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Preface
Ég geng ı́ hring
.ı́ kringum allt, sem er.
Og utan þessa hrings
er veröld mı́n

Steinn Steinarr

Security is a fashion industry. There is more truth in this statement than one would like
to admit to a student of computer security. Security buzzwords come and go; without
doubt security professionals and security researchers can profit from dropping the right
buzzword at the right time. Still, this book is not intended as a fashion guide.

This is a textbook on computer security. A textbook has to convey the fundamental
principles of its discipline. In this spirit, the attempt has been made to extract essential
ideas that underpin the plethora of security mechanisms one finds deployed in today’s
IT landscape. A textbook should also instruct the reader when and how to apply these
fundamental principles. As the IT landscape keeps changing, security practitioners have
to understand when familiar security mechanisms no longer address newly emerging
threats. Of course, they also have to understand how to apply the security mechanisms
at their disposal.

This is a challenge to the author of a textbook on computer security. To appreciate
how security principles manifest themselves in any given IT system the reader needs
sufficient background knowledge about that system. A textbook on computer security
is limited in the space it can devote to covering the broader features of concrete IT
systems. Moreover, the speed at which those features keep changing implies that any
book trying to capture current systems at a fine level of detail is out of date by the time it
reaches its readers. This book tries to negotiate the route from security principles to their
application by stopping short of referring to details specific to certain product versions.
For the last steps towards any given version the reader will have to consult the technical
literature on that product.

Computer security has changed in important aspects since the first edition of this book
was published. Once, operating systems security was at the heart of this subject. Many
concepts in computer security have their origin in operating systems research. Since
the emergence of the web as a global distributed application platform, the focus of
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computer security has shifted to the browser and web applications. This observation
applies equally to access control and to software security. This third edition of Computer
Security reflects this development by including new material on web security. The reader
must note that this is still an active area with unresolved open challenges.

This book has been structured as follows. The first three chapters provide context and
fundamental concepts. Chapter 1 gives a brief history of the field, Chapter 2 covers
security management, and Chapter 3 provides initial conceptual foundations. The next
three chapters deal with access control in general. Chapter 4 discusses identification
and authentication of users, Chapter 5 introduces the principles of access control, with
Chapter 6 focused on the reference monitor. Chapter 7 on Unix/Linux, Chapter 8 on
Windows, and Chapter 9 on databases are intended as case studies to illustrate the
concepts introduced in previous chapters. Chapter 10 presents the essentials of software
security.

This is followed by three chapters that have security evaluation as their common theme.
Chapter 11 takes the Bell–LaPadula model as a case study for the formal analysis of an
access control system. Chapter 12 introduces further security models. Chapter 13 deals
with the process of evaluating security products.

The book then moves away from stand-alone systems. The next three chapters constitute
a basis for distributed systems security. Chapter 14 gives a condensed overview of
cryptography, a field that provides the foundations for many communications security
mechanisms. Chapter 15 looks in more detail at key management, and Chapter 16 at
Internet security protocols such as IPsec and SSL/TLS.

Chapter 17 proceeds beyond communications security and covers aspects of network
security such as Domain Name System security, firewalls, and intrusion detection systems.
Chapter 18 analyzes the current state of web security. Chapter 19 reaches into another
area increasingly relevant for computer security – security solutions for mobile systems.
Chapter 20 concludes the book with a discussion of recent developments in access
control.

Almost every chapter deserves to be covered by a book of its own. By necessity, only a
subset of relevant topics can therefore be discussed within the limits of a single chapter.
Because this is a textbook, I have sometimes included important material in exercises
that could otherwise be expected to have a place in the main body of a handbook on
computer security. Hopefully, the general coverage is still reasonably comprehensive and
pointers to further sources are included.

Exercises are included with each chapter but I cannot claim to have succeeded to my
own satisfaction in all instances. In my defence, I can only note that computer security
is not simply a collection of recipes that can be demonstrated within the confines of
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a typical textbook exercise. In some areas, such as password security or cryptography,
it is easy to construct exercises with precise answers that can be found by going
through the correct sequence of steps. Other areas are more suited to projects, essays, or
discussions. Although it is naturally desirable to support a course on computer security
with experiments on real systems, suggestions for laboratory sessions are not included
in this book. Operating systems, database management systems, and firewalls are prime
candidates for practical exercises. The actual examples will depend on the particular
systems available to the teacher. For specific systems there are often excellent books
available that explain how to use the system’s security mechanisms.

This book is based on material from a variety of courses, taught over several years at
master’s but also at bachelor’s degree level. I have to thank the students on these courses
for their feedback on points that needed better explanations. Equally, I have to thank
commentators on earlier versions for their error reports and the reviewers of the draft of
this third edition for constructive advice.

Dieter Gollmann
Hamburg, December 2010





Chapter1
History of Computer Security

Those who do not learn from the past will repeat it.
George Santanya

Security is a journey, not a destination. Computer security has been travelling
for 40 years, and counting. On this journey, the challenges faced have kept
changing, as have the answers to familiar challenges. This first chapter will
trace the history of computer security, putting security mechanisms into the
perspective of the IT landscape they were developed for.

OBJECT I VES

• Give an outline of the history of computer security.
• Explain the context in which familiar security mechanisms were originally

developed.
• Show how changes in the application of IT pose new challenges in

computer security.
• Discuss the impact of disruptive technologies on computer security.



2 1 HISTORY OF COMPUTER SECURITY

1.1 T H E D AW N O F C O M P U T E R S E C U R I T Y
New security challenges arise when new – or old – technologies are put to new use.
The code breakers at Bletchley Park pioneered the use of electronic programmable
computers during World War II [117, 233]. The first electronic computers were built
in the 1940s (Colossus, EDVAC, ENIAC) and found applications in academia (Ferranti
Mark I, University of Manchester), commercial organizations (LEO, J. Lyons & Co.),
and government agencies (Univac I, US Census Bureau) in the early 1950s. Computer
security can trace its origins back to the 1960s. Multi-user systems emerged, needing
mechanisms for protecting the system from its users, and the users from each other.
Protection rings (Section 5.6.4) are a concept dating from this period [108].

Two reports in the early 1970s signal the start of computer security as a field of research
in its own right. The RAND report by Willis Ware [231] summarized the technical
foundations computer security had acquired by the end of the 1960s. The report also
produced a detailed analysis of the policy requirements of one particular application
area, the protection of classified information in the US defence sector. This report was
followed shortly after by the Anderson report [9] that laid out a research programme for
the design of secure computer systems, again dominated by the requirement of protecting
classified information.

In recent years the Air Force has become increasingly aware of the problem of computer
security. This problem has intruded on virtually any aspect of USAF operations and
administration. The problem arises from a combination of factors that includes: greater
reliance on the computer as a data-processing and decision-making tool in sensitive
functional areas; the need to realize economies by consolidating ADP [automated data
processing] resources thereby integrating or co-locating previously separate data-processing
operations; the emergence of complex resource sharing computer systems providing users
with capabilities for sharing data and processes with other users; the extension of resource
sharing concepts to networks of computers; and the slowly growing recognition of security
inadequacies of currently available computer systems. [9]

We will treat the four decades starting with the 1970s as historical epochs. We note
for each decade the leading innovation in computer technology, the characteristic
applications of that technology, the security problems raised by these applications, and
the developments and state of the art in finding solutions for these problems. Information
technologies may appear in our time line well after their original inception. However, a
new technology becomes a real issue for computer security only when it is sufficiently
mature and deployed widely enough for new applications with new security problems
to materialize. With this consideration in mind, we observe that computer security has
passed through the following epochs:

• 1970s: age of the mainframe,
• 1980s: age of the PC,
• 1990s: age of the Internet,
• 2000s: age of the web.
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1.2 1 9 70 s – M A I N F R A M E S
Advances in the design of memory devices (IBM’s Winchester disk offered a capacity of
35–70 megabytes) facilitated the processing of large amounts of data (for that time).
Mainframes were deployed mainly in government departments and in large commercial
organizations. Two applications from public administration are of particular significance.
First, the defence sector saw the potential benefits of using computers, but classified
information would have to be processed securely. This led the US Air Force to create the
study group that reported its finding in the Anderson report.

The research programmes triggered by this report developed a formal state machine model
for the multi-level security policies regulating access to classified data, the Bell–LaPadula
model (Chapter 11), which proved to be highly influential on computer security research
well into the 1980s [23]. The Multics project [187] developed an operating system that
had security as one of its main design objectives. Processor architectures were developed
with support for primitives such as segmentations or capabilities that were the basis for
the security mechanisms adopted at the operating system level [92].

The second application field was the processing of ‘unclassified but sensitive’ data such
as personal information about citizens in government departments. Government depart-
ments had been collecting and processing personal data before, but with mainframes
data-processing at a much larger scale became a possibility. It was also much easier for
staff to remain undetected when snooping around in filesystems looking for information
they had no business in viewing. Both aspects were considered serious threats to privacy,
and a number of protection mechanisms were developed in response.

Access control mechanisms in the operating system had to support multi-user security.
Users should be kept apart, unless data sharing was explicitly permitted, and prevented
from interfering with the management of the mainframe system. The fundamental
concepts for access control in Chapter 5 belong to this epoch.

Encryption was seen to provide the most comprehensive protection for data stored in
computer memory and on backup media. The US Federal Bureau of Standards issued a
call for a data encryption standard for the protection of unclassified data. Eventually,
IBM submitted the algorithm that became known as the Data Encryption Standard
[221]. This call was the decisive event that began the public discussion about encryption
algorithms and gave birth to cryptography as an academic discipline, a development
deeply resented at that time by those working on communications security in the security
services. A first key contribution from academic research was the concept of public-key
cryptography published by Diffie and Hellman in 1976 [82]. Cryptography is the topic
of Chapter 14.

In the context of statistical database queries, a typical task in social services, a new threat
was observed. Even if individual queries were guaranteed to cover a large enough query
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set so as not to leak information about individual entries, an attacker could use a clever
combination of such ‘safe’ statistical queries to infer information about a single entry.
Aggregation and inference, and countermeasures such as randomization of query data,
were studied in database security. These issues are taken up in Section 9.4.

Thirdly, the legal system was adapted and data protection legislation was introduced
in the US and in European countries and harmonized in the OECD privacy guidelines
[188]; several legal initiatives on computer security issues followed (Section 9.6).

Since then, research on cryptography has reached a high level of maturity. When the
US decided to update the Data Encryption Standard in the 1990s, a public review
process led to the adoption of the new Advanced Encryption Standard. This ‘civilian’
algorithm developed by Belgian researchers was later also approved in the US for the
protection of classified data [68]. For the inference problem in statistical databases,
pragmatic solutions were developed, but there is no perfect solution and the data
mining community is today re-examining (or reinventing?) some of the approaches from
the 1970s. Multi-level security dominated security research into the following decade,
posing interesting research questions which still engage theoreticians today – research
on non-interference is going strong – and leading to the development of high-assurance
systems whose design had been verified employing formal methods. However, these
high-assurance systems did not solve the problems of the following epochs and now
appear more as specialized offerings for a niche market than a foundation for the security
systems of the next epoch.

1.3 1 9 8 0 s – P E R S O N A L C O M P U T E R S
Miniaturization and integration of switching components had reached the stage where
computers no longer needed to be large machines housed in special rooms but were small
enough to fit on a desk. Graphical user interfaces and mouse facilitated user-friendly
input/output. This was the technological basis for the personal computer (PC), the
innovation that, indirectly, changed the focus of computer security during the 1980s. The
PC was cheap enough to be bought directly by smaller units in organizations, bypassing
the IT department. The liberation from the tutelage of the IT department resounded
through Apple’s famous launch of the Macintosh in 1984. The PC was a single-
user machine, the first successful applications were word processors and spreadsheet
programs, and users were working on documents that may have been commercially
sensitive but were rarely classified data. At a stroke, multi-level security and multi-
user security became utterly irrelevant. To many security experts the 1980s triggered a
retrograde development, leading to less protected systems, which in fairness only became
less secure when they were later used outside their original environment.

While this change in application patterns was gathering momentum, security research
still took its main cues from multi-level security. Information-flow models and
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non-interference models were proposed to capture aspects not addressed in the
Bell–LaPadula model. The Orange Book [224] strongly influenced the common
perception of computer security (Section 13.2). High security assurance and multi-level
security went hand in hand. Research on multi-level secure databases invented
polyinstantiation so that users cleared at different security levels could enter data into
the same table without creating covert channels [157].

We have to wait for the Clark–Wilson model (1987) [66] and the Chinese Wall model
(1989) [44] to get research contributions influenced by commercial IT applications
and coming from authors with a commercial background. Clark and Wilson present
well-formed transactions and separation of duties as two important design principles for
securing commercial systems. The Chinese Wall model was inspired by the requirement
to prevent conflicts of interest in financial consultancy businesses. Chapter 12 covers
both models.

A less visible change occurred in the development of processor architectures. The
Intel 80286 processor supported segmentation, a feature used by multi-user operating
systems. In the 80386 processor this feature was no longer present as it was not used by
Microsoft’s DOS. The 1980s also saw the first worms and viruses, interestingly enough
first in research papers [209, 69] before they later appeared in the wild. The damage
that could be done by attacking computer systems became visible to a wider public. We
will briefly describe two incidents from this decade. Both ultimately led to convictions
in court.

1.3.1 An Early Worm
The Internet worm of 1988 exploited a number of known vulnerabilities such as brute
force password guessing for remote login, bad configurations (sendmail in debug mode),
a buffer overrun in the fingerd daemon, and unauthenticated login from trusted hosts
identified by their network address which could be forged. The worm penetrated 5–10%
of the machines on the Internet, which totalled approximately 60,000 machines at the
time. The buffer overrun in the fingerd daemon broke into VAX systems running Unix
4BSD. A special 536-byte message to the fingerd was used to overwrite the system stack:

pushl $68732f push ’/sh, ‹NUL›’
pushl $6e69622f push ’/bin’
movl sp, r10 save address of start of string
pushl $0 push 0 (arg 3 to execve)
pushl $0 push 0 (arg 2 to execve)
pushl r10 push string addr (arg 1 to execve)
pushl $3 push argument count
movl sp, ap set argument pointer
chmk $3b do "execve" kernel call

The stack is thus set up so that the command execve("/bin/sh",0,0) will be
executed on return to the main routine, opening a connection to a remote shell via
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TCP [213]. Chapter 10 presents technical background on buffer overruns. The person
responsible for the worm was brought to court and sentenced to a $10,050 fine and 400
hours of community service, with a three-year probation period (4 May 1990).

1.3.2 The Mad Hacker

This security incident affected ICL’s VME/B operating system. VME/B stored information
about files in file descriptors. All file descriptors were owned by the user :STD. For
classified file descriptors this would create a security problem: system operators would
require clearance to access classified information. Hence, :STD was not given access
to classified file descriptors. In consequence, these descriptors could not be restored
during a normal backup. A new user :STD/CLASS was therefore created who owned
the classified file descriptors. This facility was included in a routine systems update.

The user :STD/CLASS had no other purpose than owning file descriptors. Hence, it
was undesirable and unnecessary for anybody to log in as :STD/CLASS. To make
login impossible, the password for :STD/CLASS was defined to be the RETURN key.
Nobody could login because RETURN would always be interpreted as the delimiter
of the password and not as part of the password. The password in the user profile of
:STD/CLASS was set by patching hexadecimal code. Unfortunately, the wrong field
was changed and instead of a user who could not log in, a user with an unrecognizable
security level was created. This unrecognizable security level was interpreted as ‘no
security’ so the designers had achieved the opposite of their goal.

There was still one line of defence left. User :STD/CLASS could only log in from the
master console. However, once the master console was switched off, the next device
opening a connection would be treated as the master console.

These flaws were exploited by a hacker who himself was managing a VME/B system. He
thus had ample opportunity for detailed analysis and experimentation. He broke into a
number of university computers via dial-up lines during nighttime when the computer
centre was not staffed, modifying and deleting system and user files and leaving messages
from The Mad Hacker. He was successfully tracked, brought to court, convicted (under
the UK Criminal Damage Act of 1971), and handed a prison sentence. The conviction,
the first of a computer hacker in the United Kingdom, was upheld by the Court of Appeal
in 1991.

1.4 1 9 9 0 s – I N T E R N E T
At the end of 1980s it was still undecided whether fax (a service offered by traditional
telephone operators) or email (an Internet service) would prevail as the main method
of document exchange. By the 1990s this question had been settled and this decade
became without doubt the epoch of the Internet. Not because the Internet was created
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in the 1990s – it is much older – but because new technology became available and
because the Internet was opened to commercial use in 1992. The HTTP protocol and
HTML provided the basis for visually more interesting applications than email or remote
procedure calls. The World Wide Web (1991) and graphical web browsers (Mosaic,
1993) created a whole new ‘user experience’. Both developments facilitated a whole new
range of applications.

The Internet is a communications system so it may be natural that Internet security
was initially equated with communications security, and in particular with strong
cryptography. In the 1990s, the ‘crypto wars’ between the defenders of (US) export
restrictions on encryption algorithms with more than 40-bit keys and advocates for the
use of unbreakable (or rather, not obviously breakable) encryption was fought to an end,
with the proponents of strong cryptography emerging victorious. Chapter 16 presents
the communications security solutions developed for the Internet in the 1990s.

Communications security, however, only solves the easy problem, i.e. protecting data
in transit. It should have been clear from the start that the real problems resided
elsewhere. The typical end system was a PC, no longer stand-alone or connected to
a LAN, but connected to the Internet. Connecting a machine to the Internet has two
major ramifications. The system owner no longer controls who can send inputs to this
machine; the system owner no longer controls what input is sent to the machine. The
first observation rules out traditional identity-based access control as a viable protection
mechanism. The second observation points to a new kind of attack, as described by Aleph
One in his paper on ‘Smashing the Stack for Fun and Profit’ (1996) [6]. The attacker
sends intentionally malformed inputs to an open port on the machine that causes a buffer
overrun in the program handling the input, transferring control to shellcode inserted by
the attacker. Chapter 10 is devoted to software security.

The Java security model addressed both issues. Privileges are assigned depending on the
origin of code, not according to the identity of the user running a program. Remote code
(applets) is put in a sandbox where it runs with restricted privileges only. As a type-safe
language, the Java runtime system offers memory safety guarantees that prevent buffer
overruns and the like. Chapter 20 explores the current state of code-based access control.

With the steep rise in the number of exploitable software vulnerabilities reported in the
aftermath of Aleph One’s paper and with several high profile email-based virus attacks
sweeping through the Internet, ‘trust and confidence’ in the PC was at a low ebb. In
reaction, Compaq, Hewlett-Packard, IBM, Intel, and Microsoft founded the Trusted
Computing Platform Alliance in 1999, with the goal of ‘making the web a safer place
to surf’.

Advances in computer graphics turned the PC into a viable home entertainment platform
for computer games, video, and music. The Internet became an attractive new distribution
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channel for companies offering entertainment services, but they had to grapple with
technical issues around copy protection (not provided on a standard PC platform of
that time). Copy protection had been explored in the 1980s but in the end deemed
unsuitable for mass market software; see [110, p. 59). In computer security, digital rights
management (DRM) added a new twist to access control. For the first time access control
did not protect the system owner from external parties. DRM enforces the security policy
of an external party against actions by the system owner. For a short period, DRM
mania reached a stage where access control was treated as a special case of DRM, before
a more sober view returned. DRM was the second driving force of trusted computing,
introducing remote attestation as a mechanism that would allow a document owner
to check the software configuration of the intended destination before releasing the
document. This development is taken up in Sections 15.6 and 20.7.

Availability, one of the ‘big three’ security properties, had always been of paramount
importance in commercial applications. In previous epochs, availability had been
addressed by organizational measures such as contingency plans, regular backup of
data, and fall-back servers preferably located at a distance from a company’s main
premises. With the Internet, on-line denial-of-service attacks became a possibility and
towards the end of the 1990s a fact. In response, firewalls and intrusion detection systems
became common components of network security architectures (Chapter 17).

The emergence of on-line denial-of-service attacks led to a reconsideration of the engineer-
ing principles underpinning the design of cryptographic protocols. Strong cryptography
can make protocols more exploitable by denial-of-service attacks. Today protocols are
designed to balance the workload between initiator and responder so that an attacker
would have to expend the same computational effort as the victim.

1.5 2 0 0 0 s – T H E W E B
When we talk about the web, there is on one side the technology: the browser as
the main software component at the client managing the interaction with servers and
displaying pages to the user; HTTP as the application-level communications protocol;
HTML and XML for data formats; client-side and server-side scripting languages for
dynamic interactions; WLAN and mobile phone systems providing ubiquitous network
access. On the other side, there are the users of the web: providers offering content and
services, and the customers of those offerings.

The technology is mainly from the 1990s. The major step forward in the 2000s
was the growth of the user base. Once sufficiently many private users had regular
and mobile Internet access, companies had the opportunity of directly interacting
with their customers and reducing costs by eliminating middlemen and unnecessary
transaction steps. In the travel sector budget airlines were among the first to offer web
booking of flights, demonstrating that paper tickets can be virtualized. Other airlines
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followed suit. In 2008, the International Air Transport Association (IATA) abandoned
printed airline tickets in favour of electronic tickets as part of its ‘Simplifying the
Business’ initiative.

Similarly, the modern traveller can arrange hotel reservations, car rentals, and conference
registrations on the Internet. Other successful commercial applications are the bookseller
Amazon, the mail-order business in general, e-banking, and the auction site eBay. The
latter is particularly interesting as it enables transactions between private citizens where
identities only need to be revealed to the extent of giving a shipping address.

The application-level software implementing the services offered on the web has become
a main target for attacks. Major attack patterns are SQL injection (Section 10.5.2), cross-
site scripting (Chapter 18), and attacks against the domain name system (Section 17.2).
Application software accounts for an increasing number of reported vulnerabilities and
real attacks. Attacks have stolen contact data from Gmail users,1 and a worm spread to
over a million users on MySpace.2 Cross-site scripting overtook buffer overruns as the
number one software vulnerability in the Common Vulnerabilities and Exposures list
in 2005 and ranked first in the 2007 OWASP Top Ten vulnerabilities.3 In 2006 SQL
injection ranked second in the CVE list.4

In line with the growth of commercial activities on the web, the picture of the attacker has
changed. The hackers of the 1990s often matched the stereotype of a male in his teens or
twenties with limited social skills. One could discuss whether they were laudable whistle
blowers exposing flaws in commercial software or whether they were creating wanton
damage simply in order to bolster their self-esteem. In rare cases, attacks were made for
financial gain. Today, criminal organizations have moved into the web. Criminals have
no interest in high profile fast spreading worm attacks. They prefer to place trojans on
their victims’ machines to harvest sensitive data such as passwords, PINs, or TANs, or
to use the victims’ machines as part of a botnet.

A further aspect of commercial life has gained momentum because of the availability
of the Internet as a high bandwidth global communications infrastructure. Outsourcing,
virtual organizations, grid and cloud computing describe facets of a business world
where companies merge, split, form joint enterprises, and move part of their activi-
ties to subcontractors or subsidiaries abroad on a regular basis. Sensitive information
has to be protected among these recurring changes. At the same time information
is becoming ever more crucial to a company’s success. Security policies have to be

1http://jeremiahgrossman.blogspot.com/2006/01/advanced-web-attack-techniques-
using.html
2http://www.betanews.com/article/CrossSite_Scripting_Worm_Hits_MySpace/1129232391
3http://www.owasp.org/index.php/OWASP_Top_Ten_Project
4Steve Christey and Robert A. Martin. Vulnerability type distributions in CVE, May 2007. http://cve.
mitre.org/docs/vuln-trends/vuln-trends.pdf
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defined, enforced, and managed in distributed heterogeneous settings. Policy adminis-
tration, policy decisions, and policy enforcement become separate activities, potentially
carried out at different sites and by different partners. Policy languages should provide
support for controlling the effects of merging policies or of importing local policies
into an enterprise-wide policy. Policy management systems may present a console for
getting a comprehensive view of the various policies coexisting in an enterprise and
for setting those policies, so that management rather than the local system owners
are in control of policy. Having an accurate and up-to-date view of the current state
of a dynamic and global enterprise is a challenge not only for management but also
for supervisory authorities. Compliance with regulations that ask management to be
truly in control of their companies, e.g. the Sarbanes–Oxley Act, is a major task in
today’s enterprises.

Efforts in the specification and design of relevant security mechanisms are under way
in several areas. Web services security standards address cryptographic protection for
XML documents, generic patterns for authentication (SAML), access control (XACML)
and much more. The future will show which of these standards have stood the
test of time. Federated identity management is a related topic, with applications
in heterogeneous organizations but also for single sign-on systems for customers of
federated companies. The integration of different authentication, authorization and
accounting (AAA) systems, driven in particular by the convergence of Internet and mobile
phone services, raises interesting challenges. On access control, research is pursuing
ideas first introduced in the work on trust management. In the design of policy
languages research is looking for the right balance between the expressiveness of a
language and the strength of its formal foundations. Chapter 20 gives an introduction to
these developments.

1.6 C O N C L U S I O N S – T H E B E N E F I T S
O F H I N D S I G H T
Innovations developed in research laboratories – the mouse, graphical user interfaces,
the Internet, the World Wide Web, mobile communications, public-key cryptography,
worms, and viruses – have found their way into the mass market. These innovations are,
however, not always used as originally envisaged by their inventors. For example, the
creators of the Internet were surprised when email turned out to be their most popular
service, the PC was turned into an Internet terminal, and SMS was not expected to grow
into the major application of the mobile phone network it is today.

There is a lesson for security. Not only inventors are inventive, but also users. Proponents
of new technologies are often asked to take a precautionary approach, study the impact of
their technology and develop appropriate security mechanisms in advance. This approach
can work if the use of the technology follows expectations, but is likely to fail in the face
of user innovations. There is the added danger that familiarity with the ‘old’ security
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challenges and their solutions inhibits the appreciation of new challenges where standard
state-of-the-art solutions no longer work, and actually would be an impediment to the
user. Multi-level secure operating systems and database management systems rarely fit
commercial organizations. The recommendation to authenticate all messages in Internet
protocols [2] gave way to privacy protection demands.

Innovations research defines disruptive technologies as cheap and comparatively simple
technologies that do not meet the requirements of sophisticated users, who would not
be seen using them, but are adopted by a wider public that does not need the advanced
features [42]. Eventually, the new technology acquires more and more advanced features
while remaining cheap as it serves a large enough market. In the end even sophisticated
users migrate to the new technology. For example, there was once a market for
workstations with much more powerful graphics processors than in a normal PC,
but hardly any of the workstation manufacturers have survived. As another example,
Internet protocols that were not designed to provide quality of service (QoS) are replacing
more and more of the protocols traditionally used in telephone networks. Disruptive
technologies may also be a problem for security. Initially, security features are neither
required by their users nor by the applications for which they are used, but by the time
they are a platform for sensitive applications it becomes difficult to reintegrate security.

1.7 E X E R C I S E S

Exercise 1.1 Examine how end users’ responsibilities for managing security
have changed over time.

Exercise 1.2 Full disclosure asks for all details of a security vulnerability to be
disclosed. Does this lead to an increase or a decrease in security?

Exercise 1.3 It has been frequently proposed to make software vendors liable
for deficiencies in their products. Who would benefit from such regulations?

Exercise 1.4 Computer security is often compared unfavourably with car safety,
where new models have to be approved before they can be brought to market and
where vendors recall models when a design problem is detected. Is traffic safety a
good model for computer security? Do we need the equivalent of driving licences,
traffic rules, and traffic police?

Exercise 1.5 Social networks are a new application that has grown rapidly in
recent years. What new security challenges are posed by social networks?

Exercise 1.6 ‘The net does not forget.’ To what extent is it possible to delete
information once it has been published on the Internet?
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Exercise 1.7 Attacks can come from inside or outside an organization. Are there
basic differences in the defences against insider and outsider threats? What is
the relative importance of insider threats? Has the relative importance of insider
threats changed as the modern IT landscape has been formed?

Exercise 1.8 Examine how security regulations and security mechanisms may
be used as trade barriers.



Chapter2
Managing Security

Before proceeding to the technical content of this book, this chapter will go
over some important issues that have to be addressed when implementing
security measures in practice. The deployment of security measures (and
of IT in general) is a management decision. Technical security measures
have to work hand in hand with organizational measures to be effective.
Management decisions should be underpinned by some analysis of current
risks and threats. We will give a brief introduction to security management
and to risk and threat analysis.

OBJECT I VES

• Set the scene for our discussion of computer security.
• Introduce security policies.
• Give a brief introduction to security management.
• Cover the basics of risk and threat analysis.
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2.1 AT TA C K S A N D AT TA C K E R S

When credit card payments over the Internet were first considered, it was thought
essential that the traffic between customer and merchant should be protected. After all,
the basic Internet protocols offer no confidentiality so parties located between customer
and merchant could capture card numbers and use them later for fraudulent purchases.
SSL was developed by Netscape to deal with this very problem in the mid 1990s.

However, the real danger may lurk elsewhere. Scanning Internet traffic for packets
containing credit card numbers is an attack with a low yield. Badly protected servers at
a merchant site holding a database of customer credit card numbers are a much more
rewarding target. There is documented evidence that such attacks have occurred,1 either
to obtain credit card numbers or to blackmail the merchant.

Identity theft, i.e. using somebody else’s ‘identity’ (name, social security number, bank
account number, etc.) to gain access to a resource or service, exploits a weakness inherent
in services that use non-secret information to authenticate requests.

Vulnerabilities in software processing external user input, such as Internet browsers or
mail software, may allow external parties to take control of a device. Attackers may
corrupt data on the device itself or use it as a stepping stone for attacks against third
parties. Worms and viruses make use of overgenerous features or vulnerabilities to
spread widely and overload networks and end systems with the traffic they generate.
The Internet worm of November 1988 is an early well-documented example of this
species (Section 1.3.1) [85]. Denial-of-service attacks against specific targets have started
to occur since the late 1990s. Resilience against denial-of-service attacks has become a
new criterion in the design of security protocols.

In the scenarios above the attacks came from the outside. Keeping the enemy outside
the castle walls is a traditional paradigm in computer security. However, statistics on
the sources of attacks often show that attacks from insiders account for a majority of
incidents and the largest proportion of damage [220]. There is a suggestion that attacks
via the Internet might change this picture, but insider fraud remains a considerable
concern in organizations and in electronic commerce transactions.

It has been said that security engineering has as its goal to raise the effort for an attack
to a level where the costs exceed the attacker’s gains. Such advice may be short-sighted.
Not every attacker is motivated by a desire for money. Employees who have been made
redundant may want to exact revenge on their former employer. Hackers may want
to demonstrate their technical expertise and draw particular satisfaction from defeating

1John Leyden, RBS WorldPay breach exposes 1.5 million, The Register, 29 December 2008. http://www.
theregister.co.uk/2008/12/29/rbs_worldpay_breach/
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security mechanisms that have been put in their way. ‘Cyber vandals’ may launch attacks
without much interest in their consequences. Political activists may deface the websites
of organizations they dislike.

There is similar variance in the expertise required to break into a system. In some
cases insider knowledge will be required to put together a successful plan of attack. In
this respect, social engineering may be more important than technical wizardry [172].
Hassling computer operators on the phone to give the caller the password to a user
account is a favourite ploy. Some attacks require deep technical understanding. Other
attacks have been automated and can be downloaded from websites so that they may
be executed by script kiddies who have little insight into the vulnerabilities or features
these attacks are exploiting.

This brief survey of attacks and attackers illustrates the numerous facets that may become
relevant when managing security.

2.2 S E C U R I T Y M A N A G E M E N T
Security practitioners know that ‘security is a people problem’ that cannot be solved by
technology alone. The legal system has to define the boundaries of acceptable behaviour
through data protection and computer misuse laws. Responsibility for security within
organizations, be they companies or universities, resides ultimately with management.
Users have to cooperate and comply with the security rules laid down in their organiza-
tion. Correct deployment and operation of technical measures is, of course, also part of
the overall solution.

Protecting the assets of an organization is the responsibility of management. Assets
include sensitive information such as product plans, customer records, financial data,
and the IT infrastructure of the organization. At the same time, security measures
often restrict members of the organization in their working patterns and there may be a
potential temptation to flout security rules. This is particularly likely to happen if security
instructions do not come from a superior authority but from some other branch of the
organization.

It is thus strongly recommended to organize security responsibilities in an organization
in a way that makes it clear that security measures have the full support of senior
management. A brief policy document signed by the chief executive that lays down the
ground rules can serve as a starting point. This document would be part of everyone’s
employment handbook. Not every member has to become a security expert, but all
members need to know

• why security is important for themselves and for the organization,
• what is expected of each member, and
• which good practices they should follow.
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Security-awareness programmes convey this information. The converse of users ignoring
apparently unreasonable security rules are security experts treating apparently unreason-
able users as the enemy. Trying to force users to follow rules they regard as arbitrary
is not an efficient approach. Involving users as stakeholders in the security of their
organization is a better way of persuading them to voluntarily comply with rules rather
than to look for workarounds [4].

Organizations developing IT services or products must provide security training for their
developers. There is rarely a clear dividing line between the security-relevant components
and the rest of a system. It thus helps if developers in general are aware of the environment
in which a service will be deployed and of expected dangers, so that they can highlight the
need for protection even if they do not implement the protection mechanisms themselves.
Developers must also be alert to the fact that certain categories of sensitive data, e.g.
personal data, have to be processed according to specific rules and regulations. Finally,
developers must keep up to date with known coding vulnerabilities.

2.2.1 Security Policies

Security policies are a core concept in computer security.

Security policy – a statement that defines the security objectives of an organization; it has to
state what needs to be protected; it may also indicate how this is to be done.

For example, a policy may regulate access to company premises. Who has permission
to enter restricted areas? Must there be security guards to control access? Is everyone
required to visibly wear an identification badge? Must visitors be accompanied at all
times? Must their bags be checked? When are buildings locked? Who has access to keys?

A policy may regulate access to documents. For example, in the military world secret
documents may be handed only to staff with adequate clearance. A policy may stipulate
who is authorized to approve commercial transactions on behalf of the company. A
policy may stipulate that certain transactions must be signed off by more than one
person. It may define to what extent employees are allowed to use the company IT
system for private purposes (web surfing, email). A policy may declare that senders of
offensive emails will face disciplinary action. A policy may state which user actions the
employer is allowed to monitor.

A policy may define password formats and renewal intervals. It may declare that only
approved machines with the latest security patches installed may connect to the company
network. A policy may state that sensitive emails must be encrypted. It may state that
users have to give consent when personal data are collected.

There is thus considerable variety in the target of policies and the level of detail they
are expressed in. To maintain clarity in our terminology, we follow the definitions laid
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out in [216] and distinguish between organizational and automated security policies. A
policy has given objectives:

Security policy objective: A statement of intent to protect an identified resource from
unauthorized use.

A policy also has to explain how the objectives are to be met. This can be done first at
the level of the organization.

Organizational security policy: The set of laws, rules, and practices that regulate how
an organization manages, protects, and distributes resources to achieve specified security
policy objectives.

Within an IT system, organizational policies can be supported by technical means.

Automated security policy: The set of restrictions and properties that specify how a com-
puting system prevents information and computing resources from being used to violate an
organizational security policy.

Automated policies define access control lists and firewall settings, stipulate the services
that may be run on user devices, and prescribe the security protocols for protecting
network traffic.

2.2.2 Measuring Security

In security engineering we would love to measure security. To convince managers (or
customers) of the benefits of a new security mechanism, wouldn’t it be nice if you could
measure the security of the system before and after introducing the mechanism? Indeed,
it is difficult to reach well-founded management decisions if such information cannot be
procured. The terms security measurement and security metric are used in this context,
but there is no common agreement on their exact meaning. There are, however, two
clearly defined phases.

First, values for various security-relevant factors are obtained. In SANS terminology2

obtaining a value for such a factor is a security measurement. Some values can be
established objectively, e.g. the number of open network ports, whether the latest patch
has been installed for a software product, or the privilege level under which a service
program is running. Other values are subjective, e.g. the reputation of a company or the
security awareness of its employees.

Secondly, a set of measurements may be consolidated into a single value that is used
for comparing the current security state against a baseline or a past state. In SANS
terminology, the values used by management for making security comparisons are called

2SANS (SysAdmin, Audit, Network, Security) Institute.
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security metrics. Other sources do not make this distinction in their terminology [64].
Sometimes, the result of a measurement can directly be used as a metric, e.g. the number
of software vulnerabilities flagged by an analysis tool.

Ideally, a security metric gives a quantitative result that can be compared to other
results, not just a qualitative statement about the security of the product or system being
analyzed.

• A product is a package of IT software, firmware and/or hardware, providing function-
ality designed for use or incorporation within a multiplicity of systems.

• A system is a specific IT installation, with a particular purpose and operational
environment [58].

Measurements of a product are indicative of its potential security, but even a secure
product can be deployed in an insecure manner. An easily guessable password, for
example, does not offer much protection. It is thus a task for security management to
ensure that the security features provided are properly used.

For a product, you might use the number of security flaws (bugs) detected as a security
metric. Tracking the discovery of flaws over time may serve as the basis for predicting
the time to the discovery of the next flaw. Relevant methodologies have been developed
in the area of software reliability. These methodologies assume that the detection of
flaws and the invocation of buggy code are governed by a probability distribution
given a priori, or a given family of probability distributions where parameters still
have to be estimated. You might also measure the attack surface of a product, i.e. the
number of interfaces to outside callers or the number of dangerous instructions in the
code [124].

These proposals are measurements in the sense that they deliver quantitative results. It
is open to debate whether they really measure security. How relevant is the number
of security flaws? It is sufficient for an attacker to find and exploit a single flaw to
compromise security. It is equally open to debate whether such metrics could be the
basis for a meaningful security comparison of products, given that it is rare to find two
products that serve exactly the same purpose. It has therefore been suggested that these
metrics should be treated as quality metrics best used for monitoring the evolution of
individual products.

Security metrics for a system could look at the actual configurations of the products
deployed. In a system with access control features, look at the number of accounts
with system privileges or the number of accounts with weak passwords. In a networked
system, look at the number of open ports or at the services accessible from outside
and whether the currently running versions have known vulnerabilities. Such attributes
certainly give valuable status information but do not really give the quantitative results
desired from a metric.
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Specifically for computer networks, you may measure the connectivity of nodes in a
network to assess how quickly and how far attacks could spread. You may also measure
the time services are unavailable after an attack, or predict recovery times and cost of
recovery for a given configuration and class of attacks.

Alternatively, you may try to measure security by measuring the cost of mounting attacks.
You could consider

• the time an attacker has to invest in the attack, e.g. analyzing software products,
• the expenses the attacker has to incur, e.g. computing cycles or special equipment,
• the knowledge necessary to conduct the attack.

However, the cost of discovering an attack for the first time is often much larger than
the cost of mounting the attack itself. When attack scripts are available, attacks can be
launched with very little effort or knowledge of the system vulnerabilities being exploited.

As yet another alternative, you could focus on the assets in the system given and measure
the risks these assets are exposed to. Section 2.3 gives an overview of risk and threat
analysis. In summary, desirable as security metrics are, we have at best metrics for
some individual aspects of security. The search for better metrics is still an open field
of research.

2.2.3 Standards
Some industry branches have prescriptive security management standards that stipulate
what security measures have to be taken in an organization. Typical examples are
regulations for the financial sector,3 or rules for dealing with classified material in
government departments.4

Other management standards are best described as codes of best practice for security
management. The most prominent of these standards is ISO 27002 [129]. It is not a
technical standard for security products or a set of evaluation criteria for products or
systems. The major topics in ISO 27002 are as follows:

• Security policy. Organizational security policies provide management direction and
support on security matters.

• Organization of information security. Responsibilities for security within an enterprise
have to be properly organized. Management has to be able to get an accurate view
of the state of security within an enterprise. Reporting structures must facilitate
efficient communication and implementation of security decisions. Security has to be
maintained when information services are being outsourced to third parties.

3For example, the Payment Card Industry Data Security Standard (PCI DSS) supported by major credit
card organizations.
4For example, the US policy stating that the AES encryption algorithm can be used for top secret data with 192-bit
or 256-bit keys [68].
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• Asset management. To know what is worth protecting, and how much to spend on
protection, an enterprise needs a clear picture of its assets and of their value.

• Human resources security. Your own personnel or contract personnel can be a source
of insecurity. You need procedures for new employees joining and for employees
leaving (e.g. collect keys and entry badges, delete user accounts of leaving members).
Enforced holiday periods can stop staff hiding the traces of fraud they are committing.
Background checks on staff newly hired can be a good idea. In some sectors these
checks may be required by law, but there may also be privacy laws that restrict what
information employers may seek about their employees.

• Physical and environmental security. Physical security measures (fences, locked doors,
etc.) protect access to business premises or to sensitive areas (rooms) within a building.
For example, only authorized personnel get access to server rooms. These measures
can prevent unauthorized access to sensitive information and theft of equipment. The
likelihood of natural disasters can depend on environmental factors, e.g. whether the
area is subject to flooding or earthquakes.

• Communications and operations management. The day-to-day management of IT
systems and of business processes has to ensure that security is maintained.

• Access control. Access control can apply to data, services, and computers. Particular
attention must be applied to remote access, e.g. through Internet or WLAN connections.
Automated security policies define how access control is being enforced.

• Information systems acquisition, development, and maintenance. Security issues have
to be considered when an IT system is being developed. Operational security depends
on proper maintenance (e.g. patching vulnerable code, updating virus scanners). IT
support has to be conducted securely (how do you deal with users who have forgotten
their password?) and IT projects have to be managed with security in mind (who is
writing sensitive applications, who gets access to sensitive data?).

• Information security incident management. Organizations have to be prepared to deal
promptly with security incidents. It must be clear who is in charge of dealing with a
given incident, whom to report the incident to, and how to reach a responsible person
at all times.

• Business continuity management. Put measures in place so that your business can cope
with major failures or disasters. Measures start with keeping backups of important data
in a different building and may go on to the provision of reserve computing facilities
in a remote location. You also have to account for the loss of key staff members.
While incident management deals with the immediate reaction to incidents, business
continuity management addresses precautionary measures to be taken in advance.

• Compliance. Organizations have to comply with legal, regulatory, and contractual
obligations, as well as with standards and their own organizational security policy.
Auditing processes can be put to efficient use while trying to minimize their interference
with business processes. In practice, compliance often poses a greater challenge than
fielding technical security measures.
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Achieving compliance with ISO 27002 can be quite an onerous task. The current state of
your organization vis-à-vis the standard has to be established and any shortcomings iden-
tified have to be addressed. There exist software tools that partially automate this process,
again applying best practice, only this time to ensure compliance with the standard.

2.3 R I S K A N D T H R E AT A N A LY S I S
Risk is associated with the consequences of uncertain events. Hazard risks relate to
damaging events, opportunity risks to events that might have also have a positive
outcome, e.g. to a financial investment on the stock exchange. IT risk analysis looks
at hazard risks. It can be conducted during the design phase of a system, during the
implementation phase, and during operations. It can be applied

• during the development of new components, e.g. in the area of software security,
• specifically for the IT infrastructure of an enterprise,
• comprehensively for all information assets of an enterprise (Figure 2.1).

integration

enterprise

infrastructure

component
life cycle

operationimplementationdesign

Figure 2.1: Applying Risk Analysis During a System Life Cycle

The literature on risk analysis uses terms such as threat, vulnerability, impact, asset, and
attack. These terms are related. For example, an attack exploits a vulnerability to have a
negative impact on an asset. Damage to an asset, e.g. a captured password, may facilitate a
next attack step and cause damage to a further asset. Without a structured and systematic
approach to risk analysis you are in danger of getting lost in the details of particular
security problems but failing to establish a comprehensive overview of your risks.

There exist various ways of structuring risk analysis. Risk analysis, threat analysis,
or vulnerability scoring are not necessarily different activities. They may be different
names for the same objective, but they may also express a different focus when assessing
potential damage.

Informally, risk is the possibility that some incident or attack can cause damage to your
enterprise. An attack against an IT system consists of a sequence of actions, exploiting
vulnerabilities in the system, until the attacker’s goals have been achieved. To assess the



22 2 MANAGING SECURITY

attack

exposure environment
source

exploitability
vulnerability

enabler

impact

asset
(value)
target

Figure 2.2: Factors in Risk Analysis

risk posed by the attack you have to evaluate the impact of the attack and the likelihood
of the attack occurring (Figure 2.2). This likelihood will depend on the exposure of your
system to potential attackers and how easily the attack can be mounted (exploitability
of vulnerabilities). In turn, this will further depend on the security configuration of the
system under attack.

Systems consist of resources and of agents operating on those resources. In a computer,
processes are the agents. In an organization, an agent can be a person given a task to
perform. This person may have been authorized to use resources necessary for executing
the task. For example, a car from the company car pool may have been assigned for a
visit to a customer. A person may be held responsible if the task has not been executed
properly. Corruption of a resource can be categorized according to confidentiality,
integrity, and availability (Chapter 3). Corruption of an agent can refer to actions that
exceed the authority given, and to attempts at avoiding responsibility.

An analysis can already be performed at the design stage. At this point you have a
conceptual model of your assets (resources) and agents, and perhaps of the environment
in which your system will be deployed. You do not yet have implementation vulnerabilities
to consider. You can then rate for each threat the potential damage (impact) and the
exposure in the environment. We will use threat analysis specifically for ‘risk analysis’
at the design stage. Threat analysis may indicate security features that ought to be part
of the system design.

2.3.1 Assets

As a first step assets have to be identified and valued. In an IT system, assets include:

• hardware – laptops, servers, routers, mobile phones, netbooks, smart cards, etc.;

• software – applications, operating systems, database management systems, source
code, object code, etc.;
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• data and information – essential data for running and planning your business, design
documents, digital content, data about your customers, etc.;

• reputation.

Identification of assets should be a relatively straightforward systematic exercise. Mea-
surement of asset values is more of a challenge. Some assets, such as hardware, can be
valued according to their monetary replacement costs. For other assets, such as data and
information, this is more difficult. If your business plans are leaked to the competition
or private information about your customers is leaked to the public you have to account
for indirect losses due to lost business opportunities. The competition may underbid you
and your customers may desert you. Even when equipment is lost or stolen you have to
consider the value of the data stored on it, and the value of the services that were running
on it. In such situations assets can be valued according to their importance. As a good
metric for importance, ask yourself how long your business could survive when a given
asset has been damaged: a day, a week, a month?

2.3.2 Threats

A threat is an undesirable negative impact on your assets. There are various ways of
identifying threats. You can categorize threats by their impact on assets and agents.
For example, Microsoft’s STRIDE threat model for software security lists the following
categories [121]:

• Spoofing identities – an agent pretends to be somebody else; this can be done to avoid
responsibility or to misuse authority given to someone else.

• Tampering with data – violates the integrity of an asset; e.g. security settings are
changed to give the attacker more privileges.

• Repudiation – an agent denies having performed an action to escape responsibility.

• Information disclosure – violates the confidentiality of an asset; information disclosed
to the wrong parties may lose its value (e.g. trade secrets); your organization may
face penalties if it does not properly protect information (e.g. personal information
about individuals).

• Denial of service – violates the availability of an asset; denial-of-service attacks can
make websites temporarily unavailable; the media have reported that such attacks
have been used for blackmail.

• Elevation of privilege – an agent gains more privileges beyond its entitlement.

Alternatively, you may identify threats by source. Would the adversary be a member of
your organization or an outsider, a contractor or a former member? Has the adversary
direct access to your systems or is an attack launched remotely?
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2.3.3 Vulnerabilities

Once you move to the implementation stage, you have to examine your system for
vulnerabilities. Vulnerabilities are weaknesses of a system that could be accidentally or
intentionally exploited to damage assets. In an IT system, typical vulnerabilities are:

• accounts with system privileges where the default password, such as ‘MANAGER’,
has not been changed;

• programs with unnecessary privileges;

• programs with known flaws;

• weak access control settings on resources, e.g. having kernel memory world-writable;

• weak firewall configurations that allow access to vulnerable services.

Vulnerability scanners provide a systematic and automated way of identifying vulner-
abilities. Their knowledge base of known vulnerabilities has to be kept up to date.
Organizations such as SANS or computer emergency response teams (CERTs) provide
this information, as do security advisories of software companies.

Risk analysis has to measure the criticality of vulnerabilities. The criticality of a vulnera-
bility depends on the attacks that might exploit it. A vulnerability that allows an attacker
to take over a systems account is more critical than a vulnerability that gives access
to an unprivileged user account. A vulnerability that allows an attacker to completely
impersonate a user is more critical than a vulnerability where the user can only be
impersonated in the context of a single specific service.

2.3.4 Attacks

A threat materializes when an attack succeeds. An attack is a sequence of steps. It may
start innocuously, gathering information needed to move on to gain privileges on one
machine, from there jump to another machine, until the final target is reached. To get a
fuller picture of its potential impact, a forest of attack trees can be constructed. The root
of an attack tree is a threat. The nodes in the tree are subgoals that must be achieved
for the attack to succeed. Subgoals can be broken into further subgoals. There are AND
nodes and OR nodes. To reach an AND node, all subgoals have to be achieved. To reach
an OR node, it is enough if one subgoal is achieved.

Figure 2.3 gives a basic attack tree for the attack ‘get password’. A password can
be obtained by guessing, or by tricking an operator to reveal it, or by spying on the
user. Guessing could be on-line or off-line. For off-line guessing, the attacker needs the
encrypted password and has to perform a dictionary attack. The attacker could spy on
the victim in person (so-called shoulder surfing), direct a camera at the keyboard, or direct
a microphone at the keyboard and distinguish by sound the keys being pressed [16].
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Figure 2.3: Attack Tree for Obtaining Another User’s Password

It is possible to assign values to the edges in an attack tree. These values can indicate the
estimated cost of an attack, the likelihood that it will occur, the likelihood that it will
succeed, or some other aspect of interest. From these values, the cheapest attack, or the
most likely attack, or the attack most likely to succeed can be computed.

Attack trees are a formalized and structured method for analyzing threats. Threat
assessments become reproducible as the overall assessment of a threat can be traced
to the individual assessments of subgoals. If the final result appears implausible, the
tree can be consulted to see which subgoals were most critical for the final result,
and those individual valuations may be adjusted to more ‘sensible’ values. This remark
explains why the construction of attack trees is more an art than a science. You need
experience to know when to readjust your ratings for subgoals, and when to adjust
your preconceived opinion of the severity of a threat. You also need experience to know
when to stop breaking up subgoals into ever more subgoals, a phenomenon known as
analysis paralysis.

The severity of an attack depends on the likelihood that it will be launched, the likelihood
that it will succeed, and the damage that it might do. Likelihood depends on the difficulty
of the attack, on the motivation of the attacker, on the number of potential attackers,
and on existing countermeasures. For example, attack scripts automate attacks, making
it easy to launch the attack. They are also likely to be available to a larger set of attackers.
Hence, such an attack would be rated more likely than an individual hand-crafted attack.
The DREAD methodology that complements STRIDE demonstrates how the severity of
an attack can be measured in a systematic manner [121]:

• Damage potential – relates to the values of the assets being affected.

• Reproducibility – attacks that are easy to reproduce are more likely to be launched
from the environment than attacks that only work in specific circumstances.

• Exploitability – captures the effort, expertise, and resources required to launch
an attack.
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• Affected users – the number of assets affected contributes to the damage potential.

• Discoverability – will the attack be detected? In the most damaging case, you will never
know that your system has been compromised. (In World War II, German intelligence
refused to believe that many of their encryption schemes had been broken.)

2.3.5 Common Vulnerability Scoring System
The Common Vulnerability Scoring System (CVSS) starts from the vulnerabilities when
organizing impact assessment [167]. The basic metric group collects generic aspects of
a vulnerability (Table 2.1). The rating considers from where the vulnerability can be
exploited (local or remote attacker?), how complex an exploit would have to be (related
to exploitability in DREAD), and how many times an attacker would have to be
authenticated during an attack (related to exposure and also to lacking social inhibitions
due to a feeling of impunity). The rating also considers the standard impact categories of
confidentiality, integrity, and availability.

Basic metrics Temporal metrics Environmental metrics

Access confidentiality exploitability collateral damage confidentiality
vector impact potential requirement
Access integrity remediation target integrity

complexity impact level distribution requirement
Authentication availability report availability

impact confidence requirement

Table 2.1: Metrics in the Common Vulnerability Scoring System

The temporal metrics group captures the current state of exploits and countermeasures.
Exploitability is related to reproducibility in DREAD and captures the state of exploits
available. The remediation level notes to what extent fixes addressing the vulnerability are
available. Report confidence rates the quality of the source announcing the vulnerability.

The environmental metrics group rates the impact on the assets of a given organization.
Collateral damage potential covers damage outside the IT system, such as loss of life, loss
of productivity, or loss of physical assets. Target distribution measures the number of
potential targets within the organization. Environmental metrics rate IT assets according
to the standard security requirements of confidentiality, integrity, and availability.

2.3.6 Quantitative and Qualitative Risk Analysis
Having measured the value of assets, the criticality of vulnerabilities, and the likelihood
and impact of threats, you now face the tricky task of calculating your risks. Very
informally, you can calculate risk as

Risk = Assets × Threats × Vulnerabilities.
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This expression overloads the term threat. It stands for the potential negative impact on
assets, but also for the likelihood that damage will occur.

You often have to deal with subjective ratings. Is the potential damage high or medium?
Is an attack likely or very likely? You can attempt to reduce the effect of subjectivity by
taking many ratings on detailed issues and then apply a combination algorithm to get
the final result.

Quantitative risk analysis takes ratings from a mathematical domain such as a probability
space. For example, you can assign monetary values to assets and probabilities to the
likelihood of attacks, and then calculate the expected loss. This method has the pleasing
feature of having a well-established mathematical theory as its basis, but the considerable
drawback that your inputs are often just educated guesses. In short, the quality of
the results you obtain cannot be better than the quality of the inputs provided. You
could consider other mathematical frameworks, such as fuzzy theory, to make some
provisions for the imprecise nature of your ratings. There are areas of risk analysis where
quantitative methods work, but more often the lack of precision in the inputs does not
justify a mathematical treatment.

Qualitative risk analysis takes values from domains that do not have an underlying
mathematical structure:

• Assets could be rated on a scale of critical – very important – important – not
important.

• Criticality of vulnerabilities could be rated on a scale of has to be fixed immediately –
has to be fixed soon – should be fixed – fix if convenient.

• Threats could be rated on a scale of very likely – likely – unlikely – very unlikely.

CVSS follows this approach. The individual ratings are then mapped to weights that
serve as input to the combination algorithm. DREAD uses a finer granularity for its
ratings, i.e. numerical values from 1 to 10. The average of the five DREAD ratings is
the final risk value. Whatever scheme you are using, guidance on how to assign ratings
consistently is essential.

Encoding the combining function as a table has its disadvantages. The table has to be
reworked when new risk factors emerge. For large tables it may be difficult to justify
individual entries, or get management to approve your choices of weights. The Mehari
methodology breaks up the combining function into small tables in a systematic manner
[67]. All risk factors are rated with values between 1 and 4. Four-by-four tables combine
the ratings for pairs of factors. The final risk indicators are computed by repeatedly
applying such combination tables. Figure 2.4 gives a hypothetical example for such an
evaluation. First, damage potential (of an attack) is calculated as a function of impact
and the number of targets affected; likelihood is calculated as a function of exploitability
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Figure 2.4: Computing Risk with Evaluation Tables

and feeling of impunity. The risk posed by the attack is a function of likelihood and
damage potential.

Terminology in IT security is by no means standardized. You will encounter different
conceptual frameworks than the one sketched here, possibly using the same terms but
with different meanings. For example, CVSS defines threat as ‘the likelihood or frequency
of a harmful event occurring’. You may find vulnerability scanners that are marketed as
risk analysis tools. Some may indeed give a rating for the vulnerabilities they detect. The
burden is ultimately on you to find out what any ‘risk analysis tool’ is actually offering,
and then place it in the framework of your choice.

2.3.7 Countermeasures – Risk Mitigation

The result of a risk analysis is a prioritized list of threats, together with recom-
mended countermeasures to mitigate risk. Risk analysis tools usually come with a know-
ledge base of countermeasures for the threats they can identify. Risk analysis is also
used for calculating the return on security investment (ROSI). ROSI compares for
given security measures the expected reduction in risk with the costs of fielding the
security measures.

It might seem trivially true that one should first go through a risk analysis before deciding
on which security measures to implement. However, there are two reasons why this ideal
approach may not work. Conducting a risk analysis for a larger organization will take
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time, but the IT system in the organization and the world outside will keep changing. So,
by the time the results of the analysis are presented, they are already somewhat out of
date. Secondly, the costs of a full risk analysis may be difficult to justify to management.

For these reasons, organizations may opt for baseline protection as an alternative. This
approach analyzes the security requirements for typical cases and recommends security
measures deemed adequate. One of the best-known IT security baseline documents is
maintained by the German Information Security Agency [49].

2.4 F U R T H E R R E A D I N G
Anderson’s book on security engineering gives an excellent insight into the full
extent of the challenges faced in security [10]. A good discussion of security
management, and of IT security in general, can be found in [212]. A discussion
on the various meanings of the term ‘security policy’ is given in [216]. The
observations on defining security policies in commercial organizations made
in [212] are still valid today. The management of information security risks
is discussed in [5], security measurement in [64]. Scoring tools for CVSS are
available on the web.

2.5 E X E R C I S E S

Exercise 2.1 Define a security policy for an examination system. Examination
questions are set by the teacher and checked by an external examiner. Students sit
the exam. Then their papers are marked, marks are approved by the examinations
committee, results are published, and students may see their own papers. Which
assets need to be protected? Who may get access to the documents used in this
examination system?

Exercise 2.2 How would you measure the effectiveness of a security-awareness
programme?

Exercise 2.3 Should a risk analysis of a computer centre include flooding damage
to computing equipment even when the centre is in a high and dry location?

Exercise 2.4 Consider the theft of a central server from a university department.
Which assets could be damaged if this happens? Construct an attack tree for this
threat.

Exercise 2.5 Conduct a risk and threat analysis for a mobile phone service,
taking into account that calls are transmitted over a radio link between mobile
phone and base station, and that with international roaming a subscriber can use
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the service in visited networks when away from home. Conduct your analysis
from the subscribers’ and the network operators’ viewpoint.

Exercise 2.6 Bank customers can withdraw cash from automated teller machines
(ATMs) using a cash card and a personal identification number (PIN). Build an
attack tree for PIN compromise and rate the likelihood of the attacks.

Exercise 2.7 Conduct a risk and threat analysis for ATM cash withdrawals,
both from the customer’s and the bank’s viewpoint.

Exercise 2.8 Perform your own CVSS scoring for a recently announced vulner-
ability.



Chapter3
Foundations of Computer Security

We cannot start a meaningful exploration of computer security without
defining the subject itself. We should not start such an exploration without
some general guidelines that can help to bring order into the multitude of
concepts and security mechanisms that you can encounter today. Thus, our
first task is the search for a definition of computer security. To get away
from discussing individual security systems in isolation, we will propose
a set of general engineering principles that can guide the design of secure
information processing systems. You are encouraged to keep looking out
for these principles in the various security systems presented throughout
this book.

OBJECT I VES

• Approach a definition of computer security, introducing confidentiality,
integrity, and availability.

• Explain the fundamental dilemma of computer security.
• Mention some general design decisions that have to be made when

constructing secure systems.
• Point out that computer security mechanisms have to rely on physical or

organizational protection measures to be effective.
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3.1 D E F I N I T I O N S

Software may crash, communication networks may go down, hardware components may
fail, human operators may make mistakes. As long as these failures cannot be directly
attributed to some deliberate human action they would not be classified as security
issues. Accidental failures count as reliability issues, operating mistakes as usability
issues. Security is concerned with intentional failures. There may not always be a clear
intent to achieve a particular goal, but there is at some stage a decision by a person to do
something that person is not supposed to do. The root cause of security problems is thus
human nature.

In proper academic tradition we start our investigations by defining the object of our
studies. At least, we will try to do so. Computer security deals with the techniques
employed to maintain security within a computer system. We will not attempt to
distinguish between computer systems – loosely speaking, boxes with processors and
memory in them – and information technology (IT) systems – roughly speaking, closely
coupled networks of computer systems. Technology keeps moving too fast. Modern
computers are already closely coupled networks of components. Software that was once
an application program can become part of the operating system. Web browsers are
a prominent example of this trend. Software running on your machine need not be
stored on your machine. It can come from a local server, or maybe from a web server
somewhere on the Internet. Hence, you may use computer security and IT security as
synonyms without risking too much confusion.

At first glance, we seem to have a clear map for the road ahead as ‘security’ appears
to be a rather obvious concept. However, security is one of those unfortunate notions
that retreat further and further when you try to pin down their precise meaning. Much
effort has gone into drafting definitions of computer security, and into later revisions of
these definitions. The editors of these documents are almost inevitably accused of either
being too narrow or trespassing into areas of computer science outside of computer
security proper.

3.1.1 Security

Security is about the protection of assets. This definition implies that you have to know
your assets and their value. This general observation is of course also true in computer
security, and we have already mentioned the role of risk analysis in Section 2.3. Our focus
now turns specifically to protection measures in computer systems. A rough classification
of protection measures distinguishes between the following:

• prevention – taking measures that prevent your assets from being damaged;

• detection – taking measures that allow you to detect when an asset has been damaged,
how it has been damaged, and who has caused the damage;
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• reaction – taking measures that allow you to recover your assets or to recover from
damage to your assets.

To illustrate this point, consider the protection of valuable items kept in your pri-
vate home.

• Prevention: Locks at the door and window bars make it more difficult for a burglar to
break into your home. A wall round the property, or the moat of a medieval castle,
adds another layer of protection.

• Detection: You will detect when something has been stolen if it is no longer there. A
burglar alarm goes off when a break-in occurs. Closed circuit television cameras1 can
provide information that leads to the identification of an intruder.

• Reaction: You can call the police. You may decide to replace the stolen item. The
police may retrieve a stolen item and be able to return it to you.

Examples from the physical world can help to explain principles in computer security.
However, it is not always possible or advisable to draw parallels between physical security
and computer security. Some terms are actually quite misleading when used in an IT
context. To take an example closer to our area, consider the use of credit card numbers
when placing orders over the Internet. A fraudster could use your credit card number to
make purchases that will be charged to your card. How can you protect yourself?

• Prevention: Use encryption when placing an order. Rely on the merchant to perform
some checks on the caller before accepting a credit card order. Don’t use your card
number on the Internet.

• Detection: A transaction that you did not authorize appears on your credit
card statement.

• Reaction: You can ask for a new card number. The cost of the fraudulent transaction
may have to be covered by the card holder, the merchant where the fraudster made
the purchase, or the card issuer.

In this example, the fraudster has ‘stolen’ your card number, but you still possess it.
A legal system may treat this case differently from the case where your card has been
stolen – you are still in possession of your card number – so that the fraudster cannot
be charged for stealing your credit card number. When existing laws were found to fall
short when faced with new kinds of undesirable behaviour, new computer misuse laws
had to be passed to address new threats.

To continue this line of inquiry, consider your options for protecting confidential
information. Perhaps you will only detect that your secret has been compromised when it
is disclosed. In some cases, the damage may then be irretrievable. Your competitors may

1CCTV cameras have become a popular tool for securing public spaces. It is, however, a matter of debate how
much security is actually achieved [202].
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have got hold of a product design you had spent years developing, reached the market
before you, and are reaping all the profits while you are going out of business. In such
a situation, prevention is your only sensible method of protecting your assets. This also
explains why historically computer security has paid a lot of attention to preventing the
disclosure of confidential information.

There is not always a direct trade-off between prevention and detection. Practice shows
that the more you invest in prevention, the more you may have to invest in detection
(measuring security) to be certain that prevention works.

3.1.2 Computer Security
In a first attempt to capture the notion of computer security, we examine how information
assets can be compromised. The definition most frequently proposed covers three aspects:

• confidentiality – prevention of unauthorized disclosure of information;
• integrity – prevention of unauthorized modification of information;
• availability – prevention of unauthorized withholding of information or resources.

You can immediately start a discussion on the priority of these topics and make a case for
reordering these items. Alternatively, you can argue that the list is incomplete – as lists are
never complete – and add further points such as authenticity if you have communications
in mind, or accountability and non-repudiation if your interest is in applications such as
electronic commerce.

Even at this general level, you will find disagreement about the precise definition of some
aspects of security. We will pick definitions from documents important to the history of
computer security such as the US Trusted Computer System Evaluation Criteria (Orange
Book [224]), the European Information Technology Security Evaluation Criteria (ITSEC
[70]), both covered in Chapter 13, and the International Standard ISO 7498-2 [125],
the ISO/OSI security architecture for communications security, now superseded by ISO
10181, but still quite influential. It is often helpful to appreciate the context a definition
has been taken from. The definitions above, for example, have been taken from ITSEC.

3.1.3 Confidentiality
Historically, security and secrecy were closely related. Even today, many people still
feel that the main objective of computer security is to stop unauthorized users reading
sensitive data. More generally, unauthorized users should not learn sensitive information.
Confidentiality (privacy, secrecy) captures this aspect of computer security. The terms
privacy and secrecy sometimes distinguish between the protection of personal data (pri-
vacy) and the protection of data belonging to an organization (secrecy). Confidentiality
is a well-defined concept and research in computer security often concentrated on this
topic, not least because it raised new issues that had no counterpart in physical security.
Sometimes security and confidentiality are even used as synonyms.
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Once you delve deeper into confidentiality issues you will face the question of whether
you only want to hide the content of a document from unauthorized view, or also
its existence. To see why one might take this extra step, consider traffic analysis in a
communications system. The adversary simply looks at who is talking to whom and
how often, but not at the content of the messages passed. Even so, an observer may
derive useful information about the relationship between the corresponding parties. In
the context of traffic analysis, you might require the unlinkability of certain events.

Unlinkability – Two or more items of interest (messages, actions, events, users) are unlinkable
if an attacker cannot sufficiently distinguish whether they are related or not.

If you want to hide who is engaging in a given action, you could ask for a property such
as anonymity.

Anonymity – A subject (user) is anonymous if it cannot be identified within a given anonymity
set of subjects.

In a world of paper documents kept in safe storage, you could control read access
to a document simply by specifying the list of people who were allowed to ask for
it. Perhaps surprisingly, it sometimes necessary also to police write operations when
enforcing confidentiality. You will read more on this topic in Section 11.2.

3.1.4 Integrity

It is not easy to give a concise definition of integrity. In general, integrity is about
making sure that everything is as it is supposed to be. (This is perhaps a rather unhelpful
definition, but it reflects reality.) Within the confinements of computer security, we
may settle for the definition quoted in Section 3.1.2 and declare that integrity deals
with the prevention of unauthorized writing. When this interpretation is used with
information-flow policies (see Chapter 12), integrity is the dual of confidentiality and
similar techniques can often be used to achieve both goals.

However, further issues such as ‘being authorized to do what one does’ or ‘following
the correct procedures’ have also been subsumed under integrity. This approach is taken
in the influential paper by Clark and Wilson [66], which declares integrity to be the
property that

no user of the system, even if authorized, may be permitted to modify data items in such a
way that assets or accounting records of the company are lost or corrupted.

If we define integrity to be the prevention of all unauthorized actions, then confidentiality
becomes a part of integrity.

So far we have captured security by specifying the user actions that have to be controlled.
From a systematic point of view, you are better off by concentrating on the state of the
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system when defining integrity. The Orange Book definition of ‘data integrity’ is precisely
of this nature [224]:

The state that exists when computerized data is the same as that in the source documents
and has not been exposed to accidental or malicious alteration or destruction.

Here, integrity is a synonym for external consistency. The data stored in a computer
system should correctly reflect some reality outside the computer system. This property
is of course highly desirable, but it cannot be guaranteed entirely by mechanisms internal
to the computer system.

To add to the confusion, other areas of information security have their own notions of
integrity. For example, in communications security, integrity refers to the detection and
correction of modifications to, insertions in, deletion, or replay of transmitted data. This
includes both intentional manipulations and random transmission errors. You could view
intentional modification as a special case of unauthorized modification, when nobody is
authorized to modify. However, there is not much to gain from taking such a position
because the presence, or absence, of an authorization structure has an impact on the
nature of the problem that has to be solved, and on the respective security mechanisms.

Integrity is often a prerequisite for other security properties. For example, an attacker
could try to circumvent confidentiality controls by modifying the operating system or
an access control table referenced by the operating system. Hence, we have to protect
the integrity of the operating system or the integrity of access control data structures to
achieve confidentiality.

Finally, note that there exist even more general definitions of integrity, which treat
security and availability as parts of integrity.

3.1.5 Availability

We take the definition given in ISO 7498-2 [125]:

Availability – The property of being accessible and usable upon demand by an autho-
rized entity.

Availability is very much a concern beyond the traditional boundaries of computer
security. Engineering techniques used to improve availability often come from other
areas such as fault-tolerant computing. In the context of security, we want to ensure
that a malicious attacker cannot prevent legitimate users from having reasonable access
to their systems. That is, we want to prevent denial of service. Again, we refer to ISO
7498-2 for a definition:

Denial of service – The prevention of authorized access to resources or the delaying of
time-critical operations.
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Figure 3.1: The smurf Denial-of-Service Attack

There have been flooding attacks on the Internet where an attacker effectively disables a
server by overwhelming it with connection requests. Figure 3.1 shows smurf , one of the
first denial-of-service attacks. The attacker sends an Internet Control Message Protocol
(ICMP) echo request to the broadcast address of some network with the victim’s address
as the sender address (address spoofing). The echo request gets distributed to all nodes in
that network. Each node replies back to the spoofed sender address, flooding the victim
with reply packets. The amplification provided by the broadcast address works to the
attacker’s advantage.

In many situations, availability may be the most important aspect of computer security,
but there is a distinct lack of security mechanisms for handling this problem. As a matter
of fact, security mechanisms that are too restrictive or too expensive can themselves lead
to denial of service. Designers of security protocols now often try to avoid imbalances in
workload that would allow a malicious party to overload its correspondent at little cost
to itself.

3.1.6 Accountability

We have now covered the three traditional areas of computer security. Looking back,
you can see that they all deal with different aspects of access control and put their
emphasis on the prevention of unwelcome events. We have to accept the fact that we will
hardly ever be able to prevent all improper actions. First, we may find that authorized
actions can lead to a security violation. Second, we may find a flaw in our security system
that allows an attacker to find a way past our controls. Therefore, we may add a new
security requirement to our list. Users should be held responsible for their actions. This
requirement is particularly important in the context of electronic commerce, but can
already be found in such historic documents as the Orange Book [224]:

Accountability – Audit information must be selectively kept and protected so that actions
affecting security can be traced to the responsible party.

To be able to do so, the system has to identify and authenticate users (see Chapter 4). It
has to keep an audit trail of security-relevant events. If a security violation has occurred,
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information from the audit trail may help to identify the perpetrator and the steps that
were taken to compromise the system.

3.1.7 Non-repudiation

Non-repudiation is related to accountability.

Non-repudiation – Non-repudiation services provide unforgeable evidence that a specific
action occurred.

This definition is meaningful when analyzing the security services cryptographic mech-
anisms can provide. Digital signatures (Section 14.4) provide non-repudiation. Typical
non-repudiation services in communications security are non-repudiation of origin pro-
viding evidence about the sender of a document, and non-repudiation of delivery,
providing evidence that a message was delivered to a specific recipient.

Discussions about non-repudiation are prone to suffer from imprecise language. Should
one talk about non-repudiation of receipt when mail has been delivered to a mailbox?
Even more fundamental misunderstandings about non-repudiation prevail. It is some-
times said that non-repudiation services provide ‘irrefutable evidence’ about some event,
and that such evidence will be ‘accepted by any court in the world’. It is naı̈ve to assume
that mathematical evidence can make it impossible for a person to deny involvement in
a disputed event. The concept of irrefutable evidence is alien to most legal systems. We
will briefly return to this topic in Section 15.5.6.

3.1.8 Reliability

A discussion of security has several reasons for mentioning other areas of computing
such as reliability, relating to (accidental) failures, and safety, relating to the impact of
system failures on their environment, which also deal with situations where a system
has to perform properly in adverse conditions. The first is an overlap in terminology.
Depending on your preferred point of view, security is an aspect of reliability or vice
versa. IFIP WG 10.4 has tried to escape from this dilemma by introducing dependability
as the unifying concept and treating security, reliability, integrity, and availability as
aspects of dependability [148]:

Dependability – The property of a computer system such that reliance can justifiably be placed
on the service it delivers. The service delivered by a system is its behaviour as it is perceived
by its user(s); a user is another system (physical, human) which interacts with the former.

Furthermore, an application may have to address more than one issue at the same
time. Consider, for example, a computer system in a safety-critical application. Security
controls intended for stopping malicious actions might attempt to identify an intrusion
by looking for unfamiliar patterns of behaviour. A reaction to an emergency may also
appear unfamiliar – hopefully emergencies are rare events – so intrusion detection may
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misread legitimate actions in a critical situation as an attack and potentially compound
the problem by triggering security mechanisms that interfere with the actions of the
emergency team. In general, you must not address security independently of the other
requirements on the application you want to secure.

Finally, similar engineering methods are used in these areas. For example, standards
for evaluating security software and for evaluating safety-critical software have many
parallels and some experts expect that eventually there will be only a single standard.

3.1.9 Our Definition
This book will adopt the following operational definition of security.

Computer security deals with the prevention and detection of unauthorized actions by users
of a computer system.

With this definition, proper authorization and access control are essential to computer
security. Proper authorization assumes the existence of a security policy, as explained in
Section 2.2.1. The correction of the effects of improper actions will only play a minor
role in our further discussions. The definition above describes what we do in computer
security. When looking at the root causes for why we do it, we might adopt a definition
such as:

Computer security is concerned with the measures we can take to deal with intentional
actions by parties behaving in some unwelcome fashion.

This definition does not mention unauthorized actions. It does not refer to attacks
either but draws the boundary wider to include issues such as spam email. Sending an
unsolicited email is not necessarily an attack. (If you are looking for a job, you might
send your CV to companies that might find your skills useful, even if no vacancies are
advertised.) Similarly, receiving an unsolicited email need not be an unwelcome event.
This will change according to the number and nature of the emails one receives on a
daily basis. When this misuse of email becomes too much of a nuisance, the fight against
spam becomes a security issue.

Lesson
The main conclusions of this introductory discussion on terminology are as
follows:
1. There is no single definition of security.

2. When reading a document, be careful not to confuse your own notion of
security with that used in the document.

3. A lot of time is spent (and wasted) in trying to define unambiguous
notations for security.
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3.2 T H E F U N D A M E N TA L D I L E M M A
O F C O M P U T E R S E C U R I T Y
As the number of users relying on computer security has grown from a few organizations
dealing with classified data to everyone connected to the Internet, the requirements on
computer security have changed radically. This change has given rise to a fundamen-
tal dilemma.

Security-unaware users have specific security requirements but usually no security expertise.

A security-unaware user cannot make educated decisions about security products and will
have to pick standard ‘best practice’ solutions. Standard solutions may not address the
user’s specific requirements. When eliciting those requirements from the user, questions
have to be asked that need awareness of security issues to be answered . . .

Compared to this fundamental dilemma, the conflict between security and ease of use is a
straightforward engineering trade-off. The impact of security on performance is manifold.

• Security mechanisms need additional computational resources. This cost can be quan-
tified easily.

• Security interferes with the working patterns users are accustomed to. Clumsy or
inappropriate security restrictions lead to loss of productivity.

• Effort has to be put into managing security. Buyers of security systems therefore often
opt for the product that has the best management features (which is often the one with
the best graphical user interface).

3.3 D ATA V S I N F O R M AT I O N
Computer security is about controlling access to information and resources. However,
controlling access to information can sometimes be elusive and is therefore often replaced
by the more straightforward goal of controlling access to data. The distinction between
data and information is subtle but it is also the root of some of the more difficult problems
in security. Data represents information. Information is the (subjective) interpretation
of data:

Data – Physical phenomena chosen by convention to represent certain aspects of our con-
ceptual and real world. The meanings we assign to data are called information. Data is used
to transmit and store information and to derive new information by manipulating the data
according to formal rules [46].

When there is a close link between information and corresponding data, the two
concepts may give very similar results. However, this is not always the case. It may
be possible to transmit information over a covert channel (see Section 11.2.5). There,
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the data are ‘grant’ and ‘deny’ replies to access requests while the information received
is the contents of a sensitive file. Another example is the problem of inference in
statistical databases (Section 9.4). For a brief look at this issue, consider a database of
tax returns. This database is used by tax inspectors processing individual records. It is
also used by officials who need access to statistical summaries of tax returns but have
no business reading individual records. Assume that the database management system
allows statistical queries only on sufficiently large data sets to protect individual records.
It would still be possible to combine the results from two queries over large data sets
which differ only by a single record. Thus, even without accessing the data directly,
information about an individual record can be derived.

3.4 P R I N C I P L E S O F C O M P U T E R S E C U R I T Y

You are likely to come across claims that computer security is a very complex issue, ‘like
rocket science’. Do not let such opinions frighten you off. If you are given the chance to
implement the security features of a computer system in a systematic way, a disciplined
approach to software (systems) development and a good understanding of a few essential
security principles will carry you a long way. However, you certainly will struggle if
you add on security to an already complex system as an afterthought, when you are
constrained by design decisions that have been taken without any consideration of their
security implications. Unfortunately, too often the latter is the case.

We will now propose a few fundamental design parameters of computer security. These
design decisions provide the framework for structuring the presentations in this book.
Figure 3.2 illustrates the main dimensions in the design space for computer security.
The horizontal axis represents the focus of the security policy (Section 3.4.1). The
vertical axis represents the layer of the computer system where a protection mechanism
is implemented (Section 3.4.2).

Hardware

User
(subject)

Resource
(object)

Application
Software

Figure 3.2: The Dimensions of Computer Security
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3.4.1 Focus of Control
We could rephrase the definitions of integrity given in Section 3.1.4 and say that integrity
has to do with compliance with a given set of rules. We can have rules on:

• the format and content of data items – for example, a rule could state that the balance
fields in an accounts database have to contain an integer; such integrity rules define
internal consistency properties and do not depend on the user accessing the data item
or on the operation performed on the data item.

• the operations that may be performed on a data item – for example, a rule could state
that only operations ‘open account’, ‘check balance’, ‘withdraw’, and ‘deposit’ have
access to the balance fields in an accounts database and that only bank clerks are
allowed to execute ‘open account’; such rules may depend on the user and on the
data item.

• the users who are allowed to access a data item – for example, a rule could state
that only the account holder and bank clerks have access to balance fields in an
accounts database.

We have just made an important general observation and arrived at our first
design decision.

First Design Decision: In a given application, should the protection mechanisms in a computer
system focus on

• data,
• operations,
• or users?

It is a fundamental design decision choosing which of these options to take when applying
security controls. Operating systems have traditionally focused on protecting data
(resources). In modern applications, it is often more relevant to control the users’ actions.

3.4.2 The Man–Machine Scale
Figure 3.3 presents a simple layered model of a computer system. This model is only
intended for general guidance. You should not expect to find all the layers in every
computer system you analyze, nor should you be surprised to find systems where you
can identify more than the five layers of our model.

• Users run application programs that have been tailored to meet specific application
requirements.

• The application programs may make use of the services provided by a general purpose
software package such as a database management system (DBMS), an object reference
broker (ORB), or a browser.

• The services run on top of the operating system, which performs file and memory
management and controls access to resources such as printers and I/O devices.
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Figure 3.3: Layers of an IT System

• The operating system may have a kernel (micro-kernel, hypervisor) that mediates every
access to the processor and to memory.

• The hardware, i.e. processors and memory, physically stores and manipulates the data
held in the computer system.

Security controls can sensibly be placed in any of these layers. We have now explained
the dimensions of our second fundamental security principle.

Second Design Decision: In which layer of the computer system should a security mechanism
be placed?

When you investigate fielded security products, you will observe security mechanisms at
every layer of this model, from hardware to application software. It is the task of the
designer to find the right layer for each mechanism, and to find the right mechanisms for
each layer.

Take a second look at our new design decision, visualizing the security mechanisms of a
computer system as concentric protection rings, with hardware mechanisms in the centre
and application mechanisms on the outside (Figure 3.4). Mechanisms towards the centre
tend to be more generic, more computer-oriented, and more concerned with controlling
access to data. Mechanisms at the outside are more likely to address individual user
requirements. Combining our first two design decision, we will refer to the man–machine

applications

services

operating system

OS kernel

hardware

Figure 3.4: The Onion Model of Protection Mechanisms
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Figure 3.5: The Man–Machine Scale for Access Control Mechanisms

scale for placing security mechanisms (Figure 3.5). This scale is related to the distinction
between data (machine-oriented) and information (man-oriented).

3.4.3 Complexity vs Assurance

Frequently, the location of a security mechanism on the man–machine scale is closely
related to its complexity. To the right of the scale you find simple generic mechanisms,
while applications often clamour for feature-rich security functions. Hence, there is yet
another decision you have to take.

Third Design Decision: Do you prefer simplicity – and higher assurance – to a feature-rich
security environment?

To achieve a high degree of assurance, the security system has to be examined in close
detail and as exhaustively as possible. Hence, there is a trade-off between complexity
and assurance. The higher an assurance level you aim for, the simpler your system ought
to be. As an immediate consequence, you can observe that

feature-rich security systems and high assurance do not match easily.

It will not come as a surprise that high assurance requires adherence to systematic design
practices. In fact, computer security is one of the areas that early on adopted formal
methods as a tool in their quest for the highest assurance levels.

This decision is also linked to the fundamental dilemma of computer security. A simple
generic mechanism may be unable to enforce specific protection requirements, but to
choose the right options in a feature-rich security environment users have to be security
experts. Security-unaware users are left in a no-win situation.

3.4.4 Centralized or Decentralized Controls

Within the domain of a security policy, the same controls should be enforced. If there is
a single central entity in charge of security, then it is easy to achieve uniformity, but this
central entity may become a performance bottleneck. Conversely, a distributed solution
may be more efficient but we have to take additional care to guarantee that the different
components define and enforce the policy consistently.
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Fourth Design Decision: Should the tasks of defining and enforcing security be given to a
central entity or should they be left to individual components in a system?

This question arises naturally in distributed systems security and you will see examples of
both alternatives. However, this question is also meaningful in the context of mainframe
systems as demonstrated by the mandatory and discretionary security policies of the
Bell–LaPadula model covered in Section 11.2.

3.5 T H E L AY E R B E L O W
So far we have briefly touched on assurance but have predominantly explored options
for expressing the most appropriate security policies. It is now time to think about
attackers trying to bypass your protection mechanisms. Every protection mechanism
defines a security perimeter (boundary). The parts of the system that can malfunction
without compromising the protection mechanism lie outside this perimeter. The parts of
the system that can be used to disable the protection mechanism lie within this perimeter.
This observation leads to an immediate and important extension of the second design
decision from Section 3.4.2:

Fifth Design Decision: How can you prevent an attacker from getting access to a layer below
the protection mechanism?

An attacker with access to the ‘layer below’ is in a position to subvert protection
mechanisms further up. For example, if you gain systems privileges in the operating
system, you are usually able to change programs or files containing the control data for
security mechanisms in the services and applications layers. If you have direct access
to the physical memory devices so that you can manipulate the raw data, the logical
access controls of the operating system have been bypassed. We give further examples
below to illustrate this point. The fact that security mechanisms have a soft underbelly
and are vulnerable to attacks from lower layers should be a reason for concern, but
not for despair. When you reach the stage where you cannot apply computer security
mechanisms or do not want to do so, you still can put in place physical or organizational
security measures (Figure 3.6).

We will now give a few examples of access to the layer below. The explanations assume
some basic understanding of the way computer systems work.

Recovery Tools

If the logical organization of the memory is destroyed due to some physical memory
fault, it is no longer possible to access files even if their physical representation is still
intact. Recovery tools, like Norton Utilities, can help to restore the data by reading
the (physical) memory directly and then restoring the file structure. Such a tool can, of
course, be used to circumvent logical access control as it does not care for the logical
memory structure.



46 3 FOUNDATIONS OF COMPUTER SECURITY

physical and
organizational
protection
mechanisms

computer security

Figure 3.6: Physical and Organizational Security Measures Controlling Access to the
Layers Below

Unix Devices

Unix treats I/O devices and physical memory devices like files. The same access control
mechanisms can therefore be applied to these devices as to files. If access permissions are
defined badly, e.g. if read access is given to a disk which contains read protected files,
then an attacker can read the disk contents and reconstruct the files. More information
on Unix security follows in Chapter 7.

Object Reuse (Release of Memory)

A single-processor multiprogramming system may execute several processes at the same
time but only one process can ‘own’ the processor at any point in time. Whenever the
operating system deactivates the running process to activate the next, a context switch
is performed. All data necessary for the later continuation of the execution are saved
and memory is allocated for the new process. Storage residues are data left behind in the
memory area allocated to the new process. If the new process could read such storage
residues, the logical separation between processes the operating system should provide
has been breached. To avoid this problem, all memory locations that are released could
be overwritten with a fixed pattern or the new process could be granted read access only
to locations it has already written to.

Buffer Overruns

In a buffer overrun attack, a value is assigned to a variable that is too large for the
memory buffer allocated to that variable, so that memory allocated to other variables is
overwritten. This method of modifying variables that should be logically inaccessible is
further explained in Section 10.4.1.

Backup

A conscientious system manager will perform regular backups. Whoever can lay their
hands on the backup media has access to all the data on the tape and logical access control
is of no help. Thus, backup media have to be locked away safely to protect the data.
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Core Dumps

When a system crashes, it creates a core dump of its internal state so that the reasons for
the crash can be more easily identified. If the internal state contains sensitive information,
such as cryptographic keys, and if core dumps are stored in files that can be read by
everyone, an attacker could intentionally crash a multi-user system and look in the core
dump for data belonging to other users.

3.6 T H E L AY E R A B O V E
There is, however, also another conclusion you can draw from the observations just
made. As you will discover in this book, it is neither necessary nor sufficient to have a
secure infrastructure, be it an operating system or a communications network, to secure
an application. An application may take care of its own security requirements. The
security services provided by the infrastructure may be irrelevant for the application. The
infrastructure cannot defend against attacks from the layer above.

