

SVP, Thomson Course
Technology PTR:
Andy Shafran

Publisher:
Stacy L. Hiquet

Senior Marketing Manager:
Sarah O’Donnell

Marketing Manager:
Heather Hurley

Manager of Editorial Services:
Heather Talbot

Acquisitions Editor:
Mitzi Koontz

Associate Marketing Managers:
Kristin Eisenzopf and Sarah Dubois

Project Editor/Copy Editor:
Cathleen D. Snyder

Technical Reviewer:
Shawn Holmes

Thomson Course Technology PTR
Market Coordinator:
Amanda Weaver

Interior Layout Tech:
Susan Honeywell

Cover Designer:
Steve Deschene

CD-ROM Producer:
Arlie Hartman

Indexer:
Katherine Stimson

Proofreader:
Gene Redding

© 2004 by Thomson Course Technology PTR. All rights reserved. No
part of this book may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, record-
ing, or by any information storage or retrieval system without written
permission from Thomson Course Technology PTR, except for the
inclusion of brief quotations in a review.

The Premier Press and Thomson Course Technology PTR logo and
related trade dress are trademarks of Thomson Course Technology PTR
and may not be used without written permission.

All trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software
support. Please contact the appropriate software manufacturer’s techni-
cal support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted
throughout this book to distinguish proprietary trademarks from
descriptive terms by following the capitalization style used by the man-
ufacturer.

Information contained in this book has been obtained by Thomson
Course Technology PTR from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources,
Thomson Course Technology PTR, or others, the Publisher does not
guarantee the accuracy, adequacy, or completeness of any information
and is not responsible for any errors or omissions or the results obtained
from use of such information. Readers should be particularly aware of
the fact that the Internet is an ever-changing entity. Some facts may have
changed since this book went to press.

Educational facilities, companies, and organizations interested in multiple
copies or licensing of this book should contact the publisher for quantity
discount information. Training manuals, CD-ROMs, and portions of this
book are also available individually or can be tailored for specific needs.

ISBN: 1-59200-205-6
Library of Congress Catalog Card Number: 2004105652
Printed in the United States of America
04 05 06 07 08 BH 10 9 8 7 6 5 4 3 2 1

Thomson Course Technology PTR, a division of
Thomson Course Technology

25 Thomson Place
Boston, MA 02210

http://www.courseptr.com

To my sweet, tough cookie—for all of the help,
support, understanding (and distractions) you offered.

I love you, Keren.

E
very book you’ve ever read perpetuates a big fat lie. And I’m here to out the pub-
lishing industry’s dirty little secret—books are not “by” only one person. Yes, you
see only one name on book covers (including this one), but it takes a team of ded-

icated people to pull off the final product. Authors could not do it alone; I certainly could
not have done it alone. So I want to thank all those who helped make this book a reality.

Thanks to Cathleen Snyder for her dual role as Project Editor and Copy Editor. Cathleen
kept things moving along. She knew when to nudge and when to lay back. On top of coor-
dinating everything, she looked at the book from a reader’s point of view, always striving
to be sure things were clear.

Thanks to Shawn Holmes, my Technical Editor. Shawn kept me honest and made sure my
programs worked the way I said they did.

Thanks to Sue Honeywell, my Layout Tech, and Gene Redding, my Proofreader. Their
work makes the book look good—literally.

I also want to thank Mitzi Koontz, my Acquisitions Editor, for seeing the need for this book
and having the will to move it forward when there was nothing out there quite like it.

Finally, I want to thank all of the game programmers who created the games I played while
growing up. They inspired me to work in the industry and create games of my own. I hope
I can inspire a few readers to do the same.

iv

Acknowledgments

MICHAEL DAWSON has worked as both a programmer and a computer game designer and
producer. In addition to real-world game industry experience, Mike earned his bachelor’s
degree in Computer Science from the University of Southern California. Mike currently
teaches game programming and design to students of all ages through UCLA Extension
courses and private lessons. Visit his website at http://www.programgames.com to learn
more or to get support for any of his books.

v

About the Author

Introduction . xi

Chapter 1 Types, Variables, and Standard I/O: Lost Fortune 1
Introducing C++ . 1

Writing Your First C++ Program . 4

Working with the std Namespace . 9

Using Arithmetic Operators . 11

Declaring and Initializing Variables . 13

Performing Arithmetic Operations with Variables 21

Working with Constants . 25

Introducing Lost Fortune . 27

Summary . 30

Questions and Answers . 31

Discussion Questions . 32

Exercises . 33

Chapter 2 Truth, Branching, and the Game Loop:
Guess My Number .35
Understanding Truth . 35

Using the if Statement . 36

Using the else Clause . 40

vi

Contents

Using the switch Statement . 43

Using while Loops . 46

Using do Loops . 48

Using break and continue Statements . 50

Using Logical Operators . 52

Generating Random Numbers . 58

Understanding the Game Loop . 61

Introducing Guess My Number . 63

Summary . 66

Questions and Answers . 67

Discussion Questions . 68

Exercises . 69

Chapter 3 For Loops, Strings, and Arrays: Word Jumble71
Using for Loops . 71

Understanding Objects . 75

Using string Objects . 77

Using Arrays . 83

Understanding C-Style Strings . 87

Using Multidimensional Arrays . 88

Introducing Word Jumble . 90

Summary . 94

Questions and Answers . 95

Discussion Questions . 97

Exercises . 97

Chapter 4 The Standard Template Library: Hangman 99
Introducing the Standard Template Library . 99

Using Vectors . 100

Using Iterators . 105

Using Algorithms . 112

Understanding Vector Performance . 116

Examining Other STL Containers . 118

Planning Your Programs . 119

Introducing Hangman . 120

Contents vii

Summary . 124

Questions and Answers . 125

Discussion Questions . 126

Exercises . 127

Chapter 5 Functions: Mad Lib .129
Creating Functions . 129

Using Parameters and Return Values . 132

Understanding Software Reuse . 137

Working with Scopes . 138

Using Global Variables . 142

Using Global Constants . 145

Using Default Arguments . 145

Overloading Functions . 149

Inlining Functions . 151

Introducing the Mad Lib Game . 153

Summary . 156

Questions and Answers . 157

Discussion Questions . 158

Exercises . 159

Chapter 6 References: Tic-Tac-Toe .161
Using References . 161

Passing References to Alter Arguments . 164

Passing References for Efficiency . 167

Deciding How to Pass Arguments . 170

Returning References . 171

Introducing the Tic-Tac-Toe Game . 174

Summary . 186

Questions and Answers . 187

Discussion Questions . 189

Exercises . 189

Contentsviii

Chapter 7 Pointers: Tic-Tac-Toe 2.0 .191
Understanding Pointer Basics . 191

Understanding Pointers and Constants . 198

Passing Pointers . 201

Returning Pointers . 205

Understanding the Relationship between Pointers
and Arrays . 209

Introducing the Tic-Tac-Toe 2.0 Game . 213

Summary . 213

Questions and Answers . 215

Discussion Questions . 216

Exercises . 217

Chapter 8 Classes: Critter Caretaker .219
Defining New Types . 219

Using Constructors . 224

Setting Member Access Levels . 226

Using Static Data Members and Member Functions 231

Introducing the Critter Caretaker Game . 235

Summary . 241

Questions and Answers . 242

Discussion Questions . 243

Exercises . 244

Chapter 9 Advanced Classes and Dynamic Memory: Game Lobby . .245
Using Aggregation . 245

Using Friend Functions and Operator Overloading 249

Dynamically Allocating Memory . 252

Working with Data Members and the Heap 258

Summary . 275

Questions and Answers . 276

Discussion Questions . 278

Exercises . 278

Contents ix

Chapter 10 Inheritance and Polymorphism: Blackjack279
Introducing Inheritance . 279

Controlling Access under Inheritance . 284

Calling and Overriding Base Class Member Functions 286

Using Overloaded Assignment Operators and Copy Constructors in
Derived Classes . 290

Introducing Polymorphism . 291

Using Abstract Classes . 296

Organizing Your Code . 299

Introducing the Blackjack Game . 303

Summary . 322

Questions and Answers . 323

Discussion Questions . 324

Exercises . 324

Index . 325

Contentsx

C
utting-edge computer games rival the best that Hollywood has to offer in visual
effects, musical score, and pure adrenaline rush. But games are a form of enter-
tainment unlike any other; they can keep players glued to their monitors for hours

on end. What sets games apart and makes them so engrossing is interactivity. In a com-
puter game, you don’t simply sit back and watch a hero fighting against all odds, you
become the hero.

The key to achieving this interactivity is programming. It’s programming that allows an
alien creature, an attack squadron, or an entire army to react differently to a player in dif-
ferent situations. Through programming, a game’s story can unfold in new ways. In fact,
as the result of programming, a game can respond to a player in ways that the game cre-
ators might never have imagined.

Although there are literally thousands of computer programming languages, C++ is the
game industry standard. If you were to wander the PC game section of your favorite store
and grab a title at random, the odds are overwhelming that the game in your hand would
be written largely or exclusively in C++. The bottom line is this: If you want to program
computer games professionally, you must know C++.

The goal of this book is to introduce you to the C++ language from a game programming
perspective. Although no single book can make you the master of two deep topics such as
C++ and game programming, this book will start you on your journey.

xi

Introduction

Who This Book Is For
This book is for anyone who wants to program games. It’s aimed at the total beginner and
assumes no previous programming experience. If you’re comfortable using your com-
puter, then you can start your game programming odyssey right here. But just because this
book is written for the beginner, that doesn’t mean learning C++ and game programming
will be easy. You’ll have to read, work, and experiment. By the end of this book, you’ll have
a solid foundation in the game programming language of the professionals.

How This Book iIs Organized
I start at the very beginning of C++ and game programming, assuming no experience
in either. As the chapters progress, I cover more advanced topics, building on previous
material.

In each chapter, I cover one or several related topics. I move through concepts one step at
a time by writing bite-sized, game-related programs to demonstrate each idea. At the end
of each chapter, I combine some of the most important concepts in a single game. The last
chapter of the book ends with the most ambitious project—one that harnesses all of the
major concepts presented throughout the book.

In addition to learning about C++ and game programming, you’ll also learn how to orga-
nize your work, break down problems into manageable chunks, and refine your code.
You’ll be challenged at times, but never overwhelmed. Most of all, you’ll have fun while
learning. In the process, you’ll create some cool computer games and gain insight into the
craft of game programming.

Chapter 1: Types, Variables, and Standard I/O: Lost Fortune. You’ll be introduced to the
fundamentals of C++, the standard language of the game industry. You’ll learn to display
output in a console window, perform arithmetic computations, use variables, and get
player input from the keyboard.

Chapter 2: Truth, Branching, and the Game Loop: Guess My Number. You’ll create more
interesting games by writing programs that execute, skip, or repeat sections of code based
on some condition. You’ll learn how to generate random numbers to add some unpre-
dictability to your games. And you’ll learn about the game loop—a fundamental way to
organize your games to keep the action going.

Chapter 3: For Loops, Strings, and Arrays: Word Jumble. You’ll learn about sequences
and work with strings—sequences of characters that are perfect for word games. You also
learn about software objects—entities that can be used to represent objects in your games,
such as alien spacecrafts, healing potions, or even the player himself.

Introductionxii

Chapter 4: The Standard Template Library: Hangman. You’ll be introduced to a power-
ful library—a toolbox that game programmers (and even non-game programmers) rely
on to hold collections of things, such as items in a player’s inventory. You’ll also learn
about techniques that can help you plan larger game programs.

Chapter 5: Functions: Mad-Lib. You’ll learn to break up your game programs into
smaller, more manageable chunks of code. You’ll accomplish this by discovering func-
tions, the fundamental units of logic in your game programs.

Chapter 6: References: Tic-Tac-Toe. You’ll learn how to share information with different
parts of your programs in an efficient and clear manner. You’ll also see a brief example of
AI (artificial intelligence) and you’ll learn how to give a computer opponent a little bit of
personality.

Chapter 7: Pointers: Tic-Tac-Toe 2.0. You’ll begin to discover some of the most low-level
and powerful features of C++, such as how to directly address and manipulate your com-
puter’s memory.

Chapter 8: Classes: Critter Caretaker. You’ll learn how to create your own kinds of
objects and define the ways they’ll interact with each other through object-oriented pro-
gramming. In the process, you’ll create your very own critter to care for.

Chapter 9: Advanced Classes and Dynamic Memory: Game Lobby. You’ll expand on
your direct connection with the computer and learn to acquire and free memory as your
game programs require. You’ll also see the pitfalls of using this “dynamic” memory and
how to avoid them.

Chapter 10: Inheritance and Polymorphism: Blackjack. You’ll learn how to define
objects in terms of other objects. Then you’ll pull everything you’ve learned together into
one big final game. You’ll see how a sizeable project is designed and implemented by cre-
ating a multiplayer version of the classic casino game of Blackjack (tacky green felt not
included).

Conventions Used in This Book
Throughout the book, I’ll throw in a few other tidbits. For example, I italicize any new
term and explain what it means. I also use a number of special elements, including the fol-
lowing:

h i n t

These are good ideas that will help you become a better game programmer.

Introduction xiii

t r a p

These point out areas where it’s easy to make a mistake.

t r i c k

These suggest techniques and shortcuts that will make your life as a game programmer easier.

i n t h e r e a l w o r l d

These are facts about the real world of game programming.

The CD-ROM
The CD-ROM that comes with this book includes the following:

■ All of the source code for the programs and games presented in the book

■ The Bloodshed Dev-C++ IDE, which uses the MinGW port of GCC as its
compiler

■ A walkthrough of how to use the Dev-C++ IDE to create your first program

■ SGI’s Standard Template Library Programmer’s Guide

■ Useful links for C++, game programming, and industry news and information

A Word about Compilers
I might be getting a little ahead of myself here by talking about compilers, but the issue is
important because a compiler is what translates the source code you write into a program
that your computer can run. I strongly recommend that you use the Dev-C++ IDE that’s
on the CD-ROM that came with this book. It’s easy to use, includes a modern C++ com-
piler, and best of all, it’s free! I feel so strongly about this that I’ve included a walkthrough
on the CD-ROM (Appendix A, “Creating Your First C++ Program”) that explains how to
compile your first C++ program using Dev-C++. So, what are you waiting for? Grab that
CD-ROM, install Dev-C++, and check out the walkthrough.

t r a p

I hate to pick on any particular compiler or software company, but I have to say that I cannot rec-
ommend Microsoft Visual C++ 6.0. Its compiler fails to correctly implement C++ in some impor-
tant ways. As a result, a few of the programs in this book will not compile under Visual C++ 6.0. I
do my best to point out the issues when they arise in the programs in the book. If you want to go
with Microsoft, I recommend their current line of Visual Studio .NET products, which implement the
C++ standard quite faithfully.

Introductionxiv

1

Types, Variables, and
Standard I/O: Lost
Fortune

Chapter 1

G
ame programming is demanding. It pushes both programmer and hardware to
their limits. But it can also be extremely satisfying. In this chapter, you’ll be intro-
duced to the fundamentals of C++, the standard game industry language.

Specifically, you’ll learn to:

■ Display output in a console window

■ Perform arithmetic computations

■ Use variables to store, manipulate, and retrieve data

■ Get user input

■ Work with constants and enumerations

■ Work with strings

Introducing C++
C++ is a modern, high-level programming language leveraged by millions of program-
mers around the world. It’s one of the most popular languages for writing computer
applications—and the most popular language for writing computer games.

Created by Bjarne Stroustrup, C++ is a direct descendant of the C language. In fact, C++
retains almost all of C as a subset. However, C++ offers better ways to do things and some
brand-new capabilities, too.

Using C++ for Games
C++ is the language of choice among game programmers. Almost every published com-
puter game is written using C++. There is a variety of reasons why game programmers
choose the language. Here are a few:

■ It’s fast. Well-written C++ programs can be blazingly fast. One of C++’s design
goals is performance. And if you need to squeeze out even more performance from
your programs, C++ allows you to use assembly language—the lowest-level
human-readable programming language—to communicate directly with the com-
puter’s hardware.

■ It’s flexible. C++ is a multi-paradigm language that supports different styles of
programming, including object-oriented programming. Unlike some other modern
languages, though, C++ doesn’t force one particular style on a programmer.

■ It’s well supported. Because it is the dominant game programming language,
there’s a large pool of assets available to the C++ game programmer, including
graphics APIs and 2D, 3D, physics, and sound engines—all of which allow a pro-
grammer to leverage previous work to greatly speed up the process of writing a
new game.

Creating an Executable File
The file that you run to launch a program—whether you’re talking about a game or a
business application—is an executable file. There are several steps to creating an executable
file from C++ source code (a collection of instructions in the C++ language). The process
is illustrated in Figure 1.1.

Chapter 1 ■ Types, Variables, and Standard I/O: Lost Fortune2

Figure 1.1
The creation of an executable file from C++ source code

1. First, the programmer uses an editor to write the C++ source code, a file that usu-
ally has the extension .cpp. The editor is like a word processor for programs; it
allows a programmer to create, edit, and save source code.

2. After the programmer saves a source file, he invokes a C++ compiler—an applica-
tion that reads source code and translates it into an object file. Object files usually
have the extension .obj.

3. Next, a linker links the object file to any external files as necessary, and then creates
the executable file, which generally ends with the extension .exe. At this point, a
user (or gamer) can run the program by launching the executable file.

h i n t

The process I’ve described is the simple case. Creating a complex application in C++ often involves
multiple source code files written by a programmer (or even a team of programmers).

To help automate this process, it’s common for a programmer to use an all-in-one tool for
development, called an IDE (Integrated Development Environment). An IDE typically
combines an editor, a compiler, and a linker, along with other tools. Popular commercial
IDEs for Windows include Visual Studio .NET and C++Builder Studio. Dev-C++ is an
excellent free and open source IDE for Windows (and just so happens to be included on
the CD-ROM that came with this book).

Dealing with Errors
When I described the process for creating an executable from C++ source, I left out one
minor detail—errors. If to err is human, then programmers are the most human of us.
Even the best programmers write code that generates errors the first (or fifth) time
through. Programmers must fix the errors and start the entire process over. Here are the
basic types of errors you’ll run into as you program in C++:

■ Compile errors. These occur during code compilation. As a result, an object file is
not produced. These errors are often syntax errors, meaning that the compiler
doesn’t understand something. They’re often caused by something as simple as a
typo. Compilers can issue warnings, too. Although you usually don’t have to heed
the warnings, you should treat them as errors, fix them, and recompile.

■ Link errors. These occur during the linking process and may indicate that something
the program references externally can’t be found. These errors are usually solved by
adjusting the offending reference and starting the compile/link process again.

■ Run-time errors. These occur when the executable is run. If the program does
something illegal, it can crash abruptly. But a more subtle form of run-time error,
a logical error, can make the program simply behave in unintended ways. If you’ve

Introducing C++ 3

ever played a game where a character walked on air (that is, a character who
shouldn’t be able to walk on air), then you’ve seen a logical error in action.

i n t h e r e a l w o r l d

Like other software creators, game companies work hard to produce bug-free products. Their last
line of defense is the quality assurance personnel (the game testers). Game testers play games for
a living, but their jobs are not as fun as you might think. Testers must play the same parts of a game
over and over—perhaps hundreds of times—trying the unexpected and meticulously recording any
anomalies. On top of monotonous work, the pay ain’t great either. But being a tester is a terrific
way to get into a game company on the proverbial bottom rung.

Understanding the ISO Standard
The ISO standard for C++ is a definition of C++ that describes exactly how the language
should work. It also defines a group of files, called the standard library, that contain build-
ing blocks for common programming tasks, such as I/O—getting input and displaying
output. The standard library makes life easier for programmers and provides fundamen-
tal code to save them from reinventing the wheel. I’ll be using the standard library in all
of the programs in this book.

For this book, I used Dev-C++, which is also included on the CD-ROM that came with
this book. The compiler that comes with Dev-C++ is quite faithful to the ISO standard,
so you should be able to compile, link, and run all of the programs using some other mod-
ern Windows compiler. In fact, you should be able to compile, link, and run all of the pro-
grams under any operating system as long as you use an ISO-compliant compiler.

h i n t

The ISO standard is often called the ANSI standard or ANSI/ISO standard. These different names
involve the acronyms of the various committees that have reviewed and established the standard.The
most common way to refer to C++ code that conforms to the ISO standard is simply Standard C++.

Writing Your First C++ Program
Okay, enough theory. It’s time to get down to the nitty-gritty and write your first C++
program. Although it is simple, the following program shows you the basic anatomy of a
program. It also demonstrates how to display text in a console window.

Introducing the Game Over Program
The classic first task a programmer tackles in a new language is the Hello World program,
which displays Hello World on the screen. The Game Over program puts a gaming twist on
the classic and displays Game Over! instead. Figure 1.2 shows the program in action.

Chapter 1 ■ Types, Variables, and Standard I/O: Lost Fortune4

You can type the code in yourself, but I’ve also provided the source code for all of the pro-
grams on the CD-ROM that came with this book. The code for this program is in the
Chapter 1 folder on the CD-ROM; the file name is game_over.cpp.

// Game Over
// A first C++ program

#include <iostream>

int main()
{

std::cout << “Game Over!” << std::endl;
return 0;

}

h i n t

For step-by-step instructions on how to create, save, compile, and run the Game Over program
using Dev-C++, check out Appendix A, “Creating Your First C++ Program,” on the CD-ROM that
came with this book. If you’re using another compiler or IDE, check its documentation.

Commenting Code
The first two lines of the program are comments.

// Game Over
// A first C++ program

Figure 1.2
Your first C++ program displays the two most infamous words in computer
gaming.

Writing Your First C++ Program 5

Comments are completely ignored by the compiler; they’re meant for humans. They can help
other programmers understand your intentions. But comments can also help you. They can
remind you how you accomplished something that might not be clear at first glance.

You can create a comment using two forward slashes in a row (//). Anything after this on
the rest of the physical line is considered part of the comment. This means you can also
include a comment after a piece of C++ code, on the same line.

h i n t

You can also use what are called C-style comments, which can span multiple lines. All you have to
do is start the comment with /* and end it with */. Everything in between the two markers is part
of the comment.

Using Whitespace
The next line in the program is technically a blank line. The compiler ignores blank lines.
In fact, compilers ignore just about all whitespace—spaces, tabs, and newlines. Like com-
ments, whitespace is just for us humans.

Judicious use of whitespace helps make programs clearer. For example, you can use blank
lines to separate sections of code that belong together. I also use whitespace (a tab, to be
precise) at the beginning of the two lines between the curly braces to set them off.

Including Other Files
The next line in the program is a preprocessor directive. You know this because the line
begins with the # symbol.

#include <iostream>

The preprocessor runs before the compiler does its thing and substitutes text based on var-
ious directives. In this case, the line involves the #include directive, which tells the pre-
processor to include the contents of another file.

I include the file iostream, which is part of the standard library, because it contains code to
help me display output. I surround the filename with less than (<) and greater than (>)
characters to tell the compiler to find the file where it keeps all the files that came with the
compiler. A file that you include in your programs like this is called a header file.

Defining the main() Function
The next non-blank line is the header of a function called main().

int main()

Chapter 1 ■ Types, Variables, and Standard I/O: Lost Fortune6

A function is a group of programming code that can do some work and return a value. In
this case, int indicates that the function will return an integer value. All function headers
have a pair of parentheses after the function name.

All C++ programs must have a function called main(), which is the starting point of the
program. The real action begins here.

The next line marks the beginning of the function.

{

And the very last line of the program marks the end of the function.

}

All functions are delimited by a pair of curly braces, and everything between them is part
of the function. Code between two curly braces is called a block and is usually indented to
show that it forms a unit. The block of code that makes up an entire function is called the
body of the function.

Displaying Text through the Standard Output
The first line in the body of main() displays Game Over!, followed by a newline, in the con-
sole window.

std::cout << “Game Over!” << std::endl;

“Game Over!” is a string—a series of printable characters. Technically, it’s a string literal,
meaning it’s literally the characters between the quotes.

cout is an object, defined in the file iostream, that’s used to send data to the standard out-
put stream. In most programs (including this one), the standard output stream simply
means the console window on the computer screen.

I use the output operator (<<) to send the string to cout. You can think of the output oper-
ator as a funnel; it takes whatever’s on the open side and funnels it to the pointy side. So
the string is funneled to the standard output—the screen.

I use std to prefix cout to tell the compiler that I mean cout from the standard library. std
is a namespace. You can think of a namespace as an area code—it identifies the group to
which something belongs. You prefix a namespace using the scope resolution operator (::).

Finally, I send std::endl to the standard output. endl is defined in iostream and is also an
object in the std namespace. Sending endl to the standard output acts like pressing the
Enter key in the console window. In fact, if I were to send another string to the console
window, it would appear on the next line.

Writing Your First C++ Program 7

I understand this might be a lot to take in, so check out Figure 1.3 for a visual represen-
tation of the relationship between all of the elements I’ve just described.

Terminating Statements
You’ll notice that the first line of the function ends with a semicolon (;). That’s because
the line is a statement—the basic unit controlling the execution flow. All of your state-
ments must end with a semicolon—otherwise, your compiler will complain with an error
message and your program won’t compile.

Returning a Value from main()
The last statement in the function returns 0 to the operating system.

return 0;

Returning 0 from main() is a way to indicate that the program ended without a problem.
The operating system doesn’t have to do anything with the return value, but the C++ stan-
dard requires that you return an integer from main(). In general, you can simply return 0
like I did here.

t r i c k

When you run the Game Over program, you might only see a console window appear and disap-
pear just as quickly. That’s because C++ is so fast that it opens a console window, displays Game

Chapter 1 ■ Types, Variables, and Standard I/O: Lost Fortune8

Figure 1.3
An implementation of Standard C++ includes a set of
files called the standard library, which includes the file
iostream, which defines various things, including the
object cout.

Over!, and closes the window all in a split second. If you have this problem, just insert the follow-
ing lines before the return 0; in main() in this program.

std::cout << “Press the enter key to exit”;
std::cin.ignore(std::cin.rdbuf()->in_avail() + 1);

These new lines wait for the user to press the Enter key. You can use this technique for the other
programs in this book as well.

Working with the std Namespace
Because it’s so common to use elements from the std namespace, I’ll show you two dif-
ferent methods for directly accessing these elements. This will save you the effort of using
the std:: prefix all the time, plus it will make your code a bit cleaner.

Introducing the Game Over 2.0 Program
The Game Over 2.0 program produces the exact results of the original Game Over pro-
gram, illustrated in Figure 1.2. But there’s a difference in the way elements from the std
namespace are accessed. The code for the program is in the Chapter 1 folder on the CD-
ROM that came with this book; the file name is game_over2.cpp.

// Game Over 2.0
// Demonstrates a using directive

#include <iostream>
using namespace std;

int main()
{

cout << “Game Over!” << endl;
return 0;

}

Employing a using Directive
The program starts in the same way. I use two opening comments and then include
iostream for output. But next, I employ a new type of statement.

using namespace std;

This using directive gives me direct access to elements of the std namespace. Again, if a
namespace is like an area code, then this line says that all of the elements in the std name-
space should be like local phone numbers to me now. That is, I don’t have to use their area
code (the std:: prefix) to access them.

Working with the std Namespace 9

I can use cout and endl, without any kind of prefix. This might not seem like a big deal to
you now, but when you have dozens or even hundreds of references to these objects, you’ll
thank me.

Introducing the Game Over 3.0 Program
Okay, there’s another way to accomplish the same thing, and that’s exactly what I’m going
to show you in the Game Over 3.0 program, which displays the same text as its predeces-
sors. The code for the program is in the Chapter 1 folder on the CD-ROM that came with
this book; the file name is game_over3.cpp.

// Game Over 3.0
// Demonstrates using declarations

#include <iostream>
using std::cout;
using std::endl;

int main()
{

cout << “Game Over!” << endl;
return 0;

}

Employing using Declarations
In this version, I write two using declarations.

using std::cout;
using std::endl;

By declaring exactly which elements from the std namespace I want local to my program,
I’m able to access them directly, just as in Game Over 2.0. Although it requires more typ-
ing than a using directive, the advantage to this technique is that it clearly spells out which
elements I plan to use. Plus, it doesn’t make local a bunch of elements that I have no inten-
tion of using.

Understanding When to Employ using
Okay, you’ve seen two ways to make elements from a namespace local to your program.
But which is the best technique?

A language purist would say you shouldn’t employ either version of using and that you
should always prefix each and every element from a namespace with its identifier. In my
opinion, that’s like calling your best friend by his first and last name all the time. It just
seems a little too formal.

Chapter 1 ■ Types, Variables, and Standard I/O: Lost Fortune10

If you hate typing, you can employ the using directive. A decent compromise is to employ
using declarations. In this book, I’ll employ the using directive most of the time for brevi-
ty’s sake.

i n t h e r e a l w o r l d

I’ve laid out a few different options for working with namespaces. I’ve also tried to explain the
advantages of each so you can decide which way to go in your own programs. Ultimately, though,
the decision may be out of your hands. When you’re working on a project, whether it’s in the class-
room or in the professional world, you’ll probably receive coding standards created by the person
in charge. Regardless of your personal tastes, it’s always best to listen to those who hand out
grades or paychecks.

Using Arithmetic Operators
Whether you’re tallying up the number of enemies killed or decreasing a player’s health
level, you need your programs to do some math. As with other languages, C++ has built-
in arithmetic operators.

Introducing the Expensive Calculator Program
Most serious computer gamers invest heavily in a bleeding-edge, high-powered gaming
rig. This next program, Expensive Calculator, can turn that monster of a machine into a
simple calculator. The program demonstrates built-in arithmetic operators. Figure 1.4
shows off the results.

Using Arithmetic Operators 11

Figure 1.4
C++ can add, subtract, multiply, divide, and even calculate a remainder.

The code for the program is in the Chapter 1 folder on the CD-ROM that came with this
book; the file name is expensive_calculator.cpp.

// Expensive Calculator
// Demonstrates built-in arithmetic operators

#include <iostream>
using namespace std;

int main()
{

cout << “7 + 3 = “ << 7 + 3 << endl;
cout << “7 - 3 = “ << 7 - 3 << endl;
cout << “7 * 3 = “ << 7 * 3 << endl;

cout << “7 / 3 = “ << 7 / 3 << endl;
cout << “7.0 / 3.0 = “ << 7.0 / 3.0 << endl;

cout << “7 % 3 = “ << 7 % 3 << endl;

cout << “7 + 3 * 5 = “ << 7 + 3 * 5 << endl;
cout << “(7 + 3) * 5 = “ << (7 + 3) * 5 << endl;

return 0;
}

Adding, Subtracting, and Multiplying
I use the built-in arithmetic operators for addition (the plus sign, +), subtraction (the
minus sign, -), and multiplication (an asterisk, *). The results depicted in Figure 1.4 are
just what you’d expect.

Each arithmetic operator is part of an expression—something that evaluates to a single
value. So, for example, the expression 7 + 3 evaluates to 10, and that’s what gets sent to cout.

Understanding Integer and Floating Point Division
The symbol for division is the forward slash (/), so that’s what I use in the next line of
code. However, the output might surprise you. According to C++ (and that expensive
gaming rig), 7 divided by 3 is 2. What’s going on? Well, the result of any arithmetic calcu-
lation involving only integers (numbers without fractional parts) is always another inte-
ger. And since 7 and 3 are both integers, the result must be an integer. The fractional part
of the result is thrown away.

To get a result that includes a fractional part, at least one of the values needs to be a float-
ing point (a number with a fractional part). I demonstrate this in the next line with the
expression 7.0 / 3.0. This time the result is a more accurate 2.33333.

Chapter 1 ■ Types, Variables, and Standard I/O: Lost Fortune12

t r a p

You might notice that while the result of 7.0 / 3.0 (2.33333) includes a fractional part, it is still
truncated. (The true result would stretch out threes after the decimal point forever.) It’s important
to know that computers store only a limited number of significant digits for floating point numbers.
However, C++ offers categories of floating point numbers to meet the most demanding needs—
even those of computationally intensive 3D games.

Using the Modulus Operator
In the next statement, I use an operator you might not be familiar with—the modulus
operator (%). The modulus operator returns the remainder of integer division. In this case,
7 % 3 produces the remainder of 7 / 3, which is 1.

Understanding Order of Operations
Just as in algebra, arithmetic expressions in C++ are evaluated from left to right. But some
operators have a higher precedence than others and are evaluated first, regardless of posi-
tion. Multiplication, division, and modulus have equal precedence, which is higher than
the precedence level that addition and subtraction share.

The next line of code provides an example to help drive this home. Because multiplica-
tion has higher precedence than addition, you calculate the results of the multiplication
first. So the expression 7 + 3 * 5 is equivalent to 7 + 15, which evaluates to 22.

If you want an operation with lower precedence to occur first, you can use parentheses,
which have higher precedence than any arithmetic operator. So in the next statement, the
expression (7 + 3) * 5 is equivalent to 10 * 5, which evaluates to 50.

h i n t

For a list of C++ operators and their precedence levels, see Appendix B, “Operator Precedence,” on
the CD-ROM that came with this book.

Declaring and Initializing Variables
A variable represents a particular piece of your computer’s memory that has been set aside
for you to use to store, retrieve, and manipulate data. So if you wanted to keep track of a
player’s score, you could create a variable for it, and then you could retrieve the score to dis-
play it. You could also update the score when the player blasts an alien enemy from the sky.

Declaring and Initializing Variables 13

Introducing the Game Stats Program
The Game Stats program displays information that you might want to keep track of in a
space shooter game, such as a player’s score, the number of enemies the player has
destroyed, and whether the player has his shields up. The program uses a group of vari-
ables to accomplish all of this. Figure 1.5 illustrates the program.

The code for the program is in the Chapter 1 folder on the CD-ROM that came with this
book; the file name is game_stats.cpp.

// Game Stats
// Demonstrates declaring and initializing variables

#include <iostream>
using namespace std;

int main()
{

int score;
double distance;
char playAgain;
bool shieldsUp;

short lives, aliensKilled;

score = 0;
distance = 1200.76;
playAgain = ‘y’;
shieldsUp = true;
lives = 3;

Chapter 1 ■ Types, Variables, and Standard I/O: Lost Fortune14

Figure 1.5
Each game stat is stored in a variable.

aliensKilled = 10;

double engineTemp = 6572.89;

cout << “\nscore: “ << score << endl;
cout << “distance: “ << distance << endl;
cout << “playAgain: “ << playAgain << endl;
//skipping shieldsUp since you don’t generally print Boolean values
cout << “lives: “ << lives << endl;
cout << “aliensKilled: “<< aliensKilled << endl;
cout << “engineTemp: “ << engineTemp << endl;

int fuel;
cout << “\nHow much fuel? “;
cin >> fuel;
cout << “fuel: “ << fuel << endl;

typedef unsigned short int ushort;
ushort bonus = 10;
cout << “\nbonus: “ << bonus << endl;

return 0;
}

Understanding Fundamental Types
Every variable you create has a type, which represents the kind of information you can
store in the variable. It tells your compiler how much memory to set aside for the variable
and it defines exactly what you can legally do with the variable.

Fundamental types include bool for Boolean values (true or false), char for single charac-
ter values, int for integers, float for single-precision floating point numbers, and double
for double-precision floating point numbers.

Understanding Type Modifiers
You can use modifiers to alter a type. short is a modifier that can reduce the total number
of values a variable can hold. long is a modifier that can increase the total number of val-
ues a variable can hold. short may decrease the storage space required for a variable while
long may increase it. short and long can modify int. long can also modify double.

signed and unsigned are modifiers that work only with integer types. signed means that a
variable can store both positive and negative values, while unsigned means that a variable
can store only positive values. Neither signed nor unsigned changes the total number of val-
ues a variable can hold; they only change the range of values. signed is the default for inte-
ger types.

Declaring and Initializing Variables 15

Okay, confused with all of your type options? Well, don’t be. Table 1.1 summarizes com-
monly used types with some modifiers thrown in. The table also provides a range of val-
ues for each.

t r a p

The range of values listed in Table 1.1 is based on my compiler. Yours might be different. Check your
compiler’s documentation.

h i n t

For brevity’s sake, short int can be written as just short and long int can be written as just long.

Declaring Variables
All right, now that you’ve got a basic understanding of types, it’s time to get back to the
program. One of the first things I do is declare a variable in the line:

int score;

With this code, I declare a variable of type int, which I name score. You use a variable
name to access the variable.

From this line, you can see that to declare a variable you specify its type followed by a name
of your choosing. Because the declaration is a statement, it must end with a semicolon.

Chapter 1 ■ Types, Variables, and Standard I/O: Lost Fortune16

Table 1.1 Commonly Used Types

Type Values

short int –32,768 to 32,767
unsigned short int 0 to 65,535
int –2,147,483,648 to 2,147,483,647
unsigned int 0 to 4,294,967,295
long int –2,147,483,648 to 2,147,483,647
unsigned long int 0 to 4,294,967,295
float 3.4E +/– 38 (seven significant digits)
double 1.7E +/– 308 (15 significant digits)
long double 1.2E +/– 4932 (19 significant digits)
char 256 character values
bool true or false

I declare three more variables of yet three more types in the next three lines. distance is a
variable of type double. playAgain is a variable of type char. And shieldsUp is a variable of
type bool.

Games (and all major applications) require many variables. Fortunately, C++ allows you
to declare multiple variables of the same type in a single statement. That’s just what I do
next in the following line.

short lives, aliensKilled;

This line establishes two short variables—lives and aliensKilled.

Even though I’ve defined a bunch of variables at the top of my main() function, you don’t
have to declare all of your variables in one place. As you’ll see later in the program, I define
a new variable just before I use it.

Naming Variables
To declare a variable, you must provide a name, known as an identifier. There are only a
few rules you have to follow to create a legal identifier.

■ An identifier can contain only numbers, letters, and underscores.

■ An identifier can’t start with a number.

■ An identifier can’t be a C++ keyword.

A keyword is a special word that C++ reserves for its own use. There aren’t many, but to see
a full list, check out Appendix C, “Keywords,” on the CD-ROM that came with this book.

In addition to the rules for creating legal variable names, following are some guidelines for
creating good variable names.

■ Choose descriptive names. Variable names should be clear to another program-
mer. For example, use score instead of s. (One exception to this rule involves vari-
ables used for a brief period. In that case, single-letter variable names, such as x,
are fine.)

■ Be consistent. There are different schools of thought about how to write multi-
word variable names. Is it high_score or highScore? In this book, I use the second
style, where the initial letter of the second word (and any other words) is capital-
ized. But as long as you’re consistent, it’s not important which method you use.

■ Follow the traditions of the language. Some naming conventions are just tradi-
tions. For example, in most languages (C++ included) variable names start with a
lowercase letter. Another tradition is to avoid using an underscore as the first char-
acter of your variable names. Names that begin with an underscore have a special
meaning.

Declaring and Initializing Variables 17

■ Keep the length in check. Even though playerTwoBonusForRoundOne is descriptive, it
can make code hard to read. Plus, long names increase the risk of a typo. As a
guideline, try to limit your variable names to fewer than 15 characters. Ultimately,
though, your compiler sets an actual upper limit.

t r i c k

Self-documenting code is written in such a way that it’s easy to understand what is happening in
the program independent of any comments. Choosing good variable names is an excellent step
toward this kind of code.

Assigning Values to Variables
In the next group of statements, I assign values to the six variables I declared. I’ll go
through a few assignments and talk a little about each variable type.

Assigning Values to Integer Variables

In the following assignment statement I assign the value of 0 to score.

score = 0;

Now score stores 0.

You assign a value to a variable by writing the variable name followed by the assignment
operator (=) followed by an expression. (Yes, technically 0 is an expression, which evalu-
ates to, well, 0.)

Assigning Values to Floating Point Variables

In this statement I assign distance the value 1200.76.

distance = 1200.76;

Because distance is of type double, I can use it to store a number with a fractional part,
which is just what I do.

Assigning Values to Character Variables

In the following statement I assign playAgain the single-character value ‘y’.

playAgain = ‘y’;

As I did here, you can assign a character to a variable of type char by surrounding the char-
acter with single quotes.

Variables of type char can store the 128 ASCII character values (assuming that your sys-
tem uses the ASCII character set, which most do). ASCII, short for American Standard

Chapter 1 ■ Types, Variables, and Standard I/O: Lost Fortune18

Code for Information Interchange, is a code for representing characters. To see a complete
ASCII listing, check out Appendix D, “ASCII Chart,” on the CD-ROM that came with
this book.

Assigning Values to Boolean Variables

In the following statement I assign shieldsUp the value true.

shieldsUp = true;

In my program, this means that the player’s shields are up.

shieldsUp is a bool variable, which means it’s a Boolean variable. As such, it can represent either
true or false.Although this is intriguing, you’ll have to wait until Chapter 2,“Truth, Branching,
and the Game Loop: Guess My Number,” to learn more about this kind of variable.

Initializing Variables
You can both declare and assign a value to variables in a single initialization statement.
That’s exactly what I do next.

double engineTemp = 6572.89;

This line creates a variable of type double named engineTemp, which stores the value 6572.89.

Just as you can declare multiple variables in one statement, you can initialize more than
one variable in a statement. You can even declare and initialize different variables in a sin-
gle statement. Mix and match as you choose!

h i n t

Although you can declare a variable without assigning it a value, it’s best to initialize a new vari-
able with a starting value whenever you can. This makes your code clearer, plus it eliminates the
chance of accessing an uninitialized variable, which may contain any value.

Displaying Variable Values
To display the value of a variable of one of the fundamental types, just send it to cout.
That’s what I do next in the program. Note that I don’t try to display shieldsUp because
you don’t normally display bool values.

t r i c k

In the first statement of this section I use what’s called an escape sequence—a pair of characters
that begins with a backslash (\), which represents special printable characters.

Declaring and Initializing Variables 19

cout << “\nscore: “ << score << endl;

The escape sequence I used is \n, which represents a newline. When sent to cout as part of a string,
it’s like pressing the Enter key in the console window. Another useful escape sequence is \t, which
acts as a tab.

There are other escape sequences at your disposal. For a list of escape sequences, see Appendix E
on the CD-ROM that came with this book.

Getting User Input
Another way to assign a value to a variable is through user input. So next, I assign the value
of a new variable, fuel, based on what the user enters. To do so I use the following line:

cin >> fuel;

Just like cout, cin is an object defined in iostream which lives in the std namespace. To store
a value in the variable, I use cin followed by >> (the extraction operator), followed by the
variable name. You can follow this usage pattern with cin and the extraction operator to
get user input into variables of other fundamental types, too. To prove that everything
works, I display fuel to the user.

Defining New Names for Types
You can define a new name for an existing type. In fact, that’s what I do next in the line:

typedef unsigned short int ushort;

This code defines the identifier ushort as another name for the type unsigned short int. To
define new names for existing types, use typedef followed by the current type, followed by
the new name. typedef is often used to create shorter names for types with long names.

You can use your new type name just like the original type. I initialize a ushort variable
(which is really just an unsigned short int) named bonus and display its value.

Understanding Which Types to Use
You have many choices when it comes to the fundamental types. So how do you know
which type to use? Well, if you need an integer type, you’re probably best off using int.
That’s because int is generally implemented so that it occupies an amount of memory that
is most efficiently handled by the computer. If you need to represent integer values greater
than the maximum int or values that will never be negative, feel free to use an unsigned int.

If you’re tight on memory, you can use a type that requires less storage. However, on most
computers, memory shouldn’t be much of an issue. (Programming on game consoles is
another story.)

Chapter 1 ■ Types, Variables, and Standard I/O: Lost Fortune20

Finally, if you need a floating point number, you’re probably best off using float, which
again is likely to be implemented so that it occupies an amount of memory that is most
efficiently handled by the computer.

Performing Arithmetic Operations with Variables
Once you have variables with values, you’ll want to change them during the course of your
game. You might want to add a bonus to a player’s score for defeating a boss. Or you might
want to decrease the oxygen level in an airlock. By using operators you’ve already met
(along with some new ones), you can accomplish all of this.

Introducing the Game Stats 2.0 Program
The Game Stats 2.0 program manipulates variables that represent game stats and displays
the results. Figure 1.6 shows the program in action.

The code for the program is in the Chapter 1 folder on the CD-ROM that came with this
book; the file name is game_stats2.cpp.

// Game Stats 2.0
// Demonstrates arithmetic operations with variables

#include <iostream>
using namespace std;

int main()
{

unsigned int score = 5000;
cout << “score: “ << score << endl;

Performing Arithmetic Operations with Variables 21

Figure 1.6
Each variable is altered in a different way.

//altering the value of a variable
score = score + 100;
cout << “score: “ << score << endl;

//combined assignment operator
score += 100;
cout << “score: “ << score << endl;

//increment operators
int lives = 3;
++lives;
cout << “lives: “ << lives << endl;

lives = 3;
lives++;
cout << “lives: “ << lives << endl;

lives = 3;
int bonus = ++lives * 10;
cout << “lives, bonus = “ << lives << “, “ << bonus << endl;

lives = 3;
bonus = lives++ * 10;
cout << “lives, bonus = “ << lives << “, “ << bonus << endl;

//integer wrap around
score = 4294967295;
cout << “\nscore: “ << score << endl;
++score;
cout << “score: “ << score << endl;

return 0;
}

Altering the Value of a Variable
After I create a variable to hold the player’s score and display it, I alter the score by increas-
ing it by 100.

score = score + 100;

This assignment statement says to take the current value of score, add 100, and assign the
result back to score. In effect, the line increases the value of score by 100.

Using Combined Assignment Operators
There’s an even shorter version of the preceding line, which I use next.

score += 100;

Chapter 1 ■ Types, Variables, and Standard I/O: Lost Fortune22

This statement produces the same results as score = score + 100;. The += operator is called
a combined assignment operator because it combines an arithmetic operation (addition, in
this case) with assignment. This operator is shorthand for saying “add whatever’s on the
right to what’s on the left and assign the result back to what’s on the left.”

There are versions of the combined assignment operator for all of the arithmetic opera-
tors you’ve met. To see a list, check out Table 1.2.

Using Increment and Decrement Operators
Next I use the increment operator (++), which increases the value of a variable by one. I use
the operator to increase the value of lives twice. First I use it in the following line:

++lives;

Then I use it again in the following line:

lives++;

Each line has the same net effect; it increments lives from 3 to 4.

As you can see, you can place the operator before or after the variable you’re increment-
ing. When you place the operator before the variable, the operator is called the prefix
increment operator ; when you place it after the variable, it’s called the postfix increment
operator.

At this point, you might be thinking that there’s no difference between the postfix and
prefix versions, but you’d be wrong. In a situation where you only increment a single vari-
able (as you just saw), both operators produce the same final result. But in a more com-
plex expression, the results can be different.

To demonstrate this important difference, I perform a calculation that would be appro-
priate for the end of a game level. I calculate a bonus based on the number of lives a
player has, and I also increment the number of lives. However, I perform this calculation
in two different ways. The first time, I use the prefix increment operator.

int bonus = ++lives * 10;

Performing Arithmetic Operations with Variables 23

Table 1.2 Combined Assignment Operators

Operator Example Equivalent To

+= x += 5; x = x + 5;
-= x -= 5; x = x - 5;
*= x *= 5; x = x * 5;
/= x /= 5; x = x / 5;
%= x %= 5; x = x % 5;

The prefix increment operator increments a variable before the evaluation of a larger
expression involving the variable. ++lives * 10 is evaluated by first incrementing lives, and
then multiplying that result by 10. Therefore, the code is equivalent to 4 * 10, which is 40,
of course. This means that now lives is 4 and bonus is 40.

After setting lives back to 3, I calculate bonus again, this time using the postfix increment
operator.

bonus = lives++ * 10;

The postfix increment operator increments a variable after the evaluation of a larger
expression involving the variable. lives++ * 10 is evaluated by multiplying the current
value of lives by 10. Therefore, the code is equivalent to 3 * 10, which is 30, of course.
Then, after this calculation, lives is incremented. After the line is executed, lives is 4 and
bonus is 30.

C++ also defines the decrement operator (—). It works just like the increment operator,
except it decrements a variable. It comes in the two flavors (prefix and postfix) as well.

Dealing with Integer Wrap Around
What happens when you increase an integer variable beyond its maximum value? It turns
out you don’t generate an error. Instead, the value “wraps around” to the type’s minimum
value. Next up, I demonstrate this phenomenon. First I assign score the largest value it can
hold.

score = 4294967295;

Then I increment the variable.

++score;

As a result, score becomes 0 because the value wrapped around, much like a car odometer
does when it goes beyond its maximum value (see Figure 1.7).

Decrementing an integer variable beyond its minimum value “wraps it around” to its
maximum.

Chapter 1 ■ Types, Variables, and Standard I/O: Lost Fortune24

Figure 1.7
A way to visualize an unsigned int variable “wrapping around” from its maxi-
mum value to its minimum

h i n t

Make sure to pick an integer type that has a large enough range for its intended use.

Working with Constants
A constant is an unchangeable value that you name. Constants are useful if you have an
unchanging value that comes up frequently in your program. For example, if you were
writing a space shooter in which each alien blasted out of the sky is worth 150 points, you
could define a constant named ALIEN_POINTS that is equal to 150. Then, any time you need
the value of an alien, you could use ALIEN_POINTS instead of the literal 150.

Constants provide two important benefits. First, they make programs clearer. As soon as
you see ALIEN_POINTS, you know what it means. If you were to look at some code and see
150, you might not know what the value represents. Second, constants make changes easy.
For example, suppose you do some playtesting with your game and you decide that each
alien should really be worth 250 points. With constants, all you’d have to do is change the
initialization of ALIEN_POINTS in your program. Without constants, you’d have to hunt
down every occurrence of 150 and change it to 250.

Introducing the Game Stats 3.0 Program
The Game Stats 3.0 program uses constants to represent values. First the program calcu-
lates a player’s score, and then it calculates the upgrade cost of a unit in a strategy game.
Figure 1.8 shows the results.

Working with Constants 25

Figure 1.8
Each calculation involves a constant, making the code behind the scenes clearer.

The code for the program is in the Chapter 1 folder on the CD-ROM that came with this
book; the file name is game_stats3.cpp.

// Game Stats 3.0
// Demonstrates constants

#include <iostream>
using namespace std;

int main()
{

const int ALIEN_POINTS = 150;
int aliensKilled = 10;
int score = aliensKilled * ALIEN_POINTS;
cout << “score: “ << score << endl;

enum difficulty {NOVICE, EASY, NORMAL, HARD, UNBEATABLE};
difficulty myDifficulty = EASY;

enum ship {FIGHTER = 25, BOMBER, CRUISER = 50, DESTROYER = 100};
ship myShip = BOMBER;
cout << “\nTo upgrade my ship to a Cruiser will cost “

<< (CRUISER - myShip) << “ Resource Points.\n”;
return 0;

}

Using Constants
I define a constant, ALIEN_POINTS, to represent the point value of an alien.

const int ALIEN_POINTS = 150;

I simply use the keyword const to modify the definition. Now I can use ALIEN_POINTS just
like any integer literal. Also, notice that the name I chose for the constant is in all capital
letters. This is just a convention, but it’s a common one. An identifier in all caps tells a pro-
grammer that it represents a constant value.

Next I put the constant to use in the following line:

int score = aliensKilled * ALIEN_POINTS;

I calculate a player’s score by multiplying the number of aliens killed by the point value of
an alien. Using a constant here makes the line of code quite clear.

t r a p

You can’t assign a new value to a constant. If you try, you’ll generate a compile error.

Chapter 1 ■ Types, Variables, and Standard I/O: Lost Fortune26

Using Enumerations
An enumeration is a set of unsigned int constants, called enumerators. Usually the enu-
merators are related and have a particular order. Here’s an example of an enumeration:

enum difficulty {NOVICE, EASY, NORMAL, HARD, UNBEATABLE};

This defines an enumeration named difficulty. By default, the value of enumerators
begins at zero and increases by one. So NOVICE is 0, EASY is 1, NORMAL is 2, HARD is 3, and
UNBEATABLE is 4. To define an enumeration of your own, use the keyword enum followed by
an identifier, followed by a list of enumerators between curly braces.

Next I create a variable of this new enumeration type.

difficulty myDifficulty = EASY;

The variable myDifficulty is set to EASY (which is equal to 1). myDifficulty is of type
difficulty, so it can only hold one of the values defined in the enumeration. That means
myDifficulty can only be assigned NOVICE, EASY, NORMAL, HARD, UNBEATABLE, 0, 1, 2, 3, or 4.

Next I define another enumeration.

enum ship {FIGHTER = 25, BOMBER, CRUISER = 50, DESTROYER = 100};

This line of code defines the enumeration ship, which represents four kinds of ships in a
strategy game. In it, I assign specific integer values to some of the enumerators. The num-
bers represent the Resource Point value of each ship. You can assign values to the enu-
merators if you want. Any enumerators that are not assigned values get the value of the
previous enumerator plus one. Because I didn’t assign a value to BOMBER, it’s initialized to
26.

Next I define a variable of this new enumeration type.

ship myShip = BOMBER;

Then I demonstrate how you can use enumerators in arithmetic calculations.

(CRUISER - myShip)

This piece of code calculates the cost of upgrading a BOMBER to a CRUISER. The calculation is
the same as 50 - 26, which evaluates to 24.

Introducing Lost Fortune
The final project for this chapter, Lost Fortune, is a personalized adventure game in which
the player enters a few pieces of information (including his last name), which the com-
puter uses to enhance a basic adventure story. Figure 1.9 shows a sample run.

Introducing Lost Fortune 27

Instead of presenting all the code at once, I’ll go through it one section at a time. The code
for the program is in the Chapter 1 folder on the CD-ROM that came with this book; the
file name is lost_fortune.cpp.

Setting Up the Program
First I create some initial comments, include two necessary files, and write a few using
directives.

// Lost Fortune
// A personalized adventure

#include <iostream>
#include <string>

using std::cout;
using std::cin;
using std::endl;
using std::string;

I include the file string, part of the standard library, so I can use a string object to access
a string through a variable. There’s a lot more to string objects, but I’m going to keep you
in suspense. You’ll learn more about them in Chapter 3, “For Loops, Strings, and Arrays:
Word Jumble.”

Also, I employ using directives to spell out the objects in the std namespace that I plan to
access. As a result, you can clearly see that string is in namespace std.

Chapter 1 ■ Types, Variables, and Standard I/O: Lost Fortune28

Figure 1.9
The story incorporates details provided by the player.

Getting Information from the Player
Next I get some information from the player.

int main()
{

const int GOLD_PIECES = 900;
int adventurers, killed, survivors;
string leader;

//get the information
cout << “Welcome to Lost Fortune\n\n”;
cout << “Please enter the following for your personalized adventure\n”;

cout << “Enter a number: “;
cin >> adventurers;

cout << “Enter a number, smaller than the first: “;
cin >> killed;

survivors = adventurers - killed;

cout << “Enter your last name: “;
cin >> leader;

GOLD_PIECES is a constant that stores the number of gold pieces in the fortune the adven-
turers seek. adventurers stores the number of adventurers on the quest. killed stores the
number that are killed in the journey. I calculate survivors for the number of adventurers
that remain. Finally, I get the player’s last name, which I’ll be able to access through leader.

t r a p

This simple use of cin to get a string from the user only works with strings that have no whitespace
in them (such as tabs or spaces). There are ways to compensate for this, but that really requires a
discussion of something called streams, which is beyond the scope of this chapter. So, use cin in
this way, but be aware of its limitations.

Telling the Story
Next I use the variables to tell the story.

//tell the story
cout << “\nA brave group of “ << adventurers << “ set out on a quest “;
cout << “— in search of the lost treasure of the Ancient Dwarves. “;
cout << “The group was led by that legendary rogue, “ << leader << “.\n”;

cout << “\nAlong the way, a band of marauding ogres ambushed the party. “;
cout << “All fought bravely under the command of “ << leader;
cout << “, and the ogres were defeated, but at a cost. “;

Introducing Lost Fortune 29

cout << “Of the adventurers, “ << killed << “ were vanquished, “;
cout << “leaving just “ << survivors << “ in the group.\n”;

cout << “\nThe party was about to give up all hope. “;
cout << “But while laying the deceased to rest, “;
cout << “they stumbled upon the buried fortune. “;
cout << “So the adventurers split “ << GOLD_PIECES << “ gold pieces.”;
cout << leader << “ held on to the extra “ << (GOLD_PIECES % survivors);
cout << “ pieces to keep things fair of course.\n”;

return 0;
}

The code and thrilling narrative are pretty clear. I will point out one thing, though. To cal-
culate the number of gold pieces that the leader keeps, I use the modulus operator in the
expression GOLD_PIECES % survivors. The expression evaluates to the remainder of
GOLD_PIECES / survivors, which is the number of gold pieces that would be left after
evenly dividing the stash among all of the surviving adventurers.

Summary
In this chapter, you should have learned the following concepts:

■ C++ is a fast, high-level language that is the game industry standard.

■ A program is a series of C++ statements.

■ The basic lifecycle of a C++ program is idea, plan, source code, object file, exe-
cutable.

■ Programming errors tend to fall into three categories—compile errors, link errors,
and run-time errors.

■ The #include directive tells the preprocessor to include another file in the current
one.

■ The standard library is a set of files that you can include in your program files to
handle basic functions.

■ A function is a group of programming code that can do some work and return a
value.

■ Every program must contain a main() function, which is the starting point of the
program.

■ iostream, which is part of the standard library, is a file that contains code to help
with standard input and output.

■ The std namespace includes facilities from the standard library. To access an ele-
ment from the namespace, you need to prefix the element with std:: or employ
using.

Chapter 1 ■ Types, Variables, and Standard I/O: Lost Fortune30

■ cout is an object, defined in the file iostream, that’s used to send data to the stan-
dard output stream (generally the computer screen).

■ cin is an object, defined in the file iostream, that’s used to get data from the stan-
dard input stream (generally the keyboard).

■ C++ has built-in arithmetic operators, such as the familiar addition, subtraction,
multiplication, and division—and even the unfamiliar modulus.

■ C++ defines fundamental types for Boolean, single-character, integer, and floating
point values.

■ The C++ standard library provides a type of object (string) for strings.

■ You can use typedef to create a new name for an existing type.

■ A constant is a name for an unchangeable value.

■ An enumeration is a sequence of unsigned int constants.

Questions and Answers
Q: Why do game companies use C++?

A: C++ combines speed, low-level hardware access, and high-level constructs better
than just about any other language. In addition, most game companies have a lot
invested in C++ resources (both in reusable code and programmer experience).

