley (1981). Developments since 1970 include band spectrum regression, in
which components of variables in different frequency bands are related (Engle,
1974, 1980), and frequency domain factor analysis, which considers the question
of whether the dynamic relationships between a number of variables can be
explained by the presence of a small number of unobserved common factors
(Geweke, 1977; Sargent and Sims, 1977). Spectral regression techniques were
extended to cointegrated systems by Phillips (1989).

New developments

16.24 Of the numerous new developments in time series analysis in recent
years, two areas of research particularly stand out. The first is the use of panel
data sets, especially nonstationary panels, for which techniques began to be
developed in the early 1990s. Choi (2006) and Banerjee and Wagner (2009)
provide recent surveys of this burgeoning literature.

The second is the Bayesian treatment of time series models. Bayesian VARs
began to be developed in the 1980s (see Litterman, 1986) and Bayesian analy-
sis of time series models really took off in the 1990s as powerful computational
tools, such as the Gibbs sampler and the Metropolis–Hastings algorithm, became
available to a wider set of researchers to use in Markov chain Monte Carlo
(MCMC) simulation (see Gelfand et al, 1990; Chib and Greenberg, 1995,
1996; and Poirier and Tobias, 2006). The Bayesian literature on cointegration is
surveyed by Koop et al. (2006).

Some final thoughts

16.25 Studying the historical development of a subject should be a fascinat-
ing experience and it certainly has been for this author. While the first formal
foundations of the subject are only just over a century old, and much of the
development is contained in reasonably accessible journal articles, one or two
unnoticed nuggets have been unearthed, notably the article by Bradford Smith
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on the implications of using detrended or first differenced variables in regression
analysis (see §12.5 and Mills, 2011).

Where does the subject go from here? There is no doubt that the underlying
theory has advanced tremendously over recent years, but has this enhanced
the quality of applied research? Some may doubt this, even as theory becomes
ever more refined, data become more extensive, computing power increases
rapidly and software becomes more powerful and accessible. On the other hand,
advanced time series techniques are becoming more extensively used in a wider
range of disciplines, a particular case in point being meteorology and climatol-
ogy, where, for example, the use of time series techniques and modelling has
helped to enhance understanding of some key issues (see, for example, Mills,
2010a, 2010b). It is to be hoped that the interaction between theory and practice
in an expanding number of fields continues to advance the fascinating subject
of time series analysis whose historical development has been the focus of this
book.
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2 Yule and Hooker and the Concepts of Correlation and Trend

1. Galton is often regarded as the father of correlation, but the concept – or at least the
word – had been in common use, particularly in physics, since the middle of the cen-
tury. The historical development of correlation, although fascinating, lies outside the
scope of this study. A contemporary account of the development is provided by Pear-
son (1920): for a later, rather more detached, discussion, see Stigler (1986, chapter 8).

2. George Udny Yule plays a major and recurring role in our story. Born on 18 February
1871 in Beech Hill near Haddington, Scotland, Yule was a member of an established
Scottish family composed of army officers, civil servants, scholars and administrators
and both his father, also named George Udny, and a nephew were knighted. Although
he originally studied engineering and physics at University College, London (UCL),
and Bonn, Germany, publishing four papers on electric waves, Yule returned to UCL
in 1893, becoming first a demonstrator for Karl Pearson, then an Assistant Professor.
Yule left UCL in 1899 to work for the City and Guilds of London Institute but also
later held the Newmarch Lectureship in Statistics at UCL. In 1912 he became lecturer
in statistics at the University of Cambridge (later being promoted to Reader) and in
1913 began his long association with St. John’s College, becoming a Fellow in 1922.
Yule was also very active in the Royal Statistical Society: elected a Fellow in 1895,
he served as Honorary Secretary, was President and was awarded the prestigious Guy
Medal in Gold in 1911. His textbook, Introduction to the Theory of Statistics, ran to 14
editions during his lifetime and, as well as contributing massively to the foundations
of time series analysis, he also researched on Mendelian inheritance and on the statis-
tics of literary style, as well as other aspects of statistics. Retiring from his readership
at the age of 60, and having always been a very fast driver, he decided to learn to fly,
eventually buying his own plane and acquiring a pilot’s licence. Unfortunately, from
1932 heart problems curtailed his flying experiences and he became a quasi-invalid
for the rest of his life, dying on 26 June 1951 in Cambridge. For further biographical
details and a full list of publications, see Kendall (1952) and also Williams (2004).

3. Historical perspectives on Yule’s development of correlation and regression, which are
not our major concern or focus here, but are arguably extremely important for the
development of applied statistical techniques, are provided by Aldrich (1995, 1998)
and Hepple (2001).