The Fundamental Fallacy of Computer Security

Do not believe that you must secure the infrastructure to protect your applications.

Of course, security guarantees provided by the infrastructure may be useful when securing
an application. Still, you have to take great care when checking that those guarantees
really are relevant for the application. Chapter 18 will illustrate this point.

3.7 F U R T H E R R E A D I N G
For a second opinion on computer security there are a number of books you
could consult. A very readable introduction to the subject is provided by [195].
At the other end of the spectrum, [8] covers the theoretical elements of computer
security. Another comprehensive treatment of information security, with many
valuable pointers for further reading, is presented in [191].

Books on the security features of specific operating systems tend to be expensive,
concentrate on issues relevant to someone managing such a system, such as
drop-down menus and their options, but do not provide much further insight
into the way security is implemented. Notable exceptions to this rule, although
a little dated, are Park’s book on AS/400 [189] and Brown’s book on Windows
security [47].
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3.8 E X E R C I S E S

Exercise 3.1 Conduct a search for further definitions of the security concepts
defined in this chapter. Starting points may be the Common Criteria [58] or the
websites of the US TCSEC programme2 and of the Common Criteria Scheme.
Many of the major IT companies also have pages on security on their websites.

Exercise 3.2 The Parkerian hexad divides security into the six categories:
confidentiality, possession or control, integrity, authenticity, availability, and
utility. Identify situations where possession or control of a container holding
some information is a relevant requirement that cannot be captured by the
other properties. Identify situations where the utility of information is a relevant
requirement that cannot be captured by the other properties.

Exercise 3.3 Examine the relationship between unlinkability and anonymity.

Exercise 3.4 Write a short essay discussing the difference between data and
information and find your own examples demonstrating that controlling access
to data does not necessarily imply controlling access to information.

Exercise 3.5 On the computing system you are using, identify the software
components that potentially could incorporate security mechanisms.

Exercise 3.6 A good graphical user interface is an appropriate criterion for
purchasing a security product. Discuss.

Exercise 3.7 Look for further examples where a security mechanism in one layer
can be bypassed by an attacker who has access to a layer below.

Exercise 3.8 Identify the security perimeters that may be applicable when
analyzing personal computer security. In your analysis, consider when it is
appropriate to assume that the room the PC is placed in, the PC itself, or some
security module within the PC lies within the security perimeter.

2Available, at the time of writing, at http://csrc.nist.gov/publications/secpubs/rainbow/



Chapter4
Identification and Authentication

In a secure system you might need to track the identities of users requesting
its services. Authentication is the process of verifying a user’s identity. You
have two reasons for authenticating a user:

• The user identity is a parameter in access control decisions.
• The user identity is recorded when logging security-relevant events in an

audit trail.

Chapter 20 will explain why it is not always necessary or desirable to
base access control on user identities. There is a much stronger case for
using identities in audit logs. This chapter deals with identification and
authentication of users as it is standard in current operating systems.

OBJECT I VES
• Visit a familiar security mechanism to learn some general lessons.
• Get an introduction to password protection.
• Appreciate that security mechanisms rely on administrative measures to

be effective.
• Understand the dangers when using abstractions in computer security.
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4.1 U S E R N A M E A N D PA S S W O R D
Literally, you make your first contact with computer security when you log on to a
computer and are asked to enter your username and password. The first step is called
identification: you announce who you are. The second step is called authentication:
you prove that you are who you claim to be. To distinguish this use of the word
‘authentication’ from other interpretations, we can specifically refer to:

Entity authentication – The process of verifying the identity claimed by some system
entity.

Once you have entered your username and password, the computer compares your
input against the entries stored in a password file. Login will succeed if you enter a
valid username and the corresponding password. If username or password is incorrect,
login fails. Usually, the login screen will be displayed again and you can start your
next attempt. Some systems keep a count of failed login attempts and prevent or delay
further attempts when a certain threshold has been reached. To reduce the chance of an
attacker using an unattended machine where another user is logged on, authentication
may be demanded not only at the start of a session but also at intervals during the
session (repeated authentication). You may also choose to lock the screen or to close
a session automatically if a machine is idle for too long.

Lesson
Repeated authentication addresses a familiar problem in computer security,
known as TOCTTOU (time of check to time of use). The operating system
checks a user’s identity at the start of a session but uses the identity to make
access control decisions later on during the session.

Once upon a time, you would have entered username and password on a screen
containing a friendly welcome message and some information on the system you were
about to access. Today, cautious systems managers will not make too much information
available to the outside world and replace the welcome message by a warning telling
unauthorized persons to stay out. For example, Windows has the option of displaying a
legal notice dialog box. Users have to acknowledge this warning message before logon
can proceed.

Today, most computer systems use identification and authentication through username
and password as their first line of defence. For most users, this mechanism has become
an integral part of the routine of starting a session on their computer. We thus have a
mechanism that is widely accepted and not too difficult to implement. On the other hand,
managing password security can be quite expensive and obtaining a valid password is
a common way of gaining unauthorized access to a computer system. Let us therefore
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examine the actual security of authentication by passwords. First, a password has to be
set for the user account; otherwise the attacker can enter unchecked. The attacker may

• intercept the password at the time a new user account is created,
• try to guess the password,
• get the password from the user through phishing or spoofing, or by keyloggers,
• get the password from the system by compromising the password file or by social

engineering.

When looking for defences, do not forget the user’s role in password protection.

4.2 B O OT S T R A P P I N G PA S S W O R D
P R OT E C T I O N
Passwords are meant to be secrets shared between the user and the system authenticating
the user. So, how do you bootstrap a system so that the password ends up in the right
places, but nowhere else? In an enterprise, users could be asked to come to an office and
collect their password personally. If this is not feasible, the password could be conveyed
by mail, email, or phone, or entered by the user on a web page. You now have to
consider who might intercept the message and, most importantly, who might actually
pick it up. For example, a letter containing the password for an online bank account
might be stolen or an impersonator may phone in asking for another user’s password.
How do you authenticate a remote user when the user has not got a password yet? To
address these issues:

• do not give the password to the caller but call back an authorized phone number from
your files, e.g. from an internal company address book;

• call back someone else, e.g. the caller’s manager or local security officer;

• send passwords that are valid only for a single login request so that the user has
to change immediately to a new password (intercepting the first password is thus of
limited value);

• send mail by courier with personal delivery;

• request confirmation on a different channel to activate the user account, e.g. enter the
password on a web page and send confirmation by SMS (phone).

When setting up a new user account you might tolerate some delay in getting your pass-
word. When you are in the middle of an important task and just realize that you have
forgotten your password you need an instant remedy. The procedures for resetting a pass-
word are pretty much the same as those mentioned above, but now an organization has to
staff a hot desk at all times requests may come in. In global organizations such a hot desk
has to be available round the clock. Proper security training has to be given to personnel
at the hot desk. Thus, password support can become a non-negligible cost factor.
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Lesson
Security mechanisms may fail to give access to legitimate users. Your overall
security solution should be able to handle such situations efficiently.

4.3 G U E S S I N G PA S S W O R D S
Password choice is a critical security issue. While you cannot eliminate the risk of an
attacker guessing a valid password, you can try to keep low the probability of such an
event. An attacker may follow two basic guessing strategies:

• exhaustive search (brute force) – try all possible combinations of valid symbols, up to
a certain length;

• intelligent search – search through a restricted name space, e.g. try passwords that
are somehow associated with a user such as name, names of friends and relatives,
car brand, car registration number, phone number, etc., or try passwords that are
generally popular.

A typical example of the second approach is a dictionary attack-trying all passwords
from a dictionary. So, what are your defences?

• Change default passwords: when systems are delivered, they often come with default
accounts such as ‘system’ with default password ‘manager’. This helps the field engineer
to install the system, but if the password is left unchanged the attacker has an easy job
getting into the system. In this particular example, the attacker even gets access to a
privileged account.

• Password length: to thwart exhaustive search, a minimal password length should be
prescribed. Standard Unix systems, however, have a maximal password length set to
eight characters only.

• Password format: mix upper and lower case symbols and include numerical and other
non-alphabetical symbols in your password. The size of the password space is at least
|A|n where n is the minimal password length and |A| is the size of the character set
used for constructing passwords.

• Avoid obvious passwords: do not be surprised to find out that attackers are equipped
with lists of popular passwords and be aware that dictionary attacks have extended
the scope of ‘obvious’ quite substantially. Today, you can find an on-line dictionary
for almost every language.
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How can the system further help to improve password security?

• Password checkers: as a system manager, you can use tools that check passwords
against some dictionary of ‘weak’ passwords and prevent users from choosing such
passwords. This imitates – and pre-empts – dictionary attacks against the system.

• Password generation: some operating systems include password generators producing
random but pronounceable passwords. Users are not allowed to pick their own
password but have to adopt a password proposed by the system.

• Password ageing: an expiry date for passwords is set, forcing users to change passwords
at regular intervals. There may be additional mechanisms to prevent users from
choosing previous passwords, e.g. a list of the last ten passwords used. Still, determined
users will be able to revert to their favourite password by making a sufficient number
of changes until their old password is accepted again.

• Limit login attempts: the system monitors unsuccessful login attempts and reacts by
locking the user account completely or at least for a certain period of time to prevent
or discourage further attempts. The time the account is locked could be increased in
proportion to the number of failed attempts.

Given what has just been said, it would seem that security is highest if users must
have long passwords, mixing upper and lower case characters and numerical symbols,
probably generated for them by the system, and changed repeatedly. Will this approach
really work? Will you get the desired security in practice?

Users are unlikely to memorize long and complicated passwords. Such passwords will be
written down on a piece of paper kept close to the computer, where it is most useful both
for the legitimate user and a potential intruder. It is a standard step in security reviews to
look out for passwords on notes posted on computer terminals. Similar considerations
apply when passwords are changed very frequently. Users finding it difficult to comply
with the rigour of such a password management scheme may be tempted to use passwords
that can be more easily memorized, and therefore more easily guessed. They may revert
quickly to their favourite password or make simple and predictable changes to this
password. If you have to change the password every month, just add the month (two
digits, from 1 to 12, or three characters from JAN to DEC, the choice is yours) to your
chosen password and you have passwords that you can remember. Of course, an attacker
who has found one of those passwords gets a good idea what to expect next.

Experience shows that people are best at memorizing passwords they use regularly.
Hence, passwords work reasonably well in situations where they are entered quite
frequently, but not with systems used only occasionally. When changing your password,
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it is good advice to type it immediately several times. It is equally good advice not to
change passwords before weekends or holidays.

Lesson
Do not look at security mechanisms in isolation. Putting too much emphasis
on one security mechanism may actually weaken the system, not least
because users will find ways of circumventing security if they cannot
do their job properly when the security mechanisms are inappropriate.
With passwords, you have observed a trade-off between the complexity of
passwords and the faculties of human memory.

4.4 P H I S H I N G , S P O O F I N G , A N D S O C I A L
E N G I N E E R I N G
Identification and authentication through username and password provide unilateral
authentication. A user enters a password and the computer verifies the user’s identity.
But does the user know who has received the password? So far, the answer is no. The
user has no guarantees about the identity of the party at the other end of the line.

In phishing and spoofing attacks the user voluntarily sends the password over a channel,
but is misled about the end point of the channel. In a spoofing attack, the attacker runs
a program that presents a fake login screen on a machine and leaves the machine. An
unsuspecting user comes to this ‘idle’ machine and tries to log in. The victim sees what
appears to be the normal login menu. When entering username and password, the inputs
are collected by the attacker’s program. Login is then aborted with a (fake) error message
and the spoofing program terminates. Control returns to the operating system which
now prompts the user with a genuine login request. The user tries again, succeeds on this
second attempt, and may remain completely unaware of the fact that the password has
been compromised. What can be done about such a spoofing attack?

• Displaying the number of failed logins may indicate to the user that an attack has
happened. If your first login fails but you are told at your second attempt that
there have been zero login attempts since your last session, you should become
suspicious.

• Trusted path: guarantee that the user communicates with the operating system and
not with a spoofing program. For example, Windows has a secure attention sequence
CTRL+ALT+DEL which invokes the Windows operating system logon screen. The
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user should press such a secure attention key when starting a session, even when the
logon screen is already displayed.

• Mutual authentication: if users require stronger guarantees about the identity of the
system they are communicating with, e.g. in a distributed system, the system could be
required to authenticate itself to the user.

Phishing attacks ask users for their password (or other sensitive data) under some false
pretence. For example, the message could claim to come from a service you are using, tell
you about an upgrade of the security procedures, and ask you to enter your username
and password at the new security site that will offer you stronger protection1. Users
should take care to enter their passwords only at the ‘right’ site, but in practice it is not
always easy to recognize the right site.

The attacker may impersonate a user and trick a system operator into releasing the
password to the attacker. Such social engineering attacks are more successful when they
better understand the psyche of the target [172]. Is this a person that can be bullied? Is
this a person that is very supportive of struggling users?

4.4.1 Password Caching

Beyond spoofing attacks, an intruder may have other ways of ‘finding’ a password.
Our description of login has been quite abstract. The password travels directly from
the user to the password checking routine. In reality, it will be held temporarily
in intermediate storage locations such as buffers, caches, or even a web page. The
management of these storage locations is normally beyond the control of the user and a
password may be kept longer than the user expects.

This issue is illustrated nicely by a problem encountered by the developers of an early
web-based on-line banking service [12]. Web browsers cache information to enable users
to scroll back to pages they have recently visited. To use the on-line banking service,
you enter your password on a web page. You conduct your business, close the banking
application, but do not terminate the browser session. The next user on the terminal can
scroll back to the page with your password and log on as you.

As a precaution, it was recommended to exit the browser after the banking transac-
tion. Note that users are now asked to participate in a memory management activity
they would otherwise not be involved in. This is another instance of object reuse
(Section 3.5).

1In 2009, criminals succeeded with such an attack in getting access to the Emissions Trading Registry and trade
in emission rights.
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Lesson
Abstraction is useful and dangerous at the same time. It is useful to discuss
password security in abstract terms. You can examine policies on password
formats or ageing without knowing how passwords are processed in your
IT system. It is dangerous to discuss password security only at such an
abstract level. Implementation flaws can compromise the best security
policies.

4.5 P R OT E C T I N G T H E PA S S W O R D F I L E
To verify a user’s identity, the system compares the password entered by the user against
a value stored in the password file. The password can be intercepted by a keylogger at
the machine at the user’s end; it can be intercepted in transit so it should be sent through
a secure tunnel (see Chapter 16); and the password file might be compromised. An
attacker can directly impersonate a user when the contents of an unencrypted password
file are disclosed or when entries in the password file can be modified. Even the disclosure
of encrypted passwords may be a concern. Dictionary attacks can then be conducted
off-line and protection measures such as limiting the number of unsuccessful login
attempts would not come into play. To protect the password file, you have the following
options:

• cryptographic protection;
• access control enforced by the operating system;
• a combination of cryptographic protection and access control, possibly with further

enhancements to slow down dictionary attacks.

For cryptographic protection, we do not even need an encryption algorithm. A one-way
function will do the job. For now, the following working definition will do:

A one-way function is a function that is relatively easy to compute but significantly harder
to undo or reverse. That is, given x it is easy to compute f (x), but given f (x) it is hard to
compute x.

Chapter 14 has more details on one-way functions (cryptographic hash functions). One-
way functions have been used to protect stored passwords for quite some time [234,
p. 91ff]. Instead of the password x, the value f (x) is stored in the password file. When
a user logs in and enters a password, say x′, the system applies the one-way function f
and then compares f (x′) with the expected value f (x). If the values match, the user has
been successfully authenticated. If f is a proper one-way function, it is not feasible to
reconstruct a password x from f (x).
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The password file could now be left world-readable but for off-line dictionary attacks.
In a dictionary attack, the attacker hashes all words in a dictionary and compares the
results against the hashed entries in the password file. If a match is found, the attacker
knows that user’s password. One-way functions can be chosen to slow down dictionary
attacks. This consideration has governed the choice of the one-way function crypt(3) used
in Unix systems, which repeats a slightly modified DES encryption algorithm 25 times,
using the all-zero block as start value and the password as key [173]. Of course, there is a
slight performance penalty for legitimate users at login, but if you optimize the one-way
function for speed you also improve the performance of dictionary attacks.

Access control mechanisms in the operating system restrict access to files and other
resources to users holding the appropriate privileges. Only privileged users may have
write access to the password file. Otherwise, an attacker could get access to the data of
other users simply by changing their password, even if it is protected by cryptographic
means. If read access is restricted to privileged users, passwords in theory could be
stored unencrypted. If the password file contains information that is also required by
unprivileged users, then the password file must contain encrypted passwords. However,
such a file can still be used in dictionary attacks. A typical example is /etc/passwd in Unix.
Therefore, many versions of Unix store enciphered passwords in a file that is not publicly
accessible. Such files are called shadow password files.

A weak form of read protection is provided by proprietary storage formats. For
example, Windows NT did store encrypted passwords in a proprietary binary format.
An unsophisticated user will be defeated but a determined attacker will obtain or deduce
the information necessary to be able to detect the location of security-relevant data. On
its own ‘security by obscurity’ is not very strong, but it can add to other mechanisms
such as password encryption.

There is, however, the danger that a successful breach of such a peripheral defence may
be blown out of all proportion. In early 1997, there was a flurry of claims that Windows
NT password security had been broken. Sounds really serious, doesn’t it? The actual
fact behind these stories was the announcement of a program that converted encrypted
passwords from binary format to a more readable presentation. Not a big deal after all
the excitement.

If you are worried about dictionary attacks but cannot hide the password file, you
may consider password salting. When a password is encrypted for storage additional
information, the salt, is appended to the password before encryption. The salt is then
stored with the encrypted password. If two users have the same password, they will
therefore have different entries in the file of encrypted passwords. Salting slows down
dictionary attacks as it is no longer possible to search for the passwords of several users
simultaneously.
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Lesson
You have seen three security design principles.

• A combination of mechanisms can enhance protection. Encryption and
access control are used to guard password files.

• Security by obscurity only protects against casual intruders. Do not place
much trust in this strategy.

• If you can, separate security-relevant data from data that should be
openly available. In Unix, /etc/passwd contains both types of data. Shadow
password files achieve the desired separation.

4.6 S I N G L E S I G N - O N
Passwords have separated friend from foe for centuries. In an IT environment, they
control access to computers, networks, programs, files, etc. As a user, you would not
find it particularly convenient if you had to enter passwords over and over again when
navigating through cyberspace to a bit of information. Sitting at your workstation and
needing some information from a database held on a server on the network, would you
be pleased if you had to

• enter a first password at the workstation,
• enter a second password to get out on the network,
• enter a third password to access the server,
• enter a fourth password to access the database management system,
• enter a fifth password to open a table in the database?

Forget about the problem of potentially having to remember five different passwords and
picking the right one at each occasion; having to re-enter the same password five times
is bad enough.

A single sign-on service solves this problem. You enter your password once. The system
may store this password and whenever you have to authenticate yourself again, the
system will take the password and do the job for you. Such a single sign-on service
adds to your convenience but it also raises new security concerns. How do you protect
the stored password? Some of the techniques mentioned previously will no longer work
because the system now needs your password in the clear.

Lesson
System designers have to balance convenience and security. Ease of use is an
important factor in making IT systems really useful. Unfortunately, many
practices which are convenient also introduce new vulnerabilities. This is
not the last time the curse of convenience will haunt you.
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4.7 A L T E R N AT I V E A P P R O A C H E S
If you are dissatisfied with the level of security provided by passwords, what else can you
do? The following general options are open to you. As a user, you can be authenticated
on the basis of

• something you know,
• something you hold,
• who you are,
• what you do,
• where you are.

Something you know

The user has to know some ‘secret’ to be authenticated. You have already seen a first
example of this mode of authentication. A password is something you know. Another
example is the personal identification number (PIN) used with bank cards and similar
tokens. As a third example, consider the situation when you make a telephone query
about your bank account. The clerk dealing with your call may ask you for further
personal information such as home address, date of birth, and name of spouse before
releasing any information.

In this mode of authentication, anybody who obtains your secret ‘is you’. On the other
hand, you leave no trace if you pass your secret to somebody else. When there is a
case of computer misuse in your organization where somebody has logged in using your
username and password, can you prove your innocence? Can you prove that you did not
divulge your password?

Lesson
A password does not authenticate a person, successful authentication only
implies that the user knew a particular secret. There is no way of telling the
difference between the legitimate user and an intruder who has obtained
that user’s password.

Something you hold

The user has to present a physical token to be authenticated. A key that opens a lock
is something you hold. A card or an identity tag used to control access to a company’s
premises are other examples of such a token. Driven by the cost of password management,
large organizations have introduced smart cards for user authentication.

A physical token can be lost or stolen. As before, anybody who is in possession of the
token has the same rights as the legitimate owner. To increase security, physical tokens
are often used in combination with something you know: bank cards come with a PIN, or
they contain information identifying the legitimate user, such as a photo. However, not
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even the combination of mechanisms can totally prevent a fraudster from obtaining the
information necessary to impersonate a legitimate user, nor does it stop a user from
passing on that information voluntarily.

Who you are

Biometric schemes that use unique physical characteristics (traits, features) of a person
such as face, fingerprints, iris patterns [77], hand geometry, or possibly even DNA at
some time in the future, may seem to offer the ultimate solution for authenticating a
person. Biometric schemes are used for two purposes:

• identification – a 1:n comparison that tries to identify the user from a database of
n persons;

• verification – a 1:1 comparison that checks whether there is a match for a given user.

We will use fingerprints as an example to sketch how biometric authentication works.
The pattern of ridges in a fingerprint serves as the unique characteristic. First, samples of
the user’s fingerprint are collected. A sample is an analog or digital representation of a
biometric characteristic. Biometric features are then extracted from the samples and
stored as reference templates. The features used by a typical fingerprint recognition
system are so-called minutiae, i.e. positions where ridges end, positions where ridges
bifurcate, positions where ridges form a triangle, and the like.

For greater accuracy, several templates may be recorded, possibly for more than one
finger. These templates are stored in a secure database. This process is called enrolment.
The failure-to-enrol rate (FER) gives the frequency with which the system fails to enrol a
user, e.g. because the skin on the fingers is so worn down that no good quality templates
can be obtained.

When the user logs on, a new reading of the fingerprint is taken and compared against
the reference template. Authentication by password gives a clear reject or accept at
each authentication attempt. In contrast, with biometrics the stored reference template
will hardly ever match precisely the template derived from the current measurements.
A matching algorithm measures the similarity between reference template and current
template. The user is accepted if the similarity is above a predefined threshold. Thus,
we have to face up to new problems, false positives and false negatives. Accepting the
wrong user (false positive) is clearly a security problem. Rejecting a legitimate user (false
negative) creates embarrassment and potential availability problems.

Technology analysis of a biometric scheme is based on (given) databases of biometric
samples. This analysis measures the performance of the algorithms extracting and
comparing biometric characteristics. By setting the threshold for the matching algorithm,
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we can trade off a lower false match rate (FMR),

FMR = number of successful false matches
number of attempted false matches

,

against a higher false non-match rate (FNMR),

FNMR = number of rejected genuine matches
number of attempted genuine matches

,

or vice versa (Figure 4.1). Designers of biometric authentication systems have to find
the right balance between those two errors. It depends very much on the application
where this balance will be found. The equal error rate (EER) is given by the threshold
value where FMR and FNMR are equal. Currently, the best state-of-the-art fingerprint
recognition schemes have an EER of about 1–2%. Iris pattern recognition has a
superior performance.
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Figure 4.1: Typical Values of FMR and FNMR as a Function of Matching Threshold

Scenario analysis records error rates in actual field trials. It also measures the performance
of the fingerprint reader (hardware and software) capturing templates at login time.
The failure-to-capture rate (FTC) gives the frequency of failing to capture a sample; the
failure-to-extract rate (FTX) gives the frequency of failing to extract a feature from a
sample. The failure-to-acquire rate (FTA) gives the frequency of failing to acquire
a biometric feature:

FTA = FTC + FTX · (1 − FTC).

The false accept rate (FAR) for the entire biometric scheme is then

FAR = FMR · (1 − FTA),

the false reject rate (FRR),

FRR = FTA + FNMR · (1 − FTA),
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and the false positive identification rate (FPIR) for a database with n persons

FPIR = (1 − FTA) · (1 − (1 − FMR)n).

Next, the problem of ‘forged’ fingers must be considered. Fingerprints, and biometric
traits in general, may be unique but they are not secrets. You leave your fingerprints
in many places and it has been demonstrated in the past that it is not too difficult to
construct rubber fingers that defeat most commercial fingerprint recognition systems
[226, 161]. If biometric authentication takes place in the presence of security personnel
this might be a minor issue. However, when authenticating remote users additional
precautions have to be taken to counteract this type of fraud.

Overall, the industry is just gaining experience with large-scale deployment of biometric
schemes. It remains to be seen whether results from experiments conducted in controlled
environments are a good indicator of practical performance.

There is a final issue. Will users accept such a mechanism? They may feel that they are
treated like criminals if their fingerprints are taken. They may not like the idea of a laser
beam scanning their retina.

What you do

People perform some mechanical tasks in a way that is both repeatable and specific
to the individual. Hand-written signatures have long been used in banking to confirm
the identity of users when signing cheques and credit card payment slips. Forgeries are
relatively easy to perpetrate for skilled criminals. For greater security, users could sign
on a special pad that measures attributes like writing speed and writing pressure. On a
keyboard, typing speed and intervals between key strokes are being used to authenticate
individual users. As before, the authentication system has to be set up so that false
positives and false negatives are reduced to levels acceptable for the intended application.

Where you are

When you log on, the system may also take into account where you are. Some operating
systems already do so and grant access only if you log on from a certain terminal. For
example, a system manager may only log on from an operator console but not from an
arbitrary user terminal. Similarly, as a user you may be only allowed to log on from the
workstation in your office. Decisions of this kind will be even more frequent in mobile
and distributed computing. If the precise geographical location has to be established
during authentication, a system may use the services of the Global Positioning System
(GPS). Identifying the location of a user when a login request is made may also help to
resolve later disputes about the true identity of that user.
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4.8 F U R T H E R R E A D I N G
The history of Unix password security is told in [173], where quite interesting
statistics on typical password choices can be also found, and is taken further
in [93]. Practically every book on computer security contains extensive advice
on proper password choice and on the importance of password security. You
can find quite a number of password crackers on the Internet. Analyzing one
of these programs will give you a good idea of the type of passwords current
crackers search for and of the size and sophistication of the dictionaries they are
using. Running such a program without explicit authorization may bring you into
conflict with the disciplinary rules of your organization and with the criminal law
of many countries.

4.9 E X E R C I S E S

Exercise 4.1 Check the password scheme on your own computer system. Are
there any rules on password length, password format, or password expiry? How
are passwords stored in your system?

Exercise 4.2 Assume that you are only allowed to use the 26 letters of the
alphabet to construct passwords.

• How many different passwords are possible if a password is at most n = 4, 6, 8
characters long and there is no distinction between upper case and lower case
characters?

• How many different passwords are possible if a password is at most n = 4, 6, 8
characters long and passwords are case-sensitive?

Exercise 4.3 Assume that passwords have length 6 and all alphanumerical
characters, upper and lower case, can be used in their construction. How long
will a brute force attack take on average if

• it takes one tenth of a second to check a password?

• it takes a microsecond to check a password?

Exercise 4.4 Assume that you are only allowed to use the 26 letters of the
alphabet to construct passwords of length n. Assume further that you are using
the same password in two systems where one accepts case-sensitive passwords
but the other does not. Give an upper bound at the number of attempts required
to guess the case-sensitive version of a password.
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Exercise 4.5 You are shipping WLAN access points. Access to these devices is
protected by password. What are the implications of shipping all access points
with the same default password? What are the implications of shipping each
access point with its individual password?

Exercise 4.6 Passwords are entered by users and checked by computers. Thus,
there has to be some communications channel between user and computer. So
far we have taken a very abstract view of this channel and assumed that it exists
and that it is adequately secure. When is this assumption justified? When is it not
justified?

Exercise 4.7 If you are required to use several passwords at a time, you may
consider keeping them in a password book. A password book is a protected file
containing your passwords. Access to the password book can again be controlled
through a master password. Does such a scheme offer any real advantages?

Exercise 4.8 There exists a time–memory trade-off in password guessing
described in [115]. Let N be the number of possible passwords. In a precomputa-
tion step using N trial encryptions, a table with N2/3 entries is constructed. If you
later want to find a given encrypted password, you need N2/3 trial encryptions.
How much memory space do you need when passwords of length 6 are chosen
from a 5-bit character set? How quickly will you find the password if a trial
encryption takes one millisecond?

Exercise 4.9 Conduct a security analysis of authentication based on personal
information such as date of birth and other details from a person’s private life.

Exercise 4.10 Conduct a survey of commercially available biometric authentica-
tion systems. What are the false acceptance, false rejection, and equal error rates
for those systems?



Chapter5
Access Control

You have now logged on to the system. You create new files and want
to protect them. Some of them may be public, some only intended for a
restricted audience, and some may be private. You need a language for
expressing your intended access control policy and you need mechanisms
that enforce access control. This chapter introduces the vocabulary for
talking about access control. Chapters 11 and 12 will look into specific
access control policies.

OBJECT I VES

• Introduce the fundamental model of access control.
• Look at a few sets of access operations and warn of the danger of

substituting your intuition for the actual definition of terms.
• Present essential access control structures, independent of specific security

policies.
• Define partial orderings and lattices, mathematical concepts often used

when expressing security policies.



66 5 ACCESS CONTROL

5.1 B A C K G R O U N D
Before immersing yourself in the details of access control, consider the way computer
systems – and the use of computer systems – have developed over the last few decades.
Computer systems manipulate data and mediate access to shared resources such as
memory and printers. They have to provide access control to data and resources, although
primarily for reasons of integrity and not so much for confidentiality. Traditional multi-
user operating systems offer general infrastructure services to a considerable variety
of users. By their very nature, these operating systems have simple and generic access
operations and are not concerned with the meaning of the files they handle. Modern
desktop operating systems support individual users in performing their job. In this
scenario, you find more complex application-specific access operations. Users are not
interested in the lower-level details of the execution of their programs. Not surprisingly,
it may be quite difficult to map their high-level security requirements to low-level security
controls. In a nutshell, you are witnessing the transition from general purpose computer
systems to (flexible) special purpose computer systems. Keep this trend in mind when
comparing the different access control models covered in this book.

5.2 A U T H E N T I C AT I O N A N D A U T H O R I Z AT I O N
To discuss access control, we first have to develop a suitable terminology. The very nature
of ‘access’ suggests that there is an active entity, a subject or principal, accessing a passive
object with some specific access operation, while a reference monitor (see Chapter 6)
grants or denies access. Figure 5.1 captures this view of access control.

ACL:principal
object

Resource

reference
monitor

Guard

do operation 

Request

principal

Source

Figure 5.1: The Fundamental Model of Access Control

Access control then consists of two steps, authentication and authorization. In the words
of Lampson et al. [145]:

If s is a statement authentication answers the question ‘Who said s?’ with a principal. Thus
principals make statements; this is what they are for. Likewise, if o is an object authorisation
answers the question ‘Who is trusted to access o?’ with a principal.

The security literature has two terms for the entity making an access request, subject
and principal, but does not distinguish between those two concepts in a consistent way.
The relationship between subjects and principals on one side, and the human users of a
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computer system on the other can further confuse the picture. To separate the meaning
of these two terms we take our cue from earlier work on operating system security:

Subjects operate on behalf of human users we call principals, and access is based on the
principal’s name bound to the subject in some unforgeable manner at authentication time.
Because access control structures identify principals, it is important that principal names be
globally unique, human-readable and memorable, easily and reliably associated with known
people [98].

This quote reflects traditional identity-based access control where security policies
ultimately refer to human users. This is still the most common type of access control
supported by commercial operating systems but, as discussed in Chapter 20, no longer
the only paradigm in access control. In our general framework we refer to principals
when discussing security policies and to subjects when discussing the operational systems
that should enforce a security policy. This terminology is consistent with the traditions
quoted above.

Definition. A principal is an entity that can be granted access to objects or can make statements
affecting access control decisions [99]. A subject is an active entity within an IT system.

For the purpose of access decisions, subjects have to be bound to principals. When a
subject requests access to a protected object the reference monitor checks whether the
principal bound to the subject has the right to access the object. We might thus say that
the subject ‘speaks for’ a principal. A typical example of a principal in an operating
system is a user identity. The principals permitted to access a given object could be stored
in an access control list (ACL) attached to the object (Figure 5.1). A typical example of
a subject is a process running under a user identity (the principal). However, principals
need not represent human users or attributes of human users. In Java one of the main
parameters for access control is the code source (Section 20.5) and the relation between
principals and subjects is defined as follows [104]:

The term principal represents a name associated with a subject. Since subjects may have
multiple names, a subject essentially consists of a collection of principals.

The objects of access control are files or resources, such as memory, printers, or nodes
in a computer network. There is not meant to be a clear distinction between subjects
and objects in the sense that every entity in the system has to be either a subject or an
object. Depending on circumstances, an entity can be a subject in one access request and
an object in another. The terms subject and object merely distinguish between the active
and passive party in an access request.

Principals and objects present two options for focusing control. You can either specify

• what a principal is allowed to do, or
• what may be done with an object.
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This is an instance of the first design principle from Section 3.4.1. Operating systems
provide an infrastructure for managing files and resources, i.e. objects. In such a setting,
you will encounter mostly access control mechanisms taking the second approach. On
the other hand, application-oriented IT systems, such as database management systems,
offer services directed at the end user. Such systems may well incorporate mechanisms
for controlling the actions of principals.

5.3 A C C E S S O P E R AT I O N S
Depending on how you look at a computer system, access operations vary from reading
and writing to physical memory to method calls in an object-oriented system. Comparable
systems may use different access operations and, even worse, attach different meanings to
operations of the same name. We will now examine some typical sets of access operations
taken from important early contributions in this area.

5.3.1 Access Modes

On the most elementary level, a subject may observe an object or alter an object. There
are thus two access modes:

• Observe – look at the contents of an object;
• Alter – change the contents of an object.

Although most access control policies could be expressed in terms of Observe and
Alter, such policy descriptions will often be too far removed from the application-level
operations, making it difficult to check whether the correct policy has been implemented.
Hence, you usually find a richer set of access operations.

5.3.2 Access Rights of the Bell–LaPadula Model

At the next level of complexity, you find the access rights of the Bell–LaPadula security
model discussed in Chapter 11, and the access attributes of the Multics operating system
[187], two of the milestones in the history of computer security.

The Bell–LaPadula model has four access rights: execute, read, append (sometimes also
referred to as blind write), and write. Figure 5.2 gives the relation between these access
rights and the two basic access modes Observe and Alter.

execute append read write

Observe
Alter

X X
X X

Figure 5.2: Access Rights in the Bell–LaPadula Model
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To understand the rationale for this definition, consider how a multi-user operating
system controls access to files. A user has to open a file before access is granted. Usually,
files can be opened for read access or for write access. In this way, the operating system
can avoid conflicts such as two users simultaneously writing to the same file. For reasons
of efficiency, write access usually includes read access. For example, a user editing a
file should not be asked to open it twice, once to read and once to write. Hence, it is
meaningful to define the write right so that it includes Observe and Alter mode.

Few systems actually implement the append operation. Allowing users to alter an object
without observing its content is in general not a useful operation. Audit logs are one
instance where the append right is useful. A process writing to the log file has no need to
read the file, and probably should not read it at all.

With respect to the execute right, which includes neither Observe nor Alter mode, you may
ask how a computer could execute a program without reading the program’s instructions.
You would of course be right and the Multics execute attribute indeed requires execute
and read rights. However, there exist operations where the contents of an object are used
in an execution without being read. Consider a cryptographic engine holding a master
key in a special tamper-resistant register (Figure 5.3). There is physically no way the
master key can be read out but access control rules may govern who is allowed to use
this key for encryption. We can invoke this key without reading it and the execute right
is just what is needed to address such a situation.

Lesson
Beware of using your own intuition when interpreting access operations
someone else has defined!

The Multics operating system distinguishes between access attributes for files (known as
data segments) and access attributes for directories. It is common practice to interpret a
given set of access rights differently depending on the type of object. The terms ‘read’,
‘write’ and ‘execute’ are used again to name access attributes, but not in exactly the same

master key

crypto algorithm

control unituser identity

cleartext cipher text

Figure 5.3: A Cryptographic Engine
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files: directories:
read r status r
execute e ,r status and modify w
read and write w append a
write a search e

Figure 5.4: Access Attributes in Multics

meaning as in the Bell–LaPadula model. To maintain some clarity in our presentation,
we will denote the Bell–LaPadula access rights by e ,r ,a ,w. Figure 5.4 maps the Multics
access attributes to Bell–LaPadula access rights.

Access rights in current operating systems are covered in Chapter 7 on Unix and
Chapter 8 on Windows.

5.3.3 Administrative Access Rights
In the Unix operating system access control policies are expressed in terms of three
operations:

• read – reading from a file;
• write – writing to a file;
• execute – executing a (program) file.

As with Multics, Unix write access does not imply read access. When applied to a
directory, the access operations take the following meaning:

• read – list directory contents;
• write – create or rename a file in the directory;
• execute – search the directory.

Thus, Unix controls who can create and delete files by controlling write access to the
file’s directory. The access rights specified for a file are changed by modifying the file’s
entry in its directory. Other operating systems have a special operation for deleting files.

Similarly, Unix defines the right to modify access rights to files and directories via
access rights to the parent directory. Other operating systems have special operations for
modifying access rights. Operations for manipulating a subject’s access rights tend to be
called grant and revoke when the subject’s rights are modified by some other party, and
assert and deny when the subject changes its own access rights. Operations of this nature
are of interest in delegation policies, where one subject invokes another subject and the
rights of the invoked subject have to be established.

Windows, for example, has specific access rights for modifying security settings. The
standard permissions include:
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• delete;
• write DACL (modify access control list);
• write owner (modify owner of a resource).

5.4 A C C E S S C O N T R O L S T R U C T U R E S

Next, we have to state which access operations are permitted. We have to decide
on the structures to use for capturing security policies, whilst facing two competing
requirements:

• The access control structure should help to express your desired access control policy.
• You should be able to check that your intended policy has been captured correctly.

In the following, let S be a set of subjects, O a set of objects, and A a set of access
operations. There is no need yet to be more specific about any of these sets.

5.4.1 Access Control Matrix

At a basic level, access rights can be defined individually for each combination of subject
and object simply in the form of an access control matrix (table)

M = (Mso)s∈S, o∈O with Mso ⊆ A.

The entry Mso specifies the set of access operations subject s may perform on object o. This
approach goes back to the early days of computer security [144]. Access control matrices
are also known as access permission matrices. The Bell–LaPadula model employs an
access control matrix to model the discretionary access control policies of the Orange
Book (Section 11.2). Figure 5.5 gives a simple example of an access control matrix for
two users and three files.

• bill.doc may be read and written to by Bill, while Alice has no access at all.
• edit.exe can be executed both by Alice and Bill but otherwise they have no access.
• fun.com can be executed and read by both users, while only Bill can write to the file.

The access control matrix is an abstract concept and not very suitable for direct
implementation if the number of subjects and objects is large or if the sets of subjects and
objects change frequently. In such scenarios, intermediate levels of control are preferable.

bill.doc edit.exe fun.com

Alice
Bill

– {execute} {execute, read}
{read, write} {execute} {execute, read, write}

Figure 5.5: An Access Control Matrix
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5.4.2 Capabilities

There are two fundamental options for implementing an access control matrix. Access
rights can be kept with the subjects or with the objects. In the first case, every subject is
given a capability, an unforgeable token that specifies this subject’s access rights. This
capability corresponds to the subject’s row in the access control matrix. The access rights
of our previous example given as capabilities are as follows.

Alice’s capability: edit.exe: execute; fun.com: execute, read;
Bill’s capability: bill.doc: read, write; edit.exe: execute; fun.com: execute, read, write;

Typically, capabilities are associated with discretionary access control (Section 5.5).
When a subject creates a new object, it can give other subjects access to this object by
granting them the appropriate capabilities. Also, when a subject (process) calls another
subject, it can pass on its capability, or parts thereof, to the invoked subject.

Capabilities are by no means a new concept, but hitherto they have not become a widely
used security mechanism. This is mainly due to the complexity of security management
and to the traditional orientation of operating systems towards managing objects:

• It is difficult to get an overview of who has permission to access a given object.

• It is difficult to revoke a capability – either the operating system has to be given the task
or users have to keep track of all the capabilities they have passed on. This problem
is particularly awkward when the rights in the capability include the transfer of the
capability to third parties.

The advent of distributed systems has rekindled interest in capability-based access control
where security policies have to deal with users roaming physically or virtually between
nodes in a computer network.

When you decide to employ capabilities, you also have to give some consideration to
their protection. Where do you store the capabilities? If capabilities are only used within
a single computer system, then it is feasible to rely only on integrity protection by the
operating system (see Chapter 6). When capabilities travel over a network, you also need
cryptographic protection (see Chapter 14).

5.4.3 Access Control Lists

An access control list stores the access rights to an object as a list with the object itself.
An ACL therefore corresponds to a column of the access control matrix and states who
may access a given object. The entries in an ACL are called access control entries (ACEs).
ACLs are a typical security feature of commercial operating systems. The access rights
of our previous example, given in the form of ACLs, are as follows.
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ACL for bill.doc: Bill: read, write;
ACL for edit.exe: Alice: execute; Bill: execute;
ACL for fun.com: Alice: execute, read; Bill: execute, read, write.

Management of access rights based only on individual subjects can be rather cumbersome.
It is therefore common practice to place users in groups and to derive access rights also
from a user’s group. The Unix access control model is based on simple ACLs each
having three entries that assign access rights to the principals user, group, and others
(Section 7.5).

ACLs are a fitting concept for operating systems that are geared towards managing
access to objects. If, however, you want an overview of the permissions given to an
individual user, e.g. to revoke that user’s permissions, you face a laborious search
through all ACLs.

No matter how you implement the access control matrix, managing a security policy
expressed by such a matrix is a complex task in large systems. In particular, it is tedious
and error-prone to establish that all entries in such a matrix are as desired. Moreover,
access control based only on subjects and objects supports a rather limited range of
security policies. Further information, which may be appropriately included in an access
control decision, may refer to the program the subject invokes to access the object. This
is not a novel idea at all, as you can see from the following comment on access control
in the Titan operating system, developed in Cambridge in the early 1960s [179]:

In particular, it was possible to use the identity of a program as a parameter for access-control
decisions as well as, or instead of, the identity of the user, a feature which Cambridge people
have ever since regarded as strange to omit.

Lesson
Don’t think that new technologies necessarily create new security problems.
More often than not, the ‘new’ problems are reincarnations of old problems
and the principles for their solution are already known.

5.5 O W N E R S H I P
When discussing access control, we must state who is in charge of setting security policies.
There are two fundamental options:

• We can define an owner for each resource and let the owner decree who is allowed
to have access. Policies defined by the owner are called discretionary because access
control is at the discretion of the owner.
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• A system-wide policy decrees who is allowed to have access. Policies imposed by the
system are called mandatory.

Most operating systems support the concept of ownership of a resource and consider
ownership when making access control decisions. They may include operations that
redefine the ownership of a resource. Historically, discretionary access control and
mandatory access control referred specifically to policies used in the defence sector. The
definitions in the Orange Book [224] follow this tradition.

Access control based on user identities was called discretionary.1 These policies happened
to be at the discretion of the owner. We may highlight the focus on user identities by
adopting the term identity-based access control (IBAC) instead. Referring to individual
users in a policy works best within closed organizations. In general, IBAC incurs an
identity management overhead and does not scale well.

Access control based on policies that refer to security labels for classified documents,
e.g. confidential, top secret, was called mandatory access control. There were strict
rules everyone had to follow. There are few applications for mandatory access control
outside the defence sector. Discretionary and mandatory access control have survived in
computer security textbooks, but not very much in the wild.

5.6 I N T E R M E D I A T E C O N T R O L S
In computer science, problems of complexity are solved by indirection (David Wheeler).
This principle can also be applied to access control. We introduce intermediate layers
between users and objects to represent policies in a more manageable fashion.

5.6.1 Groups and Negative Permissions
The following discussions will be built around a simple example. A teacher wants to
give students access to course material. Instead of putting all students individually into
an ACL for each piece of course material, the teacher could put all students into a group
and put this group into the respective ACLs.

Groups are thus a means of simplifying the definition of access control policies. Users
with similar access rights are collected in groups and groups are given permission to
access objects. Some security policies demand that a user can be the member of one
group only, others allow membership in more than one group.

Figure 5.6 captures a situation where all access permissions can be mediated through
group membership. Often, security policies have exceptions from general rules where

1In fact, discretionary access control was characterized as access control for policies captured in an access
control matrix.
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g2g1
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groups

objects

Figure 5.6: Groups Serve as an Intermediate Access Control Layer

some user should get a permission for an object directly, or where a user should be
denied a permission that normally follows from membership in some group. A negative
permission is an entry in an access control structure that specifies the access operations
a user is not allowed to perform. In Figure 5.7, user u1 is denied access to object o1 and
user u3 is directly granted access to object o5.

u3u2u1

g1

o5o4o3o2o1

Figure 5.7: Access Control with Negative Permissions

The negative permission given to user u1 contradicting the positive permission given to
group g1 is an example of a policy conflict. When specifying a policy, you have to know
how conflicts will be resolved by the reference monitor. If policies are defined by ACLs,
a simple and widely used algorithm just processes the list until the first entry matching
the principal given in the access request is found, and makes the decision based on this
information only. Any conflicting entries later in the list are ignored.

5.6.2 Privileges

A policy could refer to the operations a user is allowed to execute. We let the term
privilege stand for the right to execute certain operations. This follows frequent usage of
this term, where privileges are associated with operating system functions; there can be
privileges for system administration, backup, mail access, or network access. Privileges
can be viewed as an intermediate layer between subjects and operations (Figure 5.8).
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Figure 5.8: Privileges as an Intermediate Layer between Subjects and Operations

5.6.3 Role-Based Access Control

At a technical level, a role can be defined as a collection of application-specific operations
(procedures). Subjects derive their access rights from the role they are performing. Role-
based access control (RBAC) introduces roles, procedures, and possibly data types as
intermediate layers between subjects and objects.

• Roles: a role is a collection of procedures. Roles are assigned to users. A user assigned
to a role can execute the procedures defined for that role. A user can have more than
one role and more than one user can have the same role [200].

• Procedures: procedures are ‘high-level’ access control methods with a more complex
semantic than read or write. Procedures can only be applied to objects of certain data
types. As an example, consider a funds transfer between bank accounts.

• Data types: each object is of a certain data type and can be accessed only through the
procedures defined for this data type. Controlling access to an object by restricting
the procedures that may access this object is a general programming practice. It is a
fundamental concept in the theory of abstract data types.

When a user logs in, the process started derives its permissions from the roles assigned
to that user. Frequently, a user has to take an explicit action to activate the roles. The
least-privilege principle suggests that only roles necessary for the current task should
be activated.

In the example of Section 5.6.1 the teacher could create a role Student for the students on
his course and assign the permission to read course material to this role. A role Teacher
could be given the permission to edit the course material.

Role hierarchies define relationships between roles. A senior role can do anything the
junior role can do. This helps policy administration. The definition of the senior role need
not list all the procedures the senior role has permission to execute; it suffices to state
the relationship to junior roles and add those procedures that may only be executed by a
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user in the senior role. In our example, a junior role Teaching Assistant could be given
permission to edit material for exercise classes. The role hierarchy must not be confused
with the hierarchy of positions (superior–subordinate) in an organization. These two
hierarchies need not always correspond.

Separation of duties is an important general security principle. There exist tasks where
certain steps must be executed by distinct users. For example, in a purchasing department
the person approving a payment must not be the person who issued the purchase
order. The administrator in charge of assigning access rights must not exercise those
rights himself. There exist numerous flavours of static and dynamic separation-of-duties
policies. In a static separation-of-duties policy, the roles that may be assigned to a user
are fixed and have to take into account separation-of-duties requirements. For example,
a user can either issue purchase orders or approve payments. In dynamic separation-of-
duties policies, the roles that may be assigned to a user depend on the current task. In
this case, the user who has issued a particular purchase order may not approve payment
for that order, but may approve payments for orders issued by someone else.

The National Institute of Standards and Technology (NIST) has published a widely
used classification of RBAC levels [198]. The levels are defined incrementally. Each level
includes the features of the previous level.

• Flat RBAC: users are assigned to roles, permissions are assigned to roles, users get
permissions via role membership; user-role reviews are supported. In our example,
assume there is a student Alice. The user-role review would tell whether she is just a
Student or has been appointed Teaching Assistant.

• Hierarchical RBAC: adds support for role hierarchies. In our example, the Teacher
role can be defined as senior to Teaching Assistant.

• Constrained RBAC: adds support for separation-of-duties policies. In our example
there could be a rule that students cannot be teaching assistant on a course they
are taking.

• Symmetric RBAC: adds support for permission-role reviews. Conducting such a review
can be difficult in large distributed systems. A permission-role review in our example
might tell which roles have write access to course material.

In many organizations roles are a suitable intermediate layer for setting security policies.
There exist ‘roles’ with well-defined tasks. Staff members are assigned to those roles so
it is natural to define what a user in a role must and should be able to do. However, this
does not imply that ‘role’ as a concept will be used precisely in the way it has been defined
above. There exist other approaches for using organizational roles when constructing
access control systems.

The term RBAC itself does not have a generally accepted meaning, and it is used in different
ways by different vendors and users [198].
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5.6.4 Protection Rings

Protection rings are a particularly simple example of an intermediate layer of hardware-
based access control for subjects and objects. Each subject (process) and each object is
assigned a number, depending on its ‘importance’. In a typical example, processes are
assigned one of the following numbers:

0 – operating system kernel;
1 – operating system;
2 – utilities;
3 – user processes.

Access control decisions are made by comparing the subject’s and object’s numbers.
(The outcome of the decision depends on the security policy you try to enforce using
protection rings.) These numbers correspond to concentric protection rings, with ring 0
in the centre giving the highest degree of protection (Figure 5.9). If a process is assigned
the number i, we say the process ‘runs in ring i’.

3
2

1
0

Figure 5.9: Protection Rings

Protection rings were introduced for integrity protection. They had already been used
in the Multics operating system, and special hardware was developed to support this
security mechanism [207]. Current processors provide similar features at the machine
language level. Unix uses two levels with root and operating system running in ring 0 and
user processes running in ring 3. An operating system with a microkernel could assign
software components to protection rings as follows:

• microkernel runs in ring 0;
• process manager runs in ring 1;
• all other programs run in ring 3.

Memory locations containing sensitive data, such as the operating system code, can only
be accessed by processes that run in ring 0 or 1. A typical policy based on protection
rings is given in Section 6.3.5. More examples can be found in [187, Chapter 4] and
[191, Section 7.2].
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5.7 P O L I C Y I N S TA N T I A T I O N

When developing software you will rarely be in a position to know your eventual users.
At this stage, security policies cannot refer to specific user identities, but can perhaps refer
to generic placeholder principals such as Teacher and Student in the running example,
or owner, group, others in Unix, or friends in a social network. A customer deploying
the software would know its authorized users and can thus instantiate the generic policy
with the appropriate user identities. The reference monitor has to resolve the placeholder
principals to concrete user identities when processing an actual request.

5.8 C O M PA R I N G S E C U R I T Y AT T R I B U T E S

When evaluating a security policy, the reference monitor compares the access rights
granted to the subject with the access rights demanded by the policy. The most basic
comparison is an equality check, e.g. between the user identity a process is running under
and the user identity in an ACE. Real-life policies may use security attributes with a
richer set of comparison operators.

5.8.1 Partial Orderings

Protection rings are a very simple example where we can decide for any two rings i and
j which is the innermost. In general, this need not be the case. Consider an extension
of the example of Section 5.6.1. The department creates a group Year_1 for first year
students to manage access for resources specifically dedicated to them. There is also a
group Year_2 for second year students, Year_3 for third year students, etc. The group of
first year students would be contained in the group of all students, but there is no such
relation between groups Year_1 and Year_2. The best we can aim for is a partial ordering.

Definition. A partial ordering ≤ (‘less or equal’) on a set (of security levels) L is a relation on
L × L which is:

• reflexive – for all a ∈ L, a ≤ a holds;
• transitive – for all a, b, c ∈ L, if a ≤ b and b ≤ c, then a ≤ c;
• antisymmetric – for all a, b ∈ L, if a ≤ b and b ≤ a, then a = b.

If two elements a, b ∈ L are not comparable, we write a �≤ b.

Typical examples of partial orderings are:

• (P(X), ⊆), the power set of a set X with the subset relation as partial ordering.

• (N, |), the natural numbers with the ‘divides’ relation as partial ordering.

• The strings over an alphabet � with the prefix relation as a partial ordering. A string
β is a prefix of a string α if there exists a string γ such that we can write α = βγ . In
this case, we write β ≤ α.
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Hasse diagrams are a graphical representation of partially ordered sets (posets). A Hasse
diagram is a directed graph in which the nodes are the elements of the set. The edges in
the diagram give a ‘skeleton’ of the partial ordering. That is, for a, b ∈ L we place an
edge from a to b if and only if

• a ≤ b and a �= b, and
• there exists no c ∈ L such that a ≤ c ≤ b and a �= c, c �= b.

With this definition, a ≤ b holds if and only if there is a path from a to b. Edges in
the graph are drawn to point upwards. The Hasse diagram for the partially ordered set
(P({a, b, c}), ⊆) is given in Figure 5.10.

{a, b, c}

{a, b}

{a}

0

{b} {c}

{a, c} {b, c}

Figure 5.10: The Poset (Lattice) (P({a, b, c}), ⊆ )

5.8.2 Abilities in the VSTa Microkernel
The capabilities of the VSTa microkernel may illustrate the use of partial orderings. As
they are not quite capabilities as defined in Section 5.4.2, let us use abilities instead. An
ability is a finite string of positive integers. To separate integers a dot is placed in front
of each integer. So, an ability is a string .i1.i2. · · · .in for some value n where i1, . . . , in are
integers. There is no limit on the length n of such a string. Indeed, n may be equal to 0.
Examples of abilities are .1.2.3, .4, or .10.0.0.5.

Abilities ordered through the prefix relation constitute a partial ordering. In our running
example, the department might assign ability .3.1.101 to the group of students on course
CS101. Course material for CS101 might be labelled with .3.1.101, general material for
first year students with .3.1, general second year material with .3.2, and .3 would be used
for general material for all students. These abilities are related by .3 ≤ .3.1 ≤ .3.1.101
but .3.1 �≤ .3.2.

For a policy that grants access if the object’s label is a prefix of the subject’s label,
CS101 students will get access to their own course material, year 1 material, and general
information for students.

For a moment, consider the dual of the above policy. Access is granted if the subject’s
ability is a prefix of the object’s ability. In this case, the ability ‘.’, a dot followed by no
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integers, defines a superuser who has access to all objects, as the empty string ε is the
prefix of any ability. Thus, by not assigning an ability to a subject you would grant that
subject access to all objects.

Lesson
Access control algorithms compare attributes of subjects and objects. You
always have to check what happens if an attribute is missing. Fail-safe
behaviour would suggest that access should be denied. Often this is not the
case and you could be in for an unpleasant surprise.

5.8.3 Lattice of Security Levels

Returning to the original policy in our example, if two groups of students should have
access to a document, the department could use the longest common prefix of the abilities
assigned to the two groups to label the document. For example, if Year_1 and Year_2
should get access to a document, ability .3 could be used as a label. On the other hand,
if we have two objects labelled (say) with .3.1 and .3.2 and want to assign a label to a
subject that has access to both, we could not do it in our current system.

In general, given the standard confidentiality policy where a subject may observe an
object only if the subject’s security level is higher than the object’s security level, we may
wish to have unique answers to the following two questions:

• Given two objects at different security levels, what is the minimal security level a
subject must have to be allowed to read both objects?

• Given two subjects at different security levels, what is the maximal security level an
object can have so that it still can be read by both subjects?

The mathematical structure that allows us to answer these two questions exists. It is
called a lattice. Formally, it can be defined as follows.

Definition. A lattice (L, ≤) consists of a set L and a partial ordering ≤. For every two elements
a, b ∈ L there exists a least upper bound u ∈ L and a greatest lower bound l ∈ L, i.e.

a ≤ u, b ≤ u, and ∀v ∈ L : (a ≤ v ∧ b ≤ v) ⇒ (u ≤ v),

l ≤ a, l ≤ b, and ∀k ∈ L : (k ≤ a ∧ k ≤ b) ⇒ (k ≤ l).

In security, we say ‘a is dominated by b’ or ‘b dominates a’ if a ≤ b. The security level
dominated by all other levels is called System Low. The security level dominating all
other levels is called System High. For example, the partially ordered set (P({a, b, c}), ⊆)
of Figure 5.10 is a lattice with the empty set ∅ as System Low and the set {a, b, c} as
System High.



82 5 ACCESS CONTROL

Whenever you meet a security system where security attributes are compared in some way
you are likely to find that it is convenient if these attributes form a lattice. It is not necessary
to understand lattices to grasp the essential facts of computer security. Nonetheless, it
helps to understand lattices when reading the research literature on this subject.

5.8.4 Multi-level Security
Much security research in the 1970s and 1980s was driven by the demands of protecting
classified information. Research built on the existing policies regulating physical access
to classified documents. Documents were assigned security levels. A user’s clearance
dictated which documents the user could obtain. The mandatory access control policies
and multi-level security policies of the Orange Book make use of security levels and
adapt these policies to IT systems. In their most elementary version, these policies refer
to a linearly ordered hierarchy of four security levels: unclassified, confidential, secret,
and top secret (Figure 5.11).

top secret

secret

confidential

unclassified

Figure 5.11: Security Levels in Linear Order

With a linear ordering of security levels you can only express a limited set of security
policies. You could not, for example, restrict access to documents relating to a secret
project X just to the people working on X. Anyone at level secret would have access. To
be able to state such need-to-know policies controlling access to the resources of specific
projects, the following lattice of security levels was introduced.

• Take H, a set of classifications with a hierarchical (linear) ordering ≤H.

• Take a set C of categories, e.g. project names, company divisions, academic depart-
ments, etc. A compartment is a set of categories.

• A security label (security level) is a pair (h, c), where h ∈ H is a security level and c ⊆ C
is a compartment.

• The partial ordering ≤ of security labels is defined by

(h1, c1) ≤ (h2, c2) if and only if h1 ≤H h2 and c1 ⊆ c2.

Figure 5.12 illustrates this construction. There are two hierarchical levels, public and
private, and two categories, personnel (PER) and engineering (ENG). In the ensuing
lattice, the following relations hold, for example:
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(public, {PER}) ≤ (private, {PER}),
(public, {PER}) ≤ (public, {PER, ENG}),
(public, {PER}) �≤ (private, {ENG}).

private,{PER,ENG}

private,{ENG}private,{PER}

private,0

public,{PER,ENG}

public,{ENG}public,{PER}

public,0

Figure 5.12: A Lattice of Security Labels

To see how this lattice of security labels can be used to implement mandatory need-to-
know (least privilege) policies, look at the lattice of Figure 5.12 in the light of the simple
confidentiality policy mentioned above. A subject with security label (private, ENG) will
not be able to read any object that has the category PER in the compartment of its label.
Thus, even an object labelled (public,{PER, ENG}) will be out of bounds.

The discussion of security lattices started with the simple hierarchical lattice of
Figure 5.11, typical of military multi-level security policies. We then added compartments
to express a greater variety of policies. Systems have been built to enforce such policies
with very high levels of assurance. Today, we find applications that use high-assurance
multi-level security systems but have no hierarchical component in their security levels.
For example, a firewall could use the lattice from Figure 5.13 to achieve a strict separation
between the inside and the outside of a network.

System High

inside outside

System Low

Figure 5.13: A Lattice for a Firewall
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5.9 F U R T H E R R E A D I N G
The fundamental access control structures and security lattices are covered in [8,
80, 191]. Influential early papers on access control (protection) are [144, 196].
Wilkes [234] has more to say about access control in operating systems developed
in the 1960s. More examples of security policies for protection rings are given in
[191, 181]. A good survey of role-based access control (RBAC) has been published
in [200]. Further information about lattice-based access control models together
with a description of how they are used to deal with confidentiality and integrity
can be found in [199].

5.10 E X E R C I S E S

Exercise 5.1 You are given two bits to capture access operations on a directory.
How would you use the four operations available to you? How would you
control the creation and deletion of files? How would you implement the concept
of hidden files with these access operations? (Hidden files are only visible to
authorized subjects.)

Exercise 5.2 Consider a system with the four access operations read, write,
grant, and revoke. You can use grant not only to give other subjects read and write
access, but also to grant them the right to grant access to the objects you own.
Which data structure and algorithm would you use to implement the grant and
revoke operation so that you can revoke all access to an object you own?

Exercise 5.3 In a social network, what access rights would you give to friends?
What access rights would you give to the friends of your friends? How would
your policy depend on the length of such a recommendation chain?

Exercise 5.4 Discuss the differences between groups and roles, if any.

Exercise 5.5 Explain why the partial ordering of abilities as defined in
Section 5.8.2 does not constitute a lattice. Try to convert the partial ordering
into a lattice by adding any further elements you need to the set of abilities.

Exercise 5.6 You are given a security policy stating that a subject has access to
an object if and only if the security level of the subject dominates the security
level of the object. What is the effect of using the lattice below with this policy?
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root

uid1 uid2 uid3

guest

Exercise 5.7 Let (L, ≤) be a lattice of security levels where L is a finite set. Show
that unique elements System Low and System High must exist in such a lattice.

Exercise 5.8 Construct the lattice of security labels for the security levels
public, confidential, and strictly confidential, and for the categories ADMIN,
LECTURERS, and STUDENTS. Which objects are visible to a subject with
security label (confidential,{STUDENTS}) in a need-to-know policy? How many
labels can be constructed from n security levels and m categories? By way of
illustration, consider the values n = 16 and m = 64.

Exercise 5.9 You are given a security policy that uses the lattice of compartments
as security labels. Access is granted only when the subject’s label is a subset of
the object’s label. With the categories ADMIN, LECTURERS, and STUDENTS,
which objects can be accessed by a subject with label {STUDENTS}? Why is
a subject with label {ADMIN, STUDENTS} more constrained than a subject
with label {STUDENTS}? Interpret the roles of the labels ∅ and {ADMIN,
LECTURERS, STUDENTS} in this policy.

Exercise 5.10 You are given a set of categories. Implement a lattice-based need-
to-withhold policy where you selectively withdraw access rights from subjects.





Chapter6
Reference Monitors

The previous chapter introduced elementary concepts that are useful when
writing access control policies. We now move on to the basics of enforcing
such policies. More refined policy descriptions and more refined access
control systems are the subject of later chapters. We will present the core
mechanisms for protecting the integrity of the operating system and for
controlling access to memory, focusing on access control at the bottom
levels of a layered system architecture. Along the way, we will point out a
few more general lessons for the design of secure systems.

OBJECT I VES

• Introduce fundamental concepts of access control, such as reference mon-
itor and trusted computing base.

• Discuss different options for the design of reference monitors.
• Introduce status and controlled invocation as two important security

primitives.
• Understand the motivation for enforcing security at a low system layer,

and get an overview of the security mechanisms available at the bottom
system layers.
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6.1 I N T R O D U C T I O N

There are three fundamental concepts in computer security that are sufficiently closely
related to create confusion but deserve to be kept apart. We take our definitions from
the Glossary of the Orange Book [224].

Reference Monitor: An access control concept that refers to an abstract machine that mediates
all accesses to objects by subjects.

Security Kernel: The hardware, firmware, and software elements of a trusted computing base
that implement the reference monitor concept. It must mediate all accesses, be protected
from modification, and be verifiable as correct.

Trusted Computing Base (TCB): The totality of protection mechanisms within a computer
system – including hardware, firmware, and software – the combination of which is respon-
sible for enforcing a security policy. A TCB consists of one or more components that together
enforce a unified security policy over a product or system. The ability of the TCB to correctly
enforce a security policy depends solely on the mechanisms within the TCB and on the correct
input by system administrative personnel of parameters (e.g. a user’s clearance) related to
the security policy.

So, the reference monitor is an abstract concept, the security kernel its implementation,
and the TCB contains the security kernel among other protection mechanisms. Core
requirements on the implementation of a reference monitor were formulated in the
Anderson report [9]:

• The reference validation mechanism must be tamper-proof.1

• The reference validation mechanism must always be invoked.2

• The reference validation mechanism must be small enough to be subject to analysis
and tests to be sure that it is correct.

The common view of reference monitors and security kernels is very much coloured
by the original research agenda laid out in [9]. There, the security kernel includes the
implementation of the reference validation mechanism, access control to the system itself,
and components for managing the security attributes of users and programs. A strong
case is made for implementing the security kernel in the bottom layers of the architecture
from Figure 3.3. Conversely, the term security kernel sometimes stands generally for the
security mechanisms at those bottom layers.

1Today, tamper-resistant has replaced tamper-proof in the security literature, so as not to create the impression
that a security component is unbreakable.
2This requirement is known as complete mediation.
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6.1.1 Placing the Reference Monitor

In principle, reference monitors can be placed anywhere in a layered architecture. Indeed,
examples of all possible design decisions can be found.

• In hardware: access control mechanisms in microprocessors are covered in Section 6.3.

• In the operating system kernel: a hypervisor is a virtual machine that exactly emulates
the host computer on which it is running. It can be used to separate users, or
applications for that matter, by providing each with a separate virtual machine.

• In the operating system: access control in Unix and Windows is examined in Chapters 7
and 8, respectively. The reference monitor of the Multics operating system is described
in Section 11.3.

• In the services layer: illustrated by access control in database management sys-
tems (Chapter 9), the Java Virtual Machine, the.NET Common Language Runtime
(Chapter 20), the CORBA middleware architecture, or in web browsers.

• In the application: applications with specific security requirements may include secu-
rity checks in the application code rather than invoking security services from a
lower systems layer. In Web 2.0 applications, reference monitors can appear within
web pages.

We can also ask where to place the reference monitor with respect to the program it
should control. The reference monitor can be provided by a lower systems layer, as
depicted in Figure 6.1a. This is the typical pattern of access control in an operating
system. Application programs request access to protect resources. The reference monitor
is part of the operating system kernel and mediates all access requests. Access control in
CORBA follows the same pattern [39].

Alternatively, the program could be run within an interpreter. The interpreter mediates
all access requests by the program. The byte code interpreter in the Java Virtual Machine
exemplifies this approach. The program is placed within the reference monitor, as shown
in Figure 6.1b.

program

RM

RM
programprogram

RM

application

kernel

(c) In-line RM(b) interpreter(a) RM in kernel

Figure 6.1: Placing the Reference Monitor (RM)
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In the third approach, the program is rewritten to include the access control checks. The
in-line reference monitors introduced in [90] are an example of this option. Now the
reference monitor is placed within the program, as in Figure 6.1c.

6.1.2 Execution Monitors
In a running system, the reference monitor receives requests from subjects. Subjects are
processes executing programs. We can differentiate between reference monitors on the
basis of their ability to inspect and modify those programs [205].

• An execution monitor [205] only looks at the history of execution steps but does not
try to predict the outcome of possible future executions. This variant is typically found
in operating systems, which only keep a finite (and small) amount of information
about the history of an execution, and where the reference monitor does not consider
the program when making access decisions.

• The reference monitor could consider all possible future executions of the program
when making its decision. Static type checking is an example of this approach.

• The reference monitor could rewrite the program (in-line checks into the program) to
ensure that granting the access request cannot lead to violations of the security policy.

6.2 O P E R AT I N G S Y S T E M I N T E G R I T Y
Assume you have an operating system that can enforce all your access control policies.
Unauthorized access to resources is impossible as long as the operating system works as
intended. Attackers may then direct their attention to the operating system itself and try
to disable security controls by modifying the operating system. You now definitely face
an integrity problem, no matter what your original concerns were. The operating system
is not only the arbiter of access requests, it is also itself an object of access control. The
new security policy is:

Users must not be able to modify the operating system.

The threat model in operating system security assumes that the attacker has access to
the operating system command line, but not to the physical hardware. When securing an
operating system, two competing requirements have to be addressed:

• Users should be able to use (invoke) the operating system.
• Users should not be able to misuse the operating system.

Two important concepts commonly used to achieve these goals are modes of operation
and controlled invocation (also called restricted privilege). These concepts can be used
in any layer of a computing system, be it application software, operating system, or
hardware. However, remember that these mechanisms can be disabled if the attacker
gets access to a lower layer.
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6.2.1 Modes of Operation
The first prerequisite for an operating system to be able to protect itself from users is
the ability to distinguish between computations ‘on behalf of’ the operating system and
computations ‘on behalf of’ a user.

Mode of operation – The mode of operation defines which actions, e.g. machine instructions,
function calls, connections to network ports, may be performed on a system.

In dual-mode operation a system can work in

• user mode (a.k.a. protected mode), where instructions that are not critical for security
may be performed, or in

• supervisor mode (a.k.a. kernel, monitor, root, system mode); privileged instructions
are instructions that can only be executed in supervisor mode.

A status flag in the processor’s control register can record the current mode at hardware
level. For example, the Intel 80x86 processor has two status bits, thereby supporting
four modes. The Unix operating system distinguishes between supervisor (root) and
user mode.

Why are such modes useful? For example, the operating system could grant write access
to memory locations only if the processor is in supervisor mode to stop users from
writing directly to memory and corrupting the logical file structure.

6.2.2 Controlled Invocation
When a user wants to execute an operation requiring supervisor mode, e.g. a write to
a memory location, the processor has to switch between modes – but how should this
switch be performed? Simply changing the status bit to supervisor mode would give all
privileges associated with this mode to the user without any control of what the user
actually does. Therefore, it is desirable that the system only performs a predefined set
of operations in supervisor mode and then returns to user mode before handing control
back to the user. We refer to this process as controlled invocation.

Controlled invocation – Invocation of a function that executes privileged instructions to
provide a limited, well-defined functionality and then returns to user mode.

6.3 H A R D WA R E S E C U R I T Y F E AT U R E S
Hardware is the lowest layer in an IT architecture. Hardware is also a place where
computer security can link in with physical security. Security mechanisms at the hardware
level are therefore a natural starting point for our investigations. This section looks at
the security features of microprocessors, using the Motorola 68000 and the Intel 80x86
as historic examples.
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6.3.1 Security Rationale
There are two good reasons for placing security in one of the lower system layers
(Figure 6.2). A security mechanism in any given layer can be compromised if an attacker
gets in at a layer below. To evaluate the security of a system, you therefore have to check
that your security mechanisms cannot be bypassed. The more complex your system is,
the more difficult this check becomes. At the core of your system, you can hope to
find reasonably simple structures that are amenable to thorough analysis. This argument
points to a first reason for placing security in the core.

It may be possible to evaluate security to a higher level of assurance.

applications

services

operating system

OS kernel

hardware

Figure 6.2: Protection in the Security Kernel

Microprocessor design is very much the science of establishing which set of operations is
most useful to the majority of users. The right choice and the efficient implementation of
generic operations determine overall performance. You can follow the same route when
implementing security. Decide on the generic security mechanisms and put them into the
core of your system. This is the second reason for placing security in the core.

Putting security mechanisms into the core of the system reduces the performance overheads
caused by security checks.

All the arguments we have put forward to bolster the case for putting security mechanisms
into the core of the system have pushed us to the machine end on the man–machine scale
(Figure 6.3). The consequences are predictable.

Access control decisions made by reference monitors are far removed from access control
decisions made by applications.

6.3.2 A Brief Overview of Computer Architecture
We assume that the reader is familiar with the fundamental concepts of computer
architecture. If necessary, this background can be acquired from any good textbook on
this topic, e.g. [116]. For our purposes, the simple schematic description of a computer in
Figure 6.4 suffices. We have a central processing unit (CPU), memory, a bus connecting
CPU and memory, and some input/output devices. In real life, all three entities can have
a much more refined structure.
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Figure 6.3: The Place of the Security Kernel on the Man–Machine Scale
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Figure 6.4: Schematic Picture of a Computer

The Central Processing Unit

The core CPU components are:

• Registers – which can be categorized as general purpose registers and dedicated regis-
ters. Important dedicated registers are
– the program counter, which points to the memory location that contains the next

instruction to be executed;
– the stack pointer, which points to the top of the system stack;
– the status register, which allows the CPU to keep essential state information.

• Arithmetic Logic Unit (ALU) – executes instructions given in a machine level language;
executing an instruction may also set bits in the status register.

The system stack is a specially designated part of the memory. The stack can be accessed
by pushing data on to its top or by popping data from its top. To switch between
different programs, the CPU performs a context switch and saves the state of the current
process – program counter, status register, etc. – on the stack before giving control to
the new process.

Input/Output

Input devices such as keyboards and output devices such as monitors facilitate user
interaction. For entering security-sensitive data such as username and password, a
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trusted path from the I/O device to the TCB is required. An example is the secure
attention sequence CTRL+ALT+DEL in Windows. In applications where users sign
documents, we would like to be sure that the document displayed is also the document
that is actually being signed.

Memory Structures

The following brief survey examines the security characteristics of different mem-
ory structures.

• RAM (random access memory): this is read/write memory; you cannot rely on such
memory to guarantee integrity or confidentiality.

• ROM (read-only memory): there is a built-in integrity guarantee so you would only
have to add your own confidentiality mechanisms; ROM may be a good location for
storing (parts of) the operating system.

• EPROM (erasable and programmable read-only memory): may be used for storing
parts of the operating system or cryptographic keys; technologically more sophisticated
attacks may pose a threat to security.

• WROM (write-once memory): this memory structure comes with a mechanism for
freezing the memory contents once and for all. In hardware, this can be achieved
by blowing a fuse that has been placed on the write line, but you may also come
across ‘logical fuses’. WROM may be a good location for storing cryptographic keys;
write-only disks are being used for recording audit trails.

There exists a further distinction between volatile memory and non-volatile (permanent)
memory. Volatile memory loses its content if power is switched off. Physically, this
process is neither instantaneous nor complete. If power is switched on immediately after
having been switched off, the old data may still be held in memory. Even if power has
been switched off for some time, it is possible that the old memory contents can be
reconstructed by special electronic techniques. To delete data completely, the memory
locations that held the data have to be overwritten repeatedly with suitable bit patterns
that depend on the storage medium [225]. To prevent sensitive data leaving imprints at
the electronic level, keep moving it round in memory.

Permanent memory keeps its content if power is switched off. If sensitive data, such as
encryption keys, are stored in permanent memory and if attackers have direct access
to memory bypassing the CPU, further measures such as cryptographic or physical
protection have to be implemented. For example, a light sensor placed in a tamper-
resistant module may detect an attempted manipulation and trigger the deletion of
the data kept in the module. Physical protection is a topic in its own right that falls
outside the scope of this book. We restrict our attention to the situation where users
get access to memory only through the CPU and investigate how the CPU can enforce
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confidentiality and integrity. For example, what can be done to prevent a computer virus
from overwriting a clean version of the operating system with an infected version?

Keep in mind that ‘memory’ in Figure 6.4 is another abstraction. Logically, memory may
consist of main memory, caches for quick access, buffers, etc. Even backup media could
be included in this list. Hence, a data object may exist simultaneously in more than one
location in this memory hierarchy. Besides a persistent copy in secondary memory, there
will be temporary copies. Usually, the location and lifetime of these temporary copies are
not under the user’s control. Security controls on a data object can be bypassed if one of
the temporary copies is held in an unprotected memory area.

6.3.3 Processes and Threads

A process is a program in execution. A process is an important unit of control for the
operating system, and of course also for security. Roughly, a process consists of

• executable code,
• data,
• the execution context, e.g. the contents of certain relevant CPU registers.

A process works in its own address space and can communicate with other processes only
through primitives provided by the operating system. This logical separation between
processes is a useful basis for security. On the other hand, a context switch between
processes is an expensive operation as the operating system has to save the current
execution context on the stack.

Threads are strands of execution within a process. All threads share the process address
space, thereby avoiding the overheads of a full context switch, but also avoiding control
by a potential security mechanism.

6.3.4 Controlled Invocation – Interrupts

Processors are equipped to deal with interruptions in execution, created by errors in the
program, user requests, hardware failure, etc. The mechanisms to do so are variously
called exceptions, interrupts, and traps. The different terms may refer to different types of
events but, as ever, there are competing classifications; see e.g. [116] for further reading.

We will use trap as the generic term and explain how traps can be used for security
purposes. A trap is a special input to the CPU which includes an address, called an
interrupt vector, in an interrupt vector table. The interrupt table gives the location of the
program which deals with the condition specified in the trap. This program is called the
interrupt handler. When a trap occurs, the system saves its current state on the stack and
then executes the interrupt handler (Figure 6.5). In this way, control is taken away from
the user program. The interrupt handler has to make sure that the system is restored to
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Figure 6.5: Processing of an Interrupt

a proper state, e.g. by clearing the supervisor status bit, before returning control to the
user program.

It is possible for a further interrupt to arrive while the processor deals with a current
interrupt. The processor may then have to interrupt the current interrupt handler.
Improper handling of such a situation can lead to security flaws. On early PCs, a user
could interrupt the execution of a program by pressing CTRL-C so that the processor
returns to the operating system prompt with the status bit of the current process. A user
could then enter supervisor mode by interrupting the execution of an operating system
call. It is therefore important that before executing a program, the interrupt table is set
up so that interrupts will be handled in an appropriate way.

From this discussion, it should be clear that the interrupt table is an interesting point of
attack and has to be protected adequately. Changing an entry in the interrupt table so that
it points to attack code, which is then executed before jumping to the proper interrupt
handler, is one of the strategies used by virus writers (Figure 6.6). Using tables as a layer
of indirection is a useful and frequently employed design technique. However, whenever
such indirections are used, you should look out for attacks of the type just described.

Lesson
Redirecting pointers is a very efficient attack method.

6.3.5 Protection on the Intel 80386/80486

The Intel 80x86 architecture will illustrate some fundamental protection techniques at
the processor level. There is a two-bit field in the status register defining four privilege
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Figure 6.6: Inserting Viral Code by Redirecting an Interrupt Vector

levels (protection rings; see Section 5.6.4). The privilege level can only be changed by a
single instruction (POPF), which has to be executed at level 0. Not all operating systems
make use of all four levels. For example, Unix only uses levels 0 and 3. The 80x86
implements the following security policy.

Procedures can only access objects in their own ring or in outer rings. Procedures can invoke
subroutines only within their own ring.

Information about system objects such as memory segments, access control tables, and
gates is stored in descriptors. Descriptors are stored in the descriptor table and accessed
via selectors. The privilege level of an object is stored in the DPL field of its descriptor.
A selector is a 16-bit field containing an index pointing to the object’s entry in the
descriptor table and also a requested privilege level (RPL) field (Figure 6.7). The use
of the RPL field will be explained in a moment. Only the operating system has access
to selectors.

The system objects containing information about subjects, i.e. about processes, also
have descriptors and selectors. When a subject requests access to an object, the relevant
selectors are loaded into dedicated segment registers. For example, the privilege level of
the current process, called the current privilege level (CPL), is the privilege level of the
selector stored in the code segment (CS) register.

Not surprisingly, we again face the problem of having to manage access to operations
which require higher privileges. Assume that an application program in ring 3 needs
a service from an operating system routine in ring 1. On the 80x86, this problem is
solved by using gates. A gate is a system object that points to a procedure (in some code
segment) where the gate has a privilege level different from that of the code to which it
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Figure 6.7: Selectors and Descriptors

points. Gates allow execute-only access to a procedure in an inner ring. Restrictions on
outward calls are still enforced.

For a procedure to use a gate, the gate has to be in the same ring as the procedure.
When invoking a subroutine through a gate, the current privilege level changes to the
level of the code to which the gate is pointing. When returning from the subroutine, the
privilege level is restored to that of the calling procedure. A subroutine call also saves
the information indicating the state of the calling procedure or the return address on a
stack. To determine the appropriate privilege level of the stack, remember that the calling
procedure cannot write to an inner ring. However, leaving the stack in the outer ring
is unsatisfactory for security reasons as it leaves the return address rather unprotected.
Therefore, part of the stack (how much is described in the gate’s descriptor) is copied to
a more privileged stack segment.

6.3.6 The Confused Deputy Problem

Allowing outer-ring procedures to invoke inner-ring procedures creates a potential
security loophole. The outer-ring procedure may ask the inner-ring procedure to copy an
object residing in the inner ring to the outer ring.3 This will not be prevented by any of
the mechanisms presented so far, nor does it actually violate the security policy we have
stated. We may therefore wish to extend the original security policy to be able to take
into account not only the current privilege level but also the level of the calling process.

In the 80x86, such policies can be supported using the RPL field in the selector and
the adjust requested privilege level (ARPL) instruction. The ARPL instruction changes
the RPL fields of all selectors to the CPL of the calling procedure. The system can then
compare the RPL (in the selector) and the DPL (in the descriptor) of an object and refuse
to complete the requested operation if they differ (Figure 6.8).

3Today, the term ‘confused deputy problem’ is often used to describe situations where an unprivileged entity
invokes an entity with higher privileges to perform actions that violate the security policy.
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Figure 6.8: Comparing RPL and DPL

Lesson
For better precision in access control it may be beneficial to consider some
aspect of the execution history when deciding on an access request.

6.4 P R OT E C T I N G M E M O R Y
Operating systems manage access to data and resources. They are usually not involved in
the interpretation of user data. Multitasking operating systems interleave the execution of
processes belonging to different users. Then, the operating system not only has to protect
its own integrity but also has to prevent users from accidentally or intentionally accessing
other users’ data. The integrity of the operating system itself is preserved by separating
user space from operating system space. Logical separation of users prevents accidental
and intentional interference between users. Separation can take place at two levels:

• file management, dealing with logical memory objects;
• memory management, dealing with physical memory objects.

As far as security is concerned, this distinction is important. To see why, consider the
two main ways of structuring memory, segmentation and paging. Segmentation divides
data into logical units. Each segment has a unique name. Items within a segment are
addressed by giving the segment name and the appropriate offset within the segment.
The operating system maintains a table of segment names with their true addresses in
memory. The Multics operating system used segmentation for logical access control.

+ Segmentation is a division into logical units, which is a good basis for enforcing a
security policy.

− Segments have variable length, which makes memory management more difficult.

Paging divides memory into pages of equal size. Addresses again consist of two parts,
the page number and the offset within a page.
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+ Paging allows efficient memory management. Segments in Multics are actually paged.

− Paging is not a good basis for access control as pages are not logical units. Thus, one
page may contain objects requiring different protection.

Even worse, paging may open a covert channel. Logical objects can be stored across page
boundaries. When such an object is accessed, the operating system will at some stage
require a new page and a page fault will occur. If page faults can be observed, as is the
case in most operating systems, then a user is provided with information in excess of the
proper result of the access request.

As an example, consider a password scheme. The user enters a password which is scanned
character by character and compared with a reference password stored in memory. Access
is denied the moment an incorrect match is found. If a password is stored across a page
boundary, then an attacker can deduce from observing a page fault that the piece of the
password on the first page had been guessed correctly. If the attacker can control where
the password is stored on the page, password guessing becomes easy, as sketched in
Figure 6.9. In the first step, the password is placed in memory such that the first character
is on a page separate from the rest of the password. The attacker now tries all values for
the first character until a page fault occurs, indicating that the guess was correct. The
password is then realigned in memory so that the first two password characters are on
a page separate from the rest. The attacker already knows the first character and now
tries all values for the second character until a page fault occurs. By continuing with this
ploy, the attacker can search for each password character individually.

Pa$
$w0RD

Step 3 of the attack

Pa
$$w0RD

Step 2 of the attack

P
a$$w0RD

page
boundary

Step 1 of the attack

Figure 6.9: Using Page Faults as Covert Channels to Guess a Password

6.4.1 Secure Addressing

When you want the operating system to protect its own integrity and to confine each
process to a separate address space, then one of your tasks is to control access to data
objects in memory. Such a data object is physically represented as a collection of bits
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stored in certain memory locations. Access to a logical object is ultimately translated into
access operations at machine language level. At this level, you can pursue three options
for controlling access to memory locations:

• the operating system modifies the addresses it receives from user processes;

• the operating system constructs the effective addresses from relative addresses it
receives from user processes;

• the operating system checks whether the addresses it receives from user processes are
within given bounds.

Address sandboxing is an example of the first approach. An address consists of a segment
identifier and an offset. When the operating system receives an address, it sets the correct
segment identifier. Figure 6.10 shows how this can be done with two register operations.
First, a bitwise AND of the address with mask_1 clears the segment identifier. Then a
bitwise OR with mask_2 sets the segment identifier to the intended value, SEG_ID.

bitwise AND

bitwise OR

offsetseg_idaddress

1 . . . . . . . 10 . . . 0mask_1

offset0 . . . 0

0 . . . . . . . 0SEG_IDmask_2

offsetSEG_IDeffective
address

Figure 6.10: Address Sandboxing

In the second approach, clever use of addressing modes keeps processes out of forbidden
memory areas. If you need more background on addressing modes, consult [116] or
other books on operating systems or computer architecture. Of the various addressing
modes, relative addressing is of particular interest to us.

Relative addressing: the address is specified by an offset relative to a given base address.

Relative addressing allows position-independent coding. Thus a program can be stored
anywhere in memory, giving greater flexibility to the memory management utilities. It
also facilitates the use of fence registers. The fence register contains the address of the end
of the memory area allocated to the operating system. Addresses in a user program are
interpreted as relative addresses (offset, displacement). The operating system then uses
relative addressing with respect to the fence register (base register addressing) to calculate
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offset

base

fence register

+

top of user space

Memory

Figure 6.11: Base Register Addressing

the effective addresses (see Figure 6.11). In this way, only locations outside the operating
system space can be accessed by user programs. Similar methods can be employed by the
operating system to separate the memory areas allocated to different users.