Q: How is C++ different than C?

A: C++ is the next iteration of the C programming language. To gain acceptance,
C++ essentially retained all of C. However, C++ defines new ways to do things
that can replace some of the traditional C mechanisms. In addition, C++ adds the
ability to write object-oriented programs.

Q: How should I use comments?

A: To explain code that is unusual or unclear. You should not comment the obvious.

Q: What’s a programming block?

A: One or more statements surrounded by curly braces that form a single unit.

Q: What’s a compiler warning?

A: A message from your compiler stating a potential problem. A warning will not
stop the compilation process.

Q: Can I ignore compiler warnings?

A: You can, but you shouldn’t. You should address the warning and fix the
offending code.

Q: What is whitespace?

A: A set of non-printing characters that creates space in your source files, including
tabs, spaces, and newlines.

Questions and Answers 31

Q: Why does the main() function of a program return an int?

A: Because that’s what the ISO standard says it should do. Actually, you can return a
value other than 0 to indicate an abnormal program exit, but this is rarely done in
practice.

Q: What are literals?

A: Elements that represent explicit values. “Game Over!” is a string literal, while 32 and
98.6 are numeric literals.

Q: Why should I always try to initialize a new variable with a value?

A: Because the contents of an uninitialized variable could be any value—even one
that is legal but doesn’t make sense for your program.

Q: Why do programmers sometimes use variable names such as myInt or myFloat?

A: To clearly spell out a variable’s type. This convention is used frequently in pro-
gramming instruction.

Q: What are variables of type bool for?

A: They can represent a condition that is true or false, such as whether a chest is
locked or a playing card is face up.

Q: How did the bool type get its name?

A: The type is named in honor of the English mathematician George Boole.

Q: Must the names of constants be in uppercase letters?

A: No. Using uppercase is just an accepted practice—but one you should use because
it’s what other programmers expect.

Q: How can I store more than one character with a single variable?

A: Using a string object.

Discussion Questions
1. How does having a widely adopted C++ standard help game programmers?

2. What are the advantages and disadvantages of employing the using directive?

3. Why might you define a new name for an existing type?

4. Why are there two versions of the increment operator? What’s the difference
between them?

5. How can you use constants to improve your code?

Chapter 1 ■ Types, Variables, and Standard I/O: Lost Fortune32

Exercises
1. Create a list of six legal variable names—three good and three bad choices. Explain

why each name falls into the good or bad category.

2. What’s displayed by each line in the following code snippet? Explain each result.
cout << “Seven divided by three is “ << cout 7 / 3 << endl;
cout << “Seven divided by three is “ << cout 7.0 / 3 << endl;
cout << “Seven divided by three is “ << cout 7.0 / 3.0 << endl;

3. Write a program that gets three game scores from the user and displays the
average.

Exercises 33

This page intentionally left blank

35

Truth, Branching, and the
Game Loop: Guess My
Number

Chapter 2

S
o far, the programs you’ve seen have been linear—each statement executes in order,
from top to bottom. However, to create interesting games, you need to write pro-
grams that execute (or skip) sections of code based on some condition. That’s the

main topic of this chapter. Specifically, you’ll learn to:

■ Understand truth (as C++ defines it)

■ Use if statements to branch to sections of code

■ Use switch statements to select a section of code to execute

■ Use while and do loops to repeat sections of code

■ Generate random numbers

Understanding Truth
Truth is black and white, at least as far as C++ is concerned. You can represent true and
false with their corresponding keywords, true and false. You can store such a Boolean
value with a bool variable, as you saw in Chapter 1. Here’s a quick refresher:

bool fact = true, fiction = false;

This code creates two bool variables, fact and fiction. fact is true and fiction is false.
Although the keywords true and false are handy, any expression or value can be inter-
preted as true or false, too. Any non-zero value can be interpreted as true, while 0 can be
interpreted as false.

A common kind of expression interpreted as true or false involves comparing things.
Comparisons are often made by using built-in relational operators. Table 2.1 lists the
operators and a few sample expressions.

Using the if Statement
Okay, it’s time to put the concepts of true and false to work. You can use an if statement
to test an expression for truth and execute some code based on it. Here’s a simple form of
the if statement:

if (expression)
statement;

If expression is true, then statement is executed. Otherwise, statement is skipped and the
program branches to the statement after the if suite.

h i n t

Whenever you see a generic statement like in the preceding code example, you can replace it with
a single statement or a block of statements because a block is treated as a single unit.

Introducing the Score Rater Program
The Score Rater program comments on a player’s score using an if statement. Figure 2.1
shows the program in action.

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number36

Table 2.1 Relational Operators

Operator Meaning Sample Expression Evaluates To

== equal to 5 == 5 true
5 == 8 false

!= not equal to 5 != 8 true
5 != 5 false

> greater than 8 > 5 true
5 > 8 false

< less than 5 < 8 true
8 < 5 false

>= greater than or equal to 8 >= 5 true
5 >= 8 false

<= less than or equal to 5 <= 8 true
8 <= 5 false

The code for the program is in the Chapter 2 folder on the CD-ROM that came with this
book; the file name is score_rater.cpp.

// Score Rater
// Demonstrates the if statement

#include <iostream>

using namespace std;

int main()
{

if (true)
cout << “This is always displayed.\n\n”;

if (false)
cout << “This is never displayed.\n\n”;

int score = 1000;

if (score)
cout << “Okay, at least you didn’t score zero.\n\n”;

if (score > 500)
cout << “You scored over 500. Nice.\n\n”;

if (score == 1000)
{

cout << “You scored a perfect 1000!\n”;
cout << “Now that’s impressive.\n”;

}

Using the if Statement 37

Figure 2.1
Messages are displayed (or not displayed) based on different if statements.

if (score > 500)
{

cout << “You scored at least 500.\n”;
if (score >= 1000)

cout << “You scored 1000 or more!\n”;
}

return 0;
}

Testing true and false
In the first if statement I test true. Because true is, well, true, the program displays the
message, This is always displayed.

if (true)
cout << “This is always displayed.\n\n”;

In the next if statement I test false. Because false isn’t true, the program doesn’t display
the message, This is never displayed.

if (false)
cout << “This is never displayed.\n\n”;

t r a p

Notice that you don’t use a semicolon after the closing parenthesis of the expression you test in an
if statement. If you were to do this, you’d create an empty statement that would be paired with
the if statement, essentially rendering the if statement useless. Here’s an example:

if (false);
cout << “This is never displayed.\n\n”;

By adding the semicolon after (false), I create an empty statement that’s associated with the if
statement. The preceding code is equivalent to:

if (false)
; // an empty statement, which does nothing

cout << “This is never displayed.\n\n”;

All I’ve done is play with the whitespace, which doesn’t change the meaning of the code. Now the
problem should be clear. The if statement sees the false value and skips the next statement (the
empty statement). Then the program goes on its merry way to the statement after the if statement,
which displays the message, This is never displayed.

Be on guard for this error. It’s an easy one to make and because it’s not illegal, it won’t produce a
compile error.

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number38

Interpreting a Value as true or false
You can interpret any value as true or false. Any non-zero value can be interpreted as true,
while 0 can be interpreted as false. I put this to the test in the next if statement:

if (score)
cout << “Okay, at least you didn’t score zero.\n\n”;

score is 1000, so it’s non-zero and interpreted as true. As a result, the message, Okay, at
least you didn’t score zero, is displayed.

Using Relational Operators
Probably the most common expression you’ll use with if statements involves comparing
values using the relational operators. That’s just what I’ll demonstrate next. First, I test to
see whether the score is more than 500.

if (score > 500)
cout << “You scored over 500. Nice.\n\n”;

Because score is greater than 500, the program displays the message, You scored over 500.
Nice.

Next, I test to see whether the score is equal to 1000.

if (score == 1000)
{

cout << “You scored a perfect 1000!\n”;
cout << “Now that’s impressive.\n”;

}

Because score is 1000, the block of statements is executed and both strings are displayed. If
score hadn’t been 1000, neither string would have been displayed, and the program would
have continued with the statement following the block.

t r a p

The equal to relational operator is == (two equal signs in a row). Don’t confuse it with = (one equal
sign), which is the assignment operator.

While it’s not illegal to use the assignment operator instead of the equal to relational operator, the
results might not be what you expect. Take a look at this code:

int score = 500;
if (score = 1000)

cout << “You scored a perfect 1000!\n”;

Using the if Statement 39

As a result of this code, score is set to 1000 and the message, You scored a perfect 1000! is dis-
played. Here’s what happens: Although score is 500 before the if statement, that changes. When
the expression of the if statement, (score = 1000), is evaluated, score is assigned 1000. The
assignment statement evaluates to 1000, and because that’s a non-zero value, the expression is
interpreted as true. As a result, the string is displayed.

Be on guard for this type of mistake. It’s easy to make and in some cases (like this one), it won’t
cause a compile error.

Nesting if Statements
An if statement can cause a program to execute a statement or block of statements,
including other if statements. When you write one if statement inside another, it’s called
nesting. In the following code, the if statement that begins if (score >= 1000) is nested
inside the if statement that begins if (score > 500).

if (score > 500)
{

cout << “You scored at least 500.\n”;
if (score >= 1000)

cout << “You scored 1000 or more!\n”;
}

Because score is greater than 500, the program enters the statement block and displays the
message, You scored at least 500. Then, in the inner if statement, the program compares
score to1000. Because score is greater than or equal to 1000, the program displays the
message, You scored 1000 or more! Then the program continues to the statement after
the block.

h i n t

You can nest as many levels as you want. However, if you nest code too deeply, it gets hard to read.
In general, you should try to limit your nesting to a few levels at most.

Using the else Clause
You can add an else clause to an if statement to provide code that will only be executed
if the tested expression is false. Here’s the form of an if statement that includes an else
clause:

if (expression)
statement1;

else
statement2;

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number40

If expression is true, statement1 is executed. Then the program skips statement2 and exe-
cutes the statement following the if suite. If expression is false, statement1 is skipped
and statement2 is executed. After statement2 completes, the program executes the state-
ment following the if suite.

Introducing the Score Rater 2.0 Program
The Score Rater 2.0 program also rates a score, which the user enters. But this time, the
program uses an if statement with an else clause. Figures 2.2 and 2.3 show the two dif-
ferent messages that the program can display based on the score the user enters.

Using the else Clause 41

Figure 2.2
If the user enters a score that’s more than 500, he is congratulated.

Figure 2.3
If the user enters a score that’s 500 or less, he is told he does not have bragging rights.

The code for the program is in the Chapter 2 folder on the CD-ROM that came with this
book; the file name is score_rater2.cpp.

// Score Rater 2.0
// Demonstrates the else clause

#include <iostream>

using namespace std;

int main()
{

int score;
cout << “Enter your score: “;
cin >> score;

if (score > 500)
cout << “\nYou got over 500. Nice score.\n”;

else
cout << “\nYou got 500 or less. Nothing to brag about.\n”;

return 0;
}

Creating Two Ways to Branch
You’ve seen the first part of the if statement already, and it works just as it did before. If
score is greater than 500, the message, You got over 500. Nice score, is displayed.

if (score > 500)
cout << “\nYou got over 500. Nice score.\n”;

Here’s the twist. The else clause provides a statement for the program to branch to if the
condition is false. So if (score > 500) is false, then the program skips the first message and
instead displays the message, You got 500 or less. Nothing to brag about.

else
cout << “\nYou got 500 or less. Nothing to brag about.\n”;

Pairing an else Clause with the Correct if Statement
Watch out, because an else clause associates with its nearest preceding if. This can lead to
logical errors and unintended results if you’re not careful. Here’s a bit of new code (not
part of the Score Rater program) to show you what I mean:

if (false)
if (true)

cout << “This will never be displayed.”;
else

cout << “This will always be displayed.”;

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number42

At first glance, you might think that the message, This will always be displayed, will, always
be displayed. But in fact the code displays nothing because the else clause is not associat-
ed with if (false); it is associated with if (true). By adding a little whitespace, you can
see how the code really works.

if (false)
if (true)

cout << “This will never be displayed.”;
else

cout << “This will always be displayed.”;

I haven’t changed the meaning of the code (remember, whitespace is just a convenience
for us humans), but I’ve made the meaning clearer. Because the outer if statement never
executes its body, no message is ever displayed.

However, I can solve the problem with a pair of curly braces.

if (false)
{

if (true)
cout << “This will never be displayed.”;

}
else

cout << “This will always be displayed.”;

As a result, the inner if statement is set off in its own little world (called a scope) inside
the block, and the else clause associates with if (false). Now the code will always display
the message, This will always be displayed.

h i n t

The concept of scopes is important, but I’ll hold off on all of the juicy details until Chapter 5, “Func-
tions: Mad Lib.” Right now, just think of scopes as little self-contained worlds.

Using the switch Statement
You can use a switch statement to create multiple branching points in your code. Here’s a
generic form of the switch statement:

switch (choice)
{
case value1: statement1;

break;
case value2: statement2;

break;

Using the switch Statement 43

case value3: statement3;
break;

.

.

.
case valueN: statementN;

break;
default: statementN + 1;
}

The statement tests choice against the possible values—value1, value2, and value3—in
order. If choice is equal to a value, then the program executes the corresponding state-
ment. When the program hits a break statement, it exits the switch structure. If choice
doesn’t match any value, then the statement associated with default is executed.

The use of break and default is optional. If you leave out a break, however, the program will
continue through the remaining statements until it hits a break or a default or until the
switch statement ends. Usually you want one break statement to end each case. And
although a default case isn’t required, it’s usually a good idea to have one as a catchall.

Here’s an example to cement the ideas. Suppose choice is equal to value2. The program
will first test choice against value1. Because they’re not equal, the program will continue.
Next, the program will test choice against value2. Because they are equal, the program
will execute statement2. Then the program will hit the break statement and exit the switch
structure.

t r a p

You can use the switch statement only to test an int (or a value that can be treated as an int,
such as a char or an enumerator). A switch statement won’t work with any other type.

Introducing the Menu Chooser Program
The Menu Chooser program presents the user with a menu that lists three difficulty lev-
els and asks him to make a choice. If the user enters a number that corresponds to a list-
ed choice, then he is shown a message confirming the choice. If the user makes some other
choice, he is told that the choice is invalid. Figure 2.4 shows the program in action.

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number44

The code for the program is in the Chapter 2 folder on the CD-ROM that came with this
book; the file name is menu_chooser.cpp.

// Menu Chooser
// Demonstrates the switch statement

#include <iostream>

using namespace std;

int main()
{

cout << “Difficulty Levels\n\n”;
cout << “1 - Easy\n”;
cout << “2 - Normal\n”;
cout << “3 - Hard\n\n”;

int choice;
cout << “Choice: “;
cin >> choice;

switch (choice)
{
case 1:

cout << “You picked Easy.\n”;
break;

case 2:
cout << “You picked Normal.\n”;
break;

case 3:

Using the switch Statement 45

Figure 2.4
Looks like I took the easy way out.

cout << “You picked Hard.\n”;
break;

default:
cout << “You made an illegal choice.\n”;

}

return 0;
}

Creating Multiple Ways to Branch
The switch statement creates four possible branching points. If the user enters 1, then code
associated with case 1 is executed and You picked Easy is displayed. If the user enters 2, then
code associated with case 2 is executed and You picked Normal is displayed. If the user enters
3, then code associated with case 3 is executed and You picked Hard is displayed. If the user
enters any other value, then default kicks in and You made an illegal choice is displayed.

t r a p

You’ll almost always want to end each case with a break statement. Don’t forget them; otherwise,
your code might do things you never intended.

Using while Loops
while loops let you repeat sections of code as long as an expression is true. Here’s a
generic form of the while loop:

while (expression)
statement;

If expression is false, the program moves on to the statement after the loop. If expres-
sion is true, the program executes statement and loops back to test expression again. This
cycle repeats until expression tests false, at which point the loop ends.

Introducing the Play Again Program
The Play Again program simulates the play of an exciting game. (Okay, by “simulates the
play of an exciting game,” I mean the program displays the message **Played an exciting
game**.) Then the program asks the user if he wants to play again. The user continues to
play as long as he enters y. The program accomplishes this repetition using a while loop.
Figure 2.5 shows the program in action.

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number46

The code for the program is in the Chapter 2 folder on the CD-ROM that came with this
book; the file name is play_again.cpp.

// Play Again
// Demonstrates while loops

#include <iostream>
using namespace std;

int main()
{

char again = ‘y’;
while (again == ‘y’)
{

cout << “\n**Played an exciting game**”;
cout << “\nDo you want to play again? (y/n): “;
cin >> again;

}

cout << “\nOkay, bye.”;

return 0;
}

Looping with a while Loop
The first thing the program does in the main() function is declare the char variable named
again and initialize it to ‘y’. Then the program begins the while loop by testing again to see
whether it’s equal to ‘y’. Because it is, the program displays the message **Played an excit-
ing game**, asks the user whether he wants to play again, and stores the reply in again. The
loop continues as long as the user enters y.

Using while Loops 47

Figure 2.5
The repetition is accomplished using a while loop.

You’ll notice that I had to initialize again before the loop because the variable is used in the
loop expression. Because a while loop evaluates its expressions before its loop body (the
group of statements that repeat), you have to make sure that any variables in the expres-
sion have a value before the loop begins.

Using do Loops
Like while loops, do loops let you repeat a section of code based on an expression. The dif-
ference is that a do loop tests its expression after each loop iteration. This means that the
loop body is always executed at least once. Here’s a generic form of a do loop:

do
statement;

while (expression);

The program executes statement and then, as long as expression tests true, the loop
repeats. Once expression tests false, the loop ends.

Introducing the Play Again 2.0 Program
The Play Again 2.0 program looks exactly the same to the user as the original Play Again
program. Play Again 2.0, like its predecessor, simulates the play of an exciting game by dis-
playing the message **Played an exciting game** and asking the user whether he wants to
play again. The user continues to play as long as he enters y. This time, though, the pro-
gram accomplishes the repetition using a do loop. Figure 2.6 shows off the program.

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number48

Figure 2.6
Each repetition is accomplished using a do loop.

The code for the program is in the Chapter 2 folder on the CD-ROM that came with this
book; the file name is play_again2.cpp.

// Play Again 2.0
// Demonstrates do loops

#include <iostream>

using namespace std;

int main()
{

char again;
do
{

cout << “\n**Played an exciting game**”;
cout << “\nDo you want to play again? (y/n): “;
cin >> again;

} while (again == ‘y’);

cout << “\nOkay, bye.”;

return 0;
}

Looping with a do Loop
Before the do loop begins, I declare the character again. However, I don’t need to initialize
it because it’s not tested until after the first iteration of the loop. I get a new value for again
from the user in the loop body. Then I test again in the loop expression. If again is equal
to ‘y’, the loop repeats; otherwise, the loop ends.

i n t h e r e a l w o r l d

Even though you can use while and do loops pretty interchangeably, most programmers use the
while loop. Although a do loop might seem more natural in some cases, the advantage of a while
loop is that its expression appears right at the top of the loop; you don’t have to go hunting to the
bottom of the loop to find it.

t r a p

If you’ve ever had a game get stuck in the same endless cycle, you might have experienced an infi-
nite loop—a loop without end. Here’s a simple example of an infinite loop:

int test = 10;
while (test == 10)

cout << test;

Using do Loops 49

In this case, the loop is entered because test is 10. But because test never changes, the loop will
never stop. As a result, the user will have to kill the running program to end it. The moral of this
story? Make sure that the expression of a loop can eventually become false.

Using break and continue Statements
It’s possible to alter the behavior you’ve seen in loops. You can immediately exit a loop with
the break statement, and you can jump directly to the top of a loop with a continue state-
ment. Although you should use these powers sparingly, they do come in handy sometimes.

Introducing the Finicky Counter Program
The Finicky Counter program counts from 1 to 10 through a while loop. It’s finicky
because it doesn’t like the number 5—it skips it. Figure 2.7 shows a run of the program.

The code for the program is in the Chapter 2 folder on the CD-ROM that came with this
book; the file name is finicky_counter.cpp.

// Finicky Counter
// Demonstrates break and continue statements

#include <iostream>

using namespace std;

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number50

Figure 2.7
The number 5 is skipped with a continue statement, and the loop ends with a
break statement.

int main()
{

int count = 0;
while (true)
{

count += 1;

//end loop if count is greater than 10
if (count > 10)

break;

//skip the number 5
if (count == 5)

continue;

cout << count << endl;
}

return 0;
}

Creating a while (true) Loop
I set up the loop with the following line:

while (true)

Technically, this creates an infinite loop. This might seem odd coming so soon after a
warning to avoid infinite loops, but this particular loop isn’t really infinite because I put
an exit condition in the loop body.

h i n t

Although a while (true) loop sometimes can be clearer than a traditional loop, you should also
try to minimize your use of these loops. If a game program does use a while (true) loop, it’s often
as a main loop around the bulk of the code.

Using the break Statement to Exit a Loop
This is the exit condition I put in the loop:

//end loop if count is greater than 10
if (count > 10)

break;

Because count is increased by 1 each time the loop body begins, it will eventually reach 11.
When it does, the break statement (which means “break out of the loop”) is executed and
the loop ends.

Using break and continue Statements 51

Using the continue Statement to Jump Back to the Top of a Loop
Just before count is displayed, I included the lines:

//skip the number 5
if (count == 5)

continue;

The continue statement means “jump back to the top of the loop.” At the top of the loop,
the while condition is tested and the loop is entered again if it’s true. So when count is equal
to 5, the program does not get to the cout << count << endl; statement. Instead, it goes right
back to the top of the loop. As a result, 5 is skipped and never displayed.

Understanding When to Use break and continue
You can use break and continue in any loop you create; they aren’t just for while (true)
loops. But you should use them sparingly. Both break and continue can make it harder for
programmers to see the flow of a loop.

Using Logical Operators
So far you’ve seen pretty simple expressions evaluated for their truth or falsity. However,
you can combine simpler expressions with logical operators to create more complex
expressions. Table 2.2 lists the logical operators.

Introducing the Designers Network Program
The Designers Network program simulates a computer network in which only a select
group of game designers are members. Like real-world computer systems, each member
must enter a username and a password to log in. With a successful login, the member is
personally greeted. Also like real-world systems, everyone has a security level. Guests are
allowed to log in, too. However, they are given a low security level. To log in as a guest, all
a user needs to do is enter guest at either the username or password prompt. Figures 2.8
through 2.10 show the program.

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number52

Table 2.2 Logical Operators

Operator Description Sample Expression

! Logical NOT !expression
&& Logical AND expression1 && expression2
|| Logical OR expression1 || expression2

Using Logical Operators 53

Figure 2.8
If you’re not a member or a guest, you can’t get in.

Figure 2.9
If you log in as a guest, your security level is set quite low.

The code for the program is in the Chapter 2 folder on the CD-ROM that came with this
book; the file name is designers_network.cpp.

// Designers Network
// Demonstrates logical operators

#include <iostream>
#include <string>

using namespace std;

int main()
{

cout << “\tGame Designer’s Network\n”;
int security = 0;

string username;
cout << “\nUsername: “;
cin >> username;

string password;
cout << “Password: “;
cin >> password;

if (username == “S.Meier” && password == “civilization”)
{

cout << “\nHey, Sid.”;
security = 5;

}

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number54

Figure 2.10
Looks like one of the elite logged in today.

if (username == “S.Miyamoto” && password == “mariobros”)
{

cout << “\nWhat’s up, Shigeru?”;
security = 5;

}

if (username == “W.Wright” && password == “thesims”)
{

cout << “\nHow goes it, Will?”;
security = 5;

}

if (username == “guest” || password == “guest”)
{

cout << “\nWelcome, guest.”;
security = 1;

}

if (!security)
cout << “\nYour login failed.”;

return 0;
}

Using the Logical AND Operator
The logical AND operator, &&, lets you join two expressions to form a larger one, which
can be evaluated to true or false. The new expression is true only if the two expressions it
joins are true; otherwise, it is false. Just as in English, “and” means both. Both original
expressions must be true for the new expression to be true. Here’s a concrete example from
the Designers Network program:

if (username == “S.Meier” && password == “civilization”)

The expression username == “S.Meier” && password == “civilization” is true only if both
username == “S.Meier” and password == “civilization” are true. This works perfectly because
I only want to grant Sid access if he enters both his username and his password. Just one
or the other won’t do.

Another way to understand how && works is to look at all of the possible combinations of
truth and falsity (see Table 2.3).

Using Logical Operators 55

Of course, the Designers Network program works for other users besides Sid Meier.
Through a series of if statements using the && operator, the program checks three differ-
ent username and password pairs. If a user enters a recognized pair, he is personally greeted
and assigned a security level.

Using the Logical OR Operator
The logical OR operator, ||, lets you join two expressions to form a larger one, which can
be evaluated to true or false. The new expression is true if the first expression or the sec-
ond expression is true; otherwise, it is false. Just as in English, “or” means either. If either
the first or second expression is true, then the new expression is true. (If both are true, then
the larger expression is still true.) Here’s a concrete example from the Designers Network
program:

if (username == “guest” || password == “guest”)

The expression username == “guest” || password == “guest” is true if username == “guest” is
true or if password == “guest” is true. This works perfectly because I want to grant a user
access as a guest as long as he enters guest for the username or password. If the user enters
guest for both, that’s fine too.

Another way to understand how || works is to look at all of the possible combinations of
truth and falsity (see Table 2.4).

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number56

Table 2.3 Possible Login Combinations Using the AND Operator

username == “S.Meier” password == “civilization” username ==
“S.Meier” &&
password ==
“civilization”

true true true
true false false
false true false
false false false

Using the Logical NOT Operator
The logical NOT operator, !, lets you switch the truth or falsity of an expression. The new
expression is true if the original is false; the new expression is false if the original is true.
Just as in English, “not” means the opposite. The new expression has the opposite value of
the original. Here’s a concrete example from the Designers Network program:

if (!security)

The expression !security is true when security is false (or 0). That works perfectly because
security is 0 only when there has been a failed login. In this case, I let the user know that
the login was unsuccessful.

The expression !security is false when security is true or non-zero. That works perfectly
because when security is non-zero, the user has successfully logged in. In this case, I don’t
want to display the message that the login failed.

Another way to understand how ! works is to look at all of the possible combinations of
truth and falsity (see Table 2.5).

Understanding Order of Operations
Just like arithmetic operators, logical operators have precedence levels that affect the order
in which an expression is evaluated. Logical NOT, !, has a higher level of precedence than
logical AND, &&, which has a higher precedence than logical OR, ||.

Using Logical Operators 57

Table 2.4 Possible Login Combinations Using the OR Operator

username == “guest” password == “guest” username == “guest”
|| password ==
“guest”

true true true
true false true
false true true
false false false

Table 2.5 Possible Login Combinations Using the NOT Operator

security !security

true false
false true

Just as with arithmetic operators, if you want an operation with lower precedence to be
evaluated first, you can use parentheses. You can create complex expressions that involve
arithmetic operators, relational operators, and logical operators. Operator precedence will
define the exact order in which elements of the expression are evaluated. However, it’s best
to try to create expressions that are clear and simple, not ones that require a mastery of
the operator precedence list to decipher.

For a list of C++ operators and their precedence levels, see Appendix B, “Operator
Precedence,” on the CD-ROM that came with this book.

h i n t

Although you can use parentheses in a larger expression to change the way in which it’s evaluated,
you can also use redundant parentheses—parentheses that don’t change the value of the expres-
sions—to make the expression clearer. Let me give you a simple example. Check out the following
expression from the Designers Network program:

(username == “S.Meier” && password == “civilization”)

Now, here’s the expression with some redundant parentheses:

((username == “S.Meier”) && (password == “civilization”))

While the extra parentheses don’t change the meaning of the expression, they really help the two
smaller expressions, joined by the && operator, stand out.

Using redundant parentheses is a bit of an art form. Are they helpful or just plain redundant? That’s
a call you, as the programmer, have to make.

Generating Random Numbers
A sense of unpredictability can add excitement to a game. Whether it’s the sudden change
in a computer opponent’s strategy in an RTS or an alien creature bursting from an arbi-
trary door in an FPS, players thrive on a certain level of surprise. Generating random
numbers is one way to achieve this kind of surprise.

Introducing the Die Roller Program
The Die Roller program simulates the roll of a six-sided die. The computer calculates the
roll by generating a random number. Figure 2.11 shows the results of the program.

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number58

The code for the program is in the Chapter 2 folder on the CD-ROM that came with this
book; the file name is die_roller.cpp.

// Die Roller
// Demonstrates generating random numbers

#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

int main()
{

srand(time(0)); // seed random number generator based on current time

int randomNumber = rand(); //generate random number

int die = (randomNumber % 6) + 1; // get a number between 1 and 6
cout << “You rolled a “ << die << endl;

return 0;
}

Calling the rand() Function
One of the first things I do in the program is include a new file.

#include <cstdlib>

Generating Random Numbers 59

Figure 2.11
The die roll is based on a random number generated by the program.

The file cstdlib contains (among other things) functions that deal with generating ran-
dom numbers. Because I’ve included the file, I’m free to call the functions it contains,
including the function rand(), which is exactly what I do in main().

int randomNumber = rand(); //generate random number

As you learned in Chapter 1, functions are pieces of code that can do some work and
return a value. You call or invoke a function by using its name followed by a pair of paren-
theses. If a function returns a value, you can assign that value to a variable. That’s what I
do here with my use of the assignment statement. I assign the value returned by rand() (a
random number) to randomNumber.

h i n t

The rand() function generates a random number between 0 and at least 32,767. The exact upper
limit depends on your implementation of C++. The upper limit is stored in the constant RAND_MAX,
which is defined in cstdlib. So if you want to know the maximum random number rand() can gen-
erate, just send RAND_MAX to cout.

Functions can also take values to use in their work. You provide these values by placing
them between the parentheses after the function name, separated by commas. These val-
ues are called arguments, and when you provide them, you pass them to the function. I
didn’t pass any values to rand() because the function doesn’t take any arguments.

Seeding the Random Number Generator
The rand() function generates pseudorandom numbers—not truly random numbers—
based on a formula. One way to think about this is to imagine that rand() reads from a
huge book of predetermined random numbers. But rand() always starts from the begin-
ning of the book when a program begins. This means that rand() will always produce the
same series of numbers each time the program is run.

However, you can alter the place where rand() starts in its book by seeding the random
number generator with a number using the srand() function (also defined in cstdlib). To
be of any value, the number you use as a seed should be different each time the program
begins. A good way to get such a number is to use the function time() (defined in the file
ctime), which returns a number based on the current time.

So that I can use the function time(), I include the file ctime at the top of the program.

#include <ctime>

Then, in main(), I seed the random number generator with a number based on the current
system time.

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number60

srand(time(0)); // seed random number generator based on current time

In the preceding code, I used the function call time(0) as an argument when calling
srand(). This is perfectly fine because the value returned by time(0) can be used by srand().
In general, you can use a function call as an argument to another function as long as the
first function returns a value that will always be a valid argument for the second function.

In the function call time(0), I pass the function 0. A call to time(0) returns a number based
on the current time, which I pass to srand(), which seeds the random number generator.

Calculating a Number within a Range
After generating a random number, randomNumber holds a value between 0 and 32,767
(based on my implementation of C++). But I need a number between 1 and 6, so next I
use the modulus operator to produce a number in that range.

int die = (randomNumber % 6) + 1; // get a number between 1 and 6

Any positive number divided by 6 will give a remainder between 0 and 5. In the preced-
ing code, I take this remainder and add 1, giving me the possible range of 1 through 6—
exactly what I wanted. You can use this technique to convert a random number to a num-
ber within a range you’re looking for.

t r a p

Using the modulus operator to create a number within a range from a random number might not
always produce uniform results. Some numbers in the range might be more likely to appear than
others. However, this isn’t a problem for simple games.

Understanding the Game Loop
The game loop is a generalized representation of the flow of events in a game. The core of
the events repeats, which is why it’s called a loop. Although the implementation might be
quite different from game to game, the fundamental structure is the same for almost all
games across genres. Whether you’re talking about a simple space shooter or a complex role-
playing game (RPG), you can usually break the game down into the same repeating com-
ponents of the game loop. Figure 2.12 provides a visual representation of the game loop.

Understanding the Game Loop 61

Here’s an explanation of the parts of the game loop:

■ Setting up. This often involves accepting initial settings or loading game assets,
such as sound, music, and graphics. The player might also be presented with the
game backstory and his objectives.

■ Getting player input. Whether it comes from the keyboard, mouse, joystick, track-
ball, or some other device, input from the player is captured.

■ Updating game internals. The game logic and rules are applied to the game world,
taking into account player input. This might take the shape of a physics system
determining the interaction of objects or it might involve calculations of enemy
AI, for example.

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number62

Figure 2.12
The game loop describes a basic flow of events that fits just about any game.

■ Updating the display. In the majority of games, this process is the most taxing on
the computer hardware because it often involves drawing graphics. However, this
process can be as simple as displaying a line of text.

■ Checking whether the game is over. If the game isn’t over (if the player’s character
is still alive and the player hasn’t quit, for example), control branches back to the
getting player input stage. If the game is over, control falls through to the shutting
down stage.

■ Shutting down. At this point, the game is over. The player is often given some final
information, such as his score. The program frees any resources, if necessary, and
exits.

Introducing Guess My Number
The final project for this chapter, Guess My Number, is the classic number-guessing game.
For those who missed out on this game in their childhood, it goes like this: The computer
chooses a random number between 1 and 100, and the player tries to guess the number in
as few attempts as possible. Each time the player enters a guess, the computer tells him
whether the guess is too high, too low, or right on the money. Once the player guesses the
number, the game is over. Figure 2.13 shows Guess My Number in action. The code for the
program is in the Chapter 2 folder on the CD-ROM that came with this book; the file name
is guess_my_number.cpp.

Applying the Game Loop
It’s possible to examine even this simple game through the construct of the game loop.
Figure 2.14 shows how nicely the game loop paradigm fits the flow of the game.

Introducing Guess My Number 63

Figure 2.13
I guessed the computer’s number in just three tries.

Setting Up the Game
As always, I start off with some comments and include the necessary files.

// Guess My Number
// The classic number guessing game

#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number64

Figure 2.14
The game loop applied to Guess My Number

I include cstdlib because I plan to generate a random number. I include ctime because I
want to seed the random number generator with the current time.

Next, I start the main() function by picking a random number, setting the number of tries
to 0, and establishing a variable for the player’s guess.

int main()
{

srand(time(0)); // seed random number generator

int theNumber = rand() % 100 + 1; // random number between 1 and 100
int tries = 0, guess;

cout << “\tWelcome to Guess My Number\n\n”;

Creating the Guessing Loop
Next, I write the guessing loop.

do
{

cout << “Enter a guess: “;
cin >> guess;
++tries;

if (guess > theNumber)
cout << “Too high!\n\n”;

if (guess < theNumber)
cout << “Too low!\n\n”;

} while (guess != theNumber);

I get the player’s guess, increment the number of tries, and then tell the player if his guess
is too high or too low. If the player’s guess is correct, the loop ends. Notice that the if state-
ments are nested inside the while loop.

Wrapping Up the Game
I wrap up the program by congratulating the player and telling him how many tries it took
to guess the number.

cout << “\nThat’s it! You got it in “ << tries << “ guesses!\n”;

return 0;
}

Introducing Guess My Number 65

Summary
In this chapter, you should have learned the following concepts:

■ You can use the truth or falsity of an expression to branch to (or skip) sections
of code.

■ You can represent truth and falsity with their keywords, true and false.

■ You can evaluate any value or expression for truth or falsity.

■ Any non-zero value can be interpreted as true, while 0 can be interpreted as false.

■ The most common way to create an expression to be evaluated as true or false is
to compare values with the relational operators.

■ The if statement tests an expression and executes a section of code only if the
expression is true.

■ The else clause in an if statement specifies code that should be executed only if
the expression tested in the if statement is false.

■ The switch statement tests a value that can be treated as an int and executes a sec-
tion of code labeled with the corresponding value.

■ The default keyword, when used in a switch statement, specifies code to be exe-
cuted if the value tested in the switch statement matches no listed values.

■ The while loop executes a section of code if an expression is true and repeats the
code as long as the expression is true.

■ A do loop executes a section of code and then repeats the code as long as the
expression is true.

■ Used in a loop, the break statement immediately ends the loop.

■ Used in a loop, the continue statement immediately causes control of the program
to branch to the top of the loop.

■ The && (AND) operator combines two simpler expressions to create a new expres-
sion that is true only if both simpler expressions are true.

■ The || (OR) operator combines two simpler expressions to create a new expression
that is true if either simpler expression is true.

■ The ! (NOT) operator creates a new expression that is the opposite truth value of
the original.

■ The game loop is a generalized representation of the flow of events in a game, the
core of which repeats.

■ The file cstdlib contains functions that deal with generating random numbers.

■ The function srand(), defined in cstdlib, seeds the random number generator.

■ The function rand(), defined in cstdlib, returns a random number.

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number66

Questions and Answers
Q: Do you have to use the keywords true and false?

A: No, but it’s a good idea. Before the advent of the keywords true and false, pro-
grammers often used 1 to represent true and 0 to represent false. However, now
that true and false are available, it’s best to use them instead of the old-fashioned
1 and 0.

Q: Can you assign a bool variable something other than true or false?

A: Yes. You can assign an expression to a bool variable, which will store the truth or
falsity of the expression.

Q: Can you use a switch statement to test some non-integer value?

A: No. switch statements only work with values that can be interpreted as integers
(including char values).

Q: How can you test a single non-integer value against multiple values if you can’t
use a switch statement?

A: You can use a series of if statements.

Q: What’s an infinite loop?

A: A loop that will never end, regardless of user input.

Q: Why are infinite loops considered bad?

A: Because a program stuck in an infinite loop will never end on its own. It has to be
shut down by the operating system. In the worst case, a user will have to shut his
computer off to end a program stuck in an infinite loop.

Q: Won’t a compiler catch an infinite loop and flag it as an error?

A: No. An infinite loop is a logical error—the kind of error a programmer must
track down.

Q: If infinite loops are a bad thing, then isn’t a while (true) loop a bad thing?

A: No. When a programmer creates a while (true) loop, he should provide a way for
the loop to end (usually through a break statement).

Q: Why would a programmer create a while (true) loop?

A: while (true) loops are often used for the main loop of a program, like the game
loop.

Q: Why do some people feel that using a break statement to exit a loop is poor pro-
gramming?

A: Because indiscriminate use of break statements can make it hard to understand
the conditions under which a loop ends. However, sometimes the use of a while
(true) loop along with a break statement can be clearer than creating the same
loop in a more traditional way.

Questions and Answers 67

Q: What’s a pseudorandom number?

A: A random number that’s usually generated by a formula. As a result, a series of
pseudorandom numbers is not truly random, but good enough for most pur-
poses.

Q: What’s seeding a random number generator?

A: It’s giving the random number generator a seed, such as an integer, which affects
the way the generator produces random numbers. If you don’t seed a random
number generator, it will produce the same series of numbers each time it’s run
from the beginning of a program.

Q: Don’t you always want to seed the random number generator before using it?

A: Not necessarily. You might want a program to produce the exact same sequence of
“random” numbers each time it runs for testing purposes, for example.

Q: How can I generate more truly random numbers?

A: There are third-party libraries that produce better pseudorandom numbers than
the ones that typically come with C++ compilers.

Q: Do all games use the game loop?

A: The game loop is just a way of looking at a typical game’s flow of events. And just
because this paradigm fits a particular game, that doesn’t necessarily mean that
the game is implemented with a loop around the bulk of its code.

Discussion Questions
1. What kinds of things would be difficult to program without loops?

2. What are the advantages and disadvantages of the switch statement versus a series
of if statements?

3. When might you omit a break statement from the end of a case in a switch state-
ment?

4. When should you use a while loop instead of a do loop?

5. Describe your favorite game in terms of the game loop. Is the game loop a good
fit?

Chapter 2 ■ Truth, Branching, and the Game Loop: Guess My Number68

Exercises
1. Rewrite the Menu Chooser program from this chapter using an enumeration to

represent difficulty levels.

2. What’s wrong with the following loop?
int x = 0;
while (x)
{

++x;
cout << x << endl;

}

3. Write a new version of the Guess My Number program in which the player and the
computer switch roles. That is, the player picks a number and the computer must
guess what it is.

Exercises 69

This page intentionally left blank

71

For Loops, Strings, and
Arrays: Word Jumble

Chapter 3

Y
ou’ve seen how to work with single values, but in this chapter you’ll learn how to
work with sequences of data. You’ll learn more about strings—objects for sequences
of characters. You’ll also see how to work with sequences of any type. And you’ll

discover a new type of loop that’s perfect for use with these sequences. Specifically, you’ll
learn to:

■ Use for loops to iterate over sequences

■ Use objects, which combine data and functions

■ Use string objects and their member functions to work with sequences of
characters

■ Use arrays to store, access, and manipulate sequences of any type

■ Use multidimensional arrays to better represent certain groups of information

Using for Loops
In Chapter 2, you met two kinds of loops—the while loop and the do loop. Well, it’s time
to meet another—the for loop. Like the two kinds of loops you know, the for loop lets you
repeat a section of code, but for loops are particularly suited for counting and moving
through a sequence of things (like the items in an RPG character’s inventory).

Here’s the generic form of a for loop:

for (initialization; test; action)
statement;

initialization is a statement that sets up some initial condition for the loop. (For exam-
ple, it might set a counter variable to 0.) The expression test is tested each time before the

loop body executes, just as in a while loop. If test is false, the program moves on to the
statement after the loop. If test is true, the program executes statement. Next, action is
executed (which often involves incrementing a counter variable). The cycle repeats until
test tests false, at which point the loop ends.

Introducing the Counter Program
The Counter program counts forward, backward, and by fives. It even counts out a grid
with rows and columns. It accomplishes all of this through the use of for loops. Figure 3.1
shows the program in action.

The code for the program is in the Chapter 3 folder on the CD-ROM that came with this
book; the file name is counter.cpp.

// Counter
// Demonstrates for loops

#include <iostream>

using namespace std;

int main()
{

cout << “Counting forward:\n”;
for (int i = 0; i < 10; ++i)

cout << i << “ “;

cout << “\n\nCounting backward:\n”;
for (int i = 9; i >= 0; —i)

cout << i << “ “;

Chapter 3 ■ For Loops, Strings, and Arrays: Word Jumble72

Figure 3.1
for loops do all of the counting, while a pair of nested for loops displays the grid.

cout << “\n\nCounting by fives:\n”;
for (int i = 0; i <= 50; i+=5)

cout << i << “ “;

cout << “\n\nCounting with null statements:\n”;
int count = 0;
for (; count < 10;)
{

cout << count << “ “;
++count;

}

cout << “\n\nCounting with nested for loops:\n”;
const int ROWS = 5;
const int COLUMNS = 3;
for (int i = 0; i < ROWS; ++i)
{

for (int j = 0; j < COLUMNS; ++j)
cout << i << “,” << j << “ “;

cout << endl;
}

return 0;
}

t r a p

If you’re using an older compiler that doesn’t fully implement the current C++ standard, when
you try to compile this program, you might get an error that says something like: error: ‘i’ :
redefinition; multiple initialization. Microsoft’s old Visual C++ 6.0 is an IDE that will pro-
duce this type of error message.

The best solution is to use a modern, compliant compiler. Luckily for you, I’ve included on this
book’s CD-ROM a great IDE called Dev-C++ with a modern compiler. I highly recommend that you
install and use this IDE when you’re working on the programs in this book. After you install Dev-
C++, check out Appendix A, “Creating Your First C++ Program,” on the book’s CD-ROM for a tuto-
rial of how to get your programs running with Dev-C++.

If you must use your old compiler, you should declare any for loop counter variables just once for
all for loops in a scope. I cover the topic of scopes in Chapter 5, “Functions: Mad Lib.”

Counting with for Loops
The first for loop counts from 0 to 9. The loop begins:

for (int i = 0; i < 10; ++i)

The initialization statement, int i = 10, declares i and initializes it to 0. The expression
i < 10 says that the loop will continue as long as i is less than 10. Lastly, the action statement,

73Using for Loops

++i, says i is to be incremented each time the loop body finishes. As a result, the loop iter-
ates 10 times—once for each of the values 0 through 9. And during each iteration, the loop
body displays the value of i.

The next for loop counts from 9 down to 0. The loop begins:

for (int i = 9; i >= 0; —i)

Here, i is initialized to 9, and the loop continues as long as i is greater than or equal to 0.
Each time the loop body finishes, i is decremented. As a result, the loop displays the val-
ues 9 through 0.

The next loop counts from 0 to 50, by fives. The loop begins:

for (int i = 0; i <= 50; i += 5)

Here, i is initialized to 0, and the loop continues as long as i is less than or equal to 50. But
notice the action statement, i += 5. This statement increases i by five each time the loop
body finishes. As a result, the loop displays the values 0, 5, 10, 15, and so on. The expres-
sion i <= 50 says to execute the loop body as long as i is less than or equal to 50.

You can initialize a counter variable, create a test condition, and update the counter vari-
able with any values you want. However, the most common thing to do is to start the
counter at 0 and increment it by 1 after each loop iteration.

Finally, the caveats regarding infinite loops that you learned about while studying while
loops apply equally well to for loops. Make sure you create loops that can end; otherwise,
you’ll have a very unhappy gamer on your hands.

Using Empty Statements in for Loops
You can use empty statements in creating your for loop, as I did in the following loop:

for (; count < 10;)

I used an empty statement for the initialization and action statements. That’s fine because
I declared and initialized count before the loop and incremented it inside the loop body.
This loop displays the same sequence of integers as the very first loop in the program.
Although the loop might look odd, it’s perfectly legal.

h i n t

Different game programmers have different traditions. In the last chapter, you saw that you can cre-
ate a loop that continues until it reaches an exit statement—such as a break—using while (true).
Well, some programmers prefer to create these kinds of loops using a for statement that begins
for (;;). Because the test expression in this loop is the empty statement, the loop will continue
until it encounters some exit statement.

Chapter 3 ■ For Loops, Strings, and Arrays: Word Jumble74

Nesting for Loops
You can nest for loops by putting one inside the other. That’s what I did in the following
section of code, which counts out the elements of a grid. The outer loop, which begins:

for (int i = 0; i < ROWS; ++i)

simply executes its loop body ROWS (five) times. But it just so happens that there’s another
for loop inside this loop, which begins:

for (int j = 0; j < COLUMNS; ++j)

As a result, the inner loop executes in full for each iteration of the outer loop. In this case,
that means the inner loop executes COLUMNS (three) times, for the ROWS (five) times the outer
loop iterates, for a total of 15 times. Specifically, here’s what happens:

1. The outer for loop declares i and initializes it to 0. Since i is less than ROWS (five),
the program enters the outer loop’s body.

2. The inner loop declares j and initializes it to 0. Since j is less than COLUMNS (three), the
program enters its loop body, sending the values of i and j to cout, which displays 0, 0.

3. The program reaches the end of the body of the inner loop and increments j to 1.
Since j is still less than COLUMNS (three), the program executes the inner loop’s body
again, displaying 0, 1.

4. The program reaches the end of the inner loop’s body and increments j to 2. Since
j is still less than COLUMNS (three), the program executes the inner loop’s body again,
displaying 0, 2.

5. The program reaches the end of the inner loop’s body and increments j to 3. This
time, however, j is not less than COLUMNS (three) and the inner loop ends.

6. The program finishes the first iteration of the outer loop by sending endl to cout,
ending the first row.

7. The program reaches the end of the outer loop’s body and increments i to 1. Since
i is less than ROWS (five), the program enters the outer loop’s body again.

8. The program reaches the inner loop, which starts from the beginning once again,
by declaring and initializing j to 0. The program goes through the process I
described in Steps 2 through 7, displaying the second row of the grid. This process
continues until all five rows have been displayed.

Again, the important thing to remember is that the inner loop is executed in full for each
iteration of the outer loop.

Understanding Objects
So far you’ve seen how to store individual pieces of information in variables and how to
manipulate those variables using operators and functions. But most of the things you

Understanding Objects 75

want to represent in games—such as, say alien spacecrafts—are objects. They’re encapsu-
lated, cohesive things that combine qualities (such as an energy level) and abilities (for
example, firing weapons). Often it makes no sense to talk about the individual qualities
and abilities in isolation from each other.

Fortunately, most modern programming languages let you work with software objects
(often just called objects) that combine data and functions. A data element of an object is
called a data member, while a function of an object is called a member function. As a con-
crete example, think about that alien spacecraft. An alien spacecraft object might be of a
new type called Spacecraft, defined by a game programmer, and might have a data mem-
ber for its energy level and a member function to fire its weapons. In practice, an object’s
energy level might be stored in its data member energy as an int, and its ability to fire its
weapons might be defined in a member function called fireWeapons().

Every object of the same type has the same basic structure, so each object will have the
same set of data members and member functions. However, as an individual, each object
will have its own values for its data members. If you had a squadron of five alien space-
crafts, each would have its own energy level. One might have an energy level of 75, while
another might have a level of only 10, and so on. Even if two crafts have the same energy
level, each would belong to a unique spacecraft. Each craft could also fire its own weapons
with a call to its member function, fireWeapons(). Figure 3.2 illustrates the concept of an
alien spacecraft.

The cool thing about objects is that you don’t need to know the implementation details to
use them—just as you don’t need to know how to build a car in order to drive one. You
only have to know the object’s data members and member functions—just as you only

need to know where a car’s steering wheel, gas pedal, and
brake pedal are located.

You can store objects in variables, just like with built-in
types. Therefore, you could store an alien spacecraft object in
a variable of the Spacecraft type. You can access data mem-
bers and member functions using the member selection
operator (.), by placing the operator after the variable name
of the object. So if you want your alien spacecraft, ship, to fire
its weapons only if its energy level is greater than 10, you
could write the following code.

Chapter 3 ■ For Loops, Strings, and Arrays: Word Jumble76

Figure 3.2
This representation of the definition of an alien spacecraft says that
each object will have a data member called energy and a member
function called fireWeapons().

// ship is an object of Spacecraft type
if (ship.energy > 10)

ship.fireWeapons()

ship.energy accesses the object’s energy data member, while ship.fireWeapons() calls the
object’s fireWeapons() member function.

Although you can’t make your own new types (like for an alien spacecraft) just yet, you
can work with previously defined object types. And that’s next on the agenda.

Using string Objects
string objects, which you met briefly in Chapter 1, are the perfect way to work with sequences
of characters, whether you’re writing a complete word puzzle game or simply storing a play-
er’s name. A string is actually an object, and it provides its own set of member functions that
allow you to do a range of things with the string object—everything from simply getting its
length to performing complex character substitutions. In addition, string objects are defined
so that they work intuitively with a few of the operators you already know.

Introducing the String Tester Program
The String Tester program uses the string object equal to “Game Over!!!” and tells you its
length, the index (position number) of each character, and whether or not certain sub-
strings can be found in it. In addition, the program erases parts of the string object.
Figure 3.3 shows the results of the program.

Using string Objects 77

Figure 3.3
string objects are combined, changed, and erased through familiar opera-
tors and string member functions.

The code for the program is in the Chapter 3 folder on the CD-ROM that came with this
book; the file name is string_tester.cpp.

// String Tester
// Demonstrates string objects

#include <iostream>
#include <string>

using namespace std;

int main()
{

string word1 = “Game”;
string word2(“Over”);
string word3(3, ‘!’);

string phrase = word1 + “ “ + word2 + word3;
cout << “The phrase is: “ << phrase << “\n\n”;

cout << “The phrase has “ << phrase.size() << “ characters in it.\n\n”;

cout << “The character at position 0 is: “ << phrase[0] << “\n\n”;

cout << “Changing the character at position 0.\n”;
phrase[0] = ‘L’;
cout << “The phrase is now: “ << phrase << “\n\n”;

for (int i = 0; i < phrase.size(); ++i)
cout << “Character at position “ << i << “ is: “ << phrase[i] << endl;

cout << “\nThe sequence ‘Over’ begins at location “ << phrase.find(“Over”)
<< endl;

if (phrase.find(“eggplant”) == string::npos)
cout << “‘eggplant’ is not in the phrase.\n\n”;

phrase.erase(4, 5);
cout << “The phrase is now: “ << phrase << endl;
phrase.erase(4);
cout << “The phrase is now: “ << phrase << endl;
phrase.erase();
cout << “The phrase is now: “ << phrase << endl;

if (phrase.empty())
cout << “\nThe phrase is no more.\n”;

return 0;
}

Chapter 3 ■ For Loops, Strings, and Arrays: Word Jumble78

Creating string Objects
The first thing I do in main() is create three strings in three different ways:

string word1 = “Game”;
string word2(“Over”);
string word3(3, ‘!’);

In the first line of this group, I simply create the string object word1 using the assignment
operator, the same way you’ve seen for other variables. As a result, word1 is “Game”.

Next, I create word2 by placing the string object to which I want the variable set between
a pair of parentheses. As a result, word2 is “Over”.

Finally, I create word3 by supplying between a pair of parentheses a number followed by a
single character. This produces a string object made up of the provided character, which
has a length equal to the number. As a result, word3 is “!!!”.

Concatenating string Objects
Next I create a new string object, phrase, by concatenating the first three string objects.

string phrase = word1 + “ “ + word2 + word3;

As a result, phrase is “Game Over!!!”.

Notice that the + operator, which you’ve seen work only with numbers, also concatenates
string objects. That’s because the + operator has been overloaded. Now, when you first
hear the term overloaded, you might think it’s a bad thing—the operator is about to blow!
But it’s a good thing. Operator overloading redefines a familiar operator so it works differ-
ently when used in a new, previously undefined context. In this case, I use the + operator
not to add numbers, but to join string objects. I’m able to do this only because the string
type specifically overloads the + operator and defines it so the operator means string
object concatenation when used with strings.

Using the size() Member Function
Okay, it’s time to take a look at a string member function. Next, I use the member func-
tion size().

cout << “The phrase has “ << phrase.size() << “ characters in it.\n\n”;

phrase.size() calls the member function size() of the string object phrase through the
member selection operator . (the dot). The size() member function simply returns an
unsigned integer value of the size of the string object—its number of characters. Because
the string object is “Game Over!!!”, the member function returns 12. (Every character
counts, including spaces.) Of course, calling size() for another string object might return
a different result based on the number of characters in the string object.

Using string Objects 79

h i n t

string objects also have a member function length(), which, just like size(), returns the number
of characters in the string object.

Indexing a string Object
A string object stores a sequence of char values. You can access any individual char value
by providing an index number with the subscripting operator ([]). That’s what I do next.

cout << “The character at position 0 is: “ << phrase[0] << “\n\n”;

The first element in a sequence is at position 0. In the previous statement, phrase[0] is the
character G. And because counting begins at 0, the last character in the string object is
phrase[11], even though the string object has 12 characters in it.

t r a p

It’s a common mistake to forget that indexing begins at position 0. Remember, a string object with
n characters in it can be indexed from position 0 to position n–1.

Not only can you access characters in a string object with the subscripting operator, but
you can also reassign them. That’s what I do next.

phrase[0] = ‘L’;

I change the first character of phrase to the character L, which means phrase becomes “Lame
Over!!!”

t r a p

C++ compilers do not perform bounds checking when working with string objects and the sub-
scripting operator. This means that the compiler doesn’t check to see whether you’re attempting to
access an element that doesn’t exist. Accessing an invalid sequence element can lead to disastrous
results because it’s possible to write over critical data in your computer’s memory. By doing this,
you can crash your program, so take care when using the subscripting operator.

Iterating through string Objects
Given your new knowledge of for loops and string objects, it’s a snap to iterate through
the individual characters of a string object. That’s what I do next.

for (int i = 0; i < phrase.size(); ++i)
cout << “Character at position “ << i << “ is: “ << phrase[i] << endl;

Chapter 3 ■ For Loops, Strings, and Arrays: Word Jumble80

The loop iterates through all of the valid positions of phrase. It starts with 0 and goes
through 11. During each iteration, a character of the string object is displayed with
phrase[i].

i n t h e r e a l w o r l d

Iterating through a sequence is a powerful and often-used technique in games. You might, for exam-
ple, iterate through hundreds of individual units in a strategy game, updating their status and order. Or
you might iterate through the list of vertices of a 3D model to apply some geometric transformation.

Using the find() Member Function
Next I use the member function find() to check whether either of two string literals is
contained in phrase. First, I check for the string literal “Over”.

cout << “\nThe sequence ‘Over’ begins at location “ << phrase.find(“Over”)
<< endl;

The find() member function searches the calling string object for the string supplied as
an argument. The member function returns the position number of the first occurrence
where the string object for which you are searching begins in the calling string object.
This means that phrase.find(“Over”) returns the position number where the first occur-
rence of “Over” begins in phrase. Since phrase is “Lame Over!!!”, find() returns 5.
(Remember, position numbers begin at 0, so 5 means the sixth character.)

But what if the string for which you are searching doesn’t exist in the calling string? I
tackle that situation next:

if (phrase.find(“eggplant”) == string::npos)
cout << “‘eggplant’ is not in the phrase.\n\n”;

Because “eggplant” does not exist in phrase, find() returns a special constant defined in the
file string, which I access with string::npos. As a result, the screen displays the message,
‘eggplant’ is not in the phrase.

The constant I access through string::npos represents the largest possible size of a string
object, so it is greater than any possible valid position number in a string object.
Informally, it means “a position number that can’t exist.” It’s the perfect return value to
indicate that one string couldn’t be found in another.

h i n t

When using find(), you can supply an optional argument that specifies a character number for the
program to start looking for the substring. The following line will start looking for the string literal
“eggplant” beginning at position 5 in the string object phrase.

location = phrase.find(“eggplant”, 5);

Using string Objects 81

Using the erase() Member Function
The erase() member function removes a specified substring from a string object. One way
to call the member function is to specify the beginning position and the length of the sub-
string, as I did in this code:

phrase.erase(4, 5);

The previous line removes the four-character substring starting at position 5. Because
phrase is “Lame Over!!!”, the member function removes the substring Over and, as a result,
phrase becomes “Lame!!!”.

Another way to call erase() is to supply just the beginning position of the substring. This
removes all of the characters starting at that position number to the end of the string
object. That’s what I do next.

phrase.erase(4);

This line removes all of the characters of the string object starting at position 4. Since
phrase is “Lame!!!”, the member function removes the substring !!! and, as a result, phrase
becomes “Lame”.

Yet another way to call erase() is to supply no arguments, as I did in this code:

phrase.erase();

The previous line erases every character in phrase. As a result, phrase becomes the empty
string, which is equal to “”.