4. Expressing the k arrays in a tabular form gives what Yule refers to as a correlation table.
5. In terms of the original variables Y and X, the regression line is Y = a + bX with

a = Y − bX.
6. Or, as Yule (1897b, page 818) put it, ‘errors of mean square, measuring the degree of

scatter of the X’s and Y ’s around their mean values’.
7. R2

1 is, of course, the coefficient of multiple correlation in modern econometric
parlance.

8. We follow Yule (1907) is using the notation r12.3 here, rather than ρ12 as used in Yule
(1897b).

9. Meteorological applications of correlation were also beginning to appear around this
time: see Pearson and Lee (1897) and Cave-Browne-Cave and Pearson (1902).

419
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10. Reginald Hawthorn Hooker (1867–1944) was a contemporary and close friend of Yule.
Educated at the Collège Rollin, Paris, and Trinity College, Cambridge, Hooker was
a career civil servant at the Board (later Ministry) of Agriculture, retiring in 1927,
although before he joined the board in 1895 he was for four years Assistant Secretary
of the Royal Statistical Society. A Fellow of both this and the Royal Meteorological
Society, of which he was twice President, Hooker made contributions in the use of cor-
relation to analyse economic, agricultural and meteorological data: see the obituary
by Yule (1944a) for biographical detail.

11. Some years earlier, Poynting (1884) had used the ratio of a four-year moving average
to a ten-year moving average of wheat prices and imports of cotton and silk to remove
both secular movements and short-run fluctuations from the series, but his analysis
was purely descriptive.

12. Hooker’s results from using this technique were reported in further detail in Yule
(1906), which also contained an extended discussion about the economic factors
influencing marriage and birth-rates.

13. Hooker (1901b) used the notation rm(t−k), with m and t denoting the marriage rate
and trade respectively. Hooker also constructed ‘coefficient curves’ in which a curve
was interpolated through the scatterplot of rm(t−k) against k, from which he was able
to estimate the maximum correlation and the (non-integer) value of k producing that
maximum; we have not felt the desire to repeat this procedure here!

14. As time series data are now explicitly being considered, generic observations are
denoted by t subscripts.

3 Schuster, Beveridge and Periodogram Analysis

1. Franz Arthur Friedrich Schuster (1851–1934) was born and educated in Frankfurt am
Main, Germany before joining his parents in Manchester, where the family textile busi-
ness was based, in 1870, becoming a British citizen in 1875. Independently wealthy,
he studied physics at Heidelberg, Gottingen and Berlin before spending five years
at the Cavendish Laboratory in Cambridge. In 1881 Schuster became Professor of
Applied Mathematics and then, in 1887, Langworthy Professor of Physics, at Owens
College, part of Manchester University. After retiring in 1907 (and being succeeded by
Ernest Rutherford) he devoted the remainder of his professional life to promoting the
cause of international science, being knighted in 1920. Schuster’s interest in meteorol-
ogy, earthquakes and terrestrial magnetism was longstanding and he took part in four
eclipse expeditions.

2. The earliest reference to periodogram analysis appears to be in a note by G.G. Stokes
to the paper by Stewart and Dodgson (1879) reporting on attempts to detect links
between sunspots and magnetic and meteorological changes on earth.

3. A modern and comprehensive treatment of Fourier analysis may be found in Pollock
(1999, chapters 13–15), where the derivation of these equations may be found.

4. The series is obtained from the National Geophysical Data Center (NGDC) website:
www.ngdc.noaa.gov.

5. The periodogram is calculated with s = 10 and p ≤ 240, so that all one-tenth of a year
cycles up to 24 years are computed.

6. Schuster (1906) made a concerted attempt to investigate many of the minor peaks
in the periodogram but, given the difficulties that later became apparent in trying to
interpret calculated periodograms (see Chapters 5 and 13), we content ourselves with
just this analysis.



9780230290181_18_notes.tex 21/4/2011 15: 27 Page 421

Notes 421

7. William Beveridge, 1st Baron Beveridge (1879–1963), was a British economist and
social reformer. After being educated at Charterhouse School and Balliol College,
Oxford, Beveridge’s varied career encompassed the law, journalism, the civil service
and politics. Knighted in 1919, he was made a baron in 1946 and eventually became
leader of the Liberals in the House of Lords. He was also a leading academic, being
Director of the London School of Economics and Master of University College, Oxford.
Probably best remembered for his 1942 report Social Insurance and Allied Services (known
as the Beveridge Report), which served as the basis for the welfare state, especially the
National Health Service, Beveridge was an expert on unemployment and labour mar-
kets. Although he had a long-standing interest in the history of prices, his work on
periodogram analysis stands apart from his usual areas of research.