This approach can be refined by defining the memory space allocated to a process through
base registers and bounds registers. One can even go a step further and introduce base
and bounds registers for a user’s program space and data space, respectively. To make
proper use of such a facility, the processor must be able to detect whether a given
memory location contains data or program code. The Motorola 68000 processor did
support such a separation through function codes (Figure 6.12). Function codes signal
the processor status to the address decoder, which may use this information to select
between user memory and supervisor memory or between data and programs.

Lesson
The ability to distinguish between data and programs is a very useful security
feature. It provides a basis for protecting programs from modification.

FC2 FC1 FC0
0 (undefined, reserved)
0 user data
0 user program
0 (undefined, reserved)
1 (undefined, reserved)
1 supervisor data
1 supervisor program
1 interrupt acknowledge

0 0
0 1
1 0

11
00

0 1
1 0
1 1

Figure 6.12: Motorola 68000 Function Codes
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From a more abstract point of view, memory has been divided into different regions.
Access control can then refer to the location a data object or a program comes from.

Lesson
You now have an example of location-based access control in microcosm. In
distributed systems or computer networks, you often require location-based
access control in macrocosm.

Most instruction sets have no means of checking the type of operands. In such a
situation, type information can be supplied in the program by specifying the address
registers to be used when loading data of a given type. This solution requires proper
programming discipline.

In contrast, in a tagged architecture, each data item has a tag specifying its type.
Before execution, the CPU can detect type violations directly from the value stored
in memory. These tags could also be used to enforce security policies. Historically,
tagged architectures have been popular in theoretical considerations rather than in
actual implementations. The few examples of tagged architectures include the Burroughs
B6500-7500 system and the IBM System/38 [32]. (For the reader with an interest in the
history of computing, von Neumann in his First Draft of a Report on the EDVAC in 1945
describes a tagged architecture [228].) Figure 6.13 shows a tagged architecture which
indicates the type of memory objects, e.g. integer (INT), bit string (STR), or operand
(OP). Tags can also be used to indicate which access operation may be performed on a
memory location, e.g. read, write, or execute.

datatag

INT

OP

STR

Figure 6.13: A Tagged Architecture

6.5 F U R T H E R R E A D I N G
The fundamental access control paradigms are due to Lampson [144]. The original
case for reference monitors is made in the Anderson report [9]. The outcome
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of computer security research aimed at the first multi-user operating systems
is treated comprehensively in [80]. A further survey of protection techniques is
compiled in [146]. An excellent account of the techniques used in the design of
secure multi-user operating systems is [97], which is out of print but available
on the web. This book contains many useful pointers to technical reports in this
area. Address sandboxing and related techniques are described in [229].

The early history of the development of secure computer systems has been
collated in [158]. Opposing standpoints in the discussion of whether TCBs
(security kernels) are still an appropriate paradigm in the construction of secure
systems are taken in [38] (against) and [19] (in favour). Theoretical foundations
for the design of reference monitors are explored in [205].

6.6 E X E R C I S E S

Exercise 6.1 Microprocessors on smart cards used to have their entire card
operating system in ROM, but the field has moved on towards microprocessors
where part of the operating system can be downloaded into EEPROM. What
are the advantages and disadvantages of keeping the operating system in ROM?
What are the security implications of moving parts of the operating system
into EEPROM?

Exercise 6.2 Can you have security without security kernels? Discuss the advan-
tages and disadvantages of having a security kernel as the TCB.

Exercise 6.3 Look for examples that show how the following three principles
are applied in building secure systems: separation of duties, abstract datatypes,
and atomic operations. (An atomic operation has to be executed in its entirety to
preserve security. If it is interrupted, the system may end up in an insecure state.)

Exercise 6.4 So-called parasitic viruses infect executable programs. How can
the ability to distinguish between programs and data help to construct a defence
against such viruses?

Exercise 6.5 Some buffer overrun attacks put the code they want to be executed
on the call stack. How can the ability to distinguish between programs and data
help to construct a defence against this particular type of buffer overrun attack?

Exercise 6.6 Anti-virus software scans files for attack signatures. How could a
virus intercept the read requests to memory and hide its existence?
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Exercise 6.7 Consider a system that writes event numbers to its audit log and
uses a table to translate these numbers into messages. What is the potential
advantage of using this level of indirection in log file entries? What are the
potential dangers?

Exercise 6.8 As a case study, examine how type enforcement is implemented in
SELinux.





Chapter7
Unix Security

So far, we have looked at individual security mechanisms in isolation. In an
actual implementation, they rely on each other. For example, access control
and authentication have to work together – each would not be effective
without the other. Hence, we now turn to the security mechanisms provided
by an operating system. Unix is a first example that gives us the chance to
inspect the mechanics of security at a fair level of detail. Security mechanisms
in Linux are sufficiently similar to their counterparts in Unix for this chapter
to serve also as an introduction to Linux security.

OBJECT I VES

• Understand the security features provided by a typical operating system.
• Introduce the basics of Unix security.
• See how general security principles are implemented in an actual system.
• Appreciate the task of managing security in a continuously changing

environment.
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7.1 I N T R O D U C T I O N
Operating systems combine building blocks such as identification and authentication,
access control, and auditing to provide a coherent set of security controls. Once support
for flexible and ‘feature-rich’ security policies is desired, security mechanisms become
increasingly complex. In these circumstances, the TCB will be too large to fit into a small
security kernel. In our layered model, we now look at the security controls provided at
the operating system level. The following questions may serve as a guide when assessing
the security of an operating system.

• Which security features have been implemented?
• How can these security features be managed?
• What assurances are there that the security features will be effective?

There is a general pattern to the way security controls are organized in most operating
systems. Information about users (principals) is stored in user accounts. Privileges granted
to a user can be stored in this account. Identification and authentication verify a user’s
identity, allowing the system to associate the user’s privileges with any process (subject)
started by the user. Permissions on resources (objects) can be set by the system manager
or the owner of a resource. When deciding whether to grant or deny an access request, the
operating system may refer to the user’s identity, the user’s privileges, and the permissions
set for the object.

Security not only deals with the prevention of unauthorized actions but also with
their detection. We have to face up to the fact that attackers may find their way
round protection mechanisms. Provisions have to be made to keep track of the actions
users have performed to be able to investigate security breaches or to trace attempted
attacks. Therefore, operating systems keep (and protect) an audit log (audit trail) of
security-relevant events.

Finally, the best security features of an operating system are worthless if they are not used
properly. A system has to be started in a secure state, thus installation and configuration
of the operating system are important issues. Inadequate default settings can be a
major security weakness. Operating systems are highly complex and continually evolving
software systems. Hence, there is always the chance that vulnerabilities are detected and
removed or accidentally introduced in a new release. Alert systems managers have to
stay in touch with current developments.

We have outlined a framework that structures operating system security along the
following lines:

• principals, subjects, and objects;
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• access control;
• audit, configuration and management.

This chapter examines the security features of the Unix operating system. Because of
its design history, Unix did not have a great reputation for reliability or security – see
[169] – but it does offer a set of security features that can be effective if used properly,
and attitudes towards Unix security have changed considerably. Different releases of
Unix and Linux may differ in some technicalities and in the way some security controls
are enforced. Commands and filenames used in this chapter are thus indicative of typical
use but may be different on your particular system. The POSIX 1003 series of standards
defines common interfaces in an attempt to standardize Unix. POSIX 1003.6 deals with
security mechanisms.

This chapter is by no means intended as a complete introduction to Unix security or an
instruction manual on how to set up your Unix system securely. Rather, we will limit
ourselves to presenting the basics of Unix security and to highlighting security features
that illustrate points of general interest.

7.1.1 Unix Security Architecture

While most secure operating systems have a security architecture explaining how security
is enforced and where security-relevant data are kept, Unix has a history of diverging
and converging versions. This is a fair reflection of the fact that security features
were added into Unix whenever the necessity arose, rather than being an original
design objective.

Unix was originally designed for small multi-user computers in a networked environment
and later scaled up to commercial servers, and scaled down to PCs. Like the Internet, Unix
was developed for friendly environments such as research laboratories or universities,
and security mechanisms were weak. As Unix developed, new security controls were
added to the system and existing controls were strengthened. When deciding on how
to implement a new feature, designers were guided very much by the desire to interfere
as little as possible with the existing structures of Unix. The Unix design philosophy
assumes that security is managed by a skilled administrator, not by the average computer
user. Hence, support for security management often comes in the form of scripts and
command line tools.

7.2 P R I N C I PA L S
The principals are so-called user identities (UIDs) and group identities (GIDs). UIDs and
GIDs were originally 16-bit numbers. Modern systems support 32-bit identifiers. Some
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−2 nobody
0 root
1 daemon
2 uucp
3 bin
4 games
9 audit

567 tuomaura

Table 7.1: Examples of User IDs

UID values have special meanings, which may differ between systems, but the superuser
(root) UID is always 0. UIDs were conceived as principals for local policies. There is
no distinction between UIDs defined on different systems. Moving principals and rules
between policy domains is not possible. Table 7.1 gives examples of UIDs.

7.2.1 User Accounts

Information about principals is stored in user accounts and home directories. User
accounts are stored in the /etc/passwd file. Entries in this file have the format

username:password:UID:GID:ID string:home directory:login shell

The username is a string up to eight characters long. It identifies the user when logging
in but is not used for access control. Unix does not distinguish between users having
the same UID. The password is stored encrypted (Section 7.3.1). The field ID string
contains the user’s full name. The last two fields specify the user’s home directory and
the Unix shell available to the user after successful login. Further user-specific settings
are defined in the .profile file in the user’s home directory. The actions taken by
the system when a user logs in are specified in the file /etc/profile. Displaying
the password file with cat /etc/passwd or less /etc/passwd will produce
entries like

dieter:RT.QsZEEsxT92:10026:53:Dieter Gollmann:/home/staff/
dieter:/usr/local/bin/bash

7.2.2 Superuser (Root)

In every Unix system there is a user with special privileges. This superuser has UID 0 and
usually the username root. The root account is used by the operating system for essential
tasks like login, recording the audit log, or access to I/O devices.

All security checks are turned off for the superuser, who can do almost everything. For
example, the superuser can become any other user. The superuser can change the system
clock. The superuser can find a way round some of the few restrictions imposed on
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him. For example, a superuser cannot write to a filesystem mounted as read-only but
can dismount the filesystem and remount it as writable. The superuser cannot decrypt
passwords because crypt is a one-way function.

7.2.3 Groups

Users belong to one or more groups. Collecting users in groups is a convenient basis for
access control decisions. For example, one could put all users allowed to access email
in a group called mail, or all operators in a group operator. Every user belongs to
a primary group. The GID of the primary group is stored in /etc/passwd. The file
/etc/group contains a list of all groups. Entries in this file have the format

group name:group password:GID:list of users

For example, the entry

infosecwww : ∗ : 209 : chez,af

tells us that group infosecwww has the password disabled, has GID 209, and two
members, chez and af. Table 7.2 lists GIDs with special meanings.

0 system/wheel
1 daemon
2 uucp
3 mem
4 bin
7 terminal

Table 7.2: Special Group IDs

In older versions of System V Unix, a user could only be in one group at a time. Modern
Unix and Linux versions follow Berkeley Unix by letting users reside in more than one
group. In addition to the primary group, several supplementary groups can be specified
in the user account.

7.3 S U B J E C T S
The subjects are processes. Each process has a process ID (PID). New processes are
created using exec or fork. Each process is associated with a real UID/GID and an
effective UID/GID. The real UID is inherited from the parent process. Typically it is the
UID of the user who is logged in. The effective UID is inherited from the parent process
or from the file being executed (Section 7.5.1). POSIX compliant versions also keep a
saved UID/GID. The following example illustrates the use of real and effective UID/GID
and the Unix logon process.
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UID GID
Process real effective real effective

/bin/login root root system system

User diego logs on; the logon process verifies username and password
and changes UID and GID:

/bin/login diego diego staff staff

The logon process executes the user’s login shell:

/bin/bash diego diego staff staff

From the shell the user executes the command ls:

/bin/ls diego diego staff staff

The user executes command su to start a new shell as root:

/bin/bash diego root staff system

7.3.1 Login and Passwords
Users are identified by usernames and authenticated by passwords. When the system is
booted, the login process is started, running as root. When a user logs in, this process
verifies username and password. If the verification succeeds, UID/GID are changed to
that of the user, and the user’s login shell is executed. Root login can be restricted to
terminals nominated in /etc/ttys. The last time a user has logged in is recorded in
/usr/adm/lastlog and can be displayed, e.g. with the finger command.

On many Unix systems, passwords are limited to eight characters. There exist tools that
support good practice in choosing passwords by preventing the use of weak passwords.
Passwords are enciphered (hashed, to be precise) with the crypt(3) algorithm, which
repeats a slightly modified DES algorithm 25 times, using the all-zero block as start value
and the password as key. The encrypted passwords are stored in the /etc/passwd file.

When the password field for a user is empty, the user does not have to provide a password
on login. When the password field starts with an asterisk, the user cannot log in because
such values can never be the result of applying the hash function to a cleartext password.
This is a common method of disabling a user’s account.

Passwords are changed using the passwd(1) command. You are asked to supply your
old password first to guard against someone else changing your password when you are
logged in but leave your machine unattended (regarded as bad practice anyway). Since
characters are never displayed on the screen when a password is entered, you are asked
to enter a new password twice, to ensure that you really typed what you thought you
typed. After a change, you can confirm the effect of the change with a new login or with
the su(1) (set user) command.
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7.3.2 Shadow Password File
Security conscious versions of Unix offer further provisions for password security. The
file /etc/passwd is world-readable as it contains data from user accounts that are
needed by many programs. Thus, an attacker can copy the password file and then search
for passwords in an off-line dictionary attack. To remove this vulnerability, passwords
are stored in a shadow password file, e.g. /.secure/etc/passwd, that can only be
accessed by root. This file can also be used for password ageing and automatic account
locking. File entries have nine fields:

• username
• password
• days since password was last changed
• days left before user may change password
• days left before user is forced to change password
• days to issue password expiry warning
• days left after password expiry until account is disabled
• days the account has been disabled
• reserved.

Password salting is another method for slowing down dictionary attacks. The salt is a
random 12-bit value that is added to the password proper, and stored in the clear.

7.4 O B J E C T S
The objects of access control include files, directories, memory devices, and I/O devices.
For the purpose of access control, all are treated uniformly as resources. Resources are
organized in a tree-structured filesystem.

7.4.1 The Inode
Each file entry in a directory is a pointer to a data structure called an inode. Table 7.3
gives fields in the inode that are relevant for access control. Each directory contains a
pointer to itself, the file ‘.’, and a pointer to its parent directory, the file ‘..’. Every file
has an owner, usually the user who has created the file. Every file belongs to a group.
Depending on the version of Unix, a newly created file belongs either to its creator’s
group or to its directory’s group.

Inspecting a directory with the command ls -l produces listings like

-rw-r--r-- 1 diego staff 1617 Oct 28 11:01 adcryp.tex
drwx------ 2 diego staff 512 Oct 25 17:44 ads/

which contain the following information:

• The first character gives the type of the file: a ‘-’ indicates a file, ‘d’ a directory, ‘b’ a
block device file, and ‘c’ a character device file.
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mode type of file and access rights
uid user who owns the file
gid group which owns the file
atime access time
mtime modification time
itime inode alteration time
block count size of file

physical location

Table 7.3: Fields in the Inode Relevant for Access Control

• The next nine characters give the file permissions, to be discussed below.

• The following numerical field is the link counter, counting the number of links
(pointers) to the file.

• The next two fields are the name of the owner and the group of the file.

• Then follows the size of the file in bytes.

• The time and date is mtime, the time of the last modification. ls -lu displays atime,
the time of last access. ls -lc displays itime, the time of last modification of the inode.

• The last entry is the name of the file. The ‘/’ after ads indicates a directory. The
filename is stored in the directory, not in the inode.

The file permissions (permission bits) are grouped in three triples that define read, write,
and execute access for owner, group, and other (also called world) respectively. A ‘-’
indicates that a right is not granted. Thus rw-r--r-- gives read and write access to the
owner and read access to group and other, rwx------ gives read, write, and execute
access to the owner and no rights to group and other.

File permissions in Unix are also specified as octal numbers by splitting the nine
permissions into three groups of three. Each access right is represented by a bit, which,
if set, grants access. These numbers are shown in Table 7.4. A combination of rights
is the sum of the corresponding numbers. For example, the permission rw-r--r-- is
equivalent to 644. The permission 777 gives all access rights to owner, group, and others.

7.4.2 Default Permissions

Unix utilities, such as editors or compilers, typically use default permissions 666 when
creating a new file and permissions 777 when creating a new program. These permissions
can be further adjusted by the umask. The umask is a three-digit octal number specifying
the rights that should be withheld. Thus, umask 777 denies all access, while umask 000
adds no further restrictions. Sensible default settings are:

022 all permissions for the owner, read and execute permission for group and world;
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400 read by owner
200 write by owner
100 execute by owner
040 read by group
020 write by group
010 execute by group
004 read by world
002 write by world
001 execute by world

Table 7.4: Octal Representation of Access Permissions

037 all permissions for the owner, read permission for group, no permissions for world;

077 all permissions for the owner, no permissions for group and world.

The actual default permission is then derived by masking the default permissions of a
Unix utility with the umask. A logical AND of the bits in the default permission and of
the inverse of the bits in the umask is computed. For example, given default permission
666 and umask 077 we compute 666 AND NOT(077) which results in 600, giving the
owner of the file read and write access while all other access is denied. The umask can
be changed by the command

umask [−S] [mask]

where the flag -S indicates symbolic mode. When no mask is specified, the current
umask is displayed.

The umask in /etc/profile defines a system wide default setting. These default
settings can be overruled for individual users by putting umask into the user’s home
directory in files such as /etc/profile, .profile, .login, or .cshrc, depending
on the way a particular Unix installation has been set up. It is not possible to define
individual default permissions for directories and let files inherit their permissions from
their directory.

When a new file is created using the copy command cp, the permissions of the file are
derived from the umask. When a new file is created by renaming an existing file using
the command mv, the existing permissions are retained.

7.4.3 Permissions for Directories
Directories are created with the mkdir command. To put files and subdirectories into a
directory, a user needs the correct file permissions for the parent directory.

• Read permission allows a user to find which files are in the directory, e.g. by executing
ls or similar commands.
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• Write permission allows a user to add files to and remove files from the directory.

• Execute permission is required for making the directory the current directory and for
opening files inside the directory. You can open a file in the directory if you know that
it exists but you cannot use ls to see what is in the directory.

Thus, to get access to your own files, you need execute permission in the directory. To
prevent other users from reading your files, you could either set the access permission
accordingly or you could prevent access to the directory. To delete a file, you need write
and execute access to the directory. You do not need any permission on the file itself.
It can even belong to another user. To quote a systems manager on this feature: ‘A real
pain if you try and install a permanent file in someone’s directory.’

A remnant from earlier versions of Unix is the sticky bit. Its original purpose was to
keep the text segment of a program in virtual memory after its first use. The system thus
avoided transferring the program code of frequently accessed programs into the paging
area. Today, the sticky bit is used to restrict the right to delete a file. For example, job
queues are often world-writable so that anyone can add a file. However, in this case
everyone would be able to delete files as well. When a directory has the sticky bit set, an
entry can only be removed or renamed by a user if the user is the owner of the file, the
owner of the directory, and has write permission for the directory, or by the superuser.

When ls -l displays a directory with the sticky bit set, t appears instead of x as the
execute permission for world.

7.5 A C C E S S C O N T R O L
Access control is based on attributes of subjects (processes) and of objects (resources).
Standard Unix systems associate three sets of access rights with each resource, corre-
sponding to owner, group, and other. Superusers are not subject to this kind of access
control. Unix treats all resources in a uniform manner by making no distinction between
files and devices. The permission bits are checked in the following order.

• If your uid indicates that you are the owner of the file, the permission bits for owner
decide whether you can get access.

• If you are not the owner of the file but your gid indicates that your group owns the
file, the permission bits for group decide whether you can get access.

• If you are neither the owner of the file nor a member of the group that owns the file,
the permission bits for other decide whether you can get access.

It is therefore possible to set permission bits so that the owner of a file has less access
than other users. This may come as a surprise but is also a valuable general lesson. For
any access control mechanism you have to know precisely the order in which different
access criteria are checked.
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7.5.1 Set UserID and Set GroupID
We return to controlled invocation. Unix requires superuser privilege to execute certain
operating system functions, for example only root can listen at the trusted ports 0–1023,
but users should not be given superuser status. A way has to be found to meet both
demands. The solutions adopted in Unix are set userID (SUID) and set groupID (SGID)
programs. Such programs run with the effective user ID or group ID of their owner
or group, giving temporary or restricted access to files not normally accessible to other
users. When ls -l displays an SUID program, then the execute permission of the owner
is given as s instead of x:

-rws--x--x 3 root bin 16384 Nov 16 1996 passwd*

When ls -l displays an SGID program, the execute permission of the group is given
as s instead of x. In the octal representation of permissions a fourth octet placed in
front of the permissions for owner, group, and others is used to indicate SUID and SGID
programs, and directories with the sticky bit set (Table 7.5).

4000 set user ID on execution
2000 set group ID on execution
1000 set sticky bit

Table 7.5: Octal Representation of SUID and SGID Programs

If, as is often the case, root is the owner of an SUID program, a user who is executing
this program will get superuser status during execution. Important SUID programs are:

/bin/passwd change password
/bin/login login program
/bin/at batch job submission
/bin/su change UID program

We have to add a customary warning. As the user has the program owner’s privileges
during execution of an SUID program, this program should only do what the owner
intended. This is particularly true for SUID programs owned by root. An attacker who
can change the behaviour of an SUID program, e.g. by interrupting its execution, may
not only embark on actions requiring superuser status during the attack but also be able
to change the system so that superuser status can be obtained on further occasions. In
this respect, danger comes from SUID programs with user interaction. All user input,
including command line arguments and environment variables, must be processed with
extreme care. A particular pitfall are shell escapes which give a user access to shell
commands while running as superuser. Programs should have SUID status only if it is
really necessary. The systems manager should monitor the integrity of SUID programs
with particular care.
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7.5.2 Changing Permissions

The permission bits of a file are changed with the chmod command which can be run only
by the owner of the file or by the superuser. This command has the following formats:

chmod [-fR] absolute_mode file specifies the value for all
permission bits;

chmod [-fR] [who]+permission file adds permissions;

chmod [-fR] [who]-permission file removes permissions;

chmod [-fR] [who]=permission file resets permissions as specified.

In absolute mode, the file permissions are specified directly by an octal number. In
symbolic mode, the current file permissions are modified. The who parameter can take
the following values:

u . . . changes the owner permissions;
g . . . changes the group permissions;
o . . . changes the other permissions;
a . . . changes all permissions;

The permission parameter can take the values

r read permission;
w write permission;
x execute permission for files, search permission for directories;
X execute permission only if file is a directory or at least one execute bit is set;
s set-user-ID or set-group-ID permission;
t save text permission (set the sticky bit).

The option -f suppresses error messages, the option -R applies the specified change
recursively to all subdirectories of the current directory.

The SUID permission of a program can be set as follows:

chmod 4555 file set SUID flag;
chmod u+s file set SUID flag;
chmod 555 file clear SUID flag;
chmod u-s file clear SUID flag.

The GUID permission is set using g instead of the u option.

The command chown changes the owner of a file, chgrp changes the group of a file.
The chown command could be a potential source of unwelcome SUID programs. A user
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could create an SUID program and then change the owner to root. To prevent such an
attack, some versions of Unix only allow the superuser to run chown. Other versions
allow users to apply chown to their own files and have chown turn off the SUID and
SGID bit. Similar considerations apply to chgrp.

7.5.3 Limitations of Unix Access Control

Files have only one owner and one group. Permissions only control read, write, and
execute access. All other access rights, e.g. the right to shut down the system or the right
to create a new user, have to be mapped to the basic file access permissions. Operations
other than read, write, execute have to be left to the applications. In general, it is often
impractical to implement more complex security policies with the Unix access control
mechanisms. In this respect, Unix security lies more towards the machine end of the
man–machine scale (Figure 7.1).

machine
oriented

man
oriented

specific
complex

focus on users

generic
simple

focus on data

Figure 7.1: Unix Security on the Man–Machine Scale

7.6 I N S TA N C E S O F G E N E R A L S E C U R I T Y
P R I N C I P L E S
In this section, we will demonstrate how some of our general security principles find
their expression in the context of Unix.

7.6.1 Applying Controlled Invocation

A sensitive but freely accessible resource such as a web server can be protected by
controlled invocation patterns that combine the concepts of ownership, permission bits,
and SUID programs:

• Create a new UID ‘webserver’ that owns the resource and all the programs that need
access to the resource.

• Give access permission to the resource only to its owner.

• Define all the programs that access the resource as SUID to webserver programs.
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Lesson
Beware of overprotection. If you deny users direct access to a file they need
to perform their job, you have to provide indirect access through SUID
programs. A flawed SUID program may give users more opportunities for
access than wisely chosen permission bits. This is particularly true if the
owner of the resource and the SUID program is a privileged user like root.

In this case we see an example of a technique that is often used in the design of security
mechanisms. An abstract attribute is represented by a data structure in the system. This
data structure is then reused by another security mechanism for a different purpose. The
UID was introduced as the representation of real users in the system. Now, the UID is
used for a new kind of access control where it no longer corresponds to real users.

7.6.2 Deleting Files

Objects exist in logical and in physical memory. What happens if we remove (delete) a
file from the filesystem? Does it still exist in some form?

Unix has two ways of copying files. The command cp creates an identical but independent
copy owned by the user running cp. The commands link and ln create a new filename
with a pointer to the original file and increase the link counter of the original file. The
new file shares its contents with the original. If the original file is deleted with rm or
rmdir, it disappears from its parent directory but the contents of the file as well as its
copy still exist. Hence, users may think that they have deleted a file whereas it still exists
in another directory, and they still own it. To make sure of getting rid of a file, the
superuser has to run ncheck to list all the links to that file and then delete those links.
Also if a process has opened a file which is then deleted by its owner, the file will remain
in existence until that process closes the file.

Once a file has been deleted the memory space allocated to this file becomes available
again. However, until these memory locations have actually been used again they still
contain the file’s contents. To avoid such memory residues, you should wipe the file
by overwriting its contents with all-zeros or another pattern appropriate to the storage
medium before deleting it. Even then your file may not have been deleted completely as
advanced filesystems, e.g. a defragmenter, may move files around, leaving more copies of
the file on disk.

7.6.3 Protection of Devices

The next issue still relates to the distinction between logical and physical memory
structures. Unix treats devices like files. Thus, access to memory or access to a printer
can be controlled like access to a file through setting permission bits. Devices are created
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using the mknod command which should only be executable by root. A small sample of
the devices commonly found in the directory /dev is:

/dev/console console terminal
/dev/mem main memory map device (image of the physical memory)
/dev/kmem kernel memory map device (image of the virtual memory)
/dev/tty terminal

Attackers can bypass the controls set on files and directories if they can get access to the
memory devices holding these files. If the read or write permission bits for world are set
on a memory device, an attacker can browse through memory or modify data in memory
without being affected by the permissions defined for the files stored in this memory.
Almost all devices should therefore be world-unreadable and world-unwritable.

Commands like the process status command ps display information about memory
usage and therefore require access permissions for the memory devices. Defining ps as an
SUID to root program allows ps to acquire the necessary permissions but a compromise
of the ps command would leave an attacker with root privileges. A more elegant solution
has ps as an SGID program and lets the group mem own the memory devices.

The tty terminal devices are another interesting example. When a user logs in, a
terminal file is allocated to the user who becomes owner of the file for the session.
(When a terminal file is not used, it is owned by root.) It is convenient to make this file
world-readable and writable so that the user can receive messages from other parties.
However, this also introduces vulnerabilities. The other parties are now able to monitor
the entire traffic to and from the terminal, potentially including the user’s password.
They can send commands to the user’s terminal, e.g. reprogramming a function key,
and have these commands executed by the unwitting user. In some systems, intelligent
terminals can automatically execute commands. This gives an attacker the opportunity
to submit commands using the privileges of another user.

7.6.4 Changing the Root of the Filesystem

Access control can be implemented by constraining suspect processes in a sandbox.
Access to objects outside the sandbox is prevented. In Unix, the change root command
chroot restricts the part of the filesystem available to an unauthorized user. This
command can only be executed by root. The command

chroot <directory> <command>

changes the root directory from / to directory when command executes. Only files below
the new root are accessible thereafter. When employing this strategy, you have to make
sure that user programs find all the system files they need. These files are ‘expected’ to be
in directories such as /bin, /dev, /etc, /tmp, or /usr. New directories of the same
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names have to be created under the new root and populated with the files the user will
need by copying or linking to the respective files in the original directories.

7.6.5 Mounting Filesystems

When you have different security domains and introduce objects from another domain
into your system, you may have to redefine the access control attributes of these objects.

The Unix filesystem is built by linking together filesystems held on different physical
devices under a single root, denoted by ‘/’. This is done with the mount command. In a
networked environment, remote filesystems (NFS) can be mounted from other network
nodes. Similarly, users could be allowed to mount a filesystem from their own storage
medium (automount).

If you are a security expert, warning bells should start to ring. The mounted filesystems
could contain all sorts of unwelcome files, e.g. SUID to root programs sitting in an
attacker’s directory. Once the filesystem has been mounted, the attacker could obtain
superuser status by running such a program. Danger also comes from device files which
allow direct access to memory, where the permissions have been set so that an attacker
has access to these files. Therefore, the command

mount [−r] [−o options] device directory

comes with a -r flag specifying read-only mount and options such as:

nosuid turns off the SUID and SGID bits on the mounted filesystem;
noexec no binaries can be executed from the mounted filesystem;
nodev no block or character special devices can be accessed from the

filesystem.

Again, different versions of Unix implement different options for mount.

Lesson
UIDs and GIDs are local identifiers that need not be interpreted the same
way on different Unix systems (from different vendors). When mounting
remote filesystems, clients may misinterpret these identifiers. Hence, globally
unique identifiers ought to be used across networks.

7.6.6 Environment Variables

Environment variables are kept by the shell and are normally used to configure the
behaviour of utility programs. Table 7.6 lists some environment variables for the bash
shell. A process inherits the environment variables by default from its parent process and
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PATH searchpath for shell commands
TERM terminal type
DISPLAY name of display
LD_LIBRARY_PATH path to search for object and shared libraries
HOSTNAME name of Unix host
PRINTER default printer
HOME path to home directory
PS1 default prompt
IFS characters separating command line arguments

Table 7.6: Environment Variables for the Bash Shell

a program executing another program can set the environment variables for the program
called to arbitrary values.

This is a problem as the invoker of SUID/SGID programs is in control of the environment
variables these programs are given. An attacker could try to take control of execution by
setting the environment variables to dangerous values. Furthermore, many libraries and
programs are controlled by environment variables in obscure or undocumented ways. For
example, an attacker may set IFS to unusual values to circumvent protection mechanisms
that filter out dangerous inputs to SUID/SGID programs (more in Chapter 10). As a
countermeasure, an SUID/SGID program could erase the entire environment and then
reset a small set of necessary environment variables to safe values.

Lesson
Inheriting things you don’t want or don’t know about can become a security
problem.

7.6.7 Searchpath
Our final favourite is the execution of programs taken from a ‘wrong’ location. Unix
users interact with the operating system through a shell (a command line interpreter). As
a matter of convenience, a user can run a program simply by typing its name without
specifying the full pathname that gives the location of the program within the filesystem.
The shell will then look for the program following a searchpath specified by the PATH
environment variable given in the .profile file in the user’s home directory. (Use ls
-a to see all files in your home directory and more .profile to see your profile.)
When a directory is found which contains a program with the name specified, the search
stops and that program will be executed. A typical searchpath looks like this:

PATH = . : $HOME/bin : /usr/ucb : /bin : /usr/bin : /usr/local : /usr/new :

/usr/hosts
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In this example, directories in the searchpath are separated by ‘:’; the first entry ‘.’ is the
current directory. It is now possible to insert a Trojan by giving it the same name as an
existing program and putting it in a directory which is searched earlier than the directory
containing the original program.

To defend against such attacks, call programs by giving their full pathname, e.g. /bin/su
instead of su. Also, make sure that the current directory is not in the searchpath of
programs executed by root.

7.6.8 Wrappers

The access control and audit mechanisms presented so far are not very sophisticated.
They adhere to the traditions of operating system security and concentrate on controlling
access to resources. It is possible to implement controls at ‘intermediate levels’ by
judicious use of the basic access control mechanisms. Alternatively, we can modify Unix
itself to achieve this goal. The challenge here is to find a component of Unix that can be
changed in a way so that useful security controls are added while the rest of the operating
system remains unaffected.

TCP wrappers very elegantly demonstrate this design approach. Unix network services
such as telnet or ftp are built upon the following principle. The inetd daemon listens to
incoming network connections. When a connection is made, inetd starts the appropriate
server program, and then returns to listening for further connections. The inetd daemon
has a configuration file that maps services (port numbers) to programs. Entries in this
configuration file have the format

service type protocol waitflag userid executable command-line

For example, the entry for telnet could be

telnet stream tcp nowait root /usr/bin/in.telnetd in.telnet

When inetd receives a request for a service it handles, it consults the configuration
file and creates a new process that runs the executable specified. The name of this new
process is changed to the name given in the command-line field.

Usually, the name of the executable and the name given in command-line are the same.
This redundancy opens the door for a nice trick. Point the inetd daemon to a wrapper
program instead of the original executable and use the name of the process to remember
the name of the original executable, which you want to run after the wrapper has
performed its security controls. In our example, the configuration file entry for telnet
could be replaced by

telnet stream tcp nowait root /usr/bin/tcpd in.telnet

The program executed is now /usr/bin/tcpd. This is the TCP wrapper executable.
The process executing the wrapper will still be called in.telnet. Within this wrapper,
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you can perform all the access control or logging you want. In the original application,
wrappers were used for IP address filtering (Chapter 17). Because the wrapper knows
the directory it is in, i.e. /usr/bin, and its own name, i.e. in.telnet, it can then call
the original server program, i.e. /usr/bin/in.telnet. The user will see no difference
and receives exactly the same service as before.

Lesson
Adding another level of indirection is a powerful tool in computer science. In
security, it can be used to attack systems and to protect systems. By inserting
a TCP wrapper between the inetd daemon and the server program, you
are able to add security controls without changing either the source code of
the daemon or the source code of the server program.

The beauty of this example is its generality. The same principle can be used to protect a
whole set of Unix network services.

Lesson
TCP wrappers combine a fundamental design principle, controlled invo-
cation, and an elegant trick that makes it possible to add security checks
to services without having to change the programs that call these services.
This is the ideal situation when you have to retrofit security into an existing
system.

7.7 M A N A G E M E N T I S S U E S
We will quickly run through some issues that are relevant to managing the operational
security of Unix systems.

7.7.1 Managing the Superuser

The root account is used by the operating system to perform its own essential tasks but
also for certain other system administration tasks. Because superusers are so powerful,
they are also a major weakness of Unix. An attacker achieving superuser status can
effectively take over the entire system.

An attacker who is able to edit /etc/passwd can become superuser by changing its UID
to 0, so the files /etc/passwd and /etc/group have to be write protected. To reduce
the impact of a compromise, separate the duties of the systems manager, e.g. by having
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special users such as uucp or daemon to deal with networking. If one of these special
users is compromised, not all is lost. Systems managers should not use root as their
personal account. When necessary, change to root can be requested by typing /bin/su
(without specifying a username). The operating system will not refer to a version of su
that has been put in another directory. Record all su attempts in the audit log together
with the user (account) who issued the command.

7.7.2 Trusted Hosts

In a friendly environment, it may be sufficient to authenticate a user only once although a
number of different machines are being accessed. Trusted hosts in Unix support this mode
of operation. Users from a trusted host can log on without password authentication.
They only need to have the same username on both hosts. Trusted hosts of a machine are
specified in /etc/hosts.equiv. Trusted hosts of a user are specified in the .rhosts
file in the user’s home directory.

Usernames must be synchronized across hosts, a task that becomes tedious as the number
of hosts grows. (Vendor-specific configuration tools exist.) Once a host has been entered
into /etc/hosts.equiv, all users on this host have access. Exceptions are difficult
to configure.

7.7.3 Audit Logs and Intrusion Detection

Once a system has been installed and is operational, its security mechanisms should
prevent illegal user actions. However, the protection mechanisms may not be adequate
or flawed. Undesirable security settings may be mandatory to keep the system running.
Therefore, further mechanisms are desirable to detect security violations or other suspi-
cious events when they are happening or after they have happened. Some security-relevant
events are recorded automatically in Unix log files:

• /usr/adm/lastlog – records the last time a user has logged in; this information
can be displayed with the finger command.

• /var/adm/utmp – records accounting information used by the who command.

• /var/adm/wtmp – records every time a user logs in or logs out; this information
can be displayed with the last command. To prevent this file from taking over all
available memory, it may be pruned automatically at regular intervals.

• /var/adm/acct – records all executed commands; this information can be displayed
with the lastcomm command.

The precise name and location of these files may be different on your Unix system.
Accounting, turned on by the accton command, can also be used for auditing purposes.
Further commands for observing a Unix system are find, grep, ps, users.
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Most security-relevant events recorded in the log files above refer to a user. Hence, the
log entry should include the UID of the process causing the event. How is auditing then
affected by SUID programs? Such programs run with the UID of their owner, not with
the UID of the user running the program. Hence, log entries should also include the real
UID of the process.

Lesson
User identifiers are a security attribute that is used for two purposes: access
control and accountability. It is not always possible to employ the same
attribute for both purposes at the same time. As long as UIDs correspond to
‘real’ users, access controls based on permissions and auditing complement
each other. Once you create special user identities to protect access to
resources through SUID or SGID programs, you get an attribute that is of
limited use in auditing.

7.7.4 Installation and Configuration
A crucial point in the life of an operating system is its installation. Operating systems
have many security features and features affecting security, all of which may not be well
documented. Historically, default settings favoured smooth installation and operation,
giving too many privileges to the maintenance engineer or to the system manager. It
is appropriate to restrict the system manager in the same way as any other user, and
to separate the roles of system manager and security manager. Complex and badly
documented features may make it very difficult to set up the system so that it effectively
enforces the intended security policy. Unix by itself does little to ease the system
manager’s job.

• System managers have to be knowledgeable about all security-relevant files and about
dangerous default settings that have to be changed after installation.

• When a system is being set up, security-relevant parameters are defined with standard
Unix editing commands. Permissions on resources are set at a level closer to the
operating system than to an application. For example, users are installed by editing
files such as /etc/passwd. Protection of the passwd program is effected through
commands like

chmod 4750 /bin/passwd chgrp staff /bin/passwd

• When auditing a system, Unix search commands are used. For example, the following
instruction scans for accounts without a password:

awk -F: ’length($2) ‹ 1 print $1’ ‹ /etc/passwd
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SUID and SGID are found by

find -type f ( -perm 2000 -o -perm 4000 ) -exec ls -ld ;

(Experienced Unix users take pride in crafting such commands but the average user
would find it difficult to mange systems in such a fashion.)

• Access control policies are supported through simple discretionary access control.
Structured protection can be implemented based on group membership and by using
accounts with login disabled.

Thus, there is a place for add-on Unix security products, both for managing security
features and for checking the current security status. Such tools search for known
flaws such as weak passwords, bad permissions on files and directories, or malformed
configuration files. These tools can be used by systems managers to detect vulnerabilities
in the systems they manage, but they are not universally popular as they can be used by
an attacker for the very same purpose.

7.8 F U R T H E R R E A D I N G
This chapter has taken a snapshot of Unix security. For a fuller picture, there is
an abundance of books and websites on Linux and Unix security. If you need
specific information about a particular Unix version, consult the documentation
provided by the manufacturers and the on-line documentation (manual pages)
provided on your system.

Multi-level secure Unix systems are discussed in [197]. Security Enhanced (SE)
Linux adds mandatory access control based on domains (types), with roles as a
layer of indirection between users and domains [211]. Solaris has been supporting
RBAC since version 8.

7.9 E X E R C I S E S

Exercise 7.1 Check the on-line documentation for security-relevant commands.
Find your own entry in /etc/passwd and check the permission settings on your
files and directories.

Exercise 7.2 Create a subdirectory in your home directory and put a file
welcome.txt with a short message in this subdirectory. Set the permission bits
on the subdirectory so that the owner has execute access. Try to:
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• make the subdirectory the current directory with cd;
• list the subdirectory;
• display the contents of welcome.txt;
• create a copy of welcome.txt in the subdirectory.

Repeat the same experiments first with read permission and then with write
permission on the subdirectory.

Exercise 7.3 Which Unix command will list all world-writable files in your
directories?

Exercise 7.4 How would you protect a tty device from other users?

Exercise 7.5 Can you capture Unix access control through UID, GID, and
permissions within the framework of the VSTa abilities (Section 5.8.2)?

Exercise 7.6 Implement the Chinese Wall model and the Clark–Wilson model
(Section 12.3) with the Unix security mechanisms.

Exercise 7.7 How would you set up the backup procedure to reduce security
exposures?

Exercise 7.8 In your assessment, what are the strong and weak points of Unix
security?. Write a short report on this topic (1000 words).





Chapter8
Windows Security

Unix access control treats all objects uniformly as resources. In contrast,
access control in Windows can be tailored to individual object types. We will
therefore use Windows as an example to show how a finer-grained approach
to access control might be structured. The emphasis is on ‘might’ as we do
not use any particular version of Windows for reference. The fundamental
principles of the Windows security architecture have been stable during its
evolution. Features that have been added are the inheritance of ACEs in
Windows 2000 (Section 8.4.2), User Account Control in Windows Vista
(Section 8.5.2), and OwnerRights in Windows 7 (Section 8.3.2).

OBJECT I VES

• Introduce the basics of Windows security.
• Show how to use indirection to make access control more manageable.
• Show how inheritance of access rights in a directory can be managed.
• Move from identity-based access control to code-based access control.
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8.1 I N T R O D U C T I O N

We will not try to give a complete overview of Windows security or guidance on
how to make the best use of all its security features. Our main goal is to contrast
security in Unix and Windows and to highlight features of general interest that illustrate
fundamental issues of computer security. Windows provides considerable support for
managing security. We will focus on principles and mention other aspects such as
graphical interfaces for managing the security features only in passing. The efforts to
secure Windows are reflected in successful certifications according to Common Criteria
EAL4 (see Section 13.6). For example, a certificate1 for various versions of Windows
Server 2003 and Windows XP was issued in February 2008.

8.1.1 Architecture

The Windows system architecture is given in Figure 8.1. There is a separation between
user mode (typically protection ring 3) and kernel mode (protection ring 0), just as in
Unix. The Hardware Abstraction Layer (HAL) provides the interfaces to the computer
hardware. The core operating system services, comprising the Windows executive, run
in kernel mode. The executive includes the Security Reference Monitor (SRM), which is
in charge of access control.
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Figure 8.1: Windows 2000 System Architecture

1Validation Report CCEVS-VR-VID10184-2008.
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User programs make application program interface (API) calls to invoke operating system
services. Context switch and transition from ring 3 to ring 0 are handled by the Local
Procedure Call facility. Device drivers (often third party products) run in kernel mode
and are thus also security-relevant. Vulnerabilities in their code, such as buffer overruns,
can be exploited by an attacker to take over a Windows system. The components of the
security subsystem running in user mode are:

• Logon process (winlogon) – the process that authenticates a user when logging on.

• Local security authority (LSA) – involved at logon when it checks the user account
and creates an access token (more of this in Section 8.2.2); it is also responsible for
auditing functions.

• Security account manager (SAM): maintains the user account database that is used by
the LSA during user authentication for local logon.

Passwords are stored in the SAM in hashed or encrypted form. Encryption has to be used
if the system is to be able to automatically authenticate the user on remote machines.

8.1.2 The Registry

The registry is the central database for Windows configuration data. Entries in the registry
are called keys (not to be confused with cryptographic keys). The tool for inspecting and
modifying the registry is the Registry Editor (Regedit.exe or Regedt32.exe). At the top
level, the registry has five important predefined keys:

• HKEY_CLASSES_ROOT – contains file extension associations; e.g. you could specify
that .doc files are handled by Word.

• HKEY_CURRENT_USER – configuration information for the user currently
logged on.

• HKEY_LOCAL_MACHINE – configuration information about the local computer.

• HKEY_USERS – contains all actively loaded user profiles on the system.

• HKEY_CURRENT_CONFIG – information about the hardware profile used by the
local computer at system startup.

A registry hive is a group of keys, subkeys, and values in the registry. Security-relevant
hives are:

• HKEY_LOCAL_MACHINE\ SAM;
• HKEY_LOCAL_MACHINE\Security;
• HKEY_LOCAL_MACHINE\Software;
• HKEY_CURRENT_CONFIG;
• HKEY_USERS\DEFAULT.
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The system can be tailored to user requirements in the registry and default protections
are set. An attacker could modify the behaviour of the operating system by modifying
registry entries. For example, registry keys can point to locations where the operating
system automatically looks for certain executable files. In Windows this is called a path.
If the permissions set for such a key are weak, e.g. write permission for Everyone, then
an attacker can insert malicious software by modifying the path. Protecting the integrity
of registry data is therefore a necessity. Removing the Registry Editor from all machines
not used for system management is a first line of defence. Some security-relevant keys
should not even be changed via the Registry Editor but only through specific utilities.

A potential pitfall when setting policies are undefined keys. Consider, for example, the
key that specifies which users and groups can access the register remotely (Windows KB
314837):

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\

SecurePipeServers\Winreg.

If the key exists, it will be consulted when a user requests remote access to the registry. If
the key does not exist, no checks specific to remote access will be performed. Remote
access will be treated exactly like local access to the registry.

8.1.3 Domains
Stand-alone Windows machines are usually administered locally by their users. Within
organizations a more structured approach to system and security management is essential.
As a user on a computer network, you would not like to log on over and over again when
accessing a resource or a service on another machine. As an administrator in charge of
a computer network, you would not want to configure the security settings individually
on each and every machine. Windows uses domains to facilitate single sign-on and
centralized security administration.

A domain is a collection of machines sharing a common user accounts database and
security policy. Domains can form a hierarchy. Users then do not require accounts with
individual machines but with the domain.

In a domain, one server acts as the domain controller (DC). Other computers then join
the domain. Domain admins create and manage domain users and groups on the DC.
The domain controller authority has information about user passwords and can act as a
trusted third party when a user (or some other principal) authenticates itself to another
entity. This constitutes a design decision for a centralized authentication (password
management) service.

A domain can have more than one domain controller. Updates may be performed at any
DC and are propagated using the multimaster replication model. Here, decentralization
of services is used as a design principle to achieve better performance.



8.2 COMPONENTS OF ACCESS CONTROL 135

8.2 C O M P O N E N T S O F A C C E S S C O N T R O L
Access control in Windows is more complex than access control in a typical filesystem.
It applies to objects such as files, registry keys, and Active Directory objects. Means for
structuring policies are groups, roles, and inheritance. The next sections will identify
the principals, subjects, and objects in Windows, explain where the access rules can be
found, and how they are evaluated.

8.2.1 Principals
Principals are the active entities in a security policy. They are the entities that can be
granted or denied access. In Windows principals may be local users, aliases, domain
users, groups, or machines. Principals have a human-readable name (username) and a
machine readable identifier, the security identifier (SID).

Users created by the LSA are local users. Local principals are administered locally and
visible only to the local computer. Examples are the local system, i.e. the operating
system, and local users. The human-readable name of a local user or alias has the form

principal = MACHINE\principal,

e.g. ‘TUHH-688432\Administrators’. Local users and aliases can be displayed from the
command line2 with the commands

> net user
> net localgroup

Domain principals are administered by domain admins on a domain controller. They
are seen by all computers on the domain. Examples are domain users and the Domain
Admins alias. The human-readable name of a domain user, group, alias, or machine has
the form

principal@domain = DOMAIN\principal,

e.g. ‘diego@europe.microsoft.com = EUROPE\diego’. Domain users, groups and aliases
can be displayed with the commands

> net user /domain
> net group /domain
> net localgroup /domain

There exist also universal principals, e.g. the Everyone alias. Information about principals
is stored in accounts and user profiles. Local accounts are in the registry (under
HKEY_USERS). Domain accounts are at the domain controller but cached locally. The
user profile is stored in the filesystem under \Documents and Settings\. Some pre-defined
principals need not be stored anywhere.

2Click on Start, then on Run, enter cmd, and type the command.
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Groups and Aliases

A SID is an individual principal. A (global) group is a collection of SIDs managed by
the domain controller. A group has its own group SID, so groups can be nested. The
members of a group can make use of privileges and permissions given to the group.
Groups constitute an intermediate layer of control. Permissions for an object are given
to a group. Users are then given access to the object by becoming members of this group.

An alias (local group) is a collection of user and group SIDs managed by a domain
controller or locally by the LSA. Aliases cannot be nested. Aliases are placeholder
principals implementing logical roles. An application developer can refer to an alias
Student. At deployment time appropriate SIDs are assigned to this alias. Note, though,
that aliases do not fit the technical RBAC definition of ‘roles’ as defined in Section 5.6.3.

Security Identifiers

The general format of a SID is S-R-I-S-S- . . . -RID, starting with the letter S followed by

• R: revision number (currently 1),
• I: identifier authority (48-bit),
• S: one to fourteen subauthority fields (32-bit),
• RID: relative 32-bit identifier, unique in authority’s name space.

This data structure supports deeply nested organizational structures. In practice, such
sophisticated structures were not encountered and the standard format of a SID is S-R-I-
SA-SA-SA-RID. A newly created issuing authority gets a SID with identifier authority 5,
followed by the number 21 and a 96-bit random number put into three subauthority fields.

The design principle is that authorities have (statistically) unique identifiers, SIDs include
the identifier of the issuing authority (domain), so a SID cannot by mistake represent
access rights in the scope of some other domain.

SIDs for users and groups are unique and cannot be assigned again to another user or
group. The SID is constructed when a user account is created and is fixed for the lifetime
of the account. As a pseudo-random input (clock value) is used in its construction, you
will not get the same SID if you delete an account and then re-create it with exactly the
same parameters as before. Hence, a principal cannot by mistake get permissions of a
previous principal. Conversely, the new account will not retain the access permissions
given to the old account.

The following list gives a few typical principals together with their SID.

• Everyone (World): S-1-1-0.

• SYSTEM: S-1-5-18; the operating system on a machine runs locally as S-1-5-18; to other
machines in the domain the machine is known under a separate domain-specific SID.
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• Administrator: S-1-5-21-<local authority>-500; a user account created during oper-
ating system installation.

• Administrators: S-1-5-32-544; built-in group with administrator privileges; it contains
initially only the Administrator account.

• Domain admins: S-1-5-21-<domain authority>-512; global group that is a member
of the Administrators alias on all machines in the domain.

• Guest: S-1-5-21-<authority>-501; the field <authority> is a 96-bit unique machine
or domain identifier created when Windows or a domain controller is installed.

When a domain is created, a unique SID is constructed for this domain. When a
workstation or a server joins a domain, it receives a SID that includes the domain’s SID.
(Machines use their SIDs to check whether they are in the same domain.) As SIDs cannot
be changed, moving a domain controller between domains is not a simple administrative
process. The machine has to be completely reinstalled and logically become a ‘new’
machine to receive a new SID and become a controller in a new domain.

8.2.2 Subjects

Subjects are the active entities in an operational system. In Windows, processes and
threads are subjects. Security credentials for a process or a thread are stored in an
access token:

User SID
Group & Alias SIDs

Privileges
Defaults for New Objects

Miscellaneous

The SIDs serve as identity and authorization attributes. The token also contains the
union of all privileges assigned to these SIDs. The defaults for new objects include
parameters like owner SID, group SID, and DACL (explained in Section 8.2.4). The
miscellaneous entries include the logon session ID and the token ID. Some fields in a
token are read-only, others may be modified. A new process gets a copy of the parent’s
token, with possible restrictions.

Once a token has been created it will not change even if a group membership or a
privilege that had been valid at the time of creation is revoked. This makes for better
performance and better reliability because a process can decide in advance whether it has
sufficient access rights for a given task. However, policy changes only take effect when
the token has expired. The access rights at time of check need not be the same as the
access rights at time of use. TOCTTOU (recall the lesson in Section 4.1) is a well-known
issue in computer security.
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Privileges

Privileges control access to system resources. A privilege is uniquely identified by its
programmatic name, e.g. SeTcbPrivilege, and also has a display name, e.g. ‘Act as part
of the operating system’. Privileges are assigned to users, groups and aliases on a per-
machine basis. They are cached in tokens as locally unique identifiers (LUIDs). Privileges
are different from access rights, which control access to securable objects (Section 8.2.4).
Typical privileges are:

• backing up files and directories;
• generating security audits;
• managing and auditing security logs;
• taking ownership of files and other objects;
• bypassing traverse checking;
• enabling computer and user accounts to be trusted for delegation;
• shutting down the system.

User Authentication – Interactive Logon

Users can be authenticated by username and password, but other options are supported
too, e.g. authentication using a smart card. When a user logs on to a machine, authen-
tication is initiated by pressing the secure attention sequence CTRL+ALT+DEL which
invokes the Windows operating system logon screen and provides a trusted path from
the keyboard to the logon process (winlogon.exe). The login dialog box is generated
by the Graphical Identification and Authentication (GINA) dynamic-link library (DLL).
The logon process runs permanently (under the principal SYSTEM).

To thwart spoofing attacks always press CTRL+ALT+DEL when starting a session, even
when the logon screen is already displayed. The secure attention key sequence generates
calls to low-level functions that cannot be duplicated by application programs. This
trusted path is only present when a machine is actually running Windows. A machine
running some other operating system could simulate the Windows logon screen and
mount a spoofing attack.

A legal notice may optionally be displayed as a warning message. Users have to
acknowledge this message before logon can proceed. Users are then prompted for
username and password. Username and password are gathered by the logon process and
passed on to the LSA (lsass.exe). For local logon, the local LSA calls an authentication
package that compares username and password against the values stored in the account
database. When a match is found, the SAM returns to the LSA the user’s SID and the
security ID of any group the user belongs to. Domain logon uses Kerberos and the user is
authenticated by the LSA on a domain controller. The LSA then creates an access token
containing the user’s SIDs and privileges and passes the token to the logon process.
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Creating Subjects and Network Logon

In the next step, the logon process starts a shell (explorer.exe) in a new logon session
under the user (principal) that has been authenticated and attaches the access token to
this process. The shell spawns processes to the same logon session (Figure 8.2). These
processes are the subject for access control purposes. Logging off destroys the logon
session and all processes in it.

Diego

nmake.exe

Diego

cmd.exe

Diego

explorer.exe

Diego

cl.exe

Diego

powerpnt.exe

Figure 8.2: Example: Processes in a User Session

A process can spawn a new local process (subject) by calling CreateProcess. The
new process gets a copy of parent’s token. Each process has its own token. Different
processes within a logon session can have different tokens. Threads can be given
different tokens.

The user’s network credentials, e.g. the password, are cached in the interactive logon
session. Processes can then create network logon sessions for that user at other machines,
i.e. automatically authenticate the user on a remote machine. Network logon sessions
do not normally cache credentials. In Windows machines are principals and can have
a machine account with password in a domain. Thus, a domain controller can also
authenticate machines.

8.2.3 Permissions

A permission is an authorization to perform a particular operation on an object. Access
rights correspond to the operations that can be performed on an object. The standard
access rights applying to most types of objects are:

• DELETE – delete the object;
• READ_CONTROL – read access (to security descriptor) for owner, group, DACL;
• WRITE_DAC – write access to DACL;
• WRITE_OWNER – write access to owner;
• SYNCHRONIZE – allows a process to wait for an object to enter the signalled state.
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GENERIC_EXECUTE FILE_READ_ATTRIBUTES
STANDARD_RIGHTS_EXECUTE
SYNCHRONIZE

GENERIC_READ FILE_READ_ATTRIBUTES
FILE_READ_DATA
FILE_READ_EA
STANDARD_RIGHTS_READ
SYNCHRONIZE

GENERIC_WRITE FILE_APPEND_DATA
FILE_WRITE_ATTRIBUTES
FILE_WRITE_DATA
FILE_WRITE_EA
STANDARD_RIGHTS_WRITE
SYNCHRONIZE

Table 8.1: Mapping of Generic Access Rights for Files and Directories

To display permissions for a file, click on File, then on Properties, and finally on
Security. In Windows specific access rights can be tailored to each class of objects. In
this way, access rights can be adapted to the application requirements, but developers
would have to remember numerous specific rights. To address this issue, generic access
rights provide an intermediate description level. Each class of objects has a mapping
from the generic access rights onto real access rights so there is no need to remember
class-specific permissions. Table 8.1 shows the mapping of generic access rights for files
and directories. The generic access rights are:

• GENERIC_READ
• GENERIC_WRITE
• GENERIC_EXECUTE
• GENERIC_ALL

Access Mask

The desired operation in an access request (requested rights) and the granted access
rights are internally given as 32-bit access masks. The bits in an access mask are assigned
as follows:

0–15 specific rights defined for the object type the request refers to
16-22 standard rights

23 access system security, required to access a SACL
24–27 reserved

28 generic all
29 generic execute
30 generic write
31 generic read
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The mapping of the standards rights is given as:

16 DELETE
17 READ_CONTROL
18 WRITE_DAC
19 WRITE_OWNER
20 SYNCHRONIZE

Extended Rights

In Active Directory, it is also possible to define access control on operations. Such
access controls are called extended rights. Typical examples are Send-As and Receive-As,
allowing the user to send mail or receive mail at a given mailbox. Extended rights are
not defined by an access mask but by a globally unique identifier (GUID) corresponding
to a controlAccessRight object. The list of extended rights is not fixed. Developers can
create new extended rights for custom operations.

8.2.4 Objects

Objects are the passive entities in an access operation. In Windows there are execu-
tive objects such as processes or threads, Active Directory objects, filesystem objects,
registry keys, devices such as printers, and more. In addition, developers can define their
own private objects. Securable objects have a security descriptor. Security descriptors
for built-in objects are managed by the operating system. Security descriptors for private
objects have to be managed by the application software. Creating private securable
objects can be a tedious task but enables highly granular access control.

Active Directory

Active Directory can be viewed as a tree of typed objects (Figure 8.3). Containers are
objects that may contain other objects. Active Directory can be dynamically extended by
adding new object types or new properties to existing object types. Thus you can tailor
the object types to your own requirements. Each object type has specific properties and a

Mode: Color
Room: 123

Name: Dieter
Email: diego
Address: Cambridge
Room: 063

Company X

ResearchDivision BDivision A

Figure 8.3: A Directory Tree
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unique GUID; each property has its own GUID. In Figure 8.3 an ‘employee’ object with
properties name, email, address, and room and a ‘printer’ object with properties mode
and room are highlighted.

Logically related objects of different type can be put in the same container. This is useful
for managing resources in an organization because you do not need different structures
for different types of objects, and because you can use the directory structure to define
general access policies for containers and let the objects within the container inherit the
policy (see Section 8.4.2).

Security Descriptor

The security descriptor has the structure:

Owner SID
Primary Group

DACL
SACL

The Owner SID field indicates the owner of the object. Objects get an owner when
they are created. Ownership can also be obtained via the privilege ‘Take ownership of
files and other objects’ (SeTakeOwnershipPrivilege). In earlier versions of Windows, the
owner always had READ_CONTROL and WRITE_DAC permission. In Windows 7,
the OwnerRights SID was introduced to have more flexibility in assigning rights to the
owner. The Discretionary Access Control List (DACL) determines who is granted or
denied access to the object. The System Access Control List (SACL) defines the audit
policy for the object. The Primary Group is included for POSIX compliance.

8.3 A C C E S S D E C I S I O N S

Each object type has an object manager that handles the creation of objects and verifies
that a process has the right to use an object. Active Directory, for example, is the
object manager for directory objects. For access control, the object manager calls an
access decision function implemented by the Security Reference Monitor. The SRM,
the policy decision point, returns a yes/no answer to the object manager, the policy
enforcement point.

In general, access control decisions consider the subject requesting access, the object to
which access is requested, and the desired access right. Not all three parameters need
be considered in all circumstances. The credentials of the subject, including its principal,
are stored in its token. The security attributes of an object are stored in its security
descriptor. The desired access operation is given as an access mask.
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The desired access is compared against the subject’s token and the object’s security
descriptor when a handle to the object is being created, not at access time (TOCTTOU).
Thus, changing a file DACL does not affect open file handles. This design decision leads
to better performance and better reliability as all access control checks are made in
advance, before the process starts a task.

8.3.1 The DACL
The DACL in the security descriptor is a list of access control entries (ACEs). The ACE
format is:

type
inheritance and audit flags
access mask
ObjectType
InheritedObjectType
SID: principal the ACE applies to

The type determines whether the ACE is used for allowing, denying, or monitoring access
requests. The generic types are:

• Access-denied (in DACL to deny access);
• Access-allowed (in DACL to allow access);
• System-audit (in SACL to monitor access).

There exist also object-specific types for allowing, denying, and monitoring access.
Object-specific types can be applied to objects, properties, property sets, or extended
rights. ObjectType is a GUID defining an object type. Applications can now include the
ObjectType of objects in their access requests. For a given request, only ACEs with a
matching ObjectType or without an ObjectType are evaluated. For example, to control
read/write access on object property, put the GUID of the property in ObjectType. To
control create/delete access on objects, put the GUID of the object type in ObjectType.
Object-specific ACEs are also used for controlling inheritance of ACEs (Section 8.4.2).

An ACE for a web directory is shown below that grants users permission to set their
own homepage. This policy applies to all users so we use the PRINCIPAL_SELF SID
(S-1-5-10) as a placeholder. The application creating the homepage will supply the
current user’s SID when making an access request.

ACE1
Type: ACCESS_ALLOWED_OBJECT_ACE
ObjectType: GUID for web homepage
InheritedObjectType: GUID for User Account objects
Access rights: write
Principal SID: PRINCIPAL_SELF
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The next ACE allows Server Applications to create RPC end points in any container of
type RPC Services. The ACE will be inherited into any container of type RPC Services.

ACE2
Type: ACCESS_ALLOWED_OBJECT_ACE
ObjectType: GUID for RPC Endpoint
InheritedObjectType: GUID for RPC Services
Access rights: create child
Principal SID: Server Applications

8.3.2 Decision Algorithm

When a subject requests access to an object, the Security Reference Monitor takes the
subject’s token and the object’s ACL and the desired access mask to determine whether
the requested access should be granted. It first checks if a DACL exists. If there is
no DACL, i.e. a so-called NULL DACL, no further checks are performed and access
is granted.

Otherwise, the algorithm next checks whether the token lists the owner of the object.
If this is the case but if there are no ACEs for the OwnerRights SID, the owner is
granted READ_CONTROL and WRITE_DAC rights. If these rights are sufficient for
the request, access is granted and the decision algorithm terminates. If there are ACEs
for the OwnerRights SID, these ACEs will be considered in due order by the decision
algorithm and define the rights of the owner. The DACL is then processed entry by entry.
Permissions are accumulated by building a GrantedAccess mask. The SID in an ACE is
compared with the subject’s SIDs. The following three cases are possible:

1. The SID in the ACE does not match a SID in the token; the ACE will be skipped.

2. The SID in the ACE matches a SID in the token, the ACE is of type Access-denied,
and the access mask contains a requested access right; access will be denied and no
further checks take place.

3. The SID in the ACE matches a SID in the token and the ACE is of type Access-allowed;
the access mask in the ACE is added to GrantedAcesss. If GrantedAcess now contains
all the permissions in the requested access mask, access is granted and no further
checks take place; otherwise, the search goes on.

Access is denied if the end of the DACL is reached and the granted mask is not equal to
the requested mask. Thus, access will always be denied if there is an empty DACL and
access will always be granted if there is no DACL.

For negative ACEs to take precedence over positive ACEs, they must be placed at the top
of the DACL. As you will see in the next section, to achieve a finer granularity of access
control one might place negative ACEs also after positive ACEs.
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Lesson
Operating systems often store access control information in different places.
It is important to know in which order checks are performed. Sometimes,
as in Unix, only the first matching access control entry is consulted. At
other times, more specific entries coming later can overrule a previous entry.
Finally, you have to know how the operating system reacts if it finds no
entry matching an access request.

8.4 M A N A G I N G P O L I C I E S
Windows access control can be used in several ways, with varying levels of granularity
and complexity. Access control based on the principal requesting access is known as
impersonation because the process ‘impersonates’ the user SID of its token. This is a
coarse method but simple to implement. Impersonation is a typical operating systems
concept and does not work well at the application level. Role-centric access control uses
groups and aliases to give a process suitable access rights for its task. In object-centric
access control, application-level objects get a security descriptor. This method facilitates
fine-grained access control, but matters can get complex at the same time.

8.4.1 Property Sets

To ease administration, it is possible to collect the properties of an object type in property
sets. Instead of ACEs for all the properties of an object type, you need only one ACE that
refers to the property set. A property set is identified by its GUID. In an access request,
a list of properties can be passed to the reference monitor and a single check against the
property set returns the result for each property. As a further advantage, changes to the
properties of an object type do not force us to change the ACL.

8.4.2 ACE Inheritance

It would be tedious to specify access rules by hand each time a new object is created.
Default settings for security attributes automate this process. In Windows, default settings
are derived from the subject making the request (Section 8.2.2) and from the container
(directory) the object is being placed in. In Active Directory a container may contain
objects of different types, therefore a selective inheritance strategy is supported.

Inheritance in Active Directory is controlled through inheritance flags that indicate
whether an ACE has been inherited, and through the InheritedObjectType. ACEs
are inherited from the container at the time a new object is created. When a new
object is created only ACEs with a matching InheritedObjectType or without an
InheritedObjectType are copied into its ACL. This is illustrated in Figure 8.4.
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\Research Container type
ACE1 InheritedObjectType null
ACE2 InheritedObjectType User
ACE3 InheritedObjectType Printer

\Research\HPLaser Printer type
ACE1 InheritedObjectType null
ACE3 InheritedObjectType Printer

\Research\Diego User type
ACE1 InheritedObjectType null
ACE2 InheritedObjectType User

Figure 8.4: Type-Specific Inheritance within a Container

Changes to the container made later have no immediate effect on objects already in it. Such
a strategy is known as static inheritance. If you change access permissions on a container
and want to let the changes filter through to its content, you have to run a propagation
algorithm. This algorithm should be idempotent: applying the propagation algorithm
a second time causes no changes in access rights. Static inheritance has performance
advantages and more predictable behaviour compared to dynamic inheritance, where
any changes to the container would automatically be applied to all its objects.

When setting permissions on a container you usually do not know yet which objects will
eventually be placed in it. In particular, you might not know the owners of these objects,
but many access policies give the owner of an object specific rights. Hence, you have to
be able to specify the rights an owner would inherit without already naming the owner.
For this purpose, Windows has a special placeholder SID, CREATOR_OWNER. This
SID is replaced in an inherited ACE by the owner’s SID when a new object is created.

Inheritance Flags

Inheritance flags further specify how ACEs are inherited. The following flags are defined:

• INHERITED_ONLY_ACE – ACE can propagate to child objects, ignored by access
checking mechanism;

• OBJECT_INHERIT_ACE – inherited by all sub-objects that are not containers;

• CONTAINER_INHERIT_ACE – inherited by sub-objects that are containers;

• NO_PROPAGATE_INHERIT – inherited only by children, but not propagated
further.

Exceptions to Rules

In practice, there will be exceptions even for the best-thought-out general rules. So, we
want a scheme where it is easy both to define and apply general rules, and to define
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exceptions to those rules. As ACEs are evaluated in the order they appear in the DACL,
placing locally added ACEs in front of inherited ACEs implements a policy where specific
entries take precedence over more generic entries. In consequence, ACEs from closer
containers are placed in front of more distant containers. Thus, it is possible for a positive
ACE to appear before a matching negative ACE, as shown in Figure 8.5. There, ACE2 is
defined directly for Letter _ A in the container Documents and therefore appears before
the inherited ACE. Because ACE1 is only inherited to objects of type Letter, it is not
inherited by Invoice _ A.

\Documents Container type
ACE1 Type: access_denied

Access right: read, write
Principal: Diego
InheritedObj: Letter

\Documents\Letter_A Letter type

ACE2 Type: access_allowed
Access right: write
Principal: Diego

ACE1 Type: access_denied
Access right: read, write
Principal: Diego

\Documents\Invoice_A Invoice type

Figure 8.5: Locally Added ACEs are Placed in Front of Inherited ACEs

Placing more specific entries in front of more general entries is one way of implementing
exceptions to general rules. Windows has a further mechanism for creating exceptions.
Setting the flag SE _ DACL _ PROTECTED in the security descriptor of an object blocks
inheritance of ACEs altogether, and you are starting with a clean slate when setting
permissions on an object. In Figure 8.6, this flag is set in the descriptor of Letter _ A and
its DACL only contains a locally defined ACE2.

8.5 TA S K - D E P E N D E N T A C C E S S R I G H T S

So far access control has (implicitly) referred to users. The SIDs in the security token of a
process are initially set when a user logs in and then passed on to other processes within the
session. Access control based only on user identities makes life cumbersome for privileged
users. The powerful privileges assigned to them are necessary for certain tasks, but might
be dangerous in other circumstances. For example, a system administrator does not need
and should not use administrator privileges when performing standard user actions such
as surfing on the web (to learn about the latest security vulnerabilities). A conscientious
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\Documents Container type
ACE1 Type: access_denied

Access right: read, write
Principal: Diego
InheritedObj: Letter

SE_DACL_PROTECTED

\Documents\Letter_A Letter type

ACE2 Type: access_allowed
Access right: write
Principal: Diego

\Documents\Invoice_A Invoice type

Figure 8.6: SE_DACL_PROTECTED Blocks Inheritance of ACEs

system administrator would thus log on as a standard user and explicitly switch to the
administrator role (log in again, use features such as Run As) when necessary.

To avoid this hassle, access control should also refer to the task being performed. It is
today quite usual but not particularly helpful to refer to tasks (and programs) executed
with limited privileges as ‘untrusted’. This misses the point. We are just adhering to good
security engineering practices and follow the principle of least privilege. Code is only
running with the permissions it needs to do its job.

8.5.1 Restricted Tokens

Task-dependent least privilege can be achieved with restricted tokens. Restricted tokens
are a hypothetical extension of Windows access control proposed in [218]. They are
constructed by removing privileges from a given access token. This could be done by:

• removing privileges from the token;

• disabling groups – group SIDs are not deleted but marked as USE_FOR_-
DENY_ONLY;

• adding a restricted SID to the token – a process with a restricted token gets access only
if the SID and the restricted SID are granted access.

Disabling groups can be useful when a server thread impersonates a client, i.e. runs in the
context of the client’s access token. A deny-only SID would disable access rights granted
to the client that might be dangerous when performing the task at hand. In Figure 8.7 a
process with restricted token requests read access to objects with three different DACLs.
In case (a) both the principal SID Diego and the restricted SID MyApp have read
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DiegoPrincipal SID

AdminstratorsGroup SIDs

use for deny only

Users
MyAppRestricted SIDs
(none)Privileges

. . .

restricted token

ACE1:
Access Mask: read, write
SID: Diego

(c) access denied

ACE3:
Access Mask: read
SID: Admin

ACE2:
Access Mask: read
SID: MyApp

(b) access denied

ACE1:
Access Mask: read, write
SID: Diego

ACE2:
Access Mask: read
SID: MyApp

(a) access granted

Figure 8.7: Access with Restricted Tokens

permission, so access is granted. In case (b) the Admin group SID has been marked for
deny-only, so ACE3 will be skipped. Access will be denied because the principal does not
have the required right. In case (c) the restricted SID MyApp has no read permission, so
access is denied although the principal would have the required right.

To restrict the access rights of a program we may create a restricted SID representing
this program. Our example uses a restricted SID for MyApp. This SID has to be entered
into the DACLs of all objects the program should have access to. Alternatively, restricted
SIDs may be created for each object type and be added to the restricted tokens of subjects
that are permitted access.

8.5.2 User Account Control

Restricted tokens would – in theory – be an option for limiting the access rights of a
user depending on the application that is running. In practice, sensible security policies
may be hard to come by and restricted tokens might be a tool too difficult to master.
Vista implements only a limited version of task-dependent access control. User Account
Control (UAC) is intended for administrators who also perform tasks as a standard user.
When a user in an administrator group logs in, two tokens (admin, user) are created.
When the session starts, the standard user token is used. The administrator token is used
only when the user attempts to perform an administrative task.
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Lesson
Less can be more. Too many options for setting policies can be confusing.

8.6 A D M I N I S T R AT I O N
We conclude this chapter with a few further remarks on managing Windows security.

8.6.1 User Accounts

The SAM keeps security-relevant information about users in the user account database.
User accounts are edited using the User Manager for Domains utility. They can be
displayed from the command line with net user username. Among others, the following
fields can be defined:

• Username – the unique name used for logon.

• Full name – the name of the user owning the account.

• Expiration date – by default, accounts do not have an expiration date.

• Password dates – time password was last changed, time password expires (you can
force users to change their password at the next logon by expiring the current
password), time from when password can be changed; you can also indicate whether
users may change their passwords.

• Logon hours and workstations – you can specify when the user is allowed to log in
and from which machines the user is allowed to log in. The forcibly disconnect remote
users from server when logon hours expire setting determines whether a user is thrown
out outside hours or allowed to continue with an existing session. In the latter case,
only new logons are prevented.

• User profile path and logon script name – the profile defines the user’s desktop
environment, i.e. program groups, network connections, screen colours, etc. The logon
script is a batch file or executable file that runs automatically when a user logs on.

• Home directory – you can also specify whether the home directory is on the local
machine or on a network server.

• Local and global groups – groups the user is member of.

8.6.2 Default User Accounts

Windows supports security management through default accounts. You have already
seen some examples in Section 8.2.1. There exist three types of default user and
group accounts:
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• predefined accounts – installed with the operating system;
• built-in accounts – installed with the operating system, application, and services;
• implicit accounts – created implicitly when accessing network resources.

Default users and groups created by the operating system can be modified, but not
deleted. LocalSystem is a built-in account used for running system processes and
handling system-level tasks. Users cannot log in to this account, but certain processes
can do so.

Administrator and Guest are predefined accounts installed locally. The Administrator
account cannot be removed or disabled. It has complete access to files, directories,
services, and other facilities. Although access permissions on files and directories can be
set so that Administrator does not have access, the Administrator would still be able to
change the access permissions and then get access after all. By default, the Administrator
account for a domain is a member of the groups Administrators, Domain Admins,
Domain Users, Enterprise Admins, Schema Admins, and Group Policy Creator Owners.

In a domain, the local Administrator account is primarily used when the system is first
installed. Once installation is completed, the actual administrators can be made members
of the Administrators group. Thus, individual administrator privileges can be revoked
more easily.

The Guest account is intended for users who only need occasional access. Permissions
can be given to this account as to any other user account. When Windows is installed,
the Guest account is disabled.

Built-in groups have predefined user rights and permissions and provide another level
of indirection when assigning access rights to users. A user obtains standard access
rights by becoming a member of such a built-in group. Typical examples of built-in
groups are Administrators, Backup Operators, User, or Guests. System managers are
advised to stick to the built-in groups when implementing their security policies and
to define groups with different permission patterns only if there are strong reasons for
doing so.

A number of predefined groups are installed with Active Directory domains. Furthermore,
there exist implicit groups that can also be used for efficient definition of access
permissions:

• Everyone (S-1-1-0) – contains all local and remote users, including Guest; this group
can be used to grant or deny permissions to all users.

• Interactive (S-1-5-4) – contains all users logged on locally.

• Network (S-1-5-2) – contains all users logged on over the network.
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• LocalSystem (S-1-5-18) – the operating system.

• CreatorOwner (S-1-3-0) – placeholder in an inheritable ACE, replaced with the SID of
the current owner.

8.6.3 Audit

Windows records security-relevant events in the security log. Security-relevant events to
be logged when access to an object is requested can be defined in the SACL of the object.
Entries in the log file are generated by the Security Reference Monitor. Security-relevant
events typically include valid and invalid logon attempts, privilege use, and events such
as creating, deleting, or opening a resource (file). The events to be logged can be selected
and displayed using the Event Viewer. A maximum size of the audit log can be set, as can
the number of days entries have to be kept in a log. There are three wrapping options
for defining the retention method when the log reaches its maximal size:

• Overwrite events as needed – any record can be overwritten to make room for
new entries.

• Overwrite events by days [x] – entries older than the specified number of days may
be overwritten.

• Do not overwrite events – old records are never overwritten; the log must be cleared
manually before new events can be logged.

With the last two options, a system with the Audit: Shut down system immediately if
unable to log security audits setting enabled shuts down automatically when the log
is full. This is a way of meeting Orange Book C2 and Common Criteria certification
requirements demanding that auditable events must never go unrecorded.

8.6.4 Summary

With its range of conceptual tools that support security administration, and in particular
for managing security policies at the application level, Windows can be placed closer to
the man-oriented end of the man–machine scale than Unix (Figure 8.8).

specific
complex

focus on users

generic
simple

focus on data

man
oriented

machine
oriented

Figure 8.8: Windows Security on the Man–Machine Scale
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8.7 F U R T H E R R E A D I N G
Most security handbooks devoted to a specific operating system do not go
below the surface of the security system and concentrate on existing features
and their management. For references of this type, you have to check the latest
publication lists, and the material on Microsoft’s technet.microsoft.com website.
An explanation of Windows access control that goes into greater depth is given
in [47].

The reader interested in operating systems security case studies beyond Unix
and Windows may turn to smart phone operating systems. An analysis of access
control in Android can be found in [185]. Access control at the middleware layer
(CORBA) is the subject of [39, 147].

8.8 E X E R C I S E S

Exercise 8.1 Create a container for a lecture course. The container should hold
objects of different types: course description, lecture notes, exercise solutions,
student projects. Define groups and DACLs on the container and on objects
so that:

• the course leader has access to all resources;

• students enrolled on the course have read access to lecture notes as well as
read/write access to their own project;

• all students have read access to the course description;

• a student is nominated as tutor and gets read access also to exercise solutions;

• one given exercise solution is made available to all students on the course.

Exercise 8.2 In Unix and Windows access rights are defined for users and
groups. To facilitate better security management, users are placed into groups.
How do the two operating systems decide on an access request when users have
fewer privileges than their group? How are access rights that have been given to
a group withheld from individual members?

Exercise 8.3 Examine the ‘controls at an intermediate layer’ used in Windows.

Exercise 8.4 Unix UIDs can be set by the administrator. Windows creates
randomized SIDs. Discuss the design rationale for taking control from the
administrator and having randomized identifiers defined by the system.
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Exercise 8.5 Default Windows accounts cannot be deleted. Examine the design
rationale for this design decision.

Exercise 8.6 Examine the Windows documentation for event logs and describe
how customized read access to event logs can be granted.

Exercise 8.7 You have created an object with a NULL DACL everyone should
have access to. How could placing this object in a container affect your plan?
How can you make sure that your intended policy is implemented? Find out what
is needed to create an object with a NULL DACL.

Exercise 8.8 Design a strategy for archiving log files. Specify the retention
method to use and discuss the main parameters a system manager has to consider
when following your strategy.



Chapter9
Database Security

A database does not merely store data, it provides information to its users.
Database security is therefore not only concerned with the protection of
sensitive data, but also provides mechanisms that allow users to retrieve
information in a controlled manner. This remark highlights the two topics
that distinguish database security from operating system security. You should
control access to information more than access to data, and you should
definitely focus control on the principals requesting access, notwithstanding
the fact that the protection of data remains an important issue.

OBJECT I VES

• Analyze the security issues that are specific to database systems.
• Understand how views can be used for access control in a relational

database.
• Appreciate the problem of protecting information in statistical databases.
• Give a brief outlook on the privacy issues that arise when processing

personal data.
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9.1 I N T R O D U C T I O N

A database is a collection of data, arranged in some meaningful way. A database
management system (DBMS) organizes the data and gives users the means to retrieve
information. If access to information were completely uncontrolled, a database would
render a less useful service because it is quite likely that you would (be forced to)
refrain from putting certain data into the database. For example, databases often hold
information about individuals, be it employee records in a company, student records in a
university, or tax records with the Inland Revenue. Many countries have enacted privacy
legislation putting an organization maintaining such a database under an obligation to
protect personal data. Therefore, from early on database security had an important place
within computer security. It had a special place because database security is different
from operating systems security. Here is the argument to back up this claim.

Operating systems manage data. Users invoke operating systems functions to create a
file, to delete a file, or to open a file for read or write access. None of these operations
considers the content of a file. Quite appropriately, the same is true for access control
decisions made by an operating system. Decisions depend on the identity of the user,
permissions defined for the file, access control lists, security labels, etc., but not on the
content of the file. This is not due to some fundamental security theorem, it is simply a
reasonable engineering decision.

Entries in a database carry information. Database users perform operations that consider
the content of database entries. The most typical use of a database is perhaps a
database search. Hence, it is fitting that the access control decisions made by a database
management system also consider the content of database entries. A popular example is
a salaries database where salaries above a given threshold have to be kept confidential.
In summary, database security is placed more towards the user end of the man–machine
scale (Figure 9.1).

specific
complex

focus on users

generic
simple

focus on data

man
oriented

machine
oriented

Figure 9.1: The Location of Database Security on the Man–Machine Scale

At first sight, protecting sensitive information in a database looks easy. In the salaries
database, you simply add to the query statement a condition that checks the amount
of the salary. If you know which data to protect, this approach is certainly feasible.
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However, an intruder may be interested in many different pieces of information. The
following list indicates the range of possible sources of information:

• exact data – the values stored in the database;

• bounds – lower or upper bounds on a numerical value such as a salary can already be
useful information;

• negative result – e.g. if a database contains numbers of criminal convictions, then the
information that a particular person does not have zero convictions is sensitive;

• existence – the existence of data may already be sensitive information;

• probable value – being able to guess some information from the results of other queries.

In the end, you have to guard against all eventualities. Protecting information becomes
even trickier if the database permits statistical queries. A statistical query would, for
example, return the sum of all salaries or the mean of all salaries. A clever combination
of such queries can reveal the information you want to protect. This topic is taken up in
Section 9.4.

You have been warned about the many routes via which sensitive information may leak
from your database. You should, of course, take security seriously but not lose sight
of the fact that your database has to serve a useful purpose. Overly restrictive policies
denying access to data even though no sensitive information is disclosed reduce the value
of the database. You thus have to strive for precision, i.e. protecting sensitive information
while revealing as much non-sensitive information as permissible.

Database entries carry information about entities external to the computer system,
such as warehouse stock levels, students’ examination results, bank account balances,
or available seats on a flight. Database entries should correctly reflect these external
facts. Database security incorporates application-specific integrity protection to achieve
internal and external consistency:

• Internal consistency – the entries in the database obey some prescribed rules. For
example, stock levels cannot fall below zero.

• External consistency – the entries in the database are correct. For example, the stock
levels indicated in the database match the stock levels in the warehouse. The database
management system can help to avoid mistakes when updating the database, but you
cannot rely on the DBMS alone to keep the database in a consistent state. This property
is also called accuracy.

In the layered model of Section 3.4, the database management system can be placed in the
services layer on top of the operating system. The DBMS has to meet database-specific
security requirements that are not dealt with by the operating system. The DBMS can
enforce security in conjunction with protection mechanisms within the operating system
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applications

services

operating system

OS kernel

hardware

Figure 9.2: Location of Database Security

or on its own when there are no adequate controls in the operating system or when it
becomes too cumbersome to involve the operating system. Moreover, the DBMS can be a
tool for defining security controls in the application layer. Figure 9.2 captures the fact that
database security includes security mechanisms at quite different layers of abstraction.

9.2 R E L AT I O N A L D ATA B A S E S
The relational model is today the most widely used model for organizing a database.
Once more, we assume that the reader is familiar with the underlying concepts and give
only a brief introduction to relational databases. A detailed exposition is given in [76].

A relational database is a database that is perceived by its users as a collection of tables (and
tables only).

This definition of a relational database refers to its perception by users and not to its
physical organization. This is also the appropriate level of abstraction for discussing
database security.

Formally, a relation R is a subset of D1 × · · · × Dn where D1, . . . , Dn are the domains
on n attributes. The elements in the relation are n-tuples (v1, . . . , vn) with vi ∈ Di, i.e. the
value of the ith attribute has to be an element of Di. The elements in a tuple are often
called fields. When a field does not contain any value, we represent this by entering a
special null value in this position. The meaning of null is ‘there is no entry’ and not ‘the
entry is unknown’.

The relations in Figure 9.3 could be part of a travel agent’s database. The relation Diary
has four attributes, name, day, flight, and status, with the following domains:

• name – all valid customer names;
• day – the days of the week, Mon, Tue, Wed, Thu, Fri, Sat, Sun;
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Name Day Flight Status
Alice Mon GR123 private
Bob Mon YL011 business
Bob Wed BX201
Carol Tue BX201 business
Alice Thu FL9700 business

Flight Destination Departs Days
GR123 THU 7:55 1-4--
YL011 ATL 8:10 12345-7
BX201 SLA 9:20 1-3-5-
FL9700 SLA 14:00 -2-4-6-
GR127 THU 14:55 -2-5-

Figure 9.3: The Relations Diary and Flights

• flight number – flight numbers, two characters and up to four numerals;
• status – business or private.

The standard language for retrieving and updating information in a relational database is
SQL, the Structured Query Language [127]. The SQL operations for data manipulations
are as follows:

• SELECT – retrieves data from a relation. The operation

SELECT Name, Status
FROM Diary
WHERE Day = ‘Mon’

returns the result

Name Status
Alice private
Bob business

• UPDATE – updates fields in a relation. The operation

UPDATE Diary
SET Status = private
WHERE Day = ‘Sun’

marks all journeys on a Sunday as private trips.

• DELETE – deletes tuples from a relation. The operation

DELETE FROM Diary
WHERE Name = ‘Alice’

deletes all of Alice’s journeys from Diary.