Using the empty() Member Function
The empty() member function returns a bool value—true if the string object is empty and
false otherwise. I use empty() in the following code:

if (phrase.empty())
cout << “\nThe phrase is no more.\n”;

Because phrase is equal to the empty string, phrase().empty returns true, and the screen dis-
plays the message, The phrase is no more.

h i n t

The string file from the standard library defines many other useful member functions for string
objects. These include member functions for appending, copying, inserting, replacing, and swapping
string objects. For a full listing of all string member functions, check out Appendix F on the CD-
ROM that came with this book, which documents the Standard Template Library. Look for the topic
basic_string.

Chapter 3 ■ For Loops, Strings, and Arrays: Word Jumble82

Using Arrays
While string objects provide a great way to work with a sequence of characters, arrays
provide a way to work with elements of any type. That means you can use an array to store
a sequence of integers for, say, a high-score list. But it also means that you can use arrays
to store elements of programmer-defined types, such as a sequence of items that an RPG
character might carry.

Introducing the Hero’s Inventory Program
The Hero’s Inventory program maintains the inventory of a hero from a typical RPG. As
in most RPGs, the hero is from a small, insignificant village, and his father was killed by
an evil warlord. (What’s a quest without a dead father?) Now that the hero has come of
age, it’s time for him to seek his revenge.

In this program, the hero’s inventory is represented by an array. The array is a sequence of
string objects—one for each item in the hero’s possession. The hero trades and even finds
new items. Figure 3.4 shows the program in action.

The code for the program is in the Chapter 3 folder on the CD-ROM that came with this
book; the file name is heros_inventory.cpp.

// Hero’s Inventory
// Demonstrates arrays

#include <iostream>
#include <string>

using namespace std;

Using Arrays 83

Figure 3.4
The hero’s inventory is a sequence of string objects stored in an array.

int main()
{

const int MAX_ITEMS = 10;
string inventory[MAX_ITEMS];

int numItems = 0;
inventory[numItems++] = “sword”;
inventory[numItems++] = “armor”;
inventory[numItems++] = “shield”;

cout << “Your items:\n”;
for (int i = 0; i < numItems; ++i)

cout << inventory[i] << endl;

cout << “\nYou trade your sword for a battle axe.”;
inventory[0] = “battle axe”;
cout << “\nYour items:\n”;
for (int i = 0; i < numItems; ++i)

cout << inventory[i] << endl;

cout << “\nThe item name ‘“ << inventory[0] << “‘ has “;
cout << inventory[0].size() << “ letters in it.\n”;

cout << “\nYou find a healing potion.”;
if (numItems < MAX_ITEMS)

inventory[numItems++] = “healing potion”;
else

cout << “You have too many items and can’t carry another.”;
cout << “\nYour items:\n”;
for (int i = 0; i < numItems; ++i)

cout << inventory[i] << endl;

return 0;
}

Creating Arrays
It’s often a good idea to define a constant for the number of elements in an array. That’s
what I did with MAX_ITEMS, which represents the maximum number of items the hero can
carry.

const int MAX_ITEMS = 10;

You declare an array much the same way you would declare any variable you’ve seen so
far: You provide a type followed by a name. In addition, your compiler must know the size
of the array so it can reserve the necessary memory space. You can provide that informa-
tion following the array name, surrounded by square brackets. Here’s how I declare the
array for the hero’s inventory:

string inventory[MAX_ITEMS];

Chapter 3 ■ For Loops, Strings, and Arrays: Word Jumble84

The preceding code declares an array inventory of MAX_ITEMS string objects. (Because
MAX_ITEMS is 10, that means 10 string objects.)

t r i c k

You can initialize an array with values when you declare it by providing an initializer list—a
sequence of elements separated by commas and surrounded by curly braces. Here’s an example:

string inventory[MAX_ITEMS] = {“sword”, “armor”, “shield”};

The preceding code declares an array of string objects, inventory, that has a size of MAX_ITEMS.
The first three elements of the array are initialized to “sword”, “armor”, and “shield”.

If you omit the number of elements when using an initializer list, the array will be created with a
size equal to the number of elements in the list. Here’s an example:

string inventory[] = {“sword”, “armor”, “shield”};

Because there are three elements in the initializer list, the preceding line creates an array,
inventory, that is three elements in size. Its elements are “sword”, “armor”, and “shield”.

Indexing Arrays
You index arrays much like you index string objects. You can access any individual ele-
ment by providing an index number with the subscripting operator ([]).

Next I add three items to the hero’s inventory using the subscripting operator.

int numItems = 0;
inventory[numItems++] = “sword”;
inventory[numItems++] = “armor”;
inventory[numItems++] = “shield”;

I start by defining numItems for the number of items the hero is carrying at the moment.
Next I assign “sword” to position 0 of the array. Because I use the postfix increment opera-
tor, numItems is incremented after the assignment to the array. The next two lines add “armor”
and “shield” to the array, leaving numItems at the correct value of 3 when the code finishes.

Now that the hero is stocked with some items, I display his inventory.

cout << “Your items:\n”;
for (int i = 0; i < numItems; ++i)

cout << inventory[i] << endl;

This should remind you of string indexing. The code loops through the first three ele-
ments of inventory, displaying each string object in order.

Next the hero trades his sword for a battle axe. I accomplish this through the following
line:

Using Arrays 85

inventory[0] = “battle axe”;

The previous code reassigns the element at position 0 in inventory the string object “bat-
tle axe”. Now the first three elements of inventory are “battle axe”, “armor”, and “shield”.

t r a p

Array indexing begins at 0, just as you saw with string objects. This means that the following code
defines a five-element array.

int highScores[5];

Valid position numbers are 0 through 4, inclusive. There is no element highScores[5]! An attempt
to access highScores[5] could lead to disastrous results, including a program crash.

Accessing Member Functions of an Array Element
You can access the member functions of an array element by writing the array element,
followed by the member selection operator, followed by the member function name. This
sounds a bit complicated, but it’s not. Here’s an example:

cout << inventory[0].size() << “ letters in it.\n”;

The code inventory[0].size() means the program should call the size() member function
of the element inventory[0]. In this case, because inventory[0] is “battle axe”, the call
returns 10, the number of characters in the string object.

Being Aware of Array Bounds
As you learned, you have to be careful when you index an array. Because an array has a
fixed size, you can create an integer constant to store the size of an array. Again, that’s just
what I did in the beginning of the program.

const int MAX_ITEMS = 10;

In the following lines, I use MAX_ITEMS to protect myself before adding another item to the
hero’s inventory.

if (numItems < MAX_ITEMS)
inventory[numItems++] = “healing potion”;

else
cout << “You have too many items and can’t carry another.”;

In the preceding code, I first checked to see whether numItems is less than MAX_ITEMS. If it is,
then I can safely use numItems as an index and assign a new string object to the array.
In this case numItems is 3, so I assign the string “healing potion” to array position 3. If this
hadn’t been the case, then I would have displayed the message, You have too many items and
can’t carry another.

Chapter 3 ■ For Loops, Strings, and Arrays: Word Jumble86

So what happens if you do attempt to access an array element outside the bounds of the
array? It depends, because you’d be accessing some unknown part of the computer’s mem-
ory. At worst, if you attempt to assign some value to an element outside the bounds of an
array you could cause your program to do unpredictable things, and it might even crash.

Testing to make sure that an index number is a valid array position before using it is called
bounds checking. It’s critical for you to perform bounds checking when there’s a chance
that an index you want to use might not be valid.

Understanding C-Style Strings
Before string objects came along, C++ programmers represented strings with arrays of
characters terminated by a null character. These arrays of characters are now called C-style
strings because the practice began in C programs. You can declare and initialize a C-style
string like you would any other array.

char phrase[] = “Game Over!!!”;

C-style strings terminate with a character called the null character to signify their end. You
can write the null character as ‘\0’. I didn’t need to use the null character in the previous
code because it is stored at the end of the string for me. So technically, phrase has 13 ele-
ments. (However, functions that work with C-style strings will say that phrase has a length
of 12, which makes sense and is in line with how string objects work.)

As with any other type of array, you can specify the array size when you define it. So
another way to declare and initialize a C-style string is

char phrase[81] = “Game Over!!!”;

The previous code creates a C-style string that can hold 80 printable characters (plus its
terminating null character).

C-style strings don’t have member functions. But the cstring file, which is part of the stan-
dard library, contains a variety of functions for working with C-style strings.

A nice thing about string objects is that they’re designed to work seamlessly with C-style
strings. For example, all of the following are completely valid uses of C-style strings with
string objects:

string word1 = “Game”;
char word2[] = “ Over”;

string phrase = word1 + word2;

if (word1 != word2)
cout << “word1 and word2 are not equal.\n”;

if (phrase.find(word2) != string::npos)
cout << “word2 is contained in phrase.\n”;

Understanding C-Style Strings 87

You can concatenate string objects and C-style strings, but the result is always a string
object (so the code char phrase2[] = word1 + word2; would produce an error). You can com-
pare string objects and C-style strings using the relational operators. And you can even
use C-style strings as arguments in string object member functions.

C-style strings have the same shortcomings as arrays. One of the biggest is that their
lengths are fixed. So the moral is: Use string objects whenever possible, but be prepared
to work with C-style strings if necessary.

Using Multidimensional Arrays
As you’ve seen, sequences are great for games. You can use them in the form of a string to
store a player’s name, or you can use them in the form of any array to store a list of items
in an RPG. But sometimes part of a game cries out for more than a linear list of things.
Sometimes part of a game literally requires more dimension. For example, while you
could represent a chessboard with a 64-element array, it really is much more intuitive to
work with it as a two-dimensional entity of 8�8 elements. Fortunately, you can create an
array of two or three (or even more dimensions) to best fit your game’s needs.

Introducing the Tic-Tac-Toe Board Program
The Tic-Tac-Toe Board program displays a tic-tac-toe board. The program displays the
board and declares X the winner. Although the program could have been written using a
one-dimensional array, it uses a two-dimensional array to represent the board. Figure 3.5
illustrates the program.

Chapter 3 ■ For Loops, Strings, and Arrays: Word Jumble88

Figure 3.5
The tic-tac-toe board is represented by a two-dimensional array.

The code for the program is in the Chapter 3 folder on the CD-ROM that came with this
book; the file name is tic-tac-toe_board.cpp.

// Tic-Tac-Toe Board
// Demonstrates multidimensional arrays

#include <iostream>

using namespace std;

int main()
{

const int ROWS = 3;
const int COLUMNS = 3;
char board[ROWS][COLUMNS] = { {‘O’, ‘X’, ‘O’},

{‘ ‘, ‘X’, ‘X’},
{‘X’, ‘O’, ‘O’} };

cout << “Here’s the tic-tac-toe board:\n”;
for (int i = 0; i < ROWS; ++i)
{

for (int j = 0; j < COLUMNS; ++j)
cout << board[i][j];

cout << endl;
}

cout << “\n’X’ moves to the empty location.\n\n”;
board[1][0] = ‘X’;

cout << “Now the tic-tac-toe board is:\n”;
for (int i = 0; i < ROWS; ++i)
{

for (int j = 0; j < COLUMNS; ++j)
cout << board[i][j];

cout << endl;
}

cout << “\n’X’ wins!”;

return 0;
}

Creating Multidimensional Arrays
One of the first things I do in the program is declare and initialize an array for the tic-tac-
toe board.

char board[ROWS][COLUMNS] = { {‘O’, ‘X’, ‘O’},
{‘ ‘, ‘X’, ‘X’},
{‘X’, ‘O’, ‘O’} };

Using Multidimensional Arrays 89

The preceding code declares a 3�3 (since ROWS and COLUMNS are both three) two-dimen-
sional character array. It also initializes all of the elements.

h i n t

It’s possible to simply declare a multidimensional array without initializing it. Here’s an example:

char chessBoard[8][8];

The preceding code declares an 8�8, two-dimensional character array, chessBoard. By the way,
multidimensional arrays aren’t required to have the same size for each dimension. The following is
a perfectly valid declaration for a game map represented by individual characters:

char map[12][20];

Indexing Multidimensional Arrays
The next thing I do in the program is display the tic-tac-toe board. But before I get into
the details of that, I want to explain how to index an individual array element. You index
an individual element of a multidimensional array by supplying a value for each dimen-
sion of the array. That’s what I do to place an X in the array where a space was.

board[1][0] = ‘X’;

The previous code assigns the character to the element at board[1][0] (which was ‘ ‘).
Then I display the tic-tac-toe board after the move the same way I displayed it before the
move.

for (int i = 0; i < ROWS; ++i)
{

for (int j = 0; j < COLUMNS; ++j)
cout << board[i][j];

cout << endl;
}

By using a pair of nested for loops, I move through the two-dimensional array and dis-
play the character elements as I go, forming a tic-tac-toe board.

Introducing Word Jumble
Word Jumble is a puzzle game in which the computer creates a version of a word where
the letters are in random order. The player has to guess the word to win the game. If the
player is stuck, he or she can ask for a hint. Figure 3.6 shows the game.

Chapter 3 ■ For Loops, Strings, and Arrays: Word Jumble90

i n t h e r e a l w o r l d

Even though puzzle games don’t usually break into the top-ten list of games, major companies still
publish them year after year.Why? For one simple reason:They’re profitable. Puzzle games, while not
usually blockbusters, can still sell well. There are many gamers out there (casual and hardcore) who
are drawn to the Zen of a well-designed puzzle game. And puzzle games cost much less to produce
than the high-profile games that require large production teams and years of development time.

Setting Up the Program
As usual, I start with some comments and include the files I need.

// Word Jumble
// The classic word jumble game where the player can ask for a hint

#include <iostream>
#include <string>
#include <cstdlib>
#include <ctime>

using namespace std;

Picking a Word to Jumble
My next task is to pick a word to jumble—the word the player will try to guess. First, I cre-
ate a list of words and hints.

Introducing Word Jumble 91

Figure 3.6
Hmm. . . the word looks “jumbled.”

int main()
{

enum fields {WORD, HINT, NUM_FIELDS};
const int NUM_WORDS = 5;
const string WORDS[NUM_WORDS][NUM_FIELDS] =
{

{“wall”, “Do you feel you’re banging your head against something?”},
{“glasses”, “These might help you see the answer.”},
{“labored”, “Going slowly, is it?”},
{“persistent”, “Keep at it.”},
{“jumble”, “It’s what the game is all about.”}

};

I declare and initialize a two-dimensional array with words and corresponding hints. The
enumeration defines enumerators for accessing the array. For example, WORDS[x][WORD] is
always a string object that is one of the words, while WORDS[x][HINT] is the corresponding hint.

t r i c k

You can list a final enumerator in an enumeration as a convenient way to store the number of ele-
ments. Here’s an example:

enum difficulty {EASY, MEDIUM, HARD, NUM_DIFF_LEVELS};
cout << “There are “ << NUM_DIFF_LEVELS << “ difficulty levels.”

In the previous code, NUM_DIFF_LEVELS is 3, the exact number of difficulty levels in the enumera-
tion. As a result, the second line of code displays the message, There are 3 difficulty levels.

Next, I pick a random word from my choices.

srand(time(0));
int choice = (rand() % NUM_WORDS);
string theWord = WORDS[choice][WORD]; // word to guess
string theHint = WORDS[choice][HINT]; // hint for word

I generate a random index based on the number of words in the array. Then I assign both
the random word at that index and its corresponding hint to the variables theWord and
theHint.

Jumbling the Word
Now that I have the word for the player to guess, I need to create a jumbled version of it.

string jumble = theWord; // jumbled version of word
int length = jumble.size();
for (int i = 0; i < length; ++i)
{

int index1 = (rand() % length);
int index2 = (rand() % length);

Chapter 3 ■ For Loops, Strings, and Arrays: Word Jumble92

char temp = jumble[index1];
jumble[index1] = jumble[index2];
jumble[index2] = temp;

}

In the preceding code, I created a copy of the word jumble to. . . well, jumble. I generated
two random positions in the string object and swapped the characters at those positions.
I did this a number of times equal to the length of the word.

Welcoming the Player
Now it’s time to welcome the player, which is what I do next.

cout << “\t\t\tWelcome to Word Jumble!\n\n”;
cout << “Unscramble the letters to make a word.\n”;
cout << “Enter ‘hint’ for a hint.\n”;
cout << “Enter ‘quit’ to quit the game.\n\n”;
cout << “The jumble is: “ << jumble;

string guess;
cout << “\n\nYour guess: “;
cin >> guess;

I gave the player instructions on how to play, including how to quit and how to ask for a hint.

h i n t

As enthralling as you think your game is, you should always provide a way for the player to exit it.

Entering the Game Loop
Next, I enter the game loop.

while ((guess != theWord) && (guess != “quit”))
{

if (guess == “hint”)
cout << theHint;

else
cout << “Sorry, that’s not it.”;

cout <<”\n\nYour guess: “;
cin >> guess;

}

The loop continues to ask the player for a guess until the player either guesses the word or
asks to quit.

Introducing Word Jumble 93

Saying Goodbye
When the loop ends, the player has either won or quit, so it’s time to say goodbye.

if (guess == theWord)
cout << “\nThat’s it! You guessed it!\n”;

cout << “\nThanks for playing.\n”;

return 0;
}

If the player has guessed the word, I congratulate him. Finally, I thank the player for play-
ing.

Summary
In this chapter, you should have learned the following concepts:

■ The for loop lets you repeat a section of code. In a for loop, you can provide an
initialization statement, an expression to test, and an action to take after each loop
iteration.

■ for loops are often used for counting or looping through a sequence.

■ Objects are encapsulated, cohesive entities that combine data (called data
members) and functions (called member functions).

■ string objects (often just called strings) are defined in the file string, which is part
of the standard library. string objects allow you to store a sequence of characters
and also have member functions.

■ string objects are defined so that they work intuitively with familiar operators,
such as the concatenation operator and the relational operators.

■ All string objects have member functions, including those for determining a string
object’s length, determining whether or not a string object is empty, finding sub-
strings, and removing substrings.

■ Arrays provide a way to store and access sequences of any type.

■ A limitation of arrays is that they have fixed lengths.

■ You can access individual elements of string objects and arrays through the sub-
scripting operator.

■ Bounds checking is not enforced when attempts are made to access individual ele-
ments of string objects or arrays. Therefore, bounds checking is up to the pro-
grammer.

Chapter 3 ■ For Loops, Strings, and Arrays: Word Jumble94

■ C-style strings are character arrays terminated with the null character. They are the
standard way to represent strings in the C language. And even though C-style
strings are perfectly legal in C++, string objects are the preferred way to work
with sequences of characters.

■ Multidimensional arrays allow for access to array elements using multiple sub-
scripts. For example, a chessboard can be represented as a two-dimensional array,
8�8 elements.

Questions and Answers
Q: Which is better, a while loop or a for loop?

A: Neither is inherently better than the other. Use the loop that best fits your needs.

Q: When might it be better to use a for loop than a while loop?

A: You can create a while loop to do the job of any for loop; however, there are some
cases that cry out for a for loop. Those include counting and iterating through a
sequence.

Q: Can I use break and continue statements with for loops?

A: Sure. And they behave just like they do in while loops: break ends the loop and con-
tinue jumps control back to the top of the loop.

Q: Why do programmers tend to use variable names such as i, j, and k as counters in
for loops?

A: Believe it or not, programmers use i, j, and k mainly out of tradition. The practice
started in early versions of the FORTRAN language, in which integer variables
had to start with certain letters, including i, j, and k.

Q: I don’t have to include a file to use int or char types, so why do I have to include
the string file to use strings?

A: int and char are built-in types. They’re always accessible in any C++ program. The
string type, on the other hand, is not a built-in type. It’s defined as part of the
standard library in the file string.

Q: How did C-style strings get their name?

A: In the C programming language, programmers represent strings with arrays of
characters terminated by a null character. This practice carried over to C++. After
the new string type was introduced in C++, programmers needed a way to differ-
entiate between the two. Therefore, the old method was dubbed C-style strings.

Q: Why should I use string objects instead of C-style strings?

A: string objects have advantages over C-style strings. The most obvious is that
they are dynamically sizeable. You don’t have to specify a length limit when you
create one.

Questions and Answers 95

Q: Should I ever use C-style strings?

A: You should opt for string objects whenever possible. If you’re working on an
existing project that uses C-style strings, then you might have to work with C-
style strings.

Q: What is operator overloading?

A: It’s a process that allows you to define the use of familiar operators in different
contexts with different but predictable results. For example, the + operator that is
used to add numbers is overloaded by the string type to join strings.

Q: Can’t operator overloading be confusing?

A: It’s true that by overloading an operator you give it another meaning. But the new
meaning applies only in a specific new context. For example, it’s clear in the
expression 4 + 6 that the + operator adds numbers, while in the expression
myString1 + myString2, the + operator joins strings.

Q: Can I use the += operator to concatenate strings?

A: Yes, the += operator is overloaded so it works with strings.

Q: To get the number of characters in a string object, should I use the length()
member function or the size() member function?

A: Both length() and size() return the same value, so you can use either.

Q: What’s a predicate function?

A: A function that returns either true or false. The string object member function
empty() is an example of a predicate function.

Q: What happens if I try to assign a value to an element beyond the bounds of an
array?

A: C++ will allow you to make the assignment. However, the results are unpre-
dictable and might cause your program to crash. That’s because you’re altering
some unknown part of your computer’s memory.

Q: Why should I use multidimensional arrays?

A: To make working with a group of elements more intuitive. For example, you
could represent a chessboard with a one-dimensional array, as in chessBoard[64],
or you could represent it with a more intuitive, two-dimensional array, as in
chessBoard[8][8].

Chapter 3 ■ For Loops, Strings, and Arrays: Word Jumble96

Discussion Questions
1. What are some of the things from your favorite game that you could represent as

objects? What might their data members and member functions be?

2. What are the advantages of using an array over using a group of individual
variables?

3. What are some limitations imposed by a fixed array size?

4. What are the advantages and disadvantages of operator overloading?

5. What kinds of games could you create using string objects, arrays, and for loops as
your main tools?

Exercises
1. Improve the Word Jumble game by adding a scoring system. Make the point value

for a word based on its length. Deduct points if the player asks for a hint.

2. What’s wrong with the following code?
for (int i = 0; i <= phrase.size(); ++i)

cout << “Character at position “ << i << “ is: “ << phrase[i] << endl;

3. What’s wrong with the following code?

const int ROWS = 2;
const int COLUMNS = 3;
char board[COLUMNS][ROWS] = { {‘O’, ‘X’, ‘O’},

{‘ ‘, ‘X’, ‘X’} };

Exercises 97

This page intentionally left blank

99

The Standard Template
Library: Hangman

Chapter 4

S
o far you’ve seen how to work with sequences of values using arrays. But there are
more sophisticated ways to work with collections of values. In fact, working with col-
lections is so common that part of standard C++ is dedicated to doing just that. In

this chapter, you’ll get an introduction to this important library. Specifically, you’ll learn to:

■ Use vectors to work with sequences of values

■ Use vector member functions to manipulate sequence elements

■ Use iterators to move through sequences

■ Use library algorithms to work with groups of elements

■ Plan your programs with pseudocode

Introducing the Standard Template Library
Good game programmers are lazy. It’s not that they don’t want to work; it’s just that they
don’t want to redo work that’s already been done—especially if it has been done well. The
STL (Standard Template Library) represents a powerful collection of programming work
that’s been done well. It provides a group of containers, algorithms, and iterators, among
other things.

So what’s a container and how can it help you write games? Well, containers let you store
and access collections of values of the same type. Yes, arrays let you do the same thing, but
the STL containers offer more flexibility and power than a simple but trusty array. The STL
defines a variety of container types; each works in a different way to meet different needs.

The algorithms defined in the STL work with its containers. The algorithms are common
functions that game programmers find themselves repeatedly applying to groups of val-
ues. They include algorithms for sorting, searching, copying, merging, inserting, and
removing container elements. The cool thing is that the same algorithm can work its
magic on many different container types.

Iterators are objects that identify elements in containers and can be manipulated to move
among elements. They’re great for, well, iterating through containers. In addition, itera-
tors are required by the STL algorithms.

All of this makes a lot more sense when you see an actual implementation of one of the
container types, so that’s up next.

Using Vectors
The vector class defines one kind of container provided by the STL. It meets the general
description of a dynamic array—an array that can grow and shrink in size as needed. In
addition, vector defines member functions to manipulate vector elements. This means
that the vector has all of the functionality of the array plus more.

Introducing the Hero’s Inventory 2.0 Program
From the user’s point of view, the Hero’s Inventory 2.0 program is similar to its predeces-
sor, the Hero’s Inventory program from Chapter 3. The new version stores and works with
a collection of string objects that represent a hero’s inventory. However, from the pro-
grammer’s perspective the program is quite different. That’s because the new program
uses a vector instead of an array to represent the inventory. Figure 4.1 shows the results of
the program.

Chapter 4 ■ The Standard Template Library: Hangman100

Figure 4.1
This time the hero’s inventory is represented by a vector.

The code for the program is in the Chapter 4 folder on the CD-ROM that came with this
book; the file name is heros_inventory2.cpp.

// Hero’s Inventory 2.0
// Demonstrates vectors

#include <iostream>
#include <string>
#include <vector>

using namespace std;

int main()
{

vector<string> inventory;
inventory.push_back(“sword”);
inventory.push_back(“armor”);
inventory.push_back(“shield”);

cout << “You have “ << inventory.size() << “ items.\n”;

cout << “\nYour items:\n”;
for (int i = 0; i < inventory.size(); ++i)

cout << inventory[i] << endl;

cout << “\nYou trade your sword for a battle axe.”;
inventory[0] = “battle axe”;
cout << “\nYour items:\n”;
for (int i = 0; i < inventory.size(); ++i)

cout << inventory[i] << endl;

cout << “\nThe item name ‘“ << inventory[0] << “‘ has “;
cout << inventory[0].size() << “ letters in it.\n”;

cout << “\nYour shield is destroyed in a fierce battle.”;
inventory.pop_back();
cout << “\nYour items:\n”;
for (int i = 0; i < inventory.size(); ++i)

cout << inventory[i] << endl;

cout << “\nYou were robbed of all of your possessions by a thief.”;
inventory.clear();
if (inventory.empty())

cout << “\nYou have nothing.\n”;
else

cout << “\nYou have at least one item.\n”;

return 0;
}

Using Vectors 101

t r a p

If you’re using an older compiler, such as Microsoft’s Visual C++ 6.0, you might get some warnings
when you compile this program. That’s because the compiler isn’t implementing the Standard Tem-
plate Library well.

One solution to this issue is to simply ignore the warnings; your program will still run. The best solu-
tion is to use a modern compiler. Luckily for you, I’ve included a great IDE called Dev-C++ with a
modern compiler on the CD-ROM that came with this book. I highly recommend that you install
and use this IDE when you’re working on the programs in this book. After you install Dev-C++,
check out Appendix A, “Creating Your First C++ Program,” on the book’s CD-ROM for a tutorial of
how to get your programs running with Dev-C++.

Preparing to Use Vectors
Before I can declare a vector, I have to include the file that contains its definition.

#include <vector>

All STL components live in the std namespace, so by using the following code (as I typi-
cally do) I can refer to vector without having to precede it with std::.

using namespace std;

Declaring a Vector
Okay, the first thing I do in main() is declare a new vector.

vector<string> inventory;

The preceding line declared an empty vector named inventory, which can contain string
object elements. Declaring an empty vector is fine because it grows in size when you add
new elements.

To declare a vector of your own, write vector followed by the type of objects you want to
use with the vector (surrounded by the < and > symbols), followed by the vector name.

h i n t

There are additional ways to declare a vector. You can declare one with a starting size by specify-
ing a number in parentheses after the vector name.

vector<string> inventory(10);

The preceding code declared a vector to hold string object elements with a starting size of 10. You
can also initialize all of a vector’s elements to the same value when you declare it. You simply sup-
ply the number of elements followed by the starting value, as in:

Chapter 4 ■ The Standard Template Library: Hangman102

vector<string> inventory(10, “nothing”);

The preceding code declared a vector with a size of 10 and initialized all 10 elements to “nothing”.
Finally, you can declare a vector and initialize it with the contents of another vector.

vector<string> inventory(myStuff);

The preceding code created a new vector with the same contents as the vector myStuff.

Using the push_back() Member Function
Next I give the hero the same three starting items as in the previous version of the pro-
gram.

inventory.push_back(“sword”);
inventory.push_back(“armor”);
inventory.push_back(“shield”);

The push_back() member function adds a new element to the end of a vector. In the pre-
ceding lines I added “sword”, “armor”, and “shield” to inventory. As a result, inventory[0] is
equal to “sword”, inventory[1] is equal to “armor”, and inventory[2] is equal to “shield”.

Using the size() Member Function
Next I display the number of items the hero has in his possession.

cout << “You have “ << inventory.size() << “ items.\n”;

I get the size of inventory by calling the size() member function with inventory.size(). The
size() member function simply returns the size of a vector. In this case, it returns 3.

Indexing Vectors
Next I display all of the hero’s items.

cout << “\nYour items:\n”;
for (int i = 0; i < inventory.size(); ++i)

cout << inventory[i] << endl;

Just as with arrays, you can index vectors by using the subscripting operator. In fact, the
preceding code is nearly identical to the same section of code from the original Hero’s
Inventory program. The only difference is that I used inventory.size() to specify when the
loop should end.

Next I replace the hero’s first item.

inventory[0] = “battle axe”;

Using Vectors 103

Again, just as with arrays, I use the subscripting operator to assign a new value to an exist-
ing element position.

t r a p

Although vectors are dynamic, you can’t increase a vector’s size by applying the subscripting oper-
ator. For example, the following highly dangerous code snippet does not increase the size of the
vector inventory:

vector<string> inventory; //creating an empty vector

inventory[0] = “sword”; //may cause your program to crash!

Just as with arrays, you can attempt to access a nonexistent element position—but with potentially
disastrous results. The preceding code changed some unknown section of your computer’s memory
and could cause your program to crash. To add a new element at the end of a vector, use the
push_back() member function.

Calling Member Functions of an Element
Next I show the number of letters in the name of the first item in the hero’s inventory.

cout << inventory[0].size() << “ letters in it.\n”;

Just as with arrays, you can access the member functions of a vector element by writing
the element, followed by the member selection operator, followed by the member func-
tion name. Because inventory[0] is equal to “battle axe”, inventory[0].size() returns 10.

Using the pop_back() Member Function
I remove the hero’s shield using

inventory.pop_back();

The pop_back() member function removes the last element of a vector and reduces the vec-
tor size by one. In this case, inventory.pop_back() removes “shield” from inventory because
that was the last element in the vector. Also, the size of inventory is reduced from 3 to 2.

Using the clear() Member Function
Next I simulate the act of a thief robbing the hero of all of his items.

inventory.clear();

The clear() member function removes all of the items of a vector and sets its size to 0.
After the previous line of code executes, inventory is an empty vector.

Chapter 4 ■ The Standard Template Library: Hangman104

Using the empty() Member Function
Finally, I check to see whether the hero has any items in his inventory.

if (inventory.empty())
cout << “\nYou have nothing.\n”;

else
cout << “\nYou have at least one item.\n”;

The vector member function empty() works just like the string member function empty().
It returns true if the vector is empty; otherwise, it returns false. Because inventory is empty
in this case, the program displays the message, You have nothing.

Using Iterators
Iterators are the key to using containers to their fullest potential. With iterators you can,
well, iterate through a sequence container. In addition, important parts of the STL require
iterators. Many container member functions and STL algorithms take iterators as argu-
ments. So if you want to reap the benefits of these member functions and algorithms,
you’ve got to use iterators.

Introducing the Hero’s Inventory 3.0 Program
The Hero’s Inventory 3.0 program acts like its two predecessors, at least at the start. The
program shows off a list of items, replaces the first item, and displays the number of let-
ters in the name of an item. But then the program does something new: It inserts an item
at the beginning of the group, and then it removes an item from the middle of the group.
The program accomplishes all of this by working with iterators. Figure 4.2 shows the pro-
gram in action.

Using Iterators 105

Figure 4.2
The program performs a few vector manipulations that you can accomplish only with iterators.

The code for the program is in the Chapter 4 folder on the CD-ROM that came with this
book; the file name is heros_inventory3.cpp.

// Hero’s Inventory 3.0
// Demonstrates iterators

#include <iostream>
#include <string>
#include <vector>

using namespace std;

int main()
{

vector<string> inventory;
inventory.push_back(“sword”);
inventory.push_back(“armor”);
inventory.push_back(“shield”);

vector<string>::iterator myIterator;
vector<string>::const_iterator iter;

cout << “Your items:\n”;
for (iter = inventory.begin(); iter != inventory.end(); ++iter)

cout << *iter << endl;

cout << “\nYou trade your sword for a battle axe.”;
myIterator = inventory.begin();
*myIterator = “battle axe”;
cout << “\nYour items:\n”;
for (iter = inventory.begin(); iter != inventory.end(); ++iter)

cout << *iter << endl;

cout << “\nThe item name ‘“ << *myIterator << “‘ has “;
cout << (*myIterator).size() << “ letters in it.\n”;

cout << “\nThe item name ‘“ << *myIterator << “‘ has “;
cout << myIterator->size() << “ letters in it.\n”;

cout << “\nYou recover a crossbow from a slain enemy.”;
inventory.insert(inventory.begin(), “crossbow”);
cout << “\nYour items:\n”;
for (iter = inventory.begin(); iter != inventory.end(); ++iter)

cout << *iter << endl;

cout << “\nYour armor is destroyed in a fierce battle.”;
inventory.erase((inventory.begin() + 2));
cout << “\nYour items:\n”;
for (iter = inventory.begin(); iter != inventory.end(); ++iter)

cout << *iter << endl;

Chapter 4 ■ The Standard Template Library: Hangman106

return 0;
}

Declaring Iterators
After I declare a vector for the hero’s inventory and add the same three string objects from
the previous incarnations of the program, I declare an iterator.

vector<string>::iterator myIterator;

The preceding line declared an iterator named myIterator for a vector that contains string
objects. To declare an iterator of you own, follow the same pattern. Write the container
type, followed by the type of objects the container will hold (surrounded by the < and >
symbols), followed by the scope resolution operator (the :: symbol), followed by iterator,
followed by a name for your new iterator.

So what are iterators? Iterators are values that identify a particular element in a container.
Given an iterator, you can access the value of the element. Given the right kind of itera-
tor, you can change the value. Iterators can also move among elements via familiar arith-
metic operators.

A way to think about iterators is to imagine them as Post-it notes that you can stick on a
specific element in a container. An iterator is not one of the elements, but a way to refer
to one. Specifically, I can use myIterator to refer to a particular element of the vector inven-
tory. That is, I can stick the myIterator Post-it note on a specific element in inventory. Once
I’ve done that, I can access the element or even change it through the iterator.

Next, I declare another iterator.

vector<string>::const_iterator iter;

The preceding line of code created a constant iterator named iter for a vector that con-
tains string objects. A constant iterator is just like a regular iterator except that you can’t
use it to change the element to which it refers; the element must remain constant. You can
think of a constant iterator as providing read-only access. However, the iterator itself can
change. This means you can move iter all around the vector inventory as you see fit. You
can’t, however, change the value of any of the elements through iter. With a constant iter-
ator the Post-it can change, but the thing it’s stuck to can’t.

Why would you want to use a constant iterator if it’s a limited version of a regular itera-
tor? First, it makes your intentions clearer. When you use a constant iterator, it’s clear that
you won’t be changing any element to which it refers. Second, it’s safer. You can use a con-
stant iterator to avoid accidentally changing a container element. (If you attempt to
change an element through a constant iterator, you’ll generate a compile error.)

Using Iterators 107

t r a p

Using push_back() might invalidate all iterators referencing the vector.

Is all of this iterator talk a little too abstract for you? Are you tired of analogies about Post-
it notes? Fear not—next, I put an actual iterator to work.

Looping through a Vector
Next I loop through the contents of the vector and display the hero’s inventory.

cout << “Your items:\n”;
for (iter = inventory.begin(); iter != inventory.end(); ++iter)

cout << *iter << endl;

In the preceding code, I used a for loop to move from the first to the last element of inven-
tory. At this general level, this is exactly how I looped through the contents of the vector
in Hero’s Inventory 2.0. But instead of using an integer and the subscripting operator to
access each element, I used an iterator. Basically, I moved the Post-it note through the
entire sequence of elements and displayed the value of each element to which the note is
stuck. There are a lot of new ideas in this little loop, so I’ll tackle them one at a time.

Calling the begin() vector Member Function

In the initialization statement of the loop, I assign the return value of inventory.begin() to
iter. The begin() member function returns an iterator that refers to a container’s first ele-
ment. So in this case, the statement assigns an iterator that refers to the first element of
inventory (the string object equal to “sword”) to iter. Figure 4.3 shows an abstract view of
the iterator returned by a call to inventory.begin(). (Note that the figure is abstract because
the vector inventory doesn’t contain the string literals “sword”, “armor”, and “shield”; it con-
tains string objects.)

Chapter 4 ■ The Standard Template Library: Hangman108

Figure 4.3
A call to inventory.begin() returns an iterator that refers to the first ele-
ment in the vector.

Calling the end() vector Member Function

In the test statement of the loop, I test the return value of inventory.end() against iter to
make sure the two are not equal. The end() member function returns an iterator one past
the last element in a container. This means the loop will continue until iter has moved
through all of the elements in inventory. Figure 4.4 shows an abstract view of the iterator
returned by a call to this member function. (Note that the figure is abstract because the
vector inventory doesn’t contain the string literals “sword”, “armor”, and “shield”; it con-
tains string objects.)

t r a p

The end() vector member function returns an iterator that’s one past the last element in the vec-
tor—not the last element. Therefore, you can’t get a value from the iterator returned by end(). This
might seem counterintuitive, but it works well for loops that move through a container.

Altering an Iterator

The action statement in the loop, ++iter, increments iter, which moves it to the next ele-
ment in the vector. Depending upon the iterator, you can perform other mathematical
operations on iterators to move them around a container. Most often, though, you’ll find
that you simply want to increment an iterator.

Dereferencing an Iterator

In the loop body, I send *iter to cout. By placing the dereference operator (*) in front of
iter, I display the value of the element to which the iterator refers (not the iterator itself).
By placing the dereference operator in front of an iterator, you’re saying, “Treat this as the
thing that the iterator references, not as the iterator itself.”

Using Iterators 109

Figure 4.4
A call to inventory.end() returns an iterator one past the last element of the
vector.

Changing the Value of a Vector Element
Next I change the first element in the vector from the string object equal to “sword” to the
string object equal to “battle axe”. First I set myIterator to reference the first element of
inventory.

myIterator = inventory.begin();

Then I change the value of the first element.

*myIterator = “battle axe”;

Remember, by dereferencing myIterator with *, the preceding assignment statement says,
“Assign “battle axe” to the element that myIterator references.” It does not change
myIterator. After the assignment statement, myIterator still refers to the first element in the
vector.

Just to prove that the assignment worked, I then display all of the elements in inventory.

Accessing Member Functions of a Vector Element
Next I display the number of characters in the name of the first item in the hero’s inven-
tory.

cout << “\nThe item name ‘“ << *myIterator << “‘ has “;

cout << (*myIterator).size() << “ letters in it.\n”;

The code (*myIterator).size() says, “Take the result of dereferencing myIterator and call
that object’s size() member function.” Because myIterator refers to the string object equal
to “battle axe”, the code returns 10.

h i n t

Whenever you dereference an iterator to access a data member or member function, surround the
dereferenced iterator with a pair of parentheses. This ensures that the dot operator will be applied
to the object the iterator references.

The code (*myIterator).size() is not the prettiest, so C++ offers an alternative, more intu-
itive way to express the same thing, which I demonstrate in the next two lines of the pro-
gram.

cout << “\nThe item name ‘“ << *myIterator << “‘ has “;

cout << myIterator->size() << “ letters in it.\n”;

The preceding code does exactly the same thing as the first pair of lines I presented in this
section; it displays the number of characters in “battle axe”. However, notice that I sub-
stitute myIterator->size() for (*myIterator).size(). You can see that the first version (with
the -> symbol) is more readable. The two pieces of code mean exactly the same thing to

Chapter 4 ■ The Standard Template Library: Hangman110

the computer, but the second is easier for humans to use. In general, you can use the ->
operator to access the member functions or data members of an object that an iterator
references.

h i n t

Syntactic sugar is a nicer, alternative syntax. It replaces harsh syntax with something that’s a bit
easier to swallow. As an example, instead of writing the code (*myIterator).size(), I can use the
syntactic sugar provided by the -> operator and write myIterator->size().

Using the insert() vector Member Function
Next I add a new item to the hero’s inventory. This time, though, I don’t add the item to
the end of the sequence; instead, I insert it at the beginning.

inventory.insert(inventory.begin(), “crossbow”);

One form of the insert() member function inserts a new element into a vector just before
the element referred to by a given iterator. You supply two arguments to this version of
insert()—the first is an iterator, and the second is the element to be inserted. In this case,
I inserted “crossbow” into inventory just before the first element. As a result, all of the other
elements will move down by one. This version of the insert() member function returns
an iterator that references the newly inserted element. In this case, I don’t assign the
returned iterator to a variable.

t r a p

Calling the insert() member function on a vector invalidates all of the iterators that reference ele-
ments after the insertion point because all of the elements after the insertion point are shifted
down by one.

Next I show the contents of the vector to prove the insertion worked.

Using the erase() vector Member Function
Next I remove an item from the hero’s inventory. However, this time I don’t remove the
item at the end of the sequence; instead, I remove one from the middle.

inventory.erase((inventory.begin() + 2));

One form of the erase() member function removes an element from a vector. You supply
one argument to this version of erase()—the iterator that references the element you want
to remove. In this case, I passed (inventory.begin() + 2), which is equal to the iterator that
references the third element in inventory. This removes the string object equal to “armor”.

Using Iterators 111

As a result, all of the following elements will move up by one. This version of the erase()
member function returns an iterator that references the element after the element that was
removed. In this case, I don’t assign the returned iterator to a variable.

t r a p

Calling the erase() member function on a vector invalidates all of the iterators that reference elements
after the removal point because all of the elements after the removal point are shifted up by one.

Next I show the contents of the vector to prove the removal worked.

Using Algorithms
The STL defines a group of algorithms that allow you to manipulate elements in contain-
ers through iterators. Algorithms exist for common tasks such as searching, sorting, and
copying container elements. These algorithms are your built-in arsenal of flexible and effi-
cient weapons. By using them, you can leave the mundane task of manipulating container
elements in common ways to the STL so you can concentrate on writing your game. The
powerful thing about these algorithms is that they are generic—the same algorithm can
work with elements of different container types.

Introducing the High Scores Program
The High Scores program creates a vector of high scores. It uses STL algorithms to ran-
domize and then sort the scores. Then the program creates another vector of scores and
merges the two—again with an algorithm. Figure 4.5 illustrates the program.

Chapter 4 ■ The Standard Template Library: Hangman112

Figure 4.5
STL algorithms
randomize, sort,
and merge ele-
ments of vec-
tors of high
scores.

The code for the program is in the Chapter 4 folder on the CD-ROM that came with this
book; the file name is high_scores.cpp.

// High Scores
// Demonstrates algorithms

#include <iostream>
#include <vector>
#include <algorithm>
#include <ctime>
#include <cstdlib>

using namespace std;

int main()
{

vector<int>::const_iterator iter;

cout << “Creating a list of scores.”;
vector<int> scores;
scores.push_back(1500);
scores.push_back(3500);
scores.push_back(7500);

cout << “\nHigh Scores:\n”;
for (iter = scores.begin(); iter != scores.end(); ++iter)

cout << *iter << endl;

cout << “\nRandomizing scores.”;
srand(time(0));
random_shuffle(scores.begin(), scores.end());
cout << “\nHigh Scores:\n”;
for (iter = scores.begin(); iter != scores.end(); ++iter)

cout << *iter << endl;

cout << “\nSorting scores.”;
sort(scores.begin(), scores.end());
cout << “\nHigh Scores:\n”;
for (iter = scores.begin(); iter != scores.end(); ++iter)

cout << *iter << endl;

cout << “\nCreating another list of scores.” ;
vector<int> moreScores;
moreScores.push_back(2000);
moreScores.push_back(4000);
moreScores.push_back(8000);

cout << “\nMore High Scores:\n”;
for (iter = moreScores.begin(); iter != moreScores.end(); ++iter)

cout << *iter << endl;

Using Algorithms 113

cout << “\nMerging both lists.”;
vector<int> allScores(6); //need container big enough to hold results
merge(scores.begin(), scores.end(),

moreScores.begin(), moreScores.end(),
allScores.begin());

cout << “\nAll High Scores:\n”;
for (iter = allScores.begin(); iter != allScores.end(); ++iter)

cout << *iter << endl;

return 0;
}

Preparing to Use Algorithms
So that I can use the STL algorithms, I include the file with their definitions.

#include <algorithm>

As you know, all STL components live in the std namespace. By using the following code
(as I typically do), I can refer to algorithms without having to precede them with std::.

using namespace std;

Using the random_shuffle() Algorithm
After I display the contents of the vector scores, which contains three high scores in ascend-
ing order, I prepare to randomize the scores using the random_shuffle() STL algorithm. Just as
when I generate a single random number, I seed the random number generator before I call
random_shuffle(), so the order of the scores might be different each time I run the program.

srand(time(0));

Then I reorder the scores in a random way.

random_shuffle(scores.begin(), scores.end());

The random_shuffle() algorithm randomizes the elements of a sequence. You must supply
as iterators the starting and ending points of the sequence to shuffle. In this case, I passed
the iterators returned by scores.begin() and scores.end(). These two iterators indicate that
I want to shuffle all of the elements in scores. As a result, scores contains the same scores,
but in some random order.

Finally, I display the scores to prove the randomization worked.

t r i c k

Although you might not want to randomize a list of high scores, random_shuffle() is a valuable
algorithm for games. You can use it for everything from shuffling a deck of cards to mixing up the
order of the enemies a player will encounter in a game level.

Chapter 4 ■ The Standard Template Library: Hangman114

Using the sort() Algorithm
Next I sort the scores.

sort(scores.begin(), scores.end());

The sort() algorithm sorts the elements of a sequence in ascending order. You must sup-
ply as iterators the starting and ending points of the sequence to sort. In this particular
case, I passed the iterators returned by scores.begin() and scores.end(). These two iterators
indicate that I want to sort all of the elements in scores. As a result, scores contains all of
the scores in ascending order.

Next I display the scores to prove the sorting worked.

Using the merge() Algorithm
Next I prepare to use the merge() algorithm to combine two vectors that contain high
scores. First, I create a new vector named moreScores, which contains three additional
scores. Then I create an empty vector with a size of 6 named allScores to hold the results
of the merge. Finally, I merge the vectors scores and moreScores and place the resulting
sequence in allScores.

merge(scores.begin(), scores.end(),
moreScores.begin(), moreScores.end(),
allScores.begin());

The merge() algorithm combines two sorted sequences into another sorted sequence. An
iterator to the resulting sequence is returned. The algorithm requires the beginning and
ending points of the two sequences to be merged and the beginning point of the resulting
sequence. The resulting container must be large enough to accommodate the merged
sequence.

In this case, I passed the iterators returned by scores.begin() and scores.end(), followed by
moreScores.begin() and moreScores.end(), to indicate that I want to merge the entire
sequence of elements in scores with the entire sequence of elements in moreScores. I passed
allScores.begin() to indicate that I want the results put in allScores, starting at the begin-
ning position of the vector.

t r a p

The container you specify to hold the results of merge() must be large enough to accommodate all
of the elements in the newly merged sequence. merge() does not increase the size of the container.

Using Algorithms 115

t r i c k

A very cool property of STL algorithms is that they can work with containers defined outside of the
STL. These containers only have to meet certain requirements. For example, even though string
objects are not part of the STL, you can use appropriate STL algorithms on them. The following code
snippet demonstrates this:

string word = “High Scores”;
random_shuffle(word.begin(), word.end());

The preceding code randomly shuffles the characters in word. As you can see, string objects have
both begin() and end() member functions, which return iterators to the first character and one
past the last character, respectively. That’s part of the reason why STL algorithms work with
strings—because they’re designed to.

Understanding Vector Performance
Like all STL containers, vectors provide game programmers with sophisticated ways to
work with information, but this level of sophistication can come at a performance cost.
And if there’s one thing game programmers obsess about, it’s performance. But fear not,
vectors and other STL containers are incredibly efficient. In fact, they’ve already been used
in published PC and console games. However, these containers have their strengths and
weaknesses; a game programmer needs to understand the performance characteristics of
the various container types so that he can choose the right one for the job.

Examining Vector Growth
Although vectors grow dynamically as needed, every vector has a specific size. When a new
element added to a vector pushes the vector beyond its current size, the computer reallo-
cates memory and might even copy all of the vector elements to this newly seized chunk
of memory real estate. This can cause a performance hit.

The most important thing to keep in mind about program performance is whether or
not you need to care. For example, vector memory reallocation might not occur at a
performance-critical part of your program. In that case, you can safely ignore the cost of
reallocation. Also, with small vectors, the reallocation cost might be insignificant, so again
you can safely ignore it. However, if you need greater control over when these memory
reallocations occur, you have it.

Using the capacity() Member Function

The capacity() vector member function returns the capacity of a vector—in other words,
the number of elements that a vector can hold before a program must reallocate more
memory for it. A vector’s capacity is not the same thing as its size (the number of elements
a vector currently holds). Here’s a code snippet to help drive this point home:

Chapter 4 ■ The Standard Template Library: Hangman116

cout << “Creating a 10 element vector to hold scores.\n”;
vector<int> scores(10, 0); //initialize all 10 elements to 0
cout << “Vector size is :” << scores.size() << endl;
cout << “Vector capacity is:” << scores.capacity() << endl;

cout << “Adding a score.\n”;
scores.push_back(0); //memory is reallocated to accommodate growth
cout << “Vector size is :” << scores.size() << endl;
cout << “Vector capacity is:” << scores.capacity() << endl;

Right after I declare and initialize the vector, this code reports that its size and capacity are
both 10. However, after an element is added, the code reports that the vector’s size is 11
while its capacity is 20. That’s because the capacity of a vector doubles every time a pro-
gram reallocates additional memory for it. In this case, when a new score was added,
memory was reallocated and the capacity of the vector doubled from 10 to 20.

Using the reserve() Member Function

The reserve() member function increases the capacity of a vector to the number supplied
as an argument. Using reserve() gives you control over when a reallocation of additional
memory occurs. Here’s an example:

cout << “Creating a list of scores.\n”;
vector<int> scores(10, 0); //initialize all 10 elements to 0
cout << “Vector size is :” << scores.size() << endl;
cout << “Vector capacity is:” << scores.capacity() << endl;

cout << “Reserving more memory.\n”;
scores.reserve(20); //reserve memory for 10 additional elements
cout << “Vector size is :” << scores.size() << endl;
cout << “Vector capacity is:” << scores.capacity() << endl;

Right after I declare and initialize the vector, this code reports that its size and capacity are
both 10. However, after I reserve memory for 10 additional elements, the code reports that
the vector’s size is still 10 while its capacity is 20.

By using reserve() to keep a vector’s capacity large enough for your purposes, you can
delay memory reallocation to a time of your choosing.

h i n t

As a beginning game programmer, it’s good to be aware of how vector memory allocation works;
however, don’t obsess over it. The first game programs you’ll write probably won’t benefit from a
more manual process of vector memory allocation.

Understanding Vector Performance 117

Examining Element Insertion and Deletion
Adding or removing an element from the end of a vector using the push_back() or
pop_back() member function is extremely efficient. However, adding or removing an ele-
ment at any other point in a vector (for example, using insert() or erase()) can require
more work because you might have to move multiple elements to accommodate the inser-
tion or deletion. With small vectors the overhead is usually insignificant, but with larger
vectors (with, say, thousands of elements), inserting or erasing elements from the middle
of a vector can cause a performance hit.

Fortunately, the STL offers another sequence container type, list, which allows for effi-
cient insertion and deletion regardless of the sequence size. The important thing to
remember is that one container type isn’t the solution for every problem. Although vec-
tor is versatile and perhaps the most popular STL container type, there are times when
another container type might make more sense.

t r a p

Just because you want to insert or delete elements from the middle of a sequence, that doesn’t
mean you should abandon the vector. It might still be a good choice for your game program. It
really depends on how you use the sequence. If your sequence is small or there are only a few inser-
tion and deletions, then a vector might still be your best bet.

Examining Other STL Containers
The STL defines a variety of container types that fall into two basic categories—sequen-
tial and associative. With a sequential container, you can retrieve values in sequence, while
an associative container lets you retrieve values based on keys. vector is an example of a
sequential container.

How might you use these different container types? Consider an online, turned-based
strategy game. You could use a sequential container to store a group of players that you
want to cycle through in, well, sequence. On the other hand, you could use an associative
container to retrieve player information in a random-access fashion by looking up a
unique identifier, such as a player’s IP address.

Finally, the STL defines container adaptors that adapt one of the sequence containers.
Container adaptors represent standard computer science data structures. Although they
are not official containers, they look and feel just like them. Table 4.1 lists the container
types offered by the STL.

Chapter 4 ■ The Standard Template Library: Hangman118

Planning Your Programs
So far all the programs you’ve seen have been pretty simple. The idea of formally planning
any of them on paper probably seems like overkill. It’s not—planning your programs
(even the small ones) will almost always result in time (and frustration) saved.

Programming is a lot like construction. Imagine a contractor building a house for you
without a blueprint. Yikes! You might end up with a house that has 12 bathrooms, no win-
dows, and a front door on the second floor. Plus, it probably would cost you 10 times the
estimated price. Programming is the same way. Without a plan, you’ll likely struggle
through the process and waste time. You might even end up with a program that doesn’t
quite work.

Using Pseudocode
Many programmers sketch out their programs using pseudocode—a language that falls
somewhere between English and a formal programming language. Anyone who under-
stands English should be able to follow pseudocode. Here’s an example: Suppose I want to
make a million dollars. A worthy goal, but what do I do to achieve it? I need a plan. So I
come up with one and put it in pseudocode.

If you can think of a new and useful product
Then that’s your product

Otherwise
Repackage an existing product as your product

Make an infomercial about your product
Show the infomercial on TV
Charge $100 per unit of your product
Sell 10,000 units of your product

Planning Your Programs 119

Table 4.1 STL Containers

Container Type Description

deque Sequential Double-ended queue
list Sequential Linear list
map Associative Collection of key/value pairs in which each key is associated

with exactly one value
multimap Associative Collection of key/value pairs in which each key may be

associated with more than one value
multiset Associative Collection in which each element is not necessarily unique
priority_queue Adaptor Priority queue
queue Adaptor Queue
set Associative Collection in which each element is unique
stack Adaptor Stack
vector Sequential Dynamic array

Even though anyone, even a non-programmer, can understand my plan, my pseudocode
feels vaguely like a program. The first four lines resemble an if statement with an else
clause, and that’s intentional. When you write your plan, you should try to incorporate the
feel of the code that you’re representing with pseudocode.

Using Stepwise Refinement
Your programming plan might not be finished after only one draft. Often pseudocode
needs multiple passes before it can be implemented in programming code. Stepwise refine-
ment is one process used to rewrite pseudocode to make it ready for implementation.
Stepwise refinement is pretty simple. Basically, it means, “Make it more detailed.” By tak-
ing each step described in pseudocode and breaking it down into a series of simpler steps,
the plan becomes closer to programming code. Using stepwise refinement, you keep
breaking down each step until you feel the entire plan could be fairly easily translated into
a program. As an example, take a step from my master plan to make a million dollars.

Create an infomercial about your product

This might seem like too vague of a task. How do you create an infomercial? Using step-
wise refinement, you can break down the single step into several others. So it becomes

Write a script for an infomercial about your product
Rent a TV studio for a day
Hire a production crew
Hire an enthusiastic audience
Film the infomercial

If you feel these five steps are clear and achievable, then that part of the pseudocode has
been thoroughly refined. If you’re still unclear about a step, refine it some more. Continue
with this process and you will have a complete plan—and a million dollars.

Introducing Hangman
In the Hangman program, the computer picks a secret word and the player tries to guess
it one letter at a time. The player is allowed eight incorrect guesses. If he or she fails
to guess the word in time, the player is hanged and the game is over. Figure 4.6 shows
the game.

Chapter 4 ■ The Standard Template Library: Hangman120

Planning the Game
Before I write a single line in C++, I plan the game program using pseudocode.

Create a group of words
Pick a random word from the group as the secret word
While player hasn’t made too many incorrect guesses and hasn’t guessed
the secret word

Tell player how many incorrect guesses he or she has left
Show player the letters he or she has guessed
Show player how much of the secret word he or she has guessed
Get player’s next guess
While player has entered a letter that he or she has already guessed

Get player’s guess
Add the new guess to the group of used letters
If the guess is in the secret word

Tell the player the guess is correct
Update the word guessed so far with the new letter

Otherwise
Tell the player the guess is incorrect
Increment the number of incorrect guesses the player has made

If the player has made too many incorrect guesses
Tell the player that he or she has been hanged

Otherwise
Congratulate the player on guessing the secret word

Although the pseudocode doesn’t account for every line of C++ I’ll write, I think it does
a good job describing what I need to do. Then I begin writing the program.

Introducing Hangman 121

Figure 4.6
The Hangman game in action

Setting Up the Program
As usual, I start with some comments and include the files I need.

// Hangman
// The classic game of hangman

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <ctime>
#include <cctype>

using namespace std;

Notice that I include a new file—cctype. It’s part of the standard library and it includes
functions for converting characters to uppercase, which I use so I can compare apples to
apples (uppercase to uppercase) when I compare individual characters.

Initializing Variables and Constants
Next I start the main() function and initialize variables and constants for the game.

int main()
{

//setup
const int MAX_WRONG = 8; //maximum number of incorrect guesses allowed

vector<string> words; //collection of possible words to guess
words.push_back(“GUESS”);
words.push_back(“HANGMAN”);
words.push_back(“DIFFICULT”);

srand(time(0));
random_shuffle(words.begin(), words.end());
const string THE_WORD = words[0]; //word to guess
int wrong = 0; //number of incorrect guesses
string soFar(THE_WORD.size(), ‘-’); //word guessed so far
string used = “”; //letters already guessed

cout << “Welcome to Hangman. Good luck!\n”;

MAX_WRONG is the maximum number of incorrect guesses the player can make. words is a vec-
tor of possible words to guess. I randomize words using the random_shuffle() algorithm, and
then I assign the first word in the vector to THE_WORD, which is the secret word the player
must guess. wrong is the number of incorrect guesses the player has made. soFar is the word
guessed so far by the player. soFar starts out as a series of dashes—one for each letter in
the secret word. When the player guesses a letter that’s in the secret word, I replace the
dash at the corresponding position with the letter.