8. The periodogram was constructed for s = 2 and p ≤ 168, so that all half-year cycles up
to 84 years were calculated. This was felt to be as fine a ‘mesh’, to use Beveridge’s
terminology, as was needed for the purposes of the example. Beveridge used an even
finer mesh and, given the rudimentary calculating technology available at the time,
this obviously took considerable time and effort. The periodogram was recalculated by
Gower (1955) using a computer for the first time: the computations took approximately
two hours on the Manchester University Mark II Electronic Computer. The calculations
reported here were produced using a Gauss program written by the author and took
less than 0.008 seconds using a standard desktop PC.

4 Detrending and the Variate Differencing Method: Student,
Pearson and Their Critics

1. William S. Gosset (1876–1937) was one of the most influential statisticians of the
twentieth century. As an employee of Guinness, the famous Irish brewer of stout, he
was precluded from publishing under his own name and thus took the pseudonym
‘Student’. Gosset worked primarily on experimental design and small sample prob-
lems and was the inventor of the eponymous t-distribution. His research focus is
tangential to our theme and this was his only paper on the analysis of time series.
For further biographical details see Pearson (1950, 1990).

2. Karl Pearson (1857–1936) was another of the greats of statistics in the early twentieth
century whose interest in time series was only tangential. His son, Egon, another
extremely influential statistician, produced a biography of his father soon after Karl’s
death (Pearson, 1936/38, 1938). More recently, Porter (2004) concentrates on Pear-
son’s life before 1900, focusing on his wide range of interests and the factors that influ-
enced him into becoming a statistician. John Aldrich’s Pearson website provides eas-
ily accessible detail and numerous links: www.economics.soton.ac.uk/staff/aldrich/
kpreader.html.

3. Ritchie-Scott’s (1915) contribution was restricted to providing an adjustment to this
formula when additional observations were included to compensate for those lost
due to differencing.

4. The data are tabulated in Cave and Pearson (1914, Table 1). An average, or ‘synthetic’,
index was also provided. Because of the complications arising from the correlation
between this average and its constituent indices, which are discussed in detail by
Cave and Pearson, we exclude this average from our discussion of their results.

5. A further criticism was that the data must be very precisely measured to enable the
accurate calculation of higher differences. Yule was certainly aware of this point,
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and it particularly exercised Bowley (1920, page 376), who was of the view that the
method was ‘too refined and too sensitive for ordinary statistical analysis’.

6. The rather odd reference in the last sentence of the first paragraph of this quotation
disparaging knighthoods may perhaps explain the fact that, according to Aldrich
(1995, page 365), Pearson later refused a knighthood in 1935!

7. Sir Ronald Fisher also picked up this implication of the variate difference method: see
his comments (pages 534–6) on Yule (1921) and also R.A. Fisher (1925).

8. For one series the trend was assumed to follow ‘the compound interest law’ and a
nonlinear trend was fitted (in effect, a linear trend was fitted to the logarithms of the
series).

9. The method of construction is described in Persons (1916).
10. The method actually employed was set out in Persons (1917, pages 612–13) and

involved randomly drawing from tables of logarithms. In effect, Persons was creating
random samples drawn from a uniform distribution ranging from 0 to 9. This is the
distribution used to construct the sample series in our own simulations.

11. Yule admitted that he could not produce a proof of this result. It is, in fact, a special
case of a more general result proved by Egon Pearson for a non-random series: see
Pearson (1922, pages 37–40, and in particular his equation (xviii)).

12. ‘Intercorrelated’ is the term used by Pearson and Elderton for series that exhibit serial
correlation, a term not coined until Yule (1926): see §5.6.

13. The equations were estimated using ordinary least squares in EViews 6, with the
coefficients showing slight differences to those reported by Persons. Likewise, the
correlations reported in Tables 4.4 and 4.5 below were also computed using EViews 6.

14. A more accessible derivation of these results than is given by O. Anderson, which is
in German, may be found in T.W. Anderson (1971, chapter 3): see also Kendall, Stuart
and Ord (1983, chapter 46.28).

5 Nonsense Correlations, Random Shocks and Induced Cycles:
Yule, Slutzky and Working

1. The method used by Yule to produce his Figs. 5–9 is discussed in Yule (1926, page 55).
We approximate it here to recreate these distributions in our composite Figure 5.5.

2. The calculations required to construct Figure 5.6 are outlined in Yule (1926, page 56).
3. For a derivation of this result in the more general context of calculating ‘intraclass’

correlation, see Yule and Kendall (1950, §§11.40–11.41).
4. A small Gauss program was written to simulate Yule’s sampling procedure and to

compute the results shown in Table 5.1 and later in Tables 5.4 and 5.7. Necessarily,
the results differ numerically from those of Yule because of the sampling process.