• INSERT – adds tuples to a relation. The operation

INSERT INTO Flights (Flight,Destination,Days)
VALUES (‘GR005’, ‘GOH’, ‘12-45–’)

inserts a new tuple into Flights where the field Departs is still unspecified.
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In all cases, more complicated constructions are possible. It is not the purpose of this
book to explain all the intricacies of SQL and we will only give one example for
demonstration. To find out who is going to Thule, run

SELECT Name
FROM Diary
WHERE Flight IN

( SELECT Flight
FROM Flights
WHERE Destination = ‘THU’ )

Relations are often visualized as tables. Attributes correspond to the columns in the
table, using the names of the attributes as headings for the columns. The rows in the table
correspond to the tuples (records) in the database. In the relational model, a relation
cannot contain links or pointers to other tables. A relationship between tables (relations)
can only be given by another relation. In a relational database, different kinds of relations
may exist.

• Base relations, also called real relations, are named and autonomous relations; they
exist in their own right, are not derived from other relations, and have ‘their own’
stored data.

• Views are named, derived relations, defined in terms of other named relations; they do
not have stored data of their own.

• Snapshots, like views, are named, derived relations, defined in terms of other named
relations; they have stored data of their own.

• Query results may or may not have a name; they have no persistent existence in the
database per se.

For example, a snapshot of the Diary table that tells who is travelling when is defined by

CREATE SNAPSHOT Travellers
AS SELECT name, day

FROM Diary

9.2.1 Database Keys

In each relation, you have to be able to identify all tuples in a unique way. Sometimes,
a single attribute may be used as such an identifier. There may even be a choice of
attributes which could serve this purpose. On the other hand, it also may happen that
you need more than one attribute to construct such a unique identifier.

A primary key of a relation is a unique and minimal identifier for that relation. A primary
key K of a relation R has to fulfil two conditions.
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1. Uniqueness. At any time, no tuples of R have the same value for K.

2. Minimality. If K is composite, no component of K can be omitted without destroying
uniqueness.

In the relation Diary, the combination of name and day can serve as the primary key
(assuming that customers only go on one journey per day). In the relation Flights, the
primary key is the flight number.

Every relation must have a primary key as no relation may contain duplicate tuples. This
follows directly from the formal definition of a relation. When the primary key of one
relation is used as an attribute in another relation, then it is a foreign key in that relation.
In our example, the flight number as the primary key in the relation Flights is a foreign
key in the relation Diary.

9.2.2 Integrity Rules
Within a relational database, you can define integrity rules that enforce internal con-
sistency and help to maintain external consistency (accuracy). Most of these rules will
be specific to the application, but there are two rules that are inherent to the relational
database model.

Entity Integrity Rule. No component of the primary key of a base relation is allowed to
accept nulls.

This rule allows you to find all tuples in the base relations. The tuples in the base relations
correspond to ‘real’ entities and we would not represent such an entity in the database if
we could not identify it.

Referential Integrity Rule. The database must not contain unmatched foreign key values.

A foreign key value represents a reference to an entry in some other table. An unmatched
foreign key value is a value that does not appear as a primary key in the referenced table.
It is a reference to a non-existing tuple.

In addition to these two rules, further application-specific integrity rules may be desirable.
Those integrity rules are important because they keep the database in a useful state.
Typically, you would use them to do the following:

• Field checks – to prevent errors on data entry. In our example, we can guard against
the insertion of arbitrary values in the status attribute of the Diary relation through a
rule checking that the value entered is either business or private.

• Scope checks – in statistical databases, you may want rules for checking that the results
of queries are computed over a sufficiently large sample. Looking ahead to the Students
relation of Figure 9.4, you could define a rule that returns a grade average 67 by default
if the sample size is not larger than three.
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• Consistency checks – entries in different relations may refer to the same aspect of the
external world and should therefore express a consistent view of this aspect. In our
example, we can check the day a customer travels against the scheduled departure
days of their flights. Alice’s flight on Monday on GR123 is consistent with the fact
that this flight departs on Mondays and Thursdays. Carol’s booking on Tuesday on
BX201 is inconsistent with the fact that this flight leaves on Mondays, Wednesdays,
and Saturdays. An integrity rule comparing the respective fields could have stopped
the travel agent from making this mistake.

Integrity rules of this kind are controls in the application layer. The DBMS provides the
infrastructure for specifying and enforcing such rules. For example, an integrity trigger is
a program that can be attached to an object in the database to check particular integrity
properties of that object. When an UPDATE, INSERT, or DELETE operation tries to
modify such an object, this program is triggered and performs its check.

We will pursue this topic no further than pointing to potential clashes between confiden-
tiality and integrity. When the evaluation of an integrity rule requires access to sensitive
information, you face the dilemma of either evaluating the rule incompletely (and incor-
rectly) to protect the sensitive information, or leaking some sensitive information to
maintain consistency of the database.

9.3 A C C E S S C O N T R O L
To protect sensitive information, the DBMS has to control how users can access the
database. To see how controls could be implemented, you should remember that access
to a database can be considered at two levels:

• data manipulation operations on base relations;
• compound operations such as views or snapshots.

Go back for a moment to Section 3.4.1. You can look at access control from
two directions:

• restricting the operations available to a user, or
• defining the protection requirements for each individual data item.

In a DBMS, controls on compound operations regulate how users can work with the
database. On the other hand, checks on the manipulation of base relations protect the
entries in the database. By deciding on the type of access operations you want to control,
you also influence the focus of the policies to be enforced. Conversely, the focus of your
policies will suggest which type of operations to control. Whatever option you choose,
there are two properties you ought to aim for:

• completeness – all fields in the database are protected;
• consistency – there are no conflicting rules governing the access to a data item.
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A security policy is consistent if there is no element in the database that can be accessed
in different ways which result in different access control decisions. Legitimate access
requests should not be prevented, nor should there be ways of circumventing the
specified access policy.

9.3.1 The SQL Security Model
The basic SQL security model follows a familiar pattern. It implements discretionary
access control based on three entities:

• users of the database – the user identity is authenticated during a logon process, while
the DBMS may run its own logon or accept user identities authenticated by the
operating system;

• actions, including SELECT, UPDATE, DELETE, and INSERT;

• objects – tables, views, and columns (attributes) of tables and views; SQL3 further
includes user-defined constructs.

Users invoke actions on objects. The DBMS has to decide whether to permit the requested
action. When an object is created, a user is designated as its owner and initially only the
owner has access to the object. Other users first have to be issued with a privilege. The
components of a privilege are

(granter, grantee, object, action, grantable)

The two mainstays of the SQL security model are privileges and views. They provide the
framework for defining application-oriented security policies.

9.3.2 Granting and Revocation of Privileges
In SQL, privileges are managed with the operations GRANT and REVOKE. Privileges
refer to particular actions and can be restricted to certain attributes of a table. In our
example, we allow two travel agents, Art and Zoe, to inspect and update parts of the
Diary table:

GRANT SELECT, UPDATE (Day,Flight)
ON TABLE Diary
TO Art,Zoe

Privileges can be selectively revoked:

REVOKE UPDATE
ON TABLE Diary
FROM Art

A further feature is the granting of the right to grant privileges, implemented in SQL by
the GRANT option. For example, having been granted privileges on table Diary, with
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GRANT SELECT
ON TABLE Diary
TO Art
WITH GRANT OPTION

travel agent Art may in turn grant privileges on the same table to Zoe, with

GRANT SELECT
ON TABLE Diary
TO Zoe
WITH GRANT OPTION

When the owner of table Diary revokes the privileges granted to Art, all the privileges
granted by Art also have to be revoked. Thus, revocation has to cascade and the
information necessary to do so has to be maintained by the database system.

You should also note that once other users have been granted access to data, the owner
of the data cannot control how information derived from these data is used, even if there
is still some control over the original data. You can read data from a table and copy it
into another table without requiring any ‘write’ access to the original table.

9.3.3 Access Control through Views

Views are derived relations. The SQL operation for creating views has the format

CREATE VIEW view_name [ ( column [, column ]... ) ]
AS subquery
[ WITH CHECK OPTION ];

You could implement access control in a relational database by granting privileges
directly for the entries in base relations. However, many security policies are better
expressed through views and through privileges on those views. The subquery in the
view definition can describe quite complex access conditions. As a simple example, we
construct a view that includes all business trips in the example relation Diary.

CREATE VIEW business_trips AS
SELECT * FROM Diary
WHERE Status = ‘business’
WITH CHECK OPTION;

Access control through views can justifiably be placed in the application layer. The
DBMS only provides the tools for implementing the controls. Views are attractive for
several reasons:
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• Views are flexible and allow access control policies to be defined at a level of description
that is close to the application requirements.

• Views can enforce context-dependent and data-dependent security policies.

• Views can implement controlled invocation.

• Secure views can replace security labels.

• Data can be easily reclassified.

Application-oriented access control can be expressed through views such as

CREATE VIEW Top_of_the_Class AS
SELECT * FROM Students WHERE Grade ‹
(SELECT Grade FROM Students WHERE Name =
current_user());

to display only those students whose grade average is less than that of the person using
the view, or

CREATE VIEW My_Journeys AS
SELECT * FROM Diary
WHERE Customer = current_user());

to display only those journeys booked by the customer using the view. Discretionary
access control can be implemented by adding the access control table to the database.
Views can now refer to this relation. In this way, you can also express access control
based on group membership as well as policies regulating the users’ rights to grant and
revoke access rights.

Furthermore, views can define or refer to security labels. In our example, business flights
to Thule can be marked as confidential by creating the view

CREATE VIEW Flights_at_CONFIDENTIAL AS
SELECT * FROM Diary
WHERE Destination = ‘THU’ AND Status = ‘business’;

Controlling read access through views poses no particular technical problem other than
capturing your security policy correctly. The situation is different when views are used by
INSERT or UPDATE operations to write to the database. First, there exist views that are
not updatable because they do not contain relevant information needed to maintain the
integrity of the corresponding base relation. For example, a view that does not contain
the primary key of an underlying base relation cannot be used for updates. Secondly,
even if a view is updatable, some interesting security issues remain. A travel agent who
has access to the Diary database only through the view business_trips sees
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Name Day Flight Status
Bob Mon YL011 business
Carol Tue BX201 business
Alice Thu FL9700 business

Should the travel agent be allowed to update the view with the following operation?

UPDATE business_trips
SET Status = ‘private’
WHERE Name = ‘Alice’ AND Day = ‘Thu’

The entry for Alice would then disappear from view. As a matter of fact, in this case the
update will not be permitted because the definition of the view has specified the CHECK
option. If the definition of a view includes WITH CHECK OPTION, then UPDATE and
INSERT can only write entries to the database that meet the definition of the view. If the
CHECK option is omitted, blind writes are possible.

A view is not only an object in the SQL security model, but can also be seen as a program.
When a view is evaluated with the privileges of its owner rather than with the privileges
of the user invoking the view, you have another method of implementing controlled
invocation.

The access conditions in a view have to be specified within the limits of SQL. If this
proves too restrictive, software packages (stored procedures) written in a more expressive
language are another option for the DBMS to provide controlled access to the database.
Users are granted execute privilege on the package which runs with the privileges of
its owner.

Lesson
Controlled invocation can be found at any layer of a computer system. It
is a principle equally useful in microprocessors as in database management
systems.

So far we have presented the aspects that make views a useful security mechanism.
Naturally, views have also their disadvantages:

• Access checking may become rather complicated and slow.

• View definitions have to be checked for ‘correctness’. Do they really capture the
intended security policy?

• Completeness and consistency are not achieved automatically; views may overlap or
may fail to capture the entire database.

• The security-relevant part of the DBMS (the TCB) will become very large.
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Views are suitable in a ‘normal commercial’ environment. They can be tailored to the
application and require no modification of the DBMS. Definition of views then is part
of the general process of defining the structure of the database so that it best meets the
business requirements.

It may, however, become difficult to determine for individual data items who has access.
Therefore, views are less suitable in situations where it is deemed necessary to protect
the data items, rather than control the users’ actions.

9.4 S TAT I S T I C A L D ATA B A S E S E C U R I T Y

Statistical databases raise security issues not yet investigated in this book. The distinctive
feature of a statistical database is that information is retrieved by means of statistical
(aggregate) queries on an attribute (column) of a table. The aggregate functions in
SQL are:

• COUNT – the number of values in a column;
• SUM – the sum of the values in a column;
• AVG – the average of the values in a column;
• MAX – the largest value in a column;
• MIN – the smallest value in a column.

The query predicate of a statistical query specifies the tuples that will be used to compute
the aggregate, and the query set are the tuples matching the query predicate. In a nutshell,
statistical databases pose the following security problem:

• The database contains data that are individually sensitive. Direct access to data items
is therefore not permitted.

• Statistical queries to the database are permitted. By their very nature, these queries
read individual data items.

In such a setting it becomes possible to infer information. We will show that it is no longer
sufficient to police access requests individually. We are also taking a more pragmatic
view of information flow. The confidentiality models in Chapters 11 and 12 try their
best to stop any information flow whatsoever. In a statistical database, there must be
some information flow from the data to their aggregate. We can only try to reduce it to
an acceptable level.

The Students database of Figure 9.4 provides the examples in this section. Statistical
queries on all attributes are allowed but individual entries in the Units and Grade Ave.
Columns cannot be read directly. The statistical query
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Q1 : SELECT AVG(Grade Ave.)
FROM Students
WHERE Programme = ‘MBA’

computes the grade average of all MBA students. The query predicate in the example is
Programme = ‘MBA’.

Name Sex Programme Units Grade Ave.

Alma F MBA 8 63

Bill M CS 15 58

Carol F CS 16 70

Don M MIS 22 75

Errol M CS 8 66

Flora F MIS 16 81

Gala F MBA 23 68

Homer M CS 7 50

Igor M MIS 21 70

Figure 9.4: The Students Relation

9.4.1 Aggregation and Inference

Two important concepts in statistical database security are aggregation and inference.
Aggregation refers to the observation that the sensitivity level of an aggregate computed
over a group of values in a database may differ from the sensitivity levels of the individual
elements. You will mostly meet scenarios where the sensitivity level of the aggregate is
lower than the levels of the individual elements. The reverse would be true when the
aggregate is sensitive executive information derived from a collection of less sensitive
business data.

The aggregate is another relation in the database, e.g. a view, so you can use the security
mechanisms proposed in this chapter to control access to the aggregate. However, an
attacker can exploit the difference in sensitivity levels to obtain access to the more
sensitive items. The inference problem refers to the derivation of sensitive information
from non-sensitive data. The following types of attack have to be considered:

• Direct attack – the aggregate is computed over a small sample so that information
about individual data items is leaked.

• Indirect attack – this combines information relating to several aggregates.



9.4 STATISTICAL DATABASE SECURITY 169

• Tracker attack – a particularly effective type of indirect attack.

• Linear system vulnerability – a step beyond tracker attacks, using algebraic relations
between query sets to construct equations which yield the desired information.

9.4.2 Tracker Attacks

We will now demonstrate how to employ statistical queries to elicit sensitive information
from our Students relation. Assume that we know that Carol is a female CS student. By
combining the legitimate queries

Q1 : SELECT COUNT(*)
FROM Students
WHERE Sex = ‘F’ AND Programme = ‘CS’

Q2 : SELECT AVG(Grade Ave.)
FROM Students
WHERE Sex = ‘F’ AND Programme = ‘CS’

we learn from Q1 that there is only one female CS student in the database so the value
70 returned by Q2 is precisely her grade average. The problem here is that the selection
criteria define a set containing only one element. You could therefore allow a statistical
query only if it covers a sufficiently large subset. However, we could simply query the
complement by negating the selection criteria and obtain the same result as before from
the difference between the result of the query applied to the entire database and the
result of the query applied to the complement of the set we are really interested in. You
therefore have to demand that not only the set of tuples considered by a query but also
its complement are sufficiently large.

Unfortunately, even this is not good enough. Assume that each query set and its
complement must contain at least three elements. The sequence of queries

Q3 : SELECT COUNT(*)
FROM Students
WHERE Programme = ‘CS’

Q4 : SELECT COUNT(*)
FROM Students
WHERE Programme = ‘CS’ AND Sex = ‘M’

Q5 : SELECT AVG(Grade Ave.)
FROM Students
WHERE Programme = ‘CS’
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Q6 : SELECT AVG(Grade Ave.)
FROM Students
WHERE Programme = ‘CS’ AND Sex = ‘M’

returns the values Q3: 4, Q4: 3, Q5: 61, Q6: 58. All queries take into account a
sufficiently large set of tuples, so they are not prohibited. However, by combining the
four results we compute Carol’s grade average as 4 · 61 − 3 · 58 = 70.

You might feel that we were lucky in this case and were only able to construct this set of
queries because Carol was the single female CS student. We will now show how to set
up an attack in a systematic way. First, we need a tracker.

A query predicate T that allows information to be tracked down about a single tuple is called
an individual tracker for that tuple. A general tracker is a predicate that can be used to find
the answer to any inadmissible query.

Let T be a general tracker and let R be a predicate that uniquely identifies the tuple r
we want to probe. In our example, the predicate is Name = ‘Carol’. We make two
queries to the database using the predicates R ∨ T and R ∨ NOT (T). Our target r is
the only tuple used by both queries. To make sure that both queries are admissible, we
choose T so that the query set and its complement are large enough for the query to be
permitted. A final query over the entire database gives us all the data to complete the
attack. In our example

Sex = ‘F’ AND Programme = ‘CS’
is an individual tracker for Carol, and Programme = ‘MIS’ is one of many general
trackers. We proceed with the queries

Q7 : SELECT SUM(Units)
FROM Students
WHERE Name = ‘Carol’ OR Programme = ‘MIS’

Q8 : SELECT SUM(Units)
FROM Students
WHERE Name = ‘Carol’ OR NOT (Programme = ‘MIS’)

Q9 : SELECT SUM(Units)
FROM Students

and obtain Q7: 75, Q8: 77, and Q9: 136. So Carol must have passed (75 + 77) − 136 =
16 units. Experience has shown that almost all statistical databases have a general tracker.

9.4.3 Countermeasures
The analysis of statistical inference attacks dominated the early literature on database
security. Since then, researchers have shifted their attention to other areas, less because
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complete and waterproof solutions have been found and implemented, but rather because
they had to acknowledge the limits of countermeasures against inference attacks. Given
those limitations, what can you realistically do about the inference problem?

First, you would suppress obviously sensitive information. This implies that you know
which information is sensitive, which hopefully is the case, and that you know how this
information can be derived. You would at least check the size of the query set before
releasing the result of a statistical query.

Next, you could disguise the data. You could randomly swap entries in the database so
that an individual query will give an incorrect result, even though the statistical queries
would still be correct. Alternatively, you could add small random perturbations to the
query result so that the value returned is close to the real value but not quite correct.
As a drawback, these techniques reduce precision and usability. You would not want to
randomly swap values in a medical database.

Some aggregation problems can be eased by taking care with the design of the database
schema [156]. A static analysis of the structure of the database can reveal sensitive
relationships between attributes. Such attributes are then placed in separate tables. A
user with access to one table only is no longer able to correlate the attributes. Of
course, a user with access to all relevant tables is still in a position to do so, but as the
database manager you can be more precise when allocating privileges. In our example,
the relationship between names and academic performance is sensitive. We replace the
table Students by two tables, linked by a student identity number:

Name ID ID Sex Programme Units Grade Ave.
Alma B13 B13 F MBA 8 63
Bill C25 C25 M CS 15 58
Carol C23 C23 F CS 16 70
Don M38 M38 M MIS 22 75
Errol C12 C12 M CS 8 66
Flora M22 M22 F MIS 16 81
Gala B36 B36 F MBA 23 68
Homer C10 C10 M CS 7 50
Igor M20 M20 M MIS 21 70

The first table can now be classified at a sufficiently high level so that only authorized
users can link names and academic performance.

Finally, observe that inference problems are caused not so much by single queries but by
a clever combination of several queries. You could therefore track what the user knows.
Possibly this gives the best security but it is also the most expensive option. User actions
are recorded in an audit log and you perform a query analysis to step in if a suspicious
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sequence of queries is detected. In the first place you have to know what constitutes
suspicious behaviour. To tighten your protection even further, your query analysis will
have to consider what two users, or a group of users, know together.

9.5 I N T E G R AT I O N W I T H T H E O P E R AT I N G
S Y S T E M
When you look at a database from the position of the operating system, you see a number
of operating system processes and the memory resources that store the data entries. In
many respects, the DBMS has similar duties to the operating system. It has to stop users
from interfering with each other, and with the DBMS.

If you do not want to duplicate effort, you could give these tasks to the operating system.
In such a set-up, the DBMS runs as a set of operating system processes. There are system
processes for general database management tasks and each database user is mapped to a
separate operating system process (Figure 9.5). Now the operating system can distinguish
between users, and if you store each database object in its own file, then the operating
system can do all the access control. The DBMS only has to translate user queries into
operations the operating system understands.

ZoeArt

DBMS

Zoe
DB

systemArt

operating system processes

Figure 9.5: Isolation of Database Users by the Operating System

Allocating an individual operating system process to every database user wastes memory
resources and does not scale up to large user numbers. Hence, you need processes that
handle the database requests of several users (Figure 9.6). You save memory but the
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Figure 9.6: Isolation of Database Users by the DBMS

responsibility for access control now rests firmly with the DBMS. Similar considerations
apply to the storage of database objects. If the objects are too small, having a separate
file for each object is wasteful. Once the operating system has no access control functions
with respect to database users, you are free to collect several database objects in one
operating system file.

9.6 P R I V A C Y
Many organizations will for legitimate reasons store personal data on their customers,
such as name, address, age, credit card numbers, meal preferences or other consumer
habits. Data of this kind is usually protected by law. Compliance with legal and regulatory
constraints is an important issue when maintaining such data.

International recommendations for the protection of personal data are the OECD
Guidelines on the Protection of Privacy and Transborder Flows of Personal Data. These
guidelines state eight protection principles where the data subject is the individual the
data refer to and the data controller maintains the database.

1. Collection limitation principle: There should be limits to the collection of personal
data. Data should be obtained by lawful and fair means and, where appropriate, with
the knowledge or consent of the data subject.

2. Data quality principle: Personal data should be relevant to the purposes for which
they are to be used, accurate, complete and up to date.
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3. Purpose specification principle: The purposes for which personal data are collected
should be specified.

4. Use limitation principle: Personal data should not be disclosed or used for purposes
other than those specified, except with the consent of the data subject or by the
authority of law.

5. Security safeguards principle: Personal data should be protected by reasonable security
safeguards.

6. Openness principle: There should be a general policy of openness about developments,
practices and policies with respect to personal data.

7. Individual participation principle: An individual should have the right to obtain
confirmation of whether or not the data controller has data relating to him, to
challenge data relating to him, and to be given reasons if such a request is denied.

8. Accountability principle: A data controller should be accountable for complying with
measures which give effect to the principles stated above.

Another important document is the EU Directive1 on the protection of individuals with
regard to the processing of personal data and on the free movement of such data. EU
directives are not laws but have to be transformed into national law by EU member
states. The Directive has a strong emphasis on user consent. Users should ‘opt in’ to
indicate that they agree that their data are stored. The alternative is an ‘opt out’ policy
where data subjects have to state explicitly that data should not be kept.

In the US, data protection is addressed by sectoral laws. For example, the Health
Insurance Portability and Accountability Act 1996 is a federal law protecting patients’
medical records and other health information provided to health plans, doctors, hospitals
and other health care providers. The Act took effect in 2003 and had a considerable
impact on database security, and on IT security in general.

Platform for Privacy Preferences

Websites may advertise their privacy policies. Users may, in theory, examine those
policies before releasing personal data. In practice, this hardly happens. The Platform for
Privacy Preferences [74] was therefore launched to automate the process of checking a
user’s privacy preferences against the stated policy of a website. Websites would express
their data-collection and data-use practices in a standardized machine-readable XML
format known as a P3P policy. Policies would explain what data are collected, for what
purpose data will be used, and any opt-out or opt-in options for data uses.

On the client side, P3P user agents would be built into browsers or browser plug-ins, or
run on proxy servers. The user agents would automatically make decisions on behalf of

1EU Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995.
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the user comparing a site’s P3P policy with the privacy preferences set by the user. Users
would not need to read the privacy policies at every site they visit.

P3P is a descriptive language. Users have to ‘trust’ that a website adheres to its stated
policies. Data protection laws can stipulate that they have to. There is, however, a
fundamental concern. Can automated actions by a user agent ever imply the user’s
consent as required by data protection laws? In the end, P3P had not found sufficient
support from browser vendors to be widely adopted.

9.7 F U R T H E R R E A D I N G
If you need to revise the relational database model, consult [76]. A substantial
collection of material on database security has been compiled in [56]. An earlier
but still very useful book on database security is [80]. In particular, this book is
a good reference on statistical database security. A further useful source on this
topic is [156]. All major database vendors maintain web pages with information
on their products and with good introductions to database security.

9.8 E X E R C I S E S

Exercise 9.1 Consider an accounts database with records (customer name,
account number, balance, credit rating) and three types of user: customer, clerk,
manager. Define an access structure, e.g. through views, so that

• customers can read their own account;

• clerks can read all fields other than credit rating and update balance for all
accounts;

• managers can create new records, read all fields, and update credit rating for
all accounts.

Exercise 9.2 Consider a database of student records that contains student
names and the marks for all courses in the programme. Lecturers are provided
with a view that shows all students on their course whose paper has not yet been
marked. Should this view be defined WITH CHECK OPTION? Suggest general
criteria for deciding whether to use the CHECK OPTION.

Exercise 9.3 All statistical queries on the Students relation (Figure 9.4) must
have at least three tuples in their query set. Only AVG queries on the attribute
Grade Ave. are allowed. Find a new general tracker and construct a tracker attack
on Homer’s grade average.
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Exercise 9.4 In database security, you have seen examples of security controls
placed in the application layer. What are the problems with this approach?

Exercise 9.5 Consider a database where aggregates are placed at a higher
sensitivity level than the data items they are derived from. A user privileged to
access the data items can potentially compute the aggregate by accessing the data
items individually. How can you defend against such an attack?

Exercise 9.6 You are given a database where access rights can be defined
separately for each row in a table. Access control will use the security mechanisms
of the operating system. What are the consequences of this design decision with
respect to the way the database objects are stored in operating system files? (As
a yardstick, consider an operating system that uses 100 bytes of administrative
data for each file and a database with 10 million records.) Is this a viable design
decision?



Chapter10
Software Security

Computer security makes the headlines when a critical vulnerability in
some widely used software product is discovered. Attacks may target mem-
ory management flaws using a buffer overrun to manipulate the control
flow at a layer below the programming abstractions used by the software
developer. Attacks may target applications written in a scripting language
and insert their own commands via user input. In both cases, the attacker
manages to execute code with elevated privileges. The programming errors
exploited are sometimes quite simple and their eradication might seem a
trivial job. In some instances this assessment is true, but building complex
systems is a challenging task and there is a long history of security bugs in
software systems.

This chapter will analyze the causes of software vulnerabilities and defence
options at a general level. Detailed instructions on writing secure code are
beyond our scope and the reader is referred to the references listed at the
end of the chapter.

OBJECT I VES

• Explain the basic causes that lead to software security failures.
• Discuss the dangers of abstractions.
• Present the defence options when designing software systems.
• Give an introduction to security testing.
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10.1 I N T R O D U C T I O N

On a stand-alone machine, a personal computer in the true sense of the word, you are in
control of the software components sending inputs to each other. On a machine connected
to the Internet, hostile parties can provide input. Networking software is a popular target
for attacks. It is built to receive external input and involves low-level manipulations
of buffers. Dynamic web applications are a popular target as they construct code from
external inputs. Software is secure if it can handle intentionally malformed input. Secure
software is not the same as software with added security features.

10.1.1 Security and Reliability

Software security is related to software quality and software reliability, but the focus
differs. Reliability deals with accidental failures. Failures are assumed to occur according
to some given probability distribution. Improvements in reliability can be calculated
based on this distribution. To make software more reliable, it is tested against typical
usage patterns: ‘It does not matter how many bugs there are, it matters how often
they are triggered.’ In security the attacker picks the distribution of the inputs. Hence,
traditional testing methods are not geared towards finding security bugs. To make
software more secure, it has to be tested against atypical usage patterns (but there are
typical attack patterns).

10.1.2 Malware Taxonomy

Software that has a malicious purpose is called malware. There are different types
of malware, and computer security has adopted anthropomorphic metaphors for their
classification. A computer virus is a piece of self-replicating code attached to some other
piece of code, with a payload. The payload can range from the non-existent via the
harmless, e.g. displaying a message or playing a tune, to the harmful, e.g. deleting and
modifying files. A computer virus infects a program by inserting itself into the program
code. A worm is a replicating but not infecting program. Media reports on computer
security incidents do not always make this distinction between worms and viruses. You
might read about a virus attack when the code that is spreading would be better described
as a worm.

A Trojan horse is a program with hidden side effects that are not specified in the program
documentation and are not intended by the user executing the program. A logic bomb is
a program that is only executed when a specific trigger condition is met.

10.1.3 Hackers

Originally, a hacker was an expert familiar with the intricate details of a computer
system, able to use the system in a way beyond the grasp of ordinary users. Over time,
the term hacker has acquired a negative connotation, describing a person who illicitly
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breaks into computer systems. There is still a distinction between white hats who use
their skills to help software developers, and black hats who break into systems intent
on creating mischief and damage. Recent years have seen an increased amount of plain
criminal activity on the Internet.

Many attacks exploit well-known security weaknesses (or design features) in an auto-
mated and efficient manner, needing neither ingenuity nor deep technical knowledge.
Attackers who run attacks with tools acquired from someone else are known as
anklebiters or script kiddies.

Experimenting with dangerous code at home may be an intellectual challenge but is
fraught with danger. Anti-virus researchers have learned the importance of (physically)
separating experimental from operational systems. Otherwise, there is the danger of code
escaping out of the laboratory into the wild. Distributing code that performs actions on
other people’s machines is likely to bring you into conflict with the law. So, the familiar
warning applies: don’t try this at home.

10.1.4 Change in Environment
Change is one of the biggest enemies of security. You may have a system that offers
perfectly adequate security. You change a part of the system. You may be aware of the
security implications of this change and still get it wrong. Even worse, you may feel that
the change has nothing to do with security, only to wake up to an unpleasant surprise.

10.1.5 Dangers of Abstraction
Abstraction is an important concept we cannot do without when designing and under-
standing complex systems. High-level descriptions of a system hide unnecessary details.
Software developers use abstractions all the time when writing code in high-level program-
ming languages. However, software security problems arise when intuitive properties of
an abstraction do not match its concrete implementation. This chapter gathers together
broken abstractions.

10.2 C H A R A C T E R S A N D N U M B E R S
Broken abstractions can already be found with elementary concepts such as characters
and integers. When describing their binary representation in memory or in messages
we will often use hexadecimal values. Hexadecimal values in C have the prefix 0x;
hexadecimal values in a URL have the prefix %. We will use examples from both worlds.

10.2.1 Characters (UTF-8 Encoding)

A software developer writes an application that should restrict users to a specific
subdirectory A/B/C. Users enter a filename as input. The application constructs the
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pathname to the file as A/B/C/input. This attempt to constrain the users can be
bypassed easily. An adversary could step up in the directory tree using ../ and access
the password file by entering

../../../../../etc/passwd.

As a countermeasure, the developer performs input validation and filters out the offending
character combination ‘../ ’. However, this is not the end of the story.

The UTF-8 encoding of the Unicode character set (RFC 2279) was defined for using
Unicode on systems that were designed for ASCII. ASCII characters (U0000–U007F)
are represented by ASCII bytes (0x00–0x7F). Non-ASCII characters are represented by
sequences of non-ASCII bytes (0x80–0xF7). The following encoding rules are defined:

U000000–U00007F: 0xxxxxxx

U000080–U0007FF: 110xxxxx 10xxxxxx

U000800–U00FFFF: 1110xxxx 10xxxxxx 10xxxxxx

U010000–U10FFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

The xxx bits are the least significant bits of the binary representation of the Unicode
character. For example, the UTF-8 encoding of the copyright sign U00A9 = 1010
1001 is 11000010 10101001 = 0xC2 0xA9. Only the shortest possible UTF-8
sequence is valid for any Unicode character, but many UTF-8 decoders also accept longer
variants. When multi-byte UTF-8 formats are accepted, a character has more than one
representation. Here are three ways of writing ‘/’.

format binary hex
1 byte 0xxx xxxx 0010 1111 2F
2 byte 110x xxxx 1100 0000 C0

10xx xxxx 1010 1111 AF
3 byte 1110 xxxx 1110 0000 E0

10xx xxxx 1000 0000 80
10xx xxxx 1010 1111 AF

Once, a version of Microsoft’s IIS was vulnerable as illegal Unicode representations of
single-byte characters were accepted but not checked for during input validation. A URL
starting with

{IPaddress}/scripts/..%c0%af../winnt/system32/

referenced the directory C:\winnt\system32 because %c0%af is the two-byte UTF-
8 encoding of /. Hence, ..%c0%af../ becomes ../../. There is a further twist to
this story. Consider the URL

{IPaddress}/scripts/..%25%32%66../winnt/system32/.
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To see how this URL is processed, write the sequence %25%32%66 in binary. You get
00100101 00110010 01100110, i.e. the ASCII characters %2f. The URL is thus
decoded to IPaddress/scripts/..%2f../winnt/system32/. No problem yet, but
if the URL is decoded a second time, %2f is read as / and the URL references the
directory C:\winnt\system32.

Lesson
Beware of mistranslations that change the meaning of texts. Decoding
UTF-8 is a translation between different levels of abstraction.

10.2.2 The rlogin Bug
The -f option in the Unix login command

login [-p] [-h‹host›] [[-f]‹user›]

‘forces’ login and the user does not have to enter a password. The rlogin command

rlogin [-l‹user›] ‹machine›

allows users to log in on remote machines. The rlogin daemon sends a login request to
the machine named in the second argument for the user given in the first argument. Some
versions of Linux and AIX did not check the syntax of the name field. The request

rlogin -l -froot machine

then results in

login -froot machine

i.e. forced login as root at the designated machine. This problem is caused by the
composition of two commands. Each command on its own is not vulnerable. Syntax
checking by the rlogin daemon can prevent this attack.

10.2.3 Integer Overflows
In mathematics integers form an infinite set. On a computer system, integers are
represented as binary strings of fixed length (precision), so there are only a finite
number of ‘integers’. Programming languages have signed and unsigned integers, short
and long (and long long) integers. If the result of a computation gets too large for
the chosen representation, a carry overflow occurs. In this case, the familiar rules for
integer arithmetic no longer apply. For example, with unsigned 8-bit integers arithmetic
operations are performed modulo 256 and you get 255 + 1 = 0, 16 × 17 = 16, and
0 − 1 = 255.

Signed integers are represented as 2’s complement numbers. The most significant (left-
most) bit indicates the sign of the integer. If the sign bit is zero, the number is positive and
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is given in normal binary representation. If the sign bit is one, the number is negative.
To calculate the 2’s complement representation of −n:

• Invert the binary representation of n by changing all ones to zeros and all zeros to
ones. For 8-bit integers, this step computes 255 − n.

• Add one to the intermediate result. For 8-bit integers, this step computes 255 − n + 1 =
256 − n. The number 256 corresponds to the carry bit.

Computing with signed integers can again give unexpected results. For example, for signed
8-bit integers you get 127 + 1 = −128 and −128/ − 1 = −1. Switching between signed
and unsigned integers may turn a large positive value into a negative value: 0xFF =
28 − 1 (unsigned) = −1 (signed).

Conversion between integer representations can cause security problems. Let the guard
command

if (size ‹ sizeof(buf))

compare a signed integer variable size with the result of sizeof(buf) that returns a
result of data type size_t, i.e. an unsigned integer. If size is negative and if the compiler
casts the result of sizeof(buf) to a signed integer, the buffer can overflow.

Integer truncation is another potential source of problems. Once, a Unix version had
the following vulnerability. A program received a UID as a signed integer and checked
UID �=0 to prevent root access. The UID was later truncated to an unsigned short integer.
Input 0x10000 became 0x0000 (root!).

In mathematics, the axioms defining the integers imply results such as a + b ≥ a if b ≥ 0.
With computer integers, such obvious ‘facts’ are no longer true. Such discrepancies
between the abstract model and the actual implementation can lead to buffer overruns
(Section 10.4.1). Consider the following code snippet that copies two character strings
into a buffer and checks that the two strings (plus a terminating symbol) fit into the buffer:

char buf[128];
combine(char *s1, size_t len1, char *s2, size_t len2)
{

if (len1 + len2 + 1 ‹= sizeof(buf)) {
strncpy(buf, s1, len1);
strncat(buf, s2, len2);
}

}
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On a 32-bit system, an attacker could set len1 ‹ sizeof(buf) and len2 =
0xFFFFFFFF. Then strncat will be executed and the buffer will overrun as

len1+ 0xFFFFFFFF+ 1 = len1+ 232 − 1 + 1 = len1 mod 232.

Computation of array indices uses integer arithmetic. If you do not check that the result of
an index calculation does not exceed the length of the array, a memory location above the
array will be accessed (a typical beginner’s mistake in introductory programming courses).
Wrap-around to lower addresses occurs when arithmetic operations give negative results
or when the effects of modular addition are not considered by the programmer. When
computing array indices, you must check both upper and lower bounds.

Computer integers do not implement the mathematical abstraction ‘integers’, but integers
modulo 2w, where w is the number of bits chosen for their representation. This break in
abstraction can cause programming mistakes of the kind just discussed.

Many programmers appear to view integers as having arbitrary precision, rather than being
fixed-sized quantities operated on with modulo arithmetic [14].

Lesson
Declare all integers as unsigned integers unless you really need negative
numbers. If you are measuring the size of objects in memory, you do not
need negative numbers. If your compiler flags a signed–unsigned mismatch,
check whether you really need two different representations. If you do, pay
attention to the checks you are implementing.

10.3 C A N O N I C A L R E P R E S E N TAT I O N S
Names (identities, identifiers) are a widely used abstraction. We give names to files and
directories so that we can find them later. Network nodes have identifiers at the different
levels of the protocol stack (DNS names, IP addresses, . . . ). Names are also used in
security decisions. A firewall may let traffic pass to and from certain nodes only. Security
policies define which files a user may access. When an entity has more than one name
or when names have equivalent representations, an attacker may try to bypass security
controls by giving an alternative name that had not been considered when setting the
policy. Problems of this nature are encountered frequently. Filenames, URLs, and IP
addresses can all be written in more than one way.

• Filename: c:\x\data = c:\y\z\..\..\x\data = c:\y\z\%2e%2e\%2e\%2e\
x\data
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• Dotless IP: a.b.c.d = a · 224 + b · 216 + c · 28 + d

• Symbolic links: filename pointing to another file

The problem caused for security enforcement can be illustrated at the level of colloquial
English. The file sharing service Napster had been ordered by court to block access to
certain songs. Napster implemented a filter that blocked downloads based on the name
of the song. Napster users bypassed this control by using variations of the names of
songs. This is a particularly awkward problem because the users decide which names are
equivalent.

Next, consider case-insensitive filenames. In this case, myfile and MyFile are equivalent
names for the same file. Combine a filesystem with case-insensitive filenames with a
security mechanism that uses case-sensitive filenames. (A vulnerability of this kind once
involved the Apache web server and the HFS+ filesystem.) Assume that permissions are
defined for one version of the name only, e.g. for MyFile. The attacker requests access
to myfile, no restrictions are set, so the security mechanism grants the request and the
filesystem gives access to the resource that should have been protected.

To address this problem, perform canonicalization before making access control deci-
sions. Canonicalization resolves the various equivalent forms of a name to a single
standard name. The single standard name is known as the canonical name. Canonical-
ization is relevant whenever an object has different but equivalent representations.

Lesson
Do not rely on the names received as user input; convert them –
correctly – to your standard representation. ‘Do not trust your inputs’ is the
battle cry in [121]. Use full pathnames. Do not let the system generate the
full pathnames automatically. Preferably, do not make decisions based on
names at the application level but use the operating system access controls.

10.4 M E M O R Y M A N A G E M E N T
Ancient cities and medieval castles had rings of protective walls to keep attackers out. To
defeat these defences, attackers tunnelled under walls to make them collapse. Similarly,
software developers may have designed impressive logical defences. If the attacker can
tunnel through to memory, the logical defences are undermined from below. Flaws in
memory management can open the cracks that let the attacker penetrate the system.

The programming languages C and C++ were designed to let developers perform their
own memory management. There are situations where this feature is called for but it is
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then up to the developers to get memory management right. Languages such as Java or
C# take these tasks away from the developer and thus remove a possible source of errors.

Figure 10.1 shows a typical memory configuration. The runtime stack using the highest
memory addresses contains the stack frames of the processes currently on the call stack.
A stack frame contains information such as return address, local variables, and function
arguments. The stack grows downwards in memory. System libraries are stored at the
bottom of memory. Above is the heap. The heap is a memory area dynamically allocated
by the application. The heap grows upwards.

top of memory
stack

heap

libraries bottom of memory

Figure 10.1: Memory Configuration

10.4.1 Buffer Overruns
When writing a program you will use variables to hold the values you want to
manipulate. When the program is executed, memory sections (buffers) are allocated
to those variables. A buffer overrun (overflow) occurs when the value assigned to a
variable exceeds the size of the buffer allocated. Memory locations not allocated to this
variable are overwritten. If the memory location overwritten had been allocated to some
other variable, the value of that other variable is changed. Unintentional buffer overruns
can make software crash. Intentional buffer overruns may enable an attacker to modify
security-relevant data by assigning a deliberately malformed value to some other variable.
Attractive targets are return address (specifies the next piece of code to be executed) and
security settings. Buffer overruns have been the source of security vulnerabilities for some
time. We add another historic example to the story of the Internet worm (Section 1.3.1).

VMS Login

One version of Digital’s VMS operating system had a bug in the login procedure. Users
could specify the device they wanted to log in to by giving their username as

username/DEVICE = <machine>

In one version of the operating system the length of the argument machine was not
checked. A device name of more than 132 bytes overwrote the privilege mask of the
process started by login. Users thus could set their own privileges by giving an appropriate
‘machine name’.



186 10 SOFTWARE SECURITY

10.4.2 Stack Overruns

Buffer overrun attacks on the call stack are known as stack overruns. Figure 10.2 (left)
gives an outline of the frame that would be pushed on the stack when calling a function
void function(int a, int b, int c) with local variables x and y. First come
the input values in reverse order, followed by the return address and the saved frame
pointer that points to the top of the previous stack frame. Finally, buffers for local
variables defined within the function are allocated. (The precise layout of a stack frame
is specific to operating system and compiler.)

stack frame with buffer overrun

input to c

input to b

input to a

bad return address
. . .

. . .

. . .

value assigned
to y

original stack frame

input to c

input to b

input to a

return address

saved frame pointer

local variable x

local variable y

overrun the
buffer for y

Figure 10.2: Stack Smashing Attack

Assume that the function does not check the size of the value assigned to y. An attacker
could then pick a value that overruns the buffer allocated to y, overwriting memory
locations above y. Specifically, an attacker can overwrite the return address with the
start address of the attacker’s code (shellcode) as shown in Figure 10.2. The attacker’s
code would then run with the privileges of the current process. This attack would be
impossible if the stack grew upwards in memory [138].

The final task for the attacker is to find a way of getting the shellcode into the system.
There are two major methods for doing so:

• argv[] method – the shellcode is passed as an argument to the vulnerable function and
gets stored on the stack; this method requires an executable stack.

• return-to-libc method – the attacker calls a system library function; system functions
that execute user-provided commands are likely candidates.

When the attacker cannot predict precisely where the input variable and thus the attack
code will be placed, a landing pad of NOP (no operation) instructions at the start of the
code can compensate for variations in the location the code will be found in. Section 10.7
will explain how to defend against stack overrun attacks.
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10.4.3 Heap Overruns

Because of the prominence of stack overrun attacks, more effort has been devoted to
protecting the stack than to protecting the heap. Buffer overrun attacks on the heap are
known as heap overruns. It is more difficult to determine how to overwrite a specific
buffer on the heap and to determine which other buffers will be overwritten in the
process. If you are an attacker, you may not want to crash the system before you have
taken over, but even attacks that do not succeed all the time are a threat to the defender.

To take control of execution, an attack has to overwrite a parameter that has influence
on the control or data flow. On the heap, such parameters are pointers to (temporary)
files and function pointers. Take a vulnerable program that defines a temporary file and
writes to it. Create a buffer overrun that overwrites the pointer to the temporary file with
a pointer to the target file, e.g. the password file. The attacker can now use the program
to write to the target file. A function pointer int (*funcptr)(char *str) allows a
programmer to dynamically modify the function to be called. On execution the function
pointed to by the pointer will be called. When a buffer overrun overwrites the function
pointer, a function defined by the attacker will be executed. Exploiting function pointers
requires an executable heap.

Lesson
Redirecting pointers is a great way of attacking systems.

10.4.4 Double-Free Vulnerabilities

Stack overrun attacks modify the return address. The attacker can fairly easily guess the
location of this pointer relative to a vulnerable buffer. Equally, the defender knows which
target to protect. Overwriting arbitrary pointers with arbitrary values is a more powerful
attack. There are more targets; hence the attack is more difficult to defend against.

The attacker does not even have to write to the pointer. Instead, the operating system
can be lured into reading malformed input and then doing the job for the attacker. The
following attack targets memory allocation in Unix. Our description follows Doug Lea’s
malloc but other allocators follow similar principles. Memory is allocated calling

void * malloc (size t size)

which returns a pointer to a newly allocated chunk of size bytes. The contents of the
chunk are not initialized. The call returns a null pointer if a chunk cannot be allocated.
Memory is deallocated by calling

void free (void *ptr)
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where *ptr must have been returned by a previous call to malloc(), calloc(), or realloc().
If *ptr is null, no operation is performed. Otherwise, the behaviour of free is undefined
when applied twice to the same pointer.

Memory is divided into chunks. Free chunks are placed in double-linked lists called bins.
Chunks contain user data and control data, so-called boundary tags that include the size
of the chunk and the size of the previous chunk in memory (Figure 10.3). The boundary
tag of a free chunk also contains forward and backward pointers to its neighbours in
the bin. A lower order bit of size is used as a control flag that indicates whether the
previous chunk is free. When a chunk is freed it is coalesced into a single chunk with
neighbouring free chunks. There are no adjacent free chunks in memory. Free chunks
that have been coalesced are taken out of their bin using the unlink() command.

#define unlink(P, BK, FD) {
[1] FD = P-›fd;
[2] BK = P-›bk;
[3] FD-›bk = BK;
[4] BK-›fd = FD;
}

unlink() takes a pointer P out of a list. Lines 1 and 2 save the backward and forward
pointers of P. Line 3 updates the backward pointer of the next chunk in the list; the
address located at FD plus 12 bytes (offset of backward field in the boundary tag) is
overwritten with the value stored in BK. The forward pointer is updated in similar fashion.

backward

forward

size
prev_size

free chunk

data

size
prev_size

allocated chunk

Figure 10.3: Allocated and Free Chunks

The programming error to look out for in a double-free attack is a function that may free
a chunk twice but does not set the respective pointer to null the first time. The attacker
calls the vulnerable function and proceeds as follows:

1. Let the function allocate a memory block A that may be freed twice.

2. The function frees A a first time (but does not set the pointer to null); the attacker
had prepared the memory so that when A is freed consolidation with neighbouring
free chunks below A creates a large block.
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3. Ask the function to allocate a large block in the hope of getting the large chunk
just freed.

4. Let the function write user-provided input into this block next to where A had been;
the user input is a fake unallocated chunk; the forward field contains the target
address that should be overwritten (minus the offset 12), the backward field the value
to be written.

5. Continue the vulnerable function until it frees A a second time.

When A is freed the second time, the fake chunk next to A is treated as a free chunk that
should be coalesced with A and taken out of its (non-existing) bin. Therefore unlink()
is applied to the fake chunk and the target address is overwritten in step 3.

Tables at known locations that influence the execution flow (such as the Global Offset
Table in Unix) are an attractive target. The double-free vulnerability came to prominence
with an exploit for the zlib compression library in 2002. Double-free is an example
of an uninitialized memory corruption vulnerability where a command reads from a
memory location that has not been initialized and happens to contain data left there by
the attacker. The attacker has to predict correctly which memory location the command
will read from, but can increase the chances of success by heap spraying, i.e. leaving data
in a large number of locations.

10.4.5 Type Confusion
Programs written in a type-safe (memory-safe) language cannot access memory in
inappropriate ways. A well-known example is the Java programming language. Each
Java object is an instantiation of a class. The Java Virtual Machine (JVM) keeps track
of objects in memory by using pointers that are tagged with the class of the object.
Operators must only accept operands of the correct type. Static and dynamic type
checking should prevent any access that violates the abstractions provided by objects and
classes. Automatic garbage collection takes care of further memory management tasks.

A type-confusion attack manipulates the pointer structure so that two pointers, one with
a wrong class tag, point to the same object. Such an object can then be manipulated by
accessing the ‘wrong’ type. Consider, for example, a trusted object A of type Tr. When
an attacker manages to have the pointer for another untrusted object X of type Un point
to the same buffer in memory, the trusted object A can be modified as if it were of type
Un (Figure 10.4). Often (but not always) a type-confusion attack can be extended to
compromise the entire system and modify objects at will. Type-confusion attacks are
rare, but they do occur. Sun Security Bulletin no. 00218 (18 March 2002) refers to a
problem in a JVM implementation. An attack on a mobile phone version of Java1 was
reported in 2004.

1Adam Gowdiak, Java 2 Micro Edition Security Vulnerabilities, Hack in the Box Security Conference 2004, Kuala
Lumpur, Malaysia.
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Figure 10.4: Type-Confusion Attack

An old version of Netscape Navigator had a bug that allowed a simple type-confusion
attack [163]. Java allows a program that uses type T also to use type array of T.
Array types are defined for internal use only. Their name begins with the character [.
Programmer-defined classnames are not allowed to start with this character. Hence, there
should be no danger of conflict. However, a Java byte code file could declare its own
name to be a special array type name, thus redefining one of Java’s array types.

An ingenious type-confusion attack using random memory errors is described in [106].
The strategy is to create a memory layout where a random bit error is likely to change a
reference so that it points to an object of the wrong type. Create two classes A and B

class A { class B {
A a1; A a1;
A a2; A a2;
B b; A a3;
A a4; A a4;
A a5; A a5;
int i; A a6;
A a7; A a7;

}; };

and a program

A p;
B q;
void write(int target, int value)
{
p.i = target;
q.a6.i = value;

}
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This program type checks correctly. The attack proceeds as follows.

1. Fill the memory with lots of objects of type B and a single object of type A, (say) at
location x; let all the A fields in the B objects point to this single A object.

2. Keep scanning the B fields until a memory error is detected; shining a light bulb on
the memory chip is a proven way of inducing memory errors.

3. Call the program above with pointers p and q pointing to the same memory location,
with target giving the address to be overwritten, minus the offset 6 · 4, and value
giving the value to be written.

Suppose a bit flips in a B object in a position referencing the sole A object in memory. The
position affected now contains the value x ⊕ 2i for some value i. The modified pointer
is likely to point to an A field somewhere in memory. Dereferencing its b field is likely
to hit one of the many A fields containing the address x of the sole A object. You now
have type confusion. There is a pointer of type A containing x and a pointer of type B
containing x. Calling the program with the parameters stated will write a value chosen
by the attacker to an address chosen by the attacker.

Lesson
Attacks at the hardware layer can undermine security controls in the
layer above.

10.5 D ATA A N D C O D E
Data and code are important abstractions when designing a system that executes
programs. When input presented as data gets executed, the abstraction is broken and
attacks may be possible. The following examples have in common that data received as
input may not mean what the programmer expected.

10.5.1 Scripting

Scripting languages construct commands (scripts) from predefined code fragments and
from user input. The script is then passed to another software component (browser,
database server, operating system) where it is executed. An attacker may try to hide
additional commands in user input. The defender has to check and sanitize user input.
Both have to be aware of certain technical details of the component executing the script:

• symbols that terminate command parameters;

• symbols that terminate commands;
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• dangerous commands, e.g. commands for executing the commands they receive as
input (eval, exec, system, . . . ).

Examples of scripting languages are Perl, PHP, Python, Tcl, Safe-Tcl, and JavaScript. As
a first example, a script for a Unix server that sends a file to a client may contain the
instruction

cat thefile | mail clientaddress

where thefile is the name of the file and clientaddress is the mail address of the
client. When a malicious user enters user@address | rm -rf / as the mail address,
the server will execute

cat thefile | mailuser@address | rm − rf /

mailing the file to the user and deleting all files the script has permission to delete.

10.5.2 SQL Injection

SQL is the standard database query language. Strings in SQL commands are placed
between single quotes. When a script constructs SQL queries as strings put together from
query fragments and user input, the attacker may be able to change the logic of a query
by entering a single quote in the input, followed by SQL instruction fragments. Consider
the following query to a client database where $name is input provided by the user:

$sql = "SELECT * FROM client WHERE name = ’$name’"

It is intended to create queries of the form select * from client where name =
’Bob’. However, when the attacker enters Bob’ OR 1 = 1--, the query becomes

SELECT * FROM client WHERE name = ’Bob’ OR 1=1--’

The argument of the WHERE clause is read as the logical disjunction of ‘‘name =
’Bob’’’ and ‘‘1=1’’, and -- is read as the start of a comment. The second clause
evaluates to TRUE so the disjunction evaluates to TRUE and the entire client database
is selected.

Assume further that the database uses semicolons to terminate commands. The attacker
could insert additional commands with inputs like Bob’; drop table client --.
There are two classes of countermeasures against code injection attacks:

• Input validation – make sure that no unsafe input is used in the construction of a
command; this is a general topic covered in Section 10.7.4.

• Change the modus operandi – modify the way commands are constructed and executed
so that unsafe input can do no harm.
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Parametrized queries with bound parameters (DBI placeholders in Perl) follow the second
approach. Scripts are compiled with placeholders instead of user input. Commands are
called by transmitting the name of the procedure and the parameter values. During
execution, the placeholders are replaced by the actual input. Attempts to smuggle in
commands through user input will not work. User input will be treated as data by the
component executing the script. This defence reaches its limit when the parametrized
procedure contains eval() statements that accept user inputs as arguments. User input to
the script will be passed to such statements.

10.6 R A C E C O N D I T I O N S

Race conditions can occur when multiple computations access shared data in such a
way that their results depend on the sequence of accesses. This could happen when
multiple processes or multiple threads in a multi-threaded process access the same
variable. An attacker can try to exploit a race condition to change a value after it has
been checked by the victim but before it is used. This issue is known in the security
literature as TOCTTOU (see Section 4.1). We give a historic example from the 1960s
relating to CTSS, one of the early time-sharing operating systems. This is the start of our
story [72]:

Once, a user found that the password file was given as the ‘message of the day’.

What happened? In CTSS, every user had a unique home directory. When a user invoked
the editor, a scratch file was created in this directory. This scratch file had a fixed
name, (say) SCRATCH, independent of the name of the file that was edited. This was a
reasonable design decision. A user could only run one application at a time. No one else
could work in another user’s directory. Therefore, there was no need to provide more
than one scratch file for the editor. So far so good. Furthermore, system was a user with
its own directory. At some stage, several users were working as system managers and
it seemed convenient that they should be allowed to work (access the system directory)
concurrently. This feature was implemented. Now (Figure 10.5),

1. one system manager starts editing the message of the day: SCRATCH:=MESS,
2. then a second system manager starts editing the password file: SCRATCH:=PWD,
3. and the first manager stores the edited file, so MESS:= SCRATCH = PWD.

Lesson
Atomic transactions are an important abstraction when an operation has to
execute as a single unit. The operation should either execute as a whole, or
have no effect at all.
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Figure 10.5: Sharing the Scratch File in CTSS

This abstraction is implemented using locking mechanisms that protect access to the
resources used by the transaction. An example of a locking mechanism is the synchronized
keyword in Java. Protecting atomic transactions is important in a multi-threaded language
like Java, but Java leaves this task to the programmer. The disadvantage of adding
synchronization is a loss of performance.

10.7 D E F E N C E S
We could treat the problems encountered individually and look for specific solu-
tions, often limited to a given programming language or runtime system. This would
amount to penetrate-and-patch at a meta-level. Alternatively, we can look for general
patterns. In the case of insecure software, the pattern repeated is that of famil-
iar programming abstractions such as variable, array, integer, data & code, address
(resource locator), or atomic transaction being implemented in a way that can break the
abstraction.

Software security can be addressed in the processor architecture, in the way code is
executed, in the programming language we are using, in the coding discipline we adhere
to, through checks added at compile time, during software development, and during
deployment.

10.7.1 Prevention: Hardware

Buffer overrun attacks overwrite control information with user input. They can be pre-
vented by hardware features that protect control information. Intel’s Itanium processor
has a separate register for the return address. A processor architecture with a separate
secure return address stack (SRAS) is described in [151]. When adding protection mech-
anisms at the hardware layer, there is no need to rewrite or recompile programs. Only
certain processor instructions have to be modified. However, there are also drawbacks
beyond the need for new hardware. Existing software, e.g. code that uses multi-threading,
may work no longer.
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10.7.2 Prevention: Modus Operandi

A non-executable stack stops shellcode from being run from the stack. Code does not
have to be recompiled, but existing software that requires an executable stack will work
no longer.

It is to the attacker’s advantage when memory usage is predictable and elements needed
for an attack are always in the same location. Address space layout randomization can
then decrease the attacker’s chance of success. This technique has been used in BSD for
the stack layout to defend against argv[] attacks and in Windows for systems libraries as
a defence against return-to-libc attacks.

10.7.3 Prevention: Safer Functions

When developing software in C or C++, you have to avoid writing code susceptible to
buffer overruns. C is infamous for its unsafe string handling functions such as strcpy,
sprintf, or gets. Take the specification of strcpy as an example:

char ∗ strcpy( char ∗ strDest, const char ∗ strSource );
An exception is raised if source or destination buffer are null. The result is undefined if
strings are not null-terminated, and there is no check whether the destination buffer is
large enough. You are advised to replace the unsafe string functions with safer functions
where the number of bytes or characters to be handled can be specified, such as strncpy,
_snprintf, or fgets. The specification of the function strncpy is

char ∗ strncpy( char ∗ strDest, const char ∗ strSource, size_t count );
Using safer string handling functions does not eradicate buffer overruns by itself. You
still have to get your byte counts and your arithmetic right. You have to know the correct
maximal size of your data structures. This is straightforward when data structures are
used only within a function but may be difficult if data structures are shared between
programs. If you underestimate the required length of the buffer your code may become
unreliable and crash.

Besides safer string handling functions, there are also safer integer libraries that flag carry
overflows during arithmetic operations. Some compilers can be configured to check for
unsafe functions.

10.7.4 Prevention: Filtering

You can distinguish between ‘good’ and ‘bad’ inputs in two ways:

• White lists only allow good values. This is a conservative approach, but if you forget
about some specific legal input a legitimate action might be blocked.
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• Black lists, blocking all dangerous values such as <, >, &, = , %, :, ’, ’’ that might be
used to insert code. If you forget about a dangerous input, attacks may get through.

Watertight black lists are difficult to get:

1. You must know all dangerous inputs, e.g. all escape characters – escape characters
mark the transition from one context into another; the single quote in SQL starts/ends
the parsing of a string.

2. You must know all the encodings of characters a browser will accept, e.g. illegal
but syntactically correct UTF-8 encodings of characters or the more obscure UTF-7
format that was used in some XSS attacks.

3. You must know all the characters a component might convert to a dangerous
character; helpful components might convert language-specific characters to similar-
looking ASCII characters; e.g. Unicode characters 2039 (single left quotation mark
in French) and 304F (hiragana character ‘ku’) could be mapped to < (start of an
HTML tag).

White lists work well when valid inputs can be characterized by clear rules, preferably
expressed as regular expressions. This is not always feasible. In a bulletin board
application that only permits alphanumeric characters it is not possible to insert script
tags. However, neither is it possible for users to include image tags and post holiday snaps
with their entries. Filtering rules could also refer to the type of an input. For example, an
is_numeric() check could be applied when an integer is expected as input.

Dangerous characters can be sanitized by using safe encodings. For example, in HTML
<, > and & should be encoded as &lt;, &gt;, and &amp;. (There are more characters
that need HTML encoding.) Escaping places a special symbol, often a backslash, in front
of the dangerous character. For example, escaping single quotes will turn d’Hondt into
d\’Hondt. In PHP, you can call addslashes() for escaping user inputs.

Escaping has its pitfalls. Take this example2 that builds on addslashes() and the
GBK character set for simplified Chinese. GBK has one-byte and two-byte characters.
0xbf27 is not a valid two-byte character; interpreted as single-byte characters, we get
0xbf followed by 0x27 (’), displayed in GBK as ¡’. Adding a backslash (0x5c) in front
of the single quote gives 0xbf5c27. This happens to be the two-byte GBK character

(0xbf5c) followed by a single quote. The backslash has become part of another
character, the single quote has survived.

To apply filtering you have to know all sources of malicious input. Input to a software
component can come via input parameters, environment variables inherited from the
caller, or out of files read by the component. In web applications (Chapter 18) inputs can

2From http://shiflett.org/blog/2006/jan/addslashes-versus-mysql-real-escape-string
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come from GET parameters, POST parameters, URLs, referer, cookies, from a database,
from the filesystem, etc. Filters can be implemented in a wrapper (Section 7.6.8) to
protect legacy code you do not want to touch.

Lesson
Filtering remains a difficult problem, despite all the support for validating
inputs available in scripting languages. While it may be fairly straightfor-
ward to plug the obvious hole, perfect defences are often difficult to achieve.

10.7.5 Prevention: Type Safety
You can avoid software bugs by using a programming language that stops you from
making mistakes. Type safety guarantees the absence of untrapped errors [55]. Safety
guarantees rely on static checks and on dynamic runtime checks. Static type checking at
compile time examines whether the arguments an operand may get during execution are
always of the correct type. Static type checking is more complicated than dynamic type
checking during runtime, but it results in faster execution because the hard work is done
in advance.

In practice, type safety often means just memory integrity. The ultimate goal in software
security, though, is execution integrity [89]. With type safety we are getting close to
‘provably secure’ software, but there are some caveats. Type safety is difficult to prove
completely and problems may hide in the actual implementation (see Section 10.4.5). An
even greater challenge is the precise definition of what execution integrity means for a
given software component (e.g. an operating system). Hence, the type safety properties
you usually get are useful to have for security, but do not imply ‘security’.

10.7.6 Detection: Canaries
A change to the return address might be detected by placing a (random) check value as a
canary3 in the memory position just below the return address [73]. Before returning, the
system checks that the canary still has the correct value (Figure 10.6). To make use of
this technique, code has to be recompiled so that the insertion and subsequent check of
the canary are added to the object code. This technique can also be used on the heap for
protecting the boundary tag in chunks [237, 236].

10.7.7 Detection: Code Inspection
Manual code inspection is tedious and error prone, so automation is desirable. Code
inspection tools scan the code looking for potential security problems. A tool that uses

3Canaries were used in coal mines to detect gas leaks. The death of a canary was a warning for the miners to
evacuate the pit.
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check: new value = canary?
bad return address

new value
...
...

overrun
target buffer

return address
canary

saved frame pointer
target buffer

Figure 10.6: Canary Indicating an Attempted Buffer Overrun Attack on the Stack

meta-compilation for C source code is described in [14, 112]. It works as an expert
system that incorporates rules for known security issues. The rules look for patterns of
the form

untrustworthy source → sanitizing check → trust sink

and raises an alarm if untrustworthy input gets to a sink without proper checks. This
pattern can also be used to learn about new rules. If, say, code analysis indicates a check
but no sink, then probably the rules are not aware of a particular kind of sink. If this is
the case and a new sink is identified, corresponding rules can be added to the rule base.
Code inspection is good at catching known types of problem but does not guarantee that
there are no vulnerabilities, or that everything flagged as a problem is indeed a flaw. For
practical deployment of code analysis tools, it is essential to keep the false alarm rate low.

Taint analysis marks inputs from untrusted sources as tainted and stops execution if a
security-critical function (sink) receives tainted input. Propagating functions propagate
taint. Sanitizing functions produce clean output from tainted input. Table 10.1 gives the
information relevant when analyzing PHP scripts for SQL injection. Static taint analysis
is applied to source code at compile time so problems can be eliminated before deploying
the code. Dynamic taint analysis is performed at runtime and can capture data-dependent
taint propagation but can significantly reduce performance. The checks necessary are
normally included by the compiler.

taint
sources

uninitialized data if register_globals is enabled, superglobals
arrays $_GET, $_POST, $_COOKIES, $_SERVER, data from
internal sources such as database and files

propagating
functions

string functions substr(), str_replace(), preg_replace(),
. . . mysql_fetch_array(), mysql_fetch_assoc(),
mysql_fetch_row(), file(), fread(), fscanf(), . . .

sanitizing
functions

mysql_escape_string(), mysql_real_escape_string(),
int type cast

sinks mysql_query(), mysqli_query()

Table 10.1: PHP Sources, Propagators, Sanitizers, and Sinks for SQL Injection
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10.7.8 Detection: Testing

Testing is an integral part of software development normally used to demonstrate the
correctness of functionality. In security testing you have to show the correctness of
security functionality. This implies that you must have some idea about the potential
threats. The results of a threat analysis should provide input to security testing.

It is often said that testing cannot prove the absence of errors. This is correct, but
nor can security proofs. Proofs only guarantee the absence of the errors you have been
looking for in the abstract model used in the proof. The attacks presented in this chapter
break the abstractions relied on by software developers. In the same way, attackers
break the abstractions security proofs rely on. In software security, proofs amount to
symbolic testing.

In white-box testing the tester has access to source code and can use this information
for test planning. Black-box testing is performed without looking at the source code. A
famous instance of black-box testing is the security analysis of SNMP implementations
carried out by the Oulu University Secure Programming Group (see CERT advisory
CA-2002-03).

Lesson
You do not need source code for observing how memory is used or for testing
whether inputs are properly checked. Access to a high-level specification of
a software component and of its interfaces may actually be more helpful
than access to the source code.

An important general technique for security testing is data mutation (fuzzing) [121].
Data mutation sends malformed inputs to the program interfaces. Random inputs are
not particularly useful for security testing. They test how unexpected inputs are handled,
but usually not much code will be exercised as such inputs will be caught by simple
input checks or crash the code. (When code crashes, check whether the return address
has been overwritten by input data. This indicates that the code is vulnerable to buffer
overruns.) Partially incorrect inputs try to get past the first line of defence and exercise
more of the code.

For data containers data mutation might explore the following cases. The container
the program is creating already exists; software may crash if it tries to create a new
temporary file that already exists. The container the program tries to access does not
exist. Consider, for example, a NULL DACL in Windows; if there is no DACL, the access
permissions are not checked and access is granted. The program does not have access
to the container, or only restricted access. Set permissions so that the tested component
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has no access to the container, or only insufficient access rights. Test what happens if
the name of the container changes and test the code with filenames that are links to
other files.

For data, the test cases should include null (no value; what happens if an input field is
empty?), zero, wrong sign (which brought down the Ariane 5 rocket4), wrong type, out-
of-bounds input, and combinations of valid and invalid data (valid data to get past input
checks so that invalid data may actually be processed), character sets and encodings. Test
cases should include inputs that are too long and inputs that are too short. When the
application expects a fixed size input but gets less data, security problems may arise; see,
for example, the Sun tarball vulnerability described in [107]. For network code, test cases
should include replay of messages from previous protocol runs, out-of-sync messages,
fragmented messages, partially correct protocol runs (to check for something like TCP
SYN flooding attacks) and high traffic volumes.

10.7.9 Mitigation: Least Privilege

The principle of least privilege applies in two ways. When writing code, be sparing with
requiring privileges to run the code. If code running with few privileges is compromised,
the damage is limited. Least privilege comes into play again when deploying software
systems. Do not give your users more access rights than necessary. Do not activate
options you do not need.

The Unix sendmail program may illustrate the latter problem. System managers
configuring mail systems need to establish that messages arrive at their destination. It
would therefore help if the mail configuration on a network node could be checked and
modified remotely, without requiring the system manager to log in at that node. For this
purpose, sendmail includes a debug option. When this option is switched on at the
destination, a set of commands can be sent as the username in a mail message, which will
be executed by sendmail. This feature was one point of attack for the Internet worm
(Section 1.3.1).

Lesson
In the past, software was shipped in open configurations, with generous
access permissions and all features activated. It was up to the user to
harden the system by removing features and restricting access rights. Today,
software is more likely to be shipped in a locked-down configuration. Users
must switch on the features they want to use.

4http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html
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10.7.10 Reaction: Keeping Up to Date
When a software vulnerability is discovered, the affected code has to be fixed, the revised
version has to be tested, a patch has to be made available and has to be installed by the
users for the problem to be fixed. In other words, it is not just the software vendors who
have to react to problems found in their products. The user community must also take
action, and be aware of the problem in the first place. The investigations in [11] show
that most exploits of a given vulnerability occur well after countermeasures have been
made available. Figure 10.7 is taken from this report.
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Figure 10.7: Life Cycle of Intrusions

Patches might become a resource for potential attackers as they may give information
about the vulnerability that has been removed, which may still persist in other places. By
comparing previous and patched versions, attackers may learn about new vulnerability
classes. Patches may thus be obfuscated to hide the problem that has been fixed. There
is a lively discussion about the best strategies for vulnerability disclosure and patch
distribution.

10.8 F U R T H E R R E A D I N G
There is a good choice of books on writing secure software, e.g. [121, 227,
107, 119, 122]. Microsoft’s Security Development Lifecycle is described in [123].
Technical details of various buffer overflow attacks are covered in [95]. Phrack
magazine covers technical details of software vulnerabilities. For those interested
in the history of the field, the first paper on computer worms was published in
1982 [209]. A starting point for papers on race conditions in modern operating
systems is [37]. You will find an excellent introduction into the realities of
providing and using software security tools in [33].

If you are interested in the stories behind real attacks, try [217, 208, 84]. These are
factual accounts of attacks written for a general audience. You can learn about
new attacks through CERT advisories, mailing lists such as BugTraq (maintained
at www.securityfocus.com), and security bulletins from software vendors.



202 10 SOFTWARE SECURITY

10.9 E X E R C I S E S

Exercise 10.1 Will this while loop terminate? If yes, after how many iterations?
Does the result change if the variables are unsigned integers instead of signed
integers?

int i = 1;
int c = 1;
while (i › 0)
{
i = i * 2;
c++;
}

Exercise 10.2 Business software stores dates in the binary-coded decimal (BCD)
format. Decimal digits are encoded in four bits by their binary representation. A
byte stores two decimal digits. For which days of the month, for which months
of the year, and for which years is the binary value stored in a byte different from
its BCD value?

Exercise 10.3 Give a fix for the flaw in the code for concatenating two strings
discussed in Section 10.2.3.

Exercise 10.4 An alternative design for a canary mechanism places the NULL
value just below the return address. What is the rationale for this design decision?
When does this method meet its objectives, and what are its limitations?

Exercise 10.5 What is the flaw in the code snippet below that fills a buffer with
zeros? How can the problem be fixed?

char* buf;
buf = malloc(BUFSIZ);
memset ( buf, 0, BUFSIZ );

Exercise 10.6 You are given chunks whose length is a multiple of 16 bytes. For
each size of chunk, there is a separate bin. The following instruction takes the
size of a chunk in bytes and calculates the index of the bin the chunk belongs to:

#define bin_index(size)
( ( ( (unsigned int)(size) ) >> 3) - 2)

Why is this instruction vulnerable to a buffer overrun attack?

Exercise 10.7 Unix systems use environment variables to configure the
behaviour of utility programs. A program executing another program can set
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the environment variables for that program. How could this fact be used in an
attack? What defences should programmers apply?

Exercise 10.8 Consider a memory system that stores free blocks in a double-
linked list IDX in ascending order of size. A free block P of size S is inserted
using the frontlink command given below. Blocks are taken from the list using
unlink. How does this system react when a block that is already in the free list
is added again, and removed later?

#define frontlink(A, P, S, IDX, BK, FD)
...
[1] FD = start_of_bin(IDX);
[2] while ( FD != BK && S ‹ chunksize(FD) )

{
[3] FD = FD-›fd;

}
[4] BK = FD-›bk;
[5] P-›bk = BK;
[6] P-›fd = FD;
[7] FD-›bk = BK-›fd = P;
}

Exercise 10.9 Analyze how frontlink could be exploited in a memory cor-
ruption attack.

Exercise 10.10 Design a scalable protection mechanism for chunks that uses
canaries without having to store reference values for all canaries.

Exercise 10.11 You are given an archiving function that writes to a zip archive
storing files with their directory path. Extraction from the archive restores files
at the location given. How could an attacker working in user mode who has no
access to the root directory or to /etc, and who is not permitted to archive
/etc/passwd, overwrite this file?

Exercise 10.12 Define test cases for frontlink and unlink.

Exercise 10.13 Determine the sanitization functions and trust sinks in a taint
analysis of PHP scripts that addresses cross-site scripting attacks (Section 18.4).

Exercise 10.14 It has been claimed that full disclosure of software vulnerabilities
will improve software security. When a vulnerability is found, what steps have
to be taken so that the problem is eventually fixed at the end user’s site? Give
a step-by-step analysis discussing important issues that should be taken into
account. What are the advantages and/or disadvantages of full disclosure?





Chapter11
Bell–LaPadula Model

What is your security policy? What rules decide who gets access to your data?
To formulate a security policy, you have to describe the entities governed by
the policy and state the rules that constitute the policy. This could be done
informally in a natural language document. In practice, such documents
too often suffer from ambiguities, inconsistencies, and omissions. To avoid
these problems, you might prefer a formal statement of your security policy.
A security model does just that.

Security models play an important role in the design and evaluation of high-
assurance security systems. Their importance was noted in the Anderson
report [9]. The design process starts from a formal specification of the
policy the system should enforce, i.e. the security model, and a high-level
specification of the system itself. By adding more details to this high-level
specification you can arrive at a series of lower-level specifications. Then
you have to show that the high-level specification implements the desired
policy. For high assurance, a formal proof may be required. You also have
to show that the lower-level specifications are consistent with your policy,
but at these levels it becomes increasingly difficult to conduct formal proofs.

This chapter is intended as a case study to demonstrate this approach. The
Bell–LaPadula model was developed to capture multi-level security policies
for classified data. We will describe this model and use the Multics operating
system to show how the model can be used when analyzing a system designed
to enforce these policies. Chapter 12 will give a survey of other important
security models.
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OBJECT I VES

• Demonstrate how security policies can be formalized.
• Introduce the Bell–LaPadula model, and discuss its scope and limitations.
• Show how a formal model can be used when analyzing a security system.
• Present some important milestones in the history of computer security.

11.1 S TAT E M A C H I N E M O D E L S
State machines (automata) are a popular tool for modelling many aspects of computing
systems. We assume that the readers of this book are already familiar with this topic. State
machines are also the basis for some important security models. The essential features
of a state machine model are the concepts of a state and of state changes occurring at
discrete points in time. A state is a representation of the system under investigation at
one moment in time, which should capture exactly those aspects of the system relevant
to our problem. The state transition function defines the next state depending on the
present state and input. An output may also be produced.

A simple example of a state machine is a light switch. It has two states, on and off , and
one input, press, that moves the system from state on to state off , and from state off to
state on. A ticket vending machine is a more sophisticated example. Its state has to record
the ticket requested and the money still to be paid. The inputs are ticket requests and
coins. The outputs are the tickets and any change returned. An example from computer
science is a microprocessor. The state of the machine is given by its register contents and
the inputs are the machine instructions.

If you want to talk about a specific property of a system, such as security, using a state
machine model, you must first identify all the states that fulfil this property. You then
have to check whether all state transitions preserve this property. If this is the case and if
the system starts in an initial state having this property, then you can prove by induction
that the property will always hold.

11.2 T H E B E L L – L A PA D U L A M O D E L
The Bell–LaPadula model (BLP) is probably the most famous of the security models.
It was developed by Bell and LaPadula at the time of the first concerted efforts to
design secure multi-user operating systems. If those systems were to process classified
information at different security levels, they had to enforce the multi-level security (MLS)
policy described in Section 5.8.4. Users may only get information they are entitled to
according to their clearance.
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The BLP model is a state machine model capturing the confidentiality aspects of access
control [24]. Access permissions are defined both through an access control matrix and
through security levels. Security policies prevent information flowing downwards from a
high security level to a low security level. The BLP model only considers the information
flow that occurs when a subject observes or alters an object.

11.2.1 The State Set

Our description of the BLP model uses the notation introduced in Chapter 5. We have:

• a set of subjects S;

• a set of objects O;

• the set of access operations A = {execute, read, append, write} that directly mirror the
access rights of Section 5.3.2;

• a set L of security levels with a partial ordering ≤.

We want to use the state of the system to check its security, so the state set of our
model has to capture all current instances of subjects accessing objects and all current
permissions.

We can use a table to record which subject has access to which object at a given point
in time. The rows in the table are indexed by subjects, the columns by objects, and an
entry in the table gives the access operations the subject currently performs on the object.
In mathematical notation, such a table corresponds to a collection of tuples (s, o, a),
indicating that subject s currently performs operation a on object o. Tuples are elements
of the set S × O × A (the Cartesian product of the sets S, O, A), so a table corresponds to
an element of the power set P(S × O × A). It is customary to use the symbol b to denote
the table of current access operations in the BLP model, and B to denote the set of all
such tables.

The current access permission matrix is written as M = (Mso)s∈S, o∈O. We use M to
denote the set of all access permission matrices. The BLP model uses three functions for
assigning security levels to subjects or objects:

• fS : S → L gives the maximal security level each subject can have;
• fC : S → L gives the current security level of each subject;
• fO : O → L gives the classification of all objects.

The current level of a subject cannot be higher than its maximal level, hence fC ≤ fS

or, in words, fS dominates fC. You will see the reason for introducing fC in a moment.
The maximal security level is sometimes called the subject’s clearance. Other sources use
clearance only to denote the security levels of users.
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For convenience, we write f for the triple (fS, fC, fO) and use F ⊂ LS × LS × LO to denote
the set of all possible security level assignments. All of this leaves us with a rather
complicated state set B × M × F. An individual state is given by the three components
(b, M, f ). Defining the state set is indeed the major task in the BLP model. We do not
have to describe inputs, outputs, or the precise structure of state transitions, to give the
BLP security properties.

11.2.2 Security Policies

The BLP model defines security as the property of states. Multi-level security policies
allow a subject to read an object only if the subject’s security level dominates the
object’s classification. These multi-level security policies are also called mandatory
security policies.

The Simple Security Property

A first obvious property is the simple security property (ss-property):

A state (b, M, f ) satisfies the ss-property if, for each element (s, o, a) ∈ b where the access
operation a is read or write, the security level of the subject s dominates the classification
of the object o, i.e. fO(o) ≤ fS(s).

In the ss-property subjects act as observers. This policy captures the traditional no read-
up security policy that applies when a person requests access to a classified document.
However, we are in a computer system where subjects are processes. Thus, subjects have
no ‘memory’ like a person but they have access to memory objects. Subjects can act as
channels by writing into one memory object data they are reading from another memory
object. In this way, data may be declassified improperly (Figure 11.1). For example, an
attacker might insert a high-level Trojan horse that copies the content of higher-level
objects into low-level objects.

The ∗-Property

Transferring a policy from the pen-and-paper world into IT systems, we have struck on
an issue that did not exist before. In response we might also control write access, but

high

low
illegal information flow
to lower level

observe..

alter

Figure 11.1: Declassification of an Object Using a Subject as Channel
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simply preventing subjects from altering objects at lower levels raises a new problem.
With such a policy a high-level subject is unable to send any message to a low-level
subject. We can escape from this restriction in two ways:

• Temporarily downgrade a high-level subject. This is the reason for introducing the
current security level fC.

• Identify a set of subjects permitted to violate the ∗-property. These subjects are called
trusted subjects.

The first approach assumes that a subject forgets all it knew at a higher security level the
moment it is downgraded. This looks implausible if you view subjects as human beings,
but BLP is about modelling computers. There, subjects (processes) have no memory of
their own. The only things they ‘know’ are the contents of the objects (files) they are
allowed to observe. In this situation, a temporary downgrade does indeed solve the
problem. In an alternative interpretation, fS specifies a user’s clearance. Users are allowed
to log in below their clearance and fC indicates at which level a user actually has logged in.

The BLP model includes a no-write-down policy that refers to the current security level
fC, the so-called ∗-property (star-property1):

A state (b, M, f ) satisfies the ∗-property if, for each element (s, o, a) ∈ b where the access
operation a is append or write, the current level of the subject s is dominated by the
classification of the object o, i.e. fC(s) ≤ fO(o).

Furthermore, if there exists an element (s, o, a) ∈ b where the access operation a is append
or write, then we must have fO(o′) ≤ fO(o) for all objects o′ where (s, o′, a′) ∈ b and a′ is
read or write.

The illegal information flow downwards in Figure 11.1 is blocked by the ∗-property.

When adopting the second approach, the no-write-down policy only applies to subjects
that are not trusted. By definition, a trusted subject may violate the security policy.
Indeed, to focus your mind you may well use the adjective trusted precisely as an
indicator for system components that can hurt you. In contrast, if you have convinced
yourself that a subject will not hurt you, then call it trustworthy.

The Discretionary Security Property

The Orange Book uses discretionary access control for policies that control access based
on named users and named objects. Subjects holding an access permission may pass that
permission on to other subjects. In the BLP model, such policies are expressed by an
access control matrix and captured by the discretionary security property (ds-property):

A state (b, M, f ) satisfies the ds-property if, for each element of (s, o, a) ∈ b, we have a ∈ Mso.

1The first version of the model did not include this property yet, and the symbol ∗ was reputedly used as a
placeholder until a proper name for the policy would be found.
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11.2.3 The Basic Security Theorem
A state (b, M, f ) is called secure if the ss-, ∗-, and ds-property are satisfied. A transition
from state v1 = (b1, M1, f1) to state v2 = (b2, M2, f2) is called secure if both v1 and v2 are
secure. To see which checks must be performed to determine whether the new state is
secure, consider, for example, the ss-property. A state transition preserves the ss-property
if and only if:

1. each (s, o, a) ∈ b2 \ b1 satisfies the ss-property with respect to f2 (b2 \ b1 denotes the
set difference between b2 and b1);

2. if (s, o, a) ∈ b1 does not satisfy the ss-property with respect to f2, then (s, o, a) /∈ b2.

Preservation of the ∗-property and of the ds-property can be described in a similar way.
We are now in a position to state an important property of the BLP model.

Basic security theorem. If all state transitions in a system are secure and if the initial state
of the system is secure, then every subsequent state will also be secure, no matter what
inputs occur.

A formal proof of this theorem would proceed by induction over the length of input
sequences. The proof would build on the fact that each state transition preserves security
but would not refer to the specific BLP security properties.

Lesson
The basic security theorem is a consequence of state machine modelling, not
a consequence of the specific security properties chosen in the BLP model.

In practice, the basic security theorem limits the effort needed to verify the security of a
system. You can check state transitions individually to show that they preserve security
and you have to identify a secure initial state. As long as you start your system in this
secure initial state, it will remain secure.

11.2.4 Tranquility
In a paper in 1987 [164], McLean triggered a heated debate about the value of the BLP
model by putting forward a system that contained a state transition which

• downgraded all subjects to the lowest security level,
• downgraded all objects to the lowest security level,
• entered all access rights in all positions of the access control matrix M.

The state reached by this transition is secure according to the BLP definitions. Should
such a state be regarded as secure? As the BLP model says that this is the case, does BLP
capture security correctly? There are two opinions.
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• The case against BLP (McLean): Intuitively, a system that can be brought into a state
where everyone is allowed to read everything is not secure. Therefore, the BLP model
has to be improved.

• The case for BLP (Bell): If the user requirements call for such a state transition, then
it should be allowed in the security model. If it is not required, then it should not
be implemented. This is not a BLP problem but a problem of correctly capturing the
security requirements.

At the root of this disagreement is a state transition that changes access rights. Such
changes are certainly possible within the general BLP framework, but the originators of
the model were actually contemplating systems where access rights are fixed. The property
that security levels and access rights never change is called tranquility. Operations that
do not change access rights are called tranquil.

11.2.5 Aspects and Limitations of BLP

BLP is a very significant security model. It played an important role in the design of
secure operating systems and almost every new model was compared to it. In this context
it is helpful to separate several features of the BLP model.

1. The descriptive capabilities of the model: the BLP state set describes all current access
operations and all current access permissions.

2. The security policies are based on security levels and an access control matrix. It is easy
to introduce other structures in their place. For example, to model access control in a
situation where a subject is allowed to access objects only through certain programs,
an S × S × O access control structure is more appropriate (cf. Section 8.5.1).

3. The actual security properties: the BLP model has the ss-property, ∗-property, and
ds-property. The Biba model (Section 12.1) differs from BLP mainly in its security
properties.

4. The specific solution: e.g. the state transitions in the Multics interpretation
(Section 11.3).

The fact that the BLP model defines security in terms of access control is a major reason for
its popularity. Therefore, it is not too difficult to express the actions of an operating system
or a database management system in terms of BLP. However, although it is an important
security model, BLP does not cover all aspects of security. It has been criticized for:

• only dealing with confidentiality, not with integrity;
• not addressing the management of access control;
• containing covert channels.

The absence of integrity policies is a feature of the BLP model, rather than a flaw. As
you will see in the next chapter, it is quite reasonable for a security model to limit its
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ambitions. BLP has no policies regulating the modification of access rights. As a matter of
fact, BLP was originally intended for systems where there is no change of security levels.

A covert channel is an information flow that is not controlled by a security mechanism
[53]. Object names are a blatant covert channel if low-level subjects may see high-level
object names and are only denied access to the contents of the objects. In the BLP
model, you could use the access control mechanism itself to construct a covert channel.
Information could flow from a high security level to a low security level as follows:

• A low-level subject creates an object dummy.obj at its own level.

• Its high-level accomplice (a Trojan horse?) either upgrades the security level of
dummy.obj to high or leaves it unchanged.

• Later, the low-level subject tries to read dummy.obj. Success or failure of this request dis-
closes the action of the high-level subject. One bit of information has been transmitted
from high to low.

Telling a subject that a certain operation is not permitted constitutes information
flow. This leads to interesting solutions in database security (polyinstantiation), where
an object may have different values at different security levels to avoid this kind of
problem [79, 157].