Chapter 4 ■ The Standard Template Library: Hangman122

Entering the Main Loop
Next I enter the main loop, which continues until the player has made too many incorrect
guesses or has guessed the word.

//main loop
while ((wrong < MAX_WRONG) && (soFar != THE_WORD))
{

cout << “\n\nYou have “ << (MAX_WRONG - wrong) << “ incorrect guesses left.\n”;
cout << “\nYou’ve used the following letters:\n” << used << endl;
cout << “\nSo far, the word is:\n” << soFar << endl;

Getting the Player’s Guess
Next I get the player’s guess.

char guess;
cout << “\n\nEnter your guess: “;
cin >> guess;
guess = toupper(guess); //make uppercase since secret word in uppercase
while (used.find(guess) != string::npos)
{

cout << “\nYou’ve already guessed “ << guess << endl;
cout << “Enter your guess: “;
cin >> guess;
guess = toupper(guess);

}

used += guess;

if (THE_WORD.find(guess) != string::npos)
{

cout << “That’s right! “ << guess << “ is in the word.\n”;

//update soFar to include newly guessed letter
for (int i = 0; i < THE_WORD.length(); ++i)

if (THE_WORD[i] == guess)
soFar[i] = guess;

}
else
{

cout << “Sorry, “ << guess << “ isn’t in the word.\n”;
++wrong;

}
}

I convert the guess to uppercase using the function uppercase(), which is defined in the file
cctype. I do this so I can compare uppercase letters to uppercase letters when I’m check-
ing a guess against the letters of the secret word.

Introducing Hangman 123

If the player guesses a letter that he or she has already guessed, I make the player guess
again. If the player guesses a letter correctly, I update the word guessed so far. Otherwise,
I tell the player the guess is not in the secret word and I increase the number of incorrect
guesses the player has made.

Ending the Game
At this point, the player has guessed the word or has made one too many incorrect guesses.
Either way, the game is over.

//shut down
if (wrong == MAX_WRONG)

cout << “\nYou’ve been hanged!”;
else

cout << “\nYou guessed it!”;

cout << “\nThe word was “ << THE_WORD << endl;

return 0;
}

I congratulate the player or break the bad news that he or she has been hanged. Then I
reveal the secret word.

Summary
In this chapter, you should have learned the following concepts:

■ The Standard Template Library (STL) is a powerful collection of programming
code that provides containers, algorithms, and iterators.

■ Containers are objects that let you store and access collections of values of the
same type.

■ Algorithms defined in the STL can be used with its containers and provide com-
mon functions for working with groups of objects.

■ Iterators are objects that identify elements in containers and can be manipulated to
move among elements.

■ Iterators are the key to using containers to their fullest. Many of the container
member functions require iterators, and the STL algorithms require them, too.

■ To get the value referenced by an iterator, you must dereference the iterator using
the dereference operator (*).

■ A vector is one kind of sequential container provided by the STL. It acts like a
dynamic array.

Chapter 4 ■ The Standard Template Library: Hangman124

■ It’s very efficient to iterate through a vector. It’s also very efficient to insert or
remove an element from the end of a vector.

■ It can be inefficient to insert or delete elements from the middle of a vector, espe-
cially if the vector is large.

■ Pseudocode, which falls somewhere between English and a programming lan-
guage, is used to plan programs.

■ Stepwise refinement is a process used to rewrite pseudocode to make it ready for
implementation.

Questions and Answers
Q: Why is the STL important?

A: Because it saves game programmers time and effort. The STL provides commonly
used container types and algorithms.

Q: Is the STL fast?

A: Definitely. The STL has been honed by hundreds of programmers to eke out as
much performance as possible on each supported platform.

Q: When should I use a vector instead of an array?

A: Almost always. Vectors are efficient and flexible. They do require a little more
memory than arrays, but this tradeoff is almost always worth the benefits.

Q: Is a vector as fast as an array?

A: Accessing a vector element can be just as fast as accessing an array element. Also,
iterating though a vector can be just as fast as iterating through an array.

Q: If I can use the subscripting operator with vectors, why would I ever need itera-
tors?

A: There are several reasons. First, many of the vector member functions require iter-
ators. (insert() and erase() are two examples.) Second, STL algorithms require
iterators. And third, you can’t use the subscripting operator with most of the STL
containers, so you’re going to have to learn to use iterators sooner or later.

Q: Which is the best way to access elements of a vector—through iterators or
through the subscripting operator?

A: It depends. If you need random-element access, then the subscripting operator is
a natural fit. If you need to use STL algorithms, then you must use iterators.

Q: What about iterating through the elements of a vector? Should I use the sub-
scripting operator or an iterator?

A: You can use either method. However, an advantage of using an iterator is that it
gives you the flexibility to substitute a different STL container in place of a vector
(such as a list) without much code changing.

Questions and Answers 125

Q: Why does the STL define more than one sequential container type?

A: Different sequential container types have different performance properties.
They’re like tools in a toolbox; each tool is best suited for a different job.

Q: What are container adaptors?

A: Container adaptors are based on one of the STL sequence containers; they repre-
sent standard computer data structures. Although they are not official containers,
they look and feel just like them.

Q: What’s a stack?

A: A data structure in which elements are removed in the reverse order from how
they were added. This means that the last element added is the first one removed.
This is just like a real-life stack, from which you remove the last item you placed
on the top of the stack.

Q: What’s a queue?

A: A data structure in which elements are removed in the same order in which they
were added. This is just like a real-life queue, such as a line of people in which the
first person in line gets served first.

Q: What’s a double-ended queue?

A: A queue in which elements can be added or removed from either end.

Q: What’s a priority queue?

A: A data structure that supports finding and removing the element with the highest
priority.

Q: When would I use pseudocode?

A: Any time you want to plan a program or section of code.

Q: When would I use stepwise refinement?

A: When you want to get even more detailed with your pseudocode.

Discussion Questions
1. Why should a game programmer use the STL?

2. What are the advantages of a vector over an array?

3. What types of game objects might you store with a vector?

4. How do performance characteristics of a container type affect the decision to
use it?

5. Why is program planning important?

Chapter 4 ■ The Standard Template Library: Hangman126

Exercises
1. Write a program using vectors and iterators that allows a user to maintain a list of

his or her favorite games. The program should allow the user to list all game titles,
add a game title, and remove a game title.

2. Assuming that scores is a vector that holds elements of type int, what’s wrong with
the following code snippet (meant to increment each element)?
vector<int>::iterator iter;
//increment each score
for (iter = scores.begin(); iter != scores.end(); ++iter)

iter++;

3. Write pseudocode for the Word Jumble game from Chapter 3.

Exercises 127

This page intentionally left blank

129

Functions: Mad Lib

Chapter 5

E
very program you’ve seen so far has consisted of one function—main(). However,
once your programs reach a certain size or level of complexity, it becomes hard to
work with them like this. Fortunately, there are ways to break up big programs into

smaller, bite-sized chunks of code. In this chapter, you’ll learn about one way—creating
new functions. Specifically, you’ll learn to:

■ Write new functions

■ Accept values into your new functions through parameters

■ Return information from your new functions through return values

■ Work with global variables and constants

■ Overload functions

■ Inline functions

Creating Functions
C++ lets you write programs with multiple functions. Your new functions work just like
the ones that are part of the standard language—they go off and perform a task and then
return control to your program. A big advantage of writing new functions is it allows you
to break up your code into manageable pieces. Just like the functions you’ve already
learned about from the standard library, your new functions should do one job well.

Introducing the Instructions Program
The results of the Instructions program are pretty basic—a few lines of text that are the
beginning of some game instructions. From the looks of the output, Instructions seems

like a program you could have written way back in Chapter 1. But this program has a fresh
element working behind the scenes—a new function. Take a look at Figure 5.1 to see the
modest results of the code.

The code for the program is in the Chapter 5 folder on the CD-ROM that came with this
book; the file name is instructions.cpp.

// Instructions
// Demonstrates writing new functions

#include <iostream>

using namespace std;

// function prototype (declaration)
void instructions();

int main()
{

instructions();
return 0;

}

// function definition
void instructions()
{

cout << “Welcome to the most fun you’ve ever had with text!\n\n”;
cout << “Here’s how to play the game...\n”;

}

Chapter 5 ■ Functions: Mad Lib130

Figure 5.1
The instructions are displayed by a function.

Declaring Functions
Before you can call a function you’ve written, you have to declare it. One way to declare a
function is to write a function prototype—code that describes the function. You write a
prototype by listing the return value of the function (or void if the function returns no
value), followed by the name of the function, followed by a list of parameters between a
set of parentheses. Parameters receive the values sent as arguments in a function call.

Just before the main() function, I write a function prototype.

void instructions();

In the preceding code, I declared a function named instructions that doesn’t return a
value. (You can tell this because I used void as the return type.) The function also takes no
values so it has no parameters. (You can tell this because there’s nothing between the
parentheses.)

Prototypes are not the only way to declare a function. Another way to accomplish the
same thing is to let the function definition act as its own declaration. To do that, you sim-
ply have to put your function definition before the call to the function.

h i n t

Although you don’t have to use prototypes, they offer a lot of benefits—not the least of which is
making your code clearer.

Defining Functions
Defining functions means writing all the code that makes the function tick. You define a
function by listing the return value of the function (or void if the function returns no
value), followed by the name of the function, followed by a list of parameters between a
set of parentheses—just like a function prototype (except you don’t end the line with a
semicolon). This is called the function header. Then you create a block with curly braces
that contains the instructions to be executed when the function is executed. This is called
the function body.

At the end of the Instructions program, I define my simple instructions() function, which
displays some game instructions. Because the function doesn’t return any value, I don’t
need to use a return statement like I do in main(). I simply end the function definition with
a closing curly brace.

void instructions()
{

cout << “Welcome to the most fun you’ve ever had with text!\n\n”;
cout << “Here’s how to play the game...\n”;

}

Creating Functions 131

t r a p

A function definition must match its prototype in return type and function name; otherwise, you’ll
generate a compile error.

Calling Functions
You call your own functions the same way you call any other function—by writing the
function’s name followed by a pair of parentheses that encloses a valid list of arguments.
In main(), I call my newly minted function simply with:

instructions();

This line invokes instructions(). Whenever you call a function, control of the program
jumps to that function. In this case, it means control jumps to instructions() and the pro-
gram executes the function’s code, which displays the game instructions. When a function
finishes, control returns to the calling code. In this case, it means control returns to main().
The next statement in main() (return 0;) is executed and the program ends.

Understanding Abstraction
By writing and calling functions, you practice what’s known as abstraction. Abstraction
lets you think about the big picture without worrying about the details. In this program,
I can simply use the function instructions() without worrying about the details of dis-
playing the text. All I have to do is call the function with one line of code, and it gets the
job done.

You might be surprised where you find abstraction, but people use it all the time. For
example, consider two employees at a fast-food restaurant. If one tells the other that he
just filled a Number 3 and “sized it,” the other employee knows that the first employee
took a customer’s order, went to the heat lamps, grabbed a burger, went over to the deep
fryer, filled their biggest cardboard container with french fries, went to the soda fountain,
grabbed their biggest cup, filled it with soda, gave it all to the customer, took the cus-
tomer’s money, and gave the customer change. Not only would this level of detail make
for a boring conversation, but it’s unnecessary. Both employees understand what it means
to fill a Number 3 and “size it.” They don’t have to concern themselves with all the details
because they’re using abstraction.

Using Parameters and Return Values
As you’ve seen with standard library functions, you can provide a function with values and
get a value back. For example, with the toupper() function, you provide a character, and the
function returns the uppercase version of it. Your own functions can also receive values and
return a value. This allows your functions to communicate with the rest of your program.

Chapter 5 ■ Functions: Mad Lib132

Introducing the Yes or No Program
The Yes or No program asks the user typical questions a gamer might have to answer. First,
the program asks the user to indicate yes or no. Then the program gets more specific and
asks whether the user wants to save his game. Again, the results of the program are not
remarkable; it’s their implementation that’s interesting. Each question is posed by a differ-
ent function that communicates with main(). Figure 5.2 shows a sample run of the program.

The code for the program is in the Chapter 5 folder on the CD-ROM that came with this
book; the file name is yes_or_no.cpp.

// Yes or No
// Demonstrates return values and parameters

#include <iostream>
#include <string>

using namespace std;

char askYesNo1();
char askYesNo2(string question);

int main()
{

char answer1 = askYesNo1();
cout << “Thanks for answering: “ << answer1 << “\n\n”;

char answer2 = askYesNo2(“Do you wish to save your game?”);
cout << “Thanks for answering: “ << answer2 << “\n”;

Using Parameters and Return Values 133

Figure 5.2
Each question is asked by a separate function, and information is passed between
these functions and main().

return 0;
}

char askYesNo1()
{

char response1;
do
{

cout << “Please enter ‘y’ or ‘n’: “;
cin >> response1;

} while (response1 != ‘y’ && response1 != ‘n’);

return response1;
}

char askYesNo2(string question)
{

char response2;
do
{

cout << question << “ (y/n): “;
cin >> response2;

} while (response2 != ‘y’ && response2 != ‘n’);

return response2;
}

Returning a Value
You can return a value from a function to send information back to the calling code. To
return a value, you need to specify a return type and then return a value of that type from
the function.

Specifying a Return Type

The first function I declare, askYesNo1(), returns a char value. You can tell this from the
function prototype before main().

char askYesNo1();

You can also see this from the function definition after main().

char askYesNo1()

Using the return Statement

askYesNo1() asks the user to enter y or n and keeps asking until he does. Once the user
enters a valid character, the function wraps up with the following line, which returns the
value of response1.

Chapter 5 ■ Functions: Mad Lib134

return response1;

Notice that response1 is a char value. It has to be because that’s what I promised to return
in both the function prototype and function definition.

A function ends whenever it hits a return statement. It’s perfectly acceptable for a function
to have more than one return. This just means that the function has several points at
which it can end.

t r i c k

You don’t have to return a value with a return statement. You can use return by itself in a func-
tion that returns no value (one that indicates void as its return type) to end the function.

Using a Returned Value

In main(), I call the function with the following line, which assigns the return value of the
function to answer1.

char answer1 = askYesNo1();

This means that answer1 is assigned either ‘y’ or ‘n’—whichever character the user entered
when prompted by askYesNo1().

Next in main(), I display the value of answer1 for all to see.

Accepting Values into Parameters
You can send a function values that it accepts into its parameters. This is the most com-
mon way to get information into a function.

Specifying Parameters

The second function I declare, askYesNo2(), accepts a value into a parameter. Specifically, it
accepts a value of type string. You can tell this from the function prototype before main().

char askYesNo2(string question);

h i n t

You don’t have to use parameter names in a prototype; all you have to include are the parameter
types. For example, the following is a perfectly valid prototype that declares askYesNo2(), a func-
tion with one string parameter that returns a char.

char askYesNo2(string);

Even though you don’t have to use parameter names in prototypes, it’s a good idea to do so. It
makes your code clearer, and it’s worth the minor effort.

Using Parameters and Return Values 135

From the header of askYesNo2(), you can see that the function accepts a string object as a
parameter and names that parameter question.

char askYesNo2(string question)

Unlike prototypes, you must specify parameter names in a function definition. You use a
parameter name inside a function to access the parameter value.

t r a p

The parameter types specified in a function prototype must match the parameter types listed in the
function definition. If they don’t, you’ll generate a nasty compile error.

Passing Values to Parameters

The askYesNo2() function is an improvement over askYesNo1(). The new function allows
you to ask your own personalized question by passing a string prompt to the function. In
main(), I call askYesNo2() with:

char answer2 = askYesNo2(“Do you wish to save your game?”);

This statement calls askYesNo2() and passes the string literal argument “Do you wish to save
your game?” to the function.

Using Parameter Values

askYesNo2() accepts “Do you wish to save your game?” into its parameter question, which
acts like any other variable in the function. In fact, I display question with:

cout << question << “ (y/n): “;

h i n t

Actually, there’s a little more going on behind the scenes here. When the string literal “Do you wish
to save your game?” is passed to question, a string object equal to the string literal is created
and the string object gets assigned to question.

Just like askYesNo1(), askYesNo2() continues to prompt the user until he enters y or n. Then
the function returns that value and ends.

Back in main(), the returned char value is assigned to answer2, which I then display.

Understanding Encapsulation
You might not see the need for return values when you are using your own functions. Why
not just use the variables response1 and resopnse2 back in the main()? Because you can’t;
response1 and resopnse2 don’t exist outside of the functions in which they were defined. In

Chapter 5 ■ Functions: Mad Lib136

fact, no variable you create in a function, including its parameters, can be directly accessed
outside its function. This is a good thing, and it is called encapsulation. Encapsulation
helps keep independent code truly separate by hiding or encapsulating the details. That’s
why you use parameters and return values—to communicate only the information that
needs to be exchanged. Plus, you don’t have to keep track of variables you create within a
function in the rest of your program. As your programs get large, this is a great benefit.

Encapsulation might sound a lot like abstraction. That’s because they’re closely related.
Encapsulation is a principal of abstraction. Abstraction saves you from worrying about
the details, while encapsulation hides the details from you. As an example, consider a tele-
vision remote control with volume up and down buttons. When you use a TV remote to
change the volume, you’re employing abstraction because you don’t need to know what
happens inside the TV for it to work. Now suppose the TV remote has 10 volume levels.
You can get to them all through the remote, but you can’t directly access them. That is, you
can’t get a specific volume number directly. You can only press the up volume and down
volume buttons to eventually get to the level you want. The actual volume number is
encapsulated and not directly available to you.

Understanding Software Reuse
You can reuse functions in other programs. For example, since asking the user a yes or no
question is such a common thing to do in a game, you could create an askYesNo() function
and use it in all of your future game programs. So writing good functions not only saves
you time and energy in your current game project, but it can save you effort in future
ones, too.

i n t h e r e a l w o r l d

It’s always a waste of time to reinvent the wheel, so software reuse—employing existing software
and other elements in new projects—is a technique that game companies take to heart. The ben-
efits of software reuse include

■ Increased company productivity. By reusing code and other elements that already exist,
such as a graphics engine, game companies can get their projects done with less effort.

■ Improved software quality. If a game company already has a tested piece of code, such
as a networking module, then the company can reuse the code with the knowledge that it’s
bug-free.

■ Improved software performance. Once a game company has a high-performance piece of
code, using it again not only saves the company the trouble of reinventing the wheel, it saves
them from reinventing a less efficient one.

Understanding Software Reuse 137

You can reuse code you’ve written by copying from one program and pasting it into
another, but there is a better way. You can divide up a big game project into multiple files.
You’ll learn about this technique in Chapter 10, “Inheritance and Polymorphism:
Blackjack.”

Working with Scopes
A variable’s scope determines where the variable can be seen in your program. Scopes
allow you to limit the accessibility of variables and are the key to encapsulation, helping
keep separate parts of your program, such as functions, apart from each other.

Introducing the Scoping Program
The Scoping program demonstrates scopes. The program creates three variables with the
same name in three separate scopes. It displays the values of these variables, and you can
see that even though they all have the same name, the variables are completely separate
entities. Figure 5.3 shows the results of the program.

The code for the program is in the Chapter 5 folder on the CD-ROM that came with this
book; the file name is scoping.cpp.

// Scoping
// Demonstrates scopes

#include <iostream>

Chapter 5 ■ Functions: Mad Lib138

Figure 5.3
Even though they have the same name, all three variables have a unique exis-
tence in their own scopes.

using namespace std;

void func();

int main()
{

int var = 5; // local variable in main()
cout << “In main() var is: “ << var << “\n\n”;

func();

cout << “Back in main() var is: “ << var << “\n\n”;

{
cout << “In main() in a new scope var is: “ << var << “\n\n”;

cout << “Creating new var in new scope.\n”;
int var = 10; // variable in new scope, hides other variable named var
cout << “In main() in a new scope var is: “ << var << “\n\n”;

}

cout << “At end of main() var created in new scope no longer exists.\n”;
cout << “At end of main() var is: “ << var << “\n”;

return 0;
}

void func()
{

int var = -5; // local variable in func()
cout << “In func() var is: “ << var << “\n\n”;

}

Working with Separate Scopes
Every time you use curly braces to create a block, you create a scope. Functions are one
example of this. Variables declared in a scope aren’t visible outside of that scope. This
means that variables declared in a function aren’t visible outside of that function.

Variables declared inside a function are considered local variables—they’re local to the
function. This is what makes functions encapsulated.

You’ve seen many local variables in action already. I define yet another local variable in
main() with:

int var = 5; // local variable in main()

This line declares and initializes a local variable named var. I send the variable to cout in
the next line of code.

Working with Scopes 139

cout << “In main() var is: “ << var << “\n\n”;

This works just as you’d expect—5 is displayed.

Next I call func(). Once I enter the function, I’m in a separate scope outside of the scope
defined by main(). As a result, I can’t access the variable var that I defined in main(). This
means that when I next define a variable named var in func() with the following line, this
new variable is completely separate from the variable named var in main().

int var = -5; // local variable in func()

The two have no effect on each other, and that’s the beauty of scopes. When you write a
function, you don’t have to worry if another function uses the same variable names.

Then, when I display the value of var in func() with the following line, the computer dis-
plays -5.

cout << “In func() var is: “ << var << “\n\n”;

That’s because, as far as the computer can see in this scope, there’s only one variable
named var—the local variable I declared in this function.

Once a scope ends, all of the variables declared in that scope cease to exist. They’re said to
go out of scope. So next, when func() ends, its scope ends. This means all of the variables
declared in func() are destroyed. As a result, the var I declared in func() with a value of -5
is destroyed.

After func() ends, control returns to main() and picks up right where it left off. Next the
following line is executed, which sends var to cout.

cout << “Back in main() var is: “ << var << “\n\n”;

The value of the var local to main() (5) is displayed again.

You might be wondering what happened to the var I created in main() while I was in func().
Well, the variable wasn’t destroyed because main() hadn’t yet ended. (Program control sim-
ply took a small detour to func().) When a program momentarily exits one function to
enter another, the computer saves its place in the first function, keeping safe the values of
all of its local variables, which are reinstated when control returns to the first function.

h i n t

Parameters act just like local variables in functions.

Working with Nested Scopes
You can create a nested scope with a pair of curly braces in an existing scope. That’s what
I do next in main(), with:

Chapter 5 ■ Functions: Mad Lib140

{
cout << “In main() in a new scope var is: “ << var << “\n\n”;

cout << “Creating new var in new scope.\n”;
int var = 10; // variable in new scope, hides other variable named var
cout << “In main() in a new scope var is: “ << var << “\n\n”;

}

This new scope is a nested scope in main(). The first thing I do in this nested scope is dis-
play var. If a variable hasn’t been declared in a scope, the computer looks up the levels
of nested scopes one at a time to find the variable you requested. In this case, because var
hasn’t been declared in this nested scope, the computer looks one level up to the scope that
defines main() and finds var. As a result, the program displays that variable’s value—5.

However, the next thing I do in this nested scope is declare a new variable named var and
initialize it to 10. Now when I send var to cout, 10 is displayed. This time the computer
doesn’t have to look up any levels of nested scopes to find var; there’s a var local to this
scope. And don’t worry, the var I first declared in main() still exists; it’s simply hidden in
this nested scope by the new var.

t r a p

Although you can declare variables with the same name in a series of nested scopes, it’s not a good
idea because it can lead to confusion.

Next, when the nested scope ends, the var that was equal to 10 goes out of scope and ceases
to exist. However, the first var I created is still around, so when I display var for the last time
in main() with the following line, the program displays 5.

cout << “At end of main() var is: “ << var << “\n”;

h i n t

When you define variables inside for loops, while loops, if statements, and switch statements,
these variables don’t exist outside their structures. They act like variables declared in a nested
scope. For example, in the following code, the variable i doesn’t exist outside the loop.

for(int i = 0; i < 10; ++i)
cout << i;

// i doesn’t exist outside the loop

But beware—some older compilers, such as Microsoft Visual C++ 6.0, don’t properly implement
this functionality of standard C++.

I recommend that you use an IDE with a modern compiler, such as Dev-C++, which is on the CD-
ROM that came with this book. After you install Dev-C++, check out Appendix A, “Creating Your
First C++ Program,” on the book’s CD-ROM for a tutorial of how to get your programs running with
Dev-C++.

Working with Scopes 141

Using Global Variables
Through the magic of encapsulation, the functions you’ve seen are all totally sealed off
and independent from each other. The only way to get information into them is through
their parameters, and the only way to get information out of them is from their return val-
ues. Well, that’s not completely true. There is another way to share information among
parts of your program—through global variables (variables that are accessible from any
part of your program).

Introducing the Global Reach Program
The Global Reach program demonstrates global variables. The program shows how you
can access a global variable from anywhere in your program. It also shows how you can
hide a global variable in a scope. Finally, it shows that you can change a global variable
from anywhere in your program. Figure 5.4 shows the results of the program.

The code for the program is in the Chapter 5 folder on the CD-ROM that came with this
book; the file name is global_reach.cpp.

// Global Reach
// Demonstrates global variables

#include <iostream>

using namespace std;

int glob = 10; // global variable

Chapter 5 ■ Functions: Mad Lib142

Figure 5.4
You can access and change global variables from anywhere in a program—but
they can also be hidden in a scope as well.

void access_global();
void hide_global();
void change_global();

int main()
{

cout << “In main() glob is: “ << glob << “\n\n”;
access_global();

hide_global();
cout << “In main() glob is: “ << glob << “\n\n”;

change_global();
cout << “In main() glob is: “ << glob << “\n\n”;

return 0;
}

void access_global()
{

cout << “In access_global() glob is: “ << glob << “\n\n”;
}

void hide_global()
{

int glob = 0; // hide global variable glob
cout << “In hide_global() glob is: “ << glob << “\n\n”;

}

void change_global()
{

glob = -10; // change global variable glob
cout << “In change_global() glob is: “ << glob << “\n\n”;

}

Declaring Global Variables
You declare global variables outside of any function in your program file. That’s what I do
in the following line, which creates a global variable named glob initialized to 10.

int glob = 10; // global variable

Accessing Global Variables
You can access a global variable from anywhere in your program. To prove it, I display glob
in main() with:

cout << “In main() glob is: “ << glob << “\n\n”;

Using Global Variables 143

The program displays 10 because as a global variable, glob is available to any part of the
program. To show this again, I next call access_global(), and the computer executes the
following code in that function.

cout << “In access_global() glob is: “ << glob << “\n\n”;

Again, 10 is displayed. That makes sense because I’m displaying the exact same variable in
each function.

Hiding Global Variables
You can hide a global variable like any other variable in a scope; you simply declare a new
variable with the same name. That’s exactly what I do next, when I call hide_global(). The
key line in that function doesn’t change the global variable glob; instead, it creates a new
variable named glob, local to hide_global(), that hides the global variable.

int glob = 0; // hide global variable glob

As a result, when I send glob to cout next in hide_global() with the following line, 0 is dis-
played.

cout << “In hide_global() glob is: “ << glob << “\n\n”;

The global variable glob remains hidden in the scope of hide_global() until the function
ends.

To prove that the global variable was only hidden and not changed, next I display glob
back in main() with:

cout << “In main() glob is: “ << glob << “\n\n”;

Once again, 10 is displayed.

t r a p

Although you can declare variables in a function with the same name as a global variable, it’s not
a good idea because it can lead to confusion.

Altering Global Variables
Just as you can access a global variable from anywhere in your program, you can alter one
from anywhere in your program, too. That’s what I do next, when I call the change_global()
function. The key line of the function assigns –10 to the global variable glob.

glob = -10; // change global variable glob

To show that it worked, I display the variable in change_global() with:

cout << “In change_global() glob is: “ << glob << “\n\n”;

Chapter 5 ■ Functions: Mad Lib144

Then, back in main(), I send glob to cout with:

cout << “In main() glob is: “ << glob << “\n\n”;

Because the global variable glob was changed, –10 is displayed.

Minimizing the Use of Global Variables
Just because you can doesn’t mean you should. This is a good programming motto.
Sometimes things are technically possible, but not a good idea. Using global variables is
an example of this. In general, global variables make programs confusing because it can
be difficult to keep track of their changing values. You should limit your use of global vari-
ables as much as possible.

Using Global Constants
Unlike global variables, which can make your programs confusing, global constants—
constants that can be accessed from anywhere in your program—can help make programs
clearer. You declare a global constant much like you declare a global variable—by declar-
ing it outside of any function. And because you’re declaring a constant, you need to use
the const keyword. For example, the following line defines a global constant (assuming the
declaration is outside of any function) named MAX_ENEMIES with a value of 10 that can be
accessed anywhere in the program.

const int MAX_ENEMIES = 10;

t r a p

Just like with global variables, you can hide a global constant by declaring a local constant with the
same name. However, you should avoid this because it can lead to confusion.

How exactly can global constants make game programming code clearer? Well, suppose
you’re writing an action game in which you want to limit the total number of enemies that
can blast the poor player at once. Instead of using a numeric literal everywhere, such as 10,
you could define a global constant MAX_ENEMIES that’s equal to 10. Then whenever you see
that global constant name, you know exactly what it stands for.

One caveat: You should only use global constants if you need a constant value in more
than one part of your program. If you only need a constant value in a specific scope (such
as in a single function), use a local constant instead.

Using Default Arguments
When you write a function in which a parameter almost always gets passed the same
value, you can save the caller the effort of constantly specifying this value by using a

Using Default Arguments 145

default argument—a value assigned to a parameter if none is specified. Here’s a concrete
example. Suppose you have a function that sets the graphics display. One of your para-
meters might be bool fullScreen, which tells the function whether to display the game in
full screen or windowed mode. Now, if you think the function will often be called with
true for fullScreen, you could give that parameter a default argument of true, saving the
caller the effort of passing true to fullScreen whenever the caller invokes this display-set-
ting function.

Introducing the Give Me a Number Program
The Give Me a Number program asks the user for two different numbers in two different
ranges. The same function is called each time the user is prompted for a number.
However, each call to this function uses a different number of arguments because this
function has a default argument for the lower limit. This means the caller can omit an
argument for the lower limit, and the function will use a default value automatically.
Figure 5.5 shows the results of the program.

The code for the program is in the Chapter 5 folder on the CD-ROM that came with this
book; the file name is give_me_a_number.cpp.

// Give Me a Number
// Demonstrates default function arguments

#include <iostream>
#include <string>

using namespace std;

Chapter 5 ■ Functions: Mad Lib146

Figure 5.5
A default argument is used for the lower limit the first time the user is prompted
for a number.

int askNumber(int high, int low = 1);

int main()
{

int number = askNumber(5);
cout << “Thanks for entering: “ << number << “\n\n”;

number = askNumber(10, 5);
cout << “Thanks for entering: “ << number << “\n\n”;

return 0;
}

int askNumber(int high, int low)
{

int num;
do
{

cout << “Please enter a number” << “ (“ << low << “ - “ << high
<< “): “;

cin >> num;
} while (num > high || num < low);

return num;
}

Specifying Default Arguments
The function askNumber() has two parameters—high and low. You can tell this from the
function prototype.

int askNumber(int high, int low = 1);

Notice that the second parameter, low, looks like it’s assigned a value. In a way, it is. The 1
is a default argument meaning that if a value isn’t passed to low when the function is
called, low is assigned 1. You specify default arguments by using = followed by a value after
a parameter name.

t r a p

Once you specify a default argument in a list of parameters, you must specify default arguments for
all remaining parameters. So the following prototype is valid:

void setDisplay(int height, int width, int depth = 32, bool fullScreen = true);

while this one is illegal:

void setDisplay(int width, int height, int depth = 32, bool fullScreen);

Using Default Arguments 147

By the way, you don’t repeat the default argument in the function definition, as you can
see in the function definition of askNumber().

int askNumber(int high, int low)

Assigning Default Arguments to Parameters
The askNumber() function asks the user for a number between an upper and a lower limit.
The function keeps asking until the user enters a number within the range, and then it
returns the number. I first call the function in main() with:

int number = askNumber(5);

As a result of this code, the parameter high in askNumber() is assigned 5. Because I don’t pro-
vide any value for the second parameter, low, it gets assigned the default value of 1. This
means the function prompts the user for a number between 1 and 5.

t r a p

When you are calling a function with default arguments, once you omit an argument, you
must omit arguments for all remaining parameters. For example, given the prototype
void setDisplay(int height, int width, int depth = 32, bool fullScreen = true); a valid
call to the function would be

setDisplay(800, 600);

while an illegal call would be

setDisplay(800, 600, false);

Once the user enters a valid number, askNumber() returns that value and ends. Back in
main(), the value is assigned to number and displayed.

Overriding Default Arguments
Next I call askNumber() again with:

number = askNumber(10, 5);

This time I pass a value for low—5. This is perfectly fine; you can pass an argument for any
parameter with a default argument, and the value you pass will override the default. In
this case, it means that low is assigned 5.

As a result, the user is prompted for a number between 5 and 10. Once the user enters a
valid number, askNumber() returns that value and ends. Back in main(), the value is assigned
to number and displayed.

Chapter 5 ■ Functions: Mad Lib148

Overloading Functions
You’ve seen how you must specify a parameter list and a single return type for each func-
tion you write. But what if you want a function that’s more versatile—one that can accept
different sets of arguments? For example, suppose you want to write a function that per-
forms a 3D transformation on a set of vertices that are represented as floats, but you want
the function to work with ints as well. Instead of writing two separate functions with two
different names, you could use function overloading so that a single function could han-
dle the different parameter lists. This way, you could call one function and pass vertices as
either floats or ints.

Introducing the Triple Program
The Triple program triples the values 5 and gamer. The program triples these values using
a single function that’s been overloaded to work with an argument of two different types:
int and string. Figure 5.6 shows a sample run of the program.

The code for the program is in the Chapter 5 folder on the CD-ROM that came with this
book; the file name is triple.cpp.

// Triple
// Demonstrates function overloading

#include <iostream>
#include <string>

using namespace std;

Overloading Functions 149

Figure 5.6
Function overloading allows you to triple the values of two different types using
the same function name.

int triple(int number);
string triple(string text);

int main()
{

cout << “Tripling 5: “ << triple(5) << “\n\n”;
cout << “Tripling ‘gamer’: “ << triple(“gamer”);

return 0;
}

int triple(int number)
{

return (number * 3);
}

string triple(string text)
{

return (text + text + text);
}

Creating Overloaded Functions
To create an overloaded function, you simply need to write multiple function definitions
with the same name and different parameter lists. In the Triple program, I write two def-
initions for the function triple(), each of which specifies a different type as its single argu-
ment. Here are the function prototypes:

int triple(int number);
string triple(string text);

The first takes an int argument and returns an int. The second takes a string object and
returns a string object.

In each function definition, you can see that I return triple the value sent. In the first func-
tion, I return the int sent, tripled. In the second function, I return the string sent, repeated
three times.

t r a p

To implement function overloading, you need to write multiple definitions for the same function
with different parameter lists. Notice that I didn’t mention anything about return types. That’s
because if you write two function definitions in which only the return type is different, you’ll gen-
erate a compile error. For example, you cannot have both of the following prototypes in a program:

int Bonus(int);

float Bonus(int);

Chapter 5 ■ Functions: Mad Lib150

Calling Overloaded Functions
You can call an overloaded function the same way you call any other function, by using its
name with a set of valid arguments. But with overloaded functions, the compiler (based
on the argument values) determines which definition to invoke. For example, when I call
triple() with the following line and use an int as the argument, the compiler knows to
invoke the definition that takes an int. As a result, the function returns the int 15.

cout << “Tripling 5: “ << triple(5) << “\n\n”;

I call triple() again with:

cout << “Tripling ‘gamer’: “ << triple(“gamer”);

Because I use a string literal as the argument, the compiler knows to invoke the definition
of the function that takes a string object. As a result, the function returns the string object
equal to gamergamergamer.

Inlining Functions
There’s a small performance cost associated with calling a function. Normally this isn’t a
big deal because the cost is pretty small. However, for tiny functions (such as one or two
lines), it’s sometimes possible to speed up program performance by inlining them. By
inlining a function, you ask the compiler to make a copy of the function everywhere it’s
called. As a result, program control doesn’t have to jump to a different location each time
the function is called.

Introducing the Taking Damage Program
The Taking Damage program simulates what happens to a character’s health as the char-
acter takes radiation damage. The character loses half of his health each round.
Fortunately, the program runs only three rounds, so we’re spared the sad end of the char-
acter. The program inlines the tiny function that calculates the character’s new health.
Figure 5.7 shows the program results.

Inlining Functions 151

Figure 5.7
The character
approaches his demise
quite efficiently as his
health decreases
through an inlined
function.

The code for the program is in the Chapter 5 folder on the CD-ROM that came with this
book; the file name is taking_damage.cpp.

// Taking Damage
// Demonstrates function inlining

#include <iostream>

int radiation(int health);

using namespace std;

int main()
{

int health = 80;
cout << “Your health is “ << health << “\n\n”;

health = radiation(health);
cout << “After radiation exposure your health is “ << health << “\n\n”;

health = radiation(health);
cout << “After radiation exposure your health is “ << health << “\n\n”;

health = radiation(health);
cout << “After radiation exposure your health is “ << health << “\n\n”;

return 0;
}

inline int radiation(int health)
{

return (health / 2);
}

Specifying Functions for Inlining
To mark a function for inlining, simply put inline before the function defintion. That’s
what I do when I define the following function:

inline int radiation(int health)

Note that you don’t use inline in the function declaration.

int radiation(int health);

By flagging the function with inline, you ask the compiler to copy the function directly
into the calling code. This saves the overhead of making the function call. That is, program
control doesn’t have to jump to another part of your code. For small functions, this can
result in a performance boost.

Chapter 5 ■ Functions: Mad Lib152

However, inlining is not a silver bullet for performance. In fact, indiscriminate inlining
can lead to worse performance because inlining a function creates extra copies of it, which
can dramatically increase memory consumption.

h i n t

When you inline a function, you really make a request to the compiler, which has the ultimate deci-
sion on whether or not to inline the function. If your compiler thinks that inlining won’t boost per-
formance, it won’t inline the function.

Calling Inlined Functions
Calling an inlined function is no different than calling a non-inlined function, as you see
with my first call to radiation().

health = radiation(health);

This line of code assigns health one half of its original value.

Assuming that the compiler grants my request for inlining, this code doesn’t result in a
function call. Instead, the compiler places the code to halve health right at this place in the
program. In fact, the compiler does this for all three calls to the function.

i n t h e r e a l w o r l d

Although obsessing about performance is a game programmer’s favorite hobby, there’s a danger in
focusing too much on speed. In fact, the approach many developers take is to first get their game
programs working well before they tweak for small performance gains. At that point, programmers
will profile their code by running a utility (a profiler) that analyzes where the game program spends
its time. If a programmer sees bottlenecks, he or she might consider hand optimizations such as
function inlining.

Introducing the Mad Lib Game
The Mad Lib game asks for the user’s help in creating a story. The user supplies the name
of a person, a plural noun, a number, and a verb. The program takes all of this informa-
tion and uses it to create a personalized story. Figure 5.8 shows a sample run of the
program.

Introducing the Mad Lib Game 153

The code for the program is in the Chapter 5 folder on the CD-ROM that came with this
book; the file name is mad_lib.cpp.

Setting Up the Program
As usual, I start the program with some comments and include the necessary files.

// Mad-Lib
// Creates a story based on user input

#include <iostream>
#include <string>

using namespace std;

string askText(string prompt);
int askNumber(string prompt);
void tellStory(string name, string noun, int number, string bodyPart,

string verb);

You can tell from my function prototypes that I have three functions in addition to
main()—askText(), askNumber(), and tellStory().

The main() Function
The main() function calls all of the other functions. It calls the function askText() to get a
name, plural noun, body part, and verb from the user. It calls askNumber() to get a number
from the user. It calls tellStory() with all of the user-supplied information to generate and
display the story.

Chapter 5 ■ Functions: Mad Lib154

Figure 5.8
After the user provides all of the necessary information, the program displays the
literary masterpiece.

int main()
{

cout << “Welcome to Mad Lib.\n\n”;
cout << “Answer the following questions to help create a new story.\n”;

string name = askText(“Please enter a name: “);
string noun = askText(“Please enter a plural noun: “);
int number = askNumber(“Please enter a number: “);
string bodyPart = askText(“Please enter a body part: “);
string verb = askText(“Please enter a verb: “);

tellStory(name, noun, number, bodyPart, verb);

return 0;
}

The askText() Function
The askText() function gets a string from the user. The function is versatile and takes a
parameter of type string, which it uses to prompt the user. Because of this, I’m able to call
this single function to ask the user for a variety of different pieces of information, includ-
ing a name, plural noun, body part, and verb.

string askText(string prompt)
{

string text;
cout << prompt;
cin >> text;
return text;

}

t r a p

Remember that this simple use of cin only works with strings that have no whitespace in them
(such as tabs or spaces). So when a user is prompted for a body part, he can enter bellybutton,
but medulla oblongata will cause a problem for the program.

There are ways to compensate for this, but that really requires a discussion of something called
streams, which is beyond the scope of this book. So use cin in this way, but just be aware of its lim-
itations.

The askNumber() Function
The askNumber() function gets a number from the user. Although I only call it once in the
program, it’s versatile because it takes a parameter of type string that it uses to prompt the
user.

Introducing the Mad Lib Game 155

int askNumber(string prompt)
{

int num;
cout << prompt;
cin >> num;
return num;

}

The tellStory() Function
The tellStory() function takes all of the information entered by the user and uses it to dis-
play a personalized story.

void tellStory(string name, string noun, int number, string bodyPart,
string verb)

{
cout << “\nHere’s your story:\n”;
cout << “The famous explorer “;
cout << name;
cout << “ had nearly given up a life-long quest to find\n”;
cout << “The Lost City of “;
cout << noun;
cout << “ when one day, the “;
cout << noun;
cout << “ found the explorer.\n”;
cout << “Surrounded by “;
cout << number;
cout << “ “ << noun;
cout << “, a tear came to “;
cout << name << “‘s “;
cout << bodyPart << “.\n”;
cout << “After all this time, the quest was finally over. “;
cout << “And then, the “;
cout << noun << “\n”;
cout << “promptly devoured “;
cout << name << “. “;
cout << “The moral of the story? Be careful what you “;
cout << verb;
cout << “ for.”;

}

Summary
In this chapter, you should have learned the following concepts:

■ Functions allow you to break up your programs into manageable chunks.

■ One way to declare a function is to write a function prototype—code that lists the
return value, name, and parameter types of a function.

Chapter 5 ■ Functions: Mad Lib156

■ Defining a function means writing all the code that makes the function tick.

■ You can use the return statement to return a value from a function. You can also
use return to end a function that has void as its return type.

■ A variable’s scope determines where the variable can be seen in your program.

■ Global variables are accessible from any part of your program. In general, you
should try to limit your use of global variables.

■ Global constants are accessible from any part of your program. Using global con-
stants can make your program code clearer.

■ Default arguments are assigned to a parameter if no value for the parameter is
specified in the function call.

■ Function overloading is the process of creating multiple definitions for the same
function, each of which has a different set of parameters.

■ Function inlining is the process of asking the compiler to inline a function—
meaning that the compiler should make a copy of the function everywhere in the
code where the function is called. Inlining very small functions can sometimes
yield a performance boost.

Questions and Answers
Q: Why should I write functions?

A: Functions allow you to break up your programs into logical pieces. These pieces
result in smaller, more manageable chunks of code, which are easier to work with
than a single monolithic program.

Q: What’s encapsulation?

A: At its core, encapsulation is about keeping things separate. Function encapsula-
tion provides that variables declared in a function are not accessible outside the
function, for example.

Q: What’s the difference between an argument and a parameter?

A: An argument is what you use in a function call to pass a value to a function. A
parameter is what you use in a function definition to accept values passed to a
function.

Q: Can I have more than one return statement in a function?

A: Sure. In fact, you might want multiple return statements to specify different end
points of a function.

Q: What’s a local variable?

A: A variable that’s defined in a scope. All variables defined in a function are local
variables; they’re local to that function.

Questions and Answers 157

Q: What does it mean to hide a variable?

A: A variable is hidden when you declare it inside a new scope with the same name
as a variable in an outer scope. As a result, you can’t get to the variable in the
outer scope by using its variable name in the inner scope.

Q: When does a variable go out of scope?

A: A variable goes out of scope when the scope in which it was created ends.

Q: What does it mean when a variable goes out of scope?

A: It means the variable ceases to exist.

Q: What’s a nested scope?

A: A scope created within an existing scope.

Q: Must an argument have the same name as the parameter to which it’s passed?

A: No. You’re free to use different names. It’s only the value that’s passed from a
function call to a function.

Q: Can I write one function that calls another?

A: Of course. In fact, whenever you write a function that you call from main(), you’re
doing just that. In addition, you can write a function (other than main()) that calls
another function.

Q: What is code profiling?

A: It’s the process of recording how much CPU time various parts of a program use.

Q: Why profile code?

A: To determine any bottlenecks in a program. Sometimes it makes sense to revisit
these sections of code in an attempt to optimize them.

Q: When do programmers profile code?

A: Usually toward the end of the programming of a game project.

Q: What’s premature optimization?

A: An attempt to optimize code too early in the development process. Code opti-
mization usually makes sense near the end of programming a game project.

Discussion Questions
1. How does function encapsulation help you write better programs?

2. How can global variables make code confusing?

3. How can global constants make code clearer?

4. What are the pros and cons of optimizing code?

5. How can software reuse benefit the game industry?

Chapter 5 ■ Functions: Mad Lib158

Exercises
1. What’s wrong with the following prototype?

int askNumber(int low = 1, int high);

2. Rewrite the Hangman game from Chapter 4 using functions. Include a function to
get the player’s guess and another function to determine whether the player’s guess
is in the secret word.

3. Using default arguments, write a function that asks the user for a number and
returns that number. The function should accept a string prompt from the calling
code. If the caller doesn’t supply a string for the prompt, the function should use a
generic prompt. Next, using function overloading, write a function that achieves
the same results.

Exercises 159

This page intentionally left blank

161

References: Tic-Tac-Toe

Chapter 6

T
he concept of references is simple, but its implications are profound. In this chap-
ter, you’ll learn about references and how they can help you write more efficient
game code. Specifically, you’ll learn to:

■ Create references

■ Access and change referenced values

■ Pass references to functions to alter argument values or for efficiency

■ Return references from a function for efficiency or to alter values

Using References
A reference provides another name for a variable. Whatever you do to a reference is done
to the variable to which it refers. You can think of a reference as a nickname for a vari-
able—another name that the variable goes by. In the first program in this chapter, I’ll
show you how to create references. Then, in the next few programs, I’ll show you why
you’d want to use references and how they can improve your game programs.

Introducing the Referencing Program
The Referencing program demonstrates references. The program declares and initializes a
variable to hold a score and then creates a reference that refers to the variable. The pro-
gram displays the score using the variable and the reference to show that they access the
same single value. Next, the program shows that this single value can be altered through
either the variable or the reference. Figure 6.1 illustrates the program.

The code for the program is in the Chapter 6 folder on the CD-ROM that came with this
book; the file name is referencing.cpp.

// Referencing
// Demonstrates using references

#include <iostream>

using namespace std;

int main()
{

int myScore = 1000;
int& mikesScore = myScore; //create a reference

cout << “myScore is: “ << myScore << “\n”;
cout << “mikesScore is: “ << mikesScore << “\n\n”;

cout << “Adding 500 to myScore\n”;
myScore += 500;
cout << “myScore is: “ << myScore << “\n”;
cout << “mikesScore is: “ << mikesScore << “\n\n”;

cout << “Adding 500 to mikesScore\n”;
mikesScore += 500;
cout << “myScore is: “ << myScore << “\n”;
cout << “mikesScore is: “ << mikesScore << “\n\n”;

return 0;
}

Chapter 6 ■ References: Tic-Tac-Toe162

Figure 6.1
The variable myScore and the reference mikesScore are both names for the
single score value.

Creating References
The first thing I do in main() is create a variable to hold my score.

int myScore = 1000;

Then I create a reference that refers to myScore.

int& mikesScore = myScore; //create a reference

The preceding line declares and initializes mikesScore, a reference that refers to myScore.
mikesScore is an alias for myScore. mikesScore does not hold its own int value; it’s simply
another way to get at the int value that myScore holds.

To declare and initialize a reference, start with the type of value to which the reference will
refer, followed by the reference operator (&), followed by the reference name, followed by =,
followed by the variable to which the reference will refer.

t r i c k

Sometimes programmers prefix a reference name with the letter “r” to remind them that they’re
working with a reference. A programmer might include the following lines:

int playerScore = 1000;
int& rScore = playerScore;

One way to understand references is to think of them as nicknames. For example, suppose
you’ve got a friend named Eugene, and he (understandably) asks to be called by a nick-
name—Gibby (not much of an improvement, but it’s what Eugene wants). So when you’re
at a party with your friend, you can call him over using either Eugene or Gibby. Your
friend is only one person, but you can call him using either his name or a nickname. This
is the same as how a variable and a reference to that variable work. You can get to a single
value stored in a variable by using its variable name or the name of a reference to that vari-
able. Finally, whatever you do, try not to name your variables Eugene—for their sakes.

t r a p

Because a reference must always refer to another value, you must initialize the reference when you
declare it. If you don’t, you’ll get a compile error. The following line is quite illegal:

int& mikesScore; //don’t try this at home!

Accessing Referenced Values
Next I send both myScore and mikesScore to cout.

cout << “myScore is: “ << myScore << “\n”;
cout << “mikesScore is: “ << mikesScore << “\n\n”;

Using References 163

Both lines of code display 1000 because they each access the same single chunk of memory
that stores the number 1000. Remember, there is only one value, and it is stored in the
variable myScore. mikesScore simply provides another way to get to that value.

Altering Referenced Values
Next I increase the value of myScore by 500.

myScore += 500;

When I send myScore to cout, 1500 is displayed, just as you’d expect. When I send mikesScore
to cout, 1500 is also displayed. Again, that’s because mikesScore is just another name for the
variable myScore. In essence, I’m sending the same variable to cout both times.

Next I increase mikesScore by 500.

mikesScore += 500;

Because mikesScore is just another name for myScore, the preceding line of code increases
the value of myScore by 500. So when I next send myScore to cout, 2000 is displayed. When I
send mikesScore to cout, 2000 is displayed again.

t r a p

A reference always refers to the variable with which it was initialized. You can’t reassign a refer-
ence to refer to another variable so, for example, the results of the following code might not be
obvious.

int myScore = 1000;
int& mikesScore = myScore;
int larrysScore = 2500;
mikesScore = larrysScore; //may not do what you think!

The line mikesScore = larrysScore; does not reassign the reference mikesScore so it refers to
larrysScore because a reference can’t be reassigned. However, because mikesScore is just another
name for myScore, the code mikesScore = larrysScore; is equivalent to myScore = larrysScore;,
which assigns 2500 to myScore.And after all is said and done, myScore becomes 2500 and mikesScore
still refers to myScore.

Passing References to Alter Arguments
Now that you’ve seen how references work, you might be wondering why you’d ever use
them. Well, references come in quite handy when you are passing variables to functions
because when you pass a variable to a function, the function gets a copy of the variable.
This means that the original variable you passed (called the argument variable) can’t be
changed. Sometimes this might be exactly what you want because it keeps the argument

Chapter 6 ■ References: Tic-Tac-Toe164

variable safe and unalterable. But other times you might want to change an argument
variable from inside the function to which it was passed. You can accomplish this by using
references.

Introducing the Swap Program
The Swap program defines two variables—one that holds my pitifully low score and
another that holds your impressively high score. After displaying the scores, the program
calls a function meant to swap the scores. But because only copies of the score values are
sent to the function, the argument variables that hold the scores are unchanged. Next, the
program calls another swap function. This time, through the use of references, the argu-
ment variables’ values are successfully exchanged—giving me the great big score and leav-
ing you with the small one. Figure 6.2 shows the program in action.

The code for the program is in the Chapter 6 folder on the CD-ROM that came with this
book; the file name is referencing.cpp.

// Swap
// Demonstrates passing references to alter argument variables

#include <iostream>

using namespace std;

void badSwap(int x, int y);
void goodSwap(int& x, int& y);

Passing References to Alter Arguments 165

Figure 6.2
Passing references allows goodSwap() to alter the argument variables.

int main()
{

int myScore = 150;
int yourScore = 1000;
cout << “Original values\n”;
cout << “myScore: “ << myScore << “\n”;
cout << “yourScore: “ << yourScore << “\n\n”;

cout << “Calling badSwap()\n”;
badSwap(myScore, yourScore);
cout << “myScore: “ << myScore << “\n”;
cout << “yourScore: “ << yourScore << “\n\n”;

cout << “Calling goodSwap()\n”;
goodSwap(myScore, yourScore);
cout << “myScore: “ << myScore << “\n”;
cout << “yourScore: “ << yourScore << “\n”;

return 0;
}

void badSwap(int x, int y)
{

int temp = x;
x = y;
y = temp;

}

void goodSwap(int& x, int& y)
{

int temp = x;
x = y;
y = temp;

}

Passing by Value
After declaring and initializing myScore and yourScore, I send them to cout. As you’d expect,
150 and 1000 are displayed. Next I call badSwap().

When you specify a parameter the way you’ve seen so far (as an ordinary variable, not as
a reference), you’re indicating that the argument for that parameter will be passed by value,
meaning that the parameter will get a copy of the argument variable and not access to the
argument variable itself. By looking at the function header of badSwap(), you can tell that
a call to the function passes both arguments by value.

void badSwap(int x, int y)

Chapter 6 ■ References: Tic-Tac-Toe166

This means that when I call badSwap() with the following line, copies of myScore and
yourScore are sent to the parameters, x and y.

badSwap(myScore, yourScore);

Specifically, x is assigned 150 and y is assigned 1000. As a result, nothing I do with x and y
in the function badSwap() will have any effect on myScore and yourScore.

When the guts of badSwap() execute, x and y do exchange values—x becomes 1000 and y
becomes 150. However, when the function ends, both x and y go out of scope and cease to
exist. Control then returns to main(), where myScore and yourScore haven’t changed. Then,
when I send myScore and yourScore to cout, 150 and 1000 are displayed again. Sadly, I still
have the small score and you still have the large one.

Passing by Reference
It’s possible to give a function access to an argument variable by passing a parameter a ref-
erence to the argument variable. As a result, anything done to the parameter will be done
to the argument variable. To pass by reference, you must first declare the parameter as a
reference.

You can tell that a call to goodSwap() passes both arguments by reference by looking at the
function header.

void goodSwap(int& x, int& y)

This means that when I call goodSwap() with the following line, the parameter x will refer
to myScore and the parameter y will refer to yourScore.

goodSwap(myScore, yourScore);

This means that x is just another name for myScore and y is just another name for yourScore.
When goodSwap() executes and x and y exchange values, what really happens is that myScore
and yourScore exchange values.

After the function ends, control returns to main(), where I send myScore and yourScore to
cout. This time 1000 and 150 are displayed. The variables have exchanged values. I’ve taken
the large score and left you with the small one. Success at last!

Passing References for Efficiency
Passing a variable by value creates some overhead because you must copy the variable
before you assign it to a parameter. When we’re talking about variables of simple, built-in
types, such as an int or a float, the overhead is negligible. But a large object, such as one
that represents an entire 3D world, could be expensive to copy. Passing by reference, on
the other hand, is efficient because you don’t make a copy of an argument variable.
Instead, you simply provide access to the existing object through a reference.

Passing References for Efficiency 167

Introducing the Inventory Displayer Program
The Inventory Displayer program creates a vector of strings that represents a hero’s inven-
tory. The program then calls a function that displays the inventory. The program passes
the displayer function the vector of items as a reference, so it’s an efficient call; the vector
isn’t copied. However, there’s a new wrinkle. The program passes the vector as a special
kind of reference that prohibits the displayer function from changing the vector. Figure
6.3 shows you the program.

The code for the program is in the Chapter 6 folder on the CD-ROM that came with this
book; the file name is inventory_displayer.cpp.

// Inventory Displayer
// Demonstrates constant references

#include <iostream>
#include <string>
#include <vector>

using namespace std;

//parameter vec is a constant reference to a vector of strings
void display(const vector<string>& vec);

int main()
{

vector<string> inventory;
inventory.push_back(“sword”);

Chapter 6 ■ References: Tic-Tac-Toe168

Figure 6.3
The vector inventory is passed in a safe and efficient way to the function
that displays the hero’s items.

inventory.push_back(“armor”);
inventory.push_back(“shield”);

display(inventory);

return 0;
}

//parameter vec is a constant reference to a vector of strings
void display(const vector<string>& vec)
{

cout << “Your items:\n”;
for (vector<string>::const_iterator iter = vec.begin();

iter != vec.end(); ++iter)
cout << *iter << endl;

}

Understanding the Pitfalls of Reference Passing
One way to efficiently give a function access to a large object is to pass it by reference.
However, this introduces a potential problem. As you saw in the Swap program, it opens
up an argument variable to being changed. But what if you don’t want to change the argu-
ment variable? Is there a way to take advantage of the efficiency of passing by reference
while protecting an argument variable’s integrity? Yes, there is. The answer is to pass a con-
stant reference.

h i n t

In general, you should avoid changing an argument variable. Try to write functions that send back
new information to the calling code through a return value.

Declaring Parameters as Constant References
The function display() shows the contents of the hero’s inventory. In the function’s header
I specify one parameter—a constant reference to a vector of string objects named vec.

void display(const vector<string>& vec)

A constant reference is a restricted reference. It acts like any other reference, except you
can’t use it to change the value to which it refers. To create a constant reference, simply put
the keyword const before the type in the reference declaration.

What does this all mean for the function display()? Because the parameter vec is a con-
stant reference, it means display() can’t change vec. In turn, this means that inventory is
safe; it can’t be changed by display(). In general, you can efficiently pass an argument to a
function as a constant reference so it’s accessible, but not changeable. It’s like providing

Passing References for Efficiency 169

the function read-only access to the argument. Although constant references are very use-
ful for specifying function parameters, you can use them anywhere in your program.

h i n t

A constant reference comes in handy in another way. If you need to assign a constant value to a
reference, you have to assign it to a constant reference. (A non-constant reference won’t do.)