5. Yule states that the maximum negative correlation is that between ‘terms 2 and 8 or
3 and 9, and is −0.988’, which is clearly a misreading of his Table VI, which gives
correlations to three decimal places, unlike our Table 5.6, which retains just two to
maintain consistency with earlier tables.

6. The serial correlations were obtained using the correlogram view in EViews 6. Com-
pared to Yule’s own heroic calculations, which he described in detail (Yule, 1926, page
42) and reported as Table XIII and Fig. 19, they are uniformally smaller but display
an identical pattern.

7. Eugen Slutzky (1880–1948), as his name is given on his 1937 Econometrica paper
(Slutzky, 1937), a translation and update of Slutzky (1927), which was written in
Russian, was a Ukrainian statistician and economist. Slutzky’s contributions to time
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series analysis have recently been revisited by Barnett (2006). Also known as Eugene
Slutsky, his other major contribution was to introduce in 1915 the ‘Slutsky decompo-
sition’ of demand functions into substitution and income effects. Although ignored
at the time, it was famously resurrected some two decades later by Hicks and Allen
(1934) and Allen (1936), who coined the term which has since become a cornerstone
of demand theory in microeconomics: see also Allen (1950). Weber (1999) and Barnett
(2004) provide recent appreciations of Slutzky’s work in economics and statistics.

8. We shall continue to use Yule’s terminology of serial correlation as this has since
entered into the lexicon of time series analysis.

9. See Slutzky (ibid., page 108) for more details.
10. The method used by Working to randomly draw such normal variates was discussed

in detail in (ibid,, pages 16–20).
11. Chartism and technical analysis as a means of forecasting financial markets have

gathered many proponents and detractors over the years: for an accessible discussion
by a member of the proponent camp, see Plummer (1989); for a well-known and
entertaining rebuttal, see Malkiel (2007).

6 Periodicities in Sunspots and Air Pressure: Yule, Walker and the
Modelling of Superposed Fluctuations and Disturbances

1. Yule (1927, pages 284–6) discussed further features of the sunspot numbers and their
related disturbances estimated from equation (6.10). These features do not seem to
appear in the extended series and are therefore not discussed here.

2. Indeed, the unusual behaviour of sunspots over the last decades of the twentieth
century has been a subject of great interest: see, for example, Solanki et al. (2004).

3. Sir Gilbert Thomas Walker (1868–1958) was, successively, a fellow of Trinity College
and lecturer in mathematics, Cambridge University, Director of the Indian Meteorolog-
ical Department, and Professor of Meteorology at Imperial College, London. Knighted
in 1924 on his return to England, Walker was perhaps the first to rigorously employ
statistical techniques in attempting to forecast meteorological variables, notably mon-
soon rains. He also published in many other areas, including the flight of birds and
on mathematical aspects of sports and games, where he was a particular expert with
boomerangs, earning the sobriquet ‘Boomerang Walker’ at Cambridge. For biographi-
cal details and more on his statistical research in meteorology, see Walker (1997) and
Katz (2002).

7 The Formal Modelling of Stationary Time Series: Wold and
the Russians

1. Herman Ole Andreas Wold (1908–1992) was a Swedish statistician who held chairs at
the universities of Uppsala and Gothenburg. As well as his early research in time series
analysis (Wold, 1938, was his doctoral dissertation), he was also known for his work in
developing partial least squares and causal chain modelling. For biographical details,
see Wold (1982) and Hendry and Morgan (1994).

2. Aleksandr Khinchin (1894–1959) was a significant figure in the Soviet school of prob-
ability theory. For a bibliography of his research in probability, see Cramér (1962).
Andrey Kolmogorov (1903–1987) was a major figure in twentieth-century mathemat-
ics, making seminal contributions in topology, turbulence and mechanics as well
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as in probability. In further related research, he established the basic theorems for
smoothing and predicting stationary stochastic processes, thus forming the basis for
the famous Weiner–Kolmogorov prediction formulae (Kolmogorov, 1941): see §16.4.

3. Wold refers to the standard deviation σ as the dispersion, which he denotes as D. We
choose to use the more familiar term variance for the ‘squared dispersion’: in a similar
vein, we denote the mean as μ rather than use Wold’s m.

4. Wold (1938) does not refer to this theorem as a decomposition (indeed, the word does
not appear in the index). Whittle (1954), in Appendix 2 of the second edition (Wold,
1954, page 106), appears to be the first to refer to it as such.

5. The Port Darwin air pressure data is not directly available and Figure 6.8 was drawn by
reading off the values of the series from the original plot in Walker (1931). Interestingly,
although the data are thus subject to a degree of measurement error, a linear regression
of air pressure on lagged air pressure gives a coefficient estimate of 0.74.