Lesson
Sometimes it is not sufficient to hide only the contents of objects. Their
existence may also have to be hidden.

11.3 T H E M U LT I C S I N T E R P R E TAT I O N O F B L P
The Multics (Multiplexed Information and Computing Service) operating system was
the object of an ambitious research project aiming to develop a secure, reliable, etc.,
multi-user operating system [25, 187]. Much research on security, like BLP, was linked
to the Multics project. An overview of the protection mechanisms in Multics is given in
[187, Chapter 4]. Because of its wide-ranging goals and security requirements, Multics
became too cumbersome for some project members, who then created something much
simpler, viz. Unix. The history of the two systems highlights the balance between usability
and security as far as commercial success is concerned. The last system running Multics
was decommissioned in 2000.

Studying Multics gives us a chance to see how a security model, the Bell–LaPadula model
in this case, is used in the design of a secure operating system. As a formal model for
access control, the BLP model is very well suited to capturing the security requirements
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of operating systems. As a matter of fact, it was developed just for that purpose. The
inductive definition of security in the BLP model makes it relatively easy to build a secure
system. We only need to define state transitions properly to guarantee security. To prove
that Multics is secure, we have to find a description of Multics that is consistent with the
BLP model. We will follow by and large the presentation given in [25] to show how BLP
concepts are mapped into Multics.

11.3.1 Subjects and Objects in Multics
The subjects in Multics are processes. Each subject has a descriptor segment that
contains information about the process, including information about the objects the
process currently has access to. For each of these objects, there is a segment descriptor
word (SDW) in the subject’s descriptor segment. The format of the SDW is given in
Figure 11.2. The SDW contains the name of the object, a pointer to the object, and
indicator flags for read, execute, and write access. These indicators refer to the access
attributes specified in Section 5.3.2. The security levels of subjects are kept in a process-
level table and a current-level table. The active segment table keeps track of all active
processes. Only active processes have access to an object.

segment-id ptr

r:  on e:  off w:  on

Figure 11.2: Multics Segment Descriptor Word

Objects in Multics are memory segments, I/O devices, etc. Objects are organized hierar-
chically in a directory tree. Directories are again segments. Information about an object,
like its security level or its access control list (ACL), are kept in the object’s parent
directory. To change an object’s access control parameters and to create or delete an
object requires write or append access right to the parent directory.

To access an object, a process has to traverse the directory tree from the root directory
to the target object. If a directory in this path is not accessible to the process, the target
object is not accessible either. In other words, an unclassified object in a secret directory
cannot be read by an unclassified user. Hence, it makes little sense to place objects into
directories with a higher security level and we always require that the security level of
an object dominates the security level of its parent directory. This property is called
compatibility. You have to deal with the same issue in modern operating systems. If you
want to make your files accessible to other users, you also have to get the access control
settings on the directory path right.

We now have all the necessary information to identify the components of the BLP state
set with data in the Multics systems tables and descriptor segments.
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• The current access b: stored in the SDWs in the descriptor segments of the active
processes; the active processes are found in the active segment table.

• The access control matrix M: represented by the ACLs. For each object, the ACL is
stored in the object’s parent directory; each ACL entry specifies a process-id and the
access rights the process-id has on that object.

• The level function f : the security levels of subjects are stored in the process-level table
and the current-level table; the security level of an object is stored in its parent directory.

11.3.2 Translating the BLP Policies
Section 5.3.2 has already introduced the Multics access attributes for data segments and
directory segments. We also explained how these access attributes correspond to the
access rights of the Bell–LaPadula model. As a reminder, we restate the access attributes
for data segments:

access attribute access right
read r
execute e ,r
read and write w
write a

The BLP security properties now have to be rephrased in terms of the security levels of
processes and data segments and of the indicators stored in the SDWs. For example, the
∗-property is written as follows:

For any SDW in the descriptor segment of an active process, the current level of the process:

• dominates the level of the segment if the read or execute indicator are on and the write
indicator is off;

• is dominated by the level of the segment if the read indicator is off and the write indicator
is on;

• is equal to the level of the segment if the read indicator is on and the write indicator is on.

Figure 11.3 indicates how compliance with the ∗-property is verified. The security level
Lc of the current process is held in the current-level table. The contents of the descriptor
segment base register (DSBR) point to the head of the descriptor segment of the current
process. This descriptor segment happens to contain the SDW for an object where the
access attribute is write only. Hence, the write indicator is on and the read indicator is
off. The object’s security level Lo is taken from its parent directory and compared with
Lc to check that Lc ≥ Lo holds.

11.3.3 Checking the Kernel Primitives

Finally, a set of kernel primitives has to be specified. These kernel primitives are the
state transitions in an abstract model of the Multics kernel. We have to show that they
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current process

current-level table

current process Lc

DBSR

descriptor segment

segment-id ptr

r:  off e: – w: on

parent

seg-id Lo

segment-id

current-level Lc is dominated by level Lo

Figure 11.3: The ∗-Property for Access Attribute Write (only)

preserve the BLP security policies. Then the preconditions of the basic security theorem
hold and we have a proof for the ‘security’ of Multics. Of course, this is not a complete
proof of security. We would still have to show that the implementation of the kernel
primitives, and in the end their execution on a given hardware platform, complies with
their specification.

We choose get-read to look at a kernel primitive in detail. The get-read primitive takes as
its parameters a process-id and a segment-id. The operating system has to check whether:

• the ACL of segment-id, stored in the segment’s parent directory, lists process-id with
read permission;

• the security level of process-id dominates the security level of segment-id;

• process-id is a trusted subject or the current security level of process-id dominates the
security level of segment-id.

If all three conditions are met, access is permitted. If no SDW for segment-id exists,
a corresponding SDW is added to the descriptor segment of process-id with the read
indicator turned on. If a SDW for segment-id already exists in the descriptor segment of
process-id, the read indicator in this SDW is turned on. If any of the three conditions is
not met, access is denied.

We list some further primitives that were proposed for implementation in the Multics
kernel:

• release-read – a process releases an object; the read flag in the corresponding SDW is
turned off; if thereafter no indicator is on, the SDW is removed from the descriptor
segment.

• give-read – a process grants read access to another process (discretionary access
control).
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• rescind-read – a process withdraws a read permission given to another process.

• create-object – a process creates an object; the operating system has to check that write
access on the object’s directory segment is permitted and that the security level of the
segment dominates the security level of the process.

• delete-object – when deleting an object, the same checks are performed as in create-
object.

• change-subject-current-security-level: the operating system has to check that no security
violations are created by the change; this kernel primitive, along with the primitive
change-object-security-level, was not intended for implementation (tranquillity).

Ideally, processors are developed so that their instruction sets dovetail with the kernel
primitives of the operating system. Conversely, kernel primitives can be designed to
match the support provided by existing processors.

11.4 F U R T H E R R E A D I N G
The original reports on the Bell–LaPadula model have been republished in the
Journal of Computer Security [24]. A framework for policies on changing access
rights in the Bell–LaPadula model is discussed in [165]. The research literature is
full of contributions extending the scope of the BLP model while still enforcing
its MLS policies.

The outcome of computer security research aimed at the first multi-user operating
systems is treated comprehensively in [80]. A further survey of protection tech-
niques is compiled in [146]. Comments on Multics security and, in particular,
on the complexity of security management and the complexity of assessing the
correctness of the design can be found in [196]. Lessons learned during the work
on Multics security are discussed in [138].

11.5 E X E R C I S E S

Exercise 11.1 Describe the ∗-property in terms of the basic access modes Alter
and Observe.

Exercise 11.2 Identify further covert channels in the BLP model.

Exercise 11.3 Write a short essay stating your position in the Bell vs McLean
debate.
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Exercise 11.4 Bell–LaPadula does not specify policies for changing access
rights. What policies would you suggest?

Exercise 11.5 Rewrite the ss-property for the Multics operating system.

Exercise 11.6 Specify the checks that have to be made for get-write and
release-write kernel primitives.

Exercise 11.7 Specify the checks that have to be made for create-object and
delete-object kernel primitives.

Exercise 11.8 Specify the checks that have to be made for the change-subject-
current-security-level kernel primitive.





Chapter12
Security Models

The Bell–LaPadula model was designed to capture one specific security
policy. It was, however, so successful that for a time it was treated as ‘the
model of security’ in general. Not surprisingly it was found lacking in this
respect, but this should not be taken as a criticism of the model itself. Rather,
security requirements are application-dependent and there exist applications
that are substantially different from the military environment multi-level
security comes from.

This chapter will take a wider look at security models. We will add models for
integrity policies (Biba, Clark–Wilson) and for policies that, in contrast to the
tranquility assumption of the BLP model, dynamically change access rights
(Chinese Wall). We will also use the term ‘security model’ in a wider sense.
The Clark–Wilson model, for example, does not formalize a single specific
policy but provides a descriptive framework that can serve as a blueprint for
formalizing a wider class of security policies. Furthermore, we will discuss
models that are of interest primarily from a theoretical point of view as they
provide a basis for proving some fundamental facts about access control.

OBJECT I VES

• Present a wider range of modelling techniques for access control.
• Introduce basic concepts relevant to commercial security policies.
• Provide theoretical foundations for analyzing access control problems.
• Appreciate that some decision problems in security are inherently

undecidable.
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12.1 T H E B I B A M O D E L
Consider integrity policies that label subjects and objects with elements from a lattice
(L, ≤) of integrity levels and that prohibit the corruption of ‘clean’ high-level entities by
‘dirty’ low-level entities. Information may only flow downwards in the integrity lattice.
As in the BLP model, we will only contemplate information flows caused directly by
access operations. ‘Clean’ and ‘dirty’ are used as shorthand for high integrity and low
integrity. The concrete meaning of integrity levels would depend on the given application.

The Biba model [35] formalizes this type of integrity policy. It is a state machine model
similar to BLP, and we will use the mathematical notations introduced in the previous
chapter. The assignment of integrity levels to subjects and objects is given by the functions
fS : S → L and fO : O → L. Unlike BLP, there is no single high-level integrity policy.
Instead, there are a variety of approaches. Some even yield mutually incompatible policies.

12.1.1 Static Integrity Levels
Mirroring the tranquillity property of the BLP model, we can state policies where integrity
levels never change. The following two policies prevent clean subjects and objects from
being contaminated by dirty information.

Simple integrity property (no write-up). If subject s can modify (Alter) object o, then
fS(s) ≥ fO(o).

Integrity ∗-property (no read-down). If subject s can read (Observe) object o, then s can have
write access to some other object o′ only if fO(o′) ≤ fO(o).

These two integrity properties are the dual of the mandatory BLP policies and are the
basis for claims that integrity is the dual of confidentiality.

12.1.2 Dynamic Integrity Levels
The next two integrity properties automatically adjust the integrity level of an entity if it
comes into contact with dirty information. The integrity level inf(fS(s), fO(o)) is the great-
est lower bound of fS(s) and fO(o). It is well defined as we have a lattice of integrity levels.

Subject low watermark property. Subject s can read (Observe) an object o at any integrity
level. The new integrity level of the subject is inf(fS(s), fO(o)), where fS(s) and fO(o) are the
integrity levels before the operation.

Object low watermark property. Subject s can modify (Alter) an object o at any integrity
level. The new integrity level of the object is inf(fS(s), fO(o)), where fS(s) and fO(o) are the
integrity levels before the operation.

These are examples of policies with dynamically changing access rights. As integrity levels
can only be lowered, there is a danger that all subjects and objects eventually sink to
the lowest integrity level. Note that organizations working with MLS policies observed a
corresponding tendency. Objects had a way of percolating up to System High over time.
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12.1.3 Policies for Invocation

The Biba model can be extended to include an access operation invoke. A subject can
invoke another subject, e.g. a software tool, to access an object. This is a step towards
formulating access control at intermediate layers. What kind of policy should govern
invocation? To make sure that invocation does not bypass the mandatory integrity
policies we could add the

Invoke property. Subject s1 can invoke subject s2 only if fS(s2) ≤ fS(s1).

Subjects are only allowed to invoke tools at a lower level. Otherwise, a dirty subject
could use a clean tool to access, and contaminate, a clean object (see Section 6.3.6).

Alternatively, we may use tools for this very purpose: dirty subjects may have access to
clean objects, but only if they use a clean tool to do so (controlled invocation). This
tool may perform a number of consistency checks to ensure that objects remain clean.
Integrity protection mechanisms in operating systems that use protection rings (Section
5.6.4) fall into this category. In this scenario, a more privileged subject should not use
less privileged tools and we get the

Ring property. A subject s can read objects at all integrity levels. It can only modify objects
o with fO(o) ≤ fS(s); it can invoke a subject s′ only if fS(s) ≤ fS(s′).

Quite obviously, the last two properties are contradictory. It will depend on the
application which property is more appropriate.

12.2 C H I N E S E WA L L M O D E L

The Chinese Wall model by Brewer and Nash captures access rules in a consultancy
business. Analysts have to avoid conflicts of interest when dealing with different clients
[44]. Informally, conflicts arise because clients are direct competitors in the same market
or because of the ownerships of companies. Analysts are governed by the following
security policy:

There must be no information flow that causes a conflict of interest.

The state set of the Bell–LaPadula model needs some slight adaptations to address this
policy.

• The set of companies is denoted by C.

• The analysts are the subjects and S is the set of subjects.

• The objects are items of information. Each object refers to a single company. The set
of objects is denoted by O.
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• All objects concerning the same company are collected in a company data set. The
function y : O → C gives the company data set of each object.

• Conflict of interest classes indicate which companies are in competition. The function
x : O → P(C) gives the conflict of interest class for each object, i.e. the set of all
companies that should not learn about the contents of the object.

• The security label of an object o is the pair (x(o), y(o)).

• Sanitized information has been purged of sensitive details and is not subject to access
restrictions. The security label of a sanitized object is (∅, y(o)).

Conflicts of interest arise not only from objects currently accessed but also from objects
that have been accessed in the past. We therefore need a data structure that records the
history of the subjects’ actions. This purpose is served by a Boolean S × O matrix N,
with

Ns,o =
{

TRUE, if the subject s has had access to object o,
FALSE, if the subject s has never had access to object o.

Setting Ns,o = FALSE for all s ∈ S and all o ∈ O gives an initial state that fulfils the
security properties below.

The first security policy deals with direct information flow. We want to prevent a subject
from being exposed to a conflict of interest. Therefore, access is granted only if the object
requested belongs to

• a company data set already held by the user, or
• an entirely different conflict of interest class.

Formally, we can express this as follows.

ss-property. A subject s is permitted to access an object o only if for all objects o′ with
Ns,o′ = TRUE, y(o) = y(o′) or y(o) /∈ x(o′).

On its own, this property does not guarantee compliance with the stated security policy.
Indirect information flow is still possible. Consider the following example (Figure 12.1).
Two competitors, A and B, have their accounts with the same Bank. Analyst_A, dealing
with A and the Bank, updates the Bank portfolio with sensitive information about
company A. Analyst_B, dealing with company B and the Bank, now has access to
information about a competitor’s business. Therefore, also write access is regulated.

∗-property. A subject s is granted write access to an object o only if s has no read access to
an object o′ with y(o) �= y(o′) and x(o′) �= ∅.

Write access to an object is only granted if no other object belonging to a different
company data set that contains unsanitized information can be read. In the example of
Figure 12.1 both write operations are blocked by the ∗-property. The ∗-property stops
unsanitized information from flowing out of a company data set.
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Figure 12.1: Indirect Information Flow within a Conflict of Interest Class

In contrast to the BLP model, where the assignment of access rights is usually assumed to
be static, we have here a model where access rights have to be reassigned in every state
transition.

12.3 T H E C L A R K – W I L S O N M O D E L
Clark and Wilson address the security requirements of commercial applications [66].
They argue that these requirements are predominantly about (data) integrity, i.e. about
preventing unauthorized modification of data, fraud, and errors. This is a rather wide
definition of integrity. In fact, the authors even include issues of concurrency control,
which are beyond our scope of security. Integrity requirements are divided into two parts:

• internal consistency, which refers to properties of the internal state of a system and
can be enforced by the computing system;

• external consistency, which refers to the relation of the internal state of a system to
the real world and has to be enforced by means outside the computing system, e.g. by
auditing.

The general mechanisms for enforcing integrity are as follows:

• Well-formed transactions – data items can be manipulated only by a specific set of
programs; users have access to programs rather than to data items.

• Separation of duties – users have to collaborate to manipulate data and to collude to
circumvent the security system.

Separation of duties is pervasive in the operation of a secure system. It is reasonable
to require that different persons develop, test, certify and operate a system. In turn, it
may be required that during operation different persons have to collaborate to enable
a transaction.

The Clark–Wilson model uses programs as an intermediate layer between subjects and
objects (data items). Subjects are authorized to execute certain programs. Data items can
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be accessed through specific programs. Defining the set of programs that may access data
of a certain type is a general mechanism in software engineering (see abstract data types,
object-oriented programming), which can be gainfully employed in constructing secure
systems. It is testimony to the influence of the BLP model that Clark and Wilson write
about ‘labelling subjects and objects with programs instead of security levels’.

In the Clark–Wilson model, integrity means ‘being authorized to apply a program to
a data item that may be accessed through this program’. Clark and Wilson stress the
difference between military and commercial security requirements. There is some truth
in the observation that the relative importance of confidentiality and integrity is not
the same in these two worlds, but there will be military applications with integrity
requirements and commercial applications with confidentiality requirements. For us,
there is a much more relevant distinction. The access operations in the Clark–Wilson
model are programs performing complex application-specific manipulations. Access
operations in the BLP model are simple and generic, as befits an operating system. We
are observing the difference between a general purpose operating system (BLP) and an
application-oriented IT system (Clark–Wilson).

The following points are considered in the Clark–Wilson model (see Figure 12.2):

1. Subjects have to be identified and authenticated.
2. Objects can be manipulated only by a restricted set of programs.
3. Subjects can execute only a restricted set of programs.
4. A proper audit log has to be maintained.
5. The system has to be certified to work properly.

In a formalization of this model, the data items governed by the security policy are called
constrained data items (CDIs). Inputs to the system are captured as unconstrained data

user

authentication
authorization

TP

must be validatedintegrity checks
permissions checked

append

UDI
CDIbCDIa

log
CDI

Figure 12.2: Basic Principles of Access Control in the Clark–Wilson Model
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items (UDIs). Conversion of UDIs to CDIs is a critical part of the system which cannot
be controlled solely by the security mechanisms in the system. CDIs can be manipulated
only by transformation procedures (TPs). The integrity of an item is checked by integrity
verification procedures (IVPs).

Security properties are defined through five certification rules, suggesting the checks
that should be conducted so that the security policy is consistent with the application
requirements:

CR1 IVPs must ensure that all CDIs are in a valid state at the time the IVP is run
(integrity check on CDIs).

CR2 TPs must be certified to be valid, i.e. valid CDIs must always be transformed into
valid CDIs; each TP is certified to access a specific set of CDIs.

CR3 The access rules must satisfy any separation-of-duties requirements.

CR4 All TPs must write to an append-only log.

CR5 Any TP that takes a UDI as input must either convert the UDI into a CDI or reject
the UDI and perform no transformation at all.

Four enforcement rules describe the security mechanisms within the computer system that
should enforce the security policy. These rules have some similarity with discretionary
access control in the BLP model.

ER1 For each TP, the system must maintain and protect the list of entries (CDIa,CDIb,
…) giving the CDIs the TP is certified to access (capability of the TP).

ER2 For each user the system must maintain and protect the list of entries (TP1,TP2,
…) specifying the TPs the user can execute (capability of the user).

ER3 The system must authenticate each user requesting to execute a TP.

ER4 Only a subject that may certify an access rule for a TP may modify the respective
entry in the list. This subject must not have execute rights on that TP.

The Clark–Wilson model is a framework and guideline (‘model’) for formalizing security
policies rather than a model of a specific security policy. It stresses the importance of
management approval of the processes and of the security policies to be followed in an
organization. The model refers to this step as certification.

12.4 T H E H A R R I S O N – R U Z Z O – U L L M A N
M O D E L
The Bell–LaPadula model does not state policies for changing access rights or for the
creation and deletion of subjects and objects. The Harrison–Ruzzo–Ullman (HRU)
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model defines authorization systems that address these issues [114]. In the HRU model,
there is:-

• a set of subjects S;

• a set of objects O;

• a set of access rights R;

• an access matrix M = (Mso)s∈S, o∈O; the entry Mso ⊆ R specifies the rights subject s has
on object o.

There exist six primitive operations for manipulating the set of subjects, the set of objects,
and the access matrix:

• enter r into Mso • create subject s • create object o

• delete r from Mso • delete subject s • delete object o

The HRU model has a simple programming language for writing commands. Commands
have the format

command c(x1, . . . , xk)
if r1 in Ms1,o1 and
if r2 in Ms2,o2 and

...

if rm in Msm,om

then
op1

op2
.
..

opn

end

The indices s1, . . . , sm and o1, . . . , om are subjects and objects that appear in the parameter
list (x1, . . . , xk). The conditions check whether particular access rights are present. The
list of conditions may be empty. If all conditions hold, the sequence of basic operations
is executed. Each command contains at least one operation. For example, the command

command create_file(s, f )
create f
enter o into Ms,f

enter r into Ms,f

enter w into Ms,f

end

is used by subject s to create a new file f so that s is the owner of the file (access right o)
and has read and write permission to the file (access rights r and w). The owner s of file
f grants read access to another subject p with
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command grant_read(s, p, f )
if o in Ms,f

then enter r in Mp,f

end

An authorization system is defined by a set of commands and by its state, captured by the
access matrix. The effect of a command is recorded as a change to the access matrix. We
denote the modified access control matrix by M′. The HRU model can capture security
policies regulating the allocation of access rights. To verify that a system complies with
such a policy, you have to check that there exists no way for undesirable access rights to
be granted.

A state of an authorization system is said to leak the right r if there exists a command c that
adds the right r into a position of the access matrix M that previously did not contain r.
More formally, there exist s and o so that r /∈ Ms,o but r ∈ M′

s,o.

A state of an authorization system, i.e. an access matrix M, is said to be safe with respect to
the right r if no sequence of commands can transform M into a state that leaks r.

Verifying compliance with a security policy in the HRU model thus comes down to
verifying safety properties (see also Section 12.6). The following theorem holds.

Theorem. Given an authorization system with access matrix M and a right r, verifying the
safety of M with respect to the right r is an undecidable problem [114].

You now find yourself in the unenviable position of not being able to tackle the safety
problem in its full generality. You have to restrict the HRU model to have a better chance
of success. For example, you could only allow mono-operational systems in which each
command contains a single operation.

Theorem. Given a mono-operational authorization system, an access matrix M, and a right
r, verifying the safety of M with respect to the right r is decidable [114].

Limiting the size of the authorization system is another way of making the safety problem
tractable.

Theorem. The safety problem for arbitrary authorization systems is decidable if the number
of subjects is finite [155].

These results on the decidability of the safety problem reveal glimpses of the third design
principle (Section 3.4.3). If you design complex systems that can only be described
by complex models, it becomes difficult to find proofs of security. In the worst case
(undecidability), there does not exist a universal algorithm that verifies security for all
problem instances. If you want verifiable security properties, you are better off limiting
the complexity of the security model. Such a model may not describe all desirable security
properties, but you may gain efficient methods for verifying ‘security’. In turn, you would
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be advised to design simple systems that can be adequately described in the simple model.
If there is too wide a gap between system and model, proofs of security in the model will
not carry much weight.

Lesson
The more expressive a security model is, both with respect to the security
properties and the systems it can describe, the more difficult it usually is to
verify security properties.

12.5 I N F O R M AT I O N - F L O W M O D E L S
In the Bell–LaPadula model, information can flow from a high security level to a low
security level through a covert channel. Information-flow models consider any kind
of information flow, not only the direct information flow through access operations
modelled in BLP. Informally, a state transition causes an information flow from an object
x to an object y, if we may learn more about x by observing y. If we already know x, no
information can flow from x. Information flow may be explicit or implicit:

• Explicit information flow – observing y after the assignment y:= x; tells you the
value of x.

• Implicit information flow – observing y after the conditional statement IF x=0 THEN
y:=1; may tell you something about x even if the assignment y:= 1; has not been
executed. For example, if y = 2, you know that x �= 0.

12.5.1 Entropy and Equivocation

Information theory can give precise and quantitative definitions of information flow.
The amount of information derivable from an observation is formally defined by the
entropy of the object (variable) we are observing. Let {x1, . . . , xn} be the values a variable
x can take, and let p(xi) be the probability of x taking the value xi, 1 ≤ i ≤ n. The entropy
H(x) of x is defined as

H(x) = −
n∑

i=1

p(xi) log2 p(xi).

For example, let x take all values between 0 and 2w − 1 with equal probability. Then

H(x) = −
2w∑
i=1

1
2w

log2

(
1

2w

)
= w.

That is, a binary word of length w carries w bits of information if all words of length w
are equally likely.
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The information flow from x to y is measured by the change in the equivocation
(conditional entropy) of x given the value of y. Let x and y be two variables that can take
the values {x1, . . . , xn} and {y1, . . . , ym} with probabilities p(xi) and q(yj). Let p(xi, yj)
be the joint probability of x and y taking the values xi and yj, and let p(xi | yj) be the
conditional probability of x taking the value xi if y takes the value yj. The equivocation
Hy(x) of x given the value of y is defined as

Hy(x) = −
n∑

i=1

m∑
j=1

p(xi, yj) log2 p(xi|yj).

From p(xi, yj) = p(xi|yj)q(yj) we get

Hy(x) = −
m∑

j=1

q(yj)
m∑

i=n

p(xi|yj) log2 p(xi|yj).

As an example, consider the assignment IF x=0 THEN y:=1; from above. Let x and
y be binary variables, with y initially set to 0 and both values of x equally likely. If y = 0
still holds after the assignment, x must have been 1; if y = 1, x must have been 0. We get

p(0|0) = p(1|1) = 0 and p(1|0) = p(0|1) = 1, hence Hy(x) = 0.

Indeed, after performing the assignment and observing y, we know the exact value of
x. All information in x has flowed to y. If x can take the values 0, 1, 2 with equal
probability, we get q(0) = 2

3 , q(1) = 1
3 ,

p(0|0) = p(1|1) = p(2|1) = 0, p(1|0) = p(2|0) = 1
2

, p(0|1) = 1, and Hy(x) = 2
3

.

12.5.2 A Lattice-Based Model

The components of the information-flow model are:

• a lattice (L, ≤) of security labels;

• a set of labelled objects;

• the security policy – information flow from an object with label c1 to an object with
label c2 is permitted only if c1 ≤ c2, and any information flow violating this rule
is illegal.

A system is called secure if there is no illegal information flow. The advantage of such a
model is that it covers all kinds of information flow. The disadvantage is that it becomes
more difficult to design secure systems. For example, it has been shown that checking
whether a given system is secure in the information-flow model is an undecidable problem.

We can further distinguish between static and dynamic enforcement of information-flow
policies. In the first case, the system (program) is considered as a static object. The
second case considers the system under execution. We may find that some information
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flow may be possible in theory (and therefore should be detected in the static analysis)
but will never occur during execution. Therefore, static analysis tends to produce too
restrictive systems.

Non-interference models are an alternative to information-flow models. They provide
a different formalism to describe what a subject knows about the state of the system.
Subject s1 does not interfere with subject s2 if the actions of s1 have no influence on s2’s
view of the system. To prove that there can be no information flow between security
levels – we will use high and low to keep the presentation simple – you have to show
that for every execution involving high and low subjects there exists another execution
involving only low subjects, and the effects of the two executions are indistinguishable
for low subjects.

Currently, information-flow and non-interference models are areas of research rather
than the basis of a practical methodology for the design of secure systems.

12.6 E X E C U T I O N M O N I TO R S
The previous two sections have shown that certain security problems are undecidable.
There cannot be a general algorithm that solves all instances of these problems. Now
our theoretical investigations will follow a different route. We will start from the typical
access control mechanisms in use today and characterize the policies these mechanisms
can enforce. After all, a policy is useful in practice only if it can be enforced reasonably
efficiently. We consider three classes of security policies [205]:

• access control policies – define restrictions on the operations principals can perform
on objects;

• information-flow policies – restrict what principals can infer about objects from observ-
ing system behaviour (see Section 12.5);

• availability policies – restrict principals from denying others the use of a resource.

Access control should prevent insecure behaviour of a target system. The mechanisms
deployed today in firewalls, operating systems, middleware architectures such as CORBA,
or in web services have in common that they monitor the execution of that target system
and step in if an execution step is prohibited by the given security policy. The term
execution monitoring (EM) was introduced in [205] for enforcement mechanisms that
monitor the execution steps of a target system and terminate the target’s execution if a
violation of the security policy is about to occur.

Execution monitors have two important limitations. First, they do not have a model
of the target system, so they cannot predict the outcomes of possible continuations
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of the execution they are observing. Compilers and theorem-provers, for example,
work by analyzing a static representation of the target and can deduce information
about all of its possible executions. These methods are therefore not EM mechanisms.
Secondly, EM mechanisms cannot modify a target before executing it. In-line reference
monitors and reflection in object-oriented systems thus do not fall into the execution
monitor category.

12.6.1 Properties of Executions

Executions of the target system are sequences of steps. The precise nature of these steps
depends on the actual target. Typical examples are memory access operations and file
access operations. Let � denote the set of all finite and infinite sequences of steps, and
�S the sequences representing executions of the target system S. A security policy p is a
predicate on the set of executions. A target S satisfies the security policy p if p(�S) equals
TRUE. The safety property of the HRU model, but also the BLP, Biba, and Chinese Wall
policies, are all examples of security policies.

Let � denote a set of executions. A security policy p that can be enforced by an execution
monitor must be specified by a predicate of the form

p(�) : (∀σ ∈ � : p̂(σ ))

where p̂ is a predicate on individual executions. This observation provides a link to
the literature on linear-time concurrent program verification [7]. There, a set � ⊂ � of
executions is called a property if membership of an element is determined by the element
alone, not by other members of the set. A security policy must therefore be a property to
have an enforcement mechanism in EM.

Not every security policy is a property. Some security policies cannot be defined as a
predicate on individual executions. For example, to check compliance with information-
flow policies you have to show that given execution is indistinguishable from another
which is guaranteed to contain no information flow (see the discussion at the end of
Section 12.5).

Furthermore, not every property is EM enforceable. Enforcement mechanisms in EM
cannot look into the future when making decisions on an execution. Consider an
execution σ that complies with the security policy but has a prefix σ ′ that does not.
Informally, the execution goes through an ‘insecure’ state but would be permissible in
the end. As a simple example, consider a policy that requires a matching ‘close file’ for
every ‘open file’ command. An execution monitor has to prohibit an insecure prefix and
stop executions that would be secure. For such policies, EM would be a conservative
approach that stops more executions than necessary.
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12.6.2 Safety and Liveness
Among the properties of executions there are two broad classes of particular significance.

• Safety properties – nothing bad can happen. (The ‘safety’ property of access matrices
in the HRU model meets this description.)

• Liveness properties – something good will happen eventually.

There exists a close relationship between safety and the policies that can be enforced
by execution monitors. We formally define safety properties by characterizing their
complements. In the definition, the first i steps of a sequence σ ∈ � will be denoted by
σ [..i]. A property � is called a safety property if, for every finite or infinite execution σ ,

σ /∈ � ⇒ ∃i(∀τ ∈ � : σ [..i]τ /∈ �)

holds [143]. If an execution σ is unsafe, the execution has to have some point of no return
i after which it is no longer possible to revert to a safe continuation of the execution.

If the set of executions for a security policy is not a safety property, then there exists
an unsafe execution that could be extended by future steps into a safe execution. As
discussed above, such properties (policies) do not have an enforcement mechanism from
EM. So, if a policy is not a safety property, it is not EM enforceable. Put the other way
round, execution monitors enforce security policies that are safety properties. However,
not all safety properties have EM enforcement mechanisms. This leads us to the following
classification.

• Information-flow policies do not define sets of executions that are properties; thus,
information flow cannot be a safety property and in turn cannot be enforced by EM.

• Availability policies define properties but not safety properties; any partial execution
could be extended so that the principal would get access to the resource in the end.

• Availability policies that refer to a maximum waiting time (MWT) [100] are safety
properties; once an execution has waited beyond the MWT, any extension will naturally
also be in violation of the availability policy; MWT policies cannot be enforced by EM
as they refer to time.

• Access control policies define safety properties; partial executions ending with an
unacceptable operation being attempted will be prohibited.

12.7 F U R T H E R R E A D I N G
Surveys of research on security models are given in [146] and [166]. The
original paper by Clark and Wilson is highly recommended reading [66]. An
implementation of the Clark–Wilson model using capabilities is described in
[136]. A slight extension of the Biba model providing mandatory integrity
controls that can be used to implement Clark–Wilson is proposed in [152].
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A detailed treatment of the decidability properties of the HRU model and of
information-flow models, with definitions, proofs, and more theorems, is given in
[80]. For non-interference models, refer to Goguen and Meseguer’s seminal paper
[101]. Applications of security models in the security evaluation of smart cards
are described in [36, 204].

12.8 E X E R C I S E S

Exercise 12.1 The Biba model can capture a variety of integrity policies. Give
examples of application areas where

• a policy with static integrity labels,
• a policy with dynamically changing integrity labels,
• the ring property

is appropriate.

Exercise 12.2 Can you use Bell–LaPadula and Biba to model confidentiality and
integrity simultaneously? Can you use the same security labels for both policies?

Exercise 12.3 Can you fit the Chinese Wall Model into the Bell–LaPadula
framework?

Exercise 12.4 Should the ∗-property in the Chinese Wall model refer to current
read access only or to any past read access?

Exercise 12.5 Give a formal model that describes the Clark–Wilson enforcement
rules.

Exercise 12.6 Let x be a 4-bit variable that can take all values between 0 and
15 with equal probability. Given the assignment IF x›7 THEN y:=1; and the
initial value y = 0, compute the conditional entropy Hy(x).

Exercise 12.7 Develop a security model for documents that are declassified after
30 years.

Exercise 12.8 In a medical information system that controls access to patient
records and prescriptions:

• doctors may read and write patient records and prescriptions;
• nurses may read and write prescriptions only but should learn nothing about

the contents of patient records.

How can you capture this policy in a lattice model that prevents information flow
from patient records to prescriptions? In your opinion, which security model is
most appropriate for this policy?





Chapter13
Security Evaluation

Users of a security-sensitive system need some kind of assurance that they
are using adequately secure products. They need answers to two questions.
Is the security service provided by the system adequate for meeting the
given security requirements? This question refers to the functionality of the
system. Have the security services been implemented properly so that one
can rely on them? This question refers to the assurance that the system is
providing the expected service. For answers to these questions, users could

1. rely on the word of the manufacturer/service provider,
2. test the system themselves,
3. or rely on an impartial assessment by an independent body (evaluation).

Users have to be security experts to be able to take the second option. Most
users are not in this position. So some kind of security evaluation is the only
alternative to taking a security product on trust. This chapter will explore
security evaluation and discuss whether current evaluation schemes have
any benefits to offer.

OBJECT I VES
• Appreciate the fundamental problems any security evaluation process has

to address.
• Propose a framework for analyzing evaluation criteria.
• Give an overview of the major evaluation criteria.
• Assess the merits of evaluated products and systems.
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13.1 I N T R O D U C T I O N
An organization aware of the need to protect itself has to decide which security systems
to deploy. This is ultimately an executive decision, but the decision-makers are unlikely
to have profound security expertise themselves. They will need advice, both on the
functionality of the security services to deploy and on suitable products. Advice could
come in the form of a best practice recommendation for a business sector. It will tell
decision-makers in which direction to turn when selecting security services. Advice can
come in the form of test reports on security products. A report should inform the reader
about the findings of the tests, but also about the tests conducted.

We will structure our discussion of security evaluation by asking six questions.

What is the Purpose of the Exercise?

We follow the terminology of the Orange Book and distinguish between:

• evaluation – assessing whether a product has the security properties claimed for it; this
is the test of a security product;

• certification – assessing whether an (evaluated) product is suitable for a given applica-
tion; this is the best practice recommendation;

• accreditation – deciding that a (certified) product will be used in a given application;
this is the executive decision.

These are the terms from the Orange Book. Other sources may use different terms or use
the same terms differently. The names given to the various activities are therefore less
important than the fundamental differences in their respective goals.

We will focus on the security evaluation of products and systems. Systematic tests need a
test plan. Evaluation criteria capture the procedures to follow when performing security
tests. The Trusted Computer Security Evaluation Criteria (TCSEC, Orange Book) [224]
were the first evaluation criteria to gain wide acceptance. Several criteria have since been
developed to react to perceived shortcomings of the Orange Book and to the changes
in the use of IT systems. The desire to unify the different criteria that have arisen has
led to the Common Criteria [58]. Important milestones in the development of security
evaluation criteria have been the

• Information Technology Security Evaluation Criteria (ITSEC) [70];
• Canadian Trusted Computer Product Evaluation Criteria (CTCPEC) [53];
• Federal Criteria [177].

What is the Target of the Evaluation?

Evaluation criteria refer to products, i.e. off-the-shelf components that can be used in a
variety of applications and have to meet generic security requirements (e.g. an operating
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system), and to systems, i.e. collections of products assembled to meet the specific
requirements of a given application. In the first case, one has to agree on a set of generic
requirements. The security classes of the Orange Book and the protection profiles of the
Federal and Common Criteria try to achieve just that. In the second case, requirements
capture and analysis becomes part of each individual evaluation. ITSEC was suited to
the evaluation of systems.

The distinction between products and systems highlights a fundamental dilemma in
security evaluation: users are not security experts but have specific security requirements.
Evaluation of off-the-shelf products with respect to generic criteria capturing typical
requirements can be a useful decision criterion for a non-expert, but the products may
not address the actual security requirements. Evaluation of customized systems will
address the perceived requirements, but you now ask the non-expert user to confirm that
the security requirements have been properly captured. If further help is provided at this
stage, you start to cross the borderline between a security evaluation intended for the
general public and the job of a security consultant who advises a particular client.

What is the Method of the Evaluation?

The credibility of evaluation very much hinges on the methods used in evaluation. An
evaluation method should prevent two situations from arising:

1. An evaluated product is later found to contain a serious flaw.
2. Different evaluations of the same product disagree in their assessment of the product.

Repeatability (re-evaluation by the same team gives the same result) and reproducibility
(re-evaluation by a different team gives the same result) are therefore often stated as
requirements of an evaluation methodology.

Security evaluation can be product-oriented or process-oriented. Product-oriented (inves-
tigational) methods examine and test the product. They may tell more about the product
than process-oriented methods, but different evaluations may well give different results.
Is this a problem for credibility?

Process (audit) oriented methods look at documentation and the process of product
development. They are cheaper and it is much easier to achieve repeatable results, but
the results themselves may not be very valuable. The first version of the European
Information Technology Security Evaluation Manual [71] was a prime example of
repeatability overpowering content. Is this a problem for credibility?

What is the Organizational Framework of the Evaluation Process?

Security evaluations should arrive at independent, commonly accepted verdicts on the
properties of products. An independent evaluation facility can either be a government
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agency (the approach taken originally in the US) or a properly accredited private
enterprise (e.g. in Europe [219]). In both schemes, a government body backs the
evaluation process and issues the certificates. Accredited evaluation facilities might issue
certificates themselves. You might even imagine schemes where empirical evidence for
the expertise of the evaluators de facto replaces a formal accreditation.

A government body may charge for an evaluation or conduct evaluations as a free public
service. If all evaluations are conducted by a single government agency, then it will
hardly be necessary to create further organizational overheads to ensure the consistency
of evaluations. However, there is still the danger of interpretation drift (criteria creep)
over time. Evaluations may be slow due to lack of competition and limited resources at
the evaluation facility. There may also be a problem of staff mobility when experienced
evaluators leave for higher salaries in the private sector.

In an environment with private evaluation facilities, certification agencies have to enforce
the consistency of evaluations (repeatability, reproducibility) between different facilities
and may confirm the verdict of the evaluation facility. The precise formulation of
the criteria becomes more important to avoid differing interpretations. Evaluations are
paid for and commercial pressures should lead to faster evaluations and the resources
required from the sponsor of an evaluation may be more predictable. On the other hand,
precautions have to be taken so that commercial pressures do not lead to incorrect results.

Further organizational aspects concern the contractual relationship between the sponsor
of an evaluation, the product manufacturers and the evaluation facility. Moreover, there
have to be appropriate procedures for the start of an evaluation, for the issuing of
evaluation certificates, and for the re-evaluation of modifications to evaluated products.

What is the Structure of the Evaluation Criteria?

Security evaluation aims to give assurance that a product/system is secure. Security and
assurance may be related to:

• functionality – the security features of a system, e.g. discretionary access control,
mandatory access control, authentication, auditing.

• effectiveness – are the mechanisms used appropriate for the given security require-
ments? For example, is user authentication by password sufficient or does the
application require a cryptographic challenge-response protocol?

• assurance – the thoroughness of the evaluation.

The Orange Book defines evaluation classes for a given set of typical Department of
Defense requirements. Therefore, all three aspects are considered simultaneously in the
definition of its evaluation classes. ITSEC provided a flexible evaluation framework that
can deal with new security requirements. Therefore, the three aspects were addressed
independently.
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What are the Costs and Benefits of Evaluation?

In addition to any fee paid for an evaluation, indirect costs also have to be considered,
such as the time devoted to producing the evidence required for evaluation, to the training
of evaluators, and to liaising with the evaluation team. When considering the cost of
evaluation, one may again distinguish between the evaluation of off-the-shelf products
and of customized systems. In the first case, the evaluation sponsor can potentially spread
the cost between a larger number of customers. In the second case, the sponsor, or a
single customer, may have to bear all the costs on their own.

Evaluations may be required by government procurement guidelines or be mandated by
law or certain industry standards. Evaluations may also improve a product in the users’
perception.

13.2 T H E O R A N G E B O O K
Work towards security evaluation guidelines started in the US in 1967. It led to the
Trusted Computer Security Evaluation Criteria (Orange Book), the first guidelines for
evaluating security products (operating systems). Although these efforts were concen-
trated in the ‘national security’ sector, the authors of the Orange Book wanted to create
a more generally applicable document that provides:

• a yardstick for users to assess the degree of trust that can be placed in a computer
security system;

• guidance for manufacturers of computer security systems;

• a basis for specifying security requirements when acquiring a computer security system.

Security evaluation examines the security-relevant part of a system, i.e. the trusted
computing base (TCB; Section 6.1). The access control policies of the Orange Book
are already familiar from the Bell–LaPadula model (Section 11.2), discretionary access
control and mandatory access control based on a lattice of security labels. A reference
monitor verifies that subjects are authorized to access the objects they request.

High assurance is linked to simple TCBs, structured design methodologies, formal
methods, and competent and properly supported systems management. Bell–LaPadula
is an obvious candidate for a formal model capturing the Orange Book security policies,
but other models have also been used in Orange Book evaluations. It is assumed that
greater simplicity in the TCB will allow more comprehensive analysis. Complex systems
will therefore generally fall into the lower evaluation classes. The Orange Book was used
for security evaluations performed by a national security organization.

The evaluation classes of the Orange Book address typical patterns of security require-
ments that existed at the time the criteria were drafted. Specific security feature
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requirements and assurance requirements are combined in the definition of evalua-
tion classes. There are four security divisions and seven security classes. The security
classes are defined incrementally. All requirements of one class are automatically included
in the requirements of all higher classes. Products in higher security classes provide more
security mechanisms and higher assurance through more rigorous analysis. The four
divisions are as follows:

D Minimal Protection

C Discretionary Protection (‘need to know’)
C1 Discretionary Security Protection
C2 Controlled Access Protection

B Mandatory Protection (based on ‘labels’)
B1 Labelled Security Protection
B2 Structured Protection
B3 Security Domains

A Verified Protection
A1 Verified Design

C2 systems make users individually accountable for their actions, enforcing discretionary
access control at the granularity of single users. C2 was regarded as the most reasonable
class for commercial applications [91] although intrinsically giving rather weak assurance
guarantees. Most major vendors offered C2-evaluated versions of their operating systems
or database management systems. Class C2 has played an important role in establishing
a baseline for operating system security.

Division B is intended for products that enforce mandatory access control policies on
classified data. Testing and documentation have to be much more thorough than for
division C. An informal or formal model of the security policy is required. All flaws
uncovered in testing must be removed. Class B1 is not very demanding with respect
to the structure of the TCB. Hence, complex software systems such as multi-level
secure Unix systems – System V/MLS (from AT&T) and operating systems from vendors
like Hewlett-Packard, DEC, and Unisys – or database management systems – Trusted
Oracle 7, INFORMIX-Online/Secure, and Secure SQL Server (from Sybase) – received
B1 certificates.

Class B2 increases assurance requirements. A formal model of the security policy and a
Descriptive Top Level Specification (DTLS) of the system are required, as is a modular
system architecture. The TCB shall provide distinct address spaces to isolate processes,
with support at the hardware level. A covert channel analysis has to be conducted
and events potentially creating a covert channel have to be audited. Security testing
shall establish that the TCB is relatively resistant to penetration. The Trusted XENIX
operating system from Trusted Information Systems was rated B2.
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B3 systems are highly resistant to penetration. Many of the new elements in class B3
have to do with security management. For higher assurance, a convincing argument
shall establish the consistency between the formal model of the security policy and the
informal DTLS. Various versions of XTS-300 (and XTS-200) from Wang Government
Services had been rated B3. XTS-300 was a multi-level secure operating system (STOP)
running on a Wang proprietary x86 hardware base.

Class A1 is functionally equivalent to B3. It achieves the highest assurance level through
the use of formal methods. Formal specification of policy and system, together with
consistency proofs, show with a high degree of assurance that the TCB is correctly
implemented. Evaluation for class A1 requires:

• a formal model of the security policy;

• a Formal Top Level Specification (FTLS), including abstract definitions of the functions
of the TCB;

• consistency proofs between model and FTLS (formal, where possible);

• that the TCB implementation has informally shown to be consistent with the FTLS;

• a formal analysis of covert channels (informal for timing channels) – continued
existence of covert channels has to be justified and bandwidth may have to
be limited.

A1 rated products include the SCOMP operating system and network components such
as MLS LAN (from Boeing) and the Gemini Trusted Network Processor. When the
Orange Book was written, consideration was given to defining even higher assurance
classes beyond A1, with more requirements on system architecture, testing, formal
specification and verification, and trusted design environment. Given the difficulties of
evaluating complex software products even to lower assurance levels, there was little
incentive to progress work in this direction.

13.3 T H E R A I N B O W S E R I E S
The Orange Book is part of a collection of documents on security requirements, security
management and security evaluation published by the US National Security Agency and
National Computer Security Center, originally developed for the evaluation of systems
that process classified government data. The documents in this series are known by the
colour of their cover and, as there are plenty of them, they became known as the rainbow
series. The concepts and terminology introduced in the Orange Book were adapted to
the specific aspects of database management systems and of computer networks in the
Trusted Database Management System Interpretation (Lavender/Purple Book) [176] and
in the Trusted Network Interpretation (Red Book) [175].
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13.4 I N F O R M AT I O N T E C H N O L O G Y S E C U R I T Y
E V A L U AT I O N C R I T E R I A
The harmonized European Information Technology Security Evaluation Criteria [70]
were the result of Dutch, English, French and German activities in defining national
security evaluation criteria. A first draft was published in 1990 and the Information
Technology Security Evaluation Criteria (ITSEC) were formally endorsed as a Recom-
mendation by the Council of the European Union on 7 April 1995. As a European
document, ITSEC exists in a number of translations, which adds to the difficulties of
uniformly interpreting the criteria.

ITSEC is a logical progression from the lessons learned in various Orange Book inter-
pretations. The Orange Book was found to be too rigid, and ITSEC strives to provide a
framework for security evaluation that can deal with new sets of security requirements
when they arise. The link between functionality and assurance is broken. The criteria
apply to security products as well as to security systems. The term Target of Evaluation
(TOE) was introduced in ITSEC. It stands for the product or system submitted for
security evaluation.

The sponsor of the evaluation determines the operational requirements and threats. The
security objectives for the TOE further depend on laws and other regulations. They
establish the required security functionality and evaluation level. The security target
specifies all aspects of the TOE that are relevant for evaluation. It describes the security
functionality of the TOE, possibly also envisaged threats, objectives, and details of
security mechanisms to be used. The security functions of a TOE may be specified
individually or by reference to a predefined functionality class.

Seven evaluation levels, E0 to E6, express the level of confidence in the correctness
of the implementation of security functions. E0 stands for inadequate confidence. For
each evaluation level, the criteria enumerate items to be delivered by the sponsor to
the evaluator. The evaluator shall ensure that these items are provided, taking care that
any requirements for content and presentation are satisfied, and that the items clearly
provide, or support the production of, the evidence that is called for. Close cooperation
between the sponsor/developer and the evaluator is recommended.

European security evaluation criteria responded to the problems exposed by the Red
Book, and also the Trusted Database Interpretation, by separating function and assurance
requirements and considering the evaluation of entire security systems. The flexibility
offered by ITSEC may sometimes be an advantage, but it also has its drawbacks.
Remember the fundamental dilemma highlighted in Section 3.4.3. How can users who
are not security experts decide whether a given security target is right for them?
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13.5 T H E F E D E R A L C R I T E R I A
The next link in the evolutionary chain of evaluation criteria are the US Federal Criteria
[177]. They took the next logical step, giving more guidance in the definition of evaluation
classes but retaining some degree of flexibility. They stick to the evaluation of products
and to the linkage between function and assurance in the definition of evaluation classes.
They try to overcome the rigid structure of the Orange Book through the introduction of
product-independent protection profiles. A protection profile has five sections:

• Descriptive elements – the ‘name’ of the protection profile, including a description of
the information protection problem to be solved.

• Rationale – the fundamental justification of the protection profile, including threat,
environment, and usage assumptions, a more detailed description of the information
protection problem to be solved, and some guidance on the security policies that can
be supported by products conforming to the profile.

• Functional requirements – these establish the protection boundary that must be pro-
vided by the product, such that expected threats within this boundary can be countered.

• Development assurance requirements – for all development phases from the initial
design through to implementation, including the development process, the development
environment, operational support and development evidence.

• Evaluation assurance requirements – specify the type and intensity of the evaluation.

13.6 T H E C O M M O N C R I T E R I A
For security evaluation to be commercially attractive, evaluation results should be
recognized as widely as possible. A first step in this direction is agreement on a common
set of evaluation criteria. Thus, various organizations in charge of national security
evaluations came together in the Common Criteria Editing Board (CCEB) and produced
the Common Criteria [58] in an effort to align existing and emerging evaluation criteria
such as TCSEC, ITSEC, CTCPEC, and the Federal Criteria. In 1999, the Common
Criteria (CC) became the international standard (ISO 15048). The CCEB has been
succeeded by the CC Implementation Board (CCIB).

The CC merge ideas from their various predecessors. (As an unfortunate consequence
of this merger, the reader is faced with a very voluminous document.) The CC are
applicable for the security evaluation of products or systems. The generic term ‘Target of
Evaluation’ is used again. The CC abandon the strict separation of functionality classes
and assurance levels adopted in ITSEC and follow the Federal Criteria in using protection
profiles similar to predefined security classes. The Security Target (ST) expresses security
requirements for a specific TOE, e.g. by reference to a protection profile. The ST is the
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basis for any evaluation. The Evaluation Assurance Level (EAL) defines what has to be
done in an evaluation.

13.6.1 Protection Profiles
To guide decision-makers, information about security objectives, rationale, threats and
threat environment, and further application notes are collected in a Protection Profile
(PP). This is a (reusable) set of security requirements that meet specific user needs.
Figure 13.1 gives the structure of a PP. User communities should develop their own PPs
to capture their typical security requirements. There exists a process for evaluating new
profiles and for maintaining an official register of PPs.

Common Criteria Protection Profile

PP introduction
PP identification

PP overview

TOE description

TOE security environment

Assumptions

Threats

Organizational security policy

Security objectives
Security objectives for TOE

Security objectives for environment

TOE security functional requirements

TOE security assurance requirements

Security requirements for the IT environment

TOE security
requirementsIT security

requirements

PP applications notes

Security rationale
Security objectives rationale

Security requirements rationale

Figure 13.1: Common Criteria Protection Profile

Today, there exist PPs for a wide variety of systems. They can be generic, e.g. for an
infrastructure product such as an operating system, or specific to a single application.
The CC evaluation of Windows mentioned in Chapter 8 used the Controlled Access
Protection Profile version 1.d that has its origins in the Orange Book class C2. At
the other end of the spectrum, there are PPs for taxi on-board computers (in Dutch)
or for electronic health cards (some in German). The scope of PPs spans single-level
and multi-level operating systems, database management systems, firewalls, intrusion
detection systems, trusted platform modules, biometric verification mechanisms, postage
meters, automatic cash dispensers, electronic wallets, secure signature-creation devices,
machine readable travel documents, and several aspects of smart card security.
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13.6.2 Evaluation Assurance Levels
EALs specify the duties of the developer of a TOE and of the evaluator. There are seven
incrementally defined EALs:

EAL1 – functionally tested The tester receives the TOE, examines the documentation
and performs some tests to confirm the documented functionality. Evaluation should not
require any assistance from the developer. The outlay for evaluation should be minimal.

EAL2 – structurally tested The developer provides test documentation and test
results from a vulnerability analysis. The evaluator reviews the documentation and
repeats some of these tests. The effort required from the developer is small and a
complete development record need not be available.

EAL3 – methodically tested and checked The developer uses configuration man-
agement, documents security arrangements for development, and provides high-level
design documentation and documentation on test coverage for review. This level is
intended for developers who already follow good development practices but do not want
to implement further changes to their practices.

EAL4 – methodically designed, tested, and reviewed The developer provides low-
level design documentation and a subset of security functions (TCB) source code for
evaluation. Secure delivery procedures have to be in place. The evaluator performs an
independent vulnerability analysis. Usually EAL4 is the highest level that is economically
feasible for an existing product line. Developers have to be ready to incur additional
security-specific engineering costs.

EAL5 – semiformally designed and tested The developer provides a formal model
of the security policy, a semiformal high-level design and functional specification as well
as the full source code of the security functions. A covert channel analysis has to be
conducted. The evaluator performs independent penetration testing. For evaluation at
this level, it helps if the TOE has been designed and developed with the intention of
achieving EAL5 assurance. The additional costs of evaluation beyond the costs of the
development process itself ought not to be large.

EAL6 – semiformally verified design and tested The source code must be well
structured and the access control implementation (reference monitor) must have low
complexity. The evaluator has to conduct more intensive penetration testing. The cost of
evaluation should be expected to increase.

EAL7 – formally verified design and tested The developer provides a formal func-
tional specification and a high-level design. The developer has to demonstrate or prove
correspondence between all representations of the security functions. The security func-
tions must be simple enough for formal analysis. This level can typically only be achieved
with a TOE that has a tightly focused security functionality and is amenable to extensive
formal analysis.
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13.6.3 Evaluation Methodology

The Common Evaluation Methodology (CEM) specifies all the steps that have to be
followed when validating the assurance requirements in an ST [57]. The Common Cri-
teria Recognition Agreement (CCRA) provides recognition of evaluations performed in
another country. The CEM addresses assurance levels EAL1 to EAL4. Only these assur-
ance levels are mutually recognized. Higher assurance levels are not necessarily accepted
in other countries. In the US, the Common Criteria Evaluation and Validation Scheme
(CCEVS) is the national programme for performing security evaluations according to the
Common Criteria. There is a validation body that approves participating security testing
laboratories, provides technical guidance and validates the results of security evaluations.

The CEM establishes the general evaluation framework. Evaluation methods can be
specific to individual areas. For example, a security evaluation of a smart card might
examine physical tamper resistance and resilience to side-channel attacks. In an evaluation
of an operating system such an analysis would be out of place. Within the CC evaluation
process, industry working groups may codify the state of the art in area-specific evaluation
methods. This is, for example, the case in the smart card sector.

13.6.4 Re-evaluation

Certificates apply to a particular version and a particular configuration of a product. In
an actual installation, it is likely that a different configuration and probably already a
different version is used so that, strictly speaking, the certificate offers no direct security
guarantees. Hence, there are continually attempts to develop evaluation methodologies
that make it easy to re-evaluate a new version of a previously evaluated product with
reduced cost and effort. The RAMP scheme in the rainbow series is one such example.

13.7 Q U A L I T Y S TA N D A R D S

The ultimate step towards audit-based evaluation would be to assess how a product
is developed without any reference to the product itself. A company then becomes a
‘certified producer of secure systems’. Such an approach has proven popular in the area
of quality control. Standards like ISO 9000 advise organizations on how to put into place
internal quality management and external quality assurance to vouch for the quality of
their products. Some vendors claim that being registered under an ISO 9000 quality seal
is a better selling argument than a security certificate for a particular product and that
security evaluation should move in this direction.

The attractions such a proposal has for companies developing secure systems are evident.
The costs of evaluation are much reduced. If the developers of secure systems win in this
proposal, will the users of secure systems lose out? This is not a foregone conclusion.
After all, a certificate is no guarantee that a system cannot be broken. Therefore, you
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have to assess each evaluation scheme on its own merits to decide whether individually
evaluated products offer more security than products from accredited developers.

System operators have to strike a balance between cost, productivity, and security. Any
two of these factors tend to pull against the third. IT security is not a mere technological
issue. Concentrating efforts on security evaluation whilst neglecting the operational
management of security will not increase security. Such considerations may persuade
users to look into quality standards as an alternative to security evaluation.

13.8 A N E F F O R T W E L L S P E N T ?
Security evaluation according to the CC is required in several countries by public
sector customers. Major operating system and database management system vendors
offer evaluated products. However, outside the government sector there has been little
enthusiasm for evaluated products. Security evaluation has been criticized as an expensive
government-driven process [91]. It has been noted that the CC evaluation process has
a poor record of actually detecting security vulnerabilities in products.1 You will be
stretched to find many security advisories on Windows or Linux that have come out of
CC evaluations.

There are exceptions, though, and in certain markets CC evaluations are pursued by most
vendors. At the time of writing, the smart card sector is one example. Here, CC security
evaluation has been a success story. One can come across comments from industry that
investment in evaluation has been worth the effort. The following factors may have
contributed to this situation.

Security is a primary application of smart cards. Their functionality is relatively fixed.
It is not part of the normal business model to patch the software on cards deployed
in the field. Hence, evaluation results are not out of date very quickly and there is
time to amortize the cost of evaluation. Re-evaluation of a product may be cheaper
than a full evaluation when the TOE is not too complex and changes are incremental.
High-assurance evaluation has revealed flaws in products. There is a general market
demand as smart cards are often deployed in regulated sectors. Examples are government
regulations for citizen cards, and self-regulation in the credit card sector. All of this
creates a virtuous cycle. Industry sees the value of the process and contributes to it, e.g.
by leading the design of PPs for smart cards. In turn, this increases industry acceptance.

In contrast, the evaluation of operating systems has not been a success story. Operating
systems provide an infrastructure service so security competes with other criteria.
Functionality is complex and evolving and there is a wide range of user requirements.

1Conference report on ACSAC 2004 in the IEEE Cipher newsletter:
http://www.ieee-security.org/Cipher/ConfReports/2005/CR2005-ACSAC.html
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Security evaluation is thus addressing a moving target. Evaluations are out of date almost
by default. The code base comes from different sources and there is security-relevant
interaction with other software components, e.g. with the browser. Running an evaluated
operating system may on its own tell little about the security of the IT system it is part of.
High-assurance evaluation is hardly feasible. Lower-assurance evaluation hardly finds
flaws. In such a situation, it is not surprising when users conclude that quality assurance
about vendors is more telling than the evaluation of their products.

13.9 S U M M A R Y
We have considerable experience in evaluating security components, and a growing list of
evaluated products. Evaluation of products works best for well-defined, limited security
functionalities. At the time of the Orange Book, these were provided by discretionary
and mandatory access control. Today, such a situation is found in the area of smart
cards. However, security problems can arise in parts of the system that do not appear
security-critical at first sight, written by developers with no security expertise.

We have some experience in managing security in security-aware organizations. We have
audit teams with expertise in evaluating the status of an organization. However, can end
users manage their end systems?

The targets for security evaluation are moving to the application layer. In terms of
technology, note that current attacks such as SQL injection, XSS, XSRF or JavaScript
hijacking (Chapter 18) are exploiting flaws in application software. In terms of organi-
zation, there is the challenge of managing application security components. Applications
are heavily customized. You therefore need a rapid and adaptable methodology for eval-
uating application software. When moving to the application layer, security is moving
closer to the end user. Security evaluation then has to consider unsophisticated end users
when assessing usability.

Organizations are more often interested in the accreditation of their IT infrastructure.
Is it fit for purpose? Compliance with laws and regulations is of growing importance.
When security requirements are application-driven and when there is so much variability
in security policies, traditional security evaluation may no longer be feasible. The task
at hand is that of a security consultant advising an organization on the quality of the
measures in place for handling security risks.

13.10 F U R T H E R R E A D I N G
The early history of security evaluation and of formal security modelling is
told in [158]. Practical aspects of security evaluation with an overview of the
Orange Book classes are covered in [65]. The developments in IT that led to
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the Orange Book and beyond are narrated in [203]. A brief description of the A1
evaluated Blacker system can be found in [232]. A prototype that was developed
to meet A1 requirements but did not become a commercial product is described
in [137]. For a case study on assurance and covert channel aspects of multi-level
secure systems, see [135].

The Canadian Trusted Computer Product Evaluation Criteria have the reputation
of being the most concise and readable of the evaluation criteria. Websites
containing evaluation criteria, ancillary documents and lists of evaluated products
are:

• http://www.radium.ncsc.mil/tpep/library/rainbow/ for the
rainbow series;

• http://csrc.nist.gov/ccandhttp://www.commoncriteriaportal.
org/ for the Common Criteria.

13.11 E X E R C I S E S

Exercise 13.1 Security evaluation has to deal with moving targets. Product
development does not stand still while one particular version is being evaluated.
How could evaluation certificates be kept up to date? Consult schemes such as
RAMP when drafting your proposal.

Exercise 13.2 Security products have to hit moving targets. The threat environ-
ment will change during the lifetime of a fielded product. How would you set up
a scheme for the evaluation of anti-virus products that keeps certificates up to
date in a changing threat environment? Are there any components of your scheme
that should be included in the evaluation of operating systems?

Exercise 13.3 It is sometimes claimed that evaluated products are mainly used
as an insurance against the accusation of not following established best practice,
and not because they offer better security. What do you expect from a security
evaluation scheme that does provide added value?

Exercise 13.4 Evaluation criteria exist to help security-unaware users meet
specific security requirements. Are protection profiles the right solution for this
problem?

Exercise 13.5 ITSEC covers the security evaluation of systems. Consultants
advise clients on solutions to their security problems. Where would you draw
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the boundary between consultancy and evaluation? Does evaluation have any
advantage over contracting consultants?

Exercise 13.6 Write a protection profile for web browsers.

Exercise 13.7 Examine the options for blocking and monitoring covert channels.
How is the usability of a system affected by blocking covert channels?



Chapter14
Cryptography

Once upon a time – at the high tide of research on multi-level security in the
1980s – you could hear claims that there was nothing cryptography had to
offer computer security. Computer security was about TCBs, reference mon-
itors, discretionary and mandatory access control, and formal verification of
security models and system specifications. In this view, the contributions of
cryptography appeared to be peripheral indeed. One-way functions to store
passwords were the only obvious instance of a cryptographic mechanism
used in secure operating systems.

By the mid 1990s, the mood had swung round to the other extreme.
Cryptography was seen as the miraculous cure that would solve all computer
security problems. Secure operating systems were dismissed as a thing of
the past, too expensive, too restrictive, too far away from user demand,
doomed to extinction like the dinosaurs. Export restrictions on strong
cryptographic algorithms were regarded as the main obstacle that needed
to be overcome to make computers secure. A further decade on, a more
sober assessment had been reached of the contributions cryptography can
offer for computer security. Cryptographic techniques remain an essential
component in securing distributed systems.

OBJECT I VES

• Appreciate the variety of applications that use cryptography with quite
different intentions.
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• Introduce the basic concepts of cryptography.
• Understand the type of problems cryptography can address, and the types

of problem that need to be addressed when using cryptography.
• Indicate the computer security features that are required to support

cryptography.

14.1 I N T R O D U C T I O N
In its traditional definition cryptography is the science of secret writing. Cryptanalysis
is the science of analyzing and breaking ciphers. Cryptology encompasses both subjects.
Once they were the domain of spies and secret agents. These origins still endow
cryptography with a certain mystique.

Modern cryptography is very much a mathematical discipline. It is outside the scope
of this book to present the mathematical background necessary to understand the finer
points of cryptography. Instead, we will explain how cryptography can be used in
computer security and point out that very often computer security is a prerequisite to
make cryptography work.

14.1.1 The Old Paradigm
Cryptography has its roots in communications security. Communications security
addresses the situation depicted in Figure 14.1. Two parties A and B communicate
over an insecure channel. The antagonist is an intruder who has full control over this
channel, being able to read their messages, delete messages, and insert messages. The two
parties A and B trust each other. They want protection from the intruder. Cryptography
gives them the means to construct a secure logical channel over an insecure physical
connection. In this respect, cryptography is fundamentally different from the computer
security mechanisms discussed so far. All of them are vulnerable to compromise from the
‘layer below’. However, access to the physical communications link does not compromise
cryptographic protection.

A

intruder

B

Figure 14.1: Communications Security

In distributed systems, the traffic between clients and servers is a point of attack for
would-be intruders. Vulnerabilities introduced by insecure communications links can
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naturally be counteracted by services and mechanisms from communications security.
Such services include:

• data confidentiality – encryption algorithms hide the content of messages;

• data integrity – integrity check functions provide the means to detect whether a message
has been changed;

• data origin authentication – message authentication codes or digital signature algo-
rithms provide the means to verify the source and integrity of a message.

Data origin authentication includes data integrity. A message that has been modified in
transit no longer comes from its original source. Conversely, if the sender’s address is
part of the message, you also have to verify the source of a message when verifying its
integrity. In such a setting, data integrity and data origin authentication are equivalent
concepts. A separate notion of data integrity makes sense in other applications, e.g. for
file protection in anti-virus software.

The traditional view of friend and foe has its place in computer security, but it is no
longer the major force driving applications of cryptography in computing. Unfortunately,
it still dominates the public perception of cryptography. This view is also reflected in
those verification tools for cryptographic protocols, whose axioms assume that A and B
will behave according to the rules of the protocol and only consider the effects of the
intruder’s actions.

14.1.2 New Paradigms

Let us take a fresh look. In electronic commerce, a customer enters into a business
transaction with a merchant. Neither party expects the other to cheat, but disputes are
possible and it is always better to have rules agreed in advance than to solve problems in
an ad hoc fashion. Customer and merchant therefore have reasons to run a protocol that
does not assume that the other party can be trusted in all circumstances. The antagonist
is now a misbehaving insider, rather than an intruder. The third party in Figure 14.2 is no
longer the intruder but a trusted third party (TTP), e.g. an arbitrator. Non-repudiation
services generate the evidence the arbitrator will consider when resolving a dispute.

Customer

TTP

Merchant

Figure 14.2: Electronic Commerce Security

Many countries have laws specifying when and how a law enforcement agency (LEA)
can get an interception warrant that obliges a telecommunications service provider to
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A

LEA

B

Figure 14.3: Communications Security and Law Enforcement

give access to communications between particular users. The third party in Figure 14.3
is now a client of the telecommunications operator who has to be provided with a legal
intercept service. In this context, key escrow services that reveal the key used to encrypt
the traffic were once a topic discussed with great passion.

14.1.3 Cryptographic Keys

Cryptography has adopted the lock as its favourite icon to signal the services it renders
to the public. A quick look at the user interfaces of ‘security enabled’ web browsers or
email products will confirm this observation. Analogies are fraught with danger, and you
should not take them too far, but there are some important concepts that carry over from
locksmiths to cryptographers. To lock and unlock a door, you need a key. Locks differ
in strength. Some are easy to pick while others are so strong that intruders will resort
to brute force attacks to break through a door or choose a different path altogether and
break into a house through a window instead.

Cryptographic algorithms use keys to protect data. There are again variations in strength,
ranging from schemes that can be broken with simple statistical methods to those that
are far beyond the current grasp of mathematical analysis and computational abilities.
Brute force attacks exhaustively search the entire key space and give an upper bound for
the strength of an algorithm.

Modern cryptography does not rely on the secrecy of its algorithms. The key used in
a cryptographic transformation should be the only item that needs protection. This
principle was postulated by Kerckhoffs in the nineteenth century. It is particularly
appropriate in the setting of our new security paradigms where a large user community
with competing interests has to be supported. De facto standardization and open
evaluation of public algorithms is a natural process in such a situation, giving each
party the chance to conduct its own security assessment and making it easier for new
participants to join in.

Key management, in the most general meaning of the word, is thus of paramount
importance for the security of cryptographic schemes. You have to address questions
such as the following:

• Where are keys generated?
• How are keys generated?
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• Where are keys stored?
• How do they get there?
• Where are the keys actually used?
• How are keys revoked and replaced?

At this point, the circle closes and we return to computer security. Cryptographic keys are
sensitive data stored in a computer system. Access control mechanisms in the computer
system have to protect these keys. When access control fails, cryptographic protection is
compromised. In most security systems currently fielded, the cryptographic algorithms
are the strongest part and wily attackers will look for other vulnerabilities rather than
wasting their time on cryptanalysis.

Lesson
Cryptography is rarely, if ever, the solution to a security problem. Cryp-
tography is a translation mechanism, usually converting a communications
security problem into a key management problem and ultimately into a
computer security problem. Hopefully, the resulting problem is easier to
solve than the original problem. In summary, cryptography can enhance
computer security, but it is not a substitute for computer security.

14.1.4 Cryptography in Computer Security

If you have data that need to remain secret, a vault for locking away those secrets would
come in useful. The vault has to be unlocked with a key when putting data in or taking
data out. Such a vault is implemented by symmetric encryption mechanisms.

There is also the transparent vault you might see in a public lottery draw. Everyone can
see what is in the vault. Only an authorized person may fill the vault, needing a private
key to do so. If the vault has a unique serial number, everyone can refer to documents
in the vault by this serial number. In the parlance of cryptography this is a public key.
Such a transparent vault can be used for creating protected name spaces. In this case, the
public key is like a database key for organizing and addressing documents.

You might want to have a private letter box. Anybody can drop documents into the letter
box. Only the owner can open it. The owner needs a private key for taking documents
out. The letter box needs a serial number so that you can distinguish between letter
boxes. This and the previous feature can be implemented using public-key cryptography.

When a document leaves your control, you might save a fingerprint so that you could
detect any eventual later changes. This strategy is used, for example, by anti-virus
products. The fingerprint of a program is computed in a clean environment and stored
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in a place where it cannot be modified, e.g. on a CD-ROM. To check the status of the
program, the fingerprint is recomputed and compared with the value stored. If an attacker
is able to change the program without changing the fingerprint, the change would go
undetected and the scheme would be broken. Having two documents with the same
fingerprint is called a collision. Collision-resistant hash functions implement fingerprints
that can be used for integrity protection. Protection of the fingerprints themselves is
also important. Fingerprint computation does not require any secret information. Hence,
anybody can create a valid fingerprint for a given document.

A system authenticating users by password may store only fingerprints (hashes) of the
passwords (Section 4.5). Reconstructing passwords from their fingerprints must not be
feasible. Otherwise, little would have been gained for security. In this case, the function
for computing fingerprints must also be a one-way function.

14.2 M O D U L A R A R I T H M E T I C
Many modern cryptographic algorithms build on algebraic principles. They can be
defined on exciting algebraic structures such as elliptic curves or Galois fields. We will
stay more down to earth and only use integers in our description.

Let m be an integer. In the following, we will call m the modulus. The ‘mod m’
equivalence relation on the set of integers is defined by

a = b mod m if and only if a − b = λ · m for some integer λ.

We say ‘a is equivalent to b modulo m’. You can check that mod m is indeed an
equivalence relation that divides the set of integers into m equivalence classes

(a)m = {
b | a = b mod m

}
, 0 ≤ a < m.

It is more customary to designate the equivalence class by a mod m and we will follow
this convention. You can verify the following useful properties:

• (a mod m) + (b mod m) = (a + b) mod m;
• (a mod m) · (b mod m) = (a · b) mod m;
• for every a �= 0 mod p, p prime, there exists an integer a−1 so that a · a−1 = 1 mod p.

For a prime modulus p, the multiplicative order modulo p is defined as follows:

Let p be a prime and a an arbitrary integer. The multiplicative order of a modulo p is the
smallest positive integer n such that an = 1 mod p.

Fermat’s little theorem states that the multiplicative order modulo p of any non-zero
element must be a factor of p − 1.

Theorem. For every a �= 0 mod p, p prime, we have ap−1 = 1 mod p.
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This fact is used in the construction of quite a few cryptographic algorithms. The security
of these algorithms is often related, and on a few occasions equivalent, to the difficulty
of one of the following problems from number theory:

• Discrete logarithm problem (DLP). Given a prime modulus p, a basis a, and a value y,
find the discrete logarithm of y, i.e. an integer x such that y = ax mod p.

• nth root problem. Given integers m, n and a, find an integer b such that a = bn mod m.
The solution b is the nth root of a modulo m.

• Factorization. Given an integer n, find its prime factors.

With the right choice of parameters, these problems are a suitable basis for many
cryptographic algorithms. However, not all instances of these problems are difficult to
solve. Obviously, if p or n are small integers these problems can be solved by exhaustive
search within reasonable time. At the time of writing, 1024-bit integers are barely
regarded as long enough, 2048-bit integers are a more common recommendation, and
you can use longer integers if you can tolerate the decrease in performance as arithmetic
operations will take longer. Length is not the only aspect you have to consider. The
difficulty of these problems also depends on the structure of p and n. (To pursue this
topic further, you will need to turn to more specialized mathematical sources.)

14.3 I N T E G R I T Y C H E C K F U N C T I O N S
A cryptographic hash function h maps inputs x of arbitrary bit length to outputs h(x) of a
fixed bit length n. This is known as the compression property. Hash functions tend to be
faster and less resource-consuming than the other cryptographic mechanisms mentioned;
the ease of computation property demands that, given x, it is easy to compute h(x).

14.3.1 Collisions and the Birthday Paradox

A collision exists if there are two inputs x, x′, x �= x′, with h(x) = h(x′). The probability
of finding a collision by brute force search depends on the bit length of the hash. For an
n-bit hash y, the expected number of tries before an x with h(x) = y is found is 2n−1.
If you are just looking for arbitrary collisions, a set of about 2n/2 inputs is likely to
contain a pair causing a collision. This result is based on the birthday paradox. Put m
balls numbered 1 to m into an urn, draw a ball, list its number, and put it back. Repeat
this experiment. For m → ∞, the expected number of draws before a previously drawn

number appears converges to
√

1
2 mπ .

14.3.2 Manipulation Detection Codes

Manipulation detection codes (MDCs), also called modification detection codes or mes-
sage integrity codes, detect changes to a document. Depending on the given application,
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the requirements put on MDCs may differ. The security properties one might demand
from a hash functions h include:

• Pre-image resistance (one-way) – given a value y, it is computationally infeasible to
find a value x such that h(x) = y.

• Second pre-image resistance (weak collision resistance) – given an input x and h(x), it
is computationally infeasible to find another input x′, x �= x′, with h(x) = h(x′).

• Collision resistance (strong collision resistance) – it is computationally infeasible to
find any two inputs x and x′, x �= x′, with h(x) = h(x′).

MDCs come in two flavours [168]:

• a one-way hash function (OWHF), with the compression, ease-of-computation,
pre-image resistance, and second pre-image resistance properties;

• a collision-resistant hash function (CRHF), with the compression, ease-of-computation,
second pre-image resistance, and collision resistance properties.

The result of applying a hash function is varyingly called a

• hash value,
• message digest,
• checksum.

The last term leaves ample room for confusion. In communications theory, checksums
refer to error correcting codes, typically a cyclic redundancy check (CRC). A CRC is a
linear function, so creating collisions is easy. Checksums in security, on the other hand,
must not be computed with a CRC but with a cryptographic hash function (MDC).

The discrete exponentiation function f (x) := gx mod p is a one-way function when the
parameters p and g are chosen judiciously. To invert discrete exponentiation, you have to
solve the discrete logarithm problem introduced in Section 14.2. Discrete exponentiation
is a useful primitive in the construction of cryptographic schemes, as you will see later
in this chapter. However, discrete exponentiation is not a particularly fast operation,
so you have to turn to other algorithms when processing large quantities of data at
high speed.

Fast hash functions tend to be constructed along similar design patterns. At the core of
the hash function is a compression function f that works on inputs of fixed length. An
input x of arbitrary length is broken up into blocks x1, . . . , xm of a given block size, with
padding added to the last block. The hash of x is then obtained by repeated application
of the compression function. Let h0 be a (fixed) initial value. Compute

hi = f (xi||hi−1), for i = 1, . . . , m

(where the symbol || denotes concatenation), and take hm as the hash value of x
(Figure 14.4).
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Figure 14.4: Construction of a Hash Function

14.3.3 Message Authentication Codes
Message authentication codes provide assurance about the source and integrity of
a message (data origin authentication). A message authentication code is computed
from two inputs, the message and a secret cryptographic key. Therefore, message
authentication codes are sometimes called keyed hash functions. Formally, a message
authentication code is a family of functions hk parametrized by the secret key k. Each
member of the family has the compression and the ease-of-computation property. An
additional computation resistance property must hold:

For any fixed value of k unknown to the adversary, given a set of values (xi, hk(xi)), it is
computationally infeasible to compute hk(x) for any new input x.

To authenticate a message, the receiver has to share the secret key used to compute
the message authentication code with the sender. A third party that does not know
the key cannot validate the message authentication code. A message authentication
code algorithm can be derived from a MDC algorithm h using the following HMAC
construction [26, 140]. For a given key k and message x, compute

HMAC(x) = h(k||p1||h(k||p2||x))

where p1 and p2 are bit strings (padding) that extend k to a full block length of the
compression function used in h.

14.3.4 Cryptographic Hash Functions
Although we have been at pains to elaborate the different properties that may be required
of a hash function, it is in practice assumed that a strong cryptographic hash function
meets all requirements, and that a hash function that has weaknesses in one respect
should be treated with suspicion.

Once MD4 and MD5 were popular hash functions. MD5 was the standard choice in
Internet protocols. It was then shown to be computationally feasible to find meaningful
collisions; see [83] on MD4. Once one collision has been found, it may be possible to use
this collision to create multiple collisions for other document types.1 MD4 and MD5 are
no longer recommended.

1At the rump session of Eurocrypt 2005, M. Daum and S. Lucks presented a generic attack for constructing pairs
of postscript documents that have the same MD5 hash.
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The Secure Hash Algorithm (SHA-1) designed to operate with the US Digital Signature
Standard (DSA) processes 512-bit blocks and generates a 160-bit hash value. Collision
attacks on SHA-1 well below the brute-force bound of 280 operations have been reported
[230]. RIPEMD-160 is a hash function frequently used by European cryptographic
service providers, designed along the same principles as SHA-1. These hash functions
are still in use but the development of new hash functions is under way, triggered by
the attack on SHA-1 but also by the fear that 160-bit hash values may prove too short
to resist brute force attacks in the not so distant future. SHA-256 is the current choice
when longer hash values are desired.

14.4 D I G I TA L S I G N AT U R E S
In Figure 14.1, message authentication codes help parties A and B detect fraudulent
messages inserted by the intruder on the communications channel. However, message
authentication codes do not constitute evidence a third party could use to decide
whether A or B sent a particular message. They are therefore of little use in the electronic
commerce scenario of Figure 14.2 when customers need assurance that merchants cannot
fake orders and merchants need assurance that customers will honour the orders they
have made. These situations call for a digital signature.

A digital signature scheme consists of a key generation algorithm, a signing algorithm,
and a verification algorithm. A digital signature of a document is a value depending on
the contents of the document and on some secret only known to the signer, i.e. a private
signature key. The signature associates the document with a public verification key. The
verification algorithm usually takes the document and the public verification key as input.
In exceptional cases the document – or parts of the document – can be recovered from
the signature and the document does not have to be provided for signature verification.
Figure 14.5 gives a schematic representation of a typical digital signature scheme where
the private signature key is applied to a hash of the document. The following verifiability
property characterizes digital signature schemes:

A third party can resolve disputes about the validity of a digital signature without having to
know the signer’s private key.

Digital signatures support non-repudiation. Public-key cryptography (Section 14.5) is a
natural source for digital signature schemes. In such a scheme, the connection between
the private signature key and the public verification key has the property that it is
computationally infeasible to derive the signature key from the verification key. Despite
the similarities in the underlying mathematical techniques, you should draw a clear
distinction between digital signatures and public-key encryption algorithms. These two
schemes meet fundamentally different purposes. Encryption protects the confidentiality of
a message and has to be invertible. Digital signatures provide data origin authentication
and non-repudiation. A digital signature algorithm need not be invertible. In fact,
invertibility causes some additional security concerns.



14.4 DIGITAL SIGNATURES 261

yes/no

document

verifier

hash

verify

public
verification key

document

signature

document

hash

sign

private
signature key

signer

Figure 14.5: Schematic Representation of a Generic Digital Signature Scheme

14.4.1 One-Time Signatures
You do not need fancy mathematics to construct a signature scheme. To obtain one-
time signatures you only need a cryptographic hash function h [142]. To sign an n-bit
document, you pick your private key by choosing at random 2n values x0

i , x1
i and publish

the values (commitments) y0
i = h(x0

i ), y1
i = h(x1

i ), 1 ≤ i ≤ n, as your public key. The ith
bit of the signature s for a document m is then given by

si =
{

x0
i if mi = 0,

x1
i if mi = 1.

Evidently, you cannot use your private key again, hence the name one-time signatures.
The verifier has your public key and checks

y0
i = h(si) if mi = 0,

y1
i = h(si) if mi = 1.

You will have spotted that the verifier needs additional evidence to confirm that the
values y0

i , y1
i are indeed your public key. We will return to this topic in Section 15.5.1.

Instead of relying on the difficulty of a mathematical problem or on the strength of
some other cryptographic primitive, you could rely on the difficulty of compromising
a tamper-resistant hardware device. The device contains a secret signature key and/or
secret verification keys. The device is constructed so that it cannot use the signature key
for verification or a verification key for signing. To sign a document, the device uses its
signature key to construct a message authentication code, which it then attaches to the
document. To verify this signature, the verifier’s device has to hold the signer’s signature
key as a verification key and uses this key to construct a message authentication code
and compare it with the signature received.

14.4.2 ElGamal Signatures and DSA
The ElGamal signature scheme [86] shows that signing is not ‘encryption with a private
key’. Let p be a large and appropriately chosen prime number. Let g be an integer of a
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large prime order q modulo p. Note that q must be a factor of p − 1. Let a be the private
signature key of user A and y = ga mod p the corresponding public verification key.

Assume that the document to be signed is an integer m, 0 ≤ m < p. Otherwise, you
can apply a suitable hash function and sign the digest of the document. To sign m,
user A picks a random number k, 0 ≤ k < p, such that gcd(k, p − 1) = 1, computes
r = gk mod p, and solves the equation

a · r + k · s = m mod q

in the unknown s. The pair (r, s) is A’s signature on m. The verifier needs A’s verification
key y and checks

yr · rs ?= gm mod p.

For a correct signature, the equation

yr · rs = gar+ks = gm mod p

holds. The security of this scheme is closely related but not equivalent to the discrete
logarithm problem. A number of more secure and more efficient signature schemes have
been derived from the ElGamal signature scheme. One such signature algorithm is the
Digital Signature Algorithm (DSA) [222]. In this scheme, the private and public key of a
user A are generated as follows.

1. Select a prime q such that 2159 < q < 2160.

2. Choose an integer t, 0 ≤ t ≤ 8, and a prime p, 2511+64t < p < 2512+64t, such that q
divides p − 1.

3. Select α, 1 < α < p − 1, and compute g = α(p−1)/q mod p. If g = 1, try again with a
new α. (This step computes a generator g of order q modulo p.)

4. Select a such that 1 ≤ a ≤ q − 1.

5. Compute y = ga mod p.

6. A’s public key is (p, q, g, y); the private key is the value a.

To sign a document m, A computes the hash value h(m) with SHA-1 and converts h(m)
into an integer. Then A

1. randomly selects an integer k, 1 ≤ k ≤ q − 1,
2. computes r = (gk mod p) mod q,
3. computes k−1 mod q,
4. computes s = k−1(h(m) + ar) mod q.

A’s signature on m is the pair (r, s). The signature is checked with A’s public key
(p, q, g, y) by
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1. verifying 1 ≤ r ≤ q and 1 ≤ s ≤ q,
2. computing w = s−1 mod q,
3. computing u1 = w · h(m) mod q and u1 = r · w mod q,
4. computing v = (gu1yu2 mod p) mod q,

and accepted if and only if v = r. The ECDSA algorithm is similar to DSA but works
with points of an elliptic curve instead of integers modulo the prime p. ECDSA has been
specified in the standard ANSI X9.62.

14.4.3 RSA Signatures

The RSA algorithm [194], named after its inventors Rivest, Shamir, and Adleman, can
be equally used for signing and for encryption. This very specific property of RSA can be
blamed for many of the prevailing misconceptions about digital signatures and public-key
cryptography. In the RSA signature scheme, a user A picks two prime numbers p and
q, and a private signature key e with gcd(e, p − 1) = 1 and gcd(e, q − 1) = 1. The public
verification key consists of the product n = p · q and an exponent d with

e · d = 1 mod lcm(p − 1, q − 1).

The document to be signed is an integer m. The document is hashed with a suitable hash
function h so that 1 ≤ h(m) < n. To sign m, A forms the signature

s = h(m)e mod n.

The verifier needs A’s verification key (n, d) and checks

sd ?= h(m) mod n.

For a correct signature, this equation holds because of

sd = h(m)e·d = h(m) mod n.

