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Preface

This book is a short introduction to general relativity, intended primarily as a
one-semester course for first-year graduate students (or for seniors) in physics,
or in related subjects such as astrophysics. While we expect such students to
have been exposed to special relativity in their introductory modern physics
courses (most likely in their sophomore year) it is unlikely that they have used
the standard 4-vector methods, and so we supply such a review in Appendix A.
We strongly advise reading Appendix A first.

Most students approaching general relativity require an introduction to
tensors, and these are dealt with in Chapter 1 and the first half of Chap-
ter 2, where geodesics, absolute and covariant differentiation, and parallel
transport are discussed. This enables us to discuss the spacetime of general
relativity in the latter half of the chapter and takes us on to a discussion of
the field equations in Chapter 3. In Chapter 4 the results learned are applied
to physics in the vicinity of a massive object, where we have tried to com-
pare general relativistic results with their Newtonian counterparts. Chapters 5
and 6, on gravitational radiation and the elements of cosmology, respectively,
give further applications of the theory, but students wanting a more detailed
knowledge of these topics (and indeed all topics) would have to turn to the
texts referred to in the body of the book.

Over the years, a version of this course has been offered variously (by
JDN) at the University of Mississippi (Ole Miss), at Bard College, and at
SUNY New Paltz, as well as (by JF) at the University of Sussex. It was often
found that there was not enough time for Chapters 5 and 6, unless one made
judicious cuts elsewhere. A few cuts may be made in the first two chapters, but
it would probably be better to omit either Chapter 5, or Chapter 6 (or both)
than to omit Appendix A, since a sound knowledge of the 4-vector formalism
of special relativity is an essential prerequisite.

Exercises have been provided at the end of most sections and problems at
the end of chapters. The former are often quite straightforward (but possibly
tedious) verifications needed for a first reading of the book, while the latter
are suitable for homework-type problems.
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The original version of this book was published in 1979, with translations
into other languages following in the 1980s and 1990s. That version placed
mathematical demands on the reader which were not entirely appropriate
for a physics student, requiring him or her to acquire mathematical skills
beyond what is needed for a first course in general relativity. In the second
edition, the mathematical sections were completely reorganized and rewritten,
so as to make the text more accessible to the physics student who had the
kind of background gained from following a course in vector calculus, with
applications to field theories such as Newtonian gravitation and Maxwell’s
theory of electromagnetism. However, for the third edition, we have restored
in Appendix C much of the original material on tensors and manifolds missing
from the second edition. This would be appropriate reading for mathematics
majors seeking a more formal approach to tensors than physics students might
desire.

The third edition also includes some minor updating. In the chapter con-
cerning physics in the vicinity of a massive object (Chapter 4) we have added
a short section on the Kerr solution and its relevance to the Gravity Probe B
experiment launched in 2004; and the chapter on cosmology (Chapter 6) has
been supplemented by two sections concerning redshift and galaxy recession
with speeds greater than that of light.

With gratitude, mention must be made of John Ray, Richard Halpern,
Peter Skiff, Jeffrey Dunham, and Tarun Biswas, all of whom have been of
assistance in one way or another. Marc Bensadoun kindly supplied the fig-
ure showing the measurements of cosmic background microwave radiation in
Chapter 6 and gave us permission to reproduce it here. The first edition of the
book was completed with the help and exemplary typing skills of Jill Foster,
whose transcription of the original text to computer files served as a founda-
tion for its revision and conversion to ITEX format. We are also grateful to
J. Snider, M.E. Horn, and N.B. Speyer for providing us with lists of errors
from the first and second editions.

We have also included at the end of the book outline solutions (which are
not model answers, and for which the student must supply all the details).
Further, a beautifully written and detailed solution set for the exercises and
problems is available from Professor J.S. Dunham, Department of Physics,
Middlebury College, Middlebury, Vermont 05753.

David Nightingale, New Paltz
James Foster, Dumfries
January 2005
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Introduction

The originator of the general theory of relativity was Einstein, and in 1919
he wrotel: The special theory, on which the general theory rests, applies to
all physical phenomena with the exception of gravitation; the general theory
provides the law of gravitation and its relation to the other forces of nature.
The claim that the general theory provides the law of gravitation does not
mean that H.G. Wells’ Mr Cavor could now introduce an antigravity material
and glide up to the Moon, nor, for example, that we might produce intense
permanent gravitational fields in the laboratory, as we can electric fields. It
means only that all the properties of gravity of which we are aware are ex-
plicable by the theory, and that gravity is essentially a matter of geometry.
Before saying how we get to the general from the special theory, we must first
discuss the principle of equivalence.

In electrostatics, when a test particle of charge ¢ and inertial mass m; is
placed in a static field E, it experiences a force ¢gE and undergoes an acceler-
ation a given by

a=(qg/m;)E. (0.1)

In contrast, a test particle of gravitational mass m, and inertial mass m;
placed in a gravitational field g experiences a force mgg and undergoes an
acceleration a given by

a = (mg/mi)g. (0.2)

It is an experimental fact (known since Galileo’s time) that different parti-
cles placed in the same gravitational field acquire the same acceleration (see
Fig. 0.1). This implies that the ratio my/m; appearing in equation (0.2) is
the same for all particles, and by an appropriate choice of units this ratio
may be taken to be unity. This equivalence of gravitational and inertial mass
(which allows us to drop the qualification, and simply refer to mass) has been
checked experimentally by Eotvos (in 1889 and 1922), and more recently and
more accurately (to one part in 10!') by Dicke and his co-workers (in the

' The Times, London, 28 November 1919.
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1960s). In contrast, the ratio ¢/m; occurring in equation (0.1) is not the same
for all particles (see Fig. 0.1).

vy
B |-
Y
Bundle -

of 4
protons

Fig. 0.1. Test particles in (a) a gravitational field, and (b) an electrostatic field.

Let us now consider the principle of equivalence, which it is instructive to
do from the point of view of Einstein’s freely falling elevator. If we consider a
projectile shot from one side of the elevator cabin to the other, the projectile
appears to go in a straight line (the elevator cable being cut) rather than in
the usual curved trajectory. Projectiles that are released from rest relative to
the cabin remain floating weightless in the cabin. Of course, if the cabin is
left to fall for a long time, the particles gradually draw closer together, since
they are falling down radial lines towards a common point which is the center
of the Earth. However, if we make the proviso that the cabin is in this state
for a short time, as well as being spatially small enough for the neglect of
tidal forces in general, then the freely falling cabin (which may have X,Y, Z
coordinates chalked on its walls, as well as a cabin clock measuring time T')
looks remarkably like an inertial frame of reference, and therefore the laws
of special relativity hold sway inside the cabin. (The cabin must not only
occupy a small region of spacetime, it must also be nonrotating with respect
to distant matter in the universe.?) All this follows from the fact that the
acceleration of any particle relative to the cabin is zero because they both have
the same acceleration relative to the Earth, and we see that the equivalence
of inertial and gravitational mass is an essential feature of the discussion. We
may incorporate these ideas into the principle of equivalence, which is this: In

2This statement is related to Mach’s principle. For a discussion, see Weinberg,
1972, §3, and Anderson, 1967, Chap. 10.
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a freely falling (nonrotating) laboratory occupying a small region of spacetime,
the laws of physics are the laws of special relativity.

As a result of the above discussion, the reader should not believe that we
can actually transform gravity away by turning to a freely falling reference
frame. It is absolutely impossible to transform away a permanent gravitational
field of the type associated with a star (as we shall see in Chap. 3), but it is
possible to get closer and closer to an ideal inertial reference frame if we make
our laboratory occupy smaller and smaller regions of spacetime.

The way in which Einstein generalized the special theory so as to incorpo-
rate gravitation was extremely ingenious, and without precedent in the history
of science. Gravity was no longer to be regarded as a force, but as a mani-
festation of the curvature of spacetime itself. The new theory, known as the
general theory of relativity (or general relativity for short), yields the special
theory as an approximation in exactly the way that the principle of equiva-
lence requires. Because of the curvature of spacetime, it cannot be formulated
in terms of coordinate systems based on inertial frames, as the special theory
can, and we therefore use arbitrary coordinate systems. Indeed, global iner-
tial frames can no longer be defined, the nearest we can get to them being
freely falling nonrotating frames valid in limited regions of spacetime only. A
full explanation of what is involved is given in Chapter 2, but we can give a
limited preview here.

In special relativity, the invariant expression which defines the proper time
T is given by

Adr? =, dX*dX", (0.3)

where the four coordinates X°, X', X2 X3 are given in terms of the usual
coordinates T, X, Y, Z by

X0=¢r, X'=X, X’=Y, X’=_2. (0.4)

(See Sec. A.0, but note the change to capital letters. See also Sec. 1.2 for an ex-
planation of the summation convention.) If we change to arbitrary coordinates
z*, which may be defined in terms of the X* in any way whatsoever (they
may, e.g., be linked to an accelerating or rotating frame), then expression (0.3)
takes the form

*dr? = g, dr*dz”, (0.5)
where

0XP 0X°

G =07 i G
This follows from the fact that dX? = (0X?/0z*)dz*. In terms of the coor-
dinates X", the equation of motion of a free particle is

d*X*/dr* =0, (0.6)

3Some authors distinguish between weak and strong equivalence. Our statement
is the strong statement; the weak one refers to freely falling particles only, and not
to the whole of physics.



4 Introduction

which, in terms of the arbitrary coordinates, becomes

Pzt dz¥ dz°
r* — =0 .
dr? v dr dr ’ (07)
where
u ozt §*XP

vo " §XP 9z Hz°’

as a short calculation (involving the chain rule) shows. Einstein’s proposals for
the general theory were that in any coordinate system the proper time should
be given by an expression of the form (0.5) and that the equation of motion of
a free particle (i.e., one moving under the influence of gravity alone, gravity no
longer being a force) should be given by an expression of the form (0.7), but
that (in contrast to the spacetime of special relativity) there are no preferred
coordinates X* which will reduce these to the forms (0.3) and (0.6). This is the
essential difference between the spacetimes of special and general relativity.
The curvature of spacetime (and therefore gravity) is carried by the g, and
as we shall see, there is a sense in which these quantities may be regarded
as gravitational potentials. We shall also see that the I'¥ are determined by
the g,., and that it is always possible to introduce local inertial coordinate
systems of limited extent in which g,, ~ n,, and I'}, =~ 0, so that equations
(0.3) and (0.6) hold as approximations. We thus recover special relativity as an
approximation, and in a way which ties in with our discussion of the principle
of equivalence.

Because the introduction of curvature forces us to use arbitrary coordinate
systems, we need to formulate the theory in a way which is valid in all coordi-
nate systems. This we do by using tensor fields, the mathematics of which is
developed in Chapter 1; the way these fit into the theory is explained in Chap-
ter 2. It might be thought that this arbitrariness causes problems, because the
coordinates lose the simple physical meanings that the preferred coordinates
X* of special relativity have. However, we still have contact with the special
theory at the local level, and in this way problems of physical meaning and
the correct formulation of equations may be overcome. The basic idea is con-
tained in the principle of general covariance, which may be stated as follows:
A physical equation of general relativity is generally true in all coordinate sys-
tems if (a) the equation is a tensor equation (i.e., it preserves its form under
general coordinate transformations), and (b) the equation is true in special
relativity. The way in which this principle works and the reason why it works
are explained in Section 2.5.

General relativity should not only reduce to special relativity in the appro-
priate limit, it should also yield Newtonian gravitation as an approximation.
Contacts and comparisons with Newtonian theory are made in Sections 2.6,
2.7, 2.8, and 2.9, and extensively in Chapter 4, where we discuss physics in the
vicinity of a massive object. These reveal differences between the two theories
which provide possible experimental tests of the general theory, and for con-
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venience we list here the experimental and observational evidence concerning
these tests.

1.

Perihelion advance. General relativity predicts an anomalous advance of
the perihelion of planetary orbits. The following (and many more) obser-
vations exist for the solar system?:

Mercury 43.11 + 0.45” per century,

Venus 8.4 £+ 4.8” per century,

Earth 5.0 + 1.2” per century.

The predicted values are 43.03", 8.6”, and 3.8", respectively.

. Deflection of light. General relativity predicts that light deviates from

rectilinear motion near massive objects. The following (and many more)
observed deflections exist for light passing the Sun at grazing incidence:

1919 Greenwich Observatory 1.98 £ 0.16",
1922 Lick Observatory 1.82 £ 0.20”,
1947 Yerkes Observatory 2.01+0.27",

1972 Mullard Radio Observatory, Cambridge

(using radio sources and interferometers) 1.82 + 0.14”.
The predicted value is 1.75".
Spectral shift. General relativity predicts that light emanating from near a
massive object is red-shifted, while light falling towards a massive object
is blue-shifted. Numerous observations of the spectra of white dwarfs, as
well as the remarkable terrestrial experiments carried out at the Jefferson
Laboratory® verify the general-relativistic prediction.
Time delay in radar sounding. General relativity predicts a time delay in
radar sounding due to the gravitational field of a massive object. Exper-
iments involving the radar sounding of Venus, Mercury, and the space-
crafts Mariner 6 and 7, performed in the 1960s and 1970s, have yielded
agreement with the predicted values to well within the experimental un-
certainties.®
Geodesic effect. General relativity predicts that the axis of a gyroscope
which is freely orbiting a massive object should precess. For a gyroscope
in a near-Earth orbit this precession amounts to about 8’ per year, and
an experiment involving a gyroscope in an orbiting satellite was launched
in 2004.7
Frame-dragging. General relativity predicts that the axis of a gyroscope
in polar orbit around a spinuing massive body will also precess, being
‘dragged around’ in the same sense as the spin. The same gyroscopes
orbiting in the above 2004 experiment are to measure this tiny effect as
well.®

“The figures are taken from Duncombe, 1956.

5See Pound and Rebka, 1960.

8See Shapiro, 1968; Shapiro et al., 1971; and Anderson et al., 1975.
"See Sec. 4.7.

8See Sec. 4.10.
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While all the above effects are small for our solar system, some larger,
and presumably general-relativistic, effects have been observed since 1975 for
the two mutually orbiting neutron stars PSR 1913+16. However, Einstein’s
theory of general relativity does not directly treat two such massive objects,
and Chapter 4 (on physics in the vicinity of a massive object) looks only at
the motions of a test particle in the field of one massive object.

Finally, let us say something about the notation used in this book. Wher-
ever possible we have chosen it to coincide with that of the more recent
and influential texts on general relativity. For working in spacetime, we use
Greek suffixes (p, v, etc.) and these have the range 0, 1, 2, 3, while for three-
dimensional space we use lower-case English suffixes from the middle of the
alphabet (7, j, etc.) and these have the range 1, 2, 3. For working on a two-
dimensional surface, we use upper-case English suffixes from the beginning of
the alphabet (A, B, etc.) and these have the range 1, 2. The signature of the
metric tensor is —2, which means that ngg = 1, 711 = 122 = 1133 = —1. Rather
than use gravitational units in which the gravitational constant G and the
speed of light ¢ are unity, we have retained G and ¢ throughout, except in
Chapter 6 where ¢ = 1. In the sections dealing with general tensor fields and
curvature, the underlying space or manifold is of arbitrary dimension, and we
have used lower-case English suffixes from the beginning of the alphabet (a,
b, etc.) to denote the arbitrary range 1,2,..., N. Where an equation defines
some quantity or operation, the symbol = is used on its first occurrence, and
occasionally thereafter as a reminder. Important equations are displayed in
boxes.
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Vector and tensor fields

1.0 Introduction

In this first chapter we concentrate on the algebra of vector and tensor fields,
while postponing ideas that are based on the calculus of fields to Chapter 2.
Our starting point is a consideration of vector fields in the familiar setting of
three-dimensional Euclidean space and how they can be handled using arbi-
trary curvilinear coordinate systems. We then go on to extend and generalize
these ideas in two different ways, first by admitting tensor fields, and second
by allowing the dimension of the space to be arbitrary and its geometry to
be non-Euclidean.! The eventual goal is to present a model for the spacetime
of general relativity as a four-dimensional space that is curved, rather than
flat. While some aspects of this model emerge in this chapter, it is more fully
developed in Chapters 2 and 3, where we introduce some more mathematical
apparatus and relate it to the physics of gravitation.

1.1 Coordinate systems in Euclidean space

In this and the next five sections we shall be working in three-dimensional
Euclidean space. We shall take it to be equipped with a Cartesian system
of coordinates (x,y,2z) and an associated set of unit vectors {i,j,k}, each
pointing in the direction of the corresponding coordinate axis. We shall regard
this Cartesian setup as a fixed and permanent feature of our Euclidean space;
its purpose is to serve as a basic reference system for the description of other
(generally non-Cartesian) coordinate systems.

Suppose then that we have an alternate coordinate system (u, v, w) that is
non-Cartesian, such as spherical coordinates (r, 8, ¢), as in the example below.
We can express the Cartesian coordinates x, y, z in terms of u, v, w,

'We use the term non-Euclidean simply to mean not Euclidean. Mathematicians
sometimes restrict the term to describe the geometries that arise as a result of
modifying Euclid’s parallel postulate.
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z=z{u,v,w), y=vylu,v,w), z=z(u,vw)), (1.1)

and, in principle, invert these to get u, v, w in terms of z, y, z. Through
any point P with coordinates (ug, vg, wo) there pass three coordinate surfaces,
given by u = ug, v = vg, and w = wy, which meet in coordinate curves. The
following example serves to illustrate these ideas.

Example 1.1.1
For spherical coordinates we have

x=rsinf cos¢, y=rsinfsing, z=rcosh, (1.2)

where the conventional ranges for the coordinates are?

r>0, 0<0<7, 0<¢<2nm.

The coordinate surface r = rg is a sphere of radius ry (because z2 +y? + 22 =
r2), the coordinate surface § = 6 is an infinite cone with its vertex at the
origin and its axis vertical, and the coordinate surface ¢ = ¢y is a semi-infinite
plane with the z axis as its edge. (See Fig. 1.1.)

Fig. 1.1. The coordinate surfaces and coordinate curves of spherical coordinates.

The surfaces 6 = 6y and ¢ = ¢q intersect to give a coordinate curve which
is a ray (part of a line) that emanates from O and passes through P; the
surfaces ¢ = ¢y and 7 = 7g intersect to give a coordinate curve which is a
semicircle having its endpoints on the z axis and passing through P; and the

2In practice, one usually lets ¢ wrap around and take all values, so that the ¢
coordinate of a point is unique only up to multiples of 27.
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surfaces r = rg and # = 6, intersect to give a coordinate curve which is a
horizontal circle passing through P with its center on the 2z axis.

The three equations (1.1) can be combined into a single vector equation
that gives the position vector r of points in space as a function of the coordi-
nates u, v, w that label the points:

r = z{u,v,w)i+ ylu,v,w)j+ z(u,v,w) k. (1.3)
Setting w equal to the constant wy, but leaving u, v to vary, gives
r :w(u,v,wo)i+y(u,v,w0)j +Z<U,?],U)0) k7 (14)

which is a parametric equation for the coordinate surface w = wg in which
the coordinates u, v play the role of parameters. Parametric equations for the
other two coordinate surfaces arise similarly. If in equation (1.3) we set v = vg
and w = wg, but let u vary, then we get

r = x{u, vg, wo) i + y(u, v, wy) j + 2(u, vo, wo) k, (1.5)

which is a parametric equation for the coordinate curve given by the inter-
section of v = vy and w = wyg, in which the coordinate u acts as a parameter
along the curve. Parametric equations for the other two coordinate curves
arise similarly.

If we differentiate equation (1.5) with respect to the parameter u, then
we get a tangent vector to the coordinate curve. Since this differentiation is
done holding v and w constant (v = vy, w = wyp), it amounts to differenti-
ating equation (1.3) partially with respect to w. Similarly, by differentiating
equation (1.3) partially with respect to v and w, we get tangent vectors to
the other two coordinate curves. Thus, the three partial derivatives

e, =0r/0u, e, =0r/dv, e, =0r/ow, (1.6)

when evaluated at (uo,vo,wp), give tangent vectors to the three coordinate
curves that pass through P.

The usual way forward in vector calculus is made on the assumption that
the coordinate system is orthogonal (which means that the coordinate surfaces
intersect orthogonally, so that the three vectors (1.6) are mutually orthogonal)
and involves normalizing the vectors by dividing them by their lengths to get
unit vectors. Thus if

hl = |eu|7 h? = levh h3 = lew‘a

then the unit vectors are
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The set of vectors {&,,€,,6,} is then used as a basis for vectors at P, by
writing any vector A in the form

A=aé,+86&,+78,.

The triple (@, 3,7) comprises the components of A relative to the basis
{€u,€y,€u}.

However, our way forward does not require the coordinate system to be
orthogonal, nor do we bother normalizing the tangent vectors to make them
unit vectors. So at each point P we have the natural basis {ey, ey, ey} pro-
duced by the partial derivatives (as given by equation (1.6)) and, in general,
these vectors are neither unit vectors nor mutually orthogonal. We continue
with the example of spherical coordinates to illustrate the difference between
the natural (or “hats-off”) basis and the normalized (or “hats-on”) basis.

Example 1.1.2
In terms of spherical coordinates (r, 8, ¢) the position vector r is

r=rsinfcos¢i+ rsinfsingj+ rcosfk,
which gives the three natural basis vectors

e, =0r/0r =sinfcos¢pi+sinfsingj+ cosbk,
€9 =0r/00 =rcosfcosdi+rcosfsingj—rsinfk,
e; =0r/0¢ = —rsinfsinpi+ rsinfcosj.

The directions of these vectors are shown in Figure 1.1. Their lengths are
hi=le; =1, hy=legl =7, hs=|es|=rsind,
so the normalized basis vectors are

é, =sinfcos¢i+sinfsingj+ cosfk,
&g = cosfcosgi+ cosfsingj—sinbk,
€, = —singi+cosgj.

The basis vectors satisfy
e.-e=ep-ey=¢ey-e =0,

so0 these coordinates are orthogonal.

There is, in fact, another way in which the coordinate system (u,v,w) can
be used to construct a basis at P. This uses the normals to the coordinate
surfaces rather than the tangents to the coordinate curves.

As remarked above, we can in principle invert equations (1.1) to obtain u,
v, w in terms of z, y, z:
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u=u(z,y,2), v=v(z,yz2), w=uwy,z2). (L.7)

This allows us to regard each coordinate as a scalar field and to calculate their
gradients:

ou, Ou ou
Vu £1+8—yJ+—£k’
ov., Ov., Ov
Vo %l+8_yj+&k’ (1.8)
ow ow ow
B N “k
Vw 5 1+8y +8

At each point P, these gradient vectors are normal to the corresponding level
surfaces through P, which are the coordinate surfaces u© = ug, v = vg, w = wy.
We therefore obtain {Vu, Vv, Vw} as an alternate basis at P. This basis is the
dual of that obtained by using the tangent vectors to the coordinate curves
and, to distinguish it from the previous one, we write its basis vectors with
their suffixes as superscripts:

e"=Vu, e'=Vv, e¥=Vw. (1.9

‘Placing the suffixes in this position may seem odd at first (not least because
of a possible confusion with powers), but it is part of a remarkably elegant
and compact notation that will be developed more fully in later sections.

If the coordinate system is orthogonal, then the normals to the coordinate
surfaces coincide with the tangents to the coordinate curves, making any dis-
tinction between {e,, e,, €, } and its dual {e*, e”,e™} just a matter of lengths,
rather than the lengths and directions of the basis vectors. If the basis vectors
are normalized, then the distinction disappears altogether. Consequently, to
illustrate better the two bases that arise naturally from the coordinate system,
we should use one that is not orthogonal, rather than continue using spherical
coordinates for examples.

Example 1.1.3
Consider a coordinate system (u,v,w) defined by

r=u+v, y=u-—v, z=2uw+w, (1.10)
where —00 < u < 00, —00 < v < 00, —00 < w < 00. Inverting these equations
gives

uz%(w%—y), U:%(l'—y)a wzz_%(a;Q_yQ)? (111)
from which we see that the coordinate surfaces © = ugy form a family of
planes, as do the surfaces v = vp, while the surfaces w = wy form a family of

hyperbolic paraboloids.
The position vector r is given by

r=(u+v)i+(u—0)j+ 2uv+w)k,
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from which we get the basis vectors

e, =0r/Ou=1i+j+ vk,
e, =0r/0v=1-j+ 2uk, (1.12)
e, = 0r/0w =k.

Only the last of these is a unit vector.
None of the dot products

€, €, =AUy, e, €y, =2U, €, €, =20

is in general zero, so the system is not orthogonal.
Using equations (1.11), we obtain the dual basis vectors
e =Vu=zii+3]j,
e’ =Vu=35i-1j,
e’ =Vw=-zi+yj+k=~u+v)i+{u—-v)j+k

We see that in general e* is not parallel to'e,, eV is not parallel to e,, and
e" is not parallel to e,.

Given a vector field A, we can at each point P refer A to either the basis
{ey, ey, ey} or the dual basis {e*,e’,e"}:

A= Ae, + Ne, + \Yey,

1.13
A= Ae¥ + e’ + A,ev. ( )

We have two sets of components, (A%, A\?, A*) and (A, Ay, Ay ), the positioning
of the suffixes serving to distinguish them. There are, in fact, connections be-
tween these two sets of components, as well as between the two bases involved.
These connections will be established in the next section, after introducing
the suffix notation, which allows easier handling of the equations involved.

Exercises 1.1

1. Cylindrical coordinates (p, ¢, z) are defined by
r=pcos¢i+psingj+ zk,

where 0 < p <00, 0 < ¢ < 27, —00 < 2z < 00.
Obtain expressions for the natural basis vectors e,, e4, e, and the dual
basis vectors e?, e?, e in terms of i, j, k.

2. Show that, when referred to
(a) the natural basis {e,,eg, €4} of spherical coordinates,
(b) the natural basis {e,, ey, e} of cylindrical coordinates,
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(c) the natural basis {e,,e,,e,} of the paraboloidal coordinates of Ex-
ample 1.1.3,

the constant vector field i is given by

(a) i=sinfcospe, +r 1cosfcospey —r~

(b) i=rcosge, —p~lsingpey,

(c) i=1e,+356€ — (u+v)ey.

cosecfsing ey,

1.2 Suffix notation

The suffix notation provides a way of handling collections of related quanti-
ties that otherwise might be represented by arrays. The coordinates of a point
constitute such a collection, as do the components of a vector, and the vectors
in a basis. The basic idea is to represent the members of such a collection by
means of a kernel letter to which is attached a literal suffix (or literal suffixes)
representing numbers that serve to label the quantities in the collection. A
suffix can appear either as a subscript or a superscript, and there can be more
than one suffix attached to a kernel letter. When used with the summation
convention (explained below), the suffix notation gives an elegant and com-
pact means of handling coordinates, components, basis vectors, and similar
collections of related quantities. To see how it works, let us re-express the
results of the last section using the suffix notation, and then extend them to
learn a little more about natural bases, their duals, and the components of
vectors.

We shall use v* (i = 1,2,3) in place of (u,v,w) for coordinates, {e;}
(i = 1,2,3) in place of {e,,e,,e,} for the natural basis, and {e‘} (i = 1,2,3)
in place of {e*,e”,e"} for the dual basis. For a vector A, we denote its com-
ponents relative to {e;} by A* (i = 1,2, 3), and its components relative to {e'}
by A; (i =1,2,3). We can then re-express equations (1.13) as

3
A=Mep+ Ney+ Neg =Y Ne; (1.14)
i=1
and
3 .
)\:)\181 +)\292+)\3€‘,3 :Z/\iel. (115)

i=1

There are two ways that we can economize on our notation. The first is
to agree that literal suffixes taken from around the middle of the alphabet
(i.e., 1,7, k,...) always run through the values 1, 2, 3. That would allow us
to drop the parenthetical comment (i = 1,2,3) that occurs five times in the
previous paragraph. The second is to agree that if a literal suffix occurs twice,
once as a subscript and once as a superscript, then summation over the range
indicated by the repeated suffix is implied without the use of Z?:l to indicate
summation. We can therefore shorten equations (1.14) and (1.15) to
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A=\e; and A= \e' (1.16)

This agreement that a repeated suffix implies summation is known as the
summation convention and is due to Finstein. Two suffixes used like this to
indicate summation are called dummy suffizes, and they may be replaced by
any other letter not already in use in the term involved. (Proper use of the
convention requires that, in any term, a suffix should not occur more than
twice, and that any repeated suffix should occur once as a superscript and
once as a subscript.) Thus we could equally well write A = Me; and A = \;e’
to express A in terms of basis vectors and components.

The components ¢ of a vector A that arise from using the natural basis
{e;} are known as its contravariant components, while the components A; that
arise from using the dual basis {e'} are known as its covariant components. (A
useful mnemonic is the rhyming of “co” with “below”, which gives the position
of the suffix.) It turns out that these components are given by® A\* = A-e* and
X\ = X - e, but to establish this we need to look at the dot products e’ - e;.

Using the definitions of €' and e;, we have
or Ou' Ox | Ou' Oy | Ou' Oz  Ou

e-e=Vu —

oud 8x%+ Ay 8uj+ 8z Ouwi ~ Bul’

where we have used the chain rule of partial differentiation to simplify the
three-term expression involving partial derivatives. If i = j, then du’ /0w = 1,
otherwise du*/du’ = 0. So we can write

e e; -——6;, (1.17)

where 8} is the Kronecker delta defined by

i J1, fori=y
e (boriss -

(Occasionally we need the forms &;; or 6 of the Kronecker delta, which are
defined in a similar way.) We can now say that

as asserted. (Note how in the sum )\iéf the effect of the Kronecker delta is
to substitute j for ¢ in A*. This is because the only nonzero term in the sum
occurs when 7 = j and the Kronecker delta is then equal to one.) In a similar

way we can establish that
)\j =X €; (120)

(see Exercise 1.2.1). Equations (1.20) and (1.19) show that the components
of A relative to one basis (the natural one or its dual) are given by taking dot

30Qur use of the dot product here, and in the rest of this section, is not strictly
correct: see Sec. 1.10.
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products of A with the vectors in the other basis (the dual or the natural one,
respectively).
Using contravariant components, we can write the dot product of two
vectors A and p as
A 0= )\iei . ujej = gij/\i/lj, (121)

where

gij = €; - €j. (1.22)

Similarly, by using covariant components, we can write it as
A-p= e el =g Ny, (1.23)

where N o
gl =e €. (1.24)

Or we could mix things and write
A-p=Ne' ey = Al st = Ayt (1.25)

(on using the substitutional effect of the Kronecker delta). We therefore have
four different ways of writing the dot product:

A-p=gi N = g9 hipy = Aapt = N (1.26)

The fact that " \;u; = A holds for arbitrary vector components ); implies
that

9%y = ut', (1.27)

showing that the quantities g% can be used to raise the suffix and thereby
obtain the contravariant components of y from its covariant components. Sim-
ilarly, because g;;A\*u? = X'y; holds for arbitrary components A, we have

g’ = i, (1.28)

showing that the quantities g;; give the reverse operation of lowering a suffix.
Combining these two operations gives

wh =g = g gep",

and because this holds for arbitrary components u* we can deduce that

97 gk = 0. (1.29)

From their definitions as dot products of basis vectors, it can be seen that g;;
and g% satisfy
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9i5 = 95, 97 =g"". (1.30)
Identities like this, that involve a transposition of suffixes, are referred to as
symmetry properties. Using equation (1.30) we can write equation (1.29) in
the form
939" = b (1.31)
We shall use the suffix notation in the development of any general theory,
extending and developing it as the need arises. However, in particular exam-
ples it is often more convenient to revert to the nonsuffix notation, like that
used in the previous section. It is also sometimes convenient to use matrix
methods to handle the summations over repeated suffixes. These methods are
restricted to quantities carrying either one or two suffixes, enabling them to
be arranged as either one-dimensional arrays (row vectors or column vectors)
or two-dimensional arrays (matrices). The notation [A?] will be used to denote
a column vector having \* as its ith entry (so the suffix labels the rows of
the array), and [\;] will be used in a similar way. If we need to think of the
quantities as being arranged as a row matrix, then we shall use the notation
[AT or [\]T to indicate that we have transposed the column vector to obtain
a row vector. For matrices, the notation [A;;] will be used to denote a matrix
having A;; as the entry in the ith row and jth column, and A% will be used
in a similar way. This conforms to the normal conventions of matrix algebra,
where the first suffix labels the row and the second the column. If we want
to fit quantities A;- into an array, then we must specify which is the “first”
suffix, to be used for labeling rows, and which is the “second”, to be used for
labelling columns. We shall regard the superscript as the ‘first’ suffix, so [A;]
will be used to denote the matrix having A; as the entry in its ¢th row and
jth column. We are now in a position to give matrix versions of some of the
equations established using the suffix notation.
Let G = [g;;] and G = [¢¥]. Equations (1.30) then translate to

G=G%, G=G", (1.32)

telling us that G and G are symmetric. Recognizing that [6;] =T (the 3 x 3
unit matrix), we see that equations (1.29) and (1.31) translate to

GG=1I GG=I1, (1.33)

telling us that G = G'. If we use L = [\], M = [u*] for the contravariant
components of A, p and L* = [\;}, M* = [;] for their covariant components,
then equations (1.27) and (1.28) translate to

A~

GM* =M, GM=M* (1.34)

{(which are consistent with GG=GG=1I ), while the four ways of writing the
dot product in equation (1.26) translate to

Aop=LTGM = (L*)TGM* = (L*)*M = L™ M*. (1.35)
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The following example, which is a continuation of Example 1.1.3, illustrates
some features of the suffix notation and matrix methods introduced in this
section.

Example 1.2.1
For the coordinate system introduced in Example 1.1.3, the natural basis
vectors are

e =i+j+ vk,
e =1—-j+2uk,
6321(,

and the dual basis vectors are

Calculating the dot products g;; = e; - €; and g"/ = €’ - €/, we find that

[2(1+20%)  duwv  2v
G =lgij] = duv  2(1+2u?) 2u |,
| v 2u 1
[1/2 0 —v
G=[g"]=] 012 —u :
| —v —u 2u? + 20° + 1

and it is straightforward to check that GG = GG = I.
If we take A to be the unit vector i, then the column vector L that holds
the contravariant components of A* is (from Exercise 1.1.2, or equation (1.19))

1/2
L=[\]= 1/2
—(u+v)

The covariant components A; can then be obtained by saying

Nl=L"=GL
2(14+2v%) 4w 2w 1/2 1
= duv  2(1 + 2u?) 2u 1/2 =11
2v 2u 1 —(u+v) 0

As a check, we note that

AA=LTGL=LTL"=1+1i+0=1,
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as it should be for the unit vector A.

The above example also illustrates how arrays can be used to display vector
components in particular examples, as when writing

1/2 1
w=| 12 |, =
—(u+v) 0

We can also display the same information in suffix notation using Kronecker
deltas:

Xo= 188 + 168 ~ (u+ v)dE,
A = 6] + 67,

A common practice, which achieves the same result, is simply to list the
components in parentheses, separated by commas:

N=(L L —(u+v), N=(1,1,0).
We used this kind of notation in Appendix A, where special relativity was
reviewed.

In the present section, the suffixes i, j, &, ... take the values 1, 2, 3, and
repeated literal suffixes imply summation over this range of values. When
working in four-dimensional spacetime, we shall use Greek suffixes p, v, ...,
and the understanding there will be that these take the values 0, 1, 2, 3; a
repeated Greek suffix will then imply summation over these values. In Sec-
tion 1.6, we discuss two-dimensional surfaces and there we shall use uppercase
literal suffixes A, B, ..., taking the values 1, 2. At other times our underly-
ing space may have arbitrary dimension N, and we shall then use lowercase
letters a, b, c, ... taken from the beginning of the alphabet to have the range
1,2,...,N. The general idea is to avoid confusion by using different kinds of
alphabets (or different parts of the same alphabet) to indicate the different
ranges of values that our suffixes might take.

Exercises 1.2

1. Verify equation (1.20), which shows that the covariant components X; of
a vector X are given by taking dot products of A with the natural basis
vectors €.

2. Show that e; = g;;€’ and e’ = g”e;.
3. Simplify the following expressions:

(a) N61As,  (b) g giede,  (¢) gy — Nopu.
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4. If the coordinate system is orthogonal, what can you say about the ma-
trices G = [g;;] and G = [g¥]?

5. Check that in Example 1.2.1 the matrices G and G satisfy GG = GG = I.

6. In the coordinate system of Example 1.2.1, a vector field p has covariant
components given by
i = v6} — ud? + 67

What are its contravariant components ji*?

7. A repeated suffix implies summation. What, then are the values of
(a) 6f, (b) &4, (c) 33, (d) 67

(Note the correspondence between alphabets and ranges of values ex-
plained in the last paragraph prior to these exercises.)

1.3 Tangents and gradients

By dropping the requirement that our coordinate systems be orthogonal, we
have found ourselves in the position of having two different, but related, bases
at each point of space. Is this one two many? To avoid confusion, should we
reject one of them and retain the other? If so, which one? As we shall see,
each has its uses, and there are situations where it is appropriate to use the
natural basis {e;} defined by the tangents to the coordinate curves, while in
other situations it is appropriate to use the dual basis {e'} defined by the
normals to the coordinate surfaces. Let us start by looking at the tangent
vector to a curve in space.
Suppose we put

u=ult), v=uv(t), w=wf), (1.36)

where u(t), v(t), w(t) are differentiable functions of ¢ for ¢ belonging to some
interval I. Then the points with coordinates given by equation (1.36) will lie
on a curve v parameterized by t. The position vector of these points is

r(t) =z (u(t), v(t), w(t)) i+ y (u(t), v(t), w(t)j + = (u(t), v(t), w(t) k,

and for each ¢ in I the derivative £(t) = dr/dt gives a tangent vector to the
curve (provided £(t) # 0). Using the chain rule we have

@_Qd_u+8rdv+ or dw
dt  Oudt Ovdt Owdt’
which can be written as

I(t) = u(t)e, + 0(t)e, + w(t)e,.
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The suffix notation version of this last equation is
#(t) = ¢(t)e;, (1.37)

showing that the derivatives #(t) are the components of the tangent vector
to the curve v relative to the natural basis {e;}. So for tangents to curves, it
is appropriate to use the natural basis {e;}.

The length of the curve 4 is obtained by integrating || with respect to ¢
over the interval I. Now

[ =1 T =d'e; - We; = g u'd,

on using equation (1.22) that defines the quantities g;;. So if I is given by
a <t < b, then the length of vy is given by

b
L= / (giuii?) " dt. (1.38)

The infinitesimal version of equation (1.37) is dr = du'e;, which gives
ds® = dr - dr = du'e; - dujej

for the distance between points whose coordinates differ by du®. We thus arrive
at the formula

ds® = gijdudu’, (1.39)

which is the generalization for arbitrary coordinates u® of the Cartesian for-
mula

ds® = dz? + dy? + d2°.
Equation (1.39) can therefore be viewed as an expression of Pythagoras’ The-
orem. The expression g;;jdu‘du’ is often referred to as the line element. Equa-
tion (1.38) amounts to saying that the length of v is given by the integral [ds
taken along the curve.

Example 1.3.1
For spherical coordinates (r, 8, ¢), the basis vectors e, eq, e3 are the vectors
€, €9, €4, as given in Example 1.1.2. By working out the dot products e;-e; =
gi; we get

10 0

[g:51=|0r® O ;

0 0 r?sin’f

which gives
ds? = dr? + r2df? + r? sin® § d¢? (1.40)

for the line element of Euclidean space in spherical coordinates.
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Fig. 1.2. The curve ~ on a sphere.

Let us give a curve v by putting
w=r=qa w=0=t wW=¢=2-n,

where 0 < ¢ < 7. This gives a curve on the sphere » = a that winds down from
the North Pole (where § = 0) to the South Pole (where 6§ = 7) (see Fig. 1.2).
Its tangent vector has the components

' = 78} + 065 + ¢05 = 0 + 263,

S0
gi; 0" = r? + 4r2sin® 0 = o + 4a®sin® t.

The length of the curve + is therefore given by

/(gz]uuj / aV'1+ 4sin? ¢ dt.
0

We shall not attempt to evaluate this integral.

Suppose now that we take a differentiable function ¢(u, v, w) of the coor-
dinates u, v, w. This will give us a function of position and therefore a scalar
field. Its gradient is

3(25 9¢. ¢
Vo= —i+——j+
¢= 8y'] 82
where, in calculating these partial derivatives7 we are regarding ¢ as a function
of z, y, z got by substituting the expressions for u, v, w in terms of z, y, 2
given by equation (1.7):
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¢ = ¢ (U(.CC, Y, Z)a U(CL‘, Y, Z)a w('ra Y, Z)) .
The chain rule gives

00 _d6ou 000w | 060
dr  Oudr Ovdxr Owdz’

with similar expressions for 0¢/0y and 9¢/0z. Hence we can say that

_0¢ (Ou,  Ou, Ou d¢ (Ov, Ov, Ov
v¢_6u<8x1+6y3+82k>+%<5?+8~y']+5;k>
o0¢ (Ow, Ow, Ow

_0¢ o 9¢
= EL—VU + %Vv + %Vw

That is,
0 0¢ 09 .

V(Zﬁ:%e +%e +%e s

on using the defining equations (1.9). The suffix notation version of this is

8¢
57e" (1.41)

Vo =

showing that the partial derivatives d¢/0u® are the components of V¢ rel-
ative to the dual basis {e’}. Note that, in letting the repeated suffix imply
summation in equation (1.41), we are regarding the suffix ¢ on 9¢/0u’ as a
subscript. We can make this point more clearly by shortening the partial dif-
ferential operator 8/0u’ to 8;, so that ¢/8u’ = d;¢. The notation ¢ ; is also
used to mean the same thing. We can then rewrite equation (1.41) as

Vo = 0ipe = ¢ €', (1.42)

with the suffix correctly occupying the subscript position.

Thus we see that when dealing with tangents to curves it is appropriate to
use the natural basis {e;} defined by the coordinate system, but when dealing
with gradients of scalar fields it is appropriate to use the dual basis {e’}. This
conclusion is not surprising, given the way in which the two bases are defined.

Exercises 1.3

1. What form does the line element ds* = g;;du’du’ take for the paraboloidal
coordinates of u, v, w of Example 1.1.37

2. Describe the curve given in cylindrical coordinates by
p=a, qb:tv Z:ta _ﬂ'StSﬂ

(where @ is a positive constant) and find its length.
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3. Show that if the arc-length s (measured along a curve from some base
point) is used as a parameter, then at each point of the curve the tangent
vector £(s) has unit length.

1.4 Coordinate transformations in Euclidean space

Suppose we have two systems of curvilinear coordinates in Euclidean space,
denoted by (u,v,w) and (u/,v’,w’). We can distinguish these by referring to
them as the unprimed and primed coordinates, respectively. The purpose of
this section is to explain how such things as the components of vectors relative
to the bases defined by the coordinate systems transform, when we pass from
the unprimed to the primed coordinate system (or vice versa). To this end, we
shall use the suffix notation, with 4’ representing the unprimed coordinates
and v’ the primed coordinates. Placing the prime on the suffix, rather than
the kernel letter u, may seem perverse, but it is part of the kernel-index method
initiated by Schouten and his co-workers.? We shall use a similar notation for
natural basis vectors, dual basis vectors, and components of vectors. So {e; }
is the natural basis defined by the primed coordinate system and {eil} is its
dual. The contravariant components of a vector A relative to {e;} will be
denoted by A, and similarly the covariant components relative to {e''} will
be denoted by A;s. So we can write

A= )\ey, (1.43)

with a similar expression giving X relative to the dual basis {€’ }. An alternate
(and much used) notation involves priming the kernel letter of the components
and basis vectors, rather than the suffixes, but this has disadvantages in terms
of later economy.

In the region of space covered by both coordinate systems, we have equa-
tions u’ = u* (u?), giving the primed coordinates in terms of the unprimed,
with inverses u* = u!(u/') giving the unprimed coordinates in terms of the
primed. By definition, e; = dr/du’ and e; = dr/du’ . The chain rule gives

or  or out’
oul — out Hul’
SO we can write )
€; = U; €;, (144)

where U]Zf/ is a short-hand for the partial derivative du’ /0u’. We then have
A= )\Jej = /\J(J]z e;.
Comparison with equation (1.43) gives

“Schouten, 1954, p.3, in particular footnote!).
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N = Ui N (1.45)

as the transformation formula for the contravariant components of a vector.
We use a similar argument to deal with the covariant components.
By definition, €' = Vu* and €* = Vu' . The chain rule gives
oul Bud du’

bz~ Ou’ Bz’

with similar expressions for du’ /dy and du’ /z. So

o y
Vu? = u'/ vu',
out
which we can write as . o,
e =Uje", (1.46)

where Ui]; is a short-hand for the partial derivative du’/ du’’ . Then for covari-
ant components we have

= pel = p;Ule,

. . ;! .
and comparison with g = p; €' gives

pi = Ul (1.47)

as the transformation formula for the covariant components.

There are two routes to the inverse transformations. The first is to note
that primed and unprimed quantities are on an equal footing, so that primed
and unprimed suffixes can be swapped. This gives

€, = U;,ei, ej/ = Uij/ei (148)
for transforming basis vectors, and
N=ULN, = U (1.49)

for transforming components. The second is to note that the chain rule gives
(see Exercise 1.4.1)

krri’ k
UpU; =193, (1.50)

so from equation (1.45) we have

UEX' = USUI N = 650 = )F,



1.4 Coordinate transformations in Euclidean space 25

which reproduces the first of equations (1.49). A similar argument using equa-
tion (1.47) reproduces the second of equations (1.49) (see Exercise 1.4.2).

Matrix methods (as explained in Sec. 1.2) can be used to handle transfor-
mations of components of vectors. The matrices

=[Uf), U=[Ui), (1.51)

are the Jacobian matrices associated with the change of coordinates. Equa-
tion (1.50) translates to UU = I, showing that U = U~!. If we put

L=[N], =N, M=[w), M=l
then for transforming contravariant components we have
UL, L=UL (U=U"Y
and for transforming covariant components we have
=UM, M=UM (U=U".

The following example uses matrix methods.

Example 1.4.1
The equations connecting spherical and cylindrical coordinates are

z =rsinfcos¢ = pcos e,
y = rsinfdsin ¢ = psin ¢,

z=rcosé.

If we take cylindrical coordinates {p, ¢, z) as the primed coordinates and spher-
ical coordinates (r, 0, ¢) as the unprimed ones, then

!
u! = p=rsinf = ulsinu?,
7
u2 :¢:u3,
!
ud =2z =rcosh = u' cosu’,
so that the matrix U is
sinu? wu'cosu? 0 sinf rcosf 0
-/
U= [U; |= 0 0 1| = 0 0 1
cosu? —ulsinu? 0 cosf —rsinf 0

The inverse coordinate transformation equations are
1/2

' =r=/p?+ 22 = ((UI,)2 + (u3,)2> ,

= arctan(p/z) = arctan(u 1I/uBI),

of

6
¢

H
II
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which lead to

4 [p/ /02 + 220 z/\/p? + 22
Uil = | 2/(p* +2%) 0 —p/(p* + %)
0 1 0

sinf 0 cosf
= | (cos8)/r 0 —(sin8)/r
0 1 0

Q)
Il

We can check that UU = I, confirming that U=u"L
As we found in Exercise 1.1.2, the unit vector field A = i has contravariant
components given by

, sin f cos ¢
L=[X]=| r7'cosfcosp |,

—r~ ! cosec §sin ¢

while in cylindrical coordinates they are given by

; cos ¢ cos ¢
L'=[\]=|-p'sing| = | —r !cosechsing
0 0

Using these expressions, we can check that L' = UL and L = UL’

In the primed coordinate system the quantities corresponding to g;; in
the unprimed coordinate system are defined by gi;; = ey - ej. Using the
transformation equation for bases, we have

k l krrl krrl
gi/]‘/ = ei/ M e]'/ = (Ui/ek) . (Uj/el) = Ui/Uj/ek . el = Ui’U_j’gkl'

So the transformation formula for the quantities g;; is

gy = UfUL gu, (1.52)

which is like that for the covariant components of a vector, but involves two
sets of Jacobian matrix elements, Ui’f and U ]4,. A similar argument gives

¢ = UIUT gM (1.53)

for the related quantities g¥.

In equations (1.52) and (1.53), we have our first taste of how the com-
ponents of a tensor transform. We look at tensors in Euclidean space in the
next section, and in the more general setting of tensor fields on manifolds in
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Section 1.8. We shall recognize the quantities g;; as the components of the
metric tensor, so called because it gives us access to metric properties such
as the lengths of vectors and the angles between them (via the dot product
A p = g;;A'’) and the distance between neighboring points (via the line
element ds® = g;;du‘du’).

Exercises 1.4

1. Use the chain rule to show that

krri' _ sk Krri _ sk
UsUj =67 and U U =4}

J
Obtain the same results by using the fact that
k_ ok K’
0; =e"-e; =¢€" -ejy.
2. Obtain the second of equations (1.49) using equation (1.47) and the result
of Exercise 1.

3. Translate equation (1.52) into a matrix equation involving

U= UL, G=lgy), and G =gy
Hence, using G from Example 1.3.1 and U from Example 1.4.1, obtain
the line element for Euclidean space in cylindrical coordinates.

1.5 Tensor fields in Euclidean space

While scalar and vector fields are sufficient to formulate Newton’s theory of
gravitation, tensor fields are an additional requirement for Einstein’s theory.
To introduce the idea of tensors and tensor fields, we shall look at an elastic
body under stress in the classical theory of elasticity based on Newtonian
mechanics.®

An elastic body is placed under stress by body forces (such as gravity)
acting throughout its extent and by forces applied externally to its surface. If
V is part of such a body, then it is postulated that the total force on V due
to stresses in the body is given by a surface integral of the form

J[rwas,

where S is the boundary of V. The vector T(n) is the force per unit area
acting at a point of the bounding surface S of V, and the notation 7(n) is
used to indicate that it depends on the unit outward normal n to S. If any

®See, for example, Symon, 1971, Chap. 10, or Landau and Lifshitz, 1987, Chap. 1.
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part of S coincides with the actual boundary of the elastic body, then on this
part 7(n) is the force per unit area due to the applied external force, whereas
on any part of S that is inside the body, 7(n) is the force per unit area due
to the material outside V. In general, shearing forces are present, and 7(n) is
not parallel to n (see Fig. 1.3).

Fig. 1.3. Force per unit area f due to stress. In general, f is not in the same direction
as the normal n to the element of area dS.

As the notation suggests, at each point of the body we can look on T as
a function that acts on a vector n to produce another vector 7(n) which (in
general) is not parallel to n. This function is assumed to act linearly, which
mreans that for general vectors u, v and general scalars «, 3,

T(ou + fv) = ar(u) + 87r(v).

A consequence of this assumption is that T can act on general vectors v and
not just unit vectors n.

Suppose that we use curvilinear coordinates u® to label points in the body
and that at each point P of the surface § we express both the force per unit
area f, given by f = 7(n), and the unit normal n in terms of the natural basis
vectors e;. So we have f = f’e; and n = nYe;, which gives

fle; = T(n'e;) = nit(e;), (1.54)

on using the linearity of 7. For each j, the vector T(e;) can also be expressed
in terms of the basis vectors e;. Thus we can write

T(e;) = Tjes, (1.55)

where, for each j, the quantities 7} (i = 1,2,3) are the components of T(e;)
relative to the basis {e;}. Equation (1.54) then gives
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fiei = an;ei,

fr=7int, (1.56)
showing how the components f? are obtained from the components n’ of the
normal vector. (If we put F' = [f*], T = [r}], and N = [n*], then the matrix
version of equation (1.56) is F = T'N.) The linear function 7 is called the stress
tensor and the quantities 7; defined by equation (1.55) are its components.

If we worked using primed coordinates u', then we would define primed
components T;/ by means of

T(Ej/) = T;:ei/

and in place of equation (1.56) we would have
= (1.57)
Now f* = U} f* and n/" = Ulj’nl, so the above gives
U,i,fk = T;:Ulj/nl

But f* = 7fnl, so

Ul Fn! ——T/U]

Since this holds for all unit vectors n at P, we conclude that
U,i.’le = T;:Ulj/.
Multiplying by U!, (and using Ulj/Ufn/ = 6)) gives

T ;= U]C 'Tl (158)

as the transformation formula for the components of 7.

We now have three examples of how tensor components transform: equa-
tion (1.52) for the components g;; of the metric tensor, equation (1.53) for the
related quantities ¢*/, and equation (1.58) for the components T; of the stress
tensor. These transformation formulae are clearly similar in the way that each
unprimed suffix is involved in a summation with Jacobian matrix elements of
the kind U ;f, or U ;'; whichever kind is used is dictated by the requirement that
a repeated suffix should occur once as a subscript and once as a superscript.
The free suffixes (those not involved in summations) carry primes and those
on the left of each transformation formula balance those on the right.

The three transformation formulae serve as prototypes for a general trans-
formation formula for tensor components, where the components carry an ar-
bitrary number of superscripts and an arbitrary number of subscripts. These
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are considered in Section 1.8 in the more general context of an N-dimensional
manifold, which is the subject of Section 1.7. Before doing that, we shall look
at surfaces in Euclidean space as examples of curved two-dimensional mani-
folds.

Exercise 1.5

1. Show that the components T; of the stress tensor T are given by

T;» =e'-7(e))

and use this result to re-establish the transformation formula (1.58).

1.6 Surfaces in Euclidean space

A surface Y in Euclidean space is given parametrically by expressing the
Cartesian coordinates x,y, z as functions of two parameters u, v:

z=z(u,v), y=yuv), z=z(u,v). (1.59)

In principle, it is possible to eliminate u, v from these equations to obtain an
equation for X' of the form f(x,y, z) = 0. However, our discussion here will be
based on the use of parameters and our aim is to expose the similarities (and
differences) between the use of parameters u, v to label points on a surface and
the use of curvilinear coordinates u, v, w to label points in Euclidean space.
The position vector r of points on X can be given as a function of the
parameters by combining equations (1.59) into a single vector equation:

r = z{u, v)i+ y(u,v)j + z(u, v)k.

Analogous to the coordinate curves in space, we have at each point of X' a pair
of parametric curves. The first of these is obtained by keeping v constant and
letting u act as a parameter along it, and the second is obtained in a similar
way by interchanging the roles of u and v. So at a point P given by (ug,vo),
the first coordinate curve through P is given parametrically by

r= ‘T(uv ’U())i + y(ua ’U())j + Z(’U,, UO)k

and the partial derivative Or/du, when evaluated at (ug,vo), gives a tangent
vector to the curve at P. Similarly, the second parametric curve through P is
given by

r= x(UO’ U)i + y(u07 U)j + Z(”Oa U)k
and Or/dv, when evaluated at (ug,vg), gives its tangent vector at P. So at

each point P of X, both e, = dr/d0u and e, = dr/dv are tangential to the
surface, and together they define the tangent plane to X at P (see Fig. 1.4).
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Fig. 1.4. The tangent plane to 2’ at P.

A wvector field on a surface X is an assignment to each point P of X of
a vector A that is tangential to 3. So, for example, at any instant of time
the horizontal wind-velocity v at each point of the Farth’s surface E gives a
vector field on E. It is this vector field that is represented by the arrows on
a weather map. Returning to the general situation of a vector field A on a
surface 3, we see that the vector at each point P lies in the tangent plane at
P, so we can refer A to the basis {e,,e,} provided by the tangent vectors to
the parametric curves:
A= e, + Ne,. (1.60)

This is the natural basis for the tangent plane. It is induced by the system
of parameters used to label points in exactly the same way as the natural
basis associated with a curvilinear system of coordinates (u, v, w) in Euclidean
space.

There is also a dual basis {e*,e"}, but it is not given in such a straight-
forward manner as its counterpart for curvilinear coordinates in space, where
we used the gradient vectors Vu, Vv, Vw to define e*, eV, e“. Each of the
parameters u, v gives a scalar field on the surface 3, and it is the gradients
of these that provide the dual basis {e“,e"}. Off the surface, u and v have
no meaning and it makes no sense to try to define e¥, e’ as the gradients of
scalar fields u, v defined throughout space, as we did in Section 1.1. However,
we can fix the direction of the required basis vector e* at P by noting that, as
the gradient of the scalar field v on X, it is normal to the level curve of u that
passes through P and points in the direction of increasing u. Since this level
curve is given by u = ug, it follows that e is orthogonal to the natural basis
vector e,. The direction of the other dual basis vector e” is given in a similar
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way by interchanging the roles of u and v. Figure 1.5 shows the relationship
between the natural basis {e,,e,} and its dual {e*,e"} at a point P on X.

Fig. 1.5. The natural basis and its dual at a point P on a surface 2.

From our observations on directions, we have

(3 v

e’ e, =0, e'-e,=0 (1.61)

We now fix the lengths of the dual basis vectors by requiring that

U v

e'-e, =1 e’ -¢e, =1 (1.62)

If we use the suffix notation, with suffixes A, B, ... taking the values 1, 2, then
the parameters u, v become u#, the natural basis {e,, e, } is denoted by {e}
and its dual {e*,e"} by {e?}. Equations (1.61) and (1.62) combine to give

et . ep =64, (1.63)

which is the analog for surfaces of equation (1.17). Other equations and rela-
tionships developed in Section 1.2 have their counterparts here.
We can introduce a metric tensor with components gap defined by

gAB = €4 -€p
and a related tensor with components g2 defined by

Equations involving gap, ¢*%, and the components of vector fields on X,

analogous to equations (1.25)—(1.31) of Section 1.2 then follow. We also have
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B A AB
€4 = gaBE, € =g €p

(see Exercise 1.2.2), which provides a quick way of getting the dual basis {e4}
from the natural basis {e4}, as in the following example.

Example 1.6.1
The parametric equation

r=(u+v)i+ (u—-v)j+2uvk,

where —o00 < u < 00, —00 < v < 00, gives a hyperbolic paraboloid. (It is
the surface given by putting w = 0 in Example 1.1.3.) The two natural basis
vectors are

e =e, =0r/0u=1i+j+ vk,
e =e,=0r/Ov=i-j+2uk
So the quantities g4 = e4 - e can be displayed as

2(14+20?%)  4duw

9481 = duv  2(1+2u?) |

The inverse of this matrix is [gABJ, which we calculate to be
14+2u? —uv
[ AB] _ 2(142u2+2v2)  14+2u2+4202
g B —uv 14202

142u2+2v2  2(142u?+42v?)

We can then give the dual basis vectors in terms of i, j, k by saying

e¥ = el :glAeA :gllel +g12€2

1+ 242 —uv
= — (i j 2 k - i—j 2 k
St oy o) U T s i 2uk)
14 2u2 — 2uv | 1+ 2u? +2uv v

= + k
21+ 22 <207 2142 42087 T TS 202 + 202

and

e Ee2:g2AeA:gmel+g22e2
—uv 14 202
= ikt
1T 2w 122 LT T 2R S o
1+ 202 — 2w 1+ 202 4 2uv

u
— j k.
2(1 + 2u? + 20?) ' 2(1+2u2+2v2)‘]+ 1+ 2u? + 202

(i—j+2uk)

If we put u? = u?(t), where each u”(t) is a differentiable function of ¢,
for ¢ belonging to some interval I, then (in a manner similar to that described
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in Sec. 1.3) we obtain a curve 7 on the surface X' whose tangent vector has
components %4 relative to the natural basis {e4}. The length L of this curve
is given by

b
L:/(gABuAaB)”2 dt, (1.64)

where a < t < b gives the interval I. For neighboring points on X, whose
parameter differences are du?, their distance apart ds is given by

ds? = gapdutdu®, (1.65)
as can be seen by working with
ds® = dr - dr = du’e, - duleg.

Equation (1.65) specifies the line element for X and (as in Sec. 1.3) can be
viewed as an expression of Pythagoras’ Theorem.

We see that, in the main, much of the terminology and notation devel-
oped for use with arbitrary curvilinear coordinates in Euclidean space can be
adapted for use on a surface X, where the parameters u* play the role of co-
ordinates, and we have presented the material in a way that brings out these
similarities. However, there is one respect in which the situations are funda-
mentally different: the geometry of Euclidean space is Euclidean, whereas that
of a surface is not, unless it happens to be flat. If the geometry is Euclidean
then we can introduce a system of Cartesian coordinates (z,vy,2) or (z,y),
according to dimension. The line element then takes the form

ds? = dae® + dy® + d2% or ds? =dz? +dy?,

and we have g;; = d;; or gap = 64p. Thus we can characterize the basic
flatness of Euclidean geometry by the possibility of introducing a coordinate
system in which the metric tensor components are given by a Kronecker delta.
For a curved surface this is not possible. To fully appreciate why, we must wait
for a discussion of curvature in Chapter 3.

Another difference between the two situations is that we can regard the
vectors of a vector field in Euclidean space as being in the space itself, whereas
for a vector field on a surface the vectors are not in the surface (unless it
happens to be flat), but tangential to it. We shall have more to say on this
matter in Section 1.10, after we have introduced manifolds and discussed
vector and tensor flelds on manifolds.

Exercises 1.6

1. Check that the natural basis {4} of Example 1.6.1 and its dual {e?}

satisfy

e’ . ep =64
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2. Write down the line element for
(a) a sphere of radius a, using angles (8, ¢) borrowed from spherical co-
ordinates as parameters;
(b) a cylinder whose cross section is a circle of radius a, using (¢, z) bor-
rowed from cylindrical coordinates as parameters;
(c) the hyperbolic paraboloid of Example 1.6.1, using the parameters
{(u,v) of that example.

3. Is the cylinder of Exercise 2b curved or flat?

1.7 Manifolds

The model for the spacetime of general relativity makes use of a certain kind
of four-dimensional manifold, so we need to explain what this involves. In
doing this, we shall not give a precise mathematical definition, but rather
explain and describe the properties of an N-dimensional manifold. We shall
assume that this manifold is endowed with a metric tensor field (which is not
a general requirement of manifolds) and explain how this is used to define and
handle metric properties. We shall be guided by the notation and terminology
developed when comnsidering arbitrary curvilinear coordinates in Euclidean
space and parameterized surfaces.