6. There are some minor differences between the serial correlations reported by Wold in
his Table 6 (page 151) and those computed here using EViews 6. In particular, Wold’s
estimate for r1 is 0.614.

7. As these estimates are extremely close to those obtained using EViews 6, which were
0.523 and −0.223, Wold’s values will continue to be used.

8 Generalizations and Extensions of Stationary Autoregressive
Models: From Kendall to Box and Jenkins

1. Sir Maurice George Kendall (1907–1983) was a major UK figure in twentieth-century
statistics. A close friend of the ageing Yule after becoming co-author of his textbook,
Kendall is perhaps best known for his co-authorship of the Advanced Theory of Statistics,
Kendall, Stuart and Ord (1983) being the fourth edition. He made seminal contri-
butions in many fields of statistics apart from time series analysis: for example, in
random number generation, multivariate analysis, rank correlation and k-statistics.
For biographical details see Ord (1984) and Stuart (1984).

2. We revert to the notation that has since become standard in time series analysis.
3. Kendall eliminated trends in the series by taking nine-year moving averages, a method

suggested by his earlier analysis of detrending oscillatory time series (Kendall, 1941).
The issue of the appropriate method of detrending will be returned to in Chapter 10.
Serial and partial correlations are calculated using EViews 6, rather than using those
reported by Kendall.

4. The ‘significance test’ employed by Kendall would appear to be that proposed by
Bartlett (1935). Inferential issues in time series analysis are developed further in
Chapter 9.

5. Most of Yule’s publications from 1939 onwards were philologically based, princi-
pally related to the occurrence of words as a means of identifying the statistical
characteristics of an author’s style: see, in particular, Yule (1944b).

6. George E.P. Box (born 1919) is an English statistician who has made fundamental
contributions in the areas of quality control, the design of experiments and Bayesian
inference as well as time series analysis. Gwilym M. Jenkins (1933–1982) was a Welsh
statistician and systems engineer. For autobiographical details of Box and his relation-
ship with Jenkins see DeGroot (1987) and Peña (2001): also see Box’s (1983) obituary
of Jenkins. The Box–Jenkins approach to time series modelling building is extensively
discussed in later chapters.
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9 Statistical Inference, Estimation and Model Building for
Stationary Time Series

1. A Markov (sometimes spelt Markoff ) process is a (possibly multivariate) stochastic pro-
cess such that the conditional probability distribution for the state at any future time,
given the present state, is unaffected by any additional knowledge of the past history of
the system. The AR(1) scheme is thus seen to be an example of a univariate Markov pro-
cess. The process was named after the Russian probabalist Andrei Andreevich Markov
(1856–1922).

2. Later studies by Craddock (1965) and Morris (1977) suggested that an autoregression
of order nine was required to model this series and evidence in favour of such a scheme
is presented later in §§9.43–9.46. There have also been many attempts to fit nonlin-
ear schemes to the sunspot index: see the references contained in Morris (1977), for
example.

3. A number of papers, beginning with Anderson (1942), refer to the cyclic definition as
being suggested by Harold Hotelling although, intriguingly, no reference to a paper by
Hotelling is ever given! The genesis of this ‘suggestion’ may have been the theorem on
circularly distributed variates on pages 371–2 of Hotelling (1936) and, more generally,
the discussion contained in sections 12–15 of that paper. The cyclic definition was
used regularly in the theoretical developments to be discussed later in this chapter as
it enabled tractable sampling distributions to be obtained.

4. A formal definition of this order notation is that f (T) will be O(g(T)) if and only if
there exist positive real numbers M and T0 such that |f (T)| ≤ M |g(T)| for all T > T0.

5. Anderson (1942) constructed this figure and associated critical values using the asymp-
totic variance. Dixon (1944) also provided critical values based on a Pearson Type I
approximation.

6. Quenouille (1948) observed that this is, in fact, the distribution of the ordinary
correlation coefficient based on T + 3 observations.

7. These moment assumptions have since been progressively weakened. Anderson and
Walker (1964) show that only a finite second moment is, in fact, required.

8. Walker (1961, Appendix) provided a more complicated adjustment for the bias in this
estimator. For this simulation it leads to a bias adjustment of the order 0.02, which
would almost eradicate the bias. He also showed that Durbin’s adjustment would be
approximately 0.004, which is what we find.

9. The likelihood principle states that everything the data has to tell about the parameters
of an assumed model is contained in the likelihood function, with all other aspects
of the data being irrelevant. From a Bayesian perspective, the likelihood function is
that part of the posterior distribution of the parameters which comes from the data.
Although the principle has by no means uniform support amongst statisticians, it does
underpin a large body of modern statistical analysis: see Barnard, Jenkins and Winsten
(1962) for a contemporary discussion of its importance to time series analysis.