Passing a Constant Reference
Back in main(), I create inventory and then call display() with the following line, which
passes the vector as a constant reference.

display(inventory);

This results in an efficient and safe function call. It’s efficient because only a reference is
passed; the vector is not copied. It’s safe because the reference to the vector is a constant
reference; inventory can’t be changed by display().

t r a p

You can’t modify a parameter marked as a constant reference. If you try, you’ll generate a
compile error.

Next, display() lists the elements in the vector using a constant reference to inventory.
Then control returns to main() and the program ends.

Deciding How to Pass Arguments
At this point you’ve seen three different ways to pass arguments—by value, as a reference,
and as a constant reference. So how do you decide which method to use? Here are some
guidelines:

■ By value. Pass by value when an argument variable is one of the fundamental
built-in types, such as bool, int, or float. Objects of these types are so small that
passing by reference doesn’t result in any gain in efficiency. You should also pass by
value when you want the computer to make a copy of a variable. You might want
to use a copy if you plan to alter a parameter in a function, but you don’t want the
actual argument variable to be affected.

■ As a constant reference. Pass a constant reference when you want to efficiently
pass a value that you don’t need to change.

■ As a reference. Pass a reference only when you want to alter the value of the argu-
ment variable. However, you should try to avoid changing argument variables
whenever possible.

Chapter 6 ■ References: Tic-Tac-Toe170

Returning References
Just like when you pass a value, when you return a value from a function, you’re really
returning a copy of the value. Again, for values of the basic built-in types, this isn’t a big
deal. However, it can be an expensive operation if you’re returning a large object.
Returning a reference is an efficient alternative.

Introducing the Inventory Referencer Program
The Inventory Referencer program demonstrates returning references. The program dis-
plays the elements of a vector that holds a hero’s inventory by using returned references.
Then the program changes one of the items through a returned reference. Figure 6.4
shows the results of the program.

The code for the program is in the Chapter 6 folder on the CD-ROM that came with this
book; the file name is inventory_referencer.cpp.

// Inventory Referencer
// Demonstrates returning a reference

#include <iostream>
#include <string>
#include <vector>

using namespace std;

//returns a reference to a string
string& refToElement(vector<string>& vec, int i);

Returning References 171

Figure 6.4
The items in the hero’s inventory are displayed and changed by using returned ref-
erences.

int main()
{

vector<string> inventory;
inventory.push_back(“sword”);
inventory.push_back(“armor”);
inventory.push_back(“shield”);

//displays string that the returned reference refers to
cout << “Sending the returned reference to cout:\n”;
cout << refToElement(inventory, 0) << “\n\n”;

//assigns one reference to another — inexpensive assignment
cout << “Assigning the returned reference to another reference.\n”;
string& rStr = refToElement(inventory, 1);
cout << “Sending the new reference to cout:\n”;
cout << rStr << “\n\n”;

//copies a string object — expensive assignment
cout << “Assigning the returned reference to a string object.\n”;
string str = refToElement(inventory, 2);
cout << “Sending the new string object to cout:\n”;
cout << str << “\n\n”;

//altering the string object through a returned reference
cout << “Altering an object through a returned reference.\n”;
rStr = “Healing Potion”;
cout << “Sending the altered object to cout:\n”;
cout << inventory[1] << endl;

return 0;
}

//returns a reference to a string
string& refToElement(vector<string>& vec, int i)
{

return vec[i];
}

Returning a Reference
Before you can return a reference from a function, you must specify that you’re returning
one. That’s what I do in the refToElement() function header.

string& refToElement(vector<string>& vec, int i)

By using the reference operator in string& when I specify the return type, I’m saying that
the function will return a reference to a string object (not a string object itself). You can
use the reference operator like I did to specify that a function returns a reference to an
object of a particular type. Simply put the reference operator after the type name.

Chapter 6 ■ References: Tic-Tac-Toe172

The body of the function refToElement() contains only one statement, which returns a ref-
erence to the element at position i in the vector.

return vec[i];

Notice that there’s nothing in the return statement to indicate that the function returns a
reference. The function header and prototype determine whether a function returns an
object or a reference to an object.

t r a p

Although returning a reference can be an efficient way to send information back to a calling func-
tion, you have to be careful not to return a reference to an out-of-scope object—an object that
ceases to exist. For example, the following function returns a reference to a string object that no
longer exists after the function ends—and that’s illegal.

string& badReference()
{

string local = “This string will cease to exist once the function ends.”;
return local;

}

One way to avoid this problem is to never return a reference to a local variable.

Displaying the Value of a Returned Reference
After creating inventory, a vector of items, I display the first item through a returned ref-
erence.

cout << refToElement(inventory, 0) << “\n\n”;

The preceding code calls refToElement(), which returns a reference to the element at posi-
tion 0 of inventory and then sends that reference to cout. As a result, sword is displayed.

Assigning a Returned Reference to a Reference
Next I assign a returned reference to another reference with the following line, which takes
a reference to the element in position 1 of inventory and assigns it to rStr.

string& rStr = refToElement(inventory, 1);

This is an efficient assignment because assigning a reference to a reference does not
involve the copying of an object. Then I send rStr to cout, and armor is displayed.

Assigning a Returned Reference to a Variable
Next I assign a returned reference to a variable.

string str = refToElement(inventory, 2);

Returning References 173

The preceding code doesn’t assign a reference to str. It can’t, because str is a string object.
Instead, the code copies the element to which the returned reference refers (the element
in position 2 of inventory) and assigns that new copy of the string object to str. Because
this kind of assignment involves copying an object, it’s more expensive than assigning one
reference to another. Sometimes the cost of copying an object this way is perfectly accept-
able, but you should be aware of the extra overhead associated with this kind of assign-
ment and avoid it when necessary.

Next I send the new string object, str, to cout, and shield is displayed.

Altering an Object through a Returned Reference
You can also alter the object to which a returned reference refers. This means you can
change the hero’s inventory through rStr, as in the following line of code.

rStr = “Healing Potion”;

Because rStr refers to the element in position 1 of inventory, this code changes inventory[1]
so it’s equal to “Healing Potion”. To prove it, I display the element using the following line,
which does indeed show Healing Potion.

cout << inventory[1] << endl;

If I want to protect inventory so a reference returned by refToElement() can’t be used to
change the vector, I should specify the return type of the function as a constant reference.

Introducing the Tic-Tac-Toe Game
In this chapter project, you’ll learn how to create a computer opponent using a dash of AI
(Artificial Intelligence). In the game, the player and computer square off in a high-stakes,
man-versus-machine showdown of Tic-Tac-Toe. The computer plays a formidable (although
not perfect) game and comes with enough attitude to make any match fun. Figure 6.5 shows
the start of a match.

Chapter 6 ■ References: Tic-Tac-Toe174

Figure 6.5
The computer is full
of. . . confidence.

Planning the Game
This game is your most ambitious project yet. You certainly have all the skills you need to
create it, but I’m going to go through a longer planning section to help you get the big pic-
ture and understand how to create a larger program. Remember, the most important part
of programming is planning to program. Without a roadmap, you’ll never get to where
you want to go (or it’ll take you a lot longer as you travel the scenic route).

i n t h e r e a l w o r l d

Game designers work countless hours on concept papers, design documents, and prototypes before
programmers write any game code. Once the design work is done, the programmers start their
work—more planning. It’s only after programmers write their own technical designs that they then
begin coding in earnest. The moral of this story? Plan. It’s easier to scrap a blueprint than a 50-story
building.

Writing the Pseudocode

It’s back to your favorite language that’s not really a language—pseudocode. Because I’ll
be using functions for most of the tasks in the program, I can afford to think about the
code at a pretty abstract level. Each line of pseudocode should feel like one function call.
Later, all I’ll have to do is write the functions that the plan implies. Here’s the pseudocode:

Create an empty Tic-Tac-Toe board
Display the game instructions
Determine who goes first
Display the board
While nobody’s won and it’s not a tie

If it’s the human’s turn
Get the human’s move
Update the board with the human’s move

Otherwise
Calculate the computer’s move
Update the board with the computer’s move

Display the board
Switch turns

Congratulate the winner or declare a tie

Representing the Data

All right, I’ve got a good plan, but it is pretty abstract and talks about throwing around
different elements that aren’t really defined in my mind yet. I see the idea of making a
move as placing a piece on a game board. But how exactly am I going to represent the
game board? Or a piece? Or a move?

Since I’m going to display the game board on the screen, why not just represent a piece as
a single character—an X or an O? An empty piece could just be a space. Therefore, the

Introducing the Tic-Tac-Toe Game 175

board itself could be a vector of chars. There are nine squares on a Tic-Tac-Toe board, so
the vector should have nine elements. Each square on the board will correspond to an ele-
ment in the vector. Figure 6.6 illustrates what I mean.

Each square or position on the board is represented by a number, 0–8. That means the
vector will have nine elements, giving it position numbers 0–8. Because each move indi-
cates a square where a piece should be placed, a move is also just a number, 0–8. That
means a move could be represented as an int.

The side the player and computer play could also be represented by a char—either an ‘X’
or an ‘O’, just like a game piece. A variable to represent the side of the current turn would
also be a char, either an ‘X’ or an ‘O’.

Creating a List of Functions

The pseudocode inspires the different functions I’ll need. I created a list of them, think-
ing about what each will do, what parameters they’ll have, and what values they’ll return.
Table 6.1 shows the results of my efforts.

Chapter 6 ■ References: Tic-Tac-Toe176

Figure 6.6
Each square number corresponds to a position in the vector that represents
the board.

Table 6.1 Tic-Tac-Toe Functions

Function Description

void instructions() Displays the game instructions.
char askYesNo(string question) Asks a yes or no question. Receives a question.

Returns either a ‘y’ or an ‘n’.
int askNumber(string question, Asks for a number within a range. Receives a
int high, int low = 0) question, a low number, and a high number. Returns

a number in the range from low to high.
char humanPiece() Determines the human’s piece. Returns either an ‘X’

or an ‘O’.

Setting Up the Program
The code for the program is in the Chapter 6 folder on the CD-ROM that came with this
book; the file name is tic-tac-toe.cpp. I’ll go over the code here, section by section.

The first thing I do in the program is include the files I need, define some global constants,
and write my function prototypes.

// Tic-Tac-Toe
// Plays the game of tic-tac-toe against a human opponent

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>

using namespace std;

// global constants
const char X = ‘X’;
const char O = ‘O’;
const char EMPTY = ‘ ‘;
const char TIE = ‘T’;
const char NO_ONE = ‘N’;

Introducing the Tic-Tac-Toe Game 177

Table 6.1 Tic-Tac-Toe Functions (continued)

Function Description

char opponent(char piece) Calculates the opposing piece given a piece. Receives
either an ‘X’ or an ‘O’. Returns either an ‘X’ or
an ‘O’.

void displayBoard(const vector<char>& Displays the board on the screen. Receives a board.
board)
char winner(const vector<char>& board) Determines the game winner. Receives a board.

Returns an ‘X’, ‘O’, ‘T’ (to indicate a tie), or ‘N’
(to indicate that no one has won yet).

bool isLegal(const vector<char>& Determines whether a move is legal. Receives a
board, int move) board and a move. Returns either true or false.
int humanMove(const vector<char>& Gets the human’s move. Receives a board and the
board, char human) human’s piece. Returns the human’s move.
int computerMove(vector<char> board, Calculates the computer’s move. Receives a board
char computer) and the computer’s piece. Returns the computer’s

move.
void announceWinner(char winner, Congratulates the winner or declares a tie. Receives
char computer, char human) the winning side, the computer’s piece, and the

human’s piece.

// function prototypes
void instructions();
char askYesNo(string question);
int askNumber(string question, int high, int low = 0);
char humanPiece();
char opponent(char piece);
void displayBoard(const vector<char>& board);
char winner(const vector<char>& board);
bool isLegal(const vector<char>& board, int move);
int humanMove(const vector<char>& board, char human);
int computerMove(vector<char> board, char computer);
void announceWinner(char winner, char computer, char human);

In the global constants section, X is shorthand for the char ‘X’, one of the two pieces in the
game. O represents the char ‘O’, the other piece in the game. EMPTY, also a char, represents
an empty square on the board. It’s a space because when it’s displayed, it will look like an
empty square. TIE is a char that represents a tie game. And NO_ONE is a char used to repre-
sent neither side of the game, which I use to indicate that no one has won yet.

The main() Function
As you can see, the main() function is almost exactly the pseudocode I created earlier.

// main function
int main()
{

int move;
const int NUM_SQUARES = 9;
vector<char> board(NUM_SQUARES, EMPTY);

instructions();
char human = humanPiece();
char computer = opponent(human);
char turn = X;
displayBoard(board);

while (winner(board) == NO_ONE)
{

if (turn == human)
{

move = humanMove(board, human);
board[move] = human;

}
else
{

move = computerMove(board, computer);
board[move] = computer;

}
displayBoard(board);

Chapter 6 ■ References: Tic-Tac-Toe178

turn = opponent(turn);
}

announceWinner(winner(board), computer, human);

return 0;
}

The instructions() Function
This function displays the game instructions and gives the computer opponent a little atti-
tude.

void instructions()
{

cout << “Welcome to the ultimate man-machine showdown: Tic-Tac-Toe.\n”;
cout << “—where human brain is pit against silicon processor\n\n”;

cout << “Make your move known by entering a number, 0 - 8. The number\n”;
cout << “corresponds to the desired board position, as illustrated:\n\n”;

cout << “ 0 | 1 | 2\n”;
cout << “ ————-\n”;
cout << “ 3 | 4 | 5\n”;
cout << “ ————-\n”;
cout << “ 6 | 7 | 8\n\n”;

cout << “Prepare yourself, human. The battle is about to begin.\n\n”;
}

The askYesNo() Function
This function asks a yes or no question. It keeps asking the question until the player enters
either a y or an n. It receives a question and returns either a ‘y’ or an ‘n’.

char askYesNo(string question)
{

char response;
do
{

cout << question << “ (y/n): “;
cin >> response;

} while (response != ‘y’ && response != ‘n’);

return response;
}

Introducing the Tic-Tac-Toe Game 179

The askNumber() Function
This function asks for a number within a range and keeps asking until the player enters a
valid number. It receives a question, a high number, and a low number. It returns a num-
ber within the range specified.

int askNumber(string question, int high, int low)
{

int number;
do
{

cout << question << “ (“ << low << “ - “ << high << “): “;
cin >> number;

} while (number > high || number < low);

return number;
}

If you take a look at this function’s prototype, you can see that the low number has a
default value of 0. I take advantage of this fact when I call the function later in the pro-
gram.

The humanPiece() Function
This function asks the player if he wants to go first, and returns the human’s piece based
on that choice. As the great tradition of Tic-Tac-Toe dictates, the X goes first.

char humanPiece()
{

char go_first = askYesNo(“Do you require the first move?”);
if (go_first == ‘y’)
{

cout << “\nThen take the first move. You will need it.\n”;
return X;

}
else
{

cout << “\nYour bravery will be your undoing... I will go first.\n”;
return O;

}
}

The opponent() Function
This function gets a piece (either an ‘X’ or an ‘O’) and returns the opponent’s piece (either
an ‘X’ or an ‘O’).

char opponent(char piece)
{

Chapter 6 ■ References: Tic-Tac-Toe180

if (piece == X)
return O;

else
return X;

}

The displayBoard() Function
This function displays the board passed to it. Because each element in the board is either
a space, an ‘X’, or an ‘O’, the function can display each one. I use a few other characters
on my keyboard to draw a decent-looking Tic-Tac-Toe board.

void displayBoard(const vector<char>& board)
{

cout << “\n\t” << board[0] << “ | “ << board[1] << “ | “ << board[2];
cout << “\n\t” << “————-”;
cout << “\n\t” << board[3] << “ | “ << board[4] << “ | “ << board[5];
cout << “\n\t” << “————-”;
cout << “\n\t” << board[6] << “ | “ << board[7] << “ | “ << board[8];
cout << “\n\n”;

}

Notice that the vector that represents the board is passed through a constant reference.
This means that the vector is passed efficiently; it is not copied. It also means that the vec-
tor is safeguarded against any changes. Since I plan to simply display the board and not
change it in this function, this is perfect.

The winner() Function
This function receives a board and returns the winner. There are four possible values for
a winner. The function will return either X or O if one of the players has won. If every
square is filled and no one has won, it returns TIE. Finally, if no one has won and there is
at least one empty square, the function returns NO_ONE.

char winner(const vector<char>& board)
{

// all possible winning rows
const int WINNING_ROWS[8][3] = { {0, 1, 2},

{3, 4, 5},
{6, 7, 8},
{0, 3, 6},
{1, 4, 7},
{2, 5, 8},
{0, 4, 8},
{2, 4, 6} };

The first thing to notice is that the vector that represents the board is passed through a
constant reference. This means that the vector is passed efficiently; it is not copied. It also
means that the vector is safeguarded against any change.

Introducing the Tic-Tac-Toe Game 181

In this initial section of the function, I define a constant, two-dimensional array of ints
called WINNING_ROWS, which represents all eight ways to get three in a row and win the game.
Each winning row is represented by a group of three numbers—three board positions that
form a winning row. For example, the group {0, 1, 2} represents the top row—board
positions 0, 1, and 2. The next group, {3, 4, 5}, represents the middle row—board posi-
tions 3, 4, and 5. And so on. . . .

Next I check to see whether either player has won.

const int TOTAL_ROWS = 8;

// if any winning row has three values that are the same (and not EMPTY),
// then we have a winner
for(int row = 0; row < TOTAL_ROWS; ++row)
{

if ((board[WINNING_ROWS[row][0]] != EMPTY) &&
(board[WINNING_ROWS[row][0]] == board[WINNING_ROWS[row][1]]) &&
(board[WINNING_ROWS[row][1]] == board[WINNING_ROWS[row][2]]))

{
return board[WINNING_ROWS[row][0]];

}
}

I loop through each possible way a player can win to see whether either player has three
in a row. The if statement checks to see whether the three squares in question all contain
the same value and are not EMPTY. If so, it means that the row has either three Xs or Os in
it, and one side has won. The function then returns the piece in the first position of this
winning row.

If neither player has won, I check for a tie game.

// since nobody has won, check for a tie (no empty squares left)
if (count(board.begin(), board.end(), EMPTY) == 0)

return TIE;

If there are no empty squares on the board, then the game is a tie. I use the STL count()
algorithm, which counts the number of times a given value appears in a group of con-
tainer elements, to count the number of EMPTY elements in board. If the number is equal to
0, the function returns TIE.

Finally, if neither player has won and the game isn’t a tie, then there is no winner yet. Thus,
the function returns NO_ONE.

// since nobody has won and it isn’t a tie, the game ain’t over
return NO_ONE;

}

Chapter 6 ■ References: Tic-Tac-Toe182

The isLegal() Function
This function receives a board and a move. It returns true if the move is a legal one on the
board or false if the move is not legal. A legal move is represented by the number of an
empty square.

inline bool isLegal(int move, const vector<char>& board)
{

return (board[move] == EMPTY);
}

Again, notice that the vector that represents the board is passed through a constant refer-
ence. This means that the vector is passed efficiently; it is not copied. It also means that
the vector is safeguarded against any change.

You can see that I inlined isLegal(). Modern compilers are quite good at optimizing on
their own; however, since this function is just one line, it’s a good candidate for inlining.

The humanMove() Function
This next function receives a board and the human’s piece. It returns the square number
for where the player wants to move. The function asks the player for the square number
to which he wants to move until the response is a legal move. Then the function returns
the move.

int humanMove(const vector<char>& board, char human)
{

int move = askNumber(“Where will you move?”, (board.size() - 1));
while (!isLegal(move, board))
{

cout << “\nThat square is already occupied, foolish human.\n”;
move = askNumber(“Where will you move?”, (board.size() - 1));

}
cout << “Fine...\n”;
return move;

}

Again, notice that the vector that represents the board is passed through a constant refer-
ence. This means that the vector is passed efficiently; it is not copied. It also means that
the vector is safeguarded against any change.

The computerMove() Function
This function receives the board and the computer’s piece. It returns the computer’s
move. The first thing to notice is that I do not pass the board by reference.

int computerMove(vector<char> board, char computer)

Introducing the Tic-Tac-Toe Game 183

Instead, I choose to pass by value, even though it’s not as efficient as passing by reference.
I pass by value because I need to work with and modify a copy of the board as I place
pieces in empty squares to determine the best computer move. By working with a copy, I
keep the original vector that represents the board safe.

Now on to the guts of the function. Okay, how do I program a bit of AI so the computer
puts up a decent fight? Well, I came up with a basic three-step strategy for choosing a
move.

1. If the computer can win on this move, make that move.

2. If the human can win on his next move, block it.

3. Otherwise, take the best remaining open square. The best square is the center. The
next best squares are the corners, and then the rest of the squares.

The next section of the function implements Step 1.

{
cout << “I shall take square number “;

// if computer can win on next move, make that move
for(int move = 0; move < board.size(); ++move)
{

if (isLegal(move, board))
{

board[move] = computer;
if (winner(board) == computer)
{

cout << move << endl;
return move;

}
// done checking this move, undo it
board[move] = EMPTY;

}
}

I loop through all of the possible moves, 0–8. For each move, I test to see whether the
move is legal. If it is, I put the computer’s piece in that square and check to see whether
this move gives the computer a win. If it does, it means that the computer can win by
moving to that square, so I return the move. If the move doesn’t produce a win for the
computer, I undo the move and try the next move.

If I get to this next section of the function, it means the computer can’t win on its next
move. So I go to Step 2 of my AI strategy and check to see whether the player can win on
his next move.

// if human can win on next move, block that move
char human = opponent(computer);

Chapter 6 ■ References: Tic-Tac-Toe184

for(int move = 0; move < board.size(); ++move)
{

if (isLegal(move, board))
{

board[move] = human;
if (winner(board) == human)
{

cout << move << endl;
return move;

}
// done checking this move, undo it
board[move] = EMPTY;

}
}

I loop through all of the possible moves, 0–8. For each move, I test to see whether the
move is legal. If it is, I put the human’s piece in that square and check to see whether the
move gives the human a win. If it does, I return that move for the computer to block. If
not, I undo the move and try the next move.

If I get to the next point in the function, it means that neither side can win on its next
move. So, implementing Step 3, I look through the list of best moves in order of desir-
ability and take the first legal one.

// the best moves to make, in order
const int BEST_MOVES[] = {4, 0, 2, 6, 8, 1, 3, 5, 7};
// since no one can win on next move, pick best open square
for(int i = 0; i < board.size(); ++i)
{

int move = BEST_MOVES[i];
if (isLegal(move, board))
{

cout << move << endl;
return move;

}
}

}

i n t h e r e a l w o r l d

The Tic-Tac-Toe game considers only the next possible move. Programs that play serious games of
strategy, such as chess, look far deeper into the consequences of individual moves and consider
many levels of moves and countermoves. In fact, good computer chess programs can consider lit-
erally millions of board positions before making a move.

The announceWinner() Function
This function receives the winner of the game, the computer’s piece, and the human’s
piece. The function announces the winner or declares a tie.

Introducing the Tic-Tac-Toe Game 185

void announceWinner(char winner, char computer, char human)
{

if (winner == computer)
{

cout << winner << “‘s won!\n”;
cout << “As I predicted, human, I am triumphant once more — proof\n”;
cout << “that computers are superior to humans in all regards.\n”;

}

else if (winner == human)
{

cout << winner << “‘s won!\n”;
cout << “No, no! It cannot be! Somehow you tricked me, human.\n”;
cout << “But never again! I, the computer, so swear it!\n”;

}

else
{

cout << “It’s a tie.\n”;
cout << “You were most lucky, human, and somehow managed to tie me.\n”;
cout << “Celebrate... for this is the best you will ever achieve.\n”;

}
}

Summary
In this chapter, you should have learned the following concepts:

■ A reference is an alias; it’s another name for a variable.

■ You create a reference using &—the referencing operator.

■ A reference must be initialized when it’s defined.

■ A reference can’t be changed to refer to a different variable.

■ Whatever you do to a reference is done to the variable to which the reference
refers.

■ When you assign a reference to a variable, you create a new copy of the
referenced value.

■ When you pass a variable to a function by value, you pass a copy of the variable to
the function.

■ When you pass a variable to a function by reference, you pass access to the
variable.

■ Passing by reference can be more efficient than passing by value, especially when
you are passing large objects.

Chapter 6 ■ References: Tic-Tac-Toe186

■ Passing a reference provides direct access to the argument variable passed to a
function. As a result, the function can make changes to the argument variable.

■ A constant reference can’t be used to change the value to which it refers. You
declare a constant reference by using the keyword const.

■ You can’t assign a constant reference or a constant value to a non-constant
reference.

■ Passing a constant reference to a function protects the argument variable from
being changed by that function.

■ Changing the value of an argument variable passed to a function can lead to con-
fusion, so game programmers consider passing a constant reference before passing
a non-constant reference.

■ Returning a reference can be more efficient than returning a copy of a value, espe-
cially when you are returning large objects.

■ You can return a constant reference to an object so the object can’t be changed
through the returned reference.

■ A basic technique of game AI is to have the computer consider all of its legal
moves and all of its opponent’s legal replies before deciding which move to
take next.

Questions and Answers
Q: Different programmers put the reference operator (&) in different places when

declaring a reference. Where should I put it?

A: Three basic styles exist with regard to using the referencing operator. Some pro-
grammers opt for int& ref = var;, while others opt for int & ref = var;. Still oth-
ers opt for int &ref = var;. The computer is fine with all three. There are cases to
be made for each style; however, the most important thing is to be consistent.

Q: Why can’t I initialize a non-constant reference with a constant value?

A: Because a non-constant reference allows you to change the value to which it
refers.

Q: If I initialize a constant reference with a non-constant variable, can I change the
value of the variable?

A: Not through the constant reference because when you declare a constant refer-
ence, you’re saying that the reference can’t be used to change the value to which it
refers (even if that value can be changed by other means).

Questions and Answers 187

Q: How does passing a constant reference save overhead?

A: When you pass a large object to a function by value, your program makes a copy
of the object. This can be an expensive operation depending on the size of the
object. Passing a reference is like passing only access to the large object; it is an
inexpensive operation.

Q: Can I make a reference to a reference?

A: Not exactly. You can assign one reference to another reference, but the new refer-
ence will simply refer to the value to which the original reference refers.

Q: What happens if I declare a reference without initializing it?

A: Your compiler should complain because it’s illegal.

Q: Why should I avoid changing the value of a variable that I pass through a refer-
ence?

A: Because it could lead to confusion. It’s impossible to tell from only a function call
whether a variable is being passed to change its value.

Q: Does that mean I should always pass a constant reference?

A: No. You can pass a non-constant reference to a function, but to most game pro-
grammers, this signals that you intend to change the argument variable’s value.

Q: If I don’t change the argument variables passed to functions, how should I get
new information back to the calling code?

A: Use return values.

Q: Can I pass a literal through a non-constant reference?

A: No. If you try to pass a literal as a non-constant reference, you’ll generate a com-
pile error.

Q: Is it impossible to pass a literal to a parameter that accepts a reference?

A: No, you can pass a literal as a constant reference.

Q: What happens when I return an object from a function?

A: Normally, your program creates a copy of the object and returns that. This can be
an expensive operation, depending on the size of the object.

Q: Why return a reference?

A: It can be more efficient because returning a reference doesn’t involve copying an
object.

Q: How can I lose the efficiency of returning a reference?

A: By assigning the returned reference to a variable. When you assign a reference to a
variable, the computer must make a copy of the object to which the reference
refers.

Chapter 6 ■ References: Tic-Tac-Toe188

Q: What’s wrong with returning a reference to a local variable?

A: The local variable doesn’t exist once the function ends, which means that you’re
returning a reference to a non-existent object, which is illegal.

Discussion Questions
1. What are the advantages and disadvantages of passing an argument by value?

2. What are the advantages and disadvantages of passing a reference?

3. What are the advantages and disadvantages of passing a constant reference?

4. What are the advantages and disadvantages of returning a reference?

5. Should game AI cheat in order to create a more worthy opponent?

Exercises
1. Improve the Mad Lib game from Chapter 5 by using references to make the pro-

gram more efficient.

2. What’s wrong with the following program?
int main()
{

int score;
score = 1000;
float& rScore = score;
return 0;

}

3. What’s wrong with the following function?

int& plusThree(int number)
{

int threeMore = number + 3;
return threeMore;

}

Exercises 189

This page intentionally left blank

191

Pointers: Tic-Tac-Toe 2.0

Chapter 7

P
ointers are a powerful part of C++. In some ways, they behave like iterators from
the STL. Often you can use them in place of references. But pointers offer func-
tionality that no other part of the language can. In this chapter, you’ll learn the basic

mechanics of pointers and get an idea of what they’re good for. Specifically, you’ll learn to:

■ Declare and initialize pointers

■ Dereference pointers

■ Use constants and pointers

■ Pass and return pointers

■ Work with pointers and arrays

Understanding Pointer Basics
Pointers have a reputation for being difficult to understand. In reality, the essence of pointers
is quite simple—a pointer is a variable that can contain a memory address. Pointers give you
the ability to work directly and efficiently with computer memory. Like iterators from the
STL, they’re often used to access the contents of other variables. But before you can put point-
ers to good use in your game programs, you have to understand the basics of how they work.

h i n t

Computer memory is a lot like a neighborhood, but instead of houses in which people store their
stuff, you have memory locations where you can store data. Just like a neighborhood where houses
sit side by side, labeled with addresses, chunks of computer memory sit side by side, labeled with
addresses. In a neighborhood, you can use a slip of paper with a street address on it to get to a
particular house (and to the stuff stored inside it). In a computer, you can use a pointer with a mem-
ory address in it to get to a particular memory location (and to the stuff stored inside it).

Introducing the Pointing Program
The Pointing program demonstrates the mechanics of pointers. The program creates a
variable for a score and then creates a pointer to store the address of that variable. The
program shows that you can change the value of a variable directly, and the pointer will
reflect the change. It also shows that you can change the value of a variable through a
pointer. It then demonstrates that you can change a pointer to point to another variable
entirely. Finally, the program shows that pointers can work just as easily with objects.
Figure 7.1 illustrates the results of the program.

The code for the program is in the Chapter 7 folder on the CD-ROM that came with this
book; the file name is pointing.cpp.

// Pointing
// Demonstrates using pointers

#include <iostream>
#include <string>

using namespace std;

int main()
{

int* pAPointer; //declare a pointer

int* pScore = 0; //declare and initialize a pointer

Chapter 7 ■ Pointers: Tic-Tac-Toe 2.0192

Figure 7.1
The pointer pScore first points to the variable score and then to the variable
newScore, while the pointer pStr points to the variable str.

int score = 1000;
pScore = &score; //assign pointer pScore address of variable score

cout << “Assigning &score to pScore\n”;
cout << “&score is: “ << &score << “\n”; //address of score variable
cout << “pScore is: “ << pScore << “\n”; //address stored in pointer
cout << “score is: “ << score << “\n”;
cout << “*pScore is: “ << *pScore << “\n\n”; //value pointed to by pointer

cout << “Adding 500 to score\n”;
score += 500;
cout << “score is: “ << score << “\n”;
cout << “*pScore is: “ << *pScore << “\n\n”;

cout << “Adding 500 to *pScore\n”;
*pScore += 500;
cout << “score is: “ << score << “\n”;
cout << “*pScore is: “ << *pScore << “\n\n”;

cout << “Assigning &newScore to pScore\n”;
int newScore = 5000;
pScore = &newScore;
cout << “&newScore is: “ << &newScore << “\n”;
cout << “pScore is: “ << pScore << “\n”;
cout << “newScore is: “ << newScore << “\n”;
cout << “*pScore is: “ << *pScore << “\n\n”;

cout << “Assigning &str to pStr\n”;
string str = “score”;
string* pStr = &str; //pointer to string object
cout << “str is: “ << str << “\n”;
cout << “*pStr is: “ << *pStr << “\n”;
cout << “(*pStr).size() is: “ << (*pStr).size() << “\n”;
cout << “pStr->size() is: “ << pStr->size() << “\n”;

return 0;
}

Declaring Pointers
With the first statement in main() I declare a pointer named pAPointer.

int* pAPointer; //declare a pointer

Because pointers work in such a unique way, programmers often prefix pointer variable
names with the letter “p” to remind them that the variable is indeed a pointer.

Just like an iterator, a pointer is declared to point to a specific type of value. pAPointer is a
pointer to int, which means that it can only point to an int value. pAPointer can’t point to

Understanding Pointer Basics 193

a float or a char, for example. Another way to say this is that pAPointer can only store the
address of an int.

To declare a pointer of your own, begin with the type of object to which the pointer will
point, followed by an asterisk, followed by the pointer name. When you declare a pointer,
you can put whitespace on either side of the asterisk. So int* pAPointer;, int *pAPointer;,
and int * pAPointer; all declare a pointer named pAPointer.

t r a p

When you declare a pointer, the asterisk only applies to the single variable name that immediately
follows it. So the following statement declares pScore as a pointer to int and score as an int.

int* pScore, score;

score is not a pointer! It’s a variable of type int. One way to make this clearer is to play with the
whitespace and rewrite the statement as:

int *pScore, score;

However, the clearest way to declare a pointer is to declare it in its own statement, as in the fol-
lowing lines.

int* pScore;
int score;

Initializing Pointers
As with other variables, you can initialize a pointer in the same statement you declare it.
That’s what I do next with the following line, which assigns 0 to pScore.

int* pScore = 0; //declare and initialize a pointer

Assigning 0 to a pointer has special meaning. Loosely translated, it means, “Point to noth-
ing.” Programmers call a pointer with the value of zero a null pointer. You should always
initialize a pointer with some value when you declare it, even if that value is zero.

h i n t

Many programmers assign NULL to a pointer instead of 0 to make the pointer a null pointer. NULL
is a constant equal to 0 and is defined in multiple library files, including iostream.

Assigning Addresses to Pointers
Because pointers store addresses of objects, you need a way to get addresses into the point-
ers. One way to do that is to get the memory address of an existing variable and assign it

Chapter 7 ■ Pointers: Tic-Tac-Toe 2.0194

to a pointer. That’s what I do in the following line, which gets the address of the variable
score and assigns it to pScore.

pScore = &score; //assign pointer address of variable score

I get the address of score by preceding the variable name with &, the address of operator.
(Yes, you’ve seen the & symbol before, when it was used as the reference operator. However,
in this context, the & symbol gets the address of an object.)

As a result of the preceding line of code, pScore contains the address of score. It’s as if
pScore knows exactly where score is located in the computer’s memory. This means you
can use pScore to get to score and manipulate the value stored by score. Figure 7.2 serves
as a visual illustration of the relationship between pScore and score.

To prove that pScore contains the address of score, I display the address of the variable and
the value of the pointer with the following lines.

cout << “&score is: “ << &score << “\n”; //address of score variable
cout << “pScore is: “ << pScore << “\n”; //address stored in pointer

As you can see from Figure 7.1, pScore contains 0x22ff5c, which is the address of score.
(The specific addresses displayed by the Pointing program might be different on your sys-
tem. The important thing is that the values for pScore and &score are the same.)

Dereferencing Pointers
Just as you dereference an iterator to access the object to which it refers, you dereference
a pointer to access the object to which it points. You accomplish the dereferencing the
same way—with *, the dereference operator. I put the dereference operator to work with
the following line, which displays 1000 because *pScore accesses the value stored in score.

cout << “*pScore is: “ << *pScore << “\n\n”; //value pointed to by pointer

Remember, *pScore means, “the object to which pScore points.”

Understanding Pointer Basics 195

Figure 7.2
The pointer pScore points to score, which stores the value 1000.

t r a p

Don’t dereference a null pointer because it could lead to disastrous results.

Next, I add 500 to score with the following line.

score += 500;

When I send score to cout, 1500 is displayed, as you’d expect. When I send *pScore to cout,
the contents of score are again sent to cout, and 1500 is displayed once more.

Next, I add 500 to the value to which pScore points with the following line.

*pScore += 500;

Because pScore points to score, the preceding line of code adds 500 to score. Therefore,
when I next send score to cout, 2000 is displayed. Then, when I send *pScore to cout. . . you
guessed it, 2000 is displayed again.

t r a p

Don’t change the value of a pointer when you want to change the value of the object to which the
pointer points. For example, if I want to add 500 to the int that pScore points to, then the follow-
ing line would be a big mistake.

pScore += 500;

The preceding code adds 500 to the address stored in pScore, not to the value to which pScore orig-
inally pointed. As a result, pScore now points to some address that might contain anything. Deref-
erencing a pointer like this can lead to disastrous results.

Reassigning Pointers
Unlike references, pointers can point to different objects at different times during the life
of a program. Reassigning a pointer works like reassigning any other variable. Next, I reas-
sign pScore with the following line.

pScore = &newScore;

As the result, pScore now points to newScore. To prove this, I display the address of newScore
by sending &newScore to cout, followed by the address stored in pScore. Both statements dis-
play the same address. Then I send newScore and *pScore to cout. Both display 5000 because
they both access the same chunk of memory that stores this value.

Chapter 7 ■ Pointers: Tic-Tac-Toe 2.0196

t r a p

Don’t change the value to which a pointer points when you want to change the pointer itself. For
example, if I want to change pScore to point to newScore, then the following line would be a big
mistake.

*pScore = newScore;

This code simply changes the value to which pScore currently points; it doesn’t change pScore
itself. If newScore is equal to 5000, then the previous code is equivalent to *pScore = 5000; and
pScore still points to the same variable it pointed to before the assignment.

Using Pointers to Objects
So far, the Pointing program has worked only with values of a built-in type, int. But you
can use pointers with objects just as easily. I demonstrate this next with the following
lines, which create str, a string object equal to “score”, and pStr, a pointer that points to
that object.

string str = “score”;
string* pStr = &str; //pointer to string object

pStr is a pointer to string, meaning that it can point to any string object. Another way to
say this is to say that pStr can store the address of any string object.

You can access an object through a pointer using the dereference operator. That’s what I
do next with the following line.

cout << “*pStr is: “ << *pStr << “\n”;

By using the dereference operator with *pStr, I send the object to which pStr points (str)
to cout. As a result, the text score is displayed.

You can call the member functions of an object through a pointer the same way you can
call the member functions of an object through an iterator. One way to do this is by using
the dereference operator and the member access operator, which is what I do next with
the following lines.

cout << “(*pStr).size() is: “ << (*pStr).size() << “\n”;

The code (*pStr).size() says, “Take the result of dereferencing pStr and call that object’s
size() member function.” Because pStr refers to the string object equal to “score”, the code
returns 5.

Understanding Pointer Basics 197

h i n t

Whenever you dereference a pointer to access a data member or member function, surround the
dereferenced pointer by a pair of parentheses. This ensures that the dot operator will be applied to
the object to which the pointer points.

Just as with iterators, you can use the -> operator with pointers for a more readable way
to access object members. That’s what I demonstrate next with the following line.

cout << “pStr->size() is: “ << pStr->size() << “\n”;

The preceding statement again displays the number of characters in the string object
equal to “score”; however, I’m able to substitute pStr->size() for (*pStr).size() this time,
making the code more readable.

Understanding Pointers and Constants
There are still some pointer mechanics you need to understand before you can start to use
pointers effectively in your game programs. You can use the keyword const to restrict the
way a pointer works. These restrictions can act as safeguards and can make your pro-
gramming intentions clearer. Since pointers are quite versatile, restricting how a pointer
can be used is in line with the programming mantra of asking only for what you need.

Using a Constant Pointer
As you’ve seen, pointers can point to different objects at different times in a program.
However, by using the const keyword when you declare and initialize a pointer, you can
restrict the pointer so it can only point to the object it was initialized to point to. A pointer
like this is called a constant pointer. Another way to say this is to say that the address stored
in a constant pointer can never change—it’s constant. Here’s an example of creating a con-
stant pointer:

int score = 100;
int* const pScore = &score; //a constant pointer

The preceding code creates a constant pointer, pScore, which points to score. You create a
constant pointer by putting const right before the name of the pointer when you declare it.

Like all constants, you must initialize a constant pointer when you first declare it. The fol-
lowing line is illegal and will produce a big, fat compile error.

int* const pScore; //illegal — you must initialize a constant pointer

Because pScore is a constant pointer, it can’t ever point to any other memory location. The
following code is also quite illegal.

pScore = &anotherScore; //illegal — pScore can’t point to a different object

Chapter 7 ■ Pointers: Tic-Tac-Toe 2.0198

Although you can’t change pScore itself, you can use pScore to change the value to which it
points. The following line is completely legal.

*pScore = 500;

Confused? Don’t be. It’s perfectly fine to use a constant pointer to change the value to
which it points. Remember, the restriction on a constant pointer is that its value—the
address that the pointer stores—can’t change.

The way a constant pointer works should remind you of something—a reference. Like a
reference, a constant pointer can refer only to the object it was initialized to refer to.

h i n t

Although you can use a constant pointer instead of a reference in your programs, you should stick
with references whenever possible. References have a cleaner syntax than pointers and can make
your code easier to read.

Using a Pointer to a Constant
As you’ve seen, you can use pointers to change the values to which they point. However,
by using the const keyword when you declare a pointer, you can restrict a pointer so it can’t
be used to change the value to which it points. A pointer like this is called a pointer to a
constant. Here’s an example of declaring such a pointer:

const int* pNumber; //a pointer to a constant

The preceding code declares a pointer to a constant, pNumber. You declare a pointer to a
constant by putting const right before the type of value to which the pointer will point.

You assign an address to a pointer to a constant as you did before.

int lives = 3;
pNumber = &lives;

However, you can’t use the pointer to change the value to which it points. The following
line is illegal.

*pNumber -= 1; //illegal — can’t use pointer to a constant to change value
//that pointer points to

Although you can’t use a pointer to a constant to change the value to which it points, the
pointer itself can change. This means that a pointer to a constant can point to different
objects in a program. The following code is perfectly legal.

const int MAX_LIVES = 5;
pNumber = &MAX_LIVES; //pointer itself can change

Understanding Pointers and Constants 199

Using a Constant Pointer to a Constant
A constant pointer to a constant combines the restrictions of a constant pointer and a point-
er to a constant. This means that a constant pointer to a constant can only point to the
object that it was initialized to point to. In addition, it can’t be used to change the value of
the object to which it points. Here’s the declaration and initialization of such a pointer:

const int* const pBONUS = &BONUS; //a constant pointer to a constant

The preceding code creates a constant pointer to a constant named pBONUS that points to
the constant BONUS.

h i n t

Like a pointer to a constant, a constant pointer to a constant can point to either a non-constant or
constant value.

You can’t reassign a constant pointer to a constant. The following line is not legal.

pBONUS = &MAX_LIVES; //illegal — pBONUS can’t point to another object

You can’t use a constant pointer to a constant to change the value to which it points. This
means that the following line is illegal.

*pBONUS = MAX_LIVES; //illegal — can’t change value through pointer

In many ways, a constant pointer to a constant acts like a constant reference, which can
only refer to the value it was initialized to refer to and which can’t be used to change that
value.

h i n t

Although you can use a constant pointer to a constant instead of a constant reference in your pro-
grams, you should stick with constant references whenever possible. References have a cleaner syn-
tax than pointers and can make your code easier to read.

Summarizing Constants and Pointers
I’ve presented a lot of information on constants and pointers, so I want to provide a sum-
mary to help crystallize the new concepts. Here are three examples of the different ways
in which you can use the keyword const when you are declaring pointers:

Chapter 7 ■ Pointers: Tic-Tac-Toe 2.0200

■ int* const p = &i;

■ const int* p;

■ const int* const p = &I;

The first example declares and initializes a constant pointer. A constant pointer can only
point to the object to which it was initialized to point. The value—the memory address—
stored in the pointer itself is constant and can’t change. A constant pointer can only point
to a non-constant value; it can’t point to a constant.

The second example declares a pointer to a constant. A pointer to a constant can’t be used
to change the value to which it points. A pointer to a constant can point to different
objects during the life of a program. A pointer to a constant can point to a constant or
non-constant value.

The third example declares a constant pointer to a constant. A constant pointer to a con-
stant can only point to the value to which it was initialized to point. In addition, it can’t
be used to change the value to which it points. A constant pointer to a constant can be ini-
tialized to point to a constant or a non-constant value.

Passing Pointers
Even though references are the preferred way to pass arguments because of their cleaner
syntax, you still might need to pass objects through pointers. For example, suppose you’re
using a graphics engine that returns a pointer to a 3D object. If you want another function
to use this object, you’ll probably want to pass the pointer to the object for efficiency.
Therefore, it’s important to know how to pass pointers as well as references.

Introducing the Swap Pointer Version Program
The Swap Pointer Version program works just like the Swap program from Chapter 6,
except that the Swap Pointer Version program uses pointers instead of references. The
Swap Pointer Version program defines two variables—one that holds my pitifully low
score and another that holds your impressively high score. After displaying the scores, the
program calls a function meant to swap the scores. Because only copies of the score val-
ues are sent to the function, the original variables are unaltered. Next, the program calls
another swap function. This time, through the use of constant pointers, the original vari-
ables’ values are successfully exchanged (giving me the great big score and leaving you
with the small one). Figure 7.3 shows the program in action.

Passing Pointers 201

The code for the program is in the Chapter 7 folder on the CD-ROM that came with this
book; the file name is swap_pointer_ver.cpp.

// Swap Pointer
// Demonstrates passing constant pointers to alter argument variables

#include <iostream>

using namespace std;

void badSwap(int x, int y);
void goodSwap(int* const pX, int* const pY);

int main()
{

int myScore = 150;
int yourScore = 1000;
cout << “Original values\n”;
cout << “myScore: “ << myScore << “\n”;
cout << “yourScore: “ << yourScore << “\n\n”;

cout << “Calling badSwap()\n”;
badSwap(myScore, yourScore);
cout << “myScore: “ << myScore << “\n”;
cout << “yourScore: “ << yourScore << “\n\n”;

cout << “Calling goodSwap()\n”;
goodSwap(&myScore, &yourScore);
cout << “myScore: “ << myScore << “\n”;
cout << “yourScore: “ << yourScore << “\n”;

Chapter 7 ■ Pointers: Tic-Tac-Toe 2.0202

Figure 7.3
Passing pointers allows a function to alter variables outside of the function’s
scope.

return 0;
}

void badSwap(int x, int y)
{

int temp = x;
x = y;
y = temp;

}

void goodSwap(int* const pX, int* const pY)
{

//store value pointed to by pX in temp
int temp = *pX;
//store value pointed to by pY in address pointed to by pX
*pX = *pY;
//store value originally pointed to by pX in address pointed to by pY
*pY = temp;

}

Passing by Value
After I declare and initialize myScore and yourScore, I send them to cout. As you’d expect, 150
and 1000 are displayed. Next I call badSwap(), which passes both arguments by value. This
means that when I call the function with the following line, copies of myScore and yourScore
are sent to the parameters, x and y.

badSwap(myScore, yourScore);

Specifically, x is assigned 150 and y is assigned 1000. As a result, nothing I do with x and y
in badSwap() will have any effect on myScore and yourScore.

When badSwap() executes, x and y do exchange values—x becomes 1000 and y becomes 150.
However, when the function ends, both x and y go out of scope. Control then returns to
main(), in which myScore and yourScore haven’t changed. When I then send myScore and
yourScore to cout, 150 and 1000 are displayed again. Sadly, I still have the tiny score and you
still have the large one.

Passing a Constant Pointer
You’ve seen that it’s possible to give a function access to variables by passing references. It’s
also possible to accomplish this using pointers. When you pass a pointer, you pass only the
address of an object. This can be quite efficient, especially if you’re working with large
objects. Passing a pointer is like e-mailing a friend the URL of a Web site instead of trying
to send him the entire site.

Before you can pass a pointer to a function, you need to specify function parameters as
pointers. That’s what I do in the goodSwap() header.

Passing Pointers 203

void goodSwap(int* const pX, int* const pY)

This means that pX and pY are constant pointers and will each accept a memory address. I
made the parameters constant pointers because, although I plan to change the values they
point to, I don’t plan to change the pointers themselves. Remember, this is just how refer-
ences work. You can change the value to which a reference refers, but not the reference itself.

In main(), I pass the addresses of myScore and yourScore when I call goodSwap() with the fol-
lowing line.

goodSwap(&myScore, &yourScore);

Notice that I send the addresses of the variables to goodSwap() by using the address of oper-
ator. When you pass an object to a pointer, you need to send the address of the object.

In goodSwap(), pX stores the address of myScore and pY stores the address of yourScore.
Anything done to *pX will be done to myScore; anything done to *pY will be done to
yourScore.

The first line of goodSwap() takes the value that pX points to and assigns it to temp.

int temp = *pX;

Because pX points to myScore, temp becomes 150.

The next line assigns the value pointed to by pY to the object to which pX points.

*pX = *pY;

This statement copies the value stored in yourScore, 1000, and assigns it to the memory
location of myScore. As a result, myScore becomes 1000.

The last statement in the function stores the value of temp, 150, in the address pointed to
by pY.

*pY = temp;

Because pY points to yourScore, yourScore becomes 150.

After the function ends, control returns to main(), where I send myScore and yourScore to cout.
This time, 1000 and 150 are displayed. The variables have exchanged values. Success at last!

h i n t

You can also pass a constant pointer to a constant. This works much like passing a constant refer-
ence, which is done to efficiently pass an object that you don’t need to change. I’ve adapted the
Inventory Displayer program from Chapter 6, which demonstrates passing constant references, to
pass a constant pointer to a constant. The program is in the Chapter 7 folder on the CD-ROM that
came with this book; the file name is inventory_displayer_pointer_ver.cpp.

Chapter 7 ■ Pointers: Tic-Tac-Toe 2.0204

Returning Pointers
Before references, the only option game programmers had for returning objects efficiently
from functions was using pointers. And even though using references provides a cleaner
syntax than using pointers, you might still need to return objects through pointers.

Introducing the Inventory Pointer Program
The Inventory Pointer program demonstrates returning pointers. Through returned
pointers, the program displays and even alters the values of a vector that holds a hero’s
inventory. Figure 7.4 shows the results of the program.

The code for the program is in the Chapter 7 folder on the CD-ROM that came with this
book; the file name is inventory_pointer.cpp.

// Inventory Pointer
// Demonstrates returning a pointer

#include <iostream>
#include <string>
#include <vector>

using namespace std;

//returns a pointer to a string element
string* ptrToElement(vector<string>* const pVec, int i);

Returning Pointers 205

Figure 7.4
A function returns a pointer (not a string object) to each item in the hero’s
inventory.

int main()
{

vector<string> inventory;
inventory.push_back(“sword”);
inventory.push_back(“armor”);
inventory.push_back(“shield”);

//displays string object that the returned pointer points to
cout << “Sending the objected pointed to by returned pointer:\n”;
cout << *(ptrToElement(&inventory, 0)) << “\n\n”;

//assigns one pointer to another — inexpensive assignment
cout << “Assigning the returned pointer to another pointer.\n”;
string* pStr = ptrToElement(&inventory, 1);
cout << “Sending the object pointed to by new pointer to cout:\n”;
cout << *pStr << “\n\n”;

//copies a string object — expensive assignment
cout << “Assigning object pointed by pointer to a string object.\n”;
string str = *(ptrToElement(&inventory, 2));
cout << “Sending the new string object to cout:\n”;
cout << str << “\n\n”;

//altering the string object through a returned pointer
cout << “Altering an object through a returned pointer.\n”;
*pStr = “Healing Potion”;
cout << “Sending the altered object to cout:\n”;
cout << inventory[1] << endl;

return 0;
}

string* ptrToElement(vector<string>* const pVec, int i)
{

//returns address of the string in position i of vector that pVec points to
return &((*pVec)[i]);

}

Returning a Pointer
Before you can return a pointer from a function, you must specify that you’re returning
one. That’s what I do in the refToElement() header.

string* ptrToElement(vector<string>* const pVec, int i)

By starting the header with string*, I’m saying that the function will return a pointer to a
string object (and not a string object itself). To specify that a function returns a pointer
to an object of a particular type, put an asterisk after the type name of the return type.

Chapter 7 ■ Pointers: Tic-Tac-Toe 2.0206

The body of the function ptrToElement() contains only one statement, which returns a
pointer to the element at position i in the vector pointed to by pVec.

return &((*pVec)[i]);

The return statement might look a little cryptic, so I’ll step through it. Whenever you come
upon a complex expression, evaluate it like the computer does—by starting with the
innermost part. I’ll start with (*pVec)[i], which means the element in position i of the vec-
tor pointed to by pVec. By applying the address of operator (&) to the expression, it
becomes the address of the element in position i of the vector pointed to by pVec.

t r a p

Although returning a pointer can be an efficient way to send information back to a calling function,
you have to be careful not to return a pointer that points to an out-of-scope object. For example,
the following function returns a pointer that, if used, will most likely crash the program.

string* badPointer()
{

string local = “This string will cease to exist once the function ends.”;
string* pLocal = &local;
return pLocal;

}

That’s because badPointer() returns a pointer to a string that no longer exists after the function
ends. A pointer to a non-existent object is called a dangling pointer. Attempting to dereference a
dangling pointer can lead to disastrous results. One way to avoid dangling pointers is to never
return a pointer to a local variable.

Using a Returned Pointer to Display a Value
After I create inventory, a vector of items, I display a value with a returned pointer.

cout << *(ptrToElement(&inventory, 0)) << “\n\n”;

The preceding code calls ptrToElement(), which returns a pointer to inventory[0].
(Remember, ptrToElement() doesn’t return a copy of one of the elements of inventory; it
returns a pointer to one of them.) The line then sends the string object pointed to by the
pointer to cout. As a result, sword is displayed.

Assigning a Returned Pointer to a Pointer
Next I assign a returned pointer to another pointer with the following line.

string* pStr = ptrToElement(&inventory, 1);

Returning Pointers 207

The call to prtToElement() returns a pointer to inventory[1]. The statement assigns that
pointer to pStr. This is an efficient assignment because assigning a pointer to a pointer
does not involve copying the string object.

To help you understand the results of this line of code, take a look at Figure 7.5, which
shows a representation of pStr after the assignment. (Note that the figure is abstract
because the vector inventory doesn’t contain the string literals “sword”, “armor”, and
“shield”; instead, it contains string objects.)

Next I send *pStr to cout and armor is displayed.

Assigning to a Variable the Value Pointed to by a Returned Pointer
Next I assign the value pointed to by a returned pointer to a variable.

string str = *(ptrToElement(&inventory, 2));

The call to prtToElement() returns a pointer to
inventory[2]. However, the preceding statement
doesn’t assign this pointer to str—it can’t
because str is a string object. Instead, the com-
puter quietly makes a copy of the string object to
which the pointer points and assigns that object
to str. To help drive this point home, check out
Figure 7.6, which provides an abstract represen-
tation of the results of this assignment.

Chapter 7 ■ Pointers: Tic-Tac-Toe 2.0208

Figure 7.5
pStr points to the element at position 1 of inventory.

Figure 7.6
str is a new string object, totally independent from inventory.

An assignment like this one, where an object is copied, is more expensive than the assign-
ment of one pointer to another. Sometimes the cost of copying an object is perfectly
acceptable, but you should be aware of the extra overhead associated with this kind of
assignment and avoid it when necessary.

Altering an Object through a Returned Pointer
You can also alter the object to which a returned pointer points. This means that I can
change the hero’s inventory through pStr.

*pStr = “Healing Potion”;

Because pStr points to the element in position 1 of inventory, this code changes inventory[1]
so it’s equal to “Healing Potion”. To prove this, I display the element with the following line,
which does indeed show Healing Potion.

cout << inventory[1] << endl;

For an abstract representation, check out Figure 7.7, which shows the status of the vari-
ables after the assignment.

h i n t

If you want to protect an object pointed to by a returned pointer, make sure to restrict the pointer.
Return either a pointer to a constant or a constant pointer to a constant.

Understanding the Relationship between Pointers
and Arrays
Pointers have an intimate relationship with arrays. In fact, an array name is really a con-
stant pointer to the first element of the array. Because the elements of an array are stored

Understanding the Relationship between Pointers and Arrays 209

Figure 7.7
inventory[1] is changed through the returned pointer stored in pStr.

in a contiguous block of memory, you can use the array name as a pointer for random
access to elements. This relationship also has important implications for how you can pass
and return arrays, as you’ll soon see.

Introducing the Array Passer Program
The Array Passer program creates an array of high scores and then displays them, using
the array name as a constant pointer. Next, the program passes the array name as a con-
stant pointer to a function that increases the scores. Finally, the program passes the array
name to a function as a constant pointer to a constant to display the new high scores.
Figure 7.8 shows the results of the program.

The code for the program is in the Chapter 7 folder on the CD-ROM that came with this
book; the file name is array_passer.cpp.

//Array Passer
//Demonstrates relationship between pointers and arrays

#include <iostream>

using namespace std;

void increase(int* const array, const int NUM_ELEMENTS);
void display(const int* const array, const int NUM_ELEMENTS);

int main()
{

Chapter 7 ■ Pointers: Tic-Tac-Toe 2.0210

Figure 7.8
Using an array name as a pointer, the high scores are displayed, altered, and
passed to functions.

cout << “Creating an array of high scores.\n\n”;
const int NUM_SCORES = 3;
int highScores[NUM_SCORES] = {5000, 3500, 2700};

cout << “Displaying scores using array name as a constant pointer.\n”;
cout << *highScores << endl;
cout << *(highScores + 1) << endl;
cout << *(highScores + 2) << “\n\n”;

cout << “Increasing scores by passing array as a constant pointer.\n\n”;
increase(highScores, NUM_SCORES);

cout << “Displaying scores by passing array as a constant pointer to a
constant.\n”;

display(highScores, NUM_SCORES);

return 0;
}

void increase(int* const array, const int NUM_ELEMENTS)
{

for (int i = 0; i < NUM_ELEMENTS; ++i)
array[i] += 500;

}

void display(const int* const array, const int NUM_ELEMENTS)
{

for (int i = 0; i < NUM_ELEMENTS; ++i)
cout << array[i] << endl;

}

Using an Array Name as a Constant Pointer
Because an array name is a constant pointer to the first element of the array, you can
dereference the name to get at the first element. That’s what I do after I create an array of
high scores, called highScores.

cout << *highScores << endl;

I dereference highScores to access the first element in the array and send it to cout. As a
result, 5000 is displayed.