What makes a manifold N-dimensional is that points in it can be labeled
by a system of N real coordinates z',22,...,z", in such a way that the
correspondence between the points and the labels is one-to-one. We do not
require that the whole of the manifold M should be covered by one system
of coordinates, nor do we regard any one system as in some way preferred.
The general situation is that we have a collection of coordinate systems, each
covering some part of M, and all these are on an equal footing. Where two
coordinate systems overlap, there are sets of equations giving each coordinate
of one system as a function of the coordinates of the other. So if the coordinates
z® cover the region U and the coordinates z® cover the region U’, where
these are overlapping regions, then the coordinates of points in the overlap
are related by equations of the form

24 =% (a",22,...,2") (a=1,...,N), (1.66)

giving each 2% as a function of the coordinates z°, and these have inverses of
the form
xa-——x“(xl,a:Q,...,xN) (a=1,...,N), (1.67)

giving each z® as a function of the coordinates ¥ . We shall assume that the
functions involved are differentiable so that the partial derivatives

. ’
o _ Ox° o _ Oz
y = and Xy =_-—
dxb oxb
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exist. This means that the manifold M is a differentiable manifold.® The Nx N
matrix [X g'] is the Jacobian matriz associated with equations (1.66) that give
the change of coordinates from z¢ to 2% . The fact that these equations have
inverses (1.67) means that this matrix is nonsingular (i.e., has an inverse), so
the Jacobian det[Xg/] is nonzero at each point of the overlap region. Similar
remarks apply to the Jacobian matrix [X{] and the Jacobian det[Xg]. In fact
the two matrices are inverses, for the chain rule gives

xax¥ =oe, (1.68)

in exactly the same way as it yields equation (1.50) for changes of coordinates
in Euclidean space. The formula

XFXh =60 (1.69)

follows on interchanging the roles of primed and unprimed coordinates.

We noted above that at each point of a region where two coordinate sys-
tems overlap the Jacobian det[X,‘}’] is nonzero. This result has a kind of con-
verse which gives the condition for a set of equations like (1.66) to define a
new system of coordinates.

Suppose we wish to introduce a new system of coordinates by giving z®
as differentiable functions of the old coordinates z® and that there is some
point P where the Jacobian det[X#'] is nonzero. The inverse-function theorem”
then implies that P has a neighborhood U’ in which the mapping between the
old z* and the new z? is one-to-one. Since the correspondence between the
coordinates 2% and the points of the manifold is also one-to-one, it follows
that in U’ the correspondence between the 2% and the points of the manifold
is one-to-one, so that they act as coordinates in U’.

For vectors and vector fields on a manifold, our approach is to define
them as objects having N components that, under a change of coordinates,
transform in a way that generalizes either equation (1.45) or (1.47) for vector
components in Euclidean space. Thus we define a contravariant vector at a
point P as an object having N components A® which, under a change of
coordinates about P, transform according to

AY = XA, (1.70)

where the partial derivatives are evaluated at P. A covariant vector is defined
in a similar way by requiring its components i, to transform according to

5Mathematicians allow manifolds in which the coordinate-transformation func-
tions are merely continuous and call them topological manifolds.
"See, for example, Munem and Foulis, Chap. 7, §1.
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frar = X2 ptp. (1.71)

For vector fields, this kind of transformation law for components holds at each
point of M where the field is defined.

The basic example of a contravariant vector is the tangent vector to a
curve v, which can be given parametrically by setting 2% = z%(¢), where z°(¢)
are differentiable functions of ¢ for ¢ in some interval [. At each point of v
the derivatives £%(t) are the components of a vector, as we now show. Using
equation (1.66), we see that, in a primed coordinate system, v is given by

2¥(t) = 2% (2 (1), 22(t), ..., 2N (1)) (1.72)

and the chain rule for differentiation gives

s a _ a

i oo a0

showing that the quantities #* transform according to equation (1.70), as
asserted. The vector with components £% is the tangent vector to + that
arises naturally from the parameterization.

The basic example of a covariant vector field is the gradient of a scalar field
¢. In any coordinate system, such a field can be regarded as a function ¢(z%)
of the coordinates and we can form the N partial derivatives 8,¢ = 0¢/0x®.
In a primed coordinate system, we would regard ¢ as a function ¢(z*) of the
primed coordinates 2% and form the partial derivatives 3,¢ = 0¢/ dz® . The
chain rule gives

I /
o dx® ox® dl‘b " b

B = o9 09 dx®
= dra  Jzb Jx?’
showing that the quantities 9,¢ transform according to equation (1.71). They
are therefore the components of a covariant vector field, which is the gradient
of ¢.

These examples based on tangents to curves and gradients of scalar fields
extend some of the ideas of Section 1.3 to manifolds. In that section we also
considered metric properties, like the length of a curve given by equation (1.38)
and the line element (1.39), which involve the metric tensor components g;;.
These ideas can also be extended to the more general setting of a manifold,
but we postpone doing this until Section 1.9, after we have discussed the
essentially algebraic properties of tensor fields on manifolds.

= X3'8b¢7

Example 1.7.1

The configuration space of a mechanical system with NV degrees of freedom is
an N-dimensional manifold. Points in the configuration space are labeled by
N “generalized” coordinates, which are usually denoted by ¢',¢2,...,¢"V. The
evolution of the system in time from some set of initial conditions is given by
a curve ¢* = g*(t) in the configuration space parameterized by time ¢.
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1.8 Tensor fields on manifolds

Suppose that with each coordinate system about a point P of a manifold

M there are associated N"*° quantities TZ{Z&T which, under a change of

coordinates, transform according to

a)...a a) al d ds _ci..cr
Tb/l r— XCll "'Xc-,- Xb’ll Xbls lel..‘ds’ (173)

where the Jacobian matrices [X¢'], [X{] are evaluated at P. Then the quanti-
ties 7, ",'" are the components of a type (r,s) tensor at P. This terminology
includes the special cases in which » = 0 or s = 0, so that the kernel letter 7
carries only subscripts or only superscripts. So, for example, the components

of a type (2,0) tensor transform according to

T = XO XY, (1.74)

while the components of a type (1,2) tensor transform according to

TI;I;::/ :XSIXE/XZ/Tgf (175)

The sum (r + s) is sometimes referred to as the rank or order of the tensor. A
type (r,0) tensor might be referred to as a contravariant tensor of rank r and
a type (0, s) tensor as a covariant tensor of rank s. If both r # 0 and s # 0,
the tensor is described as mizred. We now recognize a contravariant vector at
P as a tensor of type (1,0) and a covariant vector as a tensor of type (0,1).
Scalars may be included in the general scheme of things by regarding them
as type (0,0) tensors.

If at each point of an N-dimensional region V in M we have a type (r, s)
tensor defined, then the result is a fensor field on V. The region V might
be the whole of M, or just a part of it. The components of the field can be
regarded as functions of the coordinates used to label the points of V. If these
functions are differentiable, then the tensor field is said to be differentiable.
Sometimes we have tensors defined at each point of a curve v in M, but not
throughout an N-dimensional region (such as the tangent vector to a curve).
These constitute a tensor field along v and their components can be regarded
as functions of the parameter ¢ used to label the points of v. Similar remarks
apply to tensor fields defined over a surface X’ in M; here the components can
be regarded as functions of the parameters u, v used to label points of 2.

The basic requirement for a set of quantities to qualify as the components
of a tensor is that they should transform in the right sort of way under a change
of coordinates (i.e., according to equation (1.73)). The quotient theorem pro-
vides a means of establishing this requirement without having to demonstrate
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the transformation law explicitly. Rather than give a general statement of the
theorem and its proof, which tend to be obscured by a mass of suffixes, we
shall give an example which illustrates the gist of the theorem.

Example 1.8.1

Suppose that with each system of coordinates about a point P there are asso-
ciated N® numbers 7, and that it is known that, for arbitrary contravariant
vector components A%, the N? numbers 72 \° transform as the components of
a type (1,1) tensor at P under a change of coordinates about P. That is,

T = X$ X, (1.76)

where Tg‘,;, are the N numbers associated with the primed coordinate system.
Then we may deduce that the 7, are the components of a type (1,2) tensor.

Because A = XJ?’ M, equation (1.76) yields
(o X§ — X3 Xprd )M =0, (1.77)

and this holds for arbitrary vector components /. Now let A/ be the vec-
tor having one as its gth component and the others zero, so that A/ = dg .
Equation (1.77) then gives

T XS = X3 Xprd,
valid for all subscripts g. Multiplying by X7, and using X ;X 7, =65 gives
o = X§ Xe X0 e,

which establishes that the 7. are indeed the components of a type (1,2)
tensor.

This example illustrates the gist of the quotient theorem, which is that if
numbers which are candidates for tensor components display tensor character
when some of their suffixes are “killed off” by summation with the components
of arbitrary vectors {(or tensors), then this is sufficient to establish that the
original numbers are the components of a tensor. We shall have occasion to
use this theorem from time to time.

We now consider some operations with tensors. The first of these is addi-
tion: adding corresponding components of two tensors of the same type results
in quantities that are the components of a tensor of that type. The second is
multiplication by scalars: multiplying each component of a tensor by a scalar
quantity results in quantities that are the components of a tensor of the same
type. The validity of these two operations is clear from the transformation
formula for components.

The third operation is tensor multiplication which gives the tensor product
of two tensors. The components of the tensor product are obtained simply by
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multiplying together the components of the two tensors involved, so as to form
all possible products. For example, if we put

a — a
Tpe = MpTo,

where )\, are the components of a type (0,1) tensor transforming according
to Ay = X/ A and 7 are those of a type (1, 1) tensor transforming according
to 'rg,l = X(‘i‘/X g,T;i, then for Ug//d = )\blrg,/ we have

oo = (XgAe)(X§ X17f)
= X§ X5 X)od,,

showing that of, are the components of a type (1,2) tensor.

The fourth operation is that of contraction. It is an operation which may
be applied to any object characterized by sets of numbers specified by letters
carrying superscripts and subscripts, but it takes on a special significance
when the numbers are tensor components. The operation amounts to setting
a subscript equal to a superscript and summing, as the summation convention
requires. If there are r superscripts and s subscripts then there are rs ways
that this may be done, each leading to a contraction of the original set of
numbers. The special significance that this operation has for tensors is that
if the original numbers are the components of a type (r,s) tensor, then their
contractions are components of a type (r — 1,s — 1) tensor. The proof in the
general case is somewhat cumbersome, but an example gives the gist of it.

Example 1.8.2
Suppose 2% are the components of a type (2, 1) tensor, and we form o® = 77

by contraction. Using primed coordinates we would analogously form 0 =
o't Th
Tbl . en

o' _ _a'b _ chalxb’Xe _ cha'(Se_ cha/_ ch'
o =Ty =T c d Ay = Te c Yd — c =0 c

showing that the numbers ¢® obtained by contraction are the components of
a type (1,0) tensor (a contravariant vector).

Contraction may be combined with tensor multiplication. For example, if
pi are the components of a type (1, 1) tensor and ¢* those of a contravariant
vector, then the contravariant vector with components 7¢ = p‘gab is said to be
obtained by contracting one of the tensors involved with the other. The tensor
with components 7% is a contraction of the type (2, 1) tensor with components
pLoc.

Certain tensors are special in some way. One of these is the Kronecker
tensor, which is a type (1,1) tensor with the property that whatever coor-
dinate system is used, its components i are given by the Kronecker delta
0p. To see this, suppose that when using an unprimed coordinate system we
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have ki = &7. Then, when we transform to a primed coordinate system, the
components become

’ ’ ’
Kl = X2 X265 = X2 X = 62

Because of this property, it is usual to denote the components by 6; rather
than . (What we have shown here is that the property x§ = 67 enjoyed by
the components of the Kronecker tensor is coordinate-independent. There is no
analog of this result for type (0, 2) and type (2,0) tensors. See Exercise 1.8.1.)

Another special property possessed by some tensors is that of symmetry. A
type (0,2) tensor is symmetric if its components satisfy 7,5 = 7p,. [t is easily
checked that if this holds in one coordinate system, then it holds in all coordi-
nate systems (see Exercise 1.8.2). A symmetric type (2, 0) is similarly defined.
We describe a type (0,2) tensor as skew-symmetric (or anti-symmetric) if its
components satisfy 7,5, = —Tp,. Again this is a coordinate-independent prop-
erty, and the concept also extends to type (2,0) tensors. In fact, the idea of
symmetry or skew symmetry can be extended to refer to any pair of super-
scripts or subscripts of a type (r, s) tensor.

We finish this section with an explanation of how an association can be
made between tensors of different types by contraction with the covariant
metric tensor or the related contravariant metric tensor. This association ex-
tends the algebraic formalism developed in Section 1.2 for vectors in Euclidean
space to the more general setting of tensors on a manifold. How the metric
tensor is used to deal with metric properties is the subject of the next section.

As remarked in Section 1.7, we assume that the manifold has a metric
tensor field with components g,5. This tensor is symmetric, so that ¢up = gpa,
and is nonsingular in the sense that the matrix [gqp) has an inverse [g%°] whose
elements satisfy

9 Ghe = 0. (1.78)
Since [gqs] is a symmetric matrix, so is the inverse [g2°], and g2 = g**. We
now use the quotient theorem to show that g®® are components of a type (2, 0)
tensor. To this end, let a®, 3% be the components of arbitrary contravariant
vectors, and define A,, pq by putting

Ag = gabab and p, = gabﬁb.
Then, because of the nonsingularity of [ga], A, and p, are the components
of arbitrary covariant vectors. Thus for arbitrary covariant vector components
Aq and p,,
9 Xatts = §°°gacgoa3°
= 6%gacaB  (on using (1.78))
= gdcacﬁda

which is a type (0,0) tensor. So g®® with both superscripts killed off by con-
traction with arbitrary covariant vectors displays tensor character, and the
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quotient theorem implies that the quantities g2° are the components of a type
(2,0) tensor. We shall refer to this tensor as the contravariant metric tensor.
This rather back-handed way of introducing this tensor is forced on us be-
cause our approach to tensors on a manifold is via the transformation law for
their components, and we cannot follow the kind of route that was used to
introduce the quantities ¢*/ in Section 1.2.

We now have the metric tensor with components g,5 that can be used to
lower suffixes and the contravariant metric tensor with components g*® that
can be used to raise suffixes. For example, if 72°, are the components of a type
(2,1) tensor, then using the metric tensor to lower the first superscript gives
a type (1,2) tensor whose components 7,%, are defined by 7,% = goq7%,. If
the contravariant metric tensor is now used to raise the lowered suffix, then
the original tensor is recovered. For, continuing this example, we have

gad,rdbc — gadgdeTebC - 637_8170 — Tabc.
Tensors which may be obtained from each other by raising or lowering suffixes
are said to be associated, and it is conventional to use the same kernel letter
for components, as in the example above. However, this usage is ambiguous if
we have more than one metric tensor field defined on the manifold; but since
this is rarely the case, opportunity for ambiguity seldom arises. (See, however,
Sec. 5.1.) Another source of ambiguity is the fact that more than one tensor of
the same type may be associated with a given tensor. For example, lowering
the first superscript of the components 7% of a type (2,0) tensor yields a type
(1,1) tensor which is in general different from that obtained by lowering the
second superscript. The distinction between the two may be made clear by
careful spacing of the suffixes:

Tab = gacTCba Tab = gbcTac-
In the case of symmetric tensors this distinction is not necessary (see, e.g.,
the Ricci tensor in Chap. 3).

Since

ad(sg ad bc

8¢ = ¢"°gs and g = "85 = g°?g*gea,

the metric tensor, the contravariant metric tensor, and the Kronecker tensor
are associated. However, the convention of using the same kernel letter for
components of associated tensors is relaxed in the case of the Kronecker tensor
because of the special form its components take, and we use dj rather than
gy for its components.

Strictly speaking, we should regard tensors that are associated, but of dif-
ferent types, as different tensors. However, we shall regard them as different
versions of the same tensor, and using the same kernel letter for the com-
ponents supports this point of view. So, for example, we can pass from the
contravariant version of a vector with components A® to its covariant version
with components A, by lowering the superscript. This brings us closer to the
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terminology used in Euclidean space, where we referred to the contravariant
and covariant components of the same vector A. In fact, the contravariant
and covariant versions are not the same, even in Euclidean space, although
it is normal practice not to make a distinction in the Euclidean context. As
we explain more fully in Section 1.10, a covariant vector g should really be
defined as a linear function that acts on a general contravariant vector A to
produce a real number p(A) = pA* In forming the dot product p - A in
Euclidean space, we are letting the vector g act linearly on A to produce
a real number, and in this way it acts like a covariant vector. The equation
() = p- A distinguishes between the contravariant version g of a vector and
its covariant version ft, and at the same time gives the association between
the two versions that allows us to identify them.

In this section we have introduced tensors on a manifold and discussed
their basic algebraic properties in terms of their components, and we shall
continue to work with components when applying tensor methods to general
relativity. From here onwards we shall adopt a much-used convention, which
is to confuse a tensor with its components. This allows us to refer simply to
the tensor 7%, rather than the tensor with components 0.

Exercises 1.8

1. Suppose that in some coordinate system the components 7., of a type
(0,2) tensor satisfy 7,5 = d45. Show that this property is not coordinate-
independent.

(Use the transformations between spherical and cylindrical coordinates
developed in Example 1.4.1 as the basis for a counter example.)

2. Verify that the relationship 7% = 7%%, defining a symmetric tensor, is
coordinate-independent.

3. Show that if o, = 0p and 7% = —7% for all a, b, then g7 = 0.

4. Show that any type (2,0) or type (0,2) tensor can be expressed as the
sum of a symmetric and a skew-symmetric tensor.

1.9 Metric properties
The metric tensor field g, provides us with an inner product gepA®u® for

vectors A%, 4% at each point P of a manifold M. As in Euclidean space (see
equation (1.26)), there are four ways of writing this inner product:

a2’ = g™ Aaps = Aapt® = A%q. (1.79)
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The usual requirement of an inner product is that it should be positive definite,
which means that g.sA°A® > 0 for all vectors A%, with g,sA®A? = 0 only if
A% = 0. However, to provide a model for the spacetime of general relativity,
we must relax this condition and we require only that the metric tensor be
nonsingular, in the sense that matrix [g,s] has an inverse. This leads to some
rather odd metrical properties, such as nonzero vectors having zero length, and
the need to include modulus signs where square roots are involved. A manifold
that possesses a positive definite metric tensor field is called Riemannian.
If the metric tensor field is indefinite, the description pseudo-Riemannian
(or semi-Riemannian) is sometimes used, or the meaning of Riemannian is
extended to include the indefinite case. With these understandings, we can
make definitions that allow us to deal with metric properties in a way that
extends and generalizes the corresponding properties introduced in Sections
1.3 and 1.6 for Euclidean space and surfaces in Euclidean space.
The length of a vector A% is given by

1/2

lga AN = (g ha | = Phaxel (1.80)

A unit vector is one whose length is one. As remarked, if g4 is indefinite, we
can have |)\a/\“|1/2 = 0 for \* # 0, in which case the vector A% is described as
null.

The angle 8 between two non-null vectors A%, p°

is given by

a,b
gab>‘ U (181)

cosf =
1/2 1/2?
lgeareAd|""? |ge puepf |t ‘

which generalizes the formula cos@ = (A - p)/|A| |p). If the metric tensor is
indefinite, this formula can lead to |cos 6| > 1, resulting in a nonreal value for
6.

Two vectors are orthogonal (or perpendicular) if their inner product is zero.
This definition makes sense even if one or both of the vectors are null. In fact,
a null vector is a nonzero vector that is orthogonal to itself. An example in
relativity is the wave 4-vector (see Secs. 5.2 and A.6).

As explained in Section 1.7, a curve « in a manifold M is given by setting
x® = x%(t), where the parameter ¢ belongs to some interval I, and we noted
that at each point of v a tangent vector is given by % = dz®/dt. If T is given
by a <t < b, then {generalizing equation (1.38)) we can define the length of
~ to be

b
L:/ |guni®i? | dt. (1.82)
a

It is clear that this definition is coordinate-independent, but not so clear
that it does not depend on the way that the curve is parameterized (see
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Exercise 1.9.2). If the metric tensor is indefinite then Jap®2? may be negative,
hence the need for the modulus signs. A further aspect of indefiniteness in the
metric tensor is that we may have a curve whose tangent vector at each point
is null, so that g.,&®2? = 0 at every point, giving a curve of zero length. Such
a curve is called a null curve.

Note that we only define lengths of curves, and make no attempt to define
the distance between a pair of arbitrary points in M. We can, however, define
the distance s between nearby points whose coordinate differences are small.
These can be regarded as points on a curve given by parameter values whose
difference 6t is small, and since to first order dz¢ = £%6t, the definition yields
5s% = ’gabéxaéxb’. The infinitesimal version of this is

ds* = 1gabd:1:adxb| (1.83)

(often written without the modulus signs, even in the indefinite case), and
defines the line element of the manifold M.

The kind of manifold that we use to model spacetime is a four-dimensional
pseudo-Riemannian manifold whose metric tensor field g, (u,v =0,1,2,3)
has an indefiniteness characterized by (+ — ——). What this means is that if
at any point P we adopt a coordinate system that gives [g,,]p as a diagonal
matrix, then one of the diagonal elements is positive, while the other three
are negative.® Any nonzero vector is then described as

timelike >0
null if gu, AAY ¢ =0.
spacelike <0

These descriptions are also applied to curves.

If the tangent vectors to a curve (or part of a curve) are timelike, we de-
scribe the curve (or part of the curve) as timelike, and extend the descriptions
null and spacelike in a similar way. We shall see in the next chapter, where our
model for spacetime is more fully developed, that a particle with mass follows
a timelike path, while a photon follows a null path. Because of the association
with photons, the term lightlike is often used in place of null.

Exercises 1.9

1. Show that if the metric tensor g, is positive definite, then cos #, as defined
by equation (1.81), satisfies |cos8| < 1.

2. Show that the definition of the length of a curve given by equation (1.82)
is independent of the parameter used.

8The difference between the number of positive elements and the number of
negative elements is called the signature of the metric. So our model for spacetime
has signature —2. Some authors use (4 + +—), resulting in a signature of +2.
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3. For r > 2m, the Schwarzschild solution has a metric tensor field given by
(940 = diag (c*(1 — 2m/r), —(1 — 2m/r)~", —=r%, —r?sin®§) ,
where the coordinates are labeled according to t = z°, r = z', = 22,

¢ = x* (see Sec. 4.1). Find the lengths of the following vectors and the
angles between them:

(a) =6, (b)yu* =68 () v =85 +c(1—-2m/r)d.

Are any of these vectors null? Are any pairs orthogonal?

1.10 What and where are the bases?

Our way of introducing vector and tensor fields on manifolds relies on the
use of components and the way in which they transform under a change of
coordinates. It leaves unanswered certain questions about the objects that we
are trying to define. In Euclidean space we can refer a vector A to a basis {e; },
or the dual basis {e'}, as in equation (1.16). It is natural to ask whether these
equations have analogs for vectors defined on a manifold. If so, then what and
where is the basis {e,}? How should we picture the dual basis {e*}? Given
that tensors have components, are there bases to which these components
refer?

If you are satisfied with the explanation of vector and tensor fields on
manifolds given in earlier sections, then you can safely move on to Chapter 2,
as the material in this section is not a prerequisite for later chapters. However,
if you think these questions need answering, then this section will provide you
with a pointer towards the more formal methods of dealing with vector and
tensor fields on manifolds. If you want a fuller account of the concepts outlined
here, then this is provided by Appendix C.

Just as in Euclidean space, if we let only one coordinate vary, while keeping
all the other coordinates fixed, we obtain a coordinate curve in the manifold
M. We can give a parametric equation for the bth coordinate curve through
a point P with coordinates z§ by putting

= zf + &t

where ¢ is a parameter, from which we see that its tangent vector has com-
ponents £ = d;. That is, all the components of the tangent vector to the
bth coordinate curve are zero, except for the bth, which is equal to one. We
therefore conclude that at each point P of M the tangent vector to the bth
coordinate curve through P is, in fact, the bth basis vector e, for contravari-
ant vectors at P. These basis vectors define the tangent space Tp of M at P
in much the same way that the tangent vectors to the two coordinate curves
passing through a point P of a surface define the tangent plane to the surface
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at P (see Fig. 1.4). Just as each point P of a surface has its own tangent
plane making contact with the surface at P, each point P of a manifold has
a tangent space Tp attached to it at P. We can then picture a contravariant
vector A = A%e, at a point as an arrow emanating from P: it is not something
in the manifold (like a curve is in the manifold), but something attached to
it at P (like the tangent vectors to a surface). Although the tangent plane
to a surface at a point gives a useful way of viewing the tangent space of a
manifold at a point, this view can be misleading. An abstract manifold should
be regarded as a thing in itself: there is no higher-dimensional space in which
it and its tangent spaces are embedded.

To identify the basis vectors for covariant vectors, we proceed in a similar
way, but use gradient vectors rather than tangent vectors. The bth coordinate
can be regarded as a scalar field ¢ on M, by putting ¢ = z°. The gradient
of this scalar field has components 0,¢ = 63. That is, all its components are
zero, except for the bth, which is equal to one. We therefore conclude that at
each point P of M the gradient of the bth coordinate (regarded as a scalar
field) is the bth basis vector e® for covariant vectors at P. These basis vectors
define the cotangent space Tp of M at P. What exactly is T5 and how is it
related to Tp? The short answer to both these questions is that 7 is the dual
of Tp, but this needs some explanation.

The tangent space Tp is a real N-dimensional vector space: the vectors in
it can be added and multiplied by scalars that are real, and any basis contains
N independent vectors (see, e.g., Halmos, 1974, for a detailed discussion). The
set of real-valued functions that act linearly on a real N-dimensional vector
space V forms a related vector space V*, known as the dual of V', which also
has dimension N (see Halmos, 1974, Chap. I). It is in this sense that the
cotangent space T7 is the dual of Tp. The way in which a covariant vector p
in 7’5 acts linearly on a contravariant vector A in T'p is readily given in terms
of components:

() = pug )\ (1.84)

The right-hand side is a real scalar quantity, and it is easily checked that
plad + Bo) = ap(A) + Bu(o),

showing that p acts linearly. If in equation (1.84) we use basis vectors, setting
u=edand X = e, we get

eb(ec) = 5263 = 527 (1.85)

since (as remarked above) the ath component of e® is 6 and the ath com-
ponent of e is 2. Equation (1.85) expresses the fact that {e®}, the basis of
T} given by the gradients of coordinates, is the dual of {e.}, the basis of Tp
given by the tangents to coordinate curves (see Halmos, 1974, Chap. 1, §15).

In Sections 1.1-1.5, we used the bases {e;} and {e’} as if they were al-
ternate bases for the same space, referring a given vector A to one or the



48 1 Vector and tensor fields

other, and distinguishing its components by referring to them as either con-
travariant or covariant. This practice is not really correct, though is common
in Euclidean space, and has its origins in confusing (or identifying®) T} with
Tp. Euclidean space has an inner product, the usual dot product A - g of
vector algebra. This inner product allows us to associate a covariant vector
A" in T} with a given contravariant vector A in Tp, by saying that for all
vectors p in Tp

AX(p)=A-p. (1.86)

In terms of components, this amounts to saying that A* has components A;
given by g;; M, where M are the components of X. The confusion amounts to
identifying each A in Tp with its associated vector A* in T, as determined
by equation (1.86). The confusion is excused by noting that when Cartesian
coordinates are used (as is often the case in Euclidean space) g;; = d;;, giv-
ing \; = A, showing that the associated covariant vector A* has the same
components as A.

With the above remarks in mind, it is possible to “correct” the confused
statements in the Euclidean sections. For example, equation (1.17) should be
replaced by

e'(e;) = 6;
and equation (1.19) should give the components A of the contravariant vector
A by arguing that

e/ (A) = e/ (Ne;) = A&l (e;) = Nio? = M.

In Figure 1.5 we drew the dual basis vectors {e"} and {e"} as if they were
situated in the tangent plane to the surface; that is, as if they were con-
travariant vectors. We now appreciate that the vectors shown are actually the
contravariant vectors whose associated covariant vectors are the dual basis
vectors {e*} and {e"}.

The final question posed in the opening paragraph concerned tensors: if a
tensor has components, then is there a basis to which these components refer?
In particular, can we write a type (2,0) tensor in the form

T = Tabeab,
where {ey; } serves as a basis for the space of type (2,0) tensors? The answer is
in the affirmative and the basis tensors are the N2 tensor products (also known
as dyad products) e, ® ey, of pairs of basis vectors e, and e, from Tp. The idea
of a tensor product is often introduced in an informal way, especially in texts
on classical mechanics.'9 The more formal mathematical approach is to define
the tensor product V ® W of two real vector spaces V and W as the space
of all real-valued bilinear functions acting on the Cartesian product V* x W*

°Tt is confusion if done unwittingly, but identification if intentional.
10gee, for example, Goldstein, Poole, and Safko, 2002, and Symon, 1971.
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of their dual spaces V* and W*. If we were to pursue this approach, then we
would recognize a type (2, 0) tensor at a point P as belonging to Tp ® Tp and
the basis tensor ey, as being the bilinear function with the property that

eq(e’, ed) = 525?,

where {e®} is the basis of T} dual to the basis {e,} of Tp. See Section C.3
for more details.

In a similar way, we would recognize a type (0,2) tensor at a point P as
belonging to Tp ® T, and a type (1,1) as belonging to Tp ® 15 (or Tp ®Tp).
General tensors of type (r,s) at P belong to

Tp@Tp® - - ®Tp®Tp@Tp®- & Tp,

T times s times

formed by taking repeated tensor products. These ideas are more fully devel-
oped in and Section C.4 of Appendix C.

Exercise 1.10

1. Go through Sections 1.1-1.5 to find every occurrence of a dot product
that should be more correctly written as a covariant vector acting on a
contravariant vector.

Problems 1

1. In Euclidean space, ellipsoidal coordinates (u, v, w) are defined by
T =ausinvcosw, ¥y =businvsinw, 2z = cucosv,

where a,b, ¢ are positive constants and 0 < u < o0, 0 < v < 7 and

0 <w<2m.

(a) Describe the three families of coordinate surfaces.

(b) Obtain expressions for the natural basis vectors e,, e,, €, and the
dual basis vectors e*, e¥, € in terms of i, j, k.

(c) Verify that (in suffix notation) e’ - e; = d%.

(As a check on your answers, note that when ¢ = b = ¢ = 1 we have

spherical coordinates.)

2. Figure 1.6 shows the torus generated by revolving the circle (z —a)?+2% =
b? (where @ > b > 0) in the plane y = 0 about the 2 axis. Show that when
the angles § and ¢ are used as parameters (see figure) points on the torus
are given by

z=(a+bcosf)cosgp, y=(a+bcosh)sing, z=bsinb,
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Fig. 1.6. The torus generated by revolving a circle about the z axis.

with —-r <@ <mand -7 < ¢ <.
Obtain expressions for the natural basis vectors eg and ey, and hence
obtain the metric tensor components g4p.

Show that if at a point P of a manifold the contravariant vector A% is
nonzero, then it is possible to change to a new (primed) coordinate system
in which A = §¢ at P.

(Use matrix theory to show that if A* # 0, then there exists a non-singular
matrix [u¢] such that A’u¢ = 6¢. Then define a new coordinate system

about P using 2% = p2a°.)

If 7% is a symmetric tensor and A% a contravariant vector with the prop-
erty that
Tb(:)\a + 7_ca)\b + 7_ab/\c =0

for all a, b, ¢, deduce that either 7¢* = 0 or A* = 0.
(Hint: If at the point in question A® # 0, then we can introduce the special
coordinate system of Problem 3.)

Suppose that with each coordinate system about a point P of an N-
dimensional manifold there are associated N2 numbers 7,5 satisfying
Tab = The and it is known that if A* are the components of an arbitrary
contravariant vector at P, then the expression Tap A2 AP is invariant under
a change of coordinates. Show that the numbers 7,5 are the components
of a type (0, 2) tensor at P.

. A type (0,4) tensor Tgpcq satisfies Tabea AP Ap? = 0 for all contravariant

vectors A® and p°. Show that its components satisfy
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Tabed + Tebad + Tadeb + Tedab = 0.

Let 2 be a system of Cartesian coordinates in Euclidean space, and let

2" be a new system whose axes are obtained by rotating those of the

unprimed system about its 23 axis through an angle § in the positive

sense.

(a) Show that at each point of space the new basis vectors are given in
terms of the old basis vectors by

ey =cosfe; +sinfle;, ey = —sinfle; +cosfey, e3 —es.

What are the transformation matrices [X;l] and [X},]?

(b) Recall that, for a rigid body having one of its points fixed at the origin
O, its angular momentum L* about O can be expressed as L' = [w’,
where I7 is the inertia tensor of the body about O and w" is its angular
momentum (all regarded as tensors at O). Find [L*] when

- Jooo o
[L]=[0m 0| and [W']= {15
00m 0

¢) Transform the components to find [ i:, wi/, and L relative to the new
p j

coordinate system, and check that LV = I}:wj/.

In special relativity the change of coordinates z# = Af,‘/x", where

cosh¢ —sinh¢ 00
/ —sinh¢ cosh¢ 00
0 0 10
0 0 01

(u,v = 0,1,2,3) gives a boost in the z' direction. Show that the corre-
sponding matrix [A%,] for the inverse transformation is given by substi-
tuting —¢ for ¢ in the matrix for [A#]. Deduce that if Guv = Tuv, then
after the boost is applied we have g,/,» = 1,,, showing that a boost does
not change this special form of the metric-tensor components.

(Here, as usual, [n,] = diag(1,—1,—1,—1). See Secs. A.0 and A.l of
Appendix A.)

Show that if the metric tensor go is positive definite, then it is possible
to transform to a new (primed) coordinate system such that, at a given
pOil’lt P3 Ga'b = 6ab-

(We know from matrix theory that if G is a positive definite matrix, then
there exists a nonsingular matrix P such that PTGP =I.)

Show that if at a point P of spacetime the nonzero vector A is orthogonal
to:
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(a) a timelike vector t#, then A\ is spacelike;
(b) a null vector n*, then A\ is either spacelike or proportional to n#;

(c) aspacelike vector s#, then A* may be either timelike, null, or spacelike.

(You can assume that it is possible to introduce a coordinate system such
that g,, = nu. at P, where [n,,| = diag(1,—1,—1,-1), and that there is
then no loss of generality in taking t* = 85, n# = 6% + 47, and s = 67.)

In Appendix A, we reviewed special relativity using coordinates and com-
ponents, but not basis vectors. However, given a system of coordinates
(t,z,y,2), we can infer the existence of a basis {e;,e;, ey, e,} at each
point of spacetime, where each basis vector is tangential to the corre-
sponding coordinate curve, as explained in Section 1.10. Using this idea,
give expressions for the basis vectors e,/, e,, e, , e, in terms of the basis
vectors ey, e;, €y, e,, where the primed coordinates and unprimed coordi-
nates are related by the boost (A.12).

If e, and e, are drawn as vertical and horizontal vectors (as in a regular
spacetime diagram), what are the directions of e and e,/ 7 Give a sketch
which shows how the primed vectors are “squashed up” for v > 0, but are
“opened out” for v < 0.
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The spacetime of general relativity and paths
of particles

2.0 Introduction

Einstein’s general theory of relativity postulates that gravitational effects may
be explained by the curvature of spacetime (modeled by a four-dimensional
pseudo-Riemannian manifold) and that gravity should not be regarded as a
force in the conventional sense. To get a preliminary idea of what is involved,
we shall follow the practice of a number of authors! and consider ants crawling
over a curved surface, namely the skin of an apple.

Suppose then that an ant wishes to follow a straight path on the apple’s
skin. The straightest path it could take would be achieved by its making its
left-hand paces equal to its right-hand ones. This would clearly generate a
straight-line path if it were crawling on a plane, so it is natural to adopt a
path generated on a curved surface in this way as the analog of a straight
line. These paths are called geodesics. If the ant had inky feet, so that it left
footprints, then making cuts along the left-hand and right-hand tracks would
yield a thin strip of peel which could be removed. If this thin strip were laid
flat on a plane it would be straight, confirming that a geodesic, as we have
defined it, is the analog of a straight line.

Suppose now that we have several ants crawling over the apple (without
colliding) and each follows a geodesic path, leaving a record of its progress
on the apple’s skin. (A. single track rather than a double one: ink on the tip
of its abdomen, rather than inky feet.) If we concentrate on a portion of the
apple’s skin which is so small that it may be considered flat, then the tracks
of the ants would appear as straight lines on this “flat” portion (see Fig. 2.1).
If, however, we take a larger view of things, then the picture is different.
For example, suppose two ants leave from nearby points on a starting line at
the same time, and move with the same constant speed, following geodesics
which are initially perpendicular to the starting line (see Fig. 2.2). Their paths

]Notably Misner, Thorne, and Wheeler, on whose well-known illustration our
Fig. 2.1 is based. See Misner, Thorne, and Wheeler, 1973, §1.1.
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Fig. 2.1. Small portions of an apple’s skin may be regarded as flat.

would initially be parallel, but because of the curvature of the apple’s skin,
they would start to converge. That is, their separation d does not remain
constant. More generally, we can see that the relative acceleration of ants
which follow neighboring geodesics with constant (but not necessarily equal)
speeds is non-zero, if the surface over which they are crawling is curved. In this
way, curvature may be detected implicitly by what is called geodesic deviation.

5\*

Initially \

parallel i Converging

3____,,/*/

Fig. 2.2. Converging geodesics on an apple’s skin.

An apple is not a perfect sphere: there is a dimple caused by the stalk.
Should an ant pass near the stalk its geodesic path would suffer a marked
deflection, like that of a comet passing near the Sun, and it would look as if
the stalk attracted the ant. However, this is not the correct interpretation.
The stalk modifies the curvature of the apple’s skin in its vicinity, and this
produces geodesics which give the effect of an attraction by the stalk.

This allegory may be interpreted in the following way. The curved surface
which is the apple’s skin represents the curved spacetime of Einstein’s general
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theory, which bears the same relation to the flat spacetime of the special
theory as does the apple’s skin to a plane. Free particles (i.e., those moving
under gravity alone, gravity no longer being a force) follow the straightest
paths or geodesics in the curved spacetime, just as the ants follow geodesics
on the apple’s skin. Locally the spacetime of the general theory is like that of
the special theory,? but on a larger view it is curved, and this curvature may
be detected implicitly by means of geodesic deviation, just as the curvature of
the apple’s skin may be detected by noting the convergence of neighboring
geodesics. The way in which the dimple around the stalk gives the impression
of attraction corresponds to the fact that massive bodies modify the curvature
of spacetime in their vicinity, and this modification affects the geodesics in
such a way as to give the impression that free particles are acted on by a force,
whereas in actual fact they are following the straightest paths in the curved
spacetime.

Given that Einstein’s general theory does not involve the idea of gravity as
a force, how does the gravitational “force” that is a feature of the Newtonian
theory arise? We remarked in the Introduction that in a local inertial frame (a
freely falling, nonrotating reference system occupying a small region of space-
time) the laws of physics are those of special relativity, and in particular free
particles (those moving under gravity alone) follow straight-line paths with
constant speed, so for these frames there is no acceleration and consequently
no “force.” When discussing gravity in Newtonian terms, it is customary to
insist that the frame used is nonrotating (so there are no centrifugal or Cori-
olis “forces”), but one does not normally use a frame that is freely falling,
and it is this use of nonfreely falling frames that gives rise to gravitational
forces. Just as the fictitious forces associated with rotation (the centrifugal
and the Coriolis forces) can be transformed away (locally) by changing to a
nonrotating frame, so can the fictitious force of gravity be transformed away
by changing to a freely falling frame.

Newton’s theory of gravity is nonrelativistic and uses a model for spacetime
that combines three-dimensional Euclidean space with one-dimensional time.
Getting the Newtonian theory as an approximation to Einstein’s general the-
ory of relativity therefore involves two things: passing from a relativistic to a
nonrelativistic way of looking at things and interpreting the effects of the cur-
vature of spacetime in the setting of three-dimensional Euclidean space plus
one-dimensional time. The whole process is quite complicated, but is essen-
tial for a proper understanding of the relationship between Einstein’s theory
and the Newtonian theory. We shall perform this approximation later in this
chapter and establish various.points of contact between the two theories.

Before we can do this, we must explain how our model for spacetime
can handle the paths of particles by including the handling of geodesics as
part of our mathematical repertoire. The mathematics of geodesics is covered
in the next few sections, along with the related concepts of parallelism and

2Compare remarks made in the Introduction.
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absolute and covariant differentiation, needed for our discussion of curvature
in Chapter 3. Note that in the present chapter we are concerned only with the
motion of particles in a given spacetime: they are test particles responding to a
given gravitational field. How that field arises is answered in the next chapter,
where we relate the curvature of spacetime to the sources of the gravitational
field.

Exercise 2.0

1. Ants follow geodesics on a surface which is an infinite cylinder (i.e., the
outside of an infinitely long straight pipe).
Do the geodesics deviate?
By considering only the paths of itself and its neighbors, can an ant decide
whether it is on a cylinder or a plane?

2.1 Geodesics

A geodesic in Euclidean space is simply a straight line, which can be char-
acterized as the shortest curve between two points. Such a characterization
could be extended to a geodesic in a manifold, where the metric tensor field
gives us the length of a curve via the integral (1.82). However, this approach
to geodesics presents some technical difficulties, particularly when the metric
tensor field is indefinite (as in the spacetime of general relativity), since in that
casc we can have curves (or parts of curves) that have zero length. We there-
fore adopt another characterization of a straight line, namely its straightness,
and use this as a guide to defining geodesics in a manifold.

What makes a straight line straight is the fact that its tangent vectors all
point in the same direction. If we use the arc-length s measured from some
base point on the line as a parameter, then the tangent vectors A = £(s)
have constant length (as they are unit vectors: see Exercise 1.3.3), so we can
express the fact that they have constant direction by stating that

dX/ds = 0. (2.1)

Let us see what form this equation takes when we use arbitrary coordinates
u® and the related natural basis {e;}.
Putting A = A\’e; and using dots to denote differentiation with respect to
s give
0= d\/ds = d(N'e;)/ds = Ne; + Né,. (2.2)

Now
éi = 8j Eﬂ'LJ

and in general the vector fields J;e; are nonzero. At each point of space, we
can refer ;e; to the basis {e;}, so that
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53'61' = Fi'fjek,

which gives rise to 27 quantities I i’} defined at each point of space. After some
manipulation and relabeling of dummy suffixes we then get

(N + I NiF)e; =0 (2.3)

from equation (2.2). Since ' = 4’ = du'/ds, we see that the components
du*/ds of the tangent vector to the straight line satisfy

42y - du? duF
- L =0. )
ds? t ok ds ds (24)

For this last equation to have any meaning, we must obtain an expression for
I}y, in terms of known quantities.

We start by noting that3
or P
ouidut  Ouidud

ajei = = 6iej,

so that I, ,‘]}ek =T fiek. Forming the dot product with e’ then gives the sym-
metry property

I _ gyl
r,=rk,. (2.5)

We then use g;; = e; - e; to get
Okgi; = Orei - €; +e; - Ope; = [jien -e; + e Ijpen,.

So

Okgij = Iik gmj + IjkGim. (2.6)
Relabeling suffixes we have

Bigik = L}i gmr + I Gjm (2.7)
and

0i9ki = I Gmi + I3 Ghom. (2.8)
Subtracting equation (2.8) from the sum of equations (2.6) and (2.7), and
using the symmetry of both I7" and g;; give

2T gmj = Okgij + 0igjk — OG-

Contracting with %—glj then gives

3Provided that we can change the order of partial differentiation, which is cer-
tainly the case if the coordinate functions z(u*), y(u*), z(u*) have continuous second
partial derivatives.
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i = 597 (Orgis + 0igjk — 0gi)- (2.9)

Equation (2.4), with I’ ;k given by equation (2.9) is the geodesic equation for
Euclidean space.

If we use a general parameter ¢ to parameterize the straight line, then
the geodesic equation has a more complicated form. However, for parameters
related to the arc-length s by an equation of the form

t=As+ B, (2.10)

where A, B are constants (A # 0), the geodesic equation has basically the
same form as when s is used:

vt dw! du®

U M A1
a2 Tl (2.11)

(See Exercise 2.1.1 for a justification of these claims.) These privileged para-
meters for which the geodesic equation has the form (2.11) (with I ]?k given
by equation (2.9)) are known as affine parameters. For an affine parameter,
ds/dt is constant, so one is taken along the geodesic at a constant sort of rate.
(If we think of ¢ as time, then the geodesic is traversed at constant speed.)

Equation (2.11) represents a system of second-order differential equa-
tions whose general solution u*(t) gives the geodesics of Euclidean space (i.e.,
straight lines) in whatever coordinate system we happen to be using. To ob-
tain a particular solution, six conditions are needed. These might take the
form of specifying a starting point and a starting direction, or of specifying a
starting point and an ending point for the geodesic.

Using the above ideas as a guide, we can define an affinely parameterized
geodesic in an N-dimensional Riemannian or pseudo-Riemannian manifold as
a curve given by z%(u) satisfying?

d?z® o dzb dz¢
- ——=0 2.12
du? +Lbe du du ! ( )
where the N3 quantities I . are given by
IE = 29°U0y9dc + Ocgba — Oagse)- (2.13)

These quantities are known as connection coefficients® and, like their three-
dimensional Euclidean counterparts, they satisfy the symmetry relation

“Note the change of notation from u’ for coordinates and t for parameter in
three-dimensional Euclidean space to z® for coordinates and u for parameter in an
N-dimensional manifold.

The reason for this terminology is given in the next section.
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Iy =Ty, (2.14)

as is clear from their defining equation. It can be shown that in moving along
an affinely parameterized geodesic, the length of the tangent vector ¢ =
dz®/du remains constant (see Exercise 2.1.2), and it follows that if the geodesic
is not null (which could be the case with an indefinite metric tensor field),
then the affine parameter is related to the arc-length s by an equation of the
form

u=As+ B, (2.15)

where A, B are constants (A # 0) (see Exercise 2.1.3). If the metric tensor
field is indefinite, then we can have affinely parameterized null geodesics whose
tangent vectors &® satisfy gap2%#® = 0 and for which the arc-length s cannot
be used as a parameter.

Example 2.1.1

In this example we show that, of all the circles of latitude on a sphere, only
the equator is a geodesic. We take the radius of the sphere to be a, and use
u! = 0 and u? = ¢ (borrowed from spherical coordinates) as parameters.

asin g
¥

>

Fig. 2.3. A circle of latitude on a sphere.
The figure shows the circle of latitude given by 8 = 6. Since its radius is
asinfg, we can parameterize it by saying that
u' =60=10y, u’=¢=_(asinfy) s,

where s is the arc-length measured round from the point where ¢ = 0. So (for

A=1,2)

1
uf = 000f + ——54, 0t =

3, = — 55‘, and iiA:O,
asin g asinfy

so, for the geodesic equation to be satisfied, we need
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1

i + Mgt =0+ ———
2 ¢in?
a? sin* 6,

I3 =0. (2.16)

From Exercise 2.1.5 we have that the only nonzero connection coeflicients are
I3y = —sinfcosf, I'h=TI3% =-cotb,

so equation (2.16) is satisfied for A = 2 (as I'Z, = 0), while for A =1 it gives
—cot fy/a® = 0, which is satisfied only if 8y = 7/2. So, of all the circles of
latitude, only the equator is a geodesic.

In order to obtain the parametric equations z* = z°(u) of an affinely para-
meterized geodesic, we must solve the system of differential equations (2.12).
These equations are second-order, and require 2N conditions to determine a
unique solution. Suitable conditions are given by specifying the coordinates z§
of some point on the geodesic, and the components &§ of the tangent vector
at that point. Bearing in mind the equations (2.13) which define the I'2, it
would seem to be a complicated procedure just to set up the geodesic equa-
tions, let alone solve them. Fortunately the equations may be generated by a
very neat procedure which also produces the I'Z, as a spin-off.

Consider the Lagrangian L(z°, z¢) = % gap(2€)2%2®, which we regard as a
function of 2NV independent variables z¢ and £¢. The Fuler-Lagrange equations
for a Lagrangian are the equations

4 (‘9L> oL _ (2.17)

du \0ic) Oz ’

and for the given Lagrangian these reduce to the geodesic equations (in co-
variant rather than contravariant form), as we now show.
Differentiating the Lagrangian we have

oL . . ,
55 = 19ap02° + 1 gap?60 = gop3®
and oL
Ozc = %8cgab$aj:b»

so equations (2.17) are
d(gcb:bb)/du - %acgab:ic“a':b =0,
or
9ebi® + Bagepi®d” — §0cgapi®i” = 0.

But

b

ca 1 ca-b 1 .a-b
0ageb®t” = 50,9cp1” + 50pgcad®T’,

so we have
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gcbjéb + %(aagcb + abgca - acgab)j:aib =0

That is, the Euler-Lagrange equations reduce to
9ebi’ + Teapi®i® = 0, (2.18)
where .o = %(&gcb + Opgea — Ocgap) and raising ¢ gives
i€ 4 I8t = 0, (2.19)

which are the equations of an affinely parameterized geodesic.

Those familiar with the calculus of variations or Lagrangian mechanics
will know that the Euler-Lagrange equations give the solution to the prob-
lem of ﬁnding the curve (with fixed endpoints) which extremizes the integral
f “?* L(2°, 2°) du. While there is some connection with the characterization of
a geodesm as an extremal of length, it should be noted that the integral in-
volved does not give the length of the curve. For reasons stated earlier, we shall
not pursue this approach any further, but simply regard the Euler-Lagrange
equations as a useful device for generating the geodesic equations and the
connection coeflicients which may be extracted from them.

Demonstrating the equivalence of the geodesic and the Euler-Lagrange
equations allows us to make a useful observation. If g, does not depend on
some particular coordinate z?, say, then equation (2.17) shows that

a oLy _,
du \ozd) 7

which implies that dL/02¢ is constant along an affinely parameterized geo-
desic. But OL/9%% = gg#°, so we then have that py = gap2? is constant along
an affinely parameterized geodesic. The situation is exactly the same as in
Lagrangian mechanics where, if the Lagrangian does not contain a particu-
lar generalized coordinate, then the corresponding generalized momentum is
conserved, and borrowing a term from mechanics we call a coordinate which
is absent from g, cyclic or ignorable.® Being able to say that py = constant
whenever z¢ is cyclic gives us immediate integrals of the geodesic equations,
which help with their solution. An example should make some of these ideas
clear.

Example 2.1.2

The Robertson-Walker line element is used in cosmology (see Chap. 6). It is
defined by

gudaetdr? = dt* — (R())” (1 — kr?)~'dr? + 12d6? + r* sin? 6 d¢?) ,
2

where 11, v = 0,1, 2, 3 (our usual notation for spacetimes), k is a constant, and
S=t a2l =r 22=6, 2% =¢.

8See, for example, Goldstein, Poole, and Safko, 2002, §2-6, or Symon, 1971, §9-6.
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So the Lagrangian is
L(#,27) = $ {62 - (R@)* (1 = kr®) 72 41267 4 r25in? 0 62) }
where dots denote differentiation with respect to an affine parameter u. Partial

differentiation gives

OL/0F =1,

OL/OF = —R%(1 — kr?)~ 7,

OL/88 = —R2r20,

OL/8¢ = —R*r?sin’ 0 ¢,

AL/t = —RR'[(1 — kr?) 172 4 1262 + r2sin 0 ¢?]
(where R’ = dR/dt),

OL/8r = —R2(1 — kr?)~2kr72 — R2rf2 — R?rsin® 0 ¢,

dL/80 = —R2r?sin 0 cos 0 ¢,

OL/0¢ = 0.
Substitution of these derivatives in the Euler-Lagrange equations (2.17) gives
P4+ RR[(1 — kr?)™ 42 4+ 7262 + r2sin? 0 ¢%] =
— R*(1 — kr®)™ ' — 2RR'(1 — kr?) " tir
— R*(1 - kr®)"2kri? 4+ R*r6* + R%*rsin? 0 ¢* = 0,
— R%r%6 — 2RR'7?10 — 2R*rif + R*r?sinf cos§ ¢ = 0,
— R*?sin%0 ¢ — 2RR'r?sin’ 06
— 2R?*rsin? 07¢ — 2R*r*sinf cosf ¢ = 0.

The above comprise the covariant version of the geodesic equations, as
given by equation (2.18). Because [g,,] is diagonal, it is a simple matter to
obtain the contravariant form of the geodesic equations (as given by equa-
tion (2.19)). All we have to do is to divide each equation as necessary, so as

to make the coefficients of ¢, 7, g and gb equal to one. We thus arrive at the
geodesic equations for the Robertson—Walker spacetime in standard form:

t+RR'[(1 —kr?)~1¢2 + r26% + r? sin® 9@52] =0,
P+ 2R R+ kr(1 — kr?) 712
—r(1 — kr?)8% — r(1 — kr?)sin? 6 ¢* = 0, (2.20)
6+2R R0+ 2r 176 — sinf cosf ¢* = 0,
¢+ 2R R™Yig + 2r 17d + 2cot 06 = 0.
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Comparing these with equations (2.19) allows us to pick out the connection
coefficients. These are zero except for the following:

I'% =RR'/(1—kr?), I3 =RR7"? I’y = RR'r?sin? 6,
I'yy = R'/R, Il =kr/(1 — kr?), Tl = —r(1 — kr?),
I}y = —7(1 - kr?)sin® 6,

= R'/R, I, =1/r I'Z = —sinfcosf,
I3 =R/R, I3 =1/r I3, = cotd.

Note, for example, that in the second geodesic equation 2R’ R™'## includes
two terms of the sum I, &#&", namely I, i%¢" and I2'4°, and one must
remember to halve the multipliers of the cross terms #*%” (u # v) when
extracting the connection coefficients from the geodesic equations.

Note also that in the example above ¢ is a cyclic coordlnate SO one may say
immediately that 0L/ O is constant; that is, R2r?sin® @ ¢ = A. Differentiation
with respect to u results in the last geodesic equation, showing that we do
indeed have an integral.

Exercises 2.1

1. Show that if a general parameter t = f(s) is used to parameterize a
straight line in Euclidean space, then the geodesic equation takes the
form

o e g T Mg
2 —2
where h(s) = 4 <ﬁ> .

d2ut i du? duF b dut

ds? \ ds

Deduce that this reduces to the simple form (2.11) if, and only if, ¢ =
As + B, where A, B are constants (A # 0).

2. The aim of this exercise is to show that the length L of the tangent vector

Z% to an affinely parameterized geodesic is constant.

(a) Start by arguing that +L? = gg,2°2°.

(b) Differentiate this equation to obtain an expression for +£2LL in terms
of the quantities ggp, Gap, €%, and Z°.

(c) Put gup = 0.9apx® and use the geodesic equation (2.12) to express the
second derivatives Z“ in terms of the connection coefficients I}, and
the first derivatives &

(d) Then use equation (2.13) to express the I in terms of the metric
tensor components and their derivatives.
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(e) Simplify to obtain 2LL = 0, from which it follows that L = 0 and L
is constant.
(See Exercise 2.3.4 for a much shorter derivation of this result.)

Use the result of Exercise 2 to show that, for a non-null geodesic affinely
parameterized by u, u = As+ B, where A, B are constants (A # 0).

Show that for any geodesic (non-null or null) any two affine parameters u
and v’ are related by an equation of the form v’ = Au + B, where A, B
are constants with A # 0.

Use the result of Exercise 1.6.2(a) to show that, for a sphere of radius
a parameterized in the usual way by u! = 6, u> = ¢ (borrowed from
spherical coordinates), the metric tensor components are given by

lgas] = a? 0
9ABI = | g2sin26 |

Deduce that the only nonzero connection coefficients are
I3, = —sinfcosf, TIf=T2 =coth.

Show that all lines of longitude on a sphere (curves given by ¢ = constant)
are geodesics.

In a Robertson-Walker spacetime, a coordinate curve for which r, 8, ¢
are constant and t varies is given by

T (u) = ubly + rodl + 098 + ¢odh,

where rg, 6g, ¢g are constants and u is a parameter. Verify that all such
coordinate curves are geodesics affinely parameterized by wu.

(See Example 2.1.2 for the connection coefficients for a Robertson—Walker
spacetime.)

2.2 Parallel vectors along a curve

Our way of characterizing a straight line in Euclidean space and (by extension)
a geodesic in a manifold is related to the idea of parallelly transporting a vector
along a curve.

Let 7 be a curve in three-dimensional Euclidean space given parametrically

by ui(t) and let Py with parameter ¢y be some initial point on v where we
give a vector Ag. We can think of transporting Ag along v without any change
to its length or direction so as to obtain a parallel vector A(t) at each point
of v (see Fig. 2.4). The result is a parallel field of vectors along v generated
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Py

Fig. 2.4. A parallel field of vectors generated by parallel transport.

by the parallel transport of Ag along . Since there is no change in the length
or direction of A(t) along ~, it satisfies the differential equation

d\/dt = 0, (2.21)

for which A(tp) = Ao is the initial condition. If we work on equation (2.21)
like we did on equation (2.1), then we can deduce from an equation like equa-
tion (2.3) that the components A* of the transported vector satisfy

N+ TENF =0, (2.22)

where the connection coefficients are given by equation (2.9).

Equation (2.22) is the component version of the equation for parallelly
transporting a vector along a curve in Euclidean space. Its generalization for
the parallel transport of a contravariant vector A* along a curve v in an N-
dimensional manifold with metric tensor field g, is clearly

A TR =0, (2.23)

where the connection coefficients are given by equation (2.13) and * is the
tangent vector arising from the parameterization z%(u) of v. We now see that
our definition of an affinely parameterized geodesic in the previous section
amounts to saying that it is a curve characterized by the fact that its tangent
vectors % form a parallel field of vectors along itself.

Parallel transport along curves in a curved manifold is significantly differ-
ent from that along curves in flat Euclidean space in that it is path-dependent:
the vector obtained by transporting a given vector from a point P to a re-
mote point (@ depends on the route taken from P to Q. This path dependence
also shows up in transporting a vector around a closed loop, where on re-
turning to the starting point the direction of the transported vector is (in
general) different from the vector’s initial direction. This path dependence
can be demonstrated on a curved surface, in both practical and mathematical
terms.
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In Appendix B we describe the construction of a machine that gives a
practical means of transporting a vector parallelly along a curve on a surface.
It is a small two-wheeled vehicle carrying a pointer (which represents the
vector) equipped with some rather clever gearing that receives input from the
two wheels and outputs adjustments to the direction of the pointer. These
adjustments ensure that the pointer is parallelly transported along the path
taken by the vehicle. If we were to take this parallel transporter for walks on
various surfaces, we would confirm that, for a curved surface, parallel transport
is (in general) path-dependent, while, for a plane, it is path-independent. We
would also observe that on completing a closed loop on a curved surface, the
final direction of the pointer is (in general) different from its initial direction.
The following example illustrates in mathematical terms this phenomenon for
curves on a sphere.

Example 2.2.1
Consider a sphere of radius a, coordinatized in the usual way using u! = 6,

L) IR
'Y ll‘lllldl'
o direction

Fig. 2.5. Parallel transport around a circle of latitude.

u? = ¢, where 0, ¢ are polar angles borrowed from spherical coordinates, with
0 < 6 < 7 and (for convenience) 0 < ¢ < 2. Then

[QAB] =

a? 0
0 a?sin’f
and the only nonzero connection coefficients are
Iy, = —sinfcos, I3 =TI% =cotf

(see Exercise 2.1.5). Let us transport a vector A parallelly around the circle
of latitude « given by 8 = 6y (fy = const), starting and ending at the point
Py where ¢ = 0 or 27 (see Fig. 2.5). The circle is given parametrically by
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ut(t) = 08 +185, 0<t<2m

so 44 = 84 and the equation for parallel transport becomes A + I’ ANB =0
which is equivalent to the pair

k)

A _ o 2 _
{/\ sinfgcosfp A =0 (2.24)

A 4ot AN =0

Suppose initially that A is a unit vector whose direction makes an angle «
east of south. Then

M(0)=a"tcosa, X(0) = (asinfy) 'sina, (2.25)
as may be checked by noting that these must satisfy
gap M (0AB(0) =1 and gapA*(0)S? = cosa,

where S4 = a~16{! is the south-pointing unit vector at Po.
We have an initial-value problem comprising the pair of equations (2.24)
with initial conditions (2.25). Its solution is

{/\1 -~ cos(a — wt) (226)

A% = (asinfp)~Lsin(a — wt) ’

where w = cosf, as may be checked (see Exercise 2.2.1). On completing the
circuit of v, the vector obtained by parallel transport has components

A(2m) = a™ ! cos(a — 27w)
A2(2m) = (asinfy)~!sin(a — 27w)

We see that gapA(2m)AB(27) = 1, so A*(27) is a unit vector (as it should
be), but its direction is not that of the initial vector A*(0) (unless w happens
to be zero, as on the equator). Noting that

gas N (0)AB(27) = cos acos(a — 2nw) + sin asin(o — 27w)
= cos(a — (o — 27w))

= cos 21w,

we see that the final vector makes an angle of 27w with the initial vector,
where w = cosfy. For example, for §y = 85° the vector has twisted through
31.4°, whereas for 8y = 5° (near the North Pole) the angle between the final
and initial vectors is 1.4°.

The above example can be used to illustrate two further points concerning
parallel transport. The first of these is that if the curve along which the vector
is transported is a geodesic, then the angle between the transported vector
and the tangent to the geodesic remains constant. This is clearly the case
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when the geodesic is a straight line in Euclidean space and we shall obtain it
as a general result for a manifold in the next section. The verification of this
result for the sphere is left as an exercise for the reader (see Exercise 2.2.3).

The second point concerns transporting a vector parallelly around a closed
curve that is “small.” If in the example above 6 is small, then + is a small
circle about the North Pole, w = cosfly = 1 and the angle between the initial
direction and the final direction is approximately 2w, which amounts to a
negligible discrepancy between the initial and final vectors. This illustrates
the fact that, by sticking to a small portion of a curved surface, we tend
not to pick up its curvature by parallel transport around a closed curve.?
Locally the surface behaves much as if it were flat, and experimentation over
an extended region gives us a better chance of detecting curvature. The same
is true for manifolds in general.

The connection coefficients 2, are said to define a connection on the mani-
fold. The reason for this kind of terminology is because it provides us with a
connection between tangent spaces at different points of a manifold, enabling
us to associate a vector in the tangent space at one point with the vector
parallel to it at another point. For widely separated points, this association
depends on the path used to connect the points, but for neighboring points
(separated by small coordinate differences) the association is unique (up to
first order in the small coordinate differences), as we now go on to show.

Suppose that P with coordinates * and Q with coordinates £* + §z* are
nearby points. Let 4 be any parameterized curve through P and Q, with P
having parameter u and Q having parameter u + du, and let A% = X% + §\¢
be the vector at Q parallel to a given vector A* at P. Since the vector at Q
is obtained by the parallel transport of A% at P along the short piece of curve
from P to Q, we have that

d\®
N = )
du O
where (from equation (2.23)) dA?/du = —I'2 A\’dz°/du, which gives
3o e — e 5 o ne o abage, (2.27)

du

So to first order in dz%, we have a linear mapping from the the tangent space
Tp to the tangent space Tg in which the vector at P with components A® is
mapped into the parallel vector at Q with components A* = A‘g/\b, where

A2 =52 — I252°. (2.28)

We shall make use of this mapping in the next section when defining absolute
and covariant differentiation.