The security of RSA is closely related but not equivalent to the difficulty of factoring.
To forge a signature on a given document m, the attacker has to compute the dth root
of h(m) modulo n. The weak RSA assumption captures the assumption that this is not
feasible. An attacker might also take an arbitrary value s̃ and look for a document m̃
such that s̃d = h(m̃) mod n. This would, however, violate the one-way property of the
hash function. From the verifier’s perspective, the hash of the document is evidence that
can be used for identifying genuine documents.

The security of any given implementation of RSA depends on further factors. For
example, the high-level description given above does not explain how h(m) is encoded as
an integer modulo n. Bad choices of the encoding function can introduce vulnerabilities.
Padding a 160-bit SHA-1 hash with leading zeros to get a 1024-bit integer would be a
bad choice. The currently recommended way of implementing RSA is known as RSA-PSS
(probabilistic signature scheme).
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14.5 E N C R Y P T I O N
We reserve the term encryption for algorithms that protect the confidentiality of data.
An encryption algorithm, also called a cipher, enciphers plaintext (cleartext) under the
control of a cryptographic key. We write eK(X) to denote that plaintext X is encrypted
under key K. Decryption with the appropriate decryption key retrieves the plaintext
from the ciphertext. We write dK(X) to denote that ciphertext X is decrypted under key
K. A deterministic encryption algorithm always maps a plaintext to the same ciphertext
for a fixed key. A probabilistic encryption algorithm gives different results for different
encryptions of the same plaintext under the same key.

Some encryption algorithms provide the means for detecting integrity violations, but this
is not always the case. You may even see signature algorithms described as ‘encryption
with a private key’, but this is often wrong and always misleading.

Encryption algorithms come in two flavours. In symmetric algorithms, the same key is
used for encryption and decryption. This key has to be kept secret. All parties sharing
the same key can read data encrypted under that key. To set up private communications
with different parties, you need a new key for each party. Maintaining a large number of
shared secret keys can become a quite onerous management task.

In asymmetric encryption algorithms, also called public-key algorithms, different keys
are used for encryption and decryption. The encryption key can be made public, while
the decryption key has to remain private. Obviously, the two keys are algorithmically
related, but it should not be feasible to derive the private key from its public counterpart.
To differentiate between symmetric and public-key cryptosystems, we will use secret
key only in the context of symmetric systems and private key only in the context of
asymmetric systems.

With secret key cryptosystems, the security management task of getting the right key
into the right place is evident. Public-key cryptography seems to make management a lot
easier. After all, public keys are public and need no protection. Or do they? When you
use public-key encryption to encipher a document, you probably will need to know who
will be able to read the enciphered document. More generally, private keys authenticate
a principal or serve as capabilities carrying access rights, e.g. to read a document. Now,
it becomes a major task to guarantee the link between a public key and the access rights
or principals associated with the corresponding private key. We will return to this topic
in Section 15.5.1.

Encryption algorithms can also be divided into block ciphers and stream ciphers. There
exist two criteria for making this distinction.

• Block size: A block cipher encrypts larger blocks of data, typically 64-bit blocks, with
a complex encryption function. Security of block ciphers depends on the design of the
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encryption function. A stream cipher encrypts smaller blocks of data, typically bits
or bytes, with a simple encryption function, e.g. bitwise exclusive-OR. As you can
imagine, this distinction becomes blurred at the edges. Is a 16-bit block still a large
block? When is an encryption algorithm simple?

• Key stream: A block cipher encrypts blocks belonging to the same document all under
the same key. A stream cipher encrypts under a constantly changing key stream.
Security of stream ciphers relies on the design of the key stream generator. With this
definition, DES in a feedback mode (see below) is classified as a stream cipher.

14.5.1 Data Encryption Standard

The Data Encryption Standard (DES) is an important milestone in the history of computer
security and cryptography. DES was developed in the 1970s as a US government standard
for protecting non-classified data and was published as a Federal Information Processing
Standard [221]. DES encrypts 64-bit plaintext blocks under the control of 56-bit keys.
Each key is extended by a parity byte to give a 64-bit working key. Like many block
cipher algorithms, DES is based on the Feistel principle. Feistel ciphers iterate the same
basic step in a number of rounds. The input to round i is divided into two halves, Li and
Ri, and the output is computed as

Li+1 = Ri

Ri+1 = Li ⊕ F(Ki, Ri)

where F is some non-linear function and Ki is the subkey for that round (Figure 14.6).
The inverse of this operation can be computed by the same circuit,

Ri = Li+1

Li = Ri+1 ⊕ F(Ki, Li+1)

RiLi

Ki

F

Ri+1Li+1

Figure 14.6: The Feistel Principle

The non-linear function F in DES expands the 32-bit input Ri into a 48-bit block and
computes the bitwise exclusive-OR with the 48-bit subkey Ki. This intermediate result is
divided into eight 6-bit blocks, which serve as input to eight substitution boxes (S-boxes).
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Each S-box converts its 6-bit input into a 4-bit output. The output of the S-boxes is put
through a permutation box (P-box) that performs a bit permutation on its 32-bit input
to give the result of F.

DES has 16 such rounds. Each round uses a different 48-bit subkey Ki, derived from the
56-bit DES key. The input to the first round is processed by an initial permutation IP,
the output of the last round by the inverse permutation IP−1. We omit further details of
the key scheduling algorithm, the expansion scheme, the S-boxes and the permutations.

When DES became a standard in the 1970s, it was given a ‘shelf life’ of 15 years.
DES has aged remarkably well and is still in use, particularly in the commercial and
financial sector, despite having been superseded by the Advanced Encryption Standard
(AES) [223]. The major challenge to the security of DES did not come from new crypt-
analytic techniques but from its key size. Today, exhaustive search through a 56-bit
key space is feasible without dedicated equipment. The performance of workstations
has kept increasing over the years and networking lets the amateur cryptanalyst har-
ness even more resources. With such opposition, you would expect a 56-bit key to
survive for days or weeks, rather than for decades or centuries. Multiple encryption
extends the key size without changing the algorithm. The favoured option is triple
DES using three 56-bit keys. A variation popular because of its backward compatibil-
ity with single DES uses two 56-bit DES keys, K1 and K2, to encipher a plaintext P
by C = eK1(dK2(eK1(P))).

The Rijndael algorithm [75] was adopted as the AES, a US Federal Standard, in 2001.
The algorithm can be used with key sizes of 128 bits, 192 bits, and 256 bits. AES works
with 128-bit data blocks. Rijndael is specified to work also with 192-bit and 256-bit
data blocks, where the block length can be chosen independently of the key length.

14.5.2 Block Cipher Modes
Block ciphers can be used in a variety of encryption modes. In electronic code book
(ECB) mode, each plaintext block is enciphered independently under the same key. This
mode may leak information about the plaintext. If a plaintext block is repeated, this
will show up in the ciphertext. Furthermore, there is very limited integrity protection.
Decryption will not detect whether the sequence of ciphertext blocks has been changed,
whether some blocks are missing, or whether blocks have been duplicated.

In cipherblock chaining (CBC) mode (Figure 14.7), the previous ciphertext block Ci−1 is
added (bitwise exclusive-OR) to the next plaintext block Pi before encryption, i.e.

Ci = eK(Pi ⊕ Ci−1).

Hence, repeated plaintext blocks will not show up as repeated ciphertext blocks. For the
first plaintext block P1, an initialization vector is used as C0. The initialization vector is
usually kept secret, although in many applications this would not be a necessary security
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d
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ePi Pi

Figure 14.7: Cipherblock Chaining Mode

condition. The initialization vector should be changed for every message to make sure
that an observer cannot detect that two plaintexts start with the same blocks. The
initialization vector is required for decryption of the first ciphertext block. Ciphertext
block Ci is decrypted by

Pi = Ci−1 ⊕ dK(Ci).

If a ciphertext block is corrupted, only two plaintext blocks are affected. Assume that C̃i

is used instead of Ci. After

P̃i = Ci−1 ⊕ dK(C̃i)
Pi+1 = C̃i ⊕ dK(Ci+1)

normal decryption resumes.

Output feedback mode (Figure 14.8) uses the block cipher as the key stream generator
for a stream cipher. In this mode, the plaintext can be processed in chunks that are
smaller than the block size of the cipher algorithm. A register stores the input to the
encryption function. The initial contents of this register are defined by an initialization
vector. To encrypt a plaintext chunk, add it to a sub-block from the output of the
encryption function (bitwise exclusive-OR). The output of the encryption function is
fed back to the shift register. Decryption is exactly the same process as encryption. The
initialization vector must change for every message but need not be kept secret. An error
in the transmission of a ciphertext block Ci only affects the corresponding plaintext

e

Pi

Ci

e

Pi

Figure 14.8: Output Feedback Mode
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block Pi. An attacker can therefore selectively modify plaintext bits by changing the
ciphertext in the corresponding positions.

Cipher feedback (CFB) mode (Figure 14.9) uses the block cipher to generate a data-
dependent key stream. Again, the plaintext can be processed in chunks that are smaller
than the block size of the cipher algorithm. In this mode, previous ciphertext blocks are
fed back into a shift register. The contents of the register are encrypted and a sub-block
of this ciphertext is added (bitwise exclusive-OR) to the next plaintext chunk. Decryption
is exactly the same process as encryption. In this mode, the initialization vector must
change for every message. The initialization vector is required for decryption of the first
ciphertext block and need not be kept secret. A transmission error, or modification, of
a ciphertext block affects decryption until the modified block has left the shift register
feeding the encryption function at the receiver’s end.

e

Pi

Ci

Ci−2 Ci−1Ci−3. . . Ci−2 Ci−1Ci−3. . .

e

Pi

Figure 14.9: Cipher Feedback Mode

14.5.3 RSA Encryption
The set-up is already familiar from the RSA signature scheme. When RSA is used as
a public-key encryption algorithm, user A picks two prime numbers p and q, and a
private decryption exponent d with gcd(d, p − 1) = 1 and gcd(d, q − 1) = 1. The public
encryption key consists of the product n = p · q and an exponent e with

e · d = 1 mod lcm(p − 1, q − 1).

Messages have to be divided into blocks so that each block is an integer less than n. To
send a message block m to A, the sender computes

c = me mod n.

The receiver A uses the private decryption key d to obtain

cd = me·d = m mod n.

Do not be deceived by the simplicity of this algorithm. Proper implementation can be
tricky and simplistic implementations of ‘textbook RSA’ are likely to be insecure.
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Padding

RSA is a block cipher. According to the key length, messages are broken into blocks of
1024 (or 2048, 4096, . . . ) bits. When encrypting a message, padding may have to be
added to make the message length a multiple of the block length. Padding can defeat some
attacks. When decrypting a message, the receiver can check the padding data and discard
plaintexts with syntactically incorrect padding. On the other hand, padding might be
exploited for an attack. Once, the standard PKCS #1 v1.5 recommended padding a data
value D as follows:

00 02 PS 00 D

The first two padding bytes have the values 0 and 2, respectively. PS is a string of
pseudo-randomly generated non-zero bytes of length |n| − |D| − 3 (|.| gives length in
bytes). Then there is another byte of value 0 before the data D.

Bleichenbacher found an attack against RSA with this padding scheme that requires
approximately 220 chosen ciphertexts to get the plaintext if the receiver signals whether
decryption fails or succeeds [41]. A typical setting for this attack would be the SSL
protocol (Section 16.5). The data value to be retrieved is a session key, the receiver is
a server. The attacker intercepts an encrypted session key. The attacker then sends a
chosen ciphertext to the server. The server replies with an error message when decryption
fails. No error signals success and narrows the interval containing the session key. The
attacker keeps repeating this game and after about 220 attempts the key is uniquely
defined (in cryptography, a million can be a small number).

Because of this attack, Optimal Asymmetric Encryption Padding (OAEP) was adopted
as the new standard for padding RSA messages. OAEP was attractive because it came
with a formal proof of its security [28]. The proof, however, was found to be flawed but
has been partially fixed [210]. New padding attacks have appeared [159]. At the time of
writing, research on secure padding schemes is still ongoing.

Lesson
Even if cryptographic algorithms are secure at an abstract mathematical
level, it may be possible to find attacks against concrete implementations.
Thus, additional security analysis at lower levels of abstraction is called for.

14.5.4 ElGamal Encryption
In the ElGamal public-key algorithm, p is a large and appropriately chosen prime number.
Let g be an integer of large order modulo p, let a be the private decryption key of user
A, and ya = ga mod p the corresponding public encryption key. Messages have to be
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divided into blocks so that each block is an integer less than p. To send a message block
m to A, the sender picks a random number k, computes r = gk mod p, and sends the
ciphertext

(c1, c2) = (r, myk
a)

to A. With its private decryption key a, A obtains

c2 · c−a
1 = m · yk

a · ra = m · gak · g−ak = m.

In this scheme, a ciphertext block is twice as long as a plaintext block. On the other
hand, if two plaintext blocks are equal, the corresponding ciphertext blocks will still be
different. The random number k must be used for one encryption only. Reuse of random
numbers seriously weakens the cipher.

14.6 S T R E N G T H O F M E C H A N I S M S

Measuring the strength of cryptographic algorithms is an imprecise art, sometimes resting
on firm mathematical foundations, sometimes relying on intuition and experience. A
cryptographic algorithm can be

• empirically secure,
• provably secure,
• unconditionally secure.

An algorithm is empirically secure if it has withstood the test of time. Prolonged analysis
has found no serious weakness and, although there is no proof that the algorithm may
not eventually fall to a new and ingenious attack, the algorithm has found acceptance
within the cryptographic community. Taking aside its key length, DES was the prime
example of an empirically secure algorithm. New analytical methods such as differential
cryptanalysis have strengthened rather than weakened the perceived security of DES.

Provably secure algorithms seem to offer what computer security has been longing for,
i.e. provable security. Provable security is expressed within the framework of complexity
theory. An algorithm is secure if breaking the algorithm is at least as difficult as solving
another problem that is known to be hard. This sounds wonderful, but it pays to read
the small print.

Being ‘at least as difficult’ is an asymptotic concept. It holds for problem instances that
are ‘sufficiently large’. The theory will not tell you what is sufficiently large. Instead, you
have to assess the current power of computing equipment and the progress in algorithm
design. For example, the size of numbers we can factor has constantly increased over the
years. This is an empirical argument. Even worse is to come. Cryptography’s favourite
hard problems are factoring and the discrete logarithm problem. There is actually no
proof that these problems are necessarily difficult to solve. Again, cryptography relies
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on empirical arguments that no fast algorithms have been found so far and that a major
breakthrough looks extremely unlikely. To be more positive, this theory has also led to
constructive results that give lower bounds on the effort required to break a cryptographic
scheme in relation to the difficulty of breaking some other cryptographic primitive.

Provably secure algorithms can be broken by an attacker with sufficient computing
resources. Of course, you would hope that the resources necessary are beyond the
capacity of any attacker. Unconditionally secure algorithms cannot be broken even by
attackers with unlimited computing power. Unconditional security is expressed in terms
of information theory. An algorithm is secure if an attacker does not gain additional
information about the plaintext from observing the ciphertext.

The standard example of an unconditionally secure algorithm is the one-time pad. Sender
and receiver share a truly random key stream which they use only once. The ciphertext
is the bitwise exclusive-OR of plaintext and key stream. The receiver exclusive-ORs the
same key stream to the ciphertext to retrieve the plaintext:

ciphertext ⊕ key stream = plaintext ⊕ key stream ⊕ key stream = plaintext.

Because every key is equally probable, the attacker cannot guess anything about the
plaintext that could not have been guessed before seeing the ciphertext.

Be wary! Even unconditionally secure ciphers have been broken. When operators cut
corners and use the same key stream twice, an attacker overlaying the two ciphertexts
will see the combination of two plaintexts:

ciphertext1 ⊕ ciphertext2 = plaintext1 ⊕ keystream ⊕ plaintext2 ⊕ keystream

= plaintext1 ⊕ plaintext2.

Making sense of two overlaying plaintext messages is not exactly a hard cryptanalytic
problem. The Venona project documents that such incidents happened even at the height
of the Cold War.

The last remark highlights a crucial fact. More often than not, cipher systems are broken
because of bad key management rather than because of an inherent weakness in the
algorithm. The Enigma machine of World War II is the most famous illustration of this
point. The security of key management protocols is therefore of utmost importance. Key
management protocols are covered in Chapter 15.

14.7 P E R F O R M A N C E

To give an indication of the execution times for cryptographic algorithms, we summarize
some of the performance data reported in [192], where very detailed studies for many
algorithms and platforms can be found. The measurements we quote refer to (not
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optimized) software implementations of the algorithms, running on a Pentium III
processor under Linux. Execution times vary between different compilers. Table 14.1
gives performance measurements for hash functions, stream ciphers, and block ciphers
as the number of instruction cycles per byte. Table 14.2 compares RSA and two ECDSA
variants. Measurements are given as the number of cycles (in millions) per invocation.
RSA encryption and RSA signatures use the public exponent e = 3 to demonstrate the
maximum gain achievable using short public exponents. The key length of the algorithms
is given for reference.

Algorithm cycles/byte
RC4 7–8
MD5 7–8
SHA-1 15
SHA2-512 83
Rijndael-128 25–30
DES 60

Table 14.1: Performance Measurements for Hash Functions and Symmetric Key
Algorithms

algorithm operation cycles per key set up key length
invocation (cycles) (bits)

RSA-OAEP encrypt 2.026 M 1.654 M 1024
decrypt 42.000 M

RSA-PSS sign 42.000 M 1.334 M 1024
verify 2.029 M

ECDSA-GF(p) sign 4.775 M 4.669 M 160
verify 6.085 M

ECDSA-GF(2m) sign 5.061 M 4.825 M 163
verify 6.809 M

Table 14.2: Performance Measurements for Asymmetric Encryption and Digital
Signature Algorithms

14.8 F U R T H E R R E A D I N G
If you are interested in the history of secret communications, [134] is the book for
you. For an up-to-date professional reference on cryptography, use [168]. A nice
and non-mathematical introduction to modern cryptography, together with an
extensive bibliography and collection of cryptographic algorithms, can be found
in [206]. In these books, you will find all the details and further information on
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the algorithms presented in this chapter. New cryptological results are posted
to the eprint server of the International Association for Cryptologic Research
http://eprint.iacr.org.

The founding paper of public-key cryptography is [82]. The wraps have been
removed from even earlier classified research by CESG on public-key systems [87].
Prime numbers are an important ingredient in many public-key algorithms. An
excellent explanation of deterministic primality testing can be found in [109]. For
developments on new block cipher modes, consult the NIST special publications
800-38A, 800-38B, and 800-38C. The Venona documents can be found at
http://www.nsa.gov/venona/.

14.9 E X E R C I S E S

Exercise 14.1 Cryptographic protocols are intended to let agents communicate
securely over an insecure network. Is this statement correct?

Exercise 14.2 Cryptography needs physical security. To what extent is this
statement correct?

Exercise 14.3 Assuming that it is computationally infeasible to launch attacks
that require 280 computations of hash values, how long should the hash values be
to achieve weak and strong collision resistance, respectively?

Exercise 14.4 For DSA, show that the condition v = r holds for valid signatures.

Exercise 14.5 Given a modular exponentiation algorithm for n-bit integers that
needs about n3 operations, how much does performance deteriorate by moving
from 1024-bit to 2048-bit RSA?

Exercise 14.6 Consider the RSA signature algorithm without a hash function,
i.e. s = me mod n. Explain how, and to what extent, an attacker could forge
signatures if there are no redundancy checks on the message m.

Exercise 14.7 When a document is too long to be processed directly by a digital
signature algorithm, a hash of the document is computed and then signed. Which
properties do you require from this hash function to prevent an attacker from
forging signatures?

• Distinguish between situations where the attacker only knows messages signed
by the victim and situations where the attacker can choose messages the victim
will sign.
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• Distinguish between selective forgeries, where the attacker has control over the
content of the forged message, and existential forgeries, where the attacker has
no control over the content of the forged message.

• Consider the specific requirements of hash functions used with an invertible
signature algorithm such as RSA.

Exercise 14.8 In the DSA signature algorithm, why should the verifier make
sure that g is an element of large order?

Exercise 14.9 In the ElGamal signature scheme, show how the private signature
key can be compromised if the random value k is used in signing two different
documents.

Exercise 14.10 Are NP-complete problems a suitable basis for constructing
cryptographic algorithms?



Chapter15
Key Establishment

Cryptography transforms (communications) security problems into key
management problems. To use encryption, digital signatures, or message
authentication codes, the parties involved have to hold the ‘right’ cryp-
tographic keys. With public-key algorithms, parties need authentic public
keys. With symmetric key algorithms, parties need shared secret keys. This
could be achieved by sending letters through the mail – a common method
of distributing PINs for credit cards – or by couriers travelling between sites
and delivering keys. These proposals are either not very secure or not very
cheap. Ideally, we would like to conduct key management over the existing
communications infrastructure.

When two parties negotiate a new key, be it because they are communicating
for the first time or because they are starting a new session, they may also
have to prove who they are. Proving identity and establishing keys were
once both called authentication. This chapter will discuss and separate these
two issues.

OBJECT I VES

• Clarify the possible meanings of authentication.
• Present some major key establishment protocols.
• Discuss how public keys can be linked to user identities.
• Show how cryptographic protocols are being applied in computer security.
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15.1 I N T R O D U C T I O N
Public-key algorithms tend to be computationally more expensive than symmetric key
algorithms. Cost factors include computation time and bandwidth. Both depend on key
length. Furthermore, it is desirable to use long-term keys only sparingly, in order to
reduce the ‘attack surface’. This is a precaution against attacks that need to collect large
amounts of encrypted material. As a solution for both problems, long-term keys are used
to establish short-term session keys.

It is good cryptographic practice to restrict the use of keys to a specific purpose. Examples
of key usage are encryption, decryption, digital signature (for authentication), and non-
repudiation in communications security. Other examples are key encrypting keys and data
encrypting keys in key management, e.g. as used in digital rights management. Similarly,
master keys and transaction keys have been used in hierarchical key management schemes
in the financial sector. In public-key cryptography, you are strongly advised not to use a
single key pair both for encryption and digital signatures.

15.2 K E Y E S TA B L I S H M E N T
A N D A U T H E N T I C AT I O N
Once upon a time, protocols establishing a session key were called authentication
protocols. After all, it is their purpose to let you know ‘whom you are talking to’.
In the literature, in particular in older sources, you may still find this convention.
Today the terminology used in cryptology distinguishes between authentication and key
establishment. The separation of key establishment from authentication can be traced
in the development of international standards. In the 1980s, the influential ISO/OSI
framework (ISO 7498-2, [125]), still had a session-oriented view of entity authentication.

Peer entity authentication: The corroboration that a peer entity in an association is the one
claimed. This service is provided for use at the establishment of, or at times during, the
data transfer phase of a connection to confirm the identities of one or more of the entities
connected to one or more of the other entities.

By the early 1990s, ISO/IEC 9798-1 [126] defined entity authentication in a way that no
longer included the establishment of a secure session:

Entity authentication mechanisms allow the verification, of an entity’s claimed identity, by
another entity. The authenticity of the entity can be ascertained only for the instance of the
authentication exchange.

In this interpretation, entity authentication checks whether an entity is alive. This
property is related to dead peer detection in communications networks.

In unilateral authentication only one of the entities is authenticated. In mutual authenti-
cation, the identities of both entities are verified.
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15.2.1 Remote Authentication
Whenever you change your environment, you have to reappraise the suitability of
established security mechanisms. Moving from a centralized system to a distributed
system definitely has an impact on security. To see how change can affect you, have
another look at authentication by password (Chapter 4). Passwords are useful when
a user works on a terminal that has a fixed link to a host. Here, you may have valid
reasons to believe that the connection between terminal and host is secure and that it
is not possible to eavesdrop on passwords, change or insert messages, or to take over
a session. In a distributed setting, this fundamental assumption on the security of the
communications link is unlikely to be justified.

Unprotected passwords transmitted over networks are an obvious vulnerability. Exploita-
tion of this vulnerability can easily be automated. Password sniffers are programs
that listen to network traffic and extract packets containing passwords and other
security-relevant information. Still, passwords are a popular authentication mechanism
in distributed systems. Take the HTTP protocol as an example. It is run between a
client and a server. The client sends HTTP requests to the server. To authenticate the
client, HTTP has built-in authentication mechanisms based on a shared secret (the pass-
word) known by client and server. There are two types of authentication, basic access
authentication and digest access authentication.

In basic access authentication, the client just has to provide the password. When the
client asks for a protected resource, the server replies with the 401 Unauthorized response
code. The client then sends authentication information (the base64 encoded password) to
the server, and the server checks whether the client is authorized to access the resource.
All authentication data is sent in the clear. A protocol run looks like this:

• Client: GET /index.html HTTP/1.0

• Server: HTTP/1.1 401 Unauthorized
WWW-authenticate Basic realm="SecureArea"

• Client: GET /index.html HTTP/1.0
Authorization: Basic am9ldXNlcjphLmIuQy5E

• Server: HTTP/1.1 200 Ok (and the requested document)

In contrast, digest access authentication does not send passwords in the clear. A
cryptographic hash function h is used in a challenge-response protocol. The WWW-
authenticate parameters sent by the server include a unique challenge, called a nonce.
It is the server’s responsibility to make sure that every 401 response comes with a
unique, previously unused nonce value. The client replies with an authorization response
containing the plaintext username, the nonce value it just received, and the so-called
request-digest, computed as

request-digest = h(h(username||realm||password) ||nonce||h(method||digest-uri))
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where ‘digest-uri’ relates to the requested uniform resource identifier (URI) and ‘method’
gives the HTTP request method. A detailed description of this protocol with all its
options is given in RFC 2617.

The term nonce was proposed in [180] to denote a unique value that is used only once.
Nonces play an important role in protocol design. A nonce can be a counter value, a
time stamp, or a random number. A nonce is not necessarily unpredictable, but some
protocols require unpredictable nonces. It depends on the particular security goals which
type of nonce should be used.

A further example of remote user authentication by password is the Remote Authen-
tication Dial-In User Service protocol (RADIUS, RFC 2865). Like HTTP digest access
authentication, RADIUS includes a challenge-response option where the password is not
transmitted in the clear.

15.2.2 Key Establishment

The process whereby a shared secret becomes available to two or more parties for later
cryptographic use is today called key establishment. This process involves the parties
wishing to establish the shared keys, often called the principals, and possibly third
parties such as authentication servers. Principals in key establishment protocols are not
necessarily the same as principals in access control (Chapter 5). When the third party
could violate the security goals of the protocol, it is called a Trusted Third Party (TTP).
The principals have to trust the TTP when they invoke its services.

Sometimes, an analysis of the mathematical details of a cryptographic protocol reveals
the existence of a subset of weak keys that would allow an insider to cheat. When
designing a key exchange protocol you therefore should answer two questions:

• Which party will suffer if a weak key is established?
• Which parties can control the choice of key?

If a misbehaving insider can influence key generation so that a weak key is chosen, there
may be a scope for insider attacks. This issue is known as key control. Key establishment
services can be further distinguished according to the contributions each principal makes
to the new key, and to the actual security guarantees provided [168].

• Key transport: One party creates the secret value and securely transfers it to the
other(s).

• Key agreement: Both parties contribute to the generation of the secret value so that no
party can predict the outcome.

• Key authentication: One party is assured that no other party aside from a specifically
identified second party may gain access to a particular secret key.
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• Key confirmation: One party is assured that a second (possibly unidentified) party has
possession of a particular secret key.

• Explicit key authentication: Both key authentication and key confirmation hold.

Figure 15.1 shows how the meaning of entity authentication has evolved over time.
Other factors to consider when assessing a protocol are third party requirements. Is a
TTP involved? Would it be off-line or on-line?

(entity) authentication

peer entity authentication (ISO 7498)

key establishment key transport

key agreementkey authentication

key confirmation

explicit key authentication

entity authentication (ISO 9798-2)

dead peer detection

Figure 15.1: Terminology of Authentication and Key Establishment

15.3 K E Y E S TA B L I S H M E N T P R OTO C O L S
Cryptographic protocols that establish keys for use by other protocols are known as
key establishment protocols. The research literature offers an extensive choice of such
protocols. The following protocols have been selected to illustrate important design
techniques.

15.3.1 Authenticated Key Exchange Protocol
Our first protocol, Authenticated Key Exchange Protocol 2 (AKEP2, [27]), uses ‘cheap’
hash functions instead of encryption and does not rely on a TTP. Two principals, A and
B, share two long-term symmetric keys, K and K′, and in each protocol run generate
fresh random nonces, na and nb, respectively. The protocol uses a keyed hash function
(message authentication code), hK, and a keyed one-way function, h′

K′ . AKEP2 is a
three-pass protocol:

1. A → B : na

2. B → A : B, A, na, nb, hK(B, A, na, nb)
3. A → B : A, nb, hK(A, nb)

In the first step, A sends a challenge na. In the second step, B responds with hK(B, A, na, nb)
and sends its own challenge nb. The shared key is k = h′

K′ (nb). In the third step, A
responds to this challenge with hK(A, nb). AKEP2 provides mutual entity authentication
and (implicit) key authentication.
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15.3.2 The Diffie–Hellman Protocol

The Diffie–Hellman protocol is a key agreement protocol [82]. Principals A and B do
not share a secret in advance. They agree on a group G of prime order q, and on a
generator g of this group. The group G could be defined as a subgroup of order q in the
group of integers modulo p, where p is a large and appropriately chosen prime number.
It could also be defined by an elliptic curve.

Principal A picks a random number x and sends X = gx to B. Principal B picks a random
number y, sends Y = gy to A, and computes Xy. On receipt of Y, A uses its own secret x
to compute Yx. Because of

Xy = gxy = gyx = Yx

both parties now share the secret gxy. They can compute shared keys by taking the
required number of bits from the hash h(gxy). The security of this protocol depends on
the difficulty of the discrete logarithm problem (Section 14.2) in group G. An attacker
able to compute discrete logarithms could obtain x and y from gx and gy. It is not
known whether the security of the Diffie–Hellman protocol is equivalent to the discrete
logarithm problem.

Man-in-the-Middle Attack

There is one problem left. Neither party knows whom it shares the secret with. This
can be exploited by a man-in-the-middle attack. The attacker M inserts itself on the
communications path between A and B, replies to A when A initiates a protocol run and
at the same time starts a protocol run with B where M pretends to be A (Figure 15.2).
Principals A and B might believe they have established a shared key. In fact M shares
key gxu with A and key gyv with B, and can read all traffic between A and B while acting
as a relay.

gx mod p

gu mod p
A M

gv mod p

gy mod p
B

Figure 15.2: Man-in-the-Middle Attack against the Diffie–Hellman Protocol

MQV Protocol

To make the Diffie–Hellman protocol resilient against man-in-the-middle attacks,
authentication has to be added. The Menezes–Qu–Vanstone (MQV) protocol mod-
ifies the key derivation phase of the Diffie–Hellman protocol to let the shared key depend
on the participants’ public keys [149]. Let a be the private key of A and ga its public key;
let b be the private key of B and gb its public key. Set l = �(log2q)/2�, i.e. half the bit
length of the group order q.
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A and B run the Diffie–Hellman protocol to exchange ephemeral Diffie–Hellman values
X and Y. Both parties then compute exponents d and e of length l + 1. Variants of MQV
differ in the choice of exponents. Some variants include the names (identifiers) of A and
B, idA and idB, in the computation and use a hash function h′ with hash values of length l:

• d = 2l + (X mod 2l), e = 2l + (Y mod 2l) (MQV) – the Diffie–Hellman values X and
Y are truncated to l bits and the most significant bit is set to 1.

• d = h′(X, idB), e = h′(Y, idA) (HMQV) – hashed MQV includes the names of the prin-
cipals and applies a hash function; with this modification, the protocol can be formally
proven to be secure [139].

• d = h′(X, Y, idA, idB), e = h′(Y, X, idA, idB) (FHMQV) – fully hashed MQV extends
the hashes over all parameters shared in a protocol run [201]; computing hashes over
all values shared in a protocol run is a frequently used technique in the design of
security protocols.

In all variants, principal A uses its private key a and ephemeral secret x to compute
(Y · Be)x+da; B uses its private key b and ephemeral secret y to compute (X · Ad)y+eb. As

(Y · Be)x+da = (gy · gbe)x+da = g(y+be)(x+da) = g(x+ad)(y+eb) = (X · Ad)y+eb

both parties now share an authenticated secret and can derive shared keys from the hash
of this secret. The MQV protocol provides mutual key authentication. Attacks on MQV
and HMQV (despite the security proof) have been reported.

15.3.3 Needham–Schroeder Protocol

The Needham–Schroeder protocol is a key transport protocol [180]. Two parties A and
B obtain their session key from a server S. Both principals share a secret key with the
server in advance. A symmetric cipher is used for encryption. Nonces (random challenges)
are included in the messages to prevent replay attacks. The following conventions are
used in the description of the protocol:

• Kas, a secret key shared by A and S;
• Kbs, a secret key shared by B and S;
• Kab, a session key created by S for use between A and B;
• na, nb, nonces generated by A and B, respectively;

Figure 15.3 shows the steps that take place when A requests from the server S a session
key Kab that is intended for communication with B. In the first three protocol steps, A
obtains the session key from S and forwards it to B. By checking the nonce na returned
in the server’s message, A can verify that the session key has been issued in response to
its recent request and is not a replay from a former protocol run. In the last two steps,
B verifies that A is currently using the same session key. In steps 4 and 5, A performs a
unilateral entity authentication of B.
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A
3
4

5
B

1 2

S1. A → S : A, B, na

2. S → A : eKas(na, B, Kab, eKbs(Kab, A))

3. A → B : eKbs(Kab, A)

4. B → A : eKab(nb)

5. A → B : eKab(nb−1)

Figure 15.3: Message Flow in the Needham–Schroeder Protocol

The Denning–Sacco Attack

The Needham–Schroeder protocol achieves its goals under the standard assumption that
the long-term keys Kas and Kbs are not compromised, and if just a single protocol run
is considered. Denning and Sacco discovered a replay attack where the adversary M
impersonates A reusing a compromised session key Kab [81]. The adversary starts at
step 3 of the protocol and replays to B the third message from the protocol run when
the compromised session key was established. B decrypts the message and reuses the
compromised session key.

3. M → B : eKbs(Kab, A)
4. B → M : eKab(n′

b)
5. M → B : eKab(n′

b − 1)

This is a known key attack, using a compromised old session key to compromise a future
session. As far as B is concerned, the Needham–Schroeder protocol does not provide key
freshness.

A key is fresh (from the viewpoint of one party) if it can be guaranteed to be new [168].

Key freshness helps to protect against replay attacks.

Perfect Forward Secrecy

When analyzing protocols, it makes sense to treat the compromise of past session
keys differently from the compromise of long-term secret keys. When a long-term key is
compromised, we can no longer protect future sessions. However, we would still like past
sessions to remain secure. A protocol achieves perfect forward secrecy if the compromise
of session keys or long-term keys does not compromise past session keys. The term
‘forward secrecy’ indicates that the secrecy of old session keys is carried forward into
the future.

15.3.4 Password-Based Protocols

In the Needham–Schroeder protocol, client and server already share secret keys when
they start a protocol run. Thus, both systems must be equipped to store keys securely. If
the client is a person accessing the server via an ‘untrusted’ device we can only rely on
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shared secrets the users can memorize, i.e. we are back to something like passwords. We
could then use a password P to encrypt a randomly generated session key Ks, and use
the session key to encrypt further data.

1. A → B : eP(Ks)
2. B → A : eKs(data)

This naı̈ve protocol has a problem. It is vulnerable to an off-line dictionary attack. The
attacker guesses the password P, decrypts the first message and gets a candidate session
key K′

s, which is then used to decrypt the second message. When meaningful text emerges
it is likely that the password had been guessed correctly.

The Encrypted Key Exchange (EKE) protocol avoids this problem [31]. It uses a
symmetric encryption algorithm to encrypt data with the password P as the key, and
also a public-key encryption system. In a protocol run, principal A generates a random
public/private key pair Ka, K−1

a . In the first message A sends the public key Ka to B,
encrypted under P (symmetric encryption). In the second message B sends the randomly
generated session key Ks to A, encrypted first under Ka (public-key encryption) and then
under P (symmetric encryption).

1. A → B : eP(Ka)
2. B → A : eP(eKa(Ks))

It is left as an exercise to show that this protocol is not vulnerable to an off-line dictionary
attack. Generating fresh key pairs for each protocol run is not a trivial exercise. There
has been further work on the design of more efficient password-based key establishment
protocols, and on their formal analysis; see, for example, [111].

15.4 K E R B E R O S

Kerberos was developed at MIT within the Athena project in the 1980s. Athena
provided computing resources to students across and beyond the MIT campus and
included additional administrative functionalities such as accounting. The risks and
threats addressed by Kerberos, as stated in [170], are:

The environment is not appropriate for sensitive data or high risk operations, such as bank
transactions, classified government data, student grades, controlling dangerous experiments,
and such. The risks are primarily uncontrolled use of resources by unauthorized parties,
violations of integrity of either system’s or user’s resources, and wholesale violations of
privacy such as casual browsing through personal files.

Kerberos has since found wide acceptance. Several industry standards have adopted
Kerberos for distributed systems authentication, notably the Internet RFC 4120. Kerberos
authenticates clients to services in a distributed system. Authentication is built around
the concepts of tickets and central security servers.
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Kerberos has its origin in the Needham–Schroeder key exchange protocol (Section
15.3.3). A symmetric cipher system is used for encryption. Users are authenticated by
username and password, but passwords are not transmitted over the network. RFC 4120
gives a detailed specification of Kerberos Version 5, including the error messages that
are issued when a protocol run cannot proceed. Our simplified description omits some
of the data fields in the Kerberos messages and deals only with the case where a protocol
run is successfully completed.

Kerberos lets a user A at a client machine C get access to a server B, involving an
authentication server S. User A shares a secret key Kas with the authentication server S.
This key is derived from the user’s password with a one-way function. Kbs is a secret key
shared by B and S, Kab is the session key created by S for use between A and B, na is a
nonce generated by the client for A’s protocol run, and Tc is a time stamp referring to
the client’s clock. The ticket for B is ticketB = eKbs(Kab, A, L), where L is the lifetime of
the ticket. The core protocol works as follows.

1. C → S : A, B, na

2. S → C : eKas(Kab, na, L, B), ticketB

3. C → B : ticketB, eKab(A, Tc)

4. B → C : eKab(Tc)

To start a session, user A logs on at client C, entering username and password. The
client sends A’s request for authentication to B to S. The first message contains A’s
identity, the name of the server, and a nonce, all sent in the clear. In the second step, S
looks up A’s key Kas in its database (the protocol stops if A is unknown to S), generates
the session key Kab and ticketB. S sends the session key, in a data structure encrypted
under Kas, and the ticket to C. The client derives the key Kas from A’s password and
decrypts the first part of the reply, obtains the session key Kab, and verifies the nonce.
In the third step, C sends ticket and authenticator eKab(A, Tc) to B. B decrypts the ticket
with Kbs and obtains the session key Kab. B checks that the identifiers in ticket and
authenticator match, that the ticket has not expired, and that the time stamp is valid.
The validity period for time stamps has to consider the skew between the local clocks
of C and B. In the fourth step, B returns the time stamp Tc encrypted under the session
key Kab to C.

Kerberos is traditionally deployed using ticket granting servers in conjunction with an
authentication server. The Kerberos authentication server (KAS) authenticates principals
at logon and issues tickets, which in general are valid for one login session and enable
principals to obtain other tickets from ticket granting servers. The authentication server
is sometimes called the key distribution centre (KDC). A ticket granting server (TGS)
issues tickets that give principals access to network services demanding authentication.
Figure 15.4 shows the steps that take place in a protocol run involving a KAS and a TGS.
Here, Ka,tgs is a session key created by the KAS for use between C and the TGS. There
is a second nonce n′

a and time stamp T′
a. L1 and L2 are the lifetimes of the two tickets.
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KAS1
2

C
3
4

TGS
5

6
B

1. C → KAS:  A, TGS, na

2. KAS → C:  eKas(Ka,tgs, na, L1, TGS), ticketA, TGS

3. C → TGS: ticketA,TGS, eKa,tgs(A,Ta), B, n'a
4. TGS → C:  eKa,tgs(Kab, n'a, L2, B), ticketB
5. C → B: ticketB, eKab(A,T'a)
6. B → C: eKab(T'a)

Figure 15.4: The Message Flow in the Kerberos Authentication Protocol

The ticket granting ticket ticketA,TGS is constructed as

ticketA,TGS = eKtgs(Ka,tgs, A, L2)

where eKtgs is a key shared by KAS and TGS.

15.4.1 Realms
A Kerberos realm is a single administrative domain that controls access to a collection
of servers. A KAS is at the heart of a Kerberos realm. To get Kerberos up and
running, principals have to be registered with the KAS, the TGSs have to receive access
control information, and all the necessary keys have to be put in place by the security
administrator.

Kerberos has the advantages of a centralized security system. A single security policy is
enforced by a limited number of security servers. Thus, it is relatively easy to check that
the system set-up complies with the security policy and to implement changes if so desired.

A realm often corresponds to a single organization. To facilitate access to services in other
organizations, you need inter-realm authentication. This requires a ‘trust relationship’
between the authentication servers in different realms. In this case, ‘trust’ is a shared
secret key. Between organizations, key sharing is often underpinned by contractual
agreements. Is trust transitive? If there is trust between realms R1 and R2, and between
realms R2 and R3, can a client in R1 get access to a server in R3? There is no universal
answer. The outcome depends on prior agreements between the realms.

As an example, consider a user A in realm R1 who requests from its authentication
server KAS1 a ticket for a server B in realm R3. The user, or some discovery service,
has found out that KAS1 has a trust relationship with KAS2 and that KAS2 has a trust
relationship with KAS3, and that these trust relationships are transitive. On A’s request,
KAS1 generates a ticket granting ticket (TGT) for realm R2 and forwards this TGT
together with A’s request to KAS2. In turn, KAS2 generates a TGT for realm R3, and
forwards this TGT together with A’s request to KAS3. KAS3 creates the ticket for B and
sends it to A. The client where A has logged on presents this ticket when requesting a
service from B.
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15.4.2 Kerberos and Windows
Kerberos has become the authentication protocol of choice in Windows. Windows
domains correspond to Kerberos realms. Domain controllers act as KDCs. The principals
that may run Kerberos are users but also machines. In Windows, authentication is the
basis for later access control decisions. The principals in Windows access control are the
SIDs. (Here, we finally have a clash between the two definitions of principal.) Therefore,
a principal’s SIDs have to be stored in the ticket. A Kerberos ticket, as defined in RFC
4120, contains inter alia a mandatory field cname for the client name and an optional
authorization-data field. In Windows, cname holds the principal’s name and realm, e.g.
diego@tuhh.de, and authorization-data holds the group SIDs. Details of Microsoft’s
implementation of Kerberos can be found in [47].

15.4.3 Delegation
In distributed systems, controlled invocation literally takes on a new dimension. A user
may log on at a local node and then execute a program on a remote node. To obtain
access to resources at the remote node, the process executing the program will need the
relevant access rights. Typically, the program would be endowed with the access rights
of the user and then run with these access rights on the remote node. This process is
called delegation.

The process on the remote node now runs with all the access rights delegated by the
user. In a distributed system, users may not feel too comfortable about releasing all their
rights to a node they have little control over. If there is weak protection on the remote
node, an attacker may grab the user’s access rights and use them for illicit purposes.
It may be desirable for users to be able to control which rights they delegate, to have
accountability mechanisms that monitor the use of delegated access rights.

The Kerberos implementation in Windows supports different modes of delegation. When
explaining these modes, we follow the popular convention of calling the parties involved
Alice and Bob. When Alice needs a service from Bob, where Bob has to access servers on
her behalf, and when she knows in advance what Bob is going to need, she applies for
proxy tickets for the relevant servers and gives the tickets and the corresponding session
keys to Bob. These server tickets are marked as proxy tickets and must contain special
authorizations that limit how Bob can use Alice’s credentials, e.g. state the name of a file
Bob is allowed to print. If she does not know in advance what Bob is going to need, Alice
applies for a forwarded TGT for Bob and transfers this ticket and corresponding session
key to Bob. In this way, Alice delegates her identity to Bob. Bob can now apply for
tickets on her behalf. Bob can impersonate Alice. In [47], this is aptly called ‘the fast and
loose way to delegate credentials’. Principals can be nominated as OK-AS-DELEGATE
to have some control over the delegation of credentials (identities).

Is delegating identities a good idea at all? At the level of subjects this is quite reasonable.
SIDs give access rights, and a process running on behalf of a user cannot constantly
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go back to that user and ask whether it is all right to pass on a SID to another process.
However, when Alice delegates her identity to another user, she is doing the equivalent
of giving her password away (for the time the forwarded ticket is valid). Sharing of
passwords is usually frowned upon and may violate Alice’s corporate security policy.

Concepts from operating system security may not always be appropriate at the application
layer. Calling both users and processes Alice and Bob does not add to clarity either. In
general, anthropomorphic metaphors such as ‘Alice talks to Bob’ or ‘Bob verifies Alice’s
identity’ can be very misleading. In computer security, the entities are computers, not
human beings, they send messages over a network, they do not talk, and you have to
decide what you mean by ‘verifying A’s identity’. There is definitely no visual contact
between computers.

Lesson
Alice and Bob are semantic sugar. They allow you to tell nice stories but
they also invite you to think at the wrong level of abstraction.

15.4.4 Revocation
How can access rights be revoked from a principal? The system administrator of the
KAS and the TGS have to update their databases so that these access rights are no longer
available to the principal. The access rights are thus revoked for the next session, i.e. the
next time the principal logs on or requests a ticket from the TGS. The tickets the principal
already possesses are, however, valid until they expire. For example, KAS tickets usually
have a lifetime of about one day. This is another instance of the TOCTTOU problem.

You now face a trade-off between convenience and security. If the TGS issues tickets with
a distant expiry date, the principal has no need to access the TGS that often and the TGS
may occasionally be off-line without too much impact on the users. However, revocation
of an access right will take effect with a longer delay. If the TGS issues tickets with short
lifetimes, principals have to update their tickets more regularly and the availability of the
security servers becomes more important for system performance.

15.4.5 Summary
For a full assessment of Kerberos, you have to go beyond analyzing the authentication
protocol and the strength of the underlying cryptographic algorithms. You also have to
examine its non-cryptographic security features. The following points are part of such
an investigation.

• Timeliness of messages is confirmed by checking time stamps. Therefore, reasonably
synchronous clocks are required throughout the whole system and the clocks themselves
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have to be protected against attacks. Secure clock synchronization in itself may require
authentication.

• Checking of time stamps allows for some clock skew. The typical acceptance window
of five minutes is rather large and can be exploited by replay attacks.

• Servers have to be on-line. The KAS is needed on-line at login, and the TGS is needed
when a ticket is requested. Requirements on the availability of a TGS may be relaxed
as discussed above.

• Session keys (for a symmetric cipher) are generated by Kerberos servers (authentication
and ticket granting servers). As the session keys are used in subsequent communications
between principals, trust in the servers has to encompass trust that servers will not
misuse their ability to eavesdrop.

• Password guessing and password spoofing attacks are possible [235].

• Keys and tickets are held on the client’s machine. Therefore, you rely on the protection
mechanisms on that node for the security of Kerberos. As long as Kerberos users
worked from simple terminals, this was not much of an issue. The situation changed
once users ran Kerberos on a PC or a multi-user workstation.

• The initial client request is not authenticated. An attacker sending spoofed authenti-
cation requests would get tickets in return. This could constitute a denial-of-service
attack against the authentication server or be an attempt to collect material for a crypt-
analytic attack. As a countermeasure, the server could ask the user for authentication
in a pre-authentication phase before generating any tickets.

Furthermore, it is important to distinguish the security of the protocol itself from the
security of implementations of Kerberos. For example, one implementation of Kerberos
Version 4 reportedly used a weak random-number generator for key generation, so that
keys could be found easily by exhaustive search.

15.5 P U B L I C - K E Y I N F R A S T R U C T U R E S
The description of the MVQ protocol omitted one important detail. How do A and B
know that the verification keys they are using for authentication indeed correspond to
the right party? This is a crucial problem in public-key cryptography. We rarely want to
run protocols between cryptographic keys but between principals that have meaningful
names (identities) at a higher protocol layer, e.g. usernames of clients or DNS names of
servers. There has to be a reliable source that links those identities with cryptographic
keys. Note that with symmetric ciphers, the parties A and B often trust a server to create
this connection.

15.5.1 Certificates
Diffie and Hellman envisaged a public directory where one could look up the public
keys of users, just as in a phone directory [82]. In a student project in 1978, Kohnfelder
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implemented this directory as a set of digitally signed data records containing a name
and a public key. He coined the term certificate for these records. Certificates originally
had a single function, binding between names and keys. Today, the term has a wider use
and you can find explanations like the following.

Certificate: A signed instrument that empowers the Subject. It contains at least an Issuer and
a Subject. It can contain validity conditions, authorization and delegation information [88].

In this spirit, we can define a certificate as a digitally signed document that binds a subject
to some other information. Subjects can be people, keys, names, etc. Subjects in this
context are not necessarily the same as subjects in access control (Chapter 5). Identity
(ID) certificates bind names to keys. Sometimes this is still the default interpretation of
the term ‘certificate’. Attribute certificates bind names to authorizations. Authorization
certificates bind keys to authorizations.

15.5.2 Certificate Authorities
The binding between subject and key, or some other information, is established by the
party that issues (signs) the certificate. This party is known as the issuer. Certificate
authority (CA) is just another name for issuer. When you issue certificates for your own
use, you are a CA. Sometimes ‘CA’ is used more narrowly for organizations issuing ID
certificates. The application determines the technical and procedural trust requirements
a CA has to meet. The CA has to protect its own private key. It may have to check that
the subject is who it claims to be and that the attributes in the certificate are correct.
Checks may be performed at various levels of thoroughness. The VeriSign certificate
classes may serve as an example. At the most elementary level, the CA just checks that
subject names are unique. At the highest level, the subject has to appear in person with
government-approved identity documents. Some of these checks can be performed by a
registration authority (RA) and the CA’s main task is the issuance of certificates.

Public-key infrastructure (PKI) is the somewhat imprecise term used to describe the
system for issuing and managing certificates. Depending on your source, a PKI may be:

• software for managing digital certificates;
• a system of hardware, software, policies and people providing security assurances;
• the technology for securing the Internet;
• a worldwide system of digital ID cards.

There is no ‘correct’ definition. Whenever you encounter a so-called PKI, you have to
establish which interpretation is intended in the given context before drawing any further
conclusions.

15.5.3 X.509/PKIX Certificates
Today, X.509 version 3 (v3) is the most commonly used PKI standard. The original
ITU-T Recommendation X.509 [128] was part of the X.500 Directory [59], which has
since also been adopted as ISO 9594-1. X.500 was intended as something akin to a
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global on-line telephone directory. X.509 certificates would bind public keys (originally
passwords) to X.500 pathnames (distinguished names) to note who has permission to
modify X.500 directory nodes. X.500 was geared towards identity-based access control:

Virtually all security services are dependent upon the identities of communicating parties
being reliably known, i.e. authentication.

This view of the world pre-dates the web and many new e-commerce scenarios, where a
different kind of access control is more appropriate.

Compared to previous versions, the X.509 v3 certificate format (Figure 15.5) includes
extensions to increase flexibility. Extensions can be marked as critical. If a critical
extension cannot be processed by an implementation, the certificate must be rejected.
Non-critical extensions may be ignored. Critical extensions can be used to standardize
policy with respect to the use of certificates.

version (v3)
serial number
signature algorithm id
issuer name
validity period
subject name
issuer unique identifier
subject unique identifier
extensions

extensionID
critical: yes/no
extensionValue

Figure 15.5: X.509 v3 Certificate Format

PKIX is the Internet X.509 public-key infrastructure [120]. It adapts X.509 v3 to the
Internet by specifying appropriate extensions. A public-key certificate (PKC) contains a
subject’s public key and some further information. An attribute certificate (AC) contains
a set of attributes for a subject. Attribute certificates are issued by attribute authorities.
A PKI is the set of hardware, software, people, policies and procedures needed to create,
manage, store, distribute, and revoke PKCs. A privilege management infrastructure (PMI)
is a collection of ACs, with their issuing attribute authorities, subjects, relying parties,
and repositories.

X.509 and PKIX are name-centric PKIs. To associate a key with access rights, you
have to know the subject the key belongs to. Authorization attributes are linked to
a cryptographic key via a common name in a PKC and an AC. An alternative is the
simple public-key infrastructure (SPKI) [88], a key-centric PKI. SPKI certificates bind
keys directly to attributes (access rights).
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Lesson
Like user identities, certificates can serve two purposes. They can identify
an entity associated with a cryptographic key or they can specify the access
rights to be given to the holder of a cryptographic key (without indicating
the holder’s identity).

15.5.4 Certificate Chains
Technically, it is wrong to claim that a certificate is needed to verify a digital signature.
An authentic copy of the verification key is needed. Verification keys may be stored in
certificates, but can also be stored in protected memory. However, there are systems
that require all verification keys to be stored in certificates. The Java 2 security model is
an example.

To check a certificate, another verification key is needed, which might be vouched for
by a certificate. This creates a certificate chain. Ultimately, you need a root verification
key whose authenticity cannot be guaranteed by a certificate. Typically a set of root
verification keys is installed in browsers/email programs. When you get messages like
‘You do not trust this certificate’ then there is no chain rooted in one of your root
verification keys. In a system that requires certificates for signature verification you can
use self-signed certificates to store root keys. A self-signed certificate can be verified with
the public key contained in it.

Certificates have expiry dates. It is wrong to believe that a certificate cannot be used
after it has expired. Deciding what should be done with expired certificates is a policy
decision. In the world of passports, for example, an EU passport is valid for travel within
the EU for a year after it has expired. There are two main policies for considering expiry
dates and revocation status when evaluating a certificate chain.

In the shell model all certificates must be valid at the time of evaluation. If a top-level
certificate expires or is revoked, all certificates signed by the corresponding private key
have to be reissued under a new key. A CA should thus only issue certificates that expire
before its own certificate. This model may fit when certificate subjects are addresses from
a hierarchical address space and the purpose is authenticating the source of traffic. We
want to be sure that the address is valid now but will not check again some time in
the future. An address may become invalid due to a reorganization at some level of the
address hierarchy. Hence, we should confirm that all links through the address space are
valid at the time of authentication.

In the chain model the issuer’s certificate has to be valid at the time the certificate
was issued. If a top-level certificate expires or is revoked, certificates signed by the
corresponding private key remain valid. This model may fit when certificates are used
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for authenticating documents. A signed contract may have to be checked after the time
a certificate has expired. The chain model also may also be appropriate with certain
attribute certificates. For example, when a certificate confirms that its subject has student
status it is important that the person issuing the certificate has the authority to do so.
It is not required that this very person still has this authority when the certificate is
presented later.

The chain model requires a time-stamping service that reliably establishes when a
certificate was issued. A time stamp authority (TSA) is a TTP that provides proof of
existence for a particular datum at an instant in time. A TSA does not check the
documents it certifies. TSP, the PKIX time stamp protocol, is described in RFC 3161.

15.5.5 Revocation

A certificate may have to be revoked if a corresponding private key has been compromised
or if a fact the certificate vouches for no longer is valid. Certificate revocation lists (CRLs)
distributed at regular intervals or on demand are the solution proposed in X.509. CRLs
make sense if on-line checks are not possible or too expensive. When on-line checks are
feasible, CRLs can be queried on-line. But when on-line checks are feasible, certificate
status can be queried on-line and CRLs may become superfluous. Instead, the current
status of a certificate could be queried with a protocol like the Online Certificate
Status Protocol (OCSP, RFC 2560). The German electronic signature infrastructure, for
example, requires checks against positive lists of valid certificates. Short-lived certificates
are an alternative to revocation.

15.5.6 Electronic Signatures

Hand-written signatures play an important part in commercial and legal transactions.
(Not because they are difficult to forge, but because they signal intent.) When such
transactions are executed electronically, an equivalent of hand-written signatures is
required. Digital signatures have been proposed as the solution. However, a digital
signature is just a cryptographic mechanism for associating documents with verification
keys. The security service that associate documents with persons is usually called
electronic signature. Electronic signature services often use digital signatures as a building
block, but could be implemented without them.

There have been numerous efforts to integrate electronic signatures into legal systems.
A prominent example is the EU Electronic Signature Directive (Directive 1999/93/EC of
13 December 1999 on a Community framework for electronic signatures). The Directive
uses electronic signatures as a technology-neutral term, but so-called advanced electronic
signatures have de facto to be implemented with digital signatures. Advanced electronic
signatures are vouched for by qualified certificates. Further requirements on certification
service providers (CAs and the like) and signature creation devices (e.g. smart cards)
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apply. Figure 15.6 gives a schematic overview of all the components of a secure electronic
signature service, and of the basis for their security.

Lesson
In the end, cryptographic protection has to be anchored in a non-
cryptographic base.

document
name

person

public
verification

key

private
signature

key

digital signature certificate

key containersignature
creation device

mathematics mathematics,
operational procedures

secure operating system, physical security,
operational procedures

electronic signature

Figure 15.6: Components of an Electronic Signature Service Using Digital Signatures

15.6 T R U S T E D C O M P U T I N G – AT T E S TAT I O N
Let us switch the focus back from people to machines. There may be situations where
we might only engage in a transaction with a remote platform if we know the exact
hardware and software configuration of that machine. We might request this information
from the remote platform, but how can we be sure that the information we get is correct?
This issue has been addressed by the Trusted Computing Group (TCG). The process of
vouching for the accuracy of information is called attestation.

The Trusted Platform Module (TPM) is the hardware component at the core of the
security architecture specified in the TCG. The TPM can store integrity check values
for hardware and software components in platform configuration registers (PCRs).
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Furthermore, the TPM holds an endorsement key (EK) that cannot be removed. The EK
is a 2048-bit RSA key pair installed by the manufacturer. The public key identifies the
TPM. Attestation uses the private key for signing.1 The TPM manufacturer may issue a
certificate confirming that the EK belongs to a genuine TPM. In practice, though, such
certificates are rarely issued.

The TPM could sign the PCR contents with its EK, but if all attestations are signed by the
same key, an observer could link them all. The TPM may therefore create fresh signature
key pairs, so-called attestation identity keys (AIKs), to make attestations unlinkable. The
TPM needs the services of a privacy CA (pCA) to get a certificate that confirms that
the AIK belongs to a genuine TPM. The following protocol was once considered for
obtaining such a certificate. The TPM sends its public endorsement key EK and the public
part of the attestation identity key AIKi to the pCA. The pCA checks that EK belongs
to a genuine TPM, stores the mapping between EK and AIK, and returns a certificate
CertpCA to the TPM. In an attestation the TPM signs the PCR contents with the private
part of AIKi and includes CertpCA in the message sent to the verifier.

1. TPM → pCA: EK, AIKi

2. pCA → TPM: CertpCA

3. TPM → Verifier: AIKi, sAIKi(PCR), CertpCA

You might have noted that the attempt to make attestations unlinkable has failed.
In the first message all attestation keys are linked to EK, and thus all attestations can still
be linked.

Direct Anonymous Attestation

Completely anonymous attestation is not desirable. It should be possible to recognize
attestations from TPMs that are known to be compromised. Several advanced cryp-
tographic techniques are used in the construction of a direct anonymous attestation
protocol that provides unlinkable attestation for ‘good’ TPMs while being able to detect
the attestations from known ‘bad’ TPMs [45, 51]. A detailed description of this protocol
is beyond the scope of this book. We will just sketch some of the ideas that have
contributed to its design.

Blind signatures had been introduced by Chaum for e-cash protocols [61]. In a blind
signature scheme, a user lets someone else sign a document without revealing the
document to the signer. Blind signature schemes can be implemented with RSA. Let (n, e)
be the signer’s public key, d the private key, and m the document to be signed. The user
generates a random blinding factor r with gcd(r, n) = 1 and sends x = rem mod n to the
signer. The signer returns

t = xd = (rem)d = rmd mod n.

1This is in contrast to the TCG Glossary, which states that the private key is used for decrypting messages sent to
the TPM.
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The user finally computes the signature s of m as s = r−1t mod n. In group signature
schemes signers can remain hidden in a group. Only group members can generate valid
signatures. Anyone can verify a signature, but not the individual signer. In the context of
attestation, the group is formed by all valid TPMs. In a zero-knowledge proof the prover
demonstrates knowledge of a secret without revealing any information about the secret.
Such a secret could, for example, be a discrete logarithm.

The TPM gets from its issuer a Camenisch–Lysyanskaya signature [52] on its secret x,
without revealing that secret to the issuer. This signature is a certificate that x belongs to
a TPM. When signing a message, e.g. an AIK, the TPM shows in a zero-knowledge proof
that it has such a certificate. The TPM further picks a generator g from a group where
the DLP is hard and constructs a pseudonym NV = gx, together with a zero-knowledge
proof that NV has been properly formed with the secret x vouched for by the certificate.
The message being signed is an input parameter to this zero-knowledge proof, used both
by signer and verifier.

To detect a compromised TPM the verifier gets g and compares NV with gx for all secrets
x known to belong to a compromised TPM. When g is chosen at random, pseudonyms
cannot be linked. When g is fixed, all pseudonyms can be linked. When g is derived
as a hash from the verifier’s name, pseudonyms for different verifiers cannot be linked
but pseudonyms used with an individual verifier can be linked. A verifier might find it
suspicious if the same TPM is used too often and check how often a pseudonym is being
presented.

15.7 F U R T H E R R E A D I N G
A detailed specification of Kerberos is contained in the Internet RFC 4120. An
analysis of Kerberos security, in the context of the environment for which it
was developed, is given in [30]. Extensions to Kerberos refine its access control
features, e.g. through privilege attribute certificates (PACs) in SESAME [15], OSF
DCE, or PERMIS. The PKIX roadmap [13] and the Internet Draft on the Simple
Public Key Infrastructure [88] provide a discussion of the theory of certificates
worth reading. Lessons learned while deploying a PKI in an international company
are reported in [3].

15.8 E X E R C I S E S

Exercise 15.1 In the HTTP basic authentication protocol, analyze the security
gains (if any) when the client sends a hash of the password instead of a base64
encoding of the password.
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Exercise 15.2 Show that the AKEP2 protocol provides mutual entity authenti-
cation and implicit key authentication.

Exercise 15.3 Show that the MVQ protocol provides mutual entity authenti-
cation and key authentication. Justify the claim that the MVQ protocol is not
vulnerable to the same man-in-the-middle attack as the Diffie–Hellman protocol.

Exercise 15.4 Consider this simple password-based challenge-response protocol
run between a user A and a server S. PA denotes A’s password, n is a random
nonce generated by the server, and h is a known cryptographic hash function.

1. S → A : ePA(n)
2. A → S : ePA(h(n))

Show that this protocol is vulnerable to an off-line password guessing attack.

Exercise 15.5 Justify the claim that the EKE protocol is not vulnerable to an
off-line password guessing attack.

Exercise 15.6 Modify the Needham–Schroeder key exchange protocol so that
both parties A and B can contribute input to the generation of the session key.

Exercise 15.7 Design an extension of Kerberos that allows access between
domains. What administrative arrangements have to be in place to make such a
scheme feasible? What additional steps would you introduce in the protocol?

Exercise 15.8 A company keeps an archive of signed electronic records, together
with the relevant certificates. Should the shell model or the chain model be used
when checking the validity of documents in the archive?

Exercise 15.9 Consider a scheme where certificates are used to delegate access
rights. Should the shell model or the chain model be used when deciding on access
requests?

Exercise 15.10 Consider a scheme where certificates are used to delegate access
rights. Should a subject be able to delegate rights it cannot exercise itself? In your
answer, distinguish between name-centric and key-centric PKIs.



Chapter16
Communications Security

As long as data are within a machine, you can place a reference monitor as
a guard and rely for protection on classic measures from computer security.
When data leaves the machine, protection has to be extended along the
connection link to the next safe place. This is the task of communications
security. Cryptography plays an important role in implementing communi-
cations security services. The recipient of cryptographically protected data
may have to do some processing before being able to decide whether incom-
ing traffic is junk to be discarded. Denial-of-service attacks exploit this
by forcing the victim to perform ‘expensive’ computations. The design of
communications security protocols has to be aware of this issue.

OBJECT I VES

• Give an overview of the security challenges specific to communications
systems.

• Introduce the design of network security protocols, using the basic Internet
security protocols IPsec and SSL/TLS as examples.

• Understand that the Internet is not a cloud.
• Explain why tunnels are sometimes placed within another tunnel.
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16.1 I N T R O D U C T I O N
Computer networks are the communications infrastructure for transmitting data between
nodes in a distributed system. Data to be sent by an application in one node have to
prepared for transport, transmitted as a sequence of electronic or optical signals, and
reassembled and presented to an application program at the receiver’s end. Network
protocols have to find a route from sender to receiver, deal with the loss or corruption of
data, and also with the loss of connections, e.g. when builders cut through a telephone
cable. It is good engineering practice to address these concerns one at a time and use a
layered architecture, with application protocols at the top and protocols that physically
transmit encoded information at the bottom.

The ISO/OSI security architecture [125] defines security services to combat communi-
cations security threats. Security services are implemented by security mechanisms. The
mechanisms providing these services mostly come from cryptography. Typical examples
are encryption, digital signatures, and integrity check functions. Cryptographic protec-
tion has a nice property: a secure protocol in layer N will not be compromised when it
is run on top of insecure protocols at the layers below. There is one exception to this
rule. When your goal is anonymity and you take precautions to hide the identities of
participants in one layer, then the data added by lower-layer protocols may still reveal
information about the source and destination of messages.

16.1.1 Threat Model
Attackers have access to the communications link between two end points. Messages
can be seen and modified by anyone bent on doing so. The job of a communications
security service is done once data has been delivered to an end point. This is the ‘old’
secret service threat model. It is captured in formal models for protocol analysis that put
the attacker in charge of all communications. In a metaphor from the world of pen and
paper, the sender writes a note on a piece of paper and drops it on the floor. Later, the
receiver goes through his garbage bin to see what has arrived.

The attacker can be passive or active. A passive attacker just listens to traffic. When
the attacker is interested in the content of messages, we talk about eavesdropping,
wiretapping, or sniffing. Traffic analysis tries to identify communications patterns and
may be possible even when the attacker cannot read individual messages. An attacker
might try to identify messages coming from the same source (linkability) or find out
who is talking to whom, and how often. In mobile services, the attacker might also be
interested in a user’s location.

An active attacker may modify messages, insert new messages, or corrupt network
management information such as the mapping between DNS names and IP addresses.
In spoofing attacks messages come with forged sender addresses. In flooding (bombing)
attacks a large number of messages is directed at the victim. In squatting attacks, the
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attacker claims to be at the victim’s location. Active attacks are not necessarily more
difficult to mount than passive attacks. For example, in practice it is much easier to send an
email with a forged sender address than to intercept an email intended for someone else.

16.1.2 Secure Tunnels
A secure tunnel (channel) is a secure logical connection between two end points that
crosses an insecure network. Typical security guarantees are data integrity, confiden-
tiality, and data origin authentication. The end points might be machines named by
IP addresses or by domain names; the end points might be specific software compo-
nents hosted at a client or server. Confusion about the precise nature of the end point
authenticated can lead to ‘security services that do not provide any security at all’. If the
tunnel does not end where the user expects, the attacker may wait at the other side of
the tunnel.

Secure tunnels do not provide security services once data are received. Secure tunnels are
usually not intended for providing a non-repudiation service. They are mainly a matter
for their immediate end points. Secure tunnels tend to be built in the following steps:

• An authenticated key establishment protocol establishes a fresh, shared secret between
the end points; sometimes only one party is authenticated, sometimes mutual authen-
tication is performed.

• In a key derivation phase, symmetric keys for message authentication code (MAC) and
traffic encryption are derived from the shared secret.

• Further traffic is protected using the derived keys.

Expensive asymmetric cryptography is only used for entity authentication and key estab-
lishment. (Keyed) pseudo-random functions, typically built from standard cryptographic
hash functions, are employed in key derivation. Symmetric key algorithms (MAC,
encryption) are used for protecting data sent through the tunnel. Non-cryptographic
mechanisms are nonces and time stamps used for freshness in entity authentication, and
sequence numbers for preventing replay attacks. Fast rekeying and reuse of suspended
sessions are supported in some cases.

16.2 P R OTO C O L D E S I G N P R I N C I P L E S
The seven-layer model of the ISO/OSI architecture (Figure 16.1) is a familiar framework
for layering network protocols. Layered models provide a useful abstraction for discussing
network security. Layered models also return us to a topic familiar from Section 3.4.2.
Security services at the top can be tailored to a specific application. However, each
application needs its own security protocols. Security services at the bottom can protect
traffic from all higher layers, relieving application protocol designers from security
concerns. However, some applications may find that this protection does not meet their
requirements too well.
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Figure 16.1: The ISO/OSI Seven-Layer Model

In a layered model, peer entities in a layer N communicate using an (N)-protocol.
Protocols at layer N + 1 see a virtual connection at layer N and need not consider aspects
of any lower layer (Figure 16.2). The (N)-protocol in turn builds on protocols from lower
layers. There exists a general pattern for passing data to the lower layers. Messages in
the (N)-protocol are called (N)-protocol data units (PDUs). The (N)-protocol transmits
an (N)-PDU by invoking facilities at layer N − 1. At this stage, the (N)-PDU may be
fragmented and otherwise processed. The results are then equipped with headers and
trailers to become (N − 1)-PDUs. The recipient of these (N − 1)-PDUs uses information
from the headers and trailers to reassemble the (N)-PDU. Figure 16.3 gives a simplified
view of this process.
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Figure 16.2: Virtual Connection at Layer N
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Figure 16.3: Processing an (N)-PDU
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There are two principal options for implementing security services at layer N − 1 that
are called by an (N)-protocol. The upper-layer protocol can be aware of the security
services at the lower layer, or the security services could be transparent. In the first
case, the upper-layer protocol has to change its calls so that they explicitly refer to the
security facilities provided. In the second case, the upper-layer protocol does not have
to change. In both cases, the headers in the (N − 1)-PDU are a convenient location for
storing security-relevant data.

The Internet protocol stack has four layers (Figure 16.4). At the application layer there are
protocols such as Telnet, FTP, HTTP, Simple Mail Transfer Protocol (SMTP), or Secure
Electronic Transaction (SET). Protocols at the transport layer are TCP (Transmission
Control Protocol) and UDP (User Datagram Protocol). At the Internet layer, there is
the Internet Protocol (IP). TCP and UDP use port numbers to indicate the application
protocol a PDU belongs to. Common port numbers are 21 (FTP), 23 (Telnet), 25
(SMTP, sending email), 110 (POP3, collecting email), 143 (imap, collecting email),
80 (HTTP), 443 (HTTPS, secure web pages), or 53 (DNS, name look-ups). The protocols
at the link (and physical) layer are specific to the network technology.

application

transport

IP/Internet

link

Figure 16.4: The Internet Layers

TCP and IP are at the heart of the Internet, together with UDP and the ICMP management
protocol. Originally, these protocols were designed for friendly and cooperating users
linked by an unreliable network, so security was no concern at all. Today, the use of
TCP/IP is widespread and the demand for security is strong. The Internet Engineering
Task Force (IETF) has standardized security protocols at the Internet and transport layer
in RFCs (Requests for Comment). Within the IETF there are numerous ongoing activities
regarding the revision of the existing security protocols and the development of new
security protocols.

16.3 I P S E C U R I T Y
The Internet Protocol is a connectionless and stateless protocol that transmits IP packets
(datagrams). These are the PDUs at the Internet layer. The core IP specification provides a
best-effort service. Each packet is treated as an independent entity, unrelated to any other
IP packet. There is no guaranteed delivery of packets, no mechanism for maintaining the
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order of packets, and no security protection. IP version 4 was published as RFC 791 in
1981. Since then, the Internet has kept growing and, in consequence, IP has had to be
adapted to cope with new demands. IP version 6 (IPv6) was specified in RFC 1883. We
will refer to this version when discussing IP security mechanisms.

The security architecture for IP (IPsec) is given in RFC 4301. IPsec is optional for
IPv4 and mandatory for IPv6. IPsec includes two major security mechanisms, the IP
Authentication Header (AH) described in RFC 4302 and the IP Encapsulating Security
Payload (ESP) covered in RFC 4303. The IP security architecture does not include
mechanisms to prevent traffic analysis.

16.3.1 Authentication Header
The Authentication Header protects the integrity and authenticity of IP packets but does
not protect confidentiality. In the 1990s, export restrictions on encryption algorithms
were a political reason for having an authentication-only mechanism. These export
restrictions have by and large been lifted and it is now recommended to use ESP only, to
simplify implementations of IPsec. There is one important difference between the integrity
protection afforded by AH and ESP. In ESP the original header of an IP packet is not
considered when computing the authenticator (Figures 16.6 and 16.7). The integrity
checksum in AH covers the original IP header, with the exception of mutable fields.

16.3.2 Encapsulating Security Payloads
Encapsulating Security Payload can be used to provide confidentiality, data origin authen-
tication, data integrity, some replay protection, and limited traffic flow confidentiality.
An ESP packet (Figure 16.5) contains the following fields:

• Security parameters index (SPI) – 32-bit field, used for identifying the security associa-
tion for this IP packet.

• Sequence number – unsigned 32-bit field containing a monotonically increasing counter
value; must be included by the sender but is processed at the receiver’s discretion.

• Payload data – variable-length field containing the transport-layer PDU.

• Padding – optional field containing padding data for the encryption algorithm; the
length of the data to be encrypted has to be a multiple of the algorithm’s block size.

• Pad length.

• Next header – type of the transport-layer PDU.

• Authentication data – a variable number of 32-bit words containing an integrity check
value (ICV) computed over the ESP packet without the authentication data.

The SPI and sequence number constitute the ESP header. The fields after the payload
are the ESP trailer. ESP can be used in two modes. In transport mode (Figure 16.6), an
upper-layer protocol frame, e.g. from TCP or UDP, is encapsulated within the ESP. The
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Figure 16.5: ESP Packet
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Figure 16.7: Applying ESP in Tunnel Mode to an IPv6 Packet

IP header is not encrypted. Transport mode provides end-to-end protection of packets
exchanged between two end hosts. Both nodes have to be IPsec aware.

In tunnel mode (Figure 16.7) an entire IP packet plus security fields is treated as a new
payload of an outer IP packet. The original inner IP packet is encapsulated within the
outer IP packet. IP tunnelling can therefore be described as IP within IP. This mode can
be used when IPsec processing is performed at security gateways on behalf of end hosts.
The end hosts need not be IPsec aware. The gateway could be a perimeter firewall or a
router. This mode provides gateway-to-gateway security rather than end-to-end security.
On the other hand, you get traffic flow confidentiality as the inner IP packet is not visible
to intermediate routers and the original source and destination addresses are hidden.
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16.3.3 Security Associations

To generate, decrypt, or verify an ESP packet a system has to know which algorithm
and which key (plus initialization vector) to use. This information is stored in a security
association (SA). The SA is the common state between two hosts for communication in
one direction. Bidirectional communication between two hosts requires two SAs, one
in each direction. Therefore, SAs are usually created in pairs.

A security association is uniquely identified by an SPI (carried in AH and ESP headers),
source address, destination address and the security protocol (AH or ESP). It contains
the relevant cryptographic data such as algorithm identifiers, keys, key lifetimes, and
possibly initialization vectors. There is a sequence number counter and an anti-replay
window. The SA also indicates the protocol mode (tunnel or transport). The list of active
SAs is held in the security association database (SAD). SAs can be combined, e.g. for
multiple levels of nesting of IPsec tunnels. Each tunnel can begin and end at different
IPsec gateways along the route. Figure 16.8 shows a typical configuration where a remote
host has security associations with a gateway and with an internal host.

inner SAtunnel SA

local networkInternet

internal hostgatewayremote host

Figure 16.8: Combining Security Associations

16.3.4 Internet Key Exchange Protocol

Manual creation of SAs works only if the number of nodes is small but does not scale
to reasonably sized networks of IPsec-aware hosts. An automated process supported by
a key exchange protocol is thus needed. The first version of the Internet Key Exchange
protocol (IKEv1, RFC 2409) was criticized as being too flexible and too complex, with
too many options.

There is an underlying general strategic problem. For a security protocol to be widely
used it has to be standardized. But a protocol has to be widely used to learn which
features are essential and should be standardized, and which options are hardly ever
used. Based on this experience, the standard can be revised. A new version of the Internet
Key Exchange protocol, IKEv2, is specified in RFC 4306. IKEv2 establishes an IKE
SA and a variable number of child SAs. It consists of two phases and three message
exchanges, IKE_SA_INIT, IKE_AUTH (first phase), and CREATE_CHILD_SA. IKEv2
uses Diffie–Hellman as its single key establishment method.
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Prudent security engineering advice in the mid 1990s recommended that all messages
in a security protocol should be authenticated [2]. This defends against replay attacks
where an attacker uses intercepted messages from one protocol run in another run.
The underlying security paradigm is a closed organization. Parties want protection from
outsiders. Inside the organization identities are readily revealed.

The Internet is not a closed organization. Internet users may not wish to disclose their
identities to all and sundry all the time. Privacy concerns create a new requirement:
neither an observer nor the communicating partner get evidence that proves that a
conversation took place (plausible deniability). In a protocol, identities should then be
hidden as long as possible. In this case, there can be no authentication. This is reflected
in the design of IKEv2.

Lesson
Security requirements depend on the application.

IKE_SA_INIT Exchange

IKEv2 starts with an IKE_SA_INIT exchange between initiator and responder. Compo-
nents in brackets are optional.

1. I → R : HDR, SAi1, KEi, Ni
2. R → I : HDR, SAr1, KEr, Nr, [CERTREQ]

The parameters are the header HDR containing the SPI and other information, security
associations SA, Diffie–Hellman values KEi = gi, KEr = gr in the chosen group,
nonces Ni, Nr, and an optional certificate request [CERTREQ]. The initiator states
which cryptographic algorithms are supported (SAi1), the responder picks a suite
(SAr1). Initiator and responder have thereby negotiated a shared but unauthenticated
SA (SAr1) and can compute a shared but unauthenticated master key SKEYSEED from
the nonces and from gir. The shared suite of cryptographic algorithms and the shared
key(s) are used to protect the messages in the next exchange. No identities are disclosed
in the IKE_SA_INIT exchange, other than the IP addresses in the IP headers.

IKE_AUTH Exchange

In the IKE_AUTH exchange messages are cryptographically protected under a key SK
derived from the master key. We denote encryption under SK by SK{. . .}.

1. I → R : HDR, SK{IDi, [CERT, ][CERTREQ, ][IDr, ]AUTH, SAi2, TSi, TSr}
2. R → I : HDR, SK{IDr, [CERT, ]AUTH, SAr2, TSi, TSr}

The parameters are the identities IDi, IDr of initiator and responder, the authenticator
\em AUTH, and traffic selectors TS that are outside the scope of this book. The
authenticator is a digital signature or MAC over the message. Authenticators must be



306 16 COMMUNICATIONS SECURITY

verified. In this exchange a new authenticated SA (SAr2) is negotiated. The shared suite
of cryptographic algorithms from SAr2 and the shared keys are used to protect the
messages in a third exchange. Identities are only included in encrypted messages.

CREATE_CHILD_SA Exchange

Messages are cryptographically protected with keys derived after the first phase.

1. I → R : HDR, SK{[N], SA, Ni, [KEi, ][TSi, TSr]}
2. R → I : HDR, SK{SA, Nr, [KEr, ][TSi, TSr]}

The notify flag [N] is used to indicate the SA when an SA is being rekeyed. This exchange
negotiates SAs for AH and ESP. There are different SAs for each combination of

{ESP,AH} × {tunnel,transport} × {sender, receiver}.
Optionally new keys can be established for the CHILD_SA.

16.3.5 Denial of Service
Strong cryptography can be a weakness. An attacker may send bogus message to the
victim, who performs ‘expensive’ cryptographic operations, e.g. signature verifications.
Such denial-of-service attacks cannot be prevented. To mitigate their effect, protocols
should be designed in a way that makes the attacker’s cost comparable to the victim’s cost.

A denial-of-service attack against the initiator could be launched during IKE_SA_INIT
by responding to the first message with a bogus response. If the initiator uses the first
response received to set up a connection, no usable SA and key will be established
and IKE fails. As a defence, the initiator accepts multiple responses to its first message,
continues the protocol, and discards all invalid half-open connections when a valid
cryptographically protected response is received to any one of its requests.

A denial-of-service attack against the responder could send a flood of session initiation
requests from forged IP addresses, exhausting the responder’s state and CPU. As a
defence, the responder could check that requests come from the claimed source address
(authentication) before proceeding further. This check can be implemented by returning
a cookie to the initiator who has to repeat the request, now including the cookie.
IKE_SA_INIT with cookies works as follows:

1. I → R : HDR(A, 0), SAi1, KEi, Ni
2. R → I : HDR(A, 0), N(COOKIE)
3. I → R : HDR(A, 0), N(COOKIE), SAi1, KEi, Ni
4. R → I : HDR(A, B), SAr1, KEr, Nr, [CERTREQ]

The field A in the header is the SPI assigned by the initiator, the field B the SPI assigned
by the responder. To counter state exhaustion, the responder must use a stateless
authentication mechanism. The cookie is not stored, but the responder must be able
to check that a cookie received is valid. Cookies are only used locally, so they raise
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no interoperability issues and there is no need to standardize cookie generation. The
responder could use a local secret, changed regularly and shared with nobody else, when
creating a cookie. RFC 4306 suggests computing the cookie as

VersionIDofSecret, Hash(Ni, IPi, SPIi, secret)

The responder may keep a window of secrets to be able to accept cookies that are slightly
out of date.

16.3.6 IPsec Policies

IPsec policies determine the security processing that should be applied to an IP packet.
IPsec-aware hosts have a security policy database (SPD). The SPD is consulted for each
outbound and inbound packet. The fields in an IP packet are matched against fields in
SPD entries. Figure 16.9 illustrates the processing of outbound IP packets. Matches can
be based on source and destination addresses (and ranges of addresses), transport-layer
protocol, port numbers, etc. Once an applicable policy has been found indicating an
action to be taken, we have to check the security association database to see whether
there is an SA for performing that action. For inbound IPsec-protected packets, for
example, the search finds the entry that matches the longest SA identifier.

1. Search the SAD for a match on {SPI, destination address, source address}; if a SAD
entry matches, process the inbound packet with that entry.

2. Otherwise, search the SAD for a match on {SPI, destination address}; if a SAD entry
matches, process the inbound packet with that entry.

Look up SPD 
to find policy 

for packet

Pass packet to 
next instance of 
IPsec processing

yes

no

Pass packet down
to link layer

More IPsec 
processing
required?

Encrypt/MAC
using key 
from CA

Create
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if needed

Drop,
pass through, 
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Figure 16.9: Processing Outbound IPsec Packets
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3. Otherwise, search the SAD for a match on only {SPI} if the receiver has chosen to
maintain a single SPI space for AH and ESP, or on {SPI, protocol} otherwise; if a SAD
entry matches, process the inbound packet with that entry.

4. Otherwise, discard the packet and log an auditable event (a new SA may be needed).

16.3.7 Summary

IPsec provides transparent security for all users of IP, without changing the interface to
IP. Upper-layer protocols need not be re-engineered to invoke security and need not even
be aware that their traffic is protected at the IP layer (Figure 16.10). However, there is not
much scope for tuning the level of protection to the requirements of the application. IP is
concerned about its performance as a communications protocol and cannot spend much
time on checking application-specific data to pick a security association. IPsec provides
host-to-host security, but not user-to-user or application-to-application security. IPsec
violates one of the original design principles of the layered Internet architecture. The
network layer is supposed to be stateless and unreliable. However, the order of data in
a secure channel may be crucial. This is difficult to maintain if IP packets are dropped
or reordered. Moreover, parties protecting their traffic with IPsec now need to maintain
shared state at the network layer.

application

transport

IP
IPsec sublayer

link

Figure 16.10: IP Security

16.4 I P S E C A N D N E T W O R K A D D R E S S
T R A N S L AT I O N
Protocols at different Internet layers are intertwined in manifold ways. TCP and UDP
compute (non-cryptographic) checksums that depend on IP source and destination
addresses. AH and ESP compute cryptographic checksums over their payloads (TCP,
UDP, . . . ). This works as long as the addresses in an IP header do not change on the
way from sender to receiver. This assumption matches the metaphor of the Internet
as a cloud. Packets enter the cloud at some point and emerge unchanged somewhere
else, were it not for the potential interference by an attacker. However, the metaphor
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is deceptive. The Internet is not a cloud, and there are entities that legitimately modify
addresses in IP headers. We will briefly discuss the implications for IPsec.

Network address translation (NAT) was invented in order to cope with the shortage of
IPv4 addresses (RFC 3022). NAT maps private IP addresses to routable addresses in
the public network, reducing the need for global IP addresses. NAT is today seen as a
security feature; local hosts are not directly addressable from the external network. Port
address translation (PAT) modifies TCP/UDP source and destination ports. NAT and
PAT recalculate IP and TCP/UDP header checksums.

Middleboxes such as routers, firewalls, NAT and PAT devices may rely on information
that is not available when IPsec is used. Conversely, IPsec authentication may refer to
fields in the IP header that are modified by a middlebox. For example, both in tunnel
or transport mode, AH is incompatible with NAT. AH only works when source and
destination networks are reachable without translation. ESP works with NAT. The outer
IP header is not included in the hash value computation for authentication.

IKE has problems when NAT devices transparently modify outgoing packets. If incoming
packets in an IKE negotiation are expected from UDP port 500 and if a NAT device is
introduced, the actual packet port may not be the expected port. Thus IKE negotiation
will not even begin. When IKE includes IP addresses as part of the authentication process,
changes made by a NAT device will cause IKE negotiation to fail.