You can randomly access array elements using an array name as a pointer through simple
addition. All you have to do is add the position number of the element you want to access
to the pointer before you dereference it. This is simpler than it sounds. For example, I next
access the score at position 1 in highScores with the following line, which displays 3500.

cout << *(highScores + 1) << endl;

Understanding the Relationship between Pointers and Arrays 211

In the preceding code, *(highScores + 1) is equivalent to highScores[1]. Both return the ele-
ment in position 1 of highScores.

Next, I access the score at position 2 in highScores with the following line, which displays
2700.

cout << *(highScores + 2) << endl;

In the preceding code, *(highScores + 2) is equivalent to highScores[2]. Both return the ele-
ment in position 2 of highScores. In general, you can write arrayName[i] as *(arrayName + i),
where arrayName is the name of an array.

Passing and Returning Arrays
Because an array name is a constant pointer, you can use it to efficiently pass an array to
a function. That’s what I do next with the following line, which passes to increase() a con-
stant pointer to the first element of the array and the number of elements in the array.

increase(highScores, NUM_SCORES);

h i n t

When you pass an array to a function, it’s usually a good idea to also pass the number of elements
in the array so the function can use this to avoid attempting to access an element that doesn’t exist.

As you can see from the function header of increase(), the array name is accepted as a con-
stant pointer.

void increase(int* const array, const int NUM_ELEMENTS)

The function body adds 500 to each score.

for (int i = 0; i < NUM_ELEMENTS; ++i)
array[i] += 500;

I treat array just like any array and use the subscripting operator to access each of its ele-
ments. Alternatively, I could have treated array as a pointer and substituted *(array + i)
+= 500 for the expression array[i] += 500, but I opted for the more readable version.

After increase() ends, control returns to main(). To prove that increase() did in fact
increase the high scores, I call a function to show the scores.

display(highScores, NUM_SCORES);

The function display() also accepts highScore as a pointer. However, as you can see from
the function’s header, the function accepts it as a constant pointer to a constant.

void display(const int* const array, const int NUM_ELEMENTS)

Chapter 7 ■ Pointers: Tic-Tac-Toe 2.0212

By passing the array in this way, I keep it safe from changes. Because all I want to do is dis-
play each element, it’s the perfect way to go.

Finally, the body of display() runs and all of the scores are listed, showing that they’ve
each increased by 500.

h i n t

You can pass a C-style string to a function, just like any other array. In addition, you can pass a
string literal to a function as a constant pointer to a constant.

Because an array name is a pointer, you can return an array using the array name, just as
you would any other pointer to an object.

Introducing the Tic-Tac-Toe 2.0 Game
The project for this chapter is a modified version of the project from Chapter 6, the Tic-
Tac-Toe game. From the player’s perspective, the Tic-Tac-Toe 2.0 game looks exactly the
same as the original because the changes are under the hood—I’ve replaced all of the ref-
erences with pointers. This means that objects such as the Tic-Tac-Toe board are passed
as constant pointers instead of as references. This has other implications, including the
fact that the address of a Tic-Tac-Toe board must be passed instead of the board itself.

The new version of the program is in the Chapter 7 folder on the CD-ROM that came
with this book; the file name is tic-tac-toe2.cpp. I won’t go over the code because much of
it remains the same. But even though the number of changes isn’t great, the changes are
critical. This is a good program to study because, although you should use references
whenever you can, you should be equally comfortable passing pointers.

Summary
In this chapter, you should have learned the following concepts:

■ Computer memory is organized in an ordered way, where each chunk of memory
has its own unique address.

■ A pointer is a variable that contains a memory address.

■ In many ways, pointers act like iterators from the STL. For example, just as with
iterators, you use pointers to indirectly access an object.

■ To declare a pointer, you list a type, followed by an asterisk, followed by a name.

■ Programmers often prefix pointer variable names with the letter “p” to remind
them that the variable is indeed a pointer.

Summary 213

■ Just like an iterator, a pointer is declared to refer to a value of a specific type.

■ It’s good programming practice to initialize a pointer when you declare it.

■ If you assign 0 to a pointer, the pointer is called a null pointer.

■ To get the address of a variable, put the address of operator (&) before the
variable name.

■ When a pointer contains the address of an object, it’s said to point to the object.

■ Unlike references, you can reassign pointers. That is, a pointer can point to differ-
ent objects at different times during the life of a program.

■ Just as with iterators, you dereference a pointer to access the object it points to
with *, the dereference operator.

■ Just as with iterators, you can use the -> operator with pointers for a more readable
way to access object data members and member functions.

■ A constant pointer can only point to the object it was initialized to point to. You
declare a constant pointer by putting the keyword const right before the pointer
name, as in int* const p = &i;.

■ You can’t use a pointer to a constant to change the value to which it points. You
declare a pointer to a constant by putting the keyword const before the type name,
as in const int* p;.

■ A constant pointer to a constant can only point to the value it was initialized to
point to, and it can’t be used to change that value. You declare a constant pointer
to a constant by putting the keyword const before the type name and right before
the pointer name, as in const int* const p = &I;.

■ You can pass pointers for efficiency or to provide direct access to an object.

■ If you want to pass a pointer for efficiency, you should pass a pointer to a constant
or a constant pointer to a constant so the object you’re passing access to can’t be
changed through the pointer.

■ A dangling pointer is a pointer to an invalid memory address. Dangling pointers
are often caused by deleting an object to which a pointer pointed. Dereferencing
such a pointer can lead to disastrous results.

■ You can return a pointer from a function, but be careful not to return a dangling
pointer.

Chapter 7 ■ Pointers: Tic-Tac-Toe 2.0214

Questions and Answers
Q: How is a pointer different from the variable to which it points?

A: A pointer stores a memory address. If a pointer points to a variable, it stores the
address of that variable.

Q: What good is it to store the address of a variable that already exists?

A: One big advantage of storing the address of an existing variable is that you can
pass a pointer to the variable for efficiency instead of passing the variable by
value.

Q: Does a pointer always have to point to an existing variable?

A: No. You can create a pointer that points to an unnamed chunk of computer mem-
ory as you need it. You’ll learn more about allocating memory in this dynamic
fashion in Chapter 9, “Advanced Classes and Dynamic Memory: Game Lobby.”

Q: Why should I pass variables using references instead of pointers whenever
possible?

A: Because of the sweet, syntactic sugar that references provide. Passing a reference
or a pointer is an efficient way to provide access to objects, but pointers require
extra syntax (like the dereference operator) to access the object itself.

Q: Why should I initialize a pointer when I declare it or soon thereafter?

A: Because dereferencing an uninitialized pointer can lead to disastrous results,
including a program crash.

Q: What’s a dangling pointer?

A: A pointer that points to an invalid memory location, where any data could exist.

Q: What’s so dangerous about a dangling pointer?

A: Like using an uninitialized pointer, using a dangling pointer can lead to disastrous
results, including a program crash.

Q: Why should I initialize a pointer to 0?

A: By initializing a pointer to 0, you create a null pointer, which is understood as a
pointer to nothing.

Q: So then it’s safe to dereference a null pointer, right?

A: No! Although it’s good programming practice to assign 0 to a pointer that doesn’t
point to an object, dereferencing a null pointer is as dangerous as dereferencing a
dangling pointer.

Q: What will happen if I dereference a null pointer?

A: Just like dereferencing a dangling pointer or an uninitialized pointer, the results
are unpredictable. Most likely, you’ll crash your program.

Questions and Answers 215

Chapter 7 ■ Pointers: Tic-Tac-Toe 2.0216

Q: What good are null pointers?

A: They’re often returned by functions as a sign of failure. For example, if a function
is supposed to return a pointer to an object that represents the graphics screen,
but that function couldn’t initialize the screen, it might return a null pointer.

Q: How does using the keyword const when declaring a pointer affect the pointer?

A: It depends on how you use it. Generally, you use const when you are declaring a
pointer to restrict what the pointer can do.

Q: What kinds of restrictions can I impose on a pointer by declaring it with const?

A: You can restrict a pointer so it can only point to the object it was initialized to
point to, or you can restrict a pointer so it can’t change the value of the object it
points to, or both.

Q: Why would I want to restrict what a pointer can do?

A: For safety. For example, you might be working with an object that you know you
don’t want to change.

Q: To what type of pointers can I assign a constant value?

A: A pointer to a constant or a constant pointer to a constant.

Q: How can I safely return a pointer from a function?

A: One way is by returning a pointer to an object that you received from the calling
function. This way, you’re returning a pointer to an object that exists back in the
calling code. (In Chapter 9, you’ll discover another important way when you
learn about dynamic memory.)

Discussion Questions
1. What are the advantages and disadvantages of passing a pointer?

2. What kinds of situations call for a constant pointer?

3. What kinds of situations call for a pointer to a constant?

4. What kinds of situations call for a constant pointer to a constant?

5. What kinds of situations call for a non-constant pointer to a non-constant object?

Exercises
1. Write a program with a pointer to a pointer to a string object. Use the pointer to

the pointer to call the size() member function of the string object.

2. Rewrite the final project from Chapter 5, the Mad Lib game, so that no string
objects are passed to the function that tells the story. Instead, the function should
accept pointers to string objects.

3. Will the three memory addresses displayed by the following program all be the
same? Explain what’s going on in the code.

#include <iostream>
using namespace std;

int main()
{

int a = 10;
int& b = a;
int* c = &b;

cout << &a << endl;
cout << &b << endl;
cout << &(*c) << endl;

return 0;
}

Exercises 217

This page intentionally left blank

219

Classes: Critter
Caretaker

Chapter 8

O
bject-oriented programming (OOP) is a different way of thinking about program-
ming. It’s a modern methodology that’s used in the creation of the vast majority
of games (and other commercial software, too). In OOP, you define different

types of objects with relationships to each other that allow the objects to interact. You’ve
already worked with objects from types defined in libraries, but one of the key character-
istics of OOP is the ability to make your own types from which you can create objects. In
this chapter, you’ll see how to define your own types and create objects from them.
Specifically, you’ll learn to:

■ Create new types by defining classes

■ Declare class data members and member functions

■ Instantiate objects from classes

■ Set member access levels

■ Declare static data members and member functions

Defining New Types
Whether you’re talking about alien spacecrafts, poisonous arrows, or angry mutant chick-
ens, games are full of objects. Fortunately, C++ lets you represent game entities as soft-
ware objects, complete with member functions and data members. These objects work
just like the others you’ve already seen, such as string and vector objects. But to use a new
kind of object (say, an angry mutant chicken object), you must first define a type for it.

Introducing the Simple Critter Program
The Simple Critter program defines a brand-new type called Critter for creating virtual
pet objects. The program uses this new type to create two Critter objects. Then, it gives
each critter a hunger level. Finally, each critter offers a greeting and announces its hunger
level to the world. Figure 8.1 shows the results of the program.

The code for the program is in the Chapter 8 folder on the CD-ROM that came with this
book; the file name is simple_critter.cpp.

//Simple Critter
//Demonstrates creating a new type

#include <iostream>

using namespace std;

class Critter // class definition — defines a new type, Critter
{
public:

int m_Hunger; // data member
void Greet(); // member function prototype

};

void Critter::Greet() // member function definition
{

cout << “Hi. I’m a critter. My hunger level is “ << m_Hunger << “.\n”;
}

Chapter 8 ■ Classes: Critter Caretaker220

Figure 8.1
Each critter says hi and announces how hungry it is.

int main()
{

Critter crit1;
Critter crit2;

crit1.m_Hunger = 9;
cout << “crit1’s hunger level is “ << crit1.m_Hunger << “.\n”;

crit2.m_Hunger = 3;
cout << “crit2’s hunger level is “ << crit2.m_Hunger << “.\n\n”;

crit1.Greet();
crit2.Greet();

return 0;
}

Defining a Class
To create a new type, you can define a class—code that groups data members and mem-
ber functions. From a class, you create individual objects that have their own copies of
each data member and access to all of the member functions. A class is like a blueprint.
Just as a blueprint defines the structure of a building, a class defines the structure of an
object. And just as a foreman can create many houses from the same blueprint, a game
programmer can create many objects from the same class. Some real code will help solid-
ify this theory. I begin a class definition in the Simple Critter program with

class Critter // class definition — defines a new type, Critter

for a class named Critter. To define a class, start with the keyword class, followed by the
class name. By convention, class names begin with an uppercase letter. You surround the
class body with curly braces and end it with a semicolon.

Declaring Data Members

In a class definition, you can declare class data members to represent object qualities. I
give the critters just one quality, hunger. I see hunger as a range that could be represented
by an integer, so I declare an int data member m_Hunger.

int m_Hunger; // data member

This means that every Critter object will have its own hunger level, represented by its own
data member named m_Hunger. Notice that I prefix the data member name with m_. Some
game programmers follow this naming convention so that data members are instantly
recognizable.

Defining New Types 221

Declaring Member Functions

In a class definition, you can also declare member functions to represent object abilities.
I give a critter just one—the ability to greet the world and announce its hunger level—by
declaring the member function Greet().

void Greet(); // member function prototype

This means that every Critter object will have the ability to say hi and announce its own
hunger level through its member function, Greet(). By convention, member function
names begin with an uppercase letter. At this point, I’ve only declared the member func-
tion Greet(). Don’t worry, though, I’ll define it outside of the class.

h i n t

You might have noticed the keyword public in the class definition. You can ignore it for now. You’ll
learn more about it a bit later in this chapter, in the section, “Specifying Public and Private Access
Levels.”

Defining Member Functions
You can define member functions outside of a class definition. Outside of the Critter class
definition, I define the Critter member function Greet(), which says hi and displays the
critter’s hunger level.

void Critter::Greet() // member function definition
{

cout << “Hi. I’m a critter. My hunger level is “ << m_Hunger << “.\n”;
}

The definition looks like any other function definition you’ve seen, except for one thing—
I prefix the function name with Critter::. When you define a member function outside of
its class, you need to qualify it with the class name and scope resolution operator so the
compiler knows that the definition belongs to the class.

In the member function, I send m_Hunger to cout. This means that Greet() displays the value
of m_Hunger for the specific object through which the function is called. This simply means
that the member function displays the critter’s hunger level. You can access the data mem-
bers and member functions of an object in any member function simply by using the
member’s name.

Instantiating Objects
When you create an object, you instantiate it from a class. In fact, specific objects are called
instances of the class. In main(), I instantiate two instances of Critter.

Chapter 8 ■ Classes: Critter Caretaker222

Critter crit1;
Critter crit2;

As a result, I have two Critter objects—crit1 and crit2.

Accessing Data Members
It’s time to put these critters to work. Next, I give my first critter a hunger level.

crit1.m_Hunger = 9;

The preceding code assigns 9 to crit1’s data member m_Hunger. Just like when you are
accessing an available member function of an object, you can access an available data
member of an object using the member selection operator.

To prove that the assignment worked, I display the critter’s hunger level.

cout << “crit1’s hunger level is “ << crit1.m_Hunger << “.\n”;

The preceding code displays crit1’s data member m_Hunger and correctly shows 9. Just like
when you are assigning a value to an available data member, you can get the value of an
available data member through the member selection operator.

Next, I show that the same process works for another Critter object.

crit2.m_Hunger = 3;
cout << “crit2’s hunger level is “ << crit2.m_Hunger << “.\n\n”;

This time, I assign 3 to crit2’s data member m_Hunger and display it.

So, crit1 and crit2 are both instances of Critter, and yet each exists independently and
each has its own identity. Also, each has its own m_Hunger data member with its own value.

Calling Member Functions
Next, I again put the critters through their paces. I get the first critter to give a greeting.

crit1.Greet();

The preceding code calls crit1’s Greet() member function. The function accesses the call-
ing object’s m_Hunger data member to form the greeting it displays. Because crit1’s m_Hunger
data member is 9, the function displays the text: Hi. I’m a critter. My hunger level is 9.

Finally, I get the second critter to speak up.

crit2.Greet();

The preceding code calls crit2’s Greet() member function. This function accesses the call-
ing object’s m_Hunger data member to form the greeting it displays. Because crit2’s m_Hunger
data member is 3, the function displays the text: Hi. I’m a critter. My hunger level is 3.

Defining New Types 223

Using Constructors
When you instantiate objects, you often want to do some initialization—usually assigning
values to data members. Luckily, a class has a special member function known as a con-
structor that is automatically called every time a new object is instantiated. This is a big
convenience because you can use a constructor to perform initialization of the new object.

Introducing the Constructor Critter Program
The Constructor Critter program demonstrates constructors. The program instantiates a
new Critter object, which automatically invokes its constructor. First, the constructor
announces that a new critter has been born. Then, it assigns the value passed to it to the
critter’s hunger level. Finally, the program calls the critter’s greeting member function,
which displays the critter’s hunger level, proving that the constructor did in fact initialize
the critter. Figure 8.2 shows the results of the program.

The code for the program is in the Chapter 8 folder on the CD-ROM that came with this
book; the file name is constructor_critter.cpp.

//Constructor Critter
//Demonstrates constructors

#include <iostream>

using namespace std;

Chapter 8 ■ Classes: Critter Caretaker224

Figure 8.2
The Critter constructor initializes a new object’s hunger level automatically.

class Critter
{
public:

int m_Hunger;

Critter(int hunger = 0); // constructor prototype
void Greet();

};

Critter::Critter(int hunger) // constructor definition
{

cout << “A new critter has been born!” << endl;
m_Hunger = hunger;

}

void Critter::Greet()
{

cout << “Hi. I’m a critter. My hunger level is “ << m_Hunger << “.\n\n”;
}

int main()
{

Critter crit(7);
crit.Greet();

return 0;
}

Declaring and Defining a Constructor
I declare a constructor in Critter with the following code:

Critter(int hunger = 0); // constructor prototype

As you can see from the declaration, the constructor has no return type. It can’t—it’s ille-
gal to specify a return type for a constructor. Also, you have no flexibility when naming a
constructor. You have to give it the same name as the class itself.

h i n t

A default constructor requires no arguments. If you don’t define a default constructor, the compiler
defines a minimal one for you that simply calls the default constructors of any data members of the
class. If you write your own constructor, then the compiler won’t provide a default constructor for
you. It’s usually a good idea to have a default constructor, so you should make sure to supply your
own when necessary. One way to accomplish this is to supply default arguments for all parameters
in a constructor definition.

Using Constructors 225

I define the constructor outside of the class with the following code:

Critter::Critter(int hunger) // constructor definition
{

cout << “A new critter has been born!” << endl;
m_Hunger = hunger;

}

The constructor displays a message saying that a new critter has been born and initializes
the object’s m_Hunger data member with the argument value passed to the constructor. If
no value is passed, then the constructor uses the default argument value of 0.

t r i c k

You can use member initializers as a shorthand way to assign values to data members in a con-
structor. To write a member initializer, start with a colon after the constructor’s parameter list. Then
type the name of the data member you want to initialize, followed by the expression you want to
assign to the data member, surrounded by parentheses. If you have multiple initializers, separate
them with commas. This is much simpler than it sounds (and it’s really useful, too). Here’s an exam-
ple that assigns hunger to m_Hunger and boredom to m_Boredom. Member initializers are especially
useful when you have many data members to initialize.

Critter::Critter(int hunger, int boredom):
m_Hunger(hunger),
m_Boredom(boredom)
{} // empty constructor body

Calling a Constructor Automatically
You don’t explicitly call a constructor; however, whenever you instantiate a new object, its
constructor is automatically called. In main(), I put my constructor into action with the
following code:

Critter crit(7);

When crit is instantiated, its constructor is automatically called and the message A new
critter has been born! is displayed. Then, the constructor assigns 7 to the object’s m_Hunger
data member.

To prove that the constructor worked, back in main() I call the object’s Greet() member
function and sure enough, it displays Hi. I’m a critter. My hunger level is 7.

Setting Member Access Levels
Like functions, you should treat objects as encapsulated entities. This means that, in gen-
eral, you should avoid directly altering or accessing an object’s data members. Instead, you

Chapter 8 ■ Classes: Critter Caretaker226

should call an object’s member functions, allowing the object to maintain its own data
members and ensure their integrity. Fortunately, you can enforce data member restric-
tions when you define a class by setting member access levels.

Introducing the Private Critter Program
The Private Critter program demonstrates class member access levels by declaring a class
for critters that restricts direct access to an object’s data member for its hunger level. The
class provides two member functions—one that allows access to the data member and one
that allows changes to the data member. The program creates a new critter and indirectly
accesses and changes the critter’s hunger level through these member functions. However,
when the program attempts to change the critter’s hunger level to an illegal value, the
member function that allows the changes catches the illegal value and doesn’t make the
change. Finally, the program uses the hunger-level-setting member function with a legal
value, which works like a charm. Figure 8.3 shows the results of the program.

The code for the program is in the Chapter 8 folder on the CD-ROM that came with this
book; the file name is private_critter.cpp.

//Private Critter
//Demonstrates setting member access levels

#include <iostream>

using namespace std;

Setting Member Access Levels 227

Figure 8.3
By using a Critter object’s GetHunger() and SetHunger() member functions,
the program indirectly accesses an object’s private m_Hunger data member.

class Critter
{
public: // begin public section

Critter(int hunger = 0);
int GetHunger() const;
void SetHunger(int hunger);

private: // begin private section
int m_Hunger;

};

Critter::Critter(int hunger): m_Hunger(hunger)
{

cout << “A new critter has been born!” << endl;
}

int Critter::GetHunger() const
{

return m_Hunger;
}

void Critter::SetHunger(int hunger)
{

if (hunger < 0)
cout << “You can’t set a critter’s hunger to a negative number.\n\n”;

else
m_Hunger = hunger;

}

int main()
{

Critter crit(5);
//cout << crit.m_Hunger; //illegal, m_Hunger is private!
cout << “Calling GetHunger(): “ << crit.GetHunger() << “\n\n”;

cout << “Calling SetHunger() with -1.\n”;
crit.SetHunger(-1);

cout << “Calling SetHunger() with 9.\n”;
crit.SetHunger(9);
cout << “Calling GetHunger(): “ << crit.GetHunger() << “\n\n”;

return 0;
}

Specifying Public and Private Access Levels
Every class data member and member function has an access level, which determines from
where in your program you can access it. So far, I’ve always specified class members to

Chapter 8 ■ Classes: Critter Caretaker228

have public access levels using the keyword public. Again in Critter, I start a public section
with the following line:

public: // begin public section

By using public:, I’m saying that any data member or member function that follows (until
another access level specifier) will be public. This means that any part of the program can
access them. Because I declare all of the member functions in this section, it means that
any part of my code can call any member function through a Critter object.

Next, I specify a private section with the following line:

private: // begin private section

By using private:, I’m saying that any data member or member function that follows
(until another access level specifier) will be private. This means that only code in the
Critter class can directly access it. Since I declare m_Hunger in this section, it means that
only the code in Critter can directly access an object’s m_Hunger data member. Therefore, I
can’t directly access an object’s m_Hunger data member through the object in main() as I’ve
done in previous programs. So the following line in main(), if uncommented, would be an
illegal statement:

//cout << crit.m_Hunger; //illegal, m_Hunger is private!

Because m_Hunger is private, I can’t access it outside of the Critter class. Again, only code in
Critter can directly access the data member.

I’ve only shown you how to make data members private, but you can make member func-
tions private, too. Also, you can repeat access modifiers. So if you want, you could have a
private section, followed by a public section, followed by another private section in a class.
Finally, member access is private by default. Until you specify an access modifier, any class
members you declare will be private.

Defining Accessor Member Functions
An accessor member function allows indirect access to a data member. Because m_Hunger is
private, I wrote an accessor member function, GetHunger(), to return the value of the data
member. (For now, you can ignore the keyword const.)

int Critter::GetHunger() const
{

return m_Hunger;
}

I put the member function to work in main() with the following line:

cout << “Calling GetHunger(): “ << crit.GetHunger() << “\n\n”;

Setting Member Access Levels 229

In the preceding code, crit.GetHunger() simply returns the value of crit’s m_Hunger data
member, which is 5.

t r i c k

Just as you can with regular functions, you can inline member functions. One way to inline a mem-
ber function is to define it right inside of the class definition, where you’d normally only declare the
member function. If you include a member function definition in a class, then of course you don’t
need to define it outside of the class.

The one exception to this rule is that when you define a member function in a class definition using
the keyword virtual, the member function is not automatically inlined. You’ll learn about virtual
functions in Chapter 10, “Inheritance and Polymorphism: Blackjack.”

At this point, you might be wondering why you’d go to the trouble of making a data mem-
ber private only to grant full access to it through accessor functions. The answer is that
you don’t generally grant full access. For example, take a look at the accessor member
function I defined for setting an object’s m_Hunger data member, SetHunger():

void Critter::SetHunger(int hunger)
{

if (hunger < 0)
cout << “You can’t set a critter’s hunger to a negative number.\n\n”;

else
m_Hunger = hunger;

}

In this accessor member function, I first check to make sure that the value passed to the
member function is greater than zero. If it’s not, it’s an illegal value and I display a mes-
sage, leaving the data member unchanged. If the value is greater than zero, then I make
the change. This way, SetHunger() protects the integrity of m_Hunger, ensuring that it can’t
be set to a negative number. Just as I’ve done here, most game programmers begin their
accessor member function names with Get or Set.

Defining Constant Member Functions
A constant member function can’t modify a data member of its class or call a non-constant
member function of its class. Why restrict what a member function can do? Again, it goes
back to the tenet of asking only for what you need. If you don’t need to change any data
members in a member function, then it’s a good idea to declare that member function to
be constant. It protects you from accidentally altering a data member in the member func-
tion, and it makes your intentions clear to other programmers.

Chapter 8 ■ Classes: Critter Caretaker230

t r a p

Okay, I lied a little. A constant member function can alter a static data member. You’ll learn about
static data members a bit later in this chapter, in the “Declaring and Initializing Static Data Mem-
bers” section. Also, if you qualify a data member with the mutable keyword, then even a constant
member function can modify it. For now, though, don’t worry about either of these exceptions.

You can declare a constant member function by putting the keyword const at the end of
the function header. That’s what I do in Critter with the following line, which declares
GetHunger() to be a constant member function.

int GetHunger() const;

This means that GetHunger() can’t change the value of any non-static data member
declared in the Critter class, nor can it call any non-constant Critter member function. I
made GetHunger() constant because it only returns a value and doesn’t need to modify any
data member. Generally, Get member functions can be defined as constant.

Using Static Data Members and Member Functions
Objects are great because each instance stores its own set of data, giving it a unique iden-
tity. But what if you want to store some information about an entire class, such as the total
number of instances that exist? You might want to do this if you’ve created a bunch of ene-
mies and you want them to fight the player based on their total number. For example, if
their total number is below a certain threshold, you might want the enemies to run away.
You could store the total number of instances in each object, but that would be a waste of
storage space. Plus, it would be cumbersome to update all of the objects as the total
changes. Instead, what you really want is a way to store a single value for an entire class.
You can do this with a static data member. Usually the best way to access this kind of vari-
able is through static member functions.

Introducing the Static Critter Program
The Static Critter program declares a new kind of critter with a static data member that
stores the total number of critters that have been created. It also defines a static member
function that displays the total. Before the program instantiates any new critter objects, it
displays the total number of critters by directly accessing the static data member that
holds the total. Next, the program instantiates three new critters. Then, it displays the total
number of critters by calling a static member function that accesses the static data mem-
ber. Figure 8.4 shows the results of the program.

Using Static Data Members and Member Functions 231

The code for the program is in the Chapter 8 folder on the CD-ROM that came with this
book; the file name is static_critter.cpp.

//Static Critter
//Demonstrates static data members and functions

#include <iostream>

using namespace std;

class Critter
{
public:

static int s_Total; //static data member
//total number of Critter objects in existence

Critter(int hunger = 0): m_Hunger(hunger)
{

cout << “A critter has been born!” << endl;
++s_Total;

}

static int GetTotal() //static member function
{

return s_Total;
}

private:
int m_Hunger;

};

Chapter 8 ■ Classes: Critter Caretaker232

Figure 8.4
The program stores the total number of Critter objects in the static data
member s_Total and accesses that data member in two different ways.

int Critter::s_Total = 0; // initialize static data member

int main()
{

cout << “The total number of critters is: “;
cout << Critter::s_Total << “\n\n”;

Critter crit1, crit2, crit3;

cout << “\nThe total number of critters is: “;
cout << Critter::GetTotal() << “\n”;

return 0;
}

Declaring and Initializing Static Data Members
A static data member is a single data member that exists for the entire class. In the class
definition, I define a static data member to store the number of Critter objects that have
been instantiated with the following line, which declares a static data member s_Total.

static int s_Total; // static data member

You can declare your own static data members just like I did, by starting the declaration
with the static keyword. I prefixed the variable name with s_ so it would be instantly rec-
ognizable as a static data member.

Outside of the class definition, I initialize the static data member, which assigns 0 to it.

int Critter::s_Total = 0; // initialize static data member

Notice that I qualified the data member name with Critter::. Outside of its class defini-
tion, you must qualify a static data member with its class name. After the previous line of
code executes, there is a single value associated with the Critter class, stored in its static
data member s_Total with a value of 0.

h i n t

You can declare a static variable in non-class functions, too. The static variable maintains its value
between function calls.

Accessing Static Data Members
You can access a public static data member anywhere in your program. In main(), I access
s_Total with the following line, which displays 0, the value of the static data member and
the total number of Critter objects that have been instantiated.

cout << Critter::s_Total << “\n\n”;

Using Static Data Members and Member Functions 233

Notice that I had to qualify s_Total with Critter::. Outside of its class, you have to qualify
a static data member with its class name.

h i n t

You can also access a static member through any object of the class.Assuming that crit1 is a Crit-
ter object, I could display the total number of critters with the following line:

cout << crit1.s_Total << “\n\n”;

I also access this static data member in the Critter constructor with the following line,
which increments s_Total.

++s_Total;

This means that every time a new object is instantiated, s_Total is incremented. Notice
that I didn’t qualify s_Total with Critter::. Just as with non-static data members, you don’t
have to qualify a static data member with its class name inside a class.

Although I made my static data member public, you can make a static data member
private—but then, like any other data member, you can only access it in a class
member function.

Defining Static Member Functions
A static member function exists for the entire class. I define a static member in Critter with
the following line, which defines a static member function GetTotal() that returns the
value of the static data member s_Total.

static int GetTotal() //static member function
{

return s_Total;
}

You can define your own static member function like I did, by starting the definition with
the keyword static.

Calling Static Member Functions
After I instantiate three Critter objects in main(), I reveal the total number of critters again
with the following line, which displays 3.

cout << Critter::GetTotal() << “\n\n”;

To properly identify the static member function, I had to qualify it with Critter::. To call
a static member function from outside of its class, you must qualify it with its class name.

Chapter 8 ■ Classes: Critter Caretaker234

h i n t

You can also access a static member through any object of the class. Assuming that crit1 is a
Critter object, I could display the total number of critters with the following line:

cout << crit1.GetTotal() << “\n\n”;

Because static member functions don’t have to be called through a class instance, they
don’t have direct access to any class data members or member functions. As a result, stat-
ic member functions can only directly access other static class members. This also means
that it makes no sense to declare a static member function as constant. Just as with a pri-
vate static data member, a private static member function can only be accessed by other
member functions of its class.

Introducing the Critter Caretaker Game
The Critter Caretaker game puts the player in charge of his own virtual pet. The player is
completely responsible for keeping the critter happy, which is no small task. He can feed and
play with the critter to keep it in a good mood. He can also listen to the critter to learn how
the critter is feeling, which can range from happy to mad. Figure 8.5 shows off the game.

The code for the program is in the Chapter 8 folder on the CD-ROM that came with this
book; the file name is critter_caretaker.cpp.

Introducing the Critter Caretaker Game 235

Figure 8.5
If you fail to feed or entertain your critter, it will have a mood change for the worse.
(But don’t worry—with the proper care, your critter can return to a sunny mood.)

Planning the Game
The core of the game is the critter itself. Therefore, I first plan my Critter class. Because I
want the critter to have independent hunger and boredom levels, I know that the class will
have private data members for those.

■ m_Hunger

■ m_Boredom

The critter should also have a mood, directly based on its hunger and boredom levels. My
first thought was to have a private data member, but a critter’s mood is really a calculated
value based on its hunger and boredom. Instead, I decided to have a private member func-
tion that calculates a critter’s mood on the fly, based on its current hunger and boredom
levels.

■ GetMood()

Next, I think about public member functions. I want the critter to be able to tell the player
how it’s feeling. I also want the player to be able to feed and play with the critter to reduce
its hunger and boredom levels. I need three public member functions to accomplish each of
these tasks.

■ Talk()

■ Eat()

■ Play()

Finally, I want another member function that simulates
the passage of time, to make the critter a little more hun-
gry and bored:

■ PassTime()

I see this member function as private because it will only
be called by other member functions, such as Talk(),
Eat(), or Play().

The class will also have a constructor to initialize data
members. Take a look at Figure 8.6, which models the
Critter class. I preface each data member and member
function with a symbol to indicate its access level; I use
+ for public and – for private.

Chapter 8 ■ Classes: Critter Caretaker236

Figure 8.6
Model for the Critter class

Planning the Pseudocode
The rest of the program will be pretty simple. It’ll basically be a game loop that asks the
player whether he wants to listen to, feed, or play with the critter, or quit the game. Here’s
the pseudocode I came up with:

Create a critter
While the player doesn’t want to quit the game

Present a menu of choices to the player
If the player wants to listen to the critter

Make the critter talk
If the player wants to feed the critter

Make the critter eat
If the player wants to play with the critter

Make the critter play

The Critter Class
The Critter class is the blueprint for the object that represents the player’s critter. The class
isn’t complicated, and most of it should look familiar, but it’s long enough that it makes
sense to attack it in pieces.

The Class Definition

After some initial comments and statements, I begin the Critter class.

//Critter Caretaker
//Simulates caring for a virtual pet

#include <iostream>

using namespace std;

class Critter
{
public:

Critter(int hunger = 0, int boredom = 0);
void Talk();
void Eat(int food = 4);
void Play(int fun = 4);

private:
int m_Hunger;
int m_Boredom;

int GetMood() const;
void PassTime(int time = 1);

};

Introducing the Critter Caretaker Game 237

m_Hunger is a private data member that represents the critter’s hunger level, while m_Boredom
is a private data member that represents its boredom level. I’ll go through each member
function in its own section.

The Class Constructor

The constructor takes two arguments, hunger and boredom. The arguments each have a
default value of zero, which I specified in the constructor prototype back in the class def-
inition. I use hunger to initialize m_Hunger and boredom to initialize m_Boredom.

Critter::Critter(int hunger, int boredom):
m_Hunger(hunger),
m_Boredom(boredom)

{}

The GetMood() Member Function

Next I define GetMood().

inline int Critter::GetMood() const
{

return (m_Hunger + m_Boredom);
}

The return value of this inlined member function represents a critter’s mood. As the sum
of a critter’s hunger and boredom levels, a critter’s mood gets worse as the number
increases. I made this member function private because it should only be invoked by
another member function of the class. I made it constant since it won’t result in any
changes to data members.

The PassTime() Member Function

PassTime() is a private member function that increases a critter’s hunger and boredom lev-
els. It’s invoked at the end of each member function where the critter does something
(eats, plays, or talks) to simulate the passage of time. I made this member function private
because it should only be invoked by another member function of the class.

void Critter::PassTime(int time)
{

m_Hunger += time;
m_Boredom += time;

}

You can pass the member function the amount of time that has passed; otherwise, time
gets the default argument value of 1, which I specify in the member function prototype in
the Critter class definition.

Chapter 8 ■ Classes: Critter Caretaker238

The Talk() Member Function

The Talk() member function announces the critter’s mood, which can be happy, okay,
frustrated, or mad. Talk() calls GetMood() and, based on the return value, displays the
appropriate message to indicate the critter’s mood. Finally, Talk() calls PassTime() to sim-
ulate the passage of time.

void Critter::Talk()
{

cout << “I’m a critter and I feel “;
int mood = GetMood();
if (mood > 15)

cout << “mad.\n”;
else if (mood > 10)

cout << “frustrated.\n”;
else if (mood > 5)

cout << “okay.\n”;
else

cout << “happy.\n”;
PassTime();

}

The Eat() Member Function

Eat() reduces a critter’s hunger level by the amount passed to the parameter food. If no
value is passed, food gets the default argument value of 4. The critter’s hunger level is kept
in check and is not allowed to go below zero. Finally, PassTime() is called to simulate the
passage of time.

void Critter::Eat(int food)
{

cout << “Brruppp.\n”;
m_Hunger -= food;
if (m_Hunger < 0)

m_Hunger = 0;
PassTime();

}

The Play() Member Function

Play() reduces a critter’s boredom level by the amount passed to the parameter fun. If no
value is passed, fun gets the default argument value of 4. The critter’s boredom level is kept
in check and is not allowed to go below zero. Finally, PassTime() is called to simulate the
passage of time.

void Critter::Play(int fun)
{

cout << “Wheee!\n”;
m_Boredom -= fun;

Introducing the Critter Caretaker Game 239

if (m_Boredom < 0)
m_Boredom = 0;

PassTime();
}

The main() Function
In main(), I instantiate a new Critter object. Because I don’t supply values for m_Hunger or
m_Boredom, the data members start out at 0, and the critter begins life happy and content.
Next, I create a menu system. If the player enters 0, the program ends. If the player enters
1, the program calls the object’s Talk() member function. If the player enters 2, the pro-
gram calls the object’s Eat() member function. If the player enters 3, the program calls the
object’s Play() member function. If the player enters anything else, he is told that the
choice is invalid.

int main()
{

Critter crit;
crit.Talk();

int choice;
do
{

cout << “\nCritter Caretaker\n\n”;
cout << “0 - Quit\n”;
cout << “1 - Listen to your critter\n”;
cout << “2 - Feed your critter\n”;
cout << “3 - Play with your critter\n\n”;

cout << “Choice: “;
cin >> choice;

switch (choice)
{
case 0:

cout << “Good-bye.\n”;
break;

case 1:
crit.Talk();
break;

case 2:
crit.Eat();
break;

case 3:
crit.Play();
break;

default:
cout << “\nSorry, but “ << choice << “ isn’t a valid choice.\n”;

Chapter 8 ■ Classes: Critter Caretaker240

}
} while (choice != 0);

return 0;
}

Summary
In this chapter, you should have learned the following concepts:

■ Object-oriented programming (OOP) is a way of thinking about programming in
which you define different types of objects with relationships that interact with
each other.

■ You can create a new type by defining a class.

■ A class is a blueprint for an object.

■ In a class, you can declare data members and member functions.

■ When you define a member function outside of a class definition, you need to
qualify it with the class name and scope resolution operator (::).

■ You can inline a member function by defining it directly in the class definition.

■ You can access data members and member functions of objects through the mem-
ber selection operator (.).

■ Every class has a constructor—a special member function that’s automatically
called every time a new object is instantiated. Constructors are often used to ini-
tialize data members.

■ A default constructor requires no arguments. If you don’t provide a constructor
definition in your class, the compiler will create a default constructor for you.

■ Member initializers provide shorthand to assign values to data members in a con-
structor.

■ You can set member access levels in a class by using the keywords public, private,
and protected. (You’ll learn about protected in Chapter 9, “Advanced Classes and
Dynamic Memory: Game Lobby.”)

■ A public member can be accessed by any part of your code through an object.

■ A private member can only be accessed by a member function of that class.

■ An accessor member function allows indirect access to a data member.

■ A static data member exists for the entire class.

■ A static member function exists for the entire class.

Summary 241

■ Some game programmers prefix private data member names with m_ and static
data member names with s_ so that they’re instantly recognizable.

■ A constant member function can’t modify non-static data members or call non-
constant member functions of its class.

Questions and Answers
Q: What is procedural programming?

A: A paradigm where tasks are broken down into a series of smaller tasks and imple-
mented in manageable chunks of code, such as functions. In procedural program-
ming, functions and data are separate.

Q: What is an object?

A: An entity that combines data and functions.

Q: Why create objects?

A: Because the world—and especially a game world—is full of objects. By creating
your own types, you can represent objects and their relationships to other objects
more directly and intuitively than you might be able to otherwise.

Q: What is object-oriented programming?

A: A paradigm where work is accomplished through objects. It allows programmers
to define their own types of objects. The objects usually have relationships to each
other and can interact.

Q: Is C++ an object-oriented programming language or a procedural programming
language?

A: C++ is a multi-paradigm programming language. It allows a game programmer
to write games in a procedural way or an object-oriented way—or through a
combination of both (to name just a few options).

Q: Should I always try to write object-oriented game programs?

A: Although object-oriented programming is used in almost every commercial game
on the market, you don’t have to write games using this paradigm. C++ lets you
use one of several programming paradigms. In general, though, large game pro-
jects will almost surely benefit from an object-oriented approach.

Q: Why not make all class members public?

A: Because it goes against the idea of encapsulation.

Q: What is encapsulation?

A: The quality of being self-contained. In the world of OOP, encapsulation prevents
client code from directly accessing the internals of an object. Instead, it encour-
ages client code to use a defined interface to the object.

Chapter 8 ■ Classes: Critter Caretaker242

Q: What are the benefits of encapsulation?

A: In the world of OOP, encapsulation protects the integrity of an object. For exam-
ple, you might have a spaceship object with a fuel data member. By preventing
direct access to this data member, you can guarantee that it never becomes an ille-
gal value (such as a negative number).

Q: Should I provide access to data members through accessor member functions?

A: Some game programmers say you should never provide access to data members
through accessor member functions because even though this kind of access is
indirect, it goes against the idea of encapsulation. Instead, they say you should
write classes with member functions that provide the client with all of the func-
tionality it could need, eliminating the client’s need to access a specific data
member.

Q: What are mutable data members?

A: Data members that can be modified even by constant member functions. You cre-
ate a mutable data member using the keyword mutable. You can also modify a
mutable data member of a constant object.

Q: Why is it useful to have a default constructor?

A: Because there might be times when objects are automatically created without any
argument values passed to a constructor—for example, when you create an array
of objects.

Q: What is a structure?

A: A structure is very similar to a class. The only real difference is that the default
access level for structures is public. You define a structure by using the keyword
struct.

Q: Why does C++ have both structures and classes?

A: So that C++ retains backward compatibility with C.

Q: When should I use structures?

A: Some game programmers use structures to group only data together, without
functions (because that’s how C structures work). But it’s probably best to avoid
structures whenever possible and use classes instead.

Discussion Questions
1. What are the advantages and disadvantages of procedural programming?

2. What are the advantages and disadvantages of object-oriented programming?

3. Are accessor member functions a sign of poor class design? Explain.

4. How are constant member functions helpful to a game programmer?

Discussion Questions 243

5. When is it a good idea to calculate an object’s attribute on the fly rather than stor-
ing it as a data member?

Exercises
1. Improve the Critter Caretaker program so that you can enter an unlisted menu

choice that reveals the exact values of the critter’s hunger and boredom levels.

2. Change the Critter Caretaker program so that the critter is more expressive about
its needs by hinting at how hungry and bored it is.

3. What design problem does the following program have?

#include <iostream>
using namespace std;

class Critter
{
public:

int GetHunger() const {return m_Hunger;}
private:

int m_Hunger;
};

int main()
{

Critter crit;
cout << crit.GetHunger() << endl;
return 0;

}

Chapter 8 ■ Classes: Critter Caretaker244

245

Advanced Classes
and Dynamic Memory:
Game Lobby

Chapter 9

C
++ gives a game programmer a high degree of control over the computer. One of
the most fundamental abilities is direct control over memory. In this chapter,
you’ll learn about dynamic memory—memory that you manage yourself. But with

great power comes great responsibility, so you’ll also see the pitfalls of dynamic memory
and how to avoid them. You’ll learn a few more things about classes, too. Specifically, you’ll
learn to:

■ Combine objects

■ Use friend functions

■ Overload operators

■ Dynamically allocate and free memory

■ Avoid memory leaks

■ Produce deep copies of objects

Using Aggregation
Game objects are often composed of other objects. For example, in a racing game, a drag
racer could be seen as a single object composed of other individual objects, such as a body,
four tires, and an engine. Other times, you might see an object as a collection of related
objects. In a zookeeper simulation, you might see the zoo as a collection of an arbitrary
number of animals. You can mimic these kinds of relationships among objects in OOP
using aggregation—the combining of objects so that one is part of another. For example,
you could write a Drag_Racer class that has an engine data member that’s an Engine object.
Or, you could write a Zoo class that has an animals data member that is a collection of
Animal objects.

Introducing the Critter Farm Program
The Critter Farm program defines a new kind of critter with a name. After the program
announces a new critter’s name, it creates a critter farm—a collection of critters. Finally,
the program calls roll on the farm and each critter announces its name. Figure 9.1 shows
the results of the program.

The code for the program is in the Chapter 9 folder on the CD-ROM that came with this
book; the file name is critter_farm.cpp.

//Critter Farm
//Demonstrates object containment

#include <iostream>
#include <string>
#include <vector>

using namespace std;

class Critter
{
public:

Critter(const string& name = “”): m_Name(name) {}
string GetName() const { return m_Name; }

private:
string m_Name;

};

class Farm
{
public:

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby246

Figure 9.1
The critter farm is a collection of critters, each with a name.

Farm(int spaces = 1) { m_Critters.reserve(spaces); }
void Add(const Critter& aCritter) { m_Critters.push_back(aCritter); }
void RollCall() const
{

for (vector<Critter>::const_iterator iter = m_Critters.begin();
iter != m_Critters.end(); ++iter)

cout << iter->GetName() << “ here.\n”;
}

private:
vector<Critter> m_Critters;

};

int main()
{

Critter crit(“Poochie”);
cout << “My critter’s name is “ << crit.GetName() << endl;

cout << “\nCreating critter farm.\n”;
Farm myFarm(3);

cout << “\nAdding three critters to the farm.\n”;
myFarm.Add(Critter(“Moe”));
myFarm.Add(Critter(“Larry”));
myFarm.Add(Critter(“Curly”));

cout << “\nCalling Roll...\n”;
myFarm.RollCall();

return 0;
}

Using Object Data Members
One way to use aggregation when you’re defining a class is to declare a data member that
can hold another object. That’s what I did in Critter with the following line, which
declares the data member m_Name to hold a string object.

string m_Name;

Generally, you use aggregation when an object has another object. In this case, a critter has
a name. These kinds of relationships are called has-a relationships.

I put the declaration for the critter’s name to use when I instantiate a new object with:

Critter crit(“Poochie”);

which calls the Critter constructor:

Critter(const string& name = “”): m_Name(name) {}

Using Aggregation 247

By passing the string literal “Poochie”, the constructor is called and a string object for the
name is instantiated, which the constructor assigns to m_Name. A new critter named Poochie
is born.

Next, I display the critter’s name with the following line:

cout << “My critter’s name is “ << crit.GetName() << endl;

The code crit.GetName() returns a copy of the string object for the name of the critter,
which is then sent to cout and displayed on the screen.

Using Container Data Members
You can also use containers as data members for your objects. That’s what I do when I
define Farm. The single data member I declare for the class is simply a vector that holds
Critter objects called m_Critter.

vector<Critter> m_Critters;

When I instantiate a new Farm object with:

Farm myFarm(3);

it calls the constructor:

Farm(int spaces = 1) { m_Critters.reserve(spaces); }

which allocates memory for three Critter objects in the Farm object’s m_Critter vector.

Next, I add three critters to the farm by calling the Farm object’s Add() member function.

myFarm.Add(Critter(“Moe”));
myFarm.Add(Critter(“Larry”));
myFarm.Add(Critter(“Curly”));

The following member function accepts a constant reference to a Critter object and adds
a copy of the object to the m_Critters vector.

void Add(const Critter& aCritter) { m_Critters.push_back(aCritter); }

t r a p

Because push_back() adds a copy of an object to a vector, this means that I create an extra copy
of each Critter object every time I call Add(). This is no big deal in the Critter Farm program, but
if I were adding many large objects, it could become a performance issue. You can reduce this over-
head by using, say, a vector of pointers to objects. You’ll see how to work with pointers to objects
later in this chapter.

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby248

Finally, I take roll through the Farm object’s RollCall() member function.

myFarm.RollCall();

This iterates through the vector, calling each Critter object’s GetName() member function
and getting each critter to speak up and say its name.

Using Friend Functions and Operator Overloading
Friend functions and operator overloading are two advanced concepts related to classes.
Friend functions have complete access to any member of a class. Operator overloading
allows you to define new meanings for built-in operators as they relate to objects of your
own classes. As you’ll see, you can use these two concepts together.

Introducing the Friend Critter Program
The Friend Critter program creates a Critter object. It then uses a friend function, which
is able to directly access the private data member that stores the critter’s name to display
the critter’s name. Finally, the program displays the Critter object by sending the object to
the standard output. This is accomplished through a friend function and operator over-
loading. Figure 9.2 displays the results of the program.

The code for the program is in the Chapter 9 folder on the CD-ROM that came with this
book; the file name is friend_critter.cpp.

//Friend Critter
//Demonstrates friend functions and operator overloading

Using Friend Functions and Operator Overloading 249

Figure 9.2
The name of the critter is displayed through a friend function, and the Critter
object is displayed by sending it to the standard output.

#include <iostream>
#include <string>

using namespace std;

class Critter
{

//make following global functions friends of the Critter class
friend void Peek(const Critter& aCritter);
friend ostream& operator<<(ostream& os, const Critter& aCritter);

public:
Critter(const string& name = “”): m_Name(name) {}

private:
string m_Name;

};

void Peek(const Critter& aCritter);
ostream& operator<<(ostream& os, const Critter& aCritter);

int main()
{

Critter crit(“Poochie”);

cout << “Calling Peek() to access crit’s private data member, m_Name: \n”;
Peek(crit);

cout << “\nSending crit object to cout with the << operator:\n”;
cout << crit;

return 0;
}

//global friend function which can access all of a Critter object’s members
void Peek(const Critter& aCritter)
{

cout << aCritter.m_Name << endl;
}

//global friend function which can access all of Critter object’s members
//overloads the << operator so you can send a Critter object to cout
ostream& operator<<(ostream& os, const Critter& aCritter)
{

os << “Critter Object - “;
os << “m_Name: “ << aCritter.m_Name;
return os;

}

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby250

Creating Friend Functions
A friend function can access any member of a class of which it’s a friend. You specify that
a function is a friend of a class by listing the function prototype preceded by the keyword
friend inside the class definition. That’s what I do inside the Critter definition with the
following line, which says that the global function Peek() is a friend of Critter.

friend void Peek(const Critter& aCritter);

This means Peek() can access any member of Critter even though it’s not a member func-
tion of the class. Peek() takes advantage of this relationship by accessing the private data
member m_Name to display the name of a critter passed to the function.

void Peek(const Critter& aCritter)
{

cout << aCritter.m_Name << endl;
}

When I call Peek() in main() with the following line, the private data member m_Name of crit
is displayed and Poochie appears on the screen.

Peek(crit);

Overloading Operators
Overloading operators might sound like something you want to avoid at all costs—as in,
“Look out, that operator is overloaded and she’s about to blow!”—but it’s not. Operator
overloading lets you give meaning to built-in operators used with new types that you
define. For example, you could overload the * operator so that when it is used with two
3D matrices (objects instantiated from some class that you’ve defined), the result is the
multiplication of the matrices.

To overload an operator, define a function called operatorX, where X is the operator you
want to overload. That’s what I do when I overload the << operator; I define a function
named operator<<.

ostream& operator<<(ostream& os, const Critter& aCritter)
{

os << “Critter Object - “;
os << “m_Name: “ << aCritter.m_Name;
return os;

}

The function overloads the << operator so that when I send a Critter object with the << to
cout, the data member m_Name is displayed. Essentially, the function allows me to easily dis-
play Critter objects. The function can directly access the private data member m_Name of a
Critter object because I made the function a friend of the Critter class with the following
line in Critter:

Using Friend Functions and Operator Overloading 251

friend ostream& operator<<(ostream& os, const Critter& aCritter);

This means I can simply display a Critter object by sending it to cout with the << opera-
tor, which is what I do in main() with the following line, which displays the text Critter
Object – m_Name: Poochie.

cout << crit;

h i n t

With all the tools and debugging options available to game programmers, sometimes simply dis-
playing the values of variables is the best way to understand what’s happening in your programs.
Overloading the << operator can help you do that.

This function works because cout is of the type ostream, which already overloads the <<
operator so that you can send built-in types to cout.

Dynamically Allocating Memory
So far, whenever you’ve declared a variable, C++ has allocated the necessary memory for it.
When the function that the variable was created in ended, C++ freed the memory. This
memory, which is used for local variables, is called the stack. But there’s another kind of
memory that persists independently of the functions in a program. You, the programmer,
are in charge of allocating and freeing this memory, collectively called the heap (or free store).

At this point, you might be thinking, “Why bother with another type of memory? The
stack works just fine, thank you.” Using the dynamic memory of the heap offers great
benefits that can be summed up in one word: efficiency. By using the heap, you can use
only the amount of memory you need at any given time. If you have a game with a level
that has 100 enemies, you can allocate the memory for the enemies at the beginning of the
level and free the memory at the end. The heap also allows you to create an object in one
function that you can access even after that function ends (without having to return a
copy of the object). You might create a screen object in one function and return access to
it. You’ll find that dynamic memory is an important tool in writing any significant game.

Introducing the Heap Program
The Heap program demonstrates dynamic memory. The program dynamically allocates
memory on the heap for an integer variable, assigns it a value, and then displays it. Next, the
program calls a function that dynamically allocates memory on the heap for another inte-
ger variable, assigns it a value, and returns a pointer to it. The program takes the returned
pointer, uses it to display the value, and then frees the allocated memory on the heap. Finally,
the program contains two functions that demonstrate the misuse of dynamic memory.
I don’t call these functions, but I use them to illustrate what not to do with dynamic
memory. Figure 9.3 shows the program.

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby252

The code for the program is in the Chapter 9 folder on the CD-ROM that came with this
book; the file name is heap.cpp.

// Heap
// Demonstrates dynamically allocating memory

#include <iostream>

using namespace std;

int* intOnHeap(); //returns an int on the heap
void leak1(); //creates a memory leak
void leak2(); //creates another memory leak

int main()
{

int* pHeap = new int;
*pHeap = 10;
cout << “*pHeap: “ << *pHeap << “\n\n”;

int* pHeap2 = intOnHeap();
cout << “*pHeap2: “ << *pHeap2 << “\n\n”;

cout << “Freeing memory pointed to by pHeap.\n\n”;
delete pHeap;

cout << “Freeing memory pointed to by pHeap2.\n\n”;
delete pHeap2;

Dynamically Allocating Memory 253

Figure 9.3
The two int values are stored on the heap.

//get rid of dangling pointers
pHeap = 0;
pHeap2 = 0;

return 0;
}

int* intOnHeap()
{

int* pTemp = new int(20);
return pTemp;

}

void leak1()
{

int* drip1 = new int(30);
}

void leak2()
{

int* drip2 = new int(50);
drip2 = new int(100);
delete drip2;

}

Using the new Operator
The new operator allocates memory on the heap and returns its address. You use new fol-
lowed by the type of value you want to reserve space for. That’s what I do in the first line
of main().

int* pHeap = new int;

The new int part of the statement allocates enough memory on the heap for one int and
returns the address on the heap for that chunk of memory. The other part of the state-
ment, int* pHeap, declares a local pointer, pHeap, which points to the newly allocated chunk
of memory on the heap.

By using pHeap, I can manipulate the chunk of memory on the heap reserved for an inte-
ger. That’s what I do next; I assign 10 to the chunk of memory and then I display that value
stored on the heap, using pHeap, as I would any other pointer to int. The only difference is
that pHeap points to a piece of memory on the heap, not the stack.

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby254

h i n t

You can initialize memory on the heap at the same time you allocate it by placing a value, sur-
rounded by parentheses, after the type. This is even easier than it sounds. For example, the follow-
ing line allocates a chunk of memory on the heap for an int variable and assigns 10 to it. The
statement then assigns the address of that chunk of memory to pHeap.

int* pHeap = new int(10);

One of the major advantages of memory on the heap is that it can persist beyond the
function in which it was allocated, meaning that you can create an object on the heap in
one function and return a pointer or reference to it. That’s what I demonstrate with the
following line:

int* pHeap2 = intOnHeap();

The statement calls the function intOnHeap(), which allocates a chunk of memory on the
heap for an int and assigns 20 to it.

int* intOnHeap()
{

int* pTemp = new int(20);
return pTemp;

}

Then, the function returns a pointer to this chunk of memory. Back in main(), the assign-
ment statement assigns the address of the chunk of memory on the heap to pHeap2. Next,
I use the returned pointer to display the value.

cout << “*pHeap2: “ << *pHeap2 << “\n\n”;

h i n t

Up until now, if you wanted to return a value created in a function, you had to return a copy of that
value. By using dynamic memory, you can create an object on the heap in one function and simply
return a pointer to it to another function.

Using the delete Operator
Unlike storage for local variables on the stack, memory that you’ve allocated on the heap
must be explicitly freed. When you’re finished with memory that you’ve allocated with new,
you should free it with delete. That’s what I do with the following line, which frees the
memory on the heap that stored 10.

delete pHeap;

Dynamically Allocating Memory 255

That memory is returned to the heap for future use. The data that was stored in it is no
longer available. Next, I use delete to free the memory on the heap that stored 20.

delete pHeap2;

That memory is returned to the heap for future use, and the data that was stored in it is
no longer available. Notice that there’s no difference, as far as delete is concerned, regard-
ing where in the program I allocated the memory on the heap that I’m deleting.

t r i c k

Because you need to free memory that you’ve allocated once you’re finished with it, a good rule of
thumb is that every new should have a corresponding delete. In fact, some programmers write the
delete statement just after writing the new statement whenever possible, so they don’t forget it.

An important point to understand here is that the two previous statements free the mem-
ory on the heap, but they do not directly affect the local variables pHeap and pHeap2. This
creates a potential problem because pHeap and pHeap2 now point to memory that has been
returned to the heap, meaning that they point to memory that the computer can use in
some other way at any given time. Pointers like this are called dangling pointers and they
are quite dangerous. You should never attempt to dereference a dangling pointer. One
way to deal with dangling pointers is to assign 0 to them, and that’s what I do with the fol-
lowing lines, which reassign both dangling pointers so they no longer point to some
memory to which they should not point.

pHeap = 0;
pHeap2 = 0;

Another good way to deal with a dangling pointer is to assign a valid memory address
to it.

t r a p

Using delete on a dangling pointer can cause your program to crash. Be sure to set a dangling
pointer to 0 or reassign it to point to a new, valid chunk of memory.