In adopting equation (2.23) as the equation defining the parallel transport of
a contravariant vector along a curve in a manifold, we completely ignored the

"This is because it is a second-order effect. See Sec. 3.3.
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question of coordinate independence. If we were to use a primed coordinate
system and perform parallel transport by having A% satisfy

A+ g A =0, (2.29)

where

F[?’C’ = .l_ga d (ab’gd’C’ + 8C’gb’d’ — ad'gb’c’)a (230)
would we get the same parallel field of vectors along the curve? We can answer
this question in an indirect sort of way by showing that (to first order in small
coordinate differences) the mapping from Tp to T given by equation (2.27)
does not depend on the coordinate system used. Thus we need to show that
if

S PN
then . .
A? (Xg/)Q =A%,

where (X¢)q denotes 9z°/dx evaluated at Q. In terms of values at P, we
can say that (to first order)

(X))o = X& + XGo627
where X& _, = §%z°/ dz% 9z, so we need to show that
(A = TN 80 ) (XS + X b)) = A — TE M 629
But A% X ¢ = X% so (to first order) the above condition reduces to
X5 X 02 — [E, XN 60 = —T§ M 629,

which is equivalent to

(Mg, — I X3 X X9 — X3, X3 ) XeN 2 =0, (2.31)
since X,{, AY = Af and (to first order) Xf,&vC/ = 6x¢. Using the defining equa-

tions (2.13) and (2.30), we can show that the connection coefficients transform
according to

I = I§ X8 X X9+ X2 XS (2.32)

(see Exercise 2.2.4), so condition (2.31) is satisfied and the coordinate inde-
pendence of parallel transport is established. (See Exercise 2.2.6 for a more
direct way of establishing this result.) Since we can express the definition of
a geodesic in terms of parallel transport, it follows that this definition is also
coordinate-independent.

We finish this section by establishing a few formulae involving the connection
coefficients I’ and the related quantities Iy, defined by
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Fabc = %(abgac + 8cgba, - 8agbc)- (233)

The traditional names for I';p. and I}, are Christoffel symbols of the first and
second kinds, respectively, and the notation Iope = [be,a], T2 = {2} is often
used, especially in older texts.

From equation (2.13) we see that

IE = ¢* Ty (2.34)

and a short calculation shows that

Fabc = gad[};ic- (235)

Adding lyge to Tgpe gives

8cgab = Fabc + Fbaca (236)

allowing us to express the partial derivatives of the metric tensor components
in terms of the connection coefficients. If we denote the value of the determi-
nant |g.s| by g, then the cofactor of g, in this determinant is gg®°. (Note that
g is not a scalar: changing coordinates changes the value of g at any point.) It
follows that 0.9 = (0.9as)99?®, so from equations (2.36) and (2.34) we have

acg = ggab(['abc + Fbac) = g(rlf)c + F(:lc) = QQF;C'
So the contraction I'% of the connection coefficients is given by
Ie = 3970 =30 1nlg|, (2.37)

the modulus signs being needed as g is not necessarily positive in the indefinite
case. Alternative expressions are

I%=0dnlgl"* and I3 =lg 89", (2.38)

Exercises 2.2

1. Verify that the initial-value problem comprising the pair of equations
(2.24) with initial conditions (2.25) has a solution given by equations
(2.26).

2. For what circle(s) of latitude is the final direction of the transported vector
in Example 2.2.1 exactly opposite to that of the initial direction?
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3. Noting the result of Example 2.1.1, verify that for parallel transport along
a geodesic the angle between the transported vector of Example 2.2.1 and
the tangent to the geodesic is constant.

4. Verify that the connection coefficients transform according to equation
(2.32).

5. Show that an alternative form for the transformation formula (2.32) is
Iy, =T%X$ X X) - Xp X1 X2 (2.39)

6. By transforming the left-hand side of equation (2.23) to a primed coordi-
nate system, show that this defining equation for the parallel transport of
a contravariant vector along a curve is coordinate-independent.

2.3 Absolute and covariant differentiation

In this section, we turn our attention to the effect of differentiation on tensor
fields on a manifold M. Initially we shall consider fields defined along a curve,
rather than throughout a region U or throughout the whole manifold M. Here
we can regard the components of the field as functions of the parameter u used
to label points on the curve, and we can consider their derivatives with respect
to u. As we shall see, these derivatives are not the components of a tensor,
which may come as a surprise to those used to differentiating the velocity com-
ponents of a particle with respect to time t (which acts as a parameter along
the particle’s path) to obtain its acceleration. To make differentiation respect
the tensor character of fields it needs to be modified, which, for differentiation
along curves, leads to the idea of the absolute derivative. Having made this
modification for fields along curves, we shall then go on to consider tensor
fields defined throughout a region covered by a coordinate system, where the
components can be regarded as functions of the coordinates. For these there is
a corresponding modification of partial differentiation, called covariant differ-
entiation, which is defined so that it respects tensor character. Both absolute
and covariant differentiation depend on the notion of parallelism introduced in
the previous section. These ideas play a crucial role in the formulation of the
general theory of relativity and, because of this, this section and the following
one are particularly important.

Suppose that we have a vector field A%(u) defined along a curve v given
parametrically by z%(u). As we remarked above, the N quantities dA*/du are
not the components of a vector. To see this we use another (primed) coordinate
system and look at the corresponding primed quantities d\” /du to see how
they are related to the unprimed quantities d\®/du. These primed quantities
are given by

AN Jdu = d(XF AY) /du = X (dN/du) + X (da® /du)\?, (2.40)
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and the term involving X2 = 82z /8x°9x° would be absent if the d\*/du
were the components of a vector. The reason for the presence of this term is
that in the defining equation

dA — lim A% (u+ du) — A*(u)
du du—0 ou

: (2.41)

we take differences of components at different points of v, and here is the origin
of our problem. Because in general the transformation coefficients depend on
position, we have (X2 )y # (X& )ussu, which means that these differences in
components are not the components of a vector (at either of the points in
question). In the limit the difference between (Xgl)u and (X,‘}/)qu(;u shows
up as ch' For differentiation to yield a vector, we must take component
differences at the same point of v, and we can do this by exploiting the notion
of parallelism introduced in the previous section.

Let P be the point on v with parameter value u and Q be a neighboring
point with parameter value u + du. Then A*(u+ du) is a vector at Q, as is the
vector A% obtained by the parallel transport of A*(u) at P to Q. The difference
A% (u+-6u)—\® is then a vector at Q, and so is the quotient, (A% (u-+du)—A*)/éu.
It is the limit of this quotient (as du — 0) that gives the absolute derivative
DX /du of A%(u) along v. Now

dX\e
du

A (u+ 0u) ~ A*(u) + ——du

and, from equation (2.27),

A A% (u) — TEAN (u)dz°,

80 -
A%(u+6u) — A dr° b, \ 0ZC
—_—x — + T2

ou du + 15X () du

As du — 0, the point Q tends to P, and the limit of the quotient is

D)@ _ d\?
du ~ du

du’

+I2A (2.42)

where all quantities are evaluated at the same point P of . Thus the absolute
derivative of a vector field A\* along a curve -y (which is a vector field along
7} involves not only the total derivative dA®/du (which is not a vector field
along ), but also the connection coefficients I'Z..

The claim that the absolute derivative is a vector field along v is justified
by the way in which it is defined. It can also be justified by checking that

dr ;o dat cfdddat
— G N — | =X | — + T8N —— 2.4
(du L) du> Xa <du e ) (2.43)
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using the transformation equations (2.40) and (2.39) for dA® /du and I'Z.. Both
of these involve second derivatives of the form X, ;}C’, but in such a way that they
cancel when used to transform the quantities DA% /du. (See Exercise 2.3.1.)

We now see that equation (2.23) for parallelly transporting a contravariant
vector along a curve can be written as DA*/du = 0 and that A\%(u) form a
parallel field of vectors along « if, and only if, DA*/du = 0. By extending the
definition of absolute differentiation to general tensor fields 7' "}*" (u) defined
along a curve v, we can also extend the notion of parallel transport along v
by requiring that D7y ' /du = 0.

There are two approaches which may be taken to defining the absolute
derivative of general tensor fields along a curve. One is to extend the notion
of parallelism between neighboring tangent spaces Tp and Ty to one between
the space of type (r,s) tensors at P and the space of type (r,s) at Q, while
the other is to demand that the operation of absolute differentiation satisfies
certain reasonable conditions which allow us to extend the concept to general
tensor fields along curves. We shall take the latter course, and impose the
following conditions on the differential operator D/du applied to tensor fields
defined along a curve parameterized by u:

(a) When applied to a tensor field, D/du yields a tensor field of the same
type.

(b) D/du is a linear operation.

(¢) D/du obeys Leibniz’ rule with respect to tensor products.

(d) For any scalar field ¢, D¢/du = d¢/du.

Condition (b) is a normal requirement of a differential operator and simply
means that we are allowed to say things like D(c%® + 79%)/du = Do /du +
D78 /du, and D(kt2)/du = k(D72 /du) for constant k, while condition (c)
allows us to say things like D(of7°¢)/du = (Dof/du)T°* + o2(D7¢/du).

We now show how, by using conditions {a)—(d) and the expression already
obtained for a contravariant vector field, we can obtain expressions for the
absolute derivatives of tensor fields of any type. We shall do this in detail for
some simple fields of specific type, from which we shall be able to infer the
general pattern for a field of any type.

The absolute derivative of a scalar field
From condition (d) above, we have

Dé/du = do/du. (2.44)

The absolute derivative of a contravariant vector field
With the dot-notation for derivatives, equation (2.42) takes the form

DX /du = \* + TENi°. (2.45)
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The absolute derivative of a covariant vector field
If ug is a covariant vector field along a curve <, then for any contravariant
vector field A® along v, A%y, is a scalar field, so using equation (2.44) we have

d(X\%ug)/du = D(\*p,)/du. (2.46)

Then using Leibniz’ rule (condition {c)) on the contracted tensor product we
get

dX® due,  DA® Dy,
- )\a — a
du Ha + du du Ha A du
dX® dx Dy
=g, | — e b a a
ﬂ<du+ b du>+)‘ du’

which implies that

Dita _ 4dia d ol
Ha _ yalH dxua—x( ~ T2 pgi®) .

A du du

—TEN

Since this holds for arbitrary vector fields A%, we deduce that

Dpig/du = fiq — TS pgi®, (2.47)

and in this way our conditions yield the absolute derivative of a covariant
vector field. (As we note below, when forming the absolute derivative of a
tensor field, a I' term with a minus sign is included for each subscript. As a
reminder, we can extend our mnemonic to “co-below and minus.”)

The absolute derivative of a type (2,0) tensor field

As a guide to obtaining an expression for the absolute derivative of a type
(2,0) tensor field, we consider the special case in which 7% = X%uP, where 2,
p® are contravariant vector fields along the curve. Then using condition (c)
we have

D7 /du = D(A*pP)/du = (DX®/du)pu® + A\ (Dp®/du).

Inserting appropriate expressions for DA*/du and Dpu®/du, and recombining
Xepb as 79 results in

D% /du =+ + Teyr®a? + Ihroeit, (2.48)

which we take to be the formula for the absolute derivative of a type (2,0)
tensor field.
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The absolute derivative of a type (0,2) tensor field
Similarly, by considering 74, = Aqup, we can arrive at

Doy /du = Top — IS Tepi® — Ty7a.8° (2.49)

as the formula for the absolute derivative of a type (0,2) tensor field. (See
Exercise 2.3.2.)

The absolute derivative of a type (1,1) tensor field
Likewise, by considering 7 = A%y, we get

D1d/du = ¢ + Teriid — Igroit (2.50)

for the absolute derivative of a type (1,1) tensor field. (Again, see Exer-
cise 2.3.2.)

The pattern should now be clear. The absolute derivative of a type (r, s)

tensor field 7,/ ";*" along a curve v is given by the sum of the total derivative
Ty of its components r terms of the form I'*7¢~&% and s terms of the

. For example,

Drgb/duz+gb+ra T84¢ + Iy, r3%a® — Tirgtac. (2.51)

As we remarked above, we can extend the notion of parallel transport to a
tensor of any type, simply by requiring that its absolute derivative along the
curve be zero. Again we emphasize that the parallel transport of tensors is in
general path-dependent. Scalar fields are, of course, excepted, since D¢/du = 0
implies that d¢/du = 0, which in turn implies that ¢ is constant along the
curve.

We are now in a position to introduce the covariant derivative of a tensor
field, which is closely related to the absolute derivative. For absolute differ-
entiation, the tensor fields involved need only be defined along the curve in
question. The covariant derivative arises where we have a tensor field defined
thiroughout M (or throughout a region of M).

Suppose, for example, we have a contravariant vector field A* defined
throughout a region U. If + is a curve in U, we can restrict A% to ~, and
define its absolute derivative:

DA /du = A 4+ TE b3, (2.52)

a

. o
But \* =
4 Oz°

£, so this may be written

du (8 ¢ FbC)\)
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The bracketed expression on the right of this last equation does not depend

on 7 but only on the components A® and their derivatives at the point in

question, and the equation is true for arbitrary tangent vectors £ at the point

in question. The usual argument involving the quotient theorem entitles us to
a

deduce that

tensor field is the covariant derivative of the vector field A%, and we denote it
by A%..

It is convenient at this point to introduce some more notation. We have
already used 9, as an abbreviation for 9/0z% and we shall continue to use it
when dealing with covariant derivatives. We shall also use a comma followed
by a subscript a written after the object on which it is acting to mean the
same thing. So the covariant derivative of A* may be written as

+ [ \b are the components of a type (1, 1) tensor field. This

[

X% = O AT+ TEAP = A\ + T\, (2.53)

This notation extends naturally to repeated derivatives. For example, we write
O*X\ /011 0z° as B0\ or as A? - In a similar way we shall use A%, , to denote
the repeated covariant derivative (A%,)..

Returning now to covariant differentiation, we see that the argument above
may be applied to a type (r, s) tensor field so as to define its covariant deriva-
tive, and it is clear that the resulting tensor field is of type (r, s+ 1). It follows
that covariant differentiation satisfies conditions analogous-to (a)—(d) stipu-
lated for absolute differentiation. Expressions for the covariant derivatives of
general lower-rank tensor fields are noted below.

Covariant derivatives of lower-rank tensor fields
For a scalar field ¢, covariant differentiation is simply partial differentiation:

¢);(l = all(;ZS (2.54)

For a contravariant vector field A%, we have

A%y = 82T+ TGN, (2.55)

For a covariant vector field p,, we have

Paze = Ocpla — Ffz)ctub' (2.56)

For a type (2,0) tensor field 7%, we have

T‘“?C =9, 7%+ F;CTdb + Fé’cT“d. (2.57)
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For a type (0,2) tensor field 7,5, we have

Tab;e = 6cTab - Fgchb - FI;icTad- (258)

For a type (1, 1) tensor field 7, we have

oo = Ocrf + o — TS, (2.59)

Again, the mnemonic “co-below and minus” is a useful reminder for the sign
of a I' term.

The essential property common to both covariant and absolute differentia-
tion is that when the operation is applied to a tensor field it produces a tensor
field, while the operations of partial and total differentiation do not (i.e., the
partial derivatives and total derivatives of tensor components do not obey
transformation laws of the kind (1.73)). Another way in which the covariant
derivative differs from the partial derivative is that in repeated differentia-
tion the order matters. Thus for a vector field A%, we must acknowledge that
even if A%, = A , holds, in general, A%, # A% . We shall have more to
say on this matter in the next chapter. We finish this section by considering
the derivatives of the metric tensor field and its associated fields, noting in
particular a special property that they possess.

Using equation (2.35) and the fact that )2 = I, we can rewrite equa-
tion (2.36) as

Ocab — T %946 — T 90d = 0,

which shows that g.p,. = 0. That is, the covariant derivative of the metric
tensor field is identically zero. The Kronecker tensor field with components
62 and the contravariant metric tensor field with components ¢g* also have
covariant derivatives that are zero, as we now show. For the Kronecker tensor
field, we simply note that

Opo =008 + [g.0f — 64 =0+ I — I =0,

while for the contravariant metric tensor field, we use the result just estab-
lished to argue that

0= 85 = (9"%gan);c
= gad;cgdb + ¢%%ap.c  (by Leibniz’ rule)
=g ga (as gap,e = 0).

Then contraction with ¢%¢ gives

0= g%.05 = 9",
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as claimed. Along any curve -y, where we can regard the components g, as
functions of the parameter u, we have that Dgup/du = gap,c2° = 0, establish-
ing that the absolute derivative of the metric tensor field along v is zero. We
can argue similarly that the absolute derivatives of the Kronecker tensor field
and the contravariant metric tensor field are also zero along any curve.

To sum up, we have shown that the metric tensor field gqp, the Kronecker
tensor field with components 6¢ and the contravariant metric tensor field g°°
have covariant derivatives that are zero:

Gabie =0, 6p.=0, g¢*°% =0; (2.60)

and that along any curve v their absolute derivatives are also zero:

Dgap/du =0, D/du=0, Dg®/du=0. (2.61)

These special properties of the metric tensor field and its associated fields
allow us to establish the important result that inner products are preserved
under parallel transport. What we mean by this is that if two vector fields A%,
u® are parallelly transported along a curve «, then the inner product g, A®*u®
is constant along . We prove this by noting that

d(gapA* 1) /du = D(gapX*1°) /du
= (Dgab/du)X*1® + gap(DX® /du)u® + gasA*(Dp® [ du)

since DA®/du = Dub/du = 0 (because the vectors are parallelly transported)
and Dg,p/du = 0 (established above). It follows that the length of a parallelly
transported vector is constant, and also that the angle between two parallelly
transported vectors is constant. Since the tangent vector to an affinely para-
meterized geodesic is parallelly transported along the geodesic, we can deduce
that if a vector is parallelly transported along a geodesic, then the angle be-
tween the transported vector and the tangent to the geodesic remains constant.
(See the remarks after Example 2.2.1 and Exercise 2.2.3.)

Having defined covariant differentiation, we can extend the familiar notion
of the divergence of a vector field in Euclidean space to vector and tensor fields
on a manifold. For a contravariant vector field A\* we define its divergence
to be the scalar field A% ,. This definition is reasonable, for in a Cartesian
coordinate system in Euclidean space g;; = d;5, so Oxgi; = 0 giving I ;k =0,
and A%, reduces to X*;. The divergence of a covariant vector field y, is defined
to be that of the associated contravariant vector field u® = g*®u,. For a type
(r, s) tensor field we may define (r + s) divergences,

ai...c...ar aj...ar cd
T e (o e 5,9 a
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although these will not be distinct if the tensor field possesses symmetries. We
can use this approach to calculate the divergence of a vector field in Euclidean
space using curvilinear coordinate systems, as in the following example.

Example 2.3.1

In spherical coordinates the position vector field is r = re, = re; (on labeling
the coordinates according to u! = r, u? = 6, u® = ¢), so its components are
rt = rgt. Its divergence can then be calculated by saying

Ver=ri =0+ Iir = 0i(ré}) + I'i(ré]) = 0r/0r + I},

=1+1rg '0ig (using equation (2.37))
=1+ %r(r‘1 sin?0)"1a(r*sin? 0) /Or (as g = det[g;;] = r*sin*6)

Exercises 2.3

1. Check formula (2.43).
(Most of the work was done in Exercise 2.2.6.)

2. Obtain formulae (2.49) and (2.50), using methods similar to that used in
deriving the result (2.48).

3. Show that equation (2.12) for an affinely parameterized geodesic can be
written as Dz®/du = 0.

4. Prove that the length of the tangent vector £* to an affinely parameterized
geodesic is constant.

2.4 Geodesic coordinates

It can be scen from equation (2.13) that if we could introduce a coordinate sys-
tem throughout which the metric tensor components were constant, then the
connection coefficients would be zero, and the mathematics of parallel trans-
port, absolute differentiation, and covariant differentiation would be much
simpler. It is possible to introduce such a coordinate system in Euclidean
space, for example, by using Cartesian coordinates in which g;; = 4;;, but
in a general curved manifold it is not. However, it is possible to introduce a
system of coordinates in which I, = 0 at a given point O, and such systems
have their uses in simplifying some calculations involving the connection co-
efficients (see, e.g., Sec. 3.2 where the Bianchi identity is established). Such
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coordinates are generally referred to as geodesic coordinates with origin O,
but this is not always appropriate, as they need not be based on geodesics.

Suppose we start with some system of coordinates in which O has coor-
dinates z}. Let us define a new system of (primed) coordinates by means of
the equation

¥ = z° -5+ 3 (Fbc) (z° —a:bo)(xc—xf)), (2.62)

where (I'2), are the connection coefficients at O, as given in the original
(unprimed) coordinate system. Differentiation with respect to z¢ gives

Xd =03+ 3(I)o 85(a¢ — zg) + %(Fbc) (z* — 2%)85
=03 + (Ige)o(z® — 25),

SO (Xgl)o = 05 and det[X(‘i"]O # 0. This means that equation (2.62) defines
a new system of coordinates in some neighborhood U’ of O, as claimed (see
Sec. 1.7). A second differentiation gives

ng = (F;c)oég - (Fdae)Ov

showing that (Xed)O = (I'{,) o- If we now use the transformation equatlon of
Exercise 2.2.5 (noting that (X&), = 42 as a consequence of (X4 )o =09),
we get

(o = (1) o0ad56] — 6561 (If.)o = (Ni)o — (Iie)o = 0.

So in the new (primed) coordinate system the connection coefficients at O are
zero, and we have a system of geodesic coordinates with origin O.

Geodesic coordinates can be used to construct a system of local Carte-
sian coordinates about a point O. These are an approximation to Cartesian
coordinates, valid near O in a region of limited extent where the curvature
of the manifold can be neglected. To get at such a system, we make use of
a second coordinate transformation that brings the metric tensor at O to a
simple diagonal form, while keeping the connection coefficients at O zero. To
this end, we introduce a third (double-primed) system of coordinates about
O defined by )

2% = pia?, (2.63)
where p§ are constants such that the matrix P = [pg] is nonsingular. Differ-
entiation of equation (2.63) shows that

7"

X2 :p,‘fég =p,

(o3

so that the matrix version of

(ga”b“)o = (gc'd’ )O(Xg” )O(de“ )O
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is
G'o = PTGyP.

This means that, in matrix terms, G’ is obtained from G6 by a similarity
transformation using the matrix P (see, e.g., Birkhoff and Mac Lane, 1977,
§2-6). Matrix theory tells us that there exists a matrix P that brings G'o to
diagonal form in which each diagonal entry is either +1 or —1. If the metric
tensor is positive definite, then all these entries are +1, but if it is indefinite,
some will be +1 and others will be —1. In the latter case it is usual to use a
diagonalizing matrix P that gives a diagonal form for G’ with all the positive
entries preceding the negative ones, so that

[ga”b”]o = G//O = dlag(l, ey 1, —1, ceay _1)

This second transformation has X(‘i’,/;, = 0, so it follows from the equation
of Exercise 2.2.5 (adapted for primed and double-primed coordinates) that if
(Fg‘,/c,)o = 0, then (Fgf;lc,,)o = 0, which is what we required of it. Note that
atg = ( (from equation {2.62)), so a:ao// = ( (from equation (2.63)), showing
that the point O is the “origin” of the double-primed coordinate system.
Dropping the double primes, we see that about O we have introduced a

system of coordinates in which
25 =0, (Ij)o =0,
and
(9ab] = diag(L,...,1,-1,...,~1)

{(where the negative entries are absent in the positive definite case), so that
IE =0, [gu]~diag(l,...,1,-1,...,—1), (2.64)

in some neighborhood of O. These are local Cartesian coordinates, and the
extent of the region in which the approximation (2.64) is valid depends (in a
way to be made precise later) on the curvature of the manifold in the vicinity
of O.

The implication of this for general relativity is that about each point of
spacetime we can introduce a coordinate system in which

Ilo =0, guw = N, (2.65)

where [n,,] = diag(1l, -1, —1, —1), showing that locally the spacetime of gen-
eral relativity looks like that of special relativity. This observation is a key
factor in our discussion of the spacetime of general relativity in the next sec-
tion.

Exercise 2.4

1. Show that, as a result of the coordinate transformation leading to geodesic
coordinates (equation (2.62)), (gt ) = (gab)o-
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2.5 The spacetime of general relativity

The spacetime of special relativity is discussed in Appendix A. In the language
of Section 1.9, it is a four-dimensional pseudo-Riemannian manifold with the
property that there exist global coordinate systems in which the metric tensor
takes the form

1 0 00
_10-1 0 O
[nlu/] = 0 0—-1 0
0 0 0-1

and we call such coordinate systems Cartesian. As explained in Section 1.2,
we use r* to label points in spacetime, where the Greek suffixes, u, v, etc.,
have the range 0, 1, 2, 3, there being a certain convenience in counting from
zero rather than one. As is customary in relativity we shall frequently refer
to a point in spacetime as an event. Cartesian coordinates are related to the
more familiar coordinates, t, 2, y, z of special relativity by z° = ct, 2! = z,
z?2 =y, 2% = z, ¢ being the speed of light. We may, of course, use non-
Cartesian coordinates, where the metric tensor g,, # 7,, but the essential
feature of the spacetime of special relativity is that we may always introduce
a Cartesian coordinate system about any point, so that g, = 7,,, and this
coordinate system is global in the sense that it covers the whole of spacetime.

One of our guiding requirements for the spacetime of general relativity
is that locally it should be like the spacetime of special relativity. We there-
fore assume that it is a four-dimensional pseudo-Riemannian manifold with
the property that about any point there exists a system of local Cartesian
coordinates in which the metric tensor field g,, is approximately 7,,. Note
that we do not assert the existence of coordinate systems in which g, = 7.,
exactly, and this is the essential difference between the spacetimes of general
and special relativity.

As explained in the previous section, we can construct a coordinate system
about any point P of general-relativistic spacetime in which (I'#2)p = 0, and
(z*)p = (0,0,0,0). This means that (9,9,.,)p = 0, and so for points near to
P, where the coordinates z# are small, Taylor’s theorem gives

Juv = My + %(8aaggu,,)pxalﬂ, (266)

and this approximation is valid for small z*.

If we are sufficiently close to P for the second term on the right of equa-
tion (2.66) to be neglected, we have a coordinate system in which g, = 7.,
approximately, and the extent of the region in which this approximation is
valid will depend on the sizes of the second derivatives (9a03g,.)p, and also
on the accuracy of our measuring procedures. It should be stressed that in spe-
cial relativity we have global Cartesian coordinate systems, where g,., = 7.,
ezactly, whereas in general relativity we have only local Cartesian coordinate
systems of limited extent, where g, = 1, approrimately. We distinguish the
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two by saying that the spacetime of special relativity is flat, while that of gen-
eral relativity is curved. The above discussion shows that the departure from
flatness is connected with the nonvanishing of the second derivatives 9,039,
and we shall see the significance of this in Chapter 3, when we give a more
formal definition of flatness in terms of the curvature tensor.

The purpose of the above discussion was to show, by introducing local
Cartesian coordinates, the sense in which the spacetime of general relativity is
locally like that of special relativity. However, it is not sensible to work in terms
of local Cartesian coordinates as these involve approximations which amount
to neglecting gravity, nor is it often convenient, since more suitable coordinates
may be defined in a natural way. We therefore use general coordinates, and
formulate things in ways which are valid in any coordinate system.

Another feature of the above discussion is that it gives us a means of
generalizing to general relativity results which are valid in special relativity.
For example, it is shown in Appendix A that in a Cartesian coordinate system
of special-relativistic spacetime, Maxwell’s equations may be written in the
form

FH = it
w = H (2.67)
F,ul/,o + Fua,p + Fau,u =0.
where a comma denotes partial differentiation. We may adopt
FM"/U = NO]Ha
' (2.68)

Fuvie + Fooyp + Fopw = 0.

where a semicolon now denotes covariant differentiation, as the general-
relativistic version of these, for in a local Cartesian coordinate system (where
9uv = T approximately, and we can neglect I'ft ) equations (2.68) reduce to
equations (2.67). There are really two points to note here. The first is that if
any physical quantity can be defined as a Cartesian tensor in special relativity,
then we can give its definition in general relativity by defining it in exactly
the same way in a local Cartesian coordinate system; its components in any
other coordinate system are then given by the usual transformation formulae
(1.73). Given this first point, the second is that any Cartesian tensor equation
valid in special relativity may be converted to an equation valid in general
relativity in any coordinate system, simply by replacing partial differentiation
with respect to coordinates by covariant differentiation, total derivatives along
curves by absolute derivatives, and 7,, by g,.. (Compare remarks made in
the Introduction.)

As an example of this, consider the path of a particle (with mass) in special
relativity. Its world velocity is u# = da* /dr (see Sec. A.5), where the proper
time 7 for the particle is defined by (see Sec. A.0)

2dr? =y, drtda”.

Its equation of motion is then {equation (A.29))
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dp* /dr = f*,

where p* = mu*, m being the proper mass of the particle and f* the 4-
force acting on it. The generalization of these ideas to general relativity gives
u* = dz*/dr as the definition of the world velocity of the particle, where now
the proper time 7 is defined by

c*dr? = g, dr*dz” (2.69)

and
Dp#/dr = f*, (2.70)

as the equation of motion, where p#* = mu*, and the definitions of m and
f#* are taken over from special relativity as explained above. Moreover, these
equations are valid in any coordinate system.

As in special relativity we assume that a clock measures its own proper
time. In particular, if the particle is a pulsating atom, the proper time interval
between events on the atom’s path where successive pulses occur is constant.

In the case of a free particle for which f# = 0, equation (2.70) reduces to
D(dz*/dr)/dT =0, or

A2zt dx? dz¥
K — = 0. 2.71
dr? o dr dr 0 (2.71)

This reinforces our assertion that the path of a free particle is a geodesic in
spacetime, and establishes that the proper time experienced by the particle is
an affine parameter along it. This result is often stated as an explicit postulate
of general relativity (the geodesic postulate), but it emerges here as a natural
consequence of the way in which we generalize special-relativistic concepts.
It is a perfectly natural generalization, for the path of a free particle in the
flat spacetime of special relativity is a straight line and this generalizes to a
geodesic in curved spacetime.

The path of a photon (or any other zero-rest-mass particle) in the space-
time of special relativity is also a straight line, and this also generalizes to
a geodesic in curved spacetime. However, there is no change in proper time
along the path of a photon, so 7 cannot be used as a parameter. But we can
still use an affine parameter u so that the analog of equation (2.71) for a
photon is

d2h dx? dz¥
i =
I Vo T 0. (2.72)

The fact that the photon’s speed is ¢ finds expression as

dz* dx¥
S, 2.73
9w 00 du (2.73)
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dx" dx
which generalizes the relation i 0 (equivalent to c*dt? — dx® —
u du
dy? — dz% = 0) of special relativity.
We have already remarked on the characterization of a vector A* as

timelike >0
null if g A" ¢ =0
spacelike <0

(see Sec. 1.9). One should note that at any point of spacetime the null cone
of vectors given by g,,A*A” = 0 lies in the tangent space at that point and
not in the manifold. This fact is not readily appreciated in the flat spacetime
of special relativity, because its basic linear structure allows one to regard the
tangent space at each point as being embedded in the spacetime.

At any point on the path of a particle (with mass) its world velocity is
a tangent vector to the path, and equation (2.69) tells us that this tangent
vector is timelike. So a particle with mass follows a timelike path through
spacetime, and in particular a free particle follows a timelike geodesic. A
photon, however, follows a null geodesic, as equation (2.73) tells us that the
tangent vectors to its path are null. Spacelike paths and spacelike geodesics
may also be defined, but these have no physical significance.?

In moving from the flat spacetime of special relativity to the curved space-
time of general relativity we hope somehow to incorporate the effects of grav-
ity, and the point of view we are adopting is that gravity is not a force,
and that gravitational effects may be explained in terms of the curvature of
spacetime. It should therefore be understood that by free particles we mean
particles moving under gravity alone. Comparing equation (2.71) with its
special-relativistic analog d?z#/dr? = 0 indicates that the connection coeffi-
cients play an important role in explaining gravitational effects. Since these
are given by derivatives of the metric tensor field, we see that it is this tensor
field which, in a sense, carries the gravitational content of spacetime. For the
moment we shall take the metric tensor field as given, and postpone until
Chapter 3 the question of how it is determined by the distribution of matter
and energy in spacetime. In the rest of this chapter we take a closer look
at equations (2.70) and (2.71), and relate them to some familiar Newtonian
ideas.

Exercises 2.5

1. Is the world velocity of a stationary chair (in the lab) timelike or spacelike?
Is its world line a geodesic?

2. Deduce the geodesic equation (2.71) from equation (2.70).

8Unless one believes in tachyons.
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2.6 Newton’s laws of motion

Newton’s first law that “every body perseveres in its state of rest, or of uni-
form motion in a right [straight] line, unless it is compelled to change that
state by forces impressed thereon” clearly has its counterpart in the statement
that “every particle follows a geodesic in spacetime.”® Indeed, in a local iner-
tial coordinate system where we may neglect the I'Y: , the geodesic equation
reduces to d?z#/dr? = 0. For nonrelativistic speeds dr/dt is approximately
one, so the geodesic equation yields d%z*/dt?> = 0 (i = 1,2,3), the familiar
Newtonian equation of motion of a free particle. Newton’s second law that

Newton Einstein

Free particles move in Free particles follow

straight lines through space. geodesics through spacetime.
d’x d’z* dz” dz”
dt? f < dr? Y7 dr dr

To every action there The third law is true for non-

is always opposed an gravitational forces, just

equal reaction. as in Newtonian physics (but see

text for gravitational interaction).

Table 2.1. Newton’s laws and their relativistic counterparts.

“the alteration of motion is ever proportional to the motive force impressed;
and is made in the right line in which that force is impressed” is usually
rendered as the 3-vector equation

dp/dt = F,

where p is the momentum and F the applied force. This clearly has its coun-
terpart in equation (2.70).

Newton’s third law that “to every action there is always opposed an equal
reaction: or the mutual actions of two bodies upon each other are always equal,
and directed to contrary parts” is true in general relativity also. However,
we must be careful, because Newton’s gravitational force is now replaced by
Einstein’s idea that a massive body causes curvature of the spacetime around
it, and a free particle responds by moving along a geodesic in that spacetime.
It should be noted that this viewpoint ignores any curvature produced by the
particle following the geodesic. That is, the particle is a test particle, and there

®The versions of Newton’s laws quoted here are from Andrew Motte’s translation
(London, 1729) of Newton’s Principia.
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is no question of its having any effect on the body producing the gravitational
field.

The gravitational interaction of two large bodies is not directly addressed
by Einstein’s theory, although it is of importance in astronomy, as for example
in the famous pair of orbiting neutron stars PSR 19134+16. Approximation
methods for such cases were studied in the 1980s,'? but are beyond the scope
of our book.

2.7 Gravitational potential and the geodesic

Suppose we have a coordinate system in which the metric tensor field is given
by
Guv = Ny + h;uu (274)

where the h,, are small, but not so small that they may be neglected. Our
aim in this section is to obtain a Newtonian approximation to the geodesic
equation given by the metric tensor field (2.74) valid for a particle whose
velocity components dz®/dt (i = 1,2,3) are small compared with c. We shall
assume that the gravitational field, as expressed by h,,,, is quasi-static in the
sense that dohy,, = ¢~ 'dh,, /0t is negligible when compared with 8;h,,,.

If instead of the proper time 7 we use the coordinate time ¢ (defined by
xg = ct) as a parameter, then the geodesic equation giving the path of a free
particle has the form

d2zt dx¥ dx° dz*
” — = h(t)— 2.
a1 g = Mg (2.75)
where ) .
d’t (dt\"° dr [dr\~
hity= 2L (&) T (9 .
B =-3 <dT> i (dt> (2.76)
This can be deduced by an argument like that used in Exercise 2.1.1 and by
noting that & (9} = B4 (4N iding by €2, the spatial part
— === . i
SR T\&) T ra \a@ Vidig by €, the spatial bat
of equation (2.75) may be written
1 d%z , [ 1dx? o (1dx?\ [1dz* 1 1dz?
S0 oni (2 e (CEE) (S S Sy (2
2 Tl 0]<cdt>+]k<cdt><cdt> c()<cdt>’
(2.77)

and the last term on the left is clearly negligible.
If we put h* = n#9n"Ph,,. then a short calculation shows that, to first
order in the small quantities h,, and h*",

g =M — W and T = L (Dhey + Ophyp — Ophyo).  (278)

108ee Damour and Deruelle, 1986.
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So to first order,
Io = 31*°(Bohop + Bohop — Bphoo)
= —$178;ho0 = 560500,
on neglecting dph,, in comparison with 9;h,, . Also to first order,
Féj = %nip(aohjp + Ojhop — Bpho;)
= —30%(85hox, — Bihoy),
again on neglecting Gph,. .
We have now approximated all the terms on the left-hand side of equa-
tion (2.77), and there remains the right-hand side to deal with. Working to the

same level of approximation as above, and neglecting squares and products of
c~ldz*/dt, we find from

<d7‘) 2 dzt dz¥

at) @M a ar
that
dr/dt = (1+ hoo)'/? = 1+ Lhoo, (2.79)
SO
d*r/dt* = Lchoo,o
and

1

from equation (2.76).
It follows that the right-hand side of equation (2.77) is negligible, and our
approximation gives
1 dx?

1 d*z’ 1 5ij ik
C—QW + 5(5 3jh00 - (5 (ajhok - akhgj)z—(g - O

Introducing the mass m of the particle and rearranging gives
d*zt o 9 e dz’

mﬁ = —méwaj(%c hoo) + med’ (ajh()k — akhoj)-:lt—. (280)

Let us now interpret this in Newtonian terms. The left-hand side is mass x
acceleration, so the right-hand side is the “gravitational force” on the particle.
The first term on the right is the force —mVV arising from a potential V given
by V = %czhoo, while the second term on the right is velocity-dependent and
clearly smacks of rotation.!! This is not surprising, for the principle of equiv-
alence asserts that the forces of acceleration, such as the velocity-dependent

1Most authors assume that the derivatives Oihy, are small along with the h,,,
and therefore do not obtain these velocity-dependent rotational terms. However, the
fact that the hy,, are small does not mean that their derivatives are also small (see
Sec. 2.9).



2.8 Newton’s law of universal gravitation 89

Coriolis force!? which would arise from using a rotating reference system, are
on the same footing as gravitational forces. If we agree to call a nearly inertial
coordinate system in which 0;hox — Oxho; is zero nonrotating, then we have for
a slowly moving particle in a nearly inertial, nonrotating, coordinate system,
in which the quasi-static condition holds, the approximation

d*z'/dt? = —690;V, (2.81)
where
V= %CQhOQ + const. (2.82)

This is the Newtonian equation of motion for a particle moving in a gravita-
tional field of potential V, provided we make the identification (2.82). This
gives

goo = 2V/c? + const,

and if we choose the constant to be 1, then ggq reduces to its flat spacetime
value when V = 0. This gives

goo = 1 +2V/c? (2.83)

as the relation between ggy and the Newtonian potential V in this approxi-
mation.

Exercises 2.7
1. Check approximations (2.78) and (2.79).

2. Show that equation (2.81) is equivalent to ma = F = —mVV, where a is
the acceleration and F is the force on the particle.

2.8 Newton’s law of universal gravitation

Newton’s law of universal gravitation does not survive intact in general relativ-
ity, which is after all a new theory replacing the Newtonian theory. However,
we should be able to recover it as an approximation.

The Schwarzschild solution is an exact solution of the field equations of
general relativity, and it may be identified as representing the field produced
by a massive body. This solution is derived in the next chapter (see Sec. 3.7),
and its line element is

Adr? = (1 -2GM/rc*)cdt? — (1 — 2GM /rc*) ™ dr? — r2df? — r%sin® 0 d¢?,

128ee, for example, Goldstein, Poole, and Safko, 2002, §4-10.
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where M is the mass of the body and G the gravitational constant. For small
values of GM /rc? this is close to the line element of flat spacetime in spherical
coordinates, and r then behaves like radial distance. If we were to put

®=ct, z'=rsinfcosp, z°=rsinfsing, z°=rcosb,
we would obtain a line element whose metric tensor had the form g,, =
Nuv + huw, where, for large values of rc?/GM, the hy. are small and goy =
1 — 2GM/rc?. This gives hog = —2GM/rc?, and according to the results of
the last section, a Newtonian potential V' = —GM/r. The 3-vector form of
equation (2.81) gives

md?r/dt? = -mVV = ~GMmr—°t,
where r = (z%,22,2%), m is the mass of the test particle, and £ is a unit
vector in the direction of r. The “force” on the test particle is in agreement
with that given by Newton's law, and in this way the law is recovered as an
approximation valid for large values of rc¢2/GM and slowly moving particles.

2.9 A rotating reference system

The principle of equivalence (see the Introduction) implies that the “fictitious”
forces of accelerating coordinate systems are essentially in the same category
as the “real” forces of gravity. Put another way, if the geodesic equation
contains gravity in the I'#* it must also contain any accelerations which may
have been built in by choice of coordinate system. In a curved spacetime it
is not always easy, and often impossible, to sort these forces out, but in flat
spacetime we have only the fictitious forces of acceleration and these should be
included in the I'#% . As an example of this, let us consider a rotating reference
system in flat spacetime.
Starting with a nonrotating system K with coordinates (T, X,Y,Z) and
line element
Pdr? = 2dT? — dX? - dY? - dZ?, (2.84)

let us define new coordinates (t,z,y, z) by (see Fig. 2.6)

T=t,

X = xcoswt — ysinwt,
) (2.85)
Y = zsinwt + ycoswt,

7 =z.

Note that at this point we are only defining a change of coordinates and we
are not too concerned (yet) about their physical meanings. Points given by
z, ¥, z constant rotate with angular speed w about the Z axis of K, and this
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!

Fig. 2.6. Coordinate system K'(t,z,y, z) rotating relative to the coordinate system
K(T,X,Y,Z).

defines the rotating system K’ (see Fig. 2.6). In terms of the new coordinates
the line element is

dr? = [? — W (@? +y?))dt? + 2wy dx dt — 2wz dy dt — da® — dy? —d22, (2.86)
and the geodesic equations are

t=0,
. 2 2 .
T —wxt — 2wyt =0,
o (2.87)
Y —w 'yt + 2wit =0,
Z=0.
where dots denote differentiation with respect to proper time (see Exercises
2.9.1 and 2.9.2). These constitute the equation of motion of a free particle
(with mass).
The first of equations (2.87) implies that dt/dr is constant, so the remain-
ing equations may be written as
d*z/dt* — WPz — 2wdy/dt =0,
d*y/dt* — w?y + 2wdz/dt = 0,
d?z/dt? = 0.
Introducing the mass m of the particle and rearranging gives
mdiz/dt? = mw?z + 2mw dy/dt,
md?y/dt* = mw?y — 2mwdz/dt, (2.88)
md*z/dt* = 0.
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or, in 3-vector notation,
md®r/dt? = —mw x (w x 1) — 2mw x (dr/dt), (2.89)

where r = (z,y, 2) and w = (0,0,w).

An observer using t for time would interpret the left-hand side of equa-
tion (2.89) as mass x acceleration, and would therefore assert the existence
of a “gravitational force” as given by the right-hand side. This “force” is,
of course, the sum of the centrifugal force —mw x (w x r} and the Coriolis
force —2mw x (dr/dt), and this would seem to bear out our assertion that
the geodesic equation does indeed include the forces of acceleration in the
I't. . However, such an observer would be using the time associated with the
nonrotating system K, because t = T and T is the time measured by clocks
at rest in K. It is possible to define a time for K’ based on a system of clocks
at rest in K’, but we shall not follow that course, as it would involve replacing
equations (2.88) and (2.89) by more complicated ones that tend to conceal
the Coriolis and centrifugal forces. Note that t is exactly the proper time for
an observer situated at the common origin O of the two systems, so observers
close to O who are at rest in the rotating system would accept equations
(2.88) and (2.89) as approximately valid and recognize the terms on the right
as forces of acceleration.

We can relate the situation described above to the approximation methods
of Section 2.7 by putting z° = ¢t, 2! = z, 22 = y, > = 2, and noting that
the line element (2.86) then gives g, = 1y + Ay, Where

—w?(x?® +y?)/c? wy/c —wz/c 0

(] = wy/c 0 0 0
pl = —wzx/e 0 0 0
0 0 0 0

The h,, are small, provided we restrict ourselves to the region near the z
axis where w?(z? + y?)/c? is small. Moreover, Gph,, = 0, so the quasi-static
condition is fulfilled. However, our system is rotating, so we must use the
approximation (2.80) rather than (2.81). We see that

%62}100 = —%w2(l‘2 + y2),

and a straightforward calculation (see Exercise 2.9.4) gives

_ 0 2w0
(A= |-2w 0 0], (2.90)
0 00

where A; = 6" (8;hox — Okho;). Hence the approximation (2.80) gives
md?z/dt* = mw’z + 2mwdy/dt,
md*y/dt* = mw?y — 2mw dx/dt,
md?z/dt? = 0.
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These equations are identical with equations (2.88), and may be rearranged
to exhibit the centrifugal and Coriolis forces, as before.

Exercises 2.9
1. Check the form of the line element (2.86) and verify that

c? wye —wze 0
wye w¥y? —c2 —wxy 0
—wze —wlzy Wwr?-c 0

0 0 0 —c?

[¢"] = 7

2. Obtain the geodesic equations (2.87) in three different ways:
(a) By using the Euler-Lagrange equations (and [¢*"] from Exercise 1).
(b) By extracting [g,,| from the line element (2.86), and then calculating
the I'% (again using [¢"’] from Exercise 1).
(¢) By substituting for T, X, Y, Z in T=X=Y=2=0, using
equations (2.85).

3. Cylindrical coordinates (p, ¢, z) may be introduced into the rotating sys-
tem K’ by putting £ = pcos¢, y = psin¢. Show that in terms of these
the geodesic equations are

t=0,

p— pwt® — pg® — 2wpgt =0,
¢ +207" o+ 2wp™ ' pi = 0,
=0,

so that corresponding to equations (2.88) one has

2p  (dp)? ) dg
m{ﬁ—p<a> = mpw +2mw,0$,

26 _dpds dp
mg?—E =0
de2

Interpret these in terms of the radial, transverse, and axial components
of acceleration, centrifugal, and Coriolis forces.

4. Check that the matrix [A;] is as given by equation (2.90), and that the
approximation (2.80) does give equations (2.88).
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Problems 2

1.

Obtain the geodesic equations (using arc-length s as a parameter) for the
hyperbolic paraboloid of Example 1.6.1.

Deduce that all parametric curves are geodesics.

. Using polar coordinates p = u', ¢ = u?, obtain the geodesic equations for

the plane and verify that the ray ¢ = ¢o (¢ = constant) is a geodesic.
Use the equations of parallel transport to show that if A is parallelly
transported along this ray from its initial value g at (pg, ¢o), then

=25, A= (00/p)X5-
Verify that its length is constant and that it makes a constant angle with

the ray.

If in spherical coordinates we set 6 = 0y, where 6 is a constant between
0 and /2, we get a cone, and the remaining coordinates (r,¢) act as
parameters on the cone. Show that the line element of the cone is

ds® = dr? + wr?d¢?,

where w = sin §, and that the Euler-Lagrange equations for geodesics on
the cone yield . .
F—wirg® =0, ¢é=k/r?

where k is constant. By eliminating the parameter, show that the geodesics

satisfy L \
r w
dp (72%) o

Use the substitution « = 1/r to solve this equation and hence show that
the geodesics are given by 1 = Ar cos{(w¢) + Brsin(w¢), where A and B
are constants of integration.

Use this result to show that (as intuition suggests) if the cone is cut along
a generator and flattened to lie in a plane, then the geodesics are straight
lines on the resulting flat surface.

The curl of a covariant field A\, is the skew-symmetric tensor field A,
defined by
Aab = )\a;b - >‘b;a-

Show that Asp = Agp — Aba-
If Agp is a skew-symmetric type (0, 2) tensor field, prove that
Babc = Aab,c + Abc,a + Aca,b

are the components of a type (0,3) tensor field.
(Hint: Put Agpc = Agbie + FgcAdb + Flﬁ:Aad.)



Problems 2 95

6. Show that when spherical coordinates are used the line element of flat
spacetime is

Adr? = Adt? — dr® — r2d6? - r?sin? 6 do?.
7. The line element of a static spherically symmetric spacetime is
c?dr? = A(r)dt? — B(r)dr? — r?d6? — r?sin  dp>.

Use the Euler-Lagrange equations to obtain the geodesic equations, and
hence show that the only nonvanishing connection coefficients are:

I = A'J24, Iy, = A'/2B, rl, = B'/2B,
Iy, =-r/B, Iy = —(rsin2 0)/B, T'%=1/r
% =—sinflcosd, IP=1/r, I = cot,

where primes denote derivatives with respect to r, and
=t al=r 22=0, PF=0¢

8. One can conceive of an observer in a swivel chair located above the Sun,
looking down on the plane of the Earth’s orbit. If the chair rotates at
the rate of one revolution a year, then to the observer the Earth appears
stationary. If for some reason all heavenly bodies other than the Earth
and the Sun are invisible, how does the observer explain why the Earth
does not collapse in towards the Sun, there being no detectable orbit?
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Field equations and curvature

3.0 Introduction

The main purpose of this chapter is to establish the field equations of gen-
eral relativity, which couple the gravitational field (contained in the curvature
of spacetime) with its sources. We start by discussing a tensor which effec-
tively and concisely describes the sources, and follow that with a discussion
of curvature, then bring these together in the field equations.

The field equation of Newton's theory is Poisson’s equation, which is a
scalar equation, valid in the Euclidean space of Newtonian gravitation theory.
Einstein sought a replacement and in 1915 obtained a tensor equation, valid in
the curved spacetime of general relativity. In our discussion, we use Poisson’s
equation as a guide in constructing the field equations of general relativity,
which should, and do, yield Poisson’s equation as an approximation.

The chapter finishes with an exact solution of the field equations repre-
senting the gravitational field of spherically symmetric massive body. This
solution forms the basis of our discussions in Chapter 4.

3.1 The stress tensor and fluid motion

Except at the very end, where we take the step to curved spacetime, our
discussion in this introductory section takes place in flat spacetime, where
we use inertial coordinate systems. We shall be dealing with 4-vectors and
3-vectors, and we shall use bold-faced type to denote the latter. With some
abuses of notation, we shall write

M= (AN A200%) = (A0,
We start by considering a particle, and some quantities we make use of are:
m = rest or proper mass of a particle,!

'We use m rather than the more usual notation mg for rest mass. Similarly we
use p rather than pg or poo for the proper rest-mass density.
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t = coordinate time,

T = proper time,

v =dt/dr = (1 —v?/c?)~'/2, where v is the particle’s speed,
E = ymc? = energy of particle,

ut = dz* /dT = world velocity,

v# = dz# /dt = u* /v = coordinate velocity,

p* = mu* = 4-momentum of particle.

So in our notation, v* = (c,v), where v is the particle’s 3-velocity, so that
v occurring in the formula for v is |v| (see Appendix A for details). Of the
quantities listed above, only m and 7 are scalars, and only u* and p* are
vectors.?

A stationary particle situated at the point with position vector x( has

ut =dx*/dr = d(cr,x¢)/dT = (¢, 0)

and
p* =m(c,0).

The zeroth component of p* is in this case the rest energy of the particle (up
to a factor ¢). For a moving particle we have

p* = mu* = ymot = (yme,ymv) = (E/c, p). (3.1)

Equation (3.1) emphasizes the fact that in relativity, energy and momen-
tum are the temporal and spatial parts of a single 4-vector p#. They always
maintain this distinction, even after (Lorentz) transformations, just as the
4-vector z* = (ct,x) is split distinctly into two parts, time and position, with
time always being the zeroth component.

Let us now pass to a continuous distribution of matter, and for simplicity
we shall take it to be a perfect fluid, which is characterized by two scalar
fields, namely its density p and its pressure p, and a vector field, namely its
world velocity u*. In order that p be a scalar field, one must define it to be
the proper density, that is, the rest mass per unit rest volume. In place of the
particle 4-momentum p* = mu*, we now have the 4-momentum density pu*.

What we wish to do is to exhibit some tensor which in some way repre-
sents the energy content of the fluid, and which, when taken over to curved
spacetime, can act as the source of the gravitational field. Since in relativity
we lose the distinction between mass and energy, all forms of energy should
produce a gravitational field. Moreover, energy is not a scalar, but only the
zeroth component of the 4-momentum, so we expect our source to contain
the 4-momentum density of the fluid. Rather than try to construct a suitable

2The differential dt and the energy E are not scalar quantities (as in Newtonian
physics): c¢dt and E are components of dz* and the momentum 4-vector p*, respec-
tively. See Sec. A.6 for details.
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tensor, let us simply write one down, and then discuss its physical significance.
The tensor in question is the energy-momentum-stress tensor (or stress tensor
for short), and for a perfect fluid is defined to be

T = (p+ p/cyutu” — pp” (3.2)

The first thing to note is that T*” is symmetric, and is made up from p, p,
and u*, the scalar and vector fields which characterize the fluid. The pressure
of the fluid makes some contribution to its energy content, and so should find
a place in the tensor. The next thing to note is that

T*u, = *(p+p/c)ut — put = 2 put,

so T#u, is (up to a factor c?) the 4-momentum density of the fluid. Finally
we assert that setting its divergence 7", equal to zero yields two important
equations, namely the continuity equation and the equation of motion. (Since
TH is symmetric, it has only one divergence.) To prove our assertion would
involve us in a lengthy digression into relativistic fluid mechanics, so we will
simply derive the two equations, and give supporting arguments for their
validity.
Setting the divergence T"”, equal to zero gives

(put) u” + putu” , + (p/cQ)u“’Hu” + (p/cQ)u“u”# + cﬁgp,uu“u” —pun =0.

(3.3)
Now the world velocity u” satisfies u”u, = c?, and differentiation gives
u” uy +uu,,, =0, (3.4)
which implies that u” ,u, = 0 (see Exercise 3.1.4). So contracting equa-
tion (3.3) with u, and dividing by ¢? gives
(pu") . + (p/cz)u“)u = Q. (3.5)
Equation (3.3) therefore simplifies to
(p+ p/cz)u”luu“ =" - c_2u“u”)p7u. (3.6)

Note that in obtaining equation (3.5) we contracted the equation T =0
with u,, which is equivalent to taking its zeroth component in an instanta-
neous rest system of the fluid at the point in question.

We now justify our assertion concerning T, = 0, by arguing that equa-
tion (3.5) is the equation of continuity of the fluid, while equation (3.6) is its
equation of motion. We do this by showing that, for slowly moving fluids and
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small pressures, they reduce to the classical equations. To this end let us put
u* = yv* = (¢, v). Then by a slowly moving fluid we mean one for which
we may neglect v/c, and so take v = 1, and by small pressures we mean that
p/c? is negligible compared to p. Equation (3.5) then reduces to

(pvu),u =0,

which gives ‘
(pc)o + (pv*)i = 0.

In 3-vector notation this is

dp/0t +V - (pv) =0, (3.7)

which is the classical continuity equation,® the difference between proper den-
sity and density disappearing in the classical limit.
As for equation (3.6), this reduces to

pv” ot = (Y — 2ot )p, (3.8)

and in our approximation

00 00
0-1 0 0
TR N T —
™ = =g o1 o
0 0 0-1
so the zeroth components of the left-hand and right-hand sides are both zero.

Its nonzeroth components reduce to
i ji
pU ’Mv“ =-0"p;,

which gives A o B
plov* /0t +v* 07| = ~07"p ;.

In 3-vector notation this is

p(0/0t + v -V)v=—Vp, (3.9)

which is Euler’s classical equation of motion (1755) for a perfect fluid.*

Returning to the relativistic continuity equation (3.5), we see that it con-
tains the pressure as well as the density, but this is not surprising, for we know
that in relativity it is energy rather than mass which is conserved, and for a
fluid under pressure, the pressure makes a contribution to the energy content.
The relativistic equation (3.6) may be written in the form

3See, for example, Landau and Lifshitz, 1987, §1.
4See, for example, Landau and Lifshitz, 1987, §2.
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(p+p/)d*z” Jdr* = (" — c'2u“u”)p,p,

because
v ( 2 da:”) de*  d’z¥
vt = —— | — = —.
* Ox+ dr ) dr dr?
In this form it looks more like an equation of motion, for it shows that the fluid
particles are pushed off geodesics (d?z” /dr? = 0) by the pressure gradient p ,.
If we were to accept equation (3.5) as the relativistic continuity equation
and equation (3.6) as the equation of motion of a perfect fluid, then we could
reverse our argument, and claim that T, = 0 by virtue of the continuity
equation and the equation of motion. It is, in fact, possible to give more com-
plicated expressions representing the stress tensors of imperfect fluids and
charged fluids, and even an electromagnetic field. These tensors are all sym-
metric, and all have zero divergence by virtue of equations such as continuity
equations, equations of motion, or Maxwell’s equations (see Problem 3.4).
Let us now take the step to the curved spacetime of general relativity. Our
discussion in Section 2.5 gave us a prescription for taking over definitions and
tensor equations from flat spacetime. In particular, we replace 7, by g,., and
partial by covariant derivatives, so our defining equation for the stress tensor
of a perfect fluid becomes

T* = (p + p/)uru” — pgh”, (3.10)

and the vanishing of its divergence is expressed as

T, =0, (3.11)

With suitable definitions of T+ equation (3.11) is valid for all fluids and
fields, not just perfect fluids. It is the stress tensor which we take as the
source of the gravitational field, and the result (3.11) plays an important role
in formulating the field equations; but before doing that we must take a closer
look at curvature.

Exercises 3.1

1. Show that in a Cartesian coordinate system which brings the velocity
of the fluid at a point P to rest (i.e., in an instantaneous rest system
for the fluid at P) the components of the stress tensor (as defined by
equation (3.2)) are given by

pct 000
0 p0O0
0 0p0
0 00p

] =
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2. A particle of 4-momentum p* is travelling through space and just misses
an observer with world velocity U#. Show that he assigns an energy p,U#
(evaluated at the event of near-collision) to the particle.

3. Check that all the terms on the right-hand side of equation (3.2) have the
same dimension.

4. Verify that u"u, = ¢? implies that u’,uy = 0.

3.2 The curvature tensor and related tensors

The material of this section is applicable to any N-dimensional manifold, so
we use suffices a, b, etc., which have the range 1 to IV, rather than u, v, etc,
with the range 0 to 3. Of course, the requirements of general relativity will
govern the scope of our results.

Covariant differentiation is clearly a generalization of partial differentia-
tion. However, there is one important respect in which it differs from partial
differentiation: the order in which covariant differentiations are done matters,
and changing the order (in general) changes the result. We start by taking a
closer look at this question.

The covariant derivative of a covariant vector field A, is

Aap = Opda — T,
and a further covariant differentiation gives
/\a;bc = ac()\a;b) - F;c/\e;b - Fbec)\a;e

= 0.0ha — (0 TE)Ag — T 0N — TE(Ohe — TEND) — TE(Oeha — T Aa).

Interchanging b and ¢, and then subtracting gives
)‘a;bc - )\a;cb = Rdabc/\(b (312)

where

Rdabc = abpgc - aCF:b + Faecrgb - Faebpgc' (313)

The left-hand side of equation (3.12) is a tensor for arbitrary vectors A,, so
the contraction of R%,  with Aq is a tensor, and since R%, does not depend
on \,, the quotient theorem entitles us to conclude that R, _is a type (1,3)
tensor. It is called the curvature tensor (or Riemann-Christoffel curvature
tensor or Riemann tensor), and equation (3.13) indicates that it is defined in
terms of the metric tensor and its derivatives.

So the necessary and sufficient condition that the order of covariant differ-

entiations of any type (0,1) tensor field can be interchanged is that %, = 0.
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This is in fact the necessary and sufficient condition for interchanging the
order of covariant differentiations of fields of all types (see Exercise 3.2.1).

In the flat spacetime of special relativity we know that coordinate systems
exist in which g,, = 7., and in these coordinate systems ['% = 0, and
hence the curvature tensor is identically zero. However, this does not entitle
us to assume that the curvature tensor field of an arbitrary manifold is zero,
and in Problem 3.1 we give an example of a two-dimensional manifold with
nonvanishing curvature tensor field. We can now give a more formal definition
of flatness. A manifold is flat if at each point of it R% , = 0, otherwise it is
curved. (We may also speak of flat regions of a manifold.) It may be shown
that in any region where R%_, = 0 it is possible to introduce a coordinate
system in which the components g,; are constants, and hence a Cartesian
coordinate system (one in which [gg] is a diagonal matrix with +1 as its
diagonal entries).’

On the face of it, R%_, has N* components. However, it possesses a num-
ber of symmetries and its components satisfy a certain identity, and it may
be shown that these cut the number down to N?(N? — 1)/12 independent
components. The identity is given by the relation

Req + Riap + Ry = 0, (3.14)

and is known as the cyclic identity. Its proof is left as an exercise. The sym-
metries possessed by the curvature tensor are best expressed in terms of the
associated type (0,4) tensor

Rabcd = Gae R€b¢d~

Making use of equations (2.33), (2.35), and (2.36) gives, after extensive ma-
nipulation,

Rabcd = %(8daagbc - 8dabgatc + acabgad - acaagbd) - QEf(Feachbd - Feadebc)-

(3.15)
From this form for R4 it is a simple matter to check the following symmetry
properties:

(a) Rabed = — Rbacds (3.16)
(b) Rabed = — Rabde; (3.17)
(c) Raped = Redab- (3.18)
It follows from (a) that
Req =0. (3.19)

The covariant derivatives RY, ;.. also satisfy an identity, namely
Rai)(:d;e + Rabde;c + I{az)ec;d =0. (320)

5See, for example, Mgller, 1972, Appendix 5.
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It is known as the Bianchi identity, and may easily be proved in the following
way. About any point P we can construct a coordinate system with (I72)p = 0,
as explained in Section 2.4. Differentiating equation (3.13) and then evaluating
at P gives, in this coordinate system,

(Rabcd;e)P = (aeacrlgd - 8EadFI?C>P'

Cyclically permuting ¢, d, and e and adding gives the result at P. But P is
arbitrary, so the result holds everywhere.