10 Dealing with Nonstationarity: Detrending, Smoothing
and Differencing

1. Working concurrently with Hooker, John Norton (1902) superimposed linear time
trends on graphs of banking data from which he calculated percentage deviations
(see Klein, 1997, pages 236–40, for discussion).
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2. That the penalized least squares approach, in various forms, anteceded the H–P filter
by several decades was well known to both Leser and Hodrick and Prescott, although
the latter appear to be unaware of Leser’s paper. Pedregal and Young (2001) provide
both a historical and a multidisciplinary perspective. The Hodrick and Prescott paper
was first circulated as a working paper in 1980, only being published some 17 years
later as a journal article and many years after it had become a staple approach to
detrending macroeconomic time series. Further discussion of the H–P filter is provided
in §16.5.

3. This is the approach set out in Kendall (1946). Hall (1925) suggested the same
approach but restricted attention to local linear trends and failed to make the link
with moving averages as set out below. Interestingly, however, he introduced mov-
ing sums to remove seasonal and cyclical components, referring to these as moving
integrals and the process of computing them as moving integration, thus predating
the use of the term integrated process to refer to a cumulated variable, introduced by
Box and Jenkins (see §10.18), by some four decades.

4. A fuller discussion of this approach to trend fitting may be found in Kendall, Stuart
and Ord (1983, §§46.4–46.7), whose derivation is followed here. Further, although
rather arcane, properties of the method are provided by Kendall (1961). A recent
application of the approach is to be found in Mills (2007), where it is used to obtain
recent trends in temperatures.

5. An extension of this approach was suggested by Quenouille (1949b), who dispensed
with the requirement that the local polynomial trends should smoothly ‘fit together’,
thus allowing discontinuities in their first derivatives. As with many of Quenouille’s
contributions, this approach was both technically and computationally demanding
and does not seem to have captured the attention of practitioners of trend fitting!

6. Spencer-Smith (1947, page 105) returned to this point about moving averaging induc-
ing spurious oscillations, but defined trend in a manner rather different to that
considered here, being more akin to a long cycle: ‘such series do not contain very
prolonged steady increases or decreases in the general values of these terms, as may
happen in economic series, and where such movements occur the use of the moving
average method may be valid’.

7. Figure 10.4 is a reconstruction of the (unnumbered) figure on page 74 of Working
and Hotelling (1929). As the actual potato yield values are not given, for the purposes
of constructing the observed series and computing the trend and its probable error,
they have been ‘estimated’ from the original figure. Parameter estimates and standard
errors thus differ from those reported by Working and Hotelling.

8. The main thrust of Fisher’s paper was to investigate the dynamic relationship between
prices and trade and this led him to develop the concept of distributed lags, which has
since become a basic technique in time series econometrics. This aspect of the paper is
returned to in §12.6. Hendry and Morgan (1995, pages 45–8) reanalyse and reinterpret
Fisher’s econometric modelling.

9. As well as Tintner’s (1940) advocacy of the variate differencing method for induc-
ing stationarity, as discussed in Chapter 4, Yaglom (1955) also advocated the use
of differences, while a number of econometricians also proposed the differencing
of variables in regression analysis. Tintner and Kadekodi (1973) provide numerous
references to research in these areas during the period 1940 to 1970.

10. Pearson’s metaphor was, of course, in terms of spatial displacement, but the time
series analogy should be clear. Random walks were, in fact, first formally intro-
duced in 1900 by Louis Bachelier in his doctoral dissertation Théorie de Speculation,
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although he never used the term. Under the supervision of Henri Poincaré, Bachelier
developed the mathematical framework of random walks in continuous time (where
it is termed Brownian motion) in order to describe the unpredictable evolution of
stock prices (biographical details of Bachelier may be found in Mandelbrot, 1989: see
also Dimand, 1993). The dissertation remained unknown until it was rediscovered in
the mid-1950s after the mathematical statistician Jimmie Savage had come across a
later book by Bachelier on speculation and investment (Bachelier, 1914). A translation
of the dissertation by James Boness was eventually published as Bachelier (1964). Ran-
dom walks were independently discovered by Albert Einstein in 1905 and, of course,
have since played a fundamental role in mathematics and physics as models of, for
example, waiting times, limiting diffusion processes, and first-passage-time problems:
see Weiss (1986).