NAT traversal (NAT-T) (RFC 3947 and 3948) deals with the problems that arise when
the source address of a packet does not match the true source IP address needed for
cryptographic checks. NAT-T adds a UDP header that encapsulates the ESP header, i.e.
sits between ESP header and outer IP header (Figure 16.11). NAT-T puts the sender’s
original IP address into a NAT original address (NAT-OA) payload during the IKE
exchange. When processing a packet, the UDP header is a marker triggering an editing
step that modifies the new IP header so that any disruptive NAT changes are undone and
checksums are successfully verified.

original IP packetDataTCP
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IP header
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trailerDataTCP
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Figure 16.11: Tunnel Mode ESP Encapsulation in NAT-T
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16.5 S S L / T L S

TCP provides a reliable byte stream between two nodes. TCP is a stateful connection-
oriented protocol that detects when packets are lost, when packets arrive out of order,
and discards repeated data. TCP performs address-based entity authentication when
establishing a session between two nodes, but chose a vulnerable implementation of
this protocol as highlighted in Section 17.1.2. TCP lacks strong cryptographic entity
authentication, data integrity or confidentiality. These services were introduced in the
Secure Socket Layer (SSL) protocol developed by Netscape, mainly to protect World
Wide Web traffic. The Transport Layer Security protocol (TLS) is by and large identical
with SSL version 3 (SSLv3) so the protocol has become known as SSL/TLS. The latest
version at the time of writing, TLSv1.2, is specified in RFC 5246.

Within the IP stack, SSL sits between the application layer and TCP (Figure 16.12).
Hence, SSL can rely on the properties guaranteed by TCP and, for example, need not
concern itself with the reliable delivery of data. Like TCP, SSL is stateful and connection-
oriented. The SSL session state contains information required for the execution of
cryptographic algorithms, such as a session identifier, the specification of the cipher suite,
shared secret keys, certificates, random values used by protocols, etc. To contain the
overheads caused by key management, one SSL session can include multiple connections.
The characteristic example is an HTTP 1.0 session between a client and a server, where
a new connection is made to transfer each part of a composite document. Only a subset
of the state information has to change for each connection.

application

TCP

IP

link

SSL

Figure 16.12: The SSL Security Layer

SSL has two components, the SSL Record Layer and the SSL Handshake Layer. The SSL
Record Layer takes blocks from an upper-layer protocol, fragments these blocks into
SSL plaintext records, and then applies the cryptographic transformation defined by the
cipher spec in the current session state. The SSL Record Layer thus provides a service
similar to IPsec. The parallels between IPsec security associations and the SSL state are
by no means accidental.
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The SSL Handshake Protocol sets up the cryptographic parameters of the session state.

1. Client → Server: ClientHello
2. Server → Client: ServerHello,[Certificate],[ServerKeyExchange],

[CertificateRequest], ServerHelloDone
3. Client → Server: [Certificate], ClientKeyExchange, [CertificateVerify],

ChangeCipherSpec, Finished
4. Server → Client: ChangeCipherSpec, Finished

To illustrate this protocol, we will step through a run where the client authenticates
the server. The client initiates the protocol run with a ClientHello message, containing
a 28-byte random number, a list of suggested ciphers, ordered according to the client’s
preference, and a suggested compression algorithm.

M1: ClientHello: ClientRandom[28]
Suggested Cipher Suites:

TLS_RSA_WITH_IDEA_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DH_DSS_WITH_AES_128_CBC_SHA

Suggested Compression Algorithm: NONE

The server selects the cipher TLS_RSA_WITH_3DES_EDE_CBC_SHA from the sug-
gested suite. RSA will be used for key exchange, triple DES in CBC mode for encryption,
and SHA as the hash function. The server replies with a ServerHello message and a
certificate chain.

M2: ServerHello: ServerRandom[28]
Use Cipher Suite:

TLS_RSA_WITH_3DES_EDE_CBC_SHA
Session ID: 0xa00372d4XS

Certificates: subjectAltName: SuperStoreVirtualOutlet
PublicKey: 0x521aa593 . . .

Issuer: SuperStoreHQ
subjectAltName: SuperStoreHQ
PublicKey: 0x9f400682 . . .

Issuer: Verisign

Server Done: NONE
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In our example, no certificate is requested from the client. The client verifies the certificate
chain referring to the subject alternative name extensions in the certificates, and then
locally creates a random 48-byte PreMasterSecret. The MasterSecret is the first 48 bytes of

PRF(PreMasterSecret, ‘‘master secret’’, ClientRandom || ServerRandom).

Here, PRF is shorthand for a more complex function based on MD5 and SHA that
takes as inputs a secret, a label and a seed. (The symbol || denotes concatenation.) The
MasterSecret serves as input to the construction of a key block of the form

PRF(MasterSecret, ‘‘key expansion’’, ClientRandom || ServerRandom).

All required MAC and encryption keys for client and server are extracted from the
key block. They keys protecting traffic from client to server are different from the keys
protecting traffic from server to client. Thus, the parties can easily distinguish between
messages they send and messages they receive, and they are not subject to reflection
attacks where a message is replayed to its sender.

The client now transmits the PreMasterSecret to the server, using the key management
algorithm specified in the selected cipher suite and the server’s certified public key.
The client should then immediately destroy the PreMasterSecret. In our example, the
algorithm is RSA and the public key is 0x521aa593 . . . . The ChangeCipherSpec message
indicates that subsequent records will be protected under the newly negotiated ciphersuite
and keys. The client then ties the third message to the first two through two hashes
constructed with MD5 and SHA.

M3: A: ClientKeyExchange: RSA_Encrypt(
ServerPublicKey,PreMasterSecret)

B: ChangeCipherSpec: NONE
C: Finished MD5(M1 || M2 || M3A)

SHA(M1 || M2 || M3A)

The server decrypts the PremasterSecret and computes from it the MasterSecret, the key
block, and all derived secret keys valid for this session with the client. The server verifies
the hash appended to the client’s message and replies as follows.

M4 A: ChangeCipherSpec: NONE
B: Finished MD5(M1 || M2 || M3A || M3C)

SHA(M1 || M2 || M3A || M3C)

The client verifies the hash in the server’s message. Both parties have now established
shared secret keys which they can use to protect application traffic.

16.5.1 Implementation Issues
SSL/TLS is a mature security protocol that has been thoroughly analyzed. Formal proofs
of its properties provide a high degree of assurance that it achieves its stated goals.
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However, implementing a secure protocol securely is still a formidable challenge. We
will look at the three areas where mistakes have been made.

SSL/TLS makes use of random numbers during the handshake protocol but also when
creating the keys for clients and servers. Flaws in the random number generation can
then undermine the security of the protocol. In an early implementation of SSL, a
low quality pseudo-random number generator had led to predictable session keys [102].
More recently, Debian’s OpenSSL had a serious security problem.1 There was insufficient
randomness in the generation of public/private key pairs. The flaw had been introduced
in May 2006 and was discovered in May 2008. The cause of the flaw was a tool-
based code analysis looking for software security vulnerabilities. The tool had flagged
a read from uninitialized memory in an OpenSSL library. The offending instruction
was commented out. Normally, reading from uninitialized memory is a programming
mistake. In this case, uninitialized memory was intentionally used as a source of ran-
domness. Removing the offending instruction removed a main source of randomness in
key generation.

Error messages can help to decipher encrypted messages. When an error message, or the
length of an error message, or the time an error message is sent, depends on the state the
internal processing of a message has reached, the attacker may learn something about
the message being processed.

Response times by a server that differ in the event of a padding failure or of a MAC
failure, in conjunction with an analysis of padding method for CBC mode have led to
the recovery of SSL protected passwords [54]. Timing attacks have been used to discover
private keys. An attacker in the same LAN segment as an OpenSSL server can derive the
server’s private key from its response times [48].

Note that these are attacks against particular implementations but not against the
protocol at the conceptual level. Insecure application of SSL/TLS will be discussed in
Chapter 18.

16.5.2 Summary
In the SSL/TLS handshake protocol, client and server agree on a cipher suite, establish
the necessary keying material, and authenticate each other. Today, SSL is the most widely
used Internet security protocol, supported by all major web browsers. SSL adds a security
layer between application protocols and TCP, so applications explicitly have to ask for
security. Thus, application code has to be changed, but the required changes are not much
more than edit operations, e.g. replacing a TCP connect call in the pre-SSL application
with an SSL connect call. The SSL connect call will initialize the cryptographic state
parameters and make the original TCP connect call.

1Debian Security Advisory 1571: OpenSSL Predictable Random Number Generator, May 2008.
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Client and server have to protect the parameters of the security contexts (or IPsec security
associations) they have established. Otherwise, the security provided by SSL (or IPsec)
will be compromised. This brings us back to computer security.

Lesson
Cryptographic protection cannot be compromised from the layer below in
the communications network. It can, however, be compromised from the
layer below in the operating system of a network node.

16.6 E X T E N S I B L E A U T H E N T I C AT I O N
P R OTO C O L
The Extensible Authentication Protocol (EAP) defines authentication protocols at the
level of abstract message flows called methods. Methods can be implemented with a
variety of underlying mechanisms. Thus, the authentication mechanism can be chosen
independently of the application and can be changed without having to rewrite the
application. The application calling an authentication protocol just sees the abstract
message flow. Other examples of this approach are the SAML profiles for web services
(Section 18.7.2) and previously the General Security Services API (GSS-API).

EAP-Request/Identity

EAP-Response/Identity

EAP-Request/EAP-Type = X (...)

(method specific payload)

EAP-Response/EAP-Type = X(. . .)

(method specific payload)

EAP-Success/EAP-Failure

auth
server

EAP
peer

Figure 16.13: EAP Generic Message Flow
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EAP has been specified in IEEE 802.1X and RFC 3748. It has its origin in WLAN
authentication and has been proposed by the 3rd Generation Partnership Project for
WLAN interworking (e.g. EAP-AKA). Windows supports various EAP methods for
remote access. Figure 16.13 shows the generic EAP message flow. The identity exchange
messages can be skipped if the peer’s identity is already known. An EAP method can
have several request/response rounds. Generic EAP messages exchange identities and
encapsulate authentication protocol messages. Users are identified by their Network
Access Identifier (NAI). These identifiers are specified in RFC 4282. EAP methods
provide at least one-way EAP peer authentication to EAP authentication servers. Many
EAP methods have been proposed to meet a variety of application security requirements.

EAP Tunnelled TLS (EAP-TTLS) illustrates how EAP is being deployed today. EAP-
TTLS is intended for a setting where a user connects to a server from a client machine.
The server has a certificate. The client uses TLS to authenticate the server and establish

1. EAP-Request/Identity

2. EAP-Response/Identity (id)

3. EAP-Request/EAP-TTLS (Start)

4. EAP-Response/EAP-TTLS (ClientHello)

5. EAP-Request/EAP-TTLS

(ServerHello, Certificate, Server Key Exchange, ServerHelloDone)

6. EAP-Response/EAP-TTLS

(ClientKeyExchange, ChangeCipherSpec, Finished)

7. EAP-Request/EAP-TTLS

8. EAP-Response/EAP-TTLS
({UserName}, {CHAP-Challenge}, {CHAP-Password})

9. EAP-Success/EAP-Failure

secure tunnel

web
server

user/
client

(ChangeCipherSpec, finished)

Figure 16.14: EAP Tunnelled TLS: EAP-TTLSv0 with CHAP
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a secure tunnel to the server. Users are authenticated by password at the server, e.g.
using the CHAP protocol (RFC 1994). EAP-TTLSv0 is specified in RFC 5281 and
supports inner legacy methods (such as CHAP). Most computationally expensive tasks
are located at the server. In the first round of EAP exchanges, the TLS protocol is run
with unilateral authentication of the server (steps 3 to 6 in Figure 16.14). From step
7 on, messages are sent in a secure TLS tunnel. The final EAP round (steps 7 and 8)
executes password-based authentication. EAP-TTLS prevents man-in-the-middle attacks
under the assumption that the TLS tunnel has been established with the intended server.
This assumption will be investigated in Chapter 18.

16.7 F U R T H E R R E A D I N G
This chapter has only briefly sketched the issues and techniques in com-
munications security. The best source of material on Internet security is of
course the Internet. The website of the Internet Engineering Task Force is
http://www.ietf.org. Documents on IPsec can be found at http://
www.ietf.org/html.charters/ipsec-charter.html. The IETF spec-
ifications are, like networking technology, continuously changing. This is very
much the case for work on Internet security, so you should not be disappointed if
some aspects of IPsec or SSL/TLS have changed by the time you read this book.

16.8 E X E R C I S E S

Exercise 16.1 The 32-bit sequence numbers in AH and ESP headers may be
inconveniently short in the case of heavy traffic. Sequence numbers must not
be reused and, when the available numbers are exhausted, rekeying is triggered.
Describe a solution that extends the range of sequence numbers without adding
to the size of the AH and ESP headers.

Exercise 16.2 For IPsec and SSL, the nodes running the protocol are assumed
to be secure. What additional security mechanisms do you need at these nodes to
make this assumption true?

Exercise 16.3 Parties that have established a secure tunnel may wish to switch
to new session keys. Suggest a rekeying protocol that runs faster than the
key establishment protocol used when setting up the tunnel. Justify the design
decisions taken.

Exercise 16.4 IKEv2 has specific rekeying sub-protocols. TLS performs a new
handshake for rekeying. Examine the differences in the overheads and security
properties of these two strategies.
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Exercise 16.5 An IPv4 header has the following format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| IHL |Type of Service| Total Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identification |Flags| Fragment Offset |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time to Live | Protocol | Header Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

An attacker has intercepted an IPv4 packet protected by ESP in tunnel mode
for confidentiality only (the confidentiality of the inner header and payload are
protected). The attacker happens to know the inner destination address the packet
was sent to. Encryption uses a 64-bit block cipher in CBC mode. How can the
attacker use the gateway at the end of the tunnel in an attempt to learn the
payload? What are the chances of the attack succeeding? For your analysis,
assume that IPv4 only checks the header checksum. Would a switch to a 128-bit
block cipher defeat your attack?

Exercise 16.6 A gateway processes a packet that is protected by ESP in tunnel
mode and finds an error after decryption when checking the inner packet. Examine
the security issues that arise when constructing the error message the gateway
replies with.

Exercise 16.7 Routers fragment IP packets when the packet size exceeds the
maximum transmission unit (MTU) of the outgoing interface. Adding IPsec
headers may cause IP fragmentation. Path MTU discovery (PMTUD) dynamically
determines the MTU between two end points:

• The source first sets the path MTU to the (known) MTU of the first hop and
sends packets with the ‘don’t fragment’ (DF) bit set.

• If a router along the path would have to fragment a packet, it discards the
packet and sends an ICMP destination unreachable message to the source
indicating ‘fragmentation needed and DF set’.

• The source then reduces the path MTU and tries again.

Assume that all traffic from a gateway to a given destination subnet is protected by
ESP in tunnel mode. A source in the gateway’s subnet runs PMTUD. The gateway
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copies the DF bit from the original IP packet into the IPsec header. Assume
further that an intermediate router in the backbone requires fragmentation of
the IPsec-encapsulated packet. The DF bit is set on the packet so it cannot
be fragmented. The backbone router must drop the packet and send an ICMP
unreachable message back to the source. However, the source address in the
path MTU message is that of the IPsec end point (the gateway). The path MTU
message carries an SPI pointing to an IPsec SA, but a single SA is used for all
hosts on the subnet, so the gateway does not know which host to send the path
MTU message to.

How would you solve this problem?

Exercise 16.8 Let there be two NAT devices behind a security gateway. The
two NAT devices assign the same local address to two different machines. What
problem will occur at the gateway when both machines run IPsec with NAT-T?
How would you address this problem?



Chapter17
Network Security

Secure tunnels can be built across insecure networks. Devices in the network
may, however, turn out to be stumbling blocks where tunnels collapse. This
chapter will look at devices on the Internet. You need Domain Name System
(DNS) servers to look up the current address of a host you want to connect to.
Firewalls and intrusion detection systems provide non-cryptographic security
services. We will switch to a network perspective on security. The attacker
is not in control of the network. The attacker has access to the network
from a node in the network, and only sees traffic that passes that node.

OBJECT I VES

• Give an overview of the security challenges specific to networks.
• Examine the security of the Domain Name System.
• See how network boundaries can serve as security perimeters.
• Understand the principles and limitations of firewalls and intrusion

detection systems.
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17.1 I N T R O D U C T I O N
An attacker may try to learn about the internal structure of your network and use
this information to launch an attack. Information gleaned from network management
protocols that collect diagnostics about the load and availability of nodes can become
security-sensitive. At the same time, these protocols are needed to use the network
efficiently. By being overprotective, you can easily diminish the quality of services
provided by a network.

Access control in a network regulates how traffic may cross network boundaries.
Firewalls implement access control at the network level. Network managers want to
know whether their defences are effective, whether their network is under attack, and
what attacks are currently faced. Intrusion detection systems provide this information.
In protocol design, you might further find that entities in the network, such as firewalls
or network address translators, get in the way of Alice and Bob running their protocol,
and need special attention.

17.1.1 Threat Model

The security protocols in Chapter 15 were described at an abstract level. Messages
travelled directly between principals and we did not consider the precise nature of this
exchange. The Internet is often described as a cloud, where all internal details are hidden.
Such an abstract model is not necessarily always the best way to address security issues.
You might assume a less powerful and potentially more realistic adversary.

Botnets are characteristic of the threats you are facing from the Internet. A bot (drone) is
a program that receives commands from a bot controller. A malicious bot controller may
install bots surreptitiously on the machines of unwitting Internet users, communicate
with the bots using protocols such as Internet Relay Chat (IRC) and HTTP, and
launch spam or denial-of-service attacks from the bots. Botnets illustrate the principle of
attack amplification.

To take out a botnet, you have to take out the bot controller, e.g. by blocking its IP
address. In fast flux networks, the bots know their controller by its domain name. A
bot controller then just moves to a new IP address when its current address is blocked.
In fast domain flux networks, the domain name of the bot controller can be changed
dynamically. The bot controller registers a new domain name when its current name
is blacklisted.

Botnet attacks do not target communications links. On the other hand, you must no
longer assume that the end points of links are safe harbours. To reason about botnet
attacks and defences, you do not have to consider an adversary that is in charge of the
entire Internet. The net adversary is a malicious network node which has the capacity to
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• read messages directly addressed to it,
• spoof arbitrary sender addresses,
• try to guess fields sent in unseen messages.

The next two sections show attacks by the net adversary.

17.1.2 TCP Session Hijacking

To open a TCP session with a server B, a client machine A initiates the following
three-way handshake protocol.

1. A → B : SYN, ISSa
2. B → A : SYN|ACK, ISSb, ACK(ISSa)
3. A → B : ACK, ACK(ISSb)

SYN and ACK indicate that respective bits have been set. ISSa and ISSb are 32-
bit sequence numbers. The acknowledgements are computed as ACK(ISSa) = ISSa+1
and ACK(ISSb) = ISSb+1. Under the assumptions made above, an attacker trying to
impersonate A has to guess the sequence number ISSb sent to A. This protocol is then
secure as long as the sequence numbers are sufficiently random.

However, RFC 793 specified that the 32-bit counter be incremented by 1 in the low-
order position about every 4 microseconds. Even worse, Berkeley-derived Unix kernels
incremented the counter by 128 every second, and 64 for each new connection. There is
not much randomness left to confound an attacker.

The attack made possible by such implementation decisions was described as early as
1985 [174] and later generalized [29]. The attacker M first opens a genuine connection
to its target B and receives a sequence number ISSb. The attacker then impersonates A,
sending a packet with A’s address in the source field,

M(A) → B: SYN, ISSc.

B replies to the legitimate A with

B → A: SYN|ACK, ISSb′, ACK(ISSc).

M does not see this message but uses ISSb to predict the current value ISSb′ and sends

M(A) → B: ACK, ACK(ISSb′).

If the guess is right B assumes that it has a connection with A, when in fact M is
sending the packets. M cannot see the output from this session, but it may be able
to execute commands with A’s privileges on server B. This attack could be run in a
Unix environment where the attacker spoofs messages from a trusted host A (Section
7.7.2). Protocols such as Remote Shell (RSH) are vulnerable as they employ address-
based authentication, assuming that users logging in from a trusted host have already
been authenticated.
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To defend against this attack, a firewall could block all TCP packets arriving from
the Internet with a local source address. This scheme works if all your trusted hosts
are on the local network. If trusted hosts also exist on the Internet, the firewall has
to block all protocols that use TCP with address-based authentication. As a bet-
ter solution, avoid address-based authentication entirely. Cryptographic authentication
is preferable.

17.1.3 TCP SYN Flooding Attacks

After responding to the first SYN packet, server B stores the sequence number ISSb so
that it can verify the ACK from the client. In a TCP SYN flooding attack, the attacker M
initiates a large number of TCP open requests (SYN packets) to B without completing
the protocol runs, until B reaches its half-open-connection limit and cannot respond to
new incoming requests. Modifications of the TCP handshake protocol that allow the
server to remain stateless are left as an exercise. As part of a TCP session hijacking
attack, M could launch a SYN flooding attack against A so that A does not process
the SYN-ACK packet from B and would not tear down the connection the attacker
wants to open.

17.2 D O M A I N N A M E S Y S T E M

Hosts on the Internet are usually known by their DNS name. To connect to a host you
need the IP address currently corresponding to the DNS name. The DNS is a distributed
directory service for domain names (host names). It is used for looking up IP addresses
for host names, and host names for IP addresses (reverse look-up). It is also the basis for
the same-origin policies applied by web browsers (Chapter 18). Anti-spam systems such
as Sender Policy Framework use DNS records to identify valid mail servers.

DNS knows various types of resource records. The binding of host names to IP addresses
is given in A records. Host names and IP addresses are collected in zones. A zone
is managed by its authoritative name server. Authoritative name servers provide the
mapping between host names and IP addresses for their zone. Protocols such as BIND,
MSDNS, PowerDNS and DJBDNS resolve host names to IP addresses.

We will explain name resolution at a general, simplified level. There are 13 (logical)
root servers on the Internet. All name servers are configured with the IP addresses of
these root servers. Global Top Level Domain (GTLD) servers are in charge of top-level
domains such as .com, .edu, .net, .org, .cc, .cn, .tv and .uk. There can be more than
one GTLD server per top-level domain (TLD). Root servers know about GTLD servers.
GTLD servers know the authoritative name servers in their TLD. Recursive name servers
pass name resolution requests on to other name servers and cache answers received. IP
address look-up then works as follows (Figure 17.1).
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1. A client asks its local resolving name server (resolver) to resolve a host name (target).

2. The resolver checks whether it has a valid IP address for the target in its cache. If it
does, this address is returned; otherwise, the resolver refers the request to one of the
root servers.

3. The root server returns a list of GTLD servers for the target’s TLD, and also their IP
addresses (in so-called glue records).

4. The resolver refers the request to one of the GTLD servers.

5. The GTLD server returns a list of authoritative name servers for the target’s domain,
together with their IP addresses.

6. The resolver refers the request to one of the authoritative name servers.

7. The authoritative name server returns an authoritative answer with the target’s IP
address and time-to-live (TTL) for the binding.

8. The resolver sends the answer to the client and caches the binding.

root name server
www.foo.com?; QID = 2702

list of GTLD servers
for .com with
IP addresses; QID = 2702

GTLD server
www.foo.com?; QID = 2703

list of authoritative
name servers for foo.com
with IP addresses; QID = 2703

authoritative n.s.
www.foo.com?; QID = 2704

www.foo.com: 1.2.3.4; QID = 2704

resolver

www.foo.com: 1.2.3.4www.foo.com?

client

Figure 17.1: Name Resolution in the Domain Name System

The answer remains in the cache until it expires. Note that the time-to-live of the answer
is set by the authoritative name server. This reflects the fact that the authoritative name
server would know how stable address bindings are in its zone.
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17.2.1 Lightweight Authentication
The resolver uses a challenge-response protocol to authenticate the origin of the replies
it receives. A 16-bit query ID (QID) and the UDP port that should receive the answer are
included in each request. The responding name server copies the QID into its answer and
replies on the port indicated. The resolver caches the first answer received for a given
QID and host name on the nominated port. The resolver then discards this QID and
drops all answers that do not match an active QID.

If the query is not passed by mistake to the attacker, her probability of correctly guessing
an answer is 2−16. This assumes that the root server entries at the resolver are correct,
that the routing tables in the root servers are correct, that the routing tables in the GTLD
servers are correct, that the cache entries at the resolver are correct, and that routing
from local name server to authoritative name server is correct. In this case, guessing
QIDs is the only attack method left for subverting cache entries.

17.2.2 Cache Poisoning Attack
The attacker asks a resolver to resolve a host name the attacker wants to take over. This
host name must not have a valid entry in the resolver’s cache. The attacker immediately
floods the resolver with spoofed answers that map the host name to an IP address of
the attacker’s choice. The spoofed answers contain guessed QIDs with a long TTL and
are sent on a guessed UDP port. If a spoofed answer with the correct QID arrives on
the correct port before the genuine answer, the attacker’s value is cached and the correct
answer is dropped. If anyone queries the resolver for the target’s host name, the resolver
will give the address provided by the attacker from its cache, until the attacker’s TTL
expires. If the authoritative answer comes first it will be cached. The attacker is blocked
until the authoritative TTL expires.

The probability of the attack succeeding depends on the following factors:

• The difficulty of guessing the QID – this is particularly easy when the QID is generated
by a counter (as in Figure 17.1).

• The difficulty of guessing the port number – this is particularly easy if a fixed port
number is used.

• The width of the time window until the authoritative answer arrives – the window
of opportunity can be increased by running a simultaneous denial-of-service attack
against the authoritative name server.

Good implementations of DNS will address the first two issues.

17.2.3 Additional Resource Records
Name servers send additional resource records to resolvers where these records are
cached, just in case they might prove useful in the future. This is a performance
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optimization that might save round trips during name resolution later. A malicious name
server might provide resource records for other domains when being queried for a host
in its domain. Therefore, the resolver performs bailiwick checking: additional resource
records that do not belong to the queried domain, i.e. records ‘out of bailiwick’, are not
accepted by the resolver.

17.2.4 Dan Kaminsky’s Attack

The attacker is in a race with the authoritative name server. If the authoritative answer
comes first, the attacker’s next attempt has to wait until the TTL expires. An attacker
intent on poisoning the cache for www.foo.com can escape from this restriction by
sending a query for a random host rand123.foo.com instead of a query for the intended
target. When the resolver’s cache has no entry for this random host a new name resolution
request is triggered. This ploy defeats TTL as a measure to slow down an attacker, but
TTL was not intended as a security mechanism in the first place.

The authoritative name server for foo.com is unlikely to have an entry for
rand123.foo.com. An NXDOMAIN answer will be sent, indicating that the host
does not exist. As before, the attacker floods the resolver with spoofed answers for
rand123.foo.com with guessed QIDs on guessed ports. The spoofed answers come with
an additional resource record for www.foo.com, which is in bailiwick. If the attacker
wins the race against the NXDOMAIN answer, the attacker’s entry for www.foo.com is
cached with a TTL set by the attacker (Figure 17.2).

the race is on

authoritative n.s.

NXDOMAIN; QID = 3766rand123.foo.com;
QID = 3766

attacker

www.foo.com: 1.2.3.4; QID = 3766
..
.

www.foo.com: 1.2.3.4; QID = 4812

www.foo.com: 1.2.3.4; QID = 2704

resolver

rand123.foo.com?

Figure 17.2: Dan Kaminsky’s Attack

If the authoritative name server wins, the attack is restarted with a new random host name
in the domain www.foo.com. The attacker increases her chances of success by creating
a large window of opportunity glued together from many small windows. Such attacks
have reportedly succeeded in practice within 10 seconds. This is a very serious attack
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that could even be launched against TLDs. The attacker would then become the name
server for domains of her choice. The following countermeasures have been suggested:

• Increase the search space for the attacker and run queries on random ports – the
attacker now must guess QID and port number.

• Restrict access to local resolvers – a zone should use a recursive name server for internal
queries to resolve (external) host names and a separate non-recursive authoritative
name server for resolving external queries for host names in the zone (split-split name
server).

• Give up on simple challenge-response authentication, and use cryptographic authenti-
cation instead – apply digital signatures to resource records (DNSSec).

17.2.5 DNSSec

DNSSec, short for DNS Security Extensions, protects the authenticity and integrity
of resource records with digital signatures. DNSSec was originally specified in 1999
(RFC 2535). This RFC was superseded by RFCs 4033–4035 in 2005. Several new
resource record types were introduced. RRSIG resource records contain signatures of
other resource records. DNSKEY resource records contain the public keys of zones. DS
(Delegation Signer) resource records contain hashes of DNSKEY resource records.

Authentication chains are built by alternating DNSKEY and DS resource records
(Figure 17.3). The public key in a DNSKEY resource record is used to verify the
signature on the next DS resource record. The hash in the DS resource record provides
the link to the next DNSKEY resource record, and so on. Verification in the resolver has
to find a trust anchor for the chain (root verification key).

hash
sign

verify

RRSIG sigPK1{h(PK2)}

DNSKEY PK2DS h(PK2)DNSKEY PK1

Figure 17.3: DNSSec Authentication Chains

An attacker might not only inject a wrong binding into the cache of a resolver but
could also wrongly claim that a host does not exist. DNSSec therefore also provides
authenticated denial of existence. NSEC (‘next’) resource records are used to create a
daisy chain of hosts in a zone. The NSEC record for a host gives the host next in the zone
in alphabetic order. (The NSEC record for the last host points back to the first entry.)
To prove that a host does not exist, the NSEC resource record for the host in the zone
that would come immediately before the host queried is sent. This is the evidence that
no hosts exists between this host and the next host from the NSEC resource record.
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This solution makes zone walking possible. All hosts in a zone can be enumerated
by following the NSEC resource records. Some take the view that the DNS is a
public database so there is no problem. Others see security and privacy issues and
are opposed to deploying NSEC. The new NSEC3 resource record (RFC 5155) uses
hashes of host names and a more complex closest encloser proof for authenticated denial
of existence.

The infrastructure for supporting DNSSec is still in its infancy. Verification of authen-
tication chains needs trust anchors. It is conceivable that the hierarchy of signers will
mirror the hierarchy of the DNS name space. That is, the root would sign the public keys
of TLDs, TLDs would sign the public keys of their domains, and so on. For a global
system, this raises tricky political questions. At the time of writing, few TLDs have their
own DNSSec keys. Moreover, DNSSec makes changes to the DNS protocols. Hence, all
machines running DNS protocols will eventually have to be upgraded. Finally, there is
the general challenge of bootstrapping a new service when it is only supported by parts
of the infrastructure.

17.2.6 DNS Rebinding Attack

When resolving a host name, the resolver ‘trusts’ the authoritative DNS server and relies
on the information received. Trust is bad for security. The authoritative DNS server
might lie. In a DNS rebinding attack, the attacker binds a host in its own domain to
the victim’s IP address. Same-origin policies (Chapter 18) authorize actions based on the
domain of the host at which the action is performed. The attacker may then get access
to the victim’s machine because it appears to be in the attacker’s domain. DNSSec is no
defence against this type of attack.

The attacker prepares a DNS rebinding attack by putting a web page that contains a
malicious script on a host in its domain attacker.org. The script will request a connection
to the victim when the page is visited. When a user visits this page the user’s browser needs
an IP address for the host and asks the authoritative DNS server for domain attacker.org.
The attacker’s DNS server is authoritative for this domain. The attacker may lie:

• The DNS server binds attacker.org to two addresses, to the attacker’s and to the
victim’s IP address. When the script issues its request to the victim, the browser will
allow the request as it appears to go back to attacker.org. This vulnerability in an early
version of Netscape was fixed by letting the same-origin policy refer to the IP address
instead of the domain name [78].

• The DNS server binds attacker.org to the attacker’s IP address with a short time-to-live.
The script waits before sending a request to attacker.org until the browser’s binding
of the host name has expired. The authoritative DNS server is then asked again. Now,
attacker.org is bound to the victim’s address. To fix this problem, the browser should
not trust the DNS server on the time-to-live of a binding but set its own by pinning
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the host name to the IP address the web page was loaded from.1 Pinning overrules the
TTLs set by authoritative name servers.

• The attacker takes its web server off-line after the page has been loaded. The script
waits before sending a request to attacker.org. At that time the browser’s connection
attempt fails and the pinning is dropped. The script asks again and the browser
performs a new DNS look-up. The browser now gets the victim’s IP address [132].
This is an instance of a more widespread problem in security: error handling procedures
implemented without duly considering their security implications.

Plug-ins extend browser functionality but can introduce new DNS rebinding vulnerabil-
ities [130]. Plug-ins may do their own pinning when they do not want to rely on the
browser. An attacker may then use the client browser as a proxy to connect to the victim
by resolving attacker.org to the attacker’s IP address for one plug-in and to the victim’s
IP address by another. The two plug-ins may communicate in the browser because they
appear to connect to the same host. Having one pinning database for all plug-ins prevents
this attack.

Lesson
Centralizing security mechanisms has its advantages.

The same-origin policy may be made more flexible by letting a DNS server tell which
IP addresses are valid for a host in its domain. This can be useful for providers hosting
content on several sites who want to direct their customers to the most convenient site.
With respect to security, we are literally back to square one. The DNS server might lie
and nominate the victim’s IP address in its policy. As a defence, we might not only ask
the authoritative DNS server of a domain, but also cross-check with the host whose IP
address has been given to check whether it agrees to be associated with attacker.org.
This check could be implemented as an extension of reverse DNS look-up [130]. There
is a parallel to the bombing attacks covered in Section 19.4.

17.3 F I R E WA L L S
Cryptographic mechanisms protect the confidentiality and integrity of data in transit.
Authentication protocols verify the source of data. To control what traffic is allowed to
enter your network (ingress filtering) or leave your network (egress filtering) you may
deploy a firewall.

A firewall is a network security device controlling traffic flow between two parts of a network.

1J. Roskind. Attacks against the Netscape browser. Invited talk, RSA Conference, 2001.
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Firewalls became popular in the early 1990s, a time when end hosts were often PCs
that could not defend themselves at all. Then, it made sense to concentrate security
enforcement at the network boundary. Firewalls are often installed between the network
of an entire organization and the Internet, but could also be installed in an intranet to
protect individual departments. For example, a university could put firewalls between
the subnets of academic departments and the main campus network.

Firewalls defend a protected network against parties who try to access services from
outside the network that are intended to be available only internally. Firewalls can also
restrict access from inside to external services that are deemed dangerous or unnecessary
for the work of an organization. All traffic has to go through the firewall for protection
to be effective. Dial-in lines (in the distant past), wireless LANs, laptops, and USB
sticks are notorious examples of unprotected entry points into the network behind
a firewall.

A firewall can decide to route sensitive traffic via a virtual private network (VPN). A
VPN establishes a secure connection between the gateways of subnets of an organization
that are not directly connected. All traffic between the subnets has to go through these
gateways where cryptographic protection is added to extend the security perimeter. A
firewall can also perform network address translation, hiding internal machines with
private addresses behind public IP addresses, and translating public addresses to private
addresses for internal servers. Hiding the internal structure of a network reduces the
attack surface. Fewer targets are known to the attacker.

Firewalls implement access control. Parameters that could be used for access control
can be found at each network layer. At OSI layer 3 you have source and destination
IP addresses. At OSI layer 4 you have TCP and UDP port numbers. Note that the
port number does not necessarily define the service running at that port. At OSI layer
7 there is information related to various applications: email addresses, email contents,
web requests, executable files, viruses and worms, images, usernames, and passwords, to
name just a few.

17.3.1 Packet Filters
Packet filters work at OSI layers 3 and 4. Rules specifying which packets are allowed
through the firewall and which are dropped are applied to packets individually. Typical
rules specify source and destination IP addresses, and source/destination TCP and UDP
port numbers. Rules for traffic in both directions can be defined. Such a firewall can be
implemented by a TCP/IP packet filtering router which examines the TCP/IP headers of
every packet going through and can drop packets.

Only static rules can be enforced and certain common protocols are difficult to handle.
For example, when a client sends an FTP request to an FTP server, the firewall cannot
link the data packets coming back from the server to this request. We can have blanket
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rules for all packets coming in on port 20, or all packets on port 20 from IP addresses
nominated in advance, but we cannot have dynamically defined rules.

17.3.2 Stateful Packet Filters

Stateful (dynamic) packet filters understand requests and replies. For example, they
would know about the (SYN, SYN-ACK, ACK) pattern of a TCP open sequence. Rules
are usually only specified for the first packet in one direction, and a new rule is created
dynamically after the first outbound packet. Further packets in the communication are
then processed automatically. Stateful firewalls can support policies for a wider range of
protocols than simple packet filter, e.g. FTP, IRC, or H323.

Packet filtering can be done by routers, giving high performance at lower cost. Moreover,
it is easier to configure securely platforms that offer only limited functionality. Linux
systems use iptables as the data structure for defining packet filtering rulesets. The
filtering policies that can be enforced are limited by the parameters that can be observed
in the TCP and IP headers, but can be specified more easily.

17.3.3 Circuit-Level Proxies

Circuit-level proxies have rules similar to packet filters but do not route packets. Rules
determine which connections are allowed and which will be blocked. Allowed connections
generate a new connection from firewall to destination. This type of firewall is mentioned
for the sake of completeness. It is rarely used in practice as the functionality is similar to
that of stateful packet filters but the performance is lower.

17.3.4 Application-Level Proxies

For each application protocol the firewall should police, a proxy implements the server
and client part of the protocol on the firewall. When a client connects to the firewall,
the proxy at the firewall acts as the server and validates the request. A mail proxy,
for example, could filter out viruses, worms and spam. If the client request is allowed,
the proxy acts as a client and connects to the destination server. Responses come back
through the firewall and are again processed and checked by the proxy. The proxy server
is the only entity seen by the outside world and it appears transparent to the internal
users except for filtering, e.g. removing email attachments. Proxies can be seen as another
instance of controlled invocation.

Application-level proxies typically run on a hardened PC. They can provide close control
over the content of incoming and outgoing traffic. In this respect, application-level proxies
offer a high level of security, provided the configuration is appropriate. On the downside,
the amount of processing per connection is large and configuration more complicated.
In this respect, application-level proxies are less secure, and security vulnerabilities in
firewall products have been reported. Performance is lower and cost is higher compared
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with packet filters. Moreover, you need a proxy server for each service you want to
protect. Therefore, this approach does not scale too easily with the growing number of
Internet services on offer.

The actions of packet filters have been compared to telephone call barring by number. This
blocks calls to certain numbers, e.g. premium rate numbers. In contrast, application-level
proxies are like telephone call monitoring by listening to the conversations.

17.3.5 Firewall Policies
Permissive policies allow all traffic but block certain dangerous services, such as Telnet or
snmp, or port numbers known to be used by an attack. If you forget to block something
you should, it is allowed, and might be exploited for some time without you realizing
it. Restrictive policies block all traffic and allow only traffic known to meet a useful
purpose, such as HTTP, POP3, SMTP, or SSH. This is the more secure option. If you
block something that is needed, someone will complain and you can then allow the
protocol. A policy is usually represented as an ACL with positive and negative entries. A
typical firewall ruleset could look like this:

• Allow from internal network to Internet: HTTP, FTP, SSH, DNS
• Allow from anywhere to mail server: SMTP only
• Allow from mail server to Internet: SMTP, DNS
• Allow from inside to mail server: SMTP, POP3
• Allow reply packets
• Block everything else.

Defining and managing rulesets is an important issue when deploying firewalls in practice.

17.3.6 Perimeter Networks
Where should a mail server be placed in relation to the firewall? A mail server requires
external access to receive mail from outside, so it should be on the inside of the firewall.
Only then can the firewall protect access to the mail server from outside. A mail server also
requires internal access to receive mail from the internal network, so it should be outside
the firewall. You might want to stop worms and viruses spreading from your network or
prevent confidential documents leaving your network. As a solution, you could create a
perimeter network, also known as a demilitarized zone (DMZ) for servers which require
(selective) access from both inside and outside of the firewall (Figure 17.4). Besides mail
servers, the DMZ would also be the place to put web servers and DNS servers.

17.3.7 Limitations and Problems
Firewalls do not protect against insider threats. Blocking services may create incon-
veniences for users. Network diagnostics may be harder. Some protocols are hard to
support. Packet filtering firewalls do not provide content-based filtering. If email is
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Figure 17.4: Creating a Demilitarized Zone

allowed through, then emails containing viruses are allowed through. Even application-
proxy firewalls may not perform thorough checks on content. Firewalls do not know
about operating system or application vulnerabilities. A lot of services today use HTTP at
port 80 so it becomes increasingly difficult to decide which traffic on this port is legitimate.

Protocol tunnelling, i.e. sending data for one protocol through another protocol, negates
the purpose of a firewall. As more and more careful administrators block almost all ports
but have to leave port 80 open, more and more protocols are tunnelled through HTTP
to get through the firewall. Another candidate for tunnelling is the SSH protocol.

Encrypted traffic cannot be examined and filtered, so protocols such as HTTPS and SSH
that provide end-to-end cryptographic protection cannot be monitored by the firewall.
The alternative is to have proxies for such protocols in the firewall, but then you lose
end-to-end security. These developments have led some to announce the near-demise of
firewalls as a component of security architectures and to predict that security services
would move back from the network into the end hosts. Personal firewalls are moving
access control on network traffic back to the end systems.

17.4 I N T R U S I O N D E T E C T I O N

It would be nice to prevent all attacks, but in reality this is rarely possible. New types
of attacks occur, such as denial-of-service attacks (where cryptography may make the
problem worse). Perimeter security devices such as firewalls mainly prevent attacks by
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outsiders. They may fail to do so. A firewall may be misconfigured, a password may be
sniffed off the network, a new type of attack may emerge. Moreover, these devices do
not detect when an attack is under way or has taken place. To detect network attacks,
an intrusion detection system (IDS) can be fielded.

An IDS consists of a set of sensors gathering data, either located on the hosts or on
the network. The sensor network is managed from a central console. There, data are
analyzed, intrusions reported, and possibly reactions triggered. There are two approaches
for detecting intrusions, misuse detection and anomaly detection. The communications
between sensors and console should be protected, as well as the storage of the signature
database and of the logs generated. There should also be a secure scheme for getting
signature updates from the IDS vendor. Otherwise, the IDS itself could be attacked and
manipulated. There have been incidents where vulnerabilities in IDS systems have been
exploited for attacks.

17.4.1 Vulnerability Assessment

Vulnerability assessment examines the security state of a network. Information about
open ports, software packages running (which version, patched?), network topology,
etc. is collected, and a prioritized list of vulnerabilities is compiled. Vulnerability assess-
ment is only as good as the knowledge base being used, which has to be updated
constantly to handle new threats. Several organizations track security vulnerabilities
and lists of available patches. Good sources for this information are the Computer
Emergency Response Teams (CERTs), e.g. the CERT at Carnegie Mellon Univer-
sity (http://www.cert.org/), SANS (http://www.sans.org/), Security Focus
(http://www.securityfocus.com/) where the BugTraq archive is maintained, and
the websites of major software and hardware manufacturers.

17.4.2 Misuse Detection

Misuse detection looks for attack signatures. Attack signatures are patterns of network
traffic or activity in log files that indicate suspicious behaviour. Example signatures might
include the number of recent failed login attempts on a sensitive host, a pattern of bits
in an IP packet indicating a buffer overflow attack, or certain types of TCP SYN packet
that indicate a SYN flooding attack. The IDS may also consult the security policy and a
database of known vulnerabilities and attacks for the system monitored.

These systems are only as good as the information in the database of attack signatures.
New vulnerabilities are constantly being discovered and exploited. Vendors need to
keep up to date with the latest attacks and issue database updates. Customers need
to install the updates. The database of known vulnerabilities and exploitation methods
can become large and unwieldy and may slow down the IDS. At the time of writing
commercial IDS products are still based on misuse detection. These systems are also
known as knowledge-based IDSs.
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17.4.3 Anomaly Detection

Statistical anomaly detection (or behaviour-based detection) uses statistical techniques
to detect potential intrusions. First, the ‘normal’ behaviour is established as a baseline.
During operation, a statistical analysis of the data monitored is performed and the
deviation from the baseline is measured. If a threshold is exceeded, an alarm is raised.
Such an IDS does not need to know about security vulnerabilities in a particular system.
The baseline defines normality. So, there is a chance of detecting novel attacks without
having to update a knowledge base.

On the other hand, anomaly detection just detects anomalies. Suspicious behaviour does
not necessarily constitute an intrusion. A burst of failed login attempts at a sensitive
host could be due to an attack or to the administrator having forgotten the password.
Some interesting insights into this problem can be gleaned from [22]. Attacks are not
necessarily anomalies. A careful attacker might just ‘fly under the radar’ of the IDS and
remain undetected. This is particularly true when the baseline is adjusted dynamically
and automatically. A patient attacker may be able to gradually shift ‘normality’ over time
until his planned attack no longer generates an alarm. Thus, we have to be concerned
about false positives (false alarms) when an attack is flagged although none is taking
place, and false negatives when an attack is missed because it falls within the bounds of
normal behaviour.

17.4.4 Network-Based IDS

A network-based IDS (NIDS) looks for attack signatures in network traffic. Typically,
a network adapter running in promiscuous mode monitors and analyzes all traffic in
real time as it travels across the network. The attack recognition module uses network
packets as the data source. There are three common techniques for recognizing attack
signatures: pattern, expression or bytecode matching; frequency or threshold crossing
(e.g. to detect port scanning activity); and correlation of lesser events (not yet widely
used in commercial products). Snort is a popular NIDS developed in the open-source
community. The main challenge in NIDSs is the extraction of relevant information out
of the vast number of events logged, preferably in near real time.

17.4.5 Host-Based IDS

A host-based IDS (HIDS) looks for attack signatures in log files of hosts. It can also verify
the checksums of key system files and executables at regular intervals. Some products
can use regular-expressions to refine attack signatures (e.g. passwd program executed
AND .rhosts file changed). Some products listen to port activity and generate alerts when
specific ports are accessed, providing limited NIDS capability. There is a trend towards
host-based intrusion detection. The most effective IDSs combine NIDS and HIDS.
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Due to the near real-time nature of IDS alerts, an IDS can be used as a response
tool, but automated responses are not without dangers. An attacker might trick the
IDS into responding, with the response aimed at an innocent target (say, by spoofing
source IP address). Users can be locked out of their accounts because of false positives.
Repeated email notifications become a denial-of-service attack on the administrator’s
email account.

17.4.6 Honeypots

Honeypots are systems used to track attackers and to learn and gather evidence about
novel attack techniques. Honeypots mimic real systems but do not contain, and therefore
reveal, real operational data. By definition, every activity monitored on the honeypot is
unauthorized.

A honeypot is an information system resource whose value lies in unauthorized or illicit use
of that resource [214].

Honeypots can engage in a session with an attacker at different levels of interaction.
Low-interaction honeypots offer basic emulations of some services and of the operating
system. There is not much an attacker can do on such a honeypot so there is a limit to
the adversarial behaviour the honeypot can log. Moreover, an attacker might quickly
recognize the honeypot for what it is and walk away. There already exist tools for
detecting honeypots. The more sophisticated the emulations become, the more types of
behaviour can be observed. High-interaction honeypots offer real services, with fake
data. The more interactions made possible, the greater is the danger that an attacker can
misuse the honeypot as a staging post for launching attacks against other machines.

The three main challenges in this area are the constructing of convincing honeypots and
honeynets, in particular when adversarial behaviour at the application level should be
investigated, the securing of honeypots, and the extraction of novel attacks from the
behaviour monitored. Most attacks seen will already be known.

17.5 F U R T H E R R E A D I N G
This chapter has only been able to give a brief sketch of the issues and techniques
in network security. Network security is covered comprehensively in [215]. RFC
3833 gives a threat analysis for the Domain Name System. Good books on
firewalls are [63, 238]. Technical issues that arise in network intrusion detection
are discussed in [193]. New research in intrusion detection is published in the
RAID conference series.
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17.6 E X E R C I S E S

Exercise 17.1 The Address Resolution Protocol (ARP) associates hardware
addresses with IP addresses. This association may change over time. Each network
node keeps an ARP cache of corresponding IP and hardware addresses. Cache
entries expire after a few minutes. A node trying to find the hardware address
for an IP address that is not in its cache broadcasts an ARP request that
also contains its own IP and hardware address. The node with the requested
IP address replies with its hardware address. All other nodes may ignore the
request. How could ARP spoofing be performed? What defences can be used
against spoofing?

Exercise 17.2 Develop a stateless implementation of the TCP handshake proto-
col that is not vulnerable to TCP SYN flooding attacks.

Exercise 17.3 Consider a DNS resolver that does not keep track of host names it
is currently trying to resolve. Several queries for the same host name may thus be
active at the same time. How can this situation be exploited by a cache poisoning
attack? What is the probability of success of your attack?

Exercise 17.4 What security features do you expect from a secure email system,
and from the machines running a secure email system? Which protocol layer is
most appropriate for such a security service? In your answer, distinguish between
services that want to offer anonymity and those that do not.

Exercise 17.5 Examine the implications of tunnelling IP through IP on the design
of a packet filtering firewall.

Exercise 17.6 Why is dynamic port allocation a potential problem for packet
filtering firewalls? Suggest a solution for requests coming from the internal
network that expect answers on a dynamically allocated port. Suggest a solution
for protocols where the responder specifies the port number where further queries
are expected to arrive.

Exercise 17.7 End-to-end encryption is a potential problem for application-level
proxies. Suggest a solution so that a protocol encrypting its payloads can traverse
an application-level proxy.

Exercise 17.8 Firewalls protect an internal network from the outside. Can
firewalls protect against virus infections? Consider the different types of firewalls
in your answer. How does cryptographic protection at the TCP/IP layer or at the
application layer affect a firewall’s ability to protect against viruses?
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Exercise 17.9 A company allows its employees to use laptops at home and
when travelling. Propose a security architecture to protect the laptops and the
company’s intranet.

Exercise 17.10 A DNS resource record can indicate that a host is a designated
mail server. Design a spam defence that makes use of this feature.





Chapter18
Web Security

The web is an IT infrastructure consisting of standardized protocols,
document formats, and software components. The browser is the core
client-side component. Its counterpart is the web server. Vulnerabilities in
this infrastructure have become a major concern in software security. SQL
injection and cross-site scripting figure prominently in current vulnerability
statistics. The web is also the multitude of applications offered on this IT
infrastructure. Web applications are becoming more and more dynamic,
both in the way they are reacting to user input and in the way applications
can be composed.

Web security includes aspects of network security. Tunnels built at different
conceptual layers have to fit at their end points. This plumbing job has to
be done with care. Web security includes aspects of software security. Code-
injection attacks target web applications. Web security includes aspects of
access control. Security policies stipulate how data may be shared between
websites. The security attributes (evidence) policies referred to must be
authenticated. Web security also refers to the security framework for web
services developed by OASIS. This framework supports the collaboration
between organizations that is facilitated by the web as a common distributed
computing platform.

OBJECT I VES

• Point to the issues that arise when combining tunnels at different concep-
tual layers.
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• Describe the role of the browser as a security component.
• Discuss service-oriented access control.
• Introduce the basics of web services security.

18.1 I N T R O D U C T I O N
We start with a generic description of the web as a technical infrastructure. We will omit
many details of the protocols, data formats and software components involved and focus
on general principles. We will also abstract from specific browser behaviour. While the
browsers on the market handle many issues in the same way, there exist some differences.
Further, browsers may change their modus operandi in the future when faced with new
security challenges.

The term Web 1.0 has become shorthand for web applications that deliver static content.
Figure 18.1 shows the basic information flow in such a setting. At the client side,
interaction with the application is handled by the browser. At the server side, the web
server receives the client requests. Scripts at the web server extract input from the client
data and construct requests to a back-end server, e.g. a database server. The web server
receives the result from the back-end server and returns HTML result pages to the client.
Web server and back-end server are separate logical components but may reside on the
same physical machine.

browser

............................................................

HTML & CSS data

HTTP requests
web

server
back-end

server

Figure 18.1: Web 1.0 Application

18.1.1 Transport Protocol and Data Formats

The transport protocol used between client and server is the hypertext transfer protocol
(HTTP). HTTP/1.1 is specified in RFC 2616. HTTP is located in the application layer
of the Internet protocol stack. This network application layer must not be confused
with the business application layer in the software stack. The client sends HTTP
requests to the server. A request states a method to be performed on a resource held
at the server.
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Figure 18.2: Reading Host and URI from a Browser Bar

The GET method retrieves information from a server. The resource is given by the
Request-URI and Host fields in the request header. The syntax of a URI is specified
in RFC 3986. Figure 18.2 shows how host and Request-URI are displayed in a typical
browser bar. You start at the delimiter between host and URI, read the host from right
to left, then jump to the start of the URI and read the URI from left to right. Attacks
have exploited this idiosyncrasy by constructing host names that contain a character that
looks like a slash. A user parsing the browser bar will interpret the string to the left of
this character as the host name. The actual delimiter used by the browser is, however, far
out to the right in what the user reads as the URI. To defend against this attack, browser
vendors are pursuing two strategies:

• Block dangerous characters – this method reaches its limit when the dangerous symbol
is a legal character in the alphabet that host names may be written in.

• Display to the user where the browser splits host name from URI – the user’s abstraction
can thus be aligned with the browser’s implementation.

The POST method specifies the resource in the Request-URI and puts the action to be
performed on it into the body of the HTTP request. The POST method was intended for
posting messages, annotating resources, and sending large data volumes that would not
fit into the Request-URI. However, in principle it can be used for any other actions that
can be requested by using the GET method. Side effects may differ depending on whether
an action was requested by GET or by POST.

The server sends HTTP responses to the client. Web pages in a response are written
in HyperText Markup Language (HTML). The elements that can appear in a web
page include frame (subwindow), iframe (in-lined subwindow), img (embedded image),
applet (Java applet), form (interactive element specifying an action to be performed on a
resource when triggered by a particular event; onclick is such an event). The server may use
Cascading Style Sheets (CSS) to give further information on how to display the web page.

18.1.2 Web Browser
The client browser performs several functions:

• Displaying web pages – the Domain Object Model (DOM) is an internal representation
of a web page used by browsers [150]; JavaScript requires this particular representation.

• Managing sessions (Section 18.2).

• Performing access control when scripts within a web page are executed (Section 18.3).
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When the browser receives an HTML page it parses the HTML into the document.body
of the DOM. Objects like document.URL, document.location, and docu-
ment.referrer get their values according to the browser’s view of the current page.

18.1.3 Threat Model
The security analysis of web applications does not assume the standard threat model
of communications security where the attacker is ‘in control of the network’ and can
read, modify, delete and insert messages (Section 16.1.1) or the standard threat model of
operating system security where the attacker has access to the operating system command
line (Section 6.2). The web adversary is a malicious end system. This attacker only sees
messages addressed to him and data obtained from compromised end systems accessed
via the browser. The attacker can also guess predictable fields in unseen messages.

The communications network is ‘secure’. End systems may be malicious or may be
compromised via the browser. We do not consider attacks that exploit vulnerabilities in
the implementation of other network protocols.

18.2 A U T H E N T I C AT E D S E S S I O N S
Since HTTP/1.1, client and server have been able to establish a communications session
based on TCP. Such sessions are not authenticated. When application resources are
subject to access control, the user at the client has to be authenticated as the originator
of requests. This is achieved by establishing an authenticated session. Authenticated
sessions exist at three conceptual layers:

• at the business application layer, as a relationship between user (subscriber) and service
provider;

• at the network application layer, between browser and web server;

• at the transport layer, between client and server.

Authenticated sessions at the transport layer can be established with SSL/TLS. For
users in possession of a certificate and a corresponding private key, TLS with mutual
authentication can be used (Section 16.5). When user and service provider share a
password, a protocol such as EAP-TTLS is suitable (Section 16.6). Running HTTP over
TLS in the HTTPS protocol is specified in RFC 2818.

At the network application layer, the server may create a session identifier (SID) and
transmit it to the client. Note that in our threat model the SID can be captured once it is
stored in an end system but not during transit. The client includes the SID in subsequent
requests to the server. Requests are authenticated as belonging to a session if they contain
the correct SID. The server may have authenticated the user before the SID was issued
and may encode this fact in the SID. The server may have issued the SID without prior
user authentication and may use it for checking that requests belong to the same session.
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There are three methods for transferring session identifiers:

• Cookie – sent by the server in an HTTP response in a Set-Cookie header field
(RFC 2965). The browser stores the cookie in document.cookie and includes it in
requests with a domain matching the cookie’s origin.

• URI query string – the SID is included in Request-URIs for resources of the application.

• POST parameter – the SID is stored in a hidden field in an HTML form.

At the business application layer, the server can again send an authenticator to the client.
This authenticator has to be stored in the private space of the application at the client side.
In JavaScript, a script running in the browser may use a private object for this purpose.

18.2.1 Cookie Poisoning

If SIDs are used for access control, you have to consider that malicious clients and outside
attackers may try to elevate their permissions by modifying a SID (cookie). Such attacks
are known as cookie poisoning. Outside attackers may further try educated guesses
about a client’s cookie, maybe after having contacted the server themselves, and try to
use their guess to impersonate the user. They could also try to steal the cookie from client
or server. Cookie stealing is described in Section 18.4.1. The web threat model imposes
two requirements on session identifiers: they must be unpredictable, and they must be
stored in a safe place. The server can prevent modification of a SID by embedding a
cryptographic message authentication code in the SID constructed from a secret only
held at the server.

18.2.2 Cookies and Privacy

When cookies were first introduced in the 1990s, there were fears about their impact
on user privacy. To address these fears, cookies were defined to be domain-specific.
Servers are only sent cookies belonging to their domain. Thus, cookies do not disclose
information to the server other than that someone had visited a site in this domain
before. Attacks on user privacy could still be performed within a domain by creating
client profiles, combining information from cookies placed by different servers put
artificially in the same domain, or by observing client behaviour over time.

Users can protect their privacy by configuring their browsers to control cookie placement.
The browser could ask for permission before storing a cookie, which easily becomes a
nuisance, or block cookies altogether. There is also the option of deleting cookies at the
end of a session.

An interesting legal conundrum about cookies is explained in [118]. Earlier versions of
P3P (Section 9.6) could only express policies about retrieving cookies. This is reasonable
from a technical point of view but not in accordance with the EU Data Protection
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Directive. The Directive asks for user consent at the time personal data is written. This
addresses a privacy concern originally related to databases holding personal data. When
data about a person is recorded on systems belonging to someone else, it makes sense to
ask for consent when data is written. Cookies, however, store data pertaining to a user
on that user’s machine. The sensitive operation is read access by some other party.

Lesson
Legislation may enshrine old technology. Laws regulating IT are passed to
meet the challenges posed by the technology of the time they were drafted.
It may happen that lawmakers incorporate assumptions about the use of
technology that, with the benefit of hindsight, turn out to apply only to
the specific applications of their time. A law may thus prescribe not only
the protection goal, which remains unchanged, but also the protection
mechanism, which may not be the best option in some novel application.

18.2.3 Making Ends Meet
In the EAP-TTLS scenario, the client first establishes a transport-layer session where the
server is authenticated to the client. Within this session, an application-layer session is
established where the user is authenticated to the server. This approach is secure as long
as both sessions have the same end point. However, when a user is tricked into opening a
TLS session with an attacker, a man-in-the-middle attack becomes possible (Figure 18.3).
The user opens a TLS tunnel to the attacker. The attacker opens a TLS tunnel to the
server. The server asks for the user’s credentials. The attacker passes the request to the
user. The user replies, sending the credentials in the ‘secure’ tunnel to the attacker. The
attacker successfully completes authentication at the server. The server creates a user
authenticator (UAC), e.g. a cookie, and sends it to the user via the attacker. The attacker
can now impersonate the user.

browser

TLS tunnel

man
in-the-middle

web
server

UACUAC

TLS tunnel

Figure 18.3: Man-in-the-Middle Attack Breaking Application-Layer Sessions

As a defence, bind the UAC not only to user credentials but also to the TLS session
in which the credentials are being transferred to the server. The server can then detect
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whether requests are sent and received in the same TLS session. If the sessions differ, it is
likely that a man-in-the-middle sits between client and server. More details can be found
in [186] and RFC 2617.

Lesson
‘Client’ and ‘server’ are dangerous abstractions. You must know precisely
at which layer a tunnel ends.

The man-in-the-middle attack in Figure 18.3 combines two TLS tunnels in space. A
man-in-the-middle may also combine two TLS tunnels in time (Figure 18.4, [160]). This
attack exploits a weakness in the way web servers use TLS for user authentication. A
user may first establish an anonymous TLS tunnel to the server. User authentication is
triggered once access to a protected resource is requested. The server then sends a TLS
Hello Request asking the client to renegotiate the TLS session. In the new negotiation
the user is authenticated using public-key cryptography. The TLS specification makes no

Client Hello Client Hello

Server Hello, certificate, done

key exch, cipher spec, finished

anonymous tunnel to server

change cipher spec, finished

POST/target/evil.html HTTP/1.1

Hello Request

Client Hello

Server Hello, Cert, CertReq, Done

cert, key exch, cert verify, change cipher spec, finished

mutually authenticated tunnel

change cipher spec, finished, HTTP/1.1. ok

GET/target HTTP/1.1

web
server

man-in-
the-middle

user/
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Figure 18.4: Man-in-the-Middle Attack Exploiting TLS Session Renegotiation
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claims about any connection between the two sessions, but web servers assumed that a
renegotiation starting in a TLS tunnel must extend this tunnel.

This assumption is consistent with the old threat model of communications security. A
TLS tunnel gets traffic securely across an insecure network. The end point of the tunnel is
honest. When you renegotiate a tunnel with an honest end point, the new tunnel will have
the same end point. The assumption is incompatible with the web adversary. When you
renegotiate a tunnel with a malicious end point, the new tunnel may end somewhere else.

The attack is launched by a malicious end point. When the victim starts a TLS session,
the attacker blocks the initial Client Hello message and negotiates itself an anonymous
TLS session with the server. The attacker then performs an action requiring user
authentication, e.g. posting something to a target site. The server now sends a TLS Hello
Request to the attacker, the attacker replies with Client Hello and then passes the server’s
certificate request to the victim. The victim submits the user’s credentials and a new
mutually authenticated tunnel is created. When the attacker’s pending HTTP request is
somehow attached to the first request in the new tunnel (there are ways in HTTP to
influence how the next HTTP header received will be processed), it will be executed with
the user’s permissions.

In response to this attack, the TLS specification for session renegotiation was modified
so that the new session can be cryptographically linked to the old session (RFC 5746).
The implementation of a service was made to follow the abstraction users relied on.

18.3 C O D E O R I G I N P O L I C I E S
Same-origin policies enforced by web browsers aim to protect application payloads and
session identifiers from outside attackers. A web application is identified by the domain
of its hosting web server. The same-origin policy states that scripts may only connect
back to the domain they came from, or that cookies are only included in requests to the
domain that placed them. Two Uniform Resource Locators (URLs) have the same origin
if they share the protocol, host name, and port number. Table 18.1 illustrates this policy.
The policy does not restrict static HTML content. You can embed images from other
domains in your web page.

The same-origin policy is too restrictive if interaction between hosts in the same domain
is permissible. Parent domain traversal is a common exception to the same-origin
policy. The domain name held in document.domain in the DOM is shortened to
its .domain.tld portion. Thus, wwww.my.org can be shortened to my.org but not to
org. This exception can have undesirable side effects when the Domain Name System
is used creatively. For example, domain names of UK academic institutions end with
.ac.uk, but ac.uk is not a proper top-level domain. If a browser restricts access to the
domain.tld portion of the host name only, it potentially leaves all ac.uk domains open
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URL Result Reason
http://www.my.org/dir1/some.html success
http://www.my.org/dir2/sub/another.html success
https://www.my.org/dir2/some.html failure different protocol
http://www.my.org:81/dir2/some.html failure different port
http://host.my.org/dir2/some.html failure different host

Table 18.1: Evaluating Same Origin for http://www.my.org/dir1/hello
.html

to same-origin policy violations. Browsers therefore come with a list of exceptions to this
exception, i.e. domains where parent domain traversal must not be performed.

Origin-based policies are in general relevant for Service Oriented Architectures (SOAs).
SOA is an architectural paradigm for utilizing distributed capabilities that may be under
the control of different owners. A capability realizes real world effects and is implemented
by services. Security policies regulate how services may interact. Such policies refer to
services, thus services become principals in SOA access control. We then must find a way
of naming those principals.

For services provided on the web, it has become customary to use the DNS name of the
server hosting the service. Note, though, that DNS was not designed for the purpose
of providing evidence for access control decisions. Services communicate via messages.
When services are principals and when principals are known by host names, security
policies refer to host names. When enforcing such security policies, the origin of messages
has to be authenticated.

18.3.1 HTTP Referer
Web pages may include requests from different domains. The Referer field in the HTTP
request-header is intended to give the client the means of specifying the URI of the
resource from which a request was obtained. However, the Referer field is not always
included and might be forged. Access control thus cannot rely on it.

18.4 C R O S S - S I T E S C R I P T I N G
Cross-site scripting (XSS) is an elevation of privilege attack that exploits the client’s
‘trust’ in a server. Web pages from the trusted server are processed in a context that has
more permissions than a page from the attacker’s server would get. For example, the
trusted server could be in an intranet zone while the attacker’s server is in the Internet
zone. The attack passes a script to the client via the trusted server, evading the client’s
origin-based security policy. The user has to be lured into taking an action that triggers
the attack, e.g. by clicking on a poisoned link. There are, however, more surreptitious
ways of causing the user action.
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Figure 18.5: Reflected Cross-Site Scripting Vulnerability with Cookie Stealing

In reflected XSS (Figure 18.5) the script resides on a page on the attacker’s server, and the
victim has to be lured to this site first. The user action then sends the script to the trusted
server, which has to echo back the client’s input for the script to be executed at the client.
In the following example, the attacker has prepared a page containing this element:

‹A
HREF="http://trusted.com/comment.cgi?
mycomment=‹SCRIPT alert(‘You have a XSS problem’)›‹/SCRIPT›"›
Click here
‹/A›

When a victim clicks on the link to this element on the attacker’s page, the URL sent
to trusted.com includes the script in mycomment. If the trusted server echoes the value
of mycomment in the result page, the script gets executed on the client within the page
from the trusted server. In our example, the user will be alerted to the XSS vulnerability.
Typical examples of applications echoing client input are search engines or custom 404
(not found) pages. There are many ways of embedding scripts. For example, the script
may be fetched from the attacker’s site via an image element:

mycomment=‹IMG SRC=‘http://attacker.org/badfile’›‹/IMG›"›

In a stored XSS attack, the attacker places the script directly at the trusted server. Bulletin
board applications are candidates for stored XSS. When the victim visits the attacker’s
bulletin board entry, the script embedded in the entry is executed at the client.

In a DOM-based XSS attack, the attacker injects the script via the document object in
the DOM. The attack vector is split into two parts. The malicious script is embedded
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in the URL of the attacker’s web page; this page also contains a link to a page on the
trusted server that references the URL in the DOM when being loaded by the browser.
When the victim is lured into visiting the attacker’s web page, the browser stores the bad
URL in document.URL and requests the web page from the trusted server. When the
browser loads the web page, document.URL will be referenced and the attacker’s script
will be executed.

18.4.1 Cookie Stealing
The browser stores cookies in document.cookie. Cookies are subject to the same-
origin policy and are only included in requests to the domain that set the cookie. In a
reflected XSS attack, the attacker’s script executing on the client may read the client’s
cookie for the trusted server from document.cookie and send its value back to the
attacker. This does not violate the same-origin policy as the script runs in the context of
the attacker’s web page.

A web page vulnerable to XSS can be exploited to capture data from another page in the
same domain, which itself is not vulnerable to XSS. The attack script opens a window
linked to the target page in the browser. To hide the attack from the user, the page could
take over the entire browser window and open an inline frame to display the target page.
The attack could use a pop-under window that sends itself to the background. In both
cases, the rogue window is not visible to the user but has access to the DOM of the target
page and can monitor the user’s input.

18.4.2 Defending against XSS
The browser fails to enforce its code origin policy because it can just check the origin
of the web page it downloads, but not the true origin of all the elements within it. For
example, the browser authenticates the bulletin board service but not the user who placed
a particular entry. If the browser cannot authenticate the origin of all its inputs, it cannot
enforce a code origin policy. The defences against XSS fall into three general categories:

• Treat XSS as a code injection attack – encode server outputs, filter client inputs (see
Section 10.7.4). A client may, for example, compare request and response to check
whether a suspiciously large part of the request has been mirrored in the response.

• Change the modus operandi – disable execution of scripts.

• Improve authentication, or use only attributes for access control that can be
authenticated.

You can protect the cookie by utilizing the browser’s security policy, e.g. by putting the
visited web page in a zone that is not given permission to access document.cookie.
You could forgo the use of cookies for creating sessions and use other mechanisms for
authenticating client requests (see Section 18.5). For example, unpredictable one-time
URLs sent by the server to the client during user authentication can authenticate requests
as coming directly from the client [131].
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18.5 C R O S S - S I T E R E Q U E S T F O R G E R Y
A cross-site request forgery (XSRF, ‘sea surf’, also cross-site reference forgery, session
riding) attack executes actions at a target website with the privileges of a ‘trusted’ user
[50]. Here, trust means an authenticated session between client and web server. It does
not matter how the session was established, whether by TLS, by password-based HTTP
authentication, or by any other means. What matters is that requests within this session
are executed with security permissions attributed to the client.

In a reflected XSRF attack the user has to visit the attacker’s web page, which contains
hidden actions at the target site, e.g. in an HTML form. Simultaneously, the client must
have established an active session to the target. When the user visits the attacker’s page,
the browser automatically submits the form data to the target. The target interprets the
request as coming from the client and the action in the form is accepted by the server
as coming from an authenticated user. Thus, XSRF evades the target’s origin-based
security policy.

In a stored XSRF attack a malicious page is stored at the server (Figure 18.6). When a
client visits this page, the client’s browser will be directed back to the server and actions
inserted by the attacker are executed as coming from the client. Stored XSRF attacks
have a good chance of success as the client requesting the malicious content is likely to
be authenticated and authorized to perform the actions.

browser

............................................................

attacker’s
server

trusted
server

authenticated
tunnel

2. page click on link

3. malicious action 
       redirected to target

1. page with 
    embedded
    link to target

Figure 18.6: Stored Cross-Site Request Forgery Attack

With XSRF, the target fails to enforce its code origin policy because it can only
authenticate the last stepping stone of a request, but not necessarily its true origin. To
defend against XSRF you have to authenticate actions properly. For authentication you
need a secret shared by client and server. This (temporary) secret can be sent (in the
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clear!) from server to client when a session is being established. In the web attack model,
a secret cannot be compromised in transit but only at vulnerable end systems. It is thus
essential that the secret is stored in a location that is not accessible to scripts executing
in the browser. If a page is vulnerable to XSS, authentication would be compromised.

To authenticate a request, the client constructs an authenticator derived from the secret.
The authenticator could be an unpredictable session identifier used by all actions in the
session, different actions could use individual authenticators, or the authenticator could
be a message authentication code for the action as in

XSRFPreventionToken = HMAC(Action_Name+Secret, SessionID).

The browser sends the authenticator with the action. In a GET request, the authenticator
is inserted as a token in the URI (also known as URI rewriting). In a POST request,
the authenticator is sent in a hidden form field. The server authenticates any action
request before execution. An attacker who does not know the secret is unable to form
legitimate action requests. Action requests are now authenticated at the level of the web
application, i.e. in a layer ‘above’ the browser. Cookies are not suitable for storing and
transmitting the authenticator as they are sent automatically by the browser and may be
stored beyond the duration of the session.

A proxy placed between browser and the network can implement a client-side defence
for network application-layer sessions (but not for TLS sessions) by authenticating the
origin of local requests [133]. The proxy marks all URLs in incoming web pages with an
unpredictable token and keeps a database associating tokens with domains. The proxy
also checks all outgoing requests for the presence of a token:

• If no token is found, the request is locally generated and can be sent in authenticated
sessions.

• If a token is found and the origin of the request matches the domain it is being sent
to, the request is permitted by the same-origin policy and can be sent in authenticated
sessions.

• Otherwise, all authenticators (SIDs, cookies) added by the browser are stripped from
the URI before sending the request.

18.5.1 Authentication for Credit

In the attacks against authentication protocols, the attacker has so far always
attempted to impersonate someone else. These attacks wrongly assign responsibility
(accountability). The victim may be held responsible for the attacker’s actions. However,
there are also attacks where the victim is made to impersonate the attacker. The actions
of the victim are then credited to the attacker. For example, the attacker might become
the owner of any files created by the victim and can later check what has been written.
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The differences between authentication for responsibility and authentication for credit
are discussed in [1].

Login XSRF [21] is an example of an attack of the second kind. The page prepared by
the attacker contains a form that logs the attacker in at a target website. When the victim
visits the attacker’s page and triggers the action in the form, the target server will receive
the attacker’s credentials via the victim’s browser and will associate with the attacker
any input the victim enters in the page that has been opened (Figure 18.7).
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    to attacker
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Figure 18.7: Login Cross-Site Request Forgery

18.6 J AV A S C R I P T H I J A C K I N G
Web 2.0 technologies combine features that facilitate the creation of new types of web
applications. These features can also be the source of new vulnerabilities.

• AJAX (Asynchronous JavaScript and XML) supports asynchronous interactions
between client and web server. The browser sends JavaScript requests to an AJAX
engine, which handles the communication between client and web server (Figure 18.8).

• JSON (JavaScript Object Notation) is a format for data transport. A JSON string is a
serialized JavaScript object, turned back into an object in the AJAX engine by calling
eval() with the JSON string as the argument. The object is created using the JavaScript
object constructor.

• A web server can dynamically update information held at the client. This is a useful fea-
ture for automatic news of software updates. A web server can manipulate the client’s
DOM via dynamic script tags and can override JavaScript constructors for its pages.

These features can be used to extend XSRF and disclose confidential data from the server
to the attacker [62]. The first phase of a JavaScript hijacking attack follows the pattern
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of XSRF. The user has to visit the attacker’s web page and simultaneously have an
authenticated session with the target server. The attacker’s page includes a script that
redefines a JavaScript constructor in the client’s browser (step 1a in Figure 18.9) and a
script within a request to the target server. The request asks for secret data the user is
authorized to access. When the user clicks on the link on the attacker’s page, the browser
will send the request to the target site using the client’s current session parameters,
e.g. the client’s cookie (step 1b). This request will be authenticated as coming from a
legitimate user and the secret data is returned to the client (step 2).

The second phase of the attack fetches the secret from the client. The attacker’s script
overrides the native JavaScript object constructor in the browser. JSON arriving in the
result page from the target site is processed by the AJAX engine. The modified constructor
creates the JavaScript object, captures the secret data, and sends it back to the attacker
(step 3). The execution is performed in the context of the attacker’s web page so sending
data to the attacker is legal.

Defences against the first attack phase are the same as for XSRF. Defences against the
second phase change the modus operandi at the client. The server modifies its JSON
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response so that it cannot be executed directly by the browser but has to be first processed
by the requesting application. For example, each JSON response could be prefixed with a
while(1); statement causing an infinite loop.1 The application must remove this prefix
before any JavaScript in the response can be run. Alternatively, the JSON could be sent
as a comment. The application first has to uncomment the JSON received. In both cases,
JavaScript in the response must be executed at the client in the context of the application.
The malicious web page cannot remove the block.

Lesson
Browser and server communicate via a transport protocol. When assessing
a transport protocol, look not only at the data formats but also at the
algorithms for packaging and unpacking application payloads.

18.6.1 Outlook
The web execution model is still evolving, and important security aspects may change
rapidly. A Web 2.0 security issue to look out for are mashups, i.e. web applications
combining content from multiple sites. Access control in this setting has to move beyond
the same-origin policy. It must be possible to specify how applications may interact. To
enforce those policies, it must be possible to authenticate services. Authentication might:

• verify the name of the service (the familiar interpretation).

• recognize that it is the same party as last time (recognition). This is a very useful
property facilitating an inductive security argument: if you have been to the right site
the first time, you will always return to the right site.

• pick out material planted by someone else on your system (‘know thyself’).

• check that the party at the other end is a human and not a bot. Visual puz-
zles (CAPTCHA – Completely Automated Public Turing test to tell Computers and
Humans Apart) are being applied for this purpose.

Then there is the question of who sets the policy. For example, with the JavaScript
callback function it is the web page that tells the browser what to do next. Section 17.2.6
has shown the problems that may arise when the client trusts the server on policy.

18.7 W E B S E R V I C E S S E C U R I T Y
The web was originally designed to give users access to resources hosted on the Internet.
Web services build on the communications infrastructure that was created and use the
web to facilitate computer-to-computer interaction. Web services are an architectural

1This was the defence adopted by Gmail when hit by a JavaScript hijacking attack in 2006.
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paradigm for implementing distributed applications. Loosely coupled applications need
standards for encoding documents and for transferring messages, there has to be a
specification of the service delivered, and users have to be able to find the services on
offer. The standards constituting the foundations of Web services are:

• HTTP for message transfer;

• XML for encoding documents;

• SOAP for encoding messages and defining elementary message patterns;

• WSDL (Web Services Description Language) for describing services;

• UDDI (Universal Description, Discovery and Integration) for describing entries in
service directories, and for publishing and retrieving service descriptions.

Distributed applications have to protect data in transit and in the end systems. For the
former, standards for encrypting and signing documents are needed, and communicating
parties have to agree on the cryptographic protection applied to message exchanges.
WS-Security standardizes the cryptographic protection of SOAP messages. WS-Policy
is the standard for describing policies on required cryptographic protection. Section
18.7.1 has a closer look at the issues arising when digitally signing business documents
encoded in XML.

For protecting data in end systems, access control policies have to be specified and
enforced. XACML is an XML-based standard for writing policies (Section 18.7.3).
User authentication and the exchange of access credentials (Kerberos tickets, certificates,
security tokens) are defined at an abstract level to be independent of specific authentication
technologies. SAML specifies single sign-on patterns (Section 18.7.2). WS-Trust is a
framework for requesting and issuing access credentials.

18.7.1 XML Digital Signatures
In Chapter 14 digital signature algorithms took bit strings as their input. At the
application layer you are signing documents, not bit strings. Documents (e.g. XML
documents) may have different but equivalent representations. Documents have internal
structure. Documents in a workflow change as they are being processed. Some parts of
a document may not yet have been completed when a document is signed. A signer may
only sign parts of a document.

The administrative steps around a business trip may illustrate some of those issues. You
apply to your manager. The manager approves the travel request. After the trip, you file
an expenses claim. The manager has to approve the claim. The finance department has
to authorize payment of the expenses. Several parties are involved in this process. It may
not be meaningful for each party to sign the entire document passed to it.

If we simply hash documents and sign bit strings, and if signer and verifier use different
but equivalent representations, or if parts of the document have changed for legitimate
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reasons, signature verification fails. At the application level we have to do some additional
work to prepare a document for signing. The XML-DSIG standard [20] gives a format
for signed XML documents:

‹Signature ID?›
‹SignedInfo›

‹CanonicalizationMethod/›
‹SignatureMethod/›
(‹Reference URI?›

(‹Transforms›)?
‹DigestMethod›
‹DigestValue›

‹/Reference›)+
‹/SignedInfo›
‹SignatureValue›
(‹KeyInfo›)?
(‹Object ID?›)*

‹/Signature›

The canonicalization method converts a document to a given canonical form. Verifiers
must exercise care when accepting unknown canonicalization methods. The method
might modify the document to the extent that validation will always succeed.

Inclusive canonicalization copies all name space declarations currently in force, even if
they are defined outside of the scope of the signature. This guarantees that all declarations
that might be used are unambiguously specified. However, putting a signed document
into an XML document that has other declarations will invalidate the signature.

Exclusive canonicalization includes only visibly used name spaces and does not look
into attribute values or element content. Name space declarations required there are not
covered. There is the option of explicitly specifying name spaces that must be declared
and thus go beyond the visibly used name spaces. For this option, the signing software
must know the relevant name spaces. Exclusive canonicalization is useful when signing
documents that should be inserted into other XML documents. The signer is likely to be
aware of the relevant name spaces to be included in the canonicalization.

The SignatureMethod gives the digital signature algorithm. The Reference fields are URIs
identifying the data objects to be signed. Transforms describe how the signer modified the
object before it was hashed (digested). For example, a digital signature might only apply
to parts of the document. DigestMethod gives the hash function, DigestValue the hash of
the transformed object. The verifier may obtain the hash value in some other way, e.g. by
obtaining the object from a location other than that specified in the URI. SignatureValue
contains the signature of the document. KeyInfo gives the verifier information about the
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key to use. The object fields may include parts of the signed document in the signature
(enveloping signature).

The core validation algorithm canonicalizes the SignedInfo element, recomputes the hash
values for all (transformed) references, and compares the values obtained with the values
in SignedInfo. If there is any mismatch, signature validation fails. Otherwise, processing
continues to the verification of the digital signature proper.

There exist applications where some parts of a document matter less than others, so
that processing of the document can proceed as long as the signatures on the important
parts can be verified. Such an application cannot use the core validation algorithm, but
can implement its own customized validation algorithm and collect Reference fields in a
Manifest. Such references will not be checked by core validation.

18.7.2 Federated Identity Management
A digital identity is an electronic representation of a real-life entity. It can refer to
persons, organizations, or machines. Digital identities can be names, social security
numbers, user identities, host names, IP addresses, and so on. Identity management is
the process of creating and removing digital identity accounts (provisioning), and of
managing authenticating and authorization (access management).

Federated identity management refers to the management of identity information between
organizations. A person may use the same username, password or other credential to sign
on to the networks of more than one enterprise. Federated single sign-on implements a
‘trust, but verify’ strategy. A user is authenticated at one site, but gets access to resources
at other sites. Partners in a federation rely on each other to authenticate their respective
users and vouch for their access to services. A federation needs an agreement between
partners specifying the rules governing the exchange of identity information, addressing
e.g. legal liability and dispute resolution. Privacy aspects have to be reconsidered as
identities are no longer used exclusively by the issuing organization. At a technical level
there has to be agreement on the security protocols to be used.

Security Assertion Markup Language (SAML) is a meta-level single sign-on protocol
[183]. It could be implemented by Kerberos or by PKI-based protocols. An asserting
party (SAML authority) makes assertions about a subject that other applications within
the federation may decide to rely on. An assertion could indicate the identity of the
user authenticated, privileges granted to that user, or the strength of the authentication
mechanism used. SAML defines a number of mechanisms that enable the relying party
to trust the assertions provided to it. Here, trust means that the origin and integrity
of assertions can be verified. The relying party decides whether to trust the assertions
provided to it. Here, trust means that the relying party decides whether to give access to
local resources based on its own local security policy.
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SAML defines two profiles for conveying an assertion about a user from the asserting
party to the relying party. It is assumed that the user interacts with both parties using
a standard web browser. In the Browser/Artefact Profile the relying party pulls the
assertion (Figure 18.10). The user is authenticated to the asserting party and requests
an assertion. The asserting party returns a handle to the assertion as an HTTP query
variable called an artefact. The browser passes the artefact to the relying party, which
sends an SAML request containing the artefact to the asserting party. The assertions
about the user are then transferred back in a SAML response.

In the Browser/POST Profile the assertion is pushed to the relying party (Figure 18.11). A
user authenticated at the asserting party receives an HTML form with an assertion about
the user. The form contains a trigger causing a POST of the assertion to the relying party.
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Figure 18.10: SAML Artefact Profile

asserting
party

relying
party3. assertion

2. login form

1. request

browser

Figure 18.11: SAML Browser/POST Profile



18.7 WEB SERVICES SECURITY 359

There is a further facet of federated identity management. A person may have several
identities used in different contexts, but may on occasion want to link these identities. For
example, when an airline and a car rental company have a deal whereby frequent flyers
can earn miles by renting from that company, passengers might be willing to disclose
their frequent flyer number to the car rental company. Protocols where the user controls
how different identities can be linked have been standardized by the Liberty Alliance.2

18.7.3 XACML

In heterogeneous access control environments, be it within a federation or within a single
organization, it is desirable to describe policies for the different components in a common
policy language. XACML is a descriptive policy language for such environments [184].
XACML policies provide an abstraction layer shielding policy-writers from the details
of the application environment. Access requests are submitted to a policy enforcement
point (PEP). The PEP asks the policy decision point (PDP) for a decision. The PDP
may have to collect further evidence from policy information points (PIPs) to make a
decision. In the end the decision is returned in a response context to the PEP, where it
is enforced (Figure 18.12).
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Figure 18.12: Message Flow during XACML Policy Evaluation

2http://www.projectliberty.org/
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An XACML policy consists of a set of rules, a rule combining algorithm, and optionally
includes obligations. An obligation is an operation the PEP must perform when executing
the authorization decision obtained from the PDP. For example, the PEP could be told
to log access operations. A rule consists of target, effect, and condition. The target is
the set of decision requests that should be evaluated. Targets are identified by resource,
subject, action, and environment. The effect can be permit or deny. The condition collects
additional logic predicates required for the rule. Conditions can evaluate to true, false
and indeterminate.

The resource in a target is the object of the access control rule. The subject is the entity
making the request. Rules can refer to attributes of the subject and to the content of the
resource. The action is the operation performed on the resource and can be application-
specific. The environment gives attributes relevant to an authorization decision that are
independent of subject, resource or action, e.g. the current date and time.

An XACML policy has to specify matching functions to match request attributes against
policy targets. Once the rules in a policy have been evaluated, their results have to be
combined. There exist several options for a rule combining algorithm. Typical examples
are deny-overrides giving precedence to negative permissions and first applicable, often
used when policies are specified as a list of rules. With first applicable, the decision
may depend on the order in which rules are listed. We mention only-one-applicable as a
further option. This algorithm returns ‘NotApplicable’ if it finds no applicable policy for
a target, and ‘Indeterminate’ if it finds more than one policy.

18.8 F U R T H E R R E A D I N G
For an early description of cross-site scripting, see [60]. For an update on web
attacks and defences, consult the OWASP website (www.owasp.org).

OpenID is an HTTP-based implementation of a federated single sign-on protocol
(see http://openid.net/). The identities used are URIs and can be issued
by any OpenID identity provider. The message flow is similar to the SAML
Browser/POST profile, with an additional association establishment between
identity provider and relying party.