Equation (3.19) states that the contraction R? ., is zero. However, in gen-
eral the contraction RY_, is nonzero, and this leads to a new tensor, the Ricci
tensor. It is traditional to use the same kernel letter for the Ricci tensor as

for the curvature tensor, so we denote its components by®

Rab = Rcabc‘ (321)

The Ricci tensor is in fact symmetric, as may be shown by contracting the
cyclic identity (see Exercise 3.2.4). Since R, is symmetric, R = R,* and we
can denote both by Rf. A further contraction gives the curvature scalar

R=g¢"R, = R, (3.22)

and again the same kernel letter is used.
One final tensor, which is of some importance for later work, is the Finstein
tensor Ggp defined by

Gab = Rab — %Rgafr (323)

It is clearly symmetric, and this means that it possesses only one divergence
G“b;a. The reason for the importance of the Einstein tensor is that this diver-
gence is zero. Contracting a with d in the Bianchi identity (3.20) gives

RbC;e + Rabae;c + Rabec;a =0,
or, on using equation (3.17),

Rpeie — Rbese + Ryere = 0.
If we now raise b and contract with e, we get

b b
Rc;b - R;C + R* bea = 0.
5There is wide disagreement over the sign of the curvature tensor, many authors
giving it the opposite sign to ours. There is less disagreement over the sign of the
Ricci tensor, agreement being effected by defining it according to Res = RS, in the
case of opposite sign.
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But, from equation (3.18),
ab ba a b
R =R cbia — Rc;a = Rc;b7

beia
so the above reduces to
2R, — R =0,
which gives
(Rlc) - %Rag);b =0

on dividing by two and using the second of equations (2.60). We thus have
Gb., = 0, which implies that G*;, = 0, as asserted.

Exercises 3.2

1. (a) Show that for a contravariant vector field A%,
d
/\a;bc - /\a;cb == adbc)‘ :

(b) Show that for a type (2,0) tensor field 79,

ab ab a eb b ae
Toed T de = -k ecd? Rech .

(Without loss of generality take 7% = A\%°.)

(c) Guess the corresponding expression for a type (2,1) tensor field 72°.
2. Prove the cyclic identity (3.14).
3. Verify the form of R,pcq given by equation (3.15).

4. By contracting the cyclic identity (3.14) prove that the Ricci tensor is
symmetric.

3.3 Curvature and parallel transport

We remarked in Section 2.2 that parallel transport in a curved manifold was
path-dependent, and showed by example that this was indeed the case for
paths on a sphere. Since we have now adopted a more formal approach to the
notion of curvature by asserting that a manifold is flat if its curvature tensor
vanishes, but is curved otherwise, we are clearly implying that there is some
connection between the curvature tensor and parallel transport. Our aim in
this section is to make that connection clear, and we shall show explicitly how
the change AA* that results from parallelly transporting a vector A% around
a small closed loop near a point P depends on the curvature tensor at P.

Suppose then that A% is transported parallelly along a curve « from some
initial point O where it is equal to Aj. If v is parameterized by ¢, then A*
satisfies the differential equation
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Fig. 3.1. A small loop near a point P.

dX\e dx*
= TN 24
dt be dt ’ (3 )
from which we see that A satisfies the integral equation
A=\ — / TENdae, (3.25)

where the integral is taken along v from the initial point O. We can use this
equation to calculate the change AA® in A as it is transported around a small
loop close to a point P. If P has coordinates z, then points on the loop will
have coordinates z® given by

1t = o+ €2,

where the £% are small. The small coordinate differences £* can be thought of
as a vector extending from P to a general point on v (see Fig. 3.1). Since the
x$% are constant, equation (3.25) can be written

A= \¢ — / TaAbdee. (3.26)

This equation does not give A% in terms of A§ in a straightforward manner,
because the transported vector also occurs in the integral on the right. How-
ever, it can be used to give successively better approximations that are valid
when A% does not differ much from its initial value A§, which will be the case
for our small loop v close to P.

As a first approximation, we can put A’ = A} in the integral on the right-
hand side which then yields the better approximation

A* =G - / Tg NG de°
=23 -\ /r,;;dgC.

This can then be fed into the right-hand side to yield an even better approx-
imation:
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A= \E — /ch </\8 ~ M /Fge dg8> dee
=X - X /rgc de’ + Ag /F;C </F§;€ d§8> de’.

This process can be repeated indefinitely, but the approximation given by
equation (3.27) is enough for our purpose, which involves working to second
order in £°%.

In the integral in the second term on the right, we can use the first-order
approximation

(3.27)

= (I3)p + (048 p €%

as this gives second-order accuracy when integrated with respect to £°. For the
repeated integral in the third term, we can approximate Iy, by (I}),, since
integrating twice gives second-order accuracy. Using these approximations to
integrate from O around -y and back to O again, we get

§ IRdee = (Tf)p § 65+ GuTiy §efd® = OuTR)p § €4de°

(as § d€¢ =0) and

i ( [ d§€) = (15.T8)y ( / d&) d* = (Tgrh),  eder

so, from equation (3.27), the change in A% on transporting it around ~ is
AN = =X (Bulie)p ]{fddfc + A5 (Dl de)p j{éedﬁc,
which reduces to
AN = <X} (0T - TElR)p €7 (3.28)

on doing some relabeling of suffixes. Since § d(£°¢?) = 0, one may show that

foi = ffdf o (3.29)

(see Exercise 3.3.1), which is antisymmetric in its suffixes. Hence the coeffi-
cient of the integral on the right-hand side of equation (3.28) can be antisym-
metrized in ¢, d to obtain

AN = —3(0:Ty — Oalg + T T, ~ el PAG L.
That is,

AN = =3 (R%ea)P Ao S, (3.30)
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where fe@ = 2 §(£°dgd — £3dee).

Equation (3.30) establishes the basic relationship between the curvature
tensor at a point P and parallel transport about a small loop close to P. By
suitable choices for -y, this relationship can be exploited to investigate the
components of the curvature tensor at P.

Suppose we restrict ourselves to points near P with coordinates

% =zp + xi® + yj°,

where {i%, j*} are an orthogonal pair of unit vectors at P and z, y are small.
Such points lie in a surface X' embedded in the manifold and the pair (z,y)
act as locally Cartesian coordinates on X, with P as the origin and “axes”
given by the unit vectors i%, 7. If we then take v to be a loop lying in X and
surrounding P, we can express £% in the form £% = x¢®* + yj* and arrive at

£ =4 fedy - ydz)eg - 459 (3.31)

(see Exercise 3.3.1). Since {x,y) are locally Cartesian coordinates, %f(:r dy —
y dz) is (very nearly) the area A enclosed by v (provided its sense of description
is related to i* and j® in the conventional way). We deduce that

ANJA = =3RS )pAS(i%5% — i%5°) = —(R%q) P AGIH?, (3.32)

which in principle allows us to determine the components of the curvature
tensor at P by appropriately choosing A§, ¢*, j* and noting the change A\®
in transporting A§ around a small loop y enclosing the area A. Equation (3.32)
lets us do this approximately; for an exact result we should take a limit in
which A — 0 by letting v shrink to the point P.

If the manifold is a surface, then (as Problem 3.1 asks you to show) all com-
ponents of Rapcop are either zero or equal to £R;912. The component Ry
can be obtained as indicated above, the method being particularly straightfor-
ward if the coordinates are orthogonal: the embedded surface X' is the surface
itself and for i#, j4 we can use normalized vectors tangential to the coordinate
curves through P. The following example obtains Rjs12 at a general point on
a sphere by this method.

Example 3.3.1
Let P be the point with coordinates (g, ¢g) on a sphere with radius a (where
we use the usual system of coordinates based on spherical coordinates). For
the loop =, take sections of the circles of latitude 8 = 8y + € and the circles of
longitude ¢ = ¢ £ € (where ¢ is small), as shown in the figure.

Let us start with a unit vector )\64 that initially points south and transport
it parallelly around v via Q, R, S and back to the initial point O (see the
figure). Then, from equation (2.25) of Example 2.2.1 with a = 0,

MN=a"', A =0.
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0=0,-¢

0=0,+¢

d=—¢

Fig. 3.2. A small loop on a sphere.

Since the section OQ is a geodesic (see Exercise 2.1.6), A4 arrives at Q still
pointing south, so its components are

1 -1 2 _
/\Q =a -, /\Q =0.
After transporting along QR, it arrives at R with components given by

1 cos(—2ecos(fy +¢)) o sin(—2ecos(fy + €))
)‘R = ) /\R = : )
a asin(fy + ¢)

as can be deduced from equations (2.26) of Example 2.2.1. The section RS is
again a geodesic, so it arrives at S with components given by

1 cos(—2ecos(fy +€)) o sin(—2ecos(fp + ¢))
)‘S = 1 )\S = B
a asin(fy — )

On finally returning to O, its components are

51 cos(—2¢ecos(fy +€) +2c cos(fy — €))  cos(desinfysine)

0 a a '

52 - sin(—2ecos(fy + €) + 2e cos(fp —€)) _ sin(4esinbysine)
o asin(fy — ¢) ~ asin(fy —¢)

as can again be deduced from equations (2.26).
To use equation (3.32), we need an expression for

AN =3 - a8

that is accurate to second order in e. Using the expressions above (see Exer-

cise 3.3.3), we arrive at
AN = (42 /a)d3.

The area A enclosed by « is (again to second order in ¢)
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A = 4a%c? sin by,
and for 44, 74 we can use the orthonormal pair
i =a7168,  j = (asinfy) e

Inserting everything into equation (3.32) gives

4 - _ . —
4a3sin Oy 5 = —(R%cp)e(a™'67)(a™" 67 )(asinbo) 167,
which implies that 64 = —(R4,,)p or (Ria12)p = ga2 on lowering A. On

setting A = 2, we get
(Riz12)p = a*sin® 6y,

in agreement with the result of Problem 3.1.

Exercises 3.3
1. Check that f°¢ can be expressed as in equations (3.29) and (3.31).

2. Verify that A3, /\é, )\g‘, and 5\3‘ are as claimed, using results from Exam-
ple 2.2.1.

3. Verify that, to second order in ¢, AN = (4¢2/a)é4'.

3.4 Geodesic deviation

Another important place where curvature makes an appearance is in the equa-
tion of geodesic deviation, a concept introduced in Section 2.0. The derivation
of this equation is somewhat tedious, and the reader short on time may prefer
to skip this section at a first reading and return to it later.

Consider two neighboring geodesics, v given by z%(u) and ¥ given by Z%(u),
both affinely parameterized, and let £*(u) be the small “vector” connecting
points with the same parameter value, that is, £%(u) = #*(u) — z%(u) (see
Fig. 3.3). To ensure that £* as defined above is small, we must be careful with
our parameterization. Having parameterized v, we can use the affine freedom
available (v — Au + B, see Exercise 2.1.4) to parameterize 4 so that (over
some range of parameter values) £% is indeed small. If neither geodesic is null,
then arc-length s may be used, and care need only be taken in fixing the zero
value of s on, say, 7.

Since v and 4 are geodesics we have

e - dibdic
— a ——— T - 3
du? b du du 0 (3.33)
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2 X a(u)
4/“(”)
x(u)
Y
Fig. 3.3. Geodesic deviation.
and ) b
d“x o, dz® dz®
=0, 3.34
d2+ by dn (3:34)

where the tilde on the connection coefficient in equation (3.33) indicates that
it is evaluated at the point with coordinates #*(u), whereas that in equa-
tion (3.34) is evaluated at the point with coordinates z%(u). But to first order
in ¢°, ]
Iy, = It + It 4%,
and subtracting equation (3.34) from (3.33) gives
§0 o+ I qd*a°€" + I3’€* + I

where dots denote derivatives with respect to u, and only first-order terms
have been retained. This may be written as

(€ + Iggbae) /du — TE, 4&0i¢a" — Teebi® + Iy, 4aaced + Igabée = 0.

Substitution for #° from equation (3.34) and some rearrangement gives

d(€ + T33°) /du + T (€4 + Ikebi®)i — I'g Ikebics
- Fb(:,dgbxcxd + Fbcé-b[‘dexdwe + Fbc,dj:bjccé'd =0.
On relabeling dummy suffices, this rather complicated expression reduces to
D*¢* Jdu® + (I8 cab — Toea t Tpelge — rere)etacs

which can be written more compactly as

D*¢/du® + R%,,£0i%% = 0. (3.35)

This is the equation of geodesic deviation.

In a flat manifold R%_; = 0, and in Cartesian coordinates D/du = d/du,
so equation (3.35) then reduces to d?¢%/du? = 0, which implies that £%(u) =
A%u+ B, where A® and B® are constants. So in a flat manifold the separation
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vector increases linearly with u (and therefore with s if v is non-null). However,
in a curved manifold R4, # 0, and we do not have this linear relationship.
These observations should be compared with the remarks made in Section 2.0.

Exercise 3.4
1. Check the derivation of equation (3.35).

3.5 Einstein’s field equations

The field equations of general relativity are variously referred to as Einstein’s
equation or Einstein’s field equations, and they were obtained by him at the
end of 1915, after what he referred to as a period of unremitting labor. During
the approximate period 1909-13 Einstein and his friend from undergraduate
days, Marcel Grossmann, had realized that the metric tensor g,, describing
the geometry of spacetime seemed to depend on the amount of gravitating
matter in the region in question (and so adopted the kernel letter g for grav-
ity).”
The metric tensor contains two separate pieces of information:

(i) the relatively unimportant information concerning the specific coordinate
system used (e.g., spherical coordinates, Cartesian coordinates, etc.);

(i1) the important information regarding the existence of any gravitational
potentials.

In Section 2.7 we saw that in a nearly Cartesian coordinate system gop was
essentially the Newtonian potential. In a more general coordinate system, this
Newtonian potential would be dispersed throughout the g,.., so there is a sense
in which all the components g,,, can be regarded as gravitational potentials.

We have seen in Section 3.1 that the matter content of spacetime is con-
cisely summarized in the stress tensor T+, so if matter causes the geometry,
it might be tempting to put

g = KTH, (3.36)

where & is some coupling constant. This looks plausible, because both g#* and
THY are symmetric, and ¢g"7, = 0 (see last of equations (2.60)) in agreement
with T#? = 0. However, equation (3.36) does not reduce to Poisson’s equation
V2V = 4nGp, in the Newtonian limit. Since the g,, are the gravitational
potentials, it is clear that what is needed in place of g"¥ in equation (3.36) is
a symmetric tensor involving the second derivatives of g*¥.

During the period 1914-15 Einstein made many attempts to find the exact
form of the suspected relationship between the metric tensor and matter, and

"The story of Einstein’s quest for the field equations is told in Hoffmann, 1972,
Chap. 8.
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in 1915 (by which time he had moved to Berlin, leaving Grossmann in Zurich)
he published his belief in the equation

R™ = kTH, (3.37)

where R*" is the contravariant Ricci tensor. Again this looks plausible, since
RM¥ is symmetric and contains second derivatives of g,,. However, R*" does
not satisfy R*, = 0, and later in the same year he modified the equation to

R — LRg" = kTH. (3.38)

The left-hand side of this equation is the Einstein tensor G*¥, and we know
from Section 3.2 that G*, = 0, so equation (3.38) looks satisfactory in all
respects. We shall see in the next section that it gives Poisson’s equations as
an approximation, and that this approximation allows us to give the coupling
constant k the value —87G/c*. (Note that we now have ten field equations
replacing the single field equation of the Newtonian theory.} An alternative
form for the field equations (3.38) is

R* = k(T* — LT g""), (3.39)

where T'= T}/ (see Exercise 3.5.1).

Recall that T*¥ contains all forms of energy and momentum. For example,
if there is electromagnetic radiation present, then this must be included in
TH. A region of spacetime in which T*¥ = 0 is called empty, and such a
region is therefore not only devoid of matter, but of radiative energy and
momentum also. It can be seen from equation (3.39) that the empty spacetime
field equations are

R =0. (3.40)

Further support for the correctness of the field equations is given by com-
paring the equation of geodesic deviation with its Newtonian counterpart.
With proper time 7 as affine parameter, equation (3.35) of geodesic deviation
takes the form

D?¢#/dr? + R* , €7@ if = 0, (3.41)

ovp
where £#(7) is the small “vector” connecting corresponding points on neigh-

boring geodesics. For comparison with its Newtonian counterpart, let us write
this as

D¢t [dr® = —KE¢”, (3.42)
where
K! =R\, #%i" = —R_ i%i", (3.43)

The corresponding situation in Newtonian gravitation theory is two particles
moving under gravity on neighboring paths given by *(¢) and z*(¢). Their
equations of motion are
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2t dt? = 66,V

and . ‘
d*z*[dt* = -6,V
where 3 in the first equation indicates that the gradient of the gravitational

potential V is evaluated at Z'(t). If we subtract and put £(¢) = 7*(t) — z'(¢),
and make use of the fact that, for small &7,

ékV =0V + (3jakv)€ja

then there results ' ' 4
d2€z/dt2 — -6’k(6j<9kV)§J,

which gives

d*¢/dt* = -K ¢, (3.44)

where

K} =§%0;0,V. (3.45)

Equation (3.44) is the Newtonian counterpart of equation (3.42) and brings
out the correspondence:
K!=-Rt i o K =0§%0;0,V.

Now the empty space field equation of Newtonian gravitation is V2V = 0,
or equivalently K? = 0. This suggests that in empty spacetime we should
have Kf; = 0, that is, R,,2°2” = 0. Since this should hold for arbitrary
tangent vectors & to geodesics we conclude (because R, is symmetric) that
K} = 0 is equivalent to Ry, = 0. In this way comparison between the equa-
tion of geodesic deviation and its Newtonian counterpart lends support to
equation (3.40) as the field equations of empty spacetime. Support for the
nonempty spacetime field equations (3.38) or (3.39) is given in the next sec-
tion.

Exercise 3.5

1. By contracting the mixed form
RE — %R(S{f =gTH

of equation (3.38) show that R = —«T, where T = T}/, and hence verify
equation (3.39).
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3.6 Einstein’s equation compared with Poisson’s
equation

Poisson’s equation may be recovered from Einstein’s equation by considering
its 00-component in the “weak-field” approximation. We use the covariant
version of equation (3.39), and so are interested in

ROO = K(TQO — %Tg()o) (346)

As in Section 2.7, we use a nearly Cartesian coordinate system in which g, =
Nuv + huw, where products of the hy,, may be neglected; we also assume that
the quasi-static condition of that section holds.

Let us assume that our weak gravitational field arises from a perfect field
whose particles have (in our coordinate system) speeds v which are small when
compared with ¢, so we take v = (1 —v2/¢?)~1/2 to be one. For most classical
distributions (e.g., water, the Sun, or a gas at high pressure) p/c? < p, so we
take for the stress tensor

Ty = puytiy.

This gives T = pc?, and equation (3.46) becomes
Roo = kp(uouo — 3¢ goo)-
But ug =~ ¢ and gy = 1, so we have
Roo =~ %IipCQ, (3.47)
where, from equation (3.13),
Roo = 0018, — 0Tty + I, Ity — Lo Tl (3.48)

In our nearly Cartesian coordinate system the I'* are small, so we can
neglect the last two terms in equation (3.48),% and on using the quasi-static
condition we have

ROO ~ —ail_go.

But from Section 2.7, we have that in this approximation
Iy = 5605 hoo,
so equation (3.47) reduces to
—%(5ij8i6jh00 ~ %/{pcz.

But §9;0; = V2, and from equation (2.83) hgy = 2V/c?, where V is the
gravitational potential, so there results

8This is equivalent to assuming that the derivatives of h,, are also small (see
footnote 11 of Chap. 2), and it is this assumption that makes the field “weak.”
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V2V ~ —ikpc?, (3.49)

which corresponds satisfactorily with Poisson’s equation, provided we identify
the coupling constant  in Einstein’s equation as —87G/c*. Equation (3.49)
then becomes

V2V ~ 4nGp. (3.50)

3.7 The Schwarzschild solution

Is it possible to solve the field equations and thus discover g,,7 If one ex-
amines how g,, enters R*” and G*¥, one readily appreciates the high degree
of nonlinearity possessed by the equations, so any solution will not be easy
to obtain. The problem becomes easier if one looks for special solutions, for
example those representing spacetimes possessing symmetries, and the first
exact solution, obtained by K. Schwarzschild in 1916 (astonishingly in the
trenches of the First World War), is of this type.

What Schwarzschild sought was the metric tensor field representing the
static spherically symmetric gravitational field in the empty spacetime sur-
rounding some massive spherical object like a star. His guiding assumptions
were?

(a) that the field was static,

(b) that the field was spherically symmetric,
(c) that the spacetime was empty,

(d) that the spacetime was asymptotically flat.

He also assumed that spacetime could be coordinatized by (¢,r,6,¢), where
t was a timelike coordinate,!® # and ¢ were polar angles picking out radial
directions in the usual manner, and r was some radial coordinate. He then
postulated

dr* = A(r)dt* — B(r)dr® — r*df* — r*sin® 6 d’ (3.51)

as a form for the line element, where A(r) and B(r) were some unknown
functions of r to be obtained by solving the field equations.

The fact that none of the g,, depends on t expresses his assumption (a),
and the fact that the surfaces given by r, ¢ constant have line elements given
by

ds® = r?(df* + sin® 0 do?) (3.52)

®Birkhoff’s theorem (see, e.g., Misner, Thorne, and Wheeler, 1973, §32.2) states
that (b) and (¢) imply (a), so condition (a) is, in fact, redundant.

19A coordinate is timelike if the tangent vector to its coordinate curve is timelike.
Null and spacelike coordinates are correspondingly defined.
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(and so have the geometry of spheres, as Exercise 1.6.2 confirms) expresses his
assumption (b). Assumption (¢) means that A(r) and B(r) are to be found
using the empty spacetime field equations R,, = 0, while assumption (d)
gives boundary conditions on A and B, namely

A(r) = c* and B(r) =1 as r — o (3.53)

(see Example 1.3.1). Note that because B(r) is not necessarily 1, we cannot
assume that r is radial distance. In fact the line element (3.52) shows that a
surface given by r, ¢ constant has surface area 4772, and at the moment this is
the only meaning we can give to r; further discussion on its meaning is given
in the next chapter.

Let us now retrace Schwarzschild’s solution of the field equations. The
idea is to use g,,, obtained from the line element (3.51) as a trial solution
for the empty spacetime field equations. As with all trial solutions, the main
justification for it is that it works. From equation (3.13) we have

R, =01}, - 0,1, + I, I, —Ih Ty,

and from Problem 2.7 we have

10, = A'J24, Il = A'/2B, Tl = B'/2B,
I}, =-r/B, I}y = —(rsin?8)/B, T%=1/r,
I'% = —sinfcos®, IP=1/r I3, = cotf,

all other connection coefficients being zero. Here we have labeled the coor-
dinates according to 20 = ¢, 2! = r, 22 = 0, 2® = ¢, and a prime denotes
differentiation with respect to . Tedious substitution then shows that R,,, =0
gives (see Exercise 3.7.1):

A// AI A/ BI A/
A// Al A/ B/ B/
RllﬁﬂAH<X+§>—E— ; (3.55)
1 r (A B
Ros B + 5B <A B> 0, (3 56)
Rs3 = Raosin®f = 0. (3.57)

Fortunately, 1,,, = 0 identically for u # v.
Of these four equations, only the first three are useful. Adding B/A times
equation (3.54) to equation (3.55) gives (after some manipulation)

A'B+ AB' =0,

which implies that AB = constant. We can identify this constant as ¢? from
the boundary condition (3.53), so
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AB=¢ and B=c /A

Substitution in equation (3.56) then gives A + rA’ = ¢?, which is equivalent
to
d(rA)/dr = .

Integrating, we have
rA = c*(r+k),

where k is constant, so
A(r)=c*(1+k/r) and B(r)=(1+k/r)""

In solving for A and B we have used only the sum of equations (3.55) and
(3.56), but not the equations separately. However, it is a simple matter to
check that, with these forms for A and B, the equations are satisfied sepa-
rately. Thus we have solved the field equations, and obtained Schwarzschild’s
solution in the form

Adr® = A1+ k/r)dt® — (1+ k/r)" dr® — r?d§? ~ rsin” 0 dg?,

where k is a constant, which we now proceed to identify. It clearly must in
some way represent the mass of the object producing the gravitational field.

In the region of spacetime where k/r is small (i.e., in the asymptotic re-
gion) the line element differs but little from that of flat spacetime in spherical
coordinates, so here r is approximately radial distance, the approximation
getting better as r — co. Moreover, if we put

" =ct, z'=rsinfcosd, z*=rsinfsing, z3 = rcosb, (3.58)
we obtain a metric tensor of the form g,, = 1, + hy, (see Exercise 3.7.2),
where in the asymptotic region the hy, are small, and hog = k/r. But in this
region, where 7 is approximately radial distance, the corresponding Newtonian
potential is V = —~MG/r, where M is the mass of the body producing the
field, and G is the gravitational constant. Since hgo = 2V/c?, we conclude that
k = —2MG/c?, and Schwarzschild’s solution for the empty spacetime outside
a spherical body of mass M is

Adr? = 21— 2MG/c*r)dt? — (1 — 2MG/c*r) = dr* — r?df® — r? sin® § dg®.

(3.59)
That is,
1-2MG/c*r 0 0 0
0 —(1-2MG/c*r)"t 0 0
[gHV].: 0 0 _7.2 0
0 0 0 —r?sin®6

This solution is the basis of our discussions in the next chapter.
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Exercises 3.7
1. Check the expressions given for R, in equations (3.54)—(3.57), and that
Ry, = 0for p#v.

2. If in Schwarzschild’s solution we introduce coordinates 2 defined by equa-
tion (3.58), what form does g, take?

Problems 3

1. Show that in a two-dimensional Riemannian manifold all components of
Rapcp are either zero or +Ry19.
In terms of the usual polar angles (see Exercise 1.6.2) the metric tensor
field of a sphere of radius a is given by

(5] = a? 0
JABI =1 a2sin20 |
Show that Ri212 = a?sin? 6, and hence deduce that
-1 0
[Ras] = [ 0 —Sin29]
and R = —2/a?.

2. In a certain N-dimensional Riemannian manifold the covariant curvature
tensor may be expressed as

Ropeq = gachd + gdeac - gadsbc - gchada

where S, is a type (0,2) tensor. Show that, provided N > 2, Sy = Spa,
and that, provided N > 3, Sgp.c = Sacip-

3. Dust is a fluid without internal stress or pressure, so its stress tensor is
T# = putu”. Show that T#), = 0 implies that the dust particles follow
geodesics.

4. Let
B = i3 [P, — 19" (Fpo ),

where F'* is the free-space electromagnetic field tensor. Show that, by
virtue of Maxwell’s equations,
v [ p
B = FLi",
where j° is the 4-current density.

If the stress tensor for a charged unstressed fluid in free space is defined
to be
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™ = pu*u” + E*Y,

where p is its proper density (rather than p, to avoid confusion with charge
density) and u* its world velocity, show that T+, = 0 by virtue of the
continuity equation (for matter) and the equation of motion of the fluid.
(See Sec. A.8 for the relevant definitions and equations, but adapt them
to curved spacetime.)

5. Let O, A, B, C be four points in a manifold with coordinates z%, =% +
£%, x% + 0%, 2% + £* + n%, respectively, where £ and n® are small, so
that OACB is a small “parallelogram,” as shown in Figure 3.4. Working
to second order of small quantities, obtain an expression for the vector
)\‘(lvia A) obtained by transporting a vector A3 at O to C along the edges
OA and AC, and the corresponding expression Alvia B) for transporting it
along OB and BC.

Show that the difference AX* = A%, ) — Al 5y I8 (to second order)
given by

AN = —L(RS) oM (€ — £%p).
(The quantity £n? — £97° is related to the area of the parallelogram and
this is essentially the same result as equation (3.30).)

Fig. 3.4. A small parallelogram.

6. In Section 3.7 we remarked that the field equations of general relativity
were nonlinear. Explain why this is not surprising.
Does the principle of superposition hold for solutions of the field equa-
tions?
If not, why not?

7. Show that the Schwarzschild line element (3.59) may be put into the
isotropic form

GM\? GM\ 2
242 — 2 (11— 2
c“dr c ( ——2/)02 1+ _2p02 dt

A\
{1+ GM (dp* + p*d6?* + p? sin? 0dg?),
2pc?
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where the new coordinate p is defined by

= 1+GM 2
T=p 22 )
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Physics in the vicinity of a massive object

4.0 Introduction

In Chapter 3 we obtained the static spherically symrmetric solution of
Schwarzschild, and identified it as represcuting the gravitational field sur-
rounding a spherically symmetric body of mass M situated in an otherwise
empty spacetime. This solution is asymptotically flat, and in no way incorpo-
rates the gravitational effects of distant matter in the Universe. Nevertheless,
it seems reasonable to adapt it as a model for the gravitational field in the
vicinity of a spherical massive object such as a star, where the star’s mass is
the principal contributor to the gravitational ficld.

Suppose, somehow, that we are watching the trajectories of laser beams
and particles in the vicinity of a star, all of these trajectories being displayed on
a large television screen with the star a rather small dot in the middle. If there
is a “mass-control” knob which controls the mass M of the star, we are rcally
asking in this chapter what happens when we turn the knob so as to increase
M. With M turned right down to zero, the Schwarzschild line element reduces
to that of flat spacetime in spherical coordinates. The coordinates ¢ and » then
have simple physical meanings: ¢ is the time as measured by clocks which
are stationary in the reference system employed, and » is the radial distance
from the origin. Turning M up introduces curvature, so that spacctime is no
longer flat, and there is no reason to assume that the coordinates have the
simple physical meanings they had in flat spacetime. The relationship between
coordinates and physically observable quantities is investigated in Section 4.1,

The Schwarzschild solution is the basis for four of the tests of general
relativity listed in the Introduction, namely perihclion advance, the bending
of light, time delay in radar sounding, and the geodesic effect.! The third of
these may be discussed without a detailed knowledge of the geodesics, and
this we do in Section 4.2. The question of perihelion advance and the bending

"They could therefore be the tests of any other theory of gravitation which
yielded the Schwarzschild solution. See also Biswas, 1994.
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of light does require some knowledge of the geodesics, and these matters are
discussed in Sections 4.4 to 4.6.

Spectral shift is more a test of the principle of equivalence than of general
relativity, but inasmuch as the latter is based on the former, it does yicld a
test of the general theory, and it is appropriate to discuss it in the context of
the Schwarzschild solution. This we do in Section 4.3.

The fifth test mentioned in the Introduction is presently being measured.
Satellite experiments began in April 2004, and (at the time of writing) are
still under way. We consider the theory behind this test in Section 4.7.

Before embarking on our detailed discussion, let us say something about
the ranges of the coordinates appearing in the Schwarzschild solution. Inas-
much as the metric tensor components g, do not depend on ¢, the solution
is static, and we can take —oo < t < oc. The coordinates € and ¢ pick out
radial directions as in spherical coordinates in Euclidean space aud so have
the ranges 0 < 8 < m, 0 € ¢ < 27. However, no trouble will be caused if we
let ¢ extend bevond the quoted range, provided we identify the event with
coordinates (¢, 7,8, ¢1) with that with eoordinates (t,r, 8, ¢2) whenever ¢, and
¢ differ by a raultiple of 27, The radial coordinate r can decrease from in-
finity until it reaches either the value rg corresponding to the boundary of
the object, or the value 2GM /2, if rp is not reached first. The reason for the
first lower bound is that the solution we have obtained is the exterior sofu-
tion, valid only where the empty spacctime field cquations hold. The reason
for the second one is that as r tends to 2GM/c?, the component g1; of the
metric tensor tends Lo infinity (see the line element (3.59}). So the range of
risrp < r < ooor 2GM/c¢?* < r < oo, as appropriate. Should r decrease
to 2GM/c? without 5 being reached, then the object is a black hole, and
we discuss this situation in Section 4.8. In order to be able to step over the
threshold at + = 2GM/¢?, we must introduce a coordinate system different
from that used to derive Schwarzschild’s solution.

The chapter finishes with a brief consideration of some other coordinate
systems used in connection with the Schwarzschild solution, and a lock at the
more general case of rotating objects.

4.1 Length and time

The Schwarzschild spacetime has the line element

Adr? = (1 = 2m/r)ctdt? — (1 — 2m/r) tdr? — r2df% — r? sin® 6 d¢?,

(4.1)
where for convenience we have put m = GM/c?. If we take a slice given by
t = constant we obtain a three-dimensional manifold with the line element

ds? = (1 — 2m/v)"dr? + r?df® + r* sin” 0 d¢?, (4.2)
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obtained by putting df = 0 in cquation (4.1). Putting

I

ds? = gizdrida’  (i,5=1,2,3, 2t =7, 2* =0, * = ¢),

so that §;; = —g;;, we see that §,; is a positive-definite metric tensor field on
this 3-manifold, so the slice is a space rather than a spacetime. Mareover, no
Gi; depends on ¢, so the spaces given by ¢ = constant have an enduring per-
manence which allows us to refer to events with the same v, 8, ¢ coordinates,
but different ¢ coordinates, as occurring at the seme point in space. We may
also speak of fized points in space. This splitting of spacetime into space and
time is possible in any static spacetime, but is not a feature of spacetimes in
general, and it should be borne in mind that because of this there are fewer
problems of definition and identification in static spacetimes than in nonstatic
ones.

If we turn M (or m) down to zero, then the line element (4.1) becomes
that of flat spacetime in spherical coordinates, while the line element (4.2)
becomes that of Euclidean space in spherical coordinates (see Example 1.3.1).
Turning M up introduces distortion into both spacetime and space, so that
neither is flat. This distortion is cffectively measured by the dimensionless
quantity 2m/r occurring in the two line clements, and is greatest when r is
least, that is, when 7 = rg, the value of v at the boundary of the object,
assuming it is not a black hole. For the Earth, 2m/ry is about 1079, for the
Sun it is about 107, but for a proton it is as low as 10736, For white dwarfs,
however, it is not negligible, and for typical neutron stars it can be as much
as 10%-15%.

In the flat spacctime given by m = 0, the coordinate r Is simply the
distance from the origin, but if we turn m up, things arc not so simple, for
r then has a positive lower bound (sec previous section) and our origin has
disappeared. What then does r represent? If we take the sphere in space given
by r = constant, its line element is

dl? = r*(df? + sin® 0 dep*), (4.3)

obtained by putting dr = 0 in the line element (4.2). It follows that this
sphere has the two-dimensional geometry of a sphere of radius r embedded in
Euclidean space (see Exercise 1.6.2), and just as in the flat space, infinitesimal
tangential distances are given by

dL = r(d0? + sin® 0 d¢?)/2, (4.4)

But what about radial distances given by 8 and ¢ constant? The line clement
shows that for these the infinitesimal radial distance is

dR = (1 — 2m/r)~Y2dr, (4.5)
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Fig. 4.1. Radial distance in the Schwarzschild geometry. Here dR = f(r)dr, where
f(r) = (1 —2m/r)~'/2. The curve gives the value of f(r), which tends to infinity as
r — 2m and to unity as r — 00.

A

so dR > dr and r no longer measures radial distance.? The apparent incom-
patibility of the distances (4.4) and (4.5) is explained by the curvature of
space. In Figure 4.1, the flat disk S represents a portion of flat space (m
turned down to zero), while the curved surface Sy, represents a portion of the
curved space (m turned up). The circles C) and C3 represent spheres having
the peometry of a sphere of radius r in Euclidean space, while Cy and Cy rep-
resent neighboring spheres having the geometry of a sphere of radius r +dr in
Euclidean space. However, it is only in the flat space represented by Sp that
the measured radial distance between the spheres is dr. In the curved space
represented by Sy, the measured distance is dR? given by cquation (4.5), and
this exceeds dr. If we were to measure the circumference of a great circle of
the sphere r = constant using small measuring rods, then the same number of
rods would be needed in flat space as in the curved space. On the other hand,
if we were to measure the radial distance between points with radial coordi-
nates r; and ro, then more rods would be needed in the curved space than
in the flat space (see Example 4.1.2, at the end of this section, and Fig. 4.2).

2We emphasize that coordinates are nothing more than “street numbers”: there
is no reason to believe that the measured distance between 36th St. and 37th St.
is equal to the measured distance between 40th St. and 41st St. For the measured
distance, we nced to integrate ds, where ds is given by the line element, as explained
in Sec. 1.9.
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Something similar happens with measuring radii and circumferences on the
surface of the Earth, as the following example shows.

~T

R Ty
More small rods
needed here than in
flat space; number on
circumference is unchanged

N-pole

[y b

Fig. 4.2. Measuring distances in the Schwarzschild geometry (upper figure) and on
the surface of the Earth (lower figure). In each case, the circumference of the circle
is less than 27 R.

Example 4.1.1

If we mark out a circle of radius 1 m, by joining together all points on the
surface of the Earth that arc a distance 1m from the North Pole, then the
circumference of the resulting circle is 2 m. However, if we mark out the
Equator in a similar way by joining together all points that are a distance
R from the North Pole (where R is the distance from the North Pole to the
Equator measured over the surface of the Earth), then the circumference of
the resulting circle is not 27 R: fewer measuring rods are needed to cover the
circumference of this circle on the Earth than are needed to cover a circle on
a flat surface constructed in the same way.

l.et us now turn our attention to time. One of the basic assumptions taken
over from special relativity is that clocks record proper time intervals along
their world lines. Infinitesimal proper timme intervals are given by the line
element, (4.1), and for a clock at a fixed distance in space (r, 8, ¢ constant)
this gives

dr = (1 —2m/r)'/2dt. (4.6)
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So in f{lat spacetime (m turned down to zero) dr = di, and such a clock
records the coordinate time ¢, However, in the curved spacetime {m turned
up) dr < dt, and fixed clocks do not record coordinate time.

Special relativity Schwarzschild
v constant r variable

dl = dlp(1 —v*/*Y? dr = dR(1 - 2m/r)"/?
dt = dr(t —4?/c®) Y2 dt=:dr(1 - 2m/r)"'7?

Table 4.1. Comparison of length and time.

It is tempting to compare the relations (4.5) and (4.6) with similar formu-
lae from special relativity (see Table 4.1). However, there are important differ-
ences. The square root in the Schwarzschild solution involves the coordinate
r and therefore depends on position, whereas that in the special-relativistic
case is constant. Moreover, if we used a different coordinate system for de-
scribing the Schwarzschild solution, for example, isotropic coordinates (see
Problem 3.7), then the expressions would have different forms altogether.

One final point to note is that as r — oo, dR — dr in equation (4.5)
and dr — dt in equation (4.6), so asymptotically the coordinate distance dr
coincides with the actual distance dR, and the coordinate time dt with the
proper time dr.

Examples 4.1.2

(a) If a stick of length 1m lies radially in the field of a star where m/r is
1072, what coordinate distance does it take up?
Answer. From equation (1.5), the coordinate distance is

Ar = (1 = 2m/r}*?AR = (1 -2x 10722 m =~ 0.99 m.

(b) A long stick is lying radially in the field of a spherical object of mass M.
If the » coordinates of iis ends are r) and ra (r; < r3), what is its length?
Answer. Since the stick is long, we must integrate the length differential
dE. This gives the length as

T2
/ (1-26GM/rc®) 2y = 72(r — 200/ *)?
T2

+ GM/A) n{r'? 4 (r - 26M/A) YL (47)

ri

Note that when GM /re? < 1 this reduces to vy — ;.
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Exercise 4.1
1. Check the integral (4.7).

4.2 Radar sounding

Suppose that an observer is at a fixed point in space in the field of a massive
object, and that directly between him and this object: there is a small body.
We can imagine the observer sending radar pulses in a radial direction to-
wards the body, these puises being reflected by it and subsequently received
by the observer at some later time. Let us calculate the time lapse between
transmission and subsequent reception of a radar pulse by the observer. If the

(72, 6o, $0) (r1» G4, $0)
[ P

A
3

Small Observer
body (Earth)
Massive (Mercury
object or Venus)

(Sun)

Fig. 4.3. Radar sounding.

spatial coordinates of the ohserver are (ry, 6y, ¢g), then those of the body are
(ro.60.¢0), with v < r1 (sce Fig. 4.3). The radar pulses travel in a radial
direction with the speed of light, so putting dr = 0 and df = d¢ = 0 in the
line element (4.1), we have

(1~ 2m/r)c2dt? = (1 — 2m/r) " 'dr?,

which gives
dr/dl = 2efl — 2m/7).

This expression gives the coordinate speed of light in the radial direction. The
coordinate time for the whole trip is therefore

1 ™ dr L/ dr
At = —— — — ———
c /m 1-2mfr + c /T2 1—2m/r
_2/“ dr
ey, 1-2m/r

Howecver, we require the proper time lapse as measiured by the observer at r;.
(The observer’s clock records proper time.) From equation (4.6) this is

(4.8)
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2 /2 o .
(1———> At:—(l-2—m) / _dr
CoN T vy L= 2mfr
2
e

172 ‘
2m ry —2m
(1 - —) (7'1 — 72 +2mln 1—) .
1 ry —2m

The distance traveled by the radar pulse is twice the integral (4.7), so on
the basis of the classical theory one would expect a round-trip time of

AT

AT = (2 x integral (4.7))/¢,

and A7 # A7. The difference forins the basis of the so-called fourth test of
genceral relativity, in which the massive object is the Sun, the observer is on
Earth, and the small body is either Mercury or Venus. Of course, the Earth
is not at a fixed point in space, but we neglect its motion during the travel
time of a pulse.

With M equal to the mass of the Sun, and r; and r5 the orbital values of
r for the Earth and the other planet involved, 2m/r is small for ro < r < ry,
and this leads to the approximations:

AT = (2/c)[r1 — ro — miry — r2)/ry + 2mIn(ry /re)]

4.1¢
AT & (2/c) [r1 — ro + mn(ry /r9)]. (4.10)
Hence there is a general-relativity-induced delay
/I _
Ar — AF ~ 2G,f\ (Jnﬁ—u). (4.11)
o ry o

For inferior conjunction, with the planet between the Earth and the Sun,
this time delay is too small to measure. Iowever, it is increased considerably if
they are in superior conjunction, and an experiment was suggested by Shapiro
in 1964 which involved radar sounding of Mercury and Venus as they passed
behind the Sun.® The analysis above will not cope with this situation, where
the Sun prevents direct radar sounding in the radial direction.

In using a time-delay formula such as formula (4.11), or its modification for
nonradial motion, one should ask oneself certain questions. Can the Earth’s
motion in its orbit be ignored? Can the Earth’s own gravitational field be
ignored? Can accepted planetary distances be used for r; and 7y, which are
after all coordinate values and not distances (see Sec. 4.1)? What is the effect
of dispersion by the solar wind? When such considerations have been taken
into account, one may go ahead and perform one’s experiment to check the
theoretical with the observed time delay. Recent tests using Mcreury and
Venus have yielded agreement to well within the experimental uncertainty of
20% in 1968, and 5% in 1971, while tests using the spacecrafts Mariner 6 and

3Gee Shapiro, 1964.
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7 have yielded agrecment to well within the experimental uncertainty of 3%
in 1975.4

Exercise 4.2

1. Check the approximations (4.10).

4.3 Spectral shift

Supposc that a signal is sent from an cmitter at a fixed point (rg, 0§, ¢g), that
it travels along a null geodesic and is received by a recciver at a fixed point
(ra,0n,¢r). U (g is the coordinate time of cmission and tp the coordinate
time of reception, then the signal passes from the cvent with coordinates
(te,7E, 9k, ¢r) to the event with coordinates (tg, 75,05, ¢r) (sce Fig. 4.4).
Let u be an affine parameter along the null geodesic with © = w4 at the cvent
of emission and u = ug at the event of reception. Since the geodesic is null,

(1 = 2m/r)c*(dt/du)* = (1 — 2m/r) " (dr/du)*
+ r2{df/du)? + r?sin® (de/ du)?,

di 1 2\ "' dat del v
a:zl(l*T) -"i%ﬂ = (412

where g;; = —gi;. On integrating we have

. ~1/2
o, /uﬂ Loz daeided ] N
RTME= L g 7 gis du du
The integral on the right-hand side depends only on the path through space,

so with a spatially fixed emitter and a spatially fixed receiver, tg — tp is the
same for all signals sent. So for two signals we have

80

A R
giving
At =1 — ) =12 D) = Ag,,. (4.13)
That is, the coordinate time difference at the point of emission equals the
coordinate time difference at the point of reception. However, the clock of
an obscerver situated at the point of emission records proper time and not
coordinate time, the two being related by a finite version of equation (4.6).
This gives a proper time interval

4See Shapiro, 1968; Shapiro et al., 1971; and Anderson et al., 1975.
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Arg = (1= 2m/frp) 2 Atg,

and similarly
ATR = (] - 2m/rR)1/2AtR.

Since Atg = Atg, we have

Arg 1-2m/rg 1/2
ATE ’

|- 2mfr i

(4.14)

Equation (4.14) is the basis of the gravitational spectral-shift formula, which

we shall now derive.

(tg. Fi. B, $e) 4

Emitter Receiver
at fixed at fixed
(e 8 40 (T 8 $2)

({Ru I8 9]?0 +R)

Fig. 4.4. Spacetime diagram illustrating emission and reception of a signal.

Suppose the emitter is a pulsating atom, and that in the proper time
interval Arp it emits » pulses. An observer situated at the emitter will assign
to the atom a frequency of pulsation vz = n/A7g, and this is the proper
frequency of the pulsating atom. An observer situated at the receiver will see
these n pulses in a proper time interval Arg (see Fig. 4.5), and therefore
assign a frequency vg = n/A7g to the pulsating atom. Since Arg # Arg the
observed frequency differs from the proper frequency. In fact, equation (4.14)

gives

ve 1-2m/rg 1/2
VE

. 2mnjrr

1 - 2GM/rgc?
T 1-2GM/rge?

1/2
|

(4.15)

on putting m = GM/c?. If rge? > 2GM and rgre? > 2G M, then this reduces

to

CM (1 1
2o (3

Vg 2 \rp TE

(4.16)
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n pulses received

in proper time

Atg; observed
frequency = n/At,

n pulses emitted

in proper time

ATy, proper
frequency = n/Arg

Emitter Receiver

Fig. 4.5. Proper and observed frequencics.

From this we can obtain the fractional shift,

AU_VR—I/ENGA/[<] 1)

4.17
R TE ( )

= e T
2

VE VE

If the emitter is nearer the massive object than the receiver is, then 1/rg <
1/ry. and the shift is towards the red, but if the receiver is nearer the massive
object, then it is towards the blue.

There are two points relating to the formulae of spectral shift which are
worth noting. The first is that the formula {4.15) generalizes to any static
spacetime; that is, one for which there exists a timelike coordinate ¢ which
gives a splitting of the line element into the form

Adr? = goo(zM)dt? + gi; (2 )dxtda? .

In such a spacetime it makes sense to talk of fixed points in space, and fol-
lowing an argument analogous to that above leads to

]1/2

vrivE = |guo(zl) /g00(z5)] 7, (4.18)

where z%, are the spatial coordinates of the emitter and 2% arc those of the
receiver.

The second point is that the version (4.17) may be derived using an eclectic
argument not bhased on general relativity. Suppose for the sake of argument
that the emitter is nearer the massive object than the receiver is. Then in
traveling from the emitter to the receiver a photon suffers a loss in “intrinsic¢”
energy equal to its gain in gravitational potential energy. The loss in intrinsic
energy is h(vy — vp), while the gain in gravitational potential energy is
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hvgGM ( 1 1 >

5 _— e —

C TE TR

on assigning the mass hvg/c? to the photon. Equating these leads to the
fractional-shift formula (4.17). This formula assumes that the photon’s energy
has both inertial and gravitational mass, and depends in an essential way on
the equivalence principle.

Terrestrial experiments confirming the formula (4.17) were performed in
1960 by Pound and Rebka using a vertical separation of 22.5 m in the Jefferson
Physics Laboratory at Harvard.® The formula should also be amenable to
testing by observing the spectra of stars. For an observer on Earth m/rp is
negligible, and the effect depends essentially on m/rg. Since the observed
spectrum is that of atoms on the surface of the star, the effect is greatest for
dense objects, such as white dwarfs, for which m/rg is large. However, data
concerning stellar masses and radii are not usually accurate enough for such
observations to compete with terrestrial ones. Morcover, the random motion of
the radiating atoms produces Doppler shifts which broaden the spectral lines,
making it difficult to obtain an accurate value for the gravitational shift.

The following example makes use of the spectral-shift formula (4.15).

Example 4.3.1

The wavelength of a helium neon laser is measured inside a Skylab freely
floating far out in deep space, and is found to be 632.8 nm. What wavelength
would an experimenter measure (see Fig. 4.6) if:

(a) he and the laser fell freely together towards a neutron star?

(b) he remained in the freely floating Skylab while the laser transmitted ra-
dially from the surface of the neutron star of mass 10 kg and radius
rg = 104 m?

(¢) he were beside the laser, both on the surface of the neutron star?

(d) he were on the surface of the neutron star while the laser was back in the
distant Skylab?

Answer.

{a) Since the observer is at rest relative to the laser he observes its proper
wavelength as determined in the Skylab, namely 632.8 nm.

(b) The wavelength version of formula (4.15) is

)‘R _ 1- QGM/T‘R(32 12

Mg |1 —2GM/rgc?

(4.19)
and if we assume that the Skylab is so distant that we may take 1/r5 =0,
and ignore its motion in space, then this gives an observed wavelength of

Ar = Ap(l = 2MG/rgc®) V2 = 685.6 nm,
5See Pound and Rebka, 1960.
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(a) | (b)
1, 7 o
| 25

Fig. 4.8, Observer and lascr.

on putting Ap = 632.8nm, G = 6.67 x 107" Nm? kg™, M = 10% kg,
rp=rg — 10°m, and ¢ = 3 x 108 ms 1.
(c) Herery = rp, so formmula {4.19) gives a measured wavelength of 632.8 nm.
(d) Here we take 1/7g = 0 in formula (4.19) giving

Ar %= Ap(l = 2MG/rpe®)'/?,

where Ag = 632.8nm and rg = rg = 10*m. This gives a measured
wavelength of approximately 584 nm.

Exercise 4.3

1. Find the fractional shift in frequency, as measured on Earth, for light from
a star of mass 10°" kg, assuming that the photons come from just above
the star’s atmosphere where rg = 1000 km.
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4.4 General particle motion {including photons)

The paths of particles with mass moving in the vicinity of a spherical massive
object are given by the timelike geodesics of spacetime, while the paths of
photons are given by the null geodesics. Our plan for this section is to consider
first the timelike geodesics, and then to see what modifications are needed for
null geodesics.

For a timelike geodesic we may use its proper time 7 as an affine parameter.
From Section 2.1 we see that the four geodesic equations are given by

Jd; (%) - %; ~0 (4.20)
where
L(2°,27) = 1g,,@"%"
= % (02(1 —om/ri? — (1 = 2m/ry~ 42 — 262 +sin29¢52)) )

Here dots denote derivatives with respect to 7, the coordinates are 2% = t,
=71, 2* =6, 2° = ¢, and we have again put m = GM/c?.

Because of the spherical symmetry, there is no loss of generality in con-
fining our attention to particles moving in the “cquatorial plane” given by
6 = w/2. With this value for 8, the third (¢ = 2) of equations (4.20) is
satisfied, and the second of these (i = 1) reduces to

om\ " . me om\ Cm o, o,
1- Frt—t"—{1-— —7° —ro° =10. (4.21)
r2 T r?

r

Since ¢ and ¢ are cyclic coordinates, we have immediate integrals of the two
remaining equations (sce Sec. 2.1):

AL /8t = const, BL/&;') = const.

With # = 7/2 these are (for AL/t and L/O, respectively)

{1—2m/r)f =k, (4.22)

72¢ = h, (4.23)

where k and h are integration constants. We also have the relation (2.69)
which defines 7. With § = /2 this becomes

A1 -2m/r)i2 ~ (1 = 2m/r) "2 — r2¢? = 2, (4.24)
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and may be used in place of the rather complicated equation (4.21).
Equation (4.22) gives the relation between the coordinate time ¢ and the
proper time 7; equation (4.23) is clearly analogous to the equation of con-
servation of angular momentum; as we shall see, equation (4.24) yields an
equation analogous to that expressing conservation of energy.
Equation (4.24) gives

(32(1 — 2m/7')t'2/<2)2 -(1- 2m/r)"(d7‘/d¢)2 —r?= CQ/QSZ,
and substituting for ¢ and ¢ from equations (4.22) and (4.23) gives
(dr/de)? + r*(1 4+ A2 /B3 (1 = 2m/7) — ER* /R = 0.

If we put u = 1/7 and m = GM/c? this reduces to

du\® . IGM 26M .
(d—:;) +ul=E+ (}:2 u { + (;; u’, (4.25)
873 , ?

where E = ¢?(k? — 1)/h%. Comparing this with the analogous Newtonian
cquation (4.41) we see that it corresponds Lo an energy equation. Comparison
also shows that the last term on the right is, in a sensc, a relativistic correc-
tion, and this is the point of view that we shall adopt when discussing the
advance of the perihelion in planetary orbits in the next section. In theory
equation (4.25) may be integrated to give u, and hence 7, as a function of ¢, to
obtain the particle paths in the equatorial plane. Except in special cases, this
integration is impossible in practice, and we resort to approximation methods
when discussing planetary motion.

Two interesting special cases may be cxamined in detail, namely vertical
free-fall and motion in a circle.

Vertical free-fall.  For vertical free-fall, ¢ is constant, which implies that
equation (4.23) is satisfied with & = 0. In deriving equation (4.25) we assumed
that (;’) and h were nonzero, so that cquation cannot be used. However, it was
based on equation (4.24), which, with # = 0 and the expression for { given by
equation (4.22) substituted, reduces to

2 — R4 (1 = 2m)r) = 0. (4.26)

This equation enables us to give a meaning to the integration constant k, for
if the particle is at rest (+ = 0) when © = 7, then k% = 1 — 2m/rq. Since T
increases with #, equation (4.22) shows that k is the positive square root® of
1 — 2m/ro. Hence k is not a universal constant, but depends on the geodesic
in question. In particular, if # »Qasr > oo, then k = 1.

Differcutiating cquation {4.26) gives

8We are assuming that ¢ has been chosen to increase into the future.
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277 + (2me? /r? ) = 0,

which can be written as

P+ GM/r* =0, (4.27)

This equation has cxactly the same form as its Newtonian counterpart. How-
ever, it should be remembered that in equation (4.27) the coordinate r is not
the vertical distance, and dots are derivatives with respect to proper time,
whereas in the Newtonian version » would be vertical distance and dots would
be derivatives with respect to the universal time.

Putting &% = 1 — 2m/rg and m = MG/c? in equation (4.26), we get

2 MG (l _ l) , (4.28)

[T

r o

Since the left-hand side is positive, this only makes sense if r < 7. It has
exactly the same form as the Newtonian equation expressing the fact that a
particle (of unit mass) falling from rest at » = ry gains a kinetic energy equal
to the loss in gravitational potential energy. However, the different meanings
of r and the dot mentioned ahove should be borne in mind.

Equation (4.28) allows us to calculate the proper time experienced by the
particle in falling from rest at r = ro. If 7 = 0 when r = 1y, then this time is

1 o/ par 1/2
T = QM(‘/ (?“0—7“) dr, (4.29)

where, because ¢ < 0, we have taken the negative square root when solving
equation (4.28) for dr/dr. The lower limit of integration may be taken down to
2GM/c? (i.e., 2m) unless the boundary of the massive object is reached first,
and as 7 — 2m the integral clearly remains finite (see Exercise 4.8.2). However,

if one calculates the coordinate time ¢ for falling to r = 2m = 2GM/c?, then

dt  dtd
one finds it to be infinite. Using — = &4 with
dr drdr

dt k (1 —2m/rg)t/?

5=1—2m/7~_ 1-2m/r

from equation (4.22), and

dr 1 ( ror >1’/2
dr cvVom \ro—r

from equation (4.28) (with MG = mc?), gives

dt 1 P32 (ry — 2m)V/? (4.30)
dr o2 (r—2m)(rg — )1/’ '

s0 the coordinate time to fall from 7 =75 to r =2m +¢ (s > 0) is
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o= (70T am\ '/ /"0 3/ 2dp
c 2mc? 2m+te (71 - 27”)(1’"0 - 7'>1’/2 .

With 2m + ¢ <7 <rg we have r > 2m and rg — 7 < 19, $0

te > (ru - 2m>l/2 (2m)%/? /'T“ dr

2mc? ,,.(‘)/2 omie T — 2m

But

o dr 9 — 2m
=In — o0 as € — 0,
2mye T = 2m €

showing that t. — oc also. Hence the coordinate time taken to fall to r = 2m
is infinite, as asserted.

The way in which the coordinate time ¢ depends on r for a radially falling
particle becomes more comprehensible if we compare its coordinate speed v(r),
defined by v(r) = |dr/dt|, with that of a particle falling according to the
classical Newtonian theory with speed @(r). For simplicity, let us consider a
particle falling from rest at infinity. Letting rg — oo in equation (4.30) gives

v(r) = (2me®)Y2(r — 2m) /r*/2,
whereas the corresponding classical expression is (with MG = mc?)
o(r) = (2mc?)/2 172,

A ghort calculation shows that as r decreases from infinity v(r) increases until
it reaches a maximum value of 2¢/3+/3 at r = 6m, after which v(r) decreases,
and »{r) — 0 as r — 2m. On the other hand, as r decreases, U(r) increases,
and 9(r} — oc as » — 0. The graphs of v(r) and &(r) arc given in Figure 4.7.

Motion in a circle. For circular motion in the equatorial plane we have
r = constant, and ¥ = # = (. Equation (4.21) then reduces to

mc*t? = rig?, (4.31)

giving
(do/di)? = GM /1>, (4.32)

on putting me? = GM. Hence the change in coordinate time ¢ for one complete
revolution is
At = 25 (P8 )G M2, (4.33)

This expression is exactly the same as the Newtonian cxpression for the period
of a circular orbit of radius r, that is, Kepler’s third law. Although we cannot
say that r is the radius of the orbit in the relativistic case, we sce that the
spatial distance traveled in one complete revolution is 277, just as in the
Newtonian case.
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Fig. 4.7. Comparison of the coordinate speed v(r) with the Newtlonian speed #(r)
for a particle falling from rest at infinity.

Figure 1.8 is a spacetime diagram illustrating one complete revolution as
viewed by an observer fixed at the point where r = rg. By is the cvent of
the observer’s viewing the start of the orbit at A, while Bs is that of his
viewing its completion at A,. The coordinate time between A; and A, is At
as given by equation (4.33), and we know from the argument used in deriving
the spectral-shift formula (see Sec. 4.3) that At is also the coordinate time
between B, and Bs. So the proper time A7y which the observer measures for
the orbital period is (from equation (4.6))

A7y = (1 = 2m/re) /2 At. (4.34)

As rg — o0, A1y — At, so At is the orbital period as measured by an
observer at, infinity. So At turns out to be directly observable, and this suggests
an indirect means of measuring the coordinate r, by measuring the orbital
period of a test particle in a circular orbit given by the value of r. However,
this depends on a knowledge of M, which must be known independently, that
is, not found by methods involving orbital periods.

Equation (4.34) shows that for a fixed obscrver the period Ary assigned
to the orbit depends on his position. It is natural to ask what period Ar an
observer travelling with the orbiting particle would assign to the orbit. The
relationship between ¢ and 7 is given by equation (4.22), so the answer to the
question depends on the value of the integration constant k. From equations
(4.31) and (4.22) we have

1,‘2 k.Z

2 , 12
t—m (:Llld(,/)—

and substitution in cquation (4.24} (with # = 0) gives

melk?

_ 4.35
r(r — 2m)?’ (4.35)
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Fig. 4.8. Spacetime diagram illustrating & circular orbit as viewed by a fixed ob-
server.

(r—2m)?
- " 3m) (4.36)

From equation (4.22), the orbiting observer assigns a period A7 to the orbit
given by

Ar = (1 = 2m/r)k™ At

_(r=3m\? o [ 3MGN\]Y (4.37)
B 7 T oM re? ’

Since k2 > 0, equation (4.36) implies that circular orbils are impossible, unless
r > 3m. In the limit, as + — 3m, A7 — 0, suggesting that photons can orbit
at 7 = 3m, and we shall see later in this scction that this is indeed the case.

Imagine now a sitnation where we have two astronauts in a spacecraft
which is in a circular orbit at a value of r greater than 3. Supposc one of
them leaves the craft, uses his rocket-pack to maintain a hovering posttion at
a fixed point in space, and then rejoins the craft after it has completed one
orbit. According to equation (4.34), the hovering astronaut measures the time
of absence as

Arnoe = (1 - 277@/7”)1/2.415,
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while the orbiting astronaut measures it as
Aty = (1 = 2m/r)k™  At,

SO

AThoy k _[{r—2m 1/ o1
Aty {1 =2m/r)1/2 7 \r —3m '

This shows that if the two astronauts were the same age at the time one of
them left the spacecraft for a period of powered flight, then on his return he is
older than his companion who remained in the freely falling spacecraft. This
result contrasts with the twin paradox of special relativity where the twin
undertaking a powered excursion returns to find himself younger.”

Photons. Let us now look at the null geodesics which give the paths of
photons (and any other particles having rest mass equal to zero). We cannot
use proper time 7 as a parameter, so let w be any affine parameter along the
geodesic, and let dots now denote derivatives with respect to w. For photons
moving in the equatorial plane, equations (4.21) to (4.23) remain the same,
but the right-hand side of equation (4.24) must be replaced by scro:

A1 =2m/r)i2 — (1= 2m/r)" 72 —#24% = 0. (4.38)

This leads to a modified form of equation (4.25):

2 &
(@) t+uf=F } + 2GM11.3, (4.39)

do c?

where F' = ¢?k?/h%. We make use of this equation when discussing the bending
of light in Section 4.6. To complete the present section we shall discuss two
consequences of the null geodesic equations.

The first is the possibility of having photons in a circular orbit. With
=7 =0, equation (4.21) gives ¢? /2 = mc? /3, while equation (4.38) gives
¢ /82 = c2(1 — 2m/r)/r?. Equating these gives r = 3m as the only possible
value of » for which photons can go into orbit.

The second consequence is that by investigating the radial null geodesics
we can discover what sort of picture a fixed observer gets of any particle
falling into a black hole. Suppose the observer is fixed at r = rg, and he drops
a particle from rest. According to the discussion above it takes an infinite
coordinate time to fall to r = 2m, and we see from equation (4.30) that
dr/dt — 0 as + — 2m (sce also Fig. 4.7). So in an r,{ diagram the path of the
falling particle is asymptotic to r = 2w, as shown in Figure 4.9. However, as
we have seen, the proper time to fall 50 v = 2m as measured by an observer

"This result apparently contradicts the dictum that a timelike geodesic maxi-
mizes proper time.
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falling with the particle is finite. Moreover, as » — 2m cquation (4.28) shows
that dr/dr — —c(1 — 2m/rg)!/2, so the particle has not run out of steam by
the time it gets down to r = 2m and presumably passes bevond the threshold.
(So in some respects our r,t diagram is misleading.)