11 Forecasting Nonstationary Time Series

1. The words ‘predictable’ and ‘forecastable’ are used interchangeably throughout this
chapter and, indeed, throughout the book, even though in the modern literature on
the econometrics of forecasting they have different, albeit subtle and rather deep,
definitions. For a detailed discussion of these different definitions, see Clements and
Hendry (1998, chapter 2). Briefly, predictability is defined as a property of a random
variable in relation to an information set (the conditional and unconditional distribu-
tions of the variable do not coincide). It is a necessary, but not sufficient, condition
for forecastability, as the latter requires knowledge of what information is relevant
and how it enters the causal mechanism. Along with the great majority of researchers
and practitioners, such technical niceties will be ignored here and the two words will
continue to be regarded as synonyms.

2. This paper also includes Samuelson’s memorable and often repeated quote that the
‘Dow Jones index has predicted nine of the last five recessions’ (ibid., page 5).

3. Estimation of the autoregressive parameter obtains a value of 0.813 for φ, but the value
of 0.8 continues to be used for simplicity.

4. Attention is focused here on the non-seasonal variants of exponential smoothing.
Discussion of the seasonal models is to be found in §14.18.

5. Cogger (1974) was later to show that nth-order exponential smoothing was optimal
for an ARIMA(0,n,n) process with equal moving average roots.

12 Modelling Dynamic Relationships Between Time Series

1. δ2/s2 is the von Neumann (1941, 1942) ratio which was proposed as a test of (first-order)
autocorrelation and was a forerunner of the Durbin–Watson test (see §9.18).

2. Hannan’s efficiency analysis required some knowledge of the distribution of these
statistics when the null of no correlation was false, in particular the expected val-
ues under the alternative. With regard to actual distributions, McGregor (1962) and
McGregor and Bielenstein (1965) derived the distribution of the correlation coeffi-
cient between two normal AR(1) processes, while Ames and Reiter (1961) obtained
some sampling distributions via a further simulation experiment.

3. Bradford Bixby Smith was an economist employed by the United States Bureau of
Agricultural Economics. As will be seen from these comprehensive excerpts from Smith
(1926), it is clear that his ideas were half a century ahead of their time, covering as
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they do almost all of the concerns about detrending and differencing that were later
raised by the numerous econometricians researching this area during the decade and
a half from the mid-1970s to the end of the 1980s (see Mills, 2011, and the discussion
in §16.2). Yet a JSTOR search reveals not a single reference to the paper!

Interestingly, this search (for ‘Bradford Smith’) produced a single reference to an
earlier paper (Smith, 1925) in which he advocated that trends and seasonal patterns
should not be eliminated before time series were correlated: ‘the unconsidered prac-
tice of eliminating trend and seasonal from series prior to their correlation is to be
looked upon askance, therefore. It is often a serious error’ (Smith, 1925, page 543)
and ‘… correlation coefficients secured by simultaneous, or multiple, correlation meth-
ods will be as high or higher, and never less, than those resulting from any possible
sequence of consecutive elimination of the influence of independent factors from the
dependent, of which current methods of eliminating seasonal variations before corre-
lating are an example’ (Smith, 1925, page 545). For holding these views, Smith was
taken to task by Frisch and Waugh (1933), who showed that it was irrelevant whether
such trends and seasonal movements were eliminated before regressing two series or
whether they were included as regressors in a multiple regression in the sense that
the resulting coefficient estimates would be identical. The resulting ‘Frisch–Waugh
Theorem’ was the basis for Lovell’s (1963) theory of seasonal adjustment by regres-
sion methods (see §14.16). Notwithstanding this error of interpretation (but see Mills,
2011, for mitigatory arguments from a modern perspective), it is clear that Bradford
Smith was a prescient analyser of economic time series and that his work should be
more widely known amongst both practitioners of econometric time series modelling
and historians of the subject.

4. The second reason that Fisher’s paper was of particular importance was for his interpre-
tation of the economic ‘business cycle’ which, although certainly of historical interest,
is somewhat tangential to the present focus. Fisher concluded from his statistical
analysis of the relationship between trade and price changes that the business cycle was

simply the fluctuation about its own mean [rather than] a regular succession of
similar fluctuations, constituting some sort of recurrence, so that, as in the case of
the phases of the moon, the tides of the sea, wave motion, or pendulum swing,
we can forecast the future on the basis of a pattern worked out from past experi-
ence and which we have reason to think will be copied in the future. We certainly
cannot do that in predicting the weather or Monte Carlo luck. Can we do so as to
business? Not so long as business is dominated by changes in the price level! For
changes in the price level show no regular occurrence … .