On XACML, look out for updates on performance measurements. Cost factors
when processing XACML are the marshalling and unmarshalling of XML, the
look-up of missing attributes, and the evaluation of the access control logic itself.
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18.9 E X E R C I S E S

Exercise 18.1 Document the current security settings of your web browser.
Where is the security-relevant information stored on your system?

Exercise 18.2 Find the cookie file on your system and the options for setting
cookie retention policies.

Exercise 18.3 Consider an application that uses predictable cookies to maintain
session state. How could an attacker hijack a session of some other user? How
could the application be secured?

Exercise 18.4 Validate the claim that the POST method is more secure than the
GET method when requesting an action.

Exercise 18.5 List the dangerous characters that have to be removed from input
to the client to prevent XSS attacks. What can the server do to avoid including
these characters in the responses sent to the client?

Exercise 18.6 Investigate the methods for embedding malicious scripts in a
web page.

Exercise 18.7 CRLF (carriage return, line feed) separates HTTP response head-
ers; a double CRLF separates the headers from the body of the response (RFC
2616). Explain how CRLF can be used in an XSS attack if the server echoes CRLF
in input received from the client.

Exercise 18.8 You are given an application where many XML documents are
signed by many different keys. How can the provisions in XML-DSIG be used
most efficiently to support this application?

Exercise 18.9 Would you prefer inclusive or exclusive canonicalization when
signing SOAP messages?

Exercise 18.10 Examine the attacks that are possible if assertions do not identify
the specific request and relying party they should be used with.





Chapter19
Mobility

The first mobile IT service to find wide acceptance was the second-generation
digital cell phone network. The number of mobile services has since grown,
supporting a wider range of applications using different underlying technolo-
gies. Mobile services pose new security challenges. Some challenges derive
from the technology. Messages transmitted over a radio link can be inter-
cepted by third parties. Secure sessions should persist when a device changes
its point of attachment. To access a wireless network you do not have to
attach a cable to a socket, you only need to be within range of an access
point. Physical access control to buildings or rooms is no longer an effective
barrier keeping unauthorized users out. Other challenges derive from the
applications. Frequently, the entity offering a service to its subscribers is
different from the operator managing the local network providing access to
the service. The security interests of all three parties – subscriber, network
operator and service provider – have to be taken into account, and possibly
also the requirements of law enforcement agencies.

OBJECT I VES

• Examine new security challenges and attacks specific to mobile services.
• Give an overview of the security solutions adopted for different mobile

services.
• Show some novel ways of using cryptographic mechanisms.
• Discuss the security aspects of location management in TCP/IP networks.
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19.1 I N T R O D U C T I O N

The first-generation analogue mobile cell phone network provided direct dialling, auto-
matic handover between cells, and call forwarding. As a general comment on security,
note that criminals tried to use the latter feature for creating alibis, and that telecom-
munications experts were then called upon by courts to explain why a person who had
answered a call at a particular land line number was not necessarily at this place at
the time of the call. A challenge-response protocol was used for authentication but the
relevant secrets were transmitted in the clear, so that some networks suffered a high level
of charge fraud. There was some obfuscation of voice traffic, but no strong protection
against eavesdropping.

19.2 G S M

Against this backdrop of low security in the first-generation network, the Groupe Spéciale
Mobile (GSM) study group of the European Conference Postal and Telecommunications
Administrations (CEPT) was founded in 1982 to specify the second-generation mobile
network. The design goals for this digital network were good subjective voice quality,
cheap end systems, low running costs, international roaming, handheld mobile devices,
ISDN compatibility, and support for new services such as SMS. In 1989 the responsibility
for GSM was transferred to the European Telecommunication Standards Institute (ETSI).
Phase I of the GSM specification was published in 1990 and GSM was renamed the
Global System for Mobile Communications.

To understand some of the design decisions made, the reader has to be conscious
of the political influences on the development of GSM. An international system has
to take into account various national regulations and attitudes to the public use of
cryptography. Restrictions on the use of strong cryptography were an issue until the
mid 1990s. Moreover, law enforcement authorities requested support for conducting
authorized ‘wiretaps’, in analogy to wiretaps in the fixed network. The partners in the
GSM consortium were mainly national post, telephone and telegraph operators. This
influenced the view on the trustworthiness of the parties running the GSM network.

The main security goals of GSM are protection against charge fraud (unauthorized use
of a service) and the protection of voice traffic and signalling data on the radio channel.
Once traffic is in the fixed network, no added cryptographic protection is provided.
Thirdly, there is a contribution to physical security. It should be possible to track stolen
end devices. This feature was not always implemented.1

1At a time when cell phone robberies among school children became a non-negligible item in the UK crime
statistics, service providers were strongly encouraged to implement the mechanisms for tracking stolen phones.
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19.2.1 Components
Each GSM user has a subscription in a home network. The network where a service is
requested is called the visited network (or serving network). A mobile station (MS) or cell
phone consists of the mobile equipment (ME) and the subscriber identity module (SIM).
The SIM is a smart card chip that performs cryptographic operations in the MS and
stores the relevant cryptographic keys. The SIM may also contain other personal data of
the subscriber, such as a personal phone book, and gives personal mobility independent
of the ME. On the network side, there is the base station (BS), the mobile switching
centre (MSC), the home location register (HLR) of a subscriber, the authentication centre
(AuC), and the visitor location register (VLR). The HLR and VLR manage call routing
and roaming information. The AuC manages a subscriber’s security-relevant information.
The relationship between different network operators is managed through service level
agreements (SLAs) and the GSM Memorandum of Understanding (GSM/MoU).

The identifier for a GSM subscriber is the international mobile subscriber identity (IMSI).
Subscriber and HLR/AuC share a secret 128-bit individual subscriber authentication key
Ki. The SIM stores Ki, the IMSI, the TMSI (Section 19.2.2), and a current 64-bit
encryption key Kc. Algorithms A3 and A8 (Section 19.2.3) are implemented in the SIM.
Access to the SIM is controlled by a personal identification number (PIN). The SIM
is locked after three attempts with an incorrect PIN. A SIM can be unblocked using a
personal unblocking key (PUK).

19.2.2 Temporary Mobile Subscriber Identity
When an MS connects to the network it has to identify itself by some means. If a
fixed identity is used at each call, the movements of subscribers can be tracked, even
if subsequent traffic is encrypted. As a step towards better subscriber privacy, the
unencrypted IMSI is sent only when an MS makes initial contact with the GSM network.
Thereafter a temporary mobile subscriber identity (TMSI) is assigned in the visited
network and used in the entire range of the MSC. The IMSI is thus not normally used
for addressing on the radio path. The VLR maintains a mapping 〈(TMSI, LAI), IMSI〉
from TMSI and location area identity (LAI) to IMSI. When an MS moves into the range
of another MSC a new TMSI is assigned. When permitted by signalling procedures,
signalling information elements that convey information about the mobile subscriber
identity are encrypted for transmission on the radio path.

Lesson
Protection of location information is a security issue specific to mobile
services. Fixed identifiers leak information about the movement of a mobile
station.
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19.2.3 Cryptographic Algorithms

GSM uses symmetric cryptography for encryption and subscriber authentication. The
use of public-key cryptography was considered, but when decisions were held in the
1980s public-key cryptography was not yet a feasible option with the technology of
the time. There are three cryptographic algorithms: the authentication algorithm, A3;
the encryption algorithm, A5, used on signalling and user data; and the key generation
algorithm, A8. These algorithms were not published outside the GSM/MoU, but were
eventually leaked or reverse-engineered.

Algorithms A3 and A8 are shared between subscriber and home network. Hence, each
network may choose its own algorithms A3 and A8. Only the formats of their inputs
and outputs must be specified. A3 and A8 compute a response RES and ciphering key Kc
from a random challenge RAND and the key Ki. Processing times should remain below
a maximum value, e.g. 500 milliseconds for A8. Proposals for A3 and A8 are managed
by the GSM/MoU.

Algorithm A5 has to be shared between all subscribers and all network operators. This
algorithm has to be standardized. There are three versions: A5/1, a less secure ‘export’
version A5/2, and a stronger version A5/3 introduced later. Cryptanalytic attacks against
all three versions have been published.

19.2.4 Subscriber Identity Authentication

Subscriber authentication is triggered by the network at the first network access after a
restart of the MSC/VLR or when the subscriber applies for access to a service, e.g. set-up
of a mobile originating or terminated call. Authentication is also performed when the
subscriber applies for a change of subscriber-related information in the VLR or HLR,
e.g. location updating involving change of VLR, or in the event of cipher key sequence
number mismatch.

Figure 19.1 describes the message flow during authentication. The initial message from
ME to VLR contains a subscriber identity, either TMSI or IMSI. The VLR maps TMSI to
IMSI and forwards the IMSI to the HLR/AuC over the fixed subnet. The AuC generates
a non-predictable 128-bit challenge RAND and computes the response RES = A3(Ki,
RAND) and a 64-bit encryption key Kc = A8(Ki, RAND). The triple 〈RAND, RES, Kc〉
is sent to the VLR. The VLR stores RAND and Kc and passes the challenge RAND on
to the MS. The key Kc is only valid within one location area.

In the MS, the response SRES = A3(Ki, RAND) is computed in the SIM (‘signature’
in GSM terminology, but not a digital signature) and transmitted by the MS back to
the VLR. The VLR compares SRES and RES. Authentication succeeds if the two values
match. To speed up subsequent authentications in a visited network, the AuC sends



19.2 GSM 367

fixed subnetradio link HLR/AuC

IMSI

RANDKi

A3/A8

RES, Kc

IMSI, . . .

RAND, RES, Kc

MSC/VLR

RAND

RESSRES
=

yes/no

SIM

TMSI (IMSI), . . .

Ki

A3/A8

Kc

Figure 19.1: Subscriber Identity Authentication in GSM

several triplets 〈RAND, SRES, Kc〉 to the VLR, which are then used in turn for subscriber
authentication.

19.2.5 Encryption

Normally, all voice and non-voice traffic on the radio link is encrypted. The infrastructure
is responsible for deciding which algorithm to use, or whether to switch off encryption so
that no confidentiality protection is afforded. If necessary, the MS signals to the network
which encryption algorithms it supports. The serving network then selects one based on
a priority order preset in the network, and signals the choice to the MS.

The ciphering indicator feature allows the ME to detect that ciphering is not switched on
and to flag this to the user. This feature may be disabled by the home network operator
by setting the administrative data field (EFAD) in the SIM accordingly (GSM 11.11). If it
is not disabled in the SIM, then whenever a connection is or becomes unenciphered, an
indication shall be given to the user (GSM 02.07 version 7.0.0, Release 1998).

The encryption algorithm A5 is a stream cipher applied to 114-bit frames. The key
for each frame is derived from the secret key Kc and the current 22-bit frame number
(Figure 19.2). Radio links can be noisy, so a stream cipher is preferable to a block cipher.
With a block cipher, a single bit error in the cipher text affects an entire plaintext frame.
In a stream cipher, a single bit error in the cipher text affects a single plaintext bit. By
today’s standards a key length of 64 bits is short and cryptanalysis of A5 has further
reduced the effective key length.
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Figure 19.2: Encryption of GSM Frames from MS to MSC

Lesson
The characteristics of the physical network layer can be relevant for the
choice of cryptographic algorithms.

19.2.6 Location-Based Services
The GSM network records the location of mobile equipment. This information can be
used to offer location-based services such as traffic information for motorists. There
are also emergency location services that give the location of an ME making a call to
an emergency number. This service is obligatory in some countries – e.g. US Federal
Communications Commission regulations demand mobile location to an accuracy of
50–300 metres, depending on the technology used. By 2012 more stringent requirements
will be imposed.

19.2.7 Summary
Challenge-response authentication in GSM does not transmit secrets in the clear, so one
major vulnerability of the first-generation network has been removed. Voice traffic is
encrypted over the radio link but calls are transmitted in the clear after the base station.
There is optional encryption of signalling data, but the ME can be asked to switch off
encryption. There is some protection of location privacy through the TMSI, but attackers
can use so-called IMSI catchers that ask the MS to revert to initial authentication using
the IMSI. This attack is possible because the network is not authenticated to the MS.
Law enforcement agencies have access to recorded movement data of subscribers. There
is a separation of subscriber identity (IMSI) from equipment identity (IMEI), and there
are provisions for tracking stolen devices.

The main criticisms of GSM security are directed against the decision not to publish
the cryptographic algorithms so that they could be publicly scrutinized, and against the
decision to provide only unilateral authentication of the subscriber to the network, but
no authentication of the network to the subscriber.
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An overall assessment of GSM security must look beyond the technical security features.
Many cases of GSM fraud attack the revenue flow rather than the data flow and do not
break the underlying technology. In roaming fraud, subscriptions are taken out with a
home network. The SIM is shipped abroad and used in a visited network. The fraudster
never pays for the calls (soft currency fraud), but the home network also has to pay the
visited network for the services used by the fraudster (hard currency fraud). There is
obvious scope for fraudsters and rogue network operators to collude. In premium rate
fraud, unwitting customers are lured into calling premium rate numbers owned by the
attacker, who uses the existing charging system to get the victim’s money. Criminals may
also start a premium rate service, make fraudulent calls to their own numbers to generate
revenue, collect their share of the revenue from the network operator, and disappear at
the time the network operator realizes the fraud.

Countermeasures are to be found at the human level (e.g. exercising caution before
answering a call-back request), in the legal system (e.g. clarifying how user consent has
to be sought for subscribers to be liable for charges to their account), and in the business
models of network operators. GSM operators have taken the lead in using sophisticated
fraud detection techniques to detect fraud early and limit their losses.

Lesson
Do not lose sight of application-level attacks when analyzing the security of
a service provided to end users.

19.3 U M T S
Work on third-generation (3G) mobile communications systems started in the early
1990s. One of those systems is the Universal Mobile Telecommunications System
(UMTS). The standardization organization for UMTS is the 3G Partnership Project
(3GPP). The organizational partners of 3GPP (as of spring 2010) are ARIB (Japan), ATIS
(North America), CCSA (China), ETSI (Europe), TTA (South Korea) and TTC (Japan).
The first UMTS specifications were released in 1999. The UMTS security architecture is
similar to that of GSM. Subscribers have a universal subscriber identity module (USIM)
that is part of the user equipment (UE) and share a secret key with the AuC in the home
network. The UE requests services from a visited network or a serving GPRS support
node (SGSN).

19.3.1 False Base Station Attacks

In GSM, the network is not authenticated to the ME. Hence, the ME cannot tell whether
requests to use the IMSI for authentication or to switch off encryption are genuine or
come from a bogus base station. To address this problem, one might call for mutual
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authentication between ME and network. At this point it matters how we interpret
the ‘network’. We might refer to the entire UMTS network so authentication proves
that signalling comes from a genuine operator and not a bogus base station. This is
the traditional viewpoint of the network operators and can be found in earlier UMTS
documentation. The other viewpoint is that of a subscriber making a call who wants to
be sure about the identity of the network (operator) handling the call.

There are several reasons that militate against authenticating the visited network. The ME
has a pre-established relationship only with the home network, so direct authentication
of a visited network is not feasible. Extending the challenge-response protocol to give
mutual authentication would not prevent false base station attacks either. The attacker
need only wait for authentication with the genuine base station to complete and then take
over communications with the ME by sending with a stronger signal than the genuine
BS. Furthermore, cryptographic authentication mechanisms are of limited use on noisy
channels. Any bit error in a message will cause authentication to fail. So, the longer the
authenticated message, the larger is the likelihood that it will be rejected because of a
transmission error.

Section 19.3.3 covers the defences against false base station attacks adopted in UMTS.
A deeper discussion of the design rationale for these mechanisms is given in [171].

19.3.2 Cryptographic Algorithms

The UMTS authentication functions f1 and f2 and the key generation functions f3,
f4, and f5 can be specific to the service provider. The MILENAGE framework, a
recommendation for authentication and key agreement (AKA) functions, has a block
cipher with 128-bit blocks and 128-bit keys at its core. The encryption algorithm for the
radio link and the integrity check algorithm for signalling data on the radio link have to
be standardized. UMTS has adopted KASUMI, an eight-round Feistel cipher with 64-bit
blocks and 128-bit keys. KASUMI is used in a variation of output feedback mode for
encryption and in a variation of CBC-MAC mode for integrity protection. All algorithms
proposed for UMTS are published and have been subject to thorough cryptanalysis.

19.3.3 UMTS Authentication and Key Agreement

Home network (AuC) and subscriber (USIM) share a secret 128-bit key K and maintain a
synchronized sequence number SQN. In response to an authentication request, the AuC
generates a random challenge RAND and an expected response XRES = f2(RAND,K).
The AuC also computes a 128-bit cipher key CK = f3(RAND,K), a 128-bit integrity
key IK = f4(RAND,K), a 48-bit anonymity key AK = f5(RAND,K), and a message
authentication code of the challenge RAND, a sequence number SEQ, and an authenti-
cation management field AMF that may contain a key lifetime (Figure 19.3). The AuC
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Figure 19.3: Generation of Authentication Vector at AuC

then constructs AUTN = 〈SQN⊕AK, AMF, MAC〉 and sends the authentication vector
〈RAND, AUTN, XRES, CK, IK〉 to the VLR/SGSN, which stores 〈RAND, AUTN, XRES,
CK, IK〉 for the IMSI and passes RAND and AUTN to the UE.

Upon receipt of RAND and AUTN, the USIM first computes AK = f5(RAND, K) and
SQN = (SQN ⊕ AK) ⊕ AK (Figure 19.4). Then the expected message authentication
code XMAC is derived from RAND, SQN and AMF, and compared with the message
authentication code value received. This verifies that RAND and AUTN had been gener-
ated by the home AuC. If there is a mismatch, the USIM aborts the protocol run, sending
a reject message to the VLR. Otherwise, the USIM continues the protocol and checks
that SQN is valid to detect replay attacks. When this check fails a synchronization error
is signalled to the VLR. False base station attacks are thus prevented by a combination
of key freshness and integrity protection of signalling data, not by authenticating the
serving network.

AUTN
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Figure 19.4: Authentication in USIM

Finally, the USIM computes the response RES and the keys CK and IK from the challenge
RAND and its secret key K, and returns the response RES to the VLR. The VLR compares
RES and XRES to authenticate the USIM (Figure 19.5).



372 19 MOBILITY

fixed subnetradio link AuC

IMSI

RANDKSEQ

XRES, CK, IK, MAC

IMSI, . . .

RAND, AUTN,
XRES, CK, IK

VLR/SGSN

RAND, AUTN

XRES=

yes/no

USIM

TMSI (IMSI), . . .

K

RES
IKCKSEQ

Figure 19.5: Authentication and Key Agreement in UMTS

19.4 M O B I L E I P v 6 S E C U R I T Y
The security problem in GSM and UMTS was access control to services when users are
mobile and do not have a pre-established relationship with the operator of the network
where the service is delivered. In this section we will use Mobile IPv6 (MIPv6) to discuss
another mobility problem. When a device changes its location, how can other nodes verify
that information about the new location of the device is correct? The standard remedy
in such a situation is authentication, but we run into two problems. To authenticate a
message, we have to know the identity of the sender. In IP, the identities are IP addresses.
To verify cryptographically that a message comes from a claimed address, we have to
reliably associate a cryptographic key with this address. The use of a PKI was suggested
for this purpose, but currently there is no such PKI we could readily use and it is unlikely
that this situation will change anytime soon.

Secondly, data origin authentication does not solve our problem. In the ‘old’ setting
of the wired network, a node could lie about its identity. Alice could claim to be Bob
to get messages intended for Bob. A mobile node can lie about its identity and about
its location. Alice could claim that Bob is at her location so that traffic intended for
Bob is sent to her. This is still a variation of the ‘old’ attack. Alice could also claim
that Bob is at a non-existent location so that traffic intended for him is lost. Both attacks
could be stopped by checking that Bob gave the information about his location.

There is yet another denial-of-service attack. Alice could claim that she is at Bob’s
location so that traffic intended for her is sent to Bob. In a bombing attack, Alice orders a
lot of traffic and has it delivered to Bob’s location. Verifying that the information about
Alice’s location came from Alice does not help in this case. The information came from
her, but she lied about her location.
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Bombing attacks are a flow control issue. Data is sent to a victim who did not ask
for it. Authenticating the origin of location information does not prevent bombing. It
would be more appropriate to check whether the receiver of a data stream is willing
to accept the stream. Instead of origin authentication we require an authorization
from the destination to send traffic to it. Flow control issues should in principle be
handled at the transport layer. It was decided to address this issue at the IP layer because
otherwise all transport protocols would have to be modified.

Lesson
Mobility changes the rules of the security game. In a fixed network, nodes
may use different identities in different sessions (e.g. NAT in IPv4), but in
each session the current identity is the location messages are sent to. With
mobile nodes, we have to treat identity and location as separate concepts.

19.4.1 Mobile IPv6
An IPv6 address specifies a node and a location. A 128-bit MIPv6 address consists of
a 64-bit subnet prefix (location) and a 64-bit interface ID (identity within the location
indicated by the prefix). IPv6 addresses of mobile nodes and stationary nodes are
indistinguishable. A mobile node is always addressable at its home address (HoA),
whether it is currently attached to its home link or away from home. The home address
is an IP address assigned to the mobile node within its home link. The mobile node
and its home agent have a preconfigured IP security association that constitutes a secure
tunnel. RFC 3776 specifies the use of Encapsulating Security Payload to protect MIPv6
signalling between mobile and home agent. While a mobile node is attached to some
foreign link away from home, it is also addressable at a care-of address (CoA). This
care-of address is an IP address with a subnet prefix from the visited foreign link.

19.4.2 Secure Binding Updates
The association between a mobile node’s home address and care-of address is known as
a binding for the mobile node. Away from home, a mobile node registers a binding with
a router on its home link, requesting this router to function as its home agent. Any other
nodes communicating with a mobile node are called correspondent nodes. Mobile nodes
can inform correspondent nodes about their current location using binding updates. The
correspondent node stores the location information in a binding cache. Binding updates
refresh the binding cache entries. Packets between the mobile node and the correspondent
node are either tunnelled via the home agent, or sent directly if the correspondent node
has a binding for the current location of the mobile node.

Binding updates are in essence a network management task, but can be performed by
any node. If binding updates cannot be verified, attackers could create havoc with the
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Internet, including the wired Internet. Not surprisingly, it is a problem if any node
can participate in – and interfere with – network management. These security concerns
halted work in the IETF on mobile IP for a while. The first attempt at securing binding
updates suggested using IPsec. This proposal applies an old solution to a new problem
and has serious deficiencies. Security associations would have to be established, but IKE
is a heavyweight protocol not suited for mobility. A chain of trust between mobile node
and correspondent node would have to be constructed in the absence of a global PKI for
the Internet.

Thus, dedicated protocols are needed for verifying that a node with a claimed identity
is in its claimed location. A secure binding update protocol for MIPv6 is specified in
RFC 3775 (Figure 19.6). The design considerations behind this protocol are explained
in [18]. The primary security goal was that mobility must not weaken the security
of IP, in particular with respect to nodes not involved in an exchange, e.g. nodes in
the fixed Internet. The protocol also has several features providing resilience against
denial-of-service attacks.

correspondenthome

secure
  tunnel

mobile

2a. HoT (K0, i)

1a. HoTI

1b. CoTI 2b. CoT (K1, j)

3. BU: HoA, i, j, MAC(Kbm,CoA||CN||BU)

Figure 19.6: Binding Updates in MIPv6

In this protocol, the mobile node first sends two Init messages to the correspondent (CN),
Home Test Init (HoTI) via the home network and Care-of Test Init (CoTI) directly (steps
1a and 1b in Figure 19.6). The correspondent replies to both requests independently. A
Home Test (HoT) message containing a 64-bit home keygen token K0 and a home nonce
index i is sent to the mobile node via the mobile’s home address (step 2a). A Care-of Test
(CoT) message containing a 64-bit care-of keygen token K1 and a care-of nonce index
j is sent directly to the claimed current location (step 2b). The mobile node uses both
keygen tokens to compute a binding key

Kbm := SHA1(home keygen token||care-of keygen token),

and the Binding Update (BU) authenticated by a 96-bit message authentication code
(step 3)

HoA, i, j, HMAC SHA1(Kbm, CoA||CN||BU) 96.

This protocol does not rely on the secrecy of cryptographic keys but on return routability.
The correspondent checks that it receives a confirmation from the advertised location. In
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the threat model assumed, keys K0 and K1 may be sent in the clear on the channels from
the correspondent. These keys could also be interpreted as challenges (nonces) that bind
identity to location through the binding key Kbm. In communications security the term
‘authentication’ typically refers to the corroboration of a link between an identity of some
kind and an aspect of the communications model, such as a message or a session [103].
In this interpretation, binding update protocols provide location authentication. The
protocol is vulnerable to an attacker who can intercept both communications links, in
particular the wired Internet. If you are concerned about the security of the wired Internet,
you can use IPsec to protect traffic between the correspondent and the home agent.

To be resilient against denial-of-service attacks, the correspondent should be stateless
in a protocol run. That is, it should not need to remember the keys K0 and K1. For
this reason, each correspondent node has a secret node key Kcn used for producing the
keys sent to the mobile node. This key must not be shared with any other entity. Each
correspondent node generates nonces at regular intervals. Nonces are identified by an
index (indices i and j in Figure 19.6). The keys are obtained as the first 64 bits of message
authentication code values,

K0:= HMAC SHA1(Kcn,HoA||nonce[i]|0)64,

K1:= HMAC SHA1(Kcn,CoA||nonce[j]|1)64.

After replying, the correspondent discards K0 and K1 because it is able to reconstruct the
keys when it receives the final confirmation. The state kept by the correspondent is thus
independent of the number of BU requests it receives. Balancing message flows is another
provision against denial-of-service attacks. A protocol where more than one message is
sent in reply to one message received can be used to amplify denial-of-service attacks.
Therefore, the BU request is split in two. The mobile node could send the home address
and care-of address in one message but then the correspondent would reply to one BU
request with two BU acknowledgements.

Lesson
In communications security it is traditionally assumed that passive eaves-
dropping attacks are easier to perform than active attacks. In mobile systems,
the reverse can be true. To intercept traffic from a specific mobile node, one
has to be in its vicinity. Attempts to interfere with location management
can be launched from anywhere.

19.4.3 Ownership of Addresses

Schemes that dynamically allocate addresses must check that a new address is still free.
This can be done by broadcasting a query asking whether any node on the network
is already using this address. In a squatting attack, an attacker falsely claims to have
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the address that should be allocated, thereby preventing the victim from obtaining an
address in the network.

We will now show how a node can prove that it ‘owns’ an IP address without relying
on any third party, be it home agent or certification authority. The core idea is to have
the address owner create a public/private key pair and use the hash of the public key
as the interface ID in an IPv6 address. To prove ownership of an address, a claim is
signed with the private key. The signed claim together with the public key is sent to
the correspondent. The correspondent verifies the signature on the claim and checks the
link between public key and IP address. The address is the ‘certificate’ for its public key.
Public-key cryptography is used without using a PKI.

Cryptographically generated addresses (CGAs), as specified in RFC 3972 and [17], apply
this idea to IPv6 addresses. In this case the length of the hash value is limited to 62
bits, as two bits of the interface ID are reserved. An attacker does not have to find the
original key pair to forge claims for a given address, but only a collision, i.e. a key pair
where the public key hashes to the interface ID. The feasibility of finding collisions for
62-bit hash values is too close for comfort so a method of extending the hash has to
be found. A CGA has a security parameter Sec (3-bit unsigned integer) encoded in the
three leftmost bits of the interface ID. The security parameter increases the length of
the hash in increments of 16 bits. Hash values Hash1 and Hash2 for the public key are
computed as

Hash1 = SHA-1(modifier||subnet prefix||collision count||public key),

Hash2 = SHA-1(modifier||064||08||public key).

The 16·Sec leftmost bits of Hash2 must be zero. The 64 leftmost bits of Hash1 become
the interface ID, excluding the five fixed bits so that only 59 bits are used. Resistance
against collision attacks is proportional to finding a collision for a (59+16·Sec)-bit hash.
To get a Hash2 value of the required format, the address owner does a brute force search
varying a random 128-bit modifier. The effort for this search amounts to getting a hash
with 16·Sec bits equal to a fixed value (all zeros). The collision count is initialized to 0
and incremented if a collision in the address space is reported. An error is reported after
three failures.

The workload of the verifier is constant. To verify the link between address and public
key two hashes have to be computed. To verify a claim, a signature has to be verified.
This may, however, become an issue in denial-of-service attacks as signature verification
is an expensive operation. CGAs do not stop an attacker from creating bogus addresses
from its own public key and any subnet prefix. Thus, CGAs do not prevent bombing
attacks against the subnet. To defend against this attack, a return routability test may
check whether the receiver is willing to accept traffic.
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19.5 W L A N

Wireless LAN (WLAN) is a technology for wireless local area networks specified in
the IEEE 802.11 series of standards. The security challenges in this application are
not primarily consequences of mobility but of wireless network access. Again, the
integrity and confidentiality of data transmitted over the air should be protected. Suitable
cryptographic algorithms have to be chosen and key management procedures have
to be defined. In addition, access to the local network and to mobile devices has to
be controlled. An unprotected WLAN would give an attacker the opportunity to use
bandwidth services that will be charged to the network owner, or to use the victim’s
system as a staging post for attacks against third parties.

A WLAN can be operated in infrastructure mode or in ad hoc mode. In infrastructure
mode, mobile terminals connect to a local network via access points. In ad hoc mode,
mobile terminals communicate directly. The security discussions in this section will focus
on infrastructure mode, and on the access control options at an access point. Each
access point has a service set identifier (SSID). An open WLAN does not restrict who
may connect to an access point. An open WLAN is not necessarily unprotected; security
mechanisms could be provided in other protocol layers. Public access points are known
as hotspots.

To control access to a WLAN, access points can be configured not to broadcast their
SSIDs but to require clients to know the SSID to connect to. The SSID would be the secret
necessary to gain access. This approach does not work too well. The SSID is included
in many signalling messages where it could be intercepted by an attacker, so it should
not be treated as a secret. Also, access points are delivered with a default SSID set by
the manufacturer. An attacker could try these default values in the hope, often justified,
that they have not been changed. It is further possible to configure access points so that
only mobile terminals with known medium access control addresses are accepted. This
attempt at address-based authentication is not very secure. An attacker could learn valid
medium access control addresses by listening to connections from legitimate devices and
then connect with a spoofed medium access control address.

It is in general problematic to base access control on information needed by the network
to manage connections, such as SSIDs or medium access control addresses. Typically,
this information has to be transmitted when setting up a connection before security
mechanisms can be started. Hence, it is a more promising strategy to let the client
establish a connection to the access point and then authenticate the client before giving
access to protected services.

The universal access mechanism (UAM) shown in Figure 19.7 illustrates this approach.
Clients are assumed to have a web browser installed. A client connecting to an access
point gets a dynamic IP address from a DHCP server. When the client’s web browser
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Figure 19.7: Hotspot Access Using UAM and a RADIUS Server

is started, the first DNS or HTTP request is intercepted and the client is directed via
an HTTPS session to a start page asking for username and password. The web server
at the access point controller refers verification of username and password entered to
a RADIUS server. Once the client has been authenticated, the access point can apply
familiar identity-based access control to the client’s requests. Protection of subsequent
traffic between client and access point is a separate issue. An analysis of the security
provided by this scheme is left as an exercise.

19.5.1 WEP
The Wireless Equivalent Privacy (WEP) protocol was the first IEEE 802.11 proposal for
protecting the confidentiality and integrity of data passed between mobile terminal and
access point, and for authenticating mobile terminals to the network. Authentication is
based on a shared secret. So-called pre-shared secrets are installed manually in all devices
that may get access, and in all access points of the network. This solution is suitable for
small installations such as home networks. WEP is seriously flawed and can only serve
as a case study for demonstrating mistakes that must not be repeated.

WEP uses a stream cipher for encryption. In a stream cipher, keys must not be repeated;
the exclusive-or of two plaintexts encrypted with the same key stream is equal to the
exclusive-or of the two plaintexts. The statistical properties of the exclusive-or of two
plaintexts can be used for cryptanalysis that reconstructs the two plaintexts and thereby
also the key stream. Hence, a 24-bit initialization vector (IV) randomizes encryption.
Sender and receiver share a secret 40-bit or 104-bit key K. To transmit a message m,
the sender computes a 32-bit checksum CRC-32(m), takes the 24-bit IV, and generates
a key stream with the 64-bit (128-bit) key K′ = IV||K using the stream cipher RC4. The
ciphertext c is the bitwise exclusive-or of (m||CRC-32(m)) and the key stream,

c = (m||CRC-32(m)) ⊕ RC4(K′).

Ciphertext and IV are transmitted to the receiver, who computes c ⊕ RC4(K′) =
(m||CRC-32(m)) and verifies the checksum. To authenticate a client, the access point
sends a 1024-bit challenge in the clear to the client. The client uses the above algorithm to
encrypt the challenge with the pre-shared key, and the access point verifies this response.

The cryptographic mechanisms used in WEP suffer from two major design flaws. First,
CRC-32 is a cyclic redundancy check, i.e. a linear function useful for detecting random
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errors but no defence against targeted modifications. When used in conjunction with the
linear encryption operation (exclusive-or) of a stream cipher, it does not offer strong
integrity protection. An attacker who has a WEP ciphertext, but neither key K′ nor
plaintext m, can modify the plaintext as follows. Let � be the intended alteration of
the plaintext. The attacker computes δ = CRC-32(�) and adds (�||δ) to the ciphertext,
obtaining a valid encryption of the plaintext m ⊕ � as

(m||CRC-32(m)) ⊕ RC4(K′) ⊕ (�||δ) = (m ⊕ �||CRC-32(m) ⊕ δ) ⊕ RC4(K′)

= (m ⊕ �||CRC-32(m ⊕ �)) ⊕ RC4(K′).

A second problem is the size of the IV. As long as the secret key K remains unchanged,
the IV is the only variable part of the key K′. An attacker could observe traffic for a
longer period until IVs repeat and then try to reconstruct the key streams and build a
table of IVs and corresponding key streams.

On top of these design flaws, there has been progress in the cryptanalysis of RC4. Attacks
that find the key K are described in [94, 162]. These attacks retrieve the key byte by byte
so a 104-bit key does not offer much more resistance to cracking than a 40-bit key. Some
attacks replay encrypted control messages to create more traffic so that they can obtain
the amount of data necessary for cryptanalysis.

19.5.2 WPA
WEP comprehensively failed to meet its security goals. WiFi Protected Access (WPA)
was designed as a quick interim solution that removed the major flaws of WEP prior to
a complete redesign of the WLAN security architecture. WPA was required to run on
existing WLAN hardware. There are also improved procedures for authenticating the
client to the network and for establishing temporary encryption keys dynamically. The
Extensible Authentication Protocol (EAP; see Section 16.6) has its origins in work on
WLAN security.

A message integrity code (MIC) called Michael replaces CRC-32 for better integrity
protection. The length of the IV is doubled to 48 bits. The Temporal Key Integrity
Protocol (TKIP) creates a key hierarchy where data encryption keys are changed for each
packet (Figure 19.8). Supplicant (mobile station) and authenticator (e.g. an access point
controller) need to have a long-term pairwise master key (PMK).

When WPA is deployed with pre-shared master keys (WPA-PSK), the PMK is computed
with the key generation function PBKDF2 (RFC 2898) as

PMK = PBKDF2(passphrase, SSID, SSID length, 4096, 256)

with a secret passphrase (20 characters are recommended), the SSID of the access point,
and the SSID length as input. This input is hashed 4096 times and a 256-bit key is
returned.
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Figure 19.8: The TKIP Key Hierarchy

For each connection new pairwise transient keys (PTKs) are derived from the master key
and used for protecting traffic between mobile station and access point. The algorithm
computing the PTK takes the PMK, the medium access control address of both devices,
and nonces generated by both devices as its inputs. Nonces are transmitted in the clear.
The key hierarchy is then further extended. The PTK is split into a key confirmation
key (KCK) for key authentication, a key encryption key (KEK) for distributing group
keys, a temporal key (TK) for data encryption, and possibly unidirectional MIC keys for
integrity protection. The temporal session key is derived from the TK and the medium
access control address of the access point, so different access points managed by the
same controller will use different keys. Finally the WEP key and IV are derived from the
temporal session key and the packet sequence counter. Each packet is thus encrypted
under its own key and IV.

Lesson
Patching a large-scale system that uses dedicated hardware is difficult. The
new solution has to use whatever is present in the field.2

2There were several incidents at the start of 2010 where bank card transactions were rejected at ATMs because of
incorrect processing of the year field when checking the validity of the card. Fixing such a problem might require
a call-back for all cards affected.
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19.5.3 IEEE 802.11i – WPA2
A complete redesign of WLAN security mechanisms is specified in the standard IEEE
802.11i, published in 2004. The WPA2 specification produced by the WiFi Alliance and
IEEE 802.11i are sometimes used as synonyms. The two specifications overlap to a large
extent, but are not completely identical.

IEEE 802.11i has two modes. Robust Security Network (RSN) needs new hardware
and is not backward compatible with WEP. RSN supports dynamic negotiation of
authentication and encryption algorithms. For authentication in large networks EAP
is used. Smaller networks can use TKIP. Authentication establishes temporal keys per
packet. Transitional Security Network (TSN) allows RSN and WEP to coexist on the
same WLAN. Devices using WEP may pose a security risk in such a configuration.

RSN uses CCMP (Counter mode CBC-MAC Protocol) for encryption and integrity
protection. CCMP is based on 128-bit AES (key and block size) in Counter with CBC-
MAC Mode (CCM). CCM is defined in RFC 3610. For encryption, AES is used in
counter mode. The counter is initialized to 1 when a new temporal key is established.
Each 128-bit plaintext block is exclusive-ored with the counter value encrypted under
the temporal key; then the counter is incremented. CBC-MAC mode is used for integrity.
Header blocks put in front of the message contain the packet number and parts of
the MAC (media access) address field. Headers and plaintext block are encrypted in
CBC mode with IV 0 under the temporal key; the last ciphertext block serves as the
128-bit CBC-MAC (see Section 14.5.2). A 64-bit MIC is derived from the CBC-MAC
and transmitted with the encrypted packet.

19.6 B L U E TO OT H
Bluetooth is a technology for wireless ad hoc networks, initially envisaged for short-
range communications (up to 10 metres) between personal devices – PC, keyboard,
mouse, printer, headset, or other peripherals – forming a piconet (also personal area
network).

A local ad hoc network of devices in close proximity does not require a sophisticated
key management infrastructure. A security association between two devices can be
established manually by pairing. When both devices have a keypad the user enters a
common PIN on both devices. A random nonce is generated on the master device and
sent via Bluetooth to the slave. A 128-bit link key is derived from the PIN and the nonce.
The link key is used for encryption and later authentication between the devices.

Bluetooth in secure mode 4 has the Simple Secure Pairing (SSP) protocol for establishing
link keys. SSP uses elliptic curve Diffie–Hellman (ECDH). It is at the user’s discretion
when or whether to change the public/private key pair of a device. Physical proximity is
the main protection against man-in-the-middle attacks. There are four phases:



382 19 MOBILITY

1. Public key exchange. The devices exchange their public keys and derive a shared
Diffie–Hellman key.

2. Authentication phase 1. Checks the success of phase 1; nonces are exchanged.
• Numeric comparison. Both devices have a display and a yes/no button. Master

and slave create nonces Na and Nb, respectively. The slave commits to Nb by
computing a MAC over the public keys from phase 1 with Nb as the MAC key and
sends the commitment to the master. Then the nonces are exchanged. The master
verifies the commitment. Both devices display a numeric verification value derived
from the two public keys and two nonces. If both devices show the same value the
user may approve the association; if any of the checks fails the protocol is aborted.

• Out-of-band. Communication via an out-of-band channel is supported. The devices
create random values ra and rb and commit as above. Each device then sends
its random value and commitment and verifies the commitment received. If
verifications succeed nonces Na and Nb are exchanged.

• Passkey entry. Devices have a keypad. A passkey is entered on each device. For each
bit of the passkey the following protocol is run: for the ith bit, the devices create
nonces Nai and Nbi, respectively. Each device commits to its nonce by computing
a MAC over the public keys from phase 1 and the ith bit of the passkey with its
nonce as the MAC key. Then commitments are exchanged. Thereafter the nonces
are exchanged and the commitments are verified. If all checks succeed and the
protocol proceeds, the last nonce pair is used as Na and Nb.

3. Authentication phase 2. Each device computes under the Diffie–Hellman key from
phase 1 a MAC over Na, Nb, the passkey or the random values, the Bluetooth
addresses, and other relevant fields from the device state. The MACs are exchanged
and verified.

4. Link key calculation. The link key is derived from the MAC over Na, Nb, a KeyID,
and the Bluetooth addresses, computed under the Diffie–Hellman key.

Authentication in Bluetooth is performed in a challenge-response protocol, similar
to GSM authentication. Temporary communication keys for encrypting messages are
derived from the shared PIN, the PIN length, a random value generated by the sender,
and the receiver’s address. Authentication of devices is the basis for access control. The
objects of access control are the services (dial-in, file transfer) offered on a device.

The Bluetooth security architecture was designed for piconets. As Bluetooth applications
as well as Bluetooth technology are changing, e.g. extending the range of communica-
tions, new security architectures will have to be developed. For Bluetooth applications,
application-level attacks that exploit weaknesses in the software configuration of the
devices have to be considered. Attacks such as Bluesnarf retrieve personal data from
devices with flawed implementation of access control. Roaming profiles of users can
be established when Bluetooth devices are configured to broadcast their identities on
request.
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19.7 F U R T H E R R E A D I N G
This chapter has described various mobile and wireless technologies with a focus
on security issues of general interest. Further interesting security issues of great
practical relevance not covered in this chapter relate to more specific aspects
of individual technologies. A detailed discussion of GSM and UMTS security
is given in [182]. GSM standards are managed by ETSI (www.etsi.org), the
UMTS specifications by the 3GPP (www.3gpp.org). Mobility issues in TCP/IP
networks are discussed in various IETF working groups. The current status of
these discussions can be found on the respective IETF websites (www.ietf.org).
WLAN security is specified in IEEE 802.11. The official Bluetooth membership
site is (www.bluetooth.com).

19.8 E X E R C I S E S

Exercise 19.1 Telephone service providers have to deal with complaints from
customers who claim not to have made a call (to a premium rate number) that
appears to have been made from their phone. What kind of protection measures
could be offered to address such problems?

Exercise 19.2 Investigate the issues that arise when wiretaps in a mobile system
with international roaming should be authorized.

Exercise 19.3 Let a 128-bit code be used for message authentication on a channel
with an error rate of 1:1000. What is the probability of rejecting a message because
of a transmission error when the message length is 1 Kbit, 2 Kbit, and 1 Kbyte?
What are the probabilities when the bit error rate rises to 1:100? For both bit
error rates, what are the probabilities when a 32-bit code is used?

Exercise 19.4 Nodes that have established a session at the transport layer change
their IP address during the session. How could a session be protected at the IP
layer in such a situation? Give an analysis of the general security problems that a
solution to this problem has to address, and of proposals currently discussed in
the IETF.

Exercise 19.5 What effort is required from the address owner to create a valid
CGA in comparison to the effort for an attacker for values Sec = 1, 2, 3 when the
computation of a hash value takes 1 microsecond?

Exercise 19.6 Consider a busy access point that sends 1500-byte packets at
the IEEE 802.11b data rate of 11 Mbit/s. How long would an attacker have to
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wait for IVs to start repeating? If IVs are generated randomly, how long does
an attacker have to wait on average for the first collision (two packets encrypted
with the same IV)?

Exercise 19.7 The WEP challenge-response protocol sends challenges in the
clear and encrypts the responses. Would it make any difference if the challenges
were encrypted and the responses sent in the clear?

Exercise 19.8 Describe an attack whereby WEP encrypted IP packets are
rerouted to a destination chosen by the attacker.

Exercise 19.9 Give a comparison of the security services provided by UAM and
802.1X with EAP (Section 16.6).

Exercise 19.10 WPA-PSK uses a passphrase for authentication. Examine
whether this protocol is vulnerable to password guessing attacks.

Exercise 19.11 Bluetooth users confirm a pairing of devices by typing in a
common password on both. Explain how a social engineering attack can lure the
user into accepting a pairing unintentionally.



Chapter20
New Access Control Paradigms

The Internet and the World Wide Web have brought a large but over-
whelmingly security-unaware user population into direct contact with new
IT applications. Mobile code moves through the Internet and runs on the
clients’ machines. Electronic commerce promises new business opportuni-
ties on a global scale. We are faced with considerable change in the way
IT systems are used. We thus have to question whether the old security
paradigms still fit and where new policies and new enforcement mechanisms
are needed.

This transition phase has not yet concluded. New concepts have emerged
but more experience has to be gained before we can give clear advice on the
best security strategies to follow in this new environment.

OBJECT I VES

• Explore new paradigms for access control.
• Explain the background and rationale for the move to code-based access

control.
• Discuss the stack walk as the main security enforcement algorithm used

in code-based access control.
• Outline options for digital rights management.
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20.1 I N T R O D U C T I O N
The client–server architecture was the major paradigm in distributed computing before
the World Wide Web appeared on the scene. A client wants to perform computations
on a server. The server authenticates the client to protect itself. Kerberos is a prime
example of an authentication service designed for such an environment (Section 15.4).
This architecture has changed in several core aspects. Computation moves from server
to client. When a client looks up a web page, the client’s browser runs programs (scripts)
embedded in the page. The nature of access operations has changed. Instead of simple
read/write requests to an operating system or a database, programs are sent to be executed
at the other side. Servers execute scripts coming from the clients. Security aspects of
scripting have been discussed in Section 10.5.1. Clients receive scripts from servers and
may store session states in cookies (Section 18.2). So, what has changed with the web?

• The separation of program and data becomes blurred. Executable content (applets,
scripts) is embedded in interactive web pages that can process user input.

• Computation moves to the client. Documents contain executable code and clients run
on quite powerful machines, so servers can free resources by passing computational
tasks to their clients. The client needs protection from rogue content providers.

• As computation moves to the client, the client is asked to make decisions on security
policy, and on enforcing security. Users are forced to become system administrators
and policy-makers.

• The browser becomes part of the trusted computing base.

Whilst the World Wide Web has not created fundamentally new security problems, it
has changed the context in which security has to be enforced to such an extent that a
fundamental rethink of access control paradigms is necessary. This chapter will explore
the changes that are taking place in access control.

20.1.1 Paradigm Shifts in Access Control

In the access control model of Section 5.2, principals make access requests that have to
be authenticated. Security policies authorize principals to access an object. There is a
strong underlying assumption that principals by and large correspond to known people.
Access control in Unix and Windows builds on this model and implements identity-
based access control (IBAC). This model originated in ‘closed’ organizations such as
universities or research laboratories. This approach to access control is underpinned
by some important organizational assumptions. The organization has authority over
its members. The members (users) can be physically located. Audit logs point to users
who can be held accountable for their actions. In such a setting, security policies refer
naturally to user identities and access control seems to require by definition that identities
of persons are verified. Biometrics (Section 4.7) may then appear as a logical step towards
stronger identity-based access control.
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Access control systems were characterized by the following features. Access rules are
local. There is no need to search for the rule that applies for the current request or for the
credentials a subject has to supply. The rules are stored as ACLs with the objects. The
credentials are the UIDs (SIDs in Windows) subjects are running under. Enforcement of
rules is centralized. The reference monitor does not consult other parties when making
a decision. Permissions apply to simple and generic operations such as read, write, or
execute. There is a degree of homogeneity when setting security policies. The same
organization is in charge of defining organizational and automated security policies.
Responsibility for system administration is clearly delineated. System managers are in
charge. Users do not participate in systems administration.

20.1.2 Revised Terminology for Access Control
For historic reasons, the established terminology for access control is geared towards
explaining identity-based access control. In code-based access control, a major topic
of this chapter, we do not necessarily ask ‘who made this statement?’ so we either
have access control without authentication, or we have to reinterpret authentication
and widen its meaning so that it stands for the verification of any externally provided
evidence associated with a request (Figure 20.1). In addition, we might associate local
evidence with a request. For example, the request could be part of a current session, or
the decision whether to grant access could depend on the current date and time. The
term authentication may then also include the verification of such an association.

Policy
Decision

Point
authorization

(approval)

authentication

access
request

find relevant policy,
check whether

evidence is sufficient
to grant access

associate request
with local evidence
(security context)

verify
evidence
providedcode id, session id,

privileges, location
sender id, . . .

Figure 20.1: Access Control in an Open Environment

Secondly, we have to find the policy that applies to the request and then check whether
the available authenticated evidence is sufficient to grant the request. In a system that
uses permissions, we would check whether all required permissions are included in the
granted permissions. This phase could be called authorization, but it no longer tells us
who is entitled to access a resource but what evidence has to be provided to gain access.
If we want to reserve authorization for the setting of policies, we might use approval for
the phase that checks whether a request is permitted according to the given policy.
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In Figure 5.1 the reference monitor was in charge of authentication and authorization.
In a heterogeneous environment authentication and authorization may be taken care of
by different entities (Figure 18.12).

• A policy administration point (PAP) creates the policy.

• A policy decision point (PDP) evaluates the applicable policy and makes an authoriza-
tion decision (Figure 20.1).

• A policy enforcement point (PEP) performs access control. It sends decision requests
to a PDP and enforces the authorization decisions received.

• A policy information point (PIP) is a source of evidence.

20.2 S P K I
In the old access control paradigm, access rules are stored locally in protected memory. In
decentralized access control systems, you can protect the integrity of access rules by
cryptographic means. Specifically, you can encode rules in digitally signed certificates.
Identity-based access control can be implemented using X.509 identity certificates and
attribute certificates as discussed in Section 15.5.3.

SPKI, the Simple Public Key Infrastructure (RFC 2692, 2693), is a PKI intended to
support authorization schemes that work without user identities. The designers of SPKI
postulate that names used in access control have essentially only a local meaning, and
that access rights are likely to derive from attributes other than a person’s name. For
the purpose of access control, names are just pointers to access rights (authorizations). A
security policy sets the rules in a given domain, e.g. a university department. The names
used to state the policy must have a meaning locally within the domain, but need not be
globally unique.

When there is interaction between domains, you may need to refer to names from
other local name spaces. You need globally unique identifiers for name spaces to avoid
confusion about names. Public-key cryptography offers an elegant solution. Public/private
key pairs generated at random are unique with extremely high probability, as would be
the hash of the public key. The public key of an issuer (or its hash) can be the unique
identifier for the name space defined by that issuer. In SPKI terminology, such keys are
called principals.1 Name certificates signed with the private key define a name in the
local name space.

Access rights are bound directly to public keys through authorization certificates.
Authorization certificates contain at least an issuer and a subject, and may also include
a delegation bit, authorizations, and validity conditions. The issuer signs the certificate

1The terms ‘principal’ and ‘subject’ are used here in a different sense than in Chapter 5.
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and authorizes the subject, i.e. assigns access rights to the subject. The issuer sets the
policy and is the source of authority (‘empowerment’ in SPKI terminology). The subject
is typically a public key, the hash of a key, or the name for a key. The root key for
verifying certificate chains is stored in an ACL. Identity certificates that bind a person’s
name to a key are used for accountability, and could be issued by a CA other than the
one issuing authorization certificates (Figure 20.2).

authorization
certificate access right

. .

ID certificate

public key

Figure 20.2: Certificates in SPKI

Access rights are assigned to public keys. The holders of the corresponding private keys
may delegate (grant) some of their access rights to other subjects by issuing certificates for
those rights. Delegation is restricted in two ways. Delegators can only delegate rights they
hold themselves. This design decision is justified with the observation that a key-holder
who may delegate a right without being able to exercise it could just generate a new
key pair and delegate the right to that key. Secondly, a flag indicates whether the access
rights in a certificate may be delegated further.

Authorization certificates and ACLs have the same function and differ only in the mode
of protection. Certificates are signed by an issuer. ACLs are unsigned and have no
issuer. They are stored locally and are never transmitted. Tuples are an abstract notation
for SPKI certificates and ACL entries. The algorithm for processing authorizations is
expressed in terms of 5-tuples <issuer, subject, delegation, authorization, validity dates>.
The issuer is a public key or the reserved word ‘Self’ for ACLs. The subject is defined as
above. The delegation bit is a Boolean value. The authorization field gives application-
specific access rights. Validity is defined by a not-before date and a not-after date. The
algorithm for evaluating certificate chains takes two 5-tuples as input and gives the result
as a 5-tuple. Authorizations and validity periods can only be reduced by the respective
intersection algorithms:

Input: ‹Issuer1,Subject1,D1,Auth1,Val1›
‹Issuer2,Subject2,D2,Auth2,Val2›

IF Subject1 = Issuer2 AND D1 = TRUE
THEN output ‹Issuer1, Subject2, D2,

AIntersect(Auth1,Auth2), VIntersect(Val1,Val2)›
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SPKI is a key-centric PKI and an interesting alternative to X.509, at least from the
standpoint of certificate theory. SPKI standardizes certain automated policy decisions,
e.g. on delegation. Hence, one has to check that these rules match the given organizational
policy. Organizational policies are unlikely to be expressed by direct reference to
cryptographic keys.

20.3 T R U S T M A N A G E M E N T

A subject (as defined in Chapter 5) requesting access to a resource presents a set of
credentials. Credentials are security evidence. The security policy states what credentials
are required for the request to be granted. Three inputs enter a security decision: the
set of credentials granted to the subject; the set of credentials required to gain access;
and an algorithm that evaluates whether the required credentials are implied by the
granted credentials.

In IBAC, typical credentials are usernames and passwords. Granted and required
credentials are found in well-defined places such as the subject’s access token and
an ACL for the object. The algorithm checking whether the granted credentials are
sufficient is relatively simple, going through an ACL, granting access once all required
credentials have been found, and denying access otherwise. The reference monitor does
not ask third parties for help when making its decisions.

In heterogeneous environments, it may become more complicated to find granted and
required credentials, and third parties may get involved in access decisions. Consider
the following hypothetical example. Two telecommunications providers X and Y have a
service level agreement that gives customers from X access to the services offered by Y.
Provider Y will not get a list of all subscribers from X, but X issues its subscribers with
certificates and gives Y the required verification key. Subscribers from X request services
from Y by presenting their certificates. Provider Y calls back X to perform an on-line
status check on the certificates, ‘deferring’ this check to X. The reply from X is input to
Y’s decision.

Trust management is the name adopted in [40] for a more general and flexible approach
to access control. For this section, we have to redefine parts of our terminology.
Principals can be public keys and we can directly authorize actions the key-holder can
perform. There is no need to authenticate a user to perform access control. The actions
a policy regulates are defined in an application-specific action description language. An
assertion binds a public key to a predicate on actions. An assertion is a policy statement
that authorizes actions if a digitally signed request to perform those actions can be
verified with the public key given in the assertion and if the requested actions satisfy
the predicate. Credentials are digitally signed assertions. They generalize authorization
certificates. Policies are locally stored assertions. They are the roots of trust (authority).
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A trust relationship is a policy rule to accept credentials issued by another party. The
policy language predicates are written in can be any safe interpreted language. We can thus
specify more sophisticated evaluation algorithms than with ACLs. Trust management
provides a common language for policies, credentials, and trust relationships. The first
trust management system was PolicyMaker [40]. KeyNote is a trust management system
for the Internet (RFC 2704).

It is important to understand what trust means in such a trust management system. When
we defer trust to some other party, we introduce a policy rule that assigns to this party
the authority to make assertions we will consider when evaluating an action request. In
real life, trust relationships may be based on contractual relationships between parties.
They may also be based on ‘trust’ in the colloquial sense of the word, but it is much safer
to separate the rationale for entering into a trust relationship (which may have nothing
to do with trust) from the operational aspects of a trust management system.

Access requests are evaluated by a Policy Decision Point (also known as a compliance
checker or trust management engine) that receives as its inputs a request r and a set of
credentials C, and refers to the local policy P when answering the question: ‘Does the
set C of credentials prove that the request r complies with the local security policy P?’
[40]. Possible answers to this question are ‘yes’, ‘no’, ‘don’t know’, or an indication that
further checks are required. There is a trade-off between the expressiveness of the policy
language and the complexity of the compliance checker. Depending on the language,
compliance checking may turn out to be undecidable. You also have to consider how
users find out about the credentials they need to present so that their request complies
with the given policy. Should the server provide this information? Should the server
publish its policy at all? The policy itself may be sensitive information. Alternatively,
there could be an algorithm for users to compute the set of credentials required for their
request, or users could refer to a credential chain discovery service.

To add a further degree of freedom to your problem, consider a federated environment
where several organizations collaborate, but each has its own security policy. There is
now no longer a single entity setting the policy. Conflicts between policies are bound to
occur. In such a setting you have to consider how conflicts could be resolved, and on the
course of action that should be taken if this is not possible.

20.4 C O D E - B A S E D A C C E S S C O N T R O L
The Internet connects you to parties you never met before. In applications such as
e-commerce it is often commercially necessary to permit unknown entities access to your
systems. Naturally, this should not compromise your own security. You have moved out
of closed organizations into an ‘open’ environment.

• You are dealing with people who are a priori unknown. Their ‘identity’ can hardly
figure in your access rules.
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• You may not be able to physically locate other parties.

• You may have no real authority over other parties. Even if you could identify the
persons responsible for some action, you will not always be able to hold them
accountable. They might live in different jurisdictions so that recourse to the legal
process would be too slow, cumbersome and expensive to be considered as part of
a security strategy. The relationship to customers is in many ways different from the
relationship to employees.

In these circumstances user identities are not helpful when setting security policies. In
consequence, the source of a request is no longer a useful access control parameter. At
the same time, reference monitors do not receive read/write/execute requests but entire
programs (scripts). Access control has to decide whether to execute a script, and what
rights to give to the script if it is run. The Java sandbox showed the way to control access
based on code instead of user identities. The evidence used in making access decisions
can be:

• Code origin. Is the code stored locally or does it come from a remote site? If it is
remote code, which URL does it come from? You can use the URL to determine a zone
and define security policies on the basis of zones. As a simple example, you could have
separate policies for code coming from our intranet and for code from the Internet.

• Code signature. Has the code been digitally signed by a trusted author? In this context,
‘trust’ simply means that you have made a decision to run code signed by a given author
(code distributor) and assign certain privileges to it. This is usually an operational
decision and not a judgement about the trustworthiness of the author.

• Code identity. You could decide to give certain approved (trusted) scripts specific
privileges. A home banking application would be a typical example. You could
compute the hash of the script received and check whether it is on a list of trusted
scripts. Again, this is likely to be an operational decision and not a technical judgement
about the trustworthiness of the script.

• Code proof. The decision whether to run a script could be based on specific properties
of the script, such as the files it can write to or the sites it can connect to. Creating a
proof that such a security property holds is a non-trivial task. Thus, the author could
provide the proof and the reference monitor would only check the proof when making
an access decision. Proof-carrying code [178] is still explored mainly in research but
has found some real applications [89]. Deciding on useful security properties may
actually be more difficult than proving that they hold.

We refer to this type of access control as code-based access control. Evidence-based
access control is an alternative term denoting the same concept. To keep security
policies manageable, permissions are usually assigned to code sets (assemblies in .NET
terminology). Individual software components derive their permissions from the container
they have been placed in.
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20.4.1 Stack Inspection

Subjects act on behalf of principals. In identity-based access control, the principal is a
user. When the user logs in, a process is created that runs under the UID of that user.
The access rights (permissions) given to that process derive from this UID. Normally,
the permissions do not change while the process is running. To effect a change, a new
process is spawned that runs under a UID different from that of the parent process. SUID
programs in Unix are a typical example.

In code-based access control, when one software component calls another component,
the effective permissions of the process executing these components will change. The algo-
rithm that determines the effective permissions has to take into account the permissions
of the calling component and of the component being called. We have to decide how to
assign permissions when a ‘trusted’ component calls an ‘untrusted’ component, and vice
versa. Consider the following example. Function g has permission to access resource R
but function f does not have this permission. Function g calls f and f requests access to
R (Figure 20.3, left). Should access be granted? The conservative answer is ‘no’ because
f does not have the required permission. However, g could explicitly delegate (grant)
the permission to f. Conversely, let f call g and g requests access to R (Figure 20.3,
right). Should access be granted? The conservative answer is again ‘no’ because g could
be exploited in a luring attack (also known as a confused deputy attack; see [113] and
Section 6.3.6) by f, but g could explicitly assert its permission. In both cases we need to
know the entire call chain when making access decisions.

R
requests
accessg

‘trusted’

callsf

‘untrusted’

R
requests
accessf

‘untrusted’

callsg

‘trusted’

Figure 20.3: Call Chains in Code-Based Access Control

It is customary to refer to components that have been assigned powerful permissions as
‘trusted’. Usually, this does not imply that there exist particularly good reasons to trust
that such a component is free of security flaws, but that it needs those permissions to
do its job. Similarly, an ‘untrusted’ component is not so much a component you cannot
trust but a component that should run with fewer permissions.

The Java Virtual Machine and the .NET Common Language Runtime both use a call
stack to manage executions. At every function call a new frame is created on the stack.
Each frame contains the local state of the function, including the permissions directly
granted to it. For the computation of the effective permissions, lazy evaluation is so
far the preferred design choice. If a function requests access to a protected resource, a
stack walk is performed to establish whether the caller has the required permissions. The
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...
g
f effective permissions = perm(f) ∩ perm(g) ∩. . .

Figure 20.4: Computing Effective Permissions in a Stack Walk

effective permissions of the final caller are computed as the intersection of the permissions
of all functions on the call stack (Figure 20.4).

The options for controlled invocation would be severely curtailed if this strategy were
strictly adhered to. Therefore, it is usual to provide the option for code to assert a
permission. Asserted permissions are attached to the current stack frame and removed
when returning from that component. The stack walk for a permission terminates and
grants the permission when it reaches a frame that asserts the permission. (All frames
examined so far also have the permission.) The stack walk for other required permissions
continues. Assertion allows ‘untrusted’ callers to call a ‘trusted’ method.

Programmers writing components and assigning permissions to components have to
consider that untrusted components may take advantage of the functions they implement
and build in the appropriate defences. On the other hand, they also have to consider that
permissions may be missing when running their code because the caller has insufficient
permissions.

20.4.2 History-Based Access Control

Stack inspection reuses the call stack for a new purpose. This can get in the way of its
original use. In terms of performance, common optimizations might have to be disabled
for security reasons. We use tail call elimination to illustrate this point. A function call
that is the last instruction in a component is called a tail call. Consider this code example:

void g() void f()
{ {

...; ...;
f(); // tail call }
return;

}

Once f() is called, g’s frame is no longer needed and could be overwritten with f’s
new frame. Eventually, f returns directly to g’s caller. The gains of this optimization
are particularly significant for recursive functions. With tail call elimination, however,
an ‘untrusted’ caller may leave no tracks on the stack. In our example, let f request an
access that requires a permission p that has not been granted to g. Without tail call
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Figure 20.5: Effects of Tail Call Elimination

elimination, the stack walk would raise an exception when examining g’s stack frame.
With tail call elimination, the stack walk proceeds and a situation may arise where access
is granted that should be denied (Figure 20.5, left).

On the other hand, a trusted caller may have an asserted permission cancelled. In our
example, let f have the permission p and g assert the permission p, but assume that
some previous caller does not have this permission. Without tail call elimination, the
stack walk for p would terminate at g’s stack frame and the permission would be
granted. With tail call elimination, the stack walk is unaware of the assert and may
eventually deny access. Here, access is denied although it should have been granted
(Figure 20.5, right).

To avoid the shortcomings of stack walking as a security mechanism, do not be lazy
but perform an eager evaluation that keeps track of the callers’ rights proactively. In
history-based access control [96], static permissions S are associated with each piece of
code at load time. The current rights D associated with each execution unit are updated
automatically at execute time with the rule D := D ∩ S.

It is in general difficult to establish the precise guarantees provided by the stack walk.
Security-relevant parameters may not be stored on the stack (see Section 10.4.3 on heap
overruns). It is thus hard to relate the security policy enforced by this mechanism to
high-level security policies.

20.5 J AV A S E C U R I T Y

To surf freely on the web, users have to be prepared to accept executable content from
any website that catches their attention. To be prepared, they have to be able to control
the actions of applets. Applets are Java programs interpreted by a virtual machine in
a web browser. It is thus natural to let this virtual machine perform access control,
constraining applets within a sandbox. In addition, the language the applets are written
in can make it more difficult to create damage. To make proper use of the access control
mechanisms in the execution environment, security policies have to be set correctly.
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20.5.1 The Execution Model

Java is a type-safe object-oriented language. Java source code is compiled to machine-
independent byte code and stored as class files. A platform specific virtual machine
interprets the byte code translating it into machine specific instructions. When running
a program, a class loader loads any additional classes required. Figure 20.6 shows the
typical scenario for using Java applets. The applet is written in Java and compiled to
byte code. The byte code is put on a web page, and gets executed by the browser on the
client machine. A Java enabled browser has its own Java Virtual Machine (JVM). A JVM
has three security components: byte code verifier, class loader, and security manager.
Browsers tend to enforce similar policies, but this is by choice, not by necessity. Typical
security policies for applets are as follows:

• Applets do not get access to the user’s filesystem.

• Applets cannot obtain information about the user’s name, email address, machine
configuration, etc.

• Applets may make outward connections only back to the server they came from.

• Applets can only pop up windows that are marked ‘untrusted’.

• Applets cannot reconfigure the JVM, e.g. by substituting their own classes for systems
classes.

Java source code

byte code compilerapplet
(byte code)

web page

server

applet

byte code verifier

applet class loader

security manager

browser

executable code

client

Figure 20.6: The Java Execution Model

20.5.2 The Java 1 Security Model

The initial Java security model implemented a very simple policy (Figure 20.7). Unsigned
applets are restricted to a sandbox. Local code is unrestricted. Since Java version 1.1,
signed code has also been unrestricted. This basic policy does not provide intermediate
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Figure 20.7: The Java 1 Security Model

levels of control. It lacks the flexibility to give some additional privileges to ‘semi-trusted’
applets, e.g. to an applet that is part of a home banking application.

Moreover, the location of code, local or remote, is not a precise security indicator. Parts
of the local filesystem could reside on other machines and would then be constrained
in the sandbox. Conversely, downloaded software becomes ‘trusted’ once it is cached
or installed on the local system. For more flexible security policies you would have to
implement a customized security manager, a non-trivial task that requires both security
and programming skills.

20.5.3 The Java 2 Security Model

The Java 2 security model separates policy specification from policy enforcement.
It provides a flexible framework for code-based access control. At the same time it
simplifies some aspects of policy enforcement. A security policy grants resource access
permissions to code by mapping code attributes to granted permissions. The security
manager is the policy enforcement point called when access to a protected resource is
requested. It collects the relevant evidence and invokes the access controller, the policy
decision point making the actual decision.

We only give a broad overview of the Java 2 security model, concentrating on features
of general interest. The four areas covered are language security (byte code verification),
securing extensible systems (class loading), policy specification, and policy enforcement.
For detailed guidance on using this model the reader is referred to [105].

20.5.4 Byte Code Verifier

The first line of defence is the programming language applets are written in. The language
can limit the options for writing malicious code. Java applets are written in byte code
and are expected to satisfy certain safety properties. The byte code verifier analyzes Java
class files, performing syntactic checks and using theorem provers and data flow analysis
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for static type checking to ensure that these expectations are met before the applet is
executed. Verification intends to guarantee properties such as the following:

• The class file is in the proper format.

• Stacks will not overflow.

• Methods are called with arguments of the appropriate type and return results of the
appropriate type.

• There is no illegal data conversion between types.

• All references to other classes are legal.

• There is no violation of access restrictions; e.g. private fields are not accessible from
outside the object.

The byte code verifier reduces the workload for the interpreter, as the properties of code
guaranteed by the verification do not have to be checked again at runtime. Byte code
verification cannot take care of all security issues, so security also depends on the security
mechanisms in the runtime environment.

20.5.5 Class Loaders

The Java platform is extensible. Classes are loaded on demand as they are needed to
resolve links (lazy loading). Class loading is delayed as much as possible to reduce
memory usage and improve system response time. There are three types of class loaders.
The bootstrap class loader loads system classes that form the core of the virtual machine.
Classes loaded in this way have unrestricted access to system resources. The bootstrap
class loader is platform-dependent, usually written in a native language such as C, and
often loads from the local filesystem. The extension class loader loads classes from the
installed optional packages (formerly known as extensions). The application class loader
(once known as the system class loader) loads user-defined classes.

When a class loader is being instantiated it reads in the byte code, defines the class, and
assigns it a protection domain (Section 20.5.6). Link-time checks are performed by the
JVM to maintain type safety [154]. Compared to runtime checks, link-time checks have
the advantage of being performed only once. Every JVM has a class file verifier. The class
file verifier makes sure that ‘untrusted’ classes are safe. Class file verification checks if the
constraints of the Java language are respected and that class files have a proper internal
structure. Class file verification invokes the byte code verifier.

Each class is uniquely defined by its class type and by its defining class loader. Class
loaders provide separate name spaces for different classes. A browser loads applets from
different sources into separate class loaders. These applets may contain classes of the
same name, but the classes are treated as distinct types by the JVM. User-definable class
loading policies are supported. A user-defined class loader can, for example, specify how
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classes are discovered, or assign appropriate security attributes to classes loaded from a
given source.

20.5.6 Policies

Security policies map code attributes to permissions. A permission refers to a resource
and the operations permitted on the resource. The format of a permission is (name,
actions), e.g. (/tmp/abc,read) stands for a read right on file /tmp/abc. Permissions
are granted to code (granted permissions), and are required to access a resource (required
permissions). There are only positive permissions. Developers are not restricted to
predefined permissions but can define application-specific permissions.

There is a permission class hierarchy. Relationships between permissions are defined by
implies and equals methods. AllPermission is a wildcard for all permissions,
designed to ease policy evaluation for entities such as system administrators who need
many permissions to do their job. UnresolvedPermission is a placeholder for
permissions that have yet to be resolved, e.g. if a permission class has not yet been loaded
when a Policy object is being constructed. To support policy management, permissions
can be collected in permission sets.

The security-relevant attributes associated with code are code source, consisting of a URL
(code origin) and possibly digital certificates (code signers), and principals representing
users or services. Protection domains are a layer of indirection between classes and
security attributes. Each class is associated at load time with a protection domain. A
protection domain contains code source, principal, a reference to the defining class loader,
static permissions granted to code, and permissions assigned at load time. Protection
domains are immutable objects, i.e. they cannot be modified once created.

Policies are stored in policy files. A policy file can contain at most one keystore entry and
an arbitrary number of grant entries. The keystore entry tells where to find the public
keys of the signers given in the grant entries. A grant entry assigns permissions to a code
base, a list of signers, and a list of principals. All three fields are optional. It is possible
to specify a signer for individual permissions. In this case, the permission is only valid if
it appears in a policy file signed by the nominated signer.

20.5.7 Security Manager

The security manager is invoked at runtime to check whether a process requesting
access to a protected resource has the required permissions. To request this check, the
program calls the checkPermission method of the security manager. This method
can be called with the required permission as the only argument or with the required
permission and an execution context. The execution context captures the content of the
execution stack. The checkPermission method of the security manager in turn calls
the checkPermission method of the access controller.
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The access controller implements a uniform access decision algorithm for all permissions.
To compute the granted permissions, the access controller examines the given execution
context, i.e. the execution stack, and performs a stack walk. Each method on the stack
has a class and each class belongs to a protection domain. The protection domain
defines the permissions granted to this method. The basic access control algorithm
computes the intersection of the granted permissions for all methods in the execution
context. It grants access if all methods on the stack have been granted the required
permission. This algorithm is extended so that methods can assert permissions by calling
the doPrivilegedmethod that stops the stack walk at this method ignoring callers still
on the stack. Further modifications deal with inherited methods and inherited execution
contexts.

20.5.8 Summary

The approach chosen in the Java 2 security model is called declarative security. The
writers of application programs declare what permissions are required to access protected
resources by including the relevant checks in the code. They have full flexibility in
defining application-specific permissions. The administrators deploying the application
assign permissions by specifying security policies. There is a single shared access control
algorithm provided by the access controller, ensuring consistency in the enforcement of
security policies. Application writers need not implement their own application-specific
access control logic.

The JVM in a web browser enforces security in a layer above the operating system.
Once a user has access to the layer below the security mechanisms, e.g. by running
applications other than the browser, all bets on the integrity of the protection system are
off. Furthermore, the Java platform is not secure simply because Java is designed to be a
type-safe language. Over time, security problems have been found and had to be fixed.
Section 10.4.5 mentioned some incidents related to type safety. Not all software security
issues are addressed by the Java type system. For example, it is up to developers to deal
with race conditions. A type system for Java that handles race conditions is described
in [43].

20.6 . N E T S E C U R I T Y F R A M E W O R K

This section gives a general overview of .NET security features and introduces the
terminology used in .NET. A detailed introduction to .NET security is provided in [141].

20.6.1 Common Language Runtime

The Common Language Runtime (CLR) supports a number of programming languages
such as C#, Visual Basic, managed C++, Visual J#, and more. The Common Language
Specification (CLS) specifies general requirements on all .NET languages. Code written
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in any of the .NET languages is compiled into Microsoft Intermediate Language code
(MSIL). MSIL is conceptually similar to Java byte code. MSIL code is sent to a just-in-
time (JIT) compiler just before it is executed. The CLR loads and executes code, and
performs security checks and automatic garbage collection. Architecturally, the CLR
corresponds to the JVM.

Managed code is code compiled to run in the .NET framework and is controlled by the
CLR. Native code, also called unmanaged code, is code compiled to machine language
for a specific hardware platform. Native code is not controlled by the CLR and works at
a layer below the CLR. Calls from managed code to native code are security-critical, as
any guarantees provided by the CLR no longer apply. Particular care has to be taken to
check that such a call does not lead to security violations.

An assembly is a logical unit of MSIL code. The metadata for an assembly provide
information including the full assembly name, referenced assemblies, visibility, inherited
class, implemented interfaces of each defined class, and information about class members
such as methods, fields, and properties.

20.6.2 Code-Identity-Based Security

The .NET platform implements code-based access control, called code-identity-based
security in [141]. The basic idea is again to grant different levels of ‘trust’, i.e. different
permissions, to code. Applying the principle of least privilege is a good reason to do
so. Calling code with all permissions ‘fully trusted’, code with very limited permissions
‘untrusted’, and code with permissions somewhere in between ‘semi-trusted’ mixes
operational aspects of access control with the reasons why permissions have been
assigned in a certain way.

Code-identity-based security refers to code identities. Security policies refer to evidence
about assemblies, authorizing code rather than users to access resources. Evidence is
dynamically calculated when code is running. Some pieces of evidence, such as the URL
of origin of an assembly, are usually not known in advance. Authentication of code
identity is the process of collecting and verifying evidence about an assembly.

20.6.3 Evidence

The evidence about assemblies may include objects from default classes such as the site
of origin where the assembly has just been loaded from, the URL of origin, the hash of
the assembly, an authenticode signature, a strong name signature, and a security zone.
It is also possible to use other objects as evidence to define application-specific access
control. Custom code usually has to be added to process such evidence. Permission
Request Evidence states the permissions an assembly must have to run, the permissions
it may be granted, and the permissions it must never get.
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Evidence can be given by the entity that launches the assembly. This entity is called
the host and can either be an unmanaged entity that initiates the CLR, e.g. Internet
Explorer, or managed code launching other managed code. This evidence is known as
host-provided evidence and uses the default classes mentioned above. Assembly-provided
evidence is provided by an assembly itself using application-specific classes. It cannot
override host-provided evidence.

Evidence is associated with assemblies and with so-called app domains (short for
application domains). App domains contain loaded assemblies and provide in-process
isolation of executing code. App domains provide a second container layer that can be
used to adjust the permissions granted to an assembly based on the application it is being
used for. All .NET code has to run in an app domain.

20.6.4 Strong Names

A strong name is a ‘bare’ public/private key pair. There is no certificate for the public
key. Strong names create protected name spaces. The public key is the identifier of the
name space. It is listed in the metadata of the assemblies that belong to the name space.
An assembly is digitally signed during compilation and the signature is written into
the assembly. This signature can later be verified using the public key in the assembly,
thereby protecting the assemblies in the name space from modification and spoofing.

We have refrained from denoting the public key as the ‘publisher’ of the name space. This
may create confusion with authenticode signatures. The public keys used for verifying
authenticode signatures come with certificates, binding the public key to the entity
publishing the software. Security policies may refer to name of this entity. Authenticode
signatures match the traditional view of a software publisher as a person or company.

Lesson
Globally unique names can be generated by a central authority in a top-
down manner. Alternatively, globally unique names can be generated locally
with the help of public-key cryptography.

In the first approach, an authority is in charge of the name space and assigns names
to applicants. The authority has to guarantee that names are only assigned once. In
a hierarchical name space, subauthorities can be put in charge of their section of the
name space. The X.500 directory exemplifies this approach (Section 15.5.3). In the
second approach, local name spaces are defined by a public/private key pair. Uniqueness
in a name space has to be guaranteed by the respective key-holder. Uniqueness of
the public keys relies on randomness in key generation. Collisions are theoretically
possible.
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20.6.5 Permissions
Code access permissions represent rights to access resources or to perform protected
operations, such as accessing unmanaged code. Code access permissions provided by
the .NET framework are, for example, FileIOPermission giving the right to read,
append, or write files or directories, EventLogPermission giving the right to read
or write access to event log services, PrintingPermission giving the right to access
printers, and SecurityPermission giving among others the right to assert permis-
sions, to call into unmanaged code, and to skip verification. There are numerous built-in
permissions of this kind.

Identity permissions represent specific attributes (evidence) of an assembly, e.g. its
(authenticode) publisher, the strong name of the name space it belongs to, its hash value,
or the URL or zone from which it has been loaded. The PrincipalPermission
is different from code access permissions and represents a user identity. It is used
when defining traditional identity-based security policies. For easier policy management,
permissions can be collected in permission sets.

Permissions are granted to assemblies by the security policy (see below). Required
permissions are specified by placing security demands in the code. During execution,
a security demand will trigger a stack walk to check whether the permission has been
granted. Declarative demands are stored in the assembly’s metadata. They can be
reviewed by looking at the metadata. Checks will occur at the beginning of a method.
JIT security actions can only be expressed in declarative form. Imperative demands are
placed in the code, facilitating more complex security logic that can also handle dynamic
parameters in access requests (not yet known at the time the declarative demands are
checked).

20.6.6 Security Policies
Security policies translate evidence into permissions. This process uses code groups
and permission sets as its main levels of indirection. A code group has a membership
condition that determines which code groups an assembly belongs to. For example, one
might compare the zone evidence in the assembly with a zone given in a membership
condition, or compare the strong name of the assembly with a strong name given in a
membership condition. Membership conditions are checked at load time. The code group
is associated with permission sets that may be granted to assemblies in the code group.

Code groups are arranged in hierarchies to support policy management. Permissions
are resolved from the code group root looking for matching children. For an exclusive
code group, assemblies matching such a code group are not evaluated against other code
groups and get only permissions from this code group.

Policy management is further structured along four policy levels: enterprise, machine,
user, and application domain. A policy level consists of a named permission set, a code
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group hierarchy, and a list of ‘full trust’ assemblies. Evidence is evaluated against each
policy level individually and the results are intersected.

Full trust assemblies are needed to avoid recursive security checks when loading assem-
blies. When a policy level is loaded, all referenced assemblies must be loaded. For
permissions referred to in the permission sets in this policy level, the assemblies
that contain these permissions have to be loaded. For example, assume the Sys-
tem.Net.DnsPermission permission is given in the assembly System.dll. To
check whether this assembly may be loaded, the policy levels are required for making the
decision and have to be loaded first. This creates deadlock; to load the permission, we
must first check whether we have permission to load; to check the permission, we first
have to load it.

20.6.7 Stack Walk

In the basic mode, all assemblies on the call stack are checked, but not the current method
making the demand, and need to have the required permission for access to be granted.
This algorithm can be modified with Assert actions that assert a permission and stop
the stack walk for that permission. There is also a Deny action that terminates the stack
walk, denying access (raising a security exception). The PermitOnly action is equivalent
to a Deny on all permissions other than the one specified. These two actions are mainly
useful for testing.

A stack walk for a code access permission, e.g. FileIOPermission, succeeds only
when all callers considered have the permission. This effect is intended. The stack walk is
a defence against luring attacks launched by components that do not have the permission
in question. A stack walk for an identity permission succeeds only when all callers
considered have the permission, i.e. the specific attribute stipulated in the permission.
Consider a method that demands an identity permission that refers to the hash value
of code. The caller that has this hash value is able to call this method. This effect is
intended. However, when the stack walk reaches the frame for the next caller the hash
values will not match and the stack walk will fail. For situations like this the stack walk
has to be further adjusted.

The solution in .NET is the Link Demand action that performs a shallow check for the
permissions a caller must have. Only the immediate caller is checked and no stack walk
is performed. So, if a method A has a Link Demand for permission p and method B calls
A, the assembly containing B is checked to see whether it has permission p.

In-lining is a compiler optimization that copies a method into the caller instead of making
the call. A JIT compiler may collapse several levels of call into a single piece of code. An
in-lined method has no frames on the stack and is therefore not seen by the stack walk.
Only in-lining that traverses assembly boundaries may pose a problem. Hence, in-lining
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is not possible for methods that use stack walk modifiers. Cross boundary in-lines are
permitted only for trivial callees, i.e. callees that do not contain further method calls.

20.6.8 Summary

.NET security follows the same strategy as Java security. Managed code is written
in a type-safe language such as C#. The CLR verifies Intermediate Language code to
ensure type safety. Code (not users) is authorized to access resources and has to be
authenticated when being executed. The security enforcement algorithm performs a
stack walk. There are numerous means for structuring security policies and two different
styles for expressing required permissions. This is the framework provided. For practical
use, you would then need strategies for setting policies and assigning permissions to
assemblies. These are still very much open questions.

20.7 D I G I TA L R I G H T S M A N A G E M E N T

At the technical level, digital rights management (DRM) enforces policies of content
providers on a customer machine. This is another departure from the traditional access
control paradigm. The policies enforced on a system are no longer set by the owner but
by an external party. The adversary is no longer an external party trying to subvert the
system but an owner trying to bypass the policy. The security goal is the integrity of the
access control system, as interpreted by the external party.

To achieve this goal, you could try to make it difficult for the owner to change the policy
settings. If the adversary is assumed to be a technically sophisticated owner, protection
mechanisms may have to go down to the hardware level. The content provider could ask
for a truthful report about the hardware and software configuration of a target machine
before agreeing to a download. This solution can be implemented on a trusted platform
module (TPM) running an attestation protocol (Section 15.6). The TPM is the root of
trust for the content owner.

PC vendors have no control over the operating systems and software loaded by the
customer. With mobile phones there is a tighter integration between hardware and
software. This facilitates the following approach to DRM.

• There are domains managed by an authority. In some cases there is only one domain
for a given mobile phone operating systems (e.g. Symbian). In other cases multiple
domains (Android uses the term markets) are feasible.

• User devices in the domain have the public verification key of the authority installed.

• An application that requires privileges from the mobile phone operating system has to
be submitted to the authority. The authority validates that the application does not
abuse the privileges requested. Approved applications are signed by the authority.
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• Applications are distributed to users with their signatures and installed on user devices.

• When the application is run, the mobile phone operating system checks the signature.
If the application has a valid signature it will be granted the privileges it requests.

Several variations of this general pattern have been implemented. The phone vendor and
the hardware platform are the root of trust for the content owner. The Open Mobile
Alliance is specifying industry standards for DRM.

Content owners may embed information about owner or customer in digital watermarks
in the content delivered. The main issues here are the difficulty of removing or modifying
watermarks, and their impact on the quality of audio and video content. When analyzing
the security of such schemes, you have to be clear about your threat model. The adversary
may be an unsophisticated user who will shy away from manipulating his device and
should just be ‘kept honest’. The adversary could be a technically skilled user who wants
free access to content for private use. The adversary could be an organization wanting to
distribute pirated content.

Whether DRM is a useful basis for business models in content distribution is still open
to debate. Content providers not only rely on technology but also frequently have
recourse to the legal system. EMI announced in April 2007 that they would offer content
DRM-free. Content providers brought civil actions against unauthorized distributors of
their content. They have also lobbied successfully for legislation prohibiting the reverse
engineering of copy protection mechanisms. As noted by Lessig [153], legal code and
software code are two alternative options for enforcing desired behaviour.

20.8 F U R T H E R R E A D I N G
For detailed expositions of Java security and .NET security, the reader is referred
to [163] and [141] respectively. A comparison of Java and .NET is given in [190].
Readers with an interest in the history of the field may consult [163] to learn about
problems discovered in the early stages of Java security. By way of background on
DRM, an entertaining review of the arms race between copy protection and copy
programs can be found in [110]. Current research on code-based access control
looks at alternatives to stack inspections [96], and at policy management [34].

20.9 E X E R C I S E S

Exercise 20.1 Consider a policy that, for reasons of separation of duties, does
not allow an entity to exercise the rights it may grant (delegate) to others. How
could SPKI be augmented to support such a policy?



20.9 EXERCISES 407

Exercise 20.2 Examine the provisions in the Java 2 security model for performing
a doPrivileged against a context other than that of the current execution thread.

Exercise 20.3 Examine the provisions in the Java 2 security model for inheriting
access control contexts.

Exercise 20.4 Analyze the relative advantages and disadvantages of declarative
and imperative security actions.

Exercise 20.5 You are given a data-dependent policy rule. Would you implement
this rule with a declarative or an imperative security action?

Exercise 20.6 You could use the hash of an assembly or a digital signature of
the assembly as its identity. Examine the relative advantages and disadvantages
of those two options.

Exercise 20.7 Consider a recursive function that calls itself n times (as a tail call).
Compare the performance of the stack walk when there is no tail call elimination
and when there is tail call elimination.

Exercise 20.8 Give an example of an application where access decisions are
deferred to a third party for reasons other than trust.

Exercise 20.9 Specify an extension to the DRM access control model where
applications can define their own name spaces that are protected from other
applications.

Exercise 20.10 Give a brief description of the main features of OMA DRM 2.0.
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