4

Path of
falling
particle

Null
Geodesics

~<l_<1_<l_<1—<1_<l><1““‘<1_<1_

tal

=

Threshold Fixed
observer
atr,

Fig. 4.9. r t diagram illustrating the observation of a falling particle by a fixed
observer.

What the observer sees is governed by the outgoing radial null geodesics
issuing from the falling particle. For such a geodesic, equation (4.38) gives

(1 —2m/r)i? — (1 = 2m/r)" 2 = 0,

80
dr/dt = c(l — 2m/r). (4.40)

Asr — 2m, dr/dt — 0 and an outgoing radial null geodesic is also asymptotic
to r = 2m in our r,t diagram. The outgoing null geodesics are therefore as
shown in Figure 4.9. If we follow these back from the eye of the fixed observer,
then we discover that he always sees the falling particle before it gets to
r = 2m, as we asserted above.
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Our present coordinate system is inadequate for discussing what happens
at and beyond r = 2m, so care should be exercised in interpreting diagrams
stich as Figure 4.9. When we discuss black holes in Section 4.8 we make usc of
another coordinate system that allows us to step over the threshold at r = 2m,
and to give an improved version of Figure 4.9.

Exercises 4.4

1. Obtain the second and third of equations (4.20) (i.e., for 4 = 1 and 2),
and hence show that 8 = 7/2 satisfies the third equation, and that with
= /2 the second reduces to cquation (4.21).

2. Check equation (4.25) for timelike geodesics, and the corresponding cqua-
tion (4.39) for null geodesics.

3. An observer stationed where r = ry watches a light signal emitted from a
point where r = ry. Tt travels radially inwards and is reflected by a fixed
mirror at » = rg, so that it travels back to its point of origin at » = ry.
How long does the round-trip take according to the ohserver at r = ry?
(Assume that 2m <y <71 < 75.)

4.5 Perihelion advance

For a particle moving in the equatorial plane under the Newtonian gravi-
tational attraction of a spherical ohject of mass M situated at the origin,
classical angular momentum and energy considerations lead to the cquation

(du/de)? + u® = E + 2GMu/h?, (4.41)

where 4 = 1/r, E is a constant related to the energy of the orbit, and A is the
angular momentum per unit mass given by r?d¢/dt = h (see Problem 4.6).
The solution of this equation is well known from mechanics as

u=(GM/h)[1 + ceos(¢ — )], (4.42)

where ¢y is a constant of integration, and e? = 1+ ER*/G?M?. Equation (4.42)
is that of a conic section with eccentricity e.

The general-relativistic analogue of equation (4.41) is equation {4.25), and
we expect the extra term (equal to 2GMu?/c?) to perturb the Newtonian
orbit in some way. If we take the Schwarzschild solution as a model for the
solar system, treating the planets as particles, then this extra term makes its
presence felt by an advance of the perihelion (i.e., the point of closest approach
to the Sun) in each circuit of a planet about the Sun. In deriving this result
we make use of an argument duc to Meller.®

8See, Molier, 1972, §12.2.
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Aphelion and perihelion occur where du/d¢ = 0, that is, at values of u
satisfying

2GM , 5, 2GM

2 u’ —u” + %

This is a cubic equation with three roots, u;, uy, us say. Suppose that u; gives

the aphelion and us the perihelion, so #; < © < ug. Let us introduce a new

variable 1 = u/ug, where uy = (u1 +uy)/2. This enables us to write the cubic

equation above as

u+ k=0

s o 2GM_E
£’ —ul + u+— =0
h2ug uj

where ¢ = 2GMug/c?. The quantity € and the variable @ are dimensionless,
and for planetary orbits in the solar system ¢ is extremely small (about 5.1 X
10~% for Mercury and 2 x 10~® for the Earth). We shall therefore work to first
order in ¢, neglecting its square and higher powers.”

The three roots of the cubic in @ are 4y = wy /ug, @2 = ug/ug, and 4z =
uz/ug. The equation (4.23) is cquivalent to

(da/dg)? = e(u — uy) (o ~ ) (uz — u), (4.43)
on writing the cubic expression in terms of its factors. But
ez =1 —elug +a) =1— 2,
since the sum of the roots!0 is 1/¢ and 4, -+ @ = 2, giving
(du/de)? = (u - ay)(uz — a)(1 — =(2+ @)

So to first order in ¢,

(2+a)
U9

(i — )"/

Putting 8 = §(#z — %) allows us to write the above as

o 1+35¢
du [(ﬁ 1)

do  je(i—1)+1+ 3¢
@ P @

This form for d¢/du allows us to integrate it to find the angle A¢ between an
apbelion and the next perihelion. Using A¢ = j;f (do/du)da, we get

9The intention here is to make clear whal is small and what is not by using
dimensionless quantities and variables that do not depend on the units used. The
constant uo is taken as a characteristic value for v and is used to define the variable
@, whose value for nearly circular orbits is then not too different from unity. We are
effectively scaling u, so that the problem is formulated in a dimensionless way. (The
angular variable ¢ is already dimensionless.) See, for example Logan, 1987, §1.3.

PIf o(z—z1)(z—x2)(x —23) = az®+bz +cx+d, then expanding the left-hand side
and comparing coefficients of x? gives —afz, +z2 +x3) = b. 50 T1 + 22 + 13 = —b/a.
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Ap=|—3e (5% - (u- 1)2)1/2 + (1 + 2&) arcsin ﬂ/; 1}

(731

(43 (4.44)

Doubling A¢ gives the angle between successive perihelions, and shows that
in each cirenit this is advanced by

3GM IGM 1 1
e = 1 71-(ul +ug) = Ly , (4.45)
c? c2 L To

where r{ and ry are the values of » at aphelion and perihelion.

Although the quantity {4.45) is incredibly small, the cffect is cumnulative,
and eventually becomes susceptible to observation. It is greatest for the planet
Mercury, which is the one closest to the Sun, and amounts to 43" per century.
There is excellent agreement between the theoretical and observed values,
but the comparison is not as straightforward as it might seem. In deriving the
quantity (4.45) we assumed that planets behaved like particles, and ignored
their gravitational influence on cach other. In fact this influence cannot be ig-
nored, and the effect of the other planets on Mereury causes a perturbation of
its orbit. However, after taking this into account (using Newtonian methods)
there remains an anomalous advance of the perihelion not explicable in New-
tonian terms, and it is this which is accounted for by general relativity. The
predicted advances for Mercury, Venus, and Earth, together with the observed
anomalous advances, are given in the Introduction.

Although we are here discussing tiny effects in our solar system, it is
interesting to note that between 1975 and 1989 the eccentric orbit of the
famous neutron-star pair'’ PSR 1913416 has been observed to advance over
60°. Howcever, as mentioned in the Introduction, our analysis above does not
treat the motion of two massive stars, and so the results cannot be carried
over without modification. Another binary pulsar, PSR, 1855409, is also being
studied for large general-relativistic effects.

Exercise 4.5
1. Check the calculations leading to the result (4.44).

-4.6 Bending of light

We have already noted that a massive object can have a considerable effecl on
light: photons can orbit at » = 3m. However, we do not expect to be able to
observe this extreme effect in nature, principally because we do not expecet to

UThe pulsar was discovered in 1975 by Hulse and Taylor. See Hulse and Taylor,
1975, and Weisberg and Taylor, 1984.
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find many objects with rg < 3m. More modest deflections of light passing a
massive object can be observed, and in this section we give the theory behind
the observations.

The path of a photon travelling in the equatorial plane is given hy equa-
tion (4.39). With M turned right down to zero, this becomes

(dujdg)? +u* = F, (4.46)
a particular solution of which is
1w =1ugsing or ry =rsing, (4.47)

where u} = 1/r2 = F. This solution represents the straight-line path taken
by a photon originating {rom infinity in the direction ¢ = 0, and going off to
infinity in the direction ¢ = x. The point on the path nearcst to the origin O
is at a distance rg from it, and is given by ¢ = /2 (see Fig. 4.10). On turning
M up, we expect this path to be modified in some way.

Turning M up means replacing equation (4.46) by equation (4.39). Tak-
ing a similar approach to that in the previous section, let us introduce the
dimensionless variable u = u/ug, where (as in the case where M = 0) v is
the value of u at the point of closest approach, and set ¢ = 2G Muy/c?. In
many situations, ¢ is extremely small, in particular that of a photon from a
distant star reaching the Earth after grazing the Sun, for which the value is
about 4.2 x 1078, As in the previous section, we shall work to first order in e
and neglect its square and higher powers.

We can now write equation (4.39) in the equivalent form

- 2
(j—;) +a? = EZ + e, (4.48)

Ug

At the point of closest approach, di/d¢ =0 and @ =1, so F/u =1 —¢ and
equation {4.48) becomes

$ = n/2
Path of photon
o

$b=mn \9/ $=0

Fig. 4.10. Photon path in the cquatorial plane of flat spacetime (M = 0).
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(du/dp)? + 4% = 1 — ¢ + eu®. (4.49)

This equation should have a solution close to @ = sin ¢, which is the form the
flat-spacetime solution (4.47) takes when expressed in terms of %. Let this be

4= sin¢ + ev,

where v is some function of ¢ to be determincd. Substitution in equa-
tion (4.49}, and working to first order in €, gives

2(dv/dp) cos ¢ + 2vsin ¢ = sin® ¢ — 1,
which can be rewritten as
d{vsec)/dp = %(sec $tan ¢ — sin ¢ — sec? @)
after some manipulation. Integrating gives
V= %(1 + cos?  — sin @) + Acos @,

where A is a constant of integration. Let us fix A by requiring that the photon
originates from infinity in the direction ¢ = 0, as in the flat-spacetime case.
Then v =0 when ¢ =0, s0 A = —1, and

= (1— 3&)sing + Le(1 — cos ¢)? (4.50)

is the equation of the path of the photon, to first order in ¢.

$=(n+ a)2

\ r=ry
Body of
é: 0

Fig. 4.11. Phoion path in the equatorial plane of a massive body (M > 0).

We no longer expect the photon to go off to infinity in the direction ,
but in a direction 7 + e, where ¢ is small. Putting 2 = 0 and ¢ = 7 + ¢« in
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equation (4.50), and ignoring squares and higher powers of «, and also ¢a,
gives
0=—a+ 2

so o = 2z. (We have used sin{m + &) = -« and cos(r + ) = —1.} So in its
flight past the massive object the photon is deflected through an angle

o = 2 = AGM[rec? (4.51)

(see Fig. 4.11).

The deflection increases as the impact parameter vy decreases. In the case
of light passing through the gravitational field of the Sun, the smallest that
rg can be is its value at the Sun’s surface. If we take for rq the accepted
value of the Sun’s radius (a good enough approximation'?), then the formula
(4.51) gives a value of 1.75" for the total deflection of light originating and
terminating at infinity.’®

This theorctical result has been checked by observation, but the exper-
iment is a difficult one. One method involves photographing the star field
around the Sun during a total eclipse, and comparing the photograph with
one of the same star field taken six months later. The problems facing exper-
imenters include

(a) the marked change in conditions which occur when bright sunlight changes
to the semidarkness of an eclipse;

{(b) the time lapse of six months, which makes it difficult to reproduce similar
conditions when taking the comparison photograph;

(c) the smallness of the effect, which pushes photography to its limits.

Another method involves the measurement of the relative positions of two
radio sources (by interferometric means) as one of them passes behind the
Sun.'* Some detailed figures are given in the Introduction.

4.7 Geodesic effect

If in flat spacetime a spacelike vector A is transported along a timelike
geodesic without changing its spatial orientation, then, in Cartesian coordi-
nates, it satisfies d\*/dr = 0, where 7 is the proper time along the geodesic.
That is, A* is parallelly transported through spacetime along the geodesic.
(Since DA#/d7 = dM*/dr when Cartesian coordinates arc used.) Morcover,
if at some point A is orthogonal to the tangent vector @* = dx#/d7 to the

2 Although o is a coordinate value, the circumference of the Sun’s disk is 277,
which is measured by optical mcans.

31n 1911, prior to general relativity, Einstcin predicted a deflection equal to half
this amount. See Hoffiman, 1972, Chap. 8, for history, and Kilmister, 1973, Extract 3,
for a transiation of Einstein’s paper.

18ee, for example, Riley, 1973, where referonces for other experiments are given.
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geodesic, then 7, A*3” = 0, and this relationship is preserved under parallel
transport. This orthogonality condition simply means that A* has no tempo-
ral component in an instantaneous rest frame of an ohserver traveling along
the geodesic. The corresponding criteria for transporting a spacelike vector
A in this fashion in the curved spacetime of general relativity are, therefore,

AN /dr + TH X327 =0 (4.52)

and
Gu A3 =0, (4.53)

where 7 = dz* /dr.

The geodesic effect (sometimes termed the geodelic effect) is a consequence
of the fact that if a spacelike vector is transported without rotation along a
geodesic corresponding to a circular orbit of the Schwarzschild solution, then
on its return to the same point in space, after completing one revolution, its
spatial orientation has changed. To see this, we must integrate the system of
equations (4.52) using expressions for I'f and &7 corresponding to a circular
orbit, which without loss of generality we may take to be in the equatorial
plane.

For such an orbit #! = 42 = 0, and most of the I'lY are zero. Making use
of the results of Problem 2.7 (with # = 7/2), we see that equations (4.52)
reduce to

dA?Jdr + A0 =0, (4.54)

dAYdr + T3 A 30 + Tz X338 = 0, (4.35)
dN?/dT =0, (4.56)

dA?jdr + I Ae? =0, (4.57)

where

. m om\ me? 2m

Floo:3<1—”".—> : Féoz—.z'(l——.)’
2,

F333:“7‘(1——m>u i

Let us put &* = (a,0,0, 2a), where ¢ = { and 2 = dg/dt, so that 2 is the
angular coordinate speed around the circular orbit. Equations (4.35), (4.36),
and (4.31) show that

1/2 1/2
r m
a= (T3m) and .QZL(T—B)

on assuming that ¢ increases with ¢. Both ¢ and (2 are vonstants. The orthog-
onality condition (4.53) reduces to
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A1 = 2m/rA0 — 22337 = 0,
and allows us to cxpress AU in terms of A3
AV = [02r? /(1 — 2m/r)] A%,

A short calenlation then shows that equation (4.54) is equivalent to equa-
tion (4.57), and the system of equations (4.54)—(4.57) reduces to

dA\Vdr — (r02/a)\* =0,
dA2dr =0, (4.58)
dX[dr + (af2/r)A = 0.

The general solution of thesc is

A= (A/a) cos(gy — 27),
A =B, (4.59)
A% = (A/r)sin{¢g — 271),

where A, B, and ¢p are constants of integration. This shows that the spatial
part A of A¥ = (A% A) rotates relative to the radial direction with angular
proper speed (2 in the negative ¢ direction. However, the radial direction itself
rotates with angular coordinate speed £2 in the positive ¢ direction, and it, is
the difference between angular proper speed and angular coordinate speed
which gives risc to the geodesic cffect.

Radial
direction

Massive

object + Initial direction of 1

Final direction of 1

Fig. 4.12. Geodesic effect. Here the initial direction (¢ = 7 = 0) is radial.

If we take the initial dircction of A to be radial (B = ¢ = 0 in equa-
tion (4.59)), and choose the origin of ¢ so that ¢ = 0 when 7 = 0, then the
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sitnation is indicated in Figure 4.12. One revolution is completed in a coor-
dinate time of 27/f2, and hence, from equation (4.37), in a proper time of

1/2
a3 ! 2
<{ 3m> Eﬂ The final direction of X is therefore 27 — o, where
-

a=2r|1-(1 -3m/7‘)1/2} .

So a = 3rm/r for small m/r.

The axis of an orbiting gyroscope furnishes us with a spacelike vector which
is transported without rotation, so the geodesic effect is, perhaps, susceptible
to observation by means of gyroscopes in orbiting satellites.!® The smaller
the value of r, the greater is the effect; though small, the effect is cumulative,
and for a satellite in near-Earth orbit amounts to about 8" per year, which
should be measurable. An experiment involving a terrestrial satellite in a low
circular orbit was planned for the Space Shuttle in 1993-34, but was delayed.
The experiment was finally launched in April 2004, where four ping-pong-
ball-sized spheres, spinning at 10,000rpm, and using the binary star LM.
Pegasus as a reference, were put into polar orbit at a height of about 400
miles above the Earth’s surface. The experiment, called Gravity Probe B, will
measure both geodesic precession as well as the much smaller (and mutually
perpendicular) Lense-Thirring effect of Section 4.10.

Exercise 4.7

1. What does the geodesic effect amount to for the axis of the Earth in its
orbit round the Sun?
(Take Mg =2 x 10%kg, r = 1.5 x 10'1 m,
G =667 x10"""Nm?kg™? and ¢ = 3 x 108ms™'))

4.8 Black holes

So far, our discussion of the Schwarzschild solution has been in terms of the
coordinates (¢, 7,8, ), and we pointed out in Section 4.0 that the lower bound
on r was cither its value rg at the boundary of the object, or 2m (= 2GM /%),
depending on which is reached first as r decreases. If 2m is reached first, we
have a black hole, and this is the situation prevailing in this section. For an
object of mass M, 2GM/c¢? is known as its Schwarzschild radius.

In the limit as rp — 2m, the spectral-shift formula (4.15) produces an
infinite redshift. A particle falling radially inwards appears to continue beyond
the threshold at r =: 2m, although, as we have seen, an observer viewing its fall
always sees it before it passes the threshold. These two observations suggest

15Gee the paper by Everitt, Fairbank, and Hamilton in Carmeli et al., 1970,
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that some odd things happen at r = 2rn. However, the coordinates (¢, 7,0, ¢)
are inadequate for discussing what happens at r = 2m and beyond. so we
introduce new coordinates which are valid for r < 2m.

Let us keep 7, 8, ¢, but replace t by

v=ct+r+2mln{r/2m—1). (4.60)

A short calculation (see Exercise 4.8.1) shows that in terms of v, r, 8, ¢ the
line element is

Gdr® = (1 - 2m/r)dv® — 2dvdr — r2d8* — r*sin®6 do*. (4.61)

These new coordinates are Eddington-Finkelstein coordinates. They are valid
for all v, for all 7 > rpg, even if rp < 2m (because none of the metric tensor
components becomes infinite), and take us over the threshold at r = 2m.

From the line element (4.61), we see that radial null geadesics (dr = 0)
are given by )
2m\ [ dv\* dv
1-— )| — | —2—=0,
( r > (d?‘) dr '
that is, by
dv/dr =0 (4.62)
or
dv/dr = 2/(1 — 2m/r). (4.63)

Differentiation of equation (4.60) gives

dv  dt N 1
& ‘a1 2m/r’

so dv/dr = 0 implies that cdt/dr = —1/(1 — Zm/r), which is ncgative for
r > 2m, while dv/dr = 2/(1 - 2m/7) gives edt/dr = 1/(1 — 2m/r), which is
positive for r > 2m. We therefore infer that equation (1.62) gives the ingoing
null geodesics, while equation {4.63) gives the outgoing ones. at least in the
region r > 2m.

Integration of equation (1.62) gives

v=A, A= constant, (4.64)
while integration of equation (4.63) gives
v=2r+4mlnjr — 2m|+ B, B = constant. (4.65)

Figure 4.13 shows a v, r diagram of radial null geodesics. [n drawing this di-
agram we have used oblique axes, so that the ingoing null geodesics given
by » = A are inclined at 45°, jusi as they would appear in a flat spacetime
diagram. We have also imagined the whole mass of the object to be concen-
trated at » = 0, and taken the ingoing null geodesics right down to r = 0. The
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BN

v

= = r=r
r=0 r=2m World Qutside
line of observer
falling
particle

Fig. 4.13. LEddington-Finkclstein picture of ingeing and outgoing null geodcsics.

outward equation (4.65) shows that v — —oo as r — 2m, so the outgoing null
geodesics are asymptotic to » = 2m, as shown in the figure.

It may be scen from the figurc that a photon starting where » > 2m can
travel inwards, cross the threshold at » = 2m, and carry on inwards, but that
a photon starting wherc r < 2 docs not travel outwards. It is confined to the
region 7 < 2m. Thus if a massive object had rp < 2m, light could not escape
from it to the region 7 > 2m. An ouiside observer could detect its presence
through its gravitational fleld, but he could not see it, and it is for this reason
that such an object is called black hole. Another way of describing the effect
of a black hole on light propagation is that it causes the null cones in the
tangent spaces to tilt over, and we have drawn small null cones in the figure
illustrating this. The possible existence of objects from which light cannot
escape was considered as early as 1798 by Laplace.*®

In classical physics the escape velocity for a particle from a star of mass M
and radius 7 is (2GM/r)Y/2. Assigning a light corpuscle the escape velocity ¢ yvields
r = 2GM/ ¢?, which is also the Schwarzschild result. See Hawking and Ellis, 1973,
Appendix A, for a translation of Laplace’s essay.



4.8 Black holes 155

Since we have not changed the coordinate r, the integral (4.29), which
gives the proper time for a particle to fall inwards from rest at » = ry re-
mains the same, but we now see that it is valid for r < 2m. This integral
may be evaluated (see Exercise 4.8.2), and remains finite as its lower limit
tends to zero. For example, if 7o = 4m, then the time taken to fall to r = 2m
is v2m(m + 2)/c, while that taken to fall to » = 0 is 2v/2mw/c (see Exer-
cise 4.8.3). The world line of a falling particle is also shown in Figure 4.13,
and this results in an improved version of Figure 4.9.

Thus if Alice were to fall radially down a black hole (rather than a rabbit
hole) clutching a clock and a lantern, then she would complete her fall within
a finite time on her clock. However, an outside observer would never see her
pass bevond r = 2m, but she would effectively disappear from view as the
light from her lantern became became increasingly redshifted. Once beyond
r = 2m she could no longer signal to the outside chserver, nor could she return
to tell of her experiences.

The above considerations show that an outside observer cannot see events
which occur inside the sphere 7 = 2m, and for this reason the sphere, or rather
the hypersurface in spacetime which is its time development, is called an event
horizon.

Our discussion of the properties of a black hole would be largely academic,
unless there were reasons for believing that they might exist in nature. The
possibility of their existence arises from the idea of gravitational collapse. If
one imagined a very massive object accreting more matter by gravitational
attraction, then a stage would be reached where the mutual gravitational at-
traction between the constituent particles was so great that the internal repul-
sive forces between them could no longer hold them apart. The whole object
would collapsc in on itsclf: nothing could stop this collapse, and the result
would be a black hole. Quite general arguments (not based on the spherically
symmetric solution of Schwarzschild) exist to show that a collapsing object
leads to a singularity in spacetime.'” If the collapse is spherically symmet-
rie, then the singularity which is the eventual destination of the collapsing
material is given by » = () in the Schwarzschild solution.

If one assumes that the general features of a collapsing object are not too
far removed from those that prevail in the spherically symmetric case, then
one would expect the emergence of an event horizon which would shield the
object in its collapsed state from view (see Fig. 4.14). An outside observer
would see the object to be always outside the event horizon. However, it
would effectively disappear from view becanse of the increasing redshift, and
a black hole in space would be the result.'® At least two possible candidates

17Gee, for example, Misner, Thorne, and Wheeler, 1973, §34.6.
181t would take an infinite time to disappear. If black holes do exist, then this is
an argument that they must have been “put in” at the beginning.
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Fig. 4.14. Spacetime diagram of gravitational collapse.

for black holes have been “observed,” which include the corupact X-ray source
Cygnus X-1 and the nucleus of the radio galaxy M87.19

Exercises 4.8

1.

Verify the form (4.61) of the line element in Eddington-Finkelstein coor-
dinates.

By making the substitution 7 = rgsin® 4, show that the value of the
integral (4.29), giving the proper time to fall radially from rest at r = rg,

is
7(rg,7) TS/Q T _ aresin { — v (L v 1- 7~ v
=———— |- —arcsin{ — — - — .
0 e(2m)l/2 | 2 o 0 o

. Using the result of Exercise 4.8.2, show that 7(4m, 2m) = 2m(r + 2)/c,

and that 7{4m,r) = Zﬂmﬂ/c asr — 0.

. Why can Alice not return to the outside world (r > 2m) after falling down

the black hole?

9Gee Thorne, 1974, and Young et al., 1978.
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4.9 Other coordinate systems

The description of spacetime near a spherically symmetric massive object
need not be in terms of the standard Schwarzschild coordinates and their
corresponding line element. We have already seen the usefulness of Eddington—
Finkelstein coordinates in discussing what happens beyond the event horizon
at = 2m.

Another example is provided by isotropic coordinates defined in Prob-
lem 3.7. Here the standard coordinate r is replaced by p, defined by

r=p(1+m/20), (1.66)
and simple substitution gives the line element,

2dr? = (1 — m/2p)* (1 + m/2p) " 2dt?

o 4.67

— (14 m/2p) (dp® + p*df? + p* sin’® 0 dp?). (4.67)
These coordinates are employed in compiling the relativistic astronomical ta-
bles for the solar svstem used extensively throughout the world. We see that
the line element has the form

c?dr? = A(p)dt* + B(p)da®,

where do? is the line clement of fiat space in spherical coordinates p, 6, ¢.

The particular advantage of the isotropic line element is that do? is in-
variant under changes of flat-space coordinates, and p, 8, ¢ may therefore be
replaced by any other flat-space coordinates we care to use. For example, il
Cartesian coordinates z, y, z {(defined in terms of p, 8. ¢ in the usual way)
are used as spatial coordinates, then

do? = dr? + dy® + d2°

and
cldr® = A(p)dt® + Blp) (dz® + dy* + d2?) ,

where p occurring in A(p) and B{p) is given by p* = 2 + y? + 2°.

Our previous results could be formulated in terms of isotropic coordinates,
but the corresponding expressions are usually more complicated. For example,
corresponding to equation (4.40) we would have

dp/dt = (1 —m/2p)/(1 +m/[2p)°. (4.68)

Kruskal (or Kruskal Szekeres) coordinates are, like Eddington Finkelstein
coordinates, particularly useful for discussing what happens both sides of the
event horizon. The r» and ¢ of the standard Schwarzschild coordinates are
replaced by
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u = (r/2m — 1)Y/2e"/*" cosh(ct/4m),
v = (r/2m — 1)/2"/“™ sinh(ct /4m).

This leads to the line element
c2dr? = —(32m3/r)e ™"/ (du? — dv?) — r(df? + sin? 0 d¢?), (4.69)
where 7 is defined implicitly by
u? —v? = (r/2m — 1)’/ ™,

The particular advantage of these coordinates is that radial null geodesics are
given by u + v = constant, and are thus straight lines with 45° slopes when
drawn in a u,v diagram, just as in the flat spacetime of special relativity.

We have seen in this chapter the effects on particles in a spacetime which
is not flat. Note that no amount of coordinate transformation from one system
to another can change the curvature of the spacetime. (The test. for curvature
is given in Sec. 3.2.) Another way of saying this is that we cannot transform
away gravity just by turning to another coordinate system, except of course
locally, but then only approximately. Globally, we cannot transform away
gravity at all.

Exercise 4.9

1. Verify the form (4.69) for the line element in Kruskal coordinates.

4.10 Rotating objects; the Kerr solution®

In general, stars and planets spin on their axes. A Foucault pendulum at our
North pole swings in a plane while the Earth spins underneath. An observer
at the North Pole notices that axes marked on the snow certainly do not
represent an inertial frame; rather, the pendulum dictates things, swinging
in a plane which is apparently at rest with respect to the remainder of the
universe.

In the seventeenth century, Newton, pondering what determined an inertial
frame for his law of inertia, had asked {in essence) what would happen to the
surface of water in a rotating bucket if the rest of the universe were not there?!,

In the nineteenth century the philosopher—physicist Ernst Mach, as well
as Lense and Thirring in 1918,%? had wondered whether ponderous moving
masses in general might influence test particles, and in particular whether it
would be possible to affect the plane of swing of a pendulum by placing it,

20This section may be omitted without loss of continuity.
2'Discussed in, for example, Weinberg, 1972, §1.3.
#28ee Thirring and Lense, 1918.
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for example, inside a very massive rotating cylinder. So the general question
arises: does a massive spinning body have any sort of effect on inertial frames?

It turns out that it does. In the early 1960s R.P. Kerr found another ex-
act solution® to the empty-spacetime Einstein field equations (3.40);%4 it is a
generalization of the Schwarzschild solution and is now accepted as represent-
ing the gravitational fleld external to a rotating object in an otherwise empty
spacetime. In Boyer-Lindquist coordinates,? in which #, r, 8, ¢ play a similar
role to their counterparts in the standard form of the Scliwarzschild solution,
the line element has the form

2ar? - (1 2inr 2d 1 dmerasin? § dtdo - Pj 0
p* p? A

2mra®sin® @ (4.70)
— pPde? ((7‘2 +a?)sin® 4 + —pz_> dé?,
where
A=r?4a® - 2mr {4.71)
and
p? =1 +a’cos? 8. (4.72)

It can be seen that if ¢ = 0, the solution reduces to that obtained by
Schwarzschild, which suggests that m = GM/c*, where M is the mass of the
object. This claim can be further justified by comparing the 06-component of
the weak-field approximation with the Newtonian potential, as in the Schwarz-
schild case. Arguments exist to justify the claim that the other constant «,
which has the dimensions of length, is related to the object’s angular momen-
tum per unit. mass. One of these is based on a compatison of the Kerr solution
with the approximaic solution obtained by Lense and Thirring for a rotating
sphere of constant, density in the weak-field limit. The conclusion is that

a—=J/Me, (4.73)

where J is the angular momentum of the rotating source.

However, as regards actually measuring things, it should be borne in mind
that we can only infer the actual mass of a body such as the Sun or the Larth
from planetary or satellite data; and we cannot directly measure the angular
momentum of such bodies at all, becanse we are always hampered by a lack
of data concerning interior velocity profiles.

23The derivation of this solution uses techniques that are beyond the scope of this
introductory text. Sec Kerr, 1963.

24 Anyone considering checking that the solution satisfies the empty-spacetime
field equations is warned that it requires an extrenely loug calculation. The symbolic
computing system Maple coupled with the package GRTensorll makes short work
of the job. For details visit http://grtensor.phy.queensu.ca/.

25%ee Boyer and Lindquist, 1967.
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The value astronomers give for the Sun’s mass is 2 x 10°0 kg, and the
angular momentum of the Sun is thought to be about 1.6 x 104! kgm?s~'. So
for the Sun a ~ 267 m—considerably smaller than the Sun’s radins. Estimates
for J for the Earth indicatc a rough value for ¢ of about 1.

From the equation giving the line clement we get

i (1 _ 2727’) 20 0 Q'rnc1"(1,25,ir12 9 T

p p
o
0 X ) 0
[g;u/} =
0 0 —p? 0
2777,(27"(12sir12 6 0 o — ( (12 + o) sin? 6 2mra2251n4 9)
I p p

(4.74)

for the components of the metric tensor, from which we can deduce that the
contravariant components are given by (see Exercise 3)

[ 2,2 2mra” sin” 4 0 2mira
— 4+ + ————— ,
A P2 cptA
0 - 0 0
"] = g
0 0 —— 0
2mra (1 —2mr/p?)
A 0 e
| ep? A Asin“ 8 |

(4.75)

Symmetries of the Kerr solution. The components of the metric ten-
sor do not depend on ¢ and ¢, which means that the Kerr solution is both
stationary and azially symmetric. These symmetries can also be expressed
by saying that the metric tensor is invariant under either of the coordinate
transformations:

(a) t' =t + const, », f, ¢ unchanged;
(b} ¢ = ¢+ const, ¢, r, § unchanged.

It is also invariant under the transformation:
(c} ¥ =—t, ¢ = —¢, r, § unchanged,
but not under either of the following

(d) ¢ t, r, 8, ¢ unchanged;
(e) ¢ = —¢, ¢, r, § unchanged.

in which only one of ¢ and ¢ change sign.
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This kind of behavior is characteristic of a spinning object. If we change the
direction of time, or measure the angle of rotation in the opposite direction,
then we expect some quantities to change sign. However, if we do both, then
(for a steadily rotating object) things should remain the same, since running
events backwards in time gives a rotation in the opposite dircction.

We can use the fact that the metric tensor is independent of ¢ to establish
the phenomenon generally known as the dragging of inertial frames, discussed
below.

Dragging of inertial frames. In the language of Section 2.1, ¢ is a cyclic
coordinate, so for a test particle following a timelike geodesic

or
— = const,
where
2mr\ o, dmerasin®é .. %, 5.,
L:(l———2)6t+Tt¢_Z _[)0
- ((7'2 +a*)sin? 6 + M) @2,
' p

and dots dencte differentiation with respect to proper time 7. This gives

Yncrasin’® 6 2mra®sin® 0 .
——Mra:m t—2 ((7‘2 +a®)sin? 0 + mra sn v :m ) ¢ = const, (4.76)
p p

which is the generalization of equation (4.23) of the Schwarzschild solution.
Putting # = 7/2 and a = 0 recovers equation {4.23).

Suppose now we have the cage of a particle moving such that the constant
in cquation (4.76) is zero. For such a particle ¢ — 0 as 7 — o0, s0 in the infinite
distance it has no azimuthal velocity, but as it approaches the rotating object
(i.e., for finite r) we see that

do _ 9 - ’ ?mcm N (4.77)
at ¢ (r? 4+ a?)p? + 2mra®sin© 6

In the Schwarzschild case, we would have do/dt = 0, but here we have the
non-zero result above. Thus a particle in free-fall gets swept along sideways by
the rotating object. We say that the inertial frames are being dragged around
by the rotating object. Mach would have been pleased by this discovery.?8
Although the Kerr solution describes spacetime exterior to the rotating
source, rather than interior to it, we now see that general relativity does
indeed predict an effect not unlike the dragging of air close to a spinning ball.

26See Mach, 1893; also Weinberg, 1972, p.16.
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In April 2004, after years of delay, four perfectly spherical gyroscope balls
were finally sent into polar (Earth) orbit to begin measuring both the geodesic
effect (see the remarks at the end of Section 4.7) as well as the much smaller
Kerr frame-dragging.?” (See Fig. 4.15.)

e TT—
Gyroscape V
/ N
i /eanh \

initial

.

-

Fig. 4.15. Deviation, due to frame-dragging only, of a gyroscope orbiting the earth.

Some idea of how minuscule the Kerr effect is for motion near the surface
of the Earth can be got from the following observations. Outside the Earth,
m <€ r,0 < r, and t & 7,80 equation (4.77) gives us the approximate equation

d_qﬁ _ 2mca
dr — r3

for estimating the rate of drag. Evaluating this using typical values of 2m =
889x 1073 m, c =3 x108ms™!, a = 1m, and (for a satellite 100 miles above
the Earth) r = 7.04 x 10°m gives a value of 7.64 x 10~""rad s~! for d¢/dr.
This is equivalent to 2.41 x 1077 radians, or 49.7 milliseconds of arc per vear.

Event horizons and stationary-limit surfaces. [n our discussion of
black holes in Section 4.8, we noted two properties of the spherical surface
given by r = 2m. One was that as the radial coordinate rp of an emitter
approached 2m, the redshift of the radiation became infinitely large; in short,
the surface is a surface of infinite redshift. The other was the iinpossibility of

27 A twenty-five-page description of the 2004 Stanford Gravity Probe B experiment
may be found at http://einstein.stanford.edu.
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an external observer seeing cvents that occur inside the surface » = 2m; that
is, the surface is an event horizon. We shall see that [or the Kerr solution (with
a # 0) things are a little different, in that there can be two ¢vent horizons and
two surfaces of infinite redshift. Moreover, the event horizons do not coincide
with the surfaces of infinite redshift.

Whalt characterizes an event horizon is that photons originating on or
inside it will never reach an outside observer, while photons originating outside
it will eventually do so. For photons, we have (on omitting metric components
that are zcro)

(= goo dtQ - 2903 dt dfb + g11 d7'2 + g22 d92 -+ gsa d(/)2, (478)
from which we get

ar\? A do\? dé de
(E) :—2 900+g22(1t> +ggs<df) + 2903 — pn (4.79)

The expression on the right will approach zero as A — 0, no matter what the
value ol the square-bracketed term is. That is, the radial coordinate velocity
dr/dt will tend towards zero the closer a photon gets to the surface given
by A = 0, no matter how it is moving. Hence we conclude thai in the Kerr
solution event horizons are given by A = 0. This yields the following quadratic
equation in r:

2o 2mr +a? = 0. (4.80)

Provided m? > a2, this has the two solutions

r=mEym?—a2 or r=m(lx1-a2/m?), (4.81)

giving two event horizons II.. We see that as a — 0. the surface Hy tends
towards the cvent horizon r = 2m of the Schwarzschild solution, while the
surface H_ shrinks towards the point given by » = 0.

An argument like that in Section 4.3 gives
AR 1- (2"7&‘!'//)2);?
A 1=(2mr/p?E

for the wavelength generalization of equation (4.14), showing that the redshift
approaches infinity as emitters approach the surfaces given by

(4.82)

1—(2mr/p*) =0, ie, r*—2mr+acos*d=0.
Provided m? > a® we can again solve for r to get
r=m+ vVm?2—a?cos?8, (4.83)

and in this way we get two surfaces Sy of infinite redshift, different from
the cvent horizons. We see that as a — 0, the surface S, tends towards
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the infinite-redshift surface + = 2m of the Schwarzschild solution, while the
surface S_ shrinks towards the point. given by r = 0.

Consider now a photon which at some instant is traveling in the azimuthal
direction, so at that instant dr/dt = df/dt = 0. Equation (4.79) then gives

A dp\* de
0= 2 {900*’!333 (8?) +29038—t :

so, on solving for d¢/dt, we get

d¢/dt = (—903 + \/ 965 — gssﬂoo) /933 (4.84)

So if the photon is situated where gog = 0, then do/dt is either —2gg3/ ¢33,
or zero. The zero value corresponds to the case where the photon is traveling
against the spin and expcriences such a large dragging effect that it appears
to be unable to move azimuthally, while the non-zero value corresponds to
traveling with the spin. Since gog = 0 yields r* —2mr +a® cos® 6 = 0, this gives
an alternate characterization of the surfaces Sy as stationary-limit surfaces.

To get some idea of the relationship between the four surfaces Hy and Sy
we shall make usc of the Cartesian-like coordinates (i, y, z) used by Kerr?® to
obtain his solution. In terms of the coordinates (r, 6, ¢}, these are defined by

z = (r? + a®)?sinfcos(é + alr)),

Y= (r2 + QQ)V2 sin#sin(¢ + a(r)), (4.85)
z=rcosf,
where "
or a
a(r) = fl./oo A + arctan (;) .

When plotted in Euclidean space (using (z, v, ) as Cartesian coordinates)
the surfaces r = const are confocal ellipsoids, the surfaces § = const are
hyperboloids, and the surfaces ¢ = const are best described as distorted half-
ptanes. As a — 0, they become respectively the spheres, cones, and half-planes
of spherical coordinates, as described in Example 1.1.1. For » = 0, the ellipsoid
degenerates to the dise given by

2 + 4 < a? 2=0.
It can be shown (essentially by looking to see where the invariant quantity
Rvor I¥°7 becomes infinite) that the cdge of this disc is a singularity; as

a — 0, this ring singularity shrinks to the point singularity given by » = 0 in
the Schwarzschild solution.

ZUsually referred to as Kerr-Schild coordinates.
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Figure 4.16 serves to illustrate the relationship between the four surfaces
Hy and 5S4, and the ring singularity. The curves shown are cross-sections
through surfaces and the black dots represent the ring singularity; the full
three-dimensional picture is got by revolving these about the vertical axis,
Asa — 0, Hy and 5, both tend towards the event horizon r = 2m of the

« Ring singularity — >>e

Fig. 4.16. Cross-sections of the surfaces H+ and S+, and the ring singularity of
the Kerr solution. The shaded region represents the ergosphere.

Schwarzschild solution, while I{_, S_, and the ring singularity shrink to the
point given by r = 0. Because the surfaces H_ and S_ are inside the event
horizon H, they are not visible to an external observer. However, they are of
some theoretical interest and are discussed in more advanced texts.2?

Note that it would be possible for an external observer to see a particle
crossing (inwards or outwards) the stationary-limit surface S.. 1t is also pos-
sible to imagine a particle traveling inwards and, after crossing S.., decaying
into two particles, one of which falls into the rotating black hole, while the
other one escapes. More advanced texts show that the escaping particle can
emerge with more energy than the combination had before entering—energy
that has come from the angular momentum of the rotating object. Because
of this possibility, the region between the sphere Hy and the cllipsoid S is

29Gee, for example, Misner, Thorne and Wheeler (1973), or Ohanian and Ruffini

(1994).
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referred to as the ergoregion, or ergosphere (from the Greck epvov meaning
work, or energy).

The existence of the four surfaces H1 and S1 depends on having ? < m?.
If a® > m?, then these do not exist and the ring singularity is exposed to
view it is a naked singularity.®’ The case a? = m? is that of mazrimal rotation,
and its implications are left as an exercise. (See Exercise 6.)

We should end this section by noting that our discussion of event horizons
and stationary-limit surfaces is somewhat unsatisfactory. The reason is that
the Boyer Lindquist coordinate system is inadequate for a proper discussion
of these surfaces. It is adequate for discussing regions of spacetime away from
the surfaces, but as the surfaces are approached, at least one of the metric
tensor components tends to 0 or co. For this reason, any results should be
regarded as having been obtained by a limiting approach to the surfaces. For
a proper discussion one should work in a coordinate system analogous to the
Eddington-Finkelstein coordinates used to discuss Schwarzschild black holes
in Section 4.8.

Exercises 4.10

1. Show that with ¢ = 0 the Kerr line element reduces to the Schwarzschild
line element.

2. Check that the expression J/Me, as used in equation (4.73), has the di-

mensions of length.

3. Verify that the contravariant components g*¥ of the Kerr metric tensor
are as given by equation (4.75).

4. Check the claims made for the coordinate transformations (a)-(e} used o
exhibit the symmetries of the Kerr solution.

5. The transformation from the Boyer-Lindquist coordinates (r, 8, ¢) to the
Kerr-Schild coordinates (x,y, z) is often expressed as

x+1ty = (r+1ia)sinf expi(o+ fo'o(a/A) dr),

z=rcosh.
Show that these lead to the equations (4.85).

6. In a physically realistic situation, m is positive, but a can be positive,
negative, or zero. What happens to the surfaces H. and S as |a| — m?

80%ge, for example, Shapiro and Teukolsky, 1983, p. 358.
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Problems 4

10.

. We have referred to the surface in space given by ¢ = /2 as the equatorial

plane. Show that it is not flat.

A free particle of rest mass ;o just misses an observer fixed in space at
r = rp. Show that he assigns to it an encrgy E given by

E = p(1—2m/rg) %k,
where & is the integration constant ol equation (4.22). (Use Exercise 3.1.2.)

Deduce from the previous problem that “the energy at infinity” of a par-
ticle is pe?k, and hence that a particle can escape to infinity only if & > 1.

Show that the proper time for a photon to complete one revolution at
r = 3m, as measured by an observer stationed at » = 3m, is 6zm/c.
What orbital period does a very distant observer assign to the photon?

Show, by perturbing the geodesic in the equatorial plane, that the circular
orbit of a photon at » = 3m is unstahle.

. By considering the conservation of energy and angular momentum, show

that the path of a particle moving in the equatorial plane under a New-
tonian gravitational force due to a spherical object of mass M situated at
the origin is given by

(du/d$)* + u* = E + 2GMu/h?,

where u = 1/r, b is the angular momentum per unit mass, and ¥ is a
constant.

Find the Schwarzschild radius of a spherical object with the same mass
as that of the Earth.

(Take Mg =6 x 10% kg, G = 6.67 x 107! Nm? kg™,
c=3x10¥ms™1)

Suppose we have two spherical objects that are just black holes; that is,
for each rg is its Schwarzschild radius. If one has the same mass as the
Earth, and the other the same mass as the Sun, which has the greater
density?

(Take Mg =6 x 10% kg, Ma = 2 x 10" kg.)

What form do equations (4.5) and (4.6) take in isotropic coordinates?
(a) It is stated in some sources that for a gyroscope in a circular polar

orbit, 400 miles above the surface the Earth, the annual geodesic effect
amounts to about 6600 milliseconds of arc. Verify this number.
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(b) The Kerr effect is much smaller, being about 49.7 milliseconds of arc
per year. Explain why a polar orbit is used to detect the Kerr effect,
whereas any circular orbit could be used for the geodesic effect.

(¢) The reference star (HR 8703) for the Gravity Probe B experiment lies
in Pegasus, which is a constellation close to the celestial equator. For
the gyroscope in a polar orbit, but pointing instead to our North Star,
what would be the annual deviations of the geodesic and Kerr effects
respectively?

Take m = 4.445 x 1073 m, ¢ = 3 x 108 ms™!, and the radius of the Earth

to be 6.37 x 10° m.
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Gravitational radiation

5.0 Introduction

If we ask what characterizes radiation, our answers might include the trans-
mission of energy and information through space, or the existence of a wave
equation which some quantity satisfies. These aspects are, of course, related,
in that there is a characteristic speed of transmission which is determined
by the wave equation. In Newtonian gravitational theory energy (and infor-
mation) is transmitted via the gravitational field which is determined by the
gravitational potential V. In empty space V satisfies V2V = 0, which is not
a wave equation, but might be regarded as the limit of a wave equation in
which the characteristic speed of transmission tends to infinity. Put another
way, gravitational effects are, according to Newton’s theory, transmitted in-
stantaneously, which is thoroughly unsatisfactory from the relativistic point
of view. Moreover, with an infinite speed of transmission it is impossible to
associate a wavelength with a given frequency of oscillation.

Einstein’s theory, being a relativistic theory, does not suffer from these
defects, and as we shall see, it yields a wave equation for the propagation of
.gravitational disturbances with a characteristic speed equal to ¢. A discussion
of gravitational radiation using the exact field equations is virtually impos-
sible, because of their extreme nonlinearity (although considerable progress
has been made in this direction over the last 20 years), and we shall therefore
resort to a linearization of the equations appropriate for a weak gravitational
field. This leads to the emergence of a wave equation, and allows us to compare
gravitational with electromagnetic radiation.

Electromagnetic radiation is generated by accelerating charges, and by
analogy we expect accelerating masses to produce gravitational radiation. By
the same analogy, we might expect gravitational radiation to be predomi-
nantly dipole, but this is not the case. The mass dipole moment of a system
of particles is, by definition, the 3-vector
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d= Z mX,

all particles

where x is the position vector of a particle of mass m. Hence d is the total
momentum of the system, so d=0 by virtue of conservation of momentum,
and it is because of this that we get no dipole radiation. We shall see in
Section 5.3 that it is the second time derivative of the second moment of
the mass distribution of the source that produces the radiation, showing that
it is predominantly quadrupole.! This second moment is the tensor I with

components defined by
I = Z mata?,

all particles

which for a continuous distribution takes the form of a volume integral:
I9 = /pximjdV.

We make use of both these forms in our discussion of generation of radiation
in Section 5.3.

5.1 What wiggles?

As explained in the previous section, our approach to gravitational radiation
is via a linearization of Einstein’s theory appropriate for a weak field. This
means that over extensive regions of spacetime there exist nearly Cartesian
coordinate systems in which

Guv = M + hful!v (51)

where the h,, are small compared with unity, and such coordinate systems
will be used throughout this chapter. The rules of the “linearization game”
are as follows:

(a) hy, together with its first derivatives h,,, , and higher derivatives are
small, and all products of these are ignored;

(b) suffixes are raised and lowered using n*¥ and 7,,, rather than g** and
Juv-

The situation is like that of Section 3.6, but without the quasi-static condition.

As a consequence of (a) and (b), all quantities having the kernel letter h are

small, and products of them are ignored. The normal symbol for equality will

be used to indicate equality up to first order in small quantities, as well as

exact equality.

In the classical radiation field associated with a quantum-mechanical particle
of integral spin s, the 2s-pole radiation predominates. Hence gravitons (quadrupole)
should have spin 2, just as photons (dipole) have spin 1.
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With these preliminaries explained, we have (see Exercise 2.7.1) g** =
N — h* and

I, = % ﬁ(htfﬁ,v +hugo — huos) = %( y R, = huot), (5.2)

on putting n”ﬁhwﬂ = h,o'*. So the Ricel tensor is
R - F:oz v F/.?V a = %(h’,l“’ hg ma zva h#V’Qa)’ (53)

where h = hﬁ = n"*"hy,, and the curvature scalar is
R=g"R,, =n"R,, =h,* —h*? 44, (5.4)

on relabeling suffixes. The covariant form of the field equations (3.38) then
yields

how = by po = Po va + huve® = Mu(ho® = haﬁ,aﬁ) =2xT,,,
and this simplifies to
Rya® + (77;wh wf — }_L h;‘ va) = 26T}, (5.5)

on putting

P = P — L. (5.6)

A further simplification may be effected by means of a gauge transformation,
a concept which we now explain.
A gauge transformation is a small change of coordinates defined by

o =gt 4 e (z0), (5.7)

where the £ are of the same order of smallness as the h,,. Such a small
change of coordinates takes a nearly Cartesian coordinate system into one of
the same kind. The matrix element X/ = dz* /9z" is given by

XK =t ten,, (5.8)

and a straightforward calculation (see Exercise 5.1.3) shows that under a
gauge transformation

hu’r/' e ey g gl/wll’ (5.9)
h/ — h _ 25#11“ (510)
}‘lp’z/ — }_l;w _ éu,l/ _ gl’sll« + nlﬂ’ga’a. (5.11)

The inverse matrix element X/, = da#/ az” is given by

Xll _6# g#u

v
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(see Exercise 5.1.3), so that

!

R = T KB = R g8 B SR gk o (5.12)

)

on using equation (5.11) and simplifying.
If therefore we choose £* to be a solution of

EH &= hHe (5.13)

then we have ﬁ“/a',ar = 0. In the new coordinate system, each term in the
bracketed expression on the left of equation (5.5) is separately zero, and, on
dropping primes, the equation reduces to

hpv,a® = 25T, (5.14)
This simplified equation is valid whenever h*" satisfies the gauge condition

h#e , =0, (5.15)

)

and the above considerations show that we can always arrange for this to be
satisfied.

This simplification is an exact parallel of that introduced into electromag-
netism by adopting the Lorentz gauge condition (see Sec. A.8). The quantities
h#¥ correspond to the 4-potential A#, and the gauge condition (5.15) corre-
sponds to the Lorentz gauge condition A* , = 0 (see Exercise A.8.1). A gauge
transformation A, — A, — v , will preserve the Lorentz gauge condition if
and only if ¥ ,# = 0. Correspondingly, as equation (5.12) shows, a gauge
transformation (5.7) will preserve the gauge condition (5.15) if and only if

§a"=0. (5.16)
Let us introduce? the d’Alembertian (% defined by
02 = —1*0 0,03, (5.17)
so that
02 = 9%/0z% 4+ 0% /0y* + 0% /02% — ¢ 720% Jot* = V? — ¢ 20%/0t?,  (5.18)
on putting z° = ct, z' =z, 2 = y, 3 = z. Then for any quantity f,
fa® =1 fap = -0,

and we see that the results above may be summarized as follows.
The quantities h*” = h** — Lhp*” satisfy

C2hHY = —25TH, (5.19)

2See footnote 9 in Sec. A.8.
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provided the gauge condition .
Y, =0 (5.20)

)

holds. The remaining gauge freedom z* — z* + £* preserves the gauge con-
dition provided &* satisfies

D%+ = 0. (5.21)

Inasmuch as equation (5.19) is a wave equation with source term equal
to —2kT* = (167G /c*)T*¥, the answer to the question posed in the section
heading is h*¥, a quantity related to hu., which represents a perturbation of
the metric tensor g, away from the flat metric tensor 7,,,. In empty spacetime
equation (5.19) reduces to 02h*¥ = 0, and we see that gravitational radiation
propagates through empty spacetime with the speed of light.

Exercises 5.1

1. Check expressions (5.3), (5.4), and (5.5) given for the Ricci tensor, the
curvature scalar, and the field equations.

2. If h is defined by h = ﬁﬁ, show that h = —h, and hence that hu, =
huw — %hnw,.

3. Use the equality g = n*¥ — h*¥ to check equation (5.9).
Deduce equation (5.10), where A’ = 7,,h*", and hence verify equa-
tion (5.11). Show also that X, = o — ¢+ .

4. Equations (5.19) and (5.20) together imply that 7" ,, = 0. Is this consis-
tent with TH”., = 07

5.2 Two polarizations

The simplest sort of solution to the wave equation 0?h*¥ = 0 of empty space-
time is that representing a plane wave, given by

R = R[A* exp(ikaz®)], (5.22)

where [A#"] is the amplitude matriz having constant entries, k* = n#*k, is the
wave 4-vector in the direction of propagation, and R denotes that we take the
real part of the bracketed expression following it. It follows from [J2h** = 0
that k* is null, and from the gauge condition (5.20) that

APk, = 0. (5.23)

Since h*¥ = h¥#, we see that the amplitude matrix has ten different (com-
plex) entries, but the condition (5.23} gives four conditions on these, cutting
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their number down to six (see Exercise 5.2.1). However, we still have the gauge
freedom z# — x# + £* (subject to the condition (5.21)), and as we shall see,
this may be used to reduce the number still further, so that ultimately there
are just two entries in the amplitude matrix which may be independently spec-
ified. This results in two possible polarizations for plane gravitational waves.
To fix our ideas, let us consider a plane wave propagating in the z® direc-

tion, so that
k* = (k,0,0,k) and k, = (k,0,0,-k), (5.24)

where k > 0. Thus k = w/c, where w is the angular frequency. Equation (5.23)
gives A0 = A#3 which implies that all the A*¥ may be expressed in terms
of A0 A0 4025 All- Al2 and A22;

AOO A(Jl AOZ AOO
AOI All A12 AOI
AOQ A12 A22 A02
AOO AOI AOZ AOO

[4M] = (5.25)

Consider now a gauge transformation generated by
& = —R[ie* exp(ikaz®)],

where the ¢* are constants. This satisfies the condition {5.21), as required,

and has
¢h, = R e’k exp(ikaz®)]. (5.26)

In the new gauge the amplitude matrix is defined by

’

Y =R [A”"’I exp(ika/xo‘,)] ,

and since exp(ika/x"‘/) differs from exp(ik,z*) by only a first-order quantity,
substitution in equation (5.11) and using equation (5.26) gives

ARV = A el — ke Y (e%k,).

If we feed in k* from equation (5.24) and A*" from equation (5.25), then we
obtain

Ao’o’ = AY0 _ k:(go + 63)’ A1’1’ = A1l _ k(go _ 53)’
AV . g01 _ k’é‘l, AV2 — A12’ (527)
Ao'z’ = A02 _ 2 A2’2’ = A%2 _ k(so _ 53)_

So conveniently choosing our constants e* to be

80 — (2AOO +A11 —+—A22)/4k, 81 — AOl/k,
e? = A%k, e? = (2% — A — A% /4k,
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we obtain 420 = A0V = A2 = and AVY = —A%?

On dropping the primes, we see that in the new gauge the amplitude
matrix has just four entries, A'', A2, A?! A%2 and of these only two may
be independently specified, because A'! = —A?2, and A'? = A?'. This new
gauge, which is determined by the wave itself, is known as the transverse
traceless gauge, or TT gauge for short. In this gauge h = f_zl’j = 0 (because
A% = A3 = 0 and A'' = ~A4%2), and it follows that h = 0 so there is no
difference between h,, and h,, (see Exercise 5.1.2). It is because h = h = 0
that the gauge is called traceless, and it is because hg, = EO# = 0 that it is
called transverse. We shall work in the TT gauge for the remainder of this
section.

If we introduce two linear polarization matrices [¢]”] and [e4"”], defined by

00 0O 0000
01 00 0010

wry My

[61 ]_ 0 0-=1 0" [62 ]_ 01001 (528)
00 00 0000

we see that the general amplitude matrix is a linear combination of them:
AM = qel” 4 peb” (5.29)

where « and 8 are (complex) constants.

The significance of these matrices may be appreciated by reviewing the
analogous situation in electromagnetic radiation, where the plane-wave solu-
tion to (J2A4# = 0 is

A¥ = R [B* exp(ik,x®)], B" = constant.

The Lorentz gauge condition A* , = 0 implies that B*k, = 0, which reduces
the number of independent components of the amplitude vector B* to three.

If, as before, we consider a wave propagating in the x* direction, so that
k* = (k,0,0,k), then B*k, = 0 implies that B® = B3, so

Bt = (B())BlaB?vBO)a

which is analogous to equation (5.25). Changing the gauge by putting A, =
A, — ¢, where
¥ = —Rlieexp(ikaz®)],

preserves the Lorentz condition (because (1?9 = 0), and transforms B* to
(B')* = B" — ek*.

So
(B,)O — BO _Ek, (Bl)l — Bl, (B/)2 _ BZ,

which are analogous to equations (5.27). If therefore we choose ¢ = BY/k, then,
on dropping primes, we have BY = 0, and in the new gauge the amplitude
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vector has just two components (B! and B?) which may be independently
specified. This leads to two linear polarization vectors:

ef =(0,1,0,0) and ey =(0,0,1,0), (5.30)
and the general amplitude vector is a linear combination of these:
B* = ael + Be.

If B* = aef, then the force on a free test charge is in the ' direction with a
magnitude that varies sinusoidally as the wave passes, causing it to oscillate
in the x! direction, whereas if B* = (¢4 the oscillations take place in the
22 direction. (These facts may be derived by using equation (A.59).) The
particular combinations B* = a(e} + iek) give circularly polarized waves in
which the mutually orthogonal oscillations combine, so that the test charge
moves in a circle. The polarization matrices (5.28) have a similar effect on free
test particles as the gravitational wave passes, as we shall now show.

A short calculation (see Exercise 5.2.2) shows that in the TT gauge
I'ly = 0, and this implies that the geodesic equation (2.71) is satisfied by
t* = dz#/dr = cbfy. (This gives g, i+ i" = 2, as required, since in the TT
gauge hgg == 0, S0 ggo = 1.) Hence curves having constant spatial coordinates
are timelike geodesics, and may be taken as the world lines of a cloud of test
particles. It follows that a small spacelike vector £&# = (0,&1,€2,€%) which
gives the spatial separation between two nearby particles of the cloud is con-
stant (see also Problem 5.1). However, this does not mean that their spatial
separation d is constant, for d is given by

&® = §;;€'¢,
where
Gij = —9i5 = 0ij — haj,

and the h;; are not constant. If we put
(=4 ghigt (5:31)
then (to first order in h,, )
3G = (0 — hig)€'€ =, (5:32)

as a short calculation shows (see Exercise 5.2.3). So ¢* may be regarded as
a faithful position vector giving correct spatial separations when contracted
with the Euclidean metric tensor d;;.

Note that in the TT gauge k% = 0, so equation (5.31) gives ¢* = £3 =
constant. Hence if the test particle separation lies in the direction of propa-
gation of the wave, then it is unaffected by the passage of the wave, showing
that a gravitational wave is transverse.
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Let us now select a particular test particle as a reference particle, and
refer the motion of others to it by means of (*, using equation (5.31). If
A® = ae!’”, with o real and positive for convenience, and & = (¢!,€2,0),
then this equation gives

¢t =(€4,€2,0) - —acosk(a: — %) (¢, —£2,0). (5.33)

So if we consider those particles which, when cos k(x® — z3) = 0, form a circle

Value of k(z" — %) 2n+ D7 (2n+lr @2n—3)n

2
(a) A" = ael”

T Qoo
L1@©@Q

Displacement of particles from circular configuration

Table 5.1. Effect of a plane wave on a transverse ring of test particles.

with the reference particle as center, this circle lying in a plane perpendicu-
lar to the direction of propagation, then as the wave passes, these particles
remain coplanar, and at other times their positions are as shown in row (a)
of Table 5.1. All this follows from equation (5.33).
If, however, A* = aeb”, again with a real and positive for convenience,
then
("= (¢",6%,0) - Jacosk(z® — 2)(¢%,¢',0), (5.34)

resulting in a sequence of diagrams as shown in row (b) of Table 5.1, which
may be obtained from those in row (a) by a 45° rotation.3

In this way we see how the two polarizations of a plane gravitational
wave affect the relative displacements of test particles. As in electromagnetic
radiation, we may also have circularly polarized waves in which A** = a(ef” £
. MUV I3
ieh”) (see Problem 5.2).

3This expressive means of showing the effect of the polarization mode on a cloud
of test particles is borrowed from Misner, Thorne, and Wheeler. See Misner, Thorne,
and Wheeler, 1973, §35.6.
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Exercises 5.2
1. Show that equation (5.23) implies that each A% may be expressed in
terms of the A% for any (null) k.

2. Show that in the TT gauge associated with any plane wave, I'}; = 0 and
Félu = %hllj,O'

3. Verify equation (5.32). (Recall that n;; = —d;;.)

4. Check equations (5.33) and (5.34).

5. In constructing Table 5.1 we took « to be real and positive. What is the
effect of having o = |a|e®, 6 # 0?

5.3 Simple generation and detection

Equation (5.19) gives the relation between the gravitational radiation, rep-
resented by h*, and its source, represented by T#”. The solution of this
equation is well-known from electromagnetism, and may be expressed as a
retarded integral:

B pv (0 J— /
P (20 x) = — /T (@ = x = X1, %) (5.35)

2 |x — x/|

Here x represents the spatial coordinates of the field point at which h*¥ is
determined, x’ represents those of a point of the source, and |x — x'| is the
spatial distance between them. The volume integral is taken over the region
of spacetime occupied by the points of the source at the retarded times z° —
|x — x’|. This region of spacetime is the intersection of the past half of the
null cone at the field point with the world tube of the source.*

Suppose now that the source is some sort of matter distribution localized
near the origin O, and that the source particles have speeds which are small
compared with c. If we take our field point at a distance r from O that is
large compared to the maximum displacements of the source particles from

0, then equation (5.35) may be approximated by®
- 4
h* (ct,x) = —£ /T’“’(ct —r,x)dV’, (5.36)

4See, for example, Landau and Lifshitz, 1980, §§62, 63.

5See, for example, Landau and Lifshitz, 1980, §§66, 67. Note that the assumption
of small speeds is equivalent to the dimensions of the source being small compared
with the wavelength. If it were not made, then equation (5.41) would contain extra
terms indicating radiation from moments higher than the quadrupole, and for this
reason the assumption is sometimes referred to as the quadrupole assumption.
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on putting k = —87G/c* and z° = ct. This approximation is appropriate for
looking at the gravitational radiation in the far zone or wave zone, and by
comparison with electromagnetic theory, we expect that (over not too large
regions of space) it looks like a plane wave, in which case the radiative part of
h* is completely determined by its spatial part h¥, as Exercise 5.2.1 shows.
It follows that we need only consider [T*/dV (at the retarded time), a neat
expression for which may be obtained as follows.