Avoiding Memory Leaks
One problem with allowing a programmer to allocate and free memory is that he might
allocate memory and lose any way to get at it, thus losing any way to ever free it. When
memory is lost like this, it’s called a memory leak. Given a large enough leak, a program
might run out of memory and crash. As a game programmer, it’s your responsibility to
avoid memory leaks.

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby256

I’ve written two functions in the Heap program that purposely create memory leaks in
order to show you what not to do when using dynamic memory. The first function is
leak1(), which simply allocates a chunk of memory on the heap for an int value and then
ends.

void leak1()
{

int* drip1 = new int(30);
}

If I were to call this function, memory would be lost forever. (Okay, it would be lost until
the program ended.) The problem is that drip1, which is the only connection to the newly
acquired chunk of memory on the heap, is a local variable and ceases to exist when the
function leak1() ends. So, there’s no way to free the allocated memory. Take a look at
Figure 9.4 for a visual representation of how the leak occurs.

To avoid this memory leak, I could do one of two things. I could use delete to free the
memory in leak1(), or I could return a copy of the pointer drip1. If I choose the second
option, I have to make sure to free this memory in some other part of the program.

The second function that creates a memory leak is leak2().

void leak2()
{

int* drip2 = new int(50);
drip2 = new int(100);
delete drip2;

}

The memory leak is a little more subtle, but there is still a leak. The first line in the func-
tion body, int* drip2 = new int(50);, allocates a new piece of memory on the heap, assigns
50 to it, and has drip2 point to that piece of memory. So far, so good. The second line,
drip2 = new int(100);, points drip2 to a new piece of memory on the heap, which stores
100. The problem is that the memory on the heap that stores 50 now has nothing pointing
to it, so there is no way for the program to free that memory. As a result, that piece of
memory has essentially leaked out of the system. Check out Figure 9.5 for a visual repre-
sentation of how the leak occurs.

Dynamically Allocating Memory 257

Figure 9.4
The memory that stores 30 can no longer be
accessed to be freed, so it has leaked out of the
system.

The last statement of the function, delete drip2;, frees the memory that stores 100, so this
won’t be the source of another memory leak. But remember, the memory on the heap that
stores 50 has still leaked out of the system. Also, I don’t worry about drip2, which techni-
cally has become a dangling pointer, because it will cease to exist when the function ends.

Working with Data Members and the Heap
It’s possible to declare data members that are pointers to values on the heap. However,
problems can arise when you do this because of the way that some default object behav-
iors work.

Introducing the Heap Data Member Program
The Heap Data Member program defines a new type of critter with a data member that
is a pointer, which points to an object stored on the heap. The class defines a few new
member functions to handle situations in which an object is destroyed, copied, or
assigned to another object. The program destroys, copies, and assigns objects to show that
the objects behave as you’d expect, even with data members pointing to values on the
heap. Figure 9.6 shows the results of the Heap Data Member program.

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby258

Figure 9.5
By changing drip2 so that it points to the memory that stores 100, the memory that
stores 50 is no longer accessible and has leaked out of the system.

The code for the program is in the Chapter 9 folder on the CD-ROM that came with this
book; the file name is heap_data_member.cpp.

//Heap Data Member
//Demonstrates an object with a dynamically allocated data member

#include <iostream>
#include <string>

using namespace std;

class Critter
{
public:

Critter(const string& name = “”)
{

cout << “Constructor called\n”;
m_pName = new string(name);

}

~Critter() //destructor
{

cout << “Destructor called\n”;
delete m_pName;

}

Critter(const Critter& c) //copy constructor
{

cout << “Copy Constructor called\n”;

Working with Data Members and the Heap 259

Figure 9.6
Objects, each with a data member that points to a value on the heap, are
instantiated, destroyed, and copied.

m_pName = new string;
*m_pName = c.GetName();

}

Critter& operator=(const Critter& c) //overloaded assignment operator
{

cout << “Overloaded Assignment Operator called\n”;

if (this == &c)
{

return *this;
}
else
{

*m_pName = c.GetName();
return *this;

}
}

string GetName() const { return *m_pName; }
void SetName(const string& name = “”) { *m_pName = name; }
void SayHi() const { cout << “Hi, my name is “ << GetName() << “\n”; }

private:
string* m_pName;

};

void testDestructor();
void testCopyConstructor(Critter copy);
void testAssignmentOp();

int main()
{

testDestructor();
cout << endl;

Critter crit(“Poochie”);
crit.SayHi();
testCopyConstructor(crit);
cout << endl;

testAssignmentOp();

return 0;
}

void testDestructor()
{

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby260

Critter crit(“Rover”);
crit.SayHi();

}

//passing object by value invokes its copy constructor
void testCopyConstructor(Critter copy)
{

copy.SayHi();
}

void testAssignmentOp()
{

Critter crit1(“crit1”);
Critter crit2(“crit2”);
crit1 = crit2;
crit1.SayHi();
crit2.SayHi();

cout << “Setting name of crit1 back to ‘crit1’\n”;
crit1.SetName(“crit1”);
crit1.SayHi();
crit2.SayHi();

Critter crit(“crit”);
crit = crit;

}

Declaring Data Members That Point to Values on the Heap
To declare a data member that points to a value on the heap, you first need to declare a
data member that’s a pointer. That what I do in Critter with the following line, which
declares m_pName as a pointer to a string object.

string* m_pName;

In the class constructor, you can allocate memory on the heap, assign a value to the mem-
ory, and then point the pointer to the memory. That’s what I do in the constructor with
the following line, which allocates memory for a string object, assigns name to it, and
points m_pName to that chunk of memory on the heap.

m_pName = new string(name);

When main() calls testDestructor(), the function instantiates a Critter object. The object
has an m_pName data member that points to a string object equal to “Rover” that’s stored on
the heap. Figure 9.7 provides a visual representation of the Critter object. Note that the
image is abstract because the name of the critter is actually stored as a string object, not a
string literal.

Working with Data Members and the Heap 261

Defining Destructors
A destructor is member function that’s called just before an object is destroyed.
Destructors are most often used by programmers to perform any necessary cleanup before
an object disappears forever. A destructor must have the name of the class preceded by
~ (the tilde character). A destructor cannot have any parameters and cannot return a
value. If you don’t write a destructor of your own, the compiler will supply a default
destructor for you. The behavior of the default destructor is usually fine for simple class-
es, but when you have a class with data members that point to values on the heap, you
should write your own destructor so you can free the memory on the heap associated with
the object before the object disappears, avoiding a memory leak. That’s what I do in the
Critter class.

~Critter() //destructor
{

cout << “Destructor called.\n”;
delete m_pName;

}

The destructor displays a message and then frees the memory pointed to by m_pName. Notice
that I don’t assign 0 to m_pName even though it technically becomes a dangling pointer after
the delete operation. That’s okay because m_pName will cease to exist when the destructor
ends and the object is gone.

h i n t

When you have a class that allocates memory on the heap, you should write a destructor that
cleans up and frees that memory.

Defining Copy Constructors
Sometimes an object is copied automatically for you. This occurs when an object is

■ Passed by value to a function

■ Returned from a function

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby262

Figure 9.7
A representation of a Critter object. The string object equal to “Rover” is
stored on the heap.

■ Initialized to another object through an initializer

■ Provided as a single argument to the object’s constructor

The copying is done by a special member function called the copy constructor. Like con-
structors and destructors, a default copy constructor is supplied for you if you don’t write
one of your own. The default copy constructor simply copies the value of each data mem-
ber to data members of the same name in the new object—a member-wise copy.

For simple classes, the default copy constructor is usually fine. However, when you have a
class with a data member that points to value on the heap, you usually write your own
copy constructor. Why? Imagine a Critter object that has a data member that’s a pointer
to a string object on the heap. With only a default copy constructor, the automatic copy-
ing of the object would result in a new object that points to the same single string on the
heap because the pointer of the new object would simply get a copy of the address stored
in the pointer of the original object. This member-wise copying produces a shallow copy,
in which the pointer data members of the copy point to the same chunks of memory as
the pointer data members in the original object.

Let me give you a specific example. If I hadn’t written my own copy constructor in the
Heap Data Member program, when I passed a Critter object by value with the following
function call, the program would have automatically made a shallow copy of crit called
copy that existed in testCopyConstructor().

testCopyConstructor(crit);

copy’s m_pName data member would point to the exact same string object on the heap as crit’s
m_pName data member does. Figure 9.8 shows you what I mean. Note that the image is abstract
because the name of the critter is actually stored as a string object, not a string literal.

Working with Data Members and the Heap 263

Figure 9.8
If a shallow copy of crit were made, both copy and crit would have a data
member that points to the same chunk of memory on the heap.

Why is this a problem? Once testCopyConstructor() ends, copy’s destructor is called, freeing
the memory on the heap pointed to by copy’s m_pName data member. Because of this, crit’s
m_pName data member would point to memory that has been freed, which would mean that
the crits’s m_pName data member would be a dangling pointer! Figure 9.9 provides you with
a visual representation of this. Note that the image is abstract because the name of the
critter is actually stored as a string object, not a string literal.

What you really need is a copy constructor that produces a new object with its own chunk
of memory on the heap that the object points to—a deep copy. That’s what I do when I
define the following copy constructor, which overloads the default one provided by the
compiler.

Critter(const Critter& c) //copy constructor
{

cout << “Copy Constructor called.\n”;
m_pName = new string;
*m_pName = c.GetName();

}

Just like this one, a copy constructor must have the same name as the class. It returns no
value, but accepts a reference to an object of the class—the object that needs to be copied.
The reference is almost always made a constant reference to protect the original object
from being changed during the copy process.

When I call testCopyConstructor() by passing crit to the function by value, the copy con-
structor I wrote is called. You know this because the text Copy Constructor called. appears
on the screen. The copy constructor creates a new Critter object (the copy) and accepts a
reference to the original in c. With the line m_pName = new string;, the copy constructor allo-
cates a new chunk of memory on the heap and points the m_pName data member of the copy

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby264

Figure 9.9
When the shallow copy of the Critter object is destroyed, the memory on
the heap that it shared with the original object is freed. As result, the original
object now has a dangling pointer.

to this memory. In the next line, *m_pName = c.GetName();, the copy constructor gets a copy
of the string object equal to “Poochie” from the original and copies that to the newly
acquired chunk of memory. As a result, a deep copy of crit is made, and that’s what gets
used in testCopyConstructor().

When testCopyConstructor() ends, the copy of the Critter object used in the function is
destroyed. The destructor frees the chunk of memory on the heap associated with the
copy, leaving the original Critter object and its chunk of memory on the heap unaffected.
Figure 9.10 shows the results. Note that the image is abstract because the name of the
critter is actually stored as a string object, not a string literal.

h i n t

When you have a class with data members that point to memory on the heap, you should consider
writing a copy constructor that allocates memory for a new object and creates a deep copy.

Overloading the Assignment Operator
When both sides of an assignment statement are objects of the same class, the class’
assignment operator member function is called. Like a default copy constructor, a default
assignment operator member function is supplied for you if you don’t write one of your
own. Also like the default copy constructor, the default assignment operator provides only
member-wise duplication.

For simple classes, the default assignment operator is usually fine. However, when you
have a class with a data member that points to a value on the heap, you usually provide an

Working with Data Members and the Heap 265

Figure 9.10
With a proper copy constructor, the original and the copy each point to their
own chunk of memory on the heap. Then, when the copy is destroyed, the
original is unaffected.

overloaded assignment operator of your own. If you don’t, you’ll end up with shallow
copies of objects when you assign one object to another. To avoid this problem, I over-
loaded the assignment operator for Critter.

Critter& operator=(const Critter& c) //overloaded assignment operator
{

cout << “Overloaded Assignment Operator called.\n”;

if (this == &c)
{

return *this;
}
else
{

*m_pName = c.GetName();
return *this;

}
}

Notice that the member function returns a reference to a Critter object. For robust assign-
ment operation, return a reference from the overloaded assignment operator member
function.

Next in main(), I call a function that tests the overloaded assignment operator for this class.

testAssignmentOp();

The testAssignmentOp() creates two objects and assigns one to the other.

Critter crit1(“crit1”);
Critter crit2(“crit2”);
crit1 = crit2;

The preceding assignment statement, crit1 = crit2;, calls the assignment operator member
function—operator=()—for crit1. In the operator=() function, c is a constant reference to
crit2. After operator=() displays a message that the overloaded assignment operator has been
called, it uses the this pointer. What’s the this pointer? It’s a pointer that all non-static mem-
ber functions automatically have, which points to the object that was used to call the func-
tion. In this case, this points to crit1, the object being assigned to. The next line, if (this ==
&c), checks to see whether the address of crit1 is equal to the address of crit2—that is, it
checks whether the object is being assigned to itself. Because it’s not, the else clause executes.
Next, *m_pName = c.GetName(); assigns the string object equal to “crit2” to the chunk of
memory that crit1’s m_pName data member points to. Finally, the function returns a copy
of the new crit1 by returning *this.

I prove that the assignment worked by calling crit1 and crit2’s SayHi() member functions.
Both statements display the message Hi, my name is crit2, proving that the assignment
worked.

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby266

Next, I want to prove that the assignment didn’t produce shallow copies and that both
crit1 and crit2 have data members that point to two different chunks of memory on the
heap. So, I change the value stored in the chunk of memory to which the data member of
crit1 points.

crit1.SetName(“crit1”);

If all goes well, changing the name of crit1 should have no effect on crit2. To show this, I
call crit1 and crit2’s SayHi() member functions again. This time, the messages Hi, my name
is crit1 and Hi, my name is crit2 are displayed, proving that both objects have their own
chunks of memory on the heap to store their names.

Finally, I want to show you what happens when you assign an object to itself. That’s what
I do next in the function with the following lines:

Critter crit(“crit”);

crit = crit;

The preceding assignment statement, crit = crit;, calls the assignment operator member
function—operator=()—for crit. The statement if (this == &c) checks to see whether crit
is being assigned to itself. Because it is, the member function simply returns a copy of crit
by returning *this.

h i n t

When you have a class with a data member that points to memory on the heap, you should con-
sider overloading the assignment operator for the class.

Introducing the Game Lobby Program
The Game Lobby program simulates a game lobby—a waiting area for players, usually in
an online game. The program doesn’t actually involve an online component. It creates a
single line in which players can wait. The user of the program runs the simulation and has
four choices. He can add a person to the lobby, remove a person from the lobby (the first
person in line is the first to leave), clear out the lobby, or quit the simulation. Figure 9.11
shows the program in action.

Working with Data Members and the Heap 267

The Player Class
The first thing I do is create a Player class to represent the players who are waiting in the
game lobby. Because I don’t know how many players I’ll have in my lobby at one time, it
makes sense to use a dynamic data structure. Normally, I’d go to my toolbox of contain-
ers from the STL. But I decided to take a different approach in this program and create my
own kind of container using dynamically allocated memory that I manage. I didn’t do this
because it’s a better programming choice—always see whether you can leverage good
work done by other programmers, like the STL—but because it makes for a better game
programming example. It’s a great way to really see dynamic memory in action.

The code for the program is in the Chapter 9 folder on the CD-ROM that came with this
book; the file name is game_lobby.cpp. Here’s the beginning of the program, which
includes the Player class:

//Game Lobby
//Simulates a game lobby where players wait

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby268

Figure 9.11
The lobby holds players who are removed in the order in which they were
added.

#include <iostream>
#include <string>

using namespace std;

class Player
{
public:

Player(const string& name = “”): m_Name(name), m_pNext(0) {}
string GetName() const { return m_Name; }
Player* GetNext() const { return m_pNext; }
void SetNext(Player* next) { m_pNext = next; }

private:
string m_Name;
Player* m_pNext; //Pointer to next player in list

};

The m_Name data member holds the name of a player. That’s pretty straightforward, but you
might be wondering about the other data member, m_pNext. It’s a pointer to a Player object,
which means that each Player object can hold a name and point to another Player object.
You’ll get the point of all this when I talk about the Lobby class. Figure 9.12 provides a
visual representation of a Player object.

The class has a get accessor method for m_Name and get and set accessor member functions
for m_pNext. Finally, the constructor is pretty simple. It initializes m_Name to a string object
based on what’s passed to the constructor. It also sets m_pNext to 0, making it a null pointer.

The Lobby Class
The Lobby class represents the lobby or line in which players wait.

class Lobby
{

Working with Data Members and the Heap 269

Figure 9.12
A Player object can hold a name and point to another Player object.

friend ostream& operator<<(ostream& os, const Lobby& aLobby);
public:

Lobby(): m_pHead(0) {}
~Lobby() { Clear(); }
void AddPlayer();
void RemovePlayer();
void Clear();

private:
Player* m_pHead;

};

The data member m_pHead is a pointer that points to a Player object, which represents the
first person in line. m_pHead represents the head of the line.

Because each Player object has an m_pNext data member, you can link a bunch of Player
objects in a linked list. Individual elements of linked lists are often called nodes. Figure 9.13
provides a visual representation of a game lobby—a series of player nodes linked with one
player at the head of the line.

One way to think about the player nodes is as a group of train cars that carry cargo and
are connected. In this case, the train cars carry a name as cargo and are linked through a
pointer data member, m_pNext. The Lobby class allocates memory on the heap for each
Player object in the list. The Lobby data member m_pHead provides access to the first Player
object at the head of the list.

The constructor is very simple. It simply initializes the data member m_pHead to 0, making
it a null pointer. The destructor simply calls Clear(), which removes all the Player objects
from the list, freeing the allocated memory. AddPlayer() instantiates a Player object on the
heap and adds it to the end of the list. RemovePlayer() removes the first Player object in the
list, freeing the allocated memory.

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby270

Figure 9.13
Each node holds a name and a pointer to the next player in the list. The first player in line is at the
head.

I declare the function operator<<() a friend of Lobby so that I can send a Lobby object to cout
using the << operator.

t r a p

The Lobby class has a data member, m_pHead, which points to Player objects on the heap. Because
of this, I included a destructor that frees all of the memory occupied by the Player objects on the
heap instantiated by a Lobby object to avoid any memory leaks when a Lobby object is destroyed.
However, I didn’t define a copy constructor or overload the assignment operator in the class. For
the Game Lobby program, this isn’t necessary. But if I wanted a more robust Lobby class, I would
have defined these member functions. Don’t worry; you’ll get the chance to do exactly that in one
of the chapter exercises.

The Lobby::AddPlayer() Member Function
The Lobby::AddPlayer() member function adds a player to the end of the line in the lobby.

void Lobby::AddPlayer()
{

//create a new player node
cout << “Please enter the name of the new player: “;
string name;
cin >> name;
Player* pNewPlayer = new Player(name);

//if list is empty, make head of list this new player
if (m_pHead == 0)
{

m_pHead = pNewPlayer;
}
//otherwise find the end of the list and add the player there
else
{

Player* pIter = m_pHead;
while (pIter->GetNext() != 0)
{

pIter = pIter->GetNext();
}
pIter->SetNext(pNewPlayer);

}
}

The first thing the function does is gets the new player’s name from the user and use it to
instantiate a new Player object on the heap. Then it sets the object’s pointer data member
to the null pointer.

Next, the function checks to see whether the lobby is empty. If the Lobby object’s data
member m_pHead is 0, then there’s no one in line. If so, the new Player object becomes the
head of the line and m_pHead is set to point to a new Player object on the heap.

Working with Data Members and the Heap 271

If the lobby isn’t empty, the player is added to the end of the line. The function accom-
plishes this by moving through the list one node at a time, using pIter’s GetNext() mem-
ber function, until it reaches a Player object whose GetNext() returns 0, meaning that it’s
the last node in the list. Then, the function makes that node point to the new Player object
on the heap, which has the effect of adding the new object to the end of the list. Figure
9.14 illustrates this process.

t r a p

Lobby::AddPlayer() marches through the entire list of Player objects every time it’s called. For
small lists this isn’t a problem, but with large lists this inefficient process can become unwieldy.
There are more efficient ways to do what this function does. In one of the chapter exercises, your
job will be to implement one of these more efficient methods.

The Lobby::RemovePlayer() Member Function
The Lobby:: RemovePlayer() member function removes the player at the head of the line.

void Lobby::RemovePlayer()
{

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby272

Figure 9.14
The list of players just before and just after a new player node is added.

if (m_pHead == 0)
{

cout << “The game lobby is empty. No one to remove!\n”;
}
else
{

Player* pTemp = m_pHead;
m_pHead = m_pHead->GetNext();
delete pTemp;

}
}

The function tests m_pHead. If it’s 0, then the lobby is empty and the function displays a
message that says so. Otherwise, the first Player object in the list is removed. The function
accomplishes this by creating a pointer, pTemp, and pointing it to the first Player object in
the list. Then the function sets m_pHead to the next thing in the list—either the next Player
object or 0. Finally, the function destroys the Player object pointed to by pTemp. Check out
Figure 9.15 for a visual representation of how this works.

The Lobby::Clear() Member Function
The Lobby::Clear() member function removes all of the players from the lobby.

void Lobby::Clear()
{

Working with Data Members and the Heap 273

Figure 9.15
The list of players just before and just after a player node is removed.

while (m_pHead != 0)
{

RemovePlayer();
}

}

If the list is empty, the loop isn’t entered and the function ends. Otherwise, the loop is
entered and the function keeps removing the first Player object in the list by calling
RemovePlayer() until there are no more Player objects.

The operator<<() Member Function
The operator<<() member function overloads the << operator so I can display a Lobby object
by sending it to cout.

ostream& operator<<(ostream& os, const Lobby& aLobby)
{

Player* pIter = aLobby.m_pHead;

os << “\nHere’s who’s in the game lobby:\n”;
if (pIter == 0)
{

os << “The lobby is empty.\n”;
}
else
{

while (pIter != 0)
{

os << pIter->GetName() << endl;
pIter = pIter->GetNext();

}
}

return os;
}

If the lobby is empty, the appropriate message is sent to the output stream. Otherwise, the
function cycles through all of the players in the list, sending their names to the output
stream, using pIter to move through the list.

The main() Function
The main() function displays the players in the lobby, presents the user with a menu of
choices, and performs the requested action.

int main()
{

Lobby myLobby;
int choice;

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby274

do
{

cout << myLobby;
cout << “\nGAME LOBBY\n”;
cout << “0 - Exit the program.\n”;
cout << “1 - Add a player to the lobby.\n”;
cout << “2 - Remove a player from the lobby.\n”;
cout << “3 - Clear the lobby.\n”;
cout << endl << “Enter choice: “;
cin >> choice;

switch (choice)
{

case 0: cout << “Good-bye.\n”; break;
case 1: myLobby.AddPlayer(); break;
case 2: myLobby.RemovePlayer(); break;
case 3: myLobby.Clear(); break;
default: cout << “That was not a valid choice.\n”;

}
}
while (choice != 0);

return 0;
}

The function first instantiates a new Lobby object, and then it enters a loop that presents a
menu and gets the user’s choice. Then it calls the corresponding Lobby object’s member
function. If the user enters an invalid choice, he or she is told so. The loop continues until
the user enters 0.

Summary
In this chapter, you should have learned the following concepts:

■ Aggregation is the combining of objects so that one is part of another.

■ Friend functions have complete access to any member of a class.

■ Operator overloading allows you to define new meanings for built-in operators as
they relate to objects of your own classes.

■ The stack is an area of memory that is automatically managed for you and is used
for local variables.

■ The heap (or free store) is an area of memory that you, the programmer, can use
to allocate and free memory.

■ The new operator allocates memory on the heap and returns its address.

■ The delete operator frees memory on the heap that was previously allocated.

Summary 275

■ A dangling pointer points to an invalid memory location. Dereferencing or delet-
ing a dangling pointer can cause your program to crash.

■ A memory leak is an error in which memory that has been allocated becomes inac-
cessible and can no longer be freed. Given a large enough leak, a program might
run out of memory and crash.

■ A destructor is a member function that’s called just before an object is destroyed. If
you don’t write a destructor of your own, the compiler will supply a default
destructor for you.

■ The copy constructor is a member function that’s invoked when an automatic copy
of an object is made. A default copy constructor is supplied for a class if you don’t
write one of your own.

■ The default copy constructor simply copies the value of each data member to data
members with the same names in the copy, producing a member-wise copy.

■ Member-wise copying can produce a shallow copy of an object, in which the
pointer data members of the copy point to the same chunks of memory as the
pointers in the original object.

■ A deep copy is a copy of an object that has no chunks of memory in common with
the original.

■ A default assignment operator member function, which provides only member-
wise duplication, is supplied for you if you don’t write one of your own.

■ The this pointer is a pointer that all non-static member functions automatically
have; it points to the object that was used to call the function.

Questions and Answers
Q: Why should you use aggregation?

A: To create more complex objects from other objects.

Q: What is composition?

A: A form of aggregation in which the composite object is responsible for the cre-
ation and destruction of its object parts. Composition is often called a uses-a
relationship.

Q: When should I use a friend function?

A: When you need a function to have access to the non-public members of a class.

Q: What is a friend member function?

A: A member function of one class that can access all of the members of another
class.

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby276

Q: What is a friend class?

A: A class that can access all of the members of another class.

Q: Can’t operator overloading become confusing?

A: Yes. Giving too many meanings or unintuitive meanings to operators can lead to
code that’s difficult to understand.

Q: What happens when I instantiate a new object on the heap?

A: All of the data members will occupy memory on the heap and not on the stack.

Q: Can I access an object through a constant pointer?

A: Sure. But you can only access constant member functions through a constant
pointer.

Q: What’s wrong with shallow copies?

A: Because shallow copies share references to the same chunks of memory, a change
to one object will be reflected in another object.

Q: What is a linked list?

A: A dynamic data structure that consists of a sequence of linked nodes.

Q: How is a linked list different from a vector?

A: Linked lists permit insertion and removal of nodes at any point in the list but do
not allow random access, like vectors. However, the insertion and deletion of
nodes in the middle of the list can be more efficient than the insertion and dele-
tion of elements in the middle of vectors.

Q: Is there a container class from the STL that serves as a linked list?

A: Yes, the list class.

Q: Is the data structure used in the Game Lobby program a linked list?

A: It shares similarities to a linked list, but it is really a queue.

Q: What’s a queue?

A: A data structure in which elements are removed in the same order in which they
were entered. This process is often called first in, first out (FIFO).

Q: Is there a kind of container from the STL that serves as a queue?

A: Yes, the queue container adaptor.

Questions and Answers 277

Discussion Questions
1. What types of game entities could you create with aggregation?

2. Do friend functions undermine encapsulation in OOP?

3. What advantages does dynamic memory offer to game programs?

4. Why are memory leaks difficult errors to track down?

5. Should objects that allocate memory on the heap always be required to free it?

Exercises
1. Improve the Lobby class from the Game Lobby program by writing a copy con-

structor and an overloaded assignment operator for it.

2. The Lobby::AddPlayer() member function from the Game Lobby program is ineffi-
cient because it iterates through all of the player nodes to add a new player to the
end of the line. Add an m_pTail pointer data member to the Lobby class that always
points to the last player node in the line and use it to more efficiently add a player.

3. What’s wrong with the following code?

#include <iostream>
using namespace std;

int main()
{

int* pScore = new int;
*pScore = 500;
pScore = new int(1000);
delete pScore;
pScore = 0;

return 0;
}

Chapter 9 ■ Advanced Classes and Dynamic Memory: Game Lobby278

279

Inheritance and
Polymorphism: Blackjack

Chapter 10

C
lasses give you the perfect way to represent game entities that have attributes and
behaviors. But game entities are often related. In this chapter, you’ll learn about
inheritance and polymorphism, which give you ways to express those connections

and can make defining and using game classes even simpler and more intuitive.
Specifically, you’ll learn to:

■ Derive one class from another

■ Use inherited data members and member functions

■ Override base class member functions

■ Define virtual functions to enable polymorphism

■ Declare pure virtual functions to define abstract classes

■ Split your code up into multiple files

Introducing Inheritance
One of the key elements of OOP is inheritance, which allows you to derive a new class from
an existing one. When you do so, the new class automatically inherits (or gets) the data
members and member functions of an existing class. It’s like getting the work that went
into the existing class for free!

Inheritance is especially useful when you want to create a more specialized version of an
existing class because you can add data members and member functions to the new class
to extend it. For example, imagine you have a class Enemy that defines an enemy in a game
with a member function Attack() and a data member m_Damage. You can derive a new class
Boss from Enemy for a boss. This means that Boss could automatically have Attack() and

m_Damage without you having to write any code for them at all. Then, to make a boss tough,
you could add a member function SpecialAttack() and a data member DamageMultiplier to
the Boss class. Take a look at Figure 10.1, which shows the relationship between the Enemy
and Boss classes.

One of the many advantages of inheritance is that you can reuse classes you’ve already
written. This reusability produces benefits that include:

■ Less work. There’s no need to redefine functionality you already have. Once you
have a class that provides the base functionality for other classes, you don’t have to
write that code again.

■ Fewer errors. Once you’ve got a bug-free class, you can reuse it without errors
cropping up in it.

Chapter 10 ■ Inheritance and Polymorphism: Blackjack280

Figure 10.1
Boss inherits Attack() and m_Damage from Enemy while defining
SpecialAttack() and m_DamageMultiplier.

■ Cleaner code. Because the functionality of base classes exists only once in a pro-
gram, you don’t have to wade through the same code repeatedly, which makes
programs easier to understand and modify.

Most related game entities cry out for inheritance. Whether it’s the series of enemies that
a player faces, squadrons of military vehicles that a player commands, or an inventory of
weapons that a player wields, you can use inheritance to define these groups of game enti-
ties in terms of each other, which results in faster and easier programming.

Introducing the Simple Boss Program
The Simple Boss program demonstrates inheritance. In it, I define a class for lowly ene-
mies, Enemy. From this class, I derive a new class for tough bosses that the player has to face,
Boss. Then, I instantiate an Enemy object and call its Attack() member function. Next, I
instantiate a Boss object. I’m able to call Attack() for the Boss object because it inherits the
member function from Enemy. Finally, I call the Boss object’s SpecialAttack() member func-
tion, which I defined in Boss, for a special attack. Since I define SpecialAttack() in Boss, only
Boss objects have access to it. Enemy objects don’t have this special attack at their disposal.
Figure 10.2 shows the results of the program.

The code for the program is in the Chapter 10 folder on the CD-ROM that came with this
book; the file name is simple_boss.cpp.

//Simple Boss
//Demonstrates inheritance

Introducing Inheritance 281

Figure 10.2
The Boss class inherits the Attack() member function and then defines its
own SpecialAttack() member function.

#include <iostream>
using namespace std;

class Enemy
{
public:

int m_Damage;

Enemy(): m_Damage(10) {}

void Attack() const
{ cout << “Attack inflicts “ << m_Damage << “ damage points!\n”; }

};

class Boss : public Enemy
{
public:

int m_DamageMultiplier;

Boss(): m_DamageMultiplier(3) {}

void SpecialAttack() const
{ cout << “Special Attack inflicts “ << (m_DamageMultiplier * m_Damage);

cout << “ damage points!\n”; }
};

int main()
{

cout << “Creating an enemy.\n”;
Enemy enemy1;
enemy1.Attack();

cout << “\nCreating a boss.\n”;
Boss boss1;
boss1.Attack();
boss1.SpecialAttack();

return 0;
}

Deriving from a Base Class
I derive the Boss class from Enemy when I define Boss with the following line:

class Boss : public Enemy

Boss is based on Enemy. In fact, Enemy is called the base class (or superclass) and Boss the
derived class (or subclass). This means that Boss inherits Enemy’s data members and mem-
ber functions, subject to access controls. In this case, Boss inherits and can directly access
m_Damage and Attack(). It’s as if I defined both m_Damage and Attack() in Boss.

Chapter 10 ■ Inheritance and Polymorphism: Blackjack282

h i n t

You might have noticed that I made all of the members of the classes public, including their data
members. I did this because it makes for the simplest first example of a base and a derived class.
You also might have noticed that I used the keyword public when deriving Boss from Enemy. For
now, don’t worry about this. I’ll cover it all in the next example program.

To derive classes of your own, follow my example. After the class name in a class defini-
tion, put a colon followed by an access modifier (such as public), followed by the name of
the base class. It’s perfectly acceptable to derive a new class from a derived class, and some-
times it makes perfect sense to do so. However, to keep things simple, I’m only going to
deal with one level of inheritance.

There are actually a few base class member functions that are not inherited by derived
classes. They are

■ Constructors

■ Copy constructors

■ Destructors

■ Overloaded assignment operators

You have to write your own versions of these in the derived class.

Instantiating Objects from a Derived Class
In main(), I instantiate an Enemy object and then call its Attack() member function. This
works just as you’d expect. The interesting part of the program begins next, when I instan-
tiate a Boss object.

Boss boss1;

After this line of code, I have a Boss object with an m_Damage data member equal to 10 and
an m_DamageMultiplier data member equal to 3. How did this happen? Although construc-
tors and destructors are not inherited from a base class, they are called when an instance
is created or destroyed. In fact, a base class constructor is called before the derived class
constructor to create its part of the final object.

In this case, when a Boss object is instantiated, the default Enemy constructor is automati-
cally called and the object gets an m_Damage data member with a value of 10 (just like any
Enemy object would). Then, the Boss constructor is called and finishes off the object by giv-
ing it an m_DamageMultiplier data member with a value of 3. The reverse happens when a
Boss object is destroyed at the end of the program. First, the Boss class destructor is called
for the object, and then the Enemy class destructor is called. Because I didn’t define destruc-
tors in this program, nothing special happens before the Boss object ceases to exist.

Introducing Inheritance 283

h i n t

The fact that base class destructors are called for objects of derived classes ensures that each class
gets its chance to clean up any part of the object that needs to be taken care of, such as memory
on the heap.

Using Inherited Members
Next I call an inherited member function of the Boss object, which displays the exact same
message as enemy1.Attack() did.

boss1.Attack();

That makes perfect sense because the same code is being executed and both objects have
an m_Damage data member equal to 10. Notice that the function call looks the same as it did
for enemy1. The fact that Boss inherited the member function from Enemy makes no differ-
ence in how the function is called.

Next I get Boss to pull out its special attack, which displays the message Special Attack
inflicts 30 damage points!

boss1.SpecialAttack();

The thing to notice about this is that SpecialAttack(), defined in Enemy, uses the data mem-
ber m_Damage. That’s perfectly fine. Boss inherits m_Damage, and it works like any other data
member in the Boss class.

Controlling Access under Inheritance
When you derive one class from another, you can control how much access the derived
class has to the base class’ members. For the same reasons that you want to provide only
as much access as is necessary to a class’ members to the rest of your program, you want
to provide only as much access as is necessary to a class’ members to a derived class.
Not coincidentally, you use the same access modifiers that you’ve seen before—public,
protected, and private. (Okay, you haven’t seen protected before, but I’ll explain that
modifier in the “Using Access Modifiers with Class Members” section.)

Introducing the Simple Boss 2.0 Program
The Simple Boss 2.0 program is another version of the Simple Boss program from earlier
in this chapter. The new version, Simple Boss 2.0, looks exactly the same to the user, but
the code is a little different because I put some restrictions on base class members. If you
want to see what the program does, take a look back at Figure 10.2.

The code for the program is in the Chapter 10 folder on the CD-ROM that came with this
book; the file name is simple_boss2.cpp.

Chapter 10 ■ Inheritance and Polymorphism: Blackjack284

//Simple Boss 2.0
//Demonstrates access control under inheritance

#include <iostream>
using namespace std;

class Enemy
{
public:

Enemy(): m_Damage(10) {}

void Attack() const
{ cout << “Attack inflicts “ << m_Damage << “ damage points!\n”; }

protected:
int m_Damage;

};

class Boss : public Enemy
{
public:

Boss(): m_DamageMultiplier(3) {}

void SpecialAttack() const
{ cout << “Special Attack inflicts “ << (m_DamageMultiplier * m_Damage);

cout << “ damage points!\n”; }

private:
int m_DamageMultiplier;

};

int main()
{

cout << “Creating an enemy.\n”;
Enemy enemy1;
enemy1.Attack();

cout << “\nCreating a boss.\n”;
Boss boss1;
boss1.Attack();
boss1.SpecialAttack();

return 0;
}

Using Access Modifiers with Class Members
You’ve seen the access modifiers public and private used with class members before, but
there’s a third modifier you can use with members of a class—protected. That’s what I use
with the data member of Enemy.

Controlling Access under Inheritance 285

protected:
int m_Damage;

Members that are specified as protected are not accessible outside of the class, except in
some cases of inheritance. As a refresher, here are the three levels of member access:

■ public members are accessible to all code in a program.

■ protected members are accessible only in their own class and certain derived
classes, depending upon the access level used in inheritance.

■ private members are only accessible in their own class, which means they are not
directly accessible in any kind of derived class.

Using Access Modifiers when Deriving Classes
When you derive a class from an existing one, you can use an access modifier, such as
public, which I used in deriving Boss.

class Boss : public Enemy

Using public derivation means that public members in the base class become public mem-
bers in the derived class, protected members in the base class become protected members
in the derived class, and private members are inaccessible.

t r i c k

Even if base data members are private, you can still use them indirectly through base class mem-
ber functions. You can even get and set their values if the base class has accessor member func-
tions.

This means that Boss inherits all of Enemy’s public member functions as public member
functions. It also means that Boss inherits m_Damage as a protected data member. The upshot
is that the Boss class can access Attack() and m_Damage(). The class essentially acts as if I sim-
ply copied and pasted the code for these two Enemy class members right into the Boss defi-
nition. But through the beauty of inheritance, I didn’t have to do this.

h i n t

You can derive a new class with the protected and private keywords, but they’re rarely used.

Calling and Overriding Base Class Member Functions
You’re not stuck with every base class member function you inherit in a derived class as
is. You have options that allow you to customize how those inherited member functions

Chapter 10 ■ Inheritance and Polymorphism: Blackjack286

work in your derived class. You can override them by giving them new definitions in your
derived class. You can also explicitly call a base class member function from any member
function of your derived class.

Introducing the Overriding Boss Program
The Overriding Boss program demonstrates calling and overriding base class member
functions in a derived class. The program creates an enemy that taunts the player and then
attacks him. Next, the program creates a boss from a derived class. The boss also taunts
the player and attacks him, but the interesting thing is that the inherited behaviors of
taunting and attacking are changed for the boss (who is a bit cockier than the enemy).
These changes are accomplished through function overriding and calling a base class
member function. Figure 10.3 shows the results of the program.

The code for the program is in the Chapter 10 folder on the CD-ROM that came with this
book; the file name is simple_boss2.cpp.

//Overriding Boss
//Demonstrates calling and overriding base member functions

#include <iostream>
using namespace std;

class Enemy
{
public:

Enemy(int damage = 10): m_Damage(damage)
{}

Calling and Overriding Base Class Member Functions 287

Figure 10.3
The Boss class inherits and overrides the base class member functions
Taunt() and Attack(), creating new behaviors for the functions in Boss.

void Taunt() const
{ cout << “The enemy says he will fight you.\n”; }

void Attack() const
{ cout << “Attack! Inflicts “ << m_Damage << “ damage points.”; }

private:
int m_Damage;

};

class Boss : public Enemy
{
public:

Boss(int damage = 30): Enemy(damage) //call base constructor with argument
{}

void Taunt() const
{ cout << “The boss says he will end your pitiful existence.\n”; }

void Attack() const
{

Enemy::Attack();
cout << “ And laughs heartily at you.\n”;

}
};

int main()
{

cout << “Creating an enemy.\n”;
Enemy enemy1;
enemy1.Taunt();
enemy1.Attack();

cout << “\n\nCreating a boss.\n”;
Boss boss1;
boss1.Taunt();
boss1.Attack();

return 0;
}

Calling Base Class Constructors
As you’ve seen, the constructor for a base class is automatically called when an object of a
derived class is instantiated, but you can also explicitly call a base class constructor from
a derived class constructor. The syntax for this is a lot like the syntax for a member ini-
tialization list. To call a base class constructor from a derived class constructor, after the
derived constructor’s parameter list, type a colon followed by the name of the base class,

Chapter 10 ■ Inheritance and Polymorphism: Blackjack288

followed by a set of parentheses containing whatever parameters the base class construc-
tor you’re calling needs. I do this in the Boss constructor, which says to explicitly call the
Enemy constructor and pass it damage.

Boss(int damage = 30): Enemy(damage) //call base constructor with argument

This allows me to pass the Enemy constructor the value that gets assigned to m_Damage, rather
than just accepting its default value.

When I first instantiate boss1 in main(), the Enemy constructor is called and passed the value
30, which gets assigned to m_Damage. Then, the Boss constructor is called (which doesn’t do
much of anything) and the object is completed.

h i n t

Being able to call a base class constructor is useful when you want to pass specific values to it.

Overriding Base Class Member Functions
You can override a base class member function in a derived class and give it a new defin-
ition simply by defining the function in the derived class. That’s what I do with the Taunt()
member function in Boss.

void Taunt() const
{ cout << “The boss says he will end your pitiful existence.\n”; }

t r a p

Don’t confuse override with overload. When you override a member function, you provide a new
definition of it in a derived class. When you overload a function, you create multiple versions of it
with different signatures.

This new definition is executed when I call the member function through any Boss object.
It replaces the definition of Taunt() inherited from Enemy for all Boss objects. When I call
the member function in main() with the following line, the message The boss says he will
end your pitiful existence. is displayed.

boss1.Taunt();

Overriding member functions is useful when you want to change or extend the behavior
of base class member functions in derived classes.

Calling and Overriding Base Class Member Functions 289

t r a p

When you override an overloaded base class member function, you hide all of the other overloaded
versions of the base class member function—meaning that the only way to access the other versions
of the member function is to explicitly call the base class member function. So if you override an
overloaded member function, it’s a good idea to override every version of the overloaded function.

Calling Base Class Member Functions
You can directly call a base class member function from any function in a derived class.
All you have to do is prefix the class name to the member function name with the scope
resolution operator. That’s what I do in the Attack() definition of the Boss class.

void Attack() const
{

Enemy::Attack();
cout << “ And laughs heartily at you.\n”;

}

The line Enemy::Attack(); explicitly calls the Attack() member function of Enemy. Because
the Attack() definition in Boss overrides the class’ inherited version, it’s as if I’ve extended
the definition of what it means for a boss to attack. What I’m essentially saying is that
when a boss attacks, the boss does exactly what an enemy does and then adds a laughs.
When I call the member function for a Boss object in main() with the following line, Boss’
Attack() member function is called because I’ve overloaded Attack().

boss1.Attack();

The first thing that Boss’ Attack() member function does is explicitly call Enemy’s Attack()
member function, which displays the message Attack! Inflicts 30 damage points. Then, Boss’
Attack() member function finishes by displaying the message And laughs heartily at you.

t r i c k

You can extend the way a member function of a base class works in a derived class by overriding
the base class method and then explicitly calling the base class member function from this new def-
inition in the derived class and adding some functionality.

Using Overloaded Assignment Operators and Copy
Constructors in Derived Classes
You already know how to write an overloaded assignment operator and a copy construc-
tor for a class. However, writing them for a derived class requires a little bit more work
because they aren’t inherited from a base class.

Chapter 10 ■ Inheritance and Polymorphism: Blackjack290

When you overload the assignment operator in a derived class, you usually want to call
the assignment operator member function from the base class, which you can explicitly
call using the base class name as a prefix. If Boss is derived from Enemy, the overloaded
assignment operator member function defined in Boss could start:

Boss& operator=(const Boss& b)
{

Enemy::operator=(b); //handles the data members inherited from Enemy
//now take care of data members defined in Boss

The explicit call to Enemy’s assignment operator member function handles the data mem-
bers inherited from Enemy. The rest of the member function would take care of the data
members defined in Boss.

For the copy constructor, you also usually want to call the copy constructor from a base
class, which you can call just like any base class constructor. If Boss is derived from Enemy,
the copy constructor defined in Boss could start:

Boss (const Boss& b): Enemy(b) //handles the data members inherited from Enemy
{

//now take care of data members defined in Boss

By calling Enemy’s copy constructor with Enemy(b), you copy that Enemy’s data members into
the new Boss object. In the remainder of Boss’ copy constructor, you can take care of copy-
ing the data members declared in Boss into the new object.

Introducing Polymorphism
One of the pillars of OOP is polymorphism, which means that a member function will
produce different results depending on the type of object for which it is being called. For
example, suppose you have a group of bad guys that the player is facing, and the group is
made of objects of different types that are related through inheritance, such as enemies
and bosses. Through the magic of polymorphism, you could call the same member func-
tion for each bad guy in the group, say to attack the player, and the type of each object
would determine the exact effects. The call for the enemy objects could produce one
result, such as a weak attack, while the call for bosses could produce a different result, such
as a powerful attack. This might sound a lot like overriding, but polymorphism is differ-
ent because the effect of the function call is dynamic and is determined at run time,
depending on the object type. But the best way to understand this isn’t through theoreti-
cal discussion; it is through concrete examples.

Introducing the Virtual Boss Program
The Virtual Boss program demonstrates how to use virtual member functions to achieve
polymorphic behavior. It shows what happens when you use a pointer to a base class to call
virtual and non-virtual member functions. It also shows how using vertical destructors

Introducing Polymorphism 291

ensures that the correct distructors are called for objects pointed to by pointers to a base
class. Figure 10.4 shows the results of the program.

The code for the
program is in the Chapter 10 folder on the CD-ROM that came with this book; the file
name is virtual_boss2.cpp.

//Virtual Boss
//Demonstrates virtual functions

#include <iostream>

using namespace std;

class Enemy
{
public:

Enemy(int damage = 10)
{ m_pDamage = new int(damage); }

virtual ~Enemy()
{

cout << “m_pDamage deleted\n”;
delete m_pDamage;

}

void Taunt() const
{ cout << “The enemy says he will fight you.\n”; }

Chapter 10 ■ Inheritance and Polymorphism: Blackjack292

Figure 10.4
Using virtual member functions ensures that the correct member functions
and destructors are called for objects pointed to by pointers to a base class.

void virtual VTaunt() const
{ cout << “The enemy says he will fight you.\n”; }

protected:
int* m_pDamage;

};

class Boss : public Enemy
{
public:

Boss(int multiplier = 3)
{ m_pDamageMultiplier = new int(multiplier); }

virtual ~Boss()
{

cout << “m_pDamageMultiplier deleted\n”;
delete m_pDamageMultiplier;

}

void Taunt() const
{ cout << “The boss says he will end your pitiful existence.\n”; }

void virtual VTaunt() const
{ cout << “The boss says he will end your pitiful existence.\n”;}

protected:
int* m_pDamageMultiplier;

};

int main()
{

cout << “Pointer to Enemy that points to a Boss object:\n”;
Enemy* pBadGuy = new Boss();
pBadGuy->Taunt();
pBadGuy->VTaunt();

cout << “\nDeleting pointer to Enemy:\n”;
delete pBadGuy;
pBadGuy = 0;

return 0;
}

Defining Virtual Member Functions
An object of a derived class is also a member of the base class. For example, in the Virtual Boss
program, a Boss object is an Enemy object, too. That makes sense because a boss is really
only a specialized kind of enemy. It also makes sense because a Boss object has all of the mem-
bers of an Enemy object. Okay, so what? Well, because an object of a derived class is

Introducing Polymorphism 293

also a member of the base class, you can use a pointer to the base class to point to an object
of the derived class. That’s what I do in main() with the following line, which instantiates
a Boss object on the heap and creates a pointer to Enemy that points to the Boss object.

Enemy* pBadGuy = new Boss();

Why in the world would you want to do this? It’s useful because it allows you to deal with
objects without requiring that you know their exact type. For example, you could have a
function that accepts a pointer to Enemy that could work with either an Enemy or a Boss
object. The function wouldn’t have to know the exact type of object being passed to it; it
could work with the object to produce different results depending on the object’s type. But
that’s not what happens as the result of the next line of code.

pBadGuy->Taunt();

Instead, the line displays the text The enemy says he will fight you. Yikes! I called the
Taunt() member function for a Boss object and got the results of Enemy’s Taunt() member
function, even though I overrode Taunt() in Boss. This happened as a result of early bind-
ing, in which the exact member function is bound based on the pointer type—in this case,
Enemy. What I need is to have the member function called based on the type of object being
pointed to, not fixed by pointer type. I can achieve this flexibility of late binding through
virtual functions, which allow for polymorphic behavior.

To create a virtual member function, simply add the keyword virtual before the name of
the function when you declare it. That’s what I do in Enemy with the following line:

void virtual VTaunt() const
{ cout << “The enemy says he will fight you.\n”; }

This means that VTaunt() is a virtual function. It’s virtual in Enemy and it’s inherited as a vir-
tual function in Boss. This means that when I override VTaunt() in Boss with the following
line, the correct version of VTaunt() will be called (based on the type of object) and will
not be fixed by the type of pointer.

void virtual VTaunt() const
{ cout << “The boss says he will end your pitiful existence.\n”;}

h i n t

Once a member function is defined as virtual, it’s virtual in any derived class. This means you don’t
have to use the keyword virtual when you override a virtual member function in a derived class,
but you should use it anyway because it will remind you that the function is indeed virtual.

I prove that the behavior will be polymorphic in main() with the following line, which
results in the VTaunt() function defined in Boss being called and the text The boss says he
will end your pitiful existence. being displayed on the screen.

pBadGuy->VTaunt();

Chapter 10 ■ Inheritance and Polymorphism: Blackjack294

h i n t

Virtual functions produce polymorphic behavior through references as well.

t r a p

The benefits of virtual functions aren’t free; there is a performance cost associated with the over-
head. Therefore, you should use virtual functions only when you need them. The good news is that
once you’ve defined one virtual member function in a class, defining another doesn’t cost you much
more.

t r a p

Slicing is essentially the act of cutting off part of an object. Assigning an object of a derived class
to a variable of a base class is legal, but you slice the object, losing the data members declared in
the derived class and losing access to member functions of the derived class. Therefore, you should
avoid slicing objects.

Defining Virtual Destructors
When you use a pointer to a base class to point to an object of a derived class, you have a
potential problem. When you delete the pointer, only the base class’ destructor will be
called for the object. This could lead to disastrous results because the derived class’
destructor might need to free memory (as the destructor for Boss does). The solution, as
you might have guessed, is to make the base class’ destructor virtual. That way, the derived
class’ destructor is called, which (as always) leads to the calling of the base class’ destruc-
tor, giving every class the chance to clean up after itself.

I put this theory into action when I make Enemy’s destructor virtual.

virtual ~Enemy()

When I delete the pointer pointing to the Boss object with the following line, the Boss
object’s destructor is called, which frees the memory on the heap that m_pDamageMultiplier
points to and displays the message m_pDamageMultiplier deleted.

delete pBadGuy;

Then, Enemy’s destructor is called, which frees the memory on the heap that m_pDamage
points to and displays the message m_pDamage deleted. The object is destroyed, and all
memory associated with the object is freed.

Introducing Polymorphism 295

t r i c k

A good rule of thumb is that if you have any virtual member functions in a class, you should make
the destructor virtual, too.

Using Abstract Classes
At times you might want to define a class to act as a base for other classes, but it doesn’t
make sense to instantiate objects from this class because it’s so generic. For example, sup-
pose you have a game with a bunch of types of creatures running around in it. Although
you have a wide variety of creatures, they all have two things in common: They have a
health value and they can offer a greeting. So, you could define a class, Creature, as a base
from which to derive other classes, such as Pixie, Dragon, Orc, and so on. Although Creature
is helpful, it doesn’t really make sense to instantiate a Creature object. It would be great if
there were a way to indicate that Creature is a base class only, and not meant for instanti-
ating objects. Well, C++ lets you define a kind of class just like this, called an abstract class.

Introducing the Abstract Creature Program
The Abstract Creature program demonstrates abstract classes. In the program, I define an
abstract class, Creature, which can be used as a base class for specific creature classes. I
define one such class, Orc. Then, I instantiate an Orc object and call a member function to
get the orc to grunt hello and another member function to display the orc’s health. Figure
10.5 shows the results of the program.

Chapter 10 ■ Inheritance and Polymorphism: Blackjack296

Figure 10.5
The orc is an object of a class derived from an abstract class for all creatures.

The code for the program is in the Chapter 10 folder on the CD-ROM that came with this
book; the file name is abstract_creature.cpp.

//Abstract Creature
//Demonstrates abstract classes

#include <iostream>
using namespace std;

class Creature //abstract class
{
public:

Creature(int health = 100): m_Health(health)
{}

virtual void Greet() const = 0; //a pure virtual member function

virtual void DisplayHealth() const
{ cout << “Health: “ << m_Health << endl; }

protected:
int m_Health;

};

class Orc : public Creature
{
public:

Orc(int health = 120): Creature(health)
{}

virtual void Greet() const
{ cout << “The orc grunts hello.\n”; }

};

int main()
{

Creature* pCreature = new Orc();
pCreature->Greet();
pCreature->DisplayHealth();

return 0;
}

Declaring Pure Virtual Functions
A pure virtual function is one to which you don’t need to give a definition. The logic
behind this is that there might not be a good definition in the class for the member func-
tion. For example, I don’t think it makes sense to define the Greet() function in my

Using Abstract Classes 297

Creature class because a greeting really depends on the specific type of creature—a pixie
twinkles, a dragon blows a puff of smoke, and an orc grunts.

You specify a pure virtual function by placing an equal sign and a zero at the end of the
function header. That’s what I did in Creature with the following line:

virtual void Greet() const = 0; //a pure virtual member function

When a class contains at least one pure virtual function, it’s an abstract class. Therefore,
Creature is an abstract class. I can use it as the base class for other classes, but I can’t instan-
tiate objects from it.

A virtual class can have data members and virtual functions that are not pure virtual. In
Creature, I declare a data member m_Health and a virtual member function DisplayHealth().

Deriving a Class from an Abstract Class
When you derive a new class from an abstract class, you can override its pure virtual func-
tions. If you override all of its pure virtual functions, then the new class is not abstract and
you can instantiate objects from it. When I derive Orc from Creature, I override Creature’s
one virtual function with the following lines:

virtual void Greet() const
{ cout << “The orc grunts hello.\n”; }

This means I can instantiate an object from Orc, which is what I do in main() with the fol-
lowing line:

Creature* pCreature = new Orc();

The code instantiates a new Orc object on the heap and assigns the memory location of the
object to pCreature, a pointer to Creature. Even though I can’t instantiate an object from
Creature, it’s perfectly fine to declare a pointer using the class. Like all base class pointers,
a pointer to Creature can point to any object of a class derived from Creature, such as Orc.

Next, I call Greet(), the pure virtual function that I override in Orc with the following line:

pCreature->Greet();

The correct greeting, The orc grunts hello., is displayed.

Finally, I call DisplayHealth(), which I define in Creature.

pCreature->DisplayHealth();

It also displays the proper message, Health: 120.

Chapter 10 ■ Inheritance and Polymorphism: Blackjack298

Organizing Your Code
When your game programs are filled with many functions and classes, they become
unwieldy as a single file. In addition, it might be nice to reuse parts of one program, such
as some functions or classes, in your next program. C++ lets your break up your code into
manageable and useful pieces in multiple files. Generally, you separate related functions
or single classes into their own files.

The Critter Project
The Critter project is not just one program file; it is a collection of three files that work
together to create a single application. The results of the project are simple. In it, I instan-
tiate a simple critter and have it say hello. This is something you could have done way back
in Chapter 8. The interesting thing here is that the project demonstrates how you can
break a program into multiple files. Figure 10.6 shows the results of the project.

Using One File
You could create the results shown in Figure 10.6 with a single C++ file. In fact, the one
file of code would be pretty short, as you can see here.

#include <iostream>
using namespace std;

class Critter
{
public:

void Greet();

Organizing Your Code 299

Figure 10.6
The simple application is the result of three separate C++ files.

};

void Critter::Greet()
{

cout << “Hi. I’m a critter.\n”;
}

int main()
{

cout << “Instantiating a Critter object.\n\n”;

Critter crit;
crit.Greet();

return 0;
}

However, you can break up this file into multiple files that work together as a project, as I
do. In the project, I create three files.

■ Header file. This contains only the Critter class definition.

■ Implementation file. This contains the implementation of the Critter class mem-
ber function.

■ Application file. This contains a program with a main() function that uses the
Critter class from the header and implementation files. This is the file you execute.

h i n t

The exact details of how you get a project contained in multiple files to run depend on your com-
piler, so check out its documentation.

Creating Header Files
Header files are meant to be included in other files. You’ve already seen header files. In fact,
every program in this book includes at least one header file from the standard library,
<iostream>.

When you break up your program into multiple files, you generally write your own header
files—usually one for each class. The files include only the class definition, not its imple-
mentation. Following is the header file for the Critter project. It is included in the Chapter
10 folder on the CD-ROM that came with this book; the file name is critter.h. (By conven-
tion, header file names end in .h.)

//critter.h
//header file

Chapter 10 ■ Inheritance and Polymorphism: Blackjack300

#ifndef CRITTER_H
#define CRITTER_H

class Critter
{
public:

void Greet();
};

#endif

The class definition for Critter is very simple; it declares only one public member func-
tion—Greet().

There are some new ideas in the code. The three lines that begin with # are preprocessor
directives—basically instructions to your compiler. Together, they tell your compiler not
to include the Critter definition in your project if it was already included. I take this pre-
caution because defining the same class more than once in a project will result in an error.

What specifically is going on? The first directive says that if the symbol CRITTER_H is not
defined (on a list of symbols that the compiler keeps while it compiles your code), the pro-
gram should go ahead and process all of the code that follows, up to an end marker.

#ifndef CRITTER_H

If the symbol is on the list, then the program should skip all of the code that follows, up
to the end marker. The end marker is the last directive in the file.

#endif

The first time the critter.h header file is included in a project that gets compiled, CRITTER_H
isn’t on the list of symbols, and the Critter class definition is included. In addition, the
compiler processes the directive, which says to include the symbol CRITTER_H on its list of
symbols.

#define CRITTER_H

This means that if an attempt were made to include this header file again in a project, the
compiler would see CRITTER_H on its list, skip the Critter class definition, and not attempt
to define Critter again.

By the way, I chose the symbol CRITTER_H for this header file, critter.h. I could have chosen
many other symbols, but the convention is to use the name of the header file in all caps,
followed by _H. Following this convention saves you a unique symbol for each header file.
Plus, it’s what other programmers expect.

Organizing Your Code 301

Creating Implementation Files
Because header files for classes only contain the class definition, you need to store the class
implementation in another file. You do this in a file with the same name as the header
file, but with the familiar .cpp extension. The implementation file that corresponds to
critter.h is named critter.cpp and contains the implementation of the Critter class. Here’s
the code, which is in the Chapter 10 folder on the CD-ROM that came with this book.
(The file name is critter.cpp.)