In short, if the one non-cyclical or irregular factor, price-change, can so nearly
explain the behaviour of business, there is little room left for any cyclical, or reg-
ular, factors, especially as there must be numerous other non-cyclical ones always
at work. (I. Fisher, 1925, page 192: italics in original)

Fisher developed an extended physical analogue for business cycle movements which
may be contrasted with the randomly struck pendulum offered almost contempora-
neously by Yule (1927) (§6.1):

it would be not the swing of a clock pendulum but the swaying of the trees or
their branches. If, in the woods, we pull a twig and let it snap back, we set up
a swaying movement back and forth. That is a real cycle, but if there is no fur-
ther disturbance, the swaying soon ceases and the twig becomes motionless again.
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In actual experience, however, twigs or tree-tops seldom oscillate so regularly, even
temporarily. They register, instead, chiefly the variations in wind velocity. A steady
wind may keep the tree for weeks at a time, leaning almost continuously in one
direction and its natural tendency to swing back is thereby defeated or blurred. Its
degree of bending simply varies with the wind. That is, the inherent pendulum
tendency is ever being smothered. In the net resultant motion there is no percepti-
ble trace left of real recurrences and no would-be forecaster would attempt to base
his estimate of the future behaviour of a tree-top on a statistical average period of
recorded swayings taken in gusts of wind.’ (ibid., page 192)

He then extended the analogy to take into account the outside forces that are neces-
sary to counteract ‘frictions’ that would otherwise bring the system to rest: ‘these …
will not perpetuate, but obfuscate, the cycle, like the wind blowing on the trees’ (ibid.,
page 192). Consequently, business fluctuations were characterized not by a clock pen-
dulum but by ‘a bough of a tree, in the grip of outside forces of which the chief … was
the rise and fall of the price level, the dance of the dollar’ (ibid., page 194: italics added
for emphasis). Thus, rather than an oscillatory autoregressive process of the type sug-
gested by Yule, business fluctuations were more akin to random variations, reacting to
various extraneous and unpredictable forces.

5. Hendry and Morgan (1995, pages 45–8) attempted to reproduce Fisher’s statistical anal-
ysis, uncovering a number of problems and inconsistencies that, in hindsight, cast
considerable doubt on the veracity of the conclusions drawn by Fisher.

6. Distributed lags had also made a considerable impact in econometrics through the
work of, most notably, Koyck (1954), Jorgensen (1963) and Almon (1965).

7. Box and Jenkins (1970, pages 384–6) suggested an alternative procedure for identifying
the noise through the prewhitened input and output.

8. In modern terminology, these schemes are known as the vector AR, vector MA and
vector ARMA models, with common acronyms VAR, VMA and VARMA, but such
terms only came into common parlance some two decades after the publication of
Quenouille’s monograph: see, for example, Anderson (1980), Sims (1980), Tiao and
Box (1981) and the book by Lütkepohl (1991).

13 Spectral Analysis of Time Series: The Periodogram Revisited
and Reclaimed

1. One of the difficulties with spectral analysis is the multitude of different notations and
definitions that are available. A consistent notation has been adhered to throughout
this chapter which may differ from that used in the cited references.

14 Tackling Seasonal Patterns in Time Series

1. Hylleberg (1992) provides a convenient and useful schematic presentation, complete
with references, of Mendershausen’s survey.

2. Concurrently with the Census Bureau, the US Bureau of Labor Statistics developed
their own technique to seasonally adjust monthly employment, unemployment and
labour force data: see BLS (1966) for details. Although this method certainly provoked
interest amongst statisticians (see, for example, Nerlove, 1965, and Young, 1968), it
never found its way into as widespread use as X-11.
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3. Estimation of the model in EViews 6 obtained the estimates θ̂ = 0.403, �̂ = 0.636 and
σ̂2

a = 1.332 × 10−3.

15 Emerging Themes

1. The Cauchy distribution is the ratio of two independent standard normal distribu-
tions and has no defined moments, although its location parameter defines both the
median and the mode. Allowing the initial value of x to be non-zero complicates this
limiting distribution, although White (1958, equation (4.25)) was still able to provide
an explicit form for it.

2. Gauss’ original derivation of the recursive least squares (RLS) algorithm is given in Young
(1984, Appendix 2), which provides the authorized French translation of 1855 by
Bertrand along with comments by the author designed to ‘translate’ the derivation
into modern statistical notation and terminology. Young (2010, Appendix A) provides
a simple vector-matrix derivation of the RLS algorithm.

3. Hald (1981) and Lauritzen (1981, 2002) claim that T.N. Thiele, a Danish astronomer
and actuary, proposed in an 1880 paper a recursive procedure for estimating the param-
eters of a model that contained, as we know them today, a regression component, a
Brownian motion and a white noise, that was a direct antecedent of the Kalman filter.
Closer antecedents were Peter Swerling, an eminent radar theoretician then working
for the RAND Corporation (see Swerling, 1959) and the Soviet mathematician Ruslan
Stratonovich, who had developed a more general nonlinear filter of which Kalman’s
filter was a linear special case (see Stratonovich, 1960).
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