The stress tensor of the source satisfies the conservation equation T#¥ , =

0 (see Exercise 5.1.4). That is,
T o+ T% s =0, (5.37)
T o+ T, =0. (5.38)

Consider the integral identity

/ (T2 pdV = / T ya?dV + / TVdv,

where the integrals are taken over a region of space enclosing the source, so
that 7" = 0 on the boundary of the region. The integral on the left is zero,
as may be seen by converting it to a surface integral over the boundary using
Gauss’s theorem. Hence on using equation (5.38),

. . ) . . 1d o
/ TYdV = — / T* 2l dV = / TR p2?dV = - / Tz qv.
C

Interchanging ¢ and j and adding gives

.. 1 d S I
TYdV = —— [ (TY27 + T7%%) dV. :
/ 5T (T2 +T7%%) d (5.39)
But

/ (T%z'2?) xdV = / T jataldV + / (T%7 + T%2%) dV,
where again the integral on the left vanishes by Gauss’s theorem. Hence on
using equation (5.37) we have

/ (T%27 + TY2%) 4V = 1% Tz zdV. (5.40)
C

Combining equations (5.39) and (5.40) gives

THdV = 1 & TOi21qV.
= @ﬁ T .

For slowly moving source particles 7% a pc?, where p is the proper density,
and equation (5.36) yields the approximate expression
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. 2 . .
R (ct,x) = 2G d [/ pxlxjdV} , (5.41)
ret

A dt?

the notation indicating that the integral is evaluated at the retarded time
t — r/c. The integrand is recognizable as the second moment of the mass
distribution, and indicates the essentially quadrupole nature of gravitational
radiation (compare remarks at the end of Sec. 5.0).

x!
Field
point

xi

Fig. 5.1. A rotating dumbbell as a source of gravitational radiation.

As an illustration of the above ideas, let us take as a source a dumbbell
consisting of two particles A and B of equal mass M connected by a light rod
of length 2a, the dumbbell rotating about the 23 axis in the positive sense with
angular constant speed w, so that the particles remain in the plane 2° = 0
with the midpoint of the rod at O (see Fig. 5.1). The positions of A and B at
time ¢t may be taken to be

27 = +(acoswt,asin wt, 0),

and equation (5.41) gives (on replacing the integral by a sum over the two
source particles)

cos’wt coswt sinwt 0

. AGM 2 d2
[AY (ct,x)] = —#w coswt sinwt  sin*wt 0
“r 0 0 0f.
, re (5.42)
SCMa2w? | 8 2w(t —r/c) sin2w(t—r/c) 0

: sin2w(t —r/c) —cos2w(t —7r/c) 0
cir
0 0 0

This clearly represents a gravitational wave of angular frequency 2w.
For field points near to a point on the 23-axis where r ~ 2, we have
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8GMa?w?
ctr

[RY] ~ R | (e —ie)exp Qsz(xO -z, (5.43)
and to an observer on the z3-axis the wave looks like a circularly polarized
plane wave (see Sec. 5.2). Note that this plane-wave approximation automat-
ically has h¥ in its TT gauge. This does not happen for the plane-wave ap-
proximation which an observer at a field point in the plane 22 = 0 holds to be
valid, and a transformation to its TT gauge is needed to find its polarization
mode (see Exercise 5.3.1).

Equation (5.42) generalizes to give the A produced by a straight bar,
having its center of mass at O and rotating in the plane 3 = 0 with angular
speed w, simply by replacing 2Ma? by the moment of inertia I of the bar
about the z3-axis. It may be shown by methods beyond the scope of this
book that the rate at which such an object loses energy by radiation is given
by

dE  32GI%wS
dt  5¢
This expression is obtained by looking at the energy-momentum carried by
the gravitational field itself, which is quadratic in h,, and its derivatives,
and consequently neglected in the linearized theory. As a consequence of the
energy loss, w must decrease, but in the linearized theory it remains constant.

If we feed into expression (5.44) typical laboratory values for I and w, we
find that the power of a laboratory generator is so small that we must look
to astrophysical phenomena as possible sources for observable gravitational
radiation (see Exercise 5.3.2). These include continuous generators, such as
binary stars and pulsating neutron stars, as well as impulsive generators, such
as colliding black holes, which would be expected to give off bursts of radiation.

Let us now consider detection. Our discussion of polarization in Section 5.2
shows that the effect of a gravitational wave on a cloud of free test particles
is a variation in their separations; it is as if a varying tidal force were acting
on the cloud. If the test particles were not free, but constrained to be the
constituent particles of an elastic body, then this tidal force would give rise to
vibrations in the body, and here we have the rudiments of a gravitational-wave
detector. If the incident radiation were a plane wave of a given frequency, then
the responsiveness of such a detector would be enhanced if its fundamental
frequency of vibration were to coincide with that of the wave.

Because of the extreme low power of laboratory generators and the extreme
distance of astrophysical generators, detection of the predicted radiation was
for a long time thought impossible. However, over the past two decades, con-
siderable ingenuity and effort have gone into the design and construction of
detectors, including mechanical ones based on the principle outlined above.
Observation of the extraordinary binary neutron star PSR 1913416 indicates
that it is losing energy at a rate attributable to gravitational radiation. Per-
haps one day we shall see gravitational astronomy takes its place alongside
optical and radio astronomy.

(5.44)
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Exercises 5.3

1. Obtain the plane-wave approximation to the radiation from a rotating
dumbbell, held to be valid by an observer at a field point in the plane of
rotation, in its TT gauge, and hence show that it is linearly polarized.
(To relate matters to the theory of Sec. 5.2, you will find it convenient to
put the field point on the 23 axis, and to let the dumbbell rotate about
one of the other coordinate axes.)

2. Show that the power generated by:

(a) asteel bar of mass 2x10% kg (about 200 tons) and length 10 m, rotating
at an angular speed of 50rads™! about an axis through its center of
mass which is perpendicular to its length, is about 7.6 x 10730 W;

(b) a binary star, with equal components each of one solar mass, describ-
ing circular orbits with a period of one month, is about 5.8 x 1016 W.
(Take G = 6.67 x 10! Nm?kg™%, ¢ =3 x 108 ms~?,
Mg =2 x 103%kg.)

Problems 5

1. Show that if in the TT gauge associated with a plane wave &# = ¢4, then
the equation of geodesic deviation (3.41) has £# = constant as a solution.

2. The separation vector £* of two test particles reacting to a circularly polar-
ized wave propagating in the x2 direction takes the form £ = (£1,£2,0) =
constant (see Sec. 5.2 for details). Show that one of the particles moves in
a circle with respect to the other.

3. Use equation (5.36) to find A" in the far zone, due to a single parti-
cle of mass M situated at the origin. Obtain the corresponding line ele-
ment c¢?dr? = g,,dr*dz”, and compare it with the approximation of the
Schwarzschild line element in isotropic coordinates (equation (4.67)) valid
for large p.

4. Four particles of equal mass are situated at the ends of the arms of a
light rigid cross having arms of equal length, and the whole configuration
rotates freely about an axis through its center of mass perpendicular to
its plane. Show that in the far zone there is no quadrupole radiation. (Use
equations (5.41) with the integral replaced by a sum over the four source
particles.)
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Elements of cosmology

6.0 Introduction

The fundamental force keeping solar systems, binary stars, and galaxies to-
gether is the force of gravity (as opposed to electric, magnetic, and nuclear
forces), and it is not unreasonable to suppose that the force governing the
large-scale motions of the entire universe is primarily gravitational. If there
is some other force governing these motions, there has to date been no evi-
dence for it, neither in the solar system, nor in the observable galaxies. By
the universe we mean all detectable components in the sky: stars, galaxies,
constellations, pulsars, quasars, as well as such things as cosmic rays and back-
ground radiation. If this directly observable universe is part of a much grander
system of universe-within-universes (C.V.I. Charlier’s hypothesis') then there
is little we can say.

General relativity is a satisfactory theory of gravitation, correctly predict-
ing the motions of particles and photons in curved spacetime, but in order to
apply it to the universe we must make some simplifying assumptions. We shall
grossly idealize the universe, and model it by a simple macroscopic fluid, de-
void of shear-viscous, bulk-viscous, and heat-conductive properties. Its stress
tensor T}, is then that of a perfect fluid, so

T;w = (P + p)uyuu — PYuv; (61)

where p is its proper density, p is its pressure, u, is the (covariant) world
velocity of the fluid particles (stars, etc.) and for convenience we have adopted
units in which ¢ = 1.

Any results we obtain from general relativity should agree with observa-
tion. In astronomy, it is never easy to give numbers exactly, but the major
items of data that we possess for the universe include the following observed
properties:

1See Charlier, 1922.
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(i) Homogeneity. The number of galaxies per unit volume, and therefore the
density p, appear to be uniform throughout large regions of space. A
ball-park figure for the visible mass associated with galaxies is p = 2 x
10728 kgm 3.

(i) Isotropy. The number of galaxies per unit solid angle appears to be the
same in all directions.

(iii) Redshift. There is a redshift z = AM/Ag for the wavelength of light emitted
by galaxies, and z increases with distance.

(iv) Olbers’ paradox data. The night sky is not as bright as day. The universe
cannot therefore be (spatially) infinite if it is also homogeneous, unless
there is a mechanism beyond the inverse-square law for weakening the
energy from distant stars and galaxies.

Wavelength [cm]
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Fig. 6.1. Measurements of the spectrum of the cosmic microwave background ra-
diation. Results since 1980 are plotted, except for cyanogen (at 114 and 227 GHz)
where only results since 1989 are plotted. No error bars are plotted for the indi-
vidual COBRA data points; otherwise, where error bars are not visible, they are
smaller than the data points. The COBE FIRAS spectrum deviates from a 2.726 K
blackbody by < 0.03% of the peak brightness. By permission of M. Bensadoun.
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(v). Background microwave radiation. Isotropic radiation, apparently corre-
sponding to blackbody radiation of about 2.7 K, discovered by Penzias
and Wilson in 1965.2 (See Fig. 6.1.)

(vi) Ages of meteorites. Radioactive dating gives the age of solar-system me-
teorites, and rocks from the Moon and Earth, as at least 4.5 x 10° yrs.?

(vil) Temperature and luminosity of white dwarfs. Studies of the temperature
and luminosity of white dwarf stars indicate ages between 8 x 10° yrs and
12 x 10% yrs.*

In subsequent sections, we shall see how some aspects of the above are
incorporated in our treatment of cosmology, but let us first say a little about
redshift. If the observed redshift is interpreted as due to a velocity of reces-
sion, then the observations may be incorporated in a simple law that states
that the speed of recession is proportional to distance. The constant of pro-
portionality is known as Hubble’s constant. The observations which determine
this “constant” were made over the last few decades, a relatively short period.
We shall see as the theory develops that it is in fact a function H(t) of time.
Estimates for its present-day value are subject to ongoing revision, ranging
between 50 and 90km s~! Mpc !, which simplifies to the range 19.6 x 10° to
10.8 x 109 yrs for 1/H.5

Exercise 6.0

1. The redshift z is defined by z = AX/Ag, where )¢ is the proper wavelength,
and AM is the difference between the observed wavelength and the proper
wavelength. If z is the Doppler shift due to a speed of recession v, show
that on the basis of special relativity z &~ v/c, for v small compared with
the speed of light c.

6.1 Robertson—Walker line element

It is outside our syllabus to rederive the independent work of Friedmann,
Robertson, and Walker,® and others, on metrics, maximally symmetric sub-
spaces, and descriptions of spacetimes that comply with the cosmological prin-
ciple. (This is the hypothesis that the universe is spatially homogeneous and
isotropic.) We take on faith the famous Robertson-Walker line element, adding

%See Penzias and Wilson, 1965.

3See Ohanian and Ruffini, 1994, p. 532.

“See Winget et al., 1987.

"Note that when people say that the age of the universe is thus about 15 x 10°
years, they are taking the inverse of the present-day value of H. However, we shall
see that in the most common Friedmann model the age is given by 2/3H, which
corresponds to an age-range of 7.2 x 10° to 13.1 x 10° years.

8See Friedmann, 1922; Robertson, 1935 and 1936; and Walker, 1936.
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only some minor intuitive ideas, and this is the starting point for our discus-
sions.

With a timelike coordinate ¢, and spatial coordinates r, 8, ¢, this line
element is

dr? = dt? — (R(t))” (1 — kr?)~dr? + r2d6? + r?sin® 0 dg?) , (6.2)

where R(t) is a dimensionless scale factor depending only on the time ¢, and
k is either 0, 1, or —1, and is related to the spatial curvature. (Again we have
taken ¢ = 1 for convenience.) The spatial geometry is determined by the line

element
ds? = (1 — kr?)"Ydr? + r2d6? + % sin? 0 d¢®. (6.3)

A three-dimensional manifold with such a line element is clearly flat if £ = 0,
but for £ = £1 it is curved (see Problem 6.1). For k = 1 it is a space of
constant positive curvature, the three-dimensional counterpart of a sphere,
and the space is closed in the sense that it has finite volume. For k = —1 it is
a space of constant negative curvature, and is open in the sense that its volume
is infinite. To justify these remarks would involve us in a long digression into
differential geometry.” The scale factor R(t) simply “blows up” these spaces
in a uniform manner, so that they expand or contract as dR/dt is positive or
negative.

The scale factor R(t) operates on the whole spatial part, regardless of di-
rection, and depends on a commonly measured time t, which we rationalize
as follows. Allow each galaxy to carry its own clock measuring its own proper
time 7. These clocks may (ideally) have been synchronized when R(f) = 0,
that is, at the beginning of the expansion. Because the universe is homoge-
neous and isotropic, there is no reason for clocks in different places to differ
in the measurements of their own proper times. Furthermore, if we tie the co-
ordinate system (¢,7,8, ¢) to the galaxies, so that their world lines are given
by (r,0, ) = constant, then we have a co-moving coordinate system and the
time t is nothing more than the proper time 7. This commonly measured time
is often referred to as cosmic time.

To gain an intuitive idea of the significance of the Robertson-Walker line
element it is useful to imagine a balloon with spots on it to represent the
galaxies, the balloon expanding (or contracting) with time. The distance be-
tween spots would depend only on a time-varying scale factor R(t), and each
spot could be made to possess the same clock time ¢. The spatial origin of
such a co-moving coordinate system might lie on any one of the spots.

The line element (6.2) is our trial solution for cosmological models, and
our next task is to feed it into the field equations (3.39) using the form (6.1)
for T,,,. As we shall see, this yields relations involving R, k, p, and p, and

"See, for example, Misner, Thorne, and Wheeler, 1973, §27.6, in particular
Box 27.2.
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gives a variety of models for comparison with the observed universe. Because
of the assumed homogeneity, p and p are functions of ¢ alone.

6.2 Field equations

If we label our coordinates according to t = 2°, r = 2!, § = 22, ¢ = 22, then
the nonzero connection coefficients are

I'’ =RR/(1—kr?), I%=RRr? IY; = RRr?sin® 6,
Iy, :R/R» I'fy = kr/(1 —kr?), I3y = —r(1 - kr?),
I}y = —r(1 — kr?)sin? 6, (6.4)
= R/R, Iz =1/r I, = —sinfcos¥,
I$y = R/R, Iy =1/r, I3, = cotd.

These were obtained in Example 2.1.2, but we have changed the notation
so that derivatives with respect to ¢ are now denoted by dots. Feeding the
connection coefficients into

R,=I% , —T% +I°T%—T"TI?

uo,v uv,o po " pv uvs po

(and remembering that I'.. = I'* ) gives

Ry = 3R/R,

Ry = —(RR+2R* +2k)/(1 — kr?),

Rgz = —(RR + 2R? 4 2k)r?, (6.5)
R33 = —(RR +2R% + 2k)r2 sin? 6.

R, =0, p#v

With ¢ =1, u#u, =1, so
T=T;=(p+p)—4p=p—3p.
In our co-moving coordinate system, u* = 4, so
Uy = g;w55 =Gguo = 52-

Hence
Tuu = (:0 +p)6258 - pguu

and

Ty — %Tgm, =(p +p)505 ~—PYuv — 2(p 3p>g’w
= (p+ )88y = 5(p = D)gpo-



188 6 Elements of cosmology

Extracting g, from the line element (6.2), we see that

Too — 3900 = 5(p+ 3p),

T — 3Tg1 = Lp - p)R*/(1 — kr?),
Tpz — 5Tg22 = 5(p — p)R*?,

Tss — 1Tgs33 = L(p - p)R*r” sin’ 4,

Ty ~ %Tg#,, =0, p#r
So the field equations in the form (3.39) yield just two equations:
3R/R = Lk(p+ 3p),
RR+2R* + 2k = —L1k(p—p), (6.7)

where (with ¢ = 1) Kk = —87rG. The fact that the three (nontrivial) spatial
equations are equivalent is essentially due to the homogeneity and isotropy of
the Robertson—-Walker line element.

Eliminating R from equations (6.6) and (6.7) gives

R? + k = (87G/3)pR>. (6.8)

We shall refer to this equation as the Friedmann equation. Note that the
pressure has completely canceled out of this equation.

We know from Section 3.1 that T+, = 0 yields the continuity equation
and the equations of motion of the fluid particles. With ¢ = 1 these become
(when adapted to curved spacetime)

(pu*), + puty, =0, (6.9)
(p+p)u’put = (g™ — v u")p .. (6.10)
The continuity equation (6.9) may be written as
puut + (p+p)(u* u + I,u") =0,

and with u# = 6§ this reduces to

p+(p+p)(3R/R) =0, (6.11)

which does contain the pressure. As for the equation of motion (6.10), both
sides turn out to be identically zero, and it is automatically satisfied. This
means that the fluid particles (galaxies) follow geodesics, which was to be
expected, since with p a function of ¢ alone, there is no pressure gradient (i.e.,
no 3-gradient Vp) to push them off geodesics.
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We make use of equations (6.8) and (6.11) in the next section where we
discuss the standard Friedmann models of the universe.

Exercises 6.2

1. Check the Ricci tensor components given by equation (6.5).

2. Show that equation (6.11) may also be derived by eliminating R from
equation (6.6) and the derivative of equation (6.8} with respect to .

3. Verify that equation (6.10) is automatically satisfied.

6.3 The Friedmann models

Observational evidence to date suggests that the universe is matter-dominat-
ed, and that the pressure is negligible when compared with the density. The
standard Friedmann models arise from setting p = 0, and our discussion will
be confined to these models only.

With p = 0, we see that

pR?® = constant (6.12)

is an integral of the continuity equation (6.11). As we shall see, this leads to
three possible models, each of which has R(t) = 0 at some point in time, and
it is natural to take this point as the origin of ¢, so that R(0) = 0, and ¢ is then
the age of the universe (compare remarks in Sec. 6.1). Let us use a subscript
zero to denote present-day values of quantities, so that ¢y is the present age
of the universe, and Ry = R(tg) and po = p(to) are the present-day values of
R and p. We may then write equation (6.12) as

pR® = poRY. (6.13)
The Friedmann equation (6.8) then becomes
R? + k= A%/R, (6.14)

where A? = 87GpoR3/3 (A > 0). Hubble’s “constant” H(t) is defined by

H(t) = R(t)/R(1), (6.15)

and we denote its present-day value by Hy = H(ty). Equation (6.8) gives

k 81Gpy . 871G < 3H§>

R~ 3 3 \"°7 &G
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Hence £k > 0, k =0, 0or k < 0as po > pe, Po = Pe, OF po < p. respectively,
where p. is a critical density given by

p. = 3HZ /87G. (6.16)

The deceleration parameter qo is defined to be the present-day value of
—RR/R?. Using equations (6.6) (with p = 0) and (6.7) gives

go = 4nGpo/3HG = po/2p.. (6.17)

The three Friedmann models arise from integrating equation (6.14) for the
three possible values of k: k = 0, £1.

(i) Flat model. k = 0; hence pg = p¢, g0 = %

Equation (6.14) gives
dR/dt = A/RY/?,

and integrating gives
R(t) = (34/2)%3¢¥/3. (6.18)

This model is also known as the Einstein—de Sitter model, for reasons men-
tioned in Section 6.6. Its graph is plotted in Figure 6.2. Note that R — 0 as
t — 00.

(ii) Closed model. k = 1; hence py > pc, qo > %

Equation (6.14) gives

dR [ A?—R\*
Ef( R ) ’

R 1/2
R
o= [(7g)

Putting R = A%sin?(y/2) gives

S50

P ¥
t:AQ/ sin®(¢/2) dy = %A2/ (1 —cos¢)dy = %AQ(d)—sinz/)).
0 0

So

R=1A%1—-cosy), t=3A*(¢—siny), (6.19)
and these two equations give R(t) via the parameter . The graph of R(t) is
a cycloid, and is shown in Figure 6.2.

(iii) Open model. k = —1; hence po < pe, go < %
Equation (6.14) gives

ﬁ_ A2+R 1/2
dt R ’

S0
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R() Open, k = -1
Flat, k =0
Closed, k = 1

0 t

Fig. 6.2. Zero-pressure models of the universe.

R R 1/2

Putting R = A2 sinh?(¢/2) gives

P P

t= A2/ sinh?(v)/2) dyp = %AQ/ (coshy — 1) dp = 2 A%(sinhp — ¢).
0 0

So

R= %AZ(coshw— 1), t= %AQ(sinhd)—w), (6.20)

and these give R(1) via the parameter 4. Tts graph is also shown in Figure 6.2.
Note that R — 1 as 9 (and hence t) — oco.

We see that k£ = 0 and k£ = —1 give models that continually expand, while k& =
1 gives a model that expands to a maximum value of R, and then contracts,
so the latter is not only spatially but also temporally closed. The significance
of the value of £ is explained in Newtonian terms in Section 6.7.

The question naturally arises as to which (if any, bearing in mind our
assumptions) represents our own universe. Astronomical observations over
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recent, years have yielded estimates for Hy, o, and pg. The methods employed
are extremely ingenious and complex, and we shall not attempt a review
of them.® Recent estimates for Hy put it at about (18 x 10%)~!yrs™!, and
using equation (6.16) gives a value for the critical density of about 5.7 x
10~%" kgm~3. Estimates for the deceleration parameter gg, based on masses
and distributions of galaxies, are around 0.025, but are extremely difficult to
be sure about. With ¢p = 0.025, equation (6.17) would give

Po & 2p.q0 ~ 0.28 x 1072 kgm ™3,

which is greater than the observed density of the universe estimated on the
assumption that its matter content is visible and lies principally in the galax-
ies. This discrepancy leads to the so-called “problem of missing matter” whose
existence is postulated for many reasons in modern astronomy. Not the least
of these is Oort’s analysis of the motions of stars in our galaxy, which shows
that much more matter must exist gravitationally than can be accounted for
by visible matter. It is suggested that this matter might take the form of an
intergalactic gas, which might include small dark stars, small primeval black
holes and neutrinos, and it is thought that by itself this dark matter has a
density of about 1 x 102" kgm™2. So we do not really know yet whether the
universe is open or closed.

One final connection we can make between theory and observation con-
cerns the present age to of the universe. For the flat model, equation (6.18)
gives

H(t) = R(t)/R(t) = 2/(3t), (6.21)

SO
to = 2/(3Hp) ~ 12 x 10° yrs.

To find the values of ¢y given by the other two models is somewhat compli-
cated, and is left as an exercise (Problem 6.2).

None of these estimates of age from the Friedmann models conflicts with,
nor is especially supported by, the meteorite data.

Exercise 6.3

1. Check the integrations leading to the parametric equations (6.19) and
(6.20).

6.4 Redshift, distance, and speed of recession

We return in this section to the implications of something mentioned in the
introduction to this chapter: the observed redshift z = AX/Ag for the wave-
length of light emitted by distant galaxies. Here Aq is the proper wavelength

8See, for example, Weinberg, 1972, Chap. 14, and Ohanian, 1989, Chap. 9.
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and AX is the difference between the observed and the proper wavelengths.
As noted in Exercise 6.0.1, if this is interpreted as the Doppler shift due to a
speed of recession v (small compared with c), then we have the approximate
result that z = v/c. We shall replace this rough argument by one more ap-
propriate to the context of the Friedmann cosmological models and improve
on the approximate result. We shall also establish the fundamental relation
between the speed of recession of a galaxy and its distance from the observer,
a relation generally known as Hubble’s law.

In this section (and the next) we shall make it clear where the speed of
light ¢ is involved, and not have ¢ = 1, as in the earlier sections of this chapter.
The form that the Robertson—Walker line-element then takes is

Adr? = Edt? — (R(1)? (1 - kr?) " dr? + r2d6% + r¥sin® 0 dg?) . (6.22)

When we refer to the distance of a galaxy (or other remote object) from
the observer, we shall mean the length of the spatial geodesic connecting the
two at the same cosmic time ¢. It is the distance we would obtain if we could
stop the expansion of the universe at time ¢ and measure it using measuring
rods. In mathematical terms, we put ¢ = const in the spacetime line clement
above and work with the line element

ds® = (R(t))* (1 — kr?) dr® + 12d6* + r? sin® § dg?) (6.23)

of the corresponding three-dimensional space. By the speed of recession of the
galaxy, we mean the magnitude of the rate of change of this distance with
respect to ¢.

The only observers we can realistically consider are situated on, or near, the
Earth: they inhabit our own galaxy, the Milky Way. Because of the assumed
spatial homogeneity of the universe, therc is no loss of generality in arranging
the coordinate system so that r = 0 for our own galaxy and the observers who
inhabit it. If the remote galaxy has (spatial) coordinates (rg,8q, @), then
the spatial geodesic® whose length we need is given by

0=0g, o¢=0¢c, 0<r<rg. (6.24)

(Here r¢ is constant, corresponding to the fact that the galaxy takes part in
the general expansion of the universe.) The length of this geodesic at time ¢
is given by

La(t) / RO _ - Ry / L4 (62)
— r = A . )
¢ 0 VI—kr? 0 VI kr?
Consider now a pulse of light (or photon) emitted by the galaxy at time tg
and arriving at the observer at time t5. It will follow a null geodesic'® given

®The spherical symmetry of the line element suggests that the equations (6.24)
give a geodesic, but it can be checked. See Exercise 6.4.1.

19 Again, the spherical symmetry suggests that null curves with ¢ and ¢ constant
are geodesics. Exercise 6.4.2 gives a verification.
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by 6 = 0g, ¢ = ¢¢. Since the geodesic is null c2dr? = 0, so the coordinate
velocity of the pulse is

d 1 —kr?
dr_ _evl-kr? (6.26)
dt R(t)
on taking the negative square root, as r is decreasing. So
tRogt © 4
[ 620
1 R(t) re V1 — kr?

showing that the integral on the left does not depend on tg and tg. So if
tg+6tg and tp 4ty are the times of emission and reception for a later pulse
of light, then

tR gt tr+0tg dt
For coordinate differences §tg and dtg that are small, this gives dtp/R(tg) =
Str/R(tR). If these time differences correspond to the proper and observed pe-
riods respectively of the emitted light, then for the corresponding wavelengths

we have
AR N OTR _ Otp _ R(tR)

e~ 05 e Rip)
since 7 = Ot for a spatially fixed emitter or receiver. But Ag is the proper
wavelength Ay and Agr is the observed wavelength, which is usually denoted
simply by A, so for the redshift z we have
, A—Xo R(tg) — R(tg)

" = Ritn) . (6.29)

(6.28)

This last equation is the key to the relations between redshift, distance, speed
of recession, the deceleration parameter, and Hubble’s constant, but it needs
careful handling to yield the best form of results. Our analysis makes use of
the Taylor expansion of R(t) about tg:

R(t) = R(tg) + R(tp)(t — tr) + 1 R(tr)(t — tr)? + - . (6.30)

We shall assume that tg — ¢z is small'! and retain explicitly terms involving
(tR — tE)2.
Putting t = tg in equation (6.30) gives
R(tg) = R(tr) — R(tr)(tr — tg) + 3 R(tr)(tr —tg)* + -
= R(tr) (1 — H(tr)(tr —t5) — 5q(tr)H(tr)*(tr — te)* +---),
where H = R/R is and ¢ = ~RR/R2. If we take tg to be its present-day

value, then H(tg) is Hubble’s “constant” Hy and ¢(tgr) is the deceleration
parameter qg, and on setting tg — tg = At we get

1gmall compared to what? This question will be answered at the end of the
section.
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R(tg) = R(tr) (1 — HoAt — 1qo(At)2 +---). (6.31)
Equation (6.29) then gives

2= (HoAt + qoHZ(AH)? + ) (1 = HoAt — Lao(At)2 + )"

+
= (HoAt + 3qoHZ(At)> + -+ ) (1 4+ HoAt + - -)
So
z=HoAt + H{(1+ Lqo)(At)2 + - (6.32)

We now need an expression for At.
From equations (6.25) and (6.27) we have

[ Lol
. B(t)  R(tr)’

(6.33)

E

and from the expansion (6.30) we have

% - R(iR) (1 +H(tR)(t "tR) - %q(tR)(t_tRV +.“)—1
= R(tR) (1 — Ho(t —tg) + (HE — %(ZO)(t*tR)z +) ’

on expanding and collecting together terms up to those in (¢ — tz)?. So, from
equation (6.33), it follows that

Le(tr)
C

tr

:/ (1= Ho(t ~ tg) + (H§ — 390)(t — tp)* +---) dt
te

= At+ tHo(At)2 + - .

This expression can be inverted!'? to get

At — LGSR) _ %2 (E@) . (6.34)

Substituting into (6.32) gives

z

HoL 1 HoL\?
=0y +q°< 0 ) T (6.35)

c 2 c

where L = L (tg) is the distance of the observed galaxy from the observer.
This last equation is the distance—redshift relation for Friedmann models
of the universe. In its simplest form (i.e., neglecting squares and higher powers

128ee Exercise 6.4.3



196 6 Elements of cosmology

of HyL) it states that the redshift of an observed galaxy is proportional to its
distance from the observer.
By differentiating equation (6.25) with respect to ¢, we can deduce that
- R(t
La(t) = ) Lalt) = H(OLa 1), (6.30)

so on evaluating at ¢ = tg and putting v = Lc(t r) for the speed of recession
of the observed galaxy we have the relation v = HygL connecting the speed of
recession with distance. We can then write equation (6.35) in the equivalent
form

c 2

; . (6.37)

v 1+ 2
lra oy

relating the redshift z to the speed of recession v.

We can now answer the question posed in footnote 11. For the expansions
(6.35) and (6.37) to be valid, At must be such that v = HoL < ¢. If v < ¢,
then dropping the cubic and higher-power terms of the expansions gives valid
approximations.

The redshift-distance relation (6.35) is used to get estimates for Hubble’s
constant, as given in the discussion at the end of Section 6.3.

Exercises 6.4

1. Verify that equations (6.24) give a geodesic of the space with line element
(6.23).

2. Verify that a null curve with 6 and ¢ constant is a null geodesic of the
Robertson—Walker line element.

3. Verify the expression (6.34) for At.

6.5 Objects with large redshifts

Objects with high redshifts are continually being detected with values consid-
erably greater than those originally observed by Hubble in the 1920s. Redshifts
as large as 4.7 have been found for quasars'® and as large as 3.8 for galaxies.
So the questions arise: are some galaxy and quasar recession speeds greater
than the speed of light, and if so, can they be observed? The results of the pre-
vious section cannot provide the answers, as they are valid only for v < ¢. We
shall not attempt to provide a general answer to these questions, but we shall
illustrate the approach that might be taken by working through a particular
example.

13Gee Stuckey, 1992.
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Consider, then, a galaxy receding from us with a redshift z = 4. If we take
(for mathematical tractability only) the flat model of the universe, then, as a
function of the cosmic time ¢,

R(t) = Bt?*/3 where B = (314/2)2/3 = (67Gpo)*/3, (6.38)

as in Section 6.3. It follows from equation (6.29) that

4o\ 23
1+42= (—R) : (6.39)

te

where tg is the time of emission of a photon from a galaxy and tg is the
time of reception. As in the previous section, we shall have r = rg for the
galaxy and r = 0 for our observers, and we shall take ¢y to be its present-day
value ty. Thus, with z = 4 and 12 x 10° years as a typical value for the age
of the universe, we get tg =~ 1.07 x 10° years, so the light was emitted about
10.9 x 10° years ago.

We shall see below that redshifts of z > 3 correspond (in the flat model) to
speeds of recession greater than c. Such speeds are permitted because there is
no single inertial frame that can accommodate both galaxies: we are working
in a curved spacetime.

Consider now a photon leaving the galaxy at cosmic time tg, as in the
Figure 6.3. If the galaxy is receding faster than light, can the photon ever
reach us? It turns out that it is possible, but only because in this model the
expansion is slowing.

tg

TG

to Lph (t)
Observer

ro=0

Fig. 6.3. Light from a receding galaxy.

Let rp5(t) be the r-coordinate of a photon which was originally emitted
from the galaxy at time tg. With k& = 0, equation (6.26) gives

dr c c

dat R—(g_"BQ/s'
So
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T‘ph(t) t dt
dr = —c/ —
/TG ts Bt2/3

3c
ronlt) =16 — = (87 =1/} (6.40)

which gives

With k = 0, equation (6.25) gives
Lg(t) = R(t)rg = Bt*3rg
for the distance of the galaxy from the observer at time t. Similarly, we have
Lon(t) = R{E) rgn(t) = B2/ (1)

for the distance of the photon from the observer at time ¢t. So on multiplying
equation (6.40) by Bt?/3, we get

3c
Lon(t) = La(t) = 5 (B (8%~ ¢f°)

(6.41)
= Lg(t) — 3ct (1 - (tE/t)l/?’) .
Since rpn(to) = 0, equation (6.40) gives
3
rg = Ef (t}/ 3 t}f’) : (6.42)
$0
Lo(t) = R(t)re = 3¢t?/3 (té/S - t}f’) . (6.43)
Substituting this last expression in equation (6.41) gives
Lyn(t) = 3ct2/3 (t}/ i 3) (6.44)

for the distance of the photon from the observer at time ¢.
Writing L = Lg(tg) for the present-day distance of the remote galaxy from
our galaxy, we have

L= 3et* (/% — 6% = aeto (1~ (t/10)"/%),

so, from equation (6.39) (with tp = tg),

1
L=3cty|1- ) 6.45
(- =) (6:45)
Hence for our example of z = 4 the present distance to the galaxy is about
1.7ctg, or 20.4 x 10? light years.
Differentiating equations (6.41) and (6.44) with respect to ¢ yields two
expressions for the photon’s “velocity”:
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Lon(t) = Le(t) = 3¢ (1 - 2(tp/t)V/?), (6.46)

and

Lon(t) = ¢ (2@0 JOL3 3) . (6.47)

At the time of emission ¢ g, the first of these gives Lph(t E) = Lg(t E)—¢, which
is simply the difference between the galaxy’s speed of recession and the speed
of light, and at ¢y the second one gives Lph(tg) = —¢, as it should. Of course,
Lph(t) is not really the photon’s velocity as measured in a local inertial frame
(except at the time of reception tg), but it does tell us whether the distance
Ly (%) is increasing, or decreasing.

Figure 6.4 shows how the photon’s distance depends on ¢ for an object with
z =4 and ty = 12 x 10° years as a typical value for the age of the universe. As
noted above, this implies that tg =~ 1.07 x 10° years. At the time of emission
L,,h(t g) > 0 and the photon is receding. It continues to recede (being carried
away by the general expansion of the universe) until Lph(t) = 0, which occurs
when

t = 8to/27 ~ 3.56 x 10%years.

After this, Lph(t) < 0 and the photon is approaching, eventually arriving to
be observed at time to = 12 x 10° years.
In the flat-space model, equation (6.36) gives
: R{1)
La(t) = —=Lg(t

so, making use of equation (6.45) (in which L = L¢(tg)), we get

2

La(t
3t G()7

2 1
Le(to) = 3—tOLG(to) =2 (1 - ﬁ) :

That is,

v=2c (1 - \/11?> , (6.48)

where v = L (to) is the speed of recession. Clearly (in this model), the speed
of recession exceeds ¢ for all redshifts z > 3.

In the flat model there is also a boundary, known as a particle horizon that
divides those objects that can be seen from those that cannot. This follows
from equation (6.42), which can be written as

. 3Cté/'¥ - tzﬁ 1/3
¢=pg o )

showing that rq < 3cts/®/B. Here B = (3A4/2)** and from equation (6.14)
(with & = 0) we have that A? = R3HZ. Also, from equation (6.21), to =
2/3Hj, so after substitution and simplification we arrive at
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Fig. 6.4. Photon’s position as a function of cosmic time. The photon is dragged
away, but ultimately arrives in our galaxy.

2c
RyHy

rg < (6.49)

for a visible galaxy. This converts to L < 2¢/Hy as the limit on the distance
of a visible galaxy and gives v < 2¢ as a limit on its speed of recession. This
last result can also be inferred from equation (6.48).

Exercises 6.5

1. Work through the substitutions and simplification leading to the inequal-
ity rg < 2¢/RoH, that defines the particle horizon.

2. Does the existence of a particle horizon in the flat model place an upper
bound on the redshifts that can be observed?

6.6 Comment on Einstein’s models; inflation

As early as 1917 Einstein applied his field equations to a “cosmic gas” of the
kind we have been discussing. He was strongly drawn, on philosophical rather
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than mathematical grounds, to the idea of a stable universe, with k£ = 1,
that did not change with time, that is, with H(t) = R(t)/R(t) = 0. In order
to counteract the obvious gravitational collapse of such a gas he introduced
into the field equations a cosmological term to act as a repulsion mechanism
(possibly due to negative matter, if it existed in the universe). The revised
field equations were

R* — %Rg‘“’ + Agh = KTH, (6.50)

where A was a constant known as the cosmological constant.

Since g#*”,, = 0, this did not alter the divergence property T#",, = 0.
The constant A had to be extremely small, so as not to interfere with the
general-relativistic predictions of the solar system (see Chap. 4).

After Hubble’s detection of the redshift in the 1920s and 1930s, interpreted
now by almost all astronomers and physicists as a Doppler-type shift due to
expansion, (but with the subtle difference that the wavelength lengthens dur-
ing its aeons of travel) Einstein came to believe that the universe was flying
apart with considerable kinetic energy, so that a repulsion mechanism was no
longer required. He withdrew the cosmological term, later referring to it as
the greatest blunder of his life. In 1932 he proposed with de Sitter a model
in which ¥ = 0 and p = 0, which is the flat model of Section 6.3. This leads
to a present-day density of pg = p. =~ 5.7 x 107?"kgm™> and to an age
to ~ 12 x 107 yrs.

This Einstein—de Sitter model, which permitted expansion, and which in-
corporated homogeneity and isotropy (the Cosmological Principle) was mod-
ified (in 1948) by Hoyle, Bondi and Gold,'* who made the added assumption
of temporal homogeneity (the Perfect Cosmological Principle). In that model
(the so-called ‘steady-state model’), the universe did not come from a big
bang, and is the same at all times—because they postulated a continuous
creation of matter (of about one hydrogen atom per year per 6 km®) in the
intergalactic vacuum, to balance the reduction in density due to expansion.
While this violated energy conservation, the real blow to the theory was the
discovery in 1965, by Penzias and Wilson'® of a black-body radiation (see
Fig. 6.1) coming in from all directions, interpreted to be ‘relic radiation’ from
the big bang.

Although the model with £ = 0 is the most favored, it would be wrong to
believe that all is clear-cut, and there are physicists (for example, the Nobel
laureate, Hannes Alfven) who believe evidence for the big-bang is lacking!®.
Further, if energy conservation-—a pillar of physics, and violated in steady

14Gee Hoyle, 1948, and Bondi and Gold, 1948.

15Gee Penzias and Wilson, 1965.

18 There have been articles—too numerous to list here—by physicists H. Alfven,
E.J. Lerner, and others, and astronomers such as H. Arp and J.V.Narlikar, which
query big-bang cosmologies. The bases for many of these arguments involve paucity
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state cosmologies—is to be preserved, it must also be satisfactorily explained
how the entire universe came from nothing at ¢t = 0.

Be that as it may, we should also mention difficulties or ‘puzzles’ that have
been encountered when considering the very early universe of the Friedmann
models. While it may seem odd to single out the first fraction of a second in a
proposed expansion lasting billions of years, much is going on in the first few
moments—the temperatures will be extremely high (because the temperature
scales as 1/R—see Problem 8); and particle physicists tell us that the strong
interaction is then unified with the electroweak as in GUTs (Grand Unified
Theories). Thus, quantum field theory must play a role!”, making a blend of
general relativity with quantum physics more appropriate. However, since our
short introduction confines itself to a study of general relativity, we mention
here just two ‘classical’ puzzles: (i) the flatness problem, and (ii) the causal
(or so-called horizon) problem.

The critical density as defined by equation (6.16) is its present-day value
(as the present-day value Hy of Hubble's constant is used), but (like Hubble’s
constant) it can be given a value at any cosmic time ¢ by replacing Hy by H(t)
in its defining equation so that p. becomes a time-dependent quantity. We can
now introduce the quantity 2 = p/p., where both p and p. are evaluated at
a general time ¢. ;

(i) The flatness problem can then be put in the form of a question: why is {2
so close to unity throughout the expansion, even in the radiation-dominated
era? The Friedmann equation (6.14) may be written in the form

_ 8rGR?p, (ﬁ 3 1) _ 8rGR?p,

k
3 Pe 3

(02-1), (6.51)

which gives _
Q=1+k/R? (6.52)

showing that {2 would rapidly increase, or decrease, for & = +1, or —1, re-
spectively. Also, in case we suspect that the constant k can change during the
evolution, this seems unlikely, because then the whole topology of the universe
would change.

(i) The causal (or horizon) problem may be stated in the following way.
How did early parts of the proto-universe, flying apart at speeds greater than
the speed of light (see Section 6.5) ever come to be in thermal equilibrium?
Causal communication is needed for establishing homogeneity across a large
region, and it is homogeneity that, to the best of our measurements, we appear
to see today.

of observational evidence, ongoing lack of an exact value for H, difficulties with
relative abundances of hydrogen and helium, large-scale inhomogeneities in the uni-
verse’s structure in conflict with the uniformity of the cosmic background radiation,
and so on. See Horgan, 1987, for a review of some of these dissident views.

173ee Narlikar and Padmanabhan, 1991.
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These two difficulties (and others concerning monopoles, domain walls, and
symmetries in the early universe) were addressed with some success by Alan
Guth in 1981 in an ‘inflationary’ scenario.'® The basic picture was that for a
very short time (about 10732 seconds) the universe expanded exponentially
(somewhat like an airbag), following a curve R(t) =~ R;e®~*) where R; is
the scale factor at time ¢; when inflation starts, and « is a positive constant.

The causal problem is then ‘solved’ by noting that R is proportional to
R(t), so that when R is close to zero, so is its time derivative (unlike the initial
rapid rate of change of R in the untampered-with Friedmann models). The
significance of this is that running the expansion backwards through a change
AR takes quite a long time at the beginning of the inflation—enough time, it
is claimed, to allow for thermal connection.

The flatness problem is ‘solved’ if we rule out any values for k£ that are not
extremely close to 0, for this means there would be no increasing or decreas-
ing of the ratio p/p., and thus no precipitous collapse or rapid expansion to
infinity. Inflation does this for us, because the curvature term k/R? in equa-
tion (6.8), which may initially be of moderate value, is clearly negligible after
inflation. This has the same effect as setting k = 0.

So it looks as if the solution to the flatness problem has to be 2 =1, (i.e.,
k =0, and p = p.), although observations do not yet find enough density of
matter to bear this out. This is the reason astronomers are today searching
for ‘missing matter’.

Characteristics of the early universe presently occupy the interests of high-
energy particle physicists, as well as string theorists, but the basic models
(after those few first fractions of a second) are nevertheless thought to be the
Friedmann models of general relativity.

Finally, we offer, for comparison with our general relativistic results, a
discussion of the Newtonian view of the universe.

Exercises 6.6

1. Show that the empty spacetime field equations derived from equations
(6.50) are R = Agh”.

2. Carry out the working that leads to equation (6.52).

6.7 Newtonian dust
Suppose we have a Newtonian dust (i.e., a fluid with zero pressure moving

according to Newton’s laws of motion and gravitation) of uniform density p(t),
which is in a state of uniform expansion, the only force on it being gravity.

18Gee Guth, 1981.
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This means that the position vector r of a fluid particle at any time ¢ is given

by a relation of the form
r = R(t)c, (6.53)

where ¢ is a constant vector which is determined by the initial position of the
fluid particle. Differentiation gives

i = H(t)r, (6.54)

where H(t) = R(t)/R(t), and in this way our dust has a Hubble constant
H(t) associated with the scale factor R(¢).
The Newtonian continuity equation

Op/ot+V -(pr)=0
gives p+ 3pH = 0, or Rjp+ 3Rp = 0, which integrates to give
pR? = constant.

As in Section 6.3, let us indicate present-day values with a subscript zero, and
write the above equation as

pR® = pyRY. (6.55)
Euler’s equation of motion for such a fluid takes the form!?
(0/0t+1-V)r =F,
where F is the body force per unit mass. With & = H(¢)r, this reduces to
(H+H)r=F. (6.56)

The body force F is due to gravity, and satisfies V - F = —4wGp, and on
taking the divergence of equation (6.56), we have

3(H + H?) = —4nGp.
Putting H = R/R results in
3R/R = —4nGp, (6.57)

which is exactly the same as the relativistic equation (6.6) with p put equal
to zero. Substitution for p from equation (6.55) and rearrangement gives

2R+ A?/R* =0,
where, as before, A2 = 87GpoR3 /3. Multiplying by R and integrating gives

19Gee, for example, Landau and Lifshitz, 1987, §2.
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R* 4+ k = A%/R, (6.58)

where k is a constant of integration. This is exactly the same as the Friedmann
equation (6.14), but there k is either +1 or 0. In fact if k # 0, there is no loss
of generality in taking it to be £1 in the Newtonian case (see Exercise 6.7.1),
and we are therefore led to exactly the same three models for the evolution
of the universe as we obtained in Section 6.3.

Equation (6.58) was obtained by integrating equation (6.57), which is ef-
fectively the equation of motion of the whole dust-filled Newtonian universe.
There is therefore a sense in which we may regard equation (6.58) as the
energy equation of the whole universe. Writing it as

R? — A*/R = —k,

we may regard R? as a measure of its kinetic energy, —A%/R as a measure
of its gravitational potential energy, and —k as a measure of its total energy.
If ¥ = —1, the total energy is positive, and the universe has an excess of
kinetic energy that allows it to keep expanding at an ultimately constant rate
(R — land R — o0 as t — 00). If k = 0, the total energy is zero, and the
kinetic energy is just sufficient to allow the universe to keep expanding, but at
a decreasing rate (R — 0 and R — o0 as t — 00). If k = 1, then the universe
has insufficient kinetic energy for continued expansion. It expands until R = 0
(when R = A?) and subsequently contracts. This simplistic treatment of the
universe as modeled by a Newtonian dust affords insight into the meaning of
the curvature constant & appearing in the relativistic models.

Since the Newtonian analysis leads to the same differential equation and
hence to the same results as in the relativistic case, we may ask why we
bother with a relativistic treatment. Our answer must include the following.
In the first place, there are difficulties with Newtonian cosmology that our
simple treatment obscures.?’ Second, in relativity pressure contributes to the
total energy, and hence to the gravitational field, and Newtonian gravity is
deficient in this respect. Third, if the fluid contains particles (stars, etc.)
having relativistic speeds, then Newtonian physics is inadequate. Finally, the
problem of light propagation throughout the universe should be handled from
a relativistic viewpoint.

Exercise 6.7

1. The relationship (6.53) is preserved if we replace R(t) and ¢ by R(t) and
¢, defined by

R(t) = AR(t), c=\"'¢

where ) is constant. Show that this leads to H(t) = H(t), A2 = A2/)3,
and

20See Bondi, 1960, §9.3.
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R2+k/X? = A%/R

in place of equation (6.58). 5
Hence if k # 0, by a suitable choice of A we can make k = k/\? = +£1.

Problems 6

1. Show that the three-dimensional manifold with line element (6.3) has a
curvature scalar equal to —6k.

2. Show that for the cases k = £1 the constant of integration A? occurring
in equation (6.14) is given by either

A? k A2 g B2
7_R°q°(2q0—1) or ?_E}<2q0—1> ’

Hence show that for the closed model the present-day value g of the
parameter ¥ (see equations (6.19)) is given by cos vy = (1 — go)/qo, while
for the open model (see equations (6.20)) it is given by coshyy = (1 —
q0)/qo0- _

Use these results to show that for a closed model with g = 1 (say) and
Hy =~ (13 x 10%yrs)™! we have to ~ 7.4 x 10%yrs, while for an open
model with ¢y ~ 0.014 (say) and the same value for Hp, we have ty ~
12.4 x 10° yrs.

Repeat the calculations using a Hubble constant of (18 x 10° yrs)~1.

3. A galaxy on the horizon to-day is receding with a speed v just under the
limiting value of 2¢ for the flat model of the universe and is now a distance
Ly away from us. In the flat model (with k = 0) it is, of course, slowing
down. Taking Hy to be (18 x 10%) = yrs™! (so that ¢y = 12 x 10° yrs), find
(a) its present-day distance Ly from us;

(b) the future cosmic time ¢t when its speed of recession will have slowed
to ¢, and hence its distance from us then;
(c) its redshift now, and its redshift when its speed is c.

4. Sketch the graph of the velocity vph(t) of a photon in the flat model as
a function of cosmic time ¢, given that it arrives here at g, having left
the galaxy G at tg = to/5. Verify that the photon is stationary when
t = 8ty/27.

5. A swimmer who can maintain a speed of 3ms~! in static water jumps off
a dock into a fiord while the tide is going out. The speed of the outgoing
tide is 4(1 — 0.001¢%/3), where ¢ is the time in seconds after the jump is
made. Find
(a) how long it takes her to swim back to the dock;
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(b) the maximum distance she is swept out from the dock.
Compare and contrast this Galilean calculation with the results obtained
in Section 6.5.

. The time tg —tg for light to travel from a galaxy to a present-day observer

is sometimes called the look-back time.

(a) Show that in the flat model the look-back time for a galaxy with
redshift 2 is (1 — (14 2)73/2)t,.

(b) An astronomer is observing a galaxy for which the redshift is z = 2.
Taking the present age of the universe to be 12 x 10° yrs, calculate
how long ago the light was emitted. Compare this result with that
obtained for the case z = 4.

. The value of z for the cosmic background radiation is about 1100. Use this
value to obtain an estimate for the age of the universe in the flat model by
assuming that the photons were discharged not at tg = 0, but rather at
tg ~ 340,000 years. (This is the so-called recombination or last-scattering
time—the epoch after which matter and radiation were decoupled, and
photons were able to travel freely without being further scattered by the
hot plasma of the very early universe.)

. For the flat model, make an estimate of the absolute temperature of the
universe at the recombination time of 340,000 years, given that the tem-
perature T scales as 1/R.

Give a plausibility argument for the latter statement, using that hv and
kT are both measures of energy. (Here h is Planck’s constant and k is
Boltzmann’s constant.)
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Special relativity review

A.0 Introduction

Newton believed that time and space were completely separate entities. Time
flowed evenly, the same for everyone, and fixed spatial distances were identical,
whoever did the observing. These ideas are still tenable, even for projects
like manned rocket travel to the Moon, and almost all the calculations of
everyday life in engineering and science rest on Newton’s very reasonable
tenets. Einstein’s 1905 discovery that space and time were just two parts
of a single higher entity, spacetime, alters only slightly the well-established
Newtonian physics with which we are familiar. The new theory is known as
special relativity, and gives a satisfactory description of all physical phenomena,
(when allied with quantum theory), with the exception of gravitation. It is
of importance in the realm of high relative velocities, and is checked out by
experiments performed every day, particularly in high-energy physics. For
example, the Stanford linear accelerator, which accelerates electrons close to
the speed of light, is about two miles long and cost $10%; if Newtonian physics
were the correct theory, it need only have been about one inch long.

The fundamental postulates of the theory concern inertial reference sys-
tems or inertial frames. Such a reference system is a coordinate system based
on three mutually orthogonal axes, which give coordinates x, y, z in space,
and an associated system of synchronized clocks at rest in the system, which
gives a time coordinate ¢, and which is such that when particle motion is for-
mulated in terms of this reference system Newton’s first law holds. It follows
that if K and K’ are inertial frames, then K’ is moving relative to K with-
out rotation and with constant velocity. The four coordinates (¢, z,y, ) label
points in spacetime, and such a point is called an event.

The fundamental postulates are:

1. The speed of light c is the same in all inertial frames.
2. The laws of nature are the same in all inertial frames.
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Postulate 1 is clearly at variance with Newtonian ideas on light propaga-
tion. If the same system of units is used in two inertial frames K and K’, then
it implies that

c=dr/dt =dr'/dt, (A1)

where (in Cartesians) dr? = dz? + dy? + dz?, and primed quantities refer to
the frame K'. Equation (A.1) may be written as

Adt? — dz? — dy? — dz? = 2(dt')? — (d2')? - (dy')* — (d2)* = 0,

and is consistent with the assumption that there is an invariant interval ds
between neighboring events given by

+ds? = Fdt? — dg? — dy? — d2? = *(dt)? — (dz')? — (dy')* - (d)*, (A.2)

which is such that ds = 0 for neighboring events on the spacetime curve rep-
resenting a photon’s history. It is convenient to introduce indexed coordinates
z* (1 =0,1,2,3) defined by

' =c, x =z =y 2 =z, (A.3)

and to write the invariance of the interval as

ds* = dz*dz” = nm,d:r“ld:v",, (A.4)
where
1 0 0 O
0-1 0 0
Ml =10 0-1 0
0 0 0-1

in Cartesian coordinates, and Einstein’s summation convention has been em-
ployed (see Sec. 1.2). In the language of Section 1.9, we are asserting that the
spacetime of special relativity is a four-dimensional pseudo-Riemannian man-
ifold! with the property that, provided Cartesian coordinate systems based
on inertial frames are used, the metric tensor components g,,, take the form
N given above.

Although special relativity may be formulated in arbitrary inertial coordi-
nate systems, we shall stick to Cartesian systems, and raise and lower tensor
suffixes using 7,, or n*¥, where the latter are the components of the con-
travariant metric tensor (see Sec. 1.8). In terms of matrices (see remarks in
Sec. 1.2), [7**] = [nu.] and associated tensors differ only in the signs of some
of their components.

1Roughly speaking, a Riemannian manifold is the N-dimensional generalization
of a surface. What makes spacetime pseudo-Riemannian is the presence of the minus
signs in the expression for ds®. See Sec. 1.9 for details.
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Example A.0.1
If A% = (A9 A1, A2, \3), then

A=A = (A% A1 =2 =03,

In a Cartesian coordinate system, the inner product g, A\*o" = Mo, = A, 0%
(see Sec. 1.9) takes the simple form

NN e’ =A% — Aot — A%6% — M3

The frame-independence contained in the second postulate is incorporated
into the theory by expressing the laws of nature as tensor equations which are
invariant under a change of coordinates from one inertial reference system to
another.

We conclude this introduction with some remarks about time. Each inertial
frame has its own coordinate time, and we shall see in the next section how
these different coordinate times are related. However, it is possible to introduce
an invariantly defined time associated with any given particle (or an idealized
observer whose position in space may be represented by a point). The path
through spacetime which represents the particle’s history is called its world
line,> and the proper time interval dr between points on its world line, whose
coordinate differences relative to some frame K are dt, dzx, dy, dz, is defined
by

cdr? = Adt? — dz? — dy? — d2?

or

c*dr?® = n,,dztdzr”. (A.5)

So

dr = (1—v%/c)Y2dt, (A.6)

where v is the particle’s speed. Finite proper time intervals are obtained by
integrating equation (A.6) along portions of the particle’s world line.

Equation (A.6) shows that for a particle at rest in K the proper time
7 is nothing other than the coordinate time ¢ (up to an additive constant)
measured by stationary clocks in K. If at any instant of the history of a
moving particle we introduce an instantaneous rest frame Ky, such that the
particle is momentarily at rest in Ky, then we see that the proper time 7 is the
time recorded by a clock which moves along with the particle. It is therefore
an invariantly defined quantity, a fact which is clear from equation (A.5).

2For an extended object we have a world tube.
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A.1 Lorentz transformations

A Lorentz transformation is a coordinate transformation connecting two in-
ertial frames K and K’. We observed in the previous section that K’ moves
relative to K without rotation and with constant velocity, and it is fairly
clear that this implies that the primed coordinates z# of K' are given in
terms of the unprimed coordinates z# of K via a linear (or, strictly speaking,
an affine?) transformation

o = A + b, (A7)

U .
where A¥ and a* are constants. (This result also follows from the trans-
formation formula for connection coefficients given in Exercise 2.2.5, since,

as a consequence of g,, = gu, = N, I}, = I, 5,/0, = 0, and hence
XK = &z+ /97 dx° = 0, which integrates to give equation (A.7).) Dif-
ferentiation of equation (A.7) and substitution into equation (A.4) yields

Nuw = A AT e (A.8)

as the necessary and sufficient condition for A%’ to represent a Lorentz trans-
formation.

If in the transformation (A.7) a* = 0, so that the spatial origins of K
and K’ coincide when ¢t = ¢/ = 0, then the Lorentz transformation is called
homogeneous, while if a* # 0 (i.e., not all the a* are zero) then it is called inho-
mogeneous. (Inhomogeneous transformations are often referred to as Poincaré
transformations, in which case homogeneous transformations are referred to
simply as Lorentz transformations.)

To gain some insight into the meaning of a Lorentz transformation, let us
consider the special case of a boost in the x direction. This is the situation
where the spatial origin O’ of K’ is moving along the z axis of K in the
positive direction with constant speed v relative to K, the axes of K and K’
coinciding when ¢t = t' = 0 (see Fig. A.1). The transformation is homogeneous
and could take the form

t' = Bt +Cx,
= Az — vt),
= A (A.9)
y =y,
2 =z,

the last three equations being consistent with the requirement that O’ moves
along the x axis of K with speed v relative to K. Adopting this as a “trial
solution” and substituting in equation (A.2) gives

B2? — A2 =%, BCAP +A%w =0, C??—-A?=-1.

3 An affine transformation is a linear transformation that includes a shift of origin.
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Fig. A.1. A boost in the z direction.

These imply that (see Exercise A.1.1)
A=B=(1-v%/A)7Y2 C=—(v/P)(1-2v?/ct) 2 (A.10)

If we put
y=(1-v?/ct)"Y2, (A.11)

then our boost may be written as

t' = (t —av/c?),

' =~z — vt),
=@ l) (A.12)
¥y =Y
2=z,
or (in matrix form)
ct’ v  —vy/c00] |ct
| _{-vy/e v 00 x
g = 0 0 10 y (A.13)
2 0 0 01 z

Putting tanh ¢y = v/c gives (from equation (A.11)) v = cosh1), so the boost
may also be written as
ct’ = ctcoshy — xsinh ),
x' = zcosh) — ctsinhp,
y =y,
2 =z

(A.14)

It may be shown that a general homogeneous Lorentz transformation is equiv-
alent to a boost in some direction followed by a spatial rotation. The general
inhomogeneous transformation requires an additional translation (i.e., a shift
of spacetime origin).
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. ’ ; ’ .
Since X# = 0z# /0z¥ = A%, a contravariant vector has components \*
relative to inertial frames which transform according to

M= AN,
while a covariant vector has components ), which transform according to
/\IJ/ = AZ//\V,

where A7, is such that AZ,A{,‘I = §7. These transformation rules extend to
tensors. For example, a mixed tensor of rank two has components 74 which
transform according to

! ’
o an g0 p
T, = Ay AL TE.

The equations of electromagnetism are invariant under Lorentz transfor-
mations, and in Section A.8 we present them in tensor form which brings out
this invariance. However, the equations of Newtonian mechanics are not in-
variant under Lorentz transformations, and some modifications are necessary
(see Sec. A.6). The transformations which leave the equations of Newtonian
mechanics invariant are Galilean transformations, to which Lorentz transfor-
mations reduce when v/c is negligible (see Exercise A.1.3).

Exercises A.1

1. Verify that A, B, C are as given by equations (A.10).

2. Equation A.13 gives the matrix [A%] for the boost in the z direction.
What form does the inverse matrix [4},] take? What is the velocity of K
relative to K’?7

3. Show that when v/c is negligible, equations (A.12) of a Lorentz boost
reduce to those of a Galilean boost:

=t 2=x—vt, y=y, =z

A.2 Relativistic addition of velocities

Suppose we have three inertial frames K, K’, and K", with K’ connected to
K by a boost in the z direction, and K" connected to K’ by a boost in the
' direction. If the speed of K’ relative to K is v, then equations (A.14) hold,
where tanht = v/c and if the speed of K" relative to K’ is w, then we have
analogously
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ct’ = ct’ cosh ¢ — x' sinh ¢,
2" =z’ cosh ¢ — ct’ sinh ¢,
y' =y,

" 7
72 =2,

(A.15)

where tanh ¢ = w/c. Substituting for ¢t’, 2, ¢/, 2’ from equations (A.14) into
the above gives
ct” = ctcosh(t) + @) — xsinh(¢) + ¢),
z" =z cosh(y + ¢) — ctsinh(y) + ¢),
1
¥y =9

2 =z

(A.16)

This shows that K" is connected to K by a boost, and that K is moving
relative to K in the positive = direction with a speed u given by u/c =
tanh(y + ¢). But

tanh ¢ + tanh ¢
1+ tanh tanh ¢’

tanh(y + ¢) =

)

v+ w

This is the relativistic formula for the addition of velocities, and replaces the
Newtonian formula v = v + w.

Note that v < ¢ and w < ¢ implies that u < ¢, so that by compounding
speeds less than ¢ one can never exceed c¢. For example, if v = w = 0.75¢, then
u = 0.96¢.

Exercises A.2
1. Verify equations (A.16).

2. Verify that if v < ¢ and w < ¢ then the addition formula (A.17) implies
that u < c.

A.3 Simultaneity

Many of the differences between Newtonian and relativistic physics are due to
the concept of simultaneity. In Newtonian physics this is a frame-independent
concept, whereas in relativity it is not. To see this, consider two inertial frames
K and K’ connected by a boost, as in Section A.1l. Events which are simuita-
neous in K are given by t = ty, where tg is constant. Equations (A.12) show
that for these events
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t' = (to — 20/?),

so t’ depends on z, and is not constant. The events are therefore not simulta-
neous in K’. (See also Fig. A.5.)