//critter.cpp
//implementation file

#include <iostream>
#include “critter.h”

using namespace std;

void Critter::Greet()
{

cout << “Hi. I’m a critter.\n”;
}

The file contains the implementation of Critter::Greet(). You also include definitions for
variables and static members in an implementation file. Notice that I include the header
file with the following line:

#include “critter.h”

When you include a file, it’s as if you copy and paste it right where the include statement
is. By including critter.h, I have the complete class definition.

h i n t

When you include a header file that you wrote, you surround the file name with quotation marks.

These two files taken together constitute a tidy way of storing a single class. The next step
is to use the class in an actual program.

Creating Application Files
You can include your own header files in an application using an include statement. I
include the critter.h file in a simple application. Here’s the code, which is in the Chapter
10 folder on the CD-ROM that came with this book. (The file name is critter_app.cpp.)

//critter_app.cpp
//application file

Chapter 10 ■ Inheritance and Polymorphism: Blackjack302

#include <iostream>
#include “critter.h”

using namespace std;

int main()
{

cout << “Instantiating a Critter object.\n\n”;

Critter crit;
crit.Greet();

return 0;
}

When I compile this program, the compiler sees the following line and uses the full
Critter class definition stored in the files critter.h and critter.cpp.

#include “critter.h”

It’s as if I simply dropped the class definition into the program.

When this simple program runs, it instantiates a Critter object and gets it to say hello.

Introducing the Blackjack Game
The final project for this chapter is a simplified version of the casino card game Blackjack
(tacky green felt not included). The game works like this: Players are dealt cards with point
values. Each player tries to reach a total of 21 without exceeding that amount. Numbered
cards count as their face value. An ace counts as either one or 11 (whichever is best for the
player), and any jack, queen, or king counts as 10.

The computer is the house (the casino) and it competes against one to seven players. At
the beginning of the round, all participants (including the house) are dealt two cards.
Players can see all of their cards, along with their total. However, one of house’s cards is
hidden for the time being.

Next, each player gets the chance to take one additional card at a time for as long as he
likes. If a player’s total exceeds 21 (known as busting), the player loses. After all players
have had the chance to take additional cards, the house reveals its hidden card. The house
must then take additional cards as long as its total is 16 or less. If the house busts, all play-
ers who have not busted win. Otherwise, each remaining player’s total is compared to the
house’s total. If the player’s total is greater than the house’s, he wins. If the player’s total is
less than the house’s, he loses. If the two totals are the same, the player ties the house (also
known as pushing). Figure 10.7 shows the game.

Introducing the Blackjack Game 303

Designing the Classes
Before you start coding a project with multiple classes, it is helpful to map them out on
paper. You might make a list and include a brief description of each class. Table 10.1 shows
my first pass at such a list for the Blackjack game.

To keep things simple, all member functions will be public and all data members will be
protected. Also, I’ll use only public inheritance, which means that each derived class will
inherit all of its base class members.

In addition to describing your classes in words, it helps to draw a family tree of sorts to
visualize how your classes are related. That’s what I did in Figure 10.8.

Chapter 10 ■ Inheritance and Polymorphism: Blackjack304

Figure 10.7
One player wins; the other is not so lucky.

Table 10.1 Blackjack Classes

Class Base Class Description

Card None A Blackjack playing card.
Hand None A Blackjack hand. A collection of Card objects.
Deck Hand A Blackjack deck. Has extra functionality that Hand doesn’t,

such as shuffling and dealing.
GenericPlayer Hand A generic Blackjack player. Not a full player, but the common

elements of a human player and the computer player.
Player GenericPlayer A human Blackjack player.
House GenericPlayer The computer player, the house.
Game None A Blackjack game.

Next, it’s a good idea to get more specific. Ask yourself about the classes. What exactly will
they represent? What will they be able to do? How will they work with the other classes?

I see Card objects as real-life cards. You don’t copy a card when you deal it from the deck
to a hand; you move it. For me, that means Hand will have a data member that is a vector
of pointers to Card objects, which will exist on the heap. When a card moves from one Hand
to another, it’s really pointers that are being copied and destroyed.

I see players (the human players and the computer) as Blackjack hands with names. That’s
why I derive Player and House (indirectly) from Hand. (Another equally valid view is that
players have a hand. If I had gone this route, Player and House would have had Hand data
members, instead of being derived from Hand.)

I define GenericPlayer to house the functionality that Player and House share, as opposed to
duplicating this functionality in both classes.

Also, I see the deck as separate from the house. The deck will deal cards to the human
players and the computer-controlled house in the same way. This means that Deck will
have a member function to deal cards that is polymorphic and will work with either a
Player or a House object.

To really flesh things out, you can list the data members and member functions that you
think the classes will have, along with a brief description of each. That’s what I do next
in Tables 10.2 through 10.8. For each class, I list only the members I define in it. Several
classes will, of course, be inherited members from base classes.

Introducing the Blackjack Game 305

Figure 10.8
Inheritance hierarchy of classes for the Blackjack game. GenericPlayer is
shaded because it turns out to be an abstract class.

Chapter 10 ■ Inheritance and Polymorphism: Blackjack306

Table 10.4 GenericPlayer Class (Abstract)

Member Description

string m_Name Generic player’s name.
virtual bool IsHitting() Indicates whether the generic player wants another
const = 0 hit. Pure virtual function.
bool IsBusted() const Indicates whether the generic player is busted.
void Bust() const Announces that the generic player busts.

Table 10.2 Card Class

Member Description

rank m_Rank Rank of the card (ace, 2, 3, and so on). rank is an enumeration for all
13 ranks.

suit m_Suit Suit of the card (clubs, diamonds, hearts, or spades). suit is an
enumeration for the four possible suits.

bool m_IsFaceUp Indicates whether the card is face up. Affects how the card is displayed
and the value it has.

int GetValue() Returns the value of the card.
void Flip() Flips a card. Face up becomes face down, and face down becomes

face up.

Table 10.3 Hand Class

Member Description

vector<Card*> m_Cards Collection of cards. Stores pointers to Card objects.
void Add(Card* pCard) Adds a card to the hand. Adds a pointer to Card to the vector

m_Cards.
void Clear() Clears all cards from the hand. Removes all pointers in the vector

m_Cards, deleting all associated Card objects on the heap.
int GetTotal() const Returns the total value of the hand.

Introducing the Blackjack Game 307

Table 10.5 Player Class

Member Description

virtual bool IsHitting() const Indicates whether the player wants another hit.
void Win() const Announces that the player wins.
void Lose() const Announces that the player loses.
void Push() const Announces that the player pushes.

Table 10.6 House Class

Member Description

virtual bool IsHitting() const Indicates whether the house is taking another hit.
void FlipFirstCard() Flips over the first card.

Table 10.7 Deck Class

Member Description

void Populate() Creates a standard deck of 52 cards.
void Shuffle() Shuffles cards.
void Deal(Hand& aHand) Deals one card to a hand.
void AdditionalCards Gives additional cards to a generic player for as long as
(GenericPlayer& aGenericPlayer) the generic player can and wants to hit.

Table 10.8 Game Class

Member Description

Deck m_Deck A deck of cards.
House m_House The casino’s hand, the house.
vector<Player> m_Players Collection of human players. A vector of Player objects.
void Play() Plays a round of Blackjack.

Planning the Game Logic
The last part of my planning is to map out the basic flow of one round of the game. I wrote
some pseudocode for the Game class’ Play() member function. Here’s what I came up with:

Deal players and the house two initial cards
Hide the house’s first card
Display players’ and house’s hands
Deal additional cards to players
Reveal house’s first card
Deal additional cards to house
If house is busted

Everyone who is not busted wins
Otherwise

For each player
If player isn’t busted

If player’s total is greater than the house’s total
Player wins

Otherwise if player’s total is less than house’s total
Player loses

Otherwise
Player pushes

Remove everyone’s cards

At this point you know a lot about the Blackjack program and you haven’t even seen a sin-
gle line of code yet! But that’s a good thing. Planning can be as important as coding (if not
more so). Because I’ve spent so much time describing the classes, I won’t describe every part
of the code. I’ll just point out significant or new ideas. The code for the program is in the
Chapter 10 folder on the CD-ROM that came with this book; the file name is blackjack.cpp.

The Card Class
After some initial statements, I define the Card class for an individual playing card.

//Blackjack
//Plays a simple version of the casino game of blackjack; for 1 - 7 players

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <ctime>

using namespace std;

class Card
{
public:

enum rank {ACE = 1, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN,
JACK, QUEEN, KING};

enum suit {CLUBS, DIAMONDS, HEARTS, SPADES};

Chapter 10 ■ Inheritance and Polymorphism: Blackjack308

//overloading << operator so can send Card object to standard output
friend ostream& operator<<(ostream& os, const Card& aCard);

Card(rank r = ACE, suit s = SPADES, bool ifu = true);

//returns the value of a card, 1 - 11
int GetValue() const;

//flips a card; if face up, becomes face down and vice versa
void Flip();

private:
rank m_Rank;
suit m_Suit;
bool m_IsFaceUp;

};

Card::Card(rank r, suit s, bool ifu): m_Rank(r), m_Suit(s), m_IsFaceUp(ifu)
{}

int Card::GetValue() const
{

//if a cards is face down, its value is 0
int value = 0;
if (m_IsFaceUp)
{

//value is number showing on card
value = m_Rank;
//value is 10 for face cards
if (value > 10)

value = 10;
}
return value;

}

void Card::Flip()
{

m_IsFaceUp = !(m_IsFaceUp);
}

I define two enumerations, rank and suit, to use as the types for the rank and suit data
members of the class, m_Rank and m_Suit. This has two benefits. First, it makes the code
more readable. A suit data member will have a value such as CLUBS or HEARTS instead of 0 or
2. Second, it limits the values that these two data members can have. m_Suit can only store
a value from suit, and m_Rank can only store a value from rank.

Next, I make the overloaded operator<<() function a friend of the class so I can display a
Card object on the screen.

Introducing the Blackjack Game 309

GetValue() returns a value for a Card object, which can be between 0 and 11. Aces are
valued at 11. (I deal with potentially counting them as 1 in the Hand class, based on the
other cards in the hand.) A face-down card has a value of 0.

The Hand Class
I define the Hand class for a collection of cards.

class Hand
{
public:

Hand();

virtual ~Hand();

//adds a card to the hand
void Add(Card* pCard);

//clears hand of all cards
void Clear();

//gets hand total value, intelligently treats aces as 1 or 11
int GetTotal() const;

protected:
vector<Card*> m_Cards;

};

Hand::Hand()
{

m_Cards.reserve(7);
}

Hand::~Hand() //don’t use the keyword virtual outside of class definition
{

Clear();
}

void Hand::Add(Card* pCard)
{

m_Cards.push_back(pCard);
}

void Hand::Clear()
{

//iterate through vector, freeing all memory on the heap
vector<Card*>::iterator iter = m_Cards.begin();
for (iter = m_Cards.begin(); iter != m_Cards.end(); ++iter)
{

Chapter 10 ■ Inheritance and Polymorphism: Blackjack310

delete *iter;
*iter = 0;

}
//clear vector of pointers
m_Cards.clear();

}

int Hand::GetTotal() const
{

//if no cards in hand, return 0
if (m_Cards.empty())

return 0;

//if a first card has value of 0, then card is face down; return 0
if (m_Cards[0]->GetValue() == 0)

return 0;

//add up card values, treat each ace as 1
int total = 0;
vector<Card*>::const_iterator iter;
for (iter = m_Cards.begin(); iter != m_Cards.end(); ++iter)

total += (*iter)->GetValue();

//determine if hand contains an ace
bool containsAce = false;
for (iter = m_Cards.begin(); iter != m_Cards.end(); ++iter)

if ((*iter)->GetValue() == Card::ACE)
containsAce = true;

//if hand contains ace and total is low enough, treat ace as 11
if (containsAce && total <= 11)

//add only 10 since we’ve already added 1 for the ace
total += 10;

return total;
}

t r a p

The destructor of the class is virtual, but notice that I don’t use the keyword virtual outside of the
class when I actually define the destructor. You only use the keyword inside the class definition.
Don’t worry; the destructor is still virtual.

Although I’ve already covered this, I want to point it out again. All of the Card objects will
exist on the heap. Any collection of cards, such as a Hand object, will have a vector of point-
ers to a group of those objects on the heap.

Introducing the Blackjack Game 311

The Clear() member function has an important responsibility. It not only removes all of
the pointers from the vector m_Cards, but it destroys the associated Card objects and frees
the memory on the heap that they occupied. This is just like a real-world Blackjack game
in which cards are discarded when a round is over. The virtual class destructor calls
Clear().

The GetTotal() member function returns the point total of the hand. If a hand contains an
ace, it counts it as a 1 or an 11, whichever is best for the player. The program accomplishes
this by checking to see whether the hand has at least one ace. If it does, the program checks
to see whether treating the ace as 11 will put the hand’s point total over 21. If it won’t, then
the ace is treated as an 11. Otherwise, it’s treated as a 1.

The GenericPlayer Class
I define the GenericPlayer class for a generic Blackjack player. It doesn’t represent a full
player. Instead, it represents the common element of a human player and the computer
player.

class GenericPlayer : public Hand
{

friend ostream& operator<<(ostream& os,
const GenericPlayer& aGenericPlayer);

public:
GenericPlayer(const string& name = “”);

virtual ~GenericPlayer();

//indicates whether or not generic player wants to keep hitting
virtual bool IsHitting() const = 0;

//returns whether generic player has busted - has a total greater than 21
bool IsBusted() const;

//announces that the generic player busts
void Bust() const;

protected:
string m_Name;

};

GenericPlayer::GenericPlayer(const string& name): m_Name(name)
{}

GenericPlayer::~GenericPlayer()
{}

bool GenericPlayer::IsBusted() const
{

Chapter 10 ■ Inheritance and Polymorphism: Blackjack312

return (GetTotal() > 21);
}

void GenericPlayer::Bust() const
{

cout << m_Name << “ busts.\n”;
}

I make the overloaded operator<<() function a friend of the class so I can display
GenericPlayer objects on the screen. It accepts a reference to a GenericPlayer object, which
means that it can accept a reference to a Player or House object, too.

The constructor accepts a string object for the name of the generic player. The destructor
is automatically virtual because it inherits this trait from Hand.

The IsHitting() member function indicates whether a generic player wants another card.
Because this member function doesn’t have a real meaning for a generic player, I made it
a pure virtual function. Therefore, GenericPlayer becomes an abstract class. This also
means that both Player and House need to implement their own versions of this member
function.

The IsBusted() member function indicates whether a generic player has busted. Because
players and the house bust the same way—by having a total greater than 21—I put the def-
inition in this class.

The Bust() member function announces that the generic player busts. Because busting is
announced the same way for players and the house, I put the definition of the member
function in this class.

The Player Class
The Player class represents a human player. It’s derived from GenericPlayer.

class Player : public GenericPlayer
{
public:

Player(const string& name = “”);

virtual ~Player();

//returns whether or not the player wants another hit
virtual bool IsHitting() const;

//announces that the player wins
void Win() const;

//announces that the player loses
void Lose() const;

Introducing the Blackjack Game 313

//announces that the player pushes
void Push() const;

};

Player::Player(const string& name): GenericPlayer(name)
{}

Player::~Player()
{}

bool Player::IsHitting() const
{

cout << m_Name << “, do you want a hit? (Y/N): “;
char response;
cin >> response;
return (response == ‘y’ || response == ‘Y’);

}

void Player::Win() const
{

cout << m_Name << “ wins.\n”;
}

void Player::Lose() const
{

cout << m_Name << “ loses.\n”;
}

void Player::Push() const
{

cout << m_Name << “ pushes.\n”;
}

The class implements the IsHitting() member function that it inherits from GenericPlayer.
Therefore, Player isn’t abstract. The class implements the member function by asking the
human whether he wants to keep hitting. If the human enters y or Y in response to the
question, the member function returns true, indicating that the player is still hitting. If the
human enters a different character, the member function returns false, indicating that the
player is no longer hitting.

The Win(), Lose(), and Push() member functions simply announce that a player has won,
lost, or pushed, respectively.

The House Class
The House class represents the house. It’s derived from GenericPlayer.

class House : public GenericPlayer
{

Chapter 10 ■ Inheritance and Polymorphism: Blackjack314

public:
House(const string& name = “House”);

virtual ~House();

//indicates whether house is hitting - will always hit on 16 or less
virtual bool IsHitting() const;

//flips over first card
void FlipFirstCard();

};

House::House(const string& name): GenericPlayer(name)
{}

House::~House()
{}

bool House::IsHitting() const
{

return (GetTotal() <= 16);
}

void House::FlipFirstCard()
{

if (!(m_Cards.empty()))
m_Cards[0]->Flip();

else cout << “No card to flip!\n”;
}

The class implements the IsHitting() member function that it inherits from GenericPlayer.
Therefore, House isn’t abstract. The class implements the member function by calling
GetTotal(). If the returned total value is less than or equal to 16, the member function
returns true, indicating that the house is still hitting. Otherwise, it returns false, indicat-
ing that the house is no longer hitting.

FlipFirstCard() flips the house’s first card. This member function is necessary because the
house hides its first card at the beginning of the round and then reveals it after all of the
players have taken all of their additional cards.

The Deck Class
The Deck class represents a deck of cards. It’s derived from Hand.

class Deck : public Hand
{
public:

Deck();

Introducing the Blackjack Game 315

virtual ~Deck();

//create a standard deck of 52 cards
void Populate();

//shuffle cards
void Shuffle();

//deal one card to a hand
void Deal(Hand& aHand);

//give additional cards to a generic player
void AdditionalCards(GenericPlayer& aGenericPlayer);

};

Deck::Deck()
{

m_Cards.reserve(52);
Populate();

}

Deck::~Deck()
{}

void Deck::Populate()
{

Clear();
//create standard deck
for (int s = Card::CLUBS; s <= Card::SPADES; ++s)

for (int r = Card::ACE; r <= Card::KING; ++r)
Add(new Card(static_cast<Card::rank>(r),

static_cast<Card::suit>(s)));
}

void Deck::Shuffle()
{

random_shuffle(m_Cards.begin(), m_Cards.end());
}

void Deck::Deal(Hand& aHand)
{

if (!m_Cards.empty())
{

aHand.Add(m_Cards.back());
m_Cards.pop_back();

}
else
{

cout << “Out of cards. Unable to deal.”;
}

}

Chapter 10 ■ Inheritance and Polymorphism: Blackjack316

void Deck::AdditionalCards(GenericPlayer& aGenericPlayer)
{

cout << endl;
//continue to deal a card as long as generic player isn’t busted and
//wants another hit
while (!(aGenericPlayer.IsBusted()) && aGenericPlayer.IsHitting())
{

Deal(aGenericPlayer);
cout << aGenericPlayer << endl;

if (aGenericPlayer.IsBusted())
aGenericPlayer.Bust();

}
}

h i n t

Type casting is a way of converting a value of one type to a value of another type. One way to do
type casting is to use static_cast. You use static_cast to return a value of a new type from a
value of another type by specifying the new type you want between < and >, followed by the value
from which you want to get a new value between parentheses. Here’s an example that returns the
double value 5.0.

static_cast<double>(5);

Populate() creates a standard deck of 52 cards. The member function loops through all of
the possible combinations of Card::suit and Card::rank values. It uses static_cast to cast
the int loop variables to the proper enumerated types defined in Card.

Shuffle() shuffles the cards in the deck. It randomly rearranges the pointers in m_Cards with
random_shuffle() from the Standard Template Library. This is the reason I include the
<algorithm> header file.

Deal() deals one card from the deck to a hand. It adds a copy of the pointer stored in the last
element of the Deck object’s m_Cards vector to the Hand object’s m_Cards vector. Then it removes
the pointer from the Deck object’s m_Cards vector, effectively transferring the card. The pow-
erful thing about Deal() is that it accepts a reference to a Hand object, which means it can work
equally well with a Player or a House object. And through the magic of polymorphism, Deal()
can call the object’s Add() member function without knowing the exact object type.

AdditionalCards() gives additional cards to a generic player until the generic player either
stops hitting or busts. The member function accepts reference to a GenericPlayer object so
you can pass a Player or House object to it. Again, through the magic of polymorphism,
AdditionalCards() doesn’t have to know whether it’s working with a Player or a House object.
It can call the IsBusted() and IsHitting() member functions for the object without know-
ing the object’s type, and the correct code will be executed.

Introducing the Blackjack Game 317

The Game Class
The Game class represents a game of Blackjack.

class Game
{
public:

Game(const vector<string>& names);

~Game();

//plays the game of blackjack
void Play();

private:
Deck m_Deck;
House m_House;
vector<Player> m_Players;

};

Game::Game(const vector<string>& names)
{

//create a vector of players from a vector of names
vector<string>::const_iterator pName;
for (pName = names.begin(); pName != names.end(); ++pName)

m_Players.push_back(Player(*pName));

srand(time(0)); //seed the random number generator
m_Deck.Populate();
m_Deck.Shuffle();

}

Game::~Game()
{}

void Game::Play()
{

//deal initial 2 cards to everyone
vector<Player>::iterator pPlayer;
for (int i = 0; i < 2; ++i)
{

for (pPlayer = m_Players.begin(); pPlayer != m_Players.end();
++pPlayer)

m_Deck.Deal(*pPlayer);
m_Deck.Deal(m_House);

}

//hide house’s first card
m_House.FlipFirstCard();

Chapter 10 ■ Inheritance and Polymorphism: Blackjack318

//display everyone’s hand
for (pPlayer = m_Players.begin(); pPlayer != m_Players.end(); ++pPlayer)

cout << *pPlayer << endl;
cout << m_House << endl;

//deal additional cards to players
for (pPlayer = m_Players.begin(); pPlayer != m_Players.end(); ++pPlayer)

m_Deck.AdditionalCards(*pPlayer);

//reveal house’s first card
m_House.FlipFirstCard();
cout << endl << m_House;

//deal additional cards to house
m_Deck.AdditionalCards(m_House);

if (m_House.IsBusted())
{

//everyone still playing wins
for (pPlayer = m_Players.begin(); pPlayer != m_Players.end();

++pPlayer)
if (!(pPlayer->IsBusted()))

pPlayer->Win();
}
else
{

//compare each player still playing to house
for (pPlayer = m_Players.begin(); pPlayer != m_Players.end();

++pPlayer)
if (!(pPlayer->IsBusted()))
{

if (pPlayer->GetTotal() > m_House.GetTotal())
pPlayer->Win();

else if (pPlayer->GetTotal() < m_House.GetTotal())
pPlayer->Lose();

else
pPlayer->Push();

}
}

//remove everyone’s cards
for (pPlayer = m_Players.begin(); pPlayer != m_Players.end(); ++pPlayer)

pPlayer->Clear();
m_House.Clear();

}

The class constructor accepts a reference to a vector of string objects, which represent the
names of the human players. The constructor instantiates a Player object with each name.
Next, it seeds the random number generator, and then it populates and shuffles the deck.

Introducing the Blackjack Game 319

The Play() member function faithfully implements the pseudocode I wrote earlier about
how a round of play should be implemented.

The main() Function
After declaring the overloaded operator<<() functions, I write the program’s main() func-
tion.

//function prototypes
ostream& operator<<(ostream& os, const Card& aCard);
ostream& operator<<(ostream& os, const GenericPlayer& aGenericPlayer);

int main()
{

cout << “\t\tWelcome to Blackjack!\n\n”;

int numPlayers = 0;
while (numPlayers < 1 || numPlayers > 7)
{

cout << “How many players? (1 - 7): “;
cin >> numPlayers;

}

vector<string> names;
string name;
for (int i = 0; i < numPlayers; ++i)
{

cout << “Enter player name: “;
cin >> name;
names.push_back(name);

}
cout << endl;

//the game loop
Game aGame(names);
char again = ‘y’;
while (again != ‘n’ && again != ‘N’)
{

aGame.Play();
cout << “\nDo you want to play again? (Y/N): “;
cin >> again;

}

return 0;
}

The main() function gets the names of all the players and puts them into a vector of string
objects, and then instantiates a Game object, passing a reference to the vector. The main()
function keeps calling the Game object’s Play() member function until the players indicate
that they don’t want to play anymore.

Chapter 10 ■ Inheritance and Polymorphism: Blackjack320

Overloading the operator<<() Function
The following function definition overloads the << operator so I can send a Card object to
the standard output.

//overloads << operator so Card object can be sent to cout
ostream& operator<<(ostream& os, const Card& aCard)
{

const string RANKS[] = {“0”, “A”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”,
“10”, “J”, “Q”, “K”};

const string SUITS[] = {“c”, “d”, “h”, “s”};

if (aCard.m_IsFaceUp)
os << RANKS[aCard.m_Rank] << SUITS[aCard.m_Suit];

else
os << “XX”;

return os;
}

The function uses the rank and suit values of the object as array indices. I begin the array
RANKS with “0” to compensate for the fact that the value for the rank enumeration defined
in Card begins at 1.

The last function definition overloads the << operator so I can send a GenericPlayer object
to the standard output.

//overloads << operator so a GenericPlayer object can be sent to cout
ostream& operator<<(ostream& os, const GenericPlayer& aGenericPlayer)
{

os << aGenericPlayer.m_Name << “:\t”;

vector<Card*>::const_iterator pCard;
if (!aGenericPlayer.m_Cards.empty())
{

for (pCard = aGenericPlayer.m_Cards.begin();
pCard != aGenericPlayer.m_Cards.end(); ++pCard)

os << *(*pCard) << “\t”;

if (aGenericPlayer.GetTotal() != 0)
cout << “(“ << aGenericPlayer.GetTotal() << “)”;

}
else
{

os << “<empty>”;
}

return os;
}

The function displays the generic player’s name and cards, along with the total value of
the cards.

Introducing the Blackjack Game 321

Summary
In this chapter, you should have learned the following concepts:

■ One of the key elements of OOP is inheritance, which allows you to derive a new
class from an existing one. The new class automatically inherits data members and
member functions from the existing class.

■ A derived class does not inherit constructors, copy constructors, destructors, or an
overloaded assignment operator.

■ Base class constructors are automatically called before the derived class constructor
when a derived class object is instantiated.

■ Base class destructors are automatically called after the derived class destructor
when a derived class object is destroyed.

■ Protected members are accessible only in their own class and certain derived
classes, depending upon the derivation access level.

■ Using public derivation means that public members in the base class become pub-
lic members in the derived class, protected members in the base class become pro-
tected members in the derived class, and private members are (as always)
inaccessible.

■ You can override base class member functions by giving them new definitions in a
derived class.

■ You can explicitly call a base class member function from a derived class.

■ You can explicitly call the base class constructor from a derived class instructor.

■ Polymorphism is the quality whereby a member function will produce different
results depending on the type of object for which it is called.

■ Virtual functions allow for polymorphic behavior.

■ Once a member function is defined as virtual, it’s virtual in any derived class.

■ Slicing is essentially the act of cutting off part of an object.

■ A pure virtual function is a function to which you don’t need to give a definition.
You specify a pure virtual function by placing an equal sign and a zero at the end
of the function header.

■ An abstract class has at least one pure virtual member function.

■ An abstract class can’t be used to instantiate an object.

■ You can split your programs among multiple files.

Chapter 10 ■ Inheritance and Polymorphism: Blackjack322

Questions and Answers
Q: How many levels of inheritance can you have?

A: Theoretically, as many as you want. But as a beginning programmer, you should
keep things simple and try not to go beyond a few levels.

Q: Is friendship inherited? That is, if a function is a friend of a base class, is it auto-
matically a friend of a derived class?

A: No.

Q: Can a class have more than one direct base class?

A: Yes. This is called multiple inheritance. It’s powerful, but it creates its own set of
thorny issues.

Q: Why would you want to call a base class constructor from a derived class con-
structor?

A: So you can control exactly how the base class constructor is called. For example,
you might want to pass specific values to the base class constructor.

Q: Are there any dangers in overriding a base class function?

A: Yes. By overriding a base class member function, you hide all of the overloaded
versions of the function in the base class. However, you can still call a hidden base
class member function explicitly by using the base class name and the scope reso-
lution operator.

Q: How can I solve this problem of hiding base class functions?

A: One way is to override all of the overloaded version of the base class function.

Q: Why do you usually want to call the assignment operator member function of the
base class from the assignment operator member function of a derived class?

A: So that any base class data members can be properly assigned.

Q: Why do you usually want to call the copy constructor of a base class from the
copy constructor of a derived class?

A: So that any base class data members can be properly copied.

Q: Why can you lose access to an object’s member functions when you point to it
with a base class member?

A: Because non-virtual functions are called based on the pointer type and the
object type.

Q: Why not make all member functions virtual, just in case you ever need polymor-
phic behavior from them?

A: Because there’s a performance cost associated with making member functions
virtual.

Questions and Answers 323

Q: When should you make a destructor virtual?

A: If you have any virtual member functions in a class, you should make the destruc-
tor virtual, too. However, some programmers say that to be safe, you should
always make a destructor virtual.

Q: Can constructors be virtual?

A: No. This also means that copy constructors can’t be declared as virtual either.

Q: What good are abstract classes if you can’t instantiate any objects from them?

A: Abstract classes can be very useful. They can contain many common class mem-
bers that other classes will inherit, which saves you the effort of defining those
members over and over again.

Q: Why split your programs into multiple files?

A: It might be convenient to put all of the code for small programs into one file, but
it becomes unwieldy to work with a single file for large projects.

Q: Is it really necessary to use the #ifndef, #endif, and #define directives in my header
files?

A: Yes. Although you might not really need them in some projects, it’s not uncom-
mon for fundamental header files to be included across many files. And using
the directives can prevent your project from trying to include the same file more
than once.

Discussion Questions
1. What benefits does inheritance bring to game programming?

2. How does polymorphism expand the power of inheritance?

3. What kinds of game entities might it make sense to model through inheritance?

4. What kinds of game-related classes would be best implemented as abstract?

5. Why is it advantageous to be able to point to a derived class object with a base
class pointer?

Exercises
1. Split the Blackjack game program into multiple files based on individual classes.

(Trap: Both the Hand and Deck classes access the Card class namespace.)

2. Improve the Blackjack game program by forcing the deck to repopulate before a
round if the number of cards is running low.

3. In the Blackjack game program, define copy constructors and overloaded assign-
ment operator member functions to the Hand class and all of its subclasses.

Chapter 10 ■ Inheritance and Polymorphism: Blackjack324

INDEX

INDEX

A
abstract class, 296–298

deriving class from, 298
pure virtual functions, declaring, 297–298

Abstract Creature program, 296–297
abstraction, 132

encapsulation compared, 137
access levels for objects, 226–231
access member functions, 229–230
access modifiers with class members, 285–286
addition operators, 12
addresses to pointers, assigning, 194–195
aggregation, 245–249

container data members for, 248–249
object data members with, 247–248

AI (Artificial Intelligence), 174
algorithms, 112–116

definitions file for, 114
merge() algorithm, 115–116
random_shuffle() algorithm, 114
sort() algorithm, 115
in STL (Standard Template Library), 100

AND operator, 55–56
login combinations using, 56

announceWinner() function for Tic-Tac-Toe
game, 185–186

ANSI standard, 4
ANSI/ISO standard, 4
application files, 302–303
argument variable, 164–165

arguments, 60. See also default arguments; pass-
ing

references for altering, 164–167
value, passing by, 166–167

arithmetic operators, 11–13
combined assignment operators, 22–23
order of operations, 13
with variables, 21–25

Array Passer program, 210–211
arrays, 83–87. See also pointers

bounds of, 86–87
creating, 84–85
dynamic arrays, 100
indexing, 85–86
initializing, 85
member functions, accessing, 86
multidimensional arrays, 88–90
passing, 212–213

ASCII character values, 18–19
askNumber() function

for Mad Lib game, 155–156
for Tic-Tac-Toe game, 179

askText() function for Mad Lib game, 155
askYesNo() function for Tic-Tac-Toe game, 179
assembly language, 2
assignment operators, 39. See also overloaded

assignment operators
default assignment operators, 266

associative containers, 118

B
base class members. See inheritance
begin() vector member function, 108

Blackjack game, 303–321
Card class in, 306, 308–310
classes, designing, 304–307
Deck class in, 307, 315–317
Game class in, 307, 318–320
GenericPlayer class in, 307, 312–313
Hand class in, 306, 310–312
House class in, 307, 314–315
main() function in, 320
operator<<() member function and, 321
overloading functions in, 321
planning logic, 208
Player class in, 307, 313–314

bool variables, 15, 35
bounds checking, 87

with string objects, 80
branching

with else statements, 42
with switch statements, 46

break statements, 50–52
for exiting loops, 51
with switch statements, 44

bugs. See errors
busting, 303

C
C++ Builder Studio, 3
C-style comments, 6
C-style strings, 87–88
capacity() member function, 116–117
Card class in Blackjack game, 306, 308–310
character variables, 18–19
classes. See also abstract class; inheritance

access levels, setting, 226–228
access member functions, 229–230
for Blackjack game, 304–307
for Critter Caretaker game, 237–238
data members, declaring, 221
declaring

data members, 221
member functions, 222

defining, 221–222
member functions

declaring, 222
defining, 222

private access levels, 228–229
public access levels, 228–229

pure virtual functions, declaring, 297–298
static member functions, 234–235

clear() member function, 104
code, organizing. See organizing code
combined assignment operators, 22–23
comments

C-style comments, 6
in Game Over program, 5–6

compilers, 2–3
errors, 3
with for loops, 73
with STL (Standard Template Library), 102

computerMove() function for Tic-Tac-Toe game,
183–185

concatenating
C-style strings, 88
string objects, 79

constant iterators, 107
constant member functions, 230–231
constant pointers. See pointers
constant references, 169–170
constants, 25–27

defining, 26
enumerations, 27
global constants, 145
for Hangman program, 122
passing constant pointer to, 204

Constructor Critter program, 224–225
constructors, 224–226. See also copy constructors

automatically calling, 226
base class constructors, calling, 288–289
for Critter Caretaker game, 238
declaring, 225–226
default constructors, 225
defining, 225–226
member initializers for, 226

container adaptors, 118
containers, 99–100. See also algorithms

as data members, 248
merge() algorithm, containers holding results of,

115–116
types of, 118–119

continue statements, 50–52
top of loop, jumping to, 52

copy constructors, 262–265
in derived classes, 290–291

Counter program, 72–73
counting with for loops, 73–74

Index326

Critter Caretaker game, 235–241
Critter Farm program, 246–247
Critter project, 299
curly braces {} in functions, 7

D
dangling pointers, 256
data members, 76

access levels, setting, 228–231
class data members, declaring, 221–222
constant member functions, 230–231
container data members, 248
copy constructors with, 263
heap, declaring pointers to values on, 258–262
in Lobby class, 271
object data members, 223, 247–248
slicing, 295
static data members, 231–235

Deck class in Blackjack game, 307, 315–317
declaring. See also classes

C-style strings, 87–88
class data members, 221
constructors, 225–226
functions, 131
global constants, 145
global variables, 143
iterators, declaring, 107–108
pointers, 193–194
pure virtual functions, 297–298
references, 163
static data members, 233
using declarations, 10–11
variables, 16–17
vectors, 102–103

decrement operators, 23–24
deep copies, 264
default arguments, 145–148

assigning, 148
overriding, 148
specifying, 147–148

default constructors, 225
default statements with switch statements, 44
delete operator with heap, 255–256
deleting

dangling pointers, 256
vector elements, 118

Index 327

deque containers, 119
dereferencing

iterators, 109, 110
pointers, 195–196, 197

derived classes. See also inheritance; polymor-
phism

from abstract class, 298
Designers Network program, 52–55
destructors, 262

base class destructors, 283–284
copy constructors and, 262–265
virtual destructors, defining, 295–296

Dev-C++, 3, 4, 73
Die Roller program, 58–59
directives. See also preprocessor directives

using directives, 9–10
display, updating, 63
displayBoard() function for Tic-Tac-Toe game,

181
division, integers and, 12–13
do loops, 48–50

looping with, 49–50
double type, 15
dynamic arrays, 100
dynamic memory, 245, 252–258. See also heap

E
early binding, 294
Eat() member function for Critter Caretaker

game, 239
else statements, 40–43

branching program with, 42
with correct if statements, 42–43

empty() member function, 82
with vectors, 105

empty statements in for loops, 74
encapsulation, 136–137. See also scopes

abstraction compared, 137
end() vector member function, 109
enumerations, 27
equal to operator, 36, 39
erase() member function, 82
erase() vector member function, 111–112
errors

dealing with, 3–4
with equal to operator, 39–40
with for loops, 73
game testers, 4

with if statements, 38
inheritance, advantages of, 280

escape sequence, 19
executable files, creating, 2–3
exiting

break statements for, 51
Hangman program, 124

Expensive Calculator program, 11–13
expressions, arithmetic operators in, 12

F
file extensions, 3
files

application files, 302–303
header files, 300–301
implementation files, 302
one file of code, using, 299–300

find() member function, 81
Finicky Counter program, 50–51
flexibility of C++, 2
float type, 15
floating point division, 12–13
floating point variables, 18
for loops, 71–75

counting with, 73–74
empty statements in, 74
initialization of, 71–72
nesting, 75

fractional parts, division and, 12–13
free store, 252
Friend Critter program, 249–250
friend functions, 249–252

creating, 251
func() function, 140
function bodies, 131
function headers, 131
function prototype, 131
functions, 7. See also default arguments; friend

functions; member functions; overloaded
functions

abstraction, 132
calling, 132
creating functions, 129–132
declaring, 131
defining, 131–132
inlining functions, 151–153
operator overloading, 249–252
return statement with, 134–135

static member functions, 234–235
for Tic-Tac-Toe game, 176–177
values, returning, 134

G
Game class in Blackjack game, 307, 318–320
Game Lobby program, 267–275
game loop, 61–63

in Guess My Number project, 63–64
for Word Jumble game, 93

Game Over program, 4–9
Game Over 2.0 program, 9–10
Game Over 3.0 program, 10
game over calculations, 63
Game Stats program, 14–15
Game Stats 2.0 program, 21
Game Stats 3.0 program, 25–26
game testers, 4
GenericPlayer class in Blackjack game, 307,

312–313
GetMood() member function for Critter Care-

taker game, 238
Give Me a Number program, 146–147
global constants, 145
Global Reach program, 142–143
global variables, 142–145

accessing, 143–144
altering, 144–145
declaring, 143
hiding, 144
minimizing use of, 145

greater than operator, 36
greater than or equal to operator, 36
growth of vectors, 116–117
Guess My Number project, 63–65

guessing loop, creating, 65
setting up game, 64–65
wrapping up game, 65

H
Hand class in Blackjack game, 306, 310–312
Hangman program, 120–124
has-a relationships, 247–248
header files, 6, 300–301
heap, 252. See also pointers

copy constructors with, 263–265
declaring pointers to values on, 258–262

Index328

delete operator with, 255–256
destructors, 262
freeing memory on, 256
initializing memory on, 255
memory leaks, 256–258
new operator with, 254–255

Heap Data Member program, 258–261
Heap program, 252–254
Hello World program, 4
Hero’s Inventory program, 83–84
Hero’s Inventory 2.0 program, 100–102
Hero’s Inventory 3.0 program, 105–107
hiding global variables, 144
High Scores program, 112–114
House class in Blackjack game, 307, 314–315
humanMove() function for Tic-Tac-Toe game, 183
humanPiece() function for Tic-Tac-Toe game, 180

I
I/O, standard library for, 4
IDE (Integrated Development Environment), 3
if statements, 36–40

else clauses with, 40–43
nesting, 40
testing, 38

implementation files, 302
increment operators, 23–24
indexing

arrays, 85–86
multidimensional arrays, 90
string objects, 80
vectors, 103–104

infinite loops, 49–50
inheritance, 279–284

access, controlling, 284–286
access modifiers with class members, 285–286
advantages of using, 280–281
base class members, 282–283

calling functions, 286–290
constructors, calling, 288–289
deriving from, 282–283
overriding functions, 289–290

in Blackjack game, 305
calling base class members, 286–290
copy constructors in derived classes, 290–291
derived classes

access modifiers, using, 286

Index 329

copy constructors in, 290–291
instantiating objects from, 283–284
overloaded assignment operators in, 290–291

destructors, 283–284
instantiating objects from derived class, 283–284
overloaded assignment operators in derived

classes, 290–291
overriding base class member functions,

289–290
private members, 286
protected members, 286
public members, 286
using inherited members, 284

initializer lists, 85
initializing

arrays, 85
C-style strings, 87–88
constructors, 226
for loops, 71–72
Hangman program variables and constants, 122
heap, memory on, 255
multidimensional arrays, 90
pointers, 194
references, 163
static data members, 233
variables, 19

inlining functions, 151–153
calling inlined functions, 153
member functions, 230
specifying functions for inlining, 152–153

insert() vector member function, 111
instantiating

derived class, objects from, 283–284
objects, 222–223

instructions() function for Tic-Tac-Toe game, 179
Instructions program, 129–130
int type, 15
integers, 12–13

variables, assigning values to, 18
wrap around, dealing with, 24–25

Inventory Displayer program, 168–169
Inventory Pointer program, 205–206
Inventory Referencer program, 171–172
isLegal() function for Tic-Tac-Toe game, 183
ISO standard, 4
iterators, 105–112. See also vectors

altering, 109
constant iterators, 107

declaring, 107–108
defined, 107
dereferencing, 109, 110
looping through vectors, 108–109
in STL (Standard Template Library), 100
with string objects, 80–81

K
keywords, 17

L
late binding, 294
legal variable names, 17
less than operator, 36
less than or equal to operator, 36
libraries. See also STL (Standard Template

Library)
I/O, standard library for, 4

link errors, 3
linked lists, 270
linkers, 2–3
list containers, 118, 119
Lobby class in Game Lobby program, 269–271
Lobby::AddPlayer() member function, 271–272
Lobby::Clear() member function, 273–274
Lobby::RemovePlayer() member function,

272–273
local variables, 139
logical errors, 3–4

with else clauses, 42–43
logical operators, 52–58

NOT operator, 57
AND operator, 55–56
OR operator, 56–57
order of operations for, 57–58

loop body, 48
loops. See also for loops

break statements for exiting, 51
continue statements for jumping to, 52
do loops, 48–50
infinite loops, 49–50
for Tic-Tac-Toe game, 182
vector, looping through, 108–109
while loops, 46–48

Lost Fortune program, 27–30
player information, obtaining, 29
setting up, 28
telling the story, variables for, 29–30

M
Mad Lib game, 153–156
main() function, 6–7

in Blackjack game, 320
for Critter Caretaker game, 240–241
in Game Lobby program, 274–275
for Mad Lib game, 154–155
returning value from, 8–9
for Tic-Tac-Toe game, 178–179

main loop for Hangman program, 123
map containers, 119
member functions, 76. See also classes; inheri-

tance; polymorphism; vectors
access member functions, 229–230
of array elements, 86
assignment operator member function, 266
constant member functions, defining, 230–231
copy constructors, 262–265
for Critter Caretaker game, 238–240
destructors, 262
empty() member function, 82
erase() member function, 82
find() member function, 81
in Game Lobby program, 271–274
inlining member functions, 230
for objects, 223
push_back() member function, 103
size() member function for string objects, 79–80
static data members, 231–235
for vectors, 104–105
virtual member functions, defining, 293–294

member-wise copies, 263
memory, 191. See also dynamic memory; heap

leaks, avoiding, 256–258
vectors, allocation for, 116–117

Menu Chooser program, 44–46
merge() algorithm, 115–116
minimizing use of global variables, 145
modulus operator, 13

for random numbers in range, 61
multidimensional arrays, 88–90

creating, 89–90
indexing, 90
in Word Jumble game, 90–94

multimap containers, 119
multiplication operators, 12

Index330

N
names

for types, 20
variables, naming, 17–18

namespace, 7
std namespace, 9–11

nested scopes, 140–141
nesting

for loops, 75
if statements, 40

new operator with heap, 254–255
not equal to operator, 36
NOT operator, 57
null character with C-style strings, 87
null pointers, 194

O
object files, 2–3
object-oriented programming (OOP), 2, 219
objects, 75–77. See also aggregation; constructors;

member functions
access levels, setting, 226–231
data members for, 223, 247–248
destructors, 262
instantiating, 222–223
member functions for, 223
new types, defining, 219
pointers to, 197–198
private access levels, 228–229
public access levels, 228–229
returned pointer, altering through, 209
returned reference, altering through, 174
slicing, 295

one file of code, using, 299–300
operator<<() member function, 274

in Blackjack game, 321
operators. See also logical operators; relational

operators
combined assignment operators, 22–23
decrement operators, 23–24
increment operators, 23–24
modulus operator, 13
overloading operators, 79, 249–252

opponent() function for Tic-Tac-Toe game,
180–181

OR operator, 56–57
login combinations using, 57

Index 331

order of operations
for arithmetic operators, 13
for logical operators, 57–58

organizing code, 299–303
application files, 302–303
header files, 300–301
implementation files, 302
one file of code, using, 299–300

out-of-scope objects
returning pointers pointing to, 207
returning references to, 173

out-of-scope variables, 140
output operators, 7
overloaded assignment operators, 265–267

in derived classes, 290–291
overloaded functions, 149–151

in Blackjack game, 321
calling, 151
creating, 150
implementing, 150

overloaded operators, 79, 249–252
Overriding Boss program, 287–288

P
parameters, 131. See also default arguments

as constant references, 169–170
encapsulation and, 136–137
passing values to, 136
return values, accepting, 135–136
using parameter values, 136
working with, 132–137

parentheses ()
in functions, 7
redundant parentheses, 58

passing. See also pointers; references
arrays, 212–213
constant, constant pointers to, 204
pointers, 201–204

PassTime() member function for Critter Care-
taker game, 238

planning programs, 119–120
Blackjack game logic, 308
Critter Caretaker game, 236
Hangman program, 121
Tic-Tac-Toe game, 175

Play Again program, 46–47
Play Again 2.0 program, 48–49

Play() member function for Critter Caretaker
game, 239–240

Player class
in Blackjack game, 307, 313–314
in Game Lobby program, 268–269

player input in game loop, 62
pointers, 191–217

addresses, assigning, 194–195
arrays, 209–213

constant pointer, array name as, 211–212
passing, 212–213

basics of, 191–198
constant pointers, 198–201

array names as, 211–212
passing, 203–204

dangling pointers, 256
data member as pointer, declaring, 261
declaring, 193–194

data member as pointer, declaring, 261
dereferencing, 195–196, 197
heap, pointers to, 256

declaring pointers to values on heap, 258–262
initializing, 194
memory leaks, avoiding, 257
to objects, 197–198
passing, 201–204

constant pointers, 203–204
value, passing by, 203

reassigning, 196–197
summarizing, 200–201
value, passing by, 203

Pointing program, 192–193
polymorphism, 291–296

in Blackjack game, 305
pure virtual functions, declaring, 297–298
slicing and, 295
virtual destructors, defining, 295–296
virtual member functions, defining, 293–295

pop_back() member function, 104
postfix increment operators, 23–24
prefix increment operators, 23–24
preprocessor directives, 6

organizing code for, 301
priority_queue containers, 119
private access levels, 228–229
Private Critter program, 227–228
private members, 286
profiling code, 153

protected members, 286
prototypes, 131
pseudocode

for Critter Caretaker game, 237
stepwise refinement, 120
for Tic-Tac-Toe game, 175
working with, 119–120

pseudorandom numbers, 60
public access levels, 228–229
public derivation, using, 286
public members, 286
pure virtual functions, declaring, 297–298
push_back() function, 103

performance issues with, 248
puzzle games, 90–94

Q
queue containers, 119

R
rand() function, 59–60
rand() generator, pseudorandom numbers with,

60
random numbers, 58–61

range, calculating number within, 61
seeding random number generator, 60–61

random_shuffle() algorithm, 114
reassigning pointers, 196–197
redundant parentheses, 58
references, 161–189

accessing referenced values, 163
altering referenced values, 164
arguments, passing to alter, 164–167
assigning returned reference to, 173
constant references, 169–170
creating, 163
efficiency, passing references for, 167–170
passing, 167

constant references, 170
efficiency, passing for, 167–170
problems with, 169
by value, 164–167, 170

reassigning references, 164
returning references, 171–174
value, passing by, 164–167, 170

Referencing program, 161–162
relational operators, 35–36

using, 39–40

Index332

representing data for Tic-Tac-Toe game, 175–176
reserve() member function, 117
return statement with functions, 134–135
return values

encapsulation, 136–137
parameters, accepting into, 135–136
working with, 132–137

returning pointers, 205–209
objects, altering, 209
pointer, assigning returned pointer to, 207–208
specifying, 206–207
values, displaying, 207
variables assigned value with, 208–209

returning references, 171–174
assigning returned references, 173–174
objects, altering, 174
value, displaying, 173

reusing code, 137–138
run-time errors, 3–4

S
scopes, 138–141

nested scopes, 140–141
resolution operators, 7
separate scopes, working with, 139–140

Scoping program, 138–139
Score Rater program, 36–38
Score Rater 2.0 program, 41–42
seeding random number generator, 60–61
self-documenting code, 18
sequential containers, 118
set queue containers, 119
setup

of game loop, 62
of Hangman program, 122
of Mad Lib game, 153–156
for Tic-Tac-Toe game, 177–178
of Word Jumble game, 91

shallow copies, 263
shutting down calculations, 63
Simple Boss program, 281–282
Simple Boss 2.0 program, 284–285
Simple Critter program, 220–221
size() member function, 79–80

with vectors, 103
slicing, 295
software reuse, 137–138

Index 333

sort() algorithm, 115
sorting

algorithm for, 115
merging sequences and, 115–116

source code, 2–3
speed of C++, 2
stack, 252

queue containers, 119
standard library, 4
standard output, displaying text through, 7–8
Static Critter program, 231–233
static data members, 231–235

accessing, 233–234
declaring, 233
initializing, 233

static member functions
calling, 234–235
defining, 234

std namespace, 9–11
stepwise refinement, 120
STL (Standard Template Library), 99–100. See

also containers; vectors
algorithms in, 100
compilers with, 102
iterators in, 100

streams, 29
string literal, 7
string objects, 77–82

with C-style strings, 87–88
concatenating, 79
creating, 79
empty() member function, 82
erase() member function, 82
find() member function, 81
indexing, 80
iterating through, 80–81
listing of member functions, 82
size() member function for, 79–80

String Tester program, 77–78
strings, 7
Stroustrup, Bjarne, 1
subclass, 282–283
subscripting operators

with arrays, 85
with vectors, 104

subtraction operators, 12
superclass, 282–283
support for C++, 2

Swap Pointer Version program, 201–203
Swap program, 165–166
switch statements, 43–46

branching with, 46
syntactic sugar, 111
syntax errors, 3

T
Taking Damage program, 151–152
Talk() member function for Critter Caretaker

game, 239
tellStory() function for Mad Lib game, 156
terminating statements, 8
text, displaying, 7–8
Tic-Tac-Toe game, 174–186
Tic-Tac-Toe 2.0 game, 213
Tic-Tac-Toe Board program, 88–89
toupper() function, 132
Triple program, 149–150
true/false expressions, 35–36

else clauses, 40–43
testing, 38
value interpretations, 39
with while loops, 46–48

types, 15
choosing types, 20–21
commonly used types, 16
modifiers, 15–16
new names for, 20

U
updating game internals, 62
user input for variables, 20
using

declarations, 10–11
directives, 9–10

V
values. See also references

altering values of variables, 22
functions, returning value from, 134
passing by, 164–167, 170
returned pointer displaying, 207
true/false interpretations, 39
variables, assigning values to, 18–20

variables, 13–21. See also global variables; point-
ers; references; scopes; types

altering values of, 22
arithmetic operations with, 21–25
characters for, 18
declaring, 16–17
displaying values, 19–20
functions, variables declared inside, 139
good names for, 17–18
for Hangman program, 122
initializing, 19
in Lost Fortune program, 29–30
multiple variables, declaring, 17
naming variables, 17–18
in nested scopes, 141
out-of-scope variables, 140
returned reference, assigning, 173–174
user input for, 20

vector queue containers, 119
vectors, 100–105

accessing member functions, 110–111
adding or removing elements, 118
begin() vector member function, 108
calling member functions, 104–105
capacity() member function, 116–117
changing value of, 110
clear() member function, 104
declaring, 102–103
deleting elements, 118
empty() member function with, 105
end() vector member function, 109
erase() vector member function, 111–112
growth of, 116–117
indexing, 103–104
insert() vector member function, 111
inserting elements, 118
looping through, 108–109
memory allocation, 116–117
pop_back() member function, 104
preparing to use, 102
push_back() member function, 103
reserve() member function, 117
size() member function with, 103

Virtual Boss program, 291–293
virtual destructors, defining, 295–296
virtual functions, 294
virtual member functions, defining, 293–294
Visual C++, 73
Visual Studio .NET, 3

Index334

W
while loops, 46–48

creating, 51
looping with, 47–48
preference for, 49

whitespace
in Game Over program, 6
if statements and, 38

winner() function for Tic-Tac-Toe game, 181–182
Word Jumble game, 90–94

game loop for, 93
picking words for, 91–92
setting up program, 91
shutting down, 94
welcoming player to, 93

wrapping around variables, 24–25

Y
Yes or No program, 133–134

Index 335

Call 1.800.354.9706 to order
Order online at www.courseptr.com

Check out more titles in the Beginning series from Course PTR—full
of tips and techniques for the game developers of tomorrow!
Perfect your programming skills and create eye-catching art for your
games to keep players coming back for more.

Check out advanced books and the full Game Development series at

WWW.COURSEPTR.COM/GAMEDEV

Beginning OpenGL
Game Programming

ISBN: 1-59200-369-9
$29.99

Game Art for Teens
ISBN: 1-59200-307-9

$29.99

Beginning DirectX 9
ISBN: 1-59200-349-4

$29.99

Game Programming
for Teens

ISBN: 1-59200-068-1
$29.99

RISE TO THE TOP OF YOUR
GAME WITH COURSE PTR!

Professional ■ Trade ■ Reference

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms
and conditions. If, upon reading the following license agreement and notice of limited
warranty, you cannot agree to the terms and conditions set forth, return the unused
book with unopened disc to the place where you purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software
disc. You are licensed to copy the software onto a single computer for use by a single user
and to a backup disc. You may not reproduce, make copies, or distribute copies or rent or
lease the software in whole or in part, except with written permission of the copyright hold-
er(s). You may transfer the enclosed disc only together with this license, and only if you
destroy all other copies of the software and the transferee agrees to the terms of the
license. You may not decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Thomson Course Technology PTR to be free of physical
defects in materials and workmanship for a period of sixty (60) days from end user’s pur-
chase of the book/disc combination. During the sixty-day term of the limited warranty,
Thomson Course Technology PTR will provide a replacement disc upon the return of a
defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST
ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL THOM-
SON COURSE TECHNOLOGY PTR OR THE AUTHOR BE LIABLE FOR ANY OTHER
DAMAGES, INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES IN THE FUNC-
TIONAL CHARACTERISTICS OF THE HARDWARE OR OPERATING SYSTEM, DELETE-
RIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPECIAL, INCIDEN-
TAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF THOMSON COURSE
TECHNOLOGY PTR AND/OR THE AUTHOR HAS PREVIOUSLY BEEN NOTIFIED THAT
THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
THOMSON COURSE TECHNOLOGY PTR AND THE AUTHOR SPECIFICALLY DISCLAIM
ANY AND ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING
WARRANTIES OF MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR PUR-
POSE, OR FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR EXCLU-
SION OF IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of Massachusetts without regard to
choice of law principles. The United Convention of Contracts for the International Sale of
Goods is specifically disclaimed. This Agreement constitutes the entire agreement between
you and Thomson Course Technology PTR regarding use of the software.

	Contents
	Introduction
	Chapter 1 Types, Variables, and Standard I/O: Lost Fortune
	Introducing C++
	Writing Your First C++ Program
	Working with the std Namespace
	Using Arithmetic Operators
	Declaring and Initializing Variables
	Performing Arithmetic Operations with Variables
	Working with Constants
	Introducing Lost Fortune
	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 2 Truth, Branching, and the Game Loop: Guess My Number
	Understanding Truth
	Using the if Statement
	Using the else Clause
	Using the switch Statement
	Using while Loops
	Using do Loops
	Using break and continue Statements
	Using Logical Operators
	Generating Random Numbers
	Understanding the Game Loop
	Introducing Guess My Number
	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 3 For Loops, Strings, and Arrays: Word Jumble
	Using for Loops
	Understanding Objects
	Using string Objects
	Using Arrays
	Understanding C-Style Strings
	Using Multidimensional Arrays
	Introducing Word Jumble
	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 4 The Standard Template Library: Hangman
	Introducing the Standard Template Library
	Using Vectors
	Using Iterators
	Using Algorithms
	Understanding Vector Performance
	Examining Other STL Containers
	Planning Your Programs
	Introducing Hangman
	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 5 Functions: Mad Lib
	Creating Functions
	Using Parameters and Return Values
	Understanding Software Reuse
	Working with Scopes
	Using Global Variables
	Using Global Constants
	Using Default Arguments
	Overloading Functions
	Inlining Functions
	Introducing the Mad Lib Game
	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 6 References: Tic-Tac-Toe
	Using References
	Passing References to Alter Arguments
	Passing References for Efficiency
	Deciding How to Pass Arguments
	Returning References
	Introducing the Tic-Tac-Toe Game
	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 7 Pointers: Tic-Tac-Toe 2.0
	Understanding Pointer Basics
	Understanding Pointers and Constants
	Passing Pointers
	Returning Pointers
	Understanding the Relationship between Pointers and Arrays
	Introducing the Tic-Tac-Toe 2.0 Game
	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 8 Classes: Critter Caretaker
	Defining New Types
	Using Constructors
	Setting Member Access Levels
	Using Static Data Members and Member Functions
	Introducing the Critter Caretaker Game
	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 9 Advanced Classes and Dynamic Memory: Game Lobby
	Using Aggregation
	Using Friend Functions and Operator Overloading
	Dynamically Allocating Memory
	Working with Data Members and the Heap
	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 10 Inheritance and Polymorphism: Blackjack
	Introducing Inheritance
	Controlling Access under Inheritance
	Calling and Overriding Base Class Member Functions
	Using Overloaded Assignment Operators and Copy Constructors in Derived Classes
	Introducing Polymorphism
	Using Abstract Classes
	Organizing Your Code
	Introducing the Blackjack Game
	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