A.4 Time dilation, length contraction
Since a moving clock records its own proper time 7, equation (A.6) shows that

the proper time interval Ar recorded by a clock moving with constant speed
v relative to an inertial frame K is given by

Ar=(1-02/)V2At, (A.18)

where At is the coordinate time interval recorded by stationary clocks in K.
Hence At > Ar and the moving clock “runs slow.” This is the phenomenon
of time dilation. The related phenomenon of length contraction (also known
as Lorentz contraction) arises in the following way.

y y
K K e
Rodatrestink’
%
! |
I I
i |
I |
o) x O, L L x
X X3
2z F4

Fig. A.2. Length contraction.

Suppose that we have a rod moving in the direction of its own length with
constant speed v relative to an inertial frame K. There is no loss of generality
in choosing this direction to be the positive z direction of K. If K’ is a frame
moving in the same direction as the rod with speed v relative to K, so that
K’ is connected to K by a boost as in Section A.1, then the rod will be at rest
in K'’, which is therefore a rest frame for it (see Fig. A.2). The proper length
or rest length ly of the rod is the length as measured in the rest frame K’, so

' '
lop =29 — 27,
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where z4, and z] are the z’ coordinates of its endpoints in K’. According to
equations (A.12), the  coordinates x;, z2 of its endpoints at any time ¢ in K
are given by

Hence if we take the difference between the endpoints at the same time t in
K, we get
! 7
zy — 2y = 7(z2 — 21).
The length [ of the rod, as measured by noting the simultaneous positions of
its endpoints in K, is therefore given by

lo=~l or 1=Ilg(1-v?/)2 (A.19)

So [ < ly and the moving rod is contracted.

A straightforward calculation shows that if the rod is moving relative to
K in a direction perpendicular to its length, then it suffers no contraction. It
follows that the volume V of a moving object, as measured by simultaneously
noting the positions of its boundary points in K, is related to its rest volume
Vo by V. = V5(1 — v?/c®)'/2. This fact must be taken into account when
considering densities.

A.5 Spacetime diagrams

Spacetime diagrams are either three- or two-dimensional representations of
spacetime, having either one or two spatial dimensions suppressed. When
events are referred to an inertial reference system, it is conventional to ori-
ent the diagrams so that the ¢ axis points vertically upwards and the spatial
axes are horizontal. It is also conventional to scale things so that the straight-
line paths of photons are inclined at 45°; this is equivalent to using so-called
relativistic units in which ¢ = 1, or using the coordinates z* defined by equa-
tions (A.3).

If we consider all the photon paths passing through an event O then these
constitute the null cone at O (see Fig. A.3). The region of spacetime contained
within the upper half of the null cone is the future of O, while that contained
within the lower half is its past. The region outside the null cone contains
events which may either come before or after the event O in time, depending
on the reference system used, but there is no such ambiguity about the events
in the future and in the past. This follows from the fact that the null cone
at O is invariantly defined. If the event O is taken as the origin of an inertial
reference system, then the equation of the null cone is
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Future-pointing timelike vector

Future-pointing
null vector

Spacelike vector

Past-pointing
null vector

Past-pointing
timelike vector

Fig. A.3. Null cone and vectors at an event O.

2 + 9% + 22 = Pt (A.20)

If we have a vector A localized at O, then A* is called timelike if it lies
within the null cone, null if it is tangential to the null cone, and spacelike if it
lies outside the null cone. That is, A* is

timelike >0
null if 9 AN =0 . (A.21)
spacelike <0

Timelike and null vectors may be characterized further as future-pointing or
past-pointing (see Fig. A.3).

Consider now the world line of a particle with mass. Relativistic mechanics
prohibits the acceleration of such a particle to speeds up to ¢ (a fact suggested
by the formula (A.17) for the addition of velocities),* which implies that its
world line must lie within the null cone at each event on it, as the following
remarks show. With the speed v < ¢ the proper time 7 as defined by equa-
tion (A.6) is real, and may be used to parameterize the world line: z# = z#(7).
Its tangent vector u* = dz*/dr (see Sec. 1.7) is called the world velocity of
the particle, and equation (A.5) shows that

*Particles having speeds in excess of ¢, called tachyons, have been postulated,
but attempts to detect them have (to date) been unsuccessful. They cannot be
decelerated to speeds below c.
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v 2
Nuutu” = c,

so u* is timelike and lies within the null cone at each event on the world line
(see Fig. A.4 (a)). The tangent vector at each event on the world line of a
photon is clearly null (see Fig. A.4 (b)).

@ é (b

Fig. A.4. World lines of (a) a particle with mass, and (b) a photon.

Spacetime diagrams may be used to illustrate Lorentz transformations. A
two-dimensional diagram suffices to illustrate the boost of Section A.1 con-
necting the frames K and K'. The x’ axis of K’ is given by ¢ = 0, that is,
by t = zv/c?, while the ¢ axis of K’ is given by 2’ = 0, that is, by = = vt.
So with ¢ = 1, the slope of the 2’ axis relative to K is v, while that of the
t' axis is 1/v. So if the axes of K are drawn perpendicular as in Figure A.5,
then those of K’ are not perpendicular, but inclined as shown.

t 4

S n K
- aaneous eyt
p Sy Q

Simultaneous events in K

Fig. A.5. Spacetime diagram of a boost.
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Events which are simultaneous in K are represented by a line parallel
to the z-axis, while those which are simultaneous in K’ are represented by
a line parallel to the z’ axis, and the frame dependence of the concept of
simultaneity is clearly illustrated in a spacetime diagram. Note that the event
Q@ of Figure A.5 occurs after the event P according to observers in K, while
it occurs before the event P according to observers in K.

Exercises A.5
1. Check the criterion (A.21).

2. Check the invariance of the light-cone under a boost, by showing that
equation (A.20) transforms into the equation

A.6 Some standard 4-vectors

Here we introduce some standard 4-vectors of special relativity, and comment
briefly on their roles in relativistic mechanics. The prefix 4- serves to distin-
guish vectors in spacetime from those in space, which we shall call 3-vectors.
It is useful to introduce the notation

M= (A% AN A2 03) = (A0 ), (A.22)

so that bold-faced letters represent spatial parts.

We have already defined the world velocity u#* = dxz#/dr of a particle
with mass. If we introduce the coordinate velocity v* (which is not a 4-vector)
defined by

vt =dz?/dt = (e, v), (A.23)

where v is the particle’s 3-velocity, then
ut = (dt/dr)vt = (ye,yv), (A.24)

where v = (1 —v%/c?)~'/2. The particle’s 4-momentum p* is defined in terms
of u* by

p* = mu, (A.25)

where m is the particle’s rest mass.> The zeroth component p° is E/c, where
E is the energy of the particle, and we can put

P = (E/c,p). (A.26)

5As in Chap. 3, we use m rather than the more emphatic mg for rest mass.
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The wave aspect of light may be built into the particle approach by asso-
ciating with a photon a wave 4-vector k* defined by

k* = (21/), k), (A.27)

where A is the wavelength and k = (27/A\)n, n being a unit 3-vector in the
direction of propagation.? It follows that k#k, =0, so that k* is null. It is, of
course, tangential to the photon’s world line. The photon’s 4-momentum p#
is given by

p* = (h/2m)k*, (A.28)

where h is Planck’s constant. Thus the photon’s energy is
E =cp® = c¢(h/2n)k° = he/\ = ho,

where v is the frequency, in agreement with the quantum-mechanical result.
In relativistic mechanics, Newton’s second law is modified to

dpt [dr = f*, (A.29)

where f# is the 4-force on the particle. This is given in terms of the 3-force F
by
ff=4F v/c,F). (A.30)

Example A.6.1
The invariance of the inner product gives

PPy =p" pu- (A.31)

If we take the primed frame K’ to be an instantaneous rest frame, then p“/ =
(me,0), and the right-hand side is m2c?. The left-hand side is E?/c? — p - p,
so equation (A.31) gives

E = (p*c? + m2cH)'/?, (A.32)

where p? = p - p. This is the well-known result connecting the energy E of a
particle with its momentum and rest mass.

From equations (A.24) and (A.26) we see that
p =~ymv (A.33)

and that E/c = p° = yme, so

5The factor 27, which seems to be an encumbrance, simplifies expressions in
relativistic optics and wave theory.
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1
E =ymc? = mc®(1 —v?/c?) V2 = me? + §mv2 +-e (A.34)

Equation (A.33) shows that the spatial part p of the relativistic 4-momentum
p* reduces to the Newtonian 3-momentum mv when v is small compared to ¢
(giving v ~ 1). However, equation (A.34) shows that F reduces to m62+%mv2,
and that the total energy includes not only the kinetic energy %va, but also
the rest energy mc?, the latter being unsuspected in Newtonian physics. It
should be noted that we have not proved the celebrated formula E = ymc?;
it simply follows from our defining E by p° = E/c. Although this definition
is standard in relativity, it is sensible to ask how it ever came about.

Conservation of momentum is an extremely useful principle, and if we wish
to preserve it in relativity, then it turns out that we must define momentum p
by p = ymv rather than p = mv. This follows from a consideration of simple
collision problems in different inertial frames.” But ymv is the spatial part
of the 4-vector p* defined by equation (A.25), and it follows from equations
(A.29) and (A.30) that dp®/dr = (v/c)F - v, which implies that

F v =cdp®/dt.

But F - v is the rate at which the 3-force F imparts energy to the particle,
hence it is natural to define the energy E of the particle by E = cp®. The
conservation of energy and momentum of a free particle is then incorporated
in the single 4-vector equation

p" = constant.

This extends to a system of interacting particles with no external forces:

Z p* = constant. (A.35)

all particles

Example A.6.2

Consider the Compton effect in which a photon collides with a stationary
electron (see Fig. A.6). Initially the photon is traveling along the z! axis of
our reference system and it collides with an electron at rest. After collision
the electron and photon move off in the plane 23 = 0, making angles 8 and ¢
with the z! axis as shown. Remembering that the energy of a photon is hv,
and that for a photon p#p, = 0, we have before collision:

phy = (hv/e,hv/e,0,0),
pg] = (mC,0,0,0),

"See, for example, Rindler, 1982, §26. Note that in Rindler mg is proper mass and
m is relativistic mass; in our notation these quantities are m and ym, respectively.
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x2 X2
Photon
Electron ?
x! xl
0o Photon 0
Electron

Fig. A.6. Geometry of the Compton effect.

and after collision

phy, = (ho/c, (hv/c) cos b, (hi7/c)sinb,0),
phy = (yme, ymu cos ¢, —ymu sin ¢, 0),
where v is the electron’s speed after collision. The conservation laws contained
in
Pf-,fh +ph = ﬁﬁh + Py
then give
hv/c+ mec = h/c + yme,
hv/c = (hv/c) cos 8 + ymu cos ¢,
0= (ho/c)sin @ ~ ymusin ¢.

Eliminating v and ¢ from these leads to the formula for Compton scattering
(see Exercise A.6.3) giving the frequency of the photon after collision as

V=1 + (hv/mc?)(1 — cos8)’ (4.36)

Exercises A.6

1. In a laboratory frame, write u# for (a) a stationary chair, (b) a speeding
bullet.
Is it possible to write u* for a photon?
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2. Show that as a consequence of equation (A.29) we have u, f* = 0, and
that f# as given by equation (A.30) satisfies this relation.

3. Check the derivation of the formula (A.36).

A.7 Doppler effect

X

K

x3

(0] 6 X!

Observer
K| —»v
g o
Source

Fig. A.7. Photon arriving at an observer from a moving source.

Suppose that we have a source of radiation which is moving relative to
an inertial frame K with speed v in the positive z! direction in the plane
z3 = 0, and that at some instant an observer fixed at the origin O of K
receives a photon in a direction which makes an angle § with the positive z*
direction (see Fig. A.7). Let us attach to the source a frame K’ whose axes
are parallel to those of K, and which moves along with the source, so that
it is at rest in K’ at the origin O’. The frame K’ is therefore connected to
K by a Lorentz transformation comprising a boost in the z! direction and a
translation (see Sec. A.1). It follows that the wave 4-vector k# of the photon

transforms according to

B = A R (A.37)
where
v —yv/c00
W1 | —w/e v 00
[A" I= 0 0 10

0 0 01
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(see Exercise A.1.2). The zeroth component gives k% = A% k¥, or
K = k0 — (yv/c)k!. (A.38)

Now k% = 27 /A, where Ag is the proper wavelength as observed in the
frame K’ in which the source is at rest, and

k* = (2w /A)(1, cos8,sinb,0),

where A is the wavelength as observed by the observer at the origin O of
K. (Note that we are making use of the fact that k* is constant along the
photon’s world line.) Hence equation (A.38) gives

11 Yyu
S0
Ao =1 = (v/c)cos b, (A.39)

and the observed wavelength is different from the proper wavelength.
If the source is on the negative x! axis, so that it is approaching the
observer, then § = 0 and equation (A.39) gives

—vje\
X/\a =11 -v/e)= <1 +1/§c> ' (4.40)

Thus A < Ap and the observed wavelength is blueshifted.

If the source is on the positive 2! axis, so that it is receding from the
observer, then 6 = 7 and equation (A.39) gives

1/2
! “’/C) . (A.41)

5 = 9(1+ 0/ = (128

Thus A > A\g and the observed wavelength is redshifted.
If the source is displaced away from the z! axis, then at some instant we
will have § = +7/2 giving

Ao =nv=(1-vc?)"2 (A.42)

which is also a redshift.

These shifts in the observed spectrum are examples of the Doppler effect.
Formulae (A.40) and (A.41) refer to approach and recession, and have their
counterparts in nonrelativistic physics. Formula {A.42) is that of the trans-
verse Doppler effect, and has no such counterpart. The transverse effect was
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observed in 1938 by Ives and Stillwell, who examined the spectra of rapidly
moving hydrogen atoms. Formula (A.42) may be used in discussions of the
celebrated twin paradox.®

Exercise A.7

1. Using equation (A.37), show that the angle 6’ (see Fig. A.7) at which the
photon leaves the source, as measured in K’, is given by

tand
¥[1 = (v/c)sech]

(This is essentially the relativistic aberration formula.)

tand =

A.8 Electromagnetism

The equations which govern the behavior of the electromagnetic field in free
space are Maxwell’s equations, which in SI units take the form

V-B=0, (A.43)
V-E = p/eo, (A.44)
V xE=-0B/ot, (A.45)
V x B = ppgd + poeodE/0t. (A.46)

Here E is the electric field intensity, B is the magnetic induction, p is the
charge density (charge per unit volume), J is the current density, uq is the
permeability of free space, and ¢ is the permittivity of free space. The last two

quantities satisfy
oo = 1/¢%. (A.A4T)

The vector fields B and E may be expressed in terms of a vector potential
A and a scalar potential ¢:

B=VxA, E=-V¢-0A/dt (A.48)

Equations (A.43) and (A.45) are then satisfied. These potentials are not
uniquely determined by Maxwell’s equations, and A may be replaced by
A + V¢ and ¢ by ¢ — Jv/0t, where v is arbitrary. Such transformations
of the potentials are known as gauge transformations, and allow one to choose
A and ¢ so that they satisfy the Lorentz gauge condition, which is

V- A + eopode/dt = 0. (A.49)

8See Feenberg, 1959.
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The remaining two Maxwell equations (A.44) and (A.46) then imply that A
and ¢ satisfy
D2A = _/U‘O']v D2¢) = —p/€07 (A50)

where (12 is the d’Alembertian defined by®
02 = V2 — ¢ 20% /01> (A.51)

Equations (A.50) may be solved in terms of retarded potentials, and the form
of the solution shows that we may take ¢/c and A as the temporal and spatial
parts of a 4-vector:

AR = (¢/c, A), (A.52)

which is known as the 4-potential.'®
Maxwell’s equations take on a particularly simple and elegant form if we
introduce the electromagnetic field tensor F,,, defined by

Fpu = Ap.,l/ - Al/,;u (A53)

where A, = (¢/c, —A) is the covariant 4-potential, and commas denote partial
derivatives. Equations (A.48) show that

0 —FE'/c—E?/c-E3/c
E'Je 0 B _B?
E?/c -B® 0o B' |’
E*/fc B® -B' 0

(F] = (A.54)

where (E', E?, E?) = E and (B', B2, B®) = B. It is then a straightforward
process (using the result of Exercise A.8.4) to check that Maxwell’s equations
are equivalent to

P, = o, (A.55)

Fyu,a + Fua,,u + Fou,u =0, (A56)

where j* = (pc,J) is the 4-current density. Note that j* = pv# = (ypg)v* =
pou*, where u* is the world velocity of the charged particles producing the
current distribution, and py is the proper charge density. That is, py is the
charge per unit rest volume, whereas p is the charge per unit volume (see
remark at end of Sec. A.4).
The equation of motion of a particle of charge ¢ moving in an electromag-
netic field is
dp/dt = q(E +v x B), (A.57)

9We are using the more consistent-looking notation (%, rather than O used in
some European texts.
10gee, for example, Rindler, 1982, §38.
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where p is its momentum and v its velocity. The right-hand side of this
equation is known as the Lorentz force. It follows that the rate at which the
clectromagnetic field imparts energy F to the particle is given by

dE/dt=F -v=qE-v. (A.58)

Equations (A.57) and (A.58) may be brought together in a single 4-vector
equation (see Exercise A.8.5):

dp* /dT = —qF* v, (A.59)

which gives
md2z* /dr? = —qF* u”, (A.60)

where m is the rest mass of the particle. The continuous version of equa-
tion {A.60) is
pd*zh [dr? = —F* 57, (A.61)

where 4 is the proper (mass) density of the charge distribution giving rise
to the electromagnetic field, and this is the equation of motion of a charged
unstressed fluid. That is, the only forces acting on the fluid particles arise from
their electromagnetic interaction, there being no body forces nor mechanical
stress forces such as pressure.

It is evident that Maxwell’s equations and related equations may be for-
mulated as 4-vector and tensor equations without modification. They are
therefore invariant under Lorentz transformations, but not under Galilean
transformations, and this observation played a leading role in the develop-
ment of special relativity. By contrast, the equations of Newtonian mechanics
are invariant under Galilean transformations, but not under Lorentz transfor-
mations, and therefore require modification to incorporate them into special
relativity.

Exercises A.8

1. Show that the Lorentz gauge condition (A.49) may be written as A* | =0
2. Check that the components F,, are as displayed in equation (A.54).

3. Show that the mixed and contravariant forms of the electromagnetic field
tensor are given by

0 —EJc-E?/c-FE3/c
—-E'¢ 0 -B® B2
“E?/c B® o -B! |
_E%Jc -B* B' 0

[F*] = (A.62)
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0 E')cE?*/cE3/c
~-E'Je 0 B® -B?
pr) —
[F ]— —EQ/C _B3 0 Bl : (A-63)

—-E%/c B> -B' 0
(Use caution in matrix multiplication.)

4. Verify that equations (A.55) and (A.56) are equivalent to Maxwell’s equa-
tions.

5. Verify that equations (A.57) and (A.58) may be brought together in the
single 4-vector equation (A.59).

Problems A

1. If an astronaut claims that a spaceflight took her 3 days, while a base
station on Earth claims that she took 3.000000015 days, what kind of
average rocket speed are we talking about?

(Assume only special-relativistic effects.)

2. INllustrate the phenomena of time dilation and length contraction using
spacetime diagrams.
(Note that there is a scale difference between the inclined z’ axis and the
horizontal x axis: if 1 cm along the x axis represents 1 m, then along the
x’ axis it does not represent 1 m. There is also a scale difference between
the time axes.)

3. If a laser in the laboratory has a wavelength of 632.8 nm, what wavelength
would be observed by an observer approaching it directly at a speed ¢/2?

4. Show that under a boost in the 2! direction the components of the electric
field intensity E and the magnetic induction B transform according to

El' — El, Bl' — Bl,
E? = v(E? —vB3), B? =~(B%+ vE3/c?),
EY =4(E® +vB?),  B¥ =4(B® —vE?/c?).

5. Plot a graph of v{v) = (1 - v2/c2)‘1/2,

6. In a laboratory a certain switch is turned on, and then turned off 3s later.
In a “rocket frame” these events are found to be separated by 5s. Show
that in the rocket frame the spatial separation between the two events is
12 x 108 m, and that the rocket frame has a speed 2.4 x 108 ms~" relative
to the laboratory.

(Take ¢ = 3 x 108 ms~1.)
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10.

11.

12.

A uniform charge distribution of proper density pp is at rest in an inertial
frame K. Show that an observer moving with a velocity v relative to K
sees a charge density vpp and a current density —ypgv.

A woman of mass 70kg is at rest in the laboratory. Find her kinetic
energy and momentum relative to an observer passing in the z direction
at a speed ¢/2.

Show that the Doppler shift formula (A.39) may be expressed invariantly

as

/\/AO = (ugource ku)/(uukl/)a
where )\ is the observed wavelength, Ay the proper wavelength, k* the
wave 4-vector, u* the world velocity of the observer, and vl .. that of
the source.
(Hint: In K', the wavelength is Ao and uX . = (¢,0). In K, the wave-

length is A and uX .. = v(c,v). For each frame of reference quantities
like k,,u* are invariant, and thus may be evaluated in any reference frames

we wish.)

It is found that a stationary “cupful” of radioactive pions has a half-life
of 1.77 x 1078s. A collimated pion beam leaves an accelerator at a speed
of 0.99¢, and it is found to drop to half its original intensity 37.3m away.
Are these results consistent?

(Look at the problem from two separate viewpoints, namely that of time
dilation and that of path contraction. Take ¢ = 3 x 108 ms~1.)

Verify that (in the notation of Sec. A.8) Ohm’s law can be written as
F* — vtu,j¥ = ou, F*, where o is the conductivity of the material and
ut is its 4-velocity.

Cesium-beam clocks have been taken at high speeds around the world in
commercial jets. Show that for an equatorial circumnavigation at a height
of 9km (about 30,000 feet) and a speed of 250ms~! (about 600 m.p.h.)
one would expect, on the basis of special relativity alone, the following
time gains (or losses), when compared with a clock which remains fixed

on Earth:
westbound flight eastbound Flight

+150 x 1075 ~262 x 1079s.

(Begin by considering why there is a difference for westbound and east-
bound flights, starting with a frame at the center of the Earth. Take
Rg = 6378km, and the Earth’s peripheral speed as 980 m.p.h. or
436 ms~!. Take c = 3 x 108 ms™!. In the early seventies Hafele and Keat-
ing'! performed experiments along these lines, primarily to check the effect
that the Earth’s gravitational field had on the rate of clocks, which is to
be ignored in this calculation.)

"Hafele and Keating, 1972.
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The Chinese connection

B.0 Background

Accounts of a vehicle generally referred to as a south-pointing carriage are to
be found in ancient Chinese writings.! Such a vehicle was equipped with a
pointer, which always pointed south, no matter how the carriage was moved
over the surface of the Earth. It thus acted like a compass, giving travel-
ers a fixed direction from which to take their bearings. However, as is clear
from their descriptions, these were mechanical and not magnetic devices: the
direction of the pointer was maintained by some sort of gearing mechanism
connecting the wheels of the carriage to the pointer. None of the descriptions
of this mechanism that occurs in the literature is sufficiently detailed to serve
as a blueprint for the construction of a south-pointing carriage, but they do
contain clues which have led modern scholars to make conjectures and attempt
reconstructions. The best-known and most elegant of these is that offered by
the British engineer, George Lanchester, in 1947, and it forms the basis of the
discussion in this appendix.

The way in which Lanchester’s carriage attempts to maintain the direction
of the pointer is by transporting it parallelly along the path taken by the
carriage. The carriage has two wheels that can rotate independently on a
common axle and the basic idea is to exploit the difference in rotation of
the wheels that occurs when the carriage changes direction. The gearing uses
this difference to adjust the angle of the pointer relative to the carriage, so
that its direction relative to the piece of ground over which it is traveling is
maintained. As a south-pointing device, Lanchester’s carriage is flawed, for
it only works on a flat Earth, but as a parallel-transporter it is perfect and

'See Needham, 1965, Vol. 4, §27(e)(5) for a thorough and detailed analysis of the
descriptions of such vehicles and attempts at reconstructions by modern sinologists
and others, and Cousins, 1955, for a popular account.
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C

Fig. B.1. Plan view of the carriage rounding a bend.

yields a practical means? of transporting a vector parallelly along a curve on
a surface.

As remarked above, Lanchester’s transporter uses the difference in rotation
of the wheels that arises when taking a bend, due to the inner wheel track
being shorter than the outer wheel track. To see how the transporter works
on a plane, we need to relate the path difference dp (due to a small change in
direction of the carriage) to the required adjustment 1) in the direction of the
pointer, and then show how the gearing maintains this relationship between
dp and &v. This is done in the next section and it prepares the way for our
discussion of using the transporter on a surface.

B.1 Lanchester’s transporter on a plane

Figure B.1 shows the plan view of the carriage rounding a bend while being
wheeled over a plane surface. The point P immediately below the midpoint of
the axle follows the base curve v, and to either side of this are the wheel tracks
vt and g of the left and right wheels. For each position of the carriage, the
points of contact of the wheels with the ground define an azle line which is
parallel to the direction of the axle and normal to the curves vz, v, and vxy.
The figure shows two axle lines PC and QC meeting in C due to the carriage

2Provided it is miniaturized, so that its dimensions are small compared with the
principal radii of curvature of the surface at points along its path. See Sec. B.2.
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moving a short distance s along the base curve while changing its direction
by an amount dv towards the right. The arrows in the figure represent the
pointer on the carriage: for this to be parallelly transported, the angle that it
makes with v (and therefore with an axis of the carriage at right angles to its
axle) must increase from 1 to ¢ + § in moving from P to Q. As explained in
the previous section, we need to relate d1 to the path difference dp of the wheel
tracks. For small ds, that part of v between P and Q and the corresponding
parts of vz, and yg can be approximated by circles? with center C. If we let
the track width be 2¢ and put PC = a, then these circles have radii ¢ and
a =x €, giving
dsr, = (a+¢)0v, dsp = (a — )0y

for the distances along -y and g corresponding to ds along 7. Subtracting,
we get

0p = ds;, — dsp = 2e 69 (B.1)

for the path difference. This is the key equation that gives the relation between
the adjustment d¢ to the direction of the pointer (relative to the carriage)
and the path difference dp in the wheel tracks in order that the pointer be
parallelly transported along +.

To appreciate how Lanchester’s parallel transporter works, it is sufficient
to consider the rear elevation shown in Figure B.2. The two wheels W and
Wpg have diameter 2¢, the same as the track width of the carriage; the wheel
Wy is rigidly connected to a contrate gear wheel® Ay, with Wgr and Ap
similarly connected. The gear wheels By, and Br combine the functions of
normal gear wheels and contrate gear wheels, having teeth round their edges
and teeth set at right angles to these. Between By, and By are two pinions®
mounted on a stub axle, the whole assembly being similar to the differential
gear box in the back axle of a truck. The rotation of Wy, is transmitted to By,
via Az, and an intervening pinion, while the rotation of Wg is transmitted to
Bg via Agr and a pair of rigidly connected pinions on a common axle. The
pointer is mounted on a vertical axle which is rigidly connected to the stub
axle, so that it turns with it; this axle also serves as the axle for By, and Bg,
which are free to turn about it. The gear wheels Ap, Ag, By, Bg have the
same number of teeth; the number of teeth that the intervening pinions have
is unimportant, but the two that transmit the rotation of Wg to B must
have the same number of teeth.

$More correctly, its projection on the plane.

4The reader familiar with the notion of the curvature of a plane curve will recog-
nize C as the center of curvature and PC as the radius of curvature of 7y at the point
P.

5That is, a gear wheel with teeth pointing in a direction parallel to its axis of
rotation.

5That is, small cog wheels.
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Fig. B.2. Rear elevation of Lanchester’s transporter.

Having described the gearing mechanism, let us examine what happens
when the transporter takes a right-hand bend as in Figure B.1. The wheel
W, travels ds;, and therefore turns through an angle ésp /e (as its radius is
€), while Wg turns through an angle dsg/e. These rotations are faithfully
transmitted to By and Bg (as all the gear wheels have the same number of
teeth) and the result is that, when viewed from above, By, turns anticlockwise
through an angle dsy, /¢, while Bg turns clockwise through an angle dsg/c. The
stub axle, and therefore the pointer, receives a rotation which is the average
of the rotations of B;, and Br. This amounts to an anticlockwise rotation of

M,:%(‘SS_L_(S_SE)_@

€ € 2’

where dp = ds;, — s is the path difference, in complete agreement with the
requirement (B.1) for parallelly transporting the pointer.

The explanation above is based on Figure B.l, where both wheels are
traveling in a forward direction with the center C to the right of both v
and vg. On a much tighter corner, the center C could lie between vy, and vg,
so that in turning the corner the inner wheel is traveling backwards. Some
amendment to the explanation is then needed, but the outcome is the same:
the pointer is still parallelly transported. In fact, if we let the two wheels turn
at the same rate, but in opposite directions, then the carriage turns on the
spot with no change in the direction of the pointer, as is easily checked. By
this means we can move the carriage along a base curve v that is piecewise
smooth, by which we mean a curve having a number of vertices where the
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Vv,

v, Vs

Fig. B.3. A piecewise smooth curve: in going along the curve the direction of the
tangent changes discontinuously at the vertices Vi, Vg, V3.

R

Fig. B.4. The basis vectors t*, n?, and the transported vector 4.

direction of its tangent suffers a discontinuity, as shown in Figure B.3. At a
vertex V, the carriage can turn on the spot and then move off in a different
direction, with the pointer parallelly transported in a purely automatic way,
no matter how twisty the route.

B.2 Lanchester’s transporter on a surface

The remarkable thing about Lanchester’s south-pointing carriage is that it
achieves parallel transport on any surface, as we shall verify in this section.
To do this we work to first order in € (where, as before, 2¢ is the track width)
and regard the carriage as having dimensions that are small, but small with
respect to what? The answer to this question is that ¢ is small compared with
the principal radii of curvature of the surface at all points of the route v taken
by the carriage, but to explain this fully requires too much digression.
Consider then Lanchester’s carriage following a base-curve -y on a surface,
as shown in Figure B.4. The vectors t4 and n? are unit vectors, respectively
tangential and normal to 7, so that t4 points in the direction of travel and
n“ points along the axle line. The vector A is a unit vector representing the
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pointer, which can be thought of as being obtained by lowering the pointer to
ground level and adjusting its length as necessary. We use {t4,n"} as a basis
for the tangent plane at P and write

M =cosyt? + sinyn?, (B.2)

where 9 is the angle between A4 and t*, as shown in the figure. We wish to
show that if the angle is adjusted according to equation (B.1), then the vector
M is parallelly transported along 7. The limiting version of equation (B.1),
got by dividing by és and letting ds — 0, is

p =2, (B.3)

where dots denote differentiation with respect to s, and it is sufficient to show
that DA*/ds = 0 follows from equation (B.3).

Suppose that v is given parametrically by 24(s), where s is arc-length
along 7 in the direction of travel. Then the left wheel track +;, is given by

zi(s) = z4(s) + en”. (B.4)
As s increases by s, the coordinates of the point L (see figure) change by
Saf = 2465 4+ ends

(approximately) and the distance moved by L along v, is (again approxi-
mately)
8s1, = {(9am)Léatdzp }'/?,

where the suffix L on g4 p indicates its value at L. To first order in ¢ this gives
st = {(gap + OpgapenP)(&48s + en’ds)(2P6s + enPds)}/2,  (B.5)

where all quantities on the right are evaluated at P. On using the symmetry
of gap, the binomial expansion and first-order approximation, equation (B.5)
simplifies to

s = (1 +egapi®n? + LedpgapnPiii?)és. (B.6)

The corresponding expression for the distance moved by R along the right
wheel track vg is got by changing the sign of e:

6sr = (1 —egapi?n® — LedpgapnPitiP)ss. (B.7)
Hence the path difference is (approximately)
6p = 6sp, — 0sp = 2(gapi?n® + %({bgABnDi?AiB)éS,

and equation (B.3) is seen to be equivalent to
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¢ = gapin® + 50pgapnPitiB, (B.8)

which may be written as )
¢ =tgDn® /ds, (B.9)

as Exercise B.2.2 asks the reader to verify.
Returning now to equation (B.2}, we can differentiate to obtain

DXA - DA . Dn#

—:—sim[}zptA—}—cosw———i—coswzbnA—l-sinw——?l—, (B.10)
ds ds ds

and we show that DA”/ds = 0 by using equation (B.9) to show that the

two components (DA /ds)ta and (DA /ds)n4 are both zero. For the first

component, we have

D) . Dn#

——ta= —sind)w—l—sinz/)TZ—tA, (B.11)
gotten by contracting equation (B.10) with ¢4 and using the orthonormality
of t4 and n* and the orthogonality of t* and Dt*/ds. It then follows from
equation (B.9) that

DA . . Dp4
s AT Ty (¢ - W“) =0
as required. A similar argument gives
D) . DA
——ng=cosY { Y+ ——n4
ds ds

for the second component and we can deduce that this is also zero by noting
that differentiation of t4n4 = 0 yields

Hence equation (B.3) implies that DA*/ds = 0, showing that Lanchester’s
carriage transports A4 parallelly along v, as claimed.

Exercises B.2

1. Working to first order in ¢, show that equation (B.5) simplifies to give
equation (B.6).

2. Show that equations (B.8) and (B.9) are equivalent.

3. Verify that equation (B.11) follows from equation {B.10), as claimed.
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asin (6, + e/a)

Fig. B.5. Wheel tracks on a sphere.

B.3 A trip at constant latitude

In Example 2.2.1, we showed the effect of parallel transport around a circle
of latitude on a sphere. We can get the same result by using Lanchester’s
transporter. We note that, in traveling in an easterly direction (increasing
¢) along a base curve v given by § = 6, the left wheel track v, has § =
60 —¢/a and the right wheel track v has 8 = 6y +¢/a. These are approximate
expressions valid for € small compared with the radius a of the sphere.” (See
Fig. B.5.) It follows that the curves v, and g are circles with radii equal to
asin(fy F ¢/a) and that for a trip from 6 =0 to 6§ = ¢ the path difference is

Ap = (asin (00 — 2) — asin <90 + 2)) t
= —2at cos Oy sin(e/a) = —2et cos by,

on using the approximation sin(e/a) = e/a. The corresponding adjustment to
the direction of the pointer (got by integrating equation (B.3)) is

Ay = Ap/2e = —tcos by,

in agreement with equation (2.26) of Example 2.2.1.

7 At every point of a sphere, its principal radii of curvature are both equal to its
radius a.
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Tensors and Manifolds

C.0 Introduction

In this appendix we present a more formal treatment of tensors and manifolds,
enlarging on the concepts outlined in Section 1.10. The basic approach is
to deal separately with the algebra of tensors and the coordinatization of
manifolds, and then to bring these together to define tensor fields on manifolds.

We deal first with some algebraic preliminaries, namely the concepts of
vector spaces, their duals, and spaces which may be derived from these by the
process of tensor multiplication. The treatment here is quite general, though
restricted to real finite-dimensional vector spaces.

We then give more formal definitions of a manifold and tensor fields than
those given in Sections 1.7 and 1.8. The key notion here is that of the tangent
space Tp(M) at each point P of a manifold M, the cotangent space TH(M),
and repeated tensor products of these. The result is the space (T7)p(M) of
tensors of type (r,s) at each point P of a manifold. A type (r, s) tensor field
can then be defined as an assignment of a member of (77)p(M) to each point
P of the manifold.

C.1 Vector spaces

We shall not attempt a formal definition of a vector space, but assume that the
reader has some familiarity with the concept. The excellent text by Halmos®
is a suitable introduction to those new to the concept.

The essential features of a vector space are that it is a set of vectors on
which are defined two operations, namely addition of vectors and the multipli-
cation of vectors by scalars; that there is a zero vector in the space; and that
each vector in the space has an inverse such that the sum of a vector and its
inverse equals the zero vector. It may be helpful to picture the set of vectors

'Halmos, 1974, Ch. L.
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comprising a vector space as a set of arrows emanating from some origin, with
addition of vectors given by the usual parallelogram law, and multiplication of
vectors by a scalar as a scaling operation which changes its length but not its
direction, with the proviso that if the scalar is negative, then the scaled vector
will lie in the same line as the original, but point in the opposite direction. In
this picture the zero vector is simply the point which is the origin (an arrow
of zero length), and the inverse of a given vector is one of the same length as
the given vector, but pointing in the opposite direction.

We shall restrict our treatment to real vector spaces whose scalars belong
to the real numbers R. As usual, we shall use bold type for vectors and non-
bold type for scalars.

The notion of linear independence is of central importance in vector-space
theory. If, for any scalars A',..., \K,

/\1V1 +/\2V2+"'+/\KVK =0 (Cl)

implies that A\; = Ay = --- = AX = (), then the set of vectors {v,vs,..., vk}
is said to be linearly independent. A set of vectors which is not linearly in-
dependent is said to be linearly dependent. Thus for a linearly dependent set
{vi,va,...,VKk} there exists a non-trivial linear combination of the vectors
which equals the zero vector. That is, there exists scalars A, ..., \X, not all
zero (though some may be) such that

Mvi+ 2 v+ + My = 0. (C.2)

Using Einstein’s summation convention (as explained in Section 1.2), we can
express the above more compactly as

Av, =0,

where the range of summation (in this case 1 to K) is gleaned from the
context. We shall continue to use the summation convention in the rest of
this appendix.

A set of vectors which has the property that every vector v in the vector
space T may be written as a linear combination of its members is said to span
the space T. Thus the set {vy,ve,..., vk} spans T if every vector v € T may
be expressed as

v = AV, (C.3)

for some scalars A!,..., A, (The symbol € is read as “belonging to”, or as
“belongs to”, depending on the context.) If a set of vectors both spans T and
is linearly independent, then it is a basis of T, and we shall restrict ourselves
to vector spaces having finite bases. In this case it is possible to show that all
bases of a given vector space T contain the same number of members? and
this number is called the dimension of T.

2See Halmos, 1974, Ch. I, §8.
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Let {e1,e2,...,en} (or {e,} for short) be a basis of an N-dimensional
vector space T, so any A € T may be written as A = A\%e, for some scalars
A%. This expression for A is unique, for if A = A%, then subtraction gives
(A* — X\*)e, = 0, which implies that A* = A® for all a, since basis vectors
are independent. The scalars A® are the components of A relative to the basis
{e.}.

The last task of this section is to see how the components of a vector
transform when a new basis is introduced. Let {e,'} be a new basis for T,
and let A% be the components of A relative to the new basis. So

A=2\"e,. (C.4)

(As in Chapter 1, we use the same kernel for the vector and its components,
and the basis to which the components are related is distinguished by the
marks, or lack of them, on the superscript. In a similar way, the “unprimed”
basis {e,} is distinguished from the “primed” basis {e, }. This notation is
part of the kernel-index method initiated by Schouten and his co-workers.3)

Each of the new basis vectors may be written as a linear combination of the
old:
es = Xley, (C.5)

and conversely the old as a linear combination of the new:
e.=X%e,. (C.6)

(Although we use the same kernel letter X, the N? numbers X? are dif-
ferent from the N2 numbers X g', the positions of the primes indicating the
difference.) Substitution for e, from equation (C.5) in (C.6) yields

e. = X2 X e (C.7)
By the uniqueness of components we then have
X¥ Xt =ab, (C.8)

where 6% is the Kronecker delta introduced in Chapter 1. Similarly, by sub-
stituting for e; in equation (C.5) from (C.6) and changing the lettering of
suffixes, we also deduce that

Xb x5 =6 (C.9)
Substitution for e,/ from equation (C.5) in (C.6) yields
A=2XVe, (C.10)

and by the uniqueness of components

3Schouten, 1954, p. 3, in particular footnote!.
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Ab = XP A% (C.11)
Then / ) /
XX = XS XaA, (C.12)

on changing the lettering of suffixes. (This change was to avoid a letter ap-
pearing more than twice, which would make a nonsense of the notation. See
Section 1.2 for an explanation of dummy suffizes.)

To recap, if primed and unprimed bases are related by

ey = Xbey, e, = Xgeb/, (C.13)

then the components are related by

A= XEAr, A= XA, (C.14)

and ) /
Xgxt =61 XpXxb=é (C.15)

We have thus reproduced the transformation formula (1.70) for a con-
travariant vector, but in this general algebraic approach the transformation
matrix [X| {j,] is generated by a change of basis in the vector space rather than
its being the Jacobian matrix arising from a change of coordinates.

Exercise C.1
1. Derive the result (C.9).

C.2 Dual spaces

The visualization of the vectors in a vector space as arrows emanating from an
origin can be misleading, for sets of objects bearing no resemblance to arrows
constitute vector spaces under suitable definitions of addition and multiplica-
tion by scalars. Among such objects are functions.

Let us confine our attention to real-valued functions defined on a real
vector space T'. In mathematical language such a function f would be written
as f: T — R, indicating that it maps vectors of T into real numbers. The set
of all such functions may be given a vector-space structure by defining:

(a) the sum of two functions f and g by
(f+g)(v)=f(v)+g(v) forall veT;

(b) the product af of the scalar o and the function f by
(af)(v) = a(f(v)) for all v e T;
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(c) the zero function 0 by
O(v)=0forallveT

(where on the left 0 is a function, while on the right it is a number, there
being no particular advantage in using different symbols);

(d) the inverse —f by
(=H)(v)=—(f(v)) forallveT.

That this does indeed define a vector space may be verified by checking the
axioms given in Halmos.4

The space of all real-valued functions is too large for our purpose, and
we shall restrict ourselves to those functions which are linear. That is, those
functions which satisfy

flou+ Bv) = af(u) + 51 (v), (C.16)

for o, 3 € R and all u,v € T. Real-valued linear functions on a real vector
space are usually called linear functionals. It is a simple matter to check that
the sum of two linear functionals is itself a linear functional, and that the
multiplication of a linear functional by a scalar yields a linear functional.
These observations are sufficient to show that the set of linear functionals on
a vector space T is itself a vector space. This space is the dual of T, and we
denote it by T*. Since linear functionals are vectors we shall use bold-face
type for them also.

We now have two types of vectors, those in 7" and those in T*. To dis-
tinguish them, those in T are called contravariant vectors, while those in T*
are called covariant vectors. As a further distinguishing feature, basis vectors
of T will carry superscripts and components of vectors in T will carry sub-
scripts. Thus if {e®} is a basis of T*, then A € T* has a unique expression
A = ),e® in terms of components.

The use of the lower-case letter a in the implied summation above suggests
that the range of summation is 1 to N, the dimension of T, i.e., that T* has
the same dimension as T'. This is in fact the case, as we shall now prove by
showing that a given basis {e,} of T induces in a natural way a dual basis
{e®} of T* having N members satisfying e(e;) = o¢.

We start by defining e* to be the real-valued function which maps A € T
into the real number A* which is its ath component relative to {e,} , i.e.,
e?(A) = A% for all A € T. This gives us N real-valued functions which clearly
satisfy e*(ey) = 0y, and it remains to show that they are linear and that they
constitute a basis for 7*. The former is readily checked. As for the latter, we
proceed as follows.

For any g € T* we can define N real numbers p, by p(e,) = po- Then
for any A€ T,

4Halmos, 1974, Ch. 1.
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BA) = p(A%q) = A puley) (by the linearity of p)
= Apg = g€’ ().

Thus for any u € T* we have u = pg,e”, showing that {e*} spans T*, and
there remains the question of the independence of the {e*}. This is answered
by noting that a relation z,e* = 0, where z, € R and 0 is the zero functional,
implies that

0=2zqe%(ep) = 2,05 = 2 for all b.

From the above it may be seen that given a basis {e,} of T, the components
e Of p € T* relative to the dual basis {€*} are given by u, = p(e,).

A change of basis (C.13) in T induces a change of the dual basis. Let us
denote the dual of the primed basis {eq'} by {e%'}, so by definition e* (ey) =
oy and e* = Y“ b for some Y“ Then

& = e“’(ebr) = Yd“/ed(Xg,ec)
=Y X5 el(e,) (by the linearity of the e?)
=Y X560l = YO XS

Multiplying by X fi’/ gives Xgl = Yd“/. Thus under a change of basis of T given
by equations (C.13), the dual bases of T* transform according to

e? =X e, e® = Xgev. (C.17)

It is readily shown that the components of p € T™ relative to the dual bases
transform according to

Ha! = Xg’:ub, Ha = Xglub’- (C.18)

So the same matrix [X{'] and its inverse [X2] are involved, but their roles
relative to basis vectors and components are interchanged.

Given T and a basis {e,} of it, we have seen how to construct its dual
T* with dual basis {e”} satisfying e*(e;) = . We can apply this process
again to arrive at the dual T™* of T*, with dual basis {f,} say, satisfying
f,(eb) = 4%, and vectors A € T** may be expressed in terms of components as
A = A%f,. Under a change of basis of T', components of vectors in T transform
according to 2 =X g’,\b. This induces a change of dual basis of T, under
which components of vectors in T* transform according to pe = X g, 1. In
turn, this induces a change of basis of 7**, under which it is readily seen that
components of vectors in T** transform according to A = X ;}/)\b (because
the inverse of the inverse of a matrix is the matrix itself). That is, the compo-
nents of vectors in T** transform in exactly the same way as the components
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of vectors in T'. This means that if we set up a one-to-one correspondence be-
tween vectors in T and T™* by making A%e, in T correspond to A*f, in T™**,
where {f,} is the dual of the dual of {e,}, then this correspondence is basis-
independent. A basis-independent one-to-one correspondence between vector
spaces is called a natural isomorphism, and naturally isomorphic vector spaces
are usually identified, by identifying corresponding vectors. Consequently, we
shall identify T** with T

In this section we have given a more formal definition of a covariant vector
as the dual of a contravariant vector, rather than as an object having com-
ponents that transform in a certain way. Although we have reproduced the
transformation formula (1.71) for the components, the transformation matrix
[X£] now arises from a change of the dual basis of T* induced by a change of
basis of T', rather than its being the Jacobian matrix arising from a change of
coordinates.

Exercises C.2

1. Check that the sum of two linear functionals is itself a linear functional,
and that multiplication of a linear functional by a scalar yields a linear
functional.

2. Verify that the components g € T* relative to the dual bases transform
according to equations (C.18), as asserted.

3. Identifying T** with T means that a contravariant vector X acts as a linear
functional on a covariant vector p. Show that in terms of components

Alp) = A4q.

C.3 Tensor products

Given a vector space T we have seen how to create a new vector space, namely
its dual T*, but here the process stops (on identifying T** with T'). However,
it is possible to generate a new vector space from two vector spaces by forming
what is called their tensor product. As a preliminary to this we need to define
bilinear functionals on a pair of vector spaces.

Let T" and U be two real finite-dimensional vector spaces. The cartesian
product T x U is the set of all ordered pairs of the form (v, w), where ve T
and w € U. A bilinear functional f on T' x U is a real-valued function f :
T x U — R, which is bilinear, i.e., satisfies

flou+ v, w) = af(u,w)+ Bf(v,w),
forall o, € R,u,veT and we U,

and
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fv,yw +0x) = vf(v,w) + 6 f(v,x),
forallv,6 e R,veT and w,x € U.

With definitions of addition, scalar multiplication, the zero function and in-
verses analogous to those given in the previous section, it is a straightforward
matter to show that the set of bilinear functions on T x U is a vector space,
so we shall now use bold-faced type for bilinear functionals.

We can now define the fensor product T @ U of T and U as the vector
space of all bilinear functionals on T* x U*. Note that this definition uses the
dual spaces T* and U*, and not T and U themselves.

The question naturally arises as to the dimension of T ® U. It is in fact
NM, where N and M are the dimensions of T and U respectively, and we
prove this by showing that from given bases of T' and U we can define NM
members of T'® U which constitute a basis for it.

Let {€*}, a = 1,...,N, and {f*}, a = 1,..., M, be bases of T* and
U*, dual to bases {e,} and {fa} of T and U respectively. (Note that we use
different alphabets for suffixes having different ranges.) Define N M functions
‘€t IT* xU* = R by

eaa()‘vlJ') = Aablas (019)

where A, are the components of A € T™* relative to {e®} and p, are those of
i € U* relative to {f*}. In particular

eqo(e’, %) = 625P. (C.20)

It is a simple matter to show that the e,, are bilinear and so belong to T®U.
To show that they constitute a basis we must show that they span T ® U and
are independent.

For any 7 € T ® U, define NM real numbers 7** by 79¢ = 7(e,{).
Then for any A € T* and p € U* we have

T 1) = T(A€°, paf®)
= AgftaT(€%, %) {on using the bilinearity of T)

=T NAalta = T €00 (A, p1).

So for any 7 € T® U, we have T = 7%%e,,, showing that the set {e,,} spans
T ® U. Moreover, {e,q} is an independent set, for if °%e,, = 0, then

0 = %%eyq(e’, %) = £°%626°8 = 2*?

for all b, 3, on using equation (C.20).

Thus we have shown that the dimension of T'® U is the product of the
dimensions of T' and U, and that in a natural way the bases {e,} of T" and
{f,} of U induce a basis{eq, } of T®U, the components 7%* of any 7 € TQU
relative to this basis being given in terms of the dual bases of T* and U* by
7% = 1(e*, ).
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Let us now investigate how the components 7** and the induced basis
vectors e, transform when new bases are introduced into T and U. Suppose
that the bases of T and U are changed according to

ew = Xhey,  fu =Y’fs (C.21)
This induces a new basis {e,o} of T ® U, and for any (A, p) € T* x U*,

€gra (Aa /J‘) = )\a’/Joz’ - thz)’ Yaﬁ’ /\b/-//ﬂ
= X YBes(A ).

So
earar = X2 Y eys. (C.22)

Similarly, for components (see Exercise C.3.2),
T = Xy, (C.23)

A vector which is a member of the tensor product of two spaces (or more,
see below) is called a tensor. The tensor product defined above is a product
of spaces. It is possible to define a tensor which is the tensor product A ® p
of individual tensors A and p by setting

A® = A u"enan (C.24)

where A% and p“ are the components of A and p relative to bases of T' and
U which induce the basis {e,o} of T ® U. Although this definition is given
via bases, it is in fact basis-independent (see Exercise C.3.3). In particular we
have

e, ®f, = eqn. (C.25)

The tensor product A ® p belongs to T ® U, but not all tensors in T'® U are
of this form. Those that are are called decomposable.

Having established the basic idea of the tensor product of vector spaces
we can extend it to three or more spaces. However, given three spaces T,
U, and V, we can form their tensor product in two ways: (T @ U) @ V or
T® (U®YV). These two spaces clearly have the same dimension, and are in
fact naturally isomorphic, in the sense that we can set up a basis-independent
one-to-one correspondence between their members, just as we did with T and
T**. This is done by choosing bases {e,}, {fo}, {ga} in T, U, V respectively
(three ranges, so three alphabets), letting 7%%4(e, ® f,) ® g4 in (TRU)QV
correspond to 7%%%e, ® (f, ®g4) in T® (U ® V), and then showing that this
correspondence is basis-independent. Because of the natural isomorphism one
identifies these spaces and the notation T ® U ® V is unambiguous.

An alternative way of defining T ® U ® V is as the space of trilinear
functions on T x U* x V*. This leads to a space which is naturally isomorphic
to those of the preceding paragraph, and all three are identified. Other natural
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isomorphisms exist, for example between TQU and URT, or between (T'QU)*
and T* ® U*, and whenever they exist, the spaces are identified.

Exercises C.3
1. Show that the functions ey, : T* x U* — R, defined by equation (C.19),
are bilinear functionals.

2. Verify the transformation formula for components (equation (C.23)).

3. Prove that the definition of the tensor product A® p of two vectors A and
@ is basis independent.

C.4 The space T

We shall now restrict the discussion to tensor-product spaces obtained by
taking repeated tensor products of just one space T and/or its dual T*. We
introduce the following notation:

TRT® - T =T,
—
r times
T"eT*"®---T" =T,

s times

T"eT, =T

In particular, T = T! and T* = T.

A member of T is a contravariant tensor of rank r, a member of T, is a
covariant tensor of rank s, while a member of T} is a a mized tensor of rank
(r+s). A member of T" is also referred to as a tensor of type (r,0), a member
of Ts is as a tensor of type (0,s), and a member of T, as a tensor of type
(r,s). Note that this nomenclature labels contravariant and covariant vectors
as tensors of type (1,0) and type (0, 1) respectively. Scalars may be included
in the general scheme of things by regarding them as type (0, 0) tensors.

A basis {e,} of T' (of dimension N) induces a dual basis {e*} of T, and
these together yield a basis {ezll'_'_'_l,’;r} of T7. Each tensor 7 € T7 has N"+$
unique components relative to the induced basis:

= e be (C.26)

al...qr "

A change of basis of T induces a change of basis of T, under which the
components transform according to

! t ’ ’
aj...a. _ yQ a,. yrdy ds C1...Cr
T = Xek e XX X (C.27)
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where [X'] is the matrix representing the change of basis of T and [Xg] is its
inverse. We have thus reproduced the transformation formula (1.73), but here
the matrices arise from a change of basis of T, rather than being Jacobian
matrices from a change of coordinates.

C.5 From tensors to tensor fields

The main purpose of this appendix is to arrive at a more mathematically
formal definition of a tensor field on a manifold and to give a more complete
answer to the question posed in the title of Section 1.10.

The key concept required is that of the tangent space Tp(M) at each
point P of a manifold M. This is a vector space that is the analog of the
tangent plane existing at each point P of a surface. However, a manifold and
its tangent spaces are abstract mathematical objects and not as in the picture
we have of a surface and its tangent planes as geometrical objects in sitting in
three-dimensional Euclidean space: there is no higher dimensional-dimensional
space in which they are embedded.

Once we have the vector space Tp(M), we can introduce its dual T5(M)
and use them to construct a tensor product space

(TN p(M)=Tp(M)® - @ Tp(M) @ TH(M) ® -+ @ TH(M)

at each point P of M, as explained in the preceding section. A type (r,s)
tensor field 7 can then be defined as an assignment of a member of (T7)p(M)
to each point P of M.

The formal definition of a manifold is given in the next section, and this
is followed by a section explaining the concept of the tangent space at each
point of a manifold. Finally, in Section C.8 we arrive at the formal definition
of a tensor field and reconcile this with the less formal treatment of Section
1.8.

C.6 Manifolds

A differentiable manifold (or manifold for short) is a generalization of a surface
in the sense that

(a) it has a dimension, N say, so that points in it may be labeled by N real
coordinates z!,z2, ..., z™V;
(b) it can support a differentiable structure; i.e., the functions involved in

changes of coordinates are differentiable.

There is, however, one important respect in which it differs from a surface,
namely that it is a thing in itself, and we do not consider it embedded in
some higher-dimensional Euclidean space. Our formal definition is arrived at
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by starting with a set M, and then giving it sufficient structure so that it
becomes a manifold.

Let M be a set of points and %) a one-to-one map from a subset U of M
onto an open set in RV, (RV is the set of N-tuples (z!,22,...,z"), where
each z% is real. An open set S of RV is one with the property that each point
of it may be surrounded by a ball B centered on the point in question, such
that B lies entirely in S. The map ¢ maps U onto S if for each s € S we have
Y(u) = s for some u € U.)5 U is a coordinate neighborhood, 1 is a coordinate
function, and the pair (U, v) together is a chart. The purpose of 1 is to attach
coordinates to points in U, and if P is a point in U we shall call the chart
(U,%) a coordinate system about P.

Now let {(Us,%a)} be a collection of charts (o being a label which distin-
guishes different members of the collection) with the following properties:

(a) The collection {Uy} covers M, i.e., each point of M is a member of at
least one U,.

(b) 1hs maps U, into RV with the same N for all a.

(c) For all a, B, ¥4 0 1/)5_1 and g o ;! are differentiable functions from
RY — R wherever they are defined. (They are defined only if U, and
Up intersect. The inverse maps v, 1 and wﬁ_l are defined because ¥, and
13 are one-to-one.)

(d) This collection is maximal in the sense that if (U, ¢) is a chart, 1) mapping
U onto an open set in RY with 9o, and ¢, oy~ differentiable for all
a for which they exist, then (U, %) belongs to the collection {(Ua,%a)}-

A collection of charts having these properties is called an atlas, and M together
with its atlas is an N-dimensional differentiable manifold.

Note that we do not claim that a manifold can be covered by a single
coordinate neighborhood (though some can), and that is why we have a whole
collection of charts. Property (c) tells us how to relate things in the overlap
region of two coordinate neighborhoods.

Figure C.1 illustrates the situation which arises when two coordinate neigh-
borhoods U, and Ug intersect. The intersection is shaded, as are its images
in RY under v, and ¥3. The functions ¢, o w;l and ¢z 01" are one-to-one
differentiable functions which map one shaded region of RV onto the other,
as shown.

We should say something about the meaning of the word differentiable.
Consider a function f : S — RL, where S is an open set in R¥. Then f is
given by L component functions f!,..., f¥, each of which is a function of K
variables, and f is said to be differentiable of class C" if each f® possesses
continuous partial derivatives up to and including those of order r (r a positive
integer). By a differentiable function we shall mean one of class C", where 7 is

5See, for example, Apostol, 1974, §§ 2.6, 3.2, 3.3 for details.
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Fig. C.1. Overlapping coordinate neighborhoods.

sufficiently large to ensure that operations which depend on the continuity of
partial derivatives (such as interchanging the order of partial differentiation)
are valid, and that certain concepts are well-defined.

Let us consider some consequences of our definition. If (U, ) and (U’, )
are charts with intersecting coordinate neighborhoods, then v assigns coordi-
nates (z',z2,...,z"), say, to points in U N U’, while ¢ assigns coordinates
(', 2%,...,2""), and the primed coordinates are given in terms of the un-
primed coordinates by equations

2 = oz, .z, (C.28)

where (f1,..., f¥) = f =4’ oyy~1. (AN B denotes the set of points common
to the sets A and B.) The unprimed coordinates are similarly given in terms
of the primed coordinates by equations

a

2 =g'(a", .2V, (C.29)

where (g1,...,gY) = g = ¥o(¢')"". The function f and its inverse g are both
one-to-one and differentiable, and it follows that the Jacobians ’81‘“/ / 81‘b‘ and
l@x“ oz \ are Nnon-zero.

Conversely, if we have a chart (U,¢) and a system of equations of the

form (C.28) with Jacobian )ax“//(?wbl non-zero for values of z* which are the

coordinates of some point P in U, then it is possible to construct a coordinate
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system (U’,4’) about P whose coordinates are related to those of (U, %) by
equations (C.28). See the exercise below.

Exercise C.6

1. In an N-dimensional manifold, (U, ) is a chart, and ¢ maps U onto an
open set V in RV, A differentiable function f maps a subset S of V into a
set T in RV, and is such that the Jacobian of f is non-zero at 9(P) € S.
(P is a point of the manifold.) Use the inverse-function theorem® to show
that there exists a chart (U’,¢') with P € U’, U’ a subset of U, and

w’:foz/)in UI.

C.7 The tangent space at each point of a manifold

The tangent space at any point of a manifold is the generalization of the
tangent plane to a surface at any point of it. With a surface embedded in
three-dimensional space we can readily realize the tangent plane as a plane
in the embedding space. However, a manifold has no embedding space, so we
must devise some implicit means of defining the tangent space in terms of
the structure available to us. The way to do this is to make use of curves in
the manifold. We first define a tangent vector to a curve at a point of it, and
then the tangent space at that point as the vector space of tangent vectors to
curves passing through the point.

In any coordinate neighborhood of an N-dimensional manifold M we can
define a curve by means of N continuous functions z*(u), where u belongs
to some real interval. As the parameter u varies we obtain the coordinates
x® = z%(u) of points on the curve. We shall confine the discussion to regularly
parameterized curves, i.e., ones that may be parameterized in such a way that
that at each point the derivative *(u) exist, and not all of them are zero.

Consider now a curve v given by z%(u), and let P be a point on it.

We can choose the parameterization so that z%(0) = (z*)p, the coordi-
nates of P. We define the tangent vector A to v at P to be the N-tuple
(£1(0),22(0),...,2N(0)).” Thus a curve with a given parameterization yields
a tangent vector, and conversely each N-tuple A = (\',..., A") is the tangent
vector to some curve through P, e.g., that given by

z%(u) = A*u+ (z%)p. (C.30)

Since we have defined a tangent vector as an N-tuple, and under obvious
definitions of addition and scalar multiplication the set of N-tuples is a vector

6See, for example, Apostol, 1974, § 13.3

"Our definition of a tangent vector makes use of N-tuples related to a coordinate
system, and in this respect is somewhat unsatisfactory. However, we believe it has
advantages of simplicity when compared with more sophisticated definitions, such
as defining it as an equivalence class of curves, or as a directional derivative.
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space, it follows that the set of all tangent vectors at P is a vector space. This
space is the tangent space Tp(M) of M at P. A basis of this space is {(e,)p},
where (e,)p is the N-tuple with 1 in its ath position, and zeros elsewhere.
We can then put

A= 0N) = (e, p,

and the A% of the N-tuple are the components of A relative to the basis.

The basis vector {(e,)p is in fact the tangent vector to the ath coordinate
curve through P. That is, the curve obtained by keeping all the coordinates
except the ath fixed. Tt is given by

2%(u) = 8%u + (z°)p,

so that z°(0) = (2)p as required; we also have that #°(0) = 2, so the N-
tuple (21(0),42(0),...,2"V(0)) has 1 in its ath position and zeros elsewhere.
That is, the tangent vector to the ath coordinate curve is indeed (e, )p.

The basis {(e,)p} whose members are tangent vectors to the coordinate
curves through P is called the natural basis associated with the coordinate
system. If we have another coordinate system about P with coordinates zv,
then this gives rise to a new natural basis {(e)p} of Tp(M), and we can
investigate the form of the transformation formula for vector components.

The curve « through P will be given by 2 (u), say, in the new coordinate
system, and the components of the tangent vector at P relative to the new
natural basis are £ (0). But

#(0) = (%) #(0),
P

and since any vector A in the tangent space is the tangent vector to some
curve, we have in general that

A = (X )pAb, (C.31)
. Oz
where X7 = —gv—b.
- b ozt . .
If we similarly let X, = P’ then, on using the chain rule,
Z-a
xpxy = 90T _ ot _ g

T 9xY frc T Bz e’

showing that the matrix [Xg] is the inverse of [X2']. It follows from the
transformation formulae established in Section C.1 that the transformation
formula for the basis elements is

(ea’)p = (X2)p(eb)p.
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To sum up, a change of coordinates about a point P of the manifold M
induces a change of the natural basis of Tp(M), and the matrices involved
in the change of basis vectors and associated components are the Jacobian
matrices of the coordinate transformation formulae evaluated at P.

Exercise C.7

1. Within a coordinate neighborhood a regularly parameterized smooth
curve is given by z%(u), a < u < b. Show that if the parameter is changed
to v’ = f(u), where f is a differentiable function whose derivative is
nowhere zero for a < u < b, then v’ is also a regular parameter. Show also
that the tangent vector (dz®/du’)p is proportional to the tangent vector
(dz®/du)p.

C.8 Tensor fields on a manifold

Having defined the tangent space Tp(M), we may go on to define its dual
TH(M), and hence build up spaces (T7)p(M) of type (r,s) tensors at P. We
then define a type (7, s) tensor field on M as an assignment to each point P of
M a member of (T7) p(M). We denote the set of all type (r, s) tensor fields on
M by T7(M). In particular T*(M) = T(M) is the set of contravariant vector
fields on M and Ty (M) = T*(M) is the set of covariant vector fields on M.
A scalar field is simply a real-valued function on M.

In any coordinate neighborhood, scalar fields and components of vector
and tensor fields may be regarded as functions of the coordinates. It follows
from the preceding section that, under a change of coordinates, the com-
ponents of a type (r,s) tensor field therefore transform according to equa-
tion (C.27), where

o o 02°
= ‘a? and Xb’ = W

So, through this more formal approach, we have obtained the defining prop-
erty of a tensor field given in Section 1.8, justifying the less formal approach
adopted in the main body of the text.

All the tensor fields considered in this text are assumed to be differentiable,
i.e., their components are differentiable functions of the coordinates. In order
that this concept be well defined, the differentiability class of the functions
involved in the definition of M must be at least C?. This condition is also
sufficient to justify the change of order of partial differentiation of Jacobian
matrix elements. That is, we can assert that in general

Xy

’
&2z

I ’ 14
X =X5 where X2 = ———
be chy be Sxbore’
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and this holds for all a, b and for all overlapping coordinate neighborhoods
where we have coordinates % expressed in terms of coordinates x®.



Solutions

Given here are solutions to the exercises and problems, or hints towards ob-
taining solutions, possible methods of approach, and comments. Some solu-
tions are worked in more detail than others. If the exercise involves verifying a
claim made in the text, for example, then little or no help is given, and where
the reader is asked for a numerical result or a formula, then only the final
answer is given. These are not ‘model answers’, but simply given as a check
on answers or approaches. In all cases the reader should provide full details.

Chapter 1

Exercises
1.1.1 e, =cos@pi+singj, es = —psingi+ pcosdj, e,=k;
e® =cospi+singj, e® = —p lsingi+p lcospj, e*=k.

1.1.2 (a) Eliminate j and k from the system of equations given in
Example 1.1.2 to get i in terms of e,, ey, and ey.

(b) and (c) Similar to (a), using the equations found in Exercise 1.1.1
for (b) and equations (1.12) for (c).

1.21 A ej = /\kek ‘e = /\kéf = /\j~

1.2.2 Since {€’} is a basis, we can write e; = a;;€’ for some a;;. Take the
dot product with e, to show that a;; = g;;. A similar argument gives
e’ =g'e;.

1.2.3 (a) X =X A (b) wA =p-A; (c) 0.

1.2.4 They are diagonal matrices.
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1.2.5 Straightforward substitution.

1.2.6 p' = -0} — Sudl + (v + 3u® + 1)85.

1.2.7 (a) 3; (b)2; (c) N; (d) 4.

1.3.1 ds? = (402 +2)du?+(4u?+2)dv? +dw? +8uv du dv+4v du dw+4u dv dw.
1.3.2 It is one turn of a helix. Its length is 21 + a?.

1.3.3 This follows from equation (1.39).

o OuF out Uk -
kri' — = sk imi ki — gk
141 UjU; = 507 Dl Bl = 47, and similarly for U; Ui, =63,
5}“ —eb.e; =Uhe' - U}'el/ = Ui’?UJl-/(Sli = Ui’fU;', and similarly for
sk =UFUL,.

1.4.2 Straightforward substitutions.
14.3 G =UTGU; ds? = dp® + p2d¢? + d22.
1.5.1 e - 7(e;) =€ - 7Fer = 7F8} = 7.
The primed version is Tf,;, =e'  7(en). Put e = Uf:ek,
ey = U,ln,el, and then simplify, using the linearity of .

1.6.1 You need to show that the expressions obtained for the basis vectors
in Example 1.6.1 satisfy e*-e, =e"-e, =1 and e*-e, = €”-e, = 0.

1.6.2 (a) ds?® = a?(d6? + sin? 0 d¢?); (b) ds? = a’d¢? + dz?;
(c) ds? = (24 4v?)du? + 8uv dudv + (2 + 4u?)dv?.

1.6.3 It is flat, because we can slit it along a generator and flatten it. Also,
using coordinates w, z, where w = az gives the Euclidean line element
ds® = dw? + dz®. An answer using the curvature tensor must await
Chapter 3.

1.8.1 The matrix version of 7;/; = UﬁU;,Tkl is 7" =UTTU. So if
T = [11] = [0r1] = I, then for a transformation from spherical to
cylindrical coordinates {as in Example 1.4.1)
siné (cos@)/r 0| [sinf rcosf 0
T'=U"U=| 0 0o 1 0 0 1| #[8;)
cosf —(sin@)/r 0| |cosf —rsinf 0

71

U2 / 1 ’ /
1.8.2 If 70 = 7% then 7% = X< X@ 79% = X X rba = r4¢,
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1.8.3 If 04y = 0pe and 7% = —7%% then 0,47 = —0p, 7% = —0aT, on

relabeling dummy suffixes. This implies that ¢,,7% = 0.

1.8.4 79 = 0% + k%, where 0® = £(79 + 7%} is symmetric and
K = %(T“b — 7% is skew-symmetric, and similarly for 74p.

1.9.1 If g,p is positive definite, then gop(A® + zu®)(A® + zub) > 0 for all z.
That is, az?® + 2bz + ¢ > 0 for all x, where a = gapu®u®, b = gapA*pb
and ¢ = g2 X°. This means that the quadratic equation
az? 4 2bz + ¢ = 0 has no real roots, so b* < ac, from which the
required result follows.

1.9.2 Using a new parameter t' = f(t) with ' <t' <V (where ¢’ = f(a),

a p11/2
b = f(b)), we get a length L' = / dz® dx

’
a

Yab—r =7 dt’. Now use

t' = f(t) as a substitution to evaluate the integral. This gives
I — /a dz dzt | ét—/dt _ /“ dz® dz?|'"?
b dt b

i

Jab™ g a7 o a| *=k

(This assumes that ¢’ increases with ¢; some changes are needed if it
decreases.)

Gab

1.9.3 The lengths are (a) ¢(1 — 2m/r)1/2, (b) (1 — 2m/r)~'/2 and (c) 0.
As v* is a null vector, the only angle defined is that between A* and
w#, which is equal to /2.
Only A and p* form an orthogonal pair.

Problems

1.1 (a) u = ug: an ellipsoid centered on the origin;
v = vg: a squashed cone with its vertex at the origin and elliptical
cross-sections;
w = wp: & half-plane with its edge at the z-axis.
(b) e, =asinvcoswi+ bsinvsinwj+ ccosvk;
e, =aucosvcoswi+ bucosvsinwj— cusinvk;
e, = —gusinvsinwi+ businv cos w j;

e =a lsinvcoswi+ b 'sinvsinwj+ ¢ cosvk;

e’ = (au) "t cosveoswi+ (bu)"Lcosvsinwj — (cu)”
e¥ = —(ausinv) !sinwi+ (businv) ! coswj.

(¢) Check that e*-e, =e”-e, =e* -e, =1 and
e.e,=e"-e,=¢e"- ¢, =¢€e"- ¢, =€V -¢e,=¢e" e, =0, using
your answer to (b).

Lsinvk;

1.2 From the geometry of the figure, points on the torus have position
vector r = a + b, where a = a(cos ¢i+sin¢j) and
b =bcosf(cospi+singj) + bsindk.



262

1.3

14

1.5

1.6

1.7

Solutions

e = —bsinfcos¢gi— bsinfsingdj+ bcoshk;
es = —(a+bcos)singi+ (a+bcosd)cosdj.
g =b% g12=0; goa = (a+bcosh)?.

You need to show that there exists a non-singular matrix M = [uf],
such that ML =[10 ... 0]T, where L = [A%]. This can be done by
taking the first row of M to be ||L|| " LT, where ||L||* = LTL (which
is non-zero as L # 0) and then choosing the remaining rows to be
independent and orthogonal to LT.

Using the hint gives 7°6¢ + 7°¢6% + 7206¢ = 0. Taking

(a,b,¢) = (1,1,1) gives 71! = 0; taking (a,b,¢) = (1,1,%) (i # 1) and
using the symmetry of 7% gives 71* = 7! = 0 (i # 1); taking

(a,b,¢) = (1,4,7) (i # 1 # j) gives 79 =0 (i # 1 # 7). This covers all
components.

By invariance, Tab AN = Ty A2 AY . Take \& = 1® + v?, where ¢, v®
are arbitrary vectors. Then symmetry of 7., and invariance of

Tabl® 12, Tap 1 yield Toputt® = 1oy ua/ W for arbitrary p®, v°.
Required result follows from quotient theorem.

Given property implies that Tupea(a® + 8)pb(a® + 8¢)pd = 0 for all
a®, 3%, p®. On expanding and using given property of T,pcq, this gives
Tabea0® 1t Bpd = 0 for all a®, 4%, u®. Similarly you can show that
Tabea P39 = 0 for all A2, o®, 3®. Now take

Tabed(@® + B2)(7° + 8°)(a® + B°)(v¢ + 6%) = 0 (from given property),
expand and simplify (using the given property and the two results
just obtained) to arrive at

Tabed @Y B¢ + Tapea®8° Byt + Tapea 827008 + TopeaB26%ay? = 0
for all a®, 5%, 7%, §*. Relabeling gives

(Tabed + Tadbe + Tebad + Tedab)0?Y?3°6¢ = 0 for arbitrary o®, 8%, v,
6%, from which the required result follows.

(a) Expressions for e;s are easily obtained from a diagram.

cosfl sinfd 0 cosf —sinf 0
[(Xi]= | —sinfcosf0|; [X}] = |sind cosf O
0 0 1 0 0 1

(b) [L] = [0 15m O]T.

msin?6 msinfcosf 0

(c) [I4] = | msinfcos® mcos?d 0 |;
L 0 0 m
[ 15sin6 15msin 6

[w']= | 15cos6 |; [L¥] = | 15mcos
0 0
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1.8 Check that A(¢)A(—@) = I, where A(¢) is the displayed matrix. For
the boost, Xt = AL, so [X},] = [A4 ] = A(=¢). The
transformation formula g,/,» = Xﬁ‘,X f,nag translates to the matrix
equation G’ = A(—¢)THA(~@), where H = [n43]. It is
straightforward to check that this gives G' = H.

1.9 If X = [X{'], then gorpr = XS X geq translates to the matrix
equation G' = (X "H)TGX 1. So you get G' = I if X = P~!, where P
is a diagonalizing matrix such that PTGP = I. The coordinate
transformation 2% = s¢z?, where [s¢] = P!, gives X = P™1, as
required.

1.10 Take t* = 4§, n* = 65 + &) and s# = &Y, as suggested.
(a) Orthogonality condition 7,,A*¢” = 0 implies that A\® = 0, which
means that A* is spacelike.
(b) Orthogonality condition 7,,A*n” = 0 implies that A’ = Al. Hence
N AN = —(A%)2 — (A%)2 If A2 = A3 = 0, then A* is null, otherwise
it is spacelike.
(¢) The given vectors t*, n* are orthogonal to s*, as is the spacelike
vector p* = &5

1.11 ey =yer +ves; ey = (yw/c)er+vey; ey =€, € =e,.
Actual directions depend on units and scales used. If these are such
that a null vector is inclined at 45° to e, and e, (as is usual), then ey
is inclined at an angle arctan(|v| /c) to e;, and e, is inclined at the
same angle to e,. Inclinations are such that for v > 0 the angle
between ey and e, is less than a right angle (so the axes close up),
while for v < 0 it is greater (so the axes open out).

Chapter 2

Exercises

2.0.1 They do not deviate; ant cannot decide.

dul _ du' dt d?ut _ d%ulpdiN2 | dut dPt d’t
2.1.1 Use ds T di ds and Az F(E) + dt ds2° Solve a2 = 0,

which gives h(s) = 0.
2.1.2 (a) Follows from defining equation (1.80).

(b) £2LL = Gapi®E? + 2g43%2°, on using symmetry of gap.
(c) +2LL = 8pgapid®d® — 295 14400,
(
(

d) :tzLL = acgabjf'ci'ai:b - gabgae (acged + 8dgce - aegcd)3.76-1.7(15&1)~
e) Simplify, using g.»g%° = 5.
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2.1.5

2.1.6

221

222

2.2.3

224

225

2.2.6

231

Solutions

dz® dz®
Note that I? = g 54" = 045" 5 ()? = (277, s
L = const implies that % = const = 4, say. So u = As + B.

Show that v’ = f(u) transforms equation (2.12) to
W +FI§‘C‘$, 4 = h(u)4L, where h(u) = d—zT(‘ij) 2 Soif v is
also affine, then h(u) = 0, which gives d?u’/du® = 0 and v/ = Au+ B.

(See Ex. 2.1.1 for similar argument.)

Comparing ds? = a?(d6? + sin® 0 d¢?) with ds® = gapdu?du® gives
gi1 = a2, g12 = g21 = 0 and goo = a?sin® §. For the Lagrangian

L= %aQ(éﬁ +sin? 6 ¢?), Euler-Lagrange equations yield the geodesic
equations 6 — sinfcosf ¢ = 0, ¢ + 2 cot § ¢ = 0, from which you can
pick out the non-zero connection coefficients.

In the notation of Example 2.1.1, a line of longitude can be
parameterized by u® = (s/a)éf + ¢4 (o = const). So

4 = (1/a)éf and @i? = 0. So for the geodesic equation to be
satisfied, we need (1/a?)I'{3 = 0, which is true by Exercise 2.1.5.

Show that equations (2.20) are satisfied by t = u, 7 = rg, § = 6,
¢ = do.

Substitution from (2.26) into (2.24) verifies that the differential
equations are satisfied and putting ¢ = 0 in (2.26) verifies that the
initial conditions (2.25) are satisfied.

Reversed if w = %, s0 8y = 7/3 or 60°.

Example 2.1.1 shows that the equator {6y = 71/2) is a geodesic and

has tangent vector u4 = a_léé“. For transport round the equator,

M =a"lcosadf +a"tsinads. A straightforward calculation gives

5 — o for the angle between p? and A4,

Differentiation of goq = X% X, 3, Gab Eives
O gorr = X% X5 gap + X4 X8 31 9ab + X% X8 X7,8¢94s, from which
you should deduce that I'yrer = Xd,X X3 bea + X% X5 gap-

Required result follows by contraction with g = Xf X Jhl i

Note that differentiation of X L xa' g = 0f with respect to z¢ gives
Xc,b,Xa X,‘f,X de =0.

Use (2.39) and the fact that A" = (X% \f) = X M+ Xeface/\f

See solution to Exercise 2.2.6.



2.3.2

23.3

234

241

251

25.2

271

2.7.2

29.1

2.9.2

293

294

Solutions 265

Take 7o = Aapto- Then D7yp/dt = (DAy/dt)py + Ao (Dpy/dt) =

(/\_a - F;d/\cid)ﬂb + Aoty ~ Flfd/‘cid) =

(Aatts + Aatin) — TEAppdd — TEAapted® = Top — TSyrepdd — TfyTa.20.
Formula for D7 /dt is obtained similarly by taking 78 = A®p,.

Follows from equation (2.45) with A%* = ¢®.

Follows from the fact that D(ge,4%2°)/du = 0, because Dgqp/du = 0
and (for an affinely parameterized geodesic) Di®/du = 0.

As noted in the text, (ij/)o =49, 50
(gab)o = (gc’d’Xg Xg )O = (Qc'd'5§5f,i)o = (ga’b’)o-

Timelike. No, because it is not in free-fall.

If f# =0, then Dp*/dr = dp*/dr + T'} p”i° = 0, where
p* = m{dx*/dr). Required result follows, as m is constant.

Suppose that g*¥ = n*¥ 4+ f#, where the f#*” are small. Then

0 = gM%gs, = (M7 + fH7Y(New + how) gives (to first order)

f*ng, = =" hg,,. Required approximation is given by contracting
with n"?.

Note that I}, = %(8,,hop + Ophyp — Ophye ), then contract with
gH* = n#P — h#? and discard second-order terms to get required
approximation.

Equation (2.81) says that d?z*/dt? = —9V/8z* (i = 1,2,3), which are
the three component equations of a = —VV. So F = ma = —mVV.

Quick way to get (2.86) is to differentiate (2.85) to get dT = dt,
dX = dzcoswt — dysinwt — w(z sinwt + y coswt)dt,

dY = dxsinwt + dy coswt + w(x coswt — ysinwt)dt, dZ = dz, and
then substitute into (2.84). Why does this work?

Either invert [g,.] to get [¢#¥], or check that [g,,]{g"?] = I, using
matrix methods.

(a) Euler-Lagrange equations give geodesic equations in form
Guod® + [api®i® = 0. Use g* to raise v and then pick out Il
(b} Straightforward, but tedious. (¢) Straightforward.

Substitute z = pcos ¢, y = psin ¢ in (2.87) and take appropriate

combinations of the middle pair of equations.

Note that hox = (w/c)(ydi — x82), so [Ojhox] = |w/c 0 0
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Problems

2.1 Euler-Lagrange equations yield (1 + 2v2)ii + 2uvd + dvid = 0,
2uvii + (1 4 2u?)3 + 4uid = 0. These are satisfied by u = uy,

v = As + B, (ug, A, B constant), and also by v = vy, v = Cs + D,
(vg, C, D constant), showing that all parametric curves are geodesics.
(Note that gapu?iP = 1 implies that 2(1 + 2u2)A? = 1 and

2(1+ 203)C? = 1)

2.2 Geodesic equations are p — p<;32 =0, pQéS + 2ppq5. These are satisfied
by ¢ = ¢o, p = As + B (using arc-length s as parameter) and you can
take A =1, B =0. (Why?) Equations of parallel transport are
AN = pX2¢ =0, A2+ p~ 1A ¢ + p~1A%)p = 0 (got by picking out I'j-
from the geodesic equations), which reduce to Al =0,

A2+ p71A2%p5 = 0 for the ray. These are satisfied by A! = A},
A2 = (pg/p) 3. Straightforward to check claims regarding length and
angle.

2.3 For the line element, put # = fy in (1.40). For the second geodesic
equation, use the fact that ¢ is a cyclic coordinate. Rest of problem is
straightforward, following instructions given.

2.4 Apply (2.56) t0 Agp — Absa-

2.5 Gamma-terms cancel to leave Bape = Agpic + Abeia + Acasp-

2.6 Use (1.40).

2.7 See Example 2.1.2, which takes you through a similar exercise.

2.8 The observer is in a position similar to the observer at rest in the
rotating system K’ of Section 2.9, and could assert that there exists a
gravitational-type force (i.e., the centrifugal force) to balance the pull
of the Sun on the Earth.

Chapter 3
Exercises
3.1.1 In such a system, u* = cé}y at P.
3.1.2 In the observer’s rest frame, his 4-velocity is U# = (¢, 0) and the

4-momentum of the particle is p* = (E/¢, p), so p,U# = E, which is
the energy he assigns to the particle. Since p,U* is invariant, it gives
the assigned energy in any coordinate system.
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3.1.3 All terms have the dimensions of pressure: M L~1T~2,

3.1.4 v’u, = g,ou’u’ = c? implies that g,,a(u";pu" + u"u”;u) =0, on
differentiating and noting that g,., = 0. This simplifies to give
2u"; plUy = 0.

3.2.1 (a) Equation (3.12) can be written as Ag.be — Aaich = —RadbeA?,
because R%, Ay = RgapcA? = —RaapeA?. Required result follows on
raising a.

(b)

(Xh )cd—(/\“cu A )i = Nggh® F Nl + Ngple + AL

SO T d - Tabdc (Aa b) jed ()\a b) ;de = (A )\adc):u‘ + )\a( sed -
L dc) Ra d>‘e,u _Rb d’\au — _Rach Rb rae.

(C) Tgbde - Tc ed — —-R fdebe R fde + R cdeTf

abc

3.2.2 Straightforward using the defining equation (3.13) and the fact that
Fab - Fl;ia'

3.2.3 Rabea = GaeR%eq = Gae(0.T — Oals. + I TS, — TLT%,) =
8c(gaerzfd) - (acgae) zfd "ad(gaerbec) + (adgae)-r;c +Fb{1Fafc “becpafd =
6cFabd - 8d[‘abc - gef(Ffbdacgae - Ffbcadgae - FebdFafc + Febcrafd)-
Required result follows on putting
Oclopg = 8 (Ob9ad + Odgba — Ougpa), With a similar expression for
Oal wbe, and Oclae = Igec + Teae, with a similar expression for 9;gq..

324 0=R , +R%,, +R%Y,. = Ree—R%, +0=Re.— Rep.

cba

3.3.1 §d(¢°€¢%) = 0 implies that f (€°dg? + £4dge) = 0, so
e o ey

3.3.2 For parallel transport along OQ and RS, which are geodesics, the
length of A and the angle it makes with the geodesic are both
constant. Use these facts to verify the expressions given for )\(’3 and
24, Along QR, use (2.26) with a = 0, 6, replaced by 6y + ¢ and
t = 2¢. Along SO, use (2.26) with & = —2zcos(fp + ¢), 6y replaced by
6y — ¢ and t = —2¢, and then simplify the resulting expressions using
cos(fg — €) — cos(fp + €) = 2sinfysine.

3.3.3 To second order, cos(4esinfysine) = 1, giving AX! = 0. Because
sin(4esinfg sine) = 4e%sin b to second order, the zeroth-order
approximation asin g is sufficient for the denominator asin{fy — ¢),
giving AX? = 4¢?/a.

3.4.1 Straightforward, but tedious, following instructions given in text.
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3.5.1 Since 0 = 4, contraction gives —R = sT. Put R = —£T in field
equation (3.38).
3.7.1 Straightforward, but tedious, using given expressions for R, and I'.
3.7.2 goo =1+ k/r, g11 = —1+ k(z1)?/(r + k)r? (with similar expressions
for goo and gs3), ge3 = kz?z3/(r + k)r? (with similar expressions for
ga1 and gi2), goi = 0 (i = 1,2,3), where
r=+/(z4)2 + (22)? + (2%)% and k = ~2MG/c2.
Problems

3.1 For a non-zero Rapcp, A # B and C # D. Ouly possibilities are

Ri212, Ri221 = —Ri212, R2112 = —Ri212 and Ra121 = Riago.

Only non-zero connection coefficients are I'); = sinf cos¥,

I'%, =T} = cotf, with gy = —a?sinfcos b,

10 = Iyop = a?sinfcosb. So

Rig12 = $(8201921 — 0202911 + 010212 — 8101922) — (F11FF22 -
IfiTpa1) = —50%(a? sin? §) /06? + (cot B)(a? sin f cos §) = a?sin® 4.
For the Ricci tensor and curvature scalar, use

Rap =g“PRcasp = 9" Riag1 + 9% Roape and

R = g*BRap = g''Ri1 + g%*Ryy, where g'! = 1/a? and

g*? = 1/a%sin*4.

3.2 Raising a and contracting with d gives Rye = (2 — N)Spe — Sgbc, where
S = g%¢S,4, from which you can deduce (by raising b and contracting
with ¢) that R = 2(1 — N)S. So, if N > 2, you get (by eliminating )
Sbc = ngbc - N_ljinm showing that Sbc = Oc¢b-

Raising @ and contracting with ¢ in Rapedie + Rabdeye + Rabeca = 0
(Bianchi identity) gives

(N - 3)(de;e - Sbe;d) + gba(Sie — Sce;c) ~ Gbe(Sia — Scd;c) =0, from
which you can deduce (by raising b and contracting with d) that
2(N - 2)(S, - S%,.) =0.Soif N >2, then S, — 5. =0 and

(N - 3)(de;e - Sbe;d) = 0. Hence for N > 3, de;e = Sbe;d'

3.3 THy, =0 gives (put),, u” + putu”,, = 0, and required result follows on
showing that (pu*)., = 0, for then u”, u* = 0, which is the geodesic
equation. Contraction of equation above with u, gives
A(put), = —p(u u,ut). But u¥,u, = 0 (from Exercise 3.1.4), so
(put),, =0, as required.

3.4 Check that E# = _1[FW FY+ FREY — % Y(FpoyuFP?)] =

NNJI[FW;LMFPV - 1 VBFW(Fﬂpu +Fuﬁp +Fpu6)]
So EHY, = F’;j”, on using Maxwell’s equations (A.55) and (A.56)
adapted to curved spacetime.



3.5

3.6

3.7

Solutions 269

Differentiation gives T#Y, = (put), u” + putuy, + F% j°. Continuity
equation gives (pu*),, = 0 and equation of motlon gives
pul,ut = —F" j# (see equation(A.60)), hence THY = 0.

Alvian) = A6 + (T X6 (€% +0°) + (Balg + TeTEy) o ABE S,
with a similar expression for /\‘(1Via B)-

Newtonian gravitational theory attributes energy to the gravitational
field and recognizes mass as its source; special relativity equates
energy with mass. Any theory that attempts to merge these ideas will
have the gravitational field acting as its own source, which is a
situation that leads to non-linear field equations.

Principle of superposition does not hold, because it applies to
solutions of linear equations only.

Useful intermediate results are:

-2
2GM __ GM . — GM GM
1— rc: (1_ 2pc2> <1+2p02) ) dr = (1+2pc§)<1_2p02)dp'

Chapter 4
Exercises
411 Use [,/ dx = +/(z+a)(z+b)+(a—b)In(vVz+a+Vr+b)+c

4.2.1

4.3.1

44.1

4.4.2

443

Use the expansions (1+z)" =1+ nz +n(n — 1)x?/2! + - and
In(1+z)=2z—2?/2+ -, which are valid for |z| < 1.

Take rgr = oo in (4.17) to get Av/vg =% ~GM/c?*rp ~ —0.741 x 1073,

Equatlons are —(1—2m/r)~" r — (mcz/r )2+ (1 -

2m/r)2(m/r? )r + 7(62 + sin? ¢?) = 0 and

—r29 2770 + 1% sin § cos §¢% = 0, which is clearly satisfied by
=m/2.

Equation (4.21) follows on putting § = 0 and sinf = 1.

Straightforward, following instructions in text.

For radially traveling light, dr/dt = +¢(1 — 2m/r), which gives the
coordinate time for the round-trip to be At =

(2/¢) f:; [r/(r—2m)]dr = (2/c)(r1 — re + 2m1In[(r) — 2m)/(r2 — 2m))).
Observer at rg sees start and finish separated by same coordinate

time At, which gives a measured time At = /1 — 2GM /ry At.
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4.5.1

4.7.1

4.8.1

4.8.2

4.8.3

4.8.4

4.9.1

4.10.1

4.10.2

4.10.3

4.104

Solutions

Expression for d¢/du gives

_€ U2 -1 _ 3 U du
A¢—2 : ————\/M_T)zdu—k(lﬁ-26)/1_‘1 _\/ﬁT—(—ﬂ—_ﬂi

First integral can be evaluated by substituting v? = 3% — (& — 1)? and
second integral by substituting @ — 1 = Fsin. This leads to (4.44).
Note that 32 = (@1 — 1)? = (&2 — 1)?, so on feeding in the limits,
there is no contribution from the first integral.

o= 3tmg/r = 3rMeG/c*r ~ 9.3 x 1078 rad.
Put ¢t =v —r — 2mIn(r/2m — 1) to get cdt = dv — (1 — 2m/r)~'dr.

Substitution leads to 7(rg,r) = (27‘3/2/6\/ 2m) fTr/2s1n2 ¥ dyp, where
a = arcsin /7/ro. Evaluate this using sin®¢ = $(1 — cos 2¢p).

Getting 7(4m, 2m) is straightforward on noting that
arcsin(1/4/2) = 7/4. For 7(4m,r) we have

8m3/2 r 2\/_ 2mm
e ————arcsmd 1/ - —
cV22m 4m

asr — 0.

Because she cannot accelerate beyond the speed of light, Alice’s world
line lies inside the forward “light-cones” of null geodesics that
emanate from each point on her world line. We see from Fig. 4.13
that, once she has fallen beyond r = 2m, all possible world lines end
up at r = 0. Even if she could travel at the speed of light, she could
not escape.

The differentials are:

1 cosh(ct/4m) i
[ J— 2 _ 1/2 7‘/4m D St Siiard
du am (r/2m —1)"%e T am/r dr + csinh(ct/4m) dt },
1 sinh(ct/4m)
dv = 2m — 1/2 r/4m 4
V= (r/2m —1)"%¢ oo dr + ccosh(ct/4m)dt |,

and cosh? z — sinh®*z = 1.
Straightforward.

[J] = ML*T~!, [M] = M, and [c] = LT™!
[J/Md = MI*T'M~'L"'T = L.

Check that g,,,9"7 = &7

Straightforward and almost obvious.
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4.10.6

Solutions 271

Separation of the first equation into its real and imaginary parts gives:
z=(rcos®—asin®)sind, y= (rsin® + acosP)sinh, where
b=¢+a foro %. Result follows by showing that

(rcos® — asin®) = (r2 + a®)/2 cos(d + 8),

(rsin® + acos®) = (r2 + a?)}/?sin(® + §), where 3 = arctan(a/r).

The event horizons coincide, each tending towards the surface given
by 7 = m. The infinite-redshift surfaces remain distinct, tending
towards the two surfaces given by r = m(1 £ sin ). All three touch at
the North and South Poles, where 8§ = 0 and § = .

Problems

4.1

4.2

4.3

4.4

The “equatorial plane” has line element
ds? = (1 —2m/r)~tdr? + r2d¢?, which gives
Ity = —m/r(r —2m), Iy = —(r —2m), I'3 = T3 = 1/r,

as the only non-zero connection coefficients (where z! = r and
z? = ¢). A routine calculation gives Rly,, = —m/r # 0, so the
“equatorial plane” is not flat.

From Exercise 3.1.2, the energy is p,U* = g,,,p"U*. For the observer,
Uk = (dt/dr)6l = (1 — 2m/re)~1/26k, since for him
dr? = (1 — 2m/ro)dt?.

So E = (1 —2m/rg) " 2g,0p” = (1 — 2m/ro) /20,

But p° = ut = uk/(1 - 2m/ry), from equation(4.22), so
E = pkc(1 — 2m/ry) /2.

Clearly, E — uc®k as rg — o0, so this is the energy of the particle
according to the “observer at infinity”. However, for this observer,
E? = p?c? + p%c*, where p is the magnitude of the particle’s 3-velocity.

So p2ctk? = p?c? + pu?c*, which implies that k2 > 1, as p*c? > 0.

From the discussion of photons in Section 4.4, we have

(dg/dt)? = §*/12 = mc?/r3 = ¢*/27Tm?, which gives At = 6rm+/3/c
as the change in ¢ for an orbit at » = 3m. So the observer at r = 3m
measures a proper time period of

Ar = /1 =2m/r At = At/\/3 = 67m/c.

As noted in equation (4.13), the coordinate time difference between
two events at the same point in space remains constant when
propagated along null geodesics to a spatially fixed observer. Hence
the observer at infinity measures a proper time period of 67rm+/3 /e,
since At = At at infinity.
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4.5

4.6

4.7

4.8

4.9

4.10

Solutions

Differentiation of equation (4.39) leads to d*u/d¢? + u = 3mu?, which
converts to d’r/d¢* — 2r~1(dr/d¢)? = r — 3m, on putting u = 1/r. If
we now perturb this by putting r = 3m + 5, where 7 is small relative
to 3m, and work to first order in 1 and its derivatives, we get
d?n/d¢? — n = 0. This has exponential (rather than trigonometric)
solutions, indicating that 7 does not remain small. Hence the orbit is
unstable.

The particle’s energy per unit mass is £ = %(7‘2 +72¢%) — GM/r and
its angular momentum per unit mass is h = 7"2gb. Dividing the
equation for E by ¢2 and then putting ¢ = h2/r? gives

Eri/n? = 2 ((dr/d¢)? + %) — GMr3/h?. The required result follows

1

from putting r = ™", rearranging, and setting F = 2F /h2.

2GMg/c® ~ 8.89 x 1073 m.

po/pe = (Mo/M3) | (Me/ME) = ME/ME < 1.
dR = (1+m/2p)%dp, dr = (2p~m)(2p+ m) 'dt.

(a) Equation (4.33) (with GM = mc?) gives 5835s for the orbital
period. From Section 4.7, the geodesic effect for a circular orbit is
3mm/r radians per orbit. This leads to an annual deviation of about
6659 milliseconds.

(b) Imagine a finite-length gyroscope pointing towards a star on the
celestial equator. The inner (or back) end of the gyroscope’s axis will
suffer a greater dragging than the outer (or front) end, and half a
revolution later the front of the gyroscope will suffer a greater drag
than the back (as a sketch should make clear). The drag will also vary
at different parts of an equatorial circular orbit. This angular
deviation, in the opposite sense to the rotation of the Earth, would be
measurable; but in a polar circular orbit it is constant, and in the
same sense as the rotation.

(c) Same as in (a); zero.
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Chapter 5
Exercises
511 Ry, =R, =12, ,—T% ,+ Fﬁargy - Fﬁurga,

5.1.2

5.1.3

5.2.1

5.2.2

5.2.3

where It = 5 (h¥, + hb , — hyot).

Terms like I EQF 5, yield products of hy,, (or their derivatives) and are
neglected. Hence
R,uu =I° -Irg .= l(h,ul/ - hy —hg + hlll’,aa)7

po,v Hu,o 2 v,po Hva

R=n"Ryu, =1 (h,* —hS # — hot L+ hie ) = ho® — hoP .

h =n# (R, — hnu,) = h — 2h = —h.
Hence, h,, = Buu + %h,nm, = B;w - %fm,“,.

glt/,,/ _ n,u/,,/ _h,u/l,/ _ Xg/XE/gaﬁ — (55+§H»0)(6E+§V,ﬁ)(naﬁ _haﬁ)_
Multiplying out, neglelct/ing products of small quantities, and
rearranging lead to h* ¥ = h#Y — £V — EVH,
Contracting with 7,, then gives h' = h —2¢* .
Also, h#v' = p#'v' — Thnp

= (B g — o) — L (=2 ) = T R g g e,
To show that X", = — £, check that Xﬁ/Xl’f, =P,

Equation (5.19) shows that kT is a small quantity of the same
order of magnitude as h,,. Moreover, the proper conclusion from
(5.19) and (5.20) is that T*"., = 0. This does not conflict with
kTH , =0, as the difference between the two expressions consists of
products of the form connection coefficient times xT*", which are
negligible second-order quantities.

Equation (5.23) gives A*%kq + A*k; =0, so A%y + A%k; =0 (1)
and A%k + A¥k; = 0 (2). Because k, is null, kg # 0, so we can
divide by it. Hence (2) allows us to express A% in terms of A%/, and
(1) allows us to express A% in terms of A% and hence in terms of
A, (Note that A#¥ is symmetric.)

Igo = %7]’“’(2}1,,0’0 — hoo) =0, as hgy, = 710;,, = 0 in the TT gauge.
Also, I, = 50**(0 4 hya,o +0) = $hl .
To first order in hy,, 5,L-j§i(j = 6ij(§i + %h};fk)(fj + %h{fl)

= 055€°67 + 3055 (hiR€0 + hi€'el) = 6,;6°¢7 + bijhir¢

= 0;;8°¢7 — mighi€FE) = 86,5606 — hypeiek

= (055 — hij)§'¢ = g;;6°¢7 = d*.
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5.2.4

5.2.5

5.3.1

9.3.2

Solutions

For (5.33), we have (* = &' + Ly, htteh = & — Lo hiek.
Substituting for A = h¥ gives (* = £ — %aékjeij cos k(xg — z3) €*,
which yields ¢! = ¢! — Lacosk(zo — z3) £,

(2 =€+ Jacosk(zg — x3) € and (3 = £ = 0, as required.

A similar chain of substitutions verifies (5.34).

The effect is to substitute || cos(k(zo — z3) + ) for acosk(zg — z3),
wherever it occurs. This gives a phase-shift, which rotates all the
figures in the table through 6.

Set 27 = £(0, a coswt, asinwt), so that the dumbbell rotates about
the z! axis. For the plane-wave approximation, we get

o Ma2? [ .. 9
[h”] ~ SG#‘)_% e exp _Zﬁ(xﬂ — x3)]
cir c
00 0
where [¢"] = | 0 1 —i |, in place of (5.43).
00—z -1

On transforming to the TT gauge, we have A1 = 1(A'! — 4?%)
and A'? = A2, which gives [e¥] =
wave is linearly polarized.

(a) Use (5.44) with I = mass x length?®/12.

(b) If 7 is the radius of the orbit, then GMZ/(2r)? = Mgrw?.

So 13 = @M /4w?, giving I = 2Mo(G Mg /4w?)?/? for the moment of
inertia. Now use (5.44) with this expression for I and a value for w
calculated from the given period.

Problems

5.1

5.2

With £# = cbl, (3.41) becomes D?¢#/dr? + *RY,4€ = 0, where
(using the result of Exercise 5.2.2)
R%uo = Fét),u - Fé‘u,o + Fé)of F F = hu 00 — oh
So the equation of geodesic deviation is
D¢k [dr? — ( hu 0o }1h50h“ )€ =0. (*)
But £ = const gives
DE#[dr = 0+ IE, €747 = Lchh (€, which gives
D2§“ [d7? = §CPhly 0¥ + gelishy (73 =
5CPhY 00€” + FRY ohE (&7, showing that (*) is satisfied.

Taking A% = a(el” +ieb”) and putting § = k(z® — z3) gives
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¢"= (€' — (€' cos b — E2sin ), €2 + Fo(€) sin b + €2 cos 6),0)

as the counterpart to (5.33) or (5.34). For clarity, put (¢ = (z,y, 2)
and £! = a, €2 = b, so that the relative separation is given by (z,y, z)
with 2 = a — Ja(acosf — bsin), y = b+ Zafasing + bcosd) and

z = 0. These yield (z — a)? + (y — b)? = $0*(a® + b?), which is the
equation of a circle.

5.3 Equation (5.36) gives h*" = —(4G/cir)M 25554 = —(4m/r)34 Y. So

hyw = —(4m/r)8560 and h = —4m/r. Hence g,
= Nuw + A — % N = (L+2m/r)n,, — (4m/r)62(58, which gives

cdr? = (1 —2m/r)c2dt? — (1 + 2m/r)(dz? + dy? + d2?).
For large r, 1/r = 1/p, so the above gives
c?dr? = (1 —2m/p)c2dt? — (1 + 2m/p)(dp? + p*db? + p? sin? 0dy?),
which is in agreement with (4.67) when we use the approximations
(1—m/2p)2(1 +m/2p)"2 ~1—2m/p and (1 +m/2p)* =~ 1+ 2m/p,
valid for large p.

5.4 Take the positions of the particles at time t to be
77 = £(acoswt,asinwt,0) and 2/ = +(~asinwt, acoswt, ).
Then in place of the matrix in (5.42) we get
cos?wt  coswtsinwt 0
coswtsinwt sinwt 0

0 0 0 et
sin® wt —sinwtcoswt 0 100
+ | —sinwtcoswt  coslwt 0 =010
0 0 0 000

ret ret
We therefore get a static metric tensor and no radiation.

Chapter 6
Exercises
6.01 z=AX/ A=A/ A—1=7(1+v/c)—1, from (A.41). To first order in

v/c, this gives z = v/c.

6.2.1 Straightforward, but tedious, using the connection coefficients (6.4)
and the given expression for R, .

6.2.2 The derivative of (6.8) is 2RR = (87G/3)(pR? + 2pRR). Eliminate R
from this and (6.6).

6.2.3 With u* = 6%, LHS of (6.10) = (p+ p)u”.0 = (p +p) T = 0.
As p depends only on ¢, p , = pdl, so
RHS of (6.10) = (g4 — 8£6)pd0 = (¢ — 8¥)p = 0.
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6.3.1 Straightforward checks.

6.4.1 A quick way of getting the spatial geodesic equations is to put
t = R’ = 0 in the last three of equations (2.20) and note that dots
now represent differentiation with respect to s. The resulting
equations are satlsﬁed when 8 = ¢ = 0 provided
7 + kr(1 — kr?)=1#? = 0, whose solution gives r in terms of s.

6.4.2 The null geodesic equations are given by equations (2.20), where dots
denote differentiation with respect to an affine parameter u, say.
These are satlsﬁed When 6 = ¢ = 0 provided
t+ RR'(1 — kr?)~1#2 =0 and 7 + 2R'R™ 7 + kr(1 — kr?)~192 = 0.
This pair can be solved simultaneously to give t and r in terms of u.

6.4.3 Let Q = Lg(tr)/c, so that Q = At + LHo(At)? + -+ (¥).
Assume an expansion of At in powers of @:
At = ag + a1Q + a2Q? + - - -, then substitute in (*) to deduce that
ag=0,a; =1, and as = —%HO, as required.

6.5.1 Straightforward, using pointers in text.

6.5.2 Equation (6.48) can be rearranged to give z = (2¢/(2¢ — v))? — 1,
which shows that, as v — ¢, z — oo. So there is no upper bound on
the observable redshift.

6.6.1 Put T# = 0 in (6.50) and contract with g,, to get R — 2R+ 44 =0,
which gives R = 4A. Then put R = 44 back in the field equation.

6.6.2 Use equation (6.14), the fact that A? = 87GpR3/3, and the defining
equations H = R/R and p. = 3H?/87G.

6.7.1 Straightforward exercise on scaling.

Problems

6.1 The non-zero components of the Ricci tensor are
Ryy = —2k/(1 — kr?), Ryy = —2kr?, Rgz = —2kr?sin® 0.
(They can be got from (6.5) by setting R(t) = 1.)
SoR= ginij = -2k — 2k — 2k = —6k.

6.2 From (6.14), R(R? + k) = A2. Differentiating this leads to
R? 4+ k+ 2RR = 0, which gives (on using present-day values)
R2 4+ k — 2goR2 = 0 (*). Substituting B2 = A%/Ry — k and solving for
A? /2 gives the first expression.
The second expression can be obtained from the first by noting that
(*) yields H2R2 = k/(2g0 — 1).
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From (6.19), Ry = 3A%(1 — costy), so (as k = 1)

1 — costpp = (2qo — 1)/qo- Hence, costbo = (1 — go)/qo-

A similar argument (using (6.20)) gives cosh g = (1 — go)/qo for the
open model.

Finally, for the closed model (with k = 1), the age ¢ is obtained from
to = 3A%(¢ho — sinho) = (qo/Ho)(2q0 — 1)™** (00 — sintho).

With go ~= 1, 1/}0 =~ 7T/2, so tp ~ (7I'/2 - 1)/H0

The age for the open model can be found in a similar way.

6.3 (a) Just under 36 x 10° light yrs. (b) Just under 96 x 10° yrs and
just under 144 x 10° light yrs. (c) Extremely large (v = 2c gives
z=o00)and z = 3.

6.4 Use equation (6.47).

6.5 To three significant figures, the answers are:
(a) 2.36 hrs; (b) 1.58 km.

6.6 (a) Use equation (6.39).
(b) 9.7 x 10° yrs, compared with 10.9 x 10° yrs.

6.7 12.4 x 10% yrs.

6.8 2969 K.

Appendix A

Exercises

A.1.1 The first and third of the expressions involving 4, B and C give
B2C?%c* = (¢ + A%v?)(A? — 1), while the second expression gives
B2C?c* = A%?. Subtraction then leads to A%(c? — v?) = ¢2, from
which we get A = (1 —v?/c?)Y/2. The expressions for B and C then
follow easily. (The signs taken for the square roots should be

justified.)
v vy/c00
. .. |vy/e v 00
A.1.2 The inverse matrix is 0 0 10
0 0 01

The velocity of K relative to K’ is —v.
A.1.3 If v/c is negligible, then v = 1, and the Galilean equations follow.

A.2.1 Use the addition formulae cosh(t + ¢) = cosh ) cosh ¢ + sinh ¢ sinh ¢
and sinh(¢ + ¢) = sinh ¢ cosh ¢ + cosh ¢ sinh ¢.
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A.2.2 The result follows from the identity
(1-v/c)(1 —w/c)=(1+vw/c?) — (v+w)/c. For v < cand w < ¢
makes the LHS positive, showing that v+ w < ¢(1 + vw/c?).

A.5.1 Take A* to be the position vector of a point P in spacetime, so that
its coordinates are given by ¢t = A%, z = Al, y = A%, z = A3, Then
NN >0 < 2?2 +y?+2%2 <*? < P inside the cone,
NN =0 < 2?2 +y?+22=c*? <= P on the cone,
NN <0 = z?+y*+22> c*t> <= P outside the cone.

A.5.2 Substitute t = y(t' + zv?/c?), z = v(z’' +vt'), y =y, 2 = 2’ into
(A.20).

A.6.1 (a) u* = (c,0,0,0), (b) u* = (ye, V).
No, because dr = 0 for neighboring points on a photon’s path.

A.6.2 Use the fact that u,u* = ¢ implies (on differentiating) that
u,du* /dr = 0.
From (A.24) and (A.30), u,f* =~v*(F-v—-v-F)=0.

A.6.3 Use cos? ¢ +sin ¢ = 1 to get
v?m?v? = (V% — 2ucos @ + #?)h?/c? and equate this with
v?m?v? = m2(y? — 1)c? = (hv/c + me — hiz/c)? — m2c2.
k? k? tan 6

A.7.1 tanf' = — = =...= .
7.1 tanf KV —(yv/c)kO + vkl ¥(1 — (v/c)sech)

ASB1 A# , = DAY3(ct) + DA [0z + DA /Oy + DA /0
=V-A+ C_2a¢/8t =V-A+ u0506¢/8t.

A8.2 F()l = AO,l - A1,0 = 8(@5/0)/8.’1? — 8A1/6(Ct)
= (0¢/0x — 0A1/0t)/c = (8¢/0x + DA /t)/c = —E* /e,

and similarly for the other components.
A.8.3 Use F¥, =nt9F,, and F* = F¥ n".

A.8.4 It is straightforward to show that p = 0 in (A.55) gives (A.44) and
that u = 1,2,3 gives (A.46). Note that (A.56) comprises just four
distinct non-trivial equations, which can be obtained by taking
(u,v,0) equal to (1,2,3), (0,2,3), (0,1,3) and (0,1,2) in turn. In this
way, (A.43) and (A.45) can be derived.

A.8.5 Use (A.26) and the fact that dt/dr = 7.
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Problems

Al

A3

A4

A5

A6

A7

A8

A9

A0

Al

A12

At/At = 3/3.000000015 = /1 — v2/c2 = v/cx 1074
This gives v ~ 3 x 10*ms~!, or about 67,500 mph.

A = Xo/V3 ~ 365.35nm.

The matrix version of F*'¥" = FoB A Agl is F' = AFAT. Use this
matrix equation with F' and F’ given by (A.63) and A by (A.13).

With 0 < v < ¢, we get a graph that increases with v, having the
value one when v = 0 and tending to infinity as v — c.

Let K be the lab frame and K’ the rocket frame. Because the switch
is fixed in the lab frame, Az =0, so

At =y At = v=5/3 = v/c=4/5.

Hence Az’ = —yv At = —(4/3)c At = —4¢ = —12 x 103 m and
v=4c¢/5=24x10ms !

Use j* = Aﬁ/j”, where j* = (pg,0,0,0) and {Aﬁ,‘/} is the matrix of
equation (A.13).

Kinetic energy = myc? — me? = mc?(1/4/3 ~ 1) = 9.75 x 10'7 joules.
Momentum = p = ymv = ym(—c/2,0,0), which has magnitude
1.21 x 101%kgms~!,

Use the hint to show that uf .k, = 27/Ao and utk, = 27 /A.

Time dilation gives a laboratory half-life of

At =y At = 12.55 x 1078 sec, in which time a pion travels

0.99¢ x 12.55 x 1078 = 37.3m, in agreement with the observation in
the laboratory.

In the pions’ rest frame, we have the contracted distance

37.3/ = 5.26 m, which is covered by the lab in a time

5.26/0.99c = 1.77 x 1078, in agreement with the half-life of a
stationary pion.

Work in the rest frame of the material, where u* = (¢, 0,0, 0). For
1 = 0, the equation reduces to 0 = 0, but for u =1 it gives
j* = ocF™. That is, J = oE, which is Ohm’s law.

Use a non-rotating frame, with origin at the center of the Earth. For
an eastbound flight, we have vgp = vg + v4, while for a westbound
flight, we have vy = vg — v4, where vg is the speed due to the
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Earth’s rotation, and v4 is the speed of the aircraft relative to the
Earth. Note that Are = /1 — v} /c? At,

Atp = /1 —v%/c? At, and Ary = /1 —v§, /c? At.

Appendix B

Exercises

B.2.1 Working to first order in € gives
sp, = {1 + egapan® + egapn?a? +edpgapnPitiB}/25s
= {1+ 2egapz?nP + cOpgapnP 3128}/ %5s
= {1 + €gABi‘AhB + %EaDgABTLD.C'CAi‘B}(SS.
B.2.2 tpDn®/ds = gapi? (nP + IEynciP)
= gapiAn® + Dycpn€iiiP.
Substitute I'acp = %(809,4]3 + 0pgca — 0agep) and cancel two
terms to get (B.9).

B.2.3 Straightforward, using t4t* = 1, t4Dt4/ds = 0, and t4n* = 0.
Appendix C

Exercises

C.1.1 From (C.6), ey = X{ e and substitution in (C.5) gives
es = X2 X g'ec/. By uniqueness of components we have X ab,X,f/ = 0¢.

C.2.1 Let f, g be linear functionals. Then for all o, € Rand u,v €T,

(f +g)(au+pBv)
= f(ou+ Bv) + glau + gBv) (by definition of the sum)
= af(u) + Bf(v) + ag(u) + fg(v) (since f and g are linear)
= a(f(u) + g(w) + B{f(v) + g(v))
=a(f +9)(w) + B(f + g)(v),

showing that the sum f + ¢ is a linear functional.

C22 p=me’ = ung,e“/ (from (C.17)) = par = Xoopp -
Similarly for the second of equations (C.18).

C.2.3 The identification of T** with T means that (as a vector in T™*)
A= A, 50 A(p) = A, (upe®) = A upf,(€®) = A2updl = A% p,.

C.3.1 For 0,7 € R and u,v € T*, the components of ou + 7v relative to
{e*} are oug + T4, 50 €ga(0u+ TV, W) = (0Ug + TV )Wo =
0(UgWa) + T(VaWa ) = T€aa (U, W) + Tego(V, W).

Similarly we can show that
€aa(V, YW + 0X) = Y€4a(V, W) + d€g0 (V,X).



C32

C.3.3

C6.1

C.7.1

Solutions 281

9o — (e £} (by definition)
=7(X¢ e, Yﬁ‘”fﬁ) = X Yﬁa/‘r(eb, %) (using bilinearity)
= XYy 8,

Using primed bases, we would make the definition

Ao p =Xy eys. But

N e = (XX (YE 1) (X5 Y Jreey) = AU050700y = A% eqa,
showing agreement with the definition using unprimed bases.

Let g = ¢(P). The inverse-function theorem asserts that there exist
open sets X C S and Y = f(X) C T with zg € X, such that the
restriction of f to X has a differentiable inverse g : ¥ — X. Then for
the chart (U’, '), take U’ = ¢~1(g(Y)) = v ~1(X) c U and

' = f o), with ¢ restricted to U’.

Because the derivative is nowhere zero, f is either a strictly
increasing, or a strictly decreasing function, and has a differentiable
inverse g, say. Suppose (for convenience) that it is increasing, so that
f(a) < < f(b). Then g is also increasing and du/du’ = ¢'(u’) > 0.
The chain rule gives dz®/du’ = (dz®/du)(du/dv’), showing that
(dz®/du’)p # 0 at all points P. So v’ is also a regular parameter and
the tangent vector (dz®/du’)p is proportional to (dz®/du)p .

The strictly decreasing case is covered by a similar argument.
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Index

absolute differentiation 71-75
acceleration in rotating frame 92

addition of velocities 216-217
affine parameter 58
age of universe 192,201

angle between vectors 44
angular momentum
conservation in Schwarzschild solution
137
of rotating object 159
arc-length
in a manifold 44
in Euclidean space 20
on a surface 34

background radiation 185
basis
change of 23-25,243, 246, 249
dual 11,13,31,46-49, 245
natural 10,13, 31, 46-49
bending of light 5, 146-149
Bianchi identity 103
black holes 124,142, 152-156
blackbody radiation 185
blueshift 133-135
boost 51,214-216, 226, 231

Cartesian
coordinates 7
line element 20,212
causal problem 202
centrifugal force 55, 92-93
charge density see density, charge
Christoffel symbols 70

coderivative see covariant differentia-
tion

components

contravariant 14, 48

covariant 14,48

of a tensor 29, 38-43, 248

of a vector 10,13, 36, 243, 246
Compton effect 224-225

configuration space 37

connection
Chinese 233-240
coefficients 58, 69-70

transformation formula 69,71
conservation of energy and momentum
224
continuity equation 99, 100, 188
continuum, spacetime see spacetime

contraction

Lorentz 218-219
of tensors 40
contravariant

tensor (tensor of type (r,0)) 38,250
vector 36, 38, 245
coordinate

curve 8

cyclic 61
ignorable 61
speed 129,139, 143
surface 8
systems

in a manifold 35,252
in Euclidean space 7-13
velocity 98,222
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coordinates

Cartesian 7

cylindrical 12, 25-26, 93

ellipsoidal 49

geodesic  see geodesic coordinates

paraboloidal 11-12

spherical 8-10, 20, 25-26, 79, 90
Coriolis force 55,89, 92-93
cosmological

constant 201
principle 185
cosmology 183-207
covariance, principle of general 4
covariant
differentiation 75-77
tensor (tensor of type (0, s))
36, 38, 245

38, 250

vector
curl 94
current 4-vector 229
curvature

of a surface 34

of spacetime 82-85, 97

on an apple 53-55

scalar 104

tensor 102-105, 107, 111
cyclic identity 103
cylindrical coordinates

nates, cylindrical

see coordi-

d’Alembertian 172,229
deceleration parameter 190, 192
deflection of light see bending of light

density
charge 228,229
critical 190,192
mass 98, 230
derivative
absolute see absolute differentiation
covariant  see covariant differentia-
tion
distance in Schwarzschild geometry
125-127

divergence 78

Doppler effect 226-228
transverse 227

dual space 47,244-247

dummy suffixes 14

Eddington-Finkelstein coordinates
153-155
Einstein
cosmological models 200-203
summation convention 14
tensor 104
electric charge density
charge
electromagnetic
field tensor 229, 230
potential 229
elevator
freely falling 2
energy
and mass 222-224
conservation in Schwarzschild solution
137
kinetic 224
rest 224
energy-momentum
4-vector see momentum 4-vector
tensor see stress tensor
equation of motion
of a fluid 99-101, 188, 204
of a particle 3,83-84, 86, 136-144,
223
equivalence principle 1-4
ergosphere 166
Fuler equation for a fluid 100
FEuler-Lagrange equations for geodesics
60-63, 95
event 82,211
horizon see horizon, event
expansion of universe 191, 201, 205

see density,

falling particle 137-139
field equations
compared with Poisson’s equation
115-116
Einstein’s 112-114
Robertson-Walker 187-189
Schwarzschild’s  117-118
flatness 103
flatness problem 202
fluids 97-102, 183
force
4-vector 84,223
centrifugal see centrifugal force
Coriolis  see Coriolis force



Lorentz 230
4-vectors 97-98, 222-226, 229
Friedmann

equation 188

models 189-192

Galilean transformation 216,230
Galileo 1
gauge
condition, Lorentz 172,228
transformation 171-173, 228
T 175
geodesic 5664
and Newton'’s laws 86
coordinates 79-81
deviation 54,110-113, 182
effect 5,149-152
equation of 58,84
postulate 84
gradient vectors 11,21-22,37
gravitational
mass 1
radiation 169-182
redshift 5,131-135
gravitons 170
Gravity Probe B see gyroscope
experiment
gyroscope experiment 5,152, 162

homogeneity of space 184,185
horizon

event 155-156, 162-166

particle 199-200

problem 202
Hubble’s

constant 185, 189, 192, 196, 206

law  185,193-196
hydrodynamical equations 99-101
hypotheses

of general relativity 2,4, 84

of special relativity 211-213

impossibility of transforming away
gravity 3,158
inertia tensor 51
inertial
frame dragging 161
frame of reference 211
mass 1

Index 289

inflation 203
inner product

in special relativity 213

on a manifold 43
interval 45,212
invariant quantities 212,213
isotropic coordinates 120, 157
isotropy of space 184,185

Kepler’s third law 139

Kerr solution 158-166
Boyer-Lindquist coordinates 159
Kerr-Schild coordinates 164
Kronecker

delta 14,18, 19

tensor 40,78

Kruskal coordinates 157-158

Lagrangian for geodesics 60
Laplacian 115
Leibniz rule 73
length
in special relativity 218-219
near a massive object 124-129
of a curve 20, 34,44
of a vector 44, 45
light
bending see bending of light
cone see null cone
ray, path of 142-144,146-149
line element
in a manifold 45
in Euclidean space 20
Kerr
in Boyer-Lindquist coordinates
159
of a cone 94
of a rotating system 91
of special relativity 213
on a surface 34
Robertson-Walker 61, 186
Schwarzschild 89,118,124
in Eddington-Finkelstein coordi-
nates 153
in isotropic coordinates 120, 157
in Kruskal coordinates 158
static spherically symmetric 95,116
Lorentz
force 230
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gauge condition 172,228
transformation 214-216, 226
lowering suffixes 42-43
manifolds 35-37,251-254
mass
and energy see energy and mass
control knob 123
gravitational see gravitational mass
inertial see inertial mass
matrix methods 16-18, 25-26
Maxwell’s equations 83, 228-229
Mercury, perihelion of 5, 146
metric tensor
differentiation 77-78
for a sphere 64, 66,119
in Euclidean space 27
in special relativity 212
on a manifold 41,4346
on a surface 32
Schwarzschild 118
missing matter 192
moment of inertia 181
momentum 222-226
4-vector 98,222

neutron star 146
Newton’s
bucket 158
law of universal gravitation 89-90
laws of motion 86-87,211, 223
Newtonian
cosmology 203-206
falling particle 139
geodesic deviation 114

orbit 139, 144, 167

potential 89,90,112,115
notation 6, 13-19, 24, 35,42, 76, 97,

243

null

cone 85,154,219-221

coordinate 116

curve 45

geodesic 59, 85

vector 44,45, 85, 220

Olbers’ paradox 184
orbits

of particles 137,139-142

of photons 142
order of a tensor
orthogonality 44

see rank of tensor

parallel transport 64-71
and curvature 105-110
for geodesic effect 149-152
on a sphere 66-67,108-110, 240
with Lanchester’s transporter
233-240
parallelism 65
parametric curves 30

particle
horizon 199-200
motion near a massive object
136-144

perihelion advance 5,137, 144-146
photons, motion near a massive object
142-144
Poincaré transformation 214
Poisson’s equation 112)115-116
polarization
electromagnetic waves 175-176
gravitational waves 173,178
potential
electromagnetic 172,175,229
Newtonian 87-89
preferred coordinates 4
principle
of general covariance 4
principle of equivalence see equiva-
lence principle

product
dyad 48
tensor 39, 48, 247-250

proper time 3, 83-84, 98,127, 129-131,
136, 186, 213, 218
pulsar 146

quadrupole radiation 170
quotient theorem 38-39, 102

radar sounding 5,129-131
radiation
background 185
blackbody 185

from a dumbbell 180-18&81
gravitational 169-182
power 181,182

quadrupole 170



radius
of orbit 139, 142
Schwarzschild 152
raising suffixes 4243
rank of a tensor 38, 250
redshift
cosmological 184, 185, 192-201
in Schwarzschild solution 131-135
infinite 152, 162-166
objects with large 196-200
Ricci tensor  104-105, 113
Riemann tensor see curvature tensor
Riemannian manifold 44
Robertson~Walker line element see
line element, Robertson—Walker
rotating reference system 90-93

scalar 241
as type (0,0) tensor 38,250
field 21-22,37
multiplication 39
Schwarzschild
radius 152
solution 89, 116-119, 123-168
second moment of mass distribution
170, 180
simultaneity 217-218, 222
space
3-dimensional 124,186, 211
configuration 37
dual see dual space
spacelike
coordinate 116
vector 45, 85, 220
spacetime
curved 3, 53-56, 82-85
diagram 132,133, 141, 143, 154, 156,
219-222
flat 55,82-83,211-212
spectral shift 5,131-135
speed
angular 151
greater than ¢ 196-200
of gravitational waves 173
of light
in flat spacetime 211
in gravitational field 129
spherical coordinates see coordinates,
spherical

stationary
straightest

Index 291

limit 164-166
path 53

straightness 56

stress tensor 115
for a charged fluid 119
for a perfect fluid 99, 183

for dust

119

for fluids 97-102
in elasticity 27-30
suffix notation 13-19
surfaces 30-35

tachyons 85,220
tangent
plane 30-32

space 46-48,254-256

vector
tensor

9,19-21, 30, 37, 46, 254-255

components 3843, 248
fields 38-43,251, 256257

metric
mixed
product

see metric tensor
38
39, 48, 247-250

skew-symmetric 41
symmetric 41

tensors

and differentiation 71-79
associated 42

contract
defined

ion of 40
38, 249

in Euclidean space 27-30
test particle 86

time

coordinate 2,98, 124-129, 131

cosmic

186

delay near massive object 5,
129-131

dilation

Newtoni

proper
timelike

218
an 211
see proper time

coordinate 116

geodesic
vector

85
45, 85,220

total energy of universe 205
transformation

Galilean
tion
gauge

see Galilean transforma-

see gauge transformation
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Lorentz see Lorentz, transformation
of components 23-27, 29, 3841,
243, 246, 249, 250
of connection coefficients
Poincaré 214
TT gauge 175

69, 71

unit vector 44
universe

properties of 183-185
vector space 47,241-244
vectors

in Euclidean space 10-13
on a manifold 36-37

using suffix notation 13-15
velocity
coordinate see coordinate velocity

world 98,220

wave
4-vector
equation

world
line
velocity

173,223
173,229

213,221
see velocity, world